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Résumé

Ces dernières années, le domaine de l’apprentissage profond a connu des progrès
énormes dans des applications allant de la génération d’images, détection d’objets,
modélisation du langage à la réponse aux questions visuelles. Les approches
classiques telles que l’apprentissage supervisé nécessitent de grandes quantités de
données étiquetées et spécifiques à la tâches. Cependant, celles-ci sont parfois
coûteuses, peu pratiques, ou trop longues à collecter. La modélisation e�cace en
données, qui comprend des techniques comme l’apprentissage few-shot (à partir
de peu d’exemples) et l’apprentissage self-supervised (auto-supervisé), tentent de
remédier au manque de données spécifiques à la tâche en exploitant de grandes
quantités de données plus “générales”. Les progrès de l’apprentissage profond, et
en particulier de l’apprentissage few-shot, s’appuient sur les benchmarks (suites
d’évaluation), les métriques d’évaluation et les jeux de données, car ceux-ci sont
utilisés pour tester et départager di�érentes méthodes sur des tâches précises, et
identifier l’état de l’art. Cependant, du fait qu’il s’agit de versions idéalisées de la
tâche à résoudre, les benchmarks sont rarement équivalents à la tâche originelle, et
peuvent avoir plusieurs limitations qui entravent leur rôle de sélection des directions
de recherche les plus prometteuses. De plus, la définition de métriques d’évaluation
pertinentes peut être di�cile, en particulier dans le cas de sorties structurées et en
haute dimension, telles que des images, de l’audio, de la parole ou encore du texte.
Cette thèse discute des limites et des perspectives des benchmarks existants, des
fonctions de coût (training losses) et des métriques d’évaluation (evaluation metrics),
en mettant l’accent sur la modélisation générative - les Réseaux Antagonistes
Génératifs (GANs) en particulier - et la modélisation e�cace des données, qui
comprend l’apprentissage few-shot et self-supervised. La première contribution est
une discussion de la tâche de modélisation générative, suivie d’une exploration
des propriétés théoriques et empiriques des fonctions de coût des GANs. La
deuxième contribution est une discussion sur la limitation des few-shot classification
benchmarks, certains ne nécessitant pas de généralisation à de nouvelles sémantiques
de classe pour être résolus, et la proposition d’une méthode de base pour les résoudre
sans étiquettes en phase de testing. La troisième contribution est une revue sur les
méthodes few-shot et self-supervised de détection d’objets , qui souligne les limites
et directions de recherche prometteuses. Enfin, la quatrième contribution est une
méthode e�cace en données pour la description de vidéo qui exploite des jeux de
données texte et vidéo non supervisés.
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Abstract

In recent years, the field of deep learning has seen tremendous progress for appli-
cations ranging from image generation, object detection, language modeling, to
visual question answering. Classic approaches such as supervised learning require
large amounts of task-specific and labeled data, which may be too expensive, time-
consuming, or impractical to collect. Data-e�cient methods, such as few-shot and
self-supervised learning, attempt to deal with the limited availability of task-specific
data by leveraging large amounts of general data. Progress in deep learning, and in
particular, few-shot learning, is largely driven by the relevant benchmarks, evalua-
tion metrics, and datasets. They are used to test and compare di�erent methods on
a given task, and determine the state-of-the-art. However, due to being idealized
versions of the task to solve, benchmarks are rarely equivalent to the original task,
and can have several limitations which hinder their role of identifying the most
promising research directions. Moreover, defining meaningful evaluation metrics can
be challenging, especially in the case of high-dimensional and structured outputs,
such as images, audio, speech, or text. This thesis discusses the limitations and
perspectives of existing benchmarks, training losses, and evaluation metrics, with a
focus on generative modeling–Generative Adversarial Networks (GANs) in particu-
lar–and data-e�cient modeling, which includes few-shot and self-supervised learning.
The first contribution is a discussion of the generative modeling task, followed by
an exploration of theoretical and empirical properties of the GAN loss. The second
contribution is a discussion of a limitation of few-shot classification benchmarks,
which is that they may not require class semantic generalization to be solved, and
the proposal of a baseline method for solving them without test-time labels. The
third contribution is a survey of few-shot and self-supervised object detection, which
points out the limitations and promising future research for the field. Finally, the
fourth contribution is a data-e�cient method for video captioning, which leverages
unsupervised text and video datasets, and explores several multimodal pretraining
strategies.
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1 Introduction

Machine learning [Mitchell and Mitchell, 1997], a branch of artificial intelligence,
can be defined by the approach of training an algorithm to solve problems, make
predictions, and take decisions, based on training datasets, human feedback, or
interactions with a real or simulated environment. Recent successes in machine
learning, such as large language models [Brown et al., 2020], text-to-image gener-
ators [Ramesh et al., 2022], visual question answering [Alayrac et al., 2022], and
object detectors [Ren et al., 2015, Carion et al., 2020] can be attributed to deep
learning [Goodfellow et al., 2016], which is the art of using neural networks to
learn high-level representations of the data. Besides a substantial amount of elbow
grease, deep learning involves designing neural network architectures, training losses,
choosing an optimizer to minimize the losses, and tuning the hyperparameters to
make everything work, on top of curating learning datasets, collecting labels, and
defining appropriate evaluation benchmarks.

Traditional supervised learning methods are hindered by the limited availability
of large task-specific datasets. For instance, for fine-grained classification tasks
with a long-tailed distribution, such as fungus image classification or human face
verification, there may only be a few images available for the rarest varieties (resp.
least occurring faces), but we may nevertheless want a system to perform decently
on them. Data-e�cient methods attempt to circumvent the limited availability of
data using various strategies. In this thesis, we focus on few-shot learning [Ravi
and Larochelle, 2016, Vinyals et al., 2016b] and self-supervised learning [He et al.,
2020, Chen et al., 2020a] which are two complementary approaches which leverage
additional data and prior knowledge of the task to learn more e�ciently from the
task-specific data.

Generative modeling is a di�erent paradigm from supervised learning, where the
goal is to generate new data, such as images, from a given distribution, typically
with the goal of having diverse and realistic samples [Arora et al., 2018]. As of
this writing, Generative Adversarial Networks or GANs, introduced by Goodfellow
et al. [2014], are still one of the state-of-the-art models [Karras et al., 2018b];
in terms of image quality, and sampling speed. GANs present a departure from
traditional likelihood-maximization approaches, which fit a model density to the
training data by maximizing the likelihood. Instead, the GAN generator tries to
fool an auxiliary network, the discriminator, which is jointly trained to recognize
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real images from synthetic images. In this thesis, we abstract away the alternating
optimization of the generator and the discriminator, instead viewing the GAN
generator as minimizing a parametric divergence. We study the empirical and
theoretical properties of parametric divergences, opposing them to what we call
nonparametric divergences such as the Kullback-Leibler, Jensen-Shannon [Nowozin
et al., 2016], and Wasserstein distance [Arjovsky et al., 2017].

The following sections contain an overview of the thesis structure (Section 1),
introduce our research contributions in context (Section 2), and link to publications
excluded from this thesis (Section 3).

1 Overview of the Thesis Structure
Beyond this introduction (Chapter 1) and the conclusion (Chapter 11), this thesis
contains a background section (Chapter 2) with key notions for understanding
the research contributions, followed by the four contributions themselves, each
corresponding to a research paper and preceded by a prologue section:

• First Contribution. “Parametric Adversarial Divergences are Good
Losses for Generative Modeling” by Gabriel Huang, Hugo Berard, Ahmed
Touati, Gauthier Gidel, Pascal Vincent, Simon Lacoste-Julien [Huang et al.,
2017]. This paper was initially accepted as a ICLR 2018 Workshop paper,
then presented at the Montreal AI Symposium 2018; a conference version has
been submitted to ICML 2018; finally, a journal version was submitted to
JMLR. (Chapters 3, 4)

• Second Contribution. “Are Few-Shot Learning Benchmarks too Simple?
Solving them without Test-Time Labels” by Gabriel Huang, Hugo
Larochelle, Simon Lacoste-Julien [Huang et al., 2019]. This work was accepted
as an ICLR 2019 workshop paper; a full version was submitted to ICLR 2020,
ICML 2020 and NeurIPS 2020; this project was also presented at the Montreal
AI Symposium 2020. (Chapters 5, 6)

• Third Contribution. “A Survey of Self-Supervised and Few-Shot Object
Detection” by Gabriel Huang, Issam Laradji, David Vázquez, Simon Lacoste-
Julien, Pau Rodríguez [Huang et al., 2021]. This paper has been accepted with
minor revision at the IEEE Transactions in Pattern Analysis and Machine
Intelligence (TPAMI). (Chapters 7, 8)

• Fourth Contribution. “Multimodal Pretraining for Dense Video Cap-
tioning” by Gabriel Huang, Bo Pang, Zhenhai Zhu, Clara Rivera, Radu
Soricut [Huang et al., 2020]. This paper has been published at AACL-IJCNLP
2020. (Chapters 9, 10)
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2 Research Contributions
2.1 Data-e�cient Learning
Traditional methods such as supervised learning require large amounts of task-specific
and supervised datasets, which can be di�cult, expensive, and impractical to obtain,
hindering the application of deep learning methods to low-data settings [Chen
et al., 2019a]. Data-e�cient methods attempt to circumvent these shortcomings by
exploiting additional datasets or the inherent structure of the dataset. Few-shot
learning is about training models to learn from a small number of labeled examples,
typically by leveraging a larger dataset [Vinyals et al., 2016b, Ravi and Larochelle,
2016]. Self-supervised learning is about exploiting prior information (such as data
augmentations) or the structure of the data (such as predicting missing words) to
learn from unsupervised datasets.

Stronger generalization for few-shot classification. Few-shot classification
methods aim to recognize new (previously unseen) classes or object categories
during evaluation, after being exposed to a large number of known classes, during
training [Ravi and Larochelle, 2016, Finn et al., 2017, Vinyals et al., 2016b]. Om-
niglot [Lake et al., 2011] and miniImageNet [Vinyals et al., 2016b] are among the
most popular few-shot classification benchmarks. However, a limitation of these
benchmarks is that they do not require learning new class semantics, instead testing
methods on novel classes only with known semantics—alphabet letters for Omniglot,
objects for miniImageNet. Such benchmarks may not be representative of few-shot
classification benchmarks deployed in the wild, which may be required to recognize
new class semantics, such as tra�c signs on one occasion, and identify human faces
on another.

∆ Our main contribution to few-shot classification is a baseline method, centroid
networks [Huang et al., 2019], for solving few-shot classification benchmarks without
using any test-time labels, instead relying on clustering of the learned representations
to infer the labels. Though our approach has shortcomings of its own, it represents
a first step towards quantifying the di�culty of few-shot classification benchmarks
in terms of class semantic generalization. As secondary contributions, our method
can be used to make inductive few-shot classification methods transductive, solve
learning-to-cluster problems; moreover, our clustering algorithm—Sinkhorn K-
Means— and its variants, can be used for learning self-supervised representations,
as exemplified by SwAV [Caron et al., 2020].

Interplay of self-supervision and few-shot object detection. Object de-
tection consists in localizing, and classifying known objects in an image, typically
by predicting bounding box locations and class identities in the image. Few-shot
object detection consists in learning to detect new objects, based on a small num-
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ber of training examples. Previously, few-shot object detection methods such as
Meta-RCNN [Yan et al., 2019] or TFA [Wang et al., 2020a] had relied on super-
vised pretraining, solely of the backbone network. More recent approaches such as
DETReg [Bar et al., 2021] leverage self-supervised pretraining, and were able to
achieve state-of-the-art performance at the time of publication.

∆ Our main contribution to the field is a joint survey of self-supervised and few-shot
object detection [Huang et al., 2021], which fully explores the interactions between
the two paradigms. We create a taxonomy of self-supervised and few-shot object
detection techniques, clarify the di�erences —and there are many!— with few-shot
classification, point the the limitations of current evaluation procedures, emphasize
the success of simple finetuning-based approaches, and give recommendations
for best practices in the future. In particular, we take note of the e�ciency of
transformers, both at the object detection level, and the backbone level, and advise
readers to keep an eye on fully autoregressive approaches which formulate object
detection outputs as text.

2.2 GAN Losses and Generative Modeling
∆ Our main contribution to generative modeling is an investigation of properties
of the GAN loss. We start by trying to formalize the problem of image generation
by drawing parallels with structured prediction [Taskar et al., 2003], which has
long dealed with high-dimensional and structured outputs. Then, we investigate
properties such as sample complexity and the ability to enforce certain consistency
properties of the distribution (e.g. an arithmetic constraint with the Sum-25
experiment). We point out shortcomings of traditional divergences such as Kullback-
Leibler and Jensen-Shannon, explain how integral probability metrics such as
MMD Gretton et al. [2007] and the Wasserstein distance Arjovsky et al. [2017],
Cuturi [2013] fail to address all of them, and how parametric divergences provide
a viable alternative. Finally, we explore an extension of parametric divergences
to define more intuitive notions of mutual information. In particular, we find out
in the finite-data regime that parametric mutual information can overcome some
apparent paradoxes of traditional mutual information.

2.3 Video Captioning
Video Captioning for Timeline Tagging. Because tutorial videos mainly con-
sist of frames with narrated speech, it can be di�cult for a user to navigate through
the di�erent steps of a tutorial. Therefore, we propose to automatically caption
each step based on two modalities: video frames, and transcripts of the narrated
instructions. Previous approaches either only exploit the video information [Zhou
et al., 2018c, Sun et al., 2019a, Lei et al., 2020], or exploit both the video and speech
information, but are limited by the lack of large annotated datasets [Hessel et al.,
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2019]. Existing datasets such as YouCook2 [Zhou et al., 2018a] are limited in size,
restricted in scope (recipes only), and demand limited generalization (same recipes
are split between training and development sets).

∆ Our contributions are two-fold: a multimodal pretraining strategy for dense video
captioning, and a new dataset for timeline tagging [Huang et al., 2020]. Our method
continuously projects video features to embeddings, and features two transformers
which cross-attend to each other. We investigate several pretraining strategies,
ranging from video-augmented Cloze-style text completion [Song et al., 2019], to
text-video alignment and ordering prediction. We also investigate several finetuning
strategies, some of which turn out to be beneficial even in the absence of pretraining.
Compared to previous methods, our approach is multimodal, leverages nonparallel
video and text pretraining sets, and has achieved state-of-the-art results at the time
of publication [Huang et al., 2020], with the biggest gain attributable to text-only
pretraining. Compared to YouCook2 [Zhou et al., 2018a], our new dataset, Video
Timeline Tagging, features a wide range of activities, contains shorter labels which
are more suitable for timeline tagging, and requires stronger generalization because
we do not explicitly split each activity across training and development set. It is
publicly available online.1

3 Excluded Publications
Several publications, which I have contributed to during my PhD, have been excluded
from this thesis, in order to keep the manuscript more consistent and succinct:

• “Scattering Networks for Hybrid Representation Learning” by
Edouard Oyallon, Sergey Zagoruyko, Gabriel Huang, Nikos Komodakis, Simon
Lacoste-Julien, Matthew Blaschko, Eugene Belilovsky, published in IEEE
TPAMI 2018 [Oyallon et al., 2018].

• “Negative Momentum for Improved Game Dynamics” by Gauthier
Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Rémi Le Priol, Gabriel
Huang, Simon Lacoste-Julien, Ioannis Mitliagkas, published at AISTATS 2019
[Gidel et al., 2019].

• “Repurposing Pretrained Models for Robust Out-of-domain Few-
Shot Learning” by Namyeong Kwon, Hwidong Na, Gabriel Huang, Simon
Lacoste-Julien, published at ICLR 2021 [Kwon et al., 2021].

1https://github.com/google-research-datasets/Video-Timeline-Tags-ViTT
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2 Background

This chapter briefly introduces the necessary machine learning background to
understand the PhD contributions:1

• Section 1 reviews some common paradigms in machine learning: supervised
learning, clustering, generative modeling, representation learning, few-shot
and zero-shot learning.

• Section 2 introduces neural networks and some of the architectures we use
in our contributions, such as the convolutional neural network and the trans-
former.

• Section 3 introduces training losses, evaluation metrics, optimizers, data splits
and the relationship between them.

• Section 4 introduces the generative modeling task, Variational Autoencoders
(VAEs) and Generative Adversarial Networks (GANs).

For background information on dense video captioning (Chapter 10) and object
detection (Chapter 8) we refer the reader to the corresponding chapters.

1 Types of Machine Learning Paradigms
Machine learning can be characterized by the idea of building models that gradually
learn to solve certain tasks, based on training examples, human feedback, or interac-
tions with a real or simulated environment. The field can be subdivided into several
paradigms and tasks, which may overlap and are frequently combined together, We
introduce the supervised learning (Section 1.1), unsupervised learning (Section 1.2),
transfer learning (Section 1.4) and few-shot/zero-shot learning (Section 1.5), with a
focus on the challenges of training and evaluation.

1Please note that “machine learning” and “artificial intelligence” will be used interchangeably
through this thesis.
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1.1 Supervised Learning
Supervised learning is about learning a predictor which takes an input x and
outputs a label y. The predictor is a function h◊ : X ≠æ Y, parametrized by its
model parameters ◊. Typically, the predictor is trained to minimize a training loss
L(◊) on a training set consisting of multiple input-output pairs (xi, yi) known as
examples. Then, the predictor is evaluated on a held-out set of examples, known as
the test set, using an evaluation metric L(◊). An intermediate validation set is
often used, to tune the model hyperparameters. The hope is that the model can
generalize to new (previously unseen) examples.

Here are some example tasks which can be formulated as supervised learning
problems:

• Image classification: x is an X-ray of a patient’s wrist, y is whether that there
is a broken bone.

• Speech recognition: x is an audio signal, y is the transcription of the person’s
speech.

• Machine translation: x is a sentence in French, and y is a sentence in English.

• Object detection: x is an image to analyze, y is the list of detected objects
with their categories and location in the image.

• Video captioning: x is a video clip, y is a text summary of the video clip.

• Style transfer : x = (c, s) is a pair of image and target style, y is the transformed
image.

• Closed-book question answering: x is a question in natural language, y is the
answer.

Challenges. Supervised learning is a general framework which encompasses a
wide variety of prediction problems. A challenging aspect remains the choice of
evaluation metric, especially for evaluating high-dimensional and structured outputs,
such as natural language. Another challenge is to acquire su�cient task-specific
labels, which has motivated the development of transfer learning (Section 1.4) and
other low-data approaches (Section 1.5).

1.2 Unsupervised Learning
Unsupervised learning is a di�erent paradigm in that the training set is unlabeled—it
has no additional human annotations. Unsupervised learning encompasses a wide
range of tasks—generative modeling, representation learning, clustering—with
applications ranging from data analysis to prediction and data generation.
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Generative Modeling. The goal is to learn a generative model q◊(x), which can
generate new samples, which we generally require to be diverse and realistic. We
make the distinction between explicit generative models, which can compute the
likelihood of a sample numerically, and implicit generative models, which we can
only sample from a learned distribution. Examples tasks are:

• Language modeling. The goal is to learn a probability distribution —an
explicit model— over a sequence of words, corresponding to sentences in
a language such as English. Typically, language models are autoregressive
and factorize as p(x1, x2, . . . , xT ) = p(x1) · p(x2|x1) · · · p(xT |xT ≠1). Recurrent
neural networks and LSTMs used to be popular for language modeling, but
they have been superseded by Transformers in the last few years.

• Image generation. The goal is to learn a model that can generate realistic
images. Successful implicit models include Generative Adversarial Networks
(GANs), while successful explicit models include Di�usion Models [Ho et al.,
2020], and Variational Autoencoders [Kingma and Welling, 2014] to some
extent [Ramesh et al., 2021].

Evaluating image generation is still an open problem, and has motivated our work
on exploring properties of the GAN loss (Chapter 3). The most common metric is
the Fréchet Inception Distance [Heusel et al., 2017], which basically ensures that
distributions of true and generated images match in the representation space defined
by a pretrained feature extractor.

Conditional Generation. The goal is to generate data based on some attribute,
text, or other modality. Conditional generation blurs the line between supervised
and unsupervised learning, because the models may be trained (or finetuned) on
labeled data. One thing that sets them apart from “usual” supervised learning tasks
such as classification is that outputs are generally high-dimensional and structured
(as opposed to one-hot labels). The high-dimensionality and structured aspect of
the outputs is a key part of our discussion on generative losses (see Chapter 4); in
particular, losses with sample complexities exponential in the output dimension
are generally not applicable in practice, while losses with inductive biases (such as
convolutions) have better properties by taking advantage of the structured aspect.
Many unsupervised generators can be modified to condition on additional data: for
instance, GANs can be conditioned on the object category (e.g., for class-conditional
generation), image generators can condition on the visible part of the image (e.g., for
image inpainting), and language models can condition on visual data (e.g., for image
captioning and visual question answering) or on text (e.g., for text summarization
or machine translation).
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Clustering. Clustering consists in partitioning a dataset into semantically similar
groups (according to some definition). The desired groups can be semantic (e.g.
similar object class and attribute), defined mathematically (e.g. small intra-class
variance). The groups can also be learned in a supervised way, in the context of
learning-to-cluster. Applications of clustering can range from data visualization and
analysis, to segmenting images, to quantizing continuous representations into discrete
tokens, and can also be used to learn unsupervised representations [Caron et al.,
2020]. Common algorithms are K-Means [Lloyd, 1982], which iteratively minimizes
the intra-class variance, hierarchical clustering methods [Murtagh and Contreras,
2012], which iteratively merge clusters into bigger ones, and Mean Shift [Comaniciu
and Meer, 2002], which iteratively finds the modes of the data distribution. In
Chapter 6, we introduce a new clustering algorithm named Sinkhorn K-Means for
the purpose of clustering few-shot support sets; our method can also be applied to
learning-to-cluster [Hsu et al., 2017] and transductive few-shot classification [Vinyals
et al., 2016b].

1.3 Representation Learning
We put representation learning in its own section, as both supervised and unsu-
pervised approaches are possible. The goal of representation learning is to learn
a function g◊ : X ≠æ Z, known as feature extractor, which maps the raw data
x to a more convenient representation or features z, typically with smaller
dimensions, and a more semantic space [Bengio et al., 2013]. The representation
can be used explicitly, for instance by performing nearest neighbor or clustering on
the representations, or implicitly, for instance when a complete language model is
finetuned on the downstream task, instead of extracting intermediate activations.

If the goal is for an user to analyze, visualize, or manipulate the data, then the
following properties are often desirable:

• reconstruction. Conveniently reconstruct the original data from the repre-
sentation, such as with a feedforward network f◊ : Z ≠æ X.

• semantic space. Things that are close in representation space are semanti-
cally close (e.g. face representations for the same person are closer than those
of di�erent people). Word embeddings can commonly be used to perform “se-
mantic arithmetic” such as queen = king ≠man+woman. Face embeddings
can often be linearly interpolated to reconstruct a meaningful interpolation
between two faces.

• disentanglement. “Independent” attributes are mapped to separate vari-
ables; for a 3D car model representation, this would mean di�erent variables for
car size, make, color, form factor, and period. This makes the representation
easier to interpret and to manipulate.
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If the goal is to solve a downstream task, the representation should either improve
the downstream performance or reduce its data requirements. The whole process
is then known as transfer learning, and the representation learning phase as
pretraining (Section 1.4).

1.4 Transfer Learning
Transfer learning is a paradigm for solving downstream tasks with limited task-
specific labels, which often combines supervised and unsupervised learning tech-
niques. Transfer learning can be decomposed into two stages:

1. Pretraining stage: learn a representation which can transfer well to the
downstream task; in practice, this often means learning a set of model weights
which can be easily finetuned afterwards. The pretraining stage can be
supervised or unsupervised. For instance, it is common to perform super-
vised pretraining on ImageNet for object detection tasks [Ren et al., 2015].
Recent image representations are pretrained on unlabeled Imagenet using
self-supervised objectives [Chen et al., 2020a, He et al., 2020]. Language
models are also commonly pretrained on unsupervised objectives such as stan-
dard language modeling objective [Radford et al., 2019] or masked language
modeling [Devlin et al., 2018] prior to solving downstream tasks.

2. Transfer stage: use the pretrained representation to solve the final
task—downstream task— typically by finetuning the pretrained represen-
tation on the task, though some approaches rely on frozen representations.

Finetuning. The most flexible way to use the representation is to finetune it on
the downstream task, which means using an optimizer to adjust the model weights
on the downstream task. For instance, one can add classification heads or object
detection heads on top of the representation, and finetune the resulting model
to solve these respective tasks. For language tasks, it is common to finetune the
pretrained model with little to no changes to the architecture. For multimodal
approaches, one can combine pretrained language and vision models, and finetune
them jointly. This is the approach we take in our multimodal pretraining for dense
captioning project (Chapter 10).

Frozen representations. Simple strategies such as training a linear classifier on
top of fixed (frozen) representations—known as linear probing—or using a nearest
neighbors classifier, have the advantage of simplicity and reliability. They require
little to no finetuning, and bear little computational resource requirements once the
features are precomputed. However, they cannot adapt the representation to the
downstream task, and may have limited performance if it di�ers substantially from
the pretraining task. Linear probing and nearest neighbors are also commonly used
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to evaluate self-supervised representations (such as those presented in Section 5.1).
Some approaches [Tsimpoukelli et al., 2021] combine a frozen language model with
a visual backbone to solve multimodal tasks.

1.5 Few-shot and Zero-shot Learning
Although transfer learning is often a viable approach in low-data scenarios, there
exist more specialized paradigms such as few-shot and zero-shot learning, semi-
supervised learning, and weakly supervised learning, which we describe here. Such
paradigms are usually compatible with transfer learning–they often leverage similar
pretraining procedure, but di�er in the finetuning step. For instance, recent few-shot
classification methods usually leverage pretrained representations [Liu et al., 2021a,
Triantafillou et al., 2020].

Few-shot learning. There are di�erent variants with distinct goals and evaluation
procedures: few-shot classification (FSC), few-shot object detection (FSOD), and
few-shot natural language understanding and generation.

In few-shot classification (FSC), the goal is to learn to classify new classes, based
on a small training set, the support set. Most benchmarks adopt the K-way N -
shot paradigm, in which N annotated examples for each of the K classes are
provided [Lake et al., 2011, Vinyals et al., 2016b, Ren et al., 2018]. During (meta-
)training, meta-learning-based methods [Finn et al., 2017, Snell et al., 2017b, Vinyals
et al., 2016a, Ravi and Larochelle, 2016] commonly sample episodes which consist of
a support set (for training) and a query set (for validation); the model is adapted on
the support set and validated on the query set, and the validation loss is minimized
end-to-end. Then, during (meta-)evaluation, episodes with new classes are formed,
the model is adapted on the support set and makes predictions on the query set.

A driving goal of FSC is to have strong generalization to new classes, but we argue
that popular few-shot benchmarks like Omniglot [Lake et al., 2011] do not require
learning new class semantics (e.g. tra�c signs or fungi species vs. letters), only
new classes with the same semantics (e.g. new letters). This is one of the reasons
that motivated our work on quantifying the semantic diversity of existing FSC
benchmarks (Chapter 5).

Few-shot object detection (FSOD) is the task of learning to detect, localize and
recognize new object categories (novel classes) based on a few training examples. In
practice, FSOD is formulated very di�erently from FSC (Section 4.2), and there are
several subtleties in the evaluation procedure (Section 4.3). We wrote the survey
on FSOD to clarify these subtleties and explore the interactions of FSOD with
self-supervised learning (Chapter 8).
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Zero-shot learning. In zero-shot learning, the model must learn to recognize new
classes or solve new tasks without any prior example, relying instead on features,
attributes, metadata or natural language, describing the task to solve or the class to
recognize. For instance, in zero-shot image classification, one approach is to describe
new classes by their attributes, such as eats-fish: no, stripes: yes or color-brown:no
for animal recognition [Xian et al., 2018]. Other approaches describe new classes
by specifying their word embeddings; they may conveniently map image features
to the semantic space, which can then be searched using nearest neighbors [Xian
et al., 2018, Wang et al., 2018b]. For zero-shot natural language understanding,
prompt-based methods conveniently formulate new tasks in natural language; when
properly pretrained on language modeling, models may even emerge the capability
of solving these tasks [Brown et al., 2020]. Performance may be further improved by
training on a wide array of language tasks [Sanh et al., 2021]. Recent multimodal
approaches leverage the flexibility of full natural language sentences to describe
new classes: for instance CLIP [Nichol and Dhariwal, 2021] and Flamingo [Alayrac
et al., 2022] describe new classes (resp. tasks) using natural language.

2 Architectures
Deep learning is a subset of machine learning which attempts to solve tasks by
means of representation learning with artificial neural networks, typically trained
on large datasets using parallel computation.

2.1 Neural Network
Artificial neural networks—or simply neural networks—are very loosely inspired
from biological neural network. From an input data such as an image or English
sentence—generally represented as a (sequence of) N -dimensional tensor —they
compute activations (non-linear transformations of the data) through repeated
application of simple functions, and output a representation or prediction. The
functions are parametrized by parameters, which can be learned by means of
optimizing the training loss, a cost function defined on a set of examples, known as
the training set.

The most basic neural network is the Multi-Layer Perceptron (MLP) which is a
composition of dense—a.k.a. fully-connected—layers fL ¶ · · · f2 ¶ f1. Starting
from the input data x œ RN0 , each layer fl transforms the current activations
x(l)

œ RNi and passes them on to the next layer, until the last layer outputs the
prediction or final representation. A basic dense layer is the composition of a linear
transformation parametrized by weights Wi œ RNi+1◊Ni and biases bi œ RNi+1 , and
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a fixed nonlinearity a known as the activation function.

fi : RNi ≠æ RNi+1

x ‘æ a(Wix+ bi)

A popular nonlinearity is the rectified linear unit or ReLU [He et al., 2016], which
clips activations to be positive a : u ‘æ max(0, u). The weight and bias parameters
are learned using an optimizer (see Sec 3.3).

Neural networks defines a very flexible family of function; it has been shown [Hornik,
1991] that even arbitrarily wide two-layer MLPs are universal function approximators.
Additionally, neural networks have the advantage of being relatively smooth (ReLU-
based neural networks are continuous and di�erentiable almost everywhere), and can
incorporate inductive biases through the choice of architecture, which can reduce
data requirements and improve generalization on unseen data.

In the next sections, we briefly review convolutional neural networks and transform-
ers, which are the building blocks of most modern deep-learning architectures.

2.2 Convolutional Neural Networks
Convolutional neural networks (CNN) are an architecture for processing visual and
audio signals with inductive biases inspired from human biology [Li et al., 2021c].
CNNs are a composition of convolutional layers which successively apply nonlinear
transformations to feature maps, starting from the input data. For images, feature
maps are typically a 3D tensor of size width ◊ height ◊ channels, while for audio
they are 2D tensors of size timesteps◊ channels. Each feature map is computed by
convolving feature maps of the previous layer with a learned kernel. The convolution
enforces a strong locality prior—each feature is computed from a local patch— and
e�ciently reuses parameters (filters) across spatial locations. Recent iterations
of CNNs are residual networks or ResNets [He et al., 2016]. Residual networks
mix convolutional layers with normalization layers, augmented with residual skip-
connections, which can bypass convolutional layers and enable deep networks with
more than 100 layers. To this day, they are still among state-of-the-art architectures,
despite the rising popularity of visual transformers [Dosovitskiy et al., 2021].

2.3 Transformers
Processing and generating sequences is necessary for dealing with modalities such
as text, video, or audio, which are most naturally formulated as sequences of tokens,
frames, or audio samples. The first models for processing sequences of symbols—such
as tokenized sentences— were recurrent neural networks (RNN) which are basically
MLPs with additional recurrent connections, which feed a layer’s output to itself at
the next time step [Sutskever et al., 2014]. However, RNNs are known to su�er from
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short-term memory and vanishing gradient issues, which prompted the resurgence
of long short-term memory networks (LSTMs) [Schmidhuber et al., 1997], which
side-step some of these issues using gates to retain memory.

Transformers were subsequently introduced by Vaswani et al. [2017] and replaced
recurrent connections with attention layers, which enable long-term dependencies
and are easily parallelizable. As of today, they have become the standard architecture
for natural language understanding (NLU)—with encoder-only architectures like
BERT [Devlin et al., 2018] or RoBERTa [Liu et al., 2019b]—for natural language
generation (NLG)—with decoder-only architectures like GPT-3 [Brown et al.,
2020], Megatron Turing NLG [Smith et al., 2022]—and sequence to sequence
problems—with encoder-decoder architectures like T5 [Ra�el et al., 2019]. While
encoder-only architectures are not suitable for generation, encoder-decoder and
decoder-only architectures may handle both NLU and NLG tasks.

Recently, it was shown that transformers can be used as feature extractors for
images; the images are cut into 8 ◊ 8 or 16 ◊ 16 patches, then the patches are
projected and flattened to obtain a sequence of tokens, leading to the Visual
Transformer or ViT [Dosovitskiy et al., 2021, Touvron et al., 2020]. Both text
and vision transformers have been shown to have favorable scaling properties with
respect to model size and training data [Kaplan et al., 2020, Zhai et al., 2021].

3 Training and Evaluation
While some tasks are well-defined and have an obvious evaluation metric, such
as classification error for image classification, other tasks, typically those with
a structured or generative aspect, may be ill-defined. For instance, it is not
obvious how to assess the performance of a machine translation, text-to-speech,
or image generation system. Statistical decision theory provides a partial answer,
by formalizing these problems as the minimization of a certain evaluation metric,
though the definition of such metric can be a challenging problem of its own [Bickel
and Doksum, 2015].

To learn a neural network’s weights or parameters, also known as training the
neural network, we need a training loss to minimize, and an optimizer to
compute the parameter updates. The training loss is sometimes (but not always) a
proxy or surrogate of the evaluation metric, but with favorable properties such as
di�erentiability, ease of computation, or good sample complexity.
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3.1 Evaluation metric
The evaluation metric L(◊) measures the quality of the output of a model with
parameters ◊. Depending on the task considered, choosing the evaluation metric
can be trivial or may require engineering various heuristics. For image classification,
a trivial evaluation metric is the (expected) classification error, which equals 0 if
the predicted class is correct, and 1 otherwise:

L(◊) = Ex,y≥p[ y ”=h◊(x))]

For language modeling, the evaluation metric is typically the log-likelihood or
perplexity, which quantify how good the model is at completing the next word in a
sentence.

L(◊) = Ewt+1≥p(wt+1|w1:t)[≠ log q◊(wt+1|w1:t)]
For object detection, evaluation is less trivial because there is not obvious way
to compare two sets of bounding boxes; a common metric is the mean average
precision:

L(◊) = Ex,y≥p[mAP(y, h◊(x))]
but such metric has issues such as entangling localization and classification error
(see Section 4.4 for a tutorial on mean average precision).

For tasks such as speech recognition, machine translation, or video captioning, eval-
uation is even more challenging, and may be as hard as defining a semantic distance
between two sentences; people typically resort to heuristics such as BLEU [Papineni
et al., 2002], an n-gram precision-based metric, ROUGE [Lin, 2004], a recall-based
metric, METEOR [Denkowski and Lavie, 2014] or CIDEr [Vedantam et al., 2015],
but each of these evaluation metrics has shortcomings and may not always agree
with a human annotator [Kilickaya et al., 2016].

For tasks with image outputs such as style transfer, or video next-frame prediction,
it is unclear which evaluation metric is the best, as the L2 distance (pixel-wise) is
widely known to poorly correlate with human perception. The Fréchet Inception
Distance (FID) is often used to evaluate GANs [Heusel et al., 2017] and basically
measures the distributional match between generated and real samples

FID = Îµ ≠ µwÎ
2

2
+ tr

3
� + �w ≠ 2

1
� 1

2 · �w · � 1
2
2 1

2
4

in the feature space of a pretrained network, such as Inceptionv3 [Szegedy et al.,
2015].

3.2 Training loss
The training loss L(◊) is a function of the model parameters, which measures the
quality of predictions on the training set, and is minimized during training. It is
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computed over a training set {(xi, yi)}1ÆiÆN , which is generally considered i.i.d.
sampled from the true distribution p. In deep learning, we often use stochastic
gradient descent for minimization, which requires the training loss to be di�eren-
tiable almost everywhere. This makes it challenging to use the evaluation metric
directly as a training loss, as most of them—such as classification error or mean
average precision— are not di�erentiable. Instead, one may use a di�erentiable
approximation of the evaluation metric, or simply use a di�erent loss.

For instance, a common training loss for classification is the negative log-
likelihood—a.k.a. cross-entropy loss—which can be computed from soft
(probabilistic) predictions:

L(◊) = E
x,y≥‚p[≠ log q◊(y|x))] = 1

N

Nÿ

i=1

≠ log q◊(yi|xi))

the hard predictions are given by the most probable class h◊(x) = arg maxy q◊(y|x).
For a single example, a prediction which fully minimizes the cross-entropy loss
(by assigning all probabilities to the ground truth label) will also minimize the
classification error but the cross-entropy loss has the advantage of being di�erentiable;
it can be thought of as a surrogate loss of the classification error [Osokin et al.,
2017].

For natural language outputs, negative log-likelihood is also the training loss of
choice due to favorable computational properties with autoregressive models (see
Section 6.1), but the connection with evaluation metrics such as BLEU [Papineni
et al., 2002] or ROUGE [Lin, 2004] is unclear as soon as predictions don’t exactly
match the ground-truth.

For image generation, the Fréchet Inception Distance (FID) introduced by Heusel
et al. [2017] remains one of the standard evaluation metrics, but is rarely used as
a training loss, with most image generation training losses being either adversar-
ial [Goodfellow et al., 2014, Salimans et al., 2016] or likelihood-based [Oord et al.,
2016, Ho et al., 2020, Ramesh et al., 2022]. There have been attempts to optimize
the FID as an additional loss during training [Mathiasen and Hvilshøj, 2020], which
resulted in lower validation FID; but there is no clear evidence whether direct FID
optimization can systematically improve image quality.

3.3 Optimization
Training a neural network means finding the parameters ◊ that minimize the training
loss L(◊). Except in the case of linear networks, the training loss is usually non-
convex, which means there is no guarantee to find the global minimum. This is not
necessarily a problem in practice, though this means optimization may be harder
to tune and fail more easily [Goodfellow et al., 2016].
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Deep learning algorithms are based on stochastic gradient descent. Gradient descent
is a first-order iterative optimization algorithm for finding the minimum of a
function. The idea behind gradient descent is that if a function L(◊) is defined and
di�erentiable in a neighborhood of x then L(◊) decreases the fastest when moving
◊ in the direction of ≠ÒL(◊), where ÒL(◊) is the gradient of L at position ◊. The
update rule for gradient descent is thus defined as follows:

◊t+1 = ◊t ≠ ÷tÒL(◊t)

where ÷t is the learning rate (or step size).

In practice, the training loss is often defined as an expectation over the training set
L(◊) = 1

N

q
N

i=1
¸(◊, xi). Instead of averaging the gradient over the whole training

set, it is common to sample only a subset (minibatch) of samples for the update.
This procedure is called stochastic gradient descent (SGD) and is proved to converge
in the convex case.

Most modern optimizers such as Adam [Kingma and Ba, 2015] are based on SGD,
with additional tricks such as momentum and adaptive normalization.

4 Generative Modeling
The goal of generative modeling is to generate new samples from a given distribution,
which are ideally high-quality (high precision) and diverse (high recall). In this
section, we review the VAE and GAN, two popular generative models.

4.1 Maximum Likelihood Estimation
A common divergence used in machine learning is the KL divergence. We can use
it to measure the distance between our model p◊ and the empirical distribution of
the data pD:

KL(pD||p◊) = EpD
[log pD(x)] ≠ EpD

[log p◊(x)]

If we try to minimize this KL with respect to p◊, the first term is constant with
respect to ◊ because it is the entropy of the data distribution. We thus get the
following objective, called Maximum Likelihood Estimation (MLE):

max
◊

EpD
[log p◊(x)]

If the density of the model is known this can be approximated with a Monte-Carlo
estimate EpD

[log p◊(x)] ¥
q

i log p◊(xi) where the xi are samples from the dataset.
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The KL divergence is minimized only if p◊ = pD, but pD can be arbitrarily compli-
cated. We thus need p◊ to be flexible enough to model and capture the complicated
dependencies in pD. We thus present two family of models which define flexible
family of distributions over high-dimensional space.

4.2 Variational Autoencoders
Variational Autoencoders or VAEs [Kingma and Welling, 2014] consist of an encoder-
decoder architecture which encodes data to a latent space, typically with smaller
dimensionality, and can reconstruct the input from the latent reprsentation. They
are similar in architecture to Denoising Autoencoders [Vincent et al., 2008], but allow
sampling from the learned distribution, and can be considered explicit generative
models, which means they can numerically evaluate the (approximate) likelihood
of a given sample. The VAE can be represented by the joint density p◊(x, z) =
p◊(x|z)p(z), where x is the observed data (e.g. images) and z is the unobserved
representation, which is learned. To maximize the log likelihood of the data
p◊(x), one needs to marginalize with respect to z, log p◊(x) = log

s
p◊(x, z)dz;

unfortunately this integral is usually intractable. However it is possible to derive a
lower-bound using Jensen’s inequality and introducing a distribution q„(z|x) called
the approximate posterior:

log p(x) Æ Eq„(z|x)[log p◊(x, z)
q„(z|x) ]

= Eq„(z|x)[log p◊(x|z)] ≠ KL(q„(z|x)||p(z))

The distributions p◊(x|z) and q„(z|x) are typically parametrized by neural networks,
respectively the decoder and the encoder. The above lower-bound is tight when
q„(z|x) = p◊(z|x), and may require the approximate posterior q„(z|x) to be flexible
enough.

The original VAE approximate posterior is a Gaussian distribution with diagonal
covariance, and may su�er from a problem known as posterior collapse. Modern
VAEs, such as the VQ-VAE [Van Den Oord et al., 2017], use discrete latent
variables, learnable autoregressive priors, and more powerful approximate posteriors.
In our first contribution, we have used original VAEs for simplicity; however, this
constitutes a limitation, and a better comparison should have used VAEs with more
powerful priors/approximate posteriors.

4.3 GANs
Generative Adversarial Networks or GANs [Goodfellow et al., 2014] have achieved
impressive results in image generation tasks, including unconditional image genera-
tion [Karras et al., 2018a,b, 2019], conditional image generation [Wang et al., 2018a],
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image-to-image translation [Zhu et al., 2017], text-to-image generation [Reed et al.,
2016], and human pose manipulation [Ma et al., 2017].

GANs can be conceptualized as an adversarial game between two networks: a
discriminator network learns to distinguish true samples from fake (generated)
samples, while a generator tries to fool the discriminator. If learning succeeds, the
generator should eventually fool the discriminator enough and generate realistic
images. Formally, denote G the generator network and pG its distribution, from
which we can sample but not necessarily compute the density (implicit generator).
Denote D(x) the discriminator, a binary image classifier. The GAN objective is the
following:

min
pG

max
D

EpD
[logD(x)] + EpG

[log(1 ≠ D(x))]

For any given distributions, the optimal discriminator over the class of all functions
X æ (0, 1) is Dú(x) = pD(x)

pD(x)+pG(x)
, the objective proposed is then equivalent to

minimizing the Jensen-Shannon Divergence between the two distributions:

min
pG

EpD
[logDú(x)] + EpG

[log(1 ≠ Dú(x))] = min
G

JSD(pG||pD)

Because this objective does not require having access to the density of the generator
but only to sample from it (implcit model), one can use the distribution of x = g◊(z),
implicitly defined by a latent z sampled from a fixed distribution, and a learnable
transformation g◊.

In practice the second term can lead to vanishing gradient for the generator pa-
rameters, an alternative was thus proposed where the generator needs to maximize
EpG

logD(x) instead. Arjovsky et al. [2017] show that GANs su�er from this van-
ishing gradient because the Jensen-Shannon Divergence is not well defined for
distributions which are not absolutely continuous; this is the case if the data lies on
a low dimensional manifold.

Arjovsky et al. [2017] introduced the Wasserstein GAN, which uses a Wasserstein
distance instead of the Jensen-Shannon divergence, which is not defined for non-
absolutely-continuous distributions:

min
◊

max
||f„||LÆ1

EpD
[f(x)] ≠ EpZ

[f„(g◊(z))]

They use a discriminator with clipped weights, to satisfy the Lipschitz-continuity
constraint of the variational formulation of the Wasserstein distance. An alternative
to weight clipping was proposed in [Gulrajani et al., 2017], where by noticing that
the Lipschitz constraint is equivalent to ||ÒxD„(x)|| Æ 1, they propose to regularize
the discriminator with the following gradient penalty:

Ep(x̂)[(||Òx̂D„(x̂)||2 ≠ 1)2]
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where p(x̂) correspond to sampling a point uniformly on the line between a generated
sample and a sample from the data distribution. We use this last variant in our
experiments, except we directly penalize the norm of the gradient.

20



3 Prologue to First

Contribution

1 Article Details
“Parametric Adversarial Divergences are Good Losses for Generative
Modeling” by Gabriel Huang, Hugo Berard, Ahmed Touati, Gauthier Gidel, Pascal
Vincent, Simon Lacoste-Julien. This paper was initially accepted as a ICLR 2018
Workshop paper, then presented at the Montreal AI Symposium 2018; a conference
version has been submitted to ICML 2018; finally, a journal version was submitted
to JMLR [Huang et al., 2017].

2 Contributions of the authors
Simon Lacoste-Julien has proposed the original connection between generative
modeling and structured prediction using statistical decision theory’s task losses.
Pascal Vincent and Simon Lacoste-Julien have supervised and provided funding
for the project. Hugo Berard, Ahmed Touati and Gauthier Gidel have helped
design and run the experiments. Gabriel Huang has led the project, written most
of the paper, proposed and performed the majority of experiments, and derived the
theoretical analyses related to mutual information.

3 Limitations and scope of the paper
This project was motivated by the intuition that parametric divergences (of
which GAN losses are a special case) might have interesting advantages for high-
dimensional and structured data, and we wanted to characterize their properties
better in the specific setting of unconditional data generation. (1) Note that we
have adopted a rather restrictive definition of “generative modeling” and limited
ourselves to unconditional generation of images, excluding other applications such
as clustering, topic modeling, compression, or conditional data generation. However,
it should be noted that the points discussed about enforcing arbitrary constraints
on the generated data are equally valid for conditional generation, which may have
more real-world applications. (2) To have a point of comparison, we looked at
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maximum-likelihood-based models, specifically Variational Autoencoders [Kingma
and Welling, 2014], which can be interpreted as maximizing the likelihood of the
data using variational inference. This restricted setting allowed us to factor out ar-
chitectural di�erences between GAN and VAE—by using near-identical feedforward
encoder-decoders—a parallel that wouldn’t have been possible with PixelCNN [Oord
et al., 2016] or di�usion models [Ho et al., 2020]. (3) We argued that parametric
mutual information can lead to more intuitive results in the small data regime
than regular mutual information; however, we cannot dismiss the fact that mutual
information enjoys a solid theoretical foundation—e.g. rate-distortion theory [Blau
and Michaeli, 2019]—which parametric mutual information still lacks. Because of
those limitations, and as demonstrated by recent developments, we cannot conclude
on the superiority of one divergence or style of mutual information over another,
but rather hope to gain better theoretical and practical understanding of their
properties, under specific settings.

4 Recent Developments
Since we started this project, GAN models have been scaled up by works such as Big-
GAN [Brock et al., 2019], StyleGAN [Karras et al., 2019], and StyleGANv2 [Karras
et al., 2020], reaching resolutions of 1024 ◊ 1024 and generating crisp and spatially
coherent images.

To overcome limitations of the original VAE [Kingma and Welling, 2014], VQ-
VAE [Van Den Oord et al., 2017] introduced: (1) a learnable autoregressive prior with
more flexibility than the fixed diagonal Gaussian prior of the original VAE [Kingma
and Welling, 2014] (2) a vector quantization step to strictly enforce the bottleneck
property and prevent the posterior collapse issue—when latents are ignored by a
powerful decoder. Although the samples are still somewhat blurry, VQ-GAN [Esser
et al., 2021] proposed to combine VQ-VAE with two additional losses: a perceptual
loss and a parametric divergence loss, resulting in crisp samples.

Di�usion models [Sohl-Dickstein et al., 2015], popularized by Ho et al. [2020] and
improved in subsequent works [Nichol and Dhariwal, 2021, Dhariwal and Nichol,
2021] are another type of likelihood-based model. They can be interpreted as training
a denoising network to reverse a Gaussian di�usion process. They have achieved
state-of-the-art image generation quality, and better diversity than GANs [Nichol
and Dhariwal, 2021, Razavi et al., 2019], at the expense of a slower and iterative
generating process. In particular, Ramesh et al. [2022] combine di�usion-based
prior, decoder, and upsampler networks with a CLIP encoder [Radford et al., 2021]
to produce the DALL-E 2 model, resulting in 1024 ◊ 1024 images of unprecedented
quality and diversity.
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Figure 3.1: DALL-E 2 fails to generate two distinct characters without blending their
attributes together. Prompt: “Captain America and Iron Man standing side by side”.
Source: https://www.lesswrong.com/posts/uKp6tBFStnsvrot5t/what-dall-e-
2-can-and-cannot-do

Interestingly, it has been reported1 that DALL-E 2 cannot generate coherent
English text, despite generating something more English-looking than random letters
(Figure 3.2, 3.3, 3.4). Another weakness seems to be mixing various attributes when
asked to generate two objects or characters in the same scene (Figure 3.1).

It is possible that scaling up to even more data, or somehow integrating a language
model into DALL-E 2 could solve these problems. For instance, the Parti text-
to-image model [Yu et al., 2022] improves its text rendering skills as it scales up.
However, it is also possible that adding a parametric divergence loss could help
overcome the model’s weaknesses more directly and e�ciently, an approach already
undertaken to enforce temporal consistency [Chu et al., 2020], generate graph-
constrained house layouts [Nauata et al., 2020], and enforce semantic segmentation
consistency for applications like building facade generation [Arantes et al., 2020].

Overall, these recent developments show that: (1) Maximum-likelihood approaches
can generate diverse and photorealistic samples when combined with the right
generator (such as a di�usion model2), large-scale datasets, and powerful hardware.
This further motivates research on data-e�cient methods. (2) GANs remain
competitive, especially in terms of sampling speed, while combining existing methods
with parametric divergences can greatly improve sample quality. (3) Generating
data satisfying all the properties we care about (e.g. grammatical text, attribute
separation, object placement, temporal coherence) is still an open problem.

1https://www.lesswrong.com/posts/uKp6tBFStnsvrot5t/what-dall-e-2-can-
and-cannot-do

2This echoes our discussion on generators with special structure (Section 6.1).

23



Figure 3.2: DALL-E 2 fails to generate English text. Prompt: “Medical illustration
of a gryphon’s skeleton, with labels. High quality, detailed, professional medical illustra-
tion.”. Source: https://www.reddit.com/r/dalle2/comments/uh03zs/medical_
illustration_of_a_gryphons_skeleton_with/

Figure 3.3: DALL-E 2 fails to generate English text. Prompt: “A screenshot
of the Wikipedia home page”. Source: https://www.lesswrong.com/posts/
uKp6tBFStnsvrot5t/what-dall-e-2-can-and-cannot-do
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Figure 3.4: DALL-E 2 fails to generate English text. Prompt: “Infinite Jest”.
Source: https://www.lesswrong.com/posts/uKp6tBFStnsvrot5t/what-dall-e-
2-can-and-cannot-do
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4 Exploring Properties of

GAN Losses

Abstract
Parametric adversarial divergences1, which are a generalization of the losses used to
train generative adversarial networks (GANs), have often been described as being
approximations of their nonparametric counterparts, such as the Jensen-Shannon
divergence, which can be derived under the so-called optimal discriminator assump-
tion. In this position paper, we argue that despite being “non-optimal”, parametric
divergences have distinct properties from their nonparametric counterparts which
can make them more suitable for learning high-dimensional distributions. A key
property is that parametric divergences are only sensitive to certain aspects/mo-
ments of the distribution, which depend on the architecture of the discriminator
and the loss it was trained with. In contrast, nonparametric divergences such as
the Kullback-Leibler divergence are sensitive to moments ignored by the discrimina-
tor, but they do not necessarily correlate with sample quality [Theis et al., 2016].
Similarly, we show that mutual information can lead to unintuitive interpretations,
and explore more intuitive alternatives based on parametric divergences. We con-
clude that parametric divergences are a flexible framework for defining statistical
quantities relevant to a specific modeling task.

1 Introduction
In traditional statistics, generative modeling is formulated as density estimation.
The learning objective and evaluation metric are usually the expected negative-log-
likelihood. While maximizing the log-likelihood, or equivalently, minimizing the
KL-divergence, works fine for modeling low-dimensional data, there are a number of
issues that arise when modeling high-dimensional data, such as images. Maybe the
most important issue is the lack of guarantees that log-likelihood is a good proxy
for sample quality. This is obviously a problem, because if the goal is to generate
realistic data, then the evaluation objective should align with sample quality. For
instance, Theis et al. [2016] exhibit generative models with high log-likelihood which
produce low-quality images, and models with poor log-likelihood which produce

1We give a formal definition in this paper.
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high-quality images. In some cases, they show that the log-likelihood can even be
hacked to be arbitrarily high, even on test data, without improving the sample
quality at all. Another practical issue with f-divergences, a generalization of the
KL, is they are either not defined or uninformative whenever the distributions are
too far apart, even when tricks such as smoothing are used [Arjovsky et al., 2017].

To address these shortcomings, we look past maximum-likelihood and classic diver-
gences to define better objectives. But first, we need to take a step back and explicit
our final task, or end goal. Assuming that our end goal is to generate realistic and
diverse samples, how can we formalize such a subjective and ill-defined final task
into a task loss, a rigorous mathematical objective which can be evaluated and
used to derive training (e.g. surrogate) losses? When it comes to defining relevant
task losses, it is worthwhile to consider how people choose task losses in structured
prediction, for which the label space is often combinatorially large (e.g. sequences
of words). For instance, machine translation systems are commonly evaluated using
the BLEU-4 metric [Papineni et al., 2002], which essentially counts how many words
the predicted and ground truth sentences have in common. Although the BLEU
score is only an imperfect approximation of the final task, it is nevertheless more
informative than “hard” losses such as the 0 ≠ 1 loss, which give no training signal
unless the predicted label matches exactly the ground truth.

Unfortunately, in generative modeling, it is not as obvious how to define a task
loss that correlates well with diversity and sample quality. Nevertheless, we argue
that the adversarial framework, introduced in the context of generative adversarial
networks or GANs [Goodfellow et al., 2014], provides an interesting way to define
meaningful and practical task losses for generative modeling. For that purpose, we
adopt the view2 that training a GAN can be seen as training an implicit generator
to minimize a special type of task loss, which we call parametric (adversarial)
divergence:

Div(p||q◊) ‚= sup
„œ�

E(x,xÕ)≥p¢q◊
[�(f„(x), f„(xÕ))] (1.1)

where p is the distribution to learn and q◊ is the distribution defined by the implicit
generator. The expectation is maximized over a parametrized class of functions
{f„ : X æ Rd

Õ ; „ œ �} which are usually neural networks with a fixed architecture.
Those functions are called discriminators in the GAN framework [Goodfellow
et al., 2014]. The constraints � and the formulation � : Rd

Õ

◊ Rd
Õ

æ R determine
properties of the resulting divergence (see Section 2.2 for concrete examples).

The main contribution of this paper is to show that parametric adversarial diver-
2We focus in this paper on the divergence minimization perspective of GANs. There are other

views, such as those based on game theory [Arora et al., 2017, Fedus* et al., 2018], ratio matching
and moment matching [Mohamed and Lakshminarayanan, 2016], but these are outside the scope
of this paper.
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gences can have very di�erent properties from their nonparametric counterparts
(where the function class is infinite dimensional). Instead of viewing them as
imperfect estimators, we argue that parametric divergences are actually better
approximators of “generating realistic samples” than likelihood-based objectives.
To this end, we start by expliciting the di�erence between final task and task loss
(Section 3). Then, we show that unlike many nonparametric divergences, parametric
divergences o�er favorable sample complexity while retaining the flexibility to adapt
to the final task (Section 4.1). In particular, we show on a toy problem how to tune a
parametric divergence in order to enforce properties of interest (Section 5). In prac-
tice, combining divergences with specific generators can lead to side-e�ects, which
we discuss in Section 6. Finally, we investigate how to use parametric divergences
to define more intuitive notions of mutual information (Section 7).

2 Background
We briefly introduce the structured prediction framework because we will make links
between the losses in structured prediction and generative modeling in Section 3.3.
We introduce the variational formulation which allows us to consider and compare
parametric adversarial divergences and traditional divergences as special cases of
adversarial divergences.

2.1 Structured Prediction
The goal of structured prediction is to learn a function h◊ : X æ Y which predicts
a structured output y from an input x. Examples of structured outputs include
parse-trees, sequences of symbols, alignments between sequences, 3D shapes, and
segmentation maps. The key di�culty is that Y usually has size exponential in
the dimension of the input (e.g. for sequence-to-sequence prediction, Y could
be all the sequences of symbols with a given length). Being able to handle this
exponentially large set of possible outputs is one of the key challenges in structured
prediction. Traditional multi-class classification methods are unsuitable for these
problems in general. Standard practice in structured prediction [Taskar et al., 2003,
Collins, 2002, Pires et al., 2013] is to consider predictors based on score functions
h◊(x) ‚= argmaxyÕœY s◊(x,yÕ), where s◊ : X ◊ Y æ R, called the score/energy
function [LeCun et al., 2006], assigns a score to each possible label y for an input
x. Typically, as in structured SVMs [Taskar et al., 2003], the score function is
linear: s◊(x,y) = È◊, g(x,y)Í, where g(·) is a predefined feature map. Alternatively,
the score function could also be a learned neural network [Belanger and McCallum,
2016].
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In order to evaluate the predictions objectively, we need to define a task-specific
structured loss ¸(yÕ,y ; x) which expresses the cost of predicting yÕ for x when the
ground truth is y. We discuss the relation between the loss function and the actual
final task when we review statistical decision theory in Section 3.1 and 3.2. The
goal is then to find a parameter ◊ which minimizes the generalization error

min
◊œ�

E(x,y)≥p [¸(h◊(x),y,x)] (2.1)

or, in practice, an empirical estimation of it based on an average over a finite sample
from p. Directly minimizing this is often intractable, even in simple cases, e.g. when
the structured loss ¸ is the 0-1 loss [Arora et al., 1993]. Instead, the usual practice is
to minimize a surrogate loss E(x,y)≥p [L(s◊(x,y),y,x)] [Bartlett et al., 2006] which
has nicer properties, such as sub-di�erentiability or convexity, to get a tractable
optimization problem. The surrogate loss is said to be consistent [Osokin et al.,
2017] when its minimizer is also a minimizer of the task loss.

2.2 Parametric and Nonparametric Adversarial Divergences
The focus of this paper is to analyze whether parametric adversarial divergences are
good candidates for generative modeling. In particular, we analyze them relatively
to nonparametric divergences. Therefore, we first unify them with a formalism
similar to Sriperumbudur et al. [2012], Liu et al. [2017]. We define adversarial
divergences using the variational formulation:

Definition 2.1 (Adversarial Divergence). We denote adversarial divergences func-
tions which can be written with the following form:

Div(p||q◊) ‚= sup
fœF

E(x,xÕ)≥p¢q◊
[�(f(x), f(xÕ))] (2.2)

where we refer to f : X æ Rd
Õ

œ F as the discriminator, and � : Rd
Õ

◊ Rd
Õ

æ R
determines properties of the resulting divergence.

Definition 2.2 (Parametric Divergence). In particular, when the discriminator
space F is parametric, such as the set of neural networks with a given architecture,
the adversarial divergence is called a parametric (adversarial) divergence.3

For appropriate choices of discriminator class F and function �, we can recover
many usual divergences, including f-divergences (such as Kullback-Leibler) and
integral probability metrics (such as Wasserstein distances and Maximum Mean
discrepancy). For instance,

3Usually, F is a class of neural networks with fixed architecture. In that case, Div(p||q◊) has
been called a neural divergence in Arora et al. [2017]. We will use the slightly more generic
parametric divergence in our work.
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• Â-divergences with generator function Â (which we call f-divergences) can be
written in dual form [Nowozin et al., 2016]4

DivÂ(p||q◊) ‚=sup
f :X æR

Ex≥p[f(x)] ≠ ExÕ≥q◊
[Âú(f(xÕ))] (2.3)

where Âú is the convex conjugate. Depending on Â, one can obtain any
Â-divergence such as the (reverse) Kullback-Leibler, the Jensen-Shannon, the
Total Variation, the Chi-Squared.5

• Wasserstein-1 distance induced by an arbitrary norm Î·Î and its corresponding
dual norm Î · Î

ú [Sriperumbudur et al., 2012]:

W (p||q◊) ‚= sup
f :X æR
’xœX ,

||f
Õ
(x)||

ú
Æ1

Ex≥p[f(x)] ≠ ExÕ≥q◊
[f(xÕ)] (2.4)

which can be interpreted as the cost to transport all probability mass of p
into q, where Îx ≠ xÕ

Î is the unit cost of transporting x to xÕ.

• Maximum Mean Discrepancy [Gretton et al., 2012]:

MMD(p||q◊) ‚= sup
fœH

ÎfÎHÆ1

Ex≥p[f(x)] ≠ ExÕ≥q◊
[f(xÕ)] (2.5)

where (H, K) is a Reproducing Kernel Hilbert Space induced by a Kernel
K(x,xÕ) on X with the associated norm Î · ÎH. The MMD has many inter-
pretations in terms of moment-matching [Li et al., 2017].

Most nonparametric divergences can be made parametric by replacing F with
neural networks: examples are the parametric Jensen-Shannon, which is the
standard mini-max GAN objective [Goodfellow et al., 2014] and the parametric
Wasserstein which is the WGAN objective Arjovsky et al. [2017] in essence,
modulo some technical tricks.6 See Liu et al. [2017] for interpretations and a
review and interpretation of other divergences like the Wasserstein with entropic
smoothing [Aude et al., 2016], energy-based distances [Li et al., 2017] which can be
seen as adversarial MMD, and the WGAN-GP [Gulrajani et al., 2017] objective.

We deliberately chose a somewhat ambiguous terminology – nonparametric v.s.
parametric – not to imply a clear-cut distinction between the two (as e.g. neural

4The standard form is Ex≥q◊ [Â( p(x)
q◊(x) )].

5For instance the Kullback-Leibler Ex≥p[log p(x)
q◊(x) ] has the dual form supf :X æR Ex≥p[f(x)] ≠

ExÕ≥q◊ [exp(f(xÕ) ≠ 1)]. Some Â require additional constraints, such as ||f ||Œ Æ 1 for the Total
Variation.

6There are subtleties in the way the Lipschitz constraint is enforced. More details in Petzka
et al. [2018].
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networks can be made to become universal function approximators as we increase
their size), but to imply a continuum from least restricted to more restricted function
families where the latter are typically expressed through an explicit parametrization.

Under the formalism (2.2), one could argue that parametric divergences are simply
estimators –in fact lower-bounds– of their nonparametric counterparts. Our opinion
is that parametric divergences are not merely convenient estimators, but can actually
be much better objectives for generative modeling than nonparametric divergences.
We will give practical arguments and experiments to support this statement in the
rest of this paper.

3 Divergences as Task Losses
While tasks such as binary and multiclass classification are straightforward to
evaluate using classification accuracy (also known as the 0-1 loss), tasks with more
structured outputs often require more complex evaluation. For instance, machine
translation is often evaluated using the BLEU metric [Papineni et al., 2002], text
summarization using the ROUGE-L metric [Lin, 2004], object detection using mean
average precision [Ren et al., 2015], semantic segmentation the mean intersection-
over-union [Chen et al., 2017], while several metrics such as Multiple Object Tracking
Accuracy (MOTA) and Multiple Object Tracking Precision (MOTP) are commonly
used for evaluating video tracking [Ciaparrone et al., 2020]. However, optimizing
these metrics is not an end in itself, rather the hope is that these metrics are good
proxies for the final task (producing an accurate translation, a concise summary,
relevant bounding boxes, precise video tracking).

Statistical decision theory is a general framework for modeling the task of acting
(in our case, learning a model) under uncertainty (which can come from sampling
noise). In particular, ill-defined tasks can be formalized as the minimization of an
evaluation metric, called the task loss.

In this work, we propose to consider parametric divergences as the task losses
for approximating the ill-defined task of generating realistic samples. We start
by introducing statistical decision theory and discuss desirable properties for task
losses (Section 3.1). Then, we unify structured prediction and generative modeling
under the statistical decision theory framework (Section 3.2). We point to results
that hard task losses such as the 0-1 loss can make learning exponentially slower
than using softer losses such as the Hamming loss (Section 3.3). Those results
suggest that similarly for generative modeling, it might be beneficial to use “softer”
parametric divergences instead of “harder” nonparametric divergences such as the
Kullback-Leibler divergence.
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Figure 4.1: Our goal is to solve the final task, represented by the green “loss”. The
first task loss (upper red) is not a good loss because it is too discriminative and
rejects many acceptable models. The second task loss (lower red) is not good either
because it is not discriminative enough and accepts incorrect models. The third
task loss (blue) is a good task loss because it “tracks” the final goal “loss” well.

3.1 Formalizing Final Tasks with Statistical Decision The-
ory

Statistical decision theory is the standard framework presented in statistic textbooks
for modeling and evaluating the task of acting under uncertainty [Bickel and Doksum,
2015]. In our case, acting means learning a model such as a classifier or a generative
model from data, and the uncertainty comes from the fact that we can only access
finite samples from the true distribution. Statistical decision theory allows us to
formalize ill-defined tasks as the minimization of a clearly-defined evaluation metric,
which is called the (statistical) task loss. The task loss needs to be mathematically
well-defined, and cannot, for instance, require human evaluation in the loop, which
would make the metric subjective and ill-defined.

Notation. We denote p œ P the unknown state of the process (distribution) we
want to model, a œ A the action, and Lp(a) the task loss. In machine learning, the
unknown state is typically a probability distribution p(x) or p(x,y) which we can
only access indirectly through a finite training set Dtrain sampled i.i.d. from p, and
the learner “plays an action” such as choosing the classifier or generative model
which minimizes the negative log-likelihood of the training set.

Designing task losses. What does the ideal task loss look like? Consider the
example in Figure 4.1. Our goal is to solve the final task, which is illustrated by the
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green final goal “loss”. Such a “loss” might not be expressible as a mathematical
loss, for instance it could be a score based on human evaluation or perception.
Therefore, we need to approximate the final goal with a task loss Lp(q◊), a proper
mathematical objective from which we can derive an optimization problem. The
task loss is formed with respect to a ground truth p which typically corresponds
to the target distribution for generative modeling, and to the ground-truth labels
for structured prediction. The first task loss (topmost in red) is not a good loss
because it is too “hard” (discriminative). It only accepts the ground-truth p as a
good model even though there exists a range of models with equivalent final goal
loss. As a consequence, these losses tend to provide little to no learning signal since
most models are ruled out as equally bad and the task loss “saturates” without
providing adequate search direction. The second task loss (second in red) is not
good either because it is not discriminative enough. It assigns low values to models
even if they have bad final “loss”. As a result, minimizing that loss is not su�cient
to guarantee a good solution. The third task loss (blue) is a good task loss because
it “tracks” the final goal “loss” well. In particular, it provides a strong learning
signal towards the range of acceptable models and is just discriminative enough
with respect to the final goal.

3.2 Parallels between Predictive and Generative Tasks.
Below, we contrast approaches in predictive (classification and structured prediction)
and generative tasks (sampling and likelihood evaluation) with respect to their use
of harder and softer task losses.

Predictive Tasks. We contrast multi-class classification with structured predic-
tion. Assume an unknown distribution p(x,y). The goal is to learn a function
h◊ : X æ Y which outputs a “correct” prediction y given an input x. In multi-
class classification, Y is a finite label space, and all mistakes are penalized equally
according to the classification error, also known as the 0-1 loss:

Lp(◊) = Ex,y≥p(x,y)

Ë
1{h◊(xi) ”=yi}

È
(3.1)

The 0-1 loss is a hard loss because the only correct prediction is the ground truth.
In contrast, in structured prediction, Y is a structured space such as sentences,
segmentation maps or bounding boxes, and can exponentially large or even infinite.
Mistakes are penalized according to a structured loss ¸(yÕ, y;x):7

Lp(◊) = E(x,y)≥p [¸(h◊(x),y,x)] (3.2)

Although the 0-1 loss ¸(yÕ, y;x) = 1{h◊(xi) ”=yi} could also be used, it is not informative
of the type of mistake made, and can be detrimental to learning (Section 3.3).

7Depending on the context, both Lp(a) and ¸ are called task losses, as they implicitly define
the task.
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Instead, people often resort to softer losses, such as the Hamming loss, which penalize
mistakes more gradually, and result in better learning guarantees (Section 3.3).

Generative Tasks. We contrast traditional likelihood-based generative modeling
with GAN-style generative modeling based on parametric divergences. Assume an
unknown target distribution p(x). We focus on the (ill-defined) final task of learning
a model q◊(x) which can generate “realistic” samples from “the same” distribution
as p. Traditional generative modeling formalize this task by penalizing models
according to the negative log-likelihood:

Lp(◊) = Ex≥p [≠ log(q◊(x))] (3.3)

Although log-likelihood has been the de facto learning objective in the past, there is
no guarantee that log-likelihood is a good proxy for sample quality. In fact, Theis
et al. [2016] have exhibited image models which have high likelihood but produce
low quality samples, as well as models which have low likelihood but produce high
quality samples. Maximizing the log-likelihood is equivalent to minimizing the
Kullback-Leibler divergence

KL(p||q◊) = Ex≥p

C

log( p(x)
q◊(x))

D

(3.4)

which can be considered a hard loss, in the sense that mistakes are penalized
regardless of the metric structure of X . This is particularly obvious in the special
case where p(x) = ”(x≠xp) and q(x) = ”(x≠xq) are two Dirac distributions. Then,
KL(p||q◊) equals 0 if xp = xq and infinity otherwise, which means all mistakes are
penalized equally regardless of the distance between xp and xq. There are ways
to make the maximum likelihood “softer”, but they come with their own caveats
(Section 6.1).

GAN-style models adopt a very di�erent approach and penalize models according
to a parametric divergence :

Lp(◊) =Div(p||q◊) = sup
fœF

E(x,xÕ)≥p¢q◊
[�(f(x), f(xÕ))] (3.5)

For instance, the saturating GAN can be formulated as the minimization of a
parametric Jensen-Shannon divergence:

Lp(◊) =DivParamJS(p||q◊) = sup
fœNeuralNet

Ex≥p[log f(x)] + Ex≥q[log(1 ≠ f(x))] .

(3.6)

In general, the parametric divergence only penalizes moments which are captured
by the discriminator class. This means that we can arbitrarily tune the “hardness”
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of the parametric divergence by tuning F and �. As an extreme example, if F is
the set of linear 1-Lipschitz functions and we consider the Wasserstein-1 formulation
�(f(x), f(xÕ)) = f(x)≠f(xÕ), then the resulting parametric divergence reduces to the
distance between the distribution means ||Ex≥p[x] ≠ Ex≥q[x]||. This is substantially
softer than the corresponding (nonparametric) Wasserstein obtained by removing
the linear constraint. In general, parametric divergences are promising task losses
for generative modeling as long as we can find ways to tailor the discriminator to
approximate the notion of realistic samples well.

3.3 An Analogy with Structured Prediction
We derive an intuitive analogy between “hard” losses such as the 0-1 loss and
the KL-divergence and “softer” losses like the Hamming loss and the Wasserstein
distance. Then, we draw insights from the convergence results of Osokin et al.
[2017] in structured prediction, which parallel the intuition in generative modeling
that learning with weaker8 divergences is easier [Arjovsky et al., 2017] and more
intuitive [Liu et al., 2017] than with stronger divergences.

Analogy between Structured Prediction Losses and Divergences. A loose
analogy can be made between “hard” losses like the 0-1 loss and the KL-divergence.
A similar analogy can be made between “softer” losses like the Hamming loss and
the Wasserstein distance. Consider two Dirac distributions p(y) = ”(y ≠ yp) and
q(y) = ”(y ≠ yq) defined over RD. We compute the Jensen-Shannon divergence,
which can be thought of as a symmetrized KL:

JS(p||q) = 1
2KL(p||p+ q

2 ) + 1
2KL(q||p+ q

2 ) = 1{yp ”=yq} · log 2 .

In this case, the Jensen-Shannon divergence reduces to a scaled 0-1 loss between
the atoms. We now consider the Wasserstein distance W(p, q) with base distance
L2, which yields here:

W(p, q) = ||yp ≠ yq||2 .

The Wasserstein distance reduces to the L2 distance between the atoms, or equiv-
alently the Hamming distance, if we consider only binary vectors. In that sense,
the KL-divergence could be considered a “hard” divergence, while the Wasserstein
distance could be considered a “softer” divergence.

“Softer” losses are better in structured prediction. Consider a “hard”
structured loss, the 0-1 loss, defined as ¸0≠1(y,yÕ) ‚=1 {y ”= yÕ

}, and a “softer” loss,
the Hamming loss, defined as ¸Ham(y,yÕ) ‚= 1

T

q
T

t=1
1{yt ”= yÕ

t
}, when y decomposes

as T = log
2

|Y| binary variables (yt)1ÆtÆT . Because “softer” losses like the Hamming
8In the topological sense.
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loss are more informative about the mistakes, we can expect that fewer examples
are needed to learn the model. This is, with caveats, what was shown by Osokin
et al. [2017] in a nonparametric setting.9 Osokin et al. [2017] derive a worst case
sample complexity needed for a simple learner based on surrogate loss minimization
via stochastic gradient descent to achieve a fixed regret ‘ > 0 with respect to the
best generalization error possible. The sample complexity quantifies how many
samples are needed for the simple learner to guarantee a regret of ‘. When the task
is the 0-1 loss, they get a sample complexity of O(|Y|/‘2), which is exponential in
the dimension of y. However, when the task loss is the Hamming loss, they get a
much better sample complexity of O(log

2
|Y|/‘2) which is linear in the number of

dimensions, whenever certain constraints are imposed on the score function [see
Osokin et al., 2017, section on exact calibration functions]. In contrast, if the
surrogate loss of the learner is based on the 0-1 loss (the analog of the top red curve
in Figure 4.1), but the task loss is the Hamming loss (giving rise to the analog of
the bottom green curve in Figure 4.1), than the sample complexity of the learner is
still exponential.

Thus their results suggest that choosing the right structured loss, like the “softer”
Hamming loss, might make training exponentially faster. According to the previous
analogy, these results could mean that it might also be more e�cient to use softer
losses than the KL-divergence for training generative models. These observations
echo results in generative modeling [Arjovsky et al., 2017, Liu et al., 2017] showing
that it can be easier to learn with weaker divergences than with stronger ones (in the
topological sense). In particular, one of their arguments is that distributions with
disjoint support can be compared in weaker topologies like the one induced by the
Wasserstein but not in stronger ones like the one induced by the Jensen-Shannon.

However, we will show in Section 4.1 that the Wasserstein distance has other
issues, such as poor sample complexity. On the other hand, parametric adversarial
divergences, which are also a softer alternative to the KL-divergence, have reasonable
sample complexity and other good properties which are discussed in Sections 4,
5 and 7.

3.4 Training and Evaluation in Practice
Training vs. Evaluation Loss. Strictly speaking, task losses should be regarded
as evaluation metrics, from which we can then derive training losses which are
easier to optimize (e.g. 0-1 task loss is approximated with cross-entropy training

9The analysis of Osokin et al. [2017] is nonparametric in the sense that it ignores the dependence
on x (it allows an arbitrary dependence on x for the score functions by using an infinite dimensional
RKHS function space). Additionally, they only consider convex consistent surrogate losses in their
analysis, and they give upper bounds but not lower bounds on the sample complexity. It is possible
that optimizing approximately-consistent surrogate losses instead of consistent ones, or making
additional assumptions on the distribution of the data could yield better sample complexities.
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loss). In practice, parametric divergences are only used as training losses but not as
evaluation metrics, because optimization instability makes it di�cult to compute
them reliably. However, future work might make it possible to use parametric
divergences as evaluation metrics as well.

Estimation Biases. Consider two fixed distributions p and q. We are usually
interested in the population divergence

Lp(◊) ‚=Div(p||q◊) = sup
fœF

E(x,xÕ)≥p¢q◊
[�(f(x), f(xÕ))] (3.7)

In practice, p is unknown and we only have access to samples. We might also
only have access to samples from the model when it is an implicit one. Denoting
Dtrain = {x(i)

train

iid
≥ p, y(i)

train

iid
≥ q}, we compute the training divergence as follows :

Div(p||q◊)train = sup
fœF

1
N

Nÿ

i=1

�(f(x(i)

train
), f(y(i)

train
)) (3.8)

Denote ‚fERM the previous minimizer. We define the validation divergence as the
evaluation of ‚fERM over a validation set Dval = {x(i)

val

iid
≥ p, y(i)

val

iid
≥ q}:

Div(p||q◊)val = 1
N Õ

N
Õÿ

i=1

�( ‚fERM(x(i)

val
), ‚fERM(y(i)

val
)) (3.9)

Analogously to usual classification bounds (the discriminator can be seen as a
classifier), the expected training divergence is higher than the population divergence,
while the expected validation divergence is lower than the population divergence,
where the expectations are taken over the sampling of Dtrain, Dval.

Theorem 1 (Parametric Divergence Biases). The following inequalities hold :

EDtrain,Dval
[Div(p||q)val]¸ ˚˙ ˝

validation divergence

Æ Div(p||q)
¸ ˚˙ ˝

population divergence

Æ EDtrain [Div(p||q)train]
¸ ˚˙ ˝

training divergence

(3.10)

Proof. The second inequality results from the fact that taking the supremum inside
the expectation EDtrain [·] is always higher than outside it.

sup
fœF

EDtrain [ 1
N

Nÿ

i=1

�(f(x(i)

train
), f(y(i)

train
))]

¸ ˚˙ ˝
E(x,xÕ)≥p¢q◊

[�(f(x),f(xÕ))]

Æ EDtrain [sup
fœF

1
N

Nÿ

i=1

�(f(x(i)

train
), f(y(i)

train
))

¸ ˚˙ ˝
Div(p||q)train

]

(3.11)
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For the first inequality, taking the expectation of the validation divergence with
respect to the sampling of the validation set gives

EDval
[ 1
N

Nÿ

i=1

�( ‚fERM(x(i)

val
), ‚fERM(y(i)

val
))] =E(x,xÕ)≥p¢q◊

[�( ‚fERM(x), ‚fERM(xÕ))]

(3.12)
Æ sup

fœF

E(x,xÕ)≥p¢q◊
[�(f(x), f(xÕ))]

(3.13)

where the inequality comes from the definition of the supremum. Now, we take
expectations with respect to the sampling of the training set, which ‚fERM depends
on:

EDtrain,Dval
[ 1
N

Nÿ

i=1

�( ‚fERM(x(i)

val
), ‚fERM(y(i)

val
))

¸ ˚˙ ˝
Div(p||q)val

] Æ sup
fœF

E(x,xÕ)≥p¢q◊
[�(f(x), f(xÕ))]

¸ ˚˙ ˝
Div(p||q)

(3.14)

⌅

Notice that the validation divergence is not an unbiased estimator of the population
divergence, because the discriminator was only optimized over the training set.
Therefore, it is always worthwhile to look both at training and validation divergence
to bound the population divergence. If the discriminator is overfitting to the
training set, then there would be a large generalization gap between the two, while
if the values are close, then we have a good estimate of the population divergence.
To the best of our knowledge, there is no unbiased estimators of the population
divergence in the general case. An exception is the family of f-divergences which
can be estimated with Monte-Carlo in the special case where p, q have a density
which can be evaluated. Another exception is MMD [Bellemare et al., 2017], which
admits a closed-form unbiased estimator. However, such estimator is only unbiased
for a fixed kernel. If the kernel were to be optimized to maximize some discrepancy
between empirical distributions, in the same way a discriminator is optimized, then
the MMD estimator would become biased as well [BiÒkowski et al., 2018].

4 Good Divergences Should Scale Well with
Data Dimensionality

One of the main di�culties in generative modeling is to deal with high-dimensional
data because of the curse of dimensionality, which states that in order to fill a
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given volume in data space, it takes an amount of data which is exponential in its
dimension. The sample complexity, which characterizes how much data is needed
to approximate a given divergence, is discussed for nonparametric and parametric
divergences in Section 4.1. We also compare some nonparametric and parametric
divergences experimentally in Sections 4.2 and 4.3.

4.1 Theoretical Sample Complexities in High-Dimensions
Consider two distributions p, q and their associated empirical distributions ‚pn, ‚qn.
Typically, p is the unknown distribution to learn, and q is the model (or generator)
distribution. How much data is required to approximate the true (population)
divergence Div(p||q) with the empirical divergence Div(‚pn||‚qn)? Formally, we can
define the sample complexity as the minimal number of samples n such that
|Div(p||q) ≠ Div(‚pn||‚qn)| Æ ‘ with high probability for ‘ > 0.

Following the terminology of Mohamed and Lakshminarayanan [2016], we distinguish
the case of explicit model, where the density q(x) can be numerically evaluated, and
the case of implicit model, where it is only possible to sample from q. For instance,
GAN generators are implicit models, and have a distribution which is typically
supported in a low-dimensional manifold and does not admit a density with respect
to the usual measure. Explicit models are more restrictive and need to have a
full-dimensional support. For instance, VAEs and PixelCNNs are explicit models,
but they each come with their own problems (see Section 6.1). We summarize
the sample complexities for some parametric and nonparametric divergences in
Table 4.1.

Parametric Divergences. Parametric adversarial divergences can be formulated
as a classification problem between p and q, with a loss depending on the specific
adversarial divergence. They can be estimated for implicit models and have a
reasonable sample complexity of O(p/‘2), where p is the VC-dimension/number of
parameters of the discriminator [Arora et al., 2017]. They are usually computed using
stochastic gradient descent (SGD), which provides no guarantees of finding a global
minimum. This is not necessarily a bad thing, as it has been theoretically shown in
the supervised case that SGD induces some form of bias or regularization, leading
for instance to maximum-margin solutions in the separable-data case [Soudry et al.,
2018]. We might expect the same type of implicit regularization to be beneficial for
parametric divergences too.

(Nonparametric) Wasserstein. A straightforward estimator of the (nonpara-
metric) Wasserstein is simply the Wasserstein distance between the empirical
distributions ‚pn and ‚qn, for which smoothed versions can be computed in O(n2)
using specialized algorithms such as Sinkhorn’s algorithm [Cuturi, 2013] –it is then
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Divergence Sample Complexity Computation Tunable to Final Task
Explicit model: Can evaluate p(x)

f-Divergences O(1/‘2) Monte-Carlo, O(n) No
Implicit model: Can only sample x ≥ p

f-Divergences undefined in general
Nonparametric Wasserstein O(1/‘d/2) Sinkhorn, O(n2) in base distance
MMD O(1/‘2) analytic, O(n2) in kernel
Parametric Divergence O(p/‘2) SGD in discriminator
Parametric Wasserstein Div. O(p/‘2) SGD in discriminator & base distance

Table 4.1: Properties of Divergences. Note that although f-divergences can be
estimated e�ciently for explicit models, they are usually not defined for implicit
models (see text). MMD can be estimated e�ciently in closed form and can be
tuned through the choice of kernel, but is known to lack discriminative power for
generic kernels. The nonparametric Wasserstein can be computed iteratively with
the Sinkhorn algorithm, and can integrate the final loss in its base distance, but
requires exponentially many samples to estimate which makes it impractical in
high dimensions. Parametric divergences have reasonable sample complexities, can
be computed iteratively with SGD, and can integrate the final loss through the
choice of class of discriminators and the choice of side-tasks. In particular, the
parametric Wasserstein has the additional possibility of integrating the final loss
into the base distance.

known as the plug-in estimator– or iterative Bregman projections [Benamou et al.,
2015]. However, the empirical Wasserstein is a biased estimator and has sample
complexity n = O(1/‘d) which is exponential in the number of dimensions [see
Sriperumbudur et al., 2012, Corollary 3.5]. This bound was recently improved
to O(1/‘d/2) by Chizat et al. [2020]. Thus, the theory suggests that empirical
Wasserstein is not a viable estimator in high-dimensions. In practice, we compare
nonparametric and parametric Wasserstein on two generation tasks in Section 4.2.

f-divergences. For explicit models which allow evaluating the density q◊(x),
one could use Monte-Carlo to evaluate the f-divergence with sample complexity
n = O(1/‘2), according to the Central-Limit theorem. However, for implicit models,
there is no one good way of estimating f-divergences from samples. And in fact,
most f-divergences are generally not defined for empirical distributions because
they might not be absolutely continuous with another. There are some techniques
for estimation [Nguyen et al., 2010, Moon and Hero, 2014, Ruderman et al., 2012],
but they all make additional assumptions about the underlying densities (such as
smoothness), or they solve the dual in a restricted family, such as a RKHS, which
makes the divergences no longer f-divergences.

MMD. Maximum Mean Discrepancy admits an estimator with sample complexity
n = O(1/‘2), which can be computed analytically using U-statistics O(n2), or even
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in O(n) using the linear estimator [Gretton et al., 2007]. One should note that
MMD depends fundamentally on the choice of kernel. As the sample complexity is
independent of the dimension of the data, one might believe that the MMD esti-
mator behaves well in high dimensions. However, it was experimentally illustrated
in Dziugaite et al. [2015] that with generic kernels like RBF, MMD performs poorly
for MNIST and Toronto face datasets, as the generated images have many artifacts
and are clearly distinguishable from the training dataset.

It was shown theoretically in [Reddi et al., 2015] that the power of the MMD
statistical test can drop polynomially with increasing dimension, which means that
with generic kernels, MMD might be unable to discriminate well between high-
dimensional generated and training distributions. Specifically, consider a Gaussian
kernel with bandwidth “ and compute the MMD2 between two isotropic Gaussians
with di�erent means. Then, for 0 < ‘ Æ 1/2, and d ≠æ Œ, MMD2 goes to zero:

• polynomially as 1/d if “ =
Ô
d

• polynomially as 1/d1+2‘ if “ = d1/2≠‘

• exponentially as exp(d2‘/2) if “ = d1/2+‘, all that while the KL divergence
between the two Gaussians stays constant.

which suggest MMD with fixed kernel cannot separate high-dimensional distributions
well.

Limitations of Sample Complexity Analysis. Note that comparing diver-
gences in terms of sample complexity can give good insights on what is a good
divergence, but should be taken with a grain of salt as well. On the one hand, the
sample complexities we give are upper-bounds, which means the estimators could
potentially converge faster. On the other hand, one might not need a very good
estimator of the divergence in order to learn in some cases. This is illustrated in our
experiments with the nonparametric Wasserstein which has bad sample complexity
but yields reasonable results in some cases (Section 4.2).

4.2 Nonparametric vs. Parametric Wasserstein (Experi-
ment)

Since the sample complexity of the nonparametric Wasserstein is exponential in
the dimension (Section 4.1), we verify experimentally whether training a generator
to minimize the nonparametric Wasserstein distance works in high dimensions.
We implement the Sinkhorn-AutoDi� algorithm [Genevay et al., 2018] to compute
the entropy-regularized L2-Wasserstein distance between minibatches of training
images and generated images, and minimize the divergence using stochastic gradient
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Figure 4.2: Images generated by the network after training with the Sinkorn-
Autodi� algorithm on MNIST dataset (top) and CIFAR-10 dataset (bottom). One
can observe than although the network succeeds in learning MNIST, it is unable to
produce convincing and diverse samples on the more complex CIFAR-10.

descent.10 Figure 4.2 shows generated samples after training with the Sinkhorn-
Autodi� algorithm on both MNIST and CIFAR-10 dataset. We then minimize the
estimated divergence using stochastic gradient descent. On MNIST, the network
manages to produce decent but blurry images. However on CIFAR-10, which has
higher intrinsic dimensionality, the generator fails to produce meaningful samples.
This is in stark contrast with the high quality generators displayed in the literature
with a parametric Wasserstein (Wasserstein-GAN). This result would suggest that
indeed the nonparametric Wasserstein should not be used for generative modeling
when the (e�ective) dimensionality is high.

4.3 Generating Simple High-dimensional Images (Experi-
ment)

There has recently been a number of successes in modelling high-dimensional
images with GANs, such as 1024 ◊ 1024 faces [Karras et al., 2018a] and 512 ◊ 512
photos [Brock et al., 2019], which does suggest that parametric divergences are
very successful in modelling high-dimensional data. We collect Thin-8, a dataset
of 1585 grayscale handwritten images of the digit 8, with a very high resolution
of 512 ◊ 512.11 The Thin-8 task di�ers from the aforementioned tasks because
the images to model have very low intrinsic dimensionality (each digit is one
curve which can be parametrized using only a handful of points), which allows us

10https://github.com/gpeyre/SinkhornAutoDiff
11Thin-8 dataset can be download from https://gabrielhuang.github.io/#thin
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Train

GAN

VAE

Figure 4.3: Samples from Thin-8 training set (top row), WGAN-GP (middle
row) and Convolutional VAE (bottom row) with 16 latent variables. Resolutions
are 32 ◊ 32 (left column), 128 ◊ 128 (middle column), and 512 ◊ 512 (right
column). Note how the GAN samples are always crisp and realistic across all
resolutions, while the VAE samples tend to be blurry with gray pixel values in
high-resolution. We can also observe some averaging artifacts in the top-right
512x512 VAE sample, which looks like the average of two “8”. More samples can
be found in Section 1.1 of the Appendix.

to factor out the usual complexity of high-dimensional photos. Therefore, even a
simple convolutional network with few filters and few latent-dimensions (16 in our
experiments) should be able to generate the images.

We train12 a convolutional VAE and a WGAN-GP [Gulrajani et al., 2017], henceforth
simply denoted GAN, using nearly the same architectures (VAE decoder similar
to GAN generator, VAE encoder similar to GAN discriminator), with 16 latent
variables, on the following resolutions: 32 ◊ 32, 128 ◊ 128 and 512 ◊ 512. We
optimize the losses using Adam, and augment the samples with random elastic
deformation during training.

Generated samples are shown in Figure 4.3. We observe that the VAE, trained
to minimize the evidence lower bound on maximum-likelihood, fails to generate
convincing samples in high-dimensions: they are blurry, pixel values are gray instead
of being white, and some samples look like the average of many digits. This can be
explained by the fact that the smoothing used in the VAE reduces the maximum
likelihood to a pixel-wise reconstruction loss, which is problematic here. Indeed,
because the images are dominated by background pixels and the strokes are very
thin, with high probability, any two “8’ will intersect on no more than a little area,
so pixel-wise distances are not meaningful.

On the contrary, the GAN which is trained with a parametric Wasserstein distance
can generate sharp and realistic samples even in 512 ◊ 512. Our hypothesis is that

12Code available at https://github.com/gabrielhuang/adversarial-divergence-
code
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the discriminator learns only the moments that matter for visual quality, and that
matching only those moments is easier than matching all of the moments, which is
required for really maximizing the likelihood.

In conclusion, the high-dimensional aspect was clearly an obstacle for success-
fully training a fairly simple generator using maximum-likelihood, while using a
parametric divergence to train the exact same generator allowed to overcome the
high-dimensional aspect and resulted in high-quality samples.

5 Good Divergences Should Reflect the Final
Task

In Section 3, we discussed the necessity and importance of designing task losses
which reflect the final task. We showed that in structured prediction, optimizing
more informative task losses can make learning considerably easier under some
conditions. Similarly, in generative modeling, we would like divergences to be as
informative and close to the final task as possible. Although not all divergences
can easily integrate final task-related criteria, parametric divergences can be tuned
through side-tasks and indirectly through their architecture (Section 5.1). We study
the synthetic task of generating images of digits that sum up to 25, and compare
KL-based and parametric divergences in their ability to enforce that constraint
(Section 5.2 and 5.3).

5.1 Tuning Various Divergences to the Final Task
Pure f-divergences cannot directly integrate any notion of final task. By default,
f-divergences might not have the expected properties, as we show experimentally
in Section 5.2. To some extent, there is a possibility of tweaking f-divergences by
combining them with generators that have a special structure; this is discussed in
Section 6.1. One could also attempt to induce properties of interest by adding
a regularization term to the f-divergence. However, if we assume that maximum
likelihood is itself often not a meaningful task loss, then there is no guarantee that
minimizing a tradeo� between maximum likelihood and a regularization term is
more meaningful or easier.

The Wasserstein distance and MMD are respectively induced by a base metric
d(x,xÕ) and a kernel K(x,xÕ). The metric and kernel give us the opportunity to
specify a task by letting us express a (subjective) notion of similarity. However, the
metric and kernel traditionally had to be defined by hand. For instance, Genevay
et al. [2018] learn to generate MNIST by minimizing a smooth Wasserstein based on
the L2-distance, while Dziugaite et al. [2015], Li et al. [2015] also learn to generate

44



MNIST by minimizing the MMD induced by kernels obtained externally: either
generic kernels based on the L2-distance or on autoencoder features. However, the
results seems to be limited to simple datasets. There is no obvious or generally
accepted way to learn the metric or kernel in an end-to-end fashion; this is an active
research direction. In particular, MMD has recently been combined with adversarial
kernel learning, with convincing results on LSUN, CelebA and ImageNet images:
Mroueh et al. [2017] learn a feature map and try to match its mean and covariance,
Li et al. [2017] learn kernels end-to-end, while Bellemare et al. [2017] do end-to-end
learning of energy distances, which are closely related to MMD. See BiÒkowski et al.
[2018] for a recent review of MMD-based GANs.

Parametric adversarial divergences can be tweaked to fit the final task in several
ways. The first knob is the choice of discriminator architecture, which implicitly
determines what aspects of the data the divergence is more sensitive or blind to. A
typical choice of discriminator architecture for image generation are convolutional
neural networks [Radford et al., 2016], since CNNs have several good properties
for assessing whether an image is realistic: ability to detect blurriness, edges and
textures, while being robust to translations and small deformations. The second
knob is the use of a side-task. Instead of solely training the discriminator to
distinguish true and generated data, one can also train the discriminator to solve
a relevant side-task at the same-time, with the hope that it induces properties of
interest on the resulting divergence. We will show in Sections 5.2 and 5.3 how a
discriminator can be made much more sensitive to certain aspects of the data using
a side-task.

5.2 Sensitivities of Divergences to Di�erent Aspects of the
Sum-25 Distribution

In this section, we introduce the Sum-25 task as a benchmark for comparing the
sensitivities of divergences to di�erent aspects of the data. We then add a side-task
to a parametric divergence and show that it can improve sensitivity to important
aspects of the data.

Sum-25 Task. The Sum-25 task consists in generating combinations of 5 digits
that sum up to 25. We devise the following, on-the-fly dataset. First, we enumerate
all 5631 combinations of 5 digits (out of 100,000) such that these digits sum up
to 25. Then, we split them into disjoint train (50%) and test (50%) sets. The
sampling process consists in uniformly sampling a random combination from the
train/test set, then sampling corresponding digit images from MNIST, and finally
concatenating them to yield the final image containing the 5 digits in a row summing
up to 25.
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Visual and Symbolic Constraints. The Sum-25 task can be thought of as a
toy version of more complex tasks which have their own constraints. An example
real task could be to generate pictures which satisfy perspective (e.g. objects must
be skewed appropriately) and physical constraints (e.g., no floating objects). In
the case of the Sum-25 task, the generator needs to model two aspects of the data
accurately:

• Visual constraint : Digits should be recognizable and have good visual quality.

• Symbolic constraint : Digits must sum up to 25.

Therefore, can we define divergences which enforce both visual and symbolic con-
straints ?

Factorized Distributions. To factor out the e�ects of the learning process,
we compute divergences between fixed reference p and candidate q distributions.
Additionally, we restrict p and q distributions to be factorizable into a symbolic
model and a conditional visual model as follows

q(x) =
ÿ

z

q(x, z) =
ÿ

z

q(z)
¸ ˚˙ ˝

symbolic model

5Ÿ

i=1

q(xi|zi)¸ ˚˙ ˝
conditional visual model

(5.1)

where zi are symbolic digits and xi images of digits. We denote Test-25 the reference
distribution, which is uniform over combinations of 5 digits from the MNIST test-set
which sum up to 25 (symbolic constraint satisfied).

Sensitivity of KL-divergence to Constraints. In our first experiment, we
consider 6 candidate distributions based on combining 3 conditional single-digit
visual models with 2 symbolic models. The visual models are VAEs which are
trained with Adam to generate single MNIST digits for 10, 70, and 80 epochs
(prefixes V ae10-, V ae70-, V ae80-). The symbolic models -25 (resp. -Non25) are
the uniform distributions over combinations of 5 digits that sum up (resp. do no
sum up) to 25. We compute the Ep[≠ log q] using (5.1), but replacing q(xi|zi) with
the variational lower-bound of the VAE, since these can be naturally computed.
The numbers in Table 4.2 show that the negative log-likelihood is overly sensitive
to the visual appearance, but barely cares about the higher-level Sum-25 constraint.
Therefore, by training with such an objective we might end up with digits that don’t
sum up to 25. More generally, this suggests that models trained with nonparametric
divergences such as KL might not be able to enforce certain constraints which might
be important to the final task.

Sensitivity of Parametric Divergence (a,b) For our second experiment,
we would like to compute the parametric Jensen-Shannon between the reference
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Figure 4.4: Probing the discriminator. Experiment a (resp b) : we train the discriminator
to separate Test-25/Vae-Non25 (resp. Test-25/Gan-Non25) training accuracy (red) goes to
1 very quickly. We probe the discriminator to see if it can separate Test-25/Test-Non25,
and observe bad accuracy (green), which means the discriminator was unable to learn
the sum-25 constraint, and discriminated solely on visual properties. In Experiment (c),
we train the discriminator to separate Test-25/Test-Non25 as a side task. Good training
accuracy (green) is evidence that the discriminator learned the sum-25 constraint, since it
is the only way to separate the distributions. We then evaluate if the discriminator can
separate Test-25/Vae-Non25 and get evaluation accuracy (red) almost as good training
accuracy. Slightly higher evaluation accuracy is observed for Test-25/Gan-Non25, which
makes sense since Gan digits are visually more similar to Test. Thus the discriminator
can detect the sum-25 constraint despite the Test æ Vae and Test æ Gan domain shifts,
which suggests such the SideTask could help enforce Sum-25 during end-to-end training
(i.e. training a GAN).

47



Visual Model q(xi|zi) Sum-25 satisfied Sum-25 NOT satisfied
V ae10 572.3 ± 1.4 575.4 ± 1.5
V ae70 488.9 ± 1.2 487.3 ± 1.2
V ae80 484.5 ± 1.2 483.7 ± 1.2

Table 4.2: Estimated Negative Log-Likelihoods of Test-25 when Sum-25 constraint
is and is NOT satisfied by q(z), for VAE conditional visual models trained for
10, 70 and 80 epochs. Notice how there is barely any improvement from having
digits sum up to 25 or not (compare “Sum-25 satisfied” to “NOT satisfied”), while
even tiny improvements in visual quality yield substantial gains in NLL (compare
V ae70,V ae80 which have no perceptible di�erence).

distribution Test-25 and candidate distributions based on various conditional and
symbolic models. We consider Vae-25, Vae-Non25, Gan-25 and Gan-Non25, where
Vae is a VAE trained for 80 epochs, and Gan is a WGAN-GP trained for 50 epochs.
However, we cannot present a similar table as previously because the numerical
values of parametric divergences are unstable/random and dependent both on
discriminator initialization and random sampling of data (even with gradient-
penalty/other formulations). Instead, we propose an alternative approach which
we call probing the discriminator. Specifically, we first train the discriminator
to classify Test-25/Vae-Non25 (resp. Test-25/Gan-Non25), but we evaluate its
accuracy on the di�erent problem of separating Test-25/Test-Non25 to see whether
the discriminator has learned to detect the sum-25 constraint. As shown in plot
(a) of Figure 4.4, the discriminator fails to discriminate Test-25/Test-Non25, which
suggests that it has only focused on the visual constraint during training. This is
actually not that surprising as the discriminator can actually get excellent accuracy
just by examining the visual quality of the first digit.

Sensitivity of Parametric Divergence w/ Side-Task (c) In our third ex-
periment, we explore whether we can better enforce the Sum25 constraint through
the discriminator. For this purpose, we train the discriminator on the side-task
of separating Test-25/Test-Non25. Since the individual digits are now indistin-
guishable, the only way for the discriminator to get maximum accuracy on the
side-task is to consider digits jointly and detect if they sum to 25. After training
the discriminator on the side task, we probe the discriminator to see whether it can
separate Test-25/Vae-Non25 (resp. Test-25/Gan-Non25) which simulates the target
and (imperfect) model distribution one could encounter while training a generative
model. As shown in plot (c) of Figure 4.4, it turns out the discriminator can
separate Test-25/Vae-Non25 (resp. Test-25/Gan-Non25) fairly well, and moreover,
it can also generalize to new combinations it has not seen before. This suggests
that the side-task approach can help enforce sum-25 when learning q end-to-end, in
a GAN setting.
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5.3 Generating the Sum-25 Distribution
The previous section suggested that KL-divergence does not care about the sym-
bolic constraint, that the vanilla parametric divergence does not either, but the
parametric divergence + side-task cares about the constraint. We investigate if
our intuitions hold when actually training a generator using these divergences.
We train three models to generate the training set: a VAE (objective is upper
bound on nonparametric Kullback-Leibler), a WGAN-GP (objective is parametric
Wasserstein, simply denoted GAN), and another WGAN-GP with the additional
side-task of discriminating Test-25/Test-Non25 (objective is parametric Wasserstein
with side task, denoted GAN-SideTask). All models share the same architecture
for their generator network and use 200 latent variables. After training, with the
help of a MNIST classifier, we automatically recognize and sum up the digits in
each generated sample. As usual, the VAE samples are a bit blurry while the GAN
samples are more realistic and crisp. Generated samples can be found in Section 1.2
of the appendix. We then compare how well VAE, GAN and GAN-SideTask enforce
and generalize the constraint that the digits sum to 25.

Enforcing the Symbolic Constraint [Figure 4.5 left]. We plot the distri-
butions of the sums of the combinations generated by the three models. The
GAN-SideTask samples are the most concentrated around the target 25, followed
by the GAN, and then VAE which is barely better than the independent baseline
(digits follow marginal distribution). In that respect, the GAN-SideTask (though
still far from nailing the problem) was much better than the VAE at capturing and
enforcing the particular aspects and constraints of the data distribution (summing
up to 25). This corroborates our prior hypothesis that side-task can help better
align parametric divergences with the final task. Surprisingly, the GAN without
side-task also outperforms the VAE. One hypothesis is that when GAN samples
become visually too hard to discriminate, the discriminator will eventually start
to detect the sum-25 constraint, even if such e�ect was not observed during fixed
distribution experiments. Another possibility is that since the generator is always
adapting to the discriminator (joint training), the discriminator does not have time
to focus too much on visual details.

Generalizing the Symbolic Constraint [Figure 4.5 right]. We plot the
train and test recall scores, which are defined as the proportions of the train/test
combinations covered by a generative model after generating a fixed number of
samples. High train recall means the generators cover the training combinations well
(no symbolic mode dropping), while high test recall means they are able to generate
new combinations which were not in the training set (symbolic generalization).
Again, GAN-SideTask has best train/test recalls, followed by GAN, and VAE
ranks last with same recall as the Independent Baseline. There is a very slight
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Figure 4.5: Top: Histograms of the sums of digits generated by VAE (red),
WGAN-GP (green) and Independent Baseline (gray). The baseline draws digits
independently according to their empirical marginal probabilities, which corre-
sponds to fitting independent multinomial distributions over digits using maximum
likelihood. WGAN-GP beats largely both VAE and Indepedent Baseline as it gives
a sharper distribution centered on the target sum 25. Bottom: Train (dashed) and
test (solid) which tell us how well the models cover the train and test set. The best
theoretical recall is given by the Perfect generator (black) which samples uniformly
among the 5631 combinations. Higher train recall means less mode dropping, while
higher test recall means better ability to generalize constraints. WGAN-GP has the
best recall (green), followed by the independent baseline (gray) and the VAE (red).
Plots averaged over 5 runs. Train (dashed) and test (solid) recalls are identical for
independent baseline and perfect generator.
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overfitting to the training set for the GANs (solid line lower than dashed line),
but GAN-SideTask seems to generalize very well. For models with very low recalls
such as VAE, train and test recalls are equal, which is not surprising (it is the case
for the uniform distribution). We leave for future work to investigate whether the
generalization of the constraint is due more to the discriminator or the generator.

Conclusion of Sum-25. To conclude the Sum-25 experiments, parametric di-
vergences have allowed us, through the addition of a side-task, to better enforce
the symbolic constraint, and thus yield generative models which better solve the
Sum-25 task than ones trained with nonparametric divergences or vanilla paramet-
ric divergences. We can imagine that for more complex tasks, practitioners can
create side-tasks to make the discriminators more sensitive to certain aspects of the
distribution.

6 Interactions between Generator and
Divergence

Previously in Sections 4 and 5, we gave arguments against using f-divergences for
general generators because f-divergences cannot directly handle implicit generators
or be tuned to reflect the final task. Here, we discuss the fact that certain generators
with a special structure can compensate for the shortcomings of the KL-divergence,
but this special structure can also bring other problems (Section 6.1). We also con-
sider the converse question of whether we can train a memorization-based generators
with no generalization ability, but using a parametric divergence (Section 6.2).

6.1 Interaction of KL-divergence with Special Generators
Certain generators with a special structure can compensate for the shortcomings
of the KL-divergence. Here, the two special structures we discuss are : smoothing
the generator distribution with a (Gaussian) observation model and autogressive
models.

Smoothing observation model. By adding an observation model such as a
Gaussian model, on top of any generator, one can artificially extend its support to
the whole input space. In particular, this makes the KL-divergence well-defined,
and makes it possible to train models such as variational autoencoders[Kingma and
Welling, 2014] (VAEs). The observation model makes the log-likelihood involve
a “reconstruction loss”, a pixel-wise L2 distance between images analogous to the
Hamming loss, which makes the training relatively easy and very stable. However,
the Gaussian is partly responsible for the VAE’s inability to learn sharp distributions.
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Indeed it is a known problem that VAEs produce blurry samples [Arjovsky et al.,
2017], and in fact even if the approximate posterior matches exactly the true
posterior, which would correspond to the evidence lower-bound being tight, the
output of the VAE would still be blurry [Bousquet et al., 2017].

Autoregressive models. Another example of special structure is autoregressive
models, such as recurrent neural networks [Mikolov et al., 2010], which factorize nat-
urally as q◊(x) = r

i q◊(xi|x1, .., xi≠1), and PixelCNNs [Oord et al., 2016]. Training
autoregressive models using maximum likelihood results in teacher-forcing [Lamb
et al., 2016]: each ground-truth symbol is fed to the RNN, which then has to
maximize the likelihood of the next symbol. Since teacher-forcing induces a lot of
supervision, it is possible to learn using maximum-likelihood. Once again, there are
similarities with the Hamming loss because each predicted symbol is compared with
its associated ground truth symbol. However, among other problems, there is a
discrepancy between training and generation. Sampling from q◊ would require itera-
tively sampling each symbol and feeding it back to the RNN, giving the potential
to accumulate errors, which is not something that is accounted for during training.
See Leblond et al. [2018] and references therein for more principled approaches to
sequence prediction with autoregressive models.

6.2 Ability to Train Memorization-based Generators (Ex-
periment)

Previously, we discussed using generators with special structure to compensate
shortcomings of the KL-divergence. Here we explore the converse case. Can we
train a memorization-based generator, which has no generalization abilities, using
a parametric divergence? Obviously, we cannot expect the generator to do any
generalization, but this experiment is a good sanity check to see whether a given
divergence will enforce realistic samples. Additionally, the memorized data can be
plotted as a summary of the target distribution.

We compare the parametric Wasserstein divergences induced by three di�erent
discriminators (linear, dense, and CNN) under the WGAN-GP [Gulrajani et al.,
2017] formulation. The memorization-based generator is a mixture of 100 prototypes,
which can be also thought of as a mixture of 100 Gaussians with zero-variance. To
sample a new image, the generator randomly returns one of 100 learned images. The
model “density” is q◊(x) = 1

K

q
z ”(x ≠ xz), where xz are the prototypes (images)

and ” is the Dirac distribution.

Prototypes learned from MNIST are shown in Figure 4.6. The first observation
is that the linear discriminator is too weak of a divergence: all prototypes only
learn the mean of the training set. Now, the dense discriminator learns prototypes
which sometimes look like digits, but are blurry or unrecognizable most the time.
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Figure 4.6: All 100 Prototypes learned using linear (left), dense (middle), and CNN
discriminator (right). We observe that with the linear discriminator, only the mean of the
training set is learned, while using the dense discriminator yields blurry prototypes. Only
the CNN discriminator yields clear prototypes.

The samples from the CNN discriminator are never blurry and recognizable in the
majority of cases. Our results confirms that indeed, even for simplistic models
like a mixture of Diracs, using a CNN discriminator provides a better task loss for
generative modeling of images.

Note that it would have been impossible to directly fit the same generator using a KL-
divergence, because such a model does not admit a continuous density. A workaround
approach is to relax the generator into a model that admits a density with respect
to the usual measure, by replacing the Diracs with Gaussians. Maximizing the
likelihood could then be done using an algorithm similar to K-means, and would
likely result in blurry prototypes, since each prototype would be expressed as the
average of several images.

7 Parametric Divergences for Meaningful
Mutual Information

Recall that the mutual information between two variables X and Y can be defined
as the Kullback-Leibler divergence between the joint distribution and the product
of marginals13

MI(X, Y ) =
⁄

x,y

p(x, y) log p(x, y)
p(x)p(y)dxdy = KL(p(x, y)||p(x)p(y)) (7.1)

Mutual information quantifies the amount of information, in nats or bits, which is
shared between X and Y , independently of the way these variables are represented.

13We use densities for simplicity, but more general definitions based on measure theory exist.
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We argue that the problems of the KL-divergence presented previously can lead
to problematic properties of mutual information. We illustrate that mutual infor-
mation is not always an intuitive concept and can have a paradoxical behavior
(Sections 7.1 and 7.2). We give an explanation of these paradoxes in Section 7.3, and
propose more intuitive and meaningful notions of generalized mutual information
based on parametric divergences in Section 7.4. Finally, we apply the proposed
generalized mutual information to the paradoxes and discuss the results.

7.1 The Corrupted-Label Paradox
We showcase a simple example of joint distribution p(x, y) where the mutual
information is high between x and y even if there is no meaningful dependency
between them. This can be thought of as overfitting to the empirical distributions,
which is unavoidable because mutual information makes no assumption whatsoever.

Consider {(xi, yi)}1ÆiÆN the labeled training examples of MNIST (although the
paradox can be derived for any classification problem). There are N = 60, 000
examples and K = 10 balanced classes, each class containing exactly N/K = 6, 000
examples. Consider two joint distributions for which we compute the mu-
tual information using the di�erence between marginal and conditional entropy
MI(X, Y ) = H(Y ) ≠ H(Y |X):

• Empirical: Define p1(x, y) as the empirical distribution of the training set
p1(x, y) = 1

N

q
N

i=1
”(x ≠ xi)1(y = yi), where ”(·) is the Dirac distribution

on X . The marginal distribution of Y is uniform over 10 classes, so the
marginal entropy of Y is H(Y ) = log 10 = 2.30 nats. For the conditional
entropy, when x is known and p1(x) > 0, the label is fully determined by
y = q

N

i=1
1(x = xi)yi, so H(Y |X) = 0 nats, and the mutual information is

MI(X, Y ) = 2.3 nats.

• Pseudo-Random labels: Sample and fix random permutation ‡(i) over
60, 000 elements, and permute all labels by considering the distribution
p2(x, y) = q

N

i=1
”(x = xi)”(y = y‡(i)). The marginal distribution of Y does

not change, so H(Y ) = log 10 = 2.30 nats again. For the conditional entropy,
the label is now fully determined14 by y = q

N

i=1
1(x = xi)y‡(i), so H(Y |X) = 0

nats, and the mutual information is MI(X, Y ) = 2.3 nats again (assuming
fixed ‡).

It can be rather surprising that the mutual information in both cases is always
approximately 2.3 nats, which corresponds the amount of information for disam-
biguating between 10 balanced classes. While the labels for the empirical distribution
are very natural and correspond to the identity of the digit represented, the labels for
the permuted-label distribution have no meaning at all and would appear random

14Assuming no duplicate images.
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to any human. Clearly, the mutual information does not care whether X and Y
having a meaningful dependency. Instead, it will always equal 2.3 nats as long as
the same label is consistently assigned to each image.

7.2 The Hashing Paradox
We showcase a family of distributions pK(X, Y ) – this time over continuous variables
X, Y œ R– for which the mutual information MI(X, Y ) goes to infinity, while X and
Y appear to be increasingly independent. Recall that continuous mutual information
is always non-negative and independent of the base-measure, and preserves the
meaning that MI(X, Y ) = 0 if and only if X and Y are independent. If Y = X,
then the mutual information equals infinity.

For any positive K œ N, define the distribution pK(X, Y ) as follows. Consider two
independent uniform random variables X,W ≥iid U ([0, 1)), and a (deterministic)
permutation ‡K of the range {0, . . . , K ≠ 1}, which we call the hash function and
will be defined later. We define the random variable Y = ‡K(floor(KúX))

K
+ W

K
. It

is very easy to verify that the marginal distribution of Y is also uniform on [0, 1),
so its marginal di�erential entropy is H(Y ) = 0. For the conditional entropy,
when X is known, we know that Y is uniform in an interval of measure 1/K, so
H(Y |X) = log 1

K
= ≠ logK, regardless of the actual permutation ‡K . Therefore,

the mutual information is always logK nats, and grows to infinity as the number
of bins goes to infinity.

We consider two families of hash functions ‡K . For increasing K, we represent
samples (X, Y ) ≥ pK along with the mutual information MI(X, Y ) [Figure 4.7]:

• Identity function ‡K(i) = i. As K grows, Y has to be closer and closer to
X, while their mutual information goes to infinity. This is intuitive because
Y is essentially converging towards X and giving more and more information
over X.

• Pseudo-random permutation. Consider any given implementation of
Python. Seed the pseudo-random number generator (PRNG) to 0 (or any
fixed number) and define a permutation ‡ by shu�ing an array containing the
range {1, . . . , K}. As shown in Figure 4.7, when K grows to infinity, Y looks
visually more and more independent from X, thus we would intuitively expect
the mutual information to vanish to zero. However, as proved previously,
the mutual information does not depend on ‡, and actually grows in logK,
which contradicts (in appearance) the fact that X and Y are visually more
and more independent. Beyond visual independence, it would be easy to show
that for large enough K, the random variables X and Y can be considered
numerically independent for practical purposes, such as numerical integrations

1

x=0

s
1

y=0
f(x, y)dpK(x, y), as long as the function f is su�ciently smooth.
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Figure 4.7: The Hashing Paradox. Samples of the distribution pK(x, y) for increasing
numbers of bins K œ {16, 64, 256, 1024, 4096}, with corresponding mutual information.
Row 1: the permutation ‡K is the identity. Row 2: the permutation is a pseudo-random
permutation. Row 3: X and Y are sampled independently. Observe how the samples
from Row 2 appear to be more and more independent (and distributed similarly to Row
3), despite having increasingly higher mutual information. In fact, for high enough K, it is
impossible to tell Row 2 from Row 3.
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7.3 Statistical Dependency can be Arbitrarily Complex
The previous paradoxes comes from the fact that mutual information does not care
about any underlying metric or similarity on the spaces X and Y. Two points
are either considered equal or not equal, which is a property that stems from the
KL divergence. Moreover, the mutual information also does not care about the
nature of the relationship between X and Y . Indeed, no matter how “complex” the
relationship is, as long as there exists some function such that Y = h(X), then all
of Y is determined by X, and the mutual information between Y and X is maximal,
i.e., equal to the entropy of Y .

If the relationship between X and Y is too complex, i.e., it is too hard to predict
Y from X, then can we really consider that X and Y are dependent for any
practical purposes? Consider the hashing example, where Y appears to be visually
random from X. For applications like numerical integration of smooth functions,
it is likely that we can expect the same type of guarantees as if X and Y were
truly independent. However, for cryptographic applications where randomness
requirements are much more stringent, we can probably not consider that X and
Y are independent. In fact, we could even push the reasoning one step further
and argue that pseudo-random number generators are not truly random. However,
PRNGs such as linear congruential generators (LCG) are omnipresent in machine
learning (e.g. SGD sampling, network initialization, sampling latent variables) and
generally accepted to be truly random for all practical purposes, although successive
samples are known to be highly dependent in a strict sense.

These apparent paradoxes motivate the need for defining more meaningful notions
of mutual information, which are tailored to the specificities of the final application
(e.g. numerical integration, sampling, assessing independence, learning disentangled
latent variables). One way to do this is to control the complexity of the relationship
Y = h(X, ‘) between X and Y , where h is deterministic and ‘ is some noise
independent from X. For instance, we can restrict the class of possible relationships
h œ H, or define a Bayesian prior p(h) over them:

• Linear Dependence. If only linear dependence is considered simple, then
the resulting notion of independence corresponds to the usual notions of linear
correlation.

• Smoothness. Define some metric on X and some metric Y . We could restrict
H to the class of L-Lipschitz functions for some L, which means only smooth
relationships are deemed interpretable.

• Neural Networks. Consider the set of neural networks with a fixed neural
network architecture. We could restrict h to be representable with one of
these neural networks. Alternatively, we could also restrict h to be a neural
network which can be fitted within a limited number of SGD steps, in order
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to take advantage of its implicit regularization properties.

• Kolmogorov complexity. Given a programming language, we could the-
oretically define the complexity of a function as the length of the shortest
program for implementing that function. For instance, this language could be
Python, restricted to its standard library.

• Arbitrary Complexity / Memorization-based If we consider all the
functions h œ H = Y

X , then any arbitrary pair (X, Y ) can just be memorized
inside h. By definition, any h is considered simple in the memorization-sense.
In this case, we recover the classic definition of mutual information, which
allows h to be arbitrarily complex.

We will be introducing complexity-aware variants of mutual information in Sec-
tion 7.4, and experimenting with some of their properties in Section 7.6 and 7.7.

Explaining the corrupted label paradox. In the corrupted-label paradox
for the random label case, each label Y is assigned according to an arbitrary rule
‡, and cannot be deduced from the image X other than through memorization.
Here the relationship Y = h(X) is complex in the smoothness, neural network, and
Kolmogorov sense, and only simple for the memorization-based sense. Therefore, if
complexity in the sense of smoothness, neural network, and Kolmogorov complexity
are meaningful to the final task (e.g. identifying semantic correlation), then an
intuitive notion of mutual information should predict X and Y to be independent.

Explaining the Hashing Paradox In the hashing paradox, when ‡K = hash is
a pseudo-random permutation, the relationship hK between X and Y is complex
in the smoothness and neural network sense, but simple in the Kolmogorov sense
because hK can be implemented in a few lines of python. Therefore, if complexity
in the sense of smoothness and neural networks are meaningful to the application
(e.g. numerical integration of smooth functions), we should consider the variables to
be independent. However, if complexity in the sense of Kolmogorov are meaningful
to the application (e.g. cryptography), then the variables cannot be considered
independent.

7.4 Generalized and Parametric Mutual Information
We explain how to generalize mutual information to account for arbitrary properties
of the distribution, such as the complexity of the relationship Y = h(X) and
underlying metrics of the spaces X, Y . Recall that the mutual information MI(X, Y )
between two random variables X and Y can be written as the KL-divergence between
the joint pX,Y and the product of marginals pX ¢ pY .

MI(X, Y ) = KL(pX,Y ||pX ¢ pY ) (7.2)
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We define the generalized mutual information by replacing the KL-divergence with
another nonparametric and parametric divergences.

Definition 7.1 (Generalized Mutual Information). Given a divergence Div(·||·),
we define the Div-generalized mutual information (GMI) as:

GMIDiv(X, Y ) = Div(pX,Y ||pX ¢ pY ) (7.3)

Additionally, if Div(·||·) is a parametric divergence, then we say that GMIDiv is a
parametric mutual information (PMI).

Definition 7.2 (Generalized Independence). Given a divergence Div(·||·), we say
that X and Y are Div-independent if and only if GMIDiv(X, Y ) = 0. We abuse
the terminology and say that X and Y are Div-independent even when Div is not
a proper divergence.

For instance, we could consider the class of f-divergences (KL, Jensen-Shannon), inte-
gral probability metrics (MMD, Wasserstein) or parametric adversarial divergences.
We argue that the properties of parametric divergences, discussed in Sections 4 and 5
transfer over to the induced parametric mutual information.

Using MMD for independence-testing has been proposed in Gretton et al. [2012].
The kernel defines a similarity metric over X ◊ Y . It should be noted that MMD-
generalized-mutual-information can only be as meaningful as the kernel considered.
In particular, for generic kernels MMD-GMI might not be powerful enough to find
some dependencies, for the same reasons MMD can fail to discriminate distributions
in high dimensions (Section 4.1). Similarly, Wasserstein distance and variants
have been proposed for independence-testing [Ramdas et al., 2017]. Just like for
MMD, the choice of base-metric determines the properties of the generalize mutual
information. However, similarly to the Wasserstein distance, Wasserstein-GMI also
su�ers from poor sample complexity in high dimensions. KL-parametric mutual
information (KL-PMI) has been proposed in [Belghazi et al., 2018] under the name
of Mutual Information Neural Estimator (MINE), as an approximator of the true
mutual information. We argue that KL-parametric mutual information should not
be seen as a mere approximator of mutual information, and that it can sometimes
be a more natural and meaningful concept than traditional mutual information.
We provide evidence of this in the experimental section 7.7.

Training and Validation GMI. In practice, generalized mutual information
is estimated from a finite dataset, and it is handy to lower and upper bound the
population generalized mutual information. We independently sample a training set
Dtrain = {(x(i)

train
,y(i)

train
)} and a validation set Dval = {(x(i)

val
,y(i)

val
)} from the joint

distribution pX,Y .
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Definition 7.3 (Training GMI). Denote N the size of the training set. We define
the training GMI as:

GMI(X, Y )train = sup
fœF

1
N(N ≠ 1)(N ≠ 2)

Nÿ

i=1

Nÿ

j ”=i

Nÿ

k ”=i,j

�(f(x(i)

train
,y(i)

train
), f(x(j)

train
,y(k)

train
))

(7.4)

In a similar spirit as the U-statistics-based MMD estimator proposed in Lemma
6 of Gretton et al. [2012], we remove some indices j ”= i and k ”= i, j so that
we can reuse samples from the joint pX,Y as if (x(i)

train
,y(i)

train
), (x(j)

train
,y(k)

train
) were s

ampled from pX,Y ¢ (pX ¢ pY ). The resulting term inside the sup
fœF

is an unbiased
estimator of the term inside the sup

fœF
of the corresponding adversarial divergence:

EDtrain

S

U 1
N(N ≠ 1)(N ≠ 2)

Nÿ

i=1

Nÿ

j ”=i

Nÿ

k ”=i,j

�(f(x(i)

train
,y(i)

train
), f(x(j)

train
,y(k)

train
))

T

V

(7.5)
=E(x,y),(xÕ,yÕ)≥pX,Y ¢(pX¢pY ) [�(f(x, y), f(xÕ, yÕ)]

¸ ˚˙ ˝
take supfœF

to get GMI(X, Y )

(7.6)

However, it is important to note that (7.4) is not an unbiased estimator of the GMI
because of the supremum. We will only derive a bound in expectation in Theorem 2.

Definition 7.4 (Validation GMI). Denote ‚f the previous maximizer, and N Õ the
size of the validation set. We define the validation GMI as:

GMI(X, Y )val = 1
N Õ(N Õ ≠ 1)(N Õ ≠ 2)

N
Õÿ

i=1

N
Õÿ

j ”=i

N
Õÿ

k ”=i,j

�( ‚f(x(i)

val
,y(i)

val
), ‚f(x(j)

val
,y(k)

val
)).

(7.7)

Using the same principles as for supervised classification (Section 3.4) the true
(population) GMI can be lower (resp. upper) bounded by the training (resp.
validation) GMI (7.8).

Theorem 2 (Bounds for Generalized Mutual Information). For any generalized
mutual information, the following bounds hold:

EDtrain,Dval
[GMIval(X, Y )] Æ GMI(X, Y ) Æ EDtrain [GMItrain(X, Y )]. (7.8)

Proof. For conciseness, denote:

‚�train = 1
N(N ≠ 1)(N ≠ 2)

Nÿ

i=1

Nÿ

j ”=i

Nÿ

k ”=i,j

�(f(x(i)

train
,y(i)

train
), f(x(j)

train
,y(k)

train
)). (7.9)
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The right inequality results from the fact that taking the supremum inside the
expectation EDtrain [·] is always higher than outside it, and the fact that ‚�train is an
unbiased estimator of GMI(X, Y ) without the supremum:

GMI(X, Y ) = sup
fœF

EDtrain [ ‚�train]
¸ ˚˙ ˝

E(x,y),(xÕ,yÕ)≥pX,Y ¢(pX ¢pY )[�(f(x,y),f(xÕ,yÕ)]

Æ EDtrain [ sup
fœF

‚�train

¸ ˚˙ ˝
GMItrain(X,Y )

].

(7.10)

For the left inequality, taking the expectation of GMI(X, Y )val with respect to the
sampling of the validation set gives:

EDval
[GMI(X, Y )val] =E(x,y),(xÕ,yÕ)≥pX,Y ¢(pX¢pY )

Ë
�( ‚f(x, y), ‚f(xÕ, yÕ)

È
(7.11)

Æ sup
fœF

E(x,xÕ)≥p¢q◊
[�(f(x, y), f(xÕ, yÕ)] (7.12)

where the inequality comes from the definition of the supremum. Now, we take
expectations with respect to the sampling of the training set, which ‚f depends on:15

EDtrain,Dval
[GMI(X, Y )val] Æ GMI(X, Y ) (7.13)

⌅

We will be using these bounds to estimate the GMI in the experiments of Section 7.7.

7.5 MMD-Independence for Integrating Smooth Functions.
We take the example of numerical integration of smooth functions to illustrate that
weaker notions of independence can be su�cient for practical purposes. Specifically,
consider a smooth function f(X, Y ), in the sense that f œ RKHS and ||f ||RKHS <
Œ. We want to compute its integral I(f) over [0, 1]2, which can also be written
as an expectation by defining two independent random variables X, Y which are
uniform over [0, 1] :

I(f) =
⁄

1

x=0

⁄
1

y=0

f(x, y)dydx =
⁄

xœX

⁄

yœY

f(x, y)pY (y)pX(x)dydx =< f, pX ¢ pY >L2

(7.14)

However, we can actually relax the independence assumption and only assume
that X and Y are approximately MMD-independent, in the sense that their weak
MMD-mutual information GMIMMD(X, Y ) is small or equal to zero. Under that
assumption, the new integral is

J(f) =
⁄

xœX

⁄

yœY

f(x, y)pX,Y (x, y)dydx =< f, pX,Y >L2 (7.15)

15That last step is optional: the expectation with respect to Dtrain could be removed.
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To show that J(f) approximates I(f) better as X and Y become more and more
weakly MMD-independent, we write

|J(f) ≠ I(f)| = | < f, pX,Y ≠ pX ¢ pY >L2 | = | < f, µpX,Y ≠ µpX¢pY >RKHS |

(7.16)

where the second equality comes from the definition of MMD embeddings
µpX,Y , µpX¢pY and the fact that f is in RKHS. Applying the Cauchy-Schwartz
inequality and the definition of MMD-based mutual information yields

|J(f) ≠ I(f)| Æ ||f ||RKHS ú ||µpX,Y ≠ µpX¢pY ||RKHS Æ ||f ||RKHS ú GMIMMD(X, Y )
¸ ˚˙ ˝

small or zero

(7.17)

Therefore, whether X and Y are strictly independent or only MMD-independent
does not make any di�erence for integrating smooth functions in RKHS, because in
both cases we will have J(f) = I(f).

GMI for the Hashing Paradox. Recall the distributions pX,Y introduced for
the hashing paradox (Section 7.2):

• Identity case: X ≥ U([0, 1]) and Y = floor(KúX)

K
+ W

K
. Variables X and

Y appear more and more correlated, which is consistent with MI(X, Y ) =
logK æKæŒ Œ.

• Hashing case: X ≥ U([0, 1]) and Y = hashK(floor(KúX))

K
+ W

K
. For large K,

variables X and Y appear visually more and more independent, which seems
incompatible with MI(X, Y ) = logK æKæŒ Œ.

• Independent case: X ≥ U([0, 1]) and Y ≥ U([0, 1]) are independent and
MI(X, Y ) = 0, which is consistent with the visual appearance.

[Figure 4.8] For these 3 distributions, we compute the usual KL-based mutual
information analytically. We also compute their MMD-GMI with Gaussian kernels
of bandwidths 0.01, 0.1, 10 using the unbiased U-estimator of MMD2 proposed in
Lemma 6 of Gretton et al. [2007]. It turns out that MMD-GMI with Gaussian
kernel and appropriate bandwidth matches the visual intuition well. For the hashing
distribution, when the number of bins K is small, MMD-GMI increases with K as
the bins get smaller and Y looks more determined by X, closely tracking the identity
distribution curve, until the relationship Y = h(X) becomes too irregular. However,
for large enough K, the size of each bin becomes smaller than the bandwidth, at
which point MMD-GMI goes to zero, and tracks the independent distribution curve.

From the previous result (7.17), it turns out that when ‡K = hash, the distribution
pX,Y is fit for numerical integration of functions in the Gaussian RKHS (i.e., functions
with only low-frequencies). However, it is not the case when ‡K is the identity
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Figure 4.8: Various generalized mutual information (GMI) as a function of the number of
bins K for the Identity (blue), Hashing (orange), and Independent (green) distributions.
An intuitive notion of mutual information should go to zero for the hashing distribution
(orange) as K increases. For smaller values of K, MMD-GMI with bandwidths 0.01 and 0.1
increases originally for the hashing distribution, closely following the identity distribution
curve (blue), peaks for K roughly equal to half the bandwidth, and then goes to zero to
closely follow the independent distribution curve (green). However, when the bandwidth is
very large (e.g. 10), all distributions look the same, and MMD-GMI has no discriminative
power.
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function, and this can be simply shown by considering a function with support far
from the diagonal X = Y .

7.6 Semi-Discrete Case
When Y is discrete with few values (e.g. labels), it makes sense to try to explicitly
predict Y = h(X), instead of considering discriminators which take both variables
as input. We show that KL-based parametric mutual information (KL-PMI) can
be upper (lower) bounded simply by training a classifier to predict Y from X
by minimizing the cross-entropy loss, and subsequently subtracting its training
(validation) loss from the entropy of Y , which is straightforward to estimate for
discrete variables with finite values.

Theorem 3 (Semi-Discrete Mutual Information). When Y is finite, the mutual
information between X and Y can be written as the solution to the following
optimization problem :

MI(X, Y )(X, Y ) = H(Y ) ≠ inf
T :X ◊YæR

Ex,y≥p(x,y)[≠ log q(y|x)]
¸ ˚˙ ˝

L(T )

(7.18)

where H(Y ) is the discrete entropy of the marginal Y and L(T ) can be reinterpreted
as the log-loss or cross-entropy loss between a candidate distribution q(y|x) and
p(y|x). Specifically, we define a “predictor” q(y|x) = p(y)e

T (x,y)
q

|Y |

yÕ=1 p(yÕ)eT (x,yÕ) , where T (x, y)
can be interpreted as scores for predicting y given x, and the inf can be interpreted
as finding the score T which maximizes the conditional likelihood for the data from
p."

Proof. We start from the KL form of mutual information and take conditional
expectations using the factorization p(x, y) = p(x)p(y|x)

MI(X, Y ) = KL(p(x, y)||p(x)p(y)) = Ex,y≥p(x,y)

C

log
A

p(x, y)
p(x)p(y)

BD

(7.19)

= Ex≥p(x)Ey≥p(y|x)[log p(y|x)
p(y) ] = Ex≥p(x) [KL(p(y|x)||p(y))] (7.20)

We take the Donsker-Varadhan [Belghazi et al., 2018] representation of
KL(p(y|x)||p(y)) :

KL(p(y|x)||p(y)) = sup
M :YæR

Ey≥p(y|x)[M(y)] ≠ log Ey≥p(y)[exp(M(y))] (7.21)
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Injecting this expression in Equation (7.20) yields

MI(X, Y ) = Ex≥p(x)Ey≥p(y|x)[log p(y|x)
p(y) ] (7.22)

= Ex≥p(x)

C

sup
M :YæR

Ó
Ey≥p(y|x)[M(y)] ≠ log Ey≥p(y)[exp(M(y))]

ÔD

(7.23)

The sup can be taken out of the expectation by considering all functions T : X ◊Y æ

R,

MI(X, Y ) = sup
T :X ◊YæR

Ex≥p(x)

Ë
Ey≥p(y|x)[T (x, y)] ≠ log Ey≥p(y)[exp(T (x, y))]

È

(7.24)

Using the fact that Y is discrete and finite, we rewrite the expectation in p(y) as a
sum :

MI(X, Y ) = sup
T :X ◊YæR

Y
]

[Ex≥p(x)Ey≥p(y|x) log eT (x,y)

q|Y |

yÕ=1
p(yÕ)eT (x,yÕ)

Z
^

\ (7.25)

We subtract the marginal entropy H(Y ) = q|Y |

yÕ=1
p(yÕ) log p(yÕ) which does not

depend on T ,

MI(X, Y )(X, Y ) ≠ H(Y ) = sup
T :X ◊YæR

Ex≥p(x)Ey≥p(y|x) log p(y)eT (x,y)

q|Y |

yÕ=1
p(yÕ)eT (x,yÕ)

¸ ˚˙ ˝
q(y|x)

(7.26)

We recognize a weighted softmax over the T (x, y), which we denote q(y|x). After
re-arranging, we get :

MI(X, Y ) = H(Y ) ≠ inf
T :X ◊YæR

Ex,y≥p(x,y)[≠ log q(y|x)] (7.27)

⌅

We can modify Equation (7.18) to define semi-discrete parametric mutual informa-
tionm by restricting the function T to be in a parametric family T .

Definition 7.5 (Semi-Discrete Parametric-KL Mutual Information). We define the
semi-discrete parametric-KL mutual information (KL-SDPMI) as follows:

SDPMI(X, Y ) = H(Y ) ≠ inf
T œT

Ex,y≥p(x,y)[≠ log q(y|x)]
¸ ˚˙ ˝

L(T )

(7.28)
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where q(y|x) = p(y)e
T (x,y)

q
|Y |

yÕ=1 p(yÕ)eT (x,yÕ) and T is a parametric family of functions, such as
the neural networks with a given architecture. Although it might bee possible to
extend the semi-discrete formulation to other divergences, we focus on KL due to
its interpretability.

Since we recognize a negative log-likelihood loss, we propose the following ap-
proach for estimating lower and upper bounds for SDPMI. We independently
sample a training set Dtrain = {(x(i)

train
, y(i)

train
) ≥ px,y} and a validation set

Dval = {(x(i)

val
, y(i)

val
) ≥ px,y} from the joint distribution px,y. Then, we train a

neural network q(y|x) to predict y from x on the Dtrain, and compute the training
and validation losses Ltrain, Lval.

Theorem 4 (KL-SDPMI Bounds). We can bound the SDPMI using the training
and validation SDPMI :

H(Y ) ≠ EDtrain,Dval
[Lval( ‚T )]

¸ ˚˙ ˝
Validation SDPMI

Æ SDPMI(X, Y ) Æ H(Y ) ≠ EDtrain [Ltrain( ‚T )]
¸ ˚˙ ˝

Training SDPMI

(7.29)

where ‚T œ T is the minimizer of the training loss Ltrain(T ) =

≠
q

N

i=1
log p(y

(i)
train)e

T (x
(i)
train

,y
(i)
train

)

q
|Y |

yÕ=1 p(yÕ)e
T (x

(i)
train

,yÕ)
, Lval( ‚T ) = ≠

q
N

Õ

i=1
log p(y

(i)
val)e

T (x
(i)
val

,y
(i)
val

)

q
|Y |

yÕ=1 p(yÕ)e
T (x

(i)
val

,yÕ)
is the

validation loss, and the expectations are over the sampling of the training and
validation sets. Moreover, the (nonparametric) mutual information can be lower
bounded using the validation loss:

H(Y ) ≠ EDtrain,Dval
[Lval( ‚T )] Æ SDPMI(X, Y ) Æ MI(X, Y ) (7.30)

Proof. The first inequality comes from the fact that for supervised learning, the
training loss (validation loss) is a lower bound (upper bound) of the population
loss in expectation. We make use of this inequality to bound the SDPMI in the
experiments (Section 7.7). The second inequality comes from the fact that T is a
subset of the functions X æ Y . ⌅

7.7 GMI for Corrupted Label Datasets (Experiments)
We define a range of distributions q– from less to more corrupted by corrupting the
labels of MNIST and SVHN. Specifically, we replace the ground-truth label distri-
bution by taking a mixture between the ground truth (assumed to be deterministic)
and uniform distribution over all classes

q–(y|x) = (1 ≠ –)p(y|x) + –

K
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where K = 10 is the number of classes and we take – œ {0, 0.25, 0.5, 0.75, 1}. For
– = 0 we recover the original distribution with deterministic labels, while for
– = 1 we recover the random-label distribution presented in Section 7.1, with labels
independent of the image. In practice, we simulate the sampling of the training
and test set by corrupting a random fraction – of the ground-truth labels. Because
each image x occurs only once in the dataset, it is not obvious that some labels are
non-deterministic (corrupted).

Can we define generalized mutual information which capture the fact that the labels
are increasingly corrupted? An ideal notion of mutual information should vary
smoothly and perceptibly with respect to –. In Figure 4.9, we compute and plot
various GMI as a function of the degree of corruption:

• Mutual Information (Analytical). For the specific q– considered, the true
(population) mutual information can be computed analytically and equals
MI–(X, Y ) = logK + log(1 ≠ (1 ≠

1

K
) ú –)), which is a smooth function that

gradually transitions from logK to 0, and captures the fact that labels are
more and more random.

• Mutual Information (Empirical). On the “reference easy” problem (see
caption of Figure 4.9), the empirical mutual information approximates the
population mutual information closely because each “image” appears many
times, since there is only one possible image per class. However, for corrupted
MNIST and SVHN, each image appears only once (the odds that the same
image appears twice is zero for continuous distributions) and each label
appears to be fully determined by the associated image. As a consequence,
the empirical mutual information is constant and equal to logK, and fails to
capture the fact that labels are increasingly corrupted.

• MMD-GMI (Empirical). We compute MMDK(pX,Y , pX ¢pY ) with kernel
K(x, xÕ, y, yÕ) = exp(≠||x ≠ xÕ

||
2/d) exp(≠1y ”=yÕ) over the training set, where

d is the number of dimensions. On the reference tasks, MMD-GMI (purple)
varies smoothly with respect to the amount of corruption. However, on
corrupted MNIST, MMD-GMI is always close to zero and only slightly sensitive
to –, which means it considers the label to be mostly independent from the data.
This e�ect is even more obvious for corrupted SVHN. This is consistent with
the observation that for generic kernels MMD fails to separate distributions
in high-dimensions (Section 4.1).

• Wasserstein-GMI (Empirical). Using the Sinkhorn algorithm [Cuturi,
2013], we estimate Wd(pX,Y , pX ¢ pY ) with base-distance d((x, y), (xÕ, yÕ)) =
||x≠xÕ

||/
Ô
d+1y ”=yÕ over the training set, where d is the number of dimensions.

On the reference tasks, Wasserstein-GMI (pink) varies smoothly with respect
to the amount of corruption. However, for corrupted MNIST, Wasserstein-
GMI is only slightly sensitive to –, and seems to be heavily biased, as even
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Name Underlying divergence Function class Upper Bound Lower Bound
MI KL Nonparametric Empirical KL -
MMD-GMI MMD RKHS (Gaussian Kernel) Empirical MMD -
Wasserstein-GMI Wasserstein-1 L-Lipschitz functions Empirical Wasserstein -
SDPMI-Linear KL Linear Training SDPMI Validation SDPMI
SDPMI-RF KL Random Forest Training SDPMI Validation SDPMI
SDPMI-CNN KL CNN Training SDPMI Validation SDPMI

Figure 4.9: Estimating various generalized mutual information between image
and label on MNIST (middle row right column) and SVHN (bottom row
right column) as a function of –. For sanity check and scaling purposes, we
also estimate generalized mutual information on reference easy tasks of the same
dimensionality (left column pliots). The mutual information and the semi-discrete
parametric mutual information (with linear, random forest and CNN predictors) are
expressed in nats. MMD-GMI and Wasserstein-GMI cannot be directly compared
to KL-MI because they have di�erent scales. In order to calibrate the various
GMI to each other, we define a reference easy task from corrupted MNIST (resp.
SVHN), except that the pixels of each flattened image are partitioned into K equal
contiguous groups and set to 0 except for the group which index corresponds to
the ground-truth label. MMD-GMI and Wasserstein-GMI curves are rescaled such
that the maximum value reaches log(10) ¥ 2.3 on the reference task.
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the independent case – = 1 gets assigned a high Wasserstein-GMI. Again, the
e�ect is more obvious for corrupted SVHN, where Wasserstein-GMI does not
vary with respect to –. This is likely due to the poor sample complexity of
the empirical Wasserstein distance, as discussed in Section 4.1.

• KL-SDPMI (Training and Validation). We compute the semi-discrete
parametric mutual information based on linear (logistic), random-forest, and
CNN classifiers, and use Equation (7.30) (without the expectations) for
estimating upper (training) and lower (validation) bounds for the Semi-
Discrete Parametric KL-MI. For the reference tasks, all three Parametric-MI
closely approximate the True MI with no apparent gap between training
and validation MI. The random-forest Parametric-MI has a large training-
validation gap on corrupted MNIST and even more on corrupted SVHN,
which indicates severe overfitting. The logistic Parametric-MI varies smoothly
with respect to – on corrupted MNIST, althought it slightly underestimates
the mutual information (compared to the reference problem). However, on
corrupted SVHN, the logistic parametric-MI is not flexible enough to capture
the dependence and equals zero for all values of –. The CNN Parametric-MI
varies gradually with respect to – both for corrupted MNIST and SVHN,
with a noticeable but limited gap between train and test-MI. In this case, the
CNN Parametric-MI is the most intuitive notion of mutual information.

All divergences are equally informative in the reference easy cases, which act both
as a sanity check and a way to calibrate them. For the harder corrupted MNIST,
Logistic and CNN-based SDPMI are the most informative, most likely because
they make decent implicit assumptions on the distribution (linear separability,
convolutional prior). MMD-GMI and Wasserstein-GMI are not as informative but
still somewhat sensitive to –, which is intuitive given that they are based pixel-wise
metric on the images, which are still a little relevant in the MNIST case. For the
hardest noisy-label SVHN case, only the CNN-SDPMI remains informative. The
Linear-SPBMI has no sensitivity to – because SVHN is not as linearly separable (as
MNIST). MMD-GMI and Wasserstein-GMI fail completely as pixel-wise distances
are no longer meaningful for SVHN. Random-forest is a terrible estimator for
MNIST and SVHN and overfits severely (large training-validation gap) due to its
ine�cient priors (rule-based classification where each rule is a threshold on a single
pixel value).

8 Related Work
Closest to our work are the following two papers. Arora et al. [2017] argue that
analyzing GANs with a nonparametric (optimal discriminator) view does not really
make sense, because the usual nonparametric divergences considered have bad
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sample complexity. They also prove sample complexities for parametric divergences.
Liu et al. [2017] prove under some conditions that globally minimizing a neural
divergence is equivalent to matching all moments that can be represented within
the discriminator family. They unify parametric divergences with nonparametric
divergences and introduce the notions of strong and weak divergence. However
neither of these works focuses on the meaning and practical properties of parametric
divergences, as we do here, regarding their suitability for a final task, and paralleling
similar questions studied in structured prediction.

Throughout this paper, we have also used several results from the literature to
discuss the properties of parametric divergences. Before the first GAN paper,
Sriperumbudur et al. [2012] unified traditional Integral Probability Metrics (IPM),
analyzed their statistical properties, and proposed to view them as classification
problems. Similarly, Reid and Williamson [2011] show that computing a divergence
can be formulated as a classification problem. Later, Nowozin et al. [2016] generalize
the GAN objective to any adversarial f-divergence. However, the first papers to
actually study the e�ect of restricting the discriminator to be a neural network
instead of any function are the MMD-GAN papers: Li et al. [2015], Dziugaite et al.
[2015], Li et al. [2017], Mroueh et al. [2017] and Bellemare et al. [2017] who give an
interpretation of their energy distance framework in terms of moment matching.
Mohamed and Lakshminarayanan [2016] give many interpretations of generative
modeling, including moment-matching, divergence minimization, and density ratio
matching. On the other hand, work has been done to better understand the GAN
objective in order to improve its stability [Salimans et al., 2016]. Subsequently,
Arjovsky et al. [2017] introduce the adversarial Wasserstein distance which makes
training much more stable, and Gulrajani et al. [2017] improve the objective to
make it more practical. Regarding model evaluation, Theis et al. [2016] contains an
excellent discussion on the evaluation of generative models, they show in particular
that log-likelihood is not a good proxy for the visual quality of samples. Danihelka
et al. [2017] compare parametric adversarial divergence and likelihood objectives in
the special case of RealNVP, a generator with explicit density, and obtain better
visual results with the adversarial divergence. Belghazi et al. [2018] propose to
use neural networks to estimate mutual information; we propose an alternative
formulation in the semi-discrete case and highlight its distinct properties on some
toy distributions. Concerning theoretical understanding of learning in structured
prediction, several recent papers are devoted to theoretical understanding of struc-
tured prediction such as Cortes et al. [2016] and London et al. [2016] which propose
generalization error bounds in the same vein as Osokin et al. [2017] but with data
dependencies.

Our perspective on generative modeling is novel because we ground it on the notion
of final task – what we ultimately care about – and highlight the multiple reasons
why parametric divergences o�er a superior framework to define good task losses
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with respect to a final task; in essence, they provide a more e�ective and meaningful
training signal. We also perform experiments to determine properties of some
parametric divergences, such as invariance/robustness, ability to enforce constraints
and properties of interest, as well as the di�erence with their nonparametric coun-
terparts. To the best of our knowledge, this is the first work that links the task loss
generalization error of structured prediction and the adversarial divergences used in
generative modeling.

9 Conclusion
We have shown that parametric adversarial divergences, a generalization of the
GAN loss, are not merely lower bounds of nonparametric divergences, but instead
have distinct properties which makes them favorable for high dimensional generative
modeling. Among these properties, parametric divergences can scale up to high-
dimensional data, and can be tuned to be sensitive to specific aspects of the target
distribution. We have also explored using parametric divergences to define more
meaningful notions of mutual information. An important area of improvement that
remains is to compute parametric divergences reliably enough for using them as
practical evaluation metrics for generative models.
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5 Prologue to Second

Contribution

1 Article Details
Are Few-Shot Learning Benchmarks too Simple? Solving them without
Test-Time Labels by Gabriel Huang, Hugo Larochelle, Simon Lacoste-Julien. This
work was accepted as an ICLR 2019 workshop paper; a full version was submitted
to ICLR 2020, ICML 2020 and NeurIPS 2020; this project was also presented at
the Montreal AI Symposium 2020.

2 Contributions of the Authors
Gabriel Huang proposed the original idea, wrote the paper, and ran the experiments.
Hugo Larochelle provided supervision and compute credits, helped survey the
few-shot literature, and helped apply the method to the Meta-Dataset. Simon
Lacoste-Julien provided supervision, funding, and helped formalize the experimental
setting.

3 Context and Limitations
This project stemmed from the observation that popular few-shot classification
benchmarks such as Omniglot and miniImageNet do not evaluate generalizing to
new class semantics—e.g. colors vs shapes—but only to new classes with same
semantics—e.g. characters for Omniglot, object categories for miniImageNet. We
proposed a baseline, Centroid Networks, which ignores labels from the support
set at test-time, and instead clusters the learned representations to recover the
target classes (up to permutation). (1) Centroid Networks is useful for gauging
the di�culty of few-shot classification benchmarks, but we stopped one step short
of numerically quantifying the diversity of class semantics. Under our framework,
doing so would require taking the di�erence between two lower bounds (say, the
CentroidNet vs. ProtoNet performance) which is unreliable. Instead the provided
numbers can be interpreted as the minimum performance to expect below which
test-time labels are not even required. (2) The proposed Sinkhorn K-Means method
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is not applicable to general few-shot clustering because we assume that the classes
are uniformly distributed. However, it can have applications in quantization and
self-supervised learning [Caron et al., 2020], where the uniform constraint can be
desirable.

4 Recent developments
Since we started working on this project, harder few-shot image classification bench-
marks have been proposed, featuring diverse class semantics and requiring skills such
as concept learning, compositionality, and abstract reasoning. Bongard-LOGO [Nie
et al., 2020], a procedurally-generated image classification benchmark, features
diverse class semantics such as stroke type, convexity, shape category, generative
process, and symmetry. Another challenging benchmark is the Procedurally Gen-
erated Matrices (PGM) dataset [Barrett et al., 2018] which is inspired by Raven’s
Progressive Matrices [Raven, 1941], and consists in picking the most “logical” answer
to complete a matrix of images, in a similar fashion to human IQ tests. Kandin-
sky Patterns [Müller and Holzinger, 2021] are another benchmark consisting of
images with one to many colored shapes. Class semantics are defined in natural
language, and can involve intrinsic concepts (shape, color), existence, counting,
comparison, spatial arrangement, or even emerging patterns. More recently, the
Compositional Reasoning Under Uncertainty (CURI) benchmark [Vedantam et al.,
2021] was proposed, featuring compositionality, relational concepts and concept
uncertainty. Class semantics involve intrinsic properties (color, shape, material),
extrinsic properties (object location), boolean operators, counting, and more.

Beyond image few-shot classification, researchers have also explored other modalities
and the zero-shot setting. Recent advances in language modeling, such as GPT-
3 [Brown et al., 2020], FLAN [Wei et al., 2021b], T0 Sanh et al. [2021] and
PaLM [Chowdhery et al., 2022] have shown that large language models (i.e. Ø10B
parameters) are zero-shot and few-shot learners which can solve new and challenging
tasks such as Big Bench1, described in text form. Multimodal approaches have
also achieved impressive results. The CLIP model [Radford et al., 2021], which is
trained on 400M image-text pairs, can leverage the expressivity of natural language
to do zero-shot classification of new categories. More recently, Alayrac et al. [2022]
introduced Flamingo, a vision-language model from pretrained frozen unimodal
vision and language models, capable of solving object and action classification,
scene/event understanding, visual question answering, on image and video, for the
zero and few-shot setting.

1https://github.com/google/BIG-bench
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The meaning of zero-shot and few-shot learning is constantly evolving, far beyond
image classification. Apart from scaling models up, a constant trend seems to be
in multimodal approaches which leverage the expressivity and implicit knowledge
contained in natural language.
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6
Solving Few-Shot Learning

Benchmarks without
Test-Time Labels

Abstract
We show that several popular few-shot learning benchmarks can be solved with
varying degrees of success without using support set Labels at Test-time (LT).
To this end, we introduce a new baseline called Centroid Networks, a modification of
Prototypical Networks in which the support set labels are hidden from the method
at test-time and have to be recovered through clustering. A benchmark that can be
solved perfectly without LT does not require proper task adaptation and is therefore
inadequate for evaluating few-shot methods. In practice, most benchmarks cannot
be solved perfectly without LT, but running our baseline on any new combinations of
architectures and datasets gives insights on the baseline performance to be expected
from leveraging a good representation, before any adaptation to the test-time labels.

1 Introduction
Supervised few-shot classification, sometimes simply called few-shot learning, con-
sists in learning a method that can adapt to new classification tasks from a small
number of examples. Being able to learn new classes from a small number of labeled
examples is desirable from a practical perspective because it removes the need for
the end-user to label large datasets. Instead, a central organization with access to
large generic datasets could “pre-train” the method (training phase) so that when
it is shipped to end-users, each user only needs small amounts of labeled data to
adapt the method on its own classification task (testing phase). Supervised few-shot
classification is typically formulated as a distribution P (T ) of classification tasks,
also called episodes, which are split into training, validation, and testing sets. Each
episode comes with two small sets of labeled examples called the support and query
sets. The goal is to learn a classifier that can learn (task adaptation) from the
task-specific support set (XS, YS) and classify the query set (XQ, YQ) with maximum
accuracy, despite limited training data. Typically, this is achieved by training the
model on a large number of training episodes beforehand. The Omniglot [Lake
et al., 2011] and miniImageNet [Vinyals et al., 2016a] benchmarks have been heavily
used to evaluate and compare supervised few-shot classification methods in the last
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few years [Vinyals et al., 2016a, Ravi and Larochelle, 2016, Snell et al., 2017a, Finn
et al., 2017, Sung et al., 2018b].

An important question is whether those benchmarks are actually evaluating the
task adaptation capabilities of few-shot methods, or rather something else. Consider
the following (transductive) classification task, extracted from the “Mongolian”
alphabet of Omniglot:

It is relatively easy to solve the task even without being familiar with “Mongolian”
characters because we are already familiar with the “group by character” task.1 We
can solve the task without receiving a single labeled example of the new classes,
that is, without using a support set. Conversely, there are task distributions that do
require learning from a support set. For instance, consider this other transductive
classification task :

The task is now ambiguous because there are many possible semantics (by shape,
color, or border style). In this case, we would need a support set to learn (task
adaptation) which criterion should be used. Proper task adaptation requires using
the support set labels at test-time. Therefore, one way to investigate which few-shot
benchmarks require proper task adaptation is to ask which benchmarks can be solved
without using support set labels at test-time ?

Definition (LT vs. NLT methods). We say that a few-shot classification
method is LT if it uses the support set Labels at Test-time. Conversely, we say that
a few-shot classification method is NLT if it uses No Labels at Test-time. Both
LT and NLT methods are allowed to use labels during training. Note that all usual
few-shot methods [Vinyals et al., 2016a, Finn et al., 2017, Snell et al., 2017a] are
LT methods

Given this definition, we want to know if we can reach high performance on a
benchmark with NLT methods. In particular, benchmarks that can be solved by
NLT methods are definitely too “simple” and do not require proper task adaptation,
in the sense of using test-time labels. We have reasons to suspect that NLT
methods can reach high performance on Omniglot and miniImageNet because their
class semantics are invariant across di�erent episodes (Omniglot classes are always
alphabet characters, miniImageNet classes are always object categories as defined
by the WordNet taxonomy [Miller, 1995, Russakovsky et al., 2015]), and because
the classes are randomly split between training and testing (there is no domain

1Solution: there are 3 classes {1, 5}, {2, 7, 8}, {3, 4, 6}.
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shift).

We introduce a new baseline called Centroid Networks (or CentroidNet), which
is an NLT modification of Prototypical Networks in which the support set labels
are hidden from the method and recovered through clustering. We attempt to
solve several popular few-shot benchmarks using our NLT baseline and report the
resulting accuracies. Those numbers can be interpreted as the baseline performance
to be expected from leveraging a good representation, before any LT-based task
adaptation takes place. Therefore, we recommend running our NLT baseline on any
published combinations of architectures and datasets in order to disentangle the
fraction of the performance can be attributed to the architecture/representation
versus its ability to learn from new labels.

Our contributions are the following :

• We propose a simple NLT baseline for solving few-shot tasks without support
set labels at test-time. This baseline helps determine how much performance
is to be expected from leveraging a good representation without learning from
task-specific labels at test-time.

• We show that Centroid Networks achieve 99.1% and 98.1% NLT accuracies for
Omniglot 5-way/5-shot and 20-way/5-shot, e�ectively showing that Omniglot
can be solved without LT.

• We report NLT accuracies of our baseline on several other popular benchmarks,
giving an idea of the performance to be expected on any (dataset, architecture)
combination from leveraging a good representation before any LT-based task
adaptation takes place. We observe that support set labels are much more
critical for cross-domain benchmarks.

Finally, we also explore applying our method to few-shot clustering and (LT)
transductive few-shot learning.

2 Related Work
Simple Baselines. Chen et al. [2019a] propose a simple baseline for LT few-shot
classification, and show that even simple baselines can solve few-shot benchmarks
with good performance when combined with the right architecture. Our NLT base-
line is even simpler in the sense that we neither use LT or change the representation
at test-time.

Task Overfitting vs. Task Generalization. Yin et al. [2019] introduce the
notion of non-mutually exclusive tasks, which is a family of tasks that can be solved
by a single function. They argue that non-mutually exclusive tasks are not diverse
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enough and that few-shot classification methods are at risk of “task overfitting”.
They propose a regularization technique to prevent task overfitting. In our case,
we argue that even the original (mutually-exclusive) Omniglot and miniImageNet
do not have su�cient task diversity in terms of class semantics. Our motivation is
di�erent and is to show that one can memorize the class semantics of the training
set and still achieve high accuracy on the test set, thereby making those benchmarks
too “simple”.

Task Adaptation vs. Feature Reuse. Raghu et al. [2019] investigate whether
the performance of MAML [Finn et al., 2017] comes from rapid adaptation to new
tasks or from reusing good features. They propose a version of MAML in which
the features are kept constant in the inner loop, without any loss in performance.
Our work shares the same motivation in showing that the performance of meta-
learning algorithms might come more from using good universal features rather
than doing task adaptation, where we mean “without using LT” and they mean
“withot adapting the features”. We take it one step further than fixing the features
by proposing a NLT baseline.

Meta-Learning and Semi/Un-supervised Learning. Some recent work has
explored combinations of unsupervised learning and meta-learning, to address
various other tasks. Metz et al. [2018] meta-learn an unsupervised representation
update rule that produces useful features for LT few-shot learning. Similarly, Hsu
et al. [2018], Khodadadeh et al. [2018] learn a LT method using no labels a training
time. Thus, all these works consider the opposite setting from us : they use no
labels at training-time to learn a LT method, while we use labels at training time
to learn a NLT method. Our work is also related to Semi-Supervised Prototypical
Networks [Ren et al., 2018], in which the support set contains both labeled and
unlabeled examples. In a sense, we go beyond their work by requiring no labels at
all to infer centroids at test-time.

Zero-Shot Learning. Strictly speaking, true zero-shot learning would mean
solving the few-shot classification problem without using the support set at all.
Centroid Networks are related to true zero-shot learning because they do not use the
labels of the support set. However, our method uses the images and some partial
information (Section 3) and therefore cannot be considered pure zero-shot learning.
In practice, zero-shot methods also have access to partial information in the form of
text descriptions of the new classes [Socher et al., 2013, Romera-Paredes and Torr,
2015].

Our work is also related to the supervised clustering, learning to cluster, and other
clustering-related literature. We have moved them to Appendix 2 due to a lack of
space and because learning-to-cluster is not the central contribution of this paper.
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3 Few-shot Tasks and Evaluation
We give some background on meta-learning and standard (LT) few-shot classification.
Then, we will introduce NLT few-shot classification, which formalizes what it means
to solve few-shot classification without test-time labels.

Meta-learning consists in learning a method that can solve a distribution of tasks or
episodes P (T ) well, with respect to some external evaluation metric (e.g. accuracy).
Typically, independently sampled tasks from P (T ) are split into training, validation,
and testing sets, although the meta-learning tasks generally contain additional
supervision as we discuss below. In this framework, an algorithm is first trained to
solve the training tasks (train-time), then it is evaluated on the validation/testing
tasks (test-time).

LT few-shot classification. Each episode comes with a small support set S =
(XS, YS) and a small query set Q = (XQ, YQ), where XS, XQ denote images or data,
and YS, YQ their labels. The task is to predict labels ‚YQ for the query images XQ

and the learner has access to the task-specific images XS and labels YS for task
adaptation. Finally, the classification accuracy is computed between ‚YQ and YQ.
We denote it LT-accuracy to di�erentiate it from the metrics of other tasks.

NLT few-shot classification. The NLT setting is the same as its LT counterpart
except that we hide the support set labels at test-time. Before making predictions,
we need to introduce an additional step in which the learner attempts to recover
YS by clustering XS into K clusters. Denote ‚C(i)

S
œ [1, K] the cluster index

for the i-th example X(i)

S
. Because the cluster indices are only defined up to

permutation of the values, we use the Hungarian algorithm2 to find the permutation
‡ : [1, K] æ [1, K] that maximizes the accuracy q

i 1{‡(‚C(i)
S ) ”=Y

(i)
S }

on the support set,
and denote ‚Y (i)

S
= ‡(Y (i)

S
) the optimal indices. The final task is to predict labels ‚YQ

for XQ as usual, after learning from the reconstructed support set (XS, ‚YS). The
predictions ‚YQ are compared with the ground-truth YQ. We denote the resulting
accuracy NLT-accuracy. Note that any LT-method can be made into a NLT-
method by combining it with a clustering algorithm. This is exactly the approach
of our NLT baseline, in which ProtoNet is combined with Sinkhorn K-means.

Note that this section is about the evaluation tasks (the testing tasks) and does
not put restrictions on the usable labels during training. Typically, standard LT
few-shot classification methods have access to YQ during training but YQ is reserved
for external evaluation during testing. In the same spirit, NLT few-shot classification
methods are allowed to use YS and YQ during training, but both YS and YQ are

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.
linear_sum_assignment.html
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reserved for external evaluation at testing time.

4 Centroid Networks
We mentioned previously that any LT method can be made into a NLT method
by combining it with a clustering step at test-time (Section 3). Our NLT baseline,
Centroid Networks or CentroidNet, is a combination of ProtoNet and Sinkhorn
K-Means, which is used to recover the support set labels at test-time.

4.1 Prototypical Networks
Prototypical Networks or ProtoNets [Snell et al., 2017a] is one of the simplest super-
vised few-shot classification methods, and yet it has been shown to be competitive
with more complex methods when combined with ResNet backbones [Ye et al.,
2020]. The only learnable component of ProtoNets is the (backbone) embedding
function h◊ : X æ Z which maps images to an embedding (feature) space. Given an
episode, ProtoNet takes the support set images, maps them to the feature space, and
computes the average (the prototype) of each class µj = 1

M

q
i h◊(xs

i
) ú 1{ys

i
= j} .

Each point from the query set is then classified according to a soft nearest-neighbor
scheme p◊(y = j|x) = softmax(||h◊(x) ≠ µj||

2). ProtoNets are trained end-to-end
by minimizing the classification cross-entropy on the query set.

4.2 Sinkhorn K-Means
We propose Sinkhorn K-Means as the clustering module of Centroid Networks.
The idea of Sinkhorn K-Means has been mentioned sporadically in the literature
(see Appendix 2) but to the best of our knowledge the algorithm has never been
explicitly described or applied to few-shot learning before.

Sinkhorn K-Means takes as input a set of N points x œ Rn◊d (in our case, ProtoNet
embeddings) and outputs a set of K centroids cj œ Rk◊d with data-centroid soft
assignments p œ Rn◊k. We start by initializing the centroids around zero with a
small amount of Gaussian noise to break symmetries. Then, we attempt to find the
centroids that minimize the Sinkhorn distance [Cuturi and Doucet, 2014] between
the empirical distributions defined by the data p(x) = 1

N

q
N

i=1
”(x ≠ xi) and the

centroids q(x) = 1

K

q
k

j=1
”(x ≠ cj). To do so, we alternatively compute the optimal

transport plan between p and q using Sinkhorn distances (Algorithm 1) and update
each centroid to the weighted average of its assigned data points. For simplicity,
Algorithm 2 describes the procedure in the case where clusters are balanced. When
the clusters are not balanced but the cluster weights are known (e.g. Meta-Dataset),
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Algorithm 1 Sinkhorn(x, c, “) for empirical
distributions.

Input: data (xi)1ÆiÆn œ Rn◊d, centroids
(cj)1ÆjÆk œ Rk◊d, regularization constant
“ > 0.
Output: optimal transport plan (pi,j) œ

Rn◊k.
Ki,j Ω exp(≠||xi ≠ cj||

2

2
/“) œ Rn◊d

Ri Ω 1/n 1 Æ i Æ n
vj Ω 1, , Cj Ω 1/k 1 Æ j Æ d
while not converged do
ui Ω Ri/(

q
k

j=1
Ki,jvj), 1 Æ i Æ n

vj Ω Cj/(
q

n

i=1
Ki,jui), 1 Æ j Æ k

end while
pi,j Ω uiKi,jvj, 1 Æ i Æ n, 1 Æ j Æ k
return assignments p

Algorithm 2 Sinkhorn K-Means(x, c, “)
Input: data (xi)1ÆiÆN , initial
centroids (cj)1ÆjÆK , regulariza-
tion constant “ > 0.
Output: final centroids
(cj)1ÆjÆK , optimal assignment
(pi,j) œ RN◊K .
while not converged do

(pi,j) Ω Sinkhorn(x, c, “)
cj Ω k

q
n

i=1
pi,jxi, 1 Æ j Æ k

end while
return centroids c, assignments
p.

the weights can be taken into account by the Sinkhorn distance. All details can be
found in our code.

Sinkhorn K-Means can be seen as a version of K-Means where the greedy nearest-
centroid hard assignment (expectation step) is replaced with a global regularized
optimal transport soft-assignment. More discussions about the Sinkhorn distance,
the di�erences between Sinkhorn/Regular K-Means, and an empirical comparison
are given in Sections 3 and 6 of the Appendix.

4.3 Combining ProtoNet with Sinkhorn K-Means
For training, we teach ProtoNet to solve LT few-shot classification tasks (regular
ProtoNet training). For testing, we combined Sinkhorn K-Means as described
below.

Training (all tasks). Training is the same regardless of the evaluation task.
Using standard training [Snell et al., 2017a], we fit the ProtoNet backbone to solve
LT few-shot classification. Given a training episode, we embed the support set,
compute the prototypes, make predictions on the query set, compute the cross-
entropy loss after revealing the query labels, and minimize it with gradient descent
with respected to the parameters of the backbone. In some cases, we have found
helpful to use an additional center loss [Wen et al., 2016] in order to pull the
embeddings of the same class together. This is discussed in the ablation study in
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Appendix 6.

Testing on NLT few-shot classification. Given the support and query images
XS, XQ, the number of classes K and number of shots, we embed the support images
and compute centroids (cj) and the optimal transport plan (pi,j) using Sinkhorn
K-Means. To get hard assignments, we can either classify query points according
to their nearest centroid (softmax assignments), or return their majority assigned
centroid argmaxj pi,j (sinkhorn assignments). According to the ablation study, the
choice of assignment strategy has little e�ect on the performance (Appendix 6).

5 Experiments
We start with our main results for NLT few-shot classification (Section 5.1). We
then apply our method to cross-domain benchmarks, which we expect to be harder
without test-time labels (Section 5.2). We also explore applying our method in
other few-shot settings such as few-shot clustering with partial information and
transductive few-shot classification (Section 5.3). Details about the implementation
and datasets can be found in Appendix 4.

5.1 Main Results
[Table 6.1] We run our NLT baseline on four popular few-shot classification
benchmarks: Omniglot [Lake et al., 2011], miniImageNet [Vinyals et al., 2016a],
tieredImageNet [Ren et al., 2018], and CUB [Wah et al., 2011]. We consider the
classic four layer convolutional architecture [Snell et al., 2017a] (which we denote
Conv), and the ResNet-12 [Ye et al., 2020]. We combine Sinkhorn K-Means with the
ProtoNet implementation of [Ye et al., 2020], except for Omniglot where we use the
original implementation [Snell et al., 2017a]. We report NLT accuracies alongside
several state-of-the art LT methods for comparison. Given the very high numbers
for Omniglot, we can conclude that both the 5-way 5-shot and 20 way 5-shot settings
can be solved without LT. The same type of definitive conclusions cannot be made
about the other bencharks, but we do observe that for tieredImageNet our NLT
baseline surpasses a number of LT methods implemented in a recent survey [Chen
et al., 2019a].

5.2 Cross-Domain NLT Few-Shot Classification
[Table 6.2] We run our NLT baseline on two cross-domain benchmarks,
miniImageNetæCUB [Chen et al., 2019a] and Meta-Dataset [Triantafillou et al.,
2020] which was recently proposed as a harder benchmark. We report NLT
accuracies alongside several LT methods, including the ProtoNet implementations
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Table 6.1: LT and NLT few-shot classification on same-domain benchmarks. We consider
5-way 5-shot episodes, plus an additional 20-way 5-shot for Omniglot. Test accuracies
are computed over 600 test episodes. The ResNet architectures are ResNet-12 except for
SimpleShot and CTM which use ResNet-18. We denote ProtoNet* the implementation
from which we derive CentroidNet. For the CUB dataset, some results [Ye et al., 2020]
that we could not reproduce are in gray (they might have accidentally reported validation
accuracies).

miniImageNet
LT Methods LT Accuracy
backbone ≠æ Conv ResNet
MatchNet [Vinyals et al., 2016a] 51.09 -
MAML [Finn et al., 2017] 63.11 -
RelationNet [Sung et al., 2018b] 67.07 -
ProtoNet [Snell et al., 2017a] 68.20 -
FEAT [Ye et al., 2020] 71.61 -
TADAM [Oreshkin et al., 2018] - 76.70
MetaOptNet [Lee et al., 2019] - 78.63
SimpleShot [Wang et al., 2019b] - 80.02
CTM [Li et al., 2019b] - 80.51
ProtoNet* [Ye et al., 2020] 71.33 80.53
FEAT [Ye et al., 2020] - 82.05
NLT Methods NLT Accuracy
backbone ≠æ Conv ResNet
CentroidNet (ours) 57.57 69.86

tieredImageNet
LT Methods LT Accuracy
backbone ≠æ ResNet
ProtoNet [Snell et al., 2017a] 72.69
RelationNet [Sung et al., 2018b] 71.32
MetaOptNet [Lee et al., 2019] 81.56
CTM [Li et al., 2019b] 84.28
SimpleShot [Wang et al., 2019b] 84.58
ProtoNet* [Ye et al., 2020] 84.03
FEAT [Ye et al., 2020] 84.79
NLT Methods NLT Accuracy
backbone ≠æ ResNet
CentroidNet (ours) 75.36

Omniglot
LT Methods 5-way 20-way
backbone ≠æ ConvNet
SiameseNet [Koch et al., 2015] 98.4 97.0
MatchNet [Vinyals et al., 2016a] 98.9 98.5
NeuralStat [Edwards and Storkey, 2016] 99.5 98.1
MemoryMod [Kaiser et al., 2017] 99.6 98.6
ProtoNet* [Snell et al., 2017a] 99.7 98.9
MAML [Finn et al., 2017] 99.9 98.9
NLT Methods 5-way 20-way
backbone ≠æ ConvNet
CentroidNet (ours) 99.1 98.1

CUB
LT Methods LT Accuracy
backbone ≠æ ConvNet
MatchNet [Vinyals et al., 2016a] 72.86
MAML [Finn et al., 2017] 72.09
ProtoNet [Snell et al., 2017a] 70.77
ProtoNet* (repro) [Ye et al., 2020] 75.33
RelationNet [Sung et al., 2018b] 76.11
MatchNet [Ye et al., 2020] 79.00
ProtoNet [Ye et al., 2020] 81.50
FEAT [Ye et al., 2020] 82.90
NLT Methods NLT Accuracy
backbone ≠æ ConvNet
CentroidNet (ours) 66.13
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Table 6.2: LT and NLT few-shot classification on cross-domain benchmarks.
miniImageNetæCUB is 5-way 5-shot, and Meta-Dataset involves variable numbers of
ways and shots [Triantafillou et al., 2020]. Test accuracies are averaged over 600 episodes.
See Appendix 7 for confidence intervals.

Meta-Dataset
Train on ILSVRC Train on all datasets

Test Dataset LT NLT LT NLT
method æ Proto CNAPs SUR Centro Proto CNAPs SUR Centro
ILSVRC 44.12 50.6 56.3 26.40 41.79 52.3 56.3 23.84
Omniglot 53.40 45.2 67.5 36.83 81.93 88.4 93.1 66.25
Aircraft 45.29 36.0 50.4 24.15 69.43 80.5 85.4 57.50
Birds 63.59 60.7 71.7 41.08 64.73 72.2 71.4 43.56
Textures 61.78 67.5 70.2 39.63 66.35 58.3 71.5 43.50
QuickDraw 49.58 42.3 52.4 31.04 67.74 72.5 81.3 46.96
Fungi 35.27 30.1 39.1 18.11 38.94 47.4 63.1 21.76
VGG Flower 78.09 70.7 84.3 47.98 84.45 86.0 82.8 55.11
Tra�c Sign 46.08 53.3 63.1 22.03 49.91 60.2 70.4 22.71
MSCOCO 35.63 45.2 52.8 18.19 36.64 42.6 52.4 17.60

MiniImageNet ≠æ CUB
LT Methods LT Accuracy
backbone ≠æ ConvNet ResNet
MAML [Chen et al., 2019a] - 51.34
MatchNet [Chen et al., 2019a] - 53.07
RelationNet [Chen et al., 2019a] - 57.71
ProtoNet* (repro) 62.52 61.38
ProtoNet [Chen et al., 2019a] - 62.02
Baseline [Chen et al., 2019a] - 65.57
GNN-FT [Tseng et al., 2020] - 66.32
Neg-Softmax [Liu et al., 2020] - 69.30
NLT Methods NLT Accuracy
backbone ≠æ ConvNet ResNet
CentroidNet (ours) 47.01 44.62
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Table 6.3: Few-shot clustering on Omniglot with CCN splits. We consider the usual
4-layer “Conv-4” architecture [Snell et al., 2017a], the “CCN” architecture used by Hsu
et al. [2017] which has more filters, and using raw images (32◊32). The di�erences between
the two architectures are not significant. Our results are reported with 95% confidence
intervals and averaged over 1000 test episodes with a fixed model. Numbers with a star*
are from Hsu et al. [2019].

Omniglot-CCN
Clustering Methods Clustering Accuracy
backbone ≠æ 32 ◊ 32 Conv-4 CCN
K-Means 21.7* 69.4±0.5 -
CCN (KCL) [Hsu et al., 2017] - - 82.4*
CCN (MCL) [Hsu et al., 2019] - - 83.3*
CentroidNet-FSC (ours) - 86.8 ±0.6 86.6±0.6

that we are based on [Triantafillou et al., 2020, Ye et al., 2020] and recent
state-of-the-art LT-methods on Meta-Dataset : CNAPs [Requeima et al., 2019] and
SUR [Dvornik et al., 2020]. For both cross-domain benchmarks, we observe that
the gap between our NLT baseline and the LT state-of-the-art is significantly larger
than in the same-domain case, thereby confirming that cross-domain benchmarks
are much more dependent on using test-time labels, which would make them
more appropriate benchmarks for validating the task-adaptation capabilities of LT
methods.

5.3 Exploring Other Few-Shot Settings
Few-Shot Clustering with Partial Information [Table 6.3]. In few-shot
clustering, the goal is to cluster new sets of data according to semantics learned
during training. We investigate using CentroidNet for few-shot clustering. Please
note that our method is less flexible than other learning to cluster approaches [Hsu
et al., 2018] in that it requires knowing the number of examples per cluster (partial
information). We will be comparing with Constrained Clustering Networks [Hsu
et al., 2017, 2019], a recent state-of-the art learning to cluster method, on their
split of Omniglot which we denote Omniglot-CCN.3 Omniglot-CCN is harder than
the usual split, because the training and testing splits contain di�erent alphabets.
Furthermore, each episode consists of characters of the same alphabet (more fine-
grained) and the number of ways varies (20 to 47 characters per set). We start by
training ProtoNet on classic LT few-shot classification with a center loss of 0.1. At

3We make the choice to apply our method on their task rather than the opposite because their
method is much slower and more complicated to run. By solving the same task as them using the
same architectures, we can compare directly with the results from their paper.
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Table 6.4: Transductive 5-way 5-shot classification on miniImageNet and tieredImageNet
with the ResNet-12 backbone. ProtoNet numbers are reproduced from the implementation
of Ye et al. [2020].

Transductive Methods Transductive Accuracy
dataset ≠æ miniImageNet tieredImageNet
TPN [Liu et al., 2018] 75.65 -
TEAM [Qiao et al., 2019] 75.90 -
ProtoNet [Ye et al., 2020] (non-transductive) 80.40±0.57 84.24±0.65
CAN+ [Hou et al., 2019] 80.64 84.93
FEAT [Ye et al., 2020] (non-transductive) 80.99±0.61 84.58±0.63
ProtoNet+Sinkhorn (ours) 82.79±0.57 86.35±0.63
FEAT+Sinkhorn (ours) 83.54±0.58 87.47±0.60

test-time, we embed the set to cluster and cluster the embeddings using Sinkhorn
K-Means. Because the predicted cluster indices are permutation invariant, we run
the Hungarian algorithm to find the permutation that maximizes the accuracy. The
resulting accuracy is called the clustering accuracy [Hsu et al., 2017]. We find
that CentroidNet outperform all “flavors” of CCN by a margin (86.8% vs. 83.3%
highest), while being simpler and running about 100 times faster (the data is only
embedded once). We provide additional few-shot clustering results in Section 5 of
the appendix.

Transductive Few-Shot Classification [Table 6.4]. In transductive few-shot
classification, the learner is allowed to make predictions jointly on the query set.
We explore using Sinkhorn K-Means to post-process non-transductive predictions
in order to solve transductive few-shot classification. We start from the non-
transductive predictions given by the ProtoNet and FEAT implementations of Ye
et al. [2020]. Using Sinkhorn K-Means we search for the optimal transport plan
between query points and classes. The cost of assigning a query point to a class
is taken equal to its predicted negative log-likelihood for that class. We solve
transductive few-shot classification on miniImageNet and tieredImageNet and
compare the results with TPN [Liu et al., 2018], TEAM [Liu et al., 2018], and
CAN+[Hou et al., 2019]. We achieve the best scores after starting from a strong
non-transductive baseline. Some people might argue that our comparison is unfair
because we explicitly use the uniform distribution of query labels unlike other
methods [Vinyals et al., 2016a, Liu et al., 2018, Qiao et al., 2019]. However, we wish
to point out that there is no reason to believe that other methods aren’t implicitly
leveraging this assumption (even in our case, we could infer the label distribution
by treating it as a hyperparameter).
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6 Conclusion
Motivated by the apparent lack of diversity of some popular few-shot classification
benchmarks, we have proposed a new baseline that attempts to solve them without
using support set labels at test-time (LT). We find that Omniglot can be solved
without LT, and report accuracies on several popular same-domain and cross-domain
benchmarks. By comparing our NLT baseline to state-of-the-art LT methods,
we confirm that cross-domain few-shot classification is significantly harder and
dependent on using LT. In general, our NLT accuracies on any combination of dataset
and architecture can be taken as a future reference of the baseline performance
to be expected from only using a good representation, without any adaptation to
test-time labels. We hope that our work has raised awareness about some limitations
of current few-shot learning benchmarks. Our results support recent developments
of harder multi-domain benchmarks.

7 Broader Impact
Our work discusses the way researchers evaluate their methods, in a specific topic
of machine learning. We are motivated by the hypothesis that benchmarks which
are not representative of real world situations might lead to overconfidence and
could result in unpredictable behavior on deployment.
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7 Prologue to Third

Contribution

1 Article Details
A Survey of Self-Supervised and Few-Shot Object Detection by Gabriel
Huang, Issam Laradji, David Vázquez, Simon Lacoste-Julien, Pau Rodríguez. This
paper has been accepted with minor revision at the IEEE Transactions in Pattern
Analysis and Machine Intelligence (TPAMI).

2 Contributions of the authors
Originally, we were trying to beat the state-of-the-art in few-shot object detection
by using self-supervised pretraining. Upon reviewing the literature, we realized that
the field was somewhat disorganized, with inconsistent evaluation protocols that
were substantially di�erent from few-shot classification; there were even di�erent
methods sharing the same name (e.g., Meta-RCNN ). David Vázquez suggested
that writing a survey would be a valuable contribution to the community. All
co-authors participated in the writing of the survey, with contributions proportional
to the ordering, except for Pau Rodríguez, who supervised me directly and also
contributed significantly to the writing. David Vázquez and Simon Lacoste-Julien
helped proofread the survey and provided overall mentoring.

3 Recent Developments
Pix2Seq [Chen et al., 2021b] proposed to formulate object detection as a language
modeling task. Given an image to process, a transformer is conditioned on the image
to produce a sequence of bounding box coordinates and labels (e.g. [123, 450,
170, 480], “pedestrian”). Embeddings are learned for each object category and
box coordinates—normalized and discretized into bins. The flexibility of training
autoregressive models with maximum likelihood completely sidesteps the traditional
di�culty of matching predicted boxes with ground-truth, removing the need for
ad-hoc heuristics like Non-Maximum Suppression or Hungarian Matching, which are
not fully di�erentiable (the matching part of the Hungarian loss is not di�erentiable).
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One limitation of Pix2Seq is that embeddings are learned for each category instead
of taking advantage of the full potential of language models, which is an important
feature in the context of zero-shot and few-shot object detection. Another issue is
the quantization of bounding box coordinates, which may potentially be an issue
for high-precision applications.

The last months have seen a rise of general-purpose vision-language models. For
instance, Unicorn [Yang et al., 2021b] unifies visual grounding, grounded captioning,
image captioning, question answering, and object localization into the same model.
More recently, Flamingo [Alayrac et al., 2022] was proposed as a general-purpose
vision-language model. We expect the field of general-purpose vision-language
models, featuring multi-task finetuning [Sanh et al., 2021] and emergent zero-shot
capabilities [Brown et al., 2020], to continue growing, with object detection as one
of the many tasks they can solve.
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8
A Survey of Self-Supervised

and Few-Shot Object

Detection

Abstract
Labeling data is often expensive and time-consuming, especially for tasks such as
object detection and instance segmentation, which require dense labeling of the
image. While few-shot object detection is about training a model on novel (unseen)
object classes with little data, it still requires prior training on many labeled examples
of base (seen) classes. On the other hand, self-supervised methods aim at learning
representations from unlabeled data which transfer well to downstream tasks such
as object detection. Combining few-shot and self-supervised object detection is a
promising research direction. In this survey, we review and characterize the most
recent approaches on few-shot and self-supervised object detection. Then, we give
our main takeaways and discuss future research directions.
Project page: https://gabrielhuang.github.io/fsod-survey/

1 Introduction
Traditional object detectors rely on large supervised object detection datasets such
as PASCAL VOC Everingham et al. [2010] and MS COCO Lin et al. [2014], which
have over hundreds and thousands of annotated examples per object category.
However, labeling data is often expensive and time-consuming. This is especially
true in the case of object detection and instance segmentation, which require dense
labeling of bounding boxes/masks for each object, a process that is slower and
requires more annotator training than for object classification. Moreover, for fine-
grained object detection applications such as plant or animal species recognition,
pre-labeled datasets may not exist, and labels may have to be collected on the spot
by expert annotators.

To try to solve these problems, few-shot object detection (FSOD) methods attempt to
recognize novel (unseen) object classes based only on a few examples, after training
on many labeled examples of base (seen) classes. Until recently, the standard
approach in few-shot object detection was to pretrain a backbone for ImageNet
classification, then train an object detector on top of this backbone on the base
classes, and finally finetune on the novel classes [Kang et al., 2019, Yan et al., 2019,
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Wang et al., 2020a, Wu et al., 2020a, Zhang et al., 2021b]. However, because of the
tremendous progress in learning self-supervised representations, several (few-shot)
detection methods now initialize their backbone from representations pretrained
with unsupervised pretext tasks on ImageNet and MS COCO [Bar et al., 2021, Wei
et al., 2021a, Yang et al., 2021a, Xiao et al., 2021, Li et al., 2021b, Pinheiro et al.,
2020].

The problem with typical self-supervised pretrained methods such as SimCLR [Chen
et al., 2020a] or MoCo [He et al., 2020] is that they are geared towards classification,
and often engineered to maximize Top-1 performance on ImageNet Wang et al.
[2021]. However, some of the learned invariances in classification (e.g. to translation)
might not be desirable in localization tasks, and thus the representation might
discard critical information for object detection. Moreover, it has been shown
that higher ImageNet Top-1 accuracy does not necessarily guarantee higher object
detection performance Wang et al. [2021].

In response to such shortcomings, there has been a growing number of methods
for self-supervised object detection. These methods [Dai et al., 2021, Wang et al.,
2021, Yang et al., 2021a, Xiao et al., 2021, Wei et al., 2021a] not only attempt to
remedy the shortcomings of classification-geared representations, but also pretrain
more components in addition to the feature extractor, such as the region proposal
network (RPN) and detection head, in the case of Faster R-CNN based methods. In
particular, the current state of the art for FSOD on MS COCO is a method which
does self-supervised pretraining of both the backbone and the object detector [Bar
et al., 2021].

Thus, this motivates a survey combining the most recent approaches on few-shot
and self-supervised object detection, both of which having not been surveyed
before (see Section 2). In the following sections, we briefly summarize key object
detection concepts (Section 3). Then we review the few-shot object detection task
and benchmarks (Section 4) and we discuss the most recent developments in few-
shot object detection (Section 4) and self-supervised object detection pretraining
(Section 5). We conclude this survey by summing up the main takeaways, future
trends, and related tasks (Sections 6 and 7). We provide a taxonomy of popular
few-shot and self-supervised object detection methods in Figure 8.1, on the base of
which this survey is structured.

2 Related Surveys
Jiao et al. [2019] and Zaidi et al. [2021] survey modern deep-learning based object
detection methods. They review several state-of-the-art backbones and compare
their parameter counts. They present common datasets benchmarks and evaluation
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Figure 8.1: A taxonomy of object detection methods reviewed in this survey.
We categorize them based on the following hierarchy: methods using supervised backbone
pretraining, methods using self-supervised pretraining of backbone and detection heads, and
self-supervised backbone pretraining methods. In parallel, we also tag (shaded rectangles)
those methods depending on whether they have been benchmarked on regular object
detection, few-shot/low-shot object detection, and ImageNet classification. As discussed
in Section 5, many self-supervised classification methods have also been used to initialize
object detection backbones and evaluated on object detection benchmarks. DETReg [Bar
et al., 2021], which is a self-supervised object detection method, obtained state-of-the-art
FSOD results on MS COCO and uses self-supervised pretraining of the entire architecture.
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metrics. Jiao et al. [2019] categorize object detectors into single-stage and two-stage
detectors, and report their respective performances in a large table. Zaidi et al. [2021]
is more recent and discusses backbone choices extensively, including transformer-
based backbones such as Swin transformers [Liu et al., 2021b], and lightweight
architectures such as MobileNet [Howard et al., 2017] and SqueezeNet [Iandola
et al., 2016]. Although both works focus on traditional object detection, they briefly
mention weakly-supervised, few-shot and unsupervised object detection as future
trends. Note that these surveys do not cover the newer transformer-based object
detectors such as DETR [Carion et al., 2020] or Deformable DETR [Zhu et al.,
2021], which we will briefly introduce in this survey.

Jing and Tian [2020] present a survey on self-supervised visual feature learning.
They perform an extensive review of self-supervised pretext tasks, backbones, and
downstream tasks for image and video recognition. In this work, we also introduce
a number of generic self-supervised pretraining techniques but we focus on methods
particularly designed for object detection.

Regarding few-shot classification, a simpler task than few-shot object detection,
Chen et al. [2019a] introduce a comparative analysis of several representative few-
shot classification algorithms. Wang et al. [2020b] propose a more extensive survey
on methods and datasets. However, they do not explore few-shot object detection
methods.

Khan et al. [2021] show that transformers have achieved impressive results in
image classification, object detection, action recognition and segmentation. In this
survey, we review object detection methods using transformers as backbones and as
detection heads with DETR and variants [Carion et al., 2020, Zhu et al., 2021]. We
also discuss the emergent properties of visual transformers as showcased by Caron
et al. [2021].

3 Background on Object Detection
3.1 Key Concepts
For clarity, we start by reviewing key concepts in object detection, and introduce
relevant vocabulary. Readers already familiar with object detection can skip
directly to Sections 4 and 5 for few-shot and self-supervised object detection. We
illustrate those concepts in the context of Faster R-CNN [Ren et al., 2015] with
Feature Pyramid Network [Lin et al., 2017a], a multi-scale two-stage object detector
represented in Figure 8.2, and DETR [Carion et al., 2020] represented in Figure 8.3.
A more in-depth analysis of object detection concepts can be found in the object
detection surveys by Jiao et al. [2019], Zaidi et al. [2021].
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Object detection is the task of jointly localizing and recognizing objects of
interest in an image. Specifically, the object detector has to predict a bounding
box around each object, and predict the correct object category. Object detectors
are traditionally trained on labeled object detection datasets such as PASCAL
VOC [Everingham et al., 2010] or MS COCO [Lin et al., 2014]; the objects of
interest are simply the categories that the model is trained to recognize.

The backbone network is a feature extractor which takes as input an RGB image
and outputs one or several feature maps [Lin et al., 2017a]. Typically, the backbone
is a residual network such as the ResNet-50 [He et al., 2016], and is pretrained
on ImageNet classification before finetuning it to downstream tasks [Wang et al.,
2020a, Yan et al., 2019, Bar et al., 2021]. Alternatively, an increasing number of
works have considered using visual transformers instead [Redmon and Farhadi, 2018,
Li et al., 2021b, Caron et al., 2021]. The RGB image is a 3D tensor in RW ◊H◊3,
where typically W = H = 224 for classification, and W,H ¥ 1300, 800 for object
detection (as per Detectron2’s1 default parameters). For few-shot object detection,
a ground-truth mask delimiting the support object is sometimes appended to a
fourth channel of the image, and the backbone is modified to take as input tensors
in RW ◊H◊4.

Single-scale features consist of a single 3D tensor obtained by taking the outputs
of a certain backbone layer. Typically, the C4 layer (corresponding to the output of
“res5” the 4th residual block) of the ResNet-50 is used for object detection. The
feature map is of size Z œ Rw◊h◊c where c is the number of channels and w, h are
the spatial dimensions of the feature map, which are much smaller than the image
due to strided convolutions.

Multi-scale features consist of several 3D tensors at di�erent scales. Merely com-
bining several layer outputs from the backbone would result in the high-resolution
lower layers having limited semantic information. A common solution is to imple-
ment top-down and lateral pathways using a Feature Pyramid Network (FPN) [Lin
et al., 2017a] to propagate information from the higher-levels of the backbone back
to the lower levels (illustrated in Figure 8.2).

Faster R-CNN [Ren et al., 2015], represented in Figure 8.2, is a popular two-stage
object detector. To detect objects, they start by feeding an image to the backbone
to get single or multi-scale features. Then, they apply the following two stages:

• Stage 1 : They feed the features to the Region Proposal Network (RPN) to
extract object proposals, which are bounding boxes susceptible to contain
objects. The object proposals are predicted at predefined locations, scales and
aspect ratios (known as anchors), refined using a regression head (anchor
deltas), and scored for “objectness”. They use Non-Maximum Suppression

1https://github.com/facebookresearch/detectron2
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Figure 8.2: A Faster R-CNN with Feature Pyramid Network. The input image is
fed to the backbone network, then the feature pyramid network (light yellow) computes
multi-scale features. The region proposal network proposes candidate boxes, which are
filtered with non-maximum suppression (NMS). Features for the remaining boxes are pooled
with RoIAlign and fed to the box head, which predicts object category and refined box coor-
dinates. Finally, redundant and low-quality predictions are removed with NMS. Blue labels
are class names in the detectron2 implementation. Figure courtesy of Hiroto Honda. https:
//medium.com/@hirotoschwert/digging-into-detectron-2-47b2e794fabd
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Figure 8.3: The DETR object detector. The image is fed to the backbone, then
positional encodings are added to the features and fed to the transformer encoder. The
decoder takes as input object query embeddings, cross-attends to the encoded representation
while performing self-attention on the transformed query embeddings, and outputs a fixed
number of object detections, which are finally thresholded, without need for NMS [Carion
et al., 2020]. Image courtesy of Carion et al. [2020].

(NMS) to remove redundant and low-quality object proposals.

• Stage 2 : For each object proposal they extract a pooled feature map by
resampling the features inside its bounding box to a fixed size, using RoIAlign
or ROIPool (pooling strategies). For multiscale-features, the appropriate level
is picked using a heuristic. Then, they feed the pooled features into the Box
Head or Region-of-Interest (ROI) head, which predicts the object category
and refines the bounding box with another regression head. Finally, they run
NMS again to remove redundant and low-confidence predictions.

In this survey, we will refer to the union of the RPN and box head as the detection
heads.

Mask R-CNN [He et al., 2017] is an improvement on top of Fast R-CNN to solve
instance segmentation. At the simplest level, Mask R-CNN predicts segmentation
masks for each detected instance, additionally to the bounding box and class
predictions.

Single-stage object detectors, such as You Only Look Once (YOLO) [Redmon
et al., 2016, Redmon and Farhadi, 2018], Single-Shot Detector (SSD) [Liu et al.,
2016], and newer methods such as RetinaNet [Lin et al., 2017b] and CenterNet [Zhou
et al., 2019], are generally simpler and faster than two-stage detectors, at the cost of
lower prediction quality. Single-stage detectors directly predict objects at predefined
locations from the feature map, with the possibility of subsequently refining the box
locations and aspect ratios. Please refer to object detection surveys for an in-depth
review [Jiao et al., 2019, Zaidi et al., 2021].

DETR [Carion et al., 2020] represented in Figure 8.3, which stands for DEtection
TRansformer, is a recent transformer-based architecture for end-to-end object
detection. Notably, DETR has a much simpler overall architecture than Faster
R-CNN and removes the need for the NMS heuristic –which is non-di�erentiable–
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by learning to remove redundant detections. However, being set-based, DETR
relies on the Hungarian algorithm [Munkres, 1957] for computing the prediction
loss, which has been shown to be di�cult to optimize [Sun et al., 2020].

To detect objects, they start by feeding an image to the backbone to get features.
Then, they feed the features to the transformer encoder to obtain encoded features.
Finally, they feed 100 (or any number of) learned “query embeddings” to the
transformer decoder. The transformer decoder attends to the encoded features
and outputs up to 100 predictions, which consist of bounding box locations, object
categories and confidence scores. The highest-confidence predictions are returned.
There is no need for removing redundant predictions using NMS, as the model
learns to jointly make non-redundant predictions thanks to the Hungarian loss.
During training, the Hungarian loss is computed by finding the optimal matching
between detected and ground-truth boxes in terms of box location and predicted
class. The loss is minimized using stochastic gradient descent (SGD). We will also
refer to the union of transformer encoder and decoder as the detection heads.

Deformable DETR [Zhu et al., 2021] is a commonly used improvement over
DETR. Deformable DETR uses multi-scale deformable attention modules, which
can attend to a small set of learned locations over multiple feature scales, instead
of attending uniformly over a whole single-scale feature map. The authors manage
to train their model using 10 times fewer epochs than DETR [Zhu et al., 2021].

3.2 Datasets and Evaluation Metrics
The most popular datasets for traditional object detection are PASCAL VOC [Ever-
ingham et al., 2010] and MS COCO [Lin et al., 2014]. Since they have already been
widely discussed in the literature, we refer the reader to previous object detection
surveys [Jiao et al., 2019, Zaidi et al., 2021]. PASCAL VOC and MS COCO have
also been adopted by the few-shot object detection (FSOD) and self-supervised
object detection (SSOD) communities. We provide an extensive discussion on their
use as few-shot benchmarks in Section 4.3. Please also refer to Section 4.3 for a
detailed explanation of the mean average precision (mAP) evaluation metric and
the di�erences between PASCAL VOC and MS COCO implementations.

4 Few-Shot Object Detection
Informally, few-shot object detection (FSOD) is the task of learning to detect new
categories of objects using only one or a few training examples per class. In this
section, we describe the FSOD framework, its di�erences with few-shot classification,
common datasets, evaluation metrics, and FSOD methods. We provide a taxonomy
of popular few-shot and self-supervised object detection methods in Figure 8.1.
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4.1 FSOD Framework
We formally introduce the dominant FSOD framework, as formalized by Kang et al.
[2019] (Figure 8.4). FSOD partitions objects into two disjoint sets of categories:
base or known/source classes, which are object categories for which we have access
to a large number of training examples; and novel or unseen/target classes, for
which we have only a few training examples (shots) per class. In the vast majority
of the FSOD literature, we assume that the object detector’s backbone has already
been pretrained on an image classification dataset such as ImageNet (usually a
ResNet-50 or 101). Then, the FSOD task is formalized as follows:

(1) Base training.2 Annotations are given only for the base classes, with a large
number of training examples per class (bikes in the example). We train the
FSOD method on the base classes.

(2) Few-shot finetuning. Annotations are given for the support set, a very
small number of training examples from both the base and novel classes (one
bike and one human in the example). Most methods finetune the FSOD model
on the support set, but some methods might only use the support set for
conditioning during evaluation (finetuning-free methods).

(3) Few-shot evaluation. We evaluate the FSOD to jointly detect base and
novel classes from the test set (few-shot refers to the size of the support
set). The performance metrics are reported separately for base and novel
classes. Common evaluation metrics are variants of the mean average precision:
mAP50 for Pascal and COCO-style mAP for COCO. They are often denoted
bAP50, bAP75, bAP (resp. nAP50, nAP75, nAP) for the base and novel
classes respectively, where the number is the IoU-threshold in percentage (see
Section 4.4 for full explanation).

We encourage researchers to report both base and novel class performance, a setting
sometimes called Generalized FSOD [Fan et al., 2021]. Note that “training” and
“test” set refer to the splits used in traditional object detection. Base and novel
classes are typically present in both the training and testing sets; however, the
novel class annotations are filtered out from the training set during base training;
during few-shot finetuning, the support set is typically taken to be a (fixed) subset
of the training set; during few-shot evaluation, all of the test set is used to reduce
uncertainty [Kang et al., 2019].

Special case—no fine-tuning Conditioning-based methods skip the fine-tuning
step; instead, novel examples are used as support examples to condition the model,

2In the context of self-supervised learning, base-training may also be referred to as finetuning
or training. This should not be confused with base training in the meta-learning framework; rather
this is similar to the meta-training phase [Finn et al., 2017].
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Figure 8.4: Few-shot object detection protocol, as proposed by Kang et al. [2019].
During base-training, the method is trained on base classes. Then during few-shot finetuning,
the model is finetuned or conditioned on the support set. Finally, during few-shot evaluation,
the method is evaluated on base and novel class detection.
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and predictions are made directly on the test set. In practice, the majority of
conditioning-based methods reviewed in this survey do benefit from some form of
finetuning.

Special case—no base classes The standard FSOD framework might seem
counter-intuitive as it assumes a large set of annotated base class images. DE-
TReg [Bar et al., 2021] have investigated removing the base-training phase and
replacing it with self-supervised pretraining, relying solely on a small number of
novel labels, which came at the cost of lower nAP.

4.2 Important Di�erences with Few-Shot Classification.
As this may not be obvious to readers unfamiliar with both fields, we explicit
several practical di�erences between the FSOD finetuning-based paradigm and the
learning-to-learn paradigm [Ravi and Larochelle, 2016, Vinyals et al., 2016a, Chen
et al., 2019a, Huang et al., 2019] commonly used in few-shot classification (FSC):

• Several objects per image. In FSOD there can be several instances from
base and novel classes in the same image, whereas FSC assumes only one
dominant object per image. While FSC filters out all novel images during
base-training, FSOD removes only the novel object annotations but keeps the
images that also contain base objects.

• Joint prediction on base and novel. During few-shot finetuning and
evaluation, both base and novel classes are present and have to be jointly
detected. On the contrary, few-shot classifiers are typically only finetuned
and evaluated on novel classes. Note however that many papers only report
average precision for novel classes under metric names such as nAP or nAP50.

• Learning-to-learn vs. finetuning. Gradient-based few-shot classification
methods such as MAML [Finn et al., 2017] or Learning-to-Optimize [Ravi
and Larochelle, 2016] rely heavily on the learning-to-learn paradigm; during
(meta)training, N-way K-shot episodes are generated by sampling a small
training set (support set) and a small validation set (query set) from the
base classes. The classifier is finetuned with gradient descent on the support
set, makes predictions on the query set, and the query-set loss is minimized
using gradient descent, which propagates the gradient through support set
tuning. On the contrary, a majority of FSOD methods do not generally
consider episodes or backpropagate through gradient descent. Pure finetuning
FSOD methods Wang et al. [2020a], Chen et al. [2018], Wu et al. [2020a],
Bar et al. [2021] are first trained on all base classes during base training,
and finetuned only once on a fixed support set before few-shot evaluation.
Moreover, because the few-shot finetuning step (e.g., optimizer learning rates)
and the pre-finetuning weights are not calibrated over several episodes using

100



Table 8.1: Common FSOD benchmarks. Image counts are after filtering out the ones
containing no relevant bounding boxes.

Benchmark Classes 1. Base Training 2. Few-shot Finetuning 3. Few-shot Evaluation
Base Novel #images #base-bb #shots #base-bb #novel-bb #images #base-bb #novel-bb

PASCAL VOC/split 1 15 5 14,631 41,084 1:2:3:5:10 15–150 5–50 4,952 13,052 1,924
PASCAL VOC/split 2 15 5 14,779 40,397 1:2:3:5:10 15–150 5–50 4,952 12,888 2,088
PASCAL VOC/split 3 15 5 14,318 40,511 1:2:3:5:10 15–150 5–50 4,952 13,137 1,839
MS COCO 2014 60 20 98,459 367,702 10:30 600-1,800 200-600 5,000 15,318 20,193
LVIS v0.5 776 454 68,568 688,029 8.57 (variable) 7,760 2,786 5,000 50,334 429

learning-to-learn on a separate query set, they might not be optimal. This is
partially mitigated by hyperparameter tuning, which can help find optimal
learning rates, but not find the optimal pre-finetuning weights.

• Episodic Evaluation. For FSC evaluation, several episodes are sampled
from the novel classes [Vinyals et al., 2016a, Oreshkin et al., 2018, Rodriguez
et al., 2020]; the classifier is finetuned on the support set and classifies the
query set, and the results are averaged over hundreds of runs, which have the
advantage of reducing variance and estimating confidence intervals [Chen et al.,
2019a, Huang et al., 2019]. On the contrary, each of Kang’s splits [Yan et al.,
2019] feature only one fixed support set (the exact instances are prespecified),
which is known to cause overfitting and overestimating performance especially
in the case of 1-shot object detection, when the support set is tiny [Wang et al.,
2020a]. See Figure 8.5 for the impact of using several episodes on PASCAL
VOC. In response to those issues, Wang et al. [2020a] sample multiple support
sets (30 seeds) to lower the variance of the benchmark.

• Separate validation and test sets. Whereas FSC methods generally
validate and test on separate splits for common benchmarks such as Om-
niglot [Lake et al., 2015], miniImageNet [Vinyals et al., 2016a], or Synbols La-
coste et al. [2020], FSOD detection methods follow the standard practice in
object detection of training on the union of the training and validation sets,
and using the test set for both hyperparameter tuning and evaluation, which
inevitably leads to overestimating the generalization ability of the methods.

4.3 FSOD Datasets
We describe the dominant FSOD benchmarks, as introduced by Meta-YOLO [Kang
et al., 2019] and improved by TFA (Two-stage Fine-tuning Approach) [Wang et al.,
2020a] to mitigate variance issues. These are also the benchmarks that we will use
to compare FSOD methods in Table 8.3. We compute data statistics in Table 8.1.3
Caveats and future best practices are discussed in Section 4.3 and Section 6.5.

3Note that the reported number of images is after removing those containing no relevant
annotations (e.g., for base training, the images which contained only novel objects are removed).
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Figure 8.5: Importance of evaluating over several episodes. The nAP, nAP50 and
nAP75 of PASCAL VOC Split-1 are averaged using a variable number of episodes. Note
how the means and variances only become stable after around 20 episodes. Figure courtesy
of [Wang et al., 2020a].

PASCAL VOC [Everingham et al., 2010]

PASCAL VOC is arguably one of the most popular smaller benchmarks for tradi-
tional object detection. For few-shot object detection, the object categories are split
between 15 base classes and 5 novel classes. Three di�erent base/novel splits
are usually considered, denoted splits 1, 2 and 3. For base training, the training and
validation (trainval) images from VOC2007 and VOC2012 are used, which might
lead to overfitting (Section 6.5). This amounts to 40k base boxes spread over
15k images for an average of 2700 boxes / base class, with 2.8 boxes / image.
For few-shot finetuning, a fixed subset of the VOC2007 and VOC2012 trainval
sets is taken as the support set. Kang et al. [2019] consider the 1,2,3,5,10-shot
settings, which correspond to 15-150 base bounding boxes and 5-50 novel bounding
boxes. The fact that the instances are fixed may lead to overestimating performance
(Section 4.3). For few-shot evaluation, roughly 5k images from the VOC2007 test set
are considered, with 13k base and 2k novel boxes, which adds up to an average of
870 boxes/base and 400 boxes/novel class. The method has to detect both base
and novel classes, and several evaluation metrics are reported separately for base
and novel classes: mAP50, mAP75, and COCO-style mAP. The main comparison
metric is the novel mAP50.

MS COCO [Lin et al., 2014]

MS COCO or Microsoft Common Objects in COntext [Lin et al., 2014], is another
popular benchmark for object detection. For FSOD, the object categories are
split between 20 novel classes which are shared with PASCAL VOC, and the
remaining 60 base classes. Following Kang et al. [2019] and Wang et al. [2020a],
a 5k subset of the COCO2014 validation images are used for few-shot evaluation
(denoted val5k), while the remaining COCO2014 training and validation images are
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used for base-training and few-shot finetuning (denoted trainvalno5k). Specifically
for base training, roughly 367k base boxes are considered (10 times more than
PASCAL VOC), spread over 98k images from trainvalno5k. This is an average of 6k
boxes / base class and 3.7 boxes/image. For few-shot finetuning, a fixed subset of
trainvalno5k is taken as the support set. Kang et al. [2019] consider the 10,30-shot
settings, which correspond to 600-1800 base boxes and 200-600 novel boxes, and
su�er less from overfitting than PASCAL VOC [Wang et al., 2020a] despite also
using fixed instances. For few-shot evaluation, the val5k are used, consisting in 15k
base boxes and 20k novel boxes, which amounts to 250 boxes / base class and
1k boxes / novel class. Several evaluation metrics are reported separately for
base and novel categories: COCO-style mAP, mAP50, mAP75, and mAP for small,
medium and large objects. The main comparison metric is novel mAP.

LVIS [Gupta et al., 2019]

LVIS or Large Vocabulary Instance Segmentation [Gupta et al., 2019] is a newer
object detection dataset featuring 1230 classes, categorized as frequent, common
(10 or more annotations) and rare (fewer than 10). TFA [Wang et al., 2020a]
have proposed using the v0.5 version of this dataset for FSOD, dividing it into
776 base classes (frequent and common) and 454 novel classes, making it
by far the FSOD benchmark with the most number of categories (10 times more
categories than COCO, 50 times more than Pascal). For this description, we follow
the reference implementation from TFA4 as we could not find all the details in
the paper. For base training, 688k base boxes are considered, spread over 69k
images from the training set, which amounts to 887 boxes / base class and 10
boxes / image. For few-shot finetuning, up to 10 shots from the training set are
considered, depending on the number of available examples. This corresponds to an
average of 8.57 boxes/class, spread over 7.7k base boxes and 2.8k novel boxes. For
few-shot evaluation, the validation set of LVIS is used, consisting of 50,334 base
and 429 novel boxes, spread over 5,000 evaluations images. Evaluation metrics are
COCO-style mAP, mAP50 and mAP75, reported separately for frequent, common,
rare objects, and also aggregated over all three categories.

Discussion

We discuss some of the advantages and issues associated with the aforementioned
benchmarks (see also Section 6.5).

Overfitting issues For PASCAL VOC, the support set is very small (20-200
examples) and the specific instances are predefined by Kang’s splits. This can cause
overfitting and result in overestimating the novel average precision, especially in

4https://github.com/ucbdrive/few-shot-object-detection

103



the 1-shot case, an issue illustrated by TFA [Wang et al., 2020a] in Figure 8.5. To
mitigate this issue, TFA [Wang et al., 2020a] propose to randomly sample multiple
support sets (30 seeds) and to average the results in a benchmark which we will
denote the TFA-splits as opposed to the benchmark using a single fixed support
set, which we will denote the Kang-splits. This is a good first step, but not as
reliable as the common practice in few-shot classification of averaging metrics over
600 episodes [Chen et al., 2019a].

Reliability With a substantial support set of 800-2400 bounding boxes for few-
shot finetuning, and plenty of few-shot evaluation boxes for base and novel categories,
MS COCO is arguably the most reliable benchmark for comparing di�erent methods.
In fact, we sort methods according to 30-shot MS COCO nAP in Table 8.3. Because
the 20 novel classes were chosen to be in common with Pascal, a very natural
benchmark to consider is the MS COCO≠æPascal cross-domain scenario, which
has been considered by some of the earlier and subsequent works [Chen et al., 2018,
Wu et al., 2020a, Fan et al., 2020b].

Limitations of LVIS v0.5 With 1230 classes, LVIS has more than an order
of magnitude more object categories than MS COCO, and a lot of potential for
few-shot object detection. However there are some shortcomings with directly using
TFA’s splits. One problem is that only 705 out of 776 base classes and 125 out of
454 novel classes appear in the validation set, which means that the majority of
novel classes will never be evaluated on.5 Moreover, because there are almost 100
more times base than novel boxes in the validation set, performance is completely
dominated by base objects for metrics aggregated on base and novel classes. Finally,
even the 125 novel classes that are evaluated on only have an average of 3.4 boxes
/ class, which means evaluation is potentially very noisy. Due to those issues, we
do not recommend the current TFA splits for evaluating few-shot object detection
methods. However, LVIS—especially LVIS v1.0 which has more data and stricter
quality control—has a lot of potential in FSOD given the large diversity of objects.
Therefore, proposing more balanced splits and evaluation sets would definitely be
beneficial to the FSOD community.

Class overlap “Novel” FSOD classes may overlap with ImageNet classes used for
backbone pretraining, potentially leading to performance overestimation. For
instance, all of the 20 PASCAL VOC categories—used as MS COCO novel
classes—except “person” appear in some form inside ImageNet. Related cate-
gories may be parts of one another (car mirror, aircraft carrier), subcategories
(sport car, rocking chair, flowerpot vs. potted plant), or functionally similar objects

5As found by running TFA’s data loader: https://github.com/ucbdrive/few-shot-
object-detection
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(sofa vs. studio couch, motorbike vs. scooter). Because of the large number of
ImageNet labels, we acknowledge the challenge of designing novel classes with no
overlap with ImageNet for general-purpose object detectors. However, for niche
FSOD applications, we do encourage practitioners to sanitize backbone and FSOD
datasets for cross-contamination.

4.4 FSOD Evaluation Metrics
By design, object detectors such as Faster R-CNN and DETR output a fixed number
of predictions paired with a confidence score. This means they use a threshold to
cut o� low-confidence predictions. Therefore, they have to trade o� between using
a higher threshold, which will lead to higher precision (most predicted objects are
actually real objects) but low recall (miss out many of the real objects); and using
a lower threshold, which could increase recall at the expense of precision.

The mean average precision (mAP) is a standard metric for evaluating object
detection and FSOD methods, and is defined as the mean of the individual average
precisions (AP) for each object class. The individual APs are defined as the area
under the precision-recall curve – discussed below – which can be plotted by varying
the confidence threshold of the object detector.

To compute the AP for a class, we first rank the detections for this class by decreasing
confidence. Starting from the top-ranked detections (k = 1), we consider them as
True Positives if their intersection over union (IoU) with any ground-truth true
object is above a given IoU-threshold (typically 50% or 75%). If the IoU is below
the threshold or the ground-truth has already been detected, then we consider
them to be False Positives. For each rank k, corresponding to a di�erent choice
of confidence-threshold, we can compute the precision@k, a measure of relevance
defined as the number of true positives among the top-k boxes divided by k, and
the recall@k, a measure of sensitivity defined as the number of true positives among
the top-k boxes divided by the total number of ground truth boxes.

We give an example of AP computation in Table 8.2. Notice how recall is non-
decreasing as a function of k, while precision can fluctuate up and down. By varying
k between 1 and the total number of detections, we can plot a precision vs. recall
curve (see Figure 8.6). The precision-recall curve (orange) is made non-increasing
by taking the interpolated precision (green), defined as pinterp(r) = maxrÕØr p(r).6
The average precision is defined as the area under that curve. The exact way the
area is computed depends on the specific benchmark.

For PASCAL VOC’s 2007 test set [Everingham et al., 2010], which is used for
6Interpolation is a natural thing to do because it means that for a minimum recall requirement,

there exists a confidence-threshold which results in a detector with better precision if we allow the
recall to be higher than that threshold, which is never a detrimental.
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Table 8.2: Example computation of precision@k and recall@k. There are 10
detections ranked by decreasing confidence and 5 ground-truth boxes. Example from
https://jonathan-hui.medium.com/map-mean-average-precision-for-
object-detection-45c121a31173

Rank k True Positive? Precision@k Recall@k
1 True 1.0 0.2
2 True 1.0 0.4
3 False 0.67 0.4
4 False 0.5 0.4
5 False 0.4 0.4
6 True 0.5 0.6
7 True 0.57 0.8
8 False 0.5 0.8
9 False 0.44 0.8
10 True 0.5 1.0

Figure 8.6: Top: precision@k and recall@k as a function of k the number of boxes
considered. Bottom: precision@k and interpolated-precision@k as functions of the recall@k
(precision-recall curve)
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FSOD evaluation, the main IoU-threshold used is 0.5 and the area under the
curve is approximated by sampling and averaging the interpolated precision at
11 points {0, 0.1, 0.2, . . . , 1}. IoU-thresholds of 0.75 and COCO-style mAP are
also sometimes reported [Wang et al., 2020a]. For MS COCO, the area under the
interpolated precision curve is computed exactly by adding up the area of each
rectangle (see Figure). COCO-style mAP is defined by averaging the mAP at
di�erent thresholds from 0.5 to 0.95 in increments of 0.05. For COCO, it is common
to report mAP scores for objects of di�erent sizes: small, medium and large [Wang
et al., 2020a, Xiao and Marlet, 2020]. Additionally, mAP50 and mAP75 are often
provided [Wang et al., 2020a, Fan et al., 2020a, Zhang et al., 2021b], which are
computed by computing the exact area under the curve for IoU-thresholds of 0.5
and 0.75. Generally in FSOD, it is also common to report mAP separately for base
and novel classes, denoted as bAP and nAP [Wang et al., 2020a]. Most works put
greater emphasis on the nAP [Kang et al., 2019, Yan et al., 2019], though some
claim that maximizing bAP is also important to avoid catastrophic forgetting [Fan
et al., 2021, Wang et al., 2020a]. These metrics and datasets give us a comprehensive
overview of how di�erent models perform for few-shot object detection. Note that
for LVIS v0.5, the metrics are the same as for MS COCO, and reported separately
for frequent, common and rare objects. However, we do not recommend following
the TFA splits for LVIS due to the issues outlined in Section 4.3.

4.5 Few-Shot Object Detection Methods
We review several FSOD methods from the literature. In our description, we assume
that backbones have already been pretrained on ImageNet. We summarize most of
these methods in Table 8.3.7

Finetuning-only methods 8

Finetuning-only methods generally start from a traditional object detector such as
Faster-RCNN [Ren et al., 2015] with only minor architecture modifications. They
do base training on many base class examples, then do few-shot finetuning on
a support set containing both base and novel classes. The rationale behind this
two-step process is to deal with the extreme imbalance between the base and novel
classes, and to avoid overfitting on the novel classes.

LSTD [Chen et al., 2018] proposed the first finetuning strategy for FSOD. A
hybrid SSD/Faster-RCNN “source” network is trained on the source classes, then
at finetuning time, its weights are copied into a “target” network, except for the

7We only included methods evaluated on at least one of the dominant FSOD benchmarks/splits.
8Use colors for quick reference to Table 8.3.
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Table 8.3: Few-Shot Object Detection methods with results on PASCAL VOC
and MS COCO. Methods are categorized as finetuning -only, prototype -based, and
modulation -based. TIP is a general add-on strategy for two-stage detectors. Faster

RCNN+FT numbers are from TFA [Wang et al., 2020a]. RepMet and Attention-FSOD
numbers are from Meta-DETR [Zhang et al., 2021b]. Methods are sorted by MS COCO
30-shot nAP.
Find the most up-to-date table at https://github.com/gabrielhuang/awesome-
few-shot-object-detection

VOC TFA-split (nAP50) VOC Kang-split (nAP50) MS COCO (nAP)

Name Type 1-shot 3-shot 10-shot 1-shot 3-shot 10-shot 10-shot 30-shot

LSTD [Chen et al., 2018] finetuning - - - 8.2 12.4 38.5 - -
RepMet [Karlinsky et al., 2019] prototype - - - 26.1 34.4 41.3 - -
Meta-YOLO [Kang et al., 2019] modulation 14.2 29.8 - 14.8 26.7 47.2 5.6 9.1
MetaDet [Wang et al., 2019c] modulation - - - 18.9 30.2 49.6 7.1 11.3
Meta-RCNN [Yan et al., 2019] modulation - - - 19.9 35.0 51.5 8.7 12.4
Faster RCNN+FT [Wang et al., 2020a] finetuning 9.9 21.6 35.6 15.2 29.0 45.5 9.2 12.5
ACM-MetaRCNN [Wu et al., 2020b] modulation - - - 31.9 35.9 53.1 9.4 12.8
TFA w/fc [Wang et al., 2020a] finetuning 22.9 40.4 52.0 36.8 43.6 57.0 10.0 13.4
TFA w/cos [Wang et al., 2020a] finetuning 25.3 42.1 52.8 39.8 44.7 56.0 10.0 13.7
Retentive RCNN [Fan et al., 2021] finetuning - - - 42.0 46.0 56.0 10.5 13.8
MPSR [Wu et al., 2020a] finetuning - - - 41.7 51.4 61.8 9.8 14.1
Attention-FSOD [Fan et al., 2020a] modulation - - - - - - 12.0 -
FsDetView [Xiao and Marlet, 2020] modulation 24.2 42.2 57.4 - - - 12.5 14.7
CME [Li et al., 2021a] finetuning - - - 41.5 50.4 60.9 15.1 16.9
TIP [Li and Li, 2021] add-on 27.7 43.3 59.6 - - - 16.3 18.3
DAnA [Chen et al., 2021a] modulation - - - - - - 18.6 21.6
DeFRCN [Qiao et al., 2021] prototype - - - 53.6 61.5 60.8 18.5 22.6
Meta-DETR [Zhang et al., 2021b] modulation 35.1 53.2 62.0 - - - 19.0 22.2
DETReg [Bar et al., 2021] finetuning - - - - - - 25.0 30.0

classification layer, which is randomly initialized, and finetuned on the target classes.9
Additionally, the authors propose to regularize the finetuning stage by penalizing the
activation of background features with L2 loss (Background Depression), and another
“Transfer-Knowledge” loss which pulls target network predictions closer to the source
network predictions. Subsequently, TFA or Frustratingly Simple Few-Shot Object
Detection Wang et al. [2020a] showed that even a simple finetuning approach with
minimal modifications to Faster R-CNN can actually yield competitive performance
for FSOD. TFA replaces the fully-connected classification heads of Faster R-CNN
with cosine similarities; the authors argue that such feature normalization leads to
reduced intra-class variance, and less accuracy decrease on the base classes. First, a
Faster R-CNN with cosine classification heads is trained on the base classes using
the usual loss. During few-shot finetuning, new classification weights are randomly
initialized for novel classes, appended to the base weights, and the last layers of
the model are finetuned on the base+novel classes, while keeping the backbone and
RPN frozen. MPSR [Wu et al., 2020a] is also a finetuning approach. They propose

9Slightly di�erent from the FSOD framework presented in Section 4.1, the authors exclusively
consider a cross-dataset scenario; therefore, target classes may or may not include sources classes.
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an even more scale-aware Faster RCNN by combining the Feature Pyramid Network
with traditional object pyramids [Adelson et al., 1984]. After training the model
on the base classes, the classification layer is simply discarded, a new classification
layer is initialized, and the model does few-shot finetuning on the base+novel classes
without freezing any layers. RetentiveRCNN [Fan et al., 2021] extend TFA to
generalized FSOD, where the goal is to perform well on the novel classes without
losing performance on the base classes. They observe a “massive variation of norms
between base classes and unseen novel classes”, which could explain why using
cosine classification layers is better than fully connected ones. After training a
Faster RCNN on the base classes, they freeze the base RPN and detection branches,
and in parallel they introduce new finetuned RPN and detection branches to detect
both base and novel classes. They also use a consistency loss, similar in spirit to
LSTD’s transfer-knowledge loss, to make predictions on base objects more similar
in the base/base-and-novel branches. DETReg [Bar et al., 2021] use a finetuning
approach on the Deformable DETR [Zhu et al., 2021] architecture, and achieve
state-of-the-art results on few-shot COCO object detection after proposing a self-
supervised strategy for pretraining the detection heads, which is discussed in more
depth in Section 5.3.

Conditioning-based methods

For clarity, we will refer to the image to process (to detect objects from) as the
query image. In addition to the query image, conditioning-based methods are
also fed with annotated support images, which are reference examples of each
class to detect. Each support image generally has a single bounding-box around the
object to detect. In the context of the FSOD framework presented in Section 4.1,
support images are randomly sampled from all base classes during training (step
3), while a predefined (few-shot) set of base and novel images are used during
finetuning and evaluation (steps 4 and 5). In this section, we review two types of
conditioning-based methods: prototype-based, and modulation-based.

Prototype-based methods RepMet [Karlinsky et al., 2019], which stands for
representative-based metric learning, is based on Faster-RCNN with Deformable
Feature Pyramid Network (FPN), and learns representatives/prototypes for each
object category. At base-training time, RepMet samples several supporting examples
for each class, computes their ROI-pooled representations (representatives), and
classifies object proposals according to their distance to the representatives. The
gradients are propagated through both the proposals and the prototypes. At
few-shot finetuning and evaluation time, representatives for the novel classes are
computed, and objects proposals are classified using those new representatives.
Optionally, the authors propose to finetune the novel prototypes by maximizing the
detection loss on novel objects, which they find beneficial (denoted as “episode fine-
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Figure 8.7: Meta-YOLO, a modulation-based FSOD method.

tuning” in Table 3 of Karlinsky et al. [2019]). ACM-MetaRCNN [Wu et al., 2020b]
have also proposed a baseline which combines Faster R-CNN with prototypical
networks by replacing the classification layer with the non-parametric prototypical
network equivalent. They investigate this baseline with and without finetuning, and
find that it is always beneficial to finetune.

Modulation-based methods Modulation-based methods generally compute
support weights (also known as class embeddings, weights, prototypes, or attentive-
vectors) from the support features using a separate conditioning branch (some-
times called reweighting module [Kang et al., 2019], guidance module [Li and Li,
2021], or remodeling network [Yan et al., 2019]). Each class has its own support
weights, which are usually computed by applying global average-pooling to the
support features and have a shape 1 ◊ 1 ◊ C shape, where C is the number of
channels. The support weights then are multiplied channel-wise with the query
features to obtain class-specific query features, in a process known as modulation
or aggregation. Finally, binary detections are predicted (object vs. background)
on each set of class-specific features, and the results are merged to get multiclass
detections. For faster inference, support weights can be precomputed and stored
during the finetuning/conditioning step.

To the best of our knowledge, one of the first modulation-based method was Meta-
YOLO Kang et al. [2019], which is also the work that introduces the standardized
FSOD splits (see Figure 8.7). Meta-YOLO uses both conditioning and finetuning.
The model uses a feature extractor module to obtain the image features of the
query image, and a reweighting module that extracts features from the bounding
boxes of the support images to obtain reweighting vectors. The object mask binary
matrices are added as an extra layer to the RGB images to form 4-channel images
which are fed to the reweighting module. These vectors are used to condition the
image features which allows the prediction layer to output the bounding boxes
corresponding to the classes represented by those vectors. During base training,
the two modules and the prediction layer are trained on the base classes. During
few-shot finetuning, the model is finetuned using the K support examples per class,
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from the base and novel classes.10 At few-shot evaluation time, reweighting vectors
for each class are precomputed by averaging the corresponding vectors, and used to
modulate the main features.

Since then, several improved conditioning-based methods have been introduced.
Due to using di�erent architectures and design choices, these works employ a diverse
range of modulation strategies, which we discuss below. In Meta-YOLO [Kang
et al., 2019], which is based on the single-stage detector YOLO, the features fqry

output by the backbone are directly multiplied channel-wise by the class embeddings
fcls, resulting in the modulated features [fqry

o
fcls]. In Meta-RCNN [Yan et al.,

2019] which is based on the two-stage detector Faster RCNN, the features are
only multiplied after they have been pooled with RoIAlign; the consequence is
that the Region Proposal Network (RPN) is agnostic to the object category. In
ACM-MetaRCNN [Wu et al., 2020b], also based on Faster RCNN, the feature
maps are multiplied twice by the class prototypes: before running the RPN, and
after pooling the features of each box, which means the RPN may produce di�erent
region proposals for each class. In Attention-FSOD [Fan et al., 2020a], based on
Faster RCNN, the query features are convolved channel-wise with support features
(used as kernels) before feeding them to the RPN. In practice the authors find
1 ◊ 1 support features to be optimal, and the convolution reduces to a channel-wise
multiplication. The proposals are fed to a relational detection head, which classifies
objects using matching scores by comparing query features with support features.
Additionally, the authors explore three ways to model support-to-query relations in
the detection head: globally, locally, and patch-wise. They find it beneficial to use
all three types of relation heads. In Fully Guided Network (FGN) [Fan et al.,
2020b], based on Faster RCNN, the support features are global-average-pooled
and averaged for each class to obtain the class-attentive vectors. Then, the query
features are multiplied channel-wise with the class-attentive vectors and fed to the
RPN to obtain class-specific proposals, which are aggregated between the di�erent
classes. Finally, in the relational detection head, the aligned query features and N
support class averages are concatenated altogether and fed into a MLP to obtain
box and multiclass predictions. Relational detection heads [Sung et al., 2018a]
have the ability to jointly predict boxes for all classes, which di�ers from other
conditioning-based approaches which predict boxes independently for each class by
relying on class-specific modulated features. In FsDetView [Xiao and Marlet, 2020],
the query features are modulated by the support weights after ROI pooling. Instead
of simply multiplying the features together, the authors propose to also concatenate
and subtract them, resulting in the modulated features [fqry

o
fcls, fqry ≠ fcls, fqry].

Meta-DETR [Zhang et al., 2021b] adapts FsDetView’s modulation strategy to
the DETR architecture [Carion et al., 2020]. At the output of the backbone, both

10Since only K labeled bounding boxes are available for the novel classes, to balance between
samples from the base and novel classes, only K boxes are included for each base class
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support and query features are fed to the transformer encoder, then the query
features are multiplied with global-average-pooled support vectors, and fed to the
transformer decoder to make binary predictions.

Necessity of finetuning Only a few FSOD methods such as Li et al. [2020]
or Attention-FSOD [Fan et al., 2020a] present themselves as methods that do not
require finetuning. However, we should note that most if not all of the conditioning-
based methods presented in the previous section could technically be used without
finetuning on base+novel classes, by directly conditioning on the support examples
at few-shot evaluation time. In practice, most works find it beneficial to finetune,
and in fact many of the conditioning-based methods reviewed above do not even
report numbers without finetuning. For instance, ACM-MetaRCNN, a conditioning-
based model, finetune their model, except for 1-shot and 2-shot on PASCAL VOC,
where they do not finetune “to avoid overfitting”. Even Attention-FSOD [Fan et al.,
2020a], which claims to be usable without finetuning, achieves its best performance
after finetuning (see for instance Table 8.3).

Add-on methods

Some FSOD methods do not propose a specific architecture, but instead propose
add-on tricks that can be combined with many of the existing FSOD methods to
boost performance. For instance, Transformation Invariant Principle (TIP) [Li and
Li, 2021] is a regularization strategy based on data augmentation transformations,
which can be applied to any two-stage FSOD method. Specifically, TIP proposes
to minimize several consistency losses: the guidance vectors (class weights) for a
support object (first view) and its transformed version (second view) should be close
in feature space (the authors find the L2 distance to give best results). Additionally,
TIP pools features from one view using proposals generated from another view;
the resulting detections are used to compute another detection loss (regression and
classification).

5 Self-Supervised Pretraining
Until recently, the standard approach in deep object detection was to pretrain the
backbone on supervised ImageNet Deng et al. [2009] classification. This still holds
for modern iterations of two-stage detectors such as Faster R-CNN Ren et al. [2015]
– as per its detectron2 implementation – as well as one-stage detectors such as
YOLOv3 Redmon and Farhadi [2018], SSD Liu et al. [2016], RetinaNet Lin et al.
[2017b] and recent transformer-based detectors like DETR Carion et al. [2020] and
Deformable-DETR Zhu et al. [2021].
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Self-supervised pretraining has emerged as an e�ective alternative to supervised
pretraining where the supervision comes from the data itself. The key idea is to
automatically generate labels from unlabeled data, and learning to predict those
labels back. This process is known as solving a pretext task. For instance, a
common pretext task is to predict the relative position of two random crops from
the same image [Pathak et al., 2016]. This broad definition could potentially
include many unsupervised methods such as VAEs [Kingma and Welling, 2014] and
GANs [Goodfellow et al., 2014, Huang et al., 2017] but in practice the self-supervised
term is used for methods for which the pretext task di�ers from the downstream
task [He et al., 2020, Chen et al., 2020a, Grill et al., 2020]. Some language models
such as word2vec [Mikolov et al., 2013] are also considered to be self-supervised.

Starting with SimCLR Chen et al. [2020a] and MoCo He et al. [2020], people have
experimented initializing object detection backbones with unsupervised represen-
tations learned on ImageNet (or COCO) instead of supervised ones. Since the
pretext tasks are fairly general, there is the hope that unsupervised representa-
tions might generalize better to downstream tasks than classification-based ones.
Recent works [Wei et al., 2021a, Bar et al., 2021, Yang et al., 2021a, Wang et al.,
2021] which we will refer to as self-supervised object detection methods go beyond
backbone-pretraining by also pretraining the detection heads specifically for object
detection.

In Section 5.1 we review self-supervised classification methods; then in Section 5.2
we discuss their limitations for initializing object detection backbones; finally in
Section 5.3 we review self-supervised object detection approaches, which unlike the
previous methods, are specifically tailored to object detection.

5.1 Image-level Backbone Pretraining
In the image classification domain, self-supervised learning has emerged as a strong
alternative to supervised pretraining, especially in domains where images are abun-
dant but annotations are scarce Mañas et al. [2021]. Self-supervised classification
methods are not limited to classification, as the learned feature extractor can
used to initialize the backbone of common object detection architectures. We
categorize backbone pretraining strategies into constrastive, clustering-based and
self-distillative. We will omit reconstruction [Vincent et al., 2008, Pathak et al., 2016,
Zhang et al., 2016, 2017] methods and visual common sense [Doersch et al., 2015,
Noroozi and Favaro, 2016, Gidaris et al., 2018] based tasks, as to our knowledge,
they have not been used for object detection.
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Global Contrastive Learning 7 11

These approaches leverage the InfoNCE [Oord et al., 2018] loss to compare pairs
of samples which can be positive pairs or negative pairs. Usually, positive pairs
are generated from di�erent views (data augmentations) of the same image, while
negative pairs are generated from di�erent images. Contrastive Predictive Coding
(CPC) is one of the first approaches to be competitive with respect to supervised
classification [Oord et al., 2018, Hena�, 2020]. In CPC, the goal is to predict a
future part of a sequential signal p(x|c) given some previous context of that signal
(c). Since reconstructing x from c is di�cult in high-dimensional spaces, they
propose a contrastive objective instead. Given a set of random samples, containing
one positive sample x+

≥ p(x|c), and N ≠ 1 negative samples x≠

1 , . . . , x
≠

N
≥ p(x)

from the “proposal” distribution, they propose to learn a function f◊(x, c) which
minimizes the InfoNCE loss:

LInfoNCE(◊) = ≠EX

C

log f◊(x+, c)
q

i f◊(x≠

i
, c)

D

. (5.1)

The density ratio f◊(x, c) can be interpreted as an a�nity score, which should be
high for the real sample and low for negative samples.

More recent approaches such as momentum contrast (MoCo) [He et al., 2020, Chen
et al., 2020c, 2021c], or SimCLR Chen et al. [2020a,b] reinterpret the InfoNCE loss
in a di�erent context. Given a reference image x0, positive samples x+

≥ p(x|x0) are
generated using data augmentation on x0, and negative samples x≠

1 , . . . , x
≠

N
≥ p(x)

are other images sampled from the dataset. The InfoNCE loss becomes:

LInfoNCE(◊) = ≠EX

C

log f◊(x+, x0)q
i f◊(x≠

i
, x0)

D

. (5.2)

The goal is to learn representations which maximize the a�nity f◊(x, x0) between
di�erent data-augmentations (views) of the same image, and minimize the a�nity
between di�erent images.

While both MoCo and SimCLR find crucial to use a large set of negative examples,
they di�er in their approach to obtain them. SimCLR uses a large batch size, while
MoCo uses smaller batches but stores the embeddings in a queue, which is used
to retrieve negative examples. To prevent drift between queued embeddings and
positive examples, MoCo encodes negative examples with an exponential moving
average of the weights.

Most self-supervised pre-training methods in the literature aim to learn a global
image representation to transfer to a given downstream task [He et al., 2020,
Chen et al., 2020c, 2021c, 2020a, Caron et al., 2020, 2021]. However, global image

11Use colors for quick reference to Table 8.4. The 7 means backbone-only pretraining.
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representations might not be optimal for dense prediction tasks such as detection and
segmentation. In order to bridge the gap between self-supervised pre-training and
dense prediction, Pinheiro et al. [2020] proposed VADeR, a pixel-level contrastive
learning task for dense visual representation. Di�erent from global contrastive
learning approaches such as SimCLR, VADeR uses an encoder-decoder architecture.
Then, given the output feature maps for a positive sample, an augmented sample,
and a negative sample, the InfoNCE loss is applied between the decoder’s pixel
features rather than being applied to the average of the decoder’s output. As a
result, VADeR achieves encouraging results when compared to strong baselines in
many structured prediction tasks, ranging from recognition to geometry.

Clustering-Based 7 12

Clustering-based methods rely on unsupervised clustering algorithms to generate
pseudo-labels for training deep learning models [Xie et al., 2016, Yang et al., 2016].
A key idea is to alternate between clustering learned representations, and using the
predicted cluster assignments to improve representations in return. Caron et al.
[2018, 2019] show that k-means cluster assignments are an e�ective supervisory signal
for learning visual representations. Asano et al. [2019] show that cluster assignments
can be solved as an optimal transport problem. Based on previous approaches,
Swapping Assignments between multiple Views of the same image (SwAV) [Caron
et al., 2020] was proposed. SwAV attempts to predict the cluster assignments for
one view from another view (data augmentation) of the same image. It uses the
Sinkhorn-Knopp algorithm for clustering [Cuturi, 2013], which has previously been
explored for recovering labels in few-shot classification [Huang et al., 2019], and
has good properties such as quick convergence and di�erentiability [Cuturi, 2013].
SwAV avoids trivial solutions where all features collapse to the same representation
by using the appropriate amount of entropy regularization [Caron et al., 2020].

Knowledge Self-distillation (BYOL) 7

Self-distillative approaches such as Bring Your Own Latent (BYOL) [Grill et al.,
2020] and mean teacher [Tarvainen and Valpola, 2017] move away from contrastive
learning by maximizing the similarity between the predictions of a teacher and
a student model. The student model is optimized using SGD, while the teacher
model is instantiated as an exponential moving average of the student weights [Grill
et al., 2020]. In order to prevent them from collapsing to the same representation,
Grill et al. [2020] found it helpful to use other tricks such as softmax sharpening
and recentering. Subsequent approaches such as DINO [Caron et al., 2021] and
EsViT [Li et al., 2021b] leverage vision transformers (ViT) [Dosovitskiy et al.,

12Use colors for quick reference to Table 8.4. Checkmarks 3 and 7 indicate whether the detection
heads are pretrained.
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Figure 8.8: DINO’s attention maps. Since DINO is based on a visual transformer,
the attention maps corresponding to the [CLS] token can be plotted. Despite being
trained with no supervision, di�erent attention heads are found to segment di�erent objects.
Source: Caron et al. [2019].

2021] instead of residual networks, following the trend of using self-supervision in
natural language processing [Vaswani et al., 2017, Radford et al., 2018, Brown et al.,
2020]. They divide the input image into a grid of small patches (8 ◊ 8 pixels for
DINO) and feed them to a ViT. The last feature map, which could be used as a
dense representation, is average-pooled into a single vector and compared between
teacher and student models using cross-entropy. The main di�erence between the
two is that EsViT uses a two-stage architecture and a part-based loss. The first
improvement reduces the amount of image patches in the second stage, which
makes the model more e�cient. The second improvement introduces an additional
loss besides DINO’s teacher-student loss that encourages matching regions across
multiple views to match their respective student and teacher representations.

Interestingly, the authors of DINO show that semantic segmentation masks naturally
emerge from the attention masks of the visual transformer (see Figure 8.8). This
is very surprising given that the model was trained with no supervision whatso-
ever. This suggests that combining dense pretext tasks such as VADeR [Pinheiro
et al., 2020] and DINO [Caron et al., 2021] with attention-based models such as
transformers could improve the transferability of self-supervised learning methods
to dense downstream tasks.

5.2 Issues of Combining Self-Supervised Classification with
Detection

Conceptually, there are some issues with transferring classification-based repre-
sentations to object detectors, whether the representations were supervised or
self-supervised.
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Untrained Detection Heads

The first issue is with untrained detection heads, due to the architecture mismatch.
For instance, it is a common practice to combine Resnet-50 and Resnet-101 back-
bones with a Feature Pyramid Network (FPN). However, the FPN is initialized
from scratch and does not generally benefit from pretraining (though Pinheiro
et al. [2020] propose to pretrain the FPN). The same goes for the Region Proposal
Network (RPN) and the detection regression and classification heads, in the case
of Faster RCNN; and for the encoder and decoder, in the case of DETR-style
architectures.

Task Mismatch

Secondly, ImageNet top-1 classification accuracy does not necessarily correlate with
object detection performance. While certain properties such as translation and scale
invariance are desirable for classification, they might actually hinder object localiza-
tion [Newell and Deng, 2020, Xiao et al., 2020]. Classification-based representations
such as MoCo He et al. [2020] or SimCLR Chen et al. [2020a] might discard spatial
information that is useful for localization, because they are irrelevant for solving the
pretraining tasks. Moreover, data augmentation strategies such as random cropping
and jittering may introduce undesirable invariances into the network. In fact, Yang
et al. [2021a] show that MoCo can perform better on object detection than BYOL
and SwAV, despite having worse classification performance. Identifying whether
the performance bottleneck comes from localization or classification errors is as
hard of a problem as evaluating object detection itself. Metrics like mAP cannot
disentangle localization and classification errors—AP is computed per-category, so
if class predictions are wrong they will impact the localization error. mAP with
higher IoU threshold put more emphasis to precise localization, but they are still
contingent on having correct class assignments.

5.3 Object Detection Pretraining
Self-supervised object detection approaches attempt to remedy those issues by
pretraining the object detection pipeline on a variety of unsupervised pretext tasks.

Predictive approaches 3

Predictive approaches such as UP-DETR Dai et al. [2021] and DETReg Bar et al.
[2021] pretrain the detection heads of DETR by making them re-predict the position
of automatically generated “ground-truth” crops. These crops are generated either
randomly for UP-DETR or using Selective Search [Uijlings et al., 2013] for DETReg,
a training-free heuristic based on iteratively merging regions with similar colors,
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Table 8.4: Comparison of Self-Supervised Object Detection Methods pretrained on
unlabeled ImageNet. The check marks 3 and 7 refer to whether the methods pretrain
both the backbone and detection heads vs. only the backbone.

Name Pretrains
Detector Loss View

Matching

Region
Proposal

Mechanism

Pascal
AP50

COCO
AP

Best
Backbone

Object
Detector

DETReg [Bar et al., 2021] 3 predictive 3 - selective search 83.3 45.5 R50 Def.DETR
SoCo [Wei et al., 2021a] 3 BYOL 3 crop selective search 83.8 44.3 R50-FPN F-RCNN
InsLoc [Yang et al., 2021a] 3 contrastive 3 crop random crop 83.0 43.3 R50-C4 F-RCNN
UP-DETR [Dai et al., 2021] 3 predictive 3 - random crop 80.1 42.8 R50-C4 DETR
ReSim [Xiao et al., 2021] 3 contrastive 3 sliding window random crop 83.1 41.4 R50-FPN/C4 F-RCNN
DenseCL [Wang et al., 2021] 3 contrastive 3 feature random crop 82.8 41.2 R50-FPN/C4 F-RCNN

VaDer [Pinheiro et al., 2020] FPN-only contrastive 7 feature - - 39.2 R50-FPN F-RCNN

EsViT [Li et al., 2021b] 7 BYOL 7 image - - 46.2 Swin-ViT F-RCNN
DETcon [Héna� et al., 2021] 7 contrastive 7 mask grid/FH/MCG 82.8 43.4 R50-FPN F-RCNN
BYOL [Grill et al., 2020] 7 BYOL 7 image 81.0 42.3 R50-FPN/C4 F-RCNN
DI7 [Caron et al., 2021] 7 BYOL 7 image - - - ViT/R-50 -
SwAV [Caron et al., 2020] 7 clustering 7 image - 77.4 42.3 ResNet F-RCNN
MoCo [Chen et al., 2020c] 7 contrastive 7 image - 82.5 41.7 R50-FPN/C4 F-RCNN
SimCLR [Chen et al., 2020a] 7 contrastive 7 image - 81.9 39.6 ResNet F-RCNN

textures, and other local characteristics. 13

To pretrain DETR on unsupervised images, the multi-class classification heads (see
Figure 8.3) which would normally predict the object category or background are
replaced with a binary classification head. In DETReg, the goal is to detect the top
proposals generated by Selective Search, as if they were ground-truth foreground
objects. The usual DETR loss is used, except that the matching cost used to
compute correspondences between ground-truth boxes and detections is a function
of the predicted binary labels and locations – instead of ground truth and predicted
multiclass labels. In UP-DETR, the goal is to predict back the positions of the
random crops. Specifically, the transformer decoder is conditioned on the random
crops by adding their corresponding features to the decoder input (see object queries
in Figure 8.3). This is done by partitioning the object queries into K groups,14 and
adding a di�erent random crop to each group. The loss is computed by finding
the optimal matching between the predicted boxes and the “ground-truth” random
crops using the Hungarian algorithm [Munkres, 1957], where the cost of matching
two boxes is a function of their location and predicted binary label.

On top of the DETR loss, an additional reconstruction loss is used to force the
decoder transformer to reconstruct its input. DETReg uses a simple L1 loss

13Note that Selective Search used to be a popular training-free heuristic for generating high-
recall low-precision region proposals, and was used in RCNN Girshick et al. [2014] and Fast
RCNN Girshick [2015] before it was replaced by a trained Region Proposal Network (RPN).

14The way UP-DETR matches predictions and ground-truth from di�erent groups instead of
matching only within the same groups might not necessarily be an intended feature, but rather
a consequence of building on top of existing DETR code. In practice, this does not make much
di�erence as the groups are matched correctly (personal communication with the authors).
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Lrec(zi, zj) = ||zi ≠ zj||1, while UP-DETR uses cosine similarity Lrec(zi, zj) =...zi/ÎziÎ ≠ zj/ÎzjÎ

...
1
. Also, an interesting by-product of UP-DETR is that it learns

a conditioning branch, which can be reused directly for one-shot object detection by
replacing the random crops with support images. The paper provides some results
on PASCAL VOC Dai et al. [2021].15

Local Contrastive Learning 3

Unlike global contrastive methods (Section 5.1) which contrast global representations
at the image level, local contrastive methods contrast backbone representations
locally, either at the feature or crop level, with the hope of learning location-aware
representations. Some of them, such as InsLoc [Yang et al., 2021a], also pretrain
detection heads.

In InsLoc [Yang et al., 2021a], features for each crop are computed using
RoIAlign [Ren et al., 2015], then transformed by the RoI heads to a single 1 ◊ 1 ◊ d
vector. Positive pairs are generated by randomly cropping two views of the same
image, while negative pairs are generated by using di�erent images. Specifically in
InsLoc, positive pairs are generated by pasting two views of the same object (the
foreground) at random locations and scales onto other images of the dataset (the
background). The authors also introduce a cut-and-paste scheme in order to force
the receptive field of RoIAlign to ignore distractor features outside the bounding
box.

In ReSim [Xiao et al., 2021], two overlapping crops are generated from two di�erent
views of the same image. Then, a sliding window is moved across the overlapping
area, and the pooled representations are compared at each of the final convolutional
layers. Positive pairs consist of aligned sliding windows across two views of the
same image, while negative pairs either consist of unaligned sliding windows, or
sliding windows from two di�erent images.

In DenseCL [Wang et al., 2021], instead of using spatial correspondence, positive
pairs are generated by matching each feature from one view to the feature with
highest cosine similarity in another view of the same image. Negative examples
are simply features from di�erent images. Additionally, the authors combine this
dense loss with a global MoCo-style loss, which they claim is necessary to bootstrap
correct correspondences.

Self-distillative approaches (BYOL) 3

Self-distillative (BYOL-based) approaches such as SoCo Wei et al. [2021a] depart
significantly from contrastive approaches as there is no need for negative examples.

15Not reported in Table 8.4 due to using di�erent splits.
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Selective object COnstrastive learning (SoCo) builds on top of BYOL Grill et al.
[2020] and pretrains both the backbone, feature pyramid, and RoI heads of a
FPN-based Faster RCNN by training two networks simultaneously. The “student”
network f◊ uses SGD to copy the feature maps of a “teacher” network f›, which is
an exponential moving average of the student network, and the student network is
optimized using SGD. For a given image, object proposals (denote the bounding
boxes b) are generated unsupervisedly using Selective Search [Uijlings et al., 2013].
Then, two views V1, V2 are generated and respectively fed into student and teacher
FPNs to get feature maps v1, v2. Box features are computed for each bounding box
b by pooling v1, v2 with RoIAlign and passing them to the RoI heads:

h1 = fH

◊
(RoIAlign(v1, b), h2 = fH

›
(RoIAlign(v2, b).

The box features h1, h2 are then projected to obtain latent embeddings e1, e2, and
their cosine similariy is minimized

L(◊) = ≠
Èe1, e2Í

||e1||2 · ||e2||2
.

In practice, SoCo introduces several other tricks, such as using more than two views
and resizing them at multiple scales, jittering the proposed box coordinates, and
filtering proposals by aspect ratio Wei et al. [2021a].

5.4 Comparison of Self-Supervised Object Detection Meth-
ods

In Table 8.4, we review the self-supervised object detection methods discussed
previously , and report their performance on PASCAL VOC and MS COCO object
detection (non few-shot). Note that the numbers are not directly comparable in
absolute value, due to variations in model architectures, hyperparameters, learning
rate schedules, data augmentation schemes, and other implementation details.
Instead, we encourage the reader to dig into the corresponding ablation studies of
those works.

This table contains methods specifically geared towards object detection as presented
in Section 5.3, which train the backbone (“Pretrains Detector: Yes”), and general
purpose representations as presented in Section 5.1 which only pretrain the backbone
on top of which an object detector was fitted a posteriori, often by a subsequent
work (“Pretrains Detector: No”). For instance, most of the numbers for DenseCL,
BYOL, DETcon, MoCo, SimCLR and SwAV are taken from the SoCo paper [Wei
et al., 2021a]. VaDer is in between, as it does not pretrain detection heads but does
pretrain a feature pyramid network (FPN) alongside the backbone.

The methods can be categorized into four types of losses: self-distillative
( BYOL ), predictive ( predictive ), constrastive ( contrastive ) and clustering-based
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( clustering ). The check marks 3and 7refer to whether these methods also pretrain
the detection heads. View Matching refers to the way di�erent views of the
same image are matched. From most global to most local: image > crop, mask >
sliding window > feature. Region proposal mechanism describes how unsupervised
regions are generated for the purpose of pretraining (not to be confused with the
candidate proposals in two-stage detectors). DETcon generates masks from: “grid”
a fixed-size grid, “FH” the Felzenszwalb-Huttenlocher algorithm [Felzenszwalb and
Huttenlocher, 2004], or “MCG” Multiscale Combinatorial Grouping [Arbeláez et al.,
2014]. “R50-FPN” means ResNet-50 with Feature Pyramid Network. “R50-C4”
means using ResNet-50’s C4 layer. “ViT” is the visual transformer [Dosovitskiy
et al., 2021]. “Swin” is a type of hierarchical visual transformer [Liu et al., 2021b].
“F-RCNN” stands for Faster R-CNN, “Def. DETR” for deformable DETR.

Many FSOD methods [Wang et al., 2021, Xiao et al., 2021, Grill et al., 2020, He
et al., 2020] are found to perform better using multi-scale features with a FPN for
MS COCO, but with single-scale C4 features for PASCAL VOC, which may be a
consequence of its limited size.

6 Takeaways & Trends
We discuss our main takeaways and forecasted trends from this survey.

6.1 Finetuning is a strong baseline
Almost every few-shot object detection method we have reviewed finetunes on the
novel classes. This is the case even for conditioning-based methods, which could
technically be used without finetuning by conditioning on the support examples, but
have been found to benefit from finetuning anyways. The problem is that finetuning
approaches are slower and may require more hyperparameter tuning. This could be
a serious obstacle to deploying such methods in the real world. In general, we hope
to more see competitive finetuning-free methods in the future.

6.2 Impact of self-supervision for object detection
It is somewhat surprising that self-supervised object detection pretraining only
brings limited improvements for traditional object detection. This could be explained
by the fact that post-pretraining, the object detector is finetuned on the labeled
dataset, which could render self-supervision redundant. It could also be that current
experiments are mainly limited to ImageNet and MS COCO pretraining, whilst
self-supervision could potentially benefit from larger unlabeled datasets. However,
the impact of self-supervised pretraining seems to be more significant for few-shot
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and low-data object detection. In fact, the state-of-the-art FSOD results on MS
COCO are from DETReg [Bar et al., 2021], a self-supervised object detection
method.

6.3 Using heuristics to generate weak labels
A general trend in self-supervised learning is to use heuristics to generate weak
or noisy labels. Data augmentations are now widely used for generating positive
pairs in the context of self-supervised classification [He et al., 2020, Chen et al.,
2020a, Grill et al., 2020]. Specifically to object detection, DETReg [Bar et al., 2021]
and SoCo [Wei et al., 2021a] have adopted Selective Search [Uijlings et al., 2013],
for generating crops which are more likely to contain objects. On the other hand,
DetCon [Héna� et al., 2021] have explored using the Felzenszwalb-Huttenlocher
algorithm and Multiscale Combinatorial Grouping to generate better segmentation
masks for feature pooling. Since these heuristics come from traditional computer
vision, we expect practitioners to continue adapting more of them to improve
self-supervised training in the future. An important question is how such heuristics
can be integrated in an iterative bootstrapping procedure: as better representations
are learned, it might be worthwhile to gradually replace the initial heuristics with
learned and improved ones (e.g., replacing selective search with a learned RPN). One
possible direction of research could be to develop di�erentiable/learnable versions
of these traditional heuristics.

6.4 Rise of transformers
Visual transformers have gained increasing traction in object detection, both as
backbones and as end-to-end detection heads. For using them as backbones,
works such as DINO [Caron et al., 2021] have shown that fully unsupervised
pretraining of visual transformers can lead to the emergence of object segmentation
capabilities. Specifically in their case, the multi-head attention modules learn to
segment foreground objects as a byproduct of solving the pretext task, as shown
in Figure 8.8. More generally, there is growing belief from the study of scaling
laws for foundational models that visual transformers can generalize better than
ResNets to large scale training [Zhai et al., 2021]. Some self-supervised methods,
such as EsViT [Li et al., 2021b], also rely on recent iterations of visual transformers
such as Swin [Liu et al., 2021b] to obtain state-of-the-art results. When using them
as detection heads, DETR [Carion et al., 2020] has shown that transformer-based
detection heads can be trained end-to-end. In particular, they are capable of
making joint predictions and dealing with redundant detections, thus removing
the need to rely on heuristics such as non-maximum suppression (NMS). More
recent work such as Pix2Seq [Chen et al., 2021b] has shown that object detection
can be formulated as a language modeling task. The flexibility that comes with
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language modeling could blur the line between pure vision tasks (such as object
detection) and vision-to-language tasks (such as image captioning or visual question
answering), lead to simpler architectures, more end-to-end approaches with less
heuristics (such as NMS), and pave the way to foundational models for vision and
language tasks.

6.5 Problems with current evaluation procedures
Comparisons such as Table 8.3 and Table 8.4 should only be used to get a general
idea of the performance of those systems. The numbers themselves often not directly
comparable, due to variations in backbone architecture, use of multi-scale features
(FPN), varying detection architectures, types of data augmentations used, learning
rate scheduling, or even things as trivial as input image size resizing.

Di�erences in implementation details

In fact, many of the modulation-based FSOD methods we have reviewed in Sec-
tion 4.5 have quite a similar structure, di�ering only in the modulation strategy,
backbone architecture and object detector used. This raises the question of how
much of the performance of state-of-the-art methods is owed to new ideas rather
than better hyperparameter tuning or using better architectures. One way would
be to see how much performance we can get with running older methods in newer
frameworks, or building an unifying benchmark.

Issues with data splits

Specifically to the FSOD use of PASCAL VOC, there has been a shift from using
Kang’s splits to TFA’s splits which were introduced later to alleviate the variance
problems with Kang’s splits. Despite the fact that the two splits can yield wildly
di�erent numbers (see for instance the line on TFA w/cos), several works mistakenly
mix them up in the same tables [Xiao and Marlet, 2020, Li and Li, 2021, Zhang
et al., 2021b]. More generally, the fact that virtually every FSOD paper – regular
object detection papers too– trains on the union of training and validation sets
(trainval) and uses the test set for hyperparameter tuning can lead to overfitting
and overestimating the actual generalization performance.

Proposed guidelines

Therefore, we propose the following guidelines for having more comparable results:

1. Define and use proper train/val/test splits. Researchers should agree on
newer splits or benchmarks, as no single researcher has any incentive to stop
overfitting on the test set.
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2. Do not propose benchmarks which are prone to high variance, such as Kang’s
splits for Pascal or TFA splits for LVIS. Prior work on few-shot classification
has consistently provided confidence intervals by averaging results over mul-
tiple episodes, and sampling the few-shot training set instead of fixing the
instances [Snell et al., 2017a, Chen et al., 2019a, Vinyals et al., 2016a].

3. Standardize implementation details such as image resizing, whitening, and
data augmentations. Define standard backbone and detector architectures to
be explored for each benchmark. Results could be presented in two categories:
fixed architecture and best architecture. The introduction of Detectron2 has
already led to more standardization and code sharing, providing among other
things a standard implementation of Faster R-CNN with FPN.16

4. Relate new tasks to existing tasks. For instance, the dominant FSOD and
few-shot classification frameworks use di�erent terminologies, training and eval-
uation procedures, and FSOD could have benefited from FSC best practices.
We found it necessary to clarify the di�erences and subtleties in Section 4.2.

7 Related Tasks
We briefly discuss other related tasks, which are out of the scope of this survey.

7.1 Weakly-supervised object detection
Image-level and point-level annotations are cheaper and faster to obtain, and noisy
image-level labels could even be generated automatically using image search engines.
Weakly supervised object detectors are trained using only image-level annotations
without requiring bounding boxes [Bilen and Vedaldi, 2016, Jie et al., 2017, Tang
et al., 2018] and could therefore benefit from a larger pool of labels. Many weakly
supervised detection methods fall under multiple-instance learning (MIL) Dietterich
et al. [1997] where each image corresponds to a bag of object proposals. A bag is
given the class label based on whether the label exists in the image. Li et al. [2016]
present a two-step approach that includes selecting good object proposals; then
training a Faster RCNN Ren et al. [2015]. Tang et al. [2017] use a refinement learning
strategy to select good quality proposals. C-MIL Wan et al. [2019] introduces an
optimization method to avoid selecting poor proposals, C-WSL Gao et al. [2018] uses
object count information to obtain the highest scoring proposals, WISE Laradji et al.

16Despite the valuable e�orts of Detectron2 towards standardization and open-sourcing, we did
find the framework overwhelming for some use-cases. This resulted in additional di�culties when
working with Detectron2-based projects due to the highly abstract nature of the framework. We
hope that future frameworks will be more user-centric. For instance, a micro-framework with
independently-usable modules might lead to more readable user code.

124



[2019b] that uses class activation maps to score proposals and LOOC Laradji et al.
[2020a] can be used to detect objects in crowded scenes. Point-level annotations
can also be use for object detection like in Laradji et al. [2019a, 2021b, 2020b], but
they require slightly more human e�ort.

7.2 Self-supervision using other modalities
Instructional videos are a natural source of self-supervision, as they contain both
speech and visual information. For instance, Amrani et al. [2020] recently proposed
using unlabeled narrated instructional videos to learn an object detector by exploit-
ing the correlations between narration and video. They start by extracting video
transcripts with an external method. For a given object, they generate positive
frames from the temporal period where the object is mentioned, and negative frames
from videos that do not mention the object. They extract bounding boxes using
Selective Search [Uijlings et al., 2013], compute their features using a pretrained
backbone, cluster them in feature space, assign a score to each cluster, and filter
out the noisiest examples. Finally, they train a detector on the remaining bounding
boxes. Laradji et al. [2021a] deal with 3D ct scans using self-supervision and
weak supervision to train a model to predict regions in the lungs that are infected
with COVID. Liu et al. [2019a] used self-supervision by making sure outputs are
consistent between di�erent viewpoints and augmentations which in turn helped
improve 2D to 3D reconstruction.

7.3 Low-data and semi-supervised object detection
Low-data object detection (LSOD) and semi-supervised object detection (SemiOD)
are closely related to few-shot object detection (FSOD). Instead of having a dis-
tinction between base classes (many examples) and novel classes (few-shot), LSOD
and SemiOD both assume that the number of examples for all classes is limited—
which is generally simulated by considering a fraction of the labels of traditional
object detection datasets (e.g miniCOCO is a 1%, 5% or 10% subset of MS COCO).
Several of the self-supervised object detection methods reviewed in this survey
report numbers in the low-data regime; see for instance the results on miniCOCO
of DETReg [Bar et al., 2021], SoCo [Wei et al., 2021a], InsLoc [Yang et al., 2021a],
DenseCL [Wang et al., 2021]. Compared to LSOD, SemiOD methods generally lever-
age additional unlabeled datasets. For instance, Adaptive Class-Rebalancing [Zhang
et al., 2021a] and SoftTeacher [Xu et al., 2021b] report results on miniCOCO but
also leverage additional unlabeled MS COCO images to improve performance on
the regular MS COCO benchmark.
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7.4 Few-shot semantic segmentation
Few-shot object detection has many similarities to few-shot semantic segmentation
as they both require us to identify the objects of interest in the images. However,
semantic segmentation only considers the class of individual pixels and does not
require to identify the individual objects in the image. Semantic segmentation
models tend to be simpler as they are usually based on architectures that only have
a downsampling path and an upsampling path Long et al. [2015], Ronneberger et al.
[2015], as opposed to a proposal generator and additional networks for classification
and regression Girshick [2015]. Further, people have explored few-shot semantic
segmentation using weaker labels than the full segmentation masks. For instance,
Rakelly et al. [2018], Siam et al. [2020] allow annotators to label only few pixels
per object in the support or image-level labels for meta-testing. Using weakly
supervised methods for few-shot object detection is is an interesting direction that
is fairly unexplored.

7.5 Zero-shot object detection
Zero-shot object detection and instance segmentation are about learning to detect
(resp. segment) novel objects based on a non-visual descriptions of them. These
descriptions could be in the form of semantic attributes, such as “long tail” and
“orange beak” in the case of bird classification. In practice, the attribute vector
often consists of pretrained word embeddings, since those are readily available and
contain implicit world knowledge from large unlabeled datasets. When using word
embeddings, a common strategy is to modify existing object detection/instance
segmentation heads by projecting object feature maps to have same dimensionality
as word embeddings. This is the case of ViLD [Gu et al., 2021], ZSI [Zheng et al.,
2021], BLC [Zheng et al., 2020b], PL [Rahman et al., 2020], DSES [Bansal et al.,
2018], who propose many tricks to improve performance, such as distilling pretrained
vision-language models like CLIP [Radford et al., 2021], learning improved word em-
beddings for “foreground” and “background” for the RPN, using separate pathways
for seen and unseen classes to avoid catastrophic forgetting, and explore di�erent
ways to mingle semantic and visual information. Overall, several innovations from
zero-shot classification and object detection, few-shot object detection, and instance
segmentation could be shared in the future.

8 Conclusion
We have formalized the few-shot object detection framework and reviewed the
main benchmarks and evaluation metrics. We have categorized, reviewed, and
compared several few-shot and self-supervised object detection methods. Finally, we
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have summarized our main takeaways, made future best practice recommendations,
highlighted trends to follow, and given pointers to related tasks.
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9 Prologue to the Fourth

Contribution

1 Article Details
Multimodal Pretraining for Dense Video Captioning by Gabriel Huang, Bo
Pang, Zhenhai Zhu, Clara Rivera, Radu Soricut. This paper has been accepted at
AACL-IJCNLP 2020.

2 Contributions of the authors
This project was done while Gabriel Huang was an intern at Google Research in the
GARCON team. Bo Pang led the creation of the ViTT dataset, defined the project
and mentored Gabriel Huang; Zhenhai Zhu helped with the code, data processing,
and launching experiments; Clara Rivera contributed to creating the ViTT dataset;
Radu Soricut supervised the team and edited the paper. All authors helped write
the paper. Gabriel Huang led the project, wrote a significant part of the paper, and
conducted most experiments.

3 Context and Limitations
This project was motivated by the goal of helping users navigate tutorial videos more
easily, by automatically generating captions for each instructional step, such as “beat
eggs” or “put cake into oven”. Compared to previous work, our approach has certain
advantages, such as taking multimodal inputs (augmenting video with speech-to-
text) and relying on self-supervised pretraining, thus reducing requirements on
labeled data. However, a limitation of our method is to assume that the video is
already time-segmented into instructional steps, a challenging task by itself, which
should ideally be performed jointly with video captioning. Another limitation, due to
practical constraints at the time of the project, lies in the use of precomputed image
and video features, which should ideally be learned end-to-end on the downstream
and pretraining tasks. Finally, another limitation is the use of an external speech-to-
text engine, which discards non-verbal cues and sounds that may contain important
clues.
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4 Recent Developments
There has been subsequent progress in vision-language architectures and pretrain-
ing/masking schemes [Shin et al., 2022] leading to improved results on video
captioning. Some of these progresses have come from separate improvements in
vision or language. For instance, the success of Vision Transformers (ViT) [Dosovit-
skiy et al., 2021] and the DETR [Carion et al., 2020] object detector have shown
the potential of transformers in the vision domain. Similarly, there has been a
lot of progress on language models from scaling them up to unprecedented model
and dataset sizes [Brown et al., 2020], [Sanh et al., 2021], [Chowdhery et al., 2022].
Because of the prohibitive pretraining costs associated with learning state-of-the-art
language models, cross-modal methods, such as Frozen [Tsimpoukelli et al., 2021]
that can reuse frozen language models are becoming increasingly relevant.

Recently, Flamingo [Alayrac et al., 2022] was proposed, which combines a pretrained
70B parameter language model known as Chinchilla [Ho�mann et al., 2022] with a
variant of ResNet known as NFNet [Brock et al., 2021], separately pretrained on a
CLIP-style contrastive objective [Radford et al., 2021]. During the main training
phase both models are frozen; the language model blocks are interleaved with
learnable cross-attention blocks which attend to the visual features. The model
can handle interleaved text-image-video data, and can solve tasks such as video
captioning and visual question answering. Although their results are still behind
ours and the state-of-the-art on YouCook2 [Xu et al., 2021a], the flexibility of their
approach represents a promising direction towards foundational vision-language
models and solving generic zero and few-shot vision-language tasks.
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10Multimodal Pretraining for

Dense Video Captioning

Abstract
Learning specific hands-on skills such as cooking, car maintenance, and home repairs
increasingly happens via instructional videos. The user experience with such videos
is known to be improved by meta-information such as time-stamped annotations for
the main steps involved. Generating such annotations automatically is challenging,
and we describe here two relevant contributions. First, we construct and release
a new dense video captioning dataset, Video Timeline Tags (ViTT), featuring a
variety of instructional videos together with time-stamped annotations. Second,
we explore several multimodal sequence-to-sequence pretraining strategies that
leverage large unsupervised datasets of videos and caption-like texts. We pretrain
and subsequently finetune dense video captioning models using both YouCook2 and
ViTT. We show that such models generalize well and are robust over a wide variety
of instructional videos.

1 Introduction
YouTube recently reported that a billion hours of videos were being watched on the
platform every day [YouTubeBlog, 2017]. In addition, the amount of time people
spent watching online videos was estimated to grow at an average rate of 32% a year
between 2013 and 2018, with an average person forecasted to watch 100 minutes of
online videos per day in 2021 [ZenithMedia, 2019].

An important reason for this fast-growing video consumption is information-seeking.
For instance, people turn to YouTube “hungry for how-to and learning content”
O’Neil-Hart [2018]. Indeed, compared to traditional content format such as text,
video carries richer information to satisfy such needs. But as a content media,
videos are also inherently more di�cult to skim through, making it harder to quickly
target the relevant part(s) of a video. Recognizing this di�culty, search engines
started showing links to “key moments” within videos in search results, based on
timestamps and short descriptions provided by the content creators themselves.1

1https://www.blog.google/products/\search/key-moments-video-search/
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Groundtruth Varying stiching speeds
Ø-Pretraining Showing other parts

MASS-Pretraining Explaining how to do a stitch

Figure 10.1: Dense video captioning using ViTT–trained models. For the given video
scene, we show the ViTT annotation (Groundtruth) and model outputs (no pretraining
and MASS-based pretraining).

This enables users to get a quick sense of what the video covers, and also to jump
to a particular time in the video if so desired. This e�ort echoes prior work in the
literature showing how users of instructional videos can benefit from human-curated
meta-data, such as a timeline pointing to the successive steps of a tutorial Kim et al.
[2014], Margulieux et al. [2012], Weir et al. [2015]. Producing such meta-data in an
automatic way would greatly scale up the e�orts of providing easier information
access to videos. This task is closely related to the dense video captioning task
considered in prior work Zhou et al. [2018b,c], Krishna et al. [2017], where an
instructional video is first segmented into its main steps, followed by segment-level
caption generation.

To date, the YouCook2 data set Zhou et al. [2018b] is the largest annotated data
set for dense video captioning. It contains annotations for 2,000 cooking videos
covering 89 recipes, with per-recipe training / validation split. Restricting to a
small number of recipes is helpful for early exploratory work, but such restrictions
impose barriers to model generalization and adoption that are hard to overcome.
We directly address this problem by constructing a larger and broader-coverage
annotated dataset that covers a wide range of instructional topics (cooking, repairs,
maintenance, etc.) We make the results of our annotation e�orts publicly available
as Video Timeline Tags (ViTT)2, consisting of around 8,000 videos annotated with
timelines (on average 7.1 segments per video, each segment with a short free-text
description).

Using YouCook2 and the new ViTT dataset as benchmarks for testing model
performance and generalization, we further focus on the sub-problem of video-

2Available at https://github.com/google-research-datasets/Video-Timeline-
Tags-ViTT
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segment–level caption generation, assuming segment boundaries are given Hessel
et al. [2019], Sun et al. [2019b], Luo et al. [2020]. Motivated by the high cost of
collecting human annotations, we investigate pretraining a video segment captioning
model using unsupervised signals – ASR (Automatic Speech Recognition) tokens and
visual features from instructional videos, and unpaired instruction steps extracted
from independent sources: Recipe1M Marin et al. [2019] and WikiHow Koupaee and
Wang [2018]. In contrast to prior work that focused on BERT-style pretraining of
encoder networks [Sun et al., 2019b,a], our approach entails jointly pretraining both
multimodal encoder and text-based decoder models via MASS-style pretraining Song
et al. [2019]. Our experiments show that pretraining with either text-only or multi-
modal data provides significant gains over no pretraining, on both the established
YouCook2 benchmark and the new ViTT benchmark. The results we obtain establish
state-of-the-art performance on YouCook2, and present strong performance numbers
on the ViTT benchmark. These findings help us conclude that the resulting models
generalize well and are quite robust over a wide variety of instructional videos.

2 Related Work
Text-only Pretraining. Language pretraining models based on the Transformer
neural network architecture Vaswani et al. [2017] such as BERT [Devlin et al.,
2018], GPT Radford et al. [2018], RoBERTa Liu et al. [2019b], MASS Song et al.
[2019] and ALBERT Lan et al. [2020] have achieved state-of-the-art results on
many NLP tasks. MASS [Song et al., 2019] has been recently proposed as a joint
encoder-decoder pretraining strategy. For sequence-to-sequence tasks, this strategy
is shown to outperform approaches that separately pretrain the encoder (using
a BERT-style objective) and the decoder (using a language modeling objective).
UniLM Dong et al. [2019], BART Lewis et al. [2019], and T5 Ra�el et al. [2019]
propose unified pretraining approaches for both understanding and generation tasks.

Multimodal Pretraining. VideoBERT Sun et al. [2019b], CBT Sun et al.
[2019a] and ActBERT Zhu and Yang [2020] use a BERT-style objective to train
both video and ASR text encoders. Alayrac et al. [2016] and Miech et al. [2020] use
margin-based loss functions to learn joint representations for video and ASR, and
evaluate them on downstream tasks such as video captioning, action segmentation
and anticipation, and action localization. An independent and concurrent work
(UniViLM) by Luo et al. [2020] is closely related to ours in that we share some similar
pretraining objectives, some of the pretraining setup – HowTo100M Alayrac et al.
[2016], and the down-stream video captioning benchmark using YouCook2 Zhou et al.
[2018b]. The main di�erence is that they use BERT-style pretraining for encoder
and language-modeling style pretraining for decoder, whereas we use MASS-style
pre-training to pretrain encoder and decoder jointly.
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Other approaches such as ViLBERT [Lu et al., 2019], LXMERT [Tan and Bansal,
2019], Unicoder-VL [Li et al., 2019a], VL-BERT [Su et al., 2019], and UNITER [Chen
et al., 2019b] focus on pretraining joint representations for text and image, evaluating
them on downstream tasks such as visual question answering, image-text retrieval
and referring expressions.

Dense Video Captioning. In this paper, we focus on generating captions at
the segment-level, which is a sub-task of the so-called dense video captioning
task Krishna et al. [2017], where fine-grained captions are generated for video
segments, conditioned on an input video with pre-defined event segments. This is
di�erent from the video captioning models that generate a single summary for the
entire video Wang et al. [2019a].

Hessel et al. [2019] make use of ASR and video for segment-level captioning on
YouCook2 and show that most of the performance comes from ASR. Shi et al.
[2019], Luo et al. [2020] train their dense video captioning models on both video
frames and ASR text and demonstrate the benefits of adding ASR as an input to
the model. There are also a number of video captioning approaches that do not use
ASR directly Zhou et al. [2018c], Pan et al. [2020], Zheng et al. [2020a], Zhang et al.
[2020], Lei et al. [2020].

Instructional video captioning data sets. In addition to YouCook2 Zhou et al.
[2018b], there are two other smaller data sets in the instructional video captioning
category. Epic Kitchen Damen et al. [2018] features 55 hours of video consisting of
11.5M frames, which were densely labeled for a total of 39.6K action segments and
454.3K object bounding boxes. How2 Sanabria et al. [2018] consists of instructional
videos with video-level (as opposed to segment-level) descriptions, authored by the
video creators themselves.

3 Data
We present the datasets used for pretraining, finetuning, and evaluation in Table 10.1.
We also describe in detail the newly introduced dense video captioning dataset,
Video Timeline Tags (ViTT).

3.1 Dense Video-Captioning Datasets
Our goal is to generate captions (CAP) for video segments. We consider two datasets
with segment-level captions for fine-tuning and evaluating ASR+VideoæCAP
models.
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Name Type # segments
Pretraining datasets
YT8M-cook ASR+video 186 K
HowTo100M ASR+video 8.0 M
Recipe1M CAP-style 10.8 M
WikiHow CAP-style 1.3 M
Finetuning datasets
YouCook2 ASR+video+CAP 11.5 K
ViTT-All ASR+video+CAP 88.5 K

Table 10.1: Datasets used in this work, along with size of the data measured by the total
number of segments.

YouCook2. Up to this point, YouCook2 [Zhou et al., 2018b] has been the largest
human-annotated dense-captioning dataset of instructional videos publicly available.
It originally contained 2,000 cooking videos from YouTube. Starting from 110 recipe
types (e.g., “shrimp tempura”), 25 unique videos per recipe type were collected; the
recipe types that did not gather enough videos were dropped, resulting in a total of
89 recipe types in the final dataset. In addition, Zhou et al. [2018a] “randomly split
the videos belonging to each recipe into 67%:23%:10% as training, validation and
test sets3,” which e�ectively guarantees that videos in the validation and test sets
are never about unseen recipes. Annotators were then asked to construct recipe
steps for each video — that is, identify the start and end times for each step, and
provide a recipe-like description of each step. Overall, they reported an average of
7.7 segments per video, and 8.8 words per description. After removing videos that
had been deleted by users, we obtained a total of 11,549 segments.

ViTT. One limitation of the YouCook2 dataset is the artificially imposed (almost)
uniform distribution of videos over 89 recipes. While this may help making the task
more tractable, it is di�cult to judge whether performance on its validation / test
sets can be generalized to unseen topics.

The design of our ViTT dataset annotation process is aimed at fixing some of these
drawbacks. We started by collecting a large dataset of videos containing a broader
variety of topics to better reflect topic distribution in the wild. Specifically, we
randomly sampled instructional videos from the YouTube-8M dataset [Abu-El-Haija
et al., 2016], a large-scale collection of YouTube videos that also contain topical
labels. Since much of prior work in this area revolved around cooking videos, we
aimed at sampling a significant proportion of our data from videos with cooking

3Note that no annotations are provided for the test split; we conducted our own training/de-
v/test split over available videos.
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labels (specifically, “Cooking” and “Recipe”). Aside from the intentional bias
regarding cooking videos, the rest of the videos were selected by randomly sampling
non-cooking videos, including only those that were considered to be instructional
videos by our human annotators.

Once candidate videos were identified, timeline annotations and descriptive tags
were collected. Our motivation was to enable downstream applications to allow
navigating to specific content sections. Therefore, annotators were asked to identify
the main steps in a video and mark their start time. They were also asked to
produce a descriptive-yet-concise, free-text tag for each step (e.g., “shaping the
cookies”, “removing any leftover glass”). A subset of the videos has received more
than one complete annotation (main steps plus tags).

The resulting ViTT dataset consists of a total of 8,169 videos, of which 3,381 are
cooking-related. A total of 5,840 videos have received only one annotation, and have
been designated as the training split. Videos with more than one annotation have
been designated as validation / test data. Overall, there are 7.1 segments per video
on average (max: 19). Given the dataset design, descriptions are much shorter in
length compared to YouCook2: on average there are 2.97 words per tag (max: 16)
— 20% of the captions are single-word, 22% are two-words, and 25% are three words.
Note that the average caption length is significantly shorter than for YouCook2,
which is not surprising given our motivation of providing short and concise timeline
tags for video navigation. We standardized the paraphrases among the top-20 most
frequent captions. For instance, {“intro”, “introduction”} æ “intro”. Otherwise,
we have preserved the original tags as-is, even though additional paraphrasing
most definitely exists. Annotators were instructed to start and end the video with
an opening and closing segment as possible. As a result, the most frequent tag
(post-standardization) in the dataset is “intro”, which accounts for roughly 11% of
the 88,455 segments. More details on the data collection process and additional
analysis can be found in the Supplementary Material (Section 1).

Overall, this results in 56,027 unique tags, with a vocabulary size of 12,509 token
types over 88,455 segments. In this paper, we consider two variants: the full dataset
(ViTT-All), and the cooking subset (ViTT-Cooking).

3.2 Pretraining Datasets: ASR+Video
We consider two large-scale unannotated video datasets for pretraining, as described
below. Time-stamped ASR tokens were obtained via YouTube Data API,4 and split
into ASR segments if the timestamps of two consecutive words are more than 2
seconds apart, or if a segment is longer than a pre-specified max length (in our case,
320 words). They were paired with concurrent video frames in the same segment.

4https://developers.google.com/youtube/v3/docs/captions
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YT8M-cook We extract the cooking subset of YouTube-8M [Abu-El-Haija et al.,
2016] by taking, from its training split, videos with “Cooking” or “Recipe” labels, and
retain those with English ASR, subject to YouTube policies. After preprocessing, we
obtain 186K ASR+video segments with an average length of 64 words (24 seconds)
per segment.

HowTo100M. This is based on the 1.2M YouTube instructional videos released
by Miech et al. [2019], covering a broad range of topics. After preprocessing, we
obtain 7.99M ASR+video segments with an average of 78 words (28.7 seconds) per
segment.

3.3 Pretraining Datasets: CAP-style
We also consider two text-only datasets for pretraining, containing unpaired instruc-
tion steps similar in style to the target captions.

Recipe1M is a collection of 1M recipes scraped from a number of popular cooking
websites [Marin et al., 2019]. We use the sequence of instructions extracted for
each recipe in this dataset, and treat each recipe step as a separate example during
pretraining. This results in 10,767,594 CAP-style segments, with 12.8 words per
segment.

WikiHow is a collection of 230,843 articles extracted from the WikiHow knowledge
base [Koupaee and Wang, 2018]. Each article comes with a title starting with
“How to”. Each associated step starts with a step summary (in bold) followed by
a detailed explanation. We extract all the step summaries, resulting in 1,360,145
CAP-style segments, with 8.2 words per segment. Again, each instruction step is
considered as a separate example during pretraining.

3.4 Di�erences between Pretraining and Finetuning
Datasets

First, note that video segments are defined di�erently for pretraining and finetun-
ing datasets, and may not match exactly. For ASR+Video pretraining datasets,
which are unsupervised, the segments are divided following a simple heuristic
(e.g., two consecutive words more than 2 seconds apart), whereas for finetuning
ASR+VideoæCAP datasets, which are supervised, the segments are defined by
human annotators to correspond to instruction steps. Otherwise, the ASR data are
relatively similar between pretraining and finetuning datasets, as both come from
instructional videos and are in the style of spoken language.
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Second, compared to the target captions in finetuning datasets, the CAP-like
pretraining datasets are similar in spirit — they all represent summaries of steps,
but they may di�er in length, style and granularity. In particular, the CAP-like
pretraining datasets are closer in style to captions in YouCook2, where annotators
were instructed to produce a recipe-like description for each step. This is reflected
in their similar average length (YouCook2: 8.8 words, Recipe1M: 12.8 words,
WikiHow: 8.2 words); whereas captions in ViTT are significantly shorter (2.97
words on average).

Despite these di�erences — some are inevitable due to the unsupervised nature of
pretraining datasets — the pretraining data is very helpful for our task as shown in
the experimental results.

4 Method
To model segment-level caption generation, we adopt MASS-style pretraining Song
et al. [2019] with Transformer Vaswani et al. [2017] as the backbone architecture.
For both pre-training and fine-tuning objectives, we have considered two variants:
text-only and multi-modal. They are summarized in Table 10.2 and more details
are given below.

4.1 Separate-Modality Architecture
Both ASR tokens and video segment features are given as input in the multimodal
variants. We consider an architecture with a separate transformer for each modality
(text or video), see Figure 10.2 for details. When available, the text and video
encoders attend to each other at every layer using cross-modal attention, as in
ViLBERT Lu et al. [2019]. The text decoder attends over the final-layer output of
both encoders. We discuss in more detail the di�erences between using a separate-
modality architecture vs. a vanilla-Transformer approach for all modalities in
Appendix 2.

The inputs to the text encoder is the sum of three components: text token embed-
dings, positional embeddings and the corresponding style embeddings,5 depending
on the style of the text (ASR or Caption-like). The inputs to the video encoder
could be either precomputed frame-level 2D CNN features or 3D CNN features,
pretrained on the Kinetics Carreira and Zisserman [2017], Kay et al. [2017] data set.
The visual features are projected with fully-connected layers to the same dimension
as the text embeddings.

5This is similar to the way language-ID embeddings are used in machine translation.
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Figure 10.2: A diagram for the separate-modality architecture. It consists of a two-stream
(text and video inputs) encoder with cross-modal attention and a text-only decoder, jointly
trained using the MASS objective.

The main architecture we consider is a 2-layer encoder (E2), 6-layer decoder (D6)
Transformer. We use E2D6 to refer to the text-only version, and E2vidD6 to refer
to the multimodal version with an active video encoder. We also experiment with
E2D2 and E2vidD2 (2-layer decoder).6

4.2 Pretraining with Text-only MASS
Text-only pretraining is essentially the unsupervised learning of the style transfer
between ASR-style and caption-style texts using unpaired data sources: ASR strings
from video segments in YT8M-cook or HowTo100M; and CAP-style instruction steps
found in Recipe1M or HowTo100M. Just like using MASS for unsupervised machine
translation involves pretraining the model on unpaired monolingual datasets, we
alternate between asræasr and capæcap MASS steps during our pretraining
stage, which does not require the “source” (ASR) and “target” (CAP-style) data to
be aligned.

In an asræasr step, we mask a random subsequence of the ASR and feed the
masked ASR to the text encoder. The text decoder must reconstruct the hidden
subsequence while attending to the encoder output. A capæcap step works

6We found in a preliminary study that using 6-layer encoders did not improve performance for
our application.
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similarly by trying to reconstruct a masked sequence of a CAP-style text. The
encoder and decoder are trained jointly using teacher-forcing on the decoder. We
denote this text-only strategy as MASS in the experiments.

4.3 Pretraining with Multimodal MASS
During multimodal pretraining, we alternate between text-only capæcap
MASS steps and multimodal MASS steps. During each multimodal MASS step
asr+videoæasr, we feed a masked ASR to the text-encoder and the co-occurring
video features to the video-encoder. The text decoder must reconstruct the masked
ASR subsequence. We denote this pretraining strategy as MASSvid in the
experiments. This trains cross-modal attention between the text-encoder and
video-encoder at every layer, jointly with the text decoder that attends to the
output layer of both the text and video encoders.7

To force more cross-modal attention between encoder and decoder, we also investi-
gate a strategy of hiding the text-encoder output from the decoder for some fraction
of training examples. We refer to this strategy as MASSdrop in the experiments.

4.4 Pretraining with Alignment and Ordering Tasks
We also explore encoder-only multimodal pretraining strategies. We take the last-
layer representation for the CLS (beginning of sentence) token from the encoder,
and add a multi-layer perceptron on top of it for binary predictions (Figure 10.2).
Given a pair of ASR and video segment, we train the encoder to predict the following
objectives:

• Segment-Level Alignment. An (ASR, video) pair is aligned if they occur in
the same pretraining segment; negative examples are constructed by sampling
pairs from the same video but at least 2 segments away.

• Segment-Level Ordering. We sample (ASR, video) pairs that are at least 2
segments away, and train the model to predict whether the ASR occurs before
or after the video clip.

During this MASSalign pretraining stage, we alternate between two text-only
MASS steps (capæcap, asræasr) and the two binary predictions (Alignment
and Ordering) described above.

7In preliminary experiments, we had attempted to directly adapt the MASS objective [Song
et al., 2019] to video reconstruction — by masking a subsequence of the input video and making
the video decoder reconstruct the input using the Noise Constrastive Estimator Loss [Sun et al.,
2019a]. Due to limited success, we did not further pursue this approach.
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Pretraining Objectives
Name T V InputæOutput
MASS 3 7 CAPæCAP, ASRæASR
MASSvid 3 3 CAPæCAP, ASR+videoæASR
MASSdrop 3 3 CAPæCAP, ASR+videoæASR

MASSalign 3 3
CAPæCAP, ASRæASR,
ASR+videoæ{0, 1}

Finetuning Objectives
Name T V InputæOutput
UniD 3 7 ASRæCAP
BiD 3 7 ASRæCAP, CAPæASR
UniD 3 3 ASR+videoæCAP
BiD 3 3 ASR+videoæCAP, CAPæASR
BiDalt 3 3 ASR+videoæCAP, CAP+videoæASR

Table 10.2: Pretraining and Fine-tuning objectives. For each strategy, 3 indicates
whether the text (T) and video (V) encoders are active, followed by a summary of training
objectives involved in one training step.

4.5 Finetuning on Video Captioning
For text-only finetuning, we feed ASR to the text encoder and the decoder has
to predict the corresponding CAP (asræcap). For multimodal finetuning, we
also feed additional video representations to the video encoder (asr+videoæcap).
When finetuning a multimodal model from text-only pretraining, everything related
to video (weights in the video encoder and any cross-modal attention modules) will
be initialized randomly. In addition to these uni-directional (UniD) finetuning,
we also experiment with several variants of bidirectional (BiD) finetuning (Table
10.2). For instance, adding capæasr (predicting ASR from CAP) to text-only
finetuning. In the experiments, we find some variants of bidirectional finetuning
beneficial whether training from scratch or finetuning from a pretrained model.

5 Experiments
5.1 Implementation Details
We tokenize ASR and CAP inputs using byte-pair–encoding subwords [Sennrich
et al., 2015], and truncate them to 240 subwords. We truncate video sequences to
40 frames (40 seconds of video), compute the 128-dim features proposed by Wang
et al. [2014] (which we will refer to as Compact 2D features), and project them to
the embedding space using a two-layer perceptron with layer normalization and
GeLU activations.
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Method Input Pretraining Bleu-4 Meteor Rouge-L CIDEr
Constant Pred [Hessel et al., 2019] - - 2.70 10.30 21.70 0.15
MART Lei et al. [2020] Video - 8.00 15.90 - 0.36
EMT Zhou et al. [2018c] Video - 4.38 11.55 27.44 0.38
CBT Sun et al. [2019a] Video Kinetics + HowTo100M 5.12 12.97 30.44 0.64
AT [Hessel et al., 2019] ASR - 8.55 16.93 35.54 1.06
AT+Video [Hessel et al., 2019] Video + ASR - 9.01 17.77 36.65 1.12
UniViLM #1 [Luo et al., 2020] Video - 6.06 12.47 31.48 0.64
UniViLM #2 [Luo et al., 2020] Video + ASR - 8.67 15.38 35.02 1.00
UniViLM #5 [Luo et al., 2020] Video + ASR HowTo100M 10.42 16.93 38.02 1.20
Ø Pretraining
E2D6-BiD ASR - 7.90 15.70 34.86 0.93
E2vidD6-BiD Video + ASR - 8.01 16.19 34.66 0.91
Text Pretraining
E2D6-MASS-BiD ASR YT8M-cook + Recipe1M 10.60 17.42 38.08 1.20
E2vidD6-MASS-BiD Video + ASR YT8M-cook + Recipe1M 11.47 17.70 38.80 1.25
Multimodal Pretraining
E2vidD6-MASSalign-BiD Video + ASR YT8M-cook + Recipe1M 11.53 17.62 39.03 1.22
E2vidD6-MASSvid-BiD Video + ASR YT8M-cook + Recipe1M 12.04 18.32 39.03 1.23
E2vidD6-MASSdrop-BiD Video + ASR YT8M-cook + Recipe1M 10.45 17.74 38.82 1.22
Human [Hessel et al., 2019] Video + ASR - 15.20 25.90 45.10 3.80

Table 10.3: Segment-level captioning results on YouCook2. We use YT8M-cook and
Recipe1M for pretraining. The numbers for the related work (first group) are directly
reported from the corresponding papers. The last line is an estimate of human performance
as reported by Hessel et al. [2019], and can be taken as a rough upper bound of the best
performance achievable.

We instantiate the E2xDx models defined in Section 4.1 with 128-dimensional
embeddings and 8 heads respectively for self-attention, encoder-decoder, and cross-
modal attention modules. We define each epoch to be 3,125 iterations, where each
iteration contains one repetition of each training step as represented in Table 10.2.
We pretrain for 200 epochs and finetune for 30 epochs.

For evaluation, we consider Bleu-4 [Papineni et al., 2002], Meteor [Denkowski
and Lavie, 2014], Rouge-L [Lin and Och, 2004] and CIDEr [Vedantam et al., 2015]
metrics.

Please refer to Appendix 3 for full implementation details, hyperparameters and
computation cost.

Notes on ViTT evaluation: With the exception of Rouge-L, all other metrics
are sensitive to short groundtruth. 67% of the groundtruth tags in ViTT have less
than 4 words, where a perfect prediction will not yield a full score in, say, Bleu-4.
Thus, we focus mainly on Rouge-L, report Bleu-1 instead of Bleu-4 for ViTT,
and provide the other two metrics only as reference points.

We had originally decided to use videos with multiple annotations as validation and
test data, so that we could explore evaluation with multiple reference groundtruth
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Method Input ViTT-All ViTT-Cooking
Bleu-1 Meteor Rouge-L CIDEr Bleu-1 Meteor Rouge-L CIDEr

Constant baseline
(“intro”)

- 1.42 3.32 11.15 0.28 1.16 2.93 10.21 0.25

Ø Pretraining
E2D6-BiD ASR 19.60 9.12 27.88 0.68 20.77 10.08 28.63 0.72
E2vidD6-BiD Video +

ASR
19.49 9.23 28.53 0.69 20.45 9.88 28.88 0.69

Text Pretraining
E2D6-MASS-BiD ASR 21.93 10.60 30.45 0.79 24.79 12.25 32.40 0.88
E2vidD6-MASS-BiD Video +

ASR
22.44 10.83 31.27 0.81 24.22 12.22 32.60 0.89

Multimodal Pretraining
E2vidD6-MASSalign-
BiD

Video +
ASR

22.31 10.66 31.13 0.79 24.92 12.25 33.09 0.90

E2vidD6-MASSvid-
BiD

Video +
ASR

22.45 10.76 31.49 0.80 24.87 12.43 32.97 0.90

E2vidD6-MASSdrop-
BiD

Video +
ASR

22.37 11.00 31.40 0.82 24.48 12.22 33.10 0.89

Human Video +
ASR

43.34 33.56 41.88 1.26 41.61 32.50 41.59 1.21

Table 10.4: Segment-level captioning results on ViTT. For ViTT-All we pretrain on
HowTo100M and WikiHow; for ViTT-Cooking we pretrain on YT8M-cook and Recipe1M.
We report baseline scores for predicting the most common caption “intro”. We also estimate
the human performance as a rough upper bound (details in Supplementary Material 1;
Tables C.3,C.4).
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captions. But as annotators do not always yield the same set of segment boundaries,
this became tricky. Instead, we simply treat each segment as a separate instance
with one single reference caption. Note that all segments annotated for the same
video will be in either validation or test to ensure no content overlap.

5.2 Main Results
We run several variants of our method on YouCook2, ViTT-All and ViTT-Cooking,
using di�erent architectures, modalities, pretraining datasets, pretraining and
finetuning strategies.

Comparing with other methods on YouCook2 For YouCook2, we report our
method alongside several methods from the literature [Hessel et al., 2019, Sun et al.,
2019b, Zhou et al., 2018c, Lei et al., 2020], as well as state-of-the-art concurrent
work [Luo et al., 2020]. The related work is provided for reference and to give a
ballpark estimate of the relative performance of each method, but results are not
always strictly and directly comparable. Beyond the usual sources of discrepancy
in data processing, tokenization, or even di�erent splits, an additional source of
complication comes from the fact that videos are regularly deleted by content
creators, causing video datasets to shrink over time. Additionally, when comparing
to other work incorporating pretraining, we could di�er in (videos available in)
pretraining datasets, segmentation strategies, etc. To this end, we perform an
extensive ablation study, which at least helps us to understand the e�ectiveness of
di�erent components in our approach.

E�ect of pretraining The main experimental results for the three datasets
we consider are summarized in Table 10.3 (YouCook2) and Table 10.4 (ViTT-All
and ViTT-Cooking). Across all three datasets, the best performance is achieved
by finetuning a multimodal captioning model under the Multimodal Pretraining
condition. For instance, on YouCook2, E2vidD6-MASSvid-BiD improves over the
no-pretraining model E2vidD6-BiD by 4.37 Rouge-L, a larger improvement than
UniViLM with pretraining (#5) vs without (#2) Luo et al. [2020]. This improvement
also holds in ViTT-Cooking (+4.22 in Rouge-L) and ViTT-All (+2.97 in Rouge-L).
We do not observe consistent and significant trends among the di�erent multimodal
pretraining strategies: MASS pretraining with video (MASSvid), with video and
droptext (MASSdrop), or with alignment tasks (MASSalign).8 Furthermore, we
observe that most of the pretraining improvement is achievable via text-only MASS
pretraining. Across all three datasets, while Multimodal Pretraining (E2vidD6-
MASSvid-BiD) is consistently better than Text Pretraining (E2vidD6-MASS-BiD),
the di�erences are quite small (under one Rouge-L point).

8Limited improvement with MASSalign suggests that such alignment tasks are better suited
for retrieval [Luo et al., 2020].

143



Method Bleu-4 Meteor Rouge-L CIDEr
D2-UniD 10.84 17.39 38.24 1.16
D6-UniD 11.39 18.00 38.71 1.22
D2-BiD 11.38 18.04 38.67 1.19
D6-BiD 11.47 17.70 38.80 1.25
D6-BiDalt 11.07 17.68 38.43 1.22
D6-BiD (S3D) 11.64 18.04 38.75 1.24

Table 10.5: Ablation study on YouCook2. We finetune a multimodal captioning
model (E2vid) with either 2-layer decoder (D2) or 6-layer decoder (D6) using YT8M-
cook /Recipe1M for MASS pretraining, combined with either unidirectional (UniD) or
bidirectional (BiD) finetuning. We find no significant di�erence between using 2D and 3D
features (marked as S3D).

It’s worth noting that for MASSalign, the best validation accuracies for the pre-
training tasks are reasonably high: for YT8M-cook, we observed 90% accuracy
for the alignment task, and 80% for the ordering task (for HowTo100M: 87% and
71.4%, respectively), where random guess would yield 50%. This suggests that our
video features are reasonably strong, and the findings above are not due to weak
visual representations.

E�ect of other modeling choices We experiment with 2-layer decoder (D2) vs
6-layer decoder (D6), combined with either unidirectional fine-tuning (UniD) or
bidirectional fine-tuning (BiD). Table 10.5 shows ablation results of the four possible
combinations when finetuning a multimodal model using text-only pretraining on
YouCook2 (a more complete list of results can be found in Appendix 5, showing
similar trends). The D6xBiD combination tends to yield the best performance,
with the di�erences among the four configurations being relatively small (under one
Rouge-L point). For visual features, we also explored using 3D features [Xie et al.,
2018] instead of 2D features during finetuning (with no pretraining or text-only
pretraining), and do not find much di�erence in model performance on YouCook2.
As a result, we use the simpler 2D features in our multimodal pretraining. We leave
more extensive experiments with visual features as future work.

Generalization implications An important motivation for constructing the
ViTT dataset and evaluating our models on it has been related to generalization.
Since the YouCook2 benchmark is restricted to a small number of cooking recipes,
there is little to be understood about how well models trained and evaluated on
it generalize. In contrast, the ViTT benchmark has a much wider coverage (for
both cooking-related videos and general instructional videos), and no imposed
topic overlap between train/dev/test. As such, there are two findings here that
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are relevant with respect to generalization: (a) the absolute performance of the
models on the ViTT benchmark is quite high (ROUGE-L scores above 0.30 are
usually indicative of decent performance), and (b) the performance on ViTT vs.
YouCook2 is clearly lower (31.5 ROUGE-L vs. 39.0 ROUGE-L, reflecting the
increased di�culty of the new benchmark), but it is maximized under similar
pretraining and finetuning conditions, which allows us to claim that the resulting
models generalize well and are quite robust over a wide variety of instructional
videos.

6 Conclusions
Motivated to improve information-seeking capabilities for videos, we have collected
and annotated a new dense video captioning dataset, ViTT, which is larger with
higher diversity compared to YouCook2. We investigated several multimodal
pretraining strategies for segment-level video captioning, and conducted extensive
ablation studies. We concluded that text-only pretraining is the most decisive factor
in improving the performance on all the benchmarks used. Even more to the point,
our results indicate that most of the performance can be attributed to leveraging the
ASR signal. We achieve new state-of-the-art results on the YouCook2 benchmark,
and establish strong performance baselines for the new ViTT benchmark, which
can be used as starting points for driving more progress in this direction.
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11 Conclusions, Discussions,

and Perspectives

1 Summary and Conclusions
During the course of this thesis, we have attempted to understand and propose
ways to make deep learning practices more meaningful and data-e�cient. Our first
three contributions were exploratory, and intended to deepen our understanding of
existing methods, benchmarks, training losses and evaluation metrics, with a focus
on generative modeling and data-e�cient methods. The last contribution was a
new method for more data-e�cient video captioning.

The first contribution was an exploration of the GAN loss, originally motivated by
previous work on the relationship between training loss and evaluation metric in the
context of structured prediction [Osokin and Kohli, 2014]. Starting from the task
at hand, generative modeling, we discussed some desirable properties for a training
loss and evaluation metric: namely, to encourage realistic and diverse samples,
consistent with human perception, while being easy to optimize. We pointed
out several shortcomings of traditional divergences such as the Kullback-Leibler
divergence, and how integral probability metrics such as MMD and Wasserstein fail
to overcome them all. We then proceeded with a theoretical and empirical analysis
of GAN-based divergences, and extended them to define mutual information. We
concluded that rather than being crude approximations of traditional divergences,
GAN losses have the potential to better match human perception, while retaining
attractive computational and statistical properties.

The second contribution started by pointing out a desirable feature of few-shot
classification: generalizing to new class semantics. We argued that meaningful
few-shot classification benchmarks should test for class semantic generalization,
but that does not seem the case for popular benchmarks such as Omniglot. We
proposed a baseline method for solving few-shot classification benchmarks without
test-time labels, e�ectively concluding that Omniglot does not require class semantic
generalization to be solved. We then provided baseline numbers for solving other
benchmarks without test-time labels, and observed that cross-domain benchmarks
were significantly harder for our baseline, consistent with the idea that cross-
domain benchmarks require generalizing to new class semantics. In the process, we
introduced a new clustering algorithm, Sinkhorn K-Means, which to our knowledge
is the first application of optimal transport to few-shot classification.
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The third contribution was a survey of few-shot object detection, which we have
extended to include self-supervised object detection, a natural combination under
data-e�ciency constraints. An important goal was to clarify the field of low-data
object detection and ease newcomers into the field; we covered the di�erences with
few-shot classification, reorganized the literature, pointed out the inconsistencies in
the evaluation strategies—which make some comparisons almost meaningless!– and
explained the main few-shot and self-supervised object detection strategies. Another
goal was to extract the most meaningful trends and future research directions: we
observed that self-supervision can be beneficial for few-shot object detection, that
finetuning remains a strong baseline, that traditional computer vision methods
can generate weak supervision, and that both visual transformer backbones and
transformer-based object detection have promising properties.

The fourth contribution was a data-e�cient model for captioning tutorial videos,
which achieved state-of-the-art performance on YouCook2 [Zhou et al., 2018a] at the
time of publication, and a new dataset, ViTT, that was tailored to the task at hand.
The novelty of our work was to combine several modalities—video features and
speech-to-text transcripts—with several multimodal pretraining objectives, allowing
us to leverage unpaired unlabeled video and caption-like text datasets. We found,
perhaps surprisingly, that the majority of the performance came from text-only
pretraining and using the transcribed speech, with only a small performance gain
from using video features and multimodal pretraining. After investigating the issue,
we concluded that the limited gain may be due to the limited power of the video
features used, or due to the fact that learning cross-modal attention from fully
unpaired data remains a hard task.

2 Future research directions.
Meaningful training losses & evaluation metrics. Defining evaluation met-
rics which correlate better with human perception, and more generally with the task
at hand, will remain an important challenge of the future. Since its introduction
in 2017, the Fréchet Inception Distance has remained the gold standard of image
generation [Heusel et al., 2017], while GANs have remained some of the preferred
generation methods, though di�usion-based models [Ho et al., 2020] have recently
gained much traction, especially in the context of text-to-image systems [Ramesh
et al., 2022]. Newer approaches have often involved humans-in-the-loop for evaluat-
ing various characteristics of deep learning systems, such as image quality [Ramesh
et al., 2022, Yu et al., 2022], sample diversity [Arora et al., 2018], helpfulness and
harmlessness [Bai et al., 2022]; or quality, safety, and groundedness of conversa-
tional agents [Thoppilan et al., 2022]. Several works, especially in the language
domain, have started evaluating models beyond pure performance, and assess them
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for bias/fairness, privacy/data memorization, and political correctness [Thoppilan
et al., 2022]. Considering the scale at which models will be deployed, such “ethical ”
metrics will play increasingly important roles, to ensure AI has a positive impact
where deployed. Defining meaningful metrics to measure these ethical aspects,
beyond preventing stereotypes and inappropriate language, is a challenging but
essential future research direction.

Language-based zero-shot learning. In this thesis, we have covered how
existing few-shot benchmarks and evaluation protocols have certain issues such as
requiring limited generalization. In particular, we have discussed how Omniglot
has fixed class semantics [Huang et al., 2019], how YouCook2 has the same recipes
across training and validation splits [Huang et al., 2020], and the variance and data
contamination problems in few-shot object detection [Huang et al., 2021]. On the
other hand, recent developments have shown that prompting—formulating natural
language understanding and generation tasks in natural language—is a viable
strategy for eliciting zero or few-shot capabilities in large language models [Brown
et al., 2020, Schick and Schütze, 2020, Sanh et al., 2021]. Compared to traditional
ways of expressing new tasks such as using support sets (which is limited to
categorical predictions), meta-attributes (which are typically fixed in advance),
or word embeddings (which have limited expressivity), using natural language
may be the most flexible way of formulating truly novel tasks, which require
strong generalization to solve. Indeed, multimodal methods trained on large-scale
datasets, such as CLIP [Radford et al., 2021], Frozen [Tsimpoukelli et al., 2021]
and Flamingo [Alayrac et al., 2022], have shown that the expressivity of natural
language can be extended to solve vision and vision-language tasks. Therefore, we
believe that benchmarks and methods which formulate zero and few-shot tasks in a
mix of natural language and other modalities—such as images, videos, speech—are
the most promising approaches towards stronger generalization and general-purpose
methods.
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A
Appendix for: “Exploring

Properties of GAN and

VAE Losses”

In this appendix, we present the following supplementary material:

• Additional generated samples for the Thin-8 task are in Section 1.1.

• Generated samples for the Sum-25 task are in Section 1.2.

1 Experimental results
1.1 Additional Samples for VAE and GAN
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Figure A.1: VAE (top) and GAN (bottom) samples with 16 latent variables and 32 ◊ 32
resolution.
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Figure A.2: VAE (top) and GAN (bottom) samples with 16 latent variables and
128 ◊ 128 resolution.
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Figure A.3: VAE (top) and GAN (bottom) samples with 16 latent variables and
512 ◊ 512 resolution.
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1.2 Sum-25: Generated samples
Figure A.4 shows some additional samples from the VAE, WGAN-GP, and WGAN-
GP with side-task, trained on the Sum-25. All three generators have 200 latent
variables and the same architecture.

Figure A.4: Samples from generators with similar architecture and 200 latent variables,
trained with the following objectives: VAE (left), WGAN-GP (middle), and WGAN-GP
with side-task (right). Each row represents a sample (combination of 5 digits) generated
by the model.

180



B
Appendix for “Are Few-Shot

Learning Benchmarks too

Simple ? Solving them

without Test-Time Labels”

1 Links to the Code
The code for same-domain experiments on miniImageNet, tieredImageNet, CUB,
and cross-domain experiments on miniImageNetæCUB is forked from the original
FEAT code1 and is available at https://anonymous.4open.science/r/7fd48c5c-
1a56-426d-a980-6bdc1c03f06a/.

The code for cross-domain experiments on Meta-Dataset is forked from the origi-
nal Meta-Dataset code2 and is available at https://anonymous.4open.science/r/
cccb838f-8401-44f7-bfed-8da9c8c69aef/.

The code for few-shot clustering experiments and same-domain experiments on
Omniglot is forked from the original ProtoNet implementation3 and is available at
https://anonymous.4open.science/r/cbedf355-0158-4cbd-93f0-854d6af33cf4/.

2 Additional Related Work from Clustering
Literature

Supervised clustering. Supervised clustering is defined in Finley and Joachims
[2005] as “learning how to cluster future sets of items [...] given sets of items
and complete clusterings over these sets”. They use structured SVM to learn a
similarity-metric between pairs of items, then run a fixed clustering algorithm
which optimizes the sum of similarities of pairs in the same cluster. In follow-up
work [Finley and Joachims, 2008], they use K-Means as the clustering algorithm.
A main di�erence with our work is that we learn a nonlinear embedding function,
whereas they assume linear embeddings. The work of Awasthi and Zadeh [2010] is
also called supervised clustering, although they solve a very di�erent problem. They
propose a clustering algorithm which repetitively presents candidate clusterings to
a “teacher” and actively requests feedback (supervision).

1https://github.com/Sha-Lab/FEAT
2https://github.com/google-research/meta-dataset
3https://github.com/jakesnell/prototypical-networks
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Learning to cluster. Recent deep learning literature has preferred the term
“learning to cluster” to “supervised clustering”. Although the task is still the same,
the main di�erence is the learning of a similarity metric using deep networks.
Because of this aspect, these works are often classified as falling in the “metric
learning” literature. Hsu et al. [2017, 2019] propose a Constrained Clustering
Network (CCN) for learning to cluster based on two distinct steps: learning a
similarity metric to predict if two examples are in the same class, and optimizing a
neural network to predict cluster assignments which tend to agree with the similarity
metric. CCNs obtained the state-of-the-art results when compared against other
supervised clustering algorithms, we will thus use CCN as a strong baseline. In
our experiments, Centroid Networks improve over CCN on their benchmarks, while
being simpler to train and computationally much cheaper.

Semi-supervised & constrained clustering. Semi-supervised clustering consists
of clustering data with some supervision in the form of “this pair of points should
be/not be in the same cluster”. Some methods take the pairwise supervision as
hard constraints [Wagsta� et al., 2001], while others (including CCN) learn metrics
which tend to satisfy those constraints [Bilenko et al., 2004]. See the related work
sections in Finley and Joachims [2005], Hsu et al. [2017].

Sinkhorn K-Means. The idea of formulating clustering as minimizing a Wasser-
stein distance between empirical distributions has been proposed several times in
the past [Mi et al., 2018a]. Canas and Rosasco [2012] explicit some theoretical
links between K-Means and the Wasserstein-2 distance. The most similar work
to Sinkhorn K-Means is Regularized Wasserstein-Means [Mi et al., 2018b], but
they use another method for solving optimal transport. Specifically using Sinkhorn
distances (regularized Wasserstein distances) for clustering has even been suggested
in Genevay et al. [2018]. However, as we could not find an explicit description of the
Sinkhorn K-Means anywhere in the literature, we coin the name and explicitly state
the algorithm in Section 4.2. To our knowledge, we are the first to use Sinkhorn
K-Means in the context of learning to cluster and to scale it up to more complex
datasets like miniImageNet. Note that our work should not be confused with
Wasserstein K-Means and similar variants, which consist in replacing the squared
L2 base-distance in K-Means with a Wasserstein distance.

3 Additional information on Sinkhorn K-Means.
Sinkhorn Distances. The Wasserstein-2 distance is a distance between two
probability masses p and q. Given a base distance d(x, xÕ), we define the cost
of transporting one unit of mass from x to xÕ as d(x, xÕ)2. The Wasserstein-2
distance is defined as the cheapest cost for transporting all mass from p to q. When
the transportation plan is regularized to have large entropy, we obtain Sinkhorn
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distances, which can be computed very e�ciently for discrete distributions [Cuturi,
2013, Cuturi and Doucet, 2014] (entropy-regularization makes the problem strongly
convex). Sinkhorn distances are the basis of the Sinkhorn K-Means algorithm,
which is the main component of Centroid Networks. In Algorithm 1, we describe
the Sinkhorn algorithm in the particular case where we want to transport mass
from the weighted data points (xi, Rj) to the weighted centroids (cj, Cj), where Rj

and Cj are the weights of the data points and centroids, respectively. In practice,
we leverage the log-sum-exp trick in computing the Sinkhorn distances to avoid
numerical underflows.

Optimization problem Both of Sinkhorn and Regular K-Means can be for-
mulated as a joint minimization in the centroids cj œ Rd (real vectors) and the
assignments pi,j Ø 0 (scalars) which specify how much of each point xi is assigned
to centroid cj:

• K-Means. Note that compared to the usual convention, we have normalized
assignments pi,j so that they sum up to 1.

minimize min
p,c

Nÿ

i=1

Kÿ

j=1

pi,j ||xi≠cj ||
2

subject to
Kÿ

j=1

pi,j = 1
N

, i œ 1:N

pi,j œ {0,
1

N
}, i œ 1:N, j œ 1:K

• Sinkhorn K-Means.

minimize min
p,c

ÿ

i

ÿ

j

pi,j ||xi≠cj ||
2

≠ “ H(p)
¸ ˚˙ ˝
entropy

subject to
Kÿ

j=1

pi,j = 1
N

, i œ 1:N

Nÿ

i=1

pi,j = 1
K

, j œ 1:K

pi,j Ø 0 i œ 1:N, j œ 1:K

where H(p) = ≠
q

i,j pi,j log pi,j is the entropy of the assignments, and “ Ø 0
is a parameter tuning the entropy penalty term.

Di�erences between Sinkhorn vs. Regular K-Means. The first di�erence
is that K-Means only allows hard assignments pi,j œ {0, 1

N
}, that is, each point

xi is assigned to exactly one cluster cj. On the contrary, the Sinkhorn K-Means
formulation allows soft assignments pi,j œ [0, 1

N
], but with the additional constraint

that the clusters have to be balanced, i.e., the same amount of points are soft-
assigned to each cluster q

i pi,j = 1

K
. The second di�erence is the penalty term
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≠“H(p) which encourages solutions of high-entropy, i.e., points will tend to be
assigned more uniformly over clusters, and clusters more uniformly over points.
Adding entropy-regularization allows us to compute pi,j very e�ciently using the
work of Cuturi [2013]. Note that removing the balancing constraint q

i pi,j = 1

K

in the Sinkhorn K-Means objective would yield a regularized K-Means objective
with coordinate update steps identical to EM in a mixture of Gaussians (with pi,j

updated using softmax conditionals).

Why is Sinkhorn K-means expected to improve performance ? The
ablation study in Section 6 shows that using Sinkhorn K-Means instead of K-Means
is the most decisive factor in improving performance. There are mainly two possible
explanations :

1. Sinkhorn K-Means is particularly well adapted to the few-shot clustering and
unsupervised few-shot classification problems because it strictly enforces the
number of images per cluster, whereas K-Means does not.

2. Sinkhorn K-Means is likely to converge better than K-means due to the
entropy-regularization factor of the Sinkhorn distance.

To illustrate the second point, consider the limit case where the regularization factor
of Sinkhorn distance goes to infinity (“ æ Œ). Then, the assignments in Sinkhorn
K-Means become uniform (each cluster is assigned equally to all points), and all
the centroids converge – in one step – to the average of all the points, reaching
global minimum. This is by no means a rigorous proof, but the limit case suggests
that Sinkhorn K-Means converges well for large enough “. This behavior is to be
contrasted with K-means, for which convergence is well known to depend largely on
the initialization.

What is the e�ect of using weighted vs. unweighted averages ? One
could argue that comparing CentroidNets with ProtoNets is unfair because using
Sinkhorn K-Means leads to centroids which are weighted averages, whereas ProtoNet
prototypes are restricted to be unweighted averages. Therefore, we run Centroid
Networks on miniImagenet, but under the constraint that centroids to be unweighted
averages of the data points. To do so, starting from the soft weights, we reassign
each data point only to its closest centroid, and compute the unweighted averages.
The comparison between ProtoNets and CentroidNets is now fair in the sense that
both prototypes and centroids use unweighted averages. (Numbers below based on
o�cial ProtoNet implementation [Snell et al., 2017a])

• Unsupervised accuracy on miniImagenet is 0.5508 ± 0.0072 for weighted
average and 0.5497 ± 0.0072 for unweighted average. The di�erence is not
significant.
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• Clustering accuracy on miniImagenet is 0.6421 ± 0.0069 for weighted average
and 0.6417 ± 0.0069 for unweighted average. The di�erence is also not
significant.

This experiment suggests that using weighted averages does not bring an unfair
advantage, and therefore does not invalidate our comparison. More generally, instead
of trying to tune ProtoNets and CentroidNets as well as possible, we try to make
ProtoNets and CentroidNets more comparable by using the same architectures and
representation.

4 Implementation Details
Splits. For Omniglot which has 1623 classes of handwritten characters, we consider
the “Vinyals” splits [Vinyals et al., 2016a]. For miniImageNet which has 100 object
classes, we consider the “Ravi” splits [Ravi and Larochelle, 2016] of 64 training, 16
validation, 20 testing classes. For CUB which has 200 bird species, we use the same
split as Ye et al. [2020] which consists of 100 training, 50 validation, and 50 testing
classes. For Meta-Dataset, we consider the o�cial splits and sampling scheme,
which features variable numbers of ways and shots [Triantafillou et al., 2020]. For
Omniglot-CCN, we consider the same splits asHsu et al. [2017] : 30 background
alphabets are used for training and 20 evaluation alphabets are used for validation
(there is no testing set).

Backbones. We consider two backbones throughout the experiments: the Conv-4
classically used in few-shot learning [Snell et al., 2017a, Finn et al., 2017, Vinyals
et al., 2016a] and the ResNet-12 [Ye et al., 2020, Lee et al., 2019]. We also consider
the CCN architecture [Hsu et al., 2017, 2019, 2018] for the few-shot clustering
experiments, and the ResNet-18 architecture for Meta-Dataset [Triantafillou et al.,
2020].

Reference implementations. All our CentroidNet implementations are derived
from specific reference ProtoNet implementations [Snell et al., 2017a, Triantafillou
et al., 2020, Ye et al., 2020]. Unless otherwise specified, we always use exactly the
same training procedures and hyperparameters as the reference implementations.
We have grouped our experiments below based on their reference implementations.

Code based on Ye et al. [2020]. For same-domain experiments on
miniImageNet, tieredImageNet, CUB (Section 5.1), cross-domain experiments on
miniImageNetæCUB (Section 5.2), and transductive experiments on miniImageNet,
tieredImageNet (Section 5.3), we derive CentroidNet from the implementation
of Ye et al. [2020] using the Conv-4 and ResNet-12 architecture. We denote
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ProtoNet* [Ye et al., 2020] the accuracies reported from their paper and ProtoNet*
(repro) the accuracies reproduced from their code.4 We adopt exactly the same
training strategy for ProtoNet and CentroidNet using the default hyperparameters
of their implementation. We start from the provided pretrained checkpoints, which
are given by training a classifier on all training classes (non-episodic training) with
data augmentation. Then, we finetune the models on 5-way 5-shot LT few-shot
classification episodes using Adam optimizer with initial learning rates of 0.0001
for Conv-4 and 0.0002 for ResNet-12. We do not use a center loss, and use a
temperature of 32 for Conv-4 and 64 for ResNet-12 to rescale the squared Euclidean
distances between prototypes/centroids and data embeddings before feeding them
to the softmax layer/Sinkhorn K-Means. We run a hyperparameter search over
Sinkhorn regularization values 0.03, 0.1, 0.3, 1, 3, 10, 30 (values given for squared
Euclidean distances rescaled by the temperature). The optimal value is always
“ = 3 except for CUB (“ = 1), miniImageNetæCUB (“ = 1), miniImageNet with
RestNet-12 (“ = 10), and transductive tieredImageNet (“ = 1, value given for
Sinkhorn on logit values).

Code based on Snell et al. [2017a]. For same-domain experiments on Omniglot
(Section 5.1) and the ablation study (Section 6), we use the Conv-4 architecture
from the o�cial Prototypical Networks [Snell et al., 2017a] implementation.5 This
results in a 64-dimensional embedding for Omniglot and 1600-dimensional embed-
ding for miniImageNet. For miniImageNet, we pretrain the embedding function
using prototypical networks to solve 30-way problems instead of 5, which is the
recommended trick in the paper [Snell et al., 2017a]. For Omniglot, we train from
scratch on 5-way 5-shot and 20-way 5-shot episodes (number of ways for training
and testing match). We use a center loss of 1 and Sinkhorn regularization of “ = 1,
on unnormalized squared Euclidean distances.

Code based on Snell et al. [2017a] and Hsu et al. [2017] For few-shot
clustering (Section 5.3), we start from the o�cial ProtoNet implementation and
train both Conv-4 and CCN architectures on the CCN splits of Omniglot. We use
a center loss of 0.1 and Sinkhorn regularization of “ = 1, on unnormalized squared
Euclidean distances.

Code based on Triantafillou et al. [2020] For cross-domain experiments on
Meta-Dataset (Section 5.2) we derive CentroidNet from their implementation of
ProtoNet6 which uses the ResNet-18 architecture. We train with a center loss of
0.01 and Sinkhorn regularization “ = 0.1 after rescaling the squared Euclidean
distances by the number of dimensions.

4https://github.com/Sha-Lab/FEAT
5https://github.com/jakesnell/prototypical-networks
6https://github.com/google-research/meta-dataset
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5 Additional Few-Shot Clustering Results
Table B.1: Clustering accuracies for Centroid Networks and K-Means (raw and ProtoNet
features) on Omniglot 5-way 5-shot, Omniglot 20-way 5-shot, and miniImageNet 5-way
5-shot.

FSC Method Clustering Accuracy
datasetæ Omniglot-5 Omniglot-20 miniImageNet-5 tieredImageNet-5
K-Means (Raw) 45.2 ± 0.5 30.7 ± 0.2 41.4 ± 0.4 -
K-Means (Conv) 83.5 ± 0.8 76.8 ± 0.4 48.7 ± 0.5 -
CentroidNet (Conv) 99.6 ± 0.1 99.1 ± 0.1 64.5 ± 0.7 -
CentroidNet (ResNet) - - 77.3 82.49
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6 Ablation Study

Figure B.1: Omniglot 5-way 5-shot Ablation Study

Figure B.2: miniImageNet 5-way 5-shot Ablation Study

[Figures B.1,B.2] We conduct an ablation study on Omniglot (5-way 5-shot) and
miniImageNet (5-way 5-shot) to determine the e�ect and importance of the various
proposed tricks and components. Implementations in this section are based on the
o�cial ProtoNet implementation [Snell et al., 2017a], thus numbers might di�er
slightly from the main paper.

• K-Means vs. Sinkhorn K-Means. From comparing O3 to O4, O1 to O5,
M6 to M7, M1 to M8, it appears that using Sinkhorn K-Means instead of
K-Means++ is the most beneficial and important factor.

• Center Loss. From comparing O2 to O3, O5 to O6, O4 to O8, M7 to M11,
M8 to M9, center loss seems to be beneficial (although the significance is at
the limit of the confidence intervals). It is the second most influential factor.

• Softmax vs. Sinkhorn conditionals (at train and test time). For training,
it is not clear whether using Sinkhorn or Softmax conditionals is beneficial or
not. For evaluation, from comparing M1 to M2, M3 to M4, M5 to M6, it seems
that Sinkhorn conditionals are better if the metric is clustering accuracy, while
Softmax conditionals might be better if the metric is unsupervised accuracy,
although the e�ect seems to be negligible (see how the color patterns are
inverted).
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7 Confidence Intervals
We give 95% confidence intervals for the accuracies reported in the experimental
section.

Table B.2: Confidence Intervals for Same-Domain Benchmarks

miniImageNet
LT Methods LT Accuracy
backbone ≠æ Conv ResNet
MatchNet [Vinyals et al., 2016a] 51.09±0.71 -
MAML [Finn et al., 2017] 63.11±0.92 -
RelationNet [Sung et al., 2018b] 67.07±0.69 -
ProtoNet [Snell et al., 2017a] 68.20±0.66 -
FEAT [Ye et al., 2020] 71.61±0.16 -
TADAM [Oreshkin et al., 2018] - 76.70±0.30
MetaOptNet [Lee et al., 2019] - 78.63±0.46
SimpleShot [Wang et al., 2019b] - 80.02±0.14
CTM [Li et al., 2019b] - 80.51±0.13
ProtoNet* [Ye et al., 2020] 71.33±0.16 80.53±0.14
FEAT [Ye et al., 2020] - 82.05±0.14

NLT Methods NLT Accuracy
backbone ≠æ Conv ResNet
CentroidNet (ours) 57.57±0.94 69.86±0.94

tieredImageNet
LT Methods LT Accuracy
backbone ≠æ ResNet
ProtoNet [Snell et al., 2017a] 72.69±0.74
RelationNet [Sung et al., 2018b] 71.32±0.78
MetaOptNet [Lee et al., 2019] 81.56±0.63
CTM [Li et al., 2019b] 84.28±1.73
SimpleShot [Wang et al., 2019b] 84.58±0.16
ProtoNet* [Ye et al., 2020] 84.03±0.16
FEAT [Ye et al., 2020] 84.79±0.16

NLT Methods NLT Accuracy
backbone ≠æ ResNet
CentroidNet (ours) 75.36±1.04

Omniglot
LT Methods 5-way 20-way
backbone ≠æ ConvNet
SiameseNet [Koch et al., 2015] 98.4 97.0
MatchNet [Vinyals et al., 2016a] 98.9 98.5
NeuralStat [Edwards and Storkey, 2016] 99.5 98.1
MemoryMod [Kaiser et al., 2017] 99.6 98.6
ProtoNet* [Snell et al., 2017a] 99.7 98.9
MAML [Finn et al., 2017] 99.9 98.9
NLT Methods 5-way 20-way
backbone ≠æ ConvNet
CentroidNet (ours) 99.1±0.1 98.1±0.1

CUB
LT Methods LT Accuracy
backbone ≠æ ConvNet
MatchNet [Vinyals et al., 2016a] 72.86±0.70
MAML [Finn et al., 2017] 72.09±0.76
ProtoNet [Snell et al., 2017a] 70.77±0.69
ProtoNet* (repro) [Ye et al., 2020] 75.33±0.71
RelationNet [Sung et al., 2018b] 76.11±0.69
MatchNet [Ye et al., 2020] 79.00±0.16
ProtoNet [Ye et al., 2020] 81.50±0.15
FEAT [Ye et al., 2020] 82.90±0.15

NLT Methods NLT Accuracy
backbone ≠æ ConvNet
CentroidNet (ours) 66.13±1.08
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Table B.3: Confidence Intervals for Cross-Domain Benchmarks

Meta-Dataset
Train on ILSVRC Train on all datasets

Test Dataset LT NLT LT NLT
method æ Proto CNAPs SUR Centro Proto CNAPs SUR Centro
ILSVRC 44.12 50.6 56.3 26.40±0.88 41.79 52.3 56.3 23.84±0.82
Omniglot 53.40 45.2 67.5 36.83±1.20 81.93 88.4 93.1 66.25±1.12
Aircraft 45.29 36.0 50.4 24.15±0.72 69.43 80.5 85.4 57.50±1.01
Birds 63.59 60.7 71.7 41.08±1.05 64.73 72.2 71.4 43.56±1.03
Textures 61.78 67.5 70.2 39.63±0.70 66.35 58.3 71.5 43.50±0.76
QuickDraw 49.58 42.3 52.4 31.04±0.95 67.74 72.5 81.3 46.96±1.04
Fungi 35.27 30.1 39.1 18.11±0.71 38.94 47.4 63.1 21.76±0.76
VGG Flower 78.09 70.7 84.3 47.98±0.96 84.45 86.0 82.8 55.11±0.95

Tra�c Sign 46.08 53.3 63.1 22.03±0.66 49.91 60.2 70.4 22.71±0.66
MSCOCO 35.63 45.2 52.8 18.19±0.69 36.64 42.6 52.4 17.60±0.77

MiniImageNet ≠æ CUB
LT Methods LT Accuracy
backbone ≠æ ConvNet ResNet
MAML [Chen et al., 2019a] - 51.34±0.72
MatchNet [Chen et al., 2019a] - 53.07±0.74
RelationNet [Chen et al., 2019a] - 57.71±0.73
ProtoNet* (repro) 62.52±0.73 61.38±0.76
ProtoNet [Chen et al., 2019a] - 62.02±0.70
Baseline [Chen et al., 2019a] - 65.57±0.70
GNN-FT [Tseng et al., 2020] - 66.32±0.80
Neg-Softmax [Liu et al., 2020] - 69.30±0.73

NLT Methods NLT Accuracy
backbone ≠æ ConvNet ResNet
CentroidNet (ours) 47.01±0.91 44.62±0.90
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C
Appendix for “Multimodal

Pretraining for Dense Video

Captioning”

1 The ViTT dataset
Sampling video for annotation. The goal of the ViTT dataset design is to
mirror topic distribution in the “wild”. Therefore, instead of starting from specific
how-to instructions and searching for corresponding videos, we sampled videos
from the validation set of the YouTube-8M dataset [Abu-El-Haija et al., 2016], a
large-scale collection of YouTube videos with topical labels, subject to YouTube
policies.

Exclusion criteria were lack of English ASR and the topic label “Game”. The
latter was motivated by the fact that in this type of videos, the visual information
predominantly features video games, while the ViTT dataset was intended to contain
only videos with real-world human actions. Cooking videos can be easily identified
by sampling videos that came with “Cooking” or “Recipe” topic labels. Given
the convenience and the fact that much of prior work in this area had focused on
cooking videos, approximately half of the dataset was designed to include cooking
videos only, while the remaining videos would be randomly sampled non-cooking
videos, as long as they were verified as instructional by human annotators.

Annotation process Annotators were presented with a video alongside its
timestamped, automatic transcription shown in sentence-length paragraphs. They
were asked to watch the video and first judge whether the video was instructional.
For the purpose of our dataset, we determine that a video is instructional if it
focuses on real-world human actions that are accompanied by procedural language
explaining what is happening on screen, in reasonable details. Also for our purposes,
instructional videos need to be grounded in real life, with a real person in the video
exemplifying the action being verbally described.

For videos judged to be instructional, annotators were then asked to:

• Delimit the main segments of the video.

• Determine their start time if di�erent from the automatically suggested start
time (explained below).

• Provide a label summarizing or explaining the segment.
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Annotation guidelines Annotators were instructed to identify video segments
with two potential purposes:

• Allow viewers to jump straight to the start of a segment for rewatch.

• Present viewers with an index to decide whether to watch the video in full or
directly skip to the segment of interest.

Our guidelines suggested a range of five to ten segments as long as the the structure
and content of the video permitted. For short videos, the direction was to prioritize
quality over quantity and to only define those segments that formed the narrative
structure of the video, even if the resulting number of segments was below 5.

To help annotators determine segment start times, transcriptions were shown in
“sentences” — we expected that sentence start times might be good candidates for
segment start times. We obtained sentence boundaries automatically as follows.
Given the stream of timestamped ASR tokens for a video, we first separated them
into blocks by breaking two consecutive tokens whenever they were more than 2
seconds apart. We then used a punctuation prediction model to identify sentence
boundaries in each resulting block. Each sentence was shown with the timestamp
corresponding to its first token. Annotators were advised that transcriptions had
been automatically divided into paragraphs that may or may not correspond to a
video segment — if they decided that a segment started from a particular sentence,
they could choose to use the start time of the sentence as the start time for the
segment, or, if needed, they could put in an adjusted start time instead.

Once the start time had been identified, annotators were asked to provide a
free-text label to summarize each segment. We instructed the annotators to use
nouns or present participles (-ing form of verbs) to write the labels for the video
segments, whenever possible. Additionally, we asked that the labels be succinct
while descriptive, using as few words as possible to convey as much information as
possible.

Data statistics and post-processing The resulting dataset consists of 8,169
instructional videos that received segment-level annotations, of which 3,381 are
cooking-related. Overall there are an average of 7.1 segments per video (max: 19).
Given our instructions, the descriptions are much shorter in lengths compared to a
typical captioning dataset: on average there are 2.97 words per description (max:
16); 20% of the captions are single-word, 22% are two-words, and 25% are three
words. We refer to these descriptions as “tags” given how short they are.

When possible, annotators were also asked to start and end the video with an opening
and closing segment. As a result, most annotations start with an introduction
segment: this accounts for roughly 11% of the 88455 segments in the dataset (“intro”:
8%, “introduction”: 2.3%). Note that while “intro” and “introduction” are clearly
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paraphrases of each other, an automatic metric will penalize a model predicting
“intro” when the groundtruth is “introduction”. Similarly, the ending segment was
described in several varieties: “outro”: 3.4%, “closing”: 1%, “closure”, “conclusion”,
“ending”, “‘end of video”: each under 1%. Penalizing paraphrases of the ground
truth is an inherent weakness of automatic metrics. To mitigate this, we decided
to reduce the chance of this happening for the most frequent tags in the dataset.
That is, in our experiments, we identified three groups of tags among the top-20
most frequent tags, and standardized them as follows.

intro intro, introduction, opening
outro outro, closing, closure, conclusion,

ending, end of video, video closing
result finished result, final result, results

Table C.1: Standardization of top tags

Note that this does not mean we can solve this problem as a classification task like
in visual question answering (VQA): overall, there are 56,027 unique tags with a
vocabulary size of 12,509 for the 88,455 segments; 51,474 tags appeared only once
in the dataset, making it infeasible to reduce the segment-level captioning problem
into a pure classification task. Table C.2 shows the top 10 most frequent tags after
standardization.

Estimate of human performance. A subset of the candidate videos were given
to three annotators1, to help us understand variations in human annotations. 5,840
videos received dense captioning from exactly one annotator and were used as

1A small set were unintentionally given to six annotators.

Tag % of segments
intro 11.4
outro 6.6
result 0.9
ingredients 0.8
listing ingredients 0.2
supplies 0.2
mixing ingredients 0.2
materials 0.1
what you’ll need 0.1
lining the eyes 0.1

Table C.2: 10 most frequent tags after standardization.
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training data. Videos with more than one annotation were used as validation / test
data. Note that not all the videos with multiple timeline annotations have exactly
three sets of them — in fact, 1368 videos received 3-way segment-level annotations.
This is because not all annotators agreed on whether a video was instructional.
Computing annotator agreement for the annotated timelines is non-trivial. Here
we focus on an estimate of tagging agreement when a pair of annotators agreed
over the segment start time. Specifically, we go through each video that received
multiple segment-level annotations. For each segment where two annotators chose
the same ASR sentence as its starting point, we take the tags they produced for
this segment and consider one of them as groundtruth, the other as prediction, and
add that into our pool of (groundtruth, prediction) pairs. We can then compute
standard automatic evaluations metrics over this pool. The results are as follows.

BLEU-1 METEOR ROUGE-L CIDEr
43.34 33.56 41.88 1.26

Table C.3: Estimate of human performance for the segment-level captioning on ViTT-All
(computed over 7528 pairs).

BLEU-1 METEOR ROUGE-L CIDEr
41.61 32.50 41.59 1.21

Table C.4: Estimate of human performance for the segment-level captioning on ViTT-
Cooking (computed over 2511 pairs).

Note that METEOR, and CIDEr scores are both penalized by the lack of n-grams
for higher n. That is, when both groundtruth and prediction are single-word, say,
“intro”, this pair will not receive a full score from any of these metrics. But the
Rouge-L score is in the same ballpark as estimate of human performance in prior
work Hessel et al. [2019]. One might note that perhaps this pool of label pairs
contains a higher share of “intro”, since annotators might be more likely to agree
over where an opening segment starts. Indeed, 20% of the time, one of the tags is
“intro”. Interestingly, in spite of standardization of top tags, 14% of the time one
tag is “intro”, the other tag is not “intro”: they can be less frequent paraphrases
(e.g., “welcoming”, “greeting”, “opening and welcoming”) or something semantically
di�erent (e.g., “using dremel tool”).
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2 Separated vs. Concatenated-Modality
Architecture

Prior work has explored both concatenating di�erent modalities and feeding them
into the same multimodal Transformer encoder [Sun et al., 2019b, Hessel et al.,
2019], as well as separating them into unimodal transformers [Sun et al., 2019a,
Lu et al., 2019]. We opt for the separated architecture because it o�ers more
flexibility. First, the concatenated architecture requires embedding the text and
video features into the same space. When the video features are projected using a
simple network, there is no guarantee that we can meaningfully project them into
the text embedding space. VideoBERT [Sun et al., 2019b] gives more flexibility
to the video embeddings by quantizing video features and learning an embedding
for each codeword. However, the quantization step has subsequently been claimed
to be detrimental [Sun et al., 2019a]. Moreover, the concatenated architecture
uses the same sets of forward and attention weights to process text and video,
and performs layer normalization jointly between the two modalities, which is not
necessarily meaningful. Finally, the separated architecture makes it easy to switch
between variable length text-only, video-only, or text+video modalities, whereas
concatenated architectures might rely on separating tokens, modalities embeddings,
and using fixed sequence lengths [Luo et al., 2020].

3 Additional Implementation Details
We optimize all models on a nVidia v100 GPU using the Adam optimizer with
inverse square root schedule, batch size 32, warm-up period of 4,000 iterations,
and maximum learning rate of 0.0001, following MASS [Song et al., 2019]. The
positional embeddings are initialized randomly. We use dropout and attention
dropout with probabilities 0.1. With E2vidD6, pretraining takes 3-6 days depending
on the objective and bidirectional finetuning takes up to 1.5 days, however those
times could be improved by optimizing the data pipeline.

4 Example Predictions
We show examples of good and bad predictions on YouCook2 (Figure C.1 and
ViTT-All (Figure C.2 and C.3). The captions are generated by E2vidD6-BiD (no
pretraining) and E2vidD6-MASS-BiD (text-only MASS pretraining).
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Sample Frame Ground Truth Ø-Pretraining MASS-
Pretraining

Comments

crush and grate
the garlic

grate garlic and
add to bowl
(good)

crush ginger and
garlic(good)

ginger is correct
despite not
appearing in
ground truth.

crimp shut with
fork

place the filling
on the wrapper
(ok)

seal the edges
of the wrapper
(good)

pretrained model
is more specific

place wings on
the baking sheet
and cook flipping

bake the pizza in
the oven (bad)

cook the wings on
the grill (good)

only pretrained
model predicted
correct food

add the pork back
into the hot oil

add the rice to
the pot (bad)

place the meat on
the pan (good)

Ø model hallu-
cinates the rice
and pot

add thyme bay
leaves onion and
clam juice and
boil the mixture

add diced toma-
toes tomato
puree and mix
well (bad)

add thyme thyme
onion and clam
juice to the pot
and stir (ok)

Ø hallucinates a
lot of nonexistent
ingredients

cook bacon in a
pot with oil and
pepper

add chopped
tomatoes to pan
and stir (bad)

add bacon and
stir (ok)

both models
missed oil and
pepper (not
mentioned in
ASR)

pour dressing on
top of the salad
and toss

add dressing to
the bowl (good)

serve the soup
over the salad
(bad)

pretrained model
referred to dress-
ing as “soup”

slice the ginger
into pieces

slice a celery
(bad)

slice the chicken
(bad)

both models
had wrong in-
gredients (ASR
segment does not
mention what is
being sliced)

Figure C.1: Example good and bad predictions on YouCook2. The pretrained model is
generally but not always better. Note that there are no “intro” or “outro”-like labels on
YouCook2 because the dataset was specifically curated to only contain actual recipe steps.
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Sample Frame Ground Truth Ø-Pretraining MASS-
Pretraining

Comments

tightening extra
loop

tightening the
loop (good)

tightening the
loop (good)

both models per-
form well

adding eye-
shadow

blending eye
shadow (good)

applying eye
shadow (good)

both models per-
form well

showcasing the
finished look

showing finished
look(good)

showing finished
look(good)

both models per-
form well

rolling and fold-
ing the clay

rolling and blend-
ing (ok)

rolling and
folding the clay
(good)

MASS is a bit
more specific

highlighting brow
bone

applying eye
shadow (ok)

brushing on the
brows(good)

MASS is a bit
more specific

covering the
chicken and
cooking

cooking the bread
(bad)

cooking the
chicken (good)

only MASS got
the right ingredi-
ent

connecting spray
hose and sprayer

connecting the
new cover (ok)

connecting the
valve (good)

spray hose is
more specific
than valve

implementing
second layer

showing finished
product (ok)

showing second
layer (good)

MASS is more
specific

making decora-
tive trim

cutting the edges
(good)

cutting the fabric
(good)

both models
yield good pre-
dictions

checking bleach
container

outro (bad) checking the con-
tainer (good)

MASS is a bit
more specific

demonstrating
the flip

checking the bat-
tery (bad)

flipping the board
(good)

Ø model got
influenced by
car mechanics
tutorials

tilting board setting up the
oven (bad)

turning the board
(good)

Ø overfitted on
cooking videos

Figure C.2: Example good predictions on ViTT-All (Part 1). The pretrained model is
generally but not always better.

197



Sample Frame Ground Truth Ø-Pretraining MASS-
Pretraining

Comments

securing the bar
in place

removing the
cover (bad)

checking for the
other side (bad)

predictions are
not specific
enough

starting with un-
locking bars

opening the box
(bad)

pulling the car
on (bad)

predictions are
incorrect or not
specific enough

demonstrating
technique

attaching paper
(bad)

stamping paper
(good)

the technique is
about stamping
the paper

spritzing in addi-
tional water

pouring water
into the water
(ok)

adding water to
water (ok)

understandable
but ungram-
marly

checking for
leaks

checking for the
new new new
new new new
new new new
new new new
new new new
(bad)

checking the pro-
cess (ok)

Ø got into a
loop, MASS not
specific enough

displaying mate-
rials needed

intro (bad) removing paste
(ok)

prediction makes
sense because
narrator is dis-
playing thermal
paste remover

sketching on the
swirls

drawing the lines
(good)

drawing on the
eyes (bad)

pretrained model
overfitted on
makeup tutorials

crimping wire
and completing
project

attaching the
screws (bad)

attaching the
wire to the wire
(ok)

both models
have trouble
with the concept
of crimping a
wire

cutting with
guide line

cutting the top
of the top of the
top of the top of
the top of the top
(bad)

explaining pro-
cess (ok)

Ø model got into
a loop, MASS
model is not
specific enough

Figure C.3: Example ok and bad predictions on ViTT (Part 2). The pretrained model
is generally but not always better.
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5 Full result tables
We present tables with all the ablation results that we run. There are two main
takeaway messages from the results involving the pretraining approach: (a) the
accuracy improvements, as measured across all the metrics we use, indicate the
value of using a pretraining approach to this problem, specifically one that is capable
of leveraging the ASR signals at both pretraining and finetuning stages, and (b)
the training speedup achieved from pretraining is impressive, as a pretrained model
converges much faster than training from scratch. This is especially visible on
ViTT-All where finetuning after MASS pretraining reaches best Rouge-L score at
epoch 2, whereas it takes around 11 epochs to converge when training from scratch.

199



Method Input Pretraining BLEU-4 METEOR ROUGE-L CIDEr
Constant Pred [Hessel et al., 2019] - - 2.70 10.30 21.70 0.15
MART Lei et al. [2020] Video - 8.00 15.90 - 0.36
DPC Shi et al. [2019] Video + ASR - 2.76 18.08 - -
EMT Zhou et al. [2018c] Video - 4.38 11.55 27.44 0.38
CBT Sun et al. [2019a] Video Kinetics + HowTo100M 5.12 12.97 30.44 0.64
AT [Hessel et al., 2019] ASR - 8.55 16.93 35.54 1.06
AT+Video [Hessel et al., 2019] Video + ASR - 9.01 17.77 36.65 1.12
UniViLM #1 [Luo et al., 2020] Video - 6.06 12.47 31.48 0.64
UniViLM #2 [Luo et al., 2020] Video + ASR - 8.67 15.38 35.02 1.00
UniViLM #5 [Luo et al., 2020] Video + ASR HowTo100M 10.42 16.93 38.02 1.20
Ø Pretraining
E2D2-UniD ASR - 7.42 15.15 33.26 0.85
E2D6-UniD ASR - 7.88 15.29 34.10 0.87
E2D2-BiD ASR - 6.85 15.64 34.26 0.91
E2D6-BiD ASR - 7.90 15.70 34.86 0.93
E2vidD2-UniD Video + ASR - 7.47 15.11 34.77 0.90
E2vidD6-UniD Video + ASR - 7.61 15.57 34.28 0.89
E2vidD2-BiD Video + ASR - 8.39 15.36 34.54 0.91
E2vidD6-BiD Video + ASR - 8.01 16.19 34.66 0.91
E2vidD2-BiDalt Video + ASR - 8.12 15.83 34.83 0.93
E2vid,D6-BiDalt Video + ASR - 7.70 16.11 34.78 0.91
E2vidD2-BiD (S3D) Video + ASR - 8.04 16.17 36.01 0.96
E2vidD6-BiD (S3D) Video + ASR - 7.91 16.28 35.23 0.93
Text Pretraining
E2D2-MASS-UniD ASR YT8M-cook + Recipe1M 10.52 17.14 37.39 1.14
E2D6-MASS-UniD ASR YT8M-cook + Recipe1M 10.72 17.74 37.85 1.17
E2D2-MASS-BiD ASR YT8M-cook + Recipe1M 10.84 17.44 37.20 1.13
E2D6-MASS-BiD ASR YT8M-cook + Recipe1M 10.60 17.42 38.08 1.20
E2vidD2-MASS-UniD Video + ASR YT8M-cook + Recipe1M 10.84 17.39 38.24 1.16
E2vidD6-MASS-UniD Video + ASR YT8M-cook + Recipe1M 11.39 18.00 38.71 1.22
E2vidD2-MASS-BiD Video + ASR YT8M-cook + Recipe1M 11.38 18.04 38.67 1.19
E2vidD6-MASS-BiD Video + ASR YT8M-cook + Recipe1M 11.47 17.70 38.80 1.25
E2vid,D2-MASS-BiDalt Video + ASR YT8M-cook + Recipe1M 11.49 17.85 38.60 1.18
E2vid,D6-MASS-BiDalt Video + ASR YT8M-cook + Recipe1M 11.07 17.68 38.43 1.22
E2vidD2-MASS-BiD (S3D) Video + ASR YT8M-cook + Recipe1M 11.13 17.71 38.57 1.12
E2vidD6-MASS-BiD (S3D) Video + ASR YT8M-cook + Recipe1M 11.64 18.04 38.75 1.24
Multimodal Pretraining
E2vidD2-MASSalign-BiD Video + ASR YT8M-cook + Recipe1M 11.54 17.57 37.70 1.15
E2vidD6-MASSalign-BiD Video + ASR YT8M-cook + Recipe1M 11.53 17.62 39.03 1.22
E2vidD2-MASSvid-BiD Video + ASR YT8M-cook + Recipe1M 11.17 17.71 38.32 1.17
E2vidD6-MASSvid-BiD Video + ASR YT8M-cook + Recipe1M 12.04 18.32 39.03 1.23
E2vidD2-MASSdrop-BiD Video + ASR YT8M-cook + Recipe1M 11.21 17.99 38.72 1.23
E2vidD6-MASSdrop-BiD Video + ASR YT8M-cook + Recipe1M 10.45 17.74 38.82 1.22
Human [Hessel et al., 2019] Video + ASR - 15.20 25.90 45.10 3.80

Table C.5: Video Captioning Results on YouCook2. We use YT8M-cook/Recipe1M for
pretraining. All video features are Compact 2D [Wang et al., 2014] except when marked as
S3D [Xie et al., 2018].
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Method Input Pretraining BLEU-1 METEOR ROUGE-L CIDEr
Constant baseline (“intro”) - - 1.42 3.32 11.15 0.28
Ø Pretraining
E2D2-UniD ASR - 17.94 8.55 27.06 0.64
E2D6-UniD ASR - 18.91 8.96 27.80 0.67
E2D2-BiD ASR - 18.81 8.82 27.63 0.65
E2D6-BiD ASR - 19.60 9.12 27.88 0.68
E2vidD2-UniD Video + ASR - 18.94 8.99 28.05 0.67
E2vidD6-UniD Video + ASR - 19.29 9.15 27.97 0.69
E2vidD2-BiD Video + ASR - 19.37 9.21 28.56 0.69
E2vidD6-BiD Video + ASR - 19.49 9.23 28.53 0.69
Text Pretraining
E2D2-MASS-UniD ASR HowTo100M + WikiHow 21.53 10.24 29.95 0.77
E2D6-MASS-UniD ASR HowTo100M + WikiHow 22.09 10.58 30.67 0.79
E2D2-MASS-BiD ASR HowTo100M + WikiHow 20.73 10.20 30.15 0.76
E2D6-MASS-BiD ASR HowTo100M + WikiHow 21.93 10.60 30.45 0.79
E2vidD2-MASS-UniD Video + ASR HowTo100M + WikiHow 21.46 10.45 30.56 0.78
E2vidD6-UniD Video + ASR HowTo100M + WikiHow 22.21 10.75 30.86 0.81
E2vidD2-MASS-BiD Video + ASR HowTo100M + WikiHow 21.78 10.64 30.72 0.79
E2vidD6-MASS-BiD Video + ASR HowTo100M + WikiHow 22.44 10.83 31.27 0.81
Multimodal Pretraining
E2vidD2-MASSalign-BiD Video + ASR HowTo100M + WikiHow 22.07 10.33 30.60 0.77
E2vidD6-MASSalign-BiD Video + ASR HowTo100M + WikiHow 22.31 10.66 31.13 0.79
E2vidD2-MASSvid-BiD Video + ASR HowTo100M + WikiHow 22.15 10.75 31.06 0.80
E2vidD6-MASSvid-BiD Video + ASR HowTo100M + WikiHow 22.45 10.76 31.49 0.80
E2vidD2-MASSdrop-BiD Video + ASR HowTo100M + WikiHow 21.84 10.55 31.10 0.79
E2vidD6-MASSdrop-BiD Video + ASR HowTo100M + WikiHow 22.37 11.00 31.40 0.82
Human estimate Video + ASR - 43.34 33.56 41.88 1.26

Table C.6: Video captioning results on ViTT-All. We use HowTo100M/WikiHow for
pretraining. We also estimate human performance (details in Appendix 1; Tables C.3,C.4).
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Method Input Pretraining BLEU-1 METEOR ROUGE-L CIDEr
Constant baseline (“intro”) - - 1.16 2.93 10.21 0.25
Ø Pretraining
E2D2-UniD ASR - 19.73 9.43 27.95 0.69
E2D6-UniD ASR - 20.24 9.93 28.59 0.71
E2D2-BiD ASR - 19.73 9.72 27.92 0.68
E2D6-BiD ASR - 20.77 10.08 28.63 0.72
E2vidD2-UniD Video + ASR - 19.97 9.75 28.30 0.69
E2vidD6-UniD Video + ASR - 20.46 9.93 28.62 0.69
E2vidD2-BiD Video + ASR - 20.60 10.08 29.45 0.71
E2vidD6-BiD Video + ASR - 20.45 9.88 28.88 0.69
Text Pretraining
E2D2-MASS-UniD ASR YT8M-cook + Recipe1M 22.89 11.53 31.62 0.84
E2D6-MASS-UniD ASR YT8M-cook + Recipe1M 24.47 12.22 32.51 0.90
E2D2-MASS-BiD ASR YT8M-cook + Recipe1M 22.75 11.63 31.54 0.84
E2D6-MASS-BiD ASR YT8M-cook + Recipe1M 24.79 12.25 32.40 0.88
E2vidD2-MASS-UniD Video + ASR YT8M-cook + Recipe1M 23.86 11.85 32.32 0.86
E2vidD6-MASS-UniD Video + ASR YT8M-cook + Recipe1M 24.32 12.32 32.90 0.90
E2vidD2-MASS-BiD Video + ASR YT8M-cook + Recipe1M 22.93 11.68 32.15 0.87
E2vidD6-MASS-BiD Video + ASR YT8M-cook + Recipe1M 24.22 12.22 32.60 0.89
Multimodal Pretraining
E2vidD2-MASSalign-BiD Video + ASR YT8M-cook + Recipe1M 24.02 11.91 32.73 0.86
E2vidD6-MASSalign-BiD Video + ASR YT8M-cook + Recipe1M 24.92 12.25 33.09 0.90
E2vidD2-MASSvid-BiD Video + ASR YT8M-cook + Recipe1M 24.15 12.10 32.96 0.88
E2vidD6-MASSvid-BiD Video + ASR YT8M-cook + Recipe1M 24.87 12.43 32.97 0.90
E2vidD2-MASSdrop-BiD Video + ASR YT8M-cook + Recipe1M 23.70 12.01 32.71 0.88
E2vidD6-MASSdrop-BiD Video + ASR YT8M-cook + Recipe1M 24.48 12.22 33.10 0.89
Human estimate Video + ASR - 41.61 32.50 41.59 1.21

Table C.7: Video captioning results on ViTT-Cooking. We use YT8M-cook and Recipe1M
for optional pretraining.
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