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RÉSUMÉ

Ce mémoire s’intéresse au domaine de la vision par ordinateur, et plus particulière-

ment l’estimation du flux optique. Le flux optique est un problème 2D notoirement

difficile, car il est intrinsèquement sous-contraint. Pour introduire la notion de flux op-

tique cyclopéen, nous allons considérer le problème en 1D pour éliminer le problème

d’ouverture lié au mouvement 2D. Nous proposons une nouvelle approche basée sur

un référentiel « cyclopéen », basée sur gradient calculé dans un espace continu pour

résoudre le flux optique 1D. Ce mémoire se concentre a garantir que le gradient reste

utilisable dans un intervalle suffisamment grand pour couvrir le déplacement spatial du

mouvement. Lors de la résolution sur une approche coarse-to-fine, une représentation

pyramidale est utilisée. Les résultats sur des images aériennes ainsi que des données

synthétiques sont prometteurs. Ce travail se distingue des tendances actuelles en flux

optique parle fait qu’il se spécialise pour les flux optiques à faible mouvement.

Nos résultats ont montré une bonne gestion des faux positifs tout en conservant

une bonne densité. Nous considérons que la fiabilité des mesures de mouvement est

très élevée, ce qui est au moins aussi important que la précision elle-même dans beau-

coup d’applications. Ainsi, la polyvalence de la représentation "continue" permet de

mieux contrôler la densité obtenue en fonction de la scène analysée. À notre avis, cette

approche, qui complète les méthodes traditionnelles, ouvrira la voie à de nouvelles

approches en apprentissage profond.

Mots clés:cyclopéen, vision stéréo, low ligne de base, pyramidal



ABSTRACT

This thesis is in the field of computer vision, focusing on the problems of optical flow

estimation. Optical flow is a notoriously difficult 2D problem since it’s inherently under-

constrained. To introduce the concept of cyclopean optical flow, we will downgrade the

2D into 1D to make it more accessible. It proposes a new approach based on a "cyclo-

pean" frame of reference. We apply a constrained gradient-based technique to solve

1D optical flow, for which the constraints are gradient behavior and correlation score.

This thesis focuses on the fundamental problem of ensuring that the gradient remains

usable in an interval large enough to cover the spatial displacement of motion. The pro-

posed "cyclopean" approach does not enforce optical measurements over a fixed grid,

which results in more reliable results. To further increase the allowed motion interval,

we propose a pyramidal constraint that allows solving over a coarse-to-fine approach.

We solved over aerial imagery, Sintel data-set, and Sintel data-set when artificially dis-

placed 10% of the ground truth. This work is developed in the "continuous" framework

commonly used for small motion optical flow. Our results showed good management of

false positives while maintaining a good amount of convergence density. However, our

method isn’t as precise as the current state-of-the-art benchmarks, as it specializes in

very small motions. Also, it’s important to mention versatility comes with the concept

of "continuous" representation. This allows us to select regions to be solved, opening

the possibility of adapting to the spectrum of sparse or dense optical flow.

From this study point of view, we can highlight traditional methods have relevance

even in the deep learning era, offering a new set of tools to exploit on the pursue of

solving optical flow.

Keywords: Cyclopean, Stereo, Depth estimation, Small-baseline, pyramids
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Chapter 1

INTRODUCTION

Optical flow is an important problem in the field of computer vision, therefore,

research is highly motivated to address its challenges. Measuring apparent motion is

the main goal of optical flow; In visual perception, the relative motion between an

observer and a scene through time. In a digital context, optical flow is often a bridge

between reality and computers; a camera is the source of observation, providing the

necessary set of images.

1.1 Optical FLow

Optical flow is the computed motion given a sequence of images. To reach a solution,

a final and initial state are defined by the nature of a video sequence V . As seen in

Fig. 1.1, given two consecutive images I1 and I2 taken from V , the position of pixels is

tracked and matched to similar distributions between I1 and I2.

The extraction of an image information will be directly linked to an algorithm’s

capacities, to which we can identify two extremes: local and global algorithms. The

first category refers to pixel matching, a solution is calculated in a secluded manner;

this technique highlight its robustness to noise. The second category involves all pixels

to calculate displacement; these techniques provide a solution for each and every pixel

of an image.

Adding complexity to optical flow algorithms can decrease deficiencies in the solu-

tion, however, an increase in the computation time is expected. This capacity adapts to

the concept of sparse matching; this modality will only focus and compute solutions for



Figure 1.1: Optical flow estimation. A grid of instantaneous motion vectors is computed

from a sequence of images. Left: I1 and I2, Right: I1’s optical flow.

certain pixels of interest. Alternatively, dense matching calculates every solution albeit

and outcome with I1’s dimentions is computationally demanding.

To overcome optical flow’s challenges in the most optimal way, the academic com-

munity has invested incredible efforts in defining one of the most dynamic frameworks.

Local linearization is used in the context of instantaneous motion, which reefers

to small displacements between frames. Gradient-based techniques as categorized by

Barron et al. commonly apply local linearization to match pixels between frames; the

gradient’s tangent behavior will be used to pursuit a pixel between frames, estimating

their displacement.

To interpret displacement, information needs to be extracted from images to iden-

tify similarities and determine their variance in position. The information that will be

explored in this chapter is the intensity of an image, which is the value of its pixels.

Considering that the intensity is given as a discrete value, gradient-based estimation is

of big interest to exploit the result of approximating it to a continuous function.

A gradient-based method requires two assumptions: two images have highly related

distributions due to their sequential nature and the sequences of images have a constant

and small interval of sampling that describe t and t+δt. These suppositions are known
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as brightness constancy which will give confidence to the analysis and supports that an

image’s intensity will conserve its brightness through changes in time, as a result, pixel

tracking will be a constraint as follows:

I(~x , ~y , t) = I(~x + ~u, ~y + ~v, t +∆t) (1.1)

For any pixel with an intensity value of I(~x + ~u, ~y + ~v) at t +∆t exists as well in

I(~x , ~y) at t.

This is considered to be a very rigid definition due to the equality symbol, which

means no change in intensity is expected after a point of interest has been relatively

moved in space. This doesn’t consider the natural 3D behaviors of light reflection,

perspective changes, or rotational movement, so the calculated displacement would be

an approximation.

Gradient-based algorithms described and analised by Fleet and Weiss, where we

can follow the mathematical process behind an 1D iterative gradient-based method.

Intensity I(~x , t) is assumed to remain constant from one frame to another in spite of

the motion,

I(~x , t) = I(~x + ~u, t + 1) (1.2)

where t = 1 it’s an ideal constant sampling rate. Any two pixels among the frames

t and t + 1 respecting this definition are presumed to be the same component in the

scene with an apparent 1D motion of ~u.

Considering two 1D intensity functions I1(x) = I(~x , t) and I2(x) = I(~x , t + 1), the

objective is to find u according to (1.2),

I1(x − u) = I2(x) (1.3)

to gain access to ~u, we use Taylor’s series expansion, for which,
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I1(x − u) = I1(x)− uI ′1(x) +O(u2I ′′1 (x)) (1.4)

and therefore, we can write u (x ’s difference between signals),

I1(x)− I2(x) = uI ′1(x) +O(u2I ′′1 (x)) (1.5)

where an approximation of u is defined,

u≈
I1(x)− I2(x)

I ′1(x)
(1.6)

by avoiding the high degree derivatives from Taylor’s expansion. This is then im-

proved with an iterative approach in the form of Gauss-Newton optimization,

un ' un−1 +
I1(x + un−1)− I2(x)

I ′1(x + un−1)
(1.7)

where n is the number of iterations. In the formulation (1.7) each step of n we

explore the function I1(x) until 1.2 is achieved. By the risk of falling into an infinite

loop of iteration, n is usually limited by a maximum amount of iterations allowed.

But as mentioned, Horn and Schunck’s method is an approximation limited by its

own initial hypothesis, although its results are sustainable, it welcomes development in

order to increase performance and robustness, as followed by [12, 9].

1.1.1 Horn and Schunk

The most fundamental constraint of optical flow estimation is the constant brightness

assumption. It stipulates that the image pixel intensities are preserved during motion,

so we can say

I(x , y, t) = I(x +∆x , y +∆y, t +∆t)

for a pixel undergoing motion (∆x ,∆y) in time interval∆t. Assuming the motion and

the sampling time are small, we have the relation:
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I(x , y, t)− I(x +∆x , y +∆y, t +∆t) = 0

∂ I
∂ x
∆x +

∂ I
∂ y
∆y +

∂ I
∂ t
∆t = 0

(
∂ I
∂ x

,
∂ I
∂ y
) · (
∆x
∆t

,
∆y
∆t
) = −

∂ I
∂ t

∇I · ~v = −It

This constant brightness equation can’t fully resolve the 2D motion ~v.

Therefore, Horn and Schunck’s (H&S) variational method introduces brightness con-

sistency and global smoothness regularization into optical flow as seen in the cost func-

tion Eq. 1.8, which enables pixel-to-pixel comparison while maintaining a system with

a linear behavior.

[h]E =

∫∫

x ,y

( fxu+ f y v + ft)
2 +λ(u2

x + u2
y + v2

x + v2
y)d xd y (1.8)

The smoothness constraint assumes that pixels’ motion will spatially change slowly,

the second term of Eq. 1.8 represents the motion vectors {u, v}, which are expected to

be minimized. Also, the term λ will offer weight to either assumption, favoring the

smoothness regularization if large.

By using differential calculus, we isolate the unknowns {u, v} from Eq. 1.8,

u= uavg − fx
P
D

v = vavg − f y
P
D

(1.9)

where,

P = fxuavg + f y vavg + ft

D = f 2
y + f 2

x +λ
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Eq. 1.10 are applied iteratively to estimate the motion vectors {u, v},

un = un−1
avg − fx

P
D

vn = vn−1
avg − f y

P
D

(1.10)

where,

P = fxun−1
avg + f y vn−1

avg + ft

D = f 2
y + f 2

x +λ

This method is also constrained by a 2D projection as the representation of a 3D

physical world, making estimation more accessible without highly compromising ac-

curacy during the solution’s approximation. This algorithm is categorized as gradient-

based because it uses the Spatio-temporal derivatives of a scene’s sequence.

1.1.2 Lucas and Kanade

Lucas et al. (LK) solved the aperture problem by assuming it’s probable that an ob-

ject’s displacement will be alike among its pixels, allowing to solve 1.11, which is now

overconstrained. With this new assumption, we introduce n number of equations; n

represents the neighborhood which we assume is within the object.

C =
∑

n

( fx iu+ f yi v + ft i)
2 (1.11)

We solve then the system of n equations for {u, v},





u

v



=





∑

n f 2
x i

∑

n f yi fx i
∑

n fx i f yi

∑

n f 2
yi





−1



−
∑

n ft i fx i

−
∑

n ft i f yi



 (1.12)

with least squares method (LSM).

Again, this method is bounded by the previous assumptions, where we benefit of

small motions.
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1.1.3 Coarse-to-fine approaches

Pixels can be hard to densely match when displacements are not uniform through the

images. An alternative to this issue is coarse-to-fine (pyramidal representation) [2] in-

troduces some context to the calculations by analyzing different resolutions of an image

with the intention of filtering high frequencies. This has a low-pass filter behavior, al-

lowing the algorithm to deal with images without many details, being obstruction when

trying to match two distanced pixels. This categorizes methods as global optimization

and has become a recurrent aid for a variety of methods [21, 54, 55, 49].

1.1.4 Neural networks

Under the inspiration of the previous work, different methods have been proposed over

the years [12, 9, 39] expanding optical flow’s traditional background; Neural Networks’

application to optical flow exhibits a new wave of discoveries aiming to make self-

driving cars, futuristic medical tools, surprising virtual and augmented reality systems,

etc, a reality. Deep learning offers context extraction and cleaner results, controlling

the current state of the art [59, 56, 31, 51].

1.1.5 Challenges of Optical Flow

Computing optical is not always easy, or possible at all. Common assumptions are:

intensity does not change with motion (Lambertian objects, static scene), image is as-

sumed locally continuous, small sampling time, etc. This results in a major constraint:

motion must be small. However, since the matching is not discrete but continuous,

sub-pixel motions are easy to compute.

LK and H&S are methods restrained by the above, therefore their pure application

is very limited to small motion. Coarse-to-fine is a good complementary technique to

increase other methods’ capacity but, it’s limited too. In certain circumstances, there is

a loss of information due to smoothing over small details and the possibility of false con-
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vergence if the shape of the curves does not translate adequately through the pyramidal

levels.

For the development of an optical flow algorithm, it’s important to study the com-

plications behind previous work, to mention a few:

• Brightness inconsistency: An object with different illumination conditions tend to

result in different intensities. Lambertian or "matte" surface will have apparent

brightness consistency due to the lack of specular reflection.

• Occlusions: When elements of a scene disappear between frames due to move-

ment, it’s referred to as an occlusion. Optical flow encounters challenges with

objects moving out of the frame of sight or having a three-dimensional (3D) ro-

tation.

• Ill-textured surfaces: A repetitive pattern increases the appearance ratio of the

same intensity pixels; this error is classified as false-positive. Lack of texture also

is a difficult zone due to the little amount of information available.

• Ground-truth data: in order to develop optical flow methods, ground-truth data is

essential to analyze an algorithm’s performance. Currently, the available data sets

are scarce, and extracting data from sensors, cameras, etc. can be an expensive

task being focused on autonomous driving. Alternately, simulated data sets also

provide quality scenes with a diversity of movements for benchmarking.

Variational methods find themselves limited by the brightness consistency, and the

simplification of this approach reduces the capacity for the algorithms to catch up

with Deep Learning’s achievements. This method also struggles with big displace-

ments, Gradient-based pixel-to-pixel matching is not enough to constraint/capacitate

the method to converge into fake solutions.
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The coarse-to-fine methodology might highly change shape during scale reduction.

This leads to convergence in false positives due to error propagation. Also, if an image

is too detailed, pyramid representation might filter this information away and therefore

lose information for those instances.

Deep learning methods are especially disadvantaged by the lack of variety and quan-

tity of data during the training process. The sensitivity during their learning process is

also a vulnerability because the risk of over-fitting is hard to control due to the lack of

labelled data.

In our method, we are going to expect these limitations, so we intend to solve small

motions, and explore how these can become larger in a context where the image is

assumed to behave smoothly.

We do not intend to build robustness to image noise, bias, specularity, or other

mismatches of intensities. However, our method will not use the temporal derivative,

so there is no need to assume that the image flow, in time, is continuous. Therefore,

it’s possible to do stereo since images in a stereo pair are "discrete" and feature depth

discontinuities would be incompatible with a continuous temporal image sequence.

1.1.6 From One Dimensional Optical Flow to Stereo

In Chapter 2 we will introduce and apply cyclopean optical flow’s concepts to solve

small-baseline stereo (SS) matching for aerial imagery.

When a pair of images have proper epipolar geometry, optical flow from I1 to I2 will

be parallel to one of the axes. With this definition, we can apply 1D optical flow to

solve displacements between I1 and I2, as seen in [15, 58, 13].

Stereo matching requires a pair of images taken simultaneously (stereo pair), but in

the case of aerial imagery, motion stereo is the available data (consecutive images from

a translating camera). On that account, the motion stereo pair will be translated as a

SS for the cyclopean stereo matching algorithm.
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1.2 Small baseline stereo

The main characteristic of stereo is the use of two cameras displayed horizontally. In

an account of the latter, the two pairs of images are projected in the same geometric

plane (co-planar) and have a geometric disparity between them. In case images are not

co-planar, they can be rectified into a shared plane. Some methods to re-project such

images are: planar, cylindrical, and polar rectification with epipolar geometry.

Some algorithms [13, 15, 58] have instigated optical flow techniques for depth es-

timation. A big number of stereo algorithms assume camera calibration and epipolar

geometry.

In [14, 26] it’s said that a big angle between views is generally expected to reach

good precision, in contrast, [14] SS is proposed. The latter assumes that disparity

between two images varies slowly in space and reinforces that small angles (which

generate fewer occlusions and higher similarity in a stereo-pair) favor the estimates of

depth.

During SS 2 cases are identified:

• Small displacements due to SS.

• Big displacements due to far away elements.

The two cases are recurrent in aerial imagery because elements are really distant

from the viewer and motion stereo; the latter translate into SS, where the baseline

is extremely small due to motion stereo, where stereo-pairs are actually consecutive

images of a video taken from a translating camera, for example, Fig. 1.2.

In stereo, displacement of objects is essentially 1D optical flow along epipolar line

and the displacement is directly related to depth. Here we explain this application and

how we solve it with the 1D cyclopean flow.

Optical Flow is the perceptible two-dimensional (2D) motion of a scene through

time. Having a pair of images, we track similarities in order to estimate displacement.

10



Figure 1.2: Motion stereo pair with epipolar geometry with size of 800× 400 pixels

This problem is approached by a variety of techniques with the goal of overcoming

recurrent difficulties during its calculation, for example: obtaining real-world ground-

truth data, scenes susceptible to brightness, occlusions, etc.

According to Hur and Roth, Shah and Xuezhi, the current state of the art is defined

by Convolutional Neural Networks (CNN).

The potential of neural networks was defined by its early performers [59, 18, 3, 23,

24, 48] stating the capacity of deep architectures to resolve optical flow. Baseline work

can be described by two main trains of thought: CNN feature extractors and end-to-end

CNN regressors.

An image’s extracted features enhance the representation to be employed by cor-

respondence techniques resulting in a more informed process to achieve pixel tracking,

these models [59, 23, 24] became a confident alternative to traditional concepts by

describing a pixel not only by its intensity but also by its attributes, tackling natural

brightness inconsistencies.

Meanwhile, the future of nonimage pre-processing wouldn’t be ensured until further

research was made on end-to-end CNN regression architectures [18, 48] and reveal a

competitive performance in [32, 55].

Introducing optical flow as a purely learning problem became a viable option for

motion estimation. And so forth, developments in the subject keep opening interest to

refine the initial surge of neural network methods.
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Despite the latter progress, deep learning encounters limitations that also motivate

further research in the traditional domain of optical flow, some examples reside in in-

convenient training time, data generalization, and lack of data sets for training. Non-

learning algorithms still show relevance due to their robustness, independence from

training, and potential collaboration with other motion estimation techniques to en-

hance a solution as seen in [3, 23, 24].

Earlier work still motivates current advances in the field becoming a strong back-

ground for optical flow. Such is the case for the method proposed in this paper, which

follows gradient-based techniques as categorized by Barron et al.

Gradient-based methods make part of the main foundations for practical applica-

tions in optical flow [21, 19, 51], where an image’s intensity and it’s spatio-temporal

derivatives are processed for pixel tracking. These methods rely on the brightness con-

sistency assumption, where perceived elements of a scene will display constant inten-

sity across frames; despite the ideal implementation of optical flow, accuracy is still

achieved. Nevertheless, reducing the complexity of light behavior urges some weak-

nesses, being: as occlusions and large displacements.

The lack of representation capacity introduces a vulnerability commonly known as

the aperture problem. Horn and Schunck (H&S) proposes a global smoothness term,

where regularization will take into account all pixel’s flow computation to be mini-

mized. This approach motivated further research, being improved or used as a founda-

tion for new methods.

Lucas et al. (LK) approaches the aperture problem in a different manner, the regu-

larization is local, considering only a small neighborhood N to constraint the equations

of optical flow. The least-square method (LSM) is applied to minimize motion for each

pixel in N , finding an optimized displacement solution. This method is also the object

of inspiration for advances in the field.

Correlation-based methods maximize similarities between data. [38] introduces

these algorithms as Spatio-temporal users, therefore related to gradient-based tech-
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niques. Sun highlights the application of these techniques is fast, including: the sum

of absolute differences (SAD), a simple and fast approach, and zero-mean normalized

cross-correlation (ZNCC), the best candidate for measuring similarities between areas.

in spite of optical flow and stereo similarities, the first is not greatly influenced by cor-

relation measures.

Nevertheless, hand-made algorithms have limitations and it’s essential the usage of

image processing tools to enhance accuracy. Reducing the scale of an image is a recur-

rent concept used in computer vision to alter information with the goal of obtaining a

preferable version of the image’s signal [2]. A pyramid is a multilevel image represen-

tation that computes n number of sub-samplings from a reference I . The motivation

behind this decision is that a simpler form of I will be more stable due to its smoother

shape. Also, the construction of multiple images at various scale levels combines the

information of a larger spatial neighborhood. A set of scaled versions of I is known as

pyramidal representation and its application is categorized as fine-to-coarse practice as

seen in [49, 48, 55, 8].

In order to introduce cyclopean optical flow, our immediate goal isn’t to solve 2D

displacements, We plan to lower the dimension proportion to implement over 1D dis-

placements. This is a gradient-based method that measures correspondences between

two images, and the direct implementation of 1D cyclopean flow targets small-baseline

stereo (SS) correspondence for depth estimation, which we compare to 1D motion.

A stereo-pair image is a set of two images representing the same scene from two

slightly different points of view. This strategy is bio-influenced by human vision, in

which we can perceive the similarities of double image capture. Depth estimation ben-

efits from stereo arrangements because it’s possible to talk about depth estimation in

terms of "correspondence". SS targets the stereo captures for which the two points of

view are separated by a very small distance.

Initial interest in Stereo vision has provided countless materials for further devel-

opment in this field. The context of this article was mainly built around a traditional
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framework [50, 57, 7, 28] emphasizing the traditional approach which our method is

associated to.

Cyclopean depth estimation assumes brightness consistency in a local pixel matching

process. Other optical flow techniques have been implemented through optimization

[13, 15, 58] showing that minimization is viable during stereo matching. Our match-

ing method is an iterative gradient-based which follows the convergence behavior of a

Gauss-Newton optimization.

Similar to other areas of computer vision, the efforts in deep learning have con-

quered public benchmarks. CNN has shown relevance in this field [11, 25, 62, 45], but

unlike its optical flow application, results still struggle to accurately correlate points

during stereo matching. Research move towards different network designs, architec-

tures oriented to cost aggregation [63, 60] which offers a competitive computational

cost while still using features, end-to-end models [36, 64].

But as mentioned in [63], traditional elements are still used, therefore, the potential

remains unexplored in hand-made methods.

1.2.1 Small stereo Benchmarks

Benchmarks such as MPI Sintel [10], KITTI-2015 Optical Flow [43], Middlebury [4] are

fundamental for the development of optical flow, as mentioned before, access to data-

sets is pretty limited. Their integration and availability brand them as references for

evaluating the functionality of algorithms in challenging scenarios, for example: long

sequences, large motions, and highly physics-ruled scenes. The Sintel data-set extracts

ground-truth motion from synthetic scenes, which in spite of being simulated, respects

the distribution of real-world situations captured on clips. Sintel feature large motions,

so the images are ajusted to feature the small motions required by our method. The

KITTI data-set is a compilation of driving films with extensive tracking as navigation

or data gathered by a 3D laser scanner to obtain the ground truth. The Middlebury
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dataset is a collection of different real-world scenes with ground-truth measurements.
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Chapter 2

ONE DIMENSIONAL CYCLOPEAN FLOW

This chapter presents our new 1D optical flow method, Cyclopean optical flow, and

its use for solving Small-baseline Stereo.

This research is focused on improving the estimation of optical flow. We propose to

use as "cyclopean value", which is an intermediate reference point between two signals.

The cyclopean value is expected to increase accuracy due to its nature of sharing a

distribution with all signals involved in the process of solving optical flow.

With this approach, we intend to increase the capacity of gradient-based methods

by having two dynamic ends to describe motion. Additionally, the algorithm will also

be capable to be constrained through the same dynamism.

Also, the use of pyramidal representation will be explored to enhance results with a

smooth transition of cyclopean optical flow through low and high resolution. Coarse-

to-fine will be approached as a generator of initial values and as a constraint function,

therefore, we don’t plan to introduce the weaknesses mentioned above.

2.1 Image representation

An image is a common visual representation given by pixels and their distribution but

this representation might become deficient

when computing optical flow due to derivative computation; accordingly, deriva-

tives are notoriously sensitive to noise and can be inaccurate when computed over dis-

crete values, being images a natural source of these defects. To tackle this problem,

image interpolation is proposed to transform pixels into a representation that features

continuity in its values and first derivative.



The interpolation form applied is a cubic spline interpolation where I(x) = Ï(x) to

respect cardinality constraints. From now on, I will refer to the interpolation of any

image Ï . The degree of this spline grants enough capacity to ensure continuity on the

first and second derivatives. To avoid instability at the function’s edges, padding is

recommended to ensure the influence of the original representation still precedes. This

addition does not affects the method greatly, it just avoids loss of information.

It’s possible to see in Fig 2.1 that interpolation of first-order yields discontinuous

first derivatives. Discontinuity results in a low-resolution derivative, which can trans-

late into rough changes along with spatial exploration which won’t allow an accurate

perception of the image’s shape. Also, the low capacity to represent the gradient of an

image will have a higher probability to land in problematic situations as described in

subsection 2.2.3.

2 4 6 8 10
x

-0.5

0.0

0.5

1.0

I(x)

2 4 6 8 10 x

-1.0

-0.5

0.0

0.5

1.0

I'(x)

Interpolation order 1

2 4 6 8 10
x

-0.5

0.0

0.5

1.0

I(x)

2 4 6 8 10 x

-1.0

-0.5

0.0

0.5

1.0

I'(x)

Interpolation order 2

2 4 6 8 10
x

-0.5

0.0

0.5

1.0

I(x)

2 4 6 8 10 x

-1.0

-0.5

0.0

0.5

1.0

I'(x)

Interpolation order 3

Figure 2.1: Cubic spline interpolation. Top row is image intensity, bottom is first deriva-

tive. Most Left: Linear interpolation (1st order). Most right: Cubic interpolation (3rd

order).

Note that the cyclopean method only relies on spatial interpolation, not tempo-

ral interpolation. Time is considered discrete, allowing single dependency on spatial
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derivatives.

In everything that follows, it will be assumed that the image used is in fact a con-

tinuous interpolation of the original discrete image.

2.2 Cyclopean Optical Flow

1D Cyclopean optical flow is a technique to estimate 1D displacement in an image’s

intensity when its scene is affected by motion. In a sequence of 2 images, the first ele-

ment (I1) defines the pixel’s original state, and the following segment (I2) will acquire

I1’s altered distribution due to the existing motion dynamics. The theoretical average

intensity that would be observed in the middle of the transition from I1 towards I2 is

defined as a "cyclopean image" (C). Using C ’s intensity values as a reference allows

decomposing the optical flow solution into two parts: the flow from I1 to C and the

flow from C to I2. Both velocities are then added up and are assumed to represent the

movement behavior between I1 and I2.

Considering a continuous representation of C , I1 and I2 (further details in section

2.1), the cyclopean image is computed as follows:

C(x) =
I1(x) + I2(x)

2
(2.1)

The accuracy of this model is expected to increase due to the inclusion of every

image derivative instead of a single one. Including both (I ′1(x) and I ′2(x)) the method

traces more information making it possible to identify unusual behavior and avoid find-

ing fake solutions. In section 2.2.3 this issue will be addressed in greater depth. This

model is also enhanced due to the computation of two smaller motions instead of a

large one. The introduction of two displacements artificially increases the sample rate,

allowing to capture more details on the scene’s transition offering a smoother solu-

tion. Figure 2.2 illustrates the traditional and cyclopean methods and the properties

mentioned are graphically identifiable.
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This is also mathematically perceived through their optical flow definitions. Tradi-

tional optical flow is computed as:

v =
I1(x)− I2(x)

I ′1(x)
(2.2)

The equation 2.2 is derived from a Taylor series approximation, it only considers the

spatial derivative of I1 to estimate the displacement v. On the other hand, cyclopean

optical flow is computed as:

v = v1 + v2

v1 =
I1(p)− C(p)

I ′1(p)

v2 =
C(p)− I2(p)

I ′2(p)

(2.3)

Having two estimations influencing v’s value constrains the result offering a more

reliable result.
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Figure 2.2: Optical flow between images I1 and I2. Left: traditional optical flow. Right:

Cyclopean optical flow.

It’s important to mention that the cyclopean solution of point p is equivalent to the

solution of p− v1, therefore, all motion vectors will be represented with an initial start

point of p− v1.
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2.2.1 Iterative estimation

According to the traditional method, optical flow can be computed exactly when the

starting point and the destination point have the same gradient, as seen on 2.2. The

spatial derivative acts as the slope of a straight line which will be constrained by p−vn+1

and p− vn in x and due to the euclidean behavior of the system, the right distance v is

found immediately.

In the cyclopean method, the gradient of I1 must be the same between point p and

p−v1, and for I2 it must be the same at p and p+v2; nevertheless, this gradient behavior

is the attribute of a basic grayscale and it does not appear often in practice. Non-linear

cases are more common systems where the gradient changes spatially and the solution

would be just an approximate, making it more challenging to find a good solution.

To increase accuracy in non-ideal cases, it’s proposed to estimate v with an iterative

approach. Starting from an initial guess, the optical flow will be updated along with its

gradient until convergence.

Equation (2.4) is used to update and approximate v1 through iteration, with vn
1

representing v1 at step n, and an initial value of v0
1 = 0. This represents the search of cp’s

intensity in I1(x). The process will become redundant once p− vn
1 satisfies I1(p− vn

1 ) =

cp, where p’s theoretical pixel has been successfully tracked and found in I1(x).

vn
1 = vn−1

1 +
I1(p− vn−1

1 )− C(p)

I ′1(p− vn−1
1 )

(2.4)

The same computation is performed for v2, with the update function (2.5).

vn
2 = vn−1

2 +
I2(p+ vn−1

2 )− C(p)

−I ′2(p+ vn−1
2 )

(2.5)

The first and second iteration steps are shown in fig. 2.3. It’s observed that the initial

gradient is located at point p, and v1
1 isn’t the exact solution due to the spatial changes

in the gradient. The second iteration updates the values of v1
1 using the gradient at

point p− v1
1 which results in a much more accurate motion.
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Figure 2.3: Cyclopean optical flow to solve v2 and v2. Left: n= 1, right: n= 2

2.2.2 Initial values

This section presents the selection of an initial value for the iteration. We also show

how stochastic selection can be used to enhance convergence.

The goal of an initial value is to approach the method performance towards the

concepts that ensure an admissible solution.

Due to the nature of cyclopean method, an initial value v0 will be composed by two

elements: v0
1 and v0

2 . The capacity of v0 is precised by a suitable starting range v0 ∈

R : b ≤ v0 ≤ a translated to an equivalent proposition of v0
1 and v0

2 where v0 = v0
1 + v0

2

and v0
1 × v0

2 ≥ 0. During the translation, v0
1 ∈ R : b ≤ v0

1 ≤ a and v0
2 ∈ R : b ≤ v0

2 ≤ a.

Fig. 2.4 represents the euclidean visualization of v0.

The values of v1 and v2 share sign because otherwise, it’s interpreted as if the cp is

not located in the intermediary space I1(p) and I2(p), which contradicts the definition

of cp.

This approach haves an objective to provide a roughly estimated range of initial

values yet enough capacity to describe cyclopean distance.

We define the values of v0 with the expected minimum and maximum flow solution.

Figure 2.5 introduces convergence in terms of initial values v0
1 and v0

2 , where
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Figure 2.4: Initial values in range of [a, b] described by v0
1 and v0

2 .

v0
1 ∈ R : −2 ≤ v0

1 ≤ 2 and v0
2 ∈ R : −2 ≤ v0

2 ≤ 2 for p = 11. The solution dis-

played also satisfy gradient and correlation constraints, of which, conditions are raised

in subsections 2.2.3 and 2.2.4. Well estimated solutions will appear along the ground

truth line v0
1 + v0

2 = 1 and will converge if started in the convergence zone. The latter

is the effective combination of v0
1 and v0

2 to converge into v = 1, revealing the ideal

initial values range as: v0
1 ∈ R : −0.5 ≤ v0

1 ≤ 1.5 and v0
2 ∈ R : −0.5 ≤ v0

2 ≤ 1.5; any

initial value with an ideal definition should converge into an accepted solution, as seen

in Fig. 2.6.

2.2.3 Gradient Constraints

As presented above, using an iterative approach can solve optical flow when the gradi-

ent is changing spatially.

However, there are more cases to consider in order to compute optical flow robustly.

The following section will discuss some convergence issues related to gradient be-

havior and how we propose to tackle them.

Figure 2.7 illustrates the ideal cases. When a gradient is fixed over the motion, a sin-
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Figure 2.6: Right: convergence zone solution. Middle and Left: not in convergence

zone solutions.

gle iteration provides the exact flow (Fig. 2.2). When the gradient is changing spatially,

iterations are needed but also result in a correct solution (Fig. 2.3). A big characteristic

of this situation is that I2 duplicates I1 in the range of displacement without breaking

any 1D physical grounds, this method might encounter some limitations at inflection

points which from a short-sighted perspective would seem I1 and I2 are not the same

images.

23



2 4 6 8
x0

2

4

6

8

fa(x)=x

2 4 6 8
x0.0

0.2

0.4

0.6

0.8

1.0

fa'(x)=c

2 4 6 8
x0

2

4

6

8

fb(x)=x
2

2 4 6 8
x0.0

0.5

1.0

1.5

fb'(x)=x

Convergence domain in ideal cases

Figure 2.7: Ideal gradient behavior. Left: fixed value solved with single iteration. Right:

varying gradient solved with multiple iterations

Sign of gradient

It’s reasonable to expect that at convergence I ′1(p− v1) = I ′2(p+ v2), meaning that I1 has

a cyclopean displacement of v = v1+ v2 at point p in an ideal way. Being the gradients

equal at p, they share signs and it’s assumed that gradients will keep the same sign

throughout the iterations. If it happens otherwise, it’s considered that the optical flow

cannot be estimated at p, since it probably won’t converge.

Case 1 ("Same sign") is illustrated as Fig. 2.8 and then defined as:

vn =







vn = vn
1 + vn

2 , if I ′1(p− vn
1 ) ∗ I ′2(p+ vn

2 )> 0

unde f ined, otherwise
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Figure 2.8: Case 1. Green interval: ideal behavior. Red interval: no possible solution

due to sign mismatch. Case 2. Green interval: ideal behavior. Red interval: no possible

solution due to a small gradient magnitude (k = 0.05).

Magnitude of gradient

The magnitude of the gradient is a denominator in equation 4.4, therefore, a small gra-

dient would result in a big estimate of motion impacting negatively on the computation.

The low gradient is to be considered as a lack of texture in images which isn’t enough

information to compute optical flow. A threshold k will be introduced to define the

lowest value of gradient the method can accept in order to have a good approximation.

This behavior will be considered as Case 2 ("Magnitude of gradient"), illustrated as

Fig. 2.8 and defined as:
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vn =







vn = vn
1 + vn

2 , if |I ′(p)|> |k|

unde f ined, otherwise

2.2.4 Correlation Constraint

Pearson’s correlation is applicable during stereo matching, because the application fits

in the test’s linearity assumption. In Fig. 2.9 we have a global representation of linearity

where p is displaced to p1 and p2. If motion is properly estimated, I1(p1) should be

linearly related to I2(p2). Each point p varies in displacement.
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Figure 2.9: I1(x) vs I2(x). Middle: variables linearity when corresponding displace-

ment p. Right: variables non linearity when no displacement p.

But this property is only applicable in a local manner, where p’s displacement is

assumed to be uniform in order to evaluate linearity.

To implement this constraint we use two intensity vectors z described as:

z1(n,∆ n) = {I1(p1 − n), ..., I1(p1 −∆n), I1(p1), I1(p1 +∆n), ..., I1(p1 + n)} (2.6)

z2(n,∆ n) = {I2(p2 − n), ..., I2(p2 −∆n), I2(p2), I2(p2 +∆n), ..., I2(p2 + n)} (2.7)

where n is in the range of a small neighborhood and ∆n are constant steps towards

n. Then (2.6) and (2.7) are evaluated on Pearson’s correlation coefficient r, as con-

sulted in Freedman et al.
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The coefficient haves a score range of −1 ≥ r ≥ 1 where 1 is an ideal linear corre-

lation, any score 0.5≥ r ≥ 1 is considered to be a large linear correlation.

As seen in Fig. 2.9, we expect a positive linear behavior, translated in terms of Pear-

son’s correlation as 0.5≤ r, therefore, during any iteration, we find:

v =







v = p2 − p1, if r(z1, z2)≥ 0.9

unde f ined, otherwise

Note that this is just an acceptance criterion that will decide if a computed motion is

coherent to its neighbors. In comparison to optical flow’s algorithm LK, the constraint

does not enforce a common motion to neighbor pixels, therefore, depth discontinuities

will be preserved.

Images with too much information should have a smaller n, because the details

might have non shared motion, therefore the assumption for correlation constraint

would fail.

2.2.5 Enforcing constraints

Enforcing constraints haves as a goal:

• "No false positive": If the method converges, the answer is real.

• "No false negative": This is not possible in practice. There is a constraint on the

image intensity, so the gradient can be unsuitable for the iteration.

If we enforce all previous constraints, it’s clear that some points will remain un-

solved, but we expect precision for those that are solved. The method will operate in

the spectrum of dense to sparse solutions depending on how tight the constraints are.

In order to estimate optical flow for all points, we will then need to "fill the gaps" by

using other methods, for example, pyramidal representation.
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2.2.6 Post-processing

If using a list of initial values (as seen in subsection 2.2.2), a list of solutions is expected.

Therefore, we implement selection criteria to discard false positive results, as seen in

equation 2.8. The latter it’s composed of comparison operators, as the restrictions are

supposed to reject excessive unusual behavior; boundaries are roughly defined as to

filter values between a lower (b) and upper (a) range . Also, when applied in stereo,

the direction can be restricted by only allowing results in the same coordinate space.

We usually use the same minimum and maximum as the initial values definition.

C = {v1, v2| v1 ∗ v2 > 0 & a ≥ v1 + v2 ≥ b} (2.8)

2.3 Experiments

We will work on a synthetic signal as seen in fig. 2.10, which represents a interpolated

step displaced ∆x = 1 to validate the cyclopean method.
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Figure 2.10: Interpolated step signal.
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For the experiments we consider:

v0 ∈ R : −3≤ v0 ≤ 3

k = 0.001

z(n,∆ n) = z(2, 0.2)

C = {v1, v2| v1 ∗ v2 > 0 & 0≥ v1 + v2 ≥ 2}

(2.9)

Figure 2.11 represents the convergence map of p = 11; The convergence zone is

not only defined as: v0
1 ∈ R : 0 ≤ v0

1 ≤ 0.5 and v0
2 ∈ R : 0.5 ≤ v0

2 ≤ 1 but also as:

v0
1 ∈ R : 0.5≤ v0

1 ≤ 1.5 and v0
2 ∈ R : 0≤ v0

2 ≤ 0.5 manifesting two solutions for p = 13.
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Figure 2.11: Convergence in terms of v0
1 and v0

2 of p = 13.

This behavior happens due to the interception of signals I1(x) and I2(x) in p = 11,

therefore the cyclopean value Cp will overlap with the initial values of I1(p) and I2(p)

having two initial candidates as a reference. The solutions will converge depending on

the initialization values as seen in Fig. 2.12, where vn = 0 means In(p) was considered

as a reference value.

Technically [a, b] = [0, 0] could also be a solution, but in this case, the constraints

of sign and correlation reject this convergence.
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Figure 2.12: Right: constrained solution. Middle and Left: convergence zone solutions.

This case also depends on having an ideal initialization values, due to the reduced

size of convergence zone.
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Figure 2.13: Convergence in terms of v0
1 and v0

2 for multiple points.

Further solutions in Fig. 2.13 (p = 16, 21) show a similar behavior convergence

behavior. Meanwhile, the edges of the signal (ex. p = 1,6, 26) will repeatedly be con-

strained by the "Magnitude constraint" (subsection 2.2.3). The algorithm is designed
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to distrust texture-less sections, even if ideally initiated, as seen in 2.14, therefore this

points have no solution.

Convergence when v0=[v01, v02] for p= 6
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Figure 2.14: Magnitude constraint in p = 6.

The solution in p = 11 haves an ideal-like composition, where the convergence zone

is wider and unique. In figure 2.15 we present two constrained solutions, initialized

inadequately, for the algorithm to notice "sign" and "correlation" constraints.

Convergence when v0=[v01, v02] for p= 11
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Figure 2.15: Right: solution in convergence zone. Middle and left: constrained solu-

tions.

We add random noise of ±0.05 as seen in 2.16 and obtain the solutions for the

points in Fig. 2.17. Same points are solved without noise as seen in Fig. 2.18.

The edges (p = 1,4, 7,22, 25,28 )have much more of correlation issues whenever

noise is present because there’s no information other than the noise, which is random.
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Figure 2.16: Interpolated step signal with simulated noise.
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Figure 2.17: Convergence map of signal with simulated noise.

Through this examples it’s highlighted that noise harms the method, but still manages

to converge wherever the signal shape is closer to ideal (p = 10,19) as said in subsec-

tion 2.2.3.

In the example of Fig.2.19, we can identify the method struggles to find a solution
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Figure 2.18: Convergence map of signal.

whenever noise is present in texture-less regions.
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Figure 2.19: Convergence of signal, Left: Signal with noise, Right: Pure signal.
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Chapter 3

CYCLOPEAN STEREO FOR SMALL-BASELINE STEREO

This chapter presents the application of our 1D cyclopean optical flow algorithm to

the problem of 1D small-basline stereo.

Stereo matching proceeds along an single line, provided by epipolar geometry

3.1 Finding Epipolar geometry

In order to perform stereo matching the epipolar geometry must be known. Usually,

stereo algorithms assume that images are rectified according to the estimated epipo-

lar geometry in order to make epipolar lines horizontal, so the matching can proceed

horizontally.

3.1.1 Aerial Stereo imagery

In the specific case of aerial imagery, one can assume that the camera is far from the

scene, essentially providing a "small baseline" relative to the scene. This results in

parallel epipolar lines, so all that is needed to rectify the stereo image pair is to estimate

the rotation of the lines and perform a rectifying rotation.

In a stereo pair, the perceived motion is along epipolar line, so we assume that mea-

suring motion along the wrong epipolar geometry will provide larger displacements.

We will thus perform a 1D interval minimization to find the rotation that will provide

the motion field with global minimal magnitude. In the Fig. 3.9, the minimum motion

field was obtained for a rotation of 1.519 degrees of the second image. Figures 3.10

and 3.11 illustrate why this rectification is crucial to obtain got results.



3.2 Solving stereo

Assuming a rectified stereo pair, we expect all motions from one image to the next to

be horizontal, and their magnitude is related to the depth of the objects. Measuring

1D optical flow is ideal for small baselines or when objects are far from the camera.

Because of depth discontinuities, we consider our method to be well suited for this

flow estimation since it does not require temporal continuity.

We start experimentation by examining the algorithm’s performance over a pair of

images I(x) and I(x + v), where I(x) haves a synthetic displacement of v, as seen in

Fig. 3.1. Initial values have a range of v0 = [0, 3] and the selection criteria is defined

as C = {v1, v2|v1 ∗ v2 > 0&0≥ v1+ v2 ≥ 3}, k = 0.001 and correlation vectors z(2, 0.2).

Figure 3.1: Motion stereo pair solved for different displacements
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Figure 3.2: Histogram of motion stereo pair solved for different displacements

During pixel tracking, our method uses the image’s gradient to determine which
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position is best to explore and enhance the probabilities of I(p ±4p) = Cp. We are

especially expecting good results on small displacements due to the model’s high de-

pendence on a signal’s shape. Big displacements will result in a sub-optimal range of

Cp values and the vulnerability of landing in zones where the real solution is not reach-

able due to non-desirable gradient behavior. Accordingly, Fig. 3.2 describes the results

of optical flow over multiple displacements; the smallest displacement 0.1 presents the

best performance in density and average error (width of the histogram). During these

experiments, restrictions (Selection criteria, initial value) are ill-defined.

When providing a list restrained by different ranges, accuracy is expected to be

higher when properly bounded. During these experiments, selection criteria are ill-

defined. So, with a synthetic displacement of 0.1 we obtain the values in Fig. 3.4. This

result introduces a decrease in standard deviation when the values are closer to the so-

lution v = 0.1. Average and density exhibit a weak improvement through the different

range values, indicating robustness regarding the initial state. Is to be concluded that

values closer to the solution will favor the performance, but, in real case scenarios, this

will rarely happen. Therefore, for further experimentation, we will use an initial range

of v0 = [0, 1], in which we propose direction and a wide range of initial values. For

further visualization, Fig. 3.3.

Figure 3.3: Motion stereo pair solved for displacements different initial value ranges

The selection criteria is a factor that will affect the results too. In the histograms

Fig. 3.4 it’s possible to see the method is fairly robust and the results don’t relatively

vary. If we look at the table, even if the difference is small, it can be identified that
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Figure 3.4: Histogram of motion stereo pair solved for initial value ranges

the criteria closest to the final solution will present less error, standard deviation with

a very small penalty in density.

Figure 3.5: Motion stereo pair solved for different criteria

0.5 1.0 1.5 2.0
v

50
100

500
1000

5000
104
n

Selection criteria= [0, 0.5]
Standard deviation= 0.0662

Mean= 0.114
Density= 0.869

0.5 1.0 1.5 2.0
v

10

100

1000

104
n

Selection criteria= [0, 1]
Standard deviation= 0.0858

Mean= 0.119
Density= 0.87

0.5 1.0 1.5 2.0
v

1

10

100

1000

104
n

Selection criteria= [0, 2]
Standard deviation= 0.0902

Mean= 0.12
Density= 0.87

Converged Non Converged

Figure 3.6: Histogram of motion stereo pair solved for different criteria
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The synthetical experiments show a theoretical amount of robustness when in an

ideal scenario. The factor with the most theoretical impact is the selection criteria

subsection 2.2.6, which rejects ill-defined out-layers.

3.3 Experiments

3.3.1 Test 0: Aerial imagery

When we solve optical flow for Fig. 1.2 we obtain Fig. 3.7. Initial values have a range

of v0 = [0,2], the selection criteria is defined as C = {v1, v2|v1∗ v2 > 0, 0≥ v1+ v2 ≥ 2},

k = 0.001 and correlation vectors z(2,0.2). The ground truth is unknown, but based

on context we conclude the following points:

• The top of the buildings will tend to have a disparity higher than 0.6

• Any section other than a ceiling gains magnitude under 0.6

This respects the physical property of perspective, where far away objects move

faster than closer ones. Also, the lack of texture is affecting the convergence density,

with only 27.1% pixels of the image converged.

0

0.4

0.8

1.2

1.6

2.0

Figure 3.7: Cyclopean optical flow solution of aerial imagery

Next we introduce the available aerial stereo pair 3.9 with of dimensions 1280x720.

The pair is rectified to align the epipolar geometry by a rotation of 1.519 degrees on
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Figure 3.8: Cyclopean optical flow solution histogram of aerial imagery

the second image. We have then a fully solved image, where we enforce the discussed

constraints, having as a result a partially sparse disparity map Fig. 3.10.

The same tests are attempted in a non rectified pair resulting in Fig. 3.11, where the

solution is not coherent presenting a big variation between a surface’s depths values,

although it should be more uniform.

3.3.2 Sintel Dataset

Test 1: Sintel data-set I1(x) is artificially displaced I1(x − d ∗ 0.1) where d is the

ground truth; maximum displacement is vmax = 3.86. Initial values have a range of

v0 = [0,−1], the magnitude constraint is k = 0.001, the correlation vector is defined as

z(5, 0.2) and the selection criteria is defined as C = {v1, v2|v1∗v2 > 0, 0≥ v1+v2 ≥ −1}.

The upper bounds are set to only focus on small movements. We obtain Fig. 3.12 and

Fig. 3.13.

Test 2: Sintel data-set I2(x) is artificially displaced I2(x + d ∗ 0.9) where d is the
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Figure 3.9: Aerial stereo pair. Notice that the second image has been rectified to align

its epipolar geometry.

ground truth; maximum displacement is vmax = 3.86. Initial values have a range of

v0 = [0,−1], the magnitude constraint is k = 0.001, the correlation vector is defined as

z(5, 0.2) and the selection criteria is defined as C = {v1, v2|v1∗v2 > 0&0≥ v1+v2 ≥ −1}.

The upper bounds are set to only focus on small movements. We obtain Fig. 3.14 and

We obtain Fig. 3.15.

Test 3: Sintel data-set; maximum displacement is vmax = 38.6. Initial values have a

range of v0 = [0,−10], the magnitude constraint is k = 0.001, the correlation vector is

defined as z(5, 0.2) and the selection criteria is defined as C = {v1, v2|v1 ∗ v2 > 0&0 ≥

v1+ v2 ≥ −10}. The upper bounds are set to only focus on small movements. We obtain

Fig. 3.16 and Fig. 3.17.
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Figure 3.10: Full cyclopean solution for aerial imagery after rectification

Test 4: Sintel data-set I1(x) is artificially displaced I1(x − d ∗ 0.1) where d is the

ground truth; maximum displacement is vmax = 3.86. Initial values have a range of

v0 = [0,−1], the magnitude constraint is k = 0.0001, the correlation vector is defined as

z(5, 0.2) and the selection criteria is defined as C = {v1, v2|v1∗v2 > 0, 0≥ v1+v2 ≥ −1}.

The upper bounds are set to only focus on small movements. The data used in this test

presents simulated noise such as: atmospheric effects, motion blur. focus blur, etc. We

obtain Fig.3.18 and Fig. 3.19.

Test 5: Sintel data-set I2(x) is artificially displaced I2(x + d ∗ 0.9) where d is the

ground truth; maximum displacement is vmax = 3.86. Initial values have a range of

v0 = [0,−1], the magnitude constraint is k = 0.0001, the correlation vector is defined as

z(5, 0.2) and the selection criteria is defined as C = {v1, v2|v1∗v2 > 0&0≥ v1+v2 ≥ −1}.

The upper bounds are set to only focus on small movements. The data used in this test
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Figure 3.11: Full cyclopean solution for aerial imagery without rectification

Figure 3.12: Test 1. Left: cyclopean optical flow, Right: ground truth.

presents simulated noise such as: atmospheric effects, motion blur. focus blur, etc. We

obtain Fig.3.20 and Fig. 3.21.

Test 6: Sintel data-set; maximum displacement is vmax = 38.6. Initial values have a

range of v0 = [0,−10], the magnitude constraint is k = 0.0001, the correlation vector
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Figure 3.13: Test 1. Left: cyclopean optical flow histogram, Right: ground truth his-

togram.

Figure 3.14: Test 2. Left: cyclopean optical flow, Right: ground truth.

is defined as z(5, 0.2) and the selection criteria is defined as C = {v1, v2|v1∗ v2 > 0&0≥

v1+ v2 ≥ −10}. The upper bounds are set to only focus on small movements. The data

used in this test presents simulated noise such as: atmospheric effects, motion blur.

focus blur, etc. We obtain Fig. 3.22 and Fig. 3.23.

It’s possible to see from Table 3.1 that Test 1 haves the best RMSE score, this is

because the optical flow is solved with brightness consistency when solving for I1(x) and
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Table 3.1: Different methods solving optical flow.

Method RMSE Density

Test 1

C y 0.14 68%

H&S 1.13 100%

LK 1.12 100%

Test 2

C y 0.17 52.1%

H&S 1.15 100%

LK 1.344 100%

Test 3

C y 2.9 30.1%

H&S 11.64 100%

LK 11.45 100%

Test 4

C y 0.13 72%

H&S 1.13 100%

LK 1.12 100%

Test 5

C y 0.181 54.3%

H&S 1.14 100%

LK 1.12 100%

Test 6

C y 2.8 31.4%

H&S 11.61 100%

LK 11.45 100%
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Figure 3.15: Test 2. Left: cyclopean optical flow histogram, Right: ground truth his-

togram.

Figure 3.16: Test 3. Left: cyclopean optical flow, Right: ground truth.

I1(x − d ∗ 0.1). Test 2, although artificial, is more reliable than Test 1; here we don’t

enforce brightness consistency because we solve for different intensity functions I1(x)

and I2(x + d ∗ 0.9). Test 3 does not have modified intensity functions, so it means that

we are solving for big movements; as mentioned previously, big movements will lead to

a deficient translation of C , which explains why Test 3 presents the lowest convergence

density.

45



Figure 3.17: Test 3. Left: cyclopean optical flow histogram, Right: ground truth his-

togram.

Figure 3.18: Test 4. Left: cyclopean optical flow, Right: ground truth.

Noise was also introduced for Test 1, 2 and 3 with the implementations of Test 4, 5

and 6 respectively. The obtained results show certain robustness in the method having

variations smaller than ±0.1 for RMSE and ±0.4 for density.
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Figure 3.19: Test 4. Left: cyclopean optical flow histogram, Right: ground truth his-

togram.

Figure 3.20: Test 5. Left: cyclopean optical flow, Right: ground truth.
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Figure 3.21: Test 5. Left: cyclopean optical flow histogram, Right: ground truth his-

togram.

Figure 3.22: Test 6. Left: cyclopean optical flow, Right: ground truth.
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Figure 3.23: Test 6. Left: cyclopean optical flow histogram, Right: ground truth his-

togram.
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Chapter 4

PYRAMIDS IN CYCLOPEAN OPTICAL FLOW

In practice, scenarios in images are far from ideal and introduce physical informa-

tion this method won’t consider; accordingly, due to the lack of capacity, sometimes it’s

not possible to interpret a solution. As a first assumption, a good solution won’t present

any of the behaviors discussed in section 2.2.3 because it’s presumed to be an incorrect

estimate.

If any gradient breaks the ideal behavior, the optical flow will be considered unde-

fined.

Analysis of failure helps understand the limitations from a more affordable perspec-

tive. If an "undefined" state appears, we can find other means to estimate a solution.

The aperture problem is not only affecting 2D optical flow. In 1D situations, a lack of

image texture will induce the same effect, since locally it will be impossible to estimate

motion. It’s important to mention, that 1D optical flow is directly solved when the

gradient constraints are met. In 2D, the problem is under-constrained, so we must rely

on extra information.

The scale of I will be modified in an attempt to find good results. The motivation

behind this decision is that a simpler form of I will be more stable due to its smoother

shape. Also, the construction of multiple images at various scale levels combines the

information of a larger spatial neighborhood. We proposed to use a pyramidal repre-

sentation I n where n is the present level of resolution, more discussion about the subject

in section 4.1.

Consider an example of a step edge between two uniform intensity regions, moving

at a constant speed. As seen in fig 4.1, pixels x = 6 and x = 15 satisfies the gradient

constraints and it’s possible to find an estimate of motion. The remaining pixels’ motion



don’t satisfy the gradient constraints therefore their motion is not defined. For the

undefined pixels, the pyramid approach will alter the information of I(x) and I ′(x)

with the goal of supporting spatially zones that show an absence of information and

achieving the gradient constraint.

The scale will provide a new intensity function that satisfies the gradient constraints,

so the flow can be estimated at each pixel from x=1 to x=5.

Figure 4.1

4.1 Scale

Reducing the scale of an image has been used often in computer vision to alter infor-

mation with the goal of obtaining a preferable version of the image’s signal. A pyramid
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is a multilevel image representation that computes n number of sub-samplings of the

reference.

It’s fairly common to divide size by a factor of 2 each time reduction is applied,

therefore, in the algorithm proposed a down-sampling value of 2 is fixed.

To avoid loss of information, the blur effect is applied to load individual pixels of

adjacent information. The usual method for blurring computes the equivalent of a pixel

with a weighted window. The end result of moving the window over every pixel is a

smooth version of the input signal.

With fitting values of weights, the process of smoothing will filter high-frequency

signals and sudden changes in intensity. Thanks to this low pass filter behavior, the

correlation between pixels is highlighted and noise discontinuities that might deform

the scene are restrained.

Gaussian blur uses a Gaussian function to define the weight values to smoothen

a signal, more details about it in section 4.1.1. The Gaussian behavior will manage

importance in a radial form, being the center the most significant, which means the

result will pay a lot of respect to the pixel’s original form. This trait is important to

preserve the essence of the signal’s shape after each reduction, that’s why it’s proposed

to use a Gaussian Pyramid for multilevel representations.

4.1.1 Gaussian pyramid

For a one dimensional blur, each pixel is convolved with a 5-pixel kernel ("5 tap" filter),

which is defined as:
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The value of a is a damping term linked to the correlation between pixels after

blurring. Where a = 0.5 will minimize damping and the influence from the window’s

borders to zero.

Blurring an image Ï takes the following computation:

ˆ̈I(i) =
2
∑

j=−2

ŵ( j) · Ï(i − j) (4.1)

It’s important to mention that padding of size 2 is added to fill missing information

required by the window when convolving in the borders of a signal.

After convolution, the result has a different distribution where individual pixels hold

more spatial information but their capacity for describing details is lost. In accordance

to downsampling, ˆ̈I will be subjected to J̈(i) = ˆ̈I(2i) to smoothing the signal even

further and obtaining a sparse result (J̈).

Figure 4.2 illustrates the pyramid representation of I(x).

Coming back to the example of fig 4.1, only pixels x = 6 and x = 15 could satisfy the

gradient constraints, leaving the remaining pixels unsolved. But as seen in figure 4.3,

altered forms of I meet the gradient constraints in a broader manner. For example,

I2 will solve optical flow for every pixel except x = 10 and x = 11. It’s important

to emphasize that is possible to overscale a signal, in this example, I3 is meeting a

downgrade on the convergence domain where x = 9 to x = 12 does not satisfy the

gradient constraints.

4.1.2 Solving optical flow over multiple scales

The iterative solving equations (2.4) and (2.5) will be referred to as the function (4.2)

where v0 is the initial value of v.

v = upgrade(v0) (4.2)

This definition only considers the base level of an image’s pyramid. To solve optical
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Figure 4.2: Original signal I(x) and it’ 3 subsequent levels of a pyramidal representa-

tion.

Figure 4.3: Most left: convergence of base level of I’s pyramid. Most right: convergence

of highest level of I’s pyramid.

flow over multiple scales, the same upgrade function is applied updating I n−1 after

solving vn for I n.

The iteration starts at the smallest scale (top of the pyramid) and is upgraded as
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follows:

v1 = upgrade(v0)

v2 = upgrade(v1)

...

vn+1 = upgrade(vn)

(4.3)

At each level, if the solution does not satisfy the constraints (sections 2.2.3 and

2.2.4), we stop.

As seen in fig. 4.3, the base level of an interpolated step edge generally won’t meet

the gradient constraints, but it’ll have a wider reach when explored in different resolu-

tions.

The base level of an image’s pyramid usually contains more details and noise com-

pared to its higher levels, these characteristics are not ideal for optical flow estimation

due to the discontinuities it produces in the spatial derivatives; however, during the

process of sub-sampling, signals will smoothly be altered until no longer precise. These

limitations motivate the algorithm to iterate over every pyramid level from the low-

est resolution I n to I0, with the objective of estimating v0 eluding the constraints by

referencing previous solutions of v.

In fig 4.4, the only analyzed signal is I0, where the only possible solution is

v = unde f ined because the gradient doesn’t meet the constraints. A non-pyramidal

representation would then not have enough capacity to solve this example.

4.2 Initial Values

During the process of using the update function in 2.1, a convergence map can be

visualized if the input values of v are used as a two component argument. In 2.2.2 is

identifiable that convergence also depends on the possible combinations of v1 and v2 to

form v for a given p. This characteristic is then used to increase the robustness of the
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method, by relying on the capacity of v to be arbitrary. Any pyramidal upgrade 4.4 at

level n+ 1 will be initialized with a list V n := {{v1, v2}|v1 + v2 = vn, v1 × v2 ≥ 0} where

input is the coerced solution from the previous level n,

v1 = upgrade(V0)

v2 = upgrade(V 1)

...

vn+1 = upgrade(V n)

(4.4)

The amount of levels used to solve a given stereo problem depends on the texture,

image dimensions and maximum displacement estimated. If we consider our images

highly detailed and with big displacements, it should be represented with several pyra-

midal levels.

4.3 Pyramidal Constraints

During the calculations of optical flow, we might encounter constraints that lead to

undefined values (subsections 2.2.3 and 2.2.4). In pyramidal optical flow, we transmit

the undefined values of v to lower levels of the pyramid, rejecting any future update of
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v.

In this section we propose to handle the pyramid’s constraint propagation in a dif-

ferent manner: During the pyramidal update, we will allow a e amount of errors, where

0 ≥ e ≥ n, being n the pyramid’s highest level; e = n will broadly apply the first en-

countered constraint, e = 0 will propagate none.

Intermediate values of e considers as a solution any level’s converged value unless a

flow converges in lower levels of the pyramid, where data is more faithful to the original

signal.

This process is different than other methods because we posses more information

due to the cyclopean nature of the vectors. They will provide capacity to describe a

solution with the addition of constraining it as well.

4.4 Experiments

4.4.1 Synthetic Validation of pyramids

We will take as an example the pyramidal representation in figure 4.2 and solve for

p = 13 to analyze the convergence zone behavior when transferring optical flow along

levels.

For the experiments we consider:

C = {v1, v2| v1 ∗ v2 > 0 & 0≥ v1 + v2 ≥ 2}

k = 0.001

v0 ∈ R : −3≤ v0 ≤ 3

z(n,∆n) = z(2, 0.2)

e = 0

(4.5)

When we refer to the results on the Fig. 2.11, it’s noticeable that the convergence

zone becomes larger through the addition of pyramidal levels, as seen in fig. 4.5. With

this behavior, solutions are accessed more robustly, therefore the list of initial values

could become smaller having a faster method with the coarse-to-fine approach.
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Figure 4.5: Convergence map of signal for different pyramidal descents when p = 13.

The pyramidal cyclopean method propagates optical flow through a pyramidal rep-

resentation. In the level 3, we manage to find the solution v1, v2 = 0.38, 0.47 With

an initial value of v0 = [0,0]; The solution will be transferred to the next level as ini-

tial value. This process continues until we arrive to the base of the pyramid with the

solution {v1, v2}= {1.0034,0.025}, as seen in figure 4.6.

Pyramidal constraint e= 0
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Figure 4.6: Convergence for pixel p = 13 in different levels.

More solutions are presented in Fig. 4.7. It’s important to mention that less points

will converge in comparison of the original cyclopean application (as seen in Fig. 2.15)

due to the pyramidal over-constraint e = 0, where constraints encountered along the
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levels will be propagated up to the base of the pyramid as seen in section 4.3. For

example, the method fails in p = 8, along the pyramids; As seen in Fig. 4.8 p = 8 is

updated according to the pyramid’s levels. The solution from level 3 is updated every

time a better solution is found, this process happens until level 0. At level 0, the shape

of the curve suffers from noise and interpolation inaccuracy, making it not reach the

gradient standards for analysis. Therefore the solution v0 = unde f ined and is rejected

to become v0 = v1.
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Figure 4.7: Convergence for different points in signal.

We add±0.05 noise to our signals solving for different points as seen in fig. 4.11. It’s

possible to notice the increase in uniformity in points like p = 19 and 10 in comparison

to the performance of the cyclopean method over noise in fig. 2.17.

Synthetic validation of pyramidal constraint

No constraints (e = n) means every point haves a solution, being the last accepted value

always propagated through the pyramidal levels as seen in Fig.4.11. The value of e can

be modified to increase density but loosing precision.
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Figure 4.8: Propagation of constraint in p = 8.
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Figure 4.9: Convergence in different levels when the signals present noise.

4.4.2 Stereo results

Test 0: Aerial imagery

We replicate the experiment in subsection 3.3.1 with the addition of pyramidal propa-

gation through the levels {1, 4}.

When we solve pyramidal optical flow for Fig. 1.2 we obtain Fig. 4.12. The ground

truth is unknown, but it’s possible to use the context in the image to conclude the
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Figure 4.10: Convergence of signal, Left: Pure signal, Right: Signal with noise.
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Figure 4.11: Convergence in different levels when the pyramidal constraint e = n.

performance in this circumstance: It’s possible to see the top of the buildings will tend

to have a disparity higher than 0.6, on the other hand, anything surpassing the ceiling

section looses magnitude. This respects the physical property of perspective, where far

away objects move slower than closer ones, for example, the ceilings in the image. It’s
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Figure 4.13: Cyclopean optical flow solution of aerial imagery

possible to see also that the lack of texture is affecting the density, with only 20.9%

pixels of the image converged.

In this section we obtain more uniform results (lower standard deviation) but a

decrease in density, in comparison to the previous Test 0 in subsection 3.3.1. In Fig.4.14

we implement e = 2 to allow certain degree of approximation. Density will increase to

25.3% and still present the same distribution as previous tests.
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Figure 4.14: Cyclopean optical flow solution of aerial imagery
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Figure 4.15: Cyclopean optical flow solution of aerial imagery
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Figure 4.16: Test 1. Left: cyclopean optical flow, Right: ground truth.

Figure 4.17: Test 1. Left: cyclopean optical flow histogram, Right: ground

truth.histogram

Sintel data-set

We replicate the experiment in subsection 3.3.2 with the addition of pyramidal propa-

gation through levels {1,4}.

Test 1: Sintel data-set I1(x) is artificially displaced I1(x − d ∗ 0.1) where d is the

ground truth. We obtain Fig. 4.16 and Fig. 4.17.

Test 2: Sintel data-set I2(x) is artificially displaced I1(x + d ∗ 0.9) where z is the

ground truth. We obtain Fig.4.18 and Fig.4.19.

Test 3: Sintel data-set. We obtain Fig. 4.20 and Fig. 4.21.

Test 4: Sintel data-set I1(x) is artificially displaced I1(x − d ∗ 0.1) where d is the
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Figure 4.18: Test 2. Left: cyclopean optical flow, Right: ground truth.

Figure 4.19: Test 2. Left: cyclopean optical flow histogram, Right: ground truth his-

togram

Figure 4.20: Test 3. Left: cyclopean optical flow, Right: ground truth.
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Figure 4.21: Test 3. Left: cyclopean optical flow histogram, Right: ground truth his-

togram

Figure 4.22: Test 4. Left: cyclopean optical flow, Right: ground truth.

ground truth. The data used in this test presents simulated noise such as: atmospheric

effects, motion blur. We obtain Fig. 4.22 and Fig. 4.23.

Test 5: Sintel data-set I1(x) is artificially displaced I1(x + d ∗ 0.9) where d is the

ground truth. The data used in this test presents simulated noise such as: atmospheric

effects, motion blur. We obtain Fig. 4.24 and Fig. 4.25.

Test 6: Sintel data-set. The data used in this test presents simulated noise such as:

atmospheric effects, motion blur. We obtain Fig. 4.26 and Fig. 4.27.

It’s possible to see from Table 4.1 that Test 1 has the best numbers, this is because

the optical flow is solved with brightness consistency when solving for I1(x) and I1(x −
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Figure 4.23: Test 4. Left: cyclopean optical flow histogram, Right: ground

truth.histogram

Figure 4.24: Test 5. Left: cyclopean optical flow, Right: ground truth.

Figure 4.25: Test 5. Left: cyclopean optical flow histogram, Right: ground

truth.histogram

67



Figure 4.26: Test 6. Left: cyclopean optical flow, Right: ground truth.

Figure 4.27: Test 6. Left: cyclopean optical flow histogram, Right: ground

truth.histogram

Table 4.1: Different tests solving optical flow

Test RMSE Density

Test 1 0.1397 37.5%

Test 2 0.164 29.7%

Test 3 2.9 28.6%

Test 4 0.124 40.3%

Test 5 0.182 54.4%

Test 6 5.49621 28.915%
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z ∗ 0.1). Test 2, although artificial, is more reliable than Test 1; here we don’t enforce

brightness consistency because we solve for different intensity functions solving for I1(x)

and I2(x + z ∗ 0.9). Test 3 does not have modified intensity functions, so it means that

we are solving for big movements; as mentioned previously, big movements will lead to

a deficient translation of C , which explains why Test 3 presents the lowest convergence

density. If we compare these results to Table 3.1, we can see the pyramidal application

will greatly over-constrain density for small movements, but this doesn’t transfer to big

movements like Test 3 and 6.
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CONCLUSION

Cyclopean optical flow achieved comprehensive results in a really clean and con-

trolled matter. We can observe optical flow does solve stereo matching. Small motion

and ideal brightness are beneficial for the method. An area of opportunity is to consider

how to manage the lack of texture in aerial imagery and a future application of pyra-

midal representation. Stereo reconstruction and real-time depth estimation are also to

be explored in future work.

Assuming the camera motion is small, we can try to estimate the camera geometry

with 1D optical flow. This is not possible for the general camera motion cases, but it

applies to the case of pure translational motion.

If parallel epipolar lines are assumed, we can find the single orientation of those

lines to be able to rectify and then solve for stereo.

Between stereo pairs, if the dominant source of motion is from the parallax induced

by depth variations, then the optical flow measured in the direction of the "true" epipolar

lines should be larger than in any other direction.

Thus we propose to estimate 1D optical flow in many directions over the whole

image and pick the one that results in the largest flow magnitude

Optical flow is a challenging field, and a constrained cyclopean approach is designed

to take that into account. This allows the solution to only return confident results, being

a future project to apply for this work on real-time depth estimation.

Some challenge of this work is that the pyramidal approach resulted inconclusive

and therefore lack of capacity to describe large movements. It will be interesting to

test the pyramidal under-constraint, to make a better prediction with the extracted

estimations. More tests are necessary to explore further defects and advantages of the

method.
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