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Résumé

Cette thèse est organisée en deux chapitres. Le premier chapitre sert d’introduction aux
concepts et idées utilisés dans le deuxième chapitre (l’article).

Le premier chapitre est divisé en trois sections. Dans la première section, nous introdui-
sons l’apprentissage par renforcement en tant que paradigme d’apprentissage automatique
et montrons comment ses problèmes sont formalisés à l’aide de processus décisionnels de
Markov. Nous formalisons les buts sous forme de rendements attendus et montrons com-
ment les équations de Bellman utilisent la formulation récursive du rendement pour établir
une relation entre les valeurs de deux états successifs sous la politique de l’agent. Après
cela, nous soutenons que la résolution des équations d’optimalité de Bellman est insoluble
et introduisons des algorithmes basés sur des valeurs tels que la programmation dynamique,
les méthodes de Monte Carlo et les méthodes de différence temporelle qui se rapprochent
de la solution optimale à l’aide de l’itération de politique généralisée. L’approximation de
fonctions est ensuite proposée comme moyen de traiter les grands espaces d’états. Nous
discutons également de la manière dont les méthodes basées sur les politiques optimisent di-
rectement la politique sans optimiser la fonction de valeur. Dans la deuxième section, nous
introduisons les jeux de Markov comme une extension des processus décisionnels de Markov
pour plusieurs agents. Nous couvrons les différents cadres formés par les différentes struc-
tures de récompense et donnons les dilemmes sociaux séquentiels comme exemple du cadre
d’incitation mixte. En fin de compte, nous introduisons différentes structures d’information
telles que l’apprentissage centralisé qui peuvent aider à faire face à la non-stationnarité in-
duite par l’adversaire. Enfin, dans la troisième section, nous donnons un bref aperçu des
types d’abstraction d’état et introduisons les métriques de bisimulation comme un concept
inspiré de l’abstraction de non-pertinence du modèle qui mesure la similarité entre les états.

Dans le deuxième chapitre (l’article), nous approfondissons finalement l’abstraction
d’agent en tant que métrique de bisimulation et dérivons un facteur de compression que
nous pouvons appliquer à la diplomatie pour révéler l’agence supérieure sur les unités de
joueur.

Mots clés: Apprentissage par renforcement multi-agents, abstraction d’état, abstraction
d’agent
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Abstract

This thesis is organized into two chapters. The first chapter serves as an introduction to the
concepts and ideas used in the second chapter (the article).

The first chapter is divided into three sections. In the first section, we introduce Reinforce-
ment Learning as a Machine Learning paradigm and show how its problems are formalized
using Markov Decision Processes. We formalize goals as expected returns and show how the
Bellman equations use the recursive formulation of return to establish a relation between the
values of two successive states under the agent’s policy. After that, we argue that solving
the Bellman optimality equations is intractable and introduce value-based algorithms such as
Dynamic Programming, Monte Carlo methods, and Temporal Difference methods that ap-
proximate the optimal solution using Generalized Policy Iteration. Function approximation
is then proposed as a way of dealing with large state spaces. We also discuss how policy-
based methods optimize the policy directly without optimizing the value function. In the
second section, we introduce Markov Games as an extension of Markov Decision Processes
for multiple agents. We cover the different settings formed by the different reward structures
and give Sequential Social Dilemmas as an example of the mixed-incentive setting. In the
end, we introduce different information structures such as centralized learning that can help
deal with the opponent-induced non-stationarity. Finally, in the third section, we give a brief
overview of state abstraction types and introduce bisimulation metrics as a concept inspired
by model-irrelevance abstraction that measures the similarity between states.

In the second chapter (the article), we ultimately delve into agent abstraction as a bisim-
ulation metric and derive a compression factor that we can apply to Diplomacy to reveal
the higher agency over the player units.

Keywords: Multi Agent Reinforcement Learning, State Abstraction, Agent Abstraction
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Chapter 1

Introduction

This chapter aims to give readers a broad background so that the concepts and notions used
in the article are easily understood. We first briefly introduce Reinforcement Learning (RL)
in Section 1.1, and then explore the Multi-Agent Reinforcement Learning (MARL) setting
in Section 1.2. Finally, in Section 1.3, we outline the state abstraction concepts relevant to
the article. Reading the parts marked with ⋆ are encouraged, but not necessary.

1.1. Reinforcement Learning: Learning from Experi-
ence

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) primarily concerned
with using data to improve the performance on tasks at hand. There are usually two (promi-
nent) paradigms of ML that come to mind:

• Supervised Learning: Data is labelled. Each sample in the training set is a pair
consisting of a feature vector X and a label y. The goal is to find a mapping function
from the inputs (feature vectors) to the outputs (labels) in a way that generalizes
well to unseen samples.
• Unsupervised Learning: Data is not labelled. The goal is to find patterns and struc-

tures in a set of feature vectors {X}.

However, these two paradigms and their intermediary forms (such as Semi-Supervised and
Self-Supervised Learning) do not completely cover the set of ML paradigms; Reinforcement
Learning (RL) is another ML paradigm that studies the problem of an agent trying to achieve
its goal inside an environment through interaction, and the methods that solve this problem.
We use RL to refer to all three: the field of study, the problem facing the agent, and the
solution methods [38]. It is worth noting that RL differs in three distinct ways from the
other three paradigms:



Fig. 1.1. Interaction of the agent with the environment in an MDP (taken from [38]); at
the beginning the agent receives the start state, and at each time step after that, it takes an
action and receives the next state and immediate reward from the environment.

• RL studies the problem of an agent trying to achieve its goal inside an environment
through interaction in its entirety [38]. Assuming that “intelligence is the computa-
tional part of the ability to achieve goals in the world” (McCarthy, [23, 36]), other
paradigms fall short of explicitly fitting into this definition.
• For an agent to achieve its goal, it must exploit the good experiences that it has

gathered, and at the same time, it must explore the actions to gather better expe-
riences. With only exploration or exploitation, failure is guaranteed. This is called
the exploration-exploitation dilemma, and it is unique to RL [38].
• When the reward is temporally delayed, the agent must be able to assign a credit to

the preceding actions that contributed to a successful outcome. This is called the
(tempral) credit assignment problem (CAP) [24]. 1

Throughout this section, we will use notations, figures, and equations from [38, 5], to define
terms and convey ideas.

1.1.1. Formalizing RL Problems

A classic framework to formalize the sequential decision-making facing the agent is
Markov Decision Processes (MDPs) [31, 38]. At each discrete time step t ≥ 0, the agent
gets the state of the environment St, takes an action At, and receives a numerical reward
signal Rt+1, and the next state St+1 from the environment. We will assume that MDPs are
finite (an MDP in which S, A, and R are finite), and that time steps are discrete unless
explicitly mentioned otherwise. The sequence of the experienced states, actions, and rewards

1The credit assignment problem is also used in other domains, such as Deep Learning, to describe the problem
of determining the contribution of certain components of the network to a specific outcome.
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is called the trajectory τ , of the agent:

τt
.= (S0, A0, R1, S1, A1, R2, S2, · · · , St, At, Rt),

where St ∈ S, At ∈ A(s), and Rt ∈ R ⊂ R. We define p : S × R × S × A → [0,1], the
dynamics of the MDP as:

p (s′, r | s, a) .= Pr {St = s′, Rt = r | St−1 = s, At−1 = a} , (1.1.1)

such that: ∑
s′∈S

∑
r∈R

p (s′, r | s, a) = 1, for all s ∈ S, a ∈ A(s). (1.1.2)

p is a four argument function that could be used to compute all other functions of interest,
such as the state-transition probabilities:

p (s′ | s, a) .= Pr {St = s′ | St−1 = s, At−1 = a} =
∑
r∈R

p (s′, r | s, a) , (1.1.3)

the state-action reward:

r(s, a) .= E [Rt | St−1 = s, At−1 = a] =
∑
r∈R

r
∑
s′∈S

p (s′, r | s, a) , (1.1.4)

and the state-action-next-state reward:

r (s, a, s′) .= E [Rt | St−1 = s, At−1 = a, St = s′] =
∑
r∈R

r
p (s′, r | s, a)
p (s′ | s, a) . (1.1.5)

The states are said to have the Markov property if the current state includes all the
information from past interactions that dictate the next state. In other words, states satisfy
the Markovian assumption if the future is conditionally independent of the past, given the
present:

Pr {St = s′, Rt = r | S0, A0, R1, . . . , Rt−1, St−1 = s, At−1 = a}

= Pr {St = s′, Rt = r | St−1 = s, At−1 = a}

= p (s′, r | s, a) .

(1.1.6)

Given the description above, one can formally define an MDP as a 4-tuple (S,A, p, r),
where:

• S is the set of states or the state space. 2

• A is the set of action or the action space. 3

• p : S ×A× S → [0,1] is the state-transition function p (s′ | s, a). 4

2More precisely, S, is the set of non-terminal states, while the set of all states (including terminal states) is
denoted by S+; however, the distinction is often ignored, and they are used interchangeably.
3We will assume that A = A(s) for any s ∈ S.
4The state-transition function is also known as (state) transition probability, and is sometimes denoted as
p : S ×A → ∆(S), where ∆ is a probability simplex.
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• r : S ×A× S → R is the state-action-next-state reward function r (s, a, s′). 5

If the MDP is discounted, it would also contain an element called the discount factor, denoted
by γ ∈ [0,1), and the MDP would be a 5-tuple (S,A, p, r,γ). Furthermore, if the start state
s0 is not fixed, the MDP would also contain a start state distribution ρ0 ∈ ∆(S), from
which s0 is sampled (s0 ∼ ρ0(·)) [5]; the MDP would then be 5-tuple (if the MDP is not
discounted) or a 6-tuple (if the MDP is discounted), and would be denoted by (S,A, p, r, ρ0)
or (S,A, p, r, γ, ρ0) respectively. The MDP abstraction successfully reduces most but not all
decision-making problems of interest to three signals, namely: states, actions, and rewards
[38].

1.1.1.1. Formalizing Goals in RL. MDPs attempt to formalize the problem of an agent
trying to achieve its goal by interacting with its environment. However, there is no explicit
notion of goal in the definition of an MDP. The reward hypothesis establishes the relation
between the reward signal and the goal of an agent:

“That all of what we mean by goals and purposes can be well thought of as the maximiza-
tion of the expected value of the cumulative sum of a received scalar signal (called reward).”
(Sutton, [37, 38]).

Formally, the goal of the agent is to maximize its expected (discounted) return; We define
the discounted return as:

Gt
.=

T∑
k=t+1

γk−t−1Rk, (1.1.7)

where T is the terminal time step. For continuing tasks where the interaction infinitely goes
on, T is infinite, and for episodic tasks, in which terminal states exist, T is finite. γ ∈ [0,1]
is a discount factor that determines how myopic or far-sighted the agent is in cumulating
its rewards. We should note that if γ = 1, the infinite sum in the continuing setting would
be infinite; therefore, we restrict γ to values less than one to use a unified notation for both
settings. The discounted return could be recursively defined as:

Gt = Rt+1 + γ
(
Rt+2 + γRt+3 + γ2Rt+4 + · · ·

)
= Rt+1 + γGt+1.

(1.1.8)

1.1.2. The RL Solutions

Assuming that an agent is following a policy π, the goal of the agent is finding a π that
maximizes the expected state-value or action-value function. The policy π is simply mapping
from states to actions. π can be deterministic or stochastic; in the deterministic case, it is a
function that takes the state and outputs the action to be taken:

a = π(s), 6

5r can also be the state-action reward function r(s,a).
6If the policy is deterministic, it is often denoted by µ.
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and in the stochastic case, it takes the state and the action of interest and outputs the
probability of taking that action in that state. Without passing an action, the policy outputs
a probability distribution from which the action can be sampled:

A ∼ π(· | s).

We can formally define vπ
7, the state-value function for policy π, in any state s ∈ S, as:

vπ(s) .= Eπ [Gt | St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s

]
, (1.1.9)

and qπ
8, the action-value function for policy π, in any state s ∈ S, taking any action a ∈ A,

as:

qπ(s, a) .= Eπ [Gt | St = s, At = a] = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s, At = a

]
. (1.1.10)

The relationship between vπ, qπ, π, and p (the MDP dynamics) is established by the following
equations:

qπ(s, a) =
∑
s′,r

p (s′, r | s, a) [r + γvπ (s′)] , (1.1.11)

vπ(s) =
∑

a

π(a)qπ(s, a). (1.1.12)

The relationship between the value of a state s, and its next state s′, under policy π, is
established by the Bellman equation for vπ:

vπ(s) .= Eπ [Gt | St = s]

= Eπ [Rt+1 + γGt+1 | St = s]

=
∑

a

π(a | s)
∑
s′

∑
r

p (s′, r | s, a) [r + γEπ [Gt+1 | St+1 = s′]]

=
∑

a

π(a | s)
∑
s′,r

p (s′, r | s, a) [r + γvπ (s′)] , for all s ∈ S.

(1.1.13)

Equation 1.1.13, is better understood by following the backup diagram in Figure 1.2. The
Bellman equation for qπ, is written as:

qπ(s, a) .= Eπ [Gt | St = s, At = a]

= Eπ [Rt+1 + γGt+1 | St = s, At = a]

=
∑
s′,r

p (s′, r | s, a)
[
r + γ

∑
a′

π (a′ | s′) qπ (s′, a′)
]

,

(1.1.14)

and its backup diagram is depicted in Figure 1.3.

7vπ denotes the state-value for a single state s ∈ S, while Vπ : S → R denotes the state-value of all states as
a vector of size |S|.
8qπ denotes the action-value for a single state-action pair s ∈ S, a ∈ A, while Qπ : S × A → R denotes the
action-value of all state-action pairs as a vector of size |S| × |A|.
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Fig. 1.2. The backup diagram for vπ (taken from [38]), where white circles are states, and
black circles are state-action pairs. The Bellman equation calculates the state-value of s,
by summing over all possible immediate rewards, plus discounted state-values of successor
states, for all possible actions at state s, weighted by their probability. This diagram is called
a backup diagram because it sends back information from the successor states to the current
state.

Fig. 1.3. The backup diagram for qπ (taken from [38]). The Bellman equation calculates the
action-value of s,a, by summing over all immediate rewards, plus discounted action-values of
successor state-action pairs, for all possible successor states, weighted by their probability.

1.1.2.1. v∗ and q∗. The state-value function induces a non-strict partial ordering over
the set of all policies Π, (a homogeneous relation with reflexive, symmetric, and transitive
properties):

π ≤ π′ ⇔ vπ(s) ≤ vπ′(s) for all s ∈ S,
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where π, π′ ∈ Π [38, 34]. We say that π′ is better than π. The policy that is better than
all other policies is called the optimal policy and is denoted by π∗ [38]. The optimal policy
always exists, but it may not be unique since the induced partial ordering is not strict [38, 5].

The optimal value function is defined as the value function of the optimal (maximizing)
policy:

v∗(s) .= max
π∈Π

vπ(s), for all s ∈ S, (1.1.15)

and the optimal action-value function is defined as the action-value function of the optimal
(maximizing) policy:

q∗(s, a) .= max
π∈Π

qπ(s, a), for all s ∈ S and a ∈ A. (1.1.16)

The optimal policy π∗, could be written as:

π∗ = arg max
π∈Π

vπ(s), for all s ∈ S, (1.1.17)

π∗ = arg max
π∈Π

qπ(s, a), for all s ∈ S and a ∈ A. (1.1.18)

The Bellman optimality equation for v∗, is therefore expressed as:

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ∗ [Gt | St = s, At = a]

= max
a

Eπ∗ [Rt+1 + γGt+1 | St = s, At = a]

= max
a

E [Rt+1 + γv∗ (St+1) | St = s, At = a]

= max
a

∑
s′,r

p (s′, r | s, a) [r + γv∗ (s′)] ,

(1.1.19)

and the Bellman optimality equation for q∗ is:

q∗(s, a) = E
[
Rt+1 + γ max

a′
q∗ (St+1, a′) | St = s, At = a

]
=
∑
s′,r

p (s′, r | s, a)
[
r + γ max

a′
q∗ (s′, a′)

]
.

(1.1.20)

The relationship between q∗, and v∗ is established by:

q∗(s, a) = E [Rt+1 + γv∗ (St+1) | St = s, At = a] . (1.1.21)

The backup diagram for Equation 1.1.19, and Equation 1.1.20 is shown in Figure 1.4.
There is a unique solution to the Bellman optimality equation for v∗ or q∗ [38, 7];

however, finding the exact solution to a system of |S| (for each s ∈ S), or |S|× |A| (for each
s ∈ S, a ∈ A) non-linear equations is not practical since:

• States should satisfy the Markovian assumption.
• It requires full knowledge of the dynamics of the environment p.
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Fig. 1.4. The backup diagrams for v∗, and q∗ (taken from [38]). The only difference between
the Bellman optimality equations’ backup diagrams and the Bellman equations’ backup
diagrams is the substitution of expectation over actions with the max over actions.

• It is computationally expensive, especially if the state space or the state-action space
is huge.

In spite of that, deriving the optimal policy from either v∗ or q∗ is quite efficient. Any greedy
policy with regard to v∗ or q∗ is optimal since it encompasses the expected discounted cu-
mulative reward that could be sought from all possible successor states or state-action pairs.
While deriving the optimal policy from v∗, requires the knowledge of transition probability
(dynamics) for each action given the state, q∗ does not require this knowledge at the expense
of using more memory for storing the values of all state-action pairs [38].

Consequently, finding a good enough approximation of the v∗ or q∗ with low computa-
tional and/or memory cost would be ideal. We will cover these methods briefly in the next
section.

1.1.3. An Overview of RL Algorithms

There are many ways to classify RL algorithms. We can categorize them using the
following criteria: tabular versus function approximation methods, model-free versus model-
based methods, or value-based versus policy-based methods. We will understand what these
terms mean as we go through an inexhaustive list of different algorithms. This section
is divided into four subsections, namely: Dynamic Programming, Monte Carlo, Temporal
Difference, and Deep Reinforcement Learning. The first three subsections are basically a
summarization of the corresponding sections in [38]; therefore, only sentences containing
notable facts are cited to prevent overcitation.

1.1.3.1. Dynamic Programming. Dynamic Programming (DP) algorithms are algorithms
that require a perfect model of the environment (it is model-based). DP algorithms work by
turning the Bellman equations into update rules with which the optimal state-value function
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could be approximated. To understand how DP works, we need to understand two distinct
procedures: policy evaluation or prediction, and policy improvement or control. Computing
the value of states under an arbitrary policy π is called policy evaluation. Iterative policy
evaluation, starts from an arbitrary value function v0, and uses the Bellman equation 1.1.13
to successively approximate the solution to a system of |S| linear equations in |S| unknowns
(one for each s ∈ S):

vk+1(s) .= Eπ [Rt+1 + γvk (St+1) | St = s]

=
∑

a

π(a | s)
∑
s′,r

p (s′, r | s, a) [r + γvk (s′)] ; (1.1.22)

each update to the whole state space is called a state sweep. Using the converged state-values,
we then can compute action-values by using Equation 1.1.11. Having the action-values allows
us to use the policy improvement theorem, which states that for any pair of deterministic
policies π, π′ ∈ Π, if qπ(s, π′(s)) ≥ vπ(s) for all s ∈ S, then vπ′(s) ≥ vπ(s) for all s ∈ S. In
other words, finding a policy π′ which is at least as good as π, only requires greedily choosing
the maximizing action of the action-value function under π:

π′(s) .= arg max
a

qπ(s, a)

= arg max
a

E [Rt+1 + γvπ (St+1) | St = s, At = a]

= arg max
a

∑
s′,r

p (s′, r | s, a) [r + γvπ (s′)] .

(1.1.23)

From 1.1.23, we can derive the following equation:

vπ′(s) = max
a

qπ(s, a)

= max
a

E [Rt+1 + γvπ (St+1) | St = s, At = a]

= max
a

∑
s′,r

p (s′, r | s, a) [r + γvπ (s′)] .

(1.1.24)

The process of improving the policy described in Equation 1.1.23 is called policy improve-
ment. Policies found in the process are either strictly better or equal to the current policy.
In the latter case, the policy is optimal since replacing vπ with vπ′ in Equation 1.1.24, turns
it into the Bellman optimality equation 1.1.19. The policy improvement theorem and its
process also hold for stochastic policies [38].

Combining these two processes gives us an algorithm for finding the optimal policy, called
policy iteration. Given an arbitrary policy π0, we use policy evaluation to obtain the state-
value function vπ0 and action-value function qπ0 , and use policy improvement to find a better
policy π1. Iteration is continued until convergence:

π0
Evaluate−→ vπ0

Improve−→ π1
Evaluate−→ vπ1

Improve−→ π2
Evaluate−→ · · · Improve−→ π∗

Evaluate−→ v∗.
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Fig. 1.5. Generalized Policy Improvement (taken from [38]); policy evaluation and policy
improvement processes work together to attain convergence to the optimal state-value func-
tion, and optimal policy.

.

Value iteration optimizes the policy evaluation phase in the policy iteration while preserving
the convergence guarantee [38]. It could also be seen as the update rule version of the
Bellman optimality equation 1.1.19:

vk+1(s) .= max
a

E [Rt+1 + γvk (St+1) | St = s, At = a]

= max
a

∑
s′,r

p (s′, r | s, a) [r + γvk (s′)] .
(1.1.25)

The policy iteration and value iteration algorithms bootstrap, meaning they use previous
estimates to compute the next ones.

Generalized Policy Improvement or GPI [Figure 1.5] is the procedure used to describe
most RL algorithms. It is generalized because it is not necessary for each process to complete
before the other begins (as we have seen in value iteration). Independently, policy improve-
ment makes the state values invalid, and policy evaluation makes the policy stale, but when
these two processes work together and interact, convergence to the optimal value and policy
is attained [38]. Convergence of the DP algorithms presented in this section, to the optimal
value function and policy, is guaranteed [38, 5]. GPI algorithms are value-based methods,
meaning the policy is derived from a value function.

DP methods introduced in this section have polynomial time complexity in terms of |S|,
and |A| (for a fixed γ); value iteration, which is more time-efficient than policy iteration,
has a time complexity of O(|S|2 × |A|) [38, 5]. Although this is much more efficient than
direct search methods, it is still very inefficient for large state spaces.
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1.1.3.2. Monte Carlo. Monte Carlo (MC) methods do not require the complete knowledge
of the dynamics of the environment p (they are model-free methods). Explicitly expressing p

is not always possible, but it can be easily sampled. MC methods can learn from interacting
with the sample episodes generated by p. They also do not bootstrap, and therefore they
are less susceptible to issues caused by ignoring the Markovian assumption.

Monte Carlo prediction estimates vπ(s) by averaging the returns that follow the visitation
of any s in a set of sampled episodes. There are two variations of this algorithm: first visit
MC and every visit MC. As their names suggest, first visit MC averages over returns followed
by the first occurrence of the state in the episodes, while every visit MC averages over returns
followed by every visit of the state in the episodes. While both methods converge to vπ(s) as
the number of visits goes to infinity, they have slightly different properties [38]. Monte Carlo
methods are an unbiased estimate of vπ(s) with a variance of 1/n, in which n is the number
of averaged returns [38]. The same procedure could be used to get estimates of the action-
values; however, many state-action pairs will never be sampled if the policy is deterministic.
One way to solve this is to change the start state; this is called exploring starts, and doing
it for an infinite number of episodes ensures the visitation of all state-action pairs. A more
practical alternative for a finite number of episodes is to use a stochastic policy with a non-
zero probability for choosing different actions at each state. However, we are only covering
the theoretical grounds for MC and not the practical version, which relaxes the assumption
of infinite episode sampling and exploring starts.

Monte Carlo prediction interacts with Monte Carlo control in the way described by GPI
to approximate the optimal value function and policy. In the policy improvement phase, a
better policy πk+1 is estimated based on qπk

; therefore, MC methods are value-based methods.

1.1.3.3. Temporal Difference. Temporal Difference (TD) methods are central to reinforce-
ment learning. They could be seen as an intermediate class between MC methods and DP
methods. Like DP, they bootstrap, and like MC, they use samples of the environment
dynamics π.

TD prediction updates its estimate V of vπ, for St, by the following update rule:

V (St)← V (St) + α [Rt+1 + γV (St+1)− V (St)] , (1.1.26)

where α ∈ [0,1], is the step-size. This is called TD(0) or one-step TD since the sample
update uses a one-step look-ahead. TD(0) is a particular case of n-step TD [Figure 1.6].
Constant-α MC could be seen as an ∞-step TD [Figure 1.6], and its sample update could
be written as:

V (St)← V (St) + α [Gt − V (St)] . (1.1.27)
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Rt+1 +γV (St+1) in 1.1.26, and Gt in 1.1.27 are called TD target, and MC target respectively.
δt

.= Rt+1 + γV (St+1)− V (St) is called the TD error, thus we can rewrite 1.1.26 as:

V (St)← V (St) + αδt. (1.1.28)

We can also write the sample update rule for action-values as:

Q (St, At)← Q (St, At) + α [Rt+1 + γQ (St+1, At+1)−Q (St, At)] , (1.1.29)

where Rt+1 + γQ (St+1, At+1) is the TD target. The TD error in this case is:

δt
.= Rt+1 + γQ (St+1, At+1)−Q (St, At) ,

and the sample update rule for action-values could be rewritten as:

Q (St, At)← Q (St, At) + αδt. (1.1.30)

Like MC, TD(0) does not require the model of the environment (they are model-free),
but unlike it, it does not need to wait until the end of the episode to perform updates. This is
a considerable advantage, especially when episodes are long or the task is continuing. While
MC tries to estimate vπ by estimating Eπ [Gt | St = s], TD(0) tries to do it by estimating
Eπ [Rt+1 + γvπ (St+1) | St = s] [38]. One-step TD’s estimate is an estimate, because, as in
MC, we use samples to estimate the true expectation (Eπ), and as in DP, we use estimates
of the successor state-values (vπ (St+1)) to perform the updates [38].

TD prediction works with TD control within the GPI algorithm to obtain the optimal
value function and policy. Therefore, TD methods are value-based. We cover two cases of
TD(0) control: SARSA, which is an on-policy control, and Q-learning, which is an off-policy
one. SARSA is on-policy because the actions we take are the actions we use to update the
action-values. Q-learning is off-policy because the action used to update the action-values
is always the maximizing action, regardless of the actual action taken.

SARSA∗. SARSA is an on-policy TD control algorithm that is named after the tuple of
elements used in Equation 1.1.29, (St, At, Rt+1, St+1, At+1). Deriving an on-policy control
algorithm using the SARSA prediction (Equation 1.1.29) is fairly simple; we only have to
make π more and more greedy with respect to qπ, until convergence to the optimal policy.
SARSA’s convergence to the optimal action-value function and policy is guaranteed if all
state-action pairs are visited infinitely many times, and the learning policy becomes greedy
in limit [38, 35].

Q-learning∗. Q-learning is an off-policy TD control algorithm whose update rule is:

Q (St, At)← Q (St, At) + α
[
Rt+1 + γ max

a
Q (St+1, a)−Q (St, At)

]
(1.1.31)
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Fig. 1.6. N-step TD backup diagrams, Monte Carlo could be seen as a∞-step TD method
(taken from [38]).

In Q-learning, the behaviour policy does not affect the estimates but dictates which action-
state pairs are visited. Therefore, the update rule approximates q∗ directly. Q-learning is
guaranteed to converge under certain conditions on the learning rates, if the values of all
state-action pairs are continually updated [38, 41].

1.1.3.4. Deep Reinforcement Learning. All the methods discussed so far are tabular meth-
ods [Figure 1.7]–the policy and its corresponding action-value function are all stored in a
table or array. However, as the size of the state-action space increases, memory, time, and
data required for such algorithms become intractable. We can use function approximation
and parameterize the action-value function or the policy to deal with this issue. This helps
to generalize to states that the agent has not seen before.

So far, we have only explored action-value methods (also known as value-based methods);
methods in which the policy is derived from the action-value function. However, there is
another class of algorithms in which a parameterized policy is directly optimized, these
algorithms are called policy gradient methods (also known as policy-based methods). If
a parameterized value function is also learned along with the parameterized policy, the
method is called actor-critic.
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Fig. 1.7. Classification of the tabular methods based on the width and the length of their
updates (taken from [38]).

.

Deep Q-Network∗. We start off by introducing Deep Q-Network (DQN) [25], a model-free
value-based off-policy method that learns a parameterized action-value function. DQN’s
objective could be written as:

minimizeϕ E(St,At,Rt+1,St+1)∼D

[(
Rt+1 + γ max

a∈A
Q
(
St+1, a; ϕ−

)
−Q (St, At; ϕ)

)2
]

. (1.1.32)

Function approximation combined with bootstrapping and off-policy training creates a
situation prone to instability and divergence, called the deadly triad [38]. Therefore, two
tricks are used in 1.1.32 to stabilize learning. The first trick is separating the target network
(with parameters ϕ−) from the current network (with parameters ϕ) [25]. The parameters
of the target network are frozen and are updated periodically to match the parameters of
the current network [25, 32]. The second trick is the use of the experience replay method,
in which experiences are randomly sampled from a replay memory (D), and fed to the
network [25]. This increases the data efficiency of the algorithm, since a single experience
could be used several times [25]. It also reduces the variance of updates by breaking the
strong correlation between consecutive experiences and makes learning smoother in case of
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a change in the maximizing action [25, 42].

Deep Deterministic Policy Gradient∗. Now we turn to a policy gradient method called
Deep Deterministic Policy Gradient (DDPG). All policy gradient methods work by perform-
ing gradient ascent on the parameters of a policy. If we denote the parameterized policy by
π(a | s; θ), then the update rule for θ is:

θt+1 = θt + α∇̂J (θt) (1.1.33)

where ∇̂J (θt) is the estimate of the gradient of performance measure function J(θ) at time
step t. Usually, J(θ) is the true value of the starting state under the parameterized policy
πθ:

J(θ) .= vπθ
(s0) , (1.1.34)

where s0 is the starting state of the episode. We will only discuss the episodic setting, and
we assume that s0 is the same across different episodes.

Changing policy parameters changes both the distribution of states and the action se-
lection. The policy gradient theorem associates the gradient of the performance measure
function with the gradient of the parameterized policy while leaving out the state distribu-
tion:

∇J(θ) ∝
∑

s

dπθ(s)
∑

a

qπθ
(s, a)∇π(a | s; θ)

= ESt∼dπθ

[∑
a

qπθ
(St, a)∇π (a | St; θ)

]

= ESt∼dπθ

[∑
a

π (a | St; θ) qπθ
(St, a) ∇π (a | St; θ)

π (a | St; θ)

]
= ESt∼dπθEAt∼πθ(·|St) [qπθ

(St, At)∇ ln π (At | St; θ)] ,

(1.1.35)

where dπθ is the on-policy state distribution under πθ. With a conventional abuse of notation,
we can write:

∇J(θ) ∝ Eπθ
[Qπθ

(St, At)∇ ln π (At | St, θ)] . (1.1.36)

This is very useful since we would have needed the analytical form of the state distribution
otherwise, which is typically unknown [38].

Using the background above, we will now briefly cover DDPG [17], which is only appli-
cable to continuous action spaces. DDPG is an actor-critic method, meaning that it learns
both a value function with parameters ϕ, and a policy with parameters θ [17]. If the policy is
deterministic, it is often denoted by µ instead of π. Like DQN, DDPG uses a replay memory
D, and a separate target network with parameters ϕ− [17, 26]; hence, the objective of the
DDPG’s action-value network could be written as:

minimizeϕ E(St,At,Rt+1,St+1)∼D

[(
Rt+1 + γ max

a∈A
Q
(
St+1, a; ϕ−

)
−Q (St, At; ϕ)

)2
]

. (1.1.37)

33



However, since the action space is continuous, calculating the maximizing action in 1.1.37 is
computationally intractable [17, 26]. To solve this issue, DDPG uses a separate parameter-
ized policy µθ− , which approximates the maximizing action of Qϕ− [18, 26]. Therefore, the
TD target in the objective of the action-value network (1.1.37) could be rewritten as:

Rt+1 + γQ
(
St+1, µθ−(St+1); ϕ−

)
. (1.1.38)

The current parameterized policy µθ uses the deterministic policy gradient theorem
(1.1.40) for continuous action spaces [2, 17], to maximize its parameters:

maximizeθ E
S∼D

[Qϕ (S, µθ(S))] , (1.1.39)

∇θJ(θ) = ES∼D [∇θµθ(S)∇aQϕ(S, a = µθ(S))] . (1.1.40)

Note that in 1.1.40, the expectation is with respect to S ∼ D since we are using a replay
memory whose state samples are generated by the state distribution under the parameterized
deterministic policy dµθ .

1.2. Multi-Agent Reinforcement Learning (MARL)
MDP is a framework that can formalize most problems of interest for single-agent RL

[Figure 1.8(a)]. To formalize the MARL problem, we introduce an extension of MDPs
called Markov Games (MGs) [Figure 1.8(b)], along with a less restrictive framework called
Extensive-Form Games [Figure 1.8(c)]. This section is substantially a summarization of [44].

1.2.1. Markov Games

Markov Games (also known as Stochastic Games) [44, 19, 11], are defined by a 6-tuple(
N ,S, {Ai}i∈N , p, {ri}i∈N , γ

)
:

• N = {1, · · · , N} is the set of agents in the environment (N > 1).
• S is the state space of all agents.
• A .= A1 × · · · × AN where Ai is the action space of agent i (1 ≤ i ≤ N).
• p : S × A → ∆(S) is the transition probability function (also denoted by T ) from

any s ∈ S using any a ∈ A to any s′ ∈ S, where a is the joint action of all agents.
• ri : S × A× S → R the reward function of the ith agent that returns a scalar value

for any transition tuple (s,a,s′).
• γ ∈ [0,1) is the discount factor.

At each time step, agent i uses its policy πi : S → ∆ (Ai) to take action Ai
t ∼ πi (· | St),

and to maximize its return by accumulating reward ri(St,At,St+1). Therefore, we can define

34



the state value function of the ith agent V i : S → R as:

V i
πi,π−i(S) .= E

[ ∞∑
t=0

γtri (St, At, St+1) | Ai
t ∼ πi (· | St) , S0 = s

]
(1.2.1)

where −i is the indices of agents in the set N other than i. V i is a function of the joint
policy π : S → ∆(A), defined as:

π(a | s) .=
∏
i∈N

πi
(
ai | s

)
. (1.2.2)

Equation 1.2.1 tells us that the value of a state for agent i depends on the policies of all
other agents as well as its own. This opponent induced non-stationarity is what makes MARL
extremely challenging [44].

The solution to a Markov Game is a Nash Equilibrium (NE) π∗ =
(
π1

∗, · · · , πN
∗

)
, such

that:
V i

πi
∗,π−i

∗
(S) ≥ V i

πi,π−i
∗

(S) for any i ∈ N , πi, (1.2.3)

where πi
∗ is called the best-response of π−i

∗ [44, 6, 11]. If NE exists, MARL algorithms should
ideally converge to it.

1.2.1.1. Reward Structure. Three settings can be defined based on the reward structure
of the environment:

• The fully cooperative setting where agents collaborate to maximize a common return
[44].
• The fully competitive setting where the sum of returns is zero [44].
• The mixed-incentive setting in which return is a general-sum, and (subsets of) agents

can either cooperate or compete [44, 13, 20].
– Social Dilemma (SD) is a subset of problems with mixed-incentive structure in

which the interest of the individual is conflicted with the interest of the collective
[15]. A famous social dilemma frequently studied in game theory is the Prisoner’s
Dilemma [29, 15], in which two players decide to defect (the individually optimal
action), while cooperating yields the optimal collective payoff.

– Sequential Social Dilemmas (SSDs) are temporally extended social dilemmas in
which cooperativeness is a property of the policy of self-interested, independent
agents (as opposed to their atomic action in social dilemmas) [15]. Agents are
motivated to act greedily in the short term, but all of them will suffer if none
cooperate in the long term [15, 30]. Diplomacy is a complex social dilemma game
with mixed-incentive structure where agents should learn to cooperate with other
agents to win [28].
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In the fully cooperative setting, agents usually share their reward function:

r1 = r2 = · · · = rN = r,

this enables the use of single agent RL methods since the state-value function, and action-
value function of all agents would be similar [44, 40]. In the fully competitive setting, the
return of all agents sums up to zero:∑

i∈N
ri (s,a, s′) = 0 for any (s,a, s′) .

In the mixed setting, there is no restriction on the sum of returns ∑i∈N ri (s,a, s′), the fully
cooperative setting and the fully competitive setting could be seen as special cases of the
mixed setting.

1.2.2. Extensive-Form Games∗

Markov Games assume that agents have perfect information of the game at time step
t; meaning that they have access to the fully observable state of the environment St, and
the joint action At [44].9 Extensive-Form Games allows for imperfect information or partial
observability of the environment [Figure 1.8(c)] [44, 27, 33], and is defined by an 8-tuple(
N ∪ {c},H,Z,A, {ri}i∈N , τ, πc,S

)
, where:

• N = {1, · · · , N} is the set of agents in the environment (N > 1), and c is a special
agent with a fixed stochastic policy representing the randomness of the world or the
environment.
• H is the set of all possible histories (sequence of actions taken from the start).
• Z ⊆ H is the subset of all terminal histories.
• A is the set of possible actions; at a given history h, it determines the set of actions

that can be taken from there A(h) = {a | ha ∈ H}.
• ri : Z → R assigns a scalar reward to each terminal history for agent i (i ∈ N ).
• τ : H → N ∪ {c} is the identification function that returns of the identity of the

agent taking action at each history.
• πc is policy of the chance agent from which is samples its action a ∼ πc(· | h).
• S is a partitioning of H to information states s ∈ S, such that ∀h, h′ ∈ s, τ(h) =

τ (h′) = τ(s), and A(h) = A (h′) = A (s).
Extensive-Form Games can deal with imperfect information due to the fact that all

histories in the same information state are indistinguishable to the agent [44]. Behavioural
policy of agent i is defined as πi : S i → ∆(A(s)) where S i = {s ∈ S : τ(s) = i}. The
joint policy is denoted as π =

(
π1, . . . , πN

)
, and the expected reward of agent i as ri(π) =

9Partially Observable Stochastic Games (POSGs) are a variation of Markov Games that can deal with partial
observability. We briefly introduce POSGs in 1.2.3.2.
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Fig. 1.8. (a) MDP, describes the sequential decision-making problem facing a single agent.
(b) Markov Game is used to formalize the decision-making problem for N agents; all agents
receive the same state s and their reward ri from the environment after taking a joint
action (a1, a2, . . . , aN). (c) Extensive-Form Games can formalize the problems with imperfect
information, the two agents take turn taking their actions; since agent 2 is not aware of agent
1’s action, the horizontal dashed line represents an information set. The diagonal dashed
line is a terminal history z1 at the end of which the agents are rewarded by ri(z1). This
figure is taken from [44].

.∑
z∈Z ηπ(z) · ri(z) where ηπ(z) is the probability of reaching the terminal history z under the

joint policy π. In general, for any history h, ηπ(h) is defined as:

ηπ(h) =
∏

h′:h′a⊑h

πτ(h′) (a | I (h′)) =
∏

i∈N ∪{c}

∏
h′:h′a⊑h,τ(h′)=i

πi (a | I (h′)) , (1.2.4)

where h′ : h′a ⊑ h denotes all histories h′a from which we can arrive at h following a sequence
of actions. I : H → S is a function that maps histories to their corresponding information
state:

I(h) = s if h ∈ s.

The ϵ-Nash Equilibrium for this formalism is then defined as π∗ =
(
π1

∗, · · · , πN
∗

)
such

that:
ri
(
πi

∗, π−i
∗

)
≥ ri

(
πi, π−i

∗

)
− ϵ for any i ∈ N , πi, (1.2.5)

if ϵ = 0, the equilibrium is a Nash Equilibrium [44, 33].
The perfect information game could be seen as a special case of imperfect information

Extensive-Form Game where, for any s ∈ S, |s| = 1 [44].
Since in Markov Games, the actions of other agents are not known, we can define all

possible outcomes of that time step as an information state and formalize MGs as a special
case of Extensive-Form Games where joint actions are the histories [44].
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Fig. 1.9. (a) The centralized setting, where a central controller gets the local observations
of N agents and learns a local policy for each of them. (b) The decentralized setting in
which agents can communicate certain local information with their neighbours. (c) The
fully decentralized setting where there is neither a central controller nor a communication
channel among agents, in some fully decentralized settings agents are allowed to receive some
global information such as the joint action of other agents along with their local observations.
This figure is taken from [44].

1.2.3. Information and Observability

We can describe different information sharing structures with three settings [Figure 1.9]:
• The fully decentralized setting where agents do not share any information. This

is a realistic setting and is suited for many practical applications. However, the
lack of access to policy, rewards, or observations of other agents exacerbates the
non-stationary caused by their presence [44]. An extreme and special case of this
setting is the independent learning scheme, where access to only the local observation
and reward is granted [44, 39]. A less strict case of decentralized learning is the
control sharing information structure, where the local observations contain some
global information, such as the joint action of other agents [44, 22].
• The decentralized setting with networked agents allows the exchange of information

over some communication channel between neighbours [44]. This setting is mostly
used in cooperative tasks, and its convergence analysis is easier than the fully decen-
tralized setting [44, 14].
• The centralized setting where a central controller has access to local information of

all agents and can design their policies [44, 12]. A special and commonly used
case of this setting is the centralized-learning decentralized-execution scheme, where
observations and actions of all agents are sent to a central controller and the policies
of the agents are designed based on the aggregated information [44, 12, 21]. This

38



alleviated the non-stationary due to partial observability [21]. At execution time,
there is no controller and no communication channel between agents.

The following two methods illustrate two of these settings, namely: the centralized set-
ting, and the centralized-learning decentralized-execution setting.

1.2.3.1. Parameter Sharing. tParameter sharing is a centralized training scheme which
most effective in fully cooperative settings with homogeneous agents, (agents that share
their reward function); however, it could also be used in other settings such as competitive
settings with self-play. In this method, all agents use the same network for optimizing their
value function and/or policy. Since all agents have access to the parameters of the network of
other agents, this scheme is categorized as a centralized method. For example, the authors of
[28] use self-play to train the agents on Diplomacy where one agent controls one power and
the other control the remaining powers; the networks are initialized by training on human
data with supervised learning.

1.2.3.2. Centralized-Learning Decentralized-Execution: MADDPG∗. Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) is a centralized-training decentralized-execution
method [Figure 1.10], that does not impose any restrictions on the communication between
agents, and could be applied to cooperative, competitive or mixed settings [21].

MADDPG uses the Markov Games framework with partial observability (commonly
known as Partially Observable Stochastic Games or POSGs), where we have an observa-
tion space O, in addition to the state space S. Each agent receives an observation correlated
with the state using the function oi : S 7→ Oi. The parameterized policy of agent i, is
then denoted by µθi : Oi 7→ ∆(Ai). We also assume that the reward function of agent i,
ri : S×Ai 7→ R is conditioned on its own action space and not the joint action space of other
agents to make the scenario suited for decentralized execution. There are several challenges
for extending DDPG to the multi-agent setting:

• Policy gradient methods usually have high variance, in the described setting (con-
ditioning the reward on the local action), the variance is even higher due to the
underlying dependence of the reward on the joint action of other agents [21].

– We can resolve this issue by using a centralized critic for each agent i, denoted by
Qi

ϕ ≡ Qi
ϕi,µθi

≡ Qi
ϕi,µi that takes the joint actions of all agents at = (a1

t , . . . , aN
t )

and some state information Xt at time step t. ϕi denotes the parameters of the
centralized critic for agent i, and θi denotes the policy parameters of agent i.
In the minimal case, Xt =

(
O1

t , . . . , ON
t

)
≡ Ot, but it usually contains some

additional data [21].
• The replay memory D filled with transition/experience tuples of (St, At, Rt+1, St+1)

is not useful, since change in policy of only one agent can change the transition
probability from (St, At) to St+1 [21].
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– Since the knowledge of the joint actions of the agents makes the distribution sta-
tionary despite the changes in policies of agents

(
p (st+1 | s, a1, . . . , aN , π1, . . . , πN)

= p (st+1 | s, a1, . . . , aN)
)
, we can resolve this issue by filling the replay memory

D with tuples of
(
Xt, Xt+1, a1

t , . . . , aN
t , R1

t+1, . . . , RN
t+1

)
≡ (Xt, Xt+1,at,Rt+1)

[21].
Given the information above, we can write the gradient of deterministic policy µθi ≡ µi for
agent i as:

∇θiJ
(
θi
)

= EXt,a−i
t ∼D

[
∇θiµi

(
Oi

t

)
∇ai

t
Qi

ϕ

(
Xt,

(
a−i

t , ai
t = µi

(
Oi

t

)))]
, (1.2.6)

where a−1
t is the joint action of all agents excluding agent i. The loss function of agent i’s

centralized critic is written as:

L
(
ϕi
)

= E
(Xt,at,Rt+1,Xt+1)∼D

( (Ri
t+1 + γQi

ϕ−

(
Xt+1,µ

−(Ot+1)
))
−Qi

ϕ (Xt,at)
)2
 , (1.2.7)

where µ− = (µθ1,− , µθ2,− , . . . , µθN,−) is the joint target policy with frozen parameters θ− =
(θ1,−, . . . , θN,−), that are periodically updated to match the current policy parameters θ =
(θ1, . . . , θN). In practice, agent i does not have access to the joint target policy; therefore, it
should store an approximation of agent j’s policy (j ̸= i), µ̂ϕi

j
= µ̂i

j [21]. Once the agent has
obtained the approximations, the TD target in the centralized critic’s loss function (Equation
1.2.7) could be rewritten as:

Ri
t+1 + γQi

ϕ−

(
Xt+1, µ̂

i,−(Ot+1)
)

, (1.2.8)

where µ̂i,− ≡
(
µ̂i,−

−i , µi,−
)

is the approximate joint policy with frozen parameters for all
agents excluding agent i, along with the true policy of agent i.

MADDPG uses other techniques such as ensemble policies to improve learning [21].
However, they are beyond the scope of our interest. One critique of MADDPG is that it
only works well in the environments that are specifically designed for this algorithm, and
fails to perform well in other arbitrary environments [1].

1.3. State Abstraction
In this section, we will briefly cover different types of state abstraction and their prop-

erties. To acquaint readers with the ideas we borrowed from in the paper to define agent
abstraction, we then discuss a metric called bisimulation metric, which given a pair of states,
measures how behaviourally similar they are. We use [3, 16, 9, 10] as our sources for this
section.10

10In this section, with abuse of notation, we use V and Q instead of v and q to match the definitions in the
state abstraction literature.
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Fig. 1.10. The centralized-training decentralized-execution scheme used in MADDPG
(taken from [12]). Each agent has a separate centralized critic that has access to the joint
observation-action pairs of all agents. Each agent’s actor uses the corresponding centralized
critic to optimize its policy at training time. Agents do not have access to their centralized
critic nor the joint observation-action pairs at execution time.

First, we need to define state abstraction: Let M = (S,A, p, r, γ, ρ0) be the ground truth
MDP; state abstraction is a function ϕ : S → Sϕ that maps every s ∈ S to a sϕ ∈ Sϕ. Sϕ is
called the abstract state space and sϕ is an abstract state in that space [3, 16].

To define the abstract MDP Mϕ, we also need to define the abstract reward and transition
functions. In order to do so, we first introduce the weighting function w as an element of the
abstract MDP, using which the abstract reward function and the abstract transition function
are defined. w : S → [0,1] is a function such that for each abstract state, the sum of w for
all ground truth states that are mapped to that abstract state is equal to 1:

∀sϕ∈Sϕ
:
∑

s∈Sϕ

w(s) = 1 where s ∈ sϕ ≡ s ∈ {s̄ ∈ S : ϕ(s̄) = sϕ} ,

in other words, the weighting function measures the amount of contribution of s to ϕ(s)
[4, 16]. The abstract reward function rϕ : Sϕ ×A× S → R is then defined as:

rϕ

(
sϕ, a, s′

ϕ

)
=
∑
s∈sϕ

∑
s′∈s′

ϕ

r (s, a, s′) w(s). (1.3.1)

And the abstract transition function pϕ : Sϕ ×A → ∆ (Sϕ) as:

pϕ

(
s′

ϕ | sϕ, a
)

=
∑
s∈sϕ

∑
s′∈s′

ϕ

p (s′ | s, a) w(s). (1.3.2)

The abstract reward and transition functions are the weighted sums of rewards and transition
probabilities of the ground MDP states that map to the same abstract state [3]. (M, ϕ, w)
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induces an abstract MDP Mϕ =
(
Sϕ,A, rϕ, pϕ, γ, ρϕ

0

)
. The optimal policy for Mϕ is:

πϕ,⋆ = arg max
πϕ∈Πϕ

Es0∼ρ0

[
vπϕ

(ϕ (s0))
]

. (1.3.3)

The goal of abstraction is to find a good policy in the abstract MDP Mϕ that could perform
well in the ground MDP M [4, 16]. We can formalize this objective as minimizing the value
loss:

min
πϕ∈Πϕ

Es0∼ρ0

[
v∗ (s0)− vπϕ

(s0)
]

. (1.3.4)

1.3.1. Abstraction Types

A state abstraction type is a set of functions Φpred ⊆ Φall , where pred : S ×S → {0,1} is
a predicate on state pairs of a ground MDP M , such that:

ϕpred (s1) = ϕpred (s2) =⇒ p (s1, s2) for any ϕpred ∈ Φpred, (1.3.5)

in other words, the predicate must be true for any state pairs abstracted by ϕpred [4]. Authors
of [16] discuss five types of abstraction:

• Model-irrelevance abstraction, also known as bisimulation, denoted by ϕmodel is an
abstraction in which two states are aggregated if the rewards obtained from those
states for all actions, and the transition probabilities from those states for all actions
and all abstract states are equal:

ϕmodel (s1) = ϕmodel (s2) =⇒ r (s1, a) = r (s2, a)

&∑
s′∈sϕ

p (s′ | s1, a) =
∑

s′∈sϕ

p (s′ | s2, a) ,

(1.3.6)

for all a ∈ A, sϕ ∈ S.
• Qπ-irrelevance abstraction, denoted by ϕQπ is an abstraction in which two states are

aggregated if their action-value functions for those states and all actions are equal
under any policy:

ϕQπ (s1) = ϕQπ (s2) =⇒ Qπ (s1, a) = Qπ (s2, a) for any a ∈ A, π ∈ Π.

• Q∗-irrelevance abstraction, denoted by ϕQ∗ is an abstraction in which two states are
aggregated if their action-value functions for those states and all actions are equal
under the optimal policy:

ϕQ∗ (s1) = ϕQ∗ (s2) =⇒ Q∗ (s1, a) = Q∗ (s2, a) for any a ∈ A.

• a∗-irrelevance abstraction, denoted by ϕa∗ is an abstraction in which two states are
aggregated if the action that maximizes the optimal action-value function of those
states is the same and the optimal action-value of those states given the maximizing
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action is the same:
ϕa∗ (s1) = ϕa∗ (s2) =⇒ Q∗ (s1, a∗) = max

a
Q∗ (s1, a)

= max
a

Q∗ (s2, a) = Q∗ (s2, a∗) .
(1.3.7)

• π∗-irrelevance abstraction, denoted by ϕπ∗ is an abstraction in which two states are
aggregated if the action that the optimal policy chooses in those states is the same:

ϕπ∗ (s1) = ϕπ∗ (s2) =⇒ π∗ (s1) = π∗ (s2) . (1.3.8)

All of the mentioned abstraction types are exact abstractions, since the operation that sat-
isfies the predicate is equality.

Authors of [16], also introduce two important theorems regarding the exact abstraction
types mentioned above:

• For any MDP M , Φ0 ⪰ Φmodel ⪰ ΦQπ ⪰ ΦQ∗ ⪰ Φa∗ ⪰ Φπ∗ , where Φ0 denotes no
abstraction, and Φi ⪰ Φj if:

∀ϕi ∈ Φi : ϕi ∈ Φi =⇒ ϕi ∈ Φj, (1.3.9)

instances of Φi are said to be finer than that of Φj. This simply means that any pair
of states abstracted by instances of Φi must be also abstracted by instances of Φj [4].
• For Φmodel , ΦQπ , ΦQ∗ , and Φa∗ the optimal policy in the abstract MDP, πϕ,⋆ is also

optimal in the ground MDP. However, Φπ∗ does not guarantee such optimality.

1.3.1.1. Bisimulation Metrics. Model-irrelevance abstraction or bisimulation, abstracts
states with similar reward and transition probabilities. Bisimulation metric is a concept
inspired by bisimulation that measures how behaviourally similar states are [24, 9, 10, 8].
The abstraction function in bisimulation (1.3.6), is essentially an equivalence relation on
the state space of the ground MDP M = (S,A, p, r, γ), which partitions it into groups of
equivalent states [9, 10]. However, this exact partitioning, is of little practical use; therefore,
it is relaxed in bisimulation metrics by introducing a pseudo-metric (S,d) in which S is the
state space of the ground MDP, and d : S × S 7→ R≥0 is a distance function between two
states [24, 9, 10]. One choice of distance function for transition probability functions is the
kth Wasserstein distance, defined as:

Wp (pi, pj; d) =
(

inf
γ′∈Γ(pi,pj)

∫
S×S

d (si, sj)p dγ′ (si, sj)
)1/k

, (1.3.10)

in which Γ (pi, pj) denotes all couplings of pi and pj. A famous lemma in [9], states that if d

is a bisimulation metric, then:

d (si, sj) = 0⇔ ∀a ∈ A.
(

r(si,a) = r(sj,a) and W1
(
p(· | si,a), p(· | sj,a); d

)
= 0

)
. (1.3.11)
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for any si,sj ∈ S. Furthermore, a desirable bisimulation metric should preserve the optimal
value of abstract states, for example:

|V∗(si)− V∗ (sj)| ≤ max
a∈A

|r(si,a)− r(sj,a)|+ γ

∣∣∣∣∣∣
∑
s′∈S

(p(s′ | si,a)− p(s′ | si,a)) V∗(s′)

∣∣∣∣∣∣
 ,

inspired the example above, and using the Wasserstein distance, bisumilation metric is then
defined as:

d (si, sj) = max
a∈A

(1− c) · |r(si,a)− r(sj,a)|+ c ·W1
(
p(· | si,a), p(· | sj,a); d

)
, (1.3.12)

where c ∈ [0,1) is a constant [24, 9]. A natural choice for c in discounted MDPs is the
discount factor γ [9]. c simply determines the relative importance of reward distance in
comparison to the transition probability distance [24]. Other formulations of the defini-
tion allow for two separate positive constants cR and cP where cR + cP ≤ 1; however, for
introductory purposes we stick with this formulation where they sum up to 1.

An important theorem in [9], shows that the difference between the values of states in
the abstract MDP Mϕ and ground MDP M is bounded:

|V∗(s)− V∗(ϕ(s))| ≤ 2ϵ

(1− γ)(1− c) , (1.3.13)

where ϵ is the neighbourhood of aggregation by the bisimulation mapping ϕ. This is an
important result, since the goal of abstraction is finding policies in the abstract MDP that
can perform well in the ground MDP.
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Résumé. Les agents ne peuvent pas donner un sens aux sociétés à plusieurs agents en tenant
compte directement des identités d’agents à petite échelle et de bas niveau, mais doivent
plutôt reconnaître les identités collectives émergentes. Ici, nous faisons un premier pas vers
un cadre pour reconnaître cette structure dans de grands groupes d’agents de bas niveau
afin qu’ils puissent être modélisés comme un nombre beaucoup plus petit d’agents de haut
niveau - un processus que nous appelons l’abstraction d’agent. Nous illustrons ce processus
en étendant les métriques de bisimulation pour l’abstraction d’état dans l’apprentissage par
renforcement au contexte de l’apprentissage par renforcement multi-agents et analysons une
abstraction simple, bien que grossière, basée sur des actions conjointes expérimentées. Il
traite la non-stationnarité due à d’autres agents d’apprentissage en améliorant le regret
minimax par un facteur intuitif. Pour tester si ce facteur de compression fournit un signal
pour une agence de niveau supérieur, nous l’avons appliqué à un grand ensemble de données
de jeu humain du jeu de dilemme social populaire Diplomacy. Nous constatons qu’il est
fortement corrélé avec le degré d’abstraction de la vérité au sol des unités de bas niveau
dans les joueurs humains.
Mots clés : Abstraction d’état, Abstraction d’action, Abstraction d’agent, Apprentissage
par renforcement multi-agents

Abstract. Agents cannot make sense of many-agent societies through direct consideration
of small-scale, low-level agent identities, but instead must recognize emergent collective
identities. Here, we take a first step towards a framework for recognizing this structure in
large groups of low-level agents so that they can be modeled as a much smaller number of
high-level agents—a process that we call agent abstraction. We illustrate this process by
extending bisimulation metrics for state abstraction in reinforcement learning to the setting
of multi-agent reinforcement learning and analyze a straightforward, if crude, abstraction
based on experienced joint actions. It addresses non-stationarity due to other learning
agents by improving minimax regret by an intuitive factor. To test if this compression
factor provides a signal for higher-level agency, we applied it to a large dataset of human
play of the popular social dilemma game Diplomacy. We find that it correlates strongly
with the degree of ground-truth abstraction of low-level units into the human players.
Keywords: State Abstraction, Action Abstraction, Agent Abstraction, Multi Agent Rein-
forcement Learning

1. Introduction
Much of the complexity in life arises from the way that individuals organize into collective

behaviours. This becomes evermore the case when we acknowledge that what we often think
of as individuals are really abstract entities comprised of many smaller entities that can be
separately viewed as agents [9]. When tackling this complexity, it often becomes useful to
exploit the coherence in that behaviour by abstracting the space of joint actions that those
individuals can take. We provide the following working definition:
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Definition 1 (Agent Abstraction). An approximate clustering of part or all of the action
space of two or more other agents in the environment, performed by either another interacting
agent or an outside observer for the benefit of its own learning and/or planning.

What about the utility of such abstractions? For example, it would seem so obviously
advantageous to abstract cells of a human into a whole, given how many there are, how well-
separated they are from the outside-human environment, and how completely dependent they
have evolved to become on the inside-human environment [16]. However, there are collectives
of simple and complex organisms for which the abstraction is more tenuous insofar as its
utility is less certain. The uncertainty about the utility grows when considering abstractions
for groups of agents that are not so obviously acting collectively and reminds us that the
utility of agent abstraction arises from the strength of the collective behaviour and how
a behaving agent can make use of that knowledge in maximizing the value of its actions
[6]. So, how can we measure the strength of collective behaviour, and how can we tie
abstracted representations of this behaviour to formal utility in multi-agent reinforcement
learning (MARL)?

Given the overhead inherent in identifying proper abstractions, is building this capability
into artificial intelligence even advantageous? In this paper, we show formally that, yes, agent
abstractions can help each agent navigate the learning and planning process in the face of
the non-stationarity in the environment arising from the presence of other learning agents,
a key challenge to efficient reinforcement learning in multi-agent settings.

This is perhaps not surprising, given that abstraction is a well-studied concept in rein-
forcement learning and there is a vast literature on state and temporal abstraction in single
agent settings. So, in the MARL setting, where other agents can be viewed as part of the
environment, there is a natural extension of these ideas to abstracting the actions of other
agents. Here, we begin paving that extension, bringing us a step closer to a good agent
abstraction metric that can be deployed by agents in MARL settings.

We make the following theoretical contributions:

• We formulate agent abstraction as a special case of well-established bisimulation
metrics and present a simple, but limited strategy to obtain one based on unique
joint actions (Section 2.1).
• We define a compression measure inspired by a connection that we reveal between

this abstraction and an improvement factor in the standard minimax regret bound
for a RL agent (Section 2.2).
• We reduce a two-level MARL system to a single, low-level version that serves to test

a compression measure’s ability to reveal higher-level agency from the joint actions
of low-level agents (Section 3.1).
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Finally, in Section 3.2, we applied our reduction scheme to the game Diplomacy for which
we obtained access to a large dataset of human-played games [14]. We show that despite
its obvious limitations, the abstraction strategy we present gives a compression factor that
correlates strongly with true player-groupings of unit agents controlled by individual human
players. This suggests that more sophisticated metrics of the kind we outline that make
better use of the action space structure could serve in forming useful agent abstractions.

2. Agent Abstraction for Behaving in Multi-Agent En-
vironments

In MARL, the environment transition dynamics and reward function do not just depend
on the environment state and actions from a single agent, but rather the joint space of
actions of all agents acting in the environment. To be concrete, in an environment with
N agents the environment transitions dynamics can be expressed by T (s′|s,a1, . . . ,aN) with
state s ∈ S, next state s′ ∈ S, and an action for each agent ai ∈ Ai ∀i ∈ {1, . . . ,N} ≡ N .
Each agent i has their own reward function Ri(s,a1, . . . ,aN) ∈ R and policy πi(ai|s) for
generating actions. Whereas in single agent RL a stationary model of the environment can
be learned as only a function of an agent’s own behavior, in MARL an attempt to do this
has an implicit dependence on the potentially changing policies of other agents. Without
loss of generality, we will conduct our analysis from the perspective from an arbitrary agent
1: the transitions for this agent are given by T (s′|s,a1) = ∑

a2∈A2,...,aN ∈AN [π2(a2|s) × · · · ×
πN(aN |s)× T (s′|s,a1,a2, . . . ,aN)]. As such, even in decentralized and model-free settings, it
is necessary for agents to predict the actions of other agents in order to stabilize learning
[11, 20, 12]. This stability is then achieved by approximating an action value function
Qπ(s,a1, . . . ,aN) over the joint policy space π = (π1, . . . ,πN) of all N agents.

Even in the best case scenario where all actions are observed and all policies are known
ahead of time, a single agent can naively view this as a single agent RL problem with a
state space augmented by the action space of other agents, S+

1 = S × A−1 where A−1 =
A2×· · ·×AN . Without exploiting the structure in the state and action spaces, a well-known
result in the RL literature [13] is that an agent cannot achieve minimax regret (i.e. best in
worst-case) better than

Ω
(√

HT |S+
1 ||A1|

)
= Ω

(√
HT |S||A−1||A1|

)
= Ω


√√√√HT |S|

(
N∏

i=2
|Ai|

)
|A1|

 , (2.1)

where H is the episode horizon length (or the minimum diameter for continuing problems
[7]), T is the number of steps in the environment, and Ω is standard notation for asymptotic
lower-bound scaling behaviour. However, such structure often exists so that, e.g., leveraging
an abstract state space of reduced size can help significantly by reducing the |S| factor
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in Equation 2.1. There is already a vast literature on constructing such abstractions [3, 10,
19, 4, 5, 1, 24]. In this work, we will focus instead on reducing the potentially much larger
contribution for many agent settings from A−1 by formulating abstractions on this action
space of other agents in the environment.11

2.1. Agent Abstraction as a Bisimulation Metric

Our view of agent abstraction can be seen as a special case of bisimulation-based state
abstraction metrics following the results of [3]. The factored state view of agent abstrac-
tion presented previously can indeed be seen as a special case of a general MDP over the
augmented state space S+

1 from the perspective of an arbitrary agent 1. This leads to the
following definition for state abstraction bisimulation metric d(x,y) ∀x,y ∈ S+

1 (Lemma 4.1
of [3]) leveraging the Wasserstein distance function between distributions W :

d(x,y) = 0⇔ R1(x,a1) = R1(y,a1) and W
(
T (·|x,a1),T (·|y,a1)

)
= 0 ∀a1 ∈ A1 . (2.2)

For agent abstraction, we are interested in further decomposition of the augmented state
space, S+

1 . To illustrate, let us focus on whether an abstraction is valid between only a
pair of agents, i ̸= 1 and j ̸= 1 (i ̸= j), for which we consider the decomposition S+

1 =
S × Ai × Aj × Arest, where Arest denotes the joint action space of all other agents not
including agent 1. We can then narrow the scope of the metric onto Ai ×Aj.
Definition 2. A bisimilar agent abstraction metric for agent 1 on a pair of agents i

and j with any pair of joint actions aij = (ai,aj) and ai′j′ = (ai′
,aj′) satisfies:

d(aij,ai′j′) = 0⇔ R1(s,a1,ai,aj,arest) = R1(s,a1,ai′
,aj′

,arest) and

W
(
T (·|s,a1,ai,aj,arest),T (·|s,a1,ai′

,aj′
,arest)

)
= 0 ∀a1 ∈ A1 .

(2.3)

For example, consider a partition, C = {Ck}, on Ai ×Aj. Then, aij ∈ Ck and ai′j′ ∈ Ck′

for some k and k′, respectively. The semi-metric dC(aij,ai′j′) = 1 − δkk′ always satisfies
Equation 2.3 when Ck and Ck′ contain only aij and ai′j′ , respectively. This is true when C is
the set of all singletons for which |C| = |Ai×Aj|. We are interested instead in partitions that
compress the joint action space, i.e. for which |C| < |Ai ×Aj|. The exactness of partitions,
however, limits their usefulness as a basis for constructing bisimulation metrics, especially
in the typical case of stochastic joint action dependencies. We can thus broaden our notion
of agent abstraction by specifying the following ϵ-approximate abstraction, following the
general form proposed in [3].
Definition 3. An ϵ-bisimilar agent abstraction by agent 1 for the joint action aij of
agents i and j within a given neighborhood ϵ identifies any two joint actions aij and ai′j′ if

11There are cases where this may not be true; however, it does not call in question the underlying benefits
of doing such abstraction.
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the metric

d(aij,ai′j′) = max
a1∈A1

[
cR

∣∣∣R1(s,a1,ai,aj,arest)−R1(s,a1,ai′
,aj′

,arest)
∣∣∣

+ cTW
(
T (·|s,a1,ai,aj,arest),T (·|s,a1,ai′

,aj′
,arest)

) ]
≤ ϵ , (2.4)

where cR and cT are weighting constants such that cR, cT ≥ 0, cR + cT ≤ 1, and cT ≥ γ,
where γ is the discount factor.

The central result of this formulation is that the optimal value function defined over an
agent-abstracted state space (based on this kind of metric) is guaranteed to be within 2ϵ

cR(1−γ)
of the optimal value function on S for agent 1 (following Theorem 5.2 of [3]). The primary
goal of constructing an agent abstraction is then to maximize the compression of the joint
action space such that |Ai×Aj|/|C| is as large as possible (i.e. |C| as small as possible) while
keeping ϵ in Equation 2.4 as small as possible.

2.2. Unique Joint Actions Experienced as a Bisimilar Agent Ab-
straction

Note that an arbitrary fixed policy πi need not leverage its full action space when used
in the environment. We can denote by |Ai

w| the total number of unique actions in a re-
alized action sequence up to time w that agent i has taken in the environment. Thus,
|Ai

w| ≤ min{w,|Ai|} so that in the limit w →∞, |Ai
∞| ≤ |Ai|. Without considering any ad-

ditional structure then, this result can be used to obtain an improved minimax regret bound,
Ω
(√

HT |S|
(∏N

i=2 |Ai
∞|
)
|A1|

)
. One important structural constraint of MARL not exploited

in this result is the fact that every policy πi is a function of the current state s. Thus, to
the extent that the actions taken by each agent are correlated with this state, it is very
possible that large regions of the joint action space will never be experienced at any single
state. Exploiting these correlations for a subset K ≡ {i1, . . . ,iK} ⊂ N , of K = |K| agents
suggests an improvement factor of as much as

√(∏K
k=1 |A

ik∞|
)/
|AK

∞| in the minimax regret,
where |AK

∞| denotes the number of unique joint actions experienced in AK ≡ Ai1×· · ·×AiK .
For illustration, consider two arbitrary agents i and j and the set of unique joint actions

taken in the environment over a window of time w, which we denote Ai,j
w (|Ai,j

w | ≤ w). Note
that in the limit w → ∞, |Ai,j

∞ | ≤ |Ai
∞||Aj

∞| ≤ |Ai × Aj| = |Ai||Aj|. Some examples of
these sets are given in Figure 2.1(a-c). Importantly, the partition of Ai ×Aj into singleton
sets of the unique action pairs that are counted to obtain |Ai,j

∞ | (with the complement of
their union added as an element) must by definition satisfy Equation 2.3 and thus serves as a
straightforward (if not optimal) bisimilar agent abstraction since it is easy to implement. We
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Fig. 2.1. Illustrative examples of abstracting the joint action space of two agents.
Three contrived cases of trajectories in the action space (a1,a2) of two agents (the coverage of
the respective trajectories is shown in color): (a) the copy case where the two agents behave
identically; (b) the iterative case, where agents take turns sequencing through their actions;
and (c) the space-filling case via snaking along coordinate directions. (d) The compression
factor F (a{1,2}

0w ) Equation 2.5 as a function of w for cases (a-c) (same colors). The maximum
possible value |A|K−1 is attained by case (a; blue). Cases (a) and (b) grow to a fixed value
F (a{1,2}

0∞ ) > 1 with w because their trajectories do not fill the joint action space. The values
for trajectories that do fill the space (e.g. case (c)) end up on max{1,|A|K/w} (black-dashed
line). (K = 2, |A| = 3.)

suggest some strategies for retrieving optimally compressed abstractions in the discussion,
but leave their development to future work.

The form of the regret improvement factor and this metric that partitions the joint
action space into visited joint actions suggests a definition for a crude measure of the utility
of abstracting an action block, i.e. the joint action trajectories of a subset of K agents over
a time interval from t to t′, denoted aK

tt′ : The compression factor achievable by abstracting
an action block aK

tt′ (formed from the subset K ⊂ N , of K = |K| agents over the interval
from t to t′) with unique joint actions is the multiplicative factor,

F (aK
tt′) :=

(
K∏

k=1
n(a{ik}

tt′ )
)/

n(aK
tt′) ≥ 1 . (2.5)

where n(aK
tt ) is the number of unique joint actions in the action block for the agent subset K.

This factor is largest for the contrived case of |A|-periodic joint action sequences with non-
repeating single agent actions in the period (here we assumed for simplicity that all agents
have the same action space, A). In this case, F (aK

tt′) = xK/x = xK−1 for x = min{t′− t,|A|}
(Figure 2.1(a)). See Figure 2.1 for more examples.
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A B C

Fig. 3.1. The Diplomacy dataset. (a) The graph of positions and movement lines along
which units move (adapted from [14]). There are |V| = 81 positions, |Vj| = {3,4} number of
unit-build locations/player, |Vsupply| = 34 supply centers, nplayers = 7 players and nunits = 18
units/player. (b) Number of in-the-game units versus time in the game (2 time steps/year).
Mean and standard deviation over ngames = 103 randomly selected games from the [14]
no-press Diplomacy dataset of the ∼ 105 human-player games are shown, grouped by the
winning player (orange), and the rest (blue). Players aim to increase over the course of the
game the size of the pool of units they control. (c) Histogram of game durations, p(tf), over
the same games as used in (b).

3. Measuring Player Control in Multi-Unit, Multi-
Player Games

Here, we investigate the compression factor (Definition 2.2) as a measure of higher-level
agency. In particular, when applied to a set of multi-agent trajectories, does it reflect the
degree to which they can be said to be coordinating? To have access to a ground truth
higher-level agency to test with, we focus on two-level, multi-agent settings, in which a set
of higher-level controllers (‘players’, indexed by j = 1, . . . ,nplayers) mutually compete for
resources using their control of a set of lower-level agents (‘units’, with each player allotted
the same number of nunits units indexed by i = 1, . . . ,nunits). We marginalize out the effects of
the players that are not directly tied to unit actions, leaving a multi-agent Markov decision
process (without reward) of player-labeled units indexed by (i,j). We then perform two
analyses: (1) using compression factors to classify pairs units as belonging to the same
versus two different players; and (2) the compression factor dependence on the number of a
subset of units that belong to the same player. As an application, we focus on the board
game Diplomacy, for which we analyzed 1000 games of a large dataset of human-played
games (see Figure 3.1; [14]). In this section, we first give a precise formulation of a unit-
level description of the game in 3.1 (to which we transformed the player action-structured
data from [14]), then in 3.2 we present the statistics of the compression factor computed on
multi-unit action sequences constructed from the data.
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3.1. Multi-Unit Markov Games on Graphs

Here we present a unit-level formulation of Markov games suited to describing even
complicated games like Diplomacy. The environment is a graph, G = (V ,E), with set of
unit positions V and set of valid lines E along which units move between positions. We
augment the graph with a set of nplayers · nunits out-of-game positions (see Appendix 1.1),
denoted v∅, one for each unit. The state of the ith unit of the jth player is then sij ∈ S =
{v∅} ∪ V . The state of the environment is then the tuple of positions occupied by all units,
s = (s11, . . . ,s1nunits ,s21, . . . ,snplayersnunits) ∈ S⊗(nplayers·nunits)12. There are fixed, player-labelled
unit-build locations, Vj ⊂ V , Vj ∩Vj′ = ∅ to which units of that player transition from their
out-of-game position when they are ‘built’. Units transition to their out-of-game position
when they are ‘disbanded’ from any in-game position as a result of an engagement (for details
about engagement and other aspects of a Markov formulation of Diplomacy, see Section 1.1).

Gameplay requires action selection for all the units, which we consider stochastic.
At the player-level, action selection arises from a given set of player policies, {πj =
π(a1j, . . . ,anunitsj|s)}nplayers

j=1 . Note that the conditioning on the state s means that each player
could play the same, putative optimal policy, π∗, in which case their play is distinguished by
the different starting positions of their respective units, encoded in s0. For any given set of
player policies, the joint action given the state s is determined by the effective joint policy
π = (π1, . . . ,πnplayers). Thus, for a given environment state distribution, p(s), the game state
distribution is pπ(s,a) = π(a|s)p(s).

The game dynamics are given by Tπ(s′|s) = ∑
a T (s′|s,a)π(a|s). Here, T (s′|s,a) is a

deterministic map and encodes the game rules, including resolutions of engagement for com-
plicated spatial configurations. In contrast, the game evolution Tπ(s′|s) inherits stochastic-
ity from π, such that the variance of state distributions over games increases with time in
the game from zero at their shared initial state, s0. In particular, the distribution of the
environmental state evolves as the Markov chain given by Tπ(s′|s), pπ(s′) = Tπ(s′|s)pπ(s).
For game time t = 0,1, . . . , we have pπ(st) = (Tπ)t p(s0), with st = (s11

t , . . . ,s
nplayersnunits
t ).

Note that for Diplomacy, the initial state distribution,p(s0) = 1{s0}, is concentrated on
s0, the deterministic starting state. Thus, pπ(st,at) = π(at|s = st)pπ(st) with at =
(a11

t , . . . ,a
nplayersnunits
t ).

The state distribution depends on time throughout the game even for fixed π, since the
dynamics approaches the termination condition linearly in nunits (i.e. one captured supply
center allows for transitioning one unit into the game), while the mixing time of Tπ(s′|s) that
sets the characteristic time until the stationary distribution is reached scales exponentially
with nunits (keeping nunits/|V| fixed).

12Positions can not be occupied by more than one unit so sij = si′j′ only when i′ = i and j′ = j.
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A realization of a game initialized at s0 is produced by sampling joint actions ac-
cording to at ∼ π(·|s = st) and successive states from st+1 ∼ T (·|s = st,a = at).
A complete realization of a game is the corresponding sequence of ‘environment state’-
‘joint action’ pairs τt = (st,at), τ = (τ1, . . . ,τtf), where tf = min{t|T(st)} is the (sto-
chastic) time at which the termination condition is first satisfied and the game ends.
The distribution over games for this π is denoted pπ(τ ) = ∑∞

tf=1 pπ(τ |tf)pπ(tf) with
pπ(τ |tf) =

(∏tf−1
t=0 Tπ(st+1|s = st,a = at)π(at|s = st)

)
1{s0} and pπ(tf) the distribution of

game durations. For a subset of units, K = {ik}K
k=1 for ik = (i,j) for the ith unit of

player j, the action block is denoted aK
tt′ = (aK

t , . . . ,aK
t′ ). Over the full set of agents,

we use att′ ≡ aN
tt′ for simplicity. Action blocks are realizations from the distribution,

pπ(aK
tt′) = ∑

tf

∑
s0tf ,aK

t′+1,tf
pπ(τ |tf)pπ(tf|{tf > t′}).

3.2. Compression Factor for Multi-Unit Abstraction

Within a realization τ of the game, the number of unique joint actions of the aK
tt′ block,

i.e. the joint actions of the K subset of agents over the interval from t to t′, can be written

n(aK
tt′) =

∑
ãK∈AK

Θ
 t′∑

t̃=t

δaK
t̃

,ãK

 , (3.1)

where Θ(x) = 1 for x > 0 and 0 otherwise. Note that n(aij
tt′), n(aK

tt′) ≤ t′ − t + 1. Using
this in the definition of the compression factor Definition 2.2 F (aK

tt′) makes it a random
variable depending on the game realization τ sampled from pπ(τ ). For example, the expected
compression factor over the game ensemble for the joint policy π is then

F (aK
tt′) =

∑
aK

tt′

pπ(aK
tt′)F (aK

tt′) . (3.2)

We can increase the signal in this factor by conditioning on subsequences for which{
sKt̃ ∈ V

K ∀ t̃ ∈ {t,t + 1, . . . ,t + t′}
}
, i.e. the event that all the K agents are in the game

between t and t′. The probability of this event vanishes quickly with increasing K and t′− t.
To distinguish player information, however, we need only compare pairs of units from

the same and different players, Psame = {i1,i3} and Pdifferent = {i1,i2}, respectively, with
K = {i1 = (i,j),i2 = (i′,j′),i3 = (i′′,j))} with j′ ̸= j. We thus track the actions of a given
unit triple K in the game over the interval from t to t′. The corresponding compression
factor abstracting the pair of agents over the window from t to t′ is

F (aP
tt′) = n(aij

tt′)n(ai′j′

tt′ )/n(aP
tt′) , (3.3)

for unit pair, P = {(i,j),(i′,j′)}. Applying this to the pair of same and pair of different
player units in the triple blocks of length w that begin at time t in the game gives us

χK
t,w = (F (aPsame

tt+w ), F (aPdifferent
tt+w )) . (3.4)

56
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F
Fig. 3.2. Compression factor for subsets of units from Diplomacy. (a) The average
same-different classification accuracy based on Equation 3.4 as a function of block window
size, w, and block start time, t, in years (ngames = 103). (b) The average compression factor,
F̄ Equation 3.2, as a function of block start time for nsame = 1,2,3,4,5 out of K = 5 agents
in a subset that belong to the same player (average over window size, w; ngames = 103).

In obtaining the following results, we coarse-grained the single agent action space into
A ∈ {H,M,S} (see Appendix 1.1). We calculated χK

t,w over the set of all in-game unit
triples K = {K} ordered by t and w. To assess the discriminability of this variable, we
compute the classification accuracy based on the fraction of the number of χK

t,w tuples where
F (aPsame

tt+w ) > F (aPdifferent
tt+w ) to the number of χK

t,w tuples where F (aPsame
tt+w ) ̸= F (aPdifferent

tt+w ). This
accuracy is plotted as a function of t and w in Figure 3.2(a). The diagonal structure shows
that there are periods in the game that are more informative than others. The highest
discriminability occurs at an intermediate time in game.

Beyond discriminability, it remains to show that the compression factor correlates with
how many units, nsame = 1, . . . ,K, in K belong to the same player (with the remaining
K − nsame units randomly sampled from the remaining players). We conditioned on blocks
in which all K units are consistently in the game. This means that a unit is built at the
beginning of the block and another is disbanded at its end. For computational limitations,
we limited our analysis to K = 5. We plot the corresponding average compression factors as
a function of block starting time for different nsame in Figure 3.2(b). We find that the curves
are well-ordered by nsame and even reveal periods of enhanced compression when most units
belong to the same player.
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4. Related Work
Facilitating learning in MARL settings is a focus of much current research, only some of

which are related to our work. For example, formation of effective teams and the emergence
of player roles in teams [21], relates to partitioning the policy space to pull specialized agents
from. This is in contrast to partitioning the joint action space as considered here. Learning
prototypical/archetypal agents also falls into this interesting, but unrelated research area.

Abstraction, on the other hand, is a well-studied concept in reinforcement learning from
which our work based on bisimulation metrics is a direct extension [3]. With these metrics
now more accessible computationally via modern methods, e.g. function approximation [1,
24], they are poised to make an impact on RL and MARL in particular. Another related
area of work is factorized MDPs (e.g. VAST, CAMPs), which aim to lift the curse of
dimensionality by modelling the joint space through some factorized version [15, 2]. While
this approach builds in high-level agent structure, our work focuses on how an agent might
learn this latent structure. However, unlike inverse RL that extracts reward function, e.g.
from observed communication [23]– our agent abstraction metric does not depend on reward.
This makes it more generally useful to cases when rewards are not observed or modelled.

In [22], authors cluster an effect-based –measured by the action’s induced reward and the
change in observations–representation of the joint action space using K-means to facilitate
role discovery, while our goal is to find partitions that maximally compress the joint action
space from an agent’s perspective.

5. Discussion
In this paper, we have presented the concept of agent abstraction and grounded it in

existing formulations of abstraction. We also presented a crude metric based on unique
joint actions to measure the degree of abstraction and showed it provides some signal in
the complex multi-agent setting of Diplomacy. Nevertheless, this metric has some obvious
limitations. First, it is realization-dependent at least for non-stationary settings. Second, it
does not capture the correlations among experienced joint actions. A more useful version
would be based on running estimates of frequencies of joint actions. Given this distribu-
tion, optimal compression schemes could be designed that cluster joint actions with equal
probability such that the entropy of the distribution over the abstracted space is maximized.
This optimization must be regularized by adding the constraint that an agent learning a
value function using this space does so with bounded error, in the way that bisimulation
metrics for RL have been designed to accomplish. There may be an interesting connection
to be made here with the deterministic information bottleneck [18]. See Section 1.2 for a
formulation and estimation procedure for the conditional mutual information on the action
block distribution of a pair of units, MI(Aij

tt′ ; Ai′j′

tt′ |Stt′).
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Our results on the game Diplomacy deserve some discussion. Why do subsets with few
units from a single player give lower compression factors at early times? We speculate this
is because the unconditioned case actually has more than 1 agent on average from the same
player. More generally, the players in the dataset are played by different humans across
samples. Thus, it is unclear to what degree the player label, i.e. the country, constrains
this play variability across individual humans. While good games such as Diplomacy sculpt
player agency into elaborate roles, individual differences for players of the same country are
bound to impact our results, since we have likely not averaged over enough games to cover the
space of possibilities. Nonetheless, our paper has taken critical first steps for the community
to build on towards developing scalable methods that address agent abstraction. Our work
has the promise to open up an important area of future research, particularly for combatting
the inherent combinatorial complexity of large scale multi-agent RL applications.
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1. Appendix
1.1. Markov Formulation for the Game of Diplomacy

The game always begins from the same state, s0, having units positioned at all respective
unit-build locations. The remaining units are initialized at their out-of-game position. Oc-
cupation of each of the target subset of positions, Vsupply ⊂ V , called supply centers, confers
the ability to sustain an additional unit. Thus, the recurrent goal of the game is to capture
supply centers in order to build more units to capture more supply centers. The termination
condition that ends the game is the event T(s) = {sij ∈ V ∀ i, for any j}, i.e. when some
player j has managed to occupy nunits supply centers such that all its units are in the game.

The full game has five distinct seasons of dynamics each year. However, marginalizing
over the players allows us to reduce this to only the two seasons when units act. Each season,
every unit must either hold (H), i.e. do nothing, move (M) to an adjacent position, or support
(S) an adjacent position. We denote the action of the ith unit of the jth player located at
position k, aij

k ∈ Ak = {H,M1, . . . ,M|Ek|,S1, . . . ,S|Ek|}, where Ek is the set of lines connected
to positions k. Thus, the action space for each unit depends on its location (except for
out-of-game positions from which actions have no effect). We can remove this dependence
on location by combining all position-dependent action spaces, such that the action of the
ith unit of the jth player aij ∈ A = ∪|V|

k=1Ak, where state-conditioning narrows the accessible
actions to Ak when sij = k. Thus, similar to the joint state s, the joint action is denoted
a = (a11, . . . ,a1nunits ,a21, . . . ,anplayersnunits) ∈ A⊗(nplayers·nunits).

When a pair of agents engage, i.e. when at least one acts such that they would occupy the
same position, the unit having the larger support wins and can reside in that location, while
the loser must retreat or be disbanded. A unit’s support is the number of units supporting
it, as well as itself. When engagement results in a draw (matching support), the effect of the
movement actions precipitating the engagement are nullified.

1.2. Mutual Information Analysis

The respective pair action distribution at a single time t is

pπ(aij
t ,ai′j′

t |st) =
∑

at/{aij
t ,ai′j′

t }

pπ(st,at)
/∑

at

pπ(st,at)

=

π{i,i′}j(aij
t ,ai′j

t |st), if j′ = j

π{i}j(aij
t |st)π{i′}j′(ai′j′

t |st), if j′ ̸= j ,
(1.1)
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where πIj(·|s) ≡ ∑{aij}i/∈I
πj(a1j, . . . ,anunitsj|s) is the marginal policy for the subset I of units

of the jth player.
The mutual information between this pair of state sequence-conditioned unit action se-

quences, aij
tt′ and ai′j′

tt′ , is

MI(Aij
tt′ ; Ai′j′

tt′ |stt′) =
∑

aij

tt′ ,a
i′j′
tt′

pπ(aij
tt′ ,a

i′j′

tt′ |stt′) log
 pπ(aij

tt′ ,a
i′j′

tt′ |stt′)
pπ(aij

tt′|stt′)pπ(ai′j′

tt′ |stt′)

 (1.2)

≥ 0 with 0 if j′ ̸= j (c.f. Equation 1.1) ,

and where we have denoted the unit action sequence marginals pπ(aij
tt′ |stt′) =∑

ai′j′
tt′

pπ(aij
tt′ ,a

i′j′

tt′ |stt′). This demonstrates that action sequences arising from coordi-
nated units (j′ = j) can be informative of each other. Can this mutual information serve to
measure coordination more broadly and be used as a way to define an effective higher-level
agency between observed units, even in the absence of prior information (j)?

Equation 1.2 can be rewritten in a more tractable form as

MI(Aij
tt′ ; Ai′j′

tt′ |stt′) = E
pπ(ai′j′

tt′ |stt′ )

[
DKL[pπ(Aij

tt′ |ai′j′

tt′ ,stt′)||pπ(Aij
tt′ |stt′)]

]
, (1.3)

with pπ(aij
tt′|ai′j′

tt′ ,stt′) = pπ(aij
tt′ ,a

i′j′

tt′ |stt′)/pπ(ai′j′

tt′ |stt′). The conditional mutual information,
MI(Aij

tt′ ; Ai′j′

tt′ |Stt′), averages Equation 1.3 also over stt′ . In this form it can be computed
directly from a measured set of game trajectories, D = {τg}ngames

g=1 , by approximating the
expectation with respect to the game trajectory marginal over the window pπ(stt′ ,ai′j′

tt′ ) using
Monte Carlo estimation [17, 8]:

MI(Aij
tt′ ; Ai′j′

tt′ |Stt′) ≈ 1
ngames

ngames∑
g=1

DKL[pπ(Aij
tt′|ai′j′

tt′,g,stt′,g)||pπ(Aij
tt′|stt′,g)] . (1.4)

Here, the DKL must still be computed via integration using the unit policies. This esti-
mation still suffers from the curse of dimensionality because of the high dimensions of the
distributions of game-long trajectories and so t′ = t + w with small w.
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