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Sommaire

Cette thèse explore la nature de la généralisation dans l’apprentissage en profondeur et
plusieurs contextes dans lesquels elle échoue. En particulier, les réseaux de neurones profonds
peuvent avoir du mal à se généraliser dans des contextes avec des données limitées, une
supervision insuffisante, des dépendances à longue portée difficiles ou une structure et des
sous-systèmes complexes.

Cette thèse explore la nature de ces défis pour la généralisation en apprentissage profond
et présente plusieurs algorithmes qui cherchent à relever ces défis.

Dans le premier article, nous montrons comment l’entraînement avec des états cachés
interpolés peut améliorer la généralisation et la calibration en apprentissage profond. Nous
introduisons également une théorie montrant comment notre algorithme, que nous appelons
Manifold Mixup, conduit à un aplatissement des représentations cachées par classe, ce qui
peut être vu comme une compression de l’information dans les états cachés.

Le deuxième article est lié au premier et montre comment des exemples interpolés peuvent
être utilisés pour un apprentissage semi-supervisé. Outre l’interpolation des exemples d’entrée,
les prédictions interpolées du modèle sont utilisées comme cibles pour ces exemples. Cela
améliore les résultats sur les benchmarks standard ainsi que sur les problèmes de jouets 2D
classiques pour l’apprentissage semi-supervisé.

Le troisième article étudie comment un réseau de neurones récurrent peut être divisé en
plusieurs modules avec des paramètres différents et des états cachés bien séparés, ainsi qu’un
mécanisme de concurrence limitant la mise à jour des états cachés à un sous-ensemble des
modules les plus pertinents sur un pas de temps spécifique. . Cela améliore la généralisation
systématique lorsque la distribution des modèles est modifiée entre les phases de entraînement
et d’évaluation. Il améliore également la généralisation dans l’apprentissage par renforcement.

Dans le quatrième article, nous montrons que l’attention peut être utilisée pour contrôler le
flux d’informations entre les couches successives des réseaux profonds. Cela permet à chaque
couche de ne traiter que le sous-ensemble des sorties des couches précédemment calculées
qui sont les plus pertinentes. Cela améliore la généralisation sur les tâches de raisonnement
relationnel ainsi que sur les tâches de classification de référence standard.

Mots-clés: Apprentissage en profondeur, traitement du langage naturel, apprentissage
des représentations, modèles génératifs, modélisation du langage
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Summary

This thesis explores the nature of generalization in deep learning and several settings in which
it fails. In particular, deep neural networks can struggle to generalize in settings with limited
data, insufficient supervision, challenging long-range dependencies, or complex structure and
subsystems.

This thesis explores the nature of these challenges for generalization in deep learning and
presents several algorithms which seek to address these challenges.

In the first article, we show how training with interpolated hidden states can improve
generalization and calibration in deep learning. We also introduce a theory showing how
our algorithm, which we call Manifold Mixup, leads to a flattening of the per-class hidden
representations, which can be seen as a compression of the information in the hidden states.

The second article is related to the first and shows how interpolated examples can be used
for semi-supervised learning. In addition to interpolating the input examples, the model’s
interpolated predictions are used as targets for these examples. This improves results on
standard benchmarks as well as classic 2D toy problems for semi-supervised learning.

The third article studies how a recurrent neural network can be divided into multiple
modules with different parameters and well separated hidden states, as well as a competition
mechanism restricting updating of the hidden states to a subset of the most relevant modules
on a specific time-step. This improves systematic generalization when the pattern distribution
is changed between the training and evaluation phases. It also improves generalization in
reinforcement learning.

In the fourth article, we show that attention can be used to control the flow of information
between successive layers in deep networks. This allows each layer to only process the
subset of the previously computed layers’ outputs which are most relevant. This improves
generalization on relational reasoning tasks as well as standard benchmark classification tasks.

Keywords: Deep Learning, Natural Language Processing, Representation Learning,
Generative Models, Language Modeling
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Chapter 1

Introduction

State-of-the-art AI systems achieve excellent results on supervised learning tasks where lots
of cleanly labeled data is available and the training and evaluation datasets are sampled
from the same distribution. While such systems have achieved impressive results, they fall
short of some of the more ambitious goals of AI research: learning agents which can be
dropped into a completely new environment and immediately gain an understanding of their
situation from only a few unlabeled observations. Such an agent would not only learn quickly,
but would also adapt quickly when the environment changes while still correctly reasoning
about long-range dependencies between events. The aim of the work in this thesis is to work
towards developing such a learning system, and to do so concretely, while closely interacting
with real-world problems where these issues are salient.

Many of today’s machine learning systems perform well, but only when trained on
very large and cleanly labeled datasets. By contrast, humans are able to learn from data
which is almost entirely unlabeled, and learn new concepts with only a handful of examples.
One widely explored way to improve the data-efficiency of machine learning techniques is by
training with augmented data. For example in images, it is common to include cropped or
rotated images in the training set. While this improves performance, it has a few deficiencies.
One is that the changes are fairly superficial, and do not do much to add diversity to the data.
Another is that it requires domain knowledge to hand-craft these augmentations, which are
not available in fields where humans may not have good intuitions. An algorithm presented
in this thesis that was developed to help address this challenge, Manifold Mixup (Verma
et al., 2018) aims to improve data efficiency by training on synthetic examples which combine
the hidden state of multiple different examples. This algorithm also has an intriguing theory,
in which training on combinations of hidden states pushes them onto a lower-dimensional
manifold, which itself has been studied in a follow-up paper (Roth et al., 2020). Manifold
Mixup has had a direct follow-up which achieved state-of-the-art results on few-shot learn-
ing, in which a model must learn from only a handful of labeled examples (Mangla et al., 2019).

Another idea for how to improve the data efficiency of deep networks is semi-supervised
learning, in which a model is trained on both a small amount of labeled data and a large
volume of unlabeled data. One motivating strategy for semi-supervised learning is the
cluster assumption, which is that the decision boundary should only pass through low
density regions of the data distribution. An algorithm that my colleagues and I developed,



Interpolation Consistency Training (ICT), sought to utilize this assumption by training
on linear interpolations from multiple unlabeled examples (Verma et al., 2019a). This
approach does not require any hand-crafted data augmentations, and has been influential
both within academia and in real-world applications. Another follow-up from our group,
GraphMix (Verma et al., 2019b) seeks to extend this idea to node-classification in graph struc-
tured data, and has state-of-the-art results on some of the most widely studied graph datasets.

Another approach to improving sample efficiency is to train a generative models on
the hidden states of deep networks and thus learn to project back to the points that the
model understands. Our algorithm for this, which we called State-Reification Networks
(ICML 2019 oral, 5% acceptance rate, first author) achieved substantial improvements in
data efficiency as well as robustness [14].

An impressive aspect of human learning is the ability to gain an understanding of
the world without any labels or direct supervision. Unsupervised Learning is a challenging
and open problem, yet offers the promise of machine learning systems which can improve
and gain understanding purely by interacting with natural data from the real world.

A fundamental limitation in most machine learning systems is that they rely on the
assumption that training and test samples are “independent and identically distributed”
(the i.i.d. assumption). On the other hand, humans clearly have a more powerful ability to
generalize in a systematic way, including to examples which have zero probability under the
training distribution.

One branch of my research explores how we can improve the generalization perfor-
mance in deep learning models by decomposing the knowledge into independent mechanisms
or modules. The idea of an independent mechanism, which is taken from the causality
literature, is a distribution over some random variables which remain unchanged when other
unrelated aspects of the world are changed. As an example, if we have a room with two
different televisions, we know that what is playing on one television will have almost no
relation to what is playing on the other television, and moreover is usually not effected by the
people in the room watching the television (they could turn the television off or change the
channel, but usually have no effect). The idea that the world consists of multiple elements
which interact sparingly but operate independently by default is intuitive and is applicable
to many settings, yet today’s deep learning algorithms nearly always employ the opposite
inductive bias: that all aspects of the world always interact so long as they are temporally
and spatially adjacent. For example, a recurrent neural network and a convolutional neural
network, by default, share information between all different hidden units at a given position.
Having parts of the state remain perfectly well-separated requires learning a parameter vector
where nearly every element is exactly zero, which the learning procedure has no inductive
bias to do. As a result, these models often learn a separation between different independent
mechanisms just well enough to fit the training set, yet fail to capture this separation when
the data distribution changes, leading to poor systematic generalization.

We investigated this problem concretely in the Recurrent Independent Mechanisms
(RIMs) paper (Goyal et al., 2019), in which we showed that there are several extremely
simple sequence problems in which today’s state-of-the-art sequence models fail to achieve
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systematic generalization. To address this, we proposed an architecture in which the hidden
state and parameters of a recurrent model are broken into several modules (capturing
independent mechanisms) which are encouraged to specialize over distinct input patterns
and only sparingly share information amongst themselves via a bottleneck of attention.
The depth of this line of research is demonstrated by a direct follow-up on Bi-Directional
Recurrent Independent Mechanisms (Mittal et al., 2020) as well as a paper on learning how
to share the recurrent parameters between mechanisms dynamically (Goyal et al., 2020).
While this work has inspired a significant amount of research on new algorithms, there is
still a great deal of room to develop a more rigorous theory and to apply these improved
techniques to achieve impact on real-world problems.

1.1. Thesis Overview
The thesis contains 4 articles that focus on latent interpolation and modular structure for

generalization in deep learning.
Chapter 2 starts with an introduction to the field of Machine Learning and how maximum

likelihood estimation can be used to frame supervised learning in a probabilistic framework.
It then discusses challenges in generalization in deep learning and an overview of regularizers
which can help to improve generalization. It also discusses a few architectures, and how they
relate to modularity and generalization.

Chapter 4 presents a latent state interpolation algorithm which provably flattens the
learned representations onto a lower-dimensional subspace. Despite requiring almost no
additional computation, it substantially improves results on standard benchmarks like CIFAR-
10, SVHN, and Tiny-Imagenet. It also shows substantial improvement on test set likelihood.

Chapter 6 explores the use of interpolations for semi-supervised learning. It uses mixes of
the model’s own predictions as targets for training mixed data points.

Chapter 8 shows how breaking a recurrent neural network into multiple modules with
separate hidden states and separate parameters can substantially improve systematic gen-
eralization. It also explores a top-down competition mechanism, where the modules which
have the strongest drive to read from the input become selectively activated. It dramatically
improves specialization over distinct sub-patterns in data by allowing modules to remain
dormant on time steps where they are not relevant.

Chapter 10 The Neural Function Modules (NFM) technique explored a new way of
passing information between different layers in deep networks by using attention. In the
NFM technique, each layer produces a query vector and attends over all previously computed
layers, as input for the layer. This allows for better specialization of the layers and allows
information to be routed around layers for which it is not relevant. This led to improved
results on classification benchmarks and relational reasoning.

Chapter 11 presents an overall conclusion of the contributions in this thesis and presents
some shortcomings of our work.
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Chapter 2

Background

2.1. Probabilistic Machine Learning
Machine learning systems are able to make predictions or produce actions by automatically

learning from data and experience. Mitchell et al. (1997) define a learning machine as an
algorithm that improves with experience on a particular task, given a certain performance
measure to evaluate the system. In this thesis, we are interested in questions of how machine
learning systems can generalize either when trained with limited data or limited task diversity.

We often assume the ability to independently sample a certain finite number of datapoints
from the same unknown data distribution. Some of that data is partitioned for our systems
to learn on and the rest is reserved for testing how it generalizes on unseen examples.
Generalizing to data drawn from the same distribution is a fairly common evaluation setup
used in most machine learning systems. Most theoretical guarantees on the generalization
properties of machine learning systems have required this assumption. This is however being
questioned more as our systems do not generalize systematically and perform poorly when
dealing with out-of-distribution data. For the sake of this introduction however, we will focus
on the case where our data is independent and identically distributed (iid).

2.1.1. Supervised Learning

Supervised Learning serves as the fundamental framework for most of the work in this
thesis and much of machine learning research as a whole. It consists of learning to predict
output targets from inputs given a labeled dataset of input/output pairs, where all pairs are
assumed to be sampled uniformly from an unknown distribution. An appealing aspect of
supervised learning is that the learned model’s accuracy on held-out samples is an objective
measure of success. Additionally, the correct outputs for the model are provided in the
dataset, which makes credit assignment relatively straightforward. Compare this to playing a
video game, where the correct actions are never given to the player.

Supervised learning entails learning a map from inputs to well-defined outputs collected in
a dataset of known input/output pairs. Some examples of supervised learning include image
classification (where the image is the input and the class-label is the output) and speech
recognition (where the speech signal is the input and the corresponding text is the output).

The goal of supervised learning is to learn a function fθ which maps an example’s input
to its output. These functions fθ map a d-dimensional, typically real-valued vector input
x ∈ Rd from the space of possible inputs X to a discrete scalar output label y from the



space of k possible outputs Y . We assume our data comes from an unknown joint probability
distribution over inputs and outputs p(x, y) where x ∈ X and y ∈ Y and we would like
to learn a function fθ : Rd → Rk that maps X to an estimate of P (Y |X). We observe
examples from this distribution ((x1, y1) . . . (xN, yN)). The subscript θ is used to indicate
that our function is parameterized. This doesn’t always have to be the case, and there exist
“non-parameteric” models in machine learning, but in the context of this thesis that focuses
on neural networks, we are interested in learning parametric functions. There are many
possible functions that can map from X to a distribution over Y , but we are often interested
in learning one that makes as few mistakes as possible. We define a loss function L(ŷ, y)
that measures the penalty incurred when classifying y as ŷ and we try to optimize fθ to
minimize this loss given a finite amount of data. We can use this loss to define the empirical
risk associated with a particular function as the expected loss over the entire training set

Remp(X, Y, fθ) = 1
N

N∑
i=1

L(fθ(xi), yi). For a given dataset, there may be many functions f ∈ F
in the hypothesis space, that achieve the same or even 0 empirical risk on the training data
subset, but generalize poorly to unseen examples. In such cases, we want to bias our learners
to certain solutions that may have better generalization properties such as those with low
parameter norms with L1/L2 regularization, with max-margin methods (Vapnik, 1963), or
by using dropout (Srivastava et al., 2014). Empirical Risk Minimization (ERM) tries to find
argminf∈F Remp(f).

fθ(x) outputs a probability distribution over possible class labels and the loss function
used is typically the negative log-likelihood of the correct class − log qθ(Y = y|x). Intuitively,
we wish to maximize the probability the model assigns to the correct class, and the use
of the log causes a very high loss when a small probability is assigned to the correct class.
The frequentist approach to parameter estimation termed Maximum Likelihood Estimation
(MLE) finds a setting of parameters that maximizes the likelihood of the observed data. This
decomposes into a product over the examples in the case where their conditional distributions

are independent and identically distributed (the i.i.d. assumption): qθ(Y |X) =
N∏
i=1

qθ(yi|xi).

Since the logarithm is a monotonically increasing function, we can maximize the log qθ(Y |X)

and break the product into a bunch of sums log qθ(Y |X) =
N∑
i=1

log qθ(yi|xi). To turn it into

a minimization problem, we can minimize the negative log-likelihood of the data, showing
that empirical risk minimization (ERM) with the negative log-likelihood loss corresponds to
maximum-likelihood estimation of the parameters of the model. At inference/test time, the
model outputs argmaxỹ qθ(ỹ|xi).

2.1.2. Distributions and Likelihood

So far, we have discussed generative modeling in qualitative terms. We want models which
can simulate from the dynamics of the world. We want models that can synthesize realistic
looking data. However, before going further it is useful to understand the probabilistic
interpretation of generative model, which gives a formal framework for studying generative
models. The essential idea is that we treat observations from the world as samples from a
distribution x, y ∼ p(x, y). For example, we could consider the distribution over all human
faces which can occur in reality to be p(x) and consider each face as a sample with an
associated label y ∼ p(y|x). If we have access to a recorded dataset (for example a set of
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faces), we may also choose to treat these points as a finite collection of samples from this
distribution.

At the same time, we can interpret our generative model as an estimating distribution
qθ(y|x), which is described by a set of parameters θ. Then we can frame generative modeling as
trying to ensure that p(y|x) and qθ(y|x) become as similar as possible. Statistical divergences
give a natural mathematical framework for this. A divergence is a functionD(p||q) : S×S → R
taking two distributions p and q over a space of distributions S as inputs, with the properties:

D(p||q) ≥ 0.0 (2.1)
D(p||q) = 0.0 ⇐⇒ p = q (2.2)

Notably, there is no symmetry assumption, so in general D(p||q) 6= D(q||p). The proba-
bilistic approach to generative modeling frames learning as an optimization problem where
the loss corresponds to a given divergence.

L(θ) = argmin
θ

D(p(y|x)||qθ(y|x)). (2.3)

2.1.3. Maximum Likelihood and KL-Divergence

We will now show how minimizing KL-divergence can be applied to the supervised learning
setting introduced previously. In particular, we assume the ability to sample from p(x, y) and
wish to learn qθ(y|x).

What is the right algorithm for finding a distribution qθ(y|x) which minimizes a divergence
between itself and p(y|x)? Before selecting the type of divergence to minimize, a natural
question is to consider what types of expressions we are capable of optimizing, and work
backwards to find a suitable divergence. In general, we only have access to samples from the
distribution p(x, y) and not any additional information about the distribution. At the same
time, qθ(y|x) is a model that we control, so it’s reasonable to believe that we’ll be able to
design it so that it has a density that we can compute as well as the ability to draw samples.

The KL-divergence can be rewritten as an expression in which the only term that depends
on the parameters is an expectation on qθ(y|x) over samples from p(x, y). Beginning with
two distributions p(x, y) (the empirical distribution) and qθ(y|x) (the model distribution), we
write the KL-divergence:

DKL(p(y|x)||qθ(y|x)) = E
x∼p(x)

[∫
p(y|x) log p(y|x)dy −

∫
p(y|x) log qθ(y|x)dy

]
(2.4)

= E
x∼p(x)

∫
p(y|x) log

p(y|x)

qθ(y|x)
dy (2.5)

= E
x,y∼p(x,y)

[
log

p(y|x)

qθ(y|x)

]
(2.6)

= E
x,y∼p(x,y)

[log p(y|x)− log qθ(y|x)] (2.7)

= Hp(y|x)− E
x,y∼p(x,y)

[log qθ(y|x)] (2.8)
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Then we can show the maximum likelihood estimation for a set of N data points.

θ∗ = arg max
θ

N∏
i=1

qθ(yi|xi) (2.9)

= arg max
θ

N∑
i=1

log qθ(yi|xi) (2.10)

= arg min
θ

1

N

N∑
i=1

− log qθ(yi|xi) (2.11)

∼= arg min
θ

E
xi,yi∼p(x,y)

[− log qθ(y|x)] (2.12)

The objective for maximum likelihood is maximizing the log-density log(qθ(y|x)) over real
data points sampled from the distribution p(x, y) can be written as:

DKL(p(y|x)||q(y|x)) = E
x∼p(x)

[∫
p(y|x) log p(y|x)dy −

∫
p(y|x) log qθ(y|x)dy

]
(2.13)

= −H(p(y|x)) + CE(p(y|x), qθ(y|x)) (2.14)

Thus we can see that the KL-divergence decomposes into two terms 2.13: a cross-entropy
term (likelihood) and a term for the entropy of the true data distribution. Because the entropy
of the true data distribution doesn’t depend on the estimator, the KL-divergence can be
minimized by maximizing likelihood. Another useful consequence of this is that the entropy
of the true data distribution can be estimated by such a generative model if it maximizes
likelihood.

2.1.4. ERM and probabilistic framing of the learning problem

The empirical risk minimization consists of minimizing a loss function over a set of
examples x with labels y sampled from a generally unknown distribution p(x, y):

θ∗ = argmin
θ

∑
x,y∼p(x,y)

L(y, f(x)). (2.15)

One general way of motivating empirical risk minimization is through maximum likelihood.
Essentially, it can be shown that maximizing a model’s likelihood on some data distribution
is equivalent to minimizing an expectation of loss over samples from the data distribution,
which can then be empirically estimated with a sum. The objective for maximum likelihood
is maximizing the log-density log(qθ(x)) over real data points sampled from the distribution
p(x). The use of maximum likelihood training for generative models (such as sequence models)
is an unconditional generalization of the use of conditional maximum likelihood for supervised
learning.

2.1.5. Teacher Forcing

A specific variant of the maximum likelihood principle can be used for training sequence
models. This form of training is known as teacher forcing (Williams & Zipser, 1989b), due to
the use of the ground-truth samples yt being fed back into the model to be conditioned on for
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Fig. 1. The teacher forcing objective uses the ground-truth sequence during training (left),
and uses generated sequence during sampling (right).

the prediction of later outputs. These fed back samples force the next-step-ahead predictions
to stay close to the specific ground-truth sequence being trained on. The teacher forcing
procedure can be formally justified by using the chain rule of probability. For example, in
the case of three variables, this factorization is: p(y1, y2, y3) = p(y3|y1, y2)p(y2|y1)p(y1).

When performing prediction, the ground-truth sequence is not available conditioning
and we sample from the joint distribution over the sequence by sampling each yt from its
conditional distribution given the previously generated samples. This procedure can result in
poor generation over long sequences as small prediction errors compound over many steps
of generation. This can lead to poor prediction performance as the sequence of previously
generated samples diverges from observed sequences seen during training. This procedure is
shown in Figure 1.

2.2. Regularization and Semi-Supervised Learning
Several techniques have been proposed to help improve generalization performance, which

is especially useful when the amount of labeled data is limited. Some of these regularizations
on a simple 2D spiral classification task are shown in Figure 2.

2.2.1. Vicinal Risk Minimization

(Chapelle et al., 2001) introduced the notion of “Vicinal Risk Minimization” (VRM),
in which the loss is defined around the “vicinity” of training examples rather than just at
the training examples themselves. (Chapelle et al., 2001) proposed to use gaussian kernels
surrounding individual examples to define these vicinities. (Tong, 2000) proved that the
VRM logistic regression using gaussian vicinity approaches the hard-margin SVM classifier
as σ → 0. This existing theory explores how training with synthetic examples changes the
characteristics of the resulting model.

2.2.2. Hand-Crafted Data Augmentation

The size of a dataset can be increased by augmenting it with artificially constructed
variants of the existing samples. For example, in a task where there is rotational invariance,
augmenting the dataset by including rotated versions of the original samples, could lead to
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a vastly larger augmented dataset. On the other hand, if the task does not have rotational
invariance, then including rotated samples could degrade model performance. Training with
hand-crafted data augmentation has a long and complex history in deep learning and machine
learning in general. The largest strength of these methods is that they can perform quite well
if the transformations which are appropriate for a task are well understood beforehand. For
example, in image classification, it is typically (but not always) the case that images have
horizontal symmetry. In such a case the correct prediction should not depend on whether it
appears on the left or right side of an image. However in most natural images, such as scenes
or everyday objects, there is not a vertical symmetry.

2.2.3. Weight Noise and Weight Decay

The idea of adding noise to the parameters of a deep network has a long history in neural
network applications (An, 1996; Steijvers & Grünwald, 1996). Other variants have also been
explored, such as adding Gaussian noise to the gradients of deep neural networks while
training them (Neelakantan et al., 2015).

2.2.4. Dropout

(Srivastava et al., 2014) showed that randomly turning off a fraction of the hidden units
in a deep neural network can be an effective regularizer. While the units are turned off during
training, all the units are kept on during inference/prediction, with the units multiplied by
1/(1− p), where p is the probability of dropping an individual unit to compensate for the
expected effect on the mean from dropping units.

2.2.5. Batch Normalization

(Ioffe & Szegedy, 2015a) explored the use of training deep neural networks with normal-
ization of the mean and variance of units in the forward pass, while using additional learned
parameters to control the mean and variance following standardization. The use of finite
batches for normalization during training has been shown to achieve a regularization effect
(Luo et al., 2018a).

2.2.6. Mixup

The mixup technique is straightforward to implement and understand, and at the same
time is almost entirely model-agnostic.

At a high-level, mixup considers training with synthetic examples defined as linear
combinations of examples from the training data.

x̃ = λxi + (1− λ)xj, where xi, xj are input vectors
ỹ = λyi + (1− λ)yj, where yi, yj are one-hot targets

(xi, yi) and (xj, yj) are two examples drawn at random from the training data, and
λ ∼ p(λ). As a simple starting point (which as we shall see, is surprisingly effective) we may
use p(λ) = U(0, 1).

We quickly note that in the particular case of the cross-entropy loss, averaging the soft-
targets of two examples is equivalent to averaging the loss for two examples. Mixup is a work
which strongly influences several of the new contributions in this thesis.
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Fig. 2. A classification task with two interleaved spirals and a limited number of labeled
examples (Figure from (Verma et al., 2018) with permission). The unregularized model
makes many mistakes and is highly confident in those mistaken predictions. This high

confidence also occurs when analyzing predictions in the hidden space.

2.3. Semi-Supervised Learning.
In many application domains, such as computer vision, speech, natural language un-

derstanding and medical diagnosis, Deep Neural Networks achieve human-level or even
super-human-level prediction accuracy by leveraging a large collection of labeled data in a
fully-supervised learning setup. However, there exits a caveat: Creating large collections of
labeled data is often expensive or difficult. In this thesis, semi-supervised learning is the
primary focus of the Interpolation Consistency Training technique (section 2.3.3), whereas
Recurrent Independent Mechanisms (section 8.2) and Neural Function Modules (section 9.1)
present general architectures which could be used for semi-supervised learning.

Current Deep Learning based Semi-Supervised Learning approaches can be broadly
categorized into two streams (1) Deep Generative Modeling based approaches (Dumoulin
et al., 2016b) and (2) Consistency Regularization based approaches (Verma et al., 2019a).

While the Deep Generative Modeling based approaches have achieved better results
earlier, the recent progress in Semi-Supervised Learning has been primarily driven by the
Consistency Regularization based methods. In this Chapter, in Section 2.3.1, we introduce
the underlying assumptions and motivations of the Consistency Regularization approaches.
Next, we describe some of the previous state-of-the-art Semi-Supervised Learning approaches
based on Consistency Regularization.

2.3.1. Consistency Regularization

Consistency Regularization for semi-supervised learning is motivated by the low-density
separation assumption (Chapelle et al., 2010). We first describe this assumption and then
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Fig. 3. On the two moons problem (left) unlabeled data is abundant but only six labeled
examples are provided. A purely supervised solution fails to separate the two moons (center),
while a decision boundary which avoids regions of high-density is able to separate the two

moons (right).

present Consistency Regularization based Deep Semi-supervised Learning methods which
utilize the cluster assumption.

The low-density separation assumption for classification problems assumes that the
decision boundary is likely to traverse low-density regions in the sample space. This can also
be equivalently seen as assuming that samples of the same class are connected in densely
connected clusters: two samples in the same cluster will be classified to the same class if
there is a densely populated path connecting samples from the same class.

Consistency-based semi-supervised learning methods enforce the low density separation
assumption by encouraging that the output of the model does not change under small
perturbations. The choice of these “small perturbations” requires careful design - but may
include small amounts of Gaussian noise or random translation/cropping of images (data
augmentation). By small perturbation, we mean perturbations that do not change the
class-related semantics of the sample.

We can mathematically define self-supervised consistency regularization by assuming
that x ∈ DUL be an unlabeled sample, x̂ is a perturbed version of the sample, and fθ(x) is
the prediction function parameterized by θ. Then we use a distance metric D(a, b) which
measures the difference between two predictions In practice this is often mean-squared error
but could also be cross-entropy loss. Using these terms, the semi-supervised consistency
regularization Rθ(x) can be defined as:

Rθ(x) = D(fθ(x), fθ(x̂)) (2.16)

The loss term used to train the prediction function fθ(x) is obtained by adding the
consistency regularizer of Equation 2.16 to the supervised classification loss weighted by a
hyperparameter λ, which is often increased over the course of training. The consistency-
based approach to semi-supervised learning has motivated a family of recent state-of-the-art
methods, which includes temporal ensembling (Laine & Aila, 2016), Virtual Adversarial
Training (VAT) (Miyato et al., 2018a), and the Mean-Teacher algorithm (Tarvainen & Valpola,
2017b).
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Fig. 4. On the two moons problem, a handful of labeled examples are provided which by
themselves suggest the optimal classifier is linear. Consistency regularization on the

unlabeled points gives error on perturbed points which changes the decision boundary so
that it does not pass through either of the two moons.

2.3.2. Virtual Adversarial Training

The hand-crafted stochastic perturbations used by (Sajjadi et al., 2016; Laine & Aila,
2016), such as i.i.d. Gaussian noise, might be inefficient in high dimensions, as only a tiny
fraction of input perturbations will cross the decision boundary. Virtual adversarial training
(VAT) seeks to alleviate this problem by finding an adversarial perturbation which causes
maximum change to the model’s predictions for a given input sample. The Virtual Adversarial
Training (VAT) is motivated by Adversarial Training (Goodfellow et al., 2015; Szegedy et al.,
2014). An adversarial perturbation radv in VAT is computed as:

radv = argmax
r, ||r||2≤ε

D(fθ(x), fθ(x+ r)). (2.17)

VAT uses a scalar hyperparameter ε which specifies the upper bound on the norm of the
adversarial perturbation. VAT (Miyato et al., 2018a) approximates the computation of radv
as follows based on a single iteration of the power-method:

radv ≈ ε
g

‖g‖2

(2.18)

where g = ∇rD(fθ(x), fθ(x+ r))
∣∣∣
r=ξd

(2.19)

In this expression ξ 6= 0 is a scalar hyperparameter whose value is set to be very small
(such as 1e − 6) and d is a randomly sampled unit vector. We cannot set ξ = 0 because
D(fθ(x), fθ(x)) = 0, g = 0, and thus radv becomes undefined.
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Using this approximate adversarial perturbation radv for a sample x, the consistency
regularization in VAT is computed as:

Rθ(x) = D(fθ(x), fθ(x+ radv)) (2.20)

2.3.3. Improving Targets with Ensembling or Mean Teacher

Consistency-based semi-supervised learning methods involve encouraging the network’s
outputs to be unchanged by applying some perturbation. Many of these perturbations can be
applied in the input space (such as with gaussian noise or image augmentations) or the hidden
states, but another form of perturbation can be considered in the space of the parameters.
One way to get these perturbed target networks involves using the network from previous
iterations during training. In the temporal ensembling technique (Laine & Aila, 2016), one
uses the running average of the model’s own predictions as targets. This technique was further
refined and simplified in the Mean-Teacher algorithm, in which targets are constructed from a
network which is parameterized by an exponential moving average of the model’s parameters.
Intriguingly, despite the general non-convexity of deep neural networks, a network constructed
by averaging parameter values from multiple iterates tends to be more accurate than the
network from the most recent iterate (Tarvainen & Valpola, 2017b).

2.4. Neural Architectures
2.4.1. Linear Models

The foundational building block of deep neural networks is a linear model: y = Wx
where x ∈ Rdin and W ∈ Rdin×dout , where W is a matrix of learnable parameters. Intuitively
every parameter in a linear model’s weight matrix learns how strongly (and in what direction)
a single input variable changes a single output variable.

2.4.2. Deep Neural Networks

The simplest deep neural networks consist of multiple alternating layers which each consist
of a learnable linear projection followed by a (generally) fixed non-linearity:

hlj = f
( dlin∑
i=1

Wl
ijh

l−1
i + bli

)
(2.21)

If we use matrix notation, we can remove the subscripts and simplify this expression to:

hl = f(Wlhl−1 + bl) (2.22)

In the above equation, the non-linearity is referred to as f(). Many different non-linearities
have been shown to work well, but the ReLU non-linearity is simple and remains in wide
usage: f(a) = max(a, 0).

The necessity of the non-linearity is intriguing. Initially, we observe that any product
of multiple weight matrices can be equivalently written as a single weight matrix: W =
W1W2...Wn. Thus a deep network without the use of a non-linearity is no more expressive
than a linear model.
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Neural networks with a single hidden layer are universal function approximators, but the
width of the hidden layer may need to be very large to handle complex problems. (Htad,
1987) showed limited expressiveness for shallow networks.

A simple problem which highlights the importance of non-linear hidden layers is the XOR
problem in which there are two binary-valued input variables and a single binary-valued
output variables. The dataset consists of four examples, with (0, 1) and (1, 0) having the
output of 1 and (0, 0) and (1, 1) having the output of 0. A linear model cannot solve this
problem because the relationship between the first input variable and the output changes
depending on the value of the second input variable.

A very simple solution for the XOR problem using a single hidden layer can be derived
by realizing that a linear solution is permitted if we only consider the examples: (0, 1), (0, 0),
and (1, 0), which is simply y = x1 + x2. However this solution fails for (1, 1). However, if we
construct a hidden unit which “activates” only on (1, 1), we can use it to fix the partially-
correct linear solution. Using the relu activation relu(x) = max(x, 0), we can construct
h1 = relu(2 ∗ x1 + 2 ∗ x2 − 3), which will take a value of 0 for the examples the linear model
already solves, but will take a value of 1 for the input (1, 1). We can then solve XOR with:
y = x1 + x2 − h1.

One generalization of XOR to more than two input variables illustrates the advantage of
using deep neural networks with more than a single hidden layer. For example, suppose we
have a list of N binary variables x1, x2, ..., xN and wish to classify if the number of inputs
which are 1 is even (y = 0) or odd (y = 1). An inductive solution to this problem involves
determining if the first j of the digits are even or odd, which we can call yj. We can then
solve for yj+1 as XOR(yj, 1− xj). Since we solved XOR previously with a single hidden layer
network, this suggests that we can solve this N step parity problem with a network using N
layers.

Fig. 5. A multi-layer perceptron with 2 input neurons, 3 hidden neurons, a single hidden
layer and 1 output neuron.

In the case of a supervised binary classification problem, the network produces a single
scalar output (like shown in Figure 5) which is typically soft-thresholded by a sigmoid function
σ(·) to produce values in the closed interval [0, 1]:

σ(x) =
1

1 + e−x
. (2.23)
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To handle the case with multiple classes, the probability of a class j is typically computed
using the softmax function using the weights and hidden states of the final layer n in the
network. We will use y to make it clear that it is the output of the network, but it can be
thought of as activations of the final layer hn as well:

yj = exp
(∑

i

Wn
ijh

n−1
i + bnj

)
/
(∑

j′

exp
(∑

i

Wn
ij′h

n−1
i + bnj′

))
. (2.24)

These basic elements of learned linear weight matrices and elementwise non-linear activa-
tion functions serve as the basic foundations for deep neural networks.

2.4.3. Training Neural Networks with Backpropagation

In the simplest case, we want to train a neural network to minimize error on an i.i.d dataset
of examples ((x1, y1) . . . (xN , yN )). When using the negative log-likelihood loss function, ERM
corresponds to maximum-likelihood estimation of the parameters of the model. In this
section, we will discuss by far the most popular approach to training deep neural networks,
the backpropagation algorithm (Rumelhart et al., 1986; Werbos, 1974).

This technique involves computing gradients of the network’s loss with respect to the
parameters ∂L

∂θ
, which can then be used to incrementally update θ in the direction which

locally reduces the loss:

θt = θt−1 − ε
∂L
∂θ
. (2.25)

This gradient descent algorithm is provably justified for convex optimization problems,
such as optimizing linear models with mean square error as the loss function. While neural
networks are generally non-convex, it has been found empirically that gradient descent can
still work well for a wide range of neural network architectures. However, this success depends
on the details of the architecture and the initialization scheme and is far from guaranteed.
For example, if a neural network is initialized with all parameters set to zero, the gradient
is zero, and training stagnates - so it is generally essential to initialize the network with
random-valued parameters.

A following question is how gradients can be computed for gradient descent. By far the
most popular algorithm for this is backpropagation, which is a special case of reverse-mode
automatic differentiation (for a review of automatic differentiation techniques we refer the
reader to Margossian (2019)). The backpropagation algorithm is the application of the
chain rule of calculus to neural networks. In its first stage, the gradient with respect to an
intermediate hidden layer is computed as: ∂L

∂hi
= ∂L

∂hi+1

∂hi+1

∂hi
, which can further be reduced to

multiplying by the transposed weight matrix and multiplying by the point-wise derivative
of the activation function. The gradient with respect to the weight matrices (and hence
parameters) can then be computed based on the hidden states and the gradients with respect
to the hidden states.

2.4.4. Stochastic Gradient Descent

On small datasets, it is often reasonable to compute the gradient across all the examples
in the dataset and use this full gradient for each update. However, for large datasets, this is
clearly sub-optimal, as the gradient on a small subset of the dataset may be very similar to
the gradient on the full dataset. As a result, the number of updates done for a fixed amount
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of computation would scale poorly in the size of the dataset. To illustrate this, we could
imagine that with our computation budget we are able to do N full gradient descent updates.
If we were to modify our dataset by duplicating every example K times, then we would only
be able to do N

K
updates, which eventually would shrink to be less than 1 (meaning that we’d

never do a single update). We can instead use a random subset of the examples to compute
an estimate of the gradient (referred to as a stochastic gradient). The model takes many
stochastic gradient steps to converge to a point estimate of the parameters that achieves low
error. The SGD update rule at step t for a parameter Wl, after seeing example (x,y), can
be written as

Wl
t = Wl

t−1 − α
∂L(x,y; θt−1)

∂Wl
t−1

(2.26)

Where we use a learning rate α to control how large of a step to take in the direction of
the gradient. α can be fixed over the course of training or changed adaptively as a function
of t. Often we want to decay α near the end of training and we also may want α to be small
near the beginning of training to improve stability.

2.4.5. Convolutional Neural Networks

We’ve previously discussed the fully-connected neural network architecture (often called a
Multi-Layer Perceptron or MLP), which is very general but has some interesting limitations.
Perhaps the most fundamental one is that there is no structure to the hidden state to
associate different hidden units with different positions. Convolutional neural networks
address this by replacing a single monolithic hidden state h ∈ Rd by a structured hidden
state h ∈ Rd×h×w where h and w are the height and width of the structured hidden state
respectively. The key idea of convolutional networks is that the weights also have a spatial
structure W ∈ Rk×c×∆x×∆y where k is the number of output units per position and c is
the number of input units per position. These weight tensors are then convolved with the
input tensor to produce a structured linear operation. An illustration of the receptive field
of a convolutional neural network is shown in Figure 6. This linear operation can then be
followed by elementwise non-linearities (such as the ReLU function) as well as downsampling
or upsampling operations to change the spatial structure of the hidden state. We refer readers
to Dumoulin & Visin (2016) for a more detailed discussion on convolutional layers.

2.4.6. Recurrent Neural Networks

Another form of structure that can be added to deep neural networks involves applying
the same function to a hidden state multiple times. Such an architecture is called a Recurrent
Neural Network and the most basic variant can be written as: ht = F (ht−1, x, θ) where F is
our function parameterized by θ (Rumelhart et al., 1986). This kind of repeated computation
could be significantly more parameter-efficient and could be useful in problems which require
multiple functionally similar processing steps.

We can generalize this further to consider an architecture in which a sequence of inputs x =
(x1, x2, . . . , xn) is transformed it into a sequence of vector representations h = (h1,h2, . . . ,hn).
We use subscripts to denote the position of an element within the sequence. This more
general form of recurrent neural network can be written as: ht = F (ht−1,xt, θ) (see Figure 7).
In this setup, each step in the repeated computation is provided with a single position in
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Fig. 6. An illustration of the receptive field of a convnet.

Fig. 7. A simple example of a recurrent neural network with a single hidden layer and a
sequence length of three.

an input sequence. This is a widely used architecture for processing time series or other
sequences such as text and audio.

A simple choice for the recurrent function F is to use a learned linear function of the
input and the hidden state followed by an elementwise non-linearity. We can then write this
as: ht = tanh(Wht−1 +Uxt +b). This is parameterized by a recurrent weight matrix W and
input weight matrix U and a bias term b that are shared across time. If the inputs xi ∈ Rdin

are continuous vector valued inputs, then U ∈ Rdin×dhid and W ∈ Rdhid×dhid (W doesn’t
necessarily need to be a square matrix, but for the sake of notational convenience, we will
assume it is). The hidden state of the recurrent network may then be processed by a linear
layer or an MLP to produce an output from the network, such as: yt = Wo2 tanh(Wo1ht)

Recurrent networks can be trained using backpropagation, in much the same way as
feedforward networks like MLPs are trained. These RNNs can be unrolled in time (Figure 7)
into a deep feedforward model with shared weights and the same principles used to compute
gradients in Section 2.4.3 can be used while adding gradients across multiple positions to
account for weight sharing. This algorithm is commonly referred to as Backpropagation
Through Time (BPTT) (Rumelhart et al., 1986; Werbos, 1990) due to its original usage for
time-series, but the concept applies to any type of sequential data.

While exact gradients can be computed via backpropagation through time, the algorithm
has a significant challenge in practice. If we backpropagate gradients for T steps, then in
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the absence of an activation function (the linear-RNN case), the backward gradient contains
a term W T , which has the norm: ||W ||T . If the norm of W is larger than 1, the resulting
gradient tends to be very large for even moderately long time horizons. This is referred to
colloquially as Exploding Gradients. If the norm of ||W || is smaller than 1, the resulting
gradient will tend to be small, which is referred to as Vanishing Gradients (Hochreiter, 1991;
Bengio et al., 1994; Pascanu et al., 2013). To illustrate this problem more concretely, if we
consider 200 time steps, then if the weight norm is 1.05, the resulting ||W ||T is about 15000.
If the weight norm is 0.95, the resulting ||W ||T is about 10−5. So even if the weight norm
is only slightly deviated from 1, the resulting gradients are very badly scaled. Adding an
activation function which has very small or zero gradients at many points can help address
the exploding gradient problem at the expense of making the vanishing gradient problem
more severe.

The simplest solution to this is Truncated Backpropagation through Time which simply
stops computing gradients after a certain number of steps K (even if we compute the
hidden state of the recurrent neural network for more than K steps). This clearly solves the
gradient scaling issue yet also means that the model fails to systematically learn Long Range
Dependencies (Bengio et al., 1994; Pascanu et al., 2013).

A simple way of reducing the impact of exploding gradients is gradient clipping, where
the magnitude of the gradients with respect to every parameter is clipped to a maximum
value (Pascanu et al., 2012). This is a poor solution in principle since it changes the expected
value of the gradients. However, if the gradients only occasionally become very large, this
gradient clipping strategy can prevent these very large gradients from ruining the progress of
the training algorithm.

A highly principled approach to addressing both vanishing and exploding gradients relies
on the concept of unitary matrices from linear algebra. A unitary matrix is any matrix which
has a norm ||W || = 1 (in the case where W is real-valued, it is called an orthogonal matrix).
A very natural way to address the vanishing and exploding gradients problem is to make W
such a unitary matrix. This was shown to be trainable on long-sequences with well-scaled
gradients (Arjovsky et al., 2015), but requires a fairly complicated parameterization to make
W exactly unitary by construction.

A more practical and more widely used solution for addressing vanishing and exploding
gradients is to construct a recurrent neural network in which information is added into the
hidden state on each recurrent time step after passing through a Gating Function. Gated
recurrent networks were first presented in the form of the Long Short-Term Memory (LSTM)
architecture (Hochreiter & Schmidhuber, 1997a), which was simplified to the Gated-Recurrent
Unit (GRU) architecture (Cho et al., 2014).

The GRU introduces two gates zt = σ(Wzxt + Uzht−1) and rt = σ(Wrxt + Urht−1), which
both output a score from 0 to 1 for each unit. A pre-gated update value for the recurrent
state is computed as: h̃t = tanh(Wxt + U(rt � ht)). The update for the recurrent state is:
ht = (1− zt)ht−1 + zth̃t. Intuitively, zt controls whether each unit keeps its value from the
previous time-step or takes an updated value. rt controls which units are used to compute
that updated value for the recurrent hidden state.

We can gain more insights into the training dynamics of the GRU when zt and rt are
saturated. If we always have zt = 1 and rt = 1, then the GRU becomes identical to a vanilla
RNN, and it has the exact same training dynamics and resulting instabilities. On the other
hand, when zt = 0, then ht = ht−1 and the gradient is passed backward without modification.
When rt = 0, we can make updates to the hidden state but only using the input and an
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additive dependence on the previous hidden state (weighted by zt). For example if zt = 0.5
and rt = 0, the GRU behaves as an additive integrator of a non-linear function of the input
value: tanh(Wxt).

The resulting parameter gradients from a GRU network can still be an exponential of
||W ||, but it is no longer simply ||W ||T . Rather, it depends on the value of zt and rt, with
lower values for these gates making the gradient less sensitive to the value of ||W ||. Intuitively,
if a unit is only relevant on a small number of time steps and the computation between units
is well-separated (the latter is unlikely to exactly hold in practice), then the gradient for that
unit may effectively only go through a few applications of the recurrent weight matrix. For
this reason, these gated recurrent networks tend to be fairly stable to train on sequences of
substantial length (thousands of time steps), although if all the gates are saturated to 1 then
it can still suffer from vanishing or exploding gradients, so gradient clipping can help if this
saturated condition occurs infrequently.

2.4.7. Attention

Attention (as it is most widely used in deep learning) was introduced for the purpose of
improving the capture of long-range dependencies and reducing the information bottleneck in
sequence models (Bahdanau et al., 2014). The essential idea is to learn an input-dependent
weighting to directly control how information is shared between pairs of positions. This can
improve long-range dependencies by allowing information to directly flow from a distant
position, rather than being preserved across many steps by a gated recurrent network. It can
reduce the bottleneck by allowing a position to depend on many other positions, rather than
the single most recent recurrent hidden state.

The most general interface for attention considers three matrices (each consisting of
multiple positions each with its own representation vector) as input: queries Q ∈ RNq×dq ,
keys K ∈ RNk×dq , and values V ∈ RNk×dv . The basic concept of attention (Bahdanau et al.,
2014) is that by taking the dot product of all combinations of position-vectors in Q and
K will yield a matrix of affinities α ∈ RNq×Nk between the queries and keys. This is then
normalized such that every querying position 1, 2, ..., Nq will have an affinity over the keys
which sums to 1, which is accomplished using a softmax function. This normalized affinity
score is then multiplied by V (effectively weighting over positions in V ) to yield an output
matrix A ∈ Nq × dv.

Attention can be used to complement a gated recurrent network (Bahdanau et al., 2014),
by allowing information to flow between distant positions. (Vaswani et al., 2017) found that
attention can be used in the absence of any recurrent architecture in the Transformer. This
has a significant scaling advantage since it removes the sequential processing between positions
required for recurrent networks. At the same time, a single layer of attention has much weaker
processing capabilities compared to a single recurrent layer, so Transformers typically require
many attention layers to achieve good performance. Additionally, the attention operation
is permutation invariant, so ordering information needs to be provided through position
encoding (either sinusoids with different periods or separate learned parameters per position).
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Chapter 3

Prologue to the first article

3.1. Article Details
Manifold Mixup: Better representations by interpolating hidden states. Alex

Lamb*, Vikas Verma*, Chris Beckham, Amir Najafy, Ioannis Mitliagkas, Aaron Courville,
Yoshua Bengio.

Manifold Mixup is an algorithm for improving the robustness and generalization perfor-
mance of deep neural networks. It involves interpolating hidden states between different
examples in deep neural networks while also interpolating the losses of these examples. Addi-
tionally, the layer to apply interpolation to is randomly selected on each training iteration
from a set of eligible layers. A direct goal of manifold mixup is to encourage the model to
perform well on combinations of semantically meaningful attributes not observed during
training. Improving the smoothness and increasing the margin of the classifier are further
motivations. Another advantage of the Manifold Mixup technique that we did not anticipate
before starting the project, is that Manifold Mixup encourages the hidden representations to
lie on a lower-dimensional linear subspace. In practice, the hidden representations become
much more compressed in networks trained with manifold mixup.

3.2. Personal Contribution
This project began when Alex Lamb, Vikas Verma, and Aaron Courville began discussing

the idea. In the initial idea, I was interested in using a mixup-inspired regularization for
adversarially learned inference (Dumoulin et al., 2016a). However, as we began experimenting
and found positive results, we realized that the impact could be broader if we applied the
technique to the more general supervised learning case. I wrote some of the initial code and
wrote much of the paper, and played a major role in the initial brainstorming. I also had
the initial idea for the “flattening hidden states” theory, although the actual specific theory
and math in the paper was developed by Amir Najafy. Chris Beckham designed and ran
the GAN experiments, where Manifold Mixup was applied to the discriminator of a GAN
(Goodfellow et al., 2014) network. Ioannis Mitliagkas, Aaron Courville, and Yoshua Bengio
all played important advising roles. I asked Vikas Verma and received permission to use this
paper in my thesis.



3.3. Context
The goal of this work was to develop a way of encouraging deep networks to train with

distinct combinations of semantic attributes, and thus reduce the chance of evaluating on an
example with an unseen combination during training. We used the technique of interpolating
target values that was used in the original mixup paper (Zhang et al., 2018c). Some further
inspiration comes from the techniques which apply regularization to the hidden representations
learned by deep neural networks. For example, state-reification networks (Lamb et al., 2019)
showed that autoencoders trained in the hidden representations of deep networks can improve
adversarial robustness in both convnets and RNNs.

3.4. Contributions
The Manifold Mixup paper showed that it’s possible to train with interpolated hidden

states from multiple examples and that this can often outperform mixup in the input space.
We also showed that manifold mixup has a unique effect on the hidden states: pushing
them onto a lower dimensional linear subspace. The Manifold Mixup technique significantly
improves classification accuracy and calibration despite not requiring significant additional
computation. Improved classification results are reported on CIFAR-10, CIFAR-100, and
SVHN. An interesting aspect of the results is that the negative log-likelihood on the test
set shows a much larger improvement than the test accuracy, suggesting that the manifold
mixup classifier is less confident on examples where it makes incorrect predictions.

3.5. Research Impact
Manifold Mixup has seen excellent adoption in the applied research community, with many

successful follow-up papers in speech, vision, language, and medical imaging. Manifold Mixup
was applied to achieve state-of-the-art results in the few-shot learning domain (Mangla et al.,
2019). Fair Mixup (Chuang & Mroueh, 2021) found that Manifold Mixup achieves competitive
results on fairness benchmarks focusing on spurious correlations in face-attribute classification.
In particular, Manifold Mixup often outperforms techniques specifically designed to improve
fairness. (Moysset & Messina, 2019) showed that Manifold Mixup substantially improves
generalization performance in handwriting recognition. Manifold Mixup has also been used
to significantly improve robustness in medical polyp segmentation, where the size of training
datasets tends to be very small (Guo et al., 2021). The theory developed in the work has
also seen a few intriguing follow-ups, for example, (Roth et al., 2020) showed that the
compression effect of manifold mixup is harmful for metric learning. There have also been
a few exciting follow-ups on the technique. PatchUp (Faramarzi et al., 2020) explored a
variation on manifold mixup where the mixing is done over randomly selected patches, rather
than being performed as linear interpolation over the entire hidden state. An extension on
graphs (Verma et al., 2019b) explored linearly interpolating the hidden states of nodes in
graph neural networks. Adversarial Mixup Resynthesizers (Beckham et al., 2019) showed
that when latent-space interpolation is used in training adversarial autoencoders, the visual
quality of latent-interpolations can be greatly improved. In that case, an adversarially trained
discriminator (Goodfellow et al., 2014) was used to encourage the decoded reconstructions
from these interpolated latent states to appear more similar to real examples.
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Chapter 4

Manifold Mixup

4.1. Introduction
Deep neural networks are the backbone of state-of-the-art systems for computer vision,

speech recognition, and language translation (LeCun et al., 2015). However, these systems
perform well only when evaluated on instances very similar to those from the training set.
When evaluated on slightly different distributions, neural networks often provide incorrect
predictions with strikingly high confidence. This is a worrying prospect, since deep learning
systems are being deployed in settings where data may be subject to distributional shifts.
Adversarial examples (Szegedy et al., 2014) are one such failure case: deep neural networks
with nearly perfect performance provide incorrect predictions with very high confidence when
evaluated on perturbations imperceptible to the human eye. Adversarial examples are a
serious hazard when deploying machine learning systems in security-sensitive applications.
More generally, deep learning systems quickly degrade in performance as the distributions of
training and testing data differ slightly from each other (Ben-David et al., 2010).

In this paper, we realize several troubling properties concerning the hidden representations
and decision boundaries of state-of-the-art neural networks. First, we observe that the
decision boundary is often sharp and close to the data. Second, we observe that the vast
majority of the hidden representation space corresponds to high confidence predictions, both
on and off of the data manifold.

Motivated by these intuitions we proposeManifold Mixup (Section 4.2), a simple regularizer
that addresses several of these flaws by training neural networks on linear combinations
of hidden representations of training examples. Previous work, including the study of
analogies through word embeddings (e.g. king − man + woman ≈ queen), has shown that
interpolations are an effective way of combining factors (Mikolov et al., 2013). Since high-level
representations are often low-dimensional and useful to linear classifiers, linear interpolations
of hidden representations should explore meaningful regions of the feature space effectively.
To use combinations of hidden representations of data as novel training signal, we also
perform the same linear interpolation in the associated pair of one-hot labels, leading to
mixed examples with soft targets.

To start off with the right intuitions, Figure 1 illustrates the impact of Manifold Mixup on
a simple two-dimensional classification task with small data. In this example, vanilla training
of a deep neural network leads to an irregular decision boundary (Figure 1a), and a complex
arrangement of hidden representations (Figure 1d). Moreover, every point in both the raw
(Figure 1a) and hidden (Figure 1d) data representations is assigned a prediction with very



(a) (b) (c)

(d) (e) (f)

Fig. 1. An experiment on a network trained on the 2D spiral dataset with a 2D bottleneck
hidden representation in the middle of the network. Manifold mixup has three effects on

learning when compared to vanilla training. First, it smoothens decision boundaries (from a.
to b.). Second, it improves the arrangement of hidden representations and encourages
broader regions of low-confidence predictions (from d. to e.). Black dots are the hidden

representation of the inputs sampled uniformly from the range of the input space. Third, it
flattens the representations (c. at layer 1, f. at layer 3) of all the examples belonging to a
particular class. Figure 2 shows that these effects are not accomplished by other well-studied
regularizers (input mixup, weight decay, dropout, batch normalization, and adding noise to

the hidden representations).

high confidence. This includes points (depicted in black) that correspond to inputs off the
data manifold! In contrast, training the same deep neural network with Manifold Mixup leads
to a smoother decision boundary (Figure 1b) and a simpler (linear) arrangement of hidden
representations (Figure 1e). In sum, the representations obtained by Manifold Mixup have
two desirable properties: the class-representations are flattened into a minimal amount of
directions of variation, and all points in-between these flat representations, most unobserved
during training and off the data manifold, are assigned low-confidence predictions.

This example conveys the central message of this paper:
Manifold Mixup improves the hidden representations and decision boundaries of neural

networks at multiple layers.
More specifically, Manifold Mixup improves generalization in deep neural networks because

it:
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Fig. 2. The same experimental setup as Figure 1, but using a variety of competitive
regularizers. This shows that the effect of concentrating the hidden representation for each
class and providing a broad region of low confidence between the regions is not accomplished
by the other regularizers (although input space mixup does produce regions of low confidence,
it does not flatten the class-specific state distribution). Noise refers to gaussian noise in the
input layer, dropout refers to dropout of 50% in all layers except the bottleneck itself (due to
its low dimensionality), and batch normalization refers to batch normalization in all layers.

• Leads to smoother decision boundaries that are further away from the training data,
at multiple levels of representation. Smoothness and margin are well-established
factors of generalization (Bartlett & Shawe-taylor, 1998; Lee et al., 1995).
• Leverages interpolations in deeper hidden layers, which capture higher level information
(Zeiler & Fergus, 2013) to provide additional training signal.
• Flattens the class-representations, reducing their number of directions with significant
variance (Section 4.3). This can be seen as a form of compression, which is linked to
generalization by a well-established theory (Tishby & Zaslavsky, 2015; Shwartz-Ziv
& Tishby, 2017) and extensive experimentation (Alemi et al., 2017; Belghazi et al.,
2018; Goyal et al., 2018; Achille & Soatto, 2018).

Throughout a variety of experiments, we demonstrate four benefits of Manifold Mixup:
• Better generalization than other competitive regularizers (such as Cutout, Mixup,
AdaMix, and Dropout) (Section 4.5.1).
• Improved log-likelihood on test samples (Section 4.5.1).
• Increased performance at predicting data subject to novel deformations (Section 4.5.2).
• Improved robustness to single-step adversarial attacks. This is the evidence that
Manifold Mixup pushes the decision boundary away from the data in some directions
(Section 4.5.3). This is not to be confused with full adversarial robustness, which is
defined in terms of moving the decision boundary away from the data in all directions.

4.2. Manifold Mixup
Consider training a deep neural network f(x) = fk(gk(x)), where gk denotes the part of

the neural network mapping the input data to the hidden representation at layer k, and fk
denotes the part mapping such hidden representation to the output f(x). Training f using
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Fig. 3. Illustration on why Manifold Mixup learns flatter representations. The interpolation
between A1 and B2 in the left panel soft-labels the black dot as 50% red and 50% blue,

regardless of being very close to a blue point. In the middle panel a different interpolation
between A2 and B1 soft-labels the same point as 95% blue and 5% red. However, since
Manifold Mixup learns the hidden representations, the pressure to predict consistent

soft-labels at interpolated points causes the states to become flattened (right panel). The
effect of this flattening is that all points from the blue class would be forced onto a line,
reducing the number of directions of variability from two to one (and thus making the

representation flatter).

Manifold Mixup is performed in five steps. First, we select a random layer k from a set of
eligible layers S in the neural network. This set may include the input layer g0(x). Second,
we process two random data minibatches (x, y) and (x′, y′) as usual, until reaching layer k.
This provides us with two intermediate minibatches (gk(x), y) and (gk(x

′), y′). Third, we
perform Input Mixup (Zhang et al., 2018c) on these intermediate minibatches. This produces
the mixed minibatch:

(g̃k, ỹ) := (Mixλ(gk(x), gk(x
′)),Mixλ(y, y′)),

where Mixλ(a, b) = λ ·a+(1−λ) · b. Here, (y, y′) are one-hot labels, and the mixing coefficient
λ ∼ Beta(α, α) as proposed in mixup (Zhang et al., 2018c). For instance, α = 1.0 is equivalent
to sampling λ ∼ U(0, 1). Fourth, we continue the forward pass in the network from layer k
until the output using the mixed minibatch (g̃k, ỹ). Fifth, this output is used to compute the
loss value and gradients that update all the parameters of the neural network.

Mathematically, Manifold Mixup minimizes:

L(f) = E
(x,y)∼P

E
(x′,y′)∼P

E
λ∼Beta(α,α)

E
k∼S

`(fk(Mixλ(gk(x), gk(x
′))),Mixλ(y, y′)). (4.1)

Some implementation considerations. We backpropagate gradients through the entire compu-
tational graph, including those layers before the mixup layer k (Section 4.5.1 explore this
issue in more detail). In the case where S = {0}, Manifold Mixup reduces to the original
mixup algorithm of Zhang et al. (2018c).

While one could try to reduce the variance of the gradient updates by sampling a random
(k, λ) per example, we opted for the simpler alternative of sampling a single (k, λ) per
minibatch, which in practice gives the same performance. As in Input Mixup, we use a single
minibatch to compute the mixed minibatch. We do so by mixing the minibatch with copy of
itself with shuffled rows.

A significant limitation of Mixup (Zhang et al., 2018c) is that it makes strong assumptions
about the data - in particular that interpolations must be consistent with the data distribution
to prevent underfitting. For example, fitting mixup on a circle or 2d spiral in a low-dimensional
space could lead to significant underfitting. Manifold Mixup relaxes this assumption by
interpolating in the hidden states, which can be learned to ensure that these interpolations
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are consistent. The implications of forcing this consistency is the focus of the following
section.

4.3. Manifold Mixup Flattens Representations
We turn to the study of how Manifold Mixup impacts the hidden representations of a

deep neural network. At a high level, Manifold Mixup jointly flattens the representations of
all examples belonging to a specific class. This flattening effect happens on a per-class basis,
and we refer to the representations of all examples belong to a particular class as class-specific
representations. More specifically, this flattening reduces the number of directions with
significant variance (akin to reducing their number of principal components).

In the sequel, we first prove a theory (Section 4.3.1) that characterizes this behavior
precisely under idealized conditions. Second, we show that this flattening also happens in
practice, by performing the SVD of class-specific representations of neural networks trained
on real datasets (Section 4.3.2). Finally, we discuss why the flattening of class-specific
representations is a desirable property (Section 4.3.3).

4.3.1. Theory

We start by characterizing how the representations of a neural network are changed by
Manifold Mixup, under a simplifying set of assumptions. More concretely, we will show that
if one performs mixup in a sufficiently deep hidden layer in a neural network, then the loss
can be driven to zero if the dimensionality of that hidden layer dim (H) is greater than the
number of classes d. As a consequence of this, the resulting representations for that class will
have dim (H)− d+ 1 dimensions.

A more intuitive and less formal version of this argument is shown in Figure 3. Intuitively,
we show a sufficient condition for the mixup objective to achieve zero loss (given zero loss is
also achievable on the original dataset). As a starting point, we observe that a linear function
achieves this since w(λx1 + (1− λ)x2) = λwx1 + (1− λ)wx2. We can then study the linear
algebra of this linear function and the representations being passed into this linear function,
and then study the necessary rank of the representation matrix.

To this end, assume that X and H denote the input and representation spaces, respectively.
We denote the label-set by Y and let Z = X × Y. Let G ⊆ HX denote the set of functions
realizable by the neural network, from the input to the representation. Similarly, let F ⊆ YH
be the set of all functions realizable by the neural network, from the representation to the
output.

We are interested in the solution of the following problem in some asymptotic regimes:

J(P ) = inf
g∈G,f∈F

E
(x,y),(x′,y′),λ

`(f(Mixλ(g(x), g(x′))),Mixλ(y, y′)). (4.2)

More specifically, let PD be the empirical distribution defined by a dataset D = {(xi, yi)}ni=1.
Then, let f ? ∈ F and g? ∈ G be the minimizers of (4.2) for P = PD. Also, let G = HX ,
F = YH, and H be a vector space. These conditions (Cybenko, 1989) state that the mappings
realizable by large neural networks are dense in the set of all continuous bounded functions.
In this case, we show that the minimizer f ? is a linear function from H to Y. In this case,
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the objective (4.2) can be rewritten as:

J(PD) = inf
h1,...,hn∈H

1

n (n− 1)

n∑
i 6=j

{
inf
f∈F

∫ 1

0

`(f(Mixλ(hi, hj)),Mixλ(yi, yj)) p(λ)dλ

}
,

where hi = g(xi). Let H be a vector space of dimension dim (H), and let d ∈ N to represent
the number of classes contained in some dataset D. If dim (H) ≥ d− 1, then J(PD) = 0 and
the corresponding minimizer f ? is a linear function from H to Rd.

Proof. First, we observe that the following statement is true if dim (H) ≥ d− 1:

∃ A,H ∈ Rdim(H)×d, b ∈ Rd : A>H + b1>d = Id×d,

where Id×d and 1d denote the d-dimensional identity matrix and all-one vector, respectively.
In fact, b1>d is a rank-one matrix, while the rank of identity matrix is d. So, A>H only needs
rank d− 1.

Let f ?(h) = A>h + b for all h ∈ H. Let g?(xi) = Hζi,: be the ζi-th column of H, where
ζi ∈ {1, . . . , d} stands for the class-index of the example xi. These choices minimize (4.2),
since:

`(f ?(Mixλ(g?(xi), g?(xj))),Mixλ(yi, yj)) =

`(A>Mixλ(Hζi,:, Hζj ,:) + b,Mixλ(yi,ζi , yj,ζj)) = `(u, u) = 0.

The result follows from A>Hζi,: + b = yi,ζi for all i. �

Furthermore, if dim (H) > d − 1, then data points in the representation space H have
some degrees of freedom to move independently.
Consider the setting in Theorem 4.3.1 with dim (H) > d−1. Let g? ∈ G minimize (4.2) under
P = PD. Then, the representations of the training points g?(xi) fall on a (dim (H)− d+ 1)-
dimensional subspace.

Proof. From the proof of Theorem 4.3.1, A>H = Id×d − b1>d . The r.h.s. of this expression
is a rank-(d− 1) matrix for a properly chosen b. Thus, A can have a null-space of dimension
dim (H) − d + 1. This way, one can assign g?(xi) = Hζi,: + ei, where Hζi,: is defined as
in the proof of Theorem 4.3.1, and ei are arbitrary vectors in the null-space of A, for all
i = 1, . . . , n. �

This result implies that if the Manifold Mixup loss is minimized, then the representation
of each class lies on a subspace of dimension dim (H) − d + 1. In the extreme case where
dim (H) = d−1, each class representation will collapse to a single point, meaning that hidden
representations would not change in any direction, for each class-conditional manifold. In the
more general case with larger dim (H), the majority of directions in H-space will be empty
in the class-conditional manifold.

4.3.2. Empirical Investigation of Flattening

We now show that the “flattening” theory that we have just developed also holds for
real neural networks networks trained on real data. To this end, we trained a collection of
fully-connected neural networks on the MNIST dataset using multiple regularizers, including
Manifold Mixup. When using Manifold Mixup, we mixed representations at a single, fixed
hidden layer per network. After training, we performed the Singular Value Decomposition
(SVD) of the hidden representations of each network, and analyzed their spectrum decay.
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More specifically, we computed the largest singular value per class, as well as the sum
of the all other singular values. We computed these statistics at the first hidden layer for
all networks and regularizers. For the largest singular value, we obtained: 51.73 (baseline),
33.76 (weight decay), 28.83 (dropout), 33.46 (input mixup), and 31.65 (manifold mixup). For
the sum of all the other singular values, we obtained: 78.67 (baseline), 73.36 (weight decay),
77.47 (dropout), 66.89 (input mixup), and 40.98 (manifold mixup). Therefore, weight decay,
dropout, and input mixup all reduce the largest singular value, but only Manifold Mixup
achieves a reduction of the sum of the all other singular values (e.g. flattening).

4.3.3. Why is Flattening Representations Desirable?

We have presented evidence to conclude that Manifold Mixup leads to flatter class-specific
representations, and that such flattening is not accomplished by other regularizers.

But why is this flattening desirable? First, it means that the hidden representations
computed from our data occupy a much smaller volume. Thus, a randomly sampled hidden
representation within the convex hull spanned by the data in this space is more likely to
have a classification score with lower confidence (higher entropy). Second, compression has
been linked to generalization in the information theory literature (Tishby & Zaslavsky, 2015;
Shwartz-Ziv & Tishby, 2017). Third compression has been been linked to generalization
empirically in the past by work which minimizes mutual information between the features
and the inputs as a regularizer (Belghazi et al., 2018; Alemi et al., 2017; Achille & Soatto,
2018).

4.4. Related Work
Regularization is a major area of research in machine learning. Manifold Mixup is a

generalization of Input Mixup, the idea of building random interpolations between training
examples and perform the same interpolation for their labels (Zhang et al., 2018c; Tokozume
et al., 2018b).

Intriguingly, our experiments show that Manifold Mixup changes the representations
associated to the layers before and after the mixing operation, and that this effect is crucial
to achieve good results (Section 4.5.1). This suggests that Manifold Mixup works differently
than Input Mixup.

Another line of research closely related to Manifold Mixup involves regularizing deep
networks by perturbing their hidden representations. These methods include dropout (Hinton
et al., 2012), batch normalization (Ioffe & Szegedy, 2015b), and the information bottleneck
(Alemi et al., 2017). Notably, (Hinton et al., 2012) and (Ioffe & Szegedy, 2015b) demonstrated
that regularizers that work well in the input space can also be applied to the hidden layers
of a deep network, often to further improve results. We believe that Manifold Mixup is a
complimentary form of regularization.

Zhao & Cho (2018) explored improving adversarial robustness by classifying points using
a function of the nearest neighbors in a fixed feature space. This involves applying mixup
between each set of nearest neighbor examples in that feature space. The similarity between
(Zhao & Cho, 2018) and Manifold Mixup is that both consider linear interpolations of hidden
representations with the same interpolation applied to their labels. However, an important
difference is that Manifold Mixup backpropagates gradients through the earlier parts of the
network (the layers before the point where mixup is applied), unlike (Zhao & Cho, 2018). In
Section 4.3 we explain how this discrepancy significantly affects the learning process.
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Table 1. Classification errors on (a) CIFAR-10 and (b) CIFAR-100. We include results from
(Zhang et al., 2018c)† and (Guo et al., 2016)‡. Standard deviations over five repetitions.

PreActResNet18 Test Error (%) Test NLL

No Mixup 4.83± 0.066 0.190± 0.003

AdaMix‡ 3.52 NA

Input Mixup† 4.20 NA

Input Mixup (α = 1) 3.82± 0.048 0.186± 0.004

Manifold Mixup (α = 2) 2.95± 0.046 0.137± 0.003

PreActResNet34

No Mixup 4.64± 0.072 0.200± 0.002

Input Mixup (α = 1) 2.88± 0.043 0.176± 0.002

Manifold Mixup (α = 2) 2.54± 0.047 0.118± 0.002

Wide-Resnet-28-10

No Mixup 3.99± 0.118 0.162± 0.004

Input Mixup (α = 1) 2.92± 0.088 0.173± 0.001

Manifold Mixup (α = 2) 2.55± 0.024 0.111± 0.001

(a) CIFAR-10

PreActResNet18 Test Error (%) Test NLL

No Mixup 24.01± 0.376 1.189± 0.002

AdaMix‡ 20.97 n/a

Input Mixup† 21.10 n/a

Input Mixup (α = 1) 22.11± 0.424 1.055± 0.006

Manifold Mixup (α = 2) 20.34± 0.525 0.912± 0.002

PreActResNet34

No Mixup 23.55± 0.399 1.189± 0.002

Input Mixup (α = 1) 20.53± 0.330 1.039± 0.045

Manifold Mixup (α = 2) 18.35± 0.360 0.877± 0.053

Wide-Resnet-28-10

No Mixup 21.72± 0.117 1.023± 0.004

Input Mixup (α = 1) 18.89± 0.111 0.927± 0.031

Manifold Mixup (α = 2) 18.04± 0.171 0.809± 0.005

(b) CIFAR-100

AdaMix (Guo et al., 2018a) is another related method which attempts to learn better
mixing distributions to avoid overlap. AdaMix performs interpolations only on the input
space, reporting that their method degrades significantly when applied to hidden layers. Thus,
AdaMix may likely work for different reasons than Manifold Mixup, and perhaps the two
are complementary. AgrLearn (Guo et al., 2018b) adds an information bottleneck layer to
the output of deep neural networks. AgrLearn leads to substantial improvements, achieving
2.45% test error on CIFAR-10 when combined with Input Mixup (Zhang et al., 2018c). As
AgrLearn is complimentary to Input Mixup, it may be also complimentary to Manifold Mixup.
Wang et al. (2018a) proposed an interpolation exclusively in the output space, does not
backpropagate through the interpolation procedure, and has a very different framing in terms
of the Euler-Lagrange equation (Equation 2) where the cost is based on unlabeled data (and
the pseudolabels at those points) and the labeled data provide constraints.

4.5. Experiments
We now turn to the empirical evaluation of Manifold Mixup. We will study its regulariza-

tion properties in supervised learning (Section 4.5.1), as well as how it affects the robustness
of neural networks to novel input deformations (Section 4.5.2), and adversarial examples
(Section 4.5.3).

4.5.1. Generalization on Supervised Learning

We train a variety of residual networks (He et al., 2016b) using different regularizers:
no regularization, AdaMix, Input Mixup, and Manifold Mixup. We follow the training
procedure of (Zhang et al., 2018c), which is to use SGD with momentum, a weight decay
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Table 2. Classification errors and
neg-log-likelihoods on SVHN. We run each

experiment five times.

PreActResNet18 Test Error (%) Test NLL

No Mixup 2.89± 0.224 0.136± 0.001
Input Mixup (α = 1) 2.76± 0.014 0.212± 0.011
Manifold Mixup (α = 2) 2.27± 0.011 0.122± 0.006

PreActResNet34

No Mixup 2.97± 0.004 0.165± 0.003
Input Mixup (α = 1) 2.67± 0.020 0.199± 0.009
Manifold Mixup (α = 2) 2.18± 0.004 0.137± 0.008

Wide-Resnet-28-10

No Mixup 2.80± 0.044 0.143± 0.002
Input Mixup (α = 1) 2.68± 0.103 0.184± 0.022
Manifold Mixup (α = 2) 2.06± 0.068 0.126± 0.008

Table 3. Accuracy on
TinyImagenet.

PreActResNet18 top-1 top-5

No Mixup 55.52 71.04
Input Mixup (α = 0.2) 56.47 71.74
Input Mixup (α = 0.5) 55.49 71.62
Input Mixup (α = 1.0) 52.65 70.70
Input Mixup (α = 2.0) 44.18 68.26
Manifold Mixup (α = 0.2) 58.70 73.59
Manifold Mixup (α = 0.5) 57.24 73.48
Manifold Mixup (α = 1.0) 56.83 73.75
Manifold Mixup (α = 2.0) 48.14 71.69

of 10−4, and a step-wise learning rate decay. We show results for the CIFAR-10 (Table 1a),
CIFAR-100 (Table 1b), SVHN (Table 2), and TinyImageNET (Table 3) datasets. Manifold
Mixup outperforms vanilla training, AdaMix, and Input Mixup across datasets and model
architectures. Furthermore, Manifold Mixup leads to models with significantly better Negative
Log-Likelihood (NLL) on the test data. In the case of CIFAR-10, Manifold Mixup models
achieve as high as 50% relative improvement of test NLL.

As a complimentary experiment to better understand why Manifold Mixup works, we
zeroed gradient updates immediately after the layer where mixup is applied. On the dataset
CIFAR-10 and using a PreActResNet18, this led to a 4.33% test error, which is worse than our
results for Input Mixup and Manifold Mixup, yet better than the baseline. Because Manifold
Mixup selects the mixing layer at random, each layer is still being trained even when zeroing
gradients, although it will receive less updates. This demonstrates that Manifold Mixup
improves performance by updating the layers both before and after the mixing operation.

We also compared Manifold Mixup against other strong regularizers. For each regularizer,
we selected the best hyper-parameters using a validation set. The training of PreActResNet50
on CIFAR-10 for 600 epochs led to the following test errors (%): no regularization (4.96±0.19),
Dropout (5.09± 0.09), Cutout (Devries & Taylor, 2017) (4.77± 0.38), Mixup (4.25± 0.11),
and Manifold Mixup (3.77 ± 0.18). (Note that the results in Table 1 for PreActResNet
were run for 1200 epochs, and therefore are not directly comparable to the numbers in this
paragraph.)

To provide further evidence about the quality of representations learned with Manifold
Mixup, we applied a k-nearest neighbour classifier on top of the features extracted from a
PreActResNet18 trained on CIFAR-10. We achieved test errors of 6.09% (vanilla training),
5.54% (Input Mixup), and 5.16% (Manifold Mixup).

Finally, Table 6 and Table 5 show the sensitivity of Manifold Mixup to the hyper-parameter
α and the set of eligible layers S. (These results are based on training a PreActResNet18 for
2000 epochs, so these numbers are not exactly comparable to the ones in Table 1.) This shows
that Manifold Mixup is robust with respect to choice of hyper-parameters, with improvements
for many choices.
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Table 4. Test accuracy on novel deformations. All models trained on normal CIFAR-100.

Deformation No
Mixup

Input Mixup
(α = 1)

Input Mixup
(α = 2)

Manifold Mixup
(α = 2)

Rotation U(−20°,20°) 52.96 55.55 56.48 60.08
Rotation U(−40°,40°) 33.82 37.73 36.78 42.13
Shearing U(−28.6°, 28.6°) 55.92 58.16 60.01 62.85
Shearing U(−57.3°, 57.3°) 35.66 39.34 39.7 44.27
Zoom In (60% rescale) 12.68 13.75 13.12 11.49
Zoom In (80% rescale) 47.95 52.18 50.47 52.70
Zoom Out (120% rescale) 43.18 60.02 61.62 63.59
Zoom Out (140% rescale) 19.34 41.81 42.02 45.29

Table 5. Test accuracy Manifold Mixup for
different sets of eligible layers S on CIFAR.

S CIFAR-10 CIFAR-100

{0, 1, 2} 97.23 79.60
{0, 1} 96.94 78.93
{0, 1, 2, 3} 96.92 80.18
{1, 2} 96.35 78.69
{0} 96.73 78.15
{1, 2, 3} 96.51 79.31
{1} 96.10 78.72
{2, 3} 95.32 76.46
{2} 95.19 76.50
{} 95.27 76.40

Table 6. Test accuracy (%) of Input Mixup
and Manifold Mixup for different α on

CIFAR-10.

α Input Mixup Manifold Mixup

0.5 96.68 96.76
1.0 96.75 97.00
1.2 96.72 97.03
1.5 96.84 97.10
1.8 96.80 97.15
2.0 96.73 97.23

4.5.2. Generalization to Novel Deformations

To further evaluate the quality of representations learned with Manifold Mixup, we train
PreActResNet34 models on the normal CIFAR-100 training split, but test them on novel
(not seen during training) deformations of the test split. These deformations include random
rotations, random shearings, and different rescalings. Better representations should generalize
to a larger variety of deformations. Table 4 shows that networks trained using Manifold Mixup
are the most able to classify test instances subject to novel deformations, which suggests the
learning of better representations.

4.5.3. Robustness to Adversarial Examples

Adversarial robustness is related to the position of the decision boundary relative to the
data. Because Manifold Mixup only considers some directions around data points (those
corresponding to interpolations), we would not expect the model to be robust to adversarial
attacks that consider any direction around each example. However, since Manifold Mixup
expands the set of examples seen during training, an intriguing hypothesis is that these
expansions overlap with the set of possible adversarial examples, providing some degree of
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Table 7. Test accuracy on white-box FGSM adversarial examples on CIFAR-10 and
CIFAR-100 (using a PreActResNet18 model) and SVHN (using a WideResNet20-10 model).

We include the results of (Madry et al., 2018)†.

CIFAR-10 FGSM

No Mixup 36.32
Input Mixup (α = 1) 71.51
Manifold Mixup (α = 2) 77.50
PGD training (7-steps)† 56.10

CIFAR-100 FGSM

Input Mixup (α = 1) 40.7
Manifold Mixup (α = 2) 44.96
SVHN FGSM

No Mixup 21.49
Input Mixup (α = 1) 56.98
Manifold Mixup (α = 2) 65.91
PGD training (7-steps)† 72.80

defense. If this hypothesis is true, Manifold Mixup would force adversarial attacks to consider
a wider set of directions, leading to a larger computational expense for the attacker. To
explore this, we consider the Fast Gradient Sign Method (FGSM, Goodfellow et al., 2015),
which constructs adversarial examples in one single step, thus considering a relatively small
subset of directions around examples. The performance of networks trained using Manifold
Mixup against FGSM attacks is given in Table 7. One challenge in evaluating robustness
against adversarial examples is the “gradient masking problem”, in which a defense succeeds
only by reducing the quality of the gradient signal. (Athalye et al., 2018) explored this issue
in depth, and proposed running an unbounded search for a large number of iterations to
confirm the quality of the gradient signal. Manifold Mixup passes this sanity check. While
we found that using Manifold Mixup improves the robustness to single-step FGSM attack
(especially over Input Mixup), we found that Manifold Mixup did not significantly improve
robustness against stronger, multi-step attacks such as PGD (Madry et al., 2018).

4.6. Connections to Neuroscience and Credit Assignment
We present an intriguing connection between Manifold Mixup and a challenging problem in

neuroscience. At a high level, we can imagine systems in the brain which compute predictions
from a stream of changing inputs, and pass these predictions onto other modules which
return some kind of feedback signal (Lee et al., 2015; Scellier & Bengio, 2017; Whittington &
Bogacz, 2017; Bartunov et al., 2018). For instance, these feedback signals can be gradients or
targets for prediction. There is a delay between the output of the prediction and the point in
time in which the feedback can return to the system after having travelled across the brain.
Moreover, this delay could be noisy and could differ based on the type of the prediction or
other conditions in the brain, as well as depending on which paths are considered (there are
many skip connections between areas). This means that it could be very difficult for a system
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in the brain to establish a clear correspondence between its outputs and the feedback signals
that it receives over time.

While it is preliminary, an intriguing hypothesis is that part of how systems in the brain
could be working around this limitation is by averaging their states and feedback signals
across multiple points in time. The empirical results from mixup suggest that such a technique
may not just allow successful computation, but also act as a potent regularizer. Manifold
Mixup strengthens this result by showing that the same regularization effect can be achieved
from mixing in higher level hidden representations.

4.7. Conclusion
Deep neural networks often give incorrect, yet extremely confident predictions on examples

that differ from those seen during training. This problem is one of the most central challenges
in deep learning. We have investigated this issue from the perspective of the representations
learned by deep neural networks. We observed that vanilla neural networks spread the training
data widely throughout the representation space, and assign high confidence predictions
to almost the entire volume of representations. This leads to major drawbacks since the
network will provide high-confidence predictions to examples off the data manifold, thus
lacking enough incentives to learn discriminative representations about the training data. To
address these issues, we introduced Manifold Mixup, a new algorithm to train neural networks
on interpolations of hidden representations. Manifold Mixup encourages the neural network
to be uncertain across the volume of the representation space unseen during training. This
leads to concentrating the representations of the real training examples in a low dimensional
subspace, resulting in more discriminative features. Throughout a variety of experiments, we
have shown that neural networks trained using Manifold Mixup have better generalization
in terms of error and log-likelihood, as well as better robustness to novel deformations of
the data and adversarial examples. Being easy to implement and incurring little additional
computational cost, we hope that Manifold Mixup will become a useful regularization tool
for deep learning practitioners.
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Chapter 5

Prologue to the second article

5.1. Article Details
Interpolation consistency training for semi-supervised learning. Vikas Verma,

Alex Lamb, Juho Kannala, Yoshua Bengio, David Lopez-Paz.
Interpolation Consistency Training (ICT) is a semi-supervised learning technique which

tries to improve consistency using unlabeled samples. We proposed a technique in which we
produce classification decisions (pseudolabels) for random pairs of unlabeled samples, and
then train a linear combination of those samples with soft-targets given by interpolation of
the associated pseudolabels. Additionally, we improve the accuracy of the pseudolabels by
producing them with a network with a moving average of the parameters over the training
iterates (Tarvainen & Valpola, 2017b).

5.2. Personal Contribution
. This algorithm was originally a part of the Manifold Mixup paper. After our first

submission and rejection by a conference, we noticed that reviewers did not seem to place
much emphasis on the semi-supervised learning result, so we decided to move them into their
own paper. We felt that this would lead the idea to get more attention and also felt that it
would make the description of the algorithm in both papers more straightforward and easier
to read. David Lopez-Paz reached out to us to introduce the idea of running on the two
moons semi-supervised learning dataset. Alex Lamb produced the initial successful results
on the two moon dataset. Alex Lamb and Vikas Verma developed the basic idea together,
while Vikas Verma did most of the experiments for the paper. I asked Vikas Verma and he
gave me permission to use this paper in my thesis.

5.3. Context
Interpolation Consistency Training builds on the consistency-based approach to semi-

supervised learning in which the area around unlabeled points (in some sense) are encouraged
to have similar predictions. This algorithm was originally a part of the Manifold Mixup
paper, where we found that using pseudolabels instead of the original labels also led to
improvements. ICT is a way of combining mixup with semi-supervised learning, and yielded
significant improvements on semi-supervised baselines.



Consistency-based semi-supervised learning serve as the foundation for this technique
(Chapelle et al., 2009; Tarvainen & Valpola, 2017a). While virtual adversarial training (Miyato
et al., 2018a) used adversarial perturbations, we found that using perturbations based on
linear interpolations was faster and achieved better performance.

5.4. Contributions
Our results suggest that using a richer class of perturbations (as opposed to simple gaussian

noise) improves performance on semi-supervised learning. Additionally, our perturbations
are much more non-local than what had been considered previously, as they can consist of
interpolations between completely different examples. We found that ICT solves the standard
two moon semi-supervised learning task, in which there are two crescent-shaped clusters of
data, with each only having three labeled examples. The simplest classifier which perfectly
fits just the labeled data is a linear classifier, which fails to correctly classify the ends of
the crescents. On the other hand, a classifier may obtain perfect accuracy by exploiting the
cluster assumption, which ensures that the decision boundary does not pass through the
cluster. The successful results on this task provide evidence that ICT succeeds by exploiting
the cluster assumption. We also evaluated ICT on semi-supervised CIFAR-10 and SVHN
benchmarks using a 13 layer convolutional neural network. We obtained state-of-the-art
results at the time of the ICT paper’s publication. We also found that the benefits from
using ICT greatly exceeded those obtained by using mixup (Zhang et al., 2018c) or manifold
mixup (Verma et al., 2018) on just the labeled data. We achieved these improvements using
1000, 2000, or 4000 labeled examples on CIFAR-10 and 250, 500, or 1000 labeled examples
on SVHN. We also obtained state-of-the-art semi-supervised learning results on CIFAR-10
and SVHN when using the WideResNet architecture (Zagoruyko & Komodakis, 2016a).

5.5. Research Impact
The ICT technique has been used in many subsequent SOTA works in semi-supervised

learning (Berthelot et al., 2019b,a). It has also been used in some real-world applications
such as graph neural networks in GraphMix (Verma et al., 2019b) and object detection
(Jeong et al., 2021). In GraphMix, node classification tasks were considered in which the
entire dataset is a single large graph and each example is a node. A small fraction of the
nodes are labeled while most nodes are unlabeled (and some labeled nodes are held out
as evaluation data). In the GraphMix algorithm, the pseudolabels are produced using a
moving-average network of the graph-neural-network, which has access to the entire graph.
The mixup-process is done on a per-node basis, and this student network is tasked with
predicting the pseudolabels generated using the entire graph. This achieved state-of-the-art
results on several of the most widely studied node classification tasks.
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Chapter 6

Interpolation Consistency Training

6.1. Introduction
Deep learning achieves excellent performance in supervised learning tasks where labeled

data is abundant (LeCun et al., 2015). However, labeling large amounts of data is often
prohibitive due to time, financial, and expertise constraints. As machine learning permeates an
increasing variety of domains, the number of applications where unlabeled data is voluminous
and labels are scarce increases: for instance, recognizing documents in extinct languages,
where a machine learning system has access to a few labels, produced by highly-skilled
scholars (Clanuwat et al., 2018).

The goal of Semi-Supervised Learning (SSL) (Chapelle et al., 2010) is to leverage large
amounts of unlabeled data to improve the performance of supervised learning over small
datasets. Often, SSL algorithms use unlabeled data to learn additional structure about the
input distribution. For instance, the existence of cluster structures in the input distribution
could hint the separation of samples into different labels. This is often called the cluster
assumption: if two samples belong to the same cluster in the input distribution, then they
are likely to belong to the same class. The cluster assumption is equivalent to the low-
density separation assumption: the decision boundary should lie in the low-density regions.
The equivalence is easy to infer: A decision boundary which lies in a high-density region,
will cut a cluster into two different classes, requiring that samples from different classes
lie in the same cluster; which is the violation of the cluster assumption. The low-density
separation assumption has inspired many recent consistency-regularization semi-supervised
learning techniques, including the Π-model (Sajjadi et al., 2016; Laine & Aila, 2016), temporal
ensembling (Laine & Aila, 2016), VAT (Miyato et al., 2018a), and the Mean-Teacher (Tarvainen
& Valpola, 2017b).

Consistency regularization methods for semi-supervised learning enforce the low-density
separation assumption by encouraging invariant prediction f(u) = f(u+ δ) for perturbations
u + δ of unlabeled points u. Such consistency and small prediction error can be satisfied
simultaneously if and only if the decision boundary traverses a low-density path.

Different consistency regularization techniques vary in how they choose the unlabeled
data perturbations δ. One simple alternative is to use random perturbations δ. However,
random perturbations are inefficient in high dimensions, as only a tiny proportion of input
perturbations are capable of pushing the decision boundary into low-density regions. To
alleviate this issue, Virtual Adversarial Training or VAT (Miyato et al., 2018a), searches for
small perturbations δ that maximize the change in the prediction of the model. This involves



(a) After 100 updates (b) After 500 updates (c) After 1000 updates

Fig. 1. Interpolation Consistency Training (ICT) applied to the “two moons” dataset, when
three labels per class (large dots) and a large amount of unlabeled data (small dots) is

available. When compared to supervised learning (red), ICT encourages a decision boundary
traversing a low-density region that would better reflect the structure of the unlabeled data.
Both methods employ a multilayer perceptron with three hidden ReLU layers of twenty

neurons.

computing the gradient of the predictor with respect to its input, which can be expensive
for large neural network models. More specifically, the backpropagated gradients need to be
computed twice: the first time to produce the adversarial perturbation and the second time
to produce gradients for updating the parameters.

This additional computation makes VAT (Miyato et al., 2018a) and other related methods
such as (Park et al., 2018) less appealing in situations where unlabeled data is available
in large quantities. Furthermore, recent research has shown that training with adversarial
perturbations can hurt generalization performance (Nakkiran, 2019; Tsipras et al., 2018).

To overcome the above limitations, we propose the Interpolation Consistency Training
(ICT), an efficient consistency regularization technique for state-of-the-art semi-supervised
learning. In a nutshell, ICT regularizes semi-supervised learning by encouraging consistent
predictions f(αu1 + (1− α)u2) = αf(u1) + (1− α)f(u2) at interpolations αu1 + (1− α)u2 of
unlabeled points u1 and u2.

Our experimental results on the benchmark datasets CIFAR10 and SVHN and neural
network architectures CNN-13 (Laine & Aila, 2016; Miyato et al., 2018a; Tarvainen & Valpola,
2017b; Park et al., 2018; Luo et al., 2018b) and WRN28-2 (Oliver et al., 2018) outperform
(or are competitive with) the state-of-the-art methods. ICT is simpler and more computation
efficient than several of the recent SSL algorithms, making it an appealing approach to SSL.
Figure 1 illustrates how ICT learns a decision boundary traversing a low density region in
the “two moons” problem.

6.2. Interpolation Consistency Training
Given a mixup (Zhang et al., 2018b) operation:

Mixλ(a, b) = λ · a+ (1− λ) · b,
Interpolation Consistency Training(ICT) trains a prediction model fθ to provide consistent
predictions at interpolations of unlabeled points:

fθ(Mixλ(uj, uk)) ≈ Mixλ(fθ′(uj), fθ′(uk)),

where θ′ is a moving average of θ (Figure 2). But, why do interpolations between unlabeled
samples provide a good consistency perturbation for semi-supervised training?
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Fig. 2. Interpolation Consistency Training (ICT) learns a student network fθ in a
semi-supervised manner. To this end, ICT uses a mean-teacher fθ′ , where the teacher
parameters θ′ are an exponential moving average of the student parameters θ. During
training, the student parameters θ are updated to encourage consistent predictions

fθ(Mixλ(uj, uk)) ≈ Mixλ(fθ′(uj), fθ′(uk)), and correct predictions for labeled examples xi.

To begin with, observe that the most useful samples on which the consistency regularization
should be applied are the samples near the decision boundary. Adding a small perturbation
δ to such low-margin unlabeled samples uj is likely to push uj + δ over the other side of
the decision boundary. This would violate the low-density separation assumption, making
uj + δ a good place to apply consistency regularization. These violations do not occur at
high-margin unlabeled points that lie far away from the decision boundary.

Back to low-margin unlabeled points uj, how can we find a perturbation δ such that uj
and uj + δ lie on opposite sides of the decision boundary? Although tempting, using random
perturbations is an inefficient strategy, since the subset of directions approaching the decision
boundary is a tiny fraction of the ambient space.

Instead, consider interpolations uj + δ = Mixλ(uj, uk) towards a second randomly selected
unlabeled examples uk. Then, the two unlabeled samples uj and uk can either:

(1) lie in the same cluster,
(2) lie in different clusters but belong to the same class,
(3) lie on different clusters and belong to the different classes.
Assuming the cluster assumption, the probability of (1) decreases as the number of classes

increases. The probability of (2) is low if we assume that the number of clusters for each
class is balanced. Finally, the probability of (3) is the highest. Then, assuming that one of
(uj, uk) lies near the decision boundary (it is a good candidate for enforcing consistency),
it is likely (because of the high probability of (3)) that the interpolation towards uk points
towards a region of low density, followed by the cluster of the other class. Since this is a good
direction to move the decision, the interpolation is a good perturbation for consistency-based
regularization.
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Our exposition has argued so far that interpolations between random unlabeled sam-
ples are likely to fall in low-density regions. Thus, such interpolations are good locations
where consistency-based regularization could be applied. But how should we label those
interpolations? Unlike random or adversarial perturbations of single unlabeled examples
uj, our scheme involves two unlabeled examples (uj, uk). Intuitively, we would like to push
the decision boundary as far as possible from the class boundaries, as it is well known that
decision boundaries with large margin generalize better (Shawe-Taylor et al., 1996). In the
supervised learning setting, one method to achieve large-margin decision boundaries is mixup
(Zhang et al., 2018b). In mixup, the decision boundary is pushed far away from the class
boundaries by enforcing the prediction model to change linearly in between samples. This is
done by training the model fθ to predict Mixλ(y, y′) at location Mixλ(x, x′), for random pairs
of labeled samples ((x, y), (x′, y′)). Here we extend mixup to the semi-supervised learning
setting by training the model fθ to predict the “fake label” Mixλ(fθ(uj), fθ(uk)) at location
Mixλ(uj, uk). In order to follow a more conservative consistent regularization, we encourage
the model fθ to predict the fake label Mixλ(fθ′(uj), fθ′(uk)) at location Mixλ(uj, uk), where
θ′ is a moving average of θ, also known as a mean-teacher (Tarvainen & Valpola, 2017b).

We are now ready to describe in detail the proposed Interpolation Consistency Training
(ICT). Consider access to labeled samples (xi, yi) ∼ DL, drawn from the joint distribution
P (X, Y ). Also, consider access to unlabeled samples uj, uk ∼ DUL, drawn from the marginal
distribution P (X) = P (X,Y )

P (Y |X)
Our learning goal is to train a model fθ, able to predict Y from

X. By using stochastic gradient descent, at each iteration t, update the parameters θ to
minimize

L = LS + w(t) · LUS
where LS is the usual cross-entropy supervised learning loss over labeled samples DL, and
LUS is our new interpolation consistency regularization term. These two losses are computed
on top of (labeled and unlabeled) minibatches, and the ramp function w(t) increases the
importance of the consistency regularization term LUS after each iteration. To compute
LUS, sample two minibatches of unlabeled points uj and uk, and compute their fake labels
ŷj = fθ′(uj) and ŷk = fθ′(uk), where θ′ is an moving average of θ (Tarvainen & Valpola,
2017b). Second, compute the interpolation um = Mixλ(uj, uk), as well as the model prediction
at that location, ŷm = fθ(um). Third, update the parameters θ as to bring the prediction
ŷm closer to the interpolation of the fake labels Mixλ(ŷj, ŷk). The discrepancy between the
prediction ŷm and Mixλ(ŷj, ŷk) can be measured using any loss; in our experiments, we use
the mean squared error. Following (Zhang et al., 2018b), on each update we sample a random
λ from Beta(α, α).

In sum, the population version of our ICT term can be written as:

LUS = E
uj ,uk∼P (X)

E
λ∼Beta(α,α)

`(fθ(Mixλ(uj, uk)),Mixλ(fθ′(uj), fθ′(uk))) (6.1)

ICT is summarized in Figure 2 and Algorithm 1.

6.3. Experiments
6.3.1. Datasets

We follow the common practice in semi-supervised learning literature (Laine & Aila, 2016;
Miyato et al., 2018a; Tarvainen & Valpola, 2017b; Park et al., 2018; Luo et al., 2018b) and
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Algorithm 1 The Interpolation Consistency Training (ICT) Algorithm
Require: fθ(x): neural network with trainable parameters θ
Require: fθ′(x) mean teacher with θ′ equal to moving average of θ
Require: DL(x, y): collection of the labeled samples
Require: DUL(x): collection of the unlabeled samples
Require: α: rate of moving average
Require: w(t): ramp function for increasing consistency regularization
Require: T : total number of iterations
Require: Q: random distribution on [0,1]
Require: Mixλ(a, b) = λa+ (1− λ)b.
for t = 1, . . . , T do
Sample {(xi, yi)}Bi=1 ∼ DL(x, y) . Sample labeled minibatch
LS = CrossEntropy({(fθ(xi), yi)}Bi=1) . Supervised loss (cross-entropy)
Sample {uj}Uj=1, {uk}Uk=1 ∼ DUL(x) . Sample two unlabeled minibatchs
{ŷj}Uj=1 = {fθ′(uj)}Uj=1, {ŷk}Uk=1 = {fθ′(uk)}Uk=1 . Compute psuedo labels
Sample λ ∼ Q . sample an interpolation coefficient
(um = Mixλ(uj, uk), ŷm = Mixλ(ŷj, ŷk)) . Compute interpolation
LUS = ConsistencyLoss({(fθ(um), ŷm)}Um=1) . e.g., mean squared error
L = LS + w(t) · LUS . Total Loss
gθ ← ∇θL . Compute Gradients
θ′ = αθ′ + (1− α)θ . Update moving average of parameters
θ ← Step(θ, gθ) . e.g. SGD, Adam

end for
return θ

conduct experiments using the CIFAR-10 and SVHN datasets, where only a fraction of the
training data is labeled, and the remaining data is used as unlabeled data. We followed the
standardized procedures laid out by (Oliver et al., 2018) to ensure a fair comparison.

The CIFAR-10 dataset consists of 60000 color images each of size 32× 32, split between
50K training and 10K test images. This dataset has ten classes, which include images of
natural objects such as cars, horses, airplanes and deer. The SVHN dataset consists of 73257
training samples and 26032 test samples each of size 32 × 32. Each example is a close-up
image of a house number (the ten classes are the digits from 0-9).

We adopt the standard data-augmentation and pre-processing scheme which has become
standard practice in the semi-supervised learning literature (Sajjadi et al., 2016; Laine &
Aila, 2016; Tarvainen & Valpola, 2017b; Miyato et al., 2018a; Luo et al., 2018b; Athiwaratkun
et al., 2019). More specifically, for CIFAR-10, we first zero-pad each image with 2 pixels
on each side. Then, the resulting image is randomly cropped to produce a new 32 × 32
image. Next, the image is horizontally flipped with probability 0.5, followed by per-channel
standardization and ZCA preprocessing. For SVHN, we zero-pad each image with 2 pixels
on each side and then randomly crop the resulting image to produce a new 32× 32 image,
followed by zero-mean and unit-variance image whitening.
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6.3.2. Models

We conduct our experiments using CNN-13 and Wide-Resnet-28-2 architectures. The
CNN-13 architecture has been adopted as the standard benchmark architecture in recent
state-of-the-art SSL methods (Laine & Aila, 2016; Tarvainen & Valpola, 2017b; Miyato et al.,
2018a; Park et al., 2018; Luo et al., 2018b). We use its variant (i.e., without additive Gaussian
noise in the input layer) as implemented in (Athiwaratkun et al., 2019). We also removed the
Dropout noise to isolate the improvement achieved through our method. Other SSL methods
in Table 1 and Table 2 use the Dropout noise, which gives them more regularizing capabilities.
Despite this, our method outperforms other methods in several experimental settings.

(Oliver et al., 2018) performed a systematic study using Wide-Resnet-28-2 (Zagoruyko &
Komodakis, 2016b), a specific residual network architecture, with extensive hyperparameter
search to compare the performance of various consistency-based semi-supervised algorithms.
We evaluate ICT using this same setup as a mean towards a fair comparison to these
algorithms.

6.3.3. Implementation details

We used the SGD with nesterov momentum optimizer for all of our experiments. For
the experiments in Table 1 and Table 2, we run the experiments for 400 epochs. For the
experiments in Table 3, we run experiments for 600 epochs. The initial learning rate was set
to 0.1, which is then annealed using the cosine annealing technique proposed in (Loshchilov
& Hutter, 2016) and used by (Tarvainen & Valpola, 2017b). The momentum parameter was
set to 0.9. We used an L2 regularization coefficient 0.0001 and a batch-size of 100 in our
experiments.

In each experiment, we report mean and standard deviation across three independently
run trials.

The consistency coefficient w(t) is ramped up from its initial value 0.0 to its maximum value
at one-fourth of the total number of epochs using the same sigmoid schedule of (Tarvainen &
Valpola, 2017b). We used MSE loss for computing the consistency loss following (Laine &
Aila, 2016; Tarvainen & Valpola, 2017b). We set the decay coefficient for the mean-teacher
to 0.999 following (Tarvainen & Valpola, 2017b).

We conduct hyperparameter search over the two hyperparameters introduced by our
method: the maximum value of the consistency coefficient w(t) (we searched over the values
in {1.0, 10.0, 20.0, 50.0, 100.0}) and the parameter α of distribution Beta(α, α) (we searched
over the values in {0.1, 0.2, 0.5, 1.0}). We select the best hyperparameter using a validation
set of 5000 and 1000 labeled samples for CIFAR-10 and SVHN respectively. This size of the
validation set is the same as that used in the other methods compared in this work.

We note the in all our experiments with ICT, to get the supervised loss, we perform
the interpolation of labeled sample pair and their corresponding labels (as in mixup (Zhang
et al., 2018b)). To make sure, that the improvements from ICT are not only because of the
supervised mixup loss, we provide the direct comparison of ICT against supervised mixup
and Manifold Mixup training in the Table 1 and Table 2.

6.3.4. Results

We provide the results for CIFAR10 and SVHN datasets using CNN-13 architecture in
the Table 1 and Table 2, respectively.
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Table 1. Error rates (%) on CIFAR-10 using CNN-13 architecture. We ran three trials for
ICT.

Model 1k labeled
50k unlabeled

2k labeled
50k unlabeled

4k labeled
50k unlabeled

Supervised 39.95± 0.75 31.16± 0.66 21.75± 0.46
Supervised (Mixup) 36.48± 0.15 26.24± 0.46 19.67± 0.16
Supervised (Manifold Mixup) 34.58± 0.37 25.12± 0.52 18.59± 0.18

Π model (Laine & Aila, 2016) 31.65± 1.20 17.57± 0.44 12.36± 0.31
TempEns
(Laine & Aila, 2016) 23.31± 1.01 15.64± 0.39 12.16± 0.24

Mean Teacher
(Tarvainen & Valpola, 2017b) 21.55± 1.48 15.73± 0.31 12.31± 0.28

VAT (Miyato et al., 2018a) – – 11.36± NA
VAT+Ent
(Miyato et al., 2018a) – – 10.55± NA

VAdD (Park et al., 2018) – – 11.32± 0.11
SNTG (Luo et al., 2018b) 18.41± 0.52 13.64± 0.32 10.93± 0.14
MT+ Fast SWA
(Athiwaratkun et al., 2019) 15.58± NA 11.02± NA 9.05± NA

ICT 15.48± 0.78 9.26± 0.09 7.29± 0.02

Table 2. Error rates (%) on SVHN using CNN-13 architecture. We ran three trials for ICT.

Model 250 labeled
73257 unlabeled

500 labeled
73257 unlabeled

1000 labeled
73257 unlabeled

Supervised 40.62± 0.95 22.93± 0.67 15.54± 0.61
Supervised (Mixup) 33.73± 1.79 21.08± 0.61 13.70± 0.47
Supervised ( Manifold Mixup) 31.75± 1.39 20.57± 0.63 13.07± 0.53

Π model (Laine & Aila, 2016) 9.93± 1.15 6.65± 0.53 4.82± 0.17
TempEns (Laine & Aila, 2016) 12.62± 2.91 5.12± 0.13 4.42± 0.16
MT (Tarvainen & Valpola, 2017b) 4.35± 0.50 4.18± 0.27 3.95± 0.19
VAT (Miyato et al., 2018a) – – 5.42± NA
VAT+Ent
(Miyato et al., 2018a) – – 3.86± NA

VAdD (Park et al., 2018) – – 4.16± 0.08
SNTG (Luo et al., 2018b) 4.29± 0.23 3.99± 0.24 3.86± 0.27

ICT 4.78± 0.68 4.23± 0.15 3.89± 0.04

To justify the use of a SSL algorithm, one must compare its performance against the state-
of-the-art supervised learning algorithm (Oliver et al., 2018). To this end, we compare our
method against two state-of-the-art supervised learning algorithms (Zhang et al., 2018b; Verma
et al., 2018), denoted as Supervised(Mixup) and Supervised(Manifold Mixup), respectively in
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Table 3. Results on CIFAR10 (4000 labels) and SVHN (1000 labels) (in test error %). All
results use the same standardized architecture (WideResNet-28-2). Each experiment was run
for three trials. † refers to the results reported in (Oliver et al., 2018). We did not conduct
any hyperparameter search and used the best hyperparameters found in the experiments of

Table 1 and 2 for CIFAR10(4000 labels) and SVHN(1000 labels)

SSL Approach
CIFAR10

4000 labeled
50000 unlabeled

SVHN
1000 labeled

73257 unlabeled

Supervised † 20.26± 0.38 12.83± 0.47
Mean-Teacher † 15.87± 0.28 5.65± 0.47
VAT † 13.86± 0.27 5.63± 0.20
VAT-EM † 13.13± 0.39 5.35± 0.19

ICT 7.66± 0.17 3.53± 0.07

Table 1 and 2. ICT method passes this test with a wide margin, often resulting in a two-fold
reduction in the test error in the case of CIFAR10 (Table 1) and a four-fold reduction in the
case of SVHN (Table 2)

Furthermore, in Table 1, we see that ICT improves the test error of other strong SSL
methods. For example, in the case of 4000 labeled samples, it improves the test error of
best-reported method by ∼ 25%. The best values of the hyperparameter max-consistency
coefficient for 1000, 2000 and 4000 labels experiments were found to be 10.0, 100.0 and 100.0
respectively and the best values of the hyperparameter α for 1000, 2000 and 4000 labels
experiments were found to be 0.2, 1.0 and 1.0 respectively. In general, we observed that for
less number of labeled data, lower values of max-consistency coefficient and α obtained better
validation errors.

For SVHN, the test errors obtained by ICT are competitive with other state-of-the-art
SSL methods (Table 2). The best values of the hyperparameters max-consistency coefficient
and α were found to be 100 and 0.1 respectively, for all the ICT results reported in the
Table 2.

(Oliver et al., 2018) performed extensive hyperparameter search for various consistency
regularization SSL algorithm using the WRN-28-2 and they report the best test errors found
for each of these algorithms. For a fair comparison of ICT against these SSL algorithms,
we conduct experiments on WRN-28-2 architecture. The results are shown in Table 3. ICT
achieves improvement over other methods both for the CIFAR10 and SVHN datasets.

We note that unlike other SSL methods of Table 1, Table 2 and Table 3, we do not use
Dropout regularizer in our implementation of CNN-13 and WRN-28-2. Using Dropout along
with the ICT may further reduce the test error.

6.3.5. Ablation Study

• Effect of not using the mean-teacher in ICT: We note that Π-model, VAT and VAdD
methods in Table 1 and Table 2 do not use a mean-teacher to make predictions
on the unlabeled data. Although the mean-teacher (Tarvainen & Valpola, 2017b)
used in ICT does not incur any significant computation cost, one might argue that a
more direct comparison with Π-model, VAT and VAdD methods requires not using
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a mean-teacher. To this end, we conduct an experiment on the CIFAR10 dataset,
without the mean-teacher in ICT, i.e. the prediction on the unlabeled data comes
from the network fθ(x) instead of the mean-teacher network fθ′(x) in Equation 6.1.
We obtain test errors of 19.56± 0.56%, 14.35± 0.15% and 11.19± 0.14% for 1000,
2000, 4000 labeled samples respectively (We did not conduct any hyperparameter
search for these experiments and used the best hyperparameters found in the ICT
experiments of Table 1). This shows that even without a mean-teacher, ICT has
major a advantage over methods such as VAT (Miyato et al., 2018a) and VAdD (Park
et al., 2018) that it does not require an additional gradient computation yet performs
on the same level of the test error.
• Effect of not having the mixup supervised loss: In Section 6.3.3, we noted that to get
the supervised loss, we perform the interpolation of labeled sample pair and their
corresponding labels (mixup supervised loss as in (Zhang et al., 2018b)). Will the
performance of ICT be significantly reduced by not having the mixup supervised loss?
We conducted experiments with ICT on both CIFAR10 and SVHN with the vanilla
supervised loss. For CIFAR10, we obtained test errors of 14.86 ± 0.39, 9.02 ± 0.12
and 8.23 ± 0.22 for 1000, 2000 and 4000 labeled samples respectively. We did not
conduct any hyperparameter search and used the best values of hyperparameters
(max-consistency coefficient and α) found in the experiments of the Table 1. We
observe that in the case of 1000 and 2000 labeled samples, there is no increase in the
test error (w.r.t having the mixup supervised loss), whereas in the case of 4000 labels,
the test error increases by approximately 1% . This suggests that, in the low labeled
data regimes, not having the mixup supervised loss in the ICT does not incur any
significant increase in the test error.

6.4. Related Work
This work builds on two threads of research: consistency-regularization for semi-supervised

learning and interpolation-based regularizers.
On the one hand, consistency-regularization semi-supervised learning methods (Sajjadi

et al., 2016; Laine & Aila, 2016; Tarvainen & Valpola, 2017b; Miyato et al., 2018a; Luo et al.,
2018b; Athiwaratkun et al., 2019) encourage that realistic perturbations u+ δ of unlabeled
samples u should not change the model predictions fθ(u). These methods are motivated by
the low-density separation assumption (Chapelle et al., 2010), and as such push the decision
boundary to lie in the low-density regions of the input space, achieving larger classification
margins. ICT differs from these approaches in two aspects. First, ICT chooses perturbations
in the direction of another randomly chosen unlabeled sample, avoiding expensive gradient
computations. When interpolating between distant points, the regularization effect of ICT
applies to larger regions of the input space.

On the other hand, interpolation-based regularizers (Zhang et al., 2018b; Tokozume et al.,
2018a; Verma et al., 2018) have been recently proposed for supervised learning, achieving
state-of-the-art performances across a variety of tasks and network architectures. While
(Zhang et al., 2018b; Tokozume et al., 2018a) was proposed to perform interpolations in
the input space, (Verma et al., 2018) proposed to perform interpolation also in the hidden
space representations. Furthermore, in the unsupervised learning setting, (Berthelot* et al.,
2019) proposes to measure the realism of latent space interpolations from an autoencoder to
improve its training.
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Other works have approached semi-supervised learning from the perspective of generative
models. Some have approached this from a consistency point of view, such as (Lecouat et al.,
2018), who proposed to encourage smooth changes to the predictions along the data manifold
estimated by the generative model (trained on both labeled and unlabeled samples). Others
have used the discriminator from a trained generative adversarial network (Goodfellow et al.,
2014) as a way of extracting features for a purely supervised model (Radford et al., 2015).
Still, others have used trained inference models as a way of extracting features (Dumoulin
et al., 2016b).

6.5. Conclusion
Machine learning is having a transformative impact on diverse areas, yet its application is

often limited by the amount of available labeled data. Progress in semi-supervised learning
techniques holds promise for those applications where labels are expensive to obtain. In
this paper, we have proposed a simple but efficient semi-supervised learning algorithm,
Interpolation Consistency Training(ICT), which has two advantages over previous approaches
to semi-supervised learning. First, it uses almost no additional computation, as opposed to
computing adversarial perturbations or training generative models. Second, it outperforms
strong baselines on two benchmark datasets, even without an extensive hyperparameter
tuning. As for the future work, extending ICT to interpolations not only at the input
but at hidden representations (Verma et al., 2018) could improve the performance even
further. Another direction for future work is to better understand the theoretical properties
of interpolation-based regularizers in the SSL paradigm.
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Chapter 7

Prologue to the third article

7.1. Article Details
Recurrent Independent Mechanisms. Anirudh Goyal, Alex Lamb, Jordan Hoffmann,

Shagun Sodhani, Sergey Levine, Yoshua Bengio, Bernhard Schölkopf.
Recurrent Independent Mechanisms (RIMs) is a new recurrent architecture which follows

the same input-output interface as the popular Gated Recurrent Unit (GRU) or vanilla
recurrent network. In RIMs, the hidden state is separated into K modules (each which
of which is called a RIM). Each RIM is associated with its own parameters, which can
also be seen as a block-sparse parameterization of the recurrent network. On each steps,
the RIMs all read from the input values using attention. The KA RIMs with the highest
attention scores are activated, whereas the other RIMs are deactivated, and their values
remain unchanged until the next step. The activated RIMs update their hidden states using
their own independent recurrent dynamics and then share attention with the other activated
RIMs using attention. In practice the fraction of RIMs to be activated is a fairly flexible
hyperparameter, with 25% to 75% of K generally working well (with higher values often
being easier to optimize, and lower values having better generalization).

7.2. Personal Contribution
Anirudh Goyal had the initial idea of separating a recurrent network into multiple blocks

which are competitive. Alex Lamb had the specific idea for how to do competition (through
use of the input attention mechanism) and wrote the initial implementation, along with the
first experiments showing systematic generalization on the copying task. I also did a significant
amount of the writing and creation of the figure. Anirudh Goyal did the experiments on
reinforcement learning. I asked Anirudh Goyal and he agreed that I could use this paper in
my thesis.

7.3. Context
This paper proposes a new architecture for learning more structured recurrent neural net-

works. The separation of the hidden state into multiple mechanisms which only communicate
via attention is related to the idea of transformers, but an important difference is that the
mechanisms are recurrent, have separate parameters, and compete to access the input on
each step.



Separation of recurrent networks into multiple components has been studied before. In
the IndRNN (Li et al., 2018b), the recurrent weight matrix is applied as an elementwise
multiplication, keeping the recurrent state well separate, and allowing interaction between
units to occur only in the processing between layers. This shares the idea of having a
structured recurrent weight with RIMs, yet this factorized transition separates all units,
rather than separating blocks of units.

The selective activation idea in RIMs has also been explored before in deep learning.
Neural Module Networks (Andreas et al., 2016) also explored the idea of having of having
structured neural networks with dynamic activation patterns, but they used a parse tree to
determine this activation pattern rather than learning it end-to-end. Learning independent
causal mechanisms has also been explored using competition between experts in image
generation (Parascandolo et al., 2018b).

7.4. Contributions
This technique shows very strong systematic generalization on tasks which follow its

assumptions closely. In particular, it shows improvement where the underlying data dis-
tribution is generated from many processes which only interact sparingly, and where only
a subset are active on each time step. One example of where this improves results is in a
sequence learning task where a sequence must be memorized by the model, retained for a
certain number of “waiting” steps, and then produced as output. If the number of waiting
steps changes from the training phase to the evaluation phase, then many models such as
LSTM and GRU degrade catastrophically. However the RIMs model is able to keep some of
its modules fully deactivated during this waiting phase, which causes information to be fully
preserved, and thus perfect evaluation performance is achievable on this copying task. It also
helps significantly on reinforcement learning, where we showed that using RIMs as a drop-in
replacement for GRU networks significantly improved results on Atari (Mnih et al., 2013).

7.5. Research Impact
This paper has a few nice follow-ups which takes its concept of modularity further. It also

has a few applied follow-ups which exploit its ability to perform systematic generalization
(Bagherzadeh & Bergler, 2021).

A number of research follow-ups have been produced in our lab. One involves disentangling
the separation between making the parameters modular and making the hidden states modular.
In RIMs, we assumed that each module (or RIM) has its own associated parameters as well
as its own well-separated hidden states. However we may alternatively wish for two modules
to share the same parameters while having well-separated hidden states. This is motivated
by the notion of object files and schemata from the cognitive science literature, as well as
classes and objects in object-oriented programming. In this work we used a gumbel-softmax
(Jang et al., 2016) to control the selection of what parameters to use for each module on each
step (Goyal et al., 2020). Thus it could learn to have all modules use separate parameters
(recovering RIMs as a special case) or have some of the modules use the same parameters.
Another follow-up project applies a factorization of the hidden state and parameters of the
model in the context of the transformers architecture (Lamb et al., 2021b).
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Chapter 8

Recurrent Independent Mechanisms

8.1. Independent Mechanisms
Physical processes in the world often have a modular structure which human cognition

appears to exploit, with complexity emerging through combinations of simpler subsystems.
Machine learning seeks to uncover and use regularities in the physical world. Although
these regularities manifest themselves as statistical dependencies, they are ultimately due
to dynamic processes governed by causal physical phenomena. These processes are mostly
evolving independently and only interact sparsely. For instance, we can model the motion
of two balls as separate independent mechanisms even though they are both gravitationally
coupled to Earth as well as (weakly) to each other. Only occasionally will they strongly
interact via collisions.

The notion of independent or autonomous mechanisms has been influential in the field
of causal inference. A complex generative model, temporal or not, can be thought of as the
composition of independent mechanisms or “causal” modules. In the causality community,
this is often considered a prerequisite for being able to perform localized interventions upon
variables determined by such models (Pearl, 2009). It has been argued that the individual
modules tend to remain robust or invariant even as other modules change, e.g., in the case of
distribution shift (Schölkopf et al., 2012; Peters et al., 2017). This independence is not between
the random variables being processed but between the description or parametrization of the
mechanisms: learning about one should not tell us anything about another, and adapting
one should not require also adapting another. One may hypothesize that if a brain is able to
solve multiple problems beyond a single i.i.d. (independent and identically distributed) task,
they may exploit the existence of this kind of structure by learning independent mechanisms
that can flexibly be reused, composed and re-purposed.

In the dynamic setting, we think of an overall system being assayed as composed of a
number of fairly independent subsystems that evolve over time, responding to forces and
interventions. An agent needs not devote equal attention to all subsystems at all times:
only those aspects that significantly interact need to be considered jointly when deciding
or planning (Bengio, 2017). Such sparse interactions can reduce the difficulty of learning
since few interactions need to be considered at a time, reducing unnecessary interference
when a subsystem is adapted. Models learned this way may better capture the compositional
generative (or causal) structure of the world, and thus better generalize across tasks where
a (small) subset of mechanisms change while most of them remain invariant (Simon, 1991;
Peters et al., 2017).The central question motivating our work is how a gradient-based deep



Fig. 1. Illustration of Recurrent Independent Mechanisms (RIMs). A single step
under the proposed model occurs in four stages (left figure shows two steps). In the first

stage, individual RIMs produce a query which is used to read from the current input. In the
second stage, an attention based competition mechanism is used to select which RIMs to
activate (right figure) based on encoded visual input (blue RIMs are active, based on an

attention score, white RIMs remain inactive). In the third stage, individual activated RIMs
follow their own default transition dynamics while non-activated RIMs remain unchanged. In
the fourth stage, the RIMs sparsely communicate information between themselves, also using

key-value attention.

learning approach can discover a representation of high-level variables which favour forming
independent but sparsely interacting recurrent mechanisms in order to benefit from the
modularity and independent mechanisms assumption.
Why do Models Succeed or Fail in Capturing Independent Mechanisms? While universal
approximation theorems apply in the limit of large i.i.d. data sets, we are interested in the
question of whether models can learn independent mechanisms from finite data in possibly
changing environments, and how to implement suitable inductive biases. As the simplest
case, we can consider training an RNN consisting of k completely independent mechanisms
which operate on distinct time steps. How difficult would it be for an RNN (whether vanilla
or LSTM or GRU) to correctly model that the true distribution has completely independent
processes? For the hidden states to truly compartmentalize these different processes, a
fraction k−1

k
of the connections would need to be set to exactly zero weight. This fraction

approaches 100% as k approaches infinity. When sample complexity or out-of-distribution
generalization matter, we argue that having an inductive bias which favors this form of
modularity and dynamic recombination could be greatly advantageous, compared to static
fully connected monolithic architectures.
Assumptions on the joint distribution of high level variables. The central question motivating
our work is how a gradient-based deep learning approach can learn a representation of
high level variables which favour learning independent but sparsely interacting recurrent
mechanisms in order to benefit from such modularity assumption. The assumption about
the joint distribution between the high-level variables is different from the assumption
commonly found in many papers on disentangling factors of variation (Higgins et al., 2016;
Burgess et al., 2018; Chen et al., 2018b), where the high level variables are assumed to be
marginally independent of each other. We believe that these variables, (often named with
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words in language), have highly structured dependencies supporting independent mechanisms
assumption.

8.2. RIMs with Sparse Interactions
Our approach to modelling a dynamical system of interest divides the overall model into

k small subsystems (or modules), each of which is recurrent in order to be able to capture the
dynamics in the observed sequences. We refer to these subsystems as Recurrent Independent
Mechanisms (RIMs), where each RIM has distinct functions that are learned automatically
from data1. We refer to RIM k at time step t as having vector-valued state ht,k, where
t = 1, . . . , T . Each RIM has parameters θk, which are shared across all time steps.

At a high level (see Fig. 1), we want each RIM to have its own independent dynamics
operating by default, and occasionally to interact with other relevant RIMs and selected
elements of the encoded input. The total number of parameters can be kept small since
RIMs can specialize on simple sub-problems, and operate on few key/value variables at a
time selected using an attention mechanism, as suggested by the inductive bias from Bengio
(2017). This specialization and modularization not only has computational and statistical
advantages (Baum & Haussler, 1989), but also prevents individual RIMs from dominating
the computation and thus facilitates factorizing the computation into easy to recombine
but simpler elements. We expect this to lead to more robust systems than training one
big homogeneous system (Schmidhuber, 2018). Moreover, modularity and the independent
mechanisms hypothesis (Peters et al., 2017; Bengio et al., 2019) also has the desirable
implication that a RIM should maintain its own independent functionality even as other
RIMs are changed.

8.2.1. Key-Value Attention to Process Sets of Named Interchange-
able Variables

Each RIM should be activated and updated when the input is relevant to it. We
thus utilize competition to allocate representational and computational resources, using an
attention mechanism which selects and then activates only a subset of the RIMs for each
time step. As argued by (Parascandolo et al., 2018a), this tends to produce independence
among learned mechanisms, provided the training data has been generated by a set of
independent physical mechanisms. In contrast to (Parascandolo et al., 2018a), we use an
attention mechanism for this purpose. The introduction of content-based soft-attention
mechanisms (Bahdanau et al., 2014) has opened the door to neural networks which operate
on sets of typed interchangeable objects. This idea has been remarkably successful and
widely applied to most recent Transformer-style multi-head dot product self attention models
(Vaswani et al., 2017; Santoro et al., 2018), achieving new state-of-the-art results in many
tasks. Soft-attention uses the product of a query (or read key) represented as a matrix Q
of dimensionality Nr × d, with d the dimension of each key, with a set of No objects each
associated with a key (or write-key) as a row in matrix KT (No× d), and after normalization
with a softmax yields outputs in the convex hull of the values (or write-values) Vi (row i of

1Note that we are overloading the term mechanism, using it both for the mechanisms that make up the
world’s dynamics as well as for the computational modules that we learn to model those mechanisms. The
distinction should be clear from context.
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matrix V ). The result is

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V,

where the softmax is applied to each row of its argument matrix, yielding a set of convex
weights. As a result, one obtains a convex combination of the values in the rows of V . If the
attention is focused on one element for a particular row (i.e., the softmax is saturated), this
simply selects one of the objects and copies its value to row j of the result. Note that the d
dimensions in the key can be split into heads which then have their own attention matrix
and write values computed separately.

When the inputs and outputs of each RIM are a set of objects or entities (each associated
with a key and value vector), the RIM processing becomes a generic object-processing
machine which can operate on subsymbolic “variables” in a sense analogous to variables in a
programming language: as interchangeable arguments of functions, albeit with a distributed
representation both for they name or type and for their value. Because each object has a
key embedding (which one can understand both as a name and as a type), the same RIM
processing can be applied to any variable which fits an expected "distributed type" (specified
by a query vector). Each attention head then corresponds to a typed argument of the function
computed by the RIM. When the key of an object matches the query of head k, it can be
used as the k-th input vector argument for the RIM. Whereas in regular neural networks
(without attention) neurons operate on fixed variables (the neurons which are feeding them
from the previous layer), the key-value attention mechanisms make it possible to select on the
fly which variable instance (i.e. which entity or object) is going to be used as input for each
of the arguments of the RIM dynamics, with a different set of query embeddings for each
RIM head. These inputs can come from the external input or from the output of other RIMs.

8.2.2. Selective Activation of RIMs as a form of Top-Down Modula-
tion

The proposed model learns to dynamically select those RIMs for which the current input
is relevant. RIMs are triggered as a result of interaction between the current state of the RIM
and input information coming from the environment. At each step, we select the top-kA (out
of kT ) RIMs in terms of their attention score for the real input. Intuitively, the RIMs must
compete on each step to read from the input, and only the RIMs that win this competition
will be able to read from the input and have their state updated. In our use of key-value
attention, the queries come from the RIMs, while the keys and values come from the current
input. This differs from the mechanics of Vaswani et al. (2017); Santoro et al. (2018), with
the modification that the parameters of the attention mechanism itself are separate for each
RIM rather than produced on the input side as in Transformers. The input attention for a
particular RIM is described as follows.

The input xt at time t is seen as a set of elements, structured as rows of a matrix. We
first concatenate a row full of zerosSince the zeros contain no information, a RIM having
high-attention weight on the zeros indicates that the input information on that time-step is
not important for that RIM. This leads to:

X = ∅ ⊕ xt. (8.1)
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As before, linear transformations are used to construct keys (K = XW e, one per input
element and for the null element), values (V = XW v, again one per element), and queries
(Q = htW

q
k , one per RIM attention head). W v is a simple matrix mapping from an input

element to the corresponding value vector for the weighted attention and W e is similarly a
weight matrix which maps the input to the keys. W q

k is a per-RIM weight matrix which maps
from the RIM’s hidden state to its queries. ⊕ refers to the row-level concatenation operator.
The attention thus is

A
(in)
k = softmax

(
htW

q
k (XW e)T√
de

)
XW v, where θ(in)

k = (W q
k ,W

e,W v). (8.2)

Based on the softmax values in (8.2), we select the top kA RIMs (out of the total K RIMs)
to be activated for each step, which have the least attention on the null input (and thus put
the highest attention on the input), and we call this set St. Since the queries depend on the
state of the RIMs, this enables individual RIMs to attend only to the part of the input that
is relevant for that particular RIM, thus enabling selective attention based on a top-down
attention process (see. Fig 1). In practice, we use multiheaded attention, and multi-headed
attention doesn’t change the essential computation, but when we do use it for input-attention
we compute RIM activation by averaging the attention scores over the heads.

For spatially structure input: All datasets we considered are temporal, yet there is a
distinction between whether the input on each time step is highly structured (such as a video)
or not (such as language modeling, where each step has a word or character). In the former
case, we can get further improvements by making the activation of RIMs not just sparse
across time but also sparse across the (spatial) structure. The input xt at time t can be
seen as an output of the encoder parameterized by a neural network (for ex. CNN in case
of visual observations) i.e., X = CNN(xt). As before, linear transformations are used to
construct position-specific input keys (K = XW e), position-specific values (V = XW v), and
RIM specific queries (Q = htW

q
k , one per RIM attention head). The attention thus is

A
(in)
k = softmax

(
htW

q
k (XW e)T√
de

)
XW v, where θ

(in)
k = (W q

k ,W
e,W v). (8.3)

In order for different RIMs to specialize on different spatial regions, we can use position-
specific competition among the different RIMs. The contents of the attended positions are
combined yielding a RIM-specific input. As before based on the softmax values in (8.3),
we can select the top kA RIMs (out of the total kT RIMs) to be activated for each spatial
position, which have the highest attention on that spatial position.

8.2.3. Independent RIM Dynamics

Now, consider the default transition dynamics which we apply for each RIM independently
and during which no information passes between RIMs. We use h̃ for the hidden state after
the independent dynamics are applied. The hidden states of RIMs which are not activated (we
refer to the activated set as St) remain unchanged, acting like untouched memory elements,
i.e., ht+1,k = ht,k ∀k /∈ St. Note that the gradient still flows through a RIM on a step
where it is not activated. For the RIMs that are activated, we run a per-RIM independent
transition dynamics. The form of this is somewhat flexible, but we opted to use either a
GRU (Chung et al., 2015) or an LSTM (Hochreiter & Schmidhuber, 1997b). We generically
refer to these independent transition dynamics as Dk, and we emphasize that each RIM has
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its own separate parameters. Aside from being RIM-specific, the internal operation of the
LSTM and GRU remain unchanged, and active RIMs are updated by

h̃t,k = Dk(ht,k) = LSTM(ht,k, A
(in)
k ; θ

(D)
k ) ∀k ∈ St

as a function of the attention mechanism A
(in)
k applied on the current input, described in the

previous sub-section.

8.2.4. Communication between RIMs

Although the RIMs operate independently by default, the attention mechanism allows
sharing of information among the RIMs. Specifically, we allow the activated RIMs to read
from all other RIMs (activated or not). The intuition behind this is that non-activated RIMs
are not related to the current input, so their value needs not change. However they may still
store contextual information relevant for activated RIMs later on. For this communication
between RIMs, we use a residual connection as in (Santoro et al., 2018) to prevent vanishing or
exploding gradients over long sequences. Using parameters θ(c)

k = (W̃ q
k , W̃

e
k , W̃

v
k ), we employ

Qt,k = W̃ q
k h̃t,k,∀k ∈ St Kt,k = W̃ e

k h̃t,k,∀k Vt,k = W̃ v
k h̃t,k,∀k

ht+1,k = softmax
(
Qt,k(Kt,:)

T

√
de

)
Vt,: + h̃t,k∀k ∈ St.

We note that we can also consider sparsity in the communication attention such that a
particular RIM only attends to sparse sub-set of other RIMs, and this sparsity is orthogonal
to the kind used in input attention. In order to make the communication attention sparse,
we can still use the same top-k attention.

Number of Parameters. RIMs can be used as a drop-in replacement for an LSTM/GRU
layer. There is a subtlety that must be considered for successful integration. If the total size
of the hidden state is kept the same, integrating RIMs drastically reduces the total number
of recurrent parameters in the model (because of having a block-sparse structure). RIMs
also adds new parameters to the model through the addition of the attention mechanisms
although these are rather in small number.

Multiple Heads: Analogously to Vaswani et al. (2017); Santoro et al. (2018), we use multiple
heads both for communication between RIMs as well as input attention (as in Sec 8.2.2)
by producing different sets of queries, keys, and values to compute a linear transformation
for each head (different heads have different parameters), and then applying the attention
operator for each head separately in order to select conditioning inputs for the RIMs.

8.3. Related Work
Neural Turing Machine (NTM) and Relational Memory Core (RMC): the

NTM (Graves et al., 2014) updates independent memory cells using an attention mechanism
to perform targeted read and write operations. RIMs share a key idea with NTMs: that input
information should only impact a sparse subset of the memory by default, while keeping
most of the memory unaltered. RMC (Santoro et al., 2018) uses a multi-head attention
mechanism to share information between multiple memory elements. We encourage the RIMs
to remain separate as much as possible, whereas (Santoro et al., 2018) allow information
between elements to flow on each step in an unsconstrained way. Instead, each RIM has its
own default dynamics, while in RMC, all the processes interact with each other.

54



Separate Recurrent Models: EntNet (Henaff et al., 2016) and IndRNN (Li et al.,
2018a) can be viewed as a set of separate recurrent models. In IndRNN, each recurrent unit
has completely independent dynamics, whereas EntNet uses an independent gate for writing
to each memory slot. RIMs use different recurrent models (with separate parameters), but
we allow the RIMs to communicate with each other sparingly using an attention mechanism.

Modularity and Neural Networks: A network can be composed of several modules,
each meant to perform a distinct function, and hence can be seen as a combination of experts
(Jacobs et al., 1991; Bottou & Gallinari, 1991; Ronco et al., 1997; Reed & De Freitas, 2015;
Andreas et al., 2016; Parascandolo et al., 2018a; Rosenbaum et al., 2017; Fernando et al.,
2017; Shazeer et al., 2017; Kirsch et al., 2018; Rosenbaum et al., 2019) routing information
through a gated activation of modules. These works generally assume that only a single
expert is active at a particular time step. In the proposed method, multiple RIMs can be
active, interact and share information.

Computation on demand: There are various architectures (El Hihi & Bengio, 1996;
Koutnik et al., 2014; Chung et al., 2016; Neil et al., 2016; Jernite et al., 2016; Krueger et al.,
2016) where parts of the RNN’s hidden state are kept dormant at times. The major differences
to our architecture are that (a) we modularize the dynamics of recurrent cells (using RIMs),
and (b) we also control the inputs of each module (using transformer style attention), while
many previous gating methods did not control the inputs of each module, but only whether
they should be executed or not.

8.4. Experiments
The main goal of our experiments is to show that the use of RIMs improves generalization

across changing environments and/or in modular tasks, and to explore how it does so. Our
goal is not to outperform highly optimized baselines; rather, we want to show the versatility
of our approach by applying it to a range of diverse tasks, focusing on tasks that involve a
changing environment. We organize our results by the capabilities they illustrate: we address
generalization based on temporal patterns, based on objects, and finally consider settings
where both of these occur together.

8.4.1. RIMs improve generalization by specializing over temporal
patterns

We first show that when RIMs are presented with sequences containing distinct and
generally independent temporal patterns, they are able to specialize so that different RIMs
are activated on different patterns. RIMs generalize well when we modify a subset of the
patterns (especially those unrelated to the class label) while most recurrent models fail to
generalize well to these variations.
Copying Task: First we turn our attention to the task of receiving a short sequence of
characters, then receiving blank inputs for a large number of steps, and then being asked to
reproduce the original sequence. We can think of this as consisting of two temporal patterns
which are independent: one where the sequence is received and another “dormant” pattern
where no input is provided. As an example of out-of-distribution generalization, we find
that using RIMs, we can extend the length of this dormant phase from 50 during training
to 200 during testing and retain perfect performance (Table 1), whereas baseline methods
including LSTM, NTM, and RMC substantially degrade. In addition, we find that this result
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Fig. 2. Visualizing Activation Patterns. For the copying task, one can see that the
RIM activation pattern is distinct during the dormant part of the sequence in the middle
(activated RIMs black, non-activated white). X-axis=time, Y-axis=RIMs activation bit.

Copying Train(50) Test(200)
kT kA hsize CE CE

RIMs

6 4 600 0.00 0.00
6 3 600 0.00 0.00
6 2 600 0.00 0.00
5 2 500 0.00 0.00

LSTM
- - 300 0.00 4.32
- - 600 0.00 3.56

NTM - - - 0.00 2.54

RMC - - - 0.00 0.13

Transformers- - - 0.00 0.54

Sequential MNIST 16 x 16 19 x 19 24 x 24
kT kA hsize Accuracy Accuracy Accuracy

RIMs

6 6 600 85.5 56.2 30.9
6 5 600 88.3 43.1 22.1
6 4 600 90.0 73.4 38.1

LSTM
- - 300 86.8 42.3 25.2
- - 600 84.5 52.2 21.9

EntNet- - - 89.2 52.4 23.5

RMC - - - 89.58 54.23 27.75

DNC - - - 87.2 44.1 19.8
Transformers- - - 91.2 51.6 22.9

Table 1. Performance on the copying task (left) and Sequential MNIST resolution
generalization (right). While all of the methods are able to learn to copy for the length seen
during training, the RIMs model generalizes to sequences longer than those seen during

training whereas the LSTM, RMC, and NTM degrade much more. On sequential MNIST,
both the proposed and the Baseline models were trained on 14x14 resolution but evaluated

at different resolutions (averaged over 3 trials).

is robust to the number of RIMs used as well as to the number of RIMs activated per-step.
Our ablation results show that all major components of the RIMs model are necessary to
achieve this generalization. This is evidence that RIMs can specialize over distinct patterns
in the data and improve generalization to settings where these patterns change.
Sequential MNIST Resolution Task: RIMs are motivated by the hypothesis that generalization
performance can benefit from modules which only activate on relevant parts of the sequence.
For further evidence that RIMs can achieve this out-of-distribution, we consider the task of
classifying MNIST digits as sequences of pixels (Krueger et al., 2016) and assay generalization
to images of resolutions different from those seen during training. Our intuition is that the
RIMs model should have distinct subsets of the RIMs activated for pixels with the digit and
empty pixels. RIMs should generalize better to higher resolutions by keeping RIMs dormant
which store pixel information over empty regions of the image.

Results: Table 1 shows the result of the proposed model on the Sequential MNIST
Resolution Task. If the train and test sequence lengths agree, both models achieve comparable
test set performance. However, RIMs model is relatively robust to changing the sequence
length (by changing the image resolution), whereas the LSTM performance degraded more
severely. This can be seen as a more involved analogue of the copying task, as MNIST digits
contain large empty regions. It is essential that the model be able to store information
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and pass gradients through these regions. The RIMs outperform strong baselines such as
Transformers, EntNet, RMC, and (DNC) (Graves et al., 2016).

8.4.2. RIMs learn to specialize over objects and generalize between
them

We have shown that RIMs can specialize over temporal patterns. We now turn our
attention to assaying whether RIMs can specialize to objects, and show improved generalization
to cases where we add or remove objects at test time.
Bouncing Balls Environment: We consider a synthetic “bouncing balls” task in which multiple
balls (of different masses and sizes) move using basic Newtonian physics (Van Steenkiste et al.,
2018). What makes this task particularly suited to RIMs is that the balls move independently
most of the time, except when they collide. During training, we predict the next frame at
each time step using teacher forcing (Williams & Zipser, 1989a). We can then use this model
to generate multi-step rollouts. As a preliminary experiment, we train on sequences of length
51 (the previous standard), using a binary cross entropy loss when predicting the next frame.
We consider LSTMs as baselines. We then produce rollouts, finding that RIMs are better
able to predict future motion (Figure 3).

Fig. 3. Handling Novel Out-of-Distribution Variations. We study the performance
of RIMs compared to an LSTM baseline (4 left plots). The first 15 frames of ground truth
(yellow,orange) are fed in and then the system is rolled out for the next 35 time steps

(blue,purple). During the rollout phase, RIMs perform better than the LSTMs in accurately
predicting the dynamics of the balls as reflected by the lower Cross Entropy (CE) [blue for
RIMs, purple for LSTMs]. Notice the substantially better out-of-distribution generalization
of RIMs when testing on a number of objects different from the one seen during training.

(2nd to 4th plot). We also show (right plot) improved out-of-distribution
generalization (F1 score) as compared to LSTM and RMC (Santoro et al.,

2018) on another partial observation video prediction task. X-axis = number of
balls. For these experiments, the RIMs and baselines get an input image at each time step.
Here, TTO refers to the time travelling oracle upper bound baseline, that does not model the

dynamics, and has access to true dynamics.

We take this further by evaluating RIMs on environments where the test setup is different
from the training setup. First we consider training with 4 balls and evaluating on an
environment with 6-8 balls. Second, we consider training with 6-8 balls and evaluating with
just 4 balls. Robustness in these settings requires a degree of invariance w.r.t. the number of
balls.

In addition, we consider a task where we train on 4 balls and then evaluate on sequences
where part the visual space is occluded by a “curtain.” This allows us to assess the ability of
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Fig. 4. Robustness to Novel Distractors:. Left: performance of the proposed method
(blue) compared to an LSTM baseline (red) in solving the object picking task in the presence

of distractors. Right: performance of proposed method and the baseline when novel
distractors are added.

balls to be tracked (or remembered) through the occluding region. Our experimental results
on these generalization tasks (Figure 3) show that RIMs substantially improve over an LSTM
baseline. We found that increasing the capacity of the LSTM from 256 to 512 units did not
substantially change the performance gap, suggesting that the improvement from RIMs is
not primarily related to capacity.
Environment with Novel Distractors: We next consider an object-picking reinforcement
learning task from BabyAI (Chevalier-Boisvert et al., 2018) in which an agent must retrieve
a specific object in the presence of distractors. We use a partially observed formulation of
the task, where the agent only sees a small number of squares ahead of it. These tasks are
difficult to solve (Chevalier-Boisvert et al., 2018) with standard RL algorithms, due to (1)
the partial observability of the environment and (2) the sparsity of the reward, given that
the agent receives a reward only after reaching the goal. During evaluation, we introduce
new distractors to the environment which were not observed during training.

Figure 4 shows that RIMs outperform LSTMs on this task (details in appendix). When
evaluating with known distractors, the RIM model achieves perfect performance while the
LSTM struggles. When evaluating in an environment with novel unseen distractors the RIM
doesn’t achieve perfect performance but strongly outperforms the LSTM. An LSTM with a
single memory flow may struggle to keep the distracting elements separate from elements
which are necessary for the task, while the RIMs model uses attention to control which RIMs
receive information at each step as well as what information they receive (as a function of
their hidden state). This "top-down" attention results in a diminished representation of the
distractor, not only enhancing the target visual information, but also suppressing irrelevant
information.

8.4.3. RIMs improve generalization in complex environments

We have investigated how RIMs use specialization to improve generalization to changing
important factors of variation in the data. While these improvements have often been
striking, it raises a question: what factors of variation should be changed between training
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and evaluation? One setting where factors of variation change naturally is in reinforcement
learning, as the data received from an environment changes as the agent learns and improves.
We conjecture that when applied to reinforcement learning, an agent using RIMs may be
able to learn faster as its specialization leads to improved generalization to previously unseen
aspects of the environment. To investigate this we use an RL agent trained using Proximal
Policy Optimization (PPO) (Schulman et al., 2017) with a recurrent network producing the
policy. We employ an LSTM as a baseline, and compare results to the RIMs architecture. This
was a simple drop-in replacement and did not require changing any of the hyperparameters
for PPO. We experiment on the whole suite of Atari games and find that simply replacing
the LSTM with RIMs greatly improves performance (Figure 5).

Fig. 5. RIMs-PPO relative score improvement over LSTM-PPO baseline (Schulman et al.,
2017) across all Atari games averaged over 3 trials per game. In both cases, PPO was used
with the exact same settings, and the only change is the choice of recurrent architecture.

There is also an intriguing connection between the selective activation in RIMs and the
concept of affordances from cognitive psychology (Gibson, 1977; Cisek & Kalaska, 2010). To
perform well in environments with a dynamic combination of risks and opportunities, an agent
should be ready to adapt immediately, executing actions which are at least partially prepared.
This suggests agents should process sensory information in a contextual manner, building
representations of potential actions that the environment currently affords. For instance, in
Demon Attack, one of the games where RIMs exhibit strong performance gains, the agent
must quickly choose between targeting distant aliens to maximize points and avoiding fire
from close-by aliens to avoid destruction (indeed both types of aliens are always present, but
which is relevant depends on the player’s position). We hypothesize that in cases like this,
selective activation of RIMs allows the agent to rapidly adapt its information processing to
the types of actions relevant to the current context.

8.4.4. Discussion and Ablations

Sparse Activation is necessary, but works for a wide range of hyperparameters:
On the copying task, we tried a wide variety of sparsity levels for different numbers of RIMs,
and found that using a sparsity level between 30% to 70% performed optimally, suggesting
that the sparsity hyperparameter is fairly flexible. On Atari we found that using kA = 5
slightly improved over results compared with kA = 4, but both had similar performance
across the vast majority of games.

Input-attention is necessary: We study the scenario where we remove the input
attention process (i.e the top-down competition between different RIMs) but still allow the
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RIMs ot communicate with attention. We found that this degraded results substantially on
Atari but still outperformed the LSTM baseline.

Communication between RIMs improves performance: For copying and sequen-
tial MNIST, we performed an ablation where we remove the communication between RIMs
and varied the number of RIMs and the number of activated RIMs. We found that the
communication between RIMs is essential for good performance.

8.5. Conclusion
Many systems of interest comprise multiple dynamical processes that operate relatively

independently and only occasionally have meaningful interactions. Despite this, most machine
learning models employ the opposite inductive bias, i.e., that all processes interact. This
can lead to poor generalization and lack of robustness to changing task distributions. We
have proposed a new architecture, Recurrent Independent Mechanisms (RIMs), in which we
learn multiple recurrent modules that are independent by default, but interact sparingly. For
the purposes of this paper, we note that the notion of RIMs is not limited to the particular
architecture employed here. The latter is used as a vehicle to assay and validate our overall
hypothesis, but better architectures for the RIMs model can likely be found.
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Chapter 9

Prologue to the fourth article

9.1. Article Details
Neural Function Modules with Sparse Arguments: A Dynamic Approach to

Integrating Information across Layers. Alex Lamb, Anirudh Goyal, Agnieszka Słowik,
Michael Mozer, Philippe Beaudoin, Yoshua Bengio. AISTATS 2021.

In Neural Function Modules (NFM) we showed that a network can benefit from using
attention to look over the outputs of all previously computed layers. This makes the
information flow through the network sparser and more dynamic, as each layer can focus
on its own specialized processing. To make the set of layers that the network can attend
over more interesting, we explore a multi-pass convolutional neural network, where we run a
network for multiple passes and allow the network to attend over all previously computed
layers from all of the prior passes.

9.2. Personal Contribution
Anirudh Goyal had the initial idea of having a neural network where each layer can attend

to all previously computed layers. Alex Lamb produced the initial implementation of the
module for doing this, and the initial experiments on the supervised learning datasets as well
as the multiple mnist-digit experiments. Alex Lamb created the novel-occlusion dataset, ran
the hyperparameter-effect analysis, and wrote most of the paper. Anirudh Goyal produced
the GAN experiments and the Atari experiments. Aga Slowik produced the experiments on
the relational reasoning dataset.

9.3. Context
Two ideas serve as the foundations and motivation for the NFM project. Residual networks

(He et al., 2016a) introduced a type of additive skip connections into deep neural networks
which allow for training of very deep neural networks. These skip connections allow each layer
to specialize on learning a small additive change to the content of the hidden representation
rather than forcing each layer to produce the hidden representation from scratch. The
Densenet paper (Huang et al., 2017) explored an alternative type of skip connection in which
layers are concatenated to the input of later layers in the network. The attention mechanism
(Bahdanau et al., 2014; Vaswani et al., 2017) is a special type of layer which allows for
information to be retrieved in a selective fashion. An outer-product between query and



key vectors is normalized to give attention-weights defining how each query attends over a
set of values. When the attention-weights are fully saturated, a query can put 100% of its
attention weight onto a single value, making the flow of information sparse. Sparse Attention
Backtracking (Ke et al., 2018) showed that such a sparsity assumption can also be imposed
explicitly in the architecture. Attention has been widely used to share information between
semantically meaningful positions as well as between slots (Vaswani et al., 2017; Goyal et al.,
2019).

9.4. Contributions
This paper explored using attention to share information between layers, giving networks

a way of making layers more specialized. We achieved improved classification accuracy on
CIFAR-10, CIFAR-100, Tiny-Imagenet, and Imagenet (Krizhevsky, 2009; Krizhevsky et al.,
2012). We also integrated NFM into the generator of Generative Adversarial Networks
(Goodfellow et al., 2014). Compared to a state-of-the-art InfoMax-GAN baseline (Kwot
Sin Lee & Cheung, 2019), we achieved significant improvement in Inception Score (Salimans
et al., 2016) and Frechet Inception Distance (Heusel et al., 2017a). We also constructed
a novel stacked-MNIST task (LeCun & Cortes, 2005) in which multiple MNIST digits are
super-imposed and the model is tasked with classifying which digits are present. This is
framed as a multi-label binary classification task. We vary the number of digits present
between training and evaluation. For example, during training we may have either three
or five digits superimposed, but during evaluation four digits are superimposed. We found
that NFM substantially improves systematic generalization this task. We also explored the
Sort-of-Clevr relational reasoning benchmark (Santoro et al., 2018) in which simple questions
must be answered from images (e.g. is the red ball to the left of the blue square). We
achieved significant improvement using NFM on this task when compared to a convolutional
neural network baseline. We also integrated NFM into the convolutional encoder in the
Rainbow-DQN (Dabney et al., 2018; Hessel et al., 2018) and found that it improved results
on four of five selected Atari games (Vezhnevets et al., 2016).

9.5. Research Impact
This paper showed significant improvements on relational reasoning tasks and decent

improvements on standard image classification benchmarks. It also points to a way of sharing
information across multiple layers that could be integrated into many different architectures,
such as transformers or RNNs. The Head2Toe technique found that learning which layer’s
features to use for fine-tuning improved transfer learning performance (Evci et al., 2022).
The Shared Workspace architecture (Goyal et al., 2021) writes to and reads from the same
workspace on successive layers (when applied to transformers). In this way, it is related to
how information is flexibly persisted across layers in NFM.
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Chapter 10

Neural Function Modules

10.1. Introduction

Fig. 1. An illustration of Neural Function Modules (NFM) where a network is ran over the
input twice (K = 2). A layer where NFM is applied sparsely attends over the set of

previously computed layers, allowing better specialization. The attention over the layers
from the previous pass acts as a form of top-down feedback.

Much of the progress in deep learning architectures has come from improving the ability
of layers to have a specific focus and specialization. One of the central drivers of practical
progress in deep learning has been finding ways to make networks deeper and to create
inductive bias towards specialization. Indeed, the general trend in state-of-the-art techniques
has been from networks with just a few layers to networks with hundreds or thousands of
layers, where each layer has a much more specific role. Iterative inference and generation
(Marino et al., 2018; Jastrzębski et al., 2017; Greff et al., 2019) approaches also share this
motivation: since they only require each pass to make a small change to an underlying
representation. This has been applied in iterative inference for generative models (Wu et al.,
2019).

Perhaps the best example of this is residual networks (ResNets) (He et al., 2016a), in which
an additive skip-connection is placed between layers. This allows a layer to use any other



layer via the linear additive skip connections, yet this is a rigid and inflexible communication
between layers. Despite that limitation, residual networks have now become ubiquitous, and
are now used in almost all networks where computational resources allow for a large number
of layers.

Other ideas in feed-forward networks have explored how to make individual layers more
narrowly focused. In the DenseNet (Huang et al., 2017), each layer takes as input all previous
layers within the same block, concatenated together. This reduces the need to store redundant
information in multiple layers, as a layer can directly use information from any prior layer
given as input, even if it does not directly precede that layer. Neural ODEs (Chen et al.,
2018a) explored a continuous variant of ResNets, in which it can be directly shown that
making each layer perform an even more narrowly focused computation (in this sense, meaning
a smaller update) can improve accuracy.

While these techniques have greatly improved the generalization performance of deep
networks, in large part by making individual layers more specialized, we argue that they
are still limited in that they take the entire current program state as input, rather than
dynamically selecting input arguments. To address this limitation, we take inspiration from
computer programs, which are much richer and more flexible than today’s deep networks.
Computer programs are typically organized into methods, which perform a specific task, and
only operate over a specific set of inputs which are relevant for that task. This has several
advantages over writing code without these well-contained methods. One reason is that it
leads to better separation of concerns and modularity. A method which is written once can
be reused in different programs, even if the overall purpose of the program is very different.
Another benefit to using methods is that it allows the programmer to avoid accidentally
using or changing variables unrelated to the function. In this way a program could use a
larger number of variables and have a greater amount of complexity, with a contained risk
of introducing bugs. Another advantage is that mistakes can be isolated down to a specific
method within the program, which can lead to a more concentrated and efficient credit
assignment.

Additionally, methods in computer programs have the property that they are able to
take arguments from the entire program state which is in scope. Thus they may use either
recently computed variables, or variables computed much earlier in the program. This has
some connection to bottom-up and top-down feedback signals from cognitive psychology,
with recently computed variables or input streams being analogous to bottom-up signals and
higher-level goals or descriptive variables being analogous to top-down signals. This idea has
seen some work in the deep learning community (Zamir et al., 2017), although many deep
architectures (such as feed-forward networks) rely exclusively on bottom-up processing.

Our proposal is to allow modules (corresponding to computational blocks which can be
executed in parallel or in sequence) in a deep network to attend over the previously computed
modules from the network to construct their input. This proposal, which we call Neural
Function Modules (NFM), is motivated by analogy with functions in programming languages
- which typically only take a few variables as arguments, rather than acting upon the entire
global state of the program. Likewise an NFM module selects the hidden states from the
previously computed modules as its inputs, and may use its entire hidden state to focus on
these few inputs. The modules which come later in the network may attend to either that
module or the modules preceding it.

Additionally, to allow the NFM to consider both top-down and bottom-up signal special-
ization, we use a multi-pass setup, in which we run the networks forward pass multiple times,
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and allow the NFM to attend over all of the previously seen passes. In a classifier, the later
parts of the network from earlier passes correspond to “top-down” feedback, since they come
from a network which has seen and has a compressed representation of the entire example.
Whereas attending to parts of the network closer to the input correspond to “bottom-up”
feedback. In general we consider a two-pass setup, but also perform analysis on single-pass
and three-pass setups.

We believe that the largest impact from adding this structure to deep learning will be in
tasks where the question of when a layer is used is dynamic, which can occur as a result of
the data distribution shifting during training, or the data distribution systematically differing
between training and evaluation. For example, the former occurs organically while training
a GAN generator, since the objective from the discriminator is constantly evolving as the
adversarial game progresses.

Our newly proposed NFM module captures concepts of iterative inference, sparse dynamic
arguments, and flexible computation, yet is straightforward to integrate into a variety of
existing architectures. We demonstrate this by integrating NFM into convolutional classifiers,
GAN generators, and VAE encoders. In each case, the structure of the NFM module is kept
the same, but the details of the integration differ slightly.

Our method offers the following contributions:
• Allowing layers to focus their entire output space size without limiting the information
accessible to later modules.
• Making modules more specialized, by allowing them to focus on particular relevant
inputs, rather than the entire hidden state of the network.
• Providing a mechanism to allow for dynamic combination of top-down and bottom-up
feedback signals.

The key contribution of our work is to combine attention, sparsity, top-down and bottom-
up feedback, in a flexible algorithm which can improve the results in the standard classification,
out-of-domain generalization, generative modeling and reinforcement learning (as demon-
strated in Section 10.4 ). Most of the work in the context of feed-forward networks combining
top-down and bottom-up feedback is limited to classification problems. To the best of our
knowledge, no work has combined these ingredients together in a unified architecture, that
can be used to show improvements in various different problems, i.e classification, generative
modelling, out of distribution generalization and learning representations in the context of
RL.

Our experiments show that these NFM modules can dynamically select relevant modules
as inputs, leading to improved specialization of modules. As a result, we show that this leads
to improved generalization to changing task distributions. We also demonstrate its flexibility,
by showing that it improves performance in classification, relational reasoning, and GANs.

10.2. Related Work
DenseNet: These use concatenation to combine all of the layers within a block as inputs.

The largest difference between NFM and DenseNet is that NFM uses sparse attention, whereas
DenseNet uses concatenation. Another key difference is that NFM uses attention over many
previously seen modules, even if they are of different sizes, whereas DenseNet only uses the
handful of previously computed layers of the same spatial dimension. Most of the papers that
have used DenseNets, have tested it on mostly computer vision problems (like classification),
whereas NFM is a generic module that can be used for improving systematic generalization
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Table 1. Desiderata and Related Work: showing how our motivations relate to prior work.

Desiderata Related Methods

Sparse Arguments SAB (Ke et al., 2018)
Sparse Transformer (Child et al., 2019)

Iterative Inference LOGAN (Wu et al., 2019),
GibbsNet (Lamb et al., 2017)

Dynamically Skipping Layers SkipNet (Wang et al., 2018b)

Combining Top-Down and Bottom-Up Feedback Deep Boltzmann Machines
(Salakhutdinov & Hinton, 2009)

in relational reasoning, for classification as well as for generative modelling. An attentive
variant of DenseNets was also proposed (Kim et al., 2018).

Conditional Computation and Modularity: Most of the current deep learning
systerms are built in the form of one big network, consisting of a layered but otherwise
monolithic structure, which can lead to poor adaptation and generalization (Andreas et al.,
2016; Santoro et al., 2017b; Bahdanau et al., 2018; Bengio et al., 2019; Goyal et al., 2019). In
order to address this problem, there have been attempts in modularizing the network such
that a neural network is composed dynamically from several neural modules, where each
module is meant to perform a distinct function (Andreas et al., 2016; Shazeer et al., 2017;
Rosenbaum et al., 2017; Goyal et al., 2019, 2020). The motivation behind methods that use
conditional computation is to dynamically activate only a portion of the entire network for
each example (Bengio, 2013; Wu et al., 2018; Fernando et al., 2017; McGill & Perona, 2017).
Recently (Hu et al., 2018; Woo et al., 2018; Wang et al., 2018b; Chen et al., 2018c; Veit &
Belongie, 2018) have proposed to use a learned gating mechanism (either using reinforcement
learning or evolutionary methods) to dynamically determine when to skip in ResNet in a
context dependent manner to reduce computation cost. In this line of work, no multiple
modules are explicitly defined. Instead, the whole network is dynamically configured by
selectively activating model components such as hidden units and different layers for each
input example. Most of these works have been applied to computer vision problems such
as image classification or segmentation or object detection. Our work is more related to
such methods that dynamically decide where to route information but instead of skipping a
particular layer or a unit, NFM dynamically decide where to query information from (i.e.,
which layers to attend to), using sparse attention. Another key difference in the proposed
method is that layers can attend to both the bottom-up, as well as top-down information
which has been shown to improve systematic generalization as also evident in our experiments.
Also, NFM is a generic module that can be used for other problems whereas most of these
methods have been studied exclusively for image classification.

Transformers: The Transformer architecture uses attention over positions, but only on
the previous layer. NFM attends over layers, making it complementary with Transformers,
yet the methods share a related motivation of allowing parts of the network to dynamically
select their inputs using attention. Future work can also investigate on integrating NFM
module with transformers.

Sparse Attention in RNNs: Sparse Attentive Backtracking (SAB) (Ke et al., 2018)
used sparse attention for assigning credit to a sparse subset of time steps in the context
of RNNs leading to efficient credit assignment as well as efficient transfer. More recently,
Recurrent Independent Mechanisms (RIMs) (Goyal et al., 2019) also use sparse attention for
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dynamically selecting a sparse subset of modules in an input dependent manner. Both SAB
and RIMs uses sparse-attention in the context of RNNs, where the proposed method uses
attention to dynamically integrate bottom-up as well as top-down information.

10.3. Neural Function Modules
Our goal is to introduce the idea of Neural Function Modules (NFM) as a new way

of composing layers in deep learning. To that end, we start with desiderata motivating
our design without going into architectural details. Next, we give a detailed algorithmic
description using a specific set of tools (such as top-k softmax (Ke et al., 2018) as a way of
implementing sparse attention), while we note that our concept is more general than this
specific architecture. We then describe how NFM can be integrated into various architectures.

10.3.1. Desiderata

We lay out desiderata motivating our design, in the hope of defining a class of architectures
that share these goals:

• Creating deep networks in which the communication between layers is dynamic and
state-dependent, allowing it to be invariant to prior layers which are not relevant for
it;
• To allow a deep neural network to selectively route information flow around some
layers, to break the bottleneck of sequential processing;
• To allow a model to dynamically combine bottom-up and top-down information
processing using attention; and
• To introduce more flexibility into deep architectures, by breaking the constraint that
each layer needs to be a suitable input for the following layer. For example, a layer
which destroys fine-grained spatial information may be difficult to use earlier in the
network, but could be valuable for later processing in deeper layers.

10.3.2. Proposed Implementation

We describe our particular implementation of the Neural Functional Module concept
which uses sparse attention, although we view the basic idea as being more general, and
potentially implementable with different tools. In particular, we introduce a new NFM
module which is encapsulated and has its own parameters. It stores every previously seen
layer (from the forward pass) in its internal state, and uses the current layer’s state as a query
for attending over those previously seen layers. This is described in detail at in Algorithm 2.

10.3.2.1. Mutli-Head Attention Mechanism. We aimed to use the multi-head attention
mechanisms from Transformers with as few modifications as possible. We use linear operations
(separate per module) to compute the key, value, and query for each module. We then use
softmax top-k attention (Ke et al., 2018; Goyal et al., 2019), in which the attention only
attends over the elements with the top-k highest attention scores. Then we use one linear
layer, followed by an activation, followed by a linear layer to project back to the original size.
Depending on the problem setting, we may or may not use batch normalization.

We now lay out the structure of the multi-headed attention mechanism which is used in
Algorithm 2. The Attention(i)

θ̃K
function takes a set of keys and values to be attended-over: K,

V , a query q, and a residual connection R. The keys and queries are given dimension dk and
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Algorithm 2 Neural Functional Module (NFM)

1: Input: An input x. A number of passes K. A neural network with N modules for all k ∈ {1...K}: f
(1)
θk

,
f
(2)
θk

, f (3)
θk

, ...,f (N)
θk

2: M := EmptyList
3: for k = 1 to K do
4: h(0) := x
5: for i = 1 to N do
6: M̃ := EmptyList
7: for j = 1 to i do
8: M̃.append(rescale(Mj), scale(h

(i−1)))
9: end for

10: A = Attention
(i)

θ̃k
(K = M̃,V = M̃,Q = h(i−1))

11: h(i) := f
(i)
θk

(residual = h(i−1), input = A)

12: M.append(h(i))
13: end for
14: end for

the values are given dimension dv. It is specific to the layer index i and the parameters for
attention for the layer i: (Wq,Wk,Wv,Wo1 ,Wo2 , γ) = θ̃

(A)
i . These W refer to weight matrices

and γ is a learned scalar which is initialized to zero at the start of training. Additionally a k
to specify the k for top-k attention (typically k is set to a value less than ten). An activation
function σ must also be selected (in our case, we used ReLu). We place a batch normalization
module directly before applying the activation σ.

We set Q̂ = qWq, K̂ = KWk, V̂ = VWv. Then we compute A = Softmax ( Q̂K̂
T

dk
)V .

Afterwards the output hidden state is computed as h1 = σ(AWo1)Wo2 . Then the final
output from the attention blocked is multiplied by a γ scalar and added to the residual
skip-connection: h2 = R + γh1. The weighting with a γ scalar was used in self-attention
GANs (Zhang et al., 2018a).
Default Computation. Additionally, we append a zero-vector to the beginning of the list of
keys and values for the layers to be attended over. Thus, a querying position on some (or
all) of its heads may elect to look at these zeros rather than reading from an input element.
This is analogous to performing a function with a number of arguments which is less than
the number of heads.

10.3.2.2. Rescaling Layers (Automatic Type Conversion). When we query from a module
of spatial dimension len(hi), we consider attending over modules which may have either the
same or different spatial dimensions len(hj). For simplicity, we discuss 1D layers, but the
rescaling approach naturally generalizes to states with 2D or 3D structure.

If len(hi) = len(hj), then the two modules are of the same scale, and no rescaling is
performed. If len(hi) > len(hj), then hj needs to be upsampled to the size of hi, which we do
by using nearest-neighbor upsampling. The interesting case is when len(hi) < len(hj), which
is when downsampling is required. The simplest solution would be to use a nearest-neighbor
downsampling, but this would involve arbitrarily picking points from hj in the downsampling,
which could discard interesting information. Instead, we found it performed slightly better to
use a SpaceToDepth operation to treat all of the points in the local window of size len(hj)

len(hi)
as
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Table 2. Classification Results (% Test Accuracy) with NFM show consistent improvements
across tasks and architectures. All results use Input Mixup with α = 1.0 and the

experimental procedure in (Verma et al., 2018)

Methods Base Arch. Baseline NFM
CIFAR-10 PreResNet18 96.27 ± 0.2 96.56 ± 0.09
CIFAR-10 PreResNet34 96.79 ± 0.1 97.05 ± 0.1
CIFAR-10 PreResNet50 97.31 ± 0.1 97.58 ± 0.2
CIFAR-100 PreResNet18 78.15 ± 0.1 78.66 ± 0.3
CIFAR-100 PreResNet34 80.13 ± 0.3 80.77 ± 0.1
Tiny-Imagenet PreResNet18 57.12 ± 0.3 58.32 ± 0.2
Imagenet PreResNet18 76.72 77.1

Table 3. Results on Atari games with NFM show improved scores with NFM used in the
game-image encoder.

Game Architecture Baseline NFM
Ms. Pacman ResNet18 6432 6300 ± 3384
Alien ResNet18 12500 14382 ± 239
Amidar ResNet18 3923 3948 ± 23
Q-bert ResNet18 27433 33253 ± 2302
Crazy Climber ResNet18 333242 334323 ± 2389

separate positions for the attention. Thus when attending over a higher resolution module,
NFM can pick specific positions to attend over.

10.3.3. Integrating NFM

We have presented an encapsulated NFM module which is flexible and could potentially
be integrated into many different types of networks. Notably, in all of these integrations, the
internal structure of the NFM module itself remains the same, demonstrating the simplicity
and flexibility of the approach. Additionally, using NFM introduces no additional loss terms.

10.4. Experiments
Our experiments have the following goals:
• Demonstrate that Neural Function Modules can improve results on a wide array of
challenging benchmark tasks, with the goal of demonstrating the practical utility and
breadth of the technique.
• To show that NFM addresses the bottleneck problem in the size of the hidden layers,
by achieving drastically improved performance when the model is made narrow, with
very few hidden units per module.
• To show that NFM improves generalization when the train and test set differ system-
atically, as a result of improved specialization of the modules over sparse functional
sub-tasks.

10.4.1. GANs

Intuitively, generating images with structured objects involves various sparse functional
operations - for example creating a part such that it is consistent with another part, or
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Table 4. Improved generation with GANs (no use of class labels) on CIFAR-10 and
Tiny-Imagenet, outperforming many strong baselines on Inception Score (IS) and Frechet
Inception Distance (FID). We compare our NFM(InfoMax-GAN) against three external

baselines: SNGAN (Miyato et al., 2018b), SSGAN (Chen et al., 2019), and InfoMax-GAN
(Kwot Sin Lee & Cheung, 2019).

Methods CIFAR-10 FID CIFAR IS Tiny-Imagenet FID Tiny-Imagenet IS
SNGAN 16.77 ± 0.04 7.97 ± 0.06 23.04 ± 0.06 8.97 ± 0.12
SSGAN 14.65 ± 0.04 8.17 ± 0.06 21.79 ± 0.09 9.11 ± 0.12
InfoMax-GAN 15.12 ± 0.10 8.08 ± 0.08 20.68 ± 0.02 9.04 ± 0.10
NFM(InfoMax-GAN) 13.15 ± 0.06 8.34 ± 0.02 18.23 ± 0.08 9.12 ± 0.09

generating a part with particular properties. For example, if we want to draw a cat’s leg, it
should generally look exactly like the cat’s other leg. Based on this intuition we integrated
NFM into InfoMax GAN (Kwot Sin Lee & Cheung, 2019), and we modify only the generator
of the GAN by integrating NFM (the discriminator and all of the losses are kept the same). In
our integration, we use two passes K = 2 and we place an NFM module before each residual
block. Thus a total of 8 NFM modules are integrated. We used dk = 32, dv = 32, and 4
heads for the attention. For both CIFAR-10 and Imagenet our base generator architecture is
a ResNet18.

We integrated NFM into an Infomax-GAN for both CIFAR-10 and Tiny-Imagenet. We
elected to integrate NFM into the generator only, since it is computationally much cheaper
than using it in both the generator and the discriminator, as multiple discriminator updates
are done for each generator update. The original Infomax-GAN 32x32 generator consists of a
linear layer from the original latents to a 4x4 spatial layer with 256 channels. This is then
followed by three residual blocks and then a final convolutional layer. Our integration applies
NFM after this first spatial layer and after the output of each residual block. Since we use
two passes K = 2, the NFM module is applied a total of 8 times (4 in each pass). The only
change we introduced was the integration of NFM and the two-pass generator. Aside from
that, the hyperparameters for training the GAN are unchanged from (Lee & Town, 2020).

We used the (Lee & Town, 2020) GAN code base with default hyperparameters for all of
our GAN experiments. We only changed the architecture of generator to incorporate NFM.
Thus it might be the case that we could have achieved even better performance if we re-tuned
the hyperparameters specifically for our the NFM architecture, yet in practice we found solid
improvements even without doing this. A significant improvement on GANs using NFM are
shown in Table 4 as measured by Frechet Inception Distance (FID) (Heusel et al., 2017b)
and Inception Score (IS) (Salimans et al.). We integrate NFM directly into the Pytorch
Mimicry codebase which contains a variety of techniques: SNGAN, SSGAN, InfoMax-GAN,
and WGAN-GP. The NFM model outperforms all of these strong baselines (Table 4).

10.4.2. Stacked MNIST Generalization

We consider a simple multi-object classification task in which we change the number of
object between training and evaluation, and verify how well the model is able to generalize.
Our reasoning is that if the model learns sparse functional modules for recognizing the objects,
then it should be able to handle novel numbers of objects. To keep this task as simple as

70



possible, we construct synthetic 64x64 images containing multiple MNIST digits, and we
train a convnet with the output as a multi-label binary classifier for each digit.

For the integration with NFM, we used two passes (K = 2) and use a top-k sparsity of
k = 5. Thus the NFM module is used 8 times with dk = 16, dv = 16, and 4 heads.

Table 5. Recognizing images with multiple mnist digits: training on one or three digits
(top), one or five digits (bottom), provides evidence of improved specialization over the digit

recognition sub-task (test accuracy %).

Methods Baseline NFM
Trained on number of digits: (1,3)
One Digit 99.27± 0.05 99.23± 0.03
Three Digits 87.83± 0.02 87.78± 0.46
Two Digits 76.7± 1.34 88.36± 0.85
Four Digits 62.57± 0.04 66.12± 1.86
Five Digits 24.27± 1.02 29.48± 3.12
Trained on number of digits: (1,5)
One Digit 99.22± 0.09 99.16± 0.04
Five Digits 68.87± 4.25 71.76± 2.79
Two Digits 74.69± 2.88 84.01± 6.06
Three Digits 57.11± 3.57 66.58± 5.24
Four Digits 75.90± 2.48 79.04± 2.37

10.4.3. Relational Reasoning

In relational reasoning a model is tasked with recognizing properties of objects and
answering questions about their relations: for example, “is the red ball in front of the blue
ball”. This problem has a clear sparse functional structure which requires first recognizing
the properties of objects from images and then analyzing specific relations, and thus we
sought to investigate if NFM could improve results in this domain. We used the Sort-of-
CLEVR (Santoro et al., 2017a) task to evaluate NFM in the context of visual reasoning and
compositional generalization. We analyzed the effect of extending a generic convolutional
baseline (CNN_MLP) with NFM (specifically, NFM-ConvNet; Table 6). The baseline
implementations and dataset generation follow description in the paper which introduced
Sort-of-CLEVR (Santoro et al., 2017a). Similarly as in Section 10.4.2, we use two passes
(K = 2) and a top-k sparsity of k = 5. We report mean test accuracy and standard deviation
(over three trials) in Table 6 and Table 7.

Images in Sort-of-CLEVR consist of 6 randomly placed geometrical shapes of 6 possible
colors and 2 possible shapes. There are 10 relational and 10 non-relational questions per
image. Non-relational questions have two possible answers (random guess accuracy is 50%).
Relational questions related to count have 6 possible answers. Therefore on average a random
baseline for relational questions has accuracy of ≈ 39%. While Sort-of-CLEVR is a simple

Table 6. Test accuracy on Relational reasoning (Sort-of-CLEVR) from images.

Task CNN NFM(CNN)
Relational qst 68.26± 0.61 74.95± 1.58
Non-relational qst 71.78± 9.3 79.37± 2

71



Relational questions:

1. What is the shape of the object closest to the red object? ⇒ square

2. What is the shape of the object furthest to the orange object? ⇒ circle

3. How many objects have same shape with the blue object? ⇒ 3

Non-relational questions:

1. What is the shape of the red object? ⇒ Circle

2. Is green object placed on the left side of the image? ⇒ yes

3. Is orange object placed on the upside of the image? ⇒ no

Fig. 2. A sample from the Sort-of-CLEVR dataset.

Table 7. Compositional generalization (Sort-of-CLEVR) to unseen variations, suggesting
better specialization over uncovering attributes and understanding relations.

Number of hold-out combinations CNN Relation networks NFM(CNN)
N = 1: Relational qst 57.67± 0.47 50.67± 0.94 54.67± 1.7
N = 1: Non-relational qst 57± 1.63 48± 0.82 59± 0.81
N = 2: Relational qst 47± 3.27 45± 3.56 46± 1.41
N = 2: Non-relational qst 54.33± 0.47 43.33± 7.31 57± 1.63
N = 3: Relational qst 20.66± 3 40.67± 1.7 38.33± 3.3
N = 3: Non-relational qst 42.33± 1.25 46± 3.56 49.67± 3.3
Average 46.99 45.61 50.78

dataset in its original form, it can be made substantially more difficult by introducing a
distribution shift (Table 7). Table 7 shows the results of omitting N color-shape combinations
from the training set and testing on the original N = 12 combinations. We include the results
of a strong baseline, Relation Networks (RNs) (Santoro et al., 2017a). Note that RNs contain
a module specifically tailored for answering relational questions in this task.

The accuracy of both baselines decreases towards random performance with a distribution
shift between training and test data. Our model outperforms the simple baseline and RNs in
the non-relational set of questions, suggesting that NFM improves the stage of recognizing
object properties even in the presence of a distribution shift. While generalization to out-
of-distribution samples remains challenging when combined with relational reasoning, NFM
might alleviate the need for additional fully connected layers such as those used in RNs.

10.4.4. Classification and Generalization to Occlusions

We evaluated NFM on the widely studied classification benchmarks CIFAR-10, CIFAR-
100, Tiny-Imagenet, and Imagenet and found improvements for all of them, with the goal
of demonstrating the utility and versatility of NFM (Table 2). We used a two-pass setup
with k = 5, and we trained both the NFM and baseline models with Mixup (Zhang et al.,
2018c). We integrated with base architectures of PreActResNet18, PreActResNet34, and
PreActResNet50 (He et al., 2016b).

As an ablation study on the classifier, we tried training with NFM normally, but at test
time changed the attention values to be random (drawn from a Gaussian). We found that this
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dramatically hurt results on CIFAR-10 classification (96.5% to 88.5% test accuracy). This
is evidence that the performance of NFM is dependent on the attention selectively picking
modules as inputs.

In addition to improving classification results, we found that classifiers trained with
NFM had better robustness to occlusions (not seen at all during training). Evidence from
neuroscience shows that feedback from frontal (higher) brain areas to V4 (lower brain
areas) is critical in interpreting occluded stimuli. (Fyall et al., 2017). Additionally research
has shown that neural nets with top-down feedback better handle occluded and cluttered
displays. (Spoerer et al., 2017). Using our normally trained NFM model on CIFAR-10 with
PreActResNet18, we improve test accuracy with occlusion boxes of size 16x16, with a single
occlusion box per image, from 82.46% (baseline) to 84.11% (NFM). Our occlusion used the
same parameters as from the Cutout paper (DeVries & Taylor, 2017).

10.4.5. Atari

The Atari 2600 game environment involves learning to play simple 2D games which often
contain small modules with clear and sparsely defined behavior patterns. For this reason we
sought to investigate if using an encoder with NFM modules could lead to improved results.
All compared methods used the same ResNet backbone, input preprocessing, and an action
repeat of 4. Our NFM integration used two passes (K = 2) and top-k sparsity of k = 4.
We chose games that require some degree of planning and exploration as opposed to purely
reactive ones: Ms. Pacman, Frostbite, Alien, Amidar, Hero, Q-bert, Crazy Climber. We
choose this set of games, as it was previously used by (Vezhnevets et al., 2016). We integrate
NFM into the resnet encoder of a Rainbow IQN (Dabney et al., 2018; Hessel et al., 2018).
We use keysize dk of 32, value size dv of 32, 4 heads, two-passes K = 2, and top-k sparsity of
k = 4. Thus the NFM module is added at four places in the integration. After integrating
NFM, we kept the same hyperparameters for training the IQN model. We use exactly the
same setup as in (Lieber, 2019) for RL algorithm, as well as other hyper-parameters not
specific to the propose architecture. We show substantially improved results on four of these
five games (see Table 3 ).

10.4.6. Transformer-NFM for Language Modeling

Table 8. Results on Wikitext-2 with NFM integration in perplexity (lower is better) after
15 epochs of training. Note that in the transformer integration, NFM does not add any

additional parameters and only a trivial amount of additional computation.

Model Mechanisms Perplexity
No-NFM 2 31.12
NFM 2 30.78
No-NFM 4 31.50
NFM 4 31.05

10.4.7. Analysis of Hyperparameters

On CIFAR-100 classification (PreActResNet34) we jointly varied the keysize, valsize, and
number of heads used for the NFM process (Table 9).
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Table 9. Varying the key dimension, value dimension, top-k sparsity, and number of heads
used for the attention process, when running PreActResNet34 on CIFAR-100 classification.

Note that all results outperform the baseline accuracy of 80.13%.

Heads Top-k dk dv Test Accuracy (%)
2 3 8 16 80.37
2 3 8 32 80.47
2 3 8 64 80.41
2 4 8 16 80.26
2 4 8 32 80.77
2 4 8 64 80.52
4 3 16 16 80.31
4 3 16 32 80.26
4 3 16 64 80.27
4 3 32 32 80.40
4 4 16 32 80.55
4 4 32 64 80.33

On the relational reasoning task, we tried using one-pass K = 1, and we achieved test
accuracy of 73.07±1.17 on relational questions, which is better than the baseline’s 68.26±0.61
accuracy, but worse than the NFM with two-passes K = 2 (accuracy of 74.95 ± 1.58 on
relational questions). We also saw an improvement thanks to introducing attention sparsity.
In the reported results, both baseline CNN and NFM(CNN) use 24 initial channels. We
also looked at the relation between the number of model parameters, test accuracy and
adding/removing NFM in an image classification task.

We also experimented with higher capacity baselines for our GAN and relational reasoning
experiments. Our CIFAR-10 baseline had an FID of 15.12. Doubling the number of channels
at each layer improved the FID to 14.65 and doubling the number of layers improved the
FID to 14.43. With NFM and the original number of channels/layers, we achieved a much
greater improvement, reducing the FID to 13.15. We also experimented with higher capacity
baselines on the Sort-of-Clevr relational reasoning task. With a DenseNet3 (depth 16) we
achieved an accuracy of 66.7 ± 3.5 whereas NFM achieves a much higher accuracy of 74.95 ±
1.58. When we doubled the number of channels and the number of layers the accuracy slightly
improved to 76.5 ± 1.1 (with NFM) and 69.21 ± 1.36 (without NFM), suggesting that the
improvement from simply adding more capacity is much smaller than the improvement from
using NFM.

On the relational reasoning task, we tried using one-pass K = 1, and we achieved test
accuracy of 73.07±1.17 on relational questions, which is better than the baseline’s 68.26±0.61
accuracy, but worse than the NFM with two-passes K = 2 (accuracy of 74.95 ± 1.58 on
relational questions). We also saw an improvement thanks to introducing attention sparsity.
In the reported results, both baseline CNN and NFM(CNN) use 24 initial channels.

Additionally, we tried replacing the normal re-scaling process (Section 10.3.2.2) from NFM
and replaced it with a simple nearest-neighbor re-scaling. On CIFAR-10 PreActResNet18
classification, the average test accuracy dropped from 96.56% to 96.47%
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10.5. Conclusion
The central concept behind the success of deep learning is that models should consist of

multiple components (layers), each performing specific functions. Many of the most successful
ideas in deep learning have the purpose of allowing individual layers to serve a more specific
and incremental role. However, we note that most neural networks still process all of the
layers in a fixed sequence, giving each layer the previous layer as input. We have instead
proposed an alternative setup, which we called Neural Function Modules (NFM), which
is inspired by functions in programming languages, which operate over specific arguments.
Our main contribution lies in a new algorithm design, which connects several ideas that are
important in deep learning (attention, sparsity, specialized modules, top-down and bottom-up
feedback, long-range dependencies). The proposed implementation of these ideas (Neural
Function Modules) is a generic and highly flexible architecture. While it is improved by NFM,
increased standard test accuracy on classification tasks such as ImageNet was not the main
focus of our work. We have shown that the proposed method substantially improves the
performance across many different tasks (including systematic generalization), and we have
shown ways in which this opens up new opportunities for architecture design - by removing
the constraint that each layer must serve as input for the successive layer.
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Chapter 11

Conclusion

The articles presented as a part of this thesis explore how latent data augmentation and
modular structure can contribute to improved generalization in deep learning.

(1) Training with interpolated hidden states (Chapter 4): In Verma et al. (2018),
we present a way of training deep networks on interpolations of hidden states in
random layers, which we show leads to more compressed hidden representations in
theory and in practice, as well as improved generalization in deep learning.

(2) Interpolation Consistency Training for Semi-Supervised Learning (Chapter
6): In Verma et al. (2019a), we present a new semi-supervised learning algorithm
which operates in the consistency training framework, and trains on interpolations
between different examples. The algorithm significantly improved over previous
consistency-based semi-supervised learning algorithms which used Gaussian noise in
the input space instead of interpolations.

(3) Recurrent Independent Mechanisms (Chapter 8): Deep neural networks achieve
excellent ability to fit a fixed training set, yet often generalize poorly when the training
set and testing set differ systematically. An assumption that can help to improve
systematic generalization is the idea that the system under consideration consists
of independent mechanisms, which retain a functional role as unrelated parts of
the world are changed. We proposed a Recurrent Independent Mechanisms model
(Goyal et al., 2019) in which the hidden state is divided into multiple mechanisms
with well-separated states and parameters, and which communicate selectively via
attention and compete to active. This greatly improves generalization on benchmarks
where we vary some of the patterns between train and test time and also improves
reinforcement learning performance.

(4) Neural Function Modules (Chapter 10): Typical layers in deep neural networks
process the inputs in order, starting from the first layer and ending with the last layer.
This may adversely affect the model’s capacity, as it forces the layers to relate to
each other in a fixed way, rather than dynamically selecting their inputs from the
previously computed layers. To address this challenge, we proposed Neural Functional
Modules Lamb et al. (2021a) which uses attention at every layer to attend over all
the outputs from previously computed layers. This greatly improved performance on
reasoning tasks and moderately improved performance on classification tasks.
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