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Résumé

Ces dernières années ont vu une résurgence de l’algorithme de Frank-Wolfe (FW) (également
connu sous le nom de méthodes de gradient conditionnel) dans l’optimisation clairsemée et les
problèmes d’apprentissage automatique à grande échelle avec des objectifs convexes lisses.
Par rapport aux méthodes de gradient projeté ou proximal, une telle méthode sans pro-
jection permet d’économiser le coût de calcul des projections orthogonales sur l’ensemble
de contraintes. Parallèlement, FW propose également des solutions à structure clairsemée.
Malgré ces propriétés prometteuses, FW ne bénéficie pas des taux de convergence optimaux
obtenus par les méthodes accélérées basées sur la projection. Nous menons une enquête dé-
taillée sur les essais récents pour accélérer FW dans différents contextes et soulignons où se
situe la difficulté lorsque l’on vise des taux linéaires globaux en théorie. En outre, nous four-
nissons une direction prometteuse pour accélérer FW sur des ensembles fortement convexes
en utilisant des techniques d’intervalle de dualité et une nouvelle notion de régularité.

D’autre part, l’algorithme FW est une covariante affine et bénéficie de taux de conver-
gence accélérés lorsque l’ensemble de contraintes est fortement convexe. Cependant, ces
résultats reposent sur des hypothèses dépendantes de la norme, entraînant généralement
des bornes invariantes non affines, en contradiction avec la propriété de covariante affine de
FW. Dans ce travail, nous introduisons de nouvelles hypothèses structurelles sur le problème
(comme la régularité directionnelle) et dérivons une analyse affine invariante et indépendante
de la norme de Frank-Wolfe. Sur la base de notre analyse, nous proposons une recherche
par ligne affine invariante. Fait intéressant, nous montrons que les recherches en ligne clas-
siques utilisant la régularité de la fonction objectif convergent étonnamment vers une taille
de pas invariante affine, malgré l’utilisation de normes dépendantes de l’affine dans le calcul
des tailles de pas. Cela indique que nous n’avons pas nécessairement besoin de connaître à
l’avance la structure des ensembles pour profiter du taux accéléré affine-invariant.

Dans un autre axe de recherche, nous étudions les algorithmes au-delà des méthodes
du premier ordre. Les techniques Quasi-Newton approchent le pas de Newton en estimant
le Hessien en utilisant les équations dites sécantes. Certaines de ces méthodes calculent
le Hessien en utilisant plusieurs équations sécantes mais produisent des mises à jour non
symétriques. D’autres schémas quasi-Newton, tels que BFGS, imposent la symétrie mais ne
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peuvent pas satisfaire plus d’une équation sécante. Nous proposons un nouveau type de mise
à jour symétrique quasi-Newton utilisant plusieurs équations sécantes au sens des moindres
carrés. Notre approche généralise et unifie la conception de mises à jour quasi-Newton et
satisfait des garanties de robustesse prouvables.
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Abstract

Recent years have witnessed a resurgence of the Frank-Wolfe (FW) algorithm,
also known as conditional gradient methods, in sparse optimization and large-scale ma-
chine learning problems with smooth convex objectives. Compared to projected or proxi-
mal gradient methods, such projection-free method saves the computational cost of orthogo-
nal projections onto the constraint set. Meanwhile, FW also gives solutions with sparse struc-
ture. Despite of these promising properties, FW does not enjoy the optimal conver-
gence rates achieved by projection-based accelerated methods.

On the other hand, FW algorithm is affine-covariant, and enjoys accelerated conver-
gence rates when the constraint set is strongly convex. However, these results rely on norm-
dependent assumptions, usually incurring non-affine invariant bounds, in contradic-
tion with FW’s affine-covariant property. In this work, we introduce new structural as-
sumptions on the problem (such as the directional smoothness) and derive an affine in-
variant, norm-independent analysis of Frank-Wolfe. Based on our analysis, we pro-
pose an affine invariant backtracking line-search. Interestingly, we show that typical back-
tracking line-search techniques using smoothness of the objective function surprisingly con-
verge to an affine invariant stepsize, despite using affine-dependent norms in the com-
putation of stepsizes. This indicates that we do not necessarily need to know the struc-
ture of sets in advance to enjoy the affine-invariant accelerated rate. Additionally,
we provide a promising direction to accelerate FW over strongly convex sets using dual-
ity gap techniques and a new version of smoothness.

In another line of research, we study algorithms beyond first-order methods. Quasi-
Newton techniques approximate the Newton step by estimating the Hessian us-
ing the so-called secant equations. Some of these methods compute the Hessian us-
ing several secant equations but produce non-symmetric updates. Other quasi-
Newton schemes, such as BFGS, enforce symmetry but cannot satisfy more than one se-
cant equation. We propose a new type of quasi-Newton symmetric update using sev-
eral secant equations in a least-squares sense. Our approach generalizes and unifies the de-
sign of quasi-Newton updates and satisfies provable robustness guarantees.
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Introduction

In this thesis, we present improved algorithms and analysis for two essential classes of convex
optimization algorithms, Frank-Wolfe and Quasi-Newton methods. We first recall basic
concepts and results in optimization as well as in acceleration schemes.

0.1. Convex Optimization
Our goal is to design efficient algorithms in a d-dimensional space for solving

min
x∈C

f(x) (OPT)

where x ∈ C ⊆ Rd, C is the constraint set, and f is the objective function. To make
such a minimization problem tractable, we study it under the common convexity hypothesis
on (OPT). A convex optimization problem satisfies the following conditions,

(1) The set C is convex, i.e., ∀p, q ∈ C and λ ∈ [0,1], it holds that λp + (1− λ)q ∈ C.
(2) The function f is convex, i.e., ∀p, q ∈ C and λ ∈ [0,1], we have

λf(p) + (1− λ)f(q) ≥ f(λp + (1− λ)q).

These are sufficient conditions to guarantee that (potentially inefficient) methods exist to
solve the minimization problem (OPT). Furthermore, it is possible to design more efficient
algorithms with better theoretical properties by imposing additional structural assumptions.
Below are the most frequent assumptions that we use throughout this thesis.
Differentiability. We assume that f is differentiable.
Strong convexity. We call f a strongly convex function with constant µ if we have

f(x) ≥ f(y) +∇f(y)⊤(x− y) + µ

2∥x− y∥2 (0.1.1)

for all x,y ∈ Rd.
Smoothness. We call f a smooth function with constant L if we have

f(s) ≤ f(t) +∇f(t)⊤(s− t) + L

2 ∥x− y∥2 (0.1.2)

for all s,t ∈ Rd.



We remark that these definitions hold for any norm ∥ · ∥. Without specifying, we refer
to the Euclidean norm. In general, these structural assumptions upper and lower bound
the function by quadratics. Furthermore, smoothness and strong convexity provide useful
inequalities, which can be used to design efficient algorithms.

0.2. Affine Invariance
Given an affine change of coordinates x = Ay where A ∈ Rd×d is a nonsingular matrix,

we can transform the original optimization problem defined in in (OPT) as follows,

min f(x)
s.t. x ∈ C,

⇒
min f̂(y)
s.t. y ∈ Ĉ,

(0.2.1)

where the variable y ∈ Rd, and

f̂(y) ≜ f(Ay) and Ĉ ≜ A−1C. (0.2.2)

Note that both problems in (0.2.1) are equivalent, therefore they should have technically
identical complexity bounds per se, unless A is pathologically ill-conditioned. Hence, we
expect the analysis of optimization algorithms for convex problems to yield affine invariant
rates. Such consideration is the starting point to study and to extend the following two
popular types of algorithms in this thesis.
Frank-Wolfe Algorithm. The affine covariance nature of Frank-Wolfe (FW) Algorithm
should imply an affine invariant rate from the analysis. However, the theoretical accelerated
rate over strongly convex sets is affected by affine transformations. See Section 0.3 for details.
We provide the definition of affine covariance below.
Definition 0.2.1 (Affine covariance). An algorithm is affine covariant when its iterates (xk)
(resp. (yk)) for problem (0.2.1) satisfy

xk = Ayk.

Quasi-Newton Methods. [57] developed the complexity analysis of Newton’s method
via the self-concordance argument, which produces affine invariant convergence rates and
the iterates themselves are invariant. Meanwhile, for large-scale problems, Quasi-Newton
methods are computationally efficient alternatives with Hessian approximation which keep
the proximity to affine invariance properties. See Section 0.4 for details.

0.3. Frank-Wolfe Algorithm
Recent years have witnessed a promising resurgence of Frank-Wolfe algorithm (also known

as conditional gradient (CG) methods [29]) in sparse optimization and large-scale machine
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Algorithm 1 Frank-Wolfe Algorithm
Input: x0 ∈ C.

1: for k = 0, 1, . . . , K do
2: vk ∈ argmax

v∈C
⟨−∇f(xk), v − xk⟩ ▷ LMO

3: γk = argmin
γ∈[0,1]

f(xk + γ(vk − xk)) ▷ Line-search

4: xk+1 = (1− γt)xk + γkvk ▷ Convex update
5: end for

learning problems, compared to projected or proximal gradient methods. Motivating appli-
cations span over structural SVMs [50], structured energy minimization [77], greedy particle
optimization [30], among others. Despite of its nice properties, Frank-Wolfe suffers from a
slower convergence rates than accelerated rates achieved by projection-based methods, i.e.,
Nesterov’s accelerated gradient descent [60]. To fill this gap, we study possible extensions to
accelerate Frank-Wolfe algorithm based on estimate sequences [59] and the duality-gap tech-
nique [23], with new upper and lower bounds for the duality gap as byproduct. In addition,
we propose a new variant of Frank-Wolfe algorithm with adaptive stepsizes, which provides
promising directions for global acceleration of Frank-Wolfe over smooth and strongly convex
sets.

In detail, Frank-Wolfe algorithms [29] form a class of first-order methods solving constrai-
ned optimization problems such as

min
x∈C

f(x). (0.3.1)

The schemes in this class decompose non-linear constrained problems into a series of linear
problems on the original constraint set, i.e. linear minimization oracles (LMO) indicated in
Algorithm 1. They form a practical family of algorithms

Besides, with the appropriate line-search, the iterates of the FW are affine covariant
under the affine transformation y = Bx + b of problem (0.3.1),

min
y∈C̃=BC+b

f̃(y) def= f(B−1(y − b)), B invertible. (0.3.2)

In other words, the behavior of Algorithm 1 is insensitive to affine transformations of the
space. This means that, ideally, the theoretical rate for a affine covariant algorithm should
be affine invariant.

The original Frank-Wolfe algorithm (Algorithm 1) generally enjoys a slow sublinear rate
O(1/K) over general compact convex set and smooth convex functions [43]. In that setting,
[14, 43] define a modulus of smoothness that leads to an affine invariant analysis of the
Frank-Wolfe algorithm, matching with the affine covariant behavior of the algorithm.

Many works have then sought to find structural assumptions and algorithmic modifica-
tions that accelerate this sublinear rate of O(1/K). The strong convexity of the set (or more
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generally uniform convexity, see [45]) is one of such structural assumptions which lead to
various accelerated convergence rates. For example, linear convergence rates can be achieved
when the unconstrained optimum is outside the constraint set [51, 22, 25, 66]; sublinear rates
O(1/K2) can be achieved when the function is also strongly convex but without restrictions
on the position of the optimum [31]. However, there exists no affine invariant analysis for
these accelerated regimes stemming from the strong convexity of the constraint set C.

Recall that the smoothness of a function and the strong convexity of a set are defined as
follows.
Definition 0.3.1. The function f is smooth over the set C w.r.t. the norm ∥ · ∥ if there
exists a constant L > 0 such that, for any x ,y ∈ C, we have

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2 ∥x− y∥2. (0.3.3)

Definition 0.3.2. A set C is α-strongly convex with respect to a norm ∥ · ∥ if, for any
(x,y) ∈ C, γ ∈ [0,1] and ∥z∥ ≤ 1, we have

γx + (1− γ)y + αγ(1− γ)∥x− y∥2z ∈ C. (0.3.4)

In the “non-affine invariant” analyses, structural assumptions like the L-smoothness (De-
finition 0.3.1) of f and the α-strong convexity of C (Definition 0.3.2) lead to accelerated
convergence rate of the Frank-Wolfe algorithm, but are typically conditioned on parameters
L,α and others, which depend on a particular choice of a norm. This is surprising given that
the Frank-Wolfe algorithm (under appropriate line-search) does not depend on any norm
choice.

Obtaining practical accelerated affine invariant rates is hard, as an affine invariant step
size is required. Indeed, some adaptive stepsizes rely on theoretical affine invariant quantities
which are in general not accessible. Therefore, by practical, we consider rates that can be
achieved without a deep knowledge of the problem structure and constants.

For instance, scheduled stepsizes like γk = 2
k+2 makes the Frank-Wolfe algorithm

practically affine covariant, yet they do not capture the accelerated convergence
regimes with an O(1/K2) rate. Exact line-search guarantees a practically affine co-
variant algorithm while capturing accelerated convergence regimes but significantly
increases the time to perform a single iteration. Finally, it is possible to use back-
tracking line-search such as [63]. Unfortunately, backtracking techniques rely on the
choice of a specific norm, thus potentially breaking affine invariance of the algorithm.
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This raises naturally the following questions:

Can we derive affine invariant rates for the Frank-Wolfe algorithm on strongly convex
sets?

Can we design an affine invariant backtracking line-search for Frank-Wolfe algorithms?

This thesis provides a positive answer to these questions, by proposing the following
contributions. (1) we conduct affine invariant analyses of the Frank-Wolfe Algorithm 1,
when the function f is smooth w.r.t. to a specific distance function ω(·) and the set C is
strongly convex also w.r.t. ω(·). We then introduce new structural assumptions extending
the class of problems for which such accelerated regimes hold in the case of Frank-Wolfe,
called directionally smooth functions with direction δ. From this definition, (2) we propose
an affine invariant backtracking line-search for finding the optimal stepsize. Finally, (3) we
show that existing backtracking line-search methods, which use a specific norm, converges
surprisingly to the optimal norm-invariant, affine invariant stepsize, meaning that affine-
dependent and affine invariant backtracking techniques perform similarly. As a byproduct,
under the condition of strongly convex sets we provide a promising direction to accele-
rate FW using duality gap techniques, which is illustrated in Appendix ??.

0.4. Quasi-Newton Methods
In another line of work, we consider second-order methods for unconstrained minimi-

zation of a smooth, possibly non-convex function f : Rd → R. Despite a locally quadratic
convergence rate, the well-known Newton method iteration

xk+1 = xk −
[
∇2f(xk)

]−1
∇f(xk) (0.4.1)

is not suitable for large-scale problems, in part because it requires solving a d×d linear system
involving the Hessian at every iteration. To address this issue, quasi-Newton algorithms
replace the update rule (0.4.1) by

xk+1 = xk −B−1
k ∇f(xk) or xk+1 = xk −Hk ∇f(xk), (0.4.2)

where Bk ≈ ∇2f(xk) and Hk ≈
[
∇2f(xk)

]−1
are approximations of the Hessian and its

inverse (respectively) at xk. Choosing the right approximation has drawn considerable at-
tention in the optimization literature, notably the DFP update [17], Broyden method [10],
SR1 update [13] and the well-known BFGS method [11], [28], [32] [76]. In general, those
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methods estimate a matrix Bk or Hk satisfying the secant equation

∇f(xk)−∇f(xk−1) = Bk(xk − xk−1) or

Hk(∇f(xk)−∇f(xk−1)) = xk − xk−1, (0.4.3)

then perform the quasi-Newton step (0.4.2). It is also possible to satisfy several secant
equations. For instance, the multisecant Type-I and Type-II Broyden methods [27] find a
non-symmetric matrix Bk or Hk satisfying a block of secants: for a memory size m and for
i = k −m + 1 . . . k,

∇f(xi)−∇f(xi−1) = Bk[xi − xi−1] or

Hk[∇f(xi)−∇f(xi−1)] = xi − xi−1.

By contrast, other methods like BFGS and DFP enforce the symmetry of the update, but
they satisfy only one secant equation, in which case [65] showed their high dependence in
the stepsize. Indeed, while BFGS and DFP enjoy an optimal convergence rate on quadratics
using exact line-search [62], [65] showed that with a unitary stepsize, these updates converge
particularly slowly on a simple quadratic function with just two variables. Moreover, it was
also observed that BFGS updates are sensitive to gradient noise, and designing quasi-Newton
methods for stochastic algorithms is still a challenge [12, 8, 7, 6].

Unfortunately, except for quadratic functions [71], it is usually impossible to find a sym-
metric matrix that satisfies more than one secant equation. [34] adopted Hessian-vector
products instead of the secant equations. Moreover, line search has been shown to be com-
putationally expensive. Finally, the stabilisation procedure for stochastic BFGS usually
requires a growing batch size to reduce the gradient noise, making it unpractical in many
applications.

In this thesis, we tackle those problems by proposing a symmetric multisecant update,
that satisfies the secant equations in a least-squares sense. We show their optimality on
quadratics with unitary stepsize, and prove their robustness to gradient noise, making them
good candidates in the context of stochastic optimization.
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Chapitre 1

Affine Invariant Analysis of Frank-Wolfe on
Strongly Convex Sets

This paper was accepted at ICML 2021 in the main conference track. Its authors are:
Thomas Kerdruex*, Lewis Liu*1, Simon Lacoste-Julien, Damien Scieur*.

Contribution: Thomas, Damien, and myself led the project. Damien and I studied the
properties of Frank-Wolfe over strongly convex sets, and I explore how the choice of norms
affects the convergence rate of the algorithm, which originated the idea of affine invariant
analysis. We three derive the affine invariant analysis of Frank-Wolfe together, where Thomas
found the direction of adapting the existing affine invariant proof to the strongly convex set
scenario. Further, I explore the motivation and examples for the necessity of the affine
invariant analysis. Also, I prototyped the experiments and proposed the affine-invariant
backtracking Frank-Wolfe. Damien and I provided explanation for the similar performance
between the classical backtracking algorithm and the affine-invariant one. Simon provided
ideas and directions for the project, and fixed essential technical issues in our proof.

In Section 1.1, we review some existing work on affine invariant analysis of Frank-Wolfe
algorithms. In Section 1.2, we motivate the need for affine invariant analysis of Frank-Wolfe
on strongly convex sets. In Section 1.3 and 1.4, we introduce the structural assumptions on
the optimization problem that we will consider for analysing Frank-Wolfe. In Section 1.5 we
detail our affine invariant analysis of Frank-Wolfe on strongly convex set. In Section 1.6 and
1.7 we provide a backtracking line-search that directly estimate the affine invariant quantities
we developed and we explain how it relates with existing ones. We conclude in Section 1.8
with numerical experiments.

1* indicates equal contribution



1.1. Related Work on Affine Analysis of Frank-Wolfe
Other linear convergence rates of Frank-Wolfe algorithms exists with affine invariant

analysis. For instance, corrective variants of Frank-Wolfe exhibit (affine invariant) linear
convergence rates when the constraint set is a polytope [48, 49] and the objective function
is (generally) strongly convex. See Table 1.1 for a review of all affine invariant analyses of
Frank-Wolfe algorithms.

These affine invariant analyses emphasize that there is no specific choice of norm to be
made in Frank-Wolfe algorithms as well as there is no need for affine pre-conditionners.
Frank-Wolfe algorithms are arguably free-of-choice methods, i.e. little needs to be known on
the optimization problem’s structures to obtain the accelerated regimes. This is in line with
recent works showing that the Frank-Wolfe methods exhibit accelerated adaptive behavior
under a variety of structural constraints of (0.3.1) which depend on inaccessible parameters,
e.g. Hölderian Error Bounds on f [46, 83, 67] or local uniform convexity of C [45].

Affine invariant analyses introduce constants seeking to characterize structural properties
without a specific choice of norm. This has then been the basis for works extending the
accelerated convergence analysis to non-smooth or non-strongly convex functions [64, 37],
which then explore new structural assumptions on f .

Related Work C Str. cvx. f x∗ Algo Stepsize Rate
[14] Simplex ✗ Any FW Scheduled O(1/T )
[43] Convex ✗ Any FW Scheduled O(1/T )
[48] Any ✓ Interior FW Exact ls Linear
[49] Polytope ✓ Any Corr. FW Exact ls Linear
[37] Polytope ✓ Any FW Exact ls Linear
Our work Strongly cvx ✗ ∇f(x⋆) ̸= 0 FW Backtracking ls Linear

Strongly cvx ✓ Any FW Backtracking ls O(1/T 2)

Tableau 1.1. Existing affine invariant analysis of Frank-Wolfe for smooth convex functions
under different schemes.
Strong convexity. The strong convexity assumption is to be taken broad sense. In
[48, 49], the authors consider generalized strong convexity, an affine-invariant measure of
strong convexity, while [37] consider strongly convex functions relative to a pair (C, ω) where
ω is a distance-like function. In our work, we not directly assume strong convexity, but the
directional smoothness of the function (see later Definition 1.4.1), whose constant is bounded
if various assumptions are satisfied for (0.3.1) (Theorem 1.4.4).
Stepsize. By scheduled stepsizes, we consider, for instance, the classical γk = 1

k
. We de-

note by exact-line search when the optimal stepsize depends on an unknown affine-invariant
quantity, whose accessible upper-bounds are affine-dependent (thus breaking the affine inva-
riance of FW).
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1.2. “Affine-dependent” Analysis of FW
It is known that when the function is smooth (Definition 0.3.1), the set is strongly-convex

(Definition 0.3.2) and the gradient is lower bounded ∥∇f(x)∥ ≥ c over the constraint set
(i.e., the constraints are active), the Frank-Wolfe algorithm 1 converges linearly [51, 22, 25],
at rate (with hk ≜ f(xk)− f⋆)

hk ≤
(

max
{1

2 , 1− cα

2L

})k

h0. (1.2.1)

Note that assuming the gradient to be lower bounded means the constraints are tight, i.e.,
the solution of the unconstrained counterpart lies outside the set of constraints. However,
the constants L, α, and c depend on the choice of the norm for the smoothness and the
strong convexity. In contrast, the Frank-Wolfe algorithm and iterates do not depend on such
a choice, due to its affine covariance. Therefore, the rate of Algorithm 1 should be affine
invariant. Unfortunately, it is possible to show that the known theoretical analyses can be
arbitrarily bad in the case where the constants L, c, α depend on “affine variant” norms.
Example 1.2.1. Consider the projection problem

minx f(x) def= 1
2∥x− x̄∥2 such that 1

2∥x∥
2 ≤ 1.

In such case, we have that L = 1, α = 1√
2 and c = 1−∥x̄∥ (L, α and c are defined according

to the ℓ2 norm). However, if we transform the problem into miny f(By), the new constants
become

L = σmax(B), α = σmin(B)√
2σmax(B) , c = σmax(B)(1− ∥x̄∥).

Comparing the rate (1.2.1) of the two problems, identical to the eyes of the FW algorithm,
we have that

f(xk)− f ⋆ ≤
(
1− (1−∥x̄∥)

2
√

2

)k (
f(x0)− f ⋆

)
,

f(Byk)− f ⋆ ≤
(
1− (1−∥x̄∥)

2
√

2 κ−1(B)
)k (

f(x0)− f ⋆
)
,

where κ(B) = σmax(B)
σmin(B) is the condition number of B. This means we can artificially make a

large theoretical upper bound on the rate of convergence by using an ill-conditioned transfor-
mation (i.e., κ(B) large). However, the speed of convergence of FW iterates are not affected
by any linear transformation (dues to their affine-covariance), therefore the upper bound will
not be representative of the true rate of convergence of FW.

When the optimum is in the relative interior of any compact set C, FW converges linearly
when f is strongly convex [36, 48]. On the other hand, linear convergence on strongly convex
sets does not require strong convexity of f when the solution of the unconstrained problem
lies outside the set [22]. Our paper hence focuses on extending the analysis where the
unconstrained optimum is outside the constrain set [22].
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These two analysis cover most practical cases, but not the situation where the uncons-
trained optimum is close to the boundary of C. A recent analysis on strongly convex sets
of [31] is not restrictive w.r.t. the position of the unconstrained optimum but conservative
(convergence rate of O(1/K2)). It is interesting as it not only deals with the (previously
unknown) situation where the unconstrained optimum is on the boundary on C, but also
when it is arbitrarily close to it, leading to poorly conditioned linear convergence regimes.
In Appendix B.4, we provide an affine invariant analysis of [31].

1.3. Smoothness and Strong Convexity w.r.t. General
Distance Functions

The major limitation in the definition of smoothness of a function (Definition 0.3.1) and
the strong convexity of a set (Definition 0.3.2) is the presence of the norm in their definition,
whose constants may be dependent on affine transformation of the space (see Example 1.2.1).
Technically, the notion of norm in the definition of smoothness and strong convexity of a
function can be extended to the concept of distance-generating function, for instance using
Bregman divergence [5, 53] or gauge functions [16].

Although is it classical to use different distance-generating functions ω (that satisfies
Assumption 1.3.1 below) to characterize the smoothness of a function, we are not aware
of such analysis for strongly convex sets. We believe that such analysis may exist, but for
completeness we propose here an extension of the strong convexity of a set w.r.t. a distance
function ω.
Assumption 1.3.1. The function ω(·) satisfies

• ω(x) = 0 ⇔ x = 0,
• Positivity: ω(x) ≥ 0,
• Triangular Inequality: ω(x + y) ≤ ω(x) + ω(y)
• Positive homogeneity: ω(γx) = γω(x), γ ≥ 0,
• Bounded asymmetry: maxx

ω(x)
ω(−x) ≤ κω.

Since ω(x) is convex by the triangle inequality, we define the dual distance

ω∗(v) = max
x:ω(x)≤1

⟨v,x⟩. (1.3.1)

Remark 1.3.2. Usually, extensions of smoothness of a function use Bregman divergences
(see e.g. [53, 5]). However, the assumption that the distance-generating function is positively
homogeneous is crucial in our analysis, which is unfortunately, not satisfied for most Bregman
divergences.
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A typical example satisfying such assumptions are gauge functions, also called Minkowski
functional,

ωQ(v) def= argmin
τ≥0

τ subject to v ∈ τQ,

where 0 ∈ intQ. Such distance-generating function satisfies Assumption 1.3.1 if the set Q
is convex and compact, and contains 0 in its interior. Moreover, gauge functions are affine
invariant.

Usually, most works using gauge function assume that the set Q is centrally symmetric
[16, 55], which add the assumption that

ω(x) = ω(−x).

In that case, the gauge function is a norm [Theorem 15.2.][68]. Removing symmetry extends
non-trivially the definition of strongly convex sets w.r.t. the distance function ω. We now
recall the definitions of smoothness and strong convexity of a function w.r.t. a distance
function ω.
Definition 1.3.3. A function f is smooth (resp. strongly convex) w.r.t. the distance function
ω if, for a constant Lω (resp. µω), the function satisfies

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ Lω

2 ω2(y − x), (1.3.2)

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µω

2 ω2(y − x). (1.3.3)

Definition 1.3.4. A set C is αω-strongly convex w.r.t. ω if, for any (x,y) ∈ C and γ ∈ [0,1],
we have

zγ + αωγ(1− γ)(1− γ)ω2(x− y) + γω2(y − x)
2 z ∈ C,

where zγ = γx + (1− γ)y, for all z such that ω(z) ≤ 1.
This definition extends the one of strongly convex sets with a general distance function

that may not be a norm, see for instance [31].
With Definition 1.3.4, the level sets of smooth and strongly convex functions are also

strongly convex sets when the function ω is used. Such results appear for instance in [44]
when ω is the ℓ2 norm.
Lemma 1.3.5 (Strong Convexity of Sets). Let f be a L-smooth and µ-strongly convex
function w.r.t. ω. Then, the set

C = {x : f(x)− f⋆ ≤ R}

is α-strongly convex w.r.t. ω, with α = µω

κω
√

2LωR
.

We defer the proof in Appendix B.1. This result corresponds exactly to the one of
[Theorem 12][44], when we use ω = ∥ · ∥2.
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Scaling Inequality. All proofs of Frank-Wolfe methods on strongly convex sets leverage the
same property. The scaling inequality (equivalent to strong convexity of C [Theorem 2.1.][33])
crucially relates the Frank-Wolfe gap with ∥xt− vt∥2, see e.g. [Lemma 2.1.][45]. We extend
the scaling inequality to strongly convex sets with generic distance functions.
Lemma 1.3.6 (Distance Scaling Inequality). Assume C is αω-strongly convex w.r.t. ω. Then
for any x ∈ C, ϕ ∈ Rd\{0}, and vϕ ∈ argmaxv∈C⟨ϕ, v⟩, we have ϕ ∈ NC(vϕ) (normal cone)
and

⟨ϕ, vϕ − x⟩ ≥ αω

2 ω∗
(
ϕ
)
ω2(vϕ − x). (1.3.4)

In particular for any iterate xk of Frank-Wolfe and its Frank-Wolfe vertex vk (Line 2 in
Algorithm 1), we have

⟨−∇f(xk); vk − xk⟩ ≥
αω

2 ω∗
(
−∇f(xk)

)
ω2(vk − xk).

Démonstration. We start with vϕ = argmaxv∈C⟨ϕ; v⟩. Then, we use the definition of
strong convexity of a set,

γx + (1− γ)vϕ + αωγ(1− γ)Dγ(x− vϕ)z ∈ C ∀z : ω(z) ≤ 1.

where Dγ(x− y) def= γω2(x−y)+(1−γ)ω2(y−x)
2 . Then, by optimality of vϕ,

⟨ϕ; vϕ⟩ ≥ ⟨ϕ; γx + (1− γ)vϕ + αωγ(1− γ)Dγ(x− vϕ)z⟩

After simplification,
⟨ϕ; vϕ − x⟩ ≥ αω(1− γ)Dγ(x− vϕ)⟨ϕ; z⟩

which holds in particular when ϕ = −∇f(x), γ = 0 and z being the argmax (see (1.3.1)).

1.4. Directional Smoothness
We separately introduced smoothness for functions, and strong convexity for sets w.r.t. a

distance function ω. Analyses of Frank-Wolfe algorithm on strongly convex sets [51, 22, 25]
show that, when f is convex and smooth, and the unconstrained minima of f are outside of
C, there is linear convergence.

We hence propose a novel condition that mingles the smoothness of f with the strong
convexity of C when moving in a specific direction δ. We are interested in particular with
the FW direction and we will see later that this assumption guarantees a linear convergence
rate in this case. We call this condition the directional smoothness.
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Definition 1.4.1. The function f is directionally smooth with direction function δ : C → Rd

if there exists a constant Lf,δ > 0 s.t. ∀x ∈ C and h > 0 with x + hδ(x) ∈ C,

f
(
x + hδ(x)

)
≤f(x)− h⟨−∇f(x), δ(x)⟩ (1.4.1)

+ Lf,δh
2

2 ⟨−∇f(x), δ(x)⟩.

The rationale of Definition 1.4.1 is to replace the norm in the usual smoothness condition
(Definition 0.3.1) by a scalar product between the direction and the negative gradient, in
order to get an affine invariant quantity for the FW direction (see Proposition 1.4.3 below).

Assuming δ(x) is a descent direction, i.e., ⟨−∇f(x), δ(x)⟩ > 0, we can obtain a minimi-
zation algorithm for f , by minimizing (1.4.1) over h,

xk+1 = xk + hoptδ(xk), hopt = min{hmax ; L−1
f,δ}.

Example 1.4.2. (Gradient descent on smooth functions) The gradient algorithm uses δ(x) =
−∇f(x). In such case, the function is directionally smooth with constant L, and we obtain

f(xk+1) ≤ f(xk)− h∥∇f(x)∥2 + Lh2

2 ∥∇f(x)∥2

= f(x) + h
(

Lh
2 − 1

)
∥∇f(x)∥2.

The best h is given by hopt = 1
L

, which is also the optimal one [61].
The advantage of directional smoothness is its affine invariance in the case where δ(x) is

the FW step.
Proposition 1.4.3 (Affine Invariance of Lf,δ). If δ(x) is affine covariant (e.g. the FW di-
rection δ(x) ≜ v(x) − x), then Lf,δ in (1.4.1) is invariant to an affine transformation of the
constraint set (proof in Appendix B.2.2).

The next theorem shows that, in the case of the FW algorithm, the directional smoothness
constant is bounded if the function is smooth and the set is strongly convex for any distance
function ω. We use this result later, to show that affine invariant backtracking line-search is
equivalent to using the best distance function ω to define Lω, cω and αω.
Theorem 1.4.4 (Directional Smoothness of FW). Consider the function f , smooth w.r.t.
the distance function ω, with constant Lω, and the set C, strongly convex with constant αω.
Let δ(x) = x− v(x), v(x) being the FW corner

v(x) def= argmin
v∈C

⟨∇f(x), v⟩.

Then, if ω∗(−∇f(x)) > cω for all x ∈ C and some cω > 0, the function f(x) is directionally
smooth w.r.t. to ω, with constant

Lf,δ ≤
Lω

cωαω

. (1.4.2)

Démonstration. See Appendix B.1.1 for the proof.
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1.5. Affine Invariant Linear Rates
With the directional smoothness constant Lf.δ (affine invariant when δ is the FW direc-

tion), Theorem 1.5.1 shows an affine invariant linear rate of convergence of FW, generalizing
existing convergence results of Frank-Wolfe on strongly convex sets [51, 22, 25].
Theorem 1.5.1 (Affine Invariant Linear Rates). Assume f is a convex function and direc-
tionally smooth with direction function δ with constant Lf,δ. Then, the FW Algorithm 1
with stepsize

hopt = min
{
1, 1

Lf,δ

}
, with δ = v(x)− x,

or with line-search, where v(x) is the FW corner

v(x) = argmin
v∈C

⟨∇f(x), v⟩,

converges linearly, at rate

f(xk)− f⋆ ≤ max
{

1
2 , 1− 1

2Lf,δ

}
(f(xk−1)− f⋆) .

Démonstration. We start with the directional smoothness assumption. For 0 < h < 1,

f
(
xk+1

)
≤f(xk) +

(
h− Lf,δh2

2

)
⟨∇f(xk), δ(xk)⟩

After minimization, we have two possibilities: hopt = 1
Lf,δ

or hopt = 1. In the first case, we
obtain

f
(
xk+1

)
≤ f(xk) + 1

2Lf,δ
⟨∇f(xk), δ(xk)⟩

Notice that the scalar product in the right-hand-side is the negative dual gap of Frank-Wolfe,
that satisfies

⟨∇f(xk), v(x)− x⟩ ≤ − (f(xk)− f⋆) ,

which gives the desired result. The second case follows immediately.

This provides an affine invariant analysis of the linear convergence regimes of FW on
strongly convex sets.

The next proposition shows that the directional constant in Theorem 1.5.1 is bounded
by (1.4.2) w.r.t. the distance function ω that gives the best ratio. This means that the
Frank-Wolfe method acts like it optimizes the function in the best possible geometry, i.e.,
the geometry that gives the best constants.
Proposition 1.5.2 (Optimality of Dir. Smoothness). Let Ω the set of function defined as

Ω = {ω : ω satisfies assumptions 1.3.1}.

Then, the directional smoothness constant follows

Lf,δ ≤ min
ω∈Ω

Lω

cωαω

,
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where Lω is the smoothness constant of the function f , αω the strong convexity of the set C
and

cω ≤ ω∗
(
−∇f(x)

)
, ∀x ∈ C.

Démonstration. The proof is immediate by noticing that the FW algorithm do not use
ω, therefore we can choose the best ω in Theorem 1.4.4.

To obtain a similar affine invariant analysis without restriction on the position of the
optimum, i.e. the O(1/K2) analysis in [31], one can define a similar property to the direction
smoothness defined in Section 1.4. This new structural assumption additionally mingles
together with the strong convexity of f . We provide details in Appendix B.4. We choose to
focus the analysis for the linear convergence in the main text as it is the one most significant
in practice.

1.6. Affine Invariant Backtracking
In previous sections, we proposed new constants to bound the rate of convergence of

the Frank-Wolfe algorithm, which is affine invariant. The significant advantage of these
constants is that, like FW, they are independent of any norm. However, the optimal step
size of Frank-Wolfe needs the knowledge of these constants.

We propose in this section an affine invariant backtracking technique (Algorithm 2), based
on directional smoothness. By construction, the backtracking technique finds automatically
an estimate of the directional smoothness that satisfies

Lk < 2Lf,δ, k ≥ log2

(
L0

Lf,δ

)
.

1.7. Why Backtracking FW with norms is so efficient?
The stepsize strategy in Frank-Wolfe usually drives its practical efficiency. Sometimes,

setting the stepsize optimally w.r.t. the theoretical analysis may be suboptimal in practice.
Recently, [63] analyze the rate of the Frank-Wolfe algorithm for smooth function, using
backtracking line search, described in Algorithm 6, Appendix B.3.

Algorithm 6 in Appendix B.3 is adaptive to the local smoothness constant, and ensures
Lk+1 < 2Lf , Lf being the smoothness constant of the function in the ℓ2 norm. [63] observed
that the estimate of the Lipchitz constant is often significantly smaller than the theoretical
one; they wrote: “We compared the average Lipschitz estimate Lt and the L, the gradient’s
Lipschitz constant. We found that across all datasets the former was more than an order of
magnitude smaller, highlighting the need to use a local estimate of the Lipschitz constant to
use a large stepsize."
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Algorithm 2 Affine invariant backtracking
Input: FW corner vk, point xk, directional smoothness estimate Lk, function f .

1: L ← Lk. Define the optimal stepsize and next iterate in the function of the directional
Lipchitz constant:

γ⋆(L) def= min{ 1
L ,1},

x(L) def= (1− γ⋆(L))xk + γ⋆(L)vk.

2: Create the model of f between xk and x(L) based on equation (1.4.1),

m(L) def= f(xk) + γ⋆(L) (1− γ⋆(L)) ⟨∇f(xk), vk − xk⟩

3: Set the current estimate L̃ def= Lk

2 .
4: while f(x(L̃)) > m(L̃) (Sufficient decrease not met because L̃ is too small) do
5: Double the estimate : L̃ ← 2 · L̃.
6: end while

Output: Estimate Lk+1 = L̃, iterate xk+1 = x(L̃)

With our analysis, however, we can explain why the estimate of the smoothness constant
is much better than the theoretical one. The answer is simple:
Despite using a non-affine invariant bound, the stepsize resulting from the estimation of the

Lipchitz constant via the backtracking line-search finds 1
Lf,δ

.
Proposition 1.7.1. Consider the “local Lipchitz constant” Lloc(x) that satisfies (0.3.3) with
y = x + hδ(x), i.e.,

f(x + hδ(x)) ≤f(x) +∇f(x)(x + hδ(x))

+ Lloc(x)h2

2 ∥δ(x)∥2
2.

Then, Lloc(x) is bounded by

Lloc(x) ≤ Lf,δ
⟨−∇f(x),δ(x)⟩
∥δ(x)∥2 .

Assuming Lloc(x) “locally constant", the backtracking line-search finds Lk < 2Lloc(xk), and
its stepsize γ⋆ satisfies

min
{

1,
1

2Lf,δ

}
≤ γ⋆.

Démonstration. See Appendix B.2.1 for the proof.

Therefore, the optimal stepsize from the backtracking line-search with the ℓ2 norm is
exactly the optimal affine invariant stepsize of our affine invariant analysis from Theorem
1.5.1.
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In conclusion, even if we use non-affine invariant norms to find the smoothness constant,
surprisingly, the backtracking procedure finds the optimal, affine invariant stepsize.

1.8. Illustrative Experiments
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Fig. 1.1. Comparison of FW variants on the projection problem. Left: B = I, Right:
κ(B) = 106. The top row is the gap fk − f ∗, and the bottom row corresponds to the
estimation of the directional-smoothness constant Lk or the smoothness constant Lk, where
the black line report the maximum value of Lk. The reason why adaptive FW methods are
slower in the left figure is because, in the worst case, the number of iterations to reach a
certain precision can be up to four times larger than the worst-case bound on non-adaptive
methods. We clearly see that the directional smoothness parameter Lf,δ is affine invariant,
as its estimate is maxk Lk = 32 in both scenarios.

Quadratic / logistic regression. We consider the constrained quadratic and logistic regression
problem,

min
x∈C

1
n

n∑
i=1

l(aT
i x, yi), (1.8.1)

where l is the quadratic or the logistic loss. Here we adopt the ℓ2-ball, defined as

C = {x : ∥x∥2 ≤ R}, R > 0.

Specifically, we compare our affine invariant backtracking method in Algorithm 2 against the
naive FW Algorithm 1 with stepsize 1/L [22] and back-tracking FW [63] on the Madelon
dataset [39]. The results are shown in Figure 1.2. In detail, we set R such that the uncons-
trained optimum x∗ satisfies ∥x∗∥2 = 1.1R, and the initial iterate x0 = 0. As predicted by
our theory, the affine invariant algorithm performs well at the beginning, but after a few
iterations the two backtracking techniques behave similarly.
Projection. We solve here the projection problem described in Example 1.2.1, for two cases
of B: One that corresponds to the original problem, i.e. B = I, the second one where B is
an ill-conditioned matrix (with the condition number κ(B) = 106). The vector x0 is random
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Fig. 1.2. Classification problem on Madelon dataset, with (Top) Quadratic loss and (Bot-
tom) Logistic loss.

in the ℓ2 ball, and x̄ = 1d · (1.1/
√

d). We report the results in Figure 1.1. We compare the
standard FW algorithm with stepsize 1/L, the FW with backtracking line-search (Algorithm
6) and FW with affine invariant backtracking technique (Algorithm 2). If the problem is
well-conditioned (κ(B) = 1), all methods perform similarly. This is not the case, however,
for the ill-conditioned setting, where the FW with no adaptive stepsize converges extremely
slowly compared to the two other methods. We also see that the affine invariant backtracking
converges quicker than the standard backtracking. This is explained by the fact that the
latter takes a longer time to find the right constant Lk, while Lk remains untouched after
an affine transformation.

1.9. Conclusion
In this chapter, our theoretical convergence results on strongly convex sets complete the

series of accelerated affine invariant analyses of Frank-Wolfe algorithms. To obtain these,
we formulate a new structural assumption with respect to general distance functions, the
directional smoothness, which we will explore more systematically in future works. Also, we
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present a new affine invariant backtracking line-search method based on directional smooth-
ness. Within our framework of analysis, we provide a new explanation for the reasons behind
the efficiency of the existing backtracking line search, and we show theoretically and experi-
mentally they also find affine-invariant stepsizes.
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Chapitre 2

Generalization of Quasi-Newton Methods

This paper was accepted at AISTATS 2021 in the main conference track. Its authors are:
Damien Scieur*1, Lewis Liu*, Thomas Pumir, Nicolas Boumal.

Contribution: Damien and myself led the project. Damien, Thomas, and Nicolas formu-
late the multi-secant update for quasi-Newton methods. Damien and I explored the theoretical
motivation for considering such a new update scheme. In particular, I provided the proof of
the robustness of our algorithms, wrote the technical section of the paper as well as some
parts of other sections. Damien wrote the introduction to the methods, principles and the
experiment illustration. Other authors also wrote a first version without the robustness re-
sults.

In Section 2.3 we list the desirable properties of quasi-Newton schemes, and end with
a generic quasi-Newton update. The choice of its parameters, like the loss/regularization
functions, the preconditioner, the number of secants or the initialization leads to different,
existing methods but also to potentially new ones. Then, Section 2.4 proposes a novel quasi-
Newton scheme (Algorithm 3) based on our framework, combining the ideas of DFP/BFGS
and multisecant Broyden methods. This algorithm has the advantage of presenting a regu-
larization term, which controls the stability of the update.

2.1. Notations
We use boldface small letters, like x, to refer to vectors and boldface capital letters, like

A, for matrices. We use d to refer to the dimension of the problem, and m for the memory
of the algorithm (we will see later that m is the number of secant equations). For a function
f : Rd → R, its gradient and Hessian at x are denoted by ∇f(x) and ∇2f(x) respectively.
Consistently with the notations in the literature, we use H to denote an approximation of
the inverse of the Hessian, while we use B to denote an approximation of the Hessian. We
denote the usual Frobenius norm as ∥ · ∥. Moreover, for any square matrix A ∈ Rd×d and
1* indicates equal contribution



any positive definite matrix W ∈ Rd×d, we define the norm ∥A∥W as

∥A∥W = ∥W 1
2 AW

1
2∥. (2.1.1)

We often use the matrices X, G ∈ Rd×m+1, that concatenates the iterates and their
gradients as follow,

X = [xi, . . . , xi+m], G = [∇f(xi), . . . ,∇f(xi+m)].

Also, we define C, and ∆X and ∆G as

∆X = XC, ∆G = GC,

where C ∈ Rm+1×m is a matrix of rank m− 1 such that 1T
m+1C = 0, 1m+1 being a vector of

size m + 1 full of ones. Typically, C is the column-difference matrix

C =


−1 0 0 ...

1 −1 0 ...
0 1 1 ...

... ...
1 −1
0 1

 .

2.2. Related work
The idea of updating an approximation of the Hessian or its inverse can be traced back

to [17, 18] with the DFP update. Several updates, such as the Broyden method [10] or the
BFGS method [11, 28, 32, 76] have been proposed since then. Notably, [20], [21] proposed
to approximately invert the Hessian using a Conjugate Gradient method. Limited memory
BFGS (L-BFGS) [52], where a limited number of vectors are stored for the approximation of
the Hessian, has proven to be a powerful type of quasi-Newton method. The use of multise-
cant equations has also been used in a different context by [35] and [41], and their connection
with Anderson Acceleration [2] was studied by [27]. This connection, combined with recent
results on Anderson Acceleration [78, 79, 69, 74, 75], especially in the stochastic [73] and
non-smooth [84] settings, may indicates that multisecant methods also enjoy some good
theoretical properties. To scale up second-order methods, recent works focus on stochastic
quasi-Newton methods. The use of stochastic quasi-Newton updates has been investigated
by [72], [54], [56], [12] and [34], while approximating the Hessian through sampling methods
has been proposed by [26], [82] and [1], among others.

We now present two popular quasi-Newton updates: the BFGS method, and the multi-
secant Broyden method. They will serve as a basis to motivate the needs of generalization
of quasi-Newton updates.
Single secant DFP/BFGS updates The BFGS update finds a symmetric matrix Hk that
satisfies the secant equation (0.4.3). Among the many possible solutions, it selects the one
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closest to Hk−1 in a weighted Frobenius norm (2.1.1), specifically,

Hk = argmin
H=HT

∥H−Hk−1∥W

s.t. H(∇f(xk)−∇f(xk−1)) = xk − xk−1.
(2.2.1)

where W is any positive definite matrix such that W(∇f(xk)−∇f(xk−1)) = xk−xk−1 [62,
§8.1] — a similar claim holds for the update formula of Bk, known as DFP, whose update
reads

Bk = argmin
B=BT

∥B−Bk−1∥W−1

s.t. B(xk − xk−1) = ∇f(xk)−∇f(xk−1).
(2.2.2)

The matrix is then inverted using the Woodbury matrix identity. In the two update rules,
the matrices W and W−1 are used implicitly, i.e., we do not need to form W to evaluate
Hk nor Bk.

Solving (2.2.1) repeatedly, BFGS builds a sequence H1, H2, . . . of matrices such that
each Hk satisfies the kth secant equation. While it may satisfy the k − 1 other secants
approximately, the update rule offers no such guarantees. The same holds for the DFP
update.
Multi-secant Broyden updates In the case of Broyden updates, we seek a matrix B
for the type-I, or H for the type-II, that satisfies the secant equations only, without any
restriction on the symmetry of the estimate. The update of the standard Broyden method
reads, for i = k −m, . . . ,k,

Bk = argmin
B
∥B−Bk−m∥

s.t. B(xi − xi−1) = ∇f(xi)−∇f(xi−1),

Hk = argmin
H
∥H−Hk−m∥

s.t. H(∇f(xi)−∇f(xi−1)) = xi − xi−1.

(2.2.3)

As for the DFP update, the matrix Bk can also be inverted cheaply. In [27], the authors
show how to extend this update to the case where we want to satisfy more than one secant
equation. However, its solution is generally not symmetric.

2.2.1. Contributions

Quasi-Newton methods approximate the Hessian. The previous section shows they do
this in very different ways that seem incompatible given the work of [71]. Despite their
differences, they share similarities, such as the idea of secant equations. This leads to the
following questions:
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Algorithm 3 Type-I Symmetric Multisecant step (See Appendix C.1 for the type-II version)
Input: Function f and gradient ∇f , initial approximation of the Hessian Bref, maximum

memory m (can be ∞), relative regularization parameter λ̄.
1: Compute g0 = ∇f(x0) and perform the initial step

x1 = x0 −B−1
0 g0

2: for t = 1,2, . . . do
3: Form the matrices ∆X and ∆G (see Section 2.1) using the m last pairs (xi,∇f(xi)).
4: Compute the quasi-Newton direction d as

dt = −Z−1
⋆ gt,

see (Inv-RSP) with A = ∆X, D = ∆G, Zref = Bref, λ = λ̄∥A∥.
5: Perform an approximate-line search

xt+1 = xt + htdt, ht ≈ argmin
h

f
(
xt + htdt

)
.

6: end for

• Is it possible to design a generalized framework for quasi-Newton updates encompas-
sing Broyden’s, DFP and BFGS schemes?
• Can Symmetric and Multisecant techniques be combined into a single update?

In this chapter, we propose a positive answer to these questions trough the following
contributions.

• We propose a general framework that models and generalizes previous quasi-Newton
updates.
• We derive new quasi-Newton update rules (Algorithm 3), which are symmetric and

take into account several secant equations. The bottleneck is an (economic size)
Singular Value Decomposition (SVD), whose complexity is linear in the dimension of
the problem, therefore comparable to other quasi-Newton methods.
• We show the optimality of the convergence rate of any multisecant quasi-Newton

update built using our framework, on quadratic functions without line search. This
improves over the BFGS and DFP updates as they are inefficient with unitary step
size on quadratics [65], and suboptimal if exact line-search is not used.
• We introduce novel robust updates, that provably reduce the sensitivity to the noise

of our quasi-Newton schemes. This robustness property is a direct consequence of
considering several secant equations at once.

2.3. Generalization of Quasi-Newton
We have seen in the previous section two different quasi-Newton (qN) updates: one

that focuses on the symmetry of the estimate, the other on the number of satisfied secant
equations. In this section, we propose a unified framework to design existing and new qN
schemes.
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2.3.1. Generalized (Multi-)Secant Equations

The central part of qN methods is the secant equation. The idea follows from the lineari-
zation of the gradient of the objective function. Indeed, consider the function f(x), assumed
to be smooth, strongly convex and twice differentiable. The linearization of its gradient
around the minimum x⋆ satisfies

∇f(x) ≈ ∇f(x⋆)︸ ︷︷ ︸
=0

+∇2f(x⋆)(x− x⋆). (2.3.1)

After a “Newton step”, we get

x− [∇2f(x⋆)]−1∇f(x) ≈ x⋆.

Unfortunately, we do not have access to the matrix∇2f(x⋆) as we do not know x⋆. Moreover,
solving the linear system [∇2f(x⋆)]−1∇f(x) may be costly when d is large.

To overcome such issues, consider a sequence {x0, . . . ,xm} of points at which we have
computed the gradients. Then, (2.3.1) can be stated as

G = ∇2f(x⋆)(X−X⋆),

where X⋆ = x⋆1T
m+1, i.e., the matrix concatenating m + 1 copies of the vector x⋆. Matrices

X and G are defined in Section 2.1.
Ideally, the estimate B of the Hessian, or the estimate of its inverse H, has to satisfy the

condition
G = B(X−X⋆) or HG = (X−X⋆).

However, the dependency on x⋆ makes the problem of estimating B or H intractable. To
remove this problematic dependency, consider a matrix C ∈ Rm+1×m of rank m such that
1T

m+1C = 0 (see Section 2.1 for an example). After multiplying by x⋆ on the right, we
simplify X⋆C = 0 and we obtain the multisecant equations

∆G = B∆X, or H∆G = ∆X, (2.3.2)

where ∆X and ∆G are defined in Section 2.1. In the specific case where we have only one
secant equation, (2.3.2) corresponds exactly to the standard secant equation in (2.2.1). In
the case where C is the column-difference operator, we obtain the multisecant equations
usually used in multisecant Broyden methods.

2.3.2. Regularization and Constraints

The matrices B (Broyden Type-I and DFP updates) and H (Broyden Type-II and BFGS)
are selected so as to minimize the distances w.r.t. the reference matrices, called Bref and Href

respectively, as shown in (2.2.3). In the case where there is only a sequence of single secant
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equations, the reference matrix is taken as being the previous estimate, with an arbitrary
initialization. In the case of a multisecant update, the reference matrix is arbitrary. Moreo-
ver, in the case of DFP and BFGS, we have in addition a symmetry constraint, restraining
even more the search space for the estimate of the Hessian. For simplicity, we will consider
only the type-I update here, i.e., the estimate B. The formulation for estimate H can be
easily derived by swapping ∆G and ∆X.

The intuition behind the regularization term is due to the number of degrees of freedom
in the problem. The secant equation B∆X = ∆G defines the behavior of the operator B,
mapping from span{∆X} to span{∆G}. However, the dimension of these two spans is as
most m < d. This means we have to define the behavior of B outside of span{∆X} and
span{∆G}, i.e., from span{∆X}⊥ to span{∆G}⊥.

Since B outside the span is not driven by the secant equations, we have to define an
operator Bref, defining the default behavior of B outside the span of secant equations. This
means that, in the case where B satisfies exactly the secant equations, then B reads

B = [∆G∆X†] + Θ(I−P),

where P is the projector to the span of ∆X, ∆X† is a pseudo-inverse of ∆X, and Θ depends
on Bref and constraints (different Θ lead to different qN updates). This way, B satisfies the
secant equation, since multiplying B by ∆X gives ∆G, since

B∆X = ∆G∆X†∆X + Θ(I−P)∆X.

We have P∆X = ∆X, thus (I−P)∆X = 0 (by construction of P). Moreover, ∆G∆X†∆X =
∆G by definition of the pseudo-inverse.

The way B behaves outside the span is thus driven by Θ, which depends on the regulari-
zation, the initialization Bref and the constraints. To make a parallel with machine learning
problems, Θ can be seen as the “generalization” (or “out-of-sample”) term. We give example
choices for Θ in Appendix C.5.6.

Consider the regularisation function R(·,Bref), assumed to be strictly-convex, whose mi-
nimum is attained at Bref, and the convex constraint set C. We can write the qN update
estimation problem as

min
B∈C
R(B,Bref) subject to B∆X = ∆G. (2.3.3)

This approach generalizes the way we define qN updates. Indeed, for instance, we recover
DFP by setting R = ∥B−Bref∥W−1 , C = Sd×d (the set of symmetric matrices), m = 1 and
Bref = Bk−1 in (2.3.3). We also recover the Type-I Broyden method by settingR = ∥B−Bref∥
and C = Rd×d.
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2.3.3. Generalized Quasi-Newton Update

A natural extension, given the updates of DFP/BFGS and multisecant Broyden, would be
the symmetric multi-secant update. This update would read, for an arbitrary regularization
function,

min
B∈Sd×d

R(B,Bref) subject to B∆X = ∆G.

In the case where m > 1, this multisecant technique seems promising as it combines the
advantages of multisecant Broyden and symmetric updates.

Assuming ∆X, ∆G have full column rank, these equations always have a solution B.
However, there exists a symmetric solution if and only if ∆XT ∆G is symmetric [71, 40].

When ∆XT ∆G is symmetric, [71] derived a multisecant BFGS update rule. This as-
sumption indeed holds for quadratic objectives, but not for general objective functions when
m ≥ 2, that is, when we consider more than one secant condition [71, Example 3.1]. Hence,
a naive extension of symmetric quasi-Newton update leads to infeasible problems.

To tackle the problem of infeasible updates, we can relax the constraint on the secant
equations by a loss function L(·, ∆X, ∆G). We finally end up with the generalized (type-I
and type-II) qN update

Bk = lim
λ→0

argmin
B∈C

L(B,∆X,∆G) + λ

2R(B,Bref) (GQN-I)

Hk = lim
λ→0

argmin
H∈C

L(H,∆G,∆X) + λ

2R(H,Href) (GQN-II)

where we assume that L and R are strictly convex, and sufficiently simple to have an explicit
formula for Hk. The limits here simply state that we first minimize the loss function, then
with the remaining degrees of freedom we minimize the regularization term. In the case
where the update (2.3.3) is feasible, then (GQN-I)/(GQN-II) and (2.3.3) are equivalent.

2.3.4. Preconditioning

As shown for instance in DFP and BFGS, it is common to use a preconditioner to reduce
the dependence of the update to the units of the Hessian. We give here the example for
type-II update. The type-I follows immediately by considering W−1 instead of W.

The idea of preconditioning is, instead of considering H, to set

M = W(1−α)HWα,

where W ideally has the same units as the Hessian of the function f . For example, in BFGS,
W is any matrix such that W∆X = ∆G, which always exists in the case where ∆X and
∆G are vectors. Ideally, the preconditioner cancels the units in the update rules, i.e., W
has to have the same units as the Hessian.
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In the case where we consider a preconditioner,

MW−α∆X = W1−α∆G, Mref = Wα−1HrefW−α.

We now have the type-II Preconditioned Generalized Quasi-Newton update

argmin
M∈C̃

L(M,W−α∆X,W(1−α)∆G) + λ

2R(M,Mref) (PGQN-II)

where C̃ = W(1−α)CWα, i.e., the image of the constraint after application of the precondi-
tioner. To retrieve the update H, it suffices to solve

H = W−(1−α)MW−α.

2.3.5. Rate of Convergence on Quadratics

Our theorem below shows that generalized qN methods (GQN-I) and (GQN-II) are opti-
mal on quadratics under mild assumptions, in the sense that their performance is comparable
to conjugate gradients.
Theorem 2.3.1. Consider any multisecant quasi-Newton method (GQN-II) with unitary
step-size and m =∞,

xk+1 = xk −Hk∇f(xk) (2.3.4)

where f is the quadratic form (x − x⋆)T Q
2 (x − x⋆) for some Q ≻ 0, and H satisfies exactly

the secant equations. If the update (2.3.4) is a preconditioned first-order method, i.e., there
exists a symmetric positive definite matrix H̃ independent of k such that

xk+1 ∈ x0 + H̃span{∇f(x0), . . . ,∇f(xk)}

then xk = x⋆ if k ≥ d + 1; for smaller k the method satisfies the rate

∥∇f(xk)∥ ≤ O
(

1−
√

κ
1+

√
κ

)k

∥∇f(x0)∥,

Where κ is the inverse of the condition number of H̃Q.
The proof can be found in Appendix C.5. Notice that, for instance, the multisecant

Broyden updates (2.2.3) or the multisecant BFGS update [71] satisfies the assumptions of
Theorem 2.3.1 if Bref or Href are symmetric positive definite matrices (see Appendix C.5.6).
For all these methods, we have H̃ = Href (or B−1

ref ). This indicates that the initialization is
crucial, since a good initial approximation of Q−1 drastically reduces the condition number
κ.

We have now a generic form of qN update, but it raises some important questions. Which
practical losses and regularization functions should we use, and what happens if λ does not
go to zero? The next section addresses the first point by giving an example that extends
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(limited memory) DFP and multi-secant Broyden methods. Then, we analyse the robustness
of the method when λ is non-zero.

2.4. Robust Symmetric Multisecant Updates
We now extend the BFGS and multisecant Broyden method into the type-II Symmetric

Multisecant Update (2.4.1) below, solving the problem (PGQN-II) in the special case where
the loss and the regularization are Frobenius norms. For simplicity, we do not consider any
preconditioner here. The method reads

Hk =argmin
H=HT

∥H∆X−∆G∥2
F + λ

2∥H−Href∥2 (2.4.1)

and its type-I counterpart is B−1
k , where

Bk =argmin
B=BT

∥B∆G−∆X∥2
F + λ

2∥B−Bref∥2 (2.4.2)

Explicit Formula. We now solve problem (2.4.1) efficiently. This is an extension of the
symmetric Procrusted problem from [42]. Indeed, [42] solves the problem

min
Z=ZT

∥ZA−D∥,

where A and D are Rd×m matrices, where m > d. In our case, we have m≪ d, and an extra
regularization term, that makes the update formula more complicated. Fortunately, the
matrix-vector multiplication Zv can still be done efficiently even in our case, the bottleneck
being the computation of the SVD of a thin matrix. The next theorem details the explicit
formula to compute Mk (and its inverse if one wants to use a type-I method).
Theorem 2.4.1. Consider the Regularized Symmetric Procrustes (RSP) problem

Z⋆ = argmin
Z=ZT

∥ZA−D∥2 + λ

2∥Z− Zref∥2, (RSP)

where Zref is symmetric (otherwise, take the symmetric part of Zref), Z, Zref ∈ Rd×d, and
A, D ∈ Rd×m, m ≤ d. Then, the solution Z⋆ is given by

Z⋆ = V1Z1VT
1 + V1Z2 + ZT

2 VT
1 + (I−P)Zref(I−P) (Sol-RSP)
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where

[U,Σ,V1] = SVD(AT , ’econ’), (economic SVD)

Z1 = S⊙
[
VT

1

(
ADT + DAT + λZref

)
V1
]

,

S = 1
Σ211T + 11T Σ2 + λ11T ,

P = V1VT
1 ,

Z2 = (Σ2 + λI)−1VT
1 (ADT+λZref)(I−P).

The fraction in S stands for the element-wise inversion (Hadamard inverse), and the notation
⊙ stands for the element-wise product (Hadamard product). The inverse Z−1

⋆ reads

Z−1
⋆ =E

(
Z1 − Z2Z−1

ref ZT
2

)−1
ET + (I−P)Z−1

ref (I−P)

E = V1 − (I−P)Z−1
ref ZT

2 . (Inv-RSP)

The type-I update uses the matrix Z−1
⋆ , using A = ∆X and D = ∆G. The type-II uses

instead Z⋆, with A = ∆G and D = ∆X.
The next proposition shows the complexity of performing one matrix-vector multiplica-

tion with Z⋆ and its inverse. The bottleneck of the method is the SVD of a Rm×d matrix,
whose complexity is O(m2d), thus linear in the dimension.
Proposition 2.4.2. The complexity of evaluating Z⋆v and Z−1

⋆ v is O(m2d), assuming m≪
d and that the complexity of Zrefv and Z−1

ref v is at most O(m2d).
Robustness. The symmetric multisecant update can be used in two different modes, one that
lets λ→ 0, the other, biased but more robust, that sets λ > 0.

The update formula is slightly simpler when λ = 0. However, due to the presence of
matrix inversion, this may lead to instability issues in some cases, similarly to the BFGS
method when

(xk+1 − xk)T (∇f(xk+1)−∇f(xk)) ≈ 0,

i.e., when the step and difference of gradients are close to being orthogonal. In BFGS, such
issues are tackled by a filtering step, discarding the update if the scalar product goes below
some threshold. Unfortunately, when the gradient is corrupted by some noise, the impact
on the BFGS update can be huge.

In the case where λ > 0, we can show that our update is robust when A and D are
corrupted.
Proposition 2.4.3. Let Z⋆(λ) be defined as the solution of (Sol-RSP) for some λ, and
Z⋆(λ) = limλ→0 Zλ. Let Ã, D̃ be a corrupted version of A and D where

∥A− Ã∥ ≤ δA, ∥D− D̃∥ ≤ δD.
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Finally, let Z̃⋆(λ) be the solution of (Sol-RSP) using Ã and C̃. Then, we have

∥Z̃⋆(λ)− Z⋆(0)∥ ≤ ∥Z⋆(λ)− Z⋆(0)∥︸ ︷︷ ︸
Bias

+ ∥Z̃⋆(λ)− Z⋆(λ)∥︸ ︷︷ ︸
Stability

,

where

∥Z⋆(λ)− Z⋆(0)∥ ≤ λ∥Z⋆(0)− Zref∥
σ2

min(A) + λ
, (2.4.3)

∥Z̃⋆(λ)− Z⋆(λ)∥ ≤ O
(

δA + δD

λ

)
. (2.4.4)

This suggests that λ should satisfy a trade-off to achieve the best performing approxi-
mation. Notice that when λ = 0 in the noise-less case, we recover the optimal Z⋆, and when
λ→∞, we have Z⋆ = Zref.

Our result is called robust as we can bound the maximum perturbation without restriction
on its magnitude. This is not the case in [42], whose main assumption is δA ≤ σmin(A) (which
is extremely restrictive), where σmin is the smallest non-zero singular value of A.

Since the singular values of A are, in practice, often small, it is always recommended
to set a small λ: we will show latter, in the numerical experiments, that even for quadratic
functions (i.e., in the “perturbation-free regime”), a small value of λ drastically changes the
final result, as this makes the method robust to numerical noise.
Scaling of λ. The parameter λ has to be scaled w.r.t. the problem input. It is clear, from
Theorem 2.4.1, that the role of λ is to regularize the matrix inversion by lower-bounding
the eigenvalues of the inverted matrix. Therefore, we advise to set λ = λ̄∥AT A∥2, i.e.,
proportional to ∥AT A∥2. This way, assuming σmin small, the conditioning of (AT A + λI)−1

is upper-bounded by 1 + 1/λ̄.

2.5. Numerical Experiment
This section compares our symmetric multisecant algorithms to existing methods in the

literature. We present in this section only a few experiments concerning stochastic-related
experiments: We first compare the quality of the estimate of the Hessian (and its inverse).
Then, we compare the speed of convergence when using this estimate to estimate the Newton-
step in the case where the gradient is stochastic.
Hessian Recovery. Consider the problem of recovering the inverse of a symmetric Hessian
Q−1 of a quadratic function, that satisfies

Q−1∆G = ∆X, Q = QT .

However, we have only access to ∆̃G, a corrupted version of ∆G. This notably happens
when the oracle provides stochastic gradients.
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In our case, we consider the worst-case ℓ2 corruption

∆̃G = U∆G max{Σ∆G − ϵ · σ1(∆G), 0}VT
∆G,

where U∆GΣ∆GVT
∆G is the SVD of ∆G, and ϵ is the relative perturbation intensity. When

ϵ = 1, the matrix ∆̃G is full of zeros.
We estimate Q−1 using different techniques, that we compare using the relative residual

error
error(Q−1

est) = ∥Q−1
est∆G−∆X∥/∥∆X∥.

Note that, in our error function, we use the noise-free version of ∆G.
Our baseline is the diagonal estimate, corresponding to the inverse of the Lipchitz

constant of Q, typically used as a step-size in the gradient method. We compare ℓ-BFGS,
Multisecant Broyden updates [27] and our Type-1 and Type-2 multisecant algorithms, sol-
ving respectively (Inv-RSP) and (Sol-RSP) with A = ∆̃G, D = ∆X, B0 = H−1

0 = ∥Q∥.
The number of secant equations is 50 and the dimension of the problem is 250. The results
are reported in Figure 2.2.
Optimization problem. We aim to solve

min
x∈Rd

f(x) def= 1
N

N∑
i=0

ℓ(aT
i x,bi) + τ

2∥x∥
2, (2.5.1)

where ℓ(·,·) is a loss function. The pair (A,b) is a dataset, where ai ∈ Rd is a data point
composed by d features, and bi is the label of the ith data point.

Here, we present the specific case where ℓ is a quadratic loss, on the Madelon [38] dataset,
with λ = 10−2∥A∥. We solve it using SAGA [19] stochastic estimates of the gradient, with a
batch size of 64. We also have other experiments on other datasets, other losses and also on
deterministic estimate of the gradient in Appendix C.8. We also show the evolution of the
spectrum of Hk and B−1

k in Figure C.1, Appendix C.8.

2.6. Discussion
We briefly discuss our contributions and propose possible improvements. Although our

approach performs sufficiently well to be competitive with current qN updates, the authors
believe the method can be improved in several aspects.

Contrary to BFGS, the update (2.4.2) (resp. (2.4.1)) does not guarantee its positive-
definiteness when applied to a smooth and strongly convex function. However, for large
enough λ the matrix is p.s.d. given that Href (resp. Bref) is also positive-definite. Also,
it is possible to project a small matrix in (Inv-RSP) (resp. (Sol-RSP)) to ensure positive
definiteness. We discuss this in more details in Appendix C.2. The ideal way would be
to solve the symmetric Procrustes problem with a semi-definite constraint, but this is still
considered as an open problem [42].
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Fig. 2.1. Comparison of different methods to estimate a symmetric matrix. We see that
symmetric multisecant methods perform well in a small-noise regime, but quickly get out
of control for larger perturbations. This is not the case for their regularized counterpart
(λ = 10−10), clearly showing a more stable behavior. BFGS performs poorly compared to
multisecant algorithms, since it can only satisfy one secant equation at a time. Finally, the
type-II multisecant Broyden method seems stable, but does not recover a symmetric matrix.
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Fig. 2.2. Comparison of the stability of qN methods with stochastic gradients on Madelon
dataset. We report the function value of the average of the iterates. The batch size is 64
points. Since the function is stochastic, we used only unitary stepsizes. The memory is
25, and the relative regularization λ̄ = 10−2. The condition number is 103. ℓ−BFGS and
the Type-I multisecant Broyden are divergent in this situation. With unitary stepsizes, the
regularized symmetric multisecant Type-I method is slightly faster than stochastic gradient.
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A direct consequence of the non positive-definiteness is the lack of robustness guarantees
for the Type-I method, that inverts a matrix that is possibly not positive definite. Therefore,
it is probably impossible to bound the smallest eigenvalue, unless we use the robust projection
trick in Appendix C.2. Surprisingly however, in our experiments the Type-I method seems
to be the most stable among all updates.

Moreover, we considered here a plain method with no preconditioner. In BFGS and DFP
updates, the preconditioner W is any matrix such that W∆X = ∆G where ∆X and ∆G are
vectors. This matrix is used implicitly in the update: all occurrences of W∆X are replaced
by ∆G, in a way that W disappears. We cannot use a similar trick here, since such matrices
do not exist in general when ∆X and ∆G are matrices [71]. We propose in Appendix C.3
possible options to include such preconditioners that may potentially improve the method.

It is also possible to consider a general qN step, that takes the direction HGv (or B−1Gv),
where v is a vector that sums to one, instead of taking the direction computed with the latest
gradient, H∇f(xk). In the special case where v is full of zeros but one as the last element,
this reduces to the standards qN step. We discuss this strategy in Appendix C.4, and we
suspect this technique may reduce even more the impact of the noise on the qN step if v is
chosen to be the averaging vector 1m/m, for instance.

The complexity of the method is somewhat worse than current qN methods: O(m2d)
instead of O(md). The authors believe it may be possible to reduce the complexity by a
factor m by using a low-rank SVD update [9] and by changing our direct formulas in Theorem
2.4.1 into recursive ones.

Another interesting direction is the study of the the matrix C that forms ∆X and ∆G.
We suspect that, in the case where those matrices are corrupted, choosing the right C may
affect the stability of the method. For instance, it is possible to design C to set more weight
on some selected secant equations that may be more recent, or that contain less noise.

We proposed a novel method with distinct theoretical properties, including symmetry,
optimality on quadratics with unitary stepsize, and robustness, and which performs encoura-
gingly well in practice. In view of the new questions that multisecant methods raise, we hope
our work can add to efforts for the design of possibly other, better-performing quasi-Newton
schemes.
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Chapitre 3

Conclusion

In this thesis, we illustrate new improvements and analyses for two fundamental types of
convex optimization problems from the starting point of affine invariance. Specifically, we in-
troduce new structural assumptions, e.g., directional smoothness (Chapter 1), and further de-
rive an affine invariant analysis of Frank-Wolfe over strongly convex sets. As a byproduct, we
present a new affine invariant backtracking line-search algorithm via directional smoothness
and a new explanation for why the existing backtracking line-search works efficiently. In pa-
rallel, we present a promising direction to accelerate FW over strongly convex sets using dua-
lity gap techniques (Appendix A) and an another version of smoothness.

On the other hand, we investigate techniques that approximates the Newton step by
estimating the Hessian using secant equations. To overcome the impossibility of having both
a symmetric and multi-secant update, we propose a symmetric multisecant update satisfying
the secant equations in a least-squares sense. In detail, we demonstrate its optimality on
quadratics with unitary stepsize, and prove the robustness of our algorithm with respect to
gradient noise. Such guarantees enable them to be prospective candidates in the context of
stochastic optimization.
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Annexe A

Acceleration of Frank-Wolfe

A.1. Frank-Wolfe Algorithm and Notations
In this section, we provide a brief introduction to the Frank-Wolfe algorithm and asso-

ciated useful representations. This method is usually used to solve,

min
x

F (x) = f(x) + h(x), (A.1.1)

where f(x) is a smooth function, and h the indicator function of a convex set C. More
generally, h can be a function whose dual h∗ is known [3].
Definition A.1.1. The conjugate function of a convex function h is a function h∗ that
satisfies

h∗(d) = max
s∈dom(h)

dT s− h(s), δh∗(d) ∈ arg max
s∈dom(h)

dT s− h(s),

where δh∗ is a sub-gradient of h∗.
The conditional gradient method perform formally the following steps,

xk+1 = (1− βk+1)xk + βk+1∇h∗(−∇f(xk)) ; βk+1 ∈ [0, 1]. (A.1.2)

In the case where h is an indicator function of a convex set C, i.e.,

h(x) =

0 if x ∈ C,

+∞ otherwise,
(A.1.3)

the algorithm can be simplified as follow,sk+1 = arg mins∈C∇f(xk)T s,

xk+1 = (1− βk+1)xk + βk+1sk+1.
(FW)

This method is usually called Frank-Wolfe. The point sk+1 is called the Frank-Wolfe corner,
and is found using a linear minimization oracle (LMO).



In the general case where f is a smooth function and C a convex set, the rate of conver-
gence of the Frank-Wolfe algorithm is bounded by O(1/k). With additional assumptions, it
is possible to improve this rate to O(1/k2). In what follows, we aim to accelerate FW using
duality gap techniques.

A.2. Accelerated Gradient Descent and Duality Gap
Technique

In this section, we study the method and proof related to the duality gap technique from
[23, 24], where the technique is used to design the accelerated proximal gradient algorithm.
Thus, we recall the main result in this section.

Accelerated gradient descent solves the following minimization problem,

min
x

F (x) = f(x) + h(x), (A.2.1)

where f(x) is smooth and convex. This means, for all x, y in the domain of f + h,

f(x) +∇f(x)T (y − x) ≤ f(y) ≤ f(x) +∇f(x)T (y − x) + Lf

2 ∥y − x∥2 (A.2.2)

The function h is convex, potentially non-smooth, whose proximal operator is simple,

proxλh(x) = arg min
s∈dom(h)

λh(s) + 1
2∥s− x∥2.

In the case where h is an indicator function of a constrained convex set C, the proximal
operator is equal to the projection onto the set C.

The duality gap technique sees AGD as a way to build an upper and lower bound for the
function F (x). The upper bound U(x) is given by the smoothness of the function f ,

Uk(x) = f(yk) +∇f(yk)T (x− yk) + L

2 ∥x− yk∥2 + h(x).

Then, the lower-bound is build as a weighted average of inequalities from convexity,

AkLk(x) =
k∑

i=0
αi

(
f(yi) +∇f(yi)(x− yi) + h(x)

)
, αi > 0, Ak =

k∑
i=0

αi.

Finally, the algorithm reads

xk+1 = arg min
x

Uk(x),

vk+1 = arg min
x

Lk(x) + 1
2Ak

∥x− x0∥2, (AGD)

yk+1 = Akxx+1 + αk+1vk+1

Ak+1
.
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The first step is intuitive, and corresponds to gradient descent. The second is a bit more
tricky, because of the regularization. However, this regularization is crucial for the algorithm:
for instance, in the case where h(x) = 0, without regularization, the problem is unbounded
as we minimize a linear function over Rn.

The duality gap technique consists in bounding the optimality gap function with a gap
Gk:

F (xk)− F ∗ ≤ Gk ≜ Uk(xk)−min
x

[
Lk(x) + 1

2Ak

∥x− x0∥2
]

+ 1
2Ak

∥x0 − x∗∥2.

Then, it remains to design the parameters αi to ensure

Ak+1Gk+1 ≤ AkGk, which implies f(xk)− f(x⋆) ≤ Gk ≤
A0G0

Ak

.

A.3. Bounds for the Duality Gaps
We consider the acceleration of Frank-Wolfe algorithm over a strongly convex and smooth

set Q ⊆ Rn. We have the following property for the iterate before and after a Frank-Wolfe
step:

⟨∇f(T (xt)), xt − T (xt)⟩, (A.3.1)

where T (xt) denotes the iterate obtained after a Frank-Wolfe step, that is, we have T (xt) =
xt+1 such that

st ∈ argmin
st∈Q

⟨∇f(xt), s⟩,

xt+1 = (1− γt)xt + γtst. (A.3.2)

To make use of the dual averaging technique, we need to carefully select the averaging weights
and step-sizes for the linear combinations of Frank-Wolfe corners and the current iterates.
In what follows, we note that f is β-smooth and µ-strongly convex.

By the technique of estimate functions, we define a sequence of increasing scaling coeffi-
cients {Ak}k=0 such that

A0 = 0, Ak
def= Ak−1 + ak, k ≥ 1. (A.3.3)

We adopt the following Algorithm 4 to achieve acceleration with only linear minimization
oracle available.
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Algorithm 4 Accelerated Frank-Wolfe Algorithm (Directly adapted from Nesterov’s me-
thod)

1: Require: A strongly convex and strongly smooth set Q ⊆ Rn, initial iterate x0, number
of iterations T ,

2: Set stepsize η ← T −1/2

3: for k = 0, . . . , T − 1 do
4: Determine αk+1 by equation α2

k+1
2(Ak+αk+1) = 1+µAk

β
.

5: Solve vk = argmin∑k
i=0 αi (f(xi) + ⟨∇f(xi), x− xi⟩).

6: Set query point yk = Akxk+αkvk

Ak+1
.

7: sk ← argmins∈Q⟨s,∇f(yk)⟩.
8: xk+1 ← yk + γk(sk − yk).
9: end for

10: Output: xT

We aim to show a global convergence rate formulated as below

f(xk)− f(x∗) ≤ ∥x
0 − x∗∥2

2Ak

(A.3.4)

via an immediate quantities of estimate functions Mk := ∑k
i=0 αi (f(xi) + ⟨∇f(xi), x− xi⟩).

We will show that our algorithm maintains recursively the following properties:

P1
k : Akf(xk) ≤M∗

k = min
x∈Q

Mk(x) (A.3.5)

P2
k : Mk(x) ≤ Akf(x) + 1

2∥x− x0∥2, ∀x ∈ Q. (A.3.6)

A.3.1. Upper and Lower Bounds in the Unconstrained Case

Upper bound Uk: We use yk constructed from the previous gradient query points {xi}k
i=0

and the gradient oracle answers {∇f(xi)}k
i=0 to give the upper bound, By setting yk =

xk − 1/L∇f(xk), we have

f(yk) ≤ f(xk)− 1
2L
∥∇f(xk)∥2 △= Uk. (A.3.7)

Lower bound Lk: Each queried gradient ∇f(xi) leads to a lower bound on the function f

as follows,

f(u) ≥ f(xi) + ⟨∇f(xi), u− xi⟩+ µ

2∥u− xi∥2, ∀u ∈ Rd (A.3.8)

By the scheme of AGDT (Approximate Duality Gap Technique) in [24], we dispatch a
measure ak > 0 to each iteration k, and let Ak = ∑k

i=0 ai. We derive the overall lower
bound by averaging the bound for each xi in (A.3.8) with normalized weights proportional
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to ai as follows,

f(u) ≥
k∑

i=0

ai

Ak

(
f(xi) + ⟨∇f(xi), u− xi⟩+ µ

2∥u− xi∥2
)

≥ min
u∈Rd

mk(u)

△= mk(vk)
△= Lk. (A.3.9)

where

mk(u) =
k∑

i=0
ai

(
f(xi) + ⟨∇f(xi), u− xi⟩+ µ

2∥u− xi∥2
)

, (A.3.10)

vk = argmin
u∈Rd

mk(u). (A.3.11)

Hence the duality gap at iteration k is defined as Gk = Uk − Lk ≥ f(yk) − f(x∗). In what
follows we will show that AkGk is non-increasing with the iteration k, which implies that

f(yk)− f(x∗) ≤ Gk ≤
A0G0

Ak

. (A.3.12)

The following two lemmas characterize how the duality gap Gk proceeds according to the
iteration k, and further provide the convergence certificate.
Lemma A.3.1 (Initial estimate). Let x0 ∈ Rd be an arbitrary initial point and optimality
gap estimate follow the notation above, then we have

A0G0 ≤
L− µ0

2 ∥x0 − x∗∥2. (A.3.13)

Lemma A.3.2 (Monotonicity of AkGk). For any k ≥ 1, we have

AkGk ≤ Ak1Gk−1. (A.3.14)

Démonstration.
mk−1(vk) = mk−1(vk−1) + Ak−1µ

2 ∥vk − vk−1∥2, (A.3.15)

mk(vk) = mk−1(vk−1) + Ak−1µ

2 ∥vk − vk−1∥2 + ak⟨∇f(xk), vk − xk⟩+ akµ

2 ∥vk − xk∥2.

(A.3.16)

As we can explicitly write vk as

vk = µ
∑k

i=0 aixi −
∑k

i−0 ai∇f(xi)
µAk

= Ak−1

Ak

vk−1 + ak

Ak

xk −
ak

µAk

∇f(xk), (A.3.17)
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we apply Jensen’s inequality to (A.3.16) to obtain

mk(vk) ≥ mk−1(vk−1) + µAk

2

∥∥∥∥vk −
Ak−1

Ak

vk−1 −
ak

Ak

xk

∥∥∥∥2
+ ak⟨∇f(xk), vk − xk⟩

(A.3.17)= mk−1(vk−1) + a2
k

2µAk

∥∇f(xk)∥2 + akAk−1

Ak

⟨∇f(xk), vk−1 − xk⟩ −
a2

k

µAk

∥∇f(xk)∥2

= mk−1(vk−1)−
a2

k

2µAk

∥∇f(xk)∥2 + akAk−1

Ak

⟨∇f(xk), vk−1 − xk⟩. (A.3.18)

A.3.2. Upper and Lower Bounds with Smooth and Strongly Convex
Sets

We are interested in solving the following constrained convex smooth optimization with
only a linear minimization oracle.

min
x

f(x)

s.t. x ∈ Q ⊆ Ω (A.3.19)

where in our case Ω = Rd (d denotes the dimension of the space), Q is a µc-strongly convex
and Lc-strongly smooth set, i.e., Q admits a representation of a convex function C : Ω→ R
such that

Q = {x ∈ Ω : C(x) ≤ 0}, (A.3.20)

and for any x, y ∈ Q, it turns out to satisfy the following function-alike inequalities:

C(y) ≤ C(y) +∇C(y)⊤(x− y) + Lc

2 ∥x− y∥2, (A.3.21)

C(y) ≥ C(y) +∇C(y)⊤(x− y) + µc

2 ∥x− y∥2. (A.3.22)

Upper bounds for f(yk): We define the upper ball B̄k at iteration k as a relaxation set
contained in Q due to the strong smoothness property:

B̄k =
{

x ∈ Ω :
k∑

i=0
γi

(
C(xi) +∇C(xi)⊤(x− xi) + Lc

2 ∥x− xi∥2
)
≤ 0

}
, (A.3.23)

where γi ≥ 0 for i ∈ [n], and we denote Γk = ∑k
i=0 γi. Since f is Lc-strongly smooth, we

have for any k ≥ 0

C(x) ≤ C(xi) +∇C(xi)⊤(x− xi) + Lc

2 ∥x− xi∥2, (A.3.24)
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which implies B̄k ⊆ Q for all k ≥ 0. In fact, let dk = ∑k
i=0 αi∇f(xi), B̄k characterizes a ball

centered at Ōk with radius r̄k, where

Ōk =
k∑

i=0
γi

(
xi −

1
Lc

∇C(xi)
)

, (A.3.25)

r̄k =

√√√√√ 1
2Lc

(
k∑

i=0
γi(∇C(xi)− Lcxi)

)2

−
k∑

i=0
γi

(
C(xi)−∇C(xi)⊤xi + Lc

2 ∥xi∥2
)

. (A.3.26)

By the definition of B̄k and C(x), we have xi − 1
Lc
∇C(xi) ∈ Q. Then we have

f(yk+1) = min
vk+1∈Q

h∈[0,1]

f(xk+1 + h(vk+1 − xk+1))

≤ min
vk+1∈Q

h∈[0,1]

f(xk+1) + h∇f(xk+1)⊤(vk+1 − xk+1) + h2Lf

2 ∥vk+1 − xk+1∥2 (A.3.27)

≤ min
vk+1∈Q

yk+1∈B̄k

f(xk+1) + h∇f(xk+1)⊤(vk+1 − xk+1) + h2Lf

2 ∥vk+1 − xk+1∥2 (A.3.28)

Upper bounds (v2): The obtain sk, the linear minimization oracle (LMO) solves the
following linear optimization problem:

min
C(s)≤0

∇f(xk)⊤(s− xk), (A.3.29)

of which the Lagrangian dual gives

max
ω≥0
L(ω) = max

ω≥0
min

s

{
f(xk)⊤(s− xk) + ωC(s)

}
. (A.3.30)

By the optimality condition, for any fixed ω we obtain the following at sω:

∇f(xk) + ω∇C(sω) = 0. (A.3.31)

By solving the optimality equation we have

sω = ∇C∗(−∇f(xk)
ω

), (A.3.32)

where ∇C∗ is the conjugate of ∇C with 1/Lc-strong convexity and 1/µc-strong smooth-
ness. We denote by ω∗ the optimal solution to (A.3.30). Since the set Q has non-empty
interior, by Slater’s condition [80] ω∗ gives the same optimal value as (A.3.29). Hence by
plugging (A.3.32) into (A.3.29) we have

∇f(xk)⊤(sk − xk) = ∇f(xk)⊤
(
∇C∗

(
−∇f(xk)

ω∗

)
− xk

)
. (A.3.33)
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To derive the upper bound, we denote d = ∇f(xk) and maximize the left hand side
of (A.3.33) over d. Note that d = −∇C(p) · ω∗ for some p ∈ Q by (A.3.31), we have

∇f(xk)⊤(sk − xk) ≤ max
d

d⊤
(
∇C∗

(
−d

ω∗

)
− xk

)
≤ max

p
−ω∗(p− xk)⊤∇C(p). (A.3.34)

For any k ≥ 0, we have

f(yk+1) = min
sk+1∈Q

h∈[0,1]

f(xk+1 + h(sk+1 − xk+1))

≤ min
sk+1∈Q

h∈[0,1]

f(xk+1) + h∇f(xk+1)⊤(sk+1 − xk+1) + h2Lf

2 ∥sk+1 − xk+1∥2 (A.3.35)

≤ f(xk+1) + min
h∈[0,1]

(
h∇f(xk+1)⊤(sk+1 − xk+1) + h2Lf

2 ∥sk+1 − xk+1∥2
)

(A.3.36)

≤ f(xk+1)−

(
∇f(xk+1)⊤(sk+1 − xk+1)

)2

2Lf∥sk+1 − xk+1∥2 . (A.3.37)

By Lemma 1 in [31], we proceed to derive

∇f(xk+1)⊤(sk+1 − xk+1) ≤ −
µc∥xk+1 − sk+1∥2

4 ∥∇f(xk+1)∥. (A.3.38)

By plugging the above inequality into (A.3.35) we have

f(yk+1)− f(xk+1) ≤ −
µ2

c∥∇f(xk+1)∥2

32Lf

∥xk+1 − sk+1∥2

(b)
≤ −µ2

c∥∇f(xk+1)∥2

32LfL2
c

∥∇C(xk+1)−∇C(sk+1)∥2

(c)
≤ −µ2

c∥∇f(xk+1)∥2

32LfL2
c

∥∥∥∥∇C(xk+1) + 1
ω∗∇f(xk+1)

∥∥∥∥2

= −µ2
c∥∇f(xk+1)∥2

32LfL2
cω

∗2 ∥ω∗∇C(xk+1) +∇f(xk+1)∥2 , (A.3.39)
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where (b) follows from the Lc-smoothness of set Q, and (c) is due to the optimality conditions.
Then we can conclude the improvement on the upper bounds aas follows:

Ak+1Uk+1 − AkUk = Ak+1f(yk+1)− Akf(yk)

= Ak+1 (f(yk+1)− f(xk+1))− Ak (f(yk)− f(xk+1)) + αk+1f(xk+1)
(A.3.39)
≤ −µ2

cAk+1∥∇f(xk+1)∥2

32LfL2
cω

∗2 ∥ω∗∇C(xk+1) +∇f(xk+1)∥2

− Ak (f(yk)− f(xk+1)) + αk+1f(xk+1)

≤ −µ2
cAk+1∥∇f(xk+1)∥2

32LfL2
cω

∗2 ∥ω∗∇C(xk+1) +∇f(xk+1)∥2

+ Ak∇f(xk+1)⊤(xk+1 − yk) + αk+1f(xk+1), (A.3.40)

where (A.3.40) comes from the convexity of the function f .

Lower bounds for f(x∗): We define the lower ball Bk at iteration k as a relaxation set
containing Q due to the strong convexity property:

Bk =
{

x ∈ Ω :
k∑

i=0
βi

(
C(xi) +∇C(xi)⊤(x− xi) + µc

2 ∥x− xi∥2
)
≤ 0

}
, (A.3.41)

where γi ≥ 0 for i ∈ [n], and we denote Γk = ∑k
i=0 γi. Since f is Lc-strongly smooth, we

have for any k ≥ 0

C(x) ≤ C(xi) +∇C(xi)⊤(x− xi) + Lc

2 ∥x− xi∥2, (A.3.42)

which implies Bk ⊆ Q for all k ≥ 0. In fact, let dk = ∑k
i=0 αi∇f(xi), B̄k characterizes a ball

centered at Ok with radius rk, where

Ok =
k∑

i=0
γi

(
xi −

1
Lc

∇C(xi)
)

, (A.3.43)

rk =

√√√√√ 1
2Lc

(
k∑

i=0
γi(∇C(xi)− Lcxi)

)2

−
k∑

i=0
γi

(
C(xi)−∇C(xi)⊤xi + Lc

2 ∥xi∥2
)

. (A.3.44)

By the convexity of f we have for any u ∈ Q and i ∈ [n],

f(u) ≥ f(xi) +∇f(xi)⊤(u− xi). (A.3.45)

Similar to the argument in [23], we assign to each each iteration k a weight αk > 0 and
denote by Ak = ∑k

i=0 αi the cumulative weight of all iterations up to k. Furthermore, we
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consider the lower bound by averaging the bound for each i ∈ [k] with weight αi

Ak

:

f(u) ≥ 1
Ak

k∑
i=0

αi

(
f(xi) +∇f(xi)⊤(u− xi)

)
. (A.3.46)

Taking u = x∗ on the left-hand side and minimizing over u within the lower ball Bk on the
right side yields f(x∗) ≥ Lk, the lower bound at iteration k, where

Lk = 1
Ak

min
u∈Bk

k∑
i=0

αi

(
f(xi) +∇f(xi)⊤(u− xi)

)
△= 1

Ak

k∑
i=0

αi

(
f(xi) +∇f(xi)⊤(vk − xi)

)
(A.3.47)

Thus we have the following monotonicity on AkLk for k ∈ [n]:

Ak+1Lk+1 − AkLk = Mk+1(vk+1)−Mk(vk)

= Mk(vk+1)−Mk(vk) + αk+1
[
f(xk+1) +∇f(xk+1)⊤(vk+1 − xk+1)

]
(a)=

k∑
i=0

αi∇f(xi)⊤(vk+1 − vk) + αk+1f(xk+1) + αk+1∇f(xk+1)⊤(vk+1 − xk+1)

(A.3.48)
(b)
≥

k+1∑
i=0

αi∇f(xi)⊤(vk+1 − xk+1) + αk+1f(xk+1), (A.3.49)

where (b) uses the minimization property of the Frank-Wolfe oracle. Another way to proceed
on this is as follows.
Lower bounds (v2): We define

mk(v) =
k∑

i=0
αi

(
f(xi) +∇f(xi)⊤(v − xi)

)
. (A.3.50)

By the convexity of f we have for any u ∈ Q and i ∈ [k],

f(u) ≥ f(xi) +∇f(xi)⊤(u− xi). (A.3.51)

Similar to the argument in [23], we assign to each each iteration k a weight αk > 0 and
denote by Ak = ∑k

i=0 αi the cumulative weight of all iterations up to k. Furthermore, we
consider the lower bound by averaging the bound for each i ∈ [k] with weight αi

Ak

:

f(u) ≥ 1
Ak

k∑
i=0

αi

(
f(xi) +∇f(xi)⊤(u− xi)

)
. (A.3.52)
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Taking u = x∗ on the left-hand side and minimizing over u set Q on the right-hand side
yields

f(x∗) ≥ 1
Ak

min
u∈Q

k∑
i=0

αi

(
f(xi) +∇f(xi)⊤(u− xi)

)
= 1

Ak

min
u∈Q

mk(u). (A.3.53)

We also denote the minimizer of mk(u) over Q by vk = argminv mk(v). By definition we
have

f(x∗) ≥ 1
Ak+1

mk+1(vk+1) = 1
Ak+1

min
v∈Q

{
mk(v) + αk+1f(xk+1) +∇f(xk+1)⊤(v − xk+1)

}
.

(A.3.54)

By considering the Lagrangian of the right hand side of (A.3.54), we define

Lk+1(v, λ) = 1
Ak+1

(
mk(v) + αk+1f(xk+1) +∇f(xk+1)⊤(v − xk+1)

)
+ λC(v), (A.3.55)

and the economic function will be

g(λ) = min
v

{
1

Ak+1

(
mk(v) + αk+1f(xk+1) +∇f(xk+1)⊤(v − xk+1)

)
+ λC(v)

}
(a)
≤ 1

Ak+1
mk+1(vk+1) ≤ f(x∗), (A.3.56)

where (a) comes from the weak duality of Lagrangian formulation. According to the strong
convexity of set Q, we proceed to obtain

g(λ) ≥ min
v

 1
Ak+1

(
mk(v) + αk+1f(xk+1) +∇f(xk+1)⊤(v − xk+1)

)

+ λ

Ak+1

k+1∑
i=0

αi

(
C(xi) +∇C(xi)⊤(v − xi) + µc

2 ∥v − xi∥2
)

△= 1
Ak+1

min
v

mf+λC
k+1 (v). (A.3.57)

We denote the minimizer of mf+λC
k (v) by vk = argminv mf+λC

k (v), and naturally define a
lower bound for f(x∗): Lk := 1/Ak minv mf+λC

k (v). By KKT optimality condition we have

0 = ∇vmf+λC
k+1 (vk+1) =

k+1∑
i=0

αi∇f(xi) + λ
k+1∑
i=0

αi (∇C(xi) + µc(vk+1 − xi)) . (A.3.58)

Hence

vk+1 = − 1
λµcAk+1

k+1∑
i=0

αi (∇f(xi) + λ (∇C(xi)− µcxi)) , (A.3.59)
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and

Ak+1vk+1 = Akvk −
1

λµc

αk+1 (∇f(xk+1) + λ (∇C(xk+1)− µcxk+1)) . (A.3.60)

By combining (A.3.56) and (A.3.57) we have

mk+1(vk+1) ≥ mf+λC
k+1 (vk+1) = mf+λC

k (vk+1) + αk+1 (f(xk+1) + λC(xk+1))

+ αk+1 (∇f(xk+1) + λ∇C(xk+1))⊤ (vk+1 − xk+1) + λµcαk+1

2 ∥vk+1 − xk+1∥2

(A.3.61)

≥ mf+λC
k (vk) + λµcAk

2 ∥vk+1 − vk∥2 + αk+1 (f(xk+1) + λC(xk+1))

+ αk+1 (∇f(xk+1) + λ∇C(xk+1))⊤ (vk+1 − xk+1) + λµcαk+1

2 ∥vk+1 − xk+1∥2,

(A.3.62)

where (A.3.62) is due to the fact that mf+λC
k (v) is a quadratic function minimized at vk with

a total weight of quadratic terms being λµAk/2. By Jensen’s inequality for the quadratic
terms in the right-hand side of (A.3.62) and (A.3.60) we obtain

mf+λC
k+1 (vk+1)−mf+λC

k (vk)

≥ λµcAk+1

2

∥∥∥∥∥vk+1 −
Ak

Ak+1
vk −

αk+1

Ak+1
xk+1

∥∥∥∥∥
2

+ αk+1
(
f(xk+1) + λC(xk+1) + (∇f(xk+1) + λ∇C(xk+1))⊤ (vk+1 − xk+1)

)
(A.3.63)

= − α2
k+1

2λµcAk+1
∥ ∇f(xk+1) + λ∇C(xk+1)∥2

+ αk+1

(
f(xk+1) + λC(xk+1) + Ak

Ak+1
(∇f(xk+1) + λ∇C(xk+1))⊤ (vk − xk+1)

)
.

(A.3.64)

Therefore, we have the following for the improvement of the lower bounds for any k ≥ 0:

Ak+1Lk+1 − AkLk = mf+λC
k+1 (vk+1)−mf+λC

k (vk)

≥ −
α2

k+1
2λµcAk+1

∥ ∇f(xk+1) + λ∇C(xk+1)∥2

+ αk+1

(
f(xk+1) + λC(xk+1) + Ak

Ak+1
(∇f(xk+1) + λ∇C(xk+1))⊤ (vk − xk+1)

)
.

(A.3.65)
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A.4. A New Variant of Frank-Wolfe with Adaptive Step-
sizes

In this paper, we design an “accelerated” method to solve the minimization problem

min
x

f(x) + h(x) (A.4.1)

We assume the function f to be smooth and convex. This means, for all x, y in the domain
of f + h,

The function h is convex, potentially non-smooth, for which we know its dual function,

h∗(d) = max
s∈dom(h)

sT d− h(s), ∇h∗(d) = arg max
s∈dom(h)

sT d− h(s), d ∈ dom(h∗).

In usual cases, the function h is the indicator function of a constrained set C. Indeed, the
following problem,

min
x

f(x) s.t. x ∈ C, (A.4.2)

can be formulated as (A.2.2) using the indication function

h(x) =

0 if x ∈ C,

+∞ otherwise.

Again, in the constrained case, the dual of h is strongly linked to the linear minimization
oracle (LMO) of the constrained set, defined as

LMO(d) = arg min
s∈C

sT d.

Clearly, LMO(d) = ∇h∗(−d) and h∗(d) = LMO(−d)T d. The output of the LMO, which
corresponds to the gradient of the dual function h, is called the Frank-Wolfe (FW) corner.

We assume the function h∗ to be isotropically smooth and strongly convex.
Definition A.4.1. Isotropic smoothness and isotropic strong convexity. The func-
tion h∗(x) is isotropically smooth and strongly convex if the function is smooth and strongly
convex for all inputs of unitary norm, i.e.,

µh

2 ∥d1 − d2∥ ≤ ∥∇h∗(d1)−∇h∗(d2)∥ ≤
Lh

2 ∥d1 − d2∥, ∥d1∥ = ∥d2∥ = 1.

In the next section we give an intuition of this assumption, as well as some examples.

A.4.1. Directional Smoothness and Directional Strong Convexity

Directional smoothness and directional convexity play a central role in the design of the
accelerated conditional gradient method.
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We first recall the classical accelerated gradient descent (AGD) from [59],

xk+1 = arg min
x

f(yk) +∇f(yk)(x− yk) + Lf

2 ∥x− yk∥2 + h(x),

vk+1 = arg min
x

k∑
i=0

αi

(
f(yi) +∇f(yi)(x− yi) + h(x)

)
+ 1

2∥x− x0∥2,

yk+1 = βk+1xx+1 + (1− βk+1)vk+1,

where h is a convex, potentially non-smooth function, whose proximal operator is “simple”,
i.e., the two first steps can be computed easily. In the proof of convergence, the step in vk+1

can be written as

vk+1 = ∇
(

h + 1
2∥x− x0∥2

)∗
(dk+1), dk+1 =

k∑
i=0

αi∇f(yi).

Let h̃ = h + 1
2∥x− x0∥2. Adding a regularization to h makes h̃ strongly convex.

A classical result from convex optimization states that, if a function h is strongly convex,
then it’s dual is smooth. Thus the dual h̃∗ is a smooth version of h∗. This trick is called the
smoothing technique, see for instance [58].

In the proof of AGD, an important step consist in analyzing how far vk+1 is from vk by
using the smoothness of h̃∗. Indeed, since dk+1 = dk + αk∇f(yk),

∥vk+1 − vk∥ = ∥h̃∗(dk + αk∇f(yk))− h̃∗(dk)∥ ≤ αkLh̃∗∥∇f(yk)∥.

In the case of the conditional gradient, we cannot use this smoothing technique, as we
only have access to h∗. Assuming we can have equivalent smoothness of h, in the case of
FW algorithm, we can project on the set C.

This specific assumption overcome a principal limitation of the LMO: the output is
independent of the norm of the input, i.e.,

∀γ > 0, LMO(d) = LMO(αd).

In addition, corners are allowed in the ball-based definition.

A.4.2. A New Algorithm on Smooth and Strongly Convex Sets

We denote the iterate sequence by {xk}∞
k=0 and the gradient query sequence by {yk}∞

k=0. We
assign to each gradient query iterate k an associated measure αk, a resulted sequence of
increasing scaling coefficients {Ak}∞

k=0 is define by A0 = 0, Ak+1 = Ak + αk+1 for any k ≥ 0.
Let dk be the accumulated weighted gradients defined by dk = 0, dk+1 = dk + αk+1∇f(yk+1).
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Algorithm 5 Accelerated Frank-Wolfe Algorithm over strongly smooth and convex sets.
1: Require: A strongly convex and directional strongly smooth set C ⊆ Rn; Initial iterate

x0; Number of iterations T ; Averaging weights {αk}∞
k=0; y0 = x0 = v0.

2: A0 = α0 = 0, d0 = 0.
3: for k = 0, . . . , T − 1 do
4: αk+1 = µc∥dk∥+

√
µ2

c∥dk∥2+4Lf L2
cµcAk∥dk∥

2Lf L2
c

5: yk+1 = Akxk+αk+1vk

Ak+αk+1

6: dk+1 = dk + αk+1∇f(yk+1)
7: vk+1 = argminv∈C d⊤

k+1v

8: xk+1 = Akxk+αk+1vk+1
Ak+αk+1

9: Ak+1 = Ak + αk+1
10: end for
11: Output: xT

Fig. A.1. The set (a) is neither directional smooth and strongly convex, the set (b) is
only directional strongly convex, (c) is only directional smooth. Finally, the set (d) is both
directional smooth and strongly convex.

By a natural choice of the upper bound sequence {Bk}∞
k=0 and the lower bound sequence

{bk}∞
k=0, we obtain the following development on both upper and lower bounds.

Ak+1Bk+1 − AkBk = Ak+1f(xk+1)− Akf(xk), (A.4.3)

Ak+1bk+1 − Akbk =
k+1∑
i=0

αi

[
f(yi) +∇f(yi)⊤(vk+1 − yi)

]
−

k∑
i=0

αi

[
f(yi) +∇f(yi)⊤(vk − yi)

]

= αk+1f(yk+!) + αk+1∇f(yk)⊤(vk+1 − yk+1) +
k∑

i=0
αi∇f(yi)⊤(vk+1 − vk).

(A.4.4)

Recall that f is convex, and the LMO of C can be computed efficiently, which means we
have access to the dual of the indicator function, i.e.the support function, of the set C,

IC(x) =

∞ if x ̸∈ C

0 otherwise
; I⋆

C(d) = max
x∈C

dT x. (A.4.5)
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To simplify the notations, we define the dual (support function) relative to a point I⋆
C, x and

the FW mapping M as follow,

I⋆
C, x(d) = max

s∈C
dT (s− x), Mβ(x,d) = (1− β)x + β argmax

s∈C
dT s. (A.4.6)

In this way, the Frank-Wolfe steps in Algorithm 5 can be written as

yk+1 =Mαk+1/Ak+1(xk,−dk), (A.4.7)

xk+1 =Mαk+1/Ak+1(xk,−dk+1). (A.4.8)

By defining

s∗(d) = argmax
s∈C

d⊤s, (A.4.9)

we also obtain the following connection between the gradient of the support function and
the Frank-Wolfe corner,

∇dI⋆
C, x(d) = s∗(d)− x. (A.4.10)

Lemma A.4.2. For a µc-directionally strongly convex and Lc-directionally smooth set, we
have

µc∥dk∥
2

∥∥∥∥∥ dk+1

∥dk+1∥
− dk

∥dk∥

∥∥∥∥∥
2

≤
k∑

i=0
αi∇f(yi)⊤(vk+1 − vk) ≤ Lc∥dk∥

2

∥∥∥∥∥ dk+1

∥dk+1∥
− dk

∥dk∥

∥∥∥∥∥
2

.

(A.4.11)

Démonstration. See Section A.4.5 for a detailed proof.

A.4.3. Theoretical Results and Analysis

In this section, we present a local rate of convergence when the optimum of the uncons-
trained objective is outside (on) the constraint set. We first impose some mild assumptions
on the objective and the constraint set.
Assumption A.4.3. Suppose that for minimizer x∗ ∈ C, there exist a constant g > 0 such
that ∇f(x∗) ≥ g.

In what follows, we show that our Algorithm results in a non-increasing duality gap
sequence defined in Section A.2.
Lemma A.4.4. For all k ≥ 0, the sequence of duality gaps generated by Algorithm 5
satisfies

Ak+1Gk+1 ≤ AkGk. (A.4.12)

Démonstration. See Appendix A.4.6 for a detailed proof.
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The rate of convergence of the algorithm is thus controlled by the rate of growth of Ak. The
major difficulty is the dependence of αk, thus Ak, to ∥dk∥. The next lemma shows that ∥dk∥
cannot be to small too often.

First, from the explicit formula of αk, we have the valid lower-bound

αk+1 ≥ max

µc∥dk∥
LfL2

c

,

√√√√Akµc∥dk∥
LfL2

c


Now, we show that if at any moment, the norm of the direction dk is too small, then
∥dk+1∥ ≥ ∥dk∥.
Lemma A.4.5. Assume the norm of the gradient is bounded below on the set, i.e.,

G ≤ ∥∇f(x)∥ ∀x ∈ C.

If at any point we have √
∥dk∥ ≤

1
2

√
Akµc

LfL2
c

∥∇f(yk)∥,

then for t ≥ k we have

∥dt+1∥ ≥
1
2

√
Atµc

LfL2
c

∥∇f(yt)∥ ·
√
∥dt∥

until √
∥dt∥ ≥

1
2

√
Atµc

LfL2
c

∥∇f(yt)∥.

Démonstration. See Appendix A.4.4 for a detailed proof.

A.4.4. Proof of Lemma A.4.5

Démonstration. By the triangle inequality,

∥dk+1∥ > αk+1∥∇f(yk)∥ − ∥dk∥.

Using the lower bound on αk,

∥dk+1∥ ≥

√√√√Akµc∥dk∥
LfL2

c

∥∇f(yk)∥ − ∥dk∥.

Which is equal to

∥dk+1∥ ≥
√
∥dk∥

(√
Akµc

LfL2
c

∥∇f(yk)∥ −
√
∥dk∥

)
.

Asking the parenthesis to be at least equal to
√
∥dk∥, i.e.,(√

Akµc

LfL2
c

∥∇f(yk)∥ −
√
∥dk∥

)
≥
√
∥dk∥ ⇔ 1

2

√
Akµc

LfL2
c

∥∇f(yk)∥ ≥
√
∥dk∥,

which leads to ∥dk+1∥ ≥ ∥dk∥.
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A.4.5. Proof of Lemma A.4.2

Démonstration. By the definition of the directional smoothness we have

I⋆
C, vk+1

(
− dk

∥dk∥

)
− I⋆

C, vk+1

(
− dk+1

∥dk+1∥

)
≥ ∇I⋆

C, vk+1

(
− dk+1

∥dk+1∥

)(
− dk+1

∥dk+1∥
+ dk

∥dk∥

)

+ µc

2

∥∥∥∥∥ dk+1

∥dk+1∥
− dk

∥dk∥

∥∥∥∥∥
2

, (A.4.13)

By (A.4.10) and (A.4.6), we have

∇I⋆
C, vk+1

(
− dk+1

∥dk+1∥

)
= vk+1 − vk+1 = 0 (A.4.14)

and

I⋆
C, vk+1

(
− dk+1

∥dk+1∥

)
= 0 (A.4.15)

respectively. Plugging them into (A.4.13) we have

(vk+1 − vk)⊤ dk

∥dk∥
≥ µc

2

∥∥∥∥∥ dk+1

∥dk+1∥
− dk

∥dk∥

∥∥∥∥∥
2

, (A.4.16)

which implies the desired result.

A.4.6. Proof of Lemma A.4.4
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Démonstration. By the definition of the duality gaps, lower bound and upper bound
sequences, it follows that

Ak+1Gk+1 − AkGk = Ak+1
(
f(xk+1)− f(yk+1)

)
+ Ak

(
f(yk+1)− f(xk)

)
− αk+1∇f(yk+1)⊤(vk+1 − yk+1)−

k∑
i=0

αi∇f(yi)⊤(vk+1 − vk)

(a)
≤ Ak+1

(
f(xk+1)− f(yk+1)

)
+ Ak∇f(yk+1)⊤(yk+1 − xk)

− αk+1∇f(yk+1)⊤(vk+1 − yk+1)−
k∑

i=0
αi∇f(yi)⊤(vk+1 − vk)

(b)
≤ Ak+1∇f(yk+1)⊤(xk+1 − yk+1) + LfAk+1

2 ∥xk+1 − yk+1∥2

+ Ak∇f(yk+1)⊤(yk+1 − xk)− αk+1∇f(yk+1)⊤(vk+1 − yk+1)

−
k∑

i=0
αi∇f(yi)⊤(vk+1 − vk)

= Ak+1∇f(yk+1)⊤(xk+1 − yk+1) + LfAk+1

2 ∥xk+1 − yk+1∥2

+∇f(yk+1)⊤(Ak+1yk+1 − Akxk − αk+1vk)− αk+1∇f(yk+1)⊤(vk+1 − vk)

−
k∑

i=0
αi∇f(yi)⊤(vk+1 − vk)

(c)= Ak+1∇f(yk+1)⊤(xk+1 − yk+1) + LfAk+1

2 ∥xk+1 − yk+1∥2

− αk+1∇f(yk)⊤(vk+1 − vk)−
k∑

i=0
αi∇f(yi)⊤(vk+1 − vk), (A.4.17)

where (a) holds by the convexity of f , (b) follows from the Lf -smoothness of the objective
f , (c) holds since we set yk+1 = Akxk + αk+1vk

Ak+1
in each iteration.

Let xk+1 = (1 − λk)xk + λk

(
vk + θk(vk+1 − vk)

)
with λk, θk ∈ [0,1] for k ≥ 0, then by

plugging in the construction of yk+1 we have

Ak+1∇f(yk+1)⊤(xk+1 − yk+1)

= ∇f(yk+1)⊤
[
Ak+1(1− λk)xk + Ak+1λk(1− θk)vk + Ak+1λkθkvk+1 − Akxk − αk+1vk

]
.

(A.4.18)

By setting λk = αk+1/Ak+1, we obtain

Ak+1∇f(yk+1)⊤(xk+1 − yk+1) = αk+1θk∇f(yk+1)⊤(vk+1 − vk). (A.4.19)
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Similarly, we have in fact

xk+1 − yk+1 = αk+1

Ak+1
θk(vk+1 − vk). (A.4.20)

By plugging (A.4.20) into (A.4.17) we obtain

Ak+1Gk+1 − AkGk ≤ αk+1(θk − 1)∇f(yk+1)⊤(vk+1 − vk) + Lfα2
k+1θ

2
k

2Ak+1
∥vk+1 − vk∥2

−
k∑

i=0
αi∇f(yi)⊤(vk+1 − vk).

(A.4.21)

By setting θk = 1, we have by Lemma A.4.2

Ak+1Gk+1 − AkGk ≤
Lfα2

k+1
2Ak+1

∥vk+1 − vk∥2 − µc∥dk∥
2

∥∥∥∥∥ dk+1

∥dk+1∥
− dk

∥dk∥

∥∥∥∥∥
2

(A.4.22)

≤
(

LfL2
cα

2
k+1

2Ak+1
− µc∥dk∥

2

)∥∥∥∥∥ dk+1

∥dk+1∥
− dk

∥dk∥

∥∥∥∥∥
2

, (A.4.23)

where (A.4.23) holds by the Lc-directional smoothness of set C. Hence when LfL2
cα

2
k+1 =

µcAk+1∥dk∥, that is,

αk+1 =
µc∥dk∥+

√
µ2

c∥dk∥2 + 4LfL2
cµcAk∥dk∥

2LfL2
c

, (A.4.24)

we are able to achieve

Ak+1Gk+1 − AkGk ≤ 0. (A.4.25)

By the definition of duality gaps, for k ≥ 1 we have

f(xk)− f(x∗) ≤ Gk ≤
A0G0

Ak

. (A.4.26)
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Annexe B

Supplemental Material for Chapter 2

B.1. Strong Convexity of Sets with Asymmetric Dis-
tance Functions

Before presenting the proof, we introduce the following results, extending known proper-
ties from smooth and strongly convex sets.
Proposition B.1.1. If f is strongly convex w.r.t. the distance function ω, then for γ ∈ [0,1]
we have

f(γx + (1− γ)y) + µγ(1− γ)γω2(x− y) + (1− γ)ω2(y − x)
2 ≤ γf(x) + (1− γ)f(y)

Démonstration. Let zγ = γx + (1− γ)y. We start with the definition,

f(zγ) + ⟨∇f(zγ), x− zγ⟩+ µ

2 ω2(x− zγ) ≤ f(x)

f(zγ) + ⟨∇f(zγ), y − zγ⟩+ µ

2 ω2(y − zγ) ≤ f(y)

After multiplying by γ and 1− γ and adding the two inequalities, we have

f(zγ) + µ
γω2(x− zγ) + (1− γ)ω2(y − zγ)

2 ≤ γf(x) + (1− γ)f(y)

Since ω2(x− zγ) = (1− γ)2ω2(y − x), and ω2(y − zγ) = γ2ω2(x− y), we obtain the desired
result.

Proposition B.1.2. If f is convex and smooth w.r.t. the distance function ω, then it holds
that

1
2L

ω2
∗

(
∇f(x)−∇f(y)

)
≤ f(y)− f(x)− ⟨∇f(x), y − x⟩

where ω∗ is the dual of the function ω, written

ω∗(v) def= max
s:ω(s)≤1

⟨v, s⟩.



In particular, Proposition B.1.2 implies that, if f has a minimum x⋆, then
1

2L
ω2

∗

(
−∇f(y)

)
≤ f(y)− f(x⋆) (B.1.1)

Démonstration. Let the function ϕ(y) = f(y)−⟨∇f(x), y⟩. This function is, by construc-
tion, smooth. Moreover, miny ϕ(y) is attained when y = x. Since the function is smooth,

min
y

ϕ(y) ≤ min
y

ϕ(z) + ⟨∇ϕ(z), y − z⟩+ L

2 ω2(y − z)

Let βu = y − z, where ω(u) = 1 and β ≥ 0. Then,

min
y

ϕ(y) ≤ min
β,u

ϕ(z) + β⟨∇ϕ(z), u⟩+ β2L

2
The minimum can be split into two minimization problems,

min
y

ϕ(y) ≤ ϕ(z) + min
β≥0

(
β2L

2 − β max
u:ω(u)≤1

⟨−∇ϕ(z), u⟩
)

.

By definition of the dual of ω,

min
y

ϕ(y) ≤ ϕ(z) + min
β≥0

(
β2L

2 − βω∗
(
−∇ϕ(z)

))
.

Now, we can solve over β, which gives us

min
y

ϕ(y) ≤ ϕ(z)− 1
2L

ω2
∗

(
−∇ϕ(z)

)
.

Replacing the minimum by ϕ(x), and ϕ by its expression, we get

f(x)− ⟨∇f(x), x⟩ ≤ f(z)− ⟨∇f(x), z⟩ − 1
2L

ω2
∗

(
∇f(x)−∇f(z)

)
.

After reorganization, we get the desired result.

We can now show that level sets of a smooth and strong convex function are strongly
convex sets, when they use the distance function ω.

Démonstration. (Proof of Lemma 1.3.5.)
Consider the set

C = {x : f(x)− f⋆ ≤ R}
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Let x, y ∈ C. Let zγ = γx + (1− γ)y, and consider the point zγ + u. We have that

f(zγ + u)− f⋆ ≤ f(zγ)− f⋆ + ⟨∇f(zγ), u⟩+ L

2 ω2(u),

≤ f(zγ)− f⋆ + ω(−u) max
v:ω(v)≤1

⟨−∇f(zγ), v⟩+ L

2 ω2(u),

= f(zγ)− f⋆ + ω(−u)ω∗
(
−∇f(zγ)

)
+ L

2 ω2(u),

≤ f(zγ)− f⋆ + κωω(u)
√

2L(f(zγ)− f⋆) + L

2 ω2(u).

Therefore, to satisfy f(zγ + u)− f⋆ ≤ R, we need to ensure that

f(zγ)− f⋆ −R︸ ︷︷ ︸
=ω

+ κω

√
2L(f(zγ)− f⋆)︸ ︷︷ ︸

=β

ω(u) + L

2 ω2(u) ≤ 0

Solving the problem in ω(u) gives

ω(u) ≤ −β +
√

β2 − 2Lω

L

We have that
β2 − 2Lω = 2L

(
(f(zγ)− f⋆)(κ2

ω − 1) + R
)

Therefore,

ω(u) ≤
√

2
−κω

√
(f(zγ)− f⋆) +

√
(f(zγ)− f⋆)(κ2

ω − 1) + R
√

L
However, since the function is strongly convex,

f(zγ)− f⋆ ≤ γf(x) + (1− γ)f(y)− f⋆︸ ︷︷ ︸
≤R

−µγ(1− γ)γω2(x− y) + (1− γ)ω2(y − x)
2

Let Dγ = γ(1− γ)γω2(x−y)+(1−γ)ω2(y−x)
2 . The inequality now reads

f(zγ)− f⋆ ≤ R− µDγ. (B.1.2)

Therefore, the condition on ω becomes

ω(u) ≤
√

2
−κω

√
R− µDγ +

√
(R− µDγ)(κ2

ω − 1) + R
√

L

which gives

ω(u) ≤ κω

√
2√

L

−√R− µDγ +

√√√√R−
(

1− 1
κ2

ω

)
µDγ

 (B.1.3)

To simplify the expression in parenthesis, we multiply and divide by the conjugate of the
square roots to get:
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−√R− µDγ +

√√√√R−
(

1− 1
κ2

ω

)
µDγ

 =
R−

(
1− 1

κ2
ω

)
µDγ − (R− µDγ)√

R− µDγ +
√

R−
(
1− 1

κ2
ω

)
µDγ

≥ 1
κ2

ω2
√

R
.

We can thus strengthen the condition (B.1.3) to:

ω(u) ≤ µDγ

κω

√
2LR

.

As the definition of a strongly convex set requires ω(u) ≤ αωDγ, we conclude that the
level set is strongly convex with at least the constant αω = µ

κω

√
2LR

.

B.1.1. Proof of Theorem 1.4.4

Theorem B.1.3. Consider the function f , smooth w.r.t. the distance function ω, with
constant Lω, and the set C, strongly convex with constant αω.
Let δ(x) = x− v(x), v(x) being the FW corner

v(x) def= argmin
v∈C

⟨∇f(x), v⟩.

Then, if ω∗(−∇f(x)) > cω for all x ∈ C, the function f(x) is directionally smooth w.r.t. to
ω, with constant

Lf,δ ≤
Lω

cωαω

. (B.1.4)

Démonstration. We start by the definition of smooth functions between x and hδ(x) for
the distance function ω. We have for all 0 ≤ h ≤ 1

f(x + hδ(x)) ≤ f(x) + h⟨∇f(x), δ(x)⟩+ h2Lω

2 ω2(δ(x))

Using the scaling inequality in (1.3.4),

⟨−∇f(x), δ(x)⟩ ≥ αωω∗
(
−∇f(x)

)
ω(δ(x))2.

We hence obtain

f(x + hδ(x)) ≤f(x) + h⟨∇f(x), δ(x)⟩ − h2Lω

2
⟨∇f(x), δ(x)⟩

αωω∗
(
−∇f(x)

) .

Since ω∗(−∇f(x)) > cω for all x ∈ C,

f(x + hδ(x)) ≤f(x) + h⟨∇f(x), δ(x)⟩ − h2

2
Lω

αωcω

⟨∇f(x), δ(x)⟩.

which is the definition of directional smoothness.
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B.2. Missing proofs
B.2.1. Proof of Proposition 1.7.1

Proposition B.2.1. We define the “local Lipchitz constant” Lloc(x), which satisfies

Lloc(x) def= Lf,δ
⟨−∇f(x),δ(x)⟩
∥δ(x)∥2 .

Then, assuming that the local Lipchitz constant is “locally constant", the backtracking line-
search finds Lk ≤ 2Lloc(xk), and its stepsize γ⋆ satisfies

min
{

1,
1

2Lf,δ

}
≤ γ⋆.

Démonstration. We start with the definition of directional smoothness,

f(x + hδ(x)) ≤f(x) + h⟨∇f(x), δ(x)⟩+ [Lf,δ⟨−∇f(x),δ(x)⟩] h2

2 .

Writing 1 = ∥δ(x)∥2
2

∥δ(x)∥2
2
, the upper bound becomes

f(x) + h⟨∇f(x), δ(x)⟩ +
[
Lf,δ⟨−∇f(x),δ(x)⟩

∥δ(x)∥2
2

]
h2∥δ(x)∥2

2
2 .

Defining
Lloc(x) ≜ Lf,δ⟨−∇f(x),δ(x)⟩

∥δ(x)∥2
2

,

we obtain

f(xk + hδ(xk)) ≤f(xk) + h⟨∇f(xk), δ(xk)⟩+ Lloc(xk)h2∥δ(xk)∥2
2

2 .

If we assume that Lloc(xk) is approximately constant, then Algorithm 6 finds Lk ≤ 2Lloc(xk).
Finally, using the definition of γ⋆ in Algorithm 6, we have

γ⋆ = min
{
−∇f(xk)(vk − xk)
Lloc(xk)∥vk − xk∥2 , 1

}

≥ min
{

1
2Lf,δ

, 1
}

.

B.2.2. Proof of Proposition 1.4.3

Proposition B.2.2 (Affine Invariance). If δ(x) is affine covariant (e.g. the Frank-Wolfe
direction δ(x) ≜ v(x) − x), then the constant Lf,δ in (1.4.1) is affine invariant. In other
words, let

f̃(·) ≜ f(B·), δ̃C̃(·) ≜ δB·C(·),
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then Lf̃ ,δ̃C̃
= Lf,δ.

Démonstration. We start with the definition of directional smoothness, but with x→ By.
The upper bound reads

f(By) +
(

h− Lf,δh
2

2

)
⟨∇f(By), δ(By)⟩

Since we assumed δ(By) affine covariant,

δ(By) = Bδ̃C̃(y).

Therefore,

f(By) +
(

h− Lf,δh
2

2

)
⟨BT∇f(By), δ̃C̃(y)⟩

Since ∇f̃(y) = BT∇f(By), we have

f̃(ỹ + hδ̃C̃(y)) ≤ f̃(y) +
(

h− Lf,δh
2

2

)
⟨∇f̃(y), δ̃C̃(y)⟩

This means the function f̃ is directionally smooth with constant Lf,δ, which proves the
statement.

B.3. Backtracking Line Search for Frank-Wolfe Steps

Algorithm 6 Backtracking line-search for smooth functions [63]
Input: FW corner vk, point xk, smoothness estimate Lk, function f .

1: Create the optimal stepsize and next iterate in the function of the Lipchitz estimate

γ⋆(L) def= min
{
−∇f(xk)(vk − xk)

L∥vk − xk∥2 , 1
}

.

x(L) def= (1− γ⋆(L)) + γ⋆(L)vk

2: Quadratic model of f between xk and x(L),

m(L) def= f(xk) + ⟨∇f(xk), x(L)− xk⟩+ L

2 ∥x(L)− xk∥2

3: Set the current estimate L̃
def= Lk

2 .
4: while f(x(L̃)) > m(L̃) (Sufficient decrease not met because L̃ is too small) do
5: Double the estimate : L̃← 2 · L̃.
6: end while

Output: Estimate Lk+1 = L̃, iterate xk+1 = x(L̃)
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B.4. Affine Invariant Analysis without Restriction on
Optimum Location

In this section, we propose a modification of the directional smoothness defined in Section
1.4. This new assumption is the basis to obtain an affine invariant analysis of Frank-Wolfe
on a strongly convex set without restriction on the position of the unconstrained optimum
of f , as recently proposed in [31].
Outline. In Theorem B.4.2, we prove a O(1/K2) sublinear convergence rate as in [31] when
the function is modified directionally smooth (Definition B.4.1). In Theorem B.4.4, we prove
that when C is strongly convex, and f is smooth and strongly convex, then f is modified
directionally smooth for the Frank-Wolfe direction with an affine invariant constant leading
to better conditioned convergence rates than in [31]. Finally, in Proposition B.4.5, we show
that the constant of modified directional smoothness is affine invariant.

We now define a modification of directional smoothness. It is a structural assumption
on f constrained on C designed at gathering the strong convexity of C, the smoothness, and
the strong convexity of f into a single quantity.
Definition B.4.1 (Modified Directional Smoothness). Let x0 ∈ C. The function f is called
modified directionally smooth with direction function δ : C → RN if there exists a constant
L̃f,δ(x0) > 0 such that ∀x ∈ C,

f
(
x + hδ(x)

)
≤ f(x) + h⟨∇f(x), δ(x)⟩ − L̃f,δ(x0)h2

2 ⟨∇f(x), δ(x)⟩

√√√√f(x0)− f ∗

f(x)− f ∗ , (B.4.1)

for 0 < h < 1.
Note that the dependence of x0 in the definition of the modified directional smoothness

is an artifact to obtain a dimensionless constant L̃f,δ(x0).
As in Section 1.5, the modified directional smoothness constant L̃f.δ is affine invariant in

the case where δ is the FW direction. We now derive an affine invariant accelerated sublinear
rate of convergence of Frank-Wolfe providing an affine invariant analysis of [31].
Theorem B.4.2 (Affine Invariant Accelerated Sublinear Rates). Let x0 ∈ C and assume f is
a convex function and modified directionally smooth with direction function δ and constant
L̃f,δ(x0). Then, the iterates xk for the Frank-Wolfe Algorithm 1 with stepsize

hopt = min
{

1, 1
L̃f,δ(x0)

√
f(xk)−f∗

f(x0)−f∗

}
, with δ = v(x)− x,

or with exact line-search, where v(x) is the Frank-Wolfe corner

v(x) = argmin
v∈C

⟨∇f(x), v⟩,
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satisfy

f(xk)− f ∗ ≤
4(f(x0)− f ∗) max{1, 18L̃2

f,δ(x0)}
(k + 2)2 for k ≥ 0.

Démonstration. The proof is similar to that of Theorem 1.5.1. We hence start with the
modified directional smoothness assumption on f . For 0 < h < 1,

f
(
xk+1

)
≤f(xk) +

h− L̃f,δh
2

2

√√√√f(x0)− f ∗

f(xk)− f ∗

 ⟨∇f(xk), δ(xk)⟩ (B.4.2)

After minimizing over h, we have two possibilities. The case with exact line-search follows
immediately after these two cases. In the following, we use the notation hk

def= f(xk)− f ∗ for
the primal suboptimality at xk, and gk

def= ⟨−∇f(xk), δ(xk)⟩ for the Frank-Wolfe gap at xk

(and note that gk ≥ hk by convexity).
Case 1: hopt = 1

L̃f,δ(x0)

√
f(xk)−f∗

f(x0)−f∗ . In such case, we obtain (subtract f ∗ on both sides of
the inequality)

hk+1 ≤ hk −
1

2L̃f,δ

√
hk

h0
gk,

and since the Frank-Wolfe gap gk upper bounds the primal suboptimality, we obtain

hk+1 ≤ hk

[
1− 1

2L̃f,δ

√
h0

√
hk

]
.

Case 2: With hopt = 1, we have

hk+1 ≤ hk +
1− Lf,δ

2

√
h0

hk

 gk.

In that case, we have that 1
L̃f,δ(x0)

√
hk

h0
≥ 1. Hence we obtain

hk+1 ≤ hk − 1
2gk ≤ 1

2hk

Finally, we have the following recursive relation on the sequence of primal suboptimality
(hk):

hk+1 ≤ hk ·max
{1

2 , 1− 1
2L̃f,δ

√
h0

√
hk

}

= hk ·max
{1

2 , 1−M
√

hk

}
, (B.4.3)

with M
def= 1

2L̃f,δ(x0)
√

h0
. The inequality (B.4.3) is exactly the same recurrence that was

analyzed by [31] (see their Equation (7), with the same notation for M), where they have
shown a O(1/K2) convergence rate. The exact constant is obtained by following the very
same proof as [31], i.e. proving by induction that there exists C such that hk ≤ C/(k + 2)2.
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The base case k = 0 can be trivially obtained by letting C ≥ 4h0.1 Their induction step was
shown by requiring that C ≥ 18

M2 . Thus using C = max{4h0,
18

M2} (and re-arranging) proves
the statement of our theorem.

The following lemma will be used in the proof of the bound on the modified directional
smoothness.
Lemma B.4.3. Consider a compact convex set C. Assume f is a µω-strongly convex function
with respect to ω. Let x∗ be the minimum of f on C. Then, for any x ∈ C, we have

ω∗(∇f(x)) ≥
√

µω

2
√

f(x)− f(x∗). (B.4.4)

Démonstration. Let x ∈ C. From Definition 1.3.3, we have that

f(x) ≥ f(x∗) + ⟨∇f(x∗), x− x∗⟩+ µω

2 ω2(x− x⋆).

Hence with the optimality conditions, i.e. ⟨∇f(x∗), x− x∗⟩ ≥ 0, we have

f(x)− f(x∗) ≥ µω

2 ω2(x− x∗). (B.4.5)

By convexity of f , we have ⟨x−x∗, ∇f(x)⟩ ≥ f(x)− f(x∗), and by definition of the Fenchel
conjugate, we have

ω(x− x∗) · ω∗(∇f(x)) ≥ ⟨x− x∗, ∇f(x)⟩ ≥ f(x)− f(x∗).

Hence by plugging (B.4.5), we obtain (B.4.4).

We now prove Theorem B.4.4 that is similar to Theorem 1.4.4. It states that in the
case of the FW algorithm, the modified directional smoothness constant is bounded if the
function is smooth, strongly convex and the set is strongly convex for any distance function
ω. It also provides an explicit upper bound on the modified directional smoothness constant.
This bound implies that the convergence rate in Theorem B.4.2 is better conditioned than
existing results [31].
Theorem B.4.4 (Bounds on modified directional smoothness). Consider x0 ∈ C and a
function f , smooth w.r.t. the distance function ω, with constant Lω, strongly convex w.r.t.
the distance function ω, with constant µω, and the set C, strongly convex with constant
αω. Let δ(x) = x − v(x), v(x) being the FW corner. Then, the function f(x) is modified
directionally smooth w.r.t. to δ, with constant

L̃f,δ(x0) ≤
κω

√
2Lω

αω
√

µω

1√
f(x0)− f ∗

. (B.4.6)

1Note that [31] use a different argument for the base case, bounding instead h1 with L · diam(C)2/2, using
the Lipschitz smoothness of f (and this would become Cf /2 in its affine invariant formulation with Cf as
defined by [43]). However, we believe that h0 is usually smaller than Cf in applications, and in any case h0
appears from 1/M2 for us, so using our different base case argument is more meaningful.
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Démonstration. Let h ∈ [0,1]. With the smoothness of f , we have

f(x + hδ(x)) ≤ f(x)− h⟨−∇f(x), δ(x)⟩+ h2Lω

2 ω
(
δ(x)

)2
.

Recall that when δ(x) is the Frank-Wolfe direction, we have that the Frank-Wolfe gap g(x)
is equal to ⟨−∇f(x), δ(x)⟩. Also, the scaling inequality for strongly convex sets (Lemma
1.3.6) implies that ω(δ(x))2 ≤ g(x)/(αωω⋆(−∇f(x))), so that

f(x + hδ(x)) ≤ f(x)− h⟨−∇f(x), δ(x)⟩+ h2Lω

2αω

g(x)
ω⋆(−∇f(x)) .

Now, it is easy to see from the definition of the dual distance ω∗ that is has the same
bounded asymmetry constant as for ω, and thus ω⋆(−∇f(x)) ≥ 1

κω
ω⋆(∇f(x)). Thus we

apply (B.4.4) to obtain:

f(x + hδ(x)) ≤ f(x)− hg(x) + h2

2
κw

√
2Lω

αω
√

µω

√
f(x0)− f ∗

√
f(x0)− f ∗√
f(x)− f ∗

g(x),

which implies equation (B.4.6).

Theorem B.4.4 shows that the conditioning of convergence with the directional smooth-
ness, which does not depend on any norm choice, in Theorem B.4.2 is better than conditio-
ning of other analysis [31]. We now prove that the optimal constant of modified directional
smoothness L̃f,δ is affine invariant, a result similar to Proposition 1.4.3 for the directional
smoothness constant.
Proposition B.4.5 (Affine Invariance of Modified Directional Smoothness). Consider C a
compact convex set and f a convex function on C that is modified directionally smooth w.r.t.
δ(x) with constant L̃f,δ(x0) (with x0 ∈ C). If for any x ∈ C, δ(x) is affine covariant (e.g. the
Frank-Wolfe direction δ(x) ≜ v(x)− x), then the constant L̃f,δ in (B.4.1) is affine invariant.
In other words, for an invertible matrix B, let

f̃(·) ≜ f(B·), δ̃C̃(·) ≜ δB−1·C(·),

then L̃f̃ ,δ̃C̃
(x0) = L̃f,δ(y0), where y0 ≜ B−1x0.

Démonstration. Let y ∈ B−1 · C. Applying the definition of directional smoothness for f

at By, we obtain

f
(
By + hδ(By)

)
≤ f(By) + h⟨∇f(By), δ(By)⟩ − L̃f,δ(x0)h2

2 ⟨∇f(By), δ(By)⟩

√√√√ f(x0)− f ∗

f(By)− f ∗ .

(B.4.7)
Similarly to Proposition 1.4.3, we have that ∇f̃(y) = BT∇f(By) and δ(By) = Bδ̃C̃(y) so
that

⟨∇f(By), δ(By)⟩ = ⟨∇f(By), Bδ̃C̃(y)⟩ = ⟨BT∇f(By), δ̃C̃(y)⟩ = ⟨∇f̃(y), δ̃C̃(y)⟩.
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Hence (B.4.7) and f̃ ∗ = f ∗, implies that for any y ∈ B−1 · C

f̃(y + hδ̃C̃) ≤ f̃(y) + h⟨∇f̃(y), δ̃C̃(y)⟩ − L̃f,δ(x0)h2

2 ⟨∇f̃(y), δ̃C̃(y)⟩

√√√√ f̃(y0)− f̃ ∗

f̃(y)− f̃ ∗
.

Hence, f̃ is modified directionally smooth on C̃ ≜ B−1 · C with respect to δ̃C̃ and L̃f̃ ,δ̃C̃
(y0) ≤

L̃f,δ(x0). A similar reasoning concludes that the two constants are equal.

B.5. Related Work Details
[48] propose an affine invariant analysis of the vanilla Frank-Wolfe algorithm when the

unconstrained optimum x∗ is in the relative interior of the constraint set C and f is strongly
convex. Hence, the analysis applies when the constraint set is a strongly convex set, and
the quantity might be defined in our context. However, the affine invariant constant µ

(F W )
f

standing for the strong convexity of f is zero whenever the optimum is not in the relative
interior of the constraint set C. Indeed, Equation (3) from [48] define the following affine
invariant quantity

µ
(F W )
f ≜ inf

x∈C\{x∗},γ∈]0,1]
s̄=s̄(x,x∗,C)

y=x+γ(s̄−x)

2
γ2

[
f(y)− f(x)− ⟨∇f(x), y − x⟩

]
,

where s̄(x, x∗, C) = ray(x, x∗) ∩ ∂C. When x∗ /∈ C, we have µ
(F W )
f ≤ 0 since there are some

point x ∈ ∂C such that x ∈ s̄(x, x∗, C), and thus we can take s̄ = x in the inf, yielding y = x

with γ > 0. This means that the above quantity cannot be easily generalized to the setting
we studied in Theorem 1.4.4 where the unconstrained optimum is assumed to be outside of
C.
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Annexe C

Supplemental Material for Chapter 3

C.1. Robust Symmetric Multisecant Algorithms

Algorithm 7 Type-I Symmetric Multisecant step
Input: Function f and gradient ∇f , initial approximation of the Hessian Bref, maximum

memory m (can be ∞), relative regularization parameter λ̄.
1: Compute g0 = ∇f(x0) and perform the initial step x1 = x0 −B−1

ref g0
2: for t = 1,2, . . . do
3: Form the matrices ∆X and ∆G using the m last pairs (xi,∇f(xi)).
4: Compute the qN direction d as dt = −B−1gt, where

B−1 = E
(
Z1 − Z2B−1

ref ZT
2

)−1
ET + (I−P)B−1

ref (I−P),
[U,Σ,V1] = SVD(∆X, ’econ’)

Z1 = S⊙
[
VT

1

(
∆X∆GT + ∆G∆XT + λBref

)
V1
]

,

S = 1
Σ211T + 11T Σ2 + λ11T ,

P = V1VT
1 ,

Z2 = (Σ2 + λI)−1VT
1 (∆X∆GT + λZref)(I−P)

E = V1 − (I−P)Z−1
ref ZT

2 .

5: Perform an approximate-line search: xt+1 = xt + htdt, ht ≈ argminh f
(
xt + htdt

)
.

6: end for



Algorithm 8 Type-II Symmetric Multisecant step
Input: Function f and gradient ∇f , initial approximation of the Hessian Href, maximum

memory m (can be ∞), relative regularization parameter λ̄.
1: Compute g0 = ∇f(x0) and perform the initial step x1 = x0 −Hrefg0
2: for t = 1,2, . . . do
3: Form the matrices ∆X and ∆G using the m last pairs (xi,∇f(xi)).
4: Compute the qN direction d as dt = −H−1gt, where

H = V1Z1VT
1 + V1Z2 + ZT

2 VT
1 + (I−P)Href(I−P),

[U,Σ,V1] = SVD(∆GT , ’econ’),

Z1 = S⊙
[
VT

1

(
∆G∆XT + ∆X∆GT + λHref

)
V1
]

,

S = 1
Σ211T + 11T Σ2 + λ11T ,

P = V1VT
1 ,

Z2 = (Σ2 + λI)−1VT
1 (∆G∆XT + λZref)(I−P)

5: Perform an approximate-line search: xt+1 = xt + htdt, ht ≈ argminh f
(
xt + htdt

)
.

6: end for
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C.2. Positive Definite Estimates
C.2.1. Schur Complement and Robust Projection

We quickly discuss here a strategy to make the estimate H or B−1 positive definite. If
we rewrite Z from Theorem 2.4.1, we have

Z⋆ = argmin
Z=ZT

∥ZA−D∥2
F + λ

2∥Z− Zref∥2
F ,

where the matrices Z2, Zref, V1 are defined in 2.4.1, and the matrix P = V1VT
1 is a projector.

Let V2 be the orthonormal complement of V1, i.e., I − P = V2VT
2 . We can write Z⋆ as

follow,

Z⋆ =
[
V1|V2

]  Z1 Z2V2

VT
2 ZT

2 VT
2 ZrefV2

 [V1|V2

]T
By the Schur complement, the matrix is positive semi-definite if and only if

VT
2 ZrefV2 ⪰ 0 and Z1 − (Z2V2)(VT

2 ZrefV2)(Z2V2)T ⪰ 0

Since VT
2 V2 = I, and because we start with a positive definite Zref, the only condition is

Z1 ⪰ Z2ZrefZT
2 . The matrix Z1 is small (m×m) and symmetric, therefore the projection of

its eigenvalues to ensure the positive definiteness is cheap.
To project the matrix, let the variable χ and χ0 = Z1 − Z2ZrefZT

2 . We have to solve

min
χ
∥χ− χ0∥F s.t. χ ⪰ σI.

This way, we ensure that Z ⪰ σ. Let UΛUT the eigenvalue decomposition of χ0. the solution
χ⋆ reads

χ⋆ = U max{Λ, σI}UT (maximum element-wise).

We retrieve the modified matrix Z+
1 as

Zσ
1 = χ⋆ + Z2ZrefZT

2 .

We call this projection "robust" as we project the matrix s.t. the eigenvalues of Z are strictly
positive, if σ > 0.

C.2.2. Robust Positive Definite Type-I Multisecant Update

We propose here a Robust version of the Multisecant Type-I update. The major stability
problem in the Type-I update is the lack of guarantee that the eigenvalues of Z (i.e., B) are
away from zero. This means, when we will invert Z, the eigenvalues of the matrix can be
arbitrarily large. On the other side, large eigenvalues of Z are not a problem, since after
inversion they will be very close to zero. That means we do not need to compute a regularized
version of Z, i.e., we do not need to set λ > 0 to compute Z.
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All together, we propose the following strategy: We compute all required matrices to
form Z−1

⋆ , but can replace the matrix Z1 by Zσ
1 . This controls the norm of Z−1

⋆ , and ensure
its positive definiteness. We let the detailed analysis of the robustness of the method for
future work.

C.2.3. Robust Positive Definite Type-II Multisecant Update

Here, the idea is simpler. As we already have the robustness property, it suffice to use
the matrix Zσ

1 directly in the update formula of Z⋆. Again, we let the detailed analysis of
this method for future work.
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C.3. Preconditioned Updates
We discuss in this section several strategies for the choice of the preconditioner W, pre-

sented in Section 2.3.4. We present here the example for the Type-II method, but everything
also applies to the Type-I. We recall that the preconditioner matrix W is an estimate of the
Hessian, and is applies as follow,

M = WαHW(1−α)

Then, we solve the problem with W−α∆X instead of ∆X, and with W(1−α)∆G instead of
∆G. The estimate H is then recovered by solving H = W−αMW(α−1).

C.3.1. Last estimate

Since we have computed all matrices Z1, Z2, . . . for form Hk−1, it is easy to form W =
Hk−1 and W−1 = H−1

k−1 to create Hk, given Theorem 2.4.1. Since we only have access to H
or H−1, we have to set α = 1 or α = 0.

C.3.2. Successive Preconditioning

As before, we can use the information stored in the secant equation to compute the
preconditioner W. However, instead of using the previous secant equation, we use the
current ones. We have two possibilities here: we can either use the Type-I approximation
to compute W, or the type-II, then compute H with this preconditioner. For each of these
possibilities, we can use W on the left, or the right of H. At the end, we have 4 possibilities:

W = Procrustes(∆X, ∆G, Href),

H = Procrustes(W−1∆G, ∆X, HrefW)W (Type-I, α = 0),

H = (W)−1Procrustes(∆G, W∆X, WHref) (Type-I, α = 1),

W−1 = InvProcrustes(∆G, ∆X, H−1
ref ),

H = Procrustes(W−1∆G, ∆X, HrefW)W (Type-II, α = 0),

H = (W)−1Procrustes(∆G, W∆X, WHref) (Type-II, α = 1).

In fact, we can iteratively compute several W (since the SVD is already computed, it’s
only a matter of matrix-vector multiplications). We give here the example of the Type-I,
α = 0 preconditioner,

Wi = Procrustes(W−1
i−1∆X, ∆G, HrefWi−1)Wi−1 or Wi = W−1

i−1Procrustes(∆X, Wi−1∆G, Wi−1Href).

We do not know if this process is convergent, or if it is useful to do several iteration to
find the preconditioner. We let these investigations as future work.
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C.3.3. Semi-Implicit Preconditioning

We discuss here a semi-implicit strategy, inspired by the preconditioner of BFGS and
DFP. Indeed, we assume that there exist a matrix W such that

W∆X = ∆G.

In such case, we have 4 possibilities for the preconditioned secant equations,

(WH)∆G = W∆X,

(HW)W−1∆G = ∆X,

(W−1B)∆X = W−1∆G,

(BW−1)W∆X = ∆G,

which gives, if we use the implicit property of W,

(WH)∆G = ∆G,

(HW)∆X = ∆X,

(W−1B)∆X = ∆X.

(BW−1)∆G = ∆G,

We give here the example when W multiplies the secant equation on the left. We left
the full study for future work.
Theorem C.3.1. The solution of the Type-II semi-implicit preconditioned update is given
by

min
H=HT

∥W(H−Href)∥ s.t. WH∆G = ∆G (C.3.1)

where ∆G is a full column-rank matrix and Href a symmetric matrix is given by

H = W−1∆GT−1
1 ∆GT W−1 + (I−P1)T Href(I−P1) (C.3.2)

where

T1 = ∆GT W−1∆G, and P1 = ∆GT−1
1 ∆GT W−1 is a projector.

The Type-I solves instead

min
B=BT

∥W−1(B−Bref)∥ s.t. W−1B∆X = ∆X,

whose inverse reads

B−1 = ∆XT−1
2 ∆XT + B−1

ref −B−1
ref W∆X(∆XT WB−1

ref W∆X)−1∆XT WB−1
ref ,

where
T2 = ∆XT W∆X.
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The major problem here is to obtain the matrix W or W−1, which can be approximated
using one of the two techniques presented in the previous subsections. Moreover, it would
be interesting to consider a robust version of the preconditioned update.
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C.4. Generalized qN step
We describe here the generalized qN update (Algorithm 9) and qN step (Algorithm 10).

Algorithm 9 Generalized qN direction
Input: Matrices ∆G, ∆X, regularization λ, reference matrices Href = B−1

ref , direction w.
Parameters: Loss function L, Regularization function R, constraint set C.

1: Solve the problem

B = argmin
B∈C

L (B∆X, ∆G) + λ

2R (B, Bref) (Type-I)

H = argmin
H∈C

L (H∆G, ∆X) + λ

2R (H, Href) (Type-II)

Output: qN direction d = B−1w or d = Hw.

Algorithm 10 Generalized qN step
Input: Sequence of m + 1 pairs iterates-gradient

{(x0, g0), (x1, g1), . . . , (xm, gm)}, where gi = ∇f(xi).
Parameters: Matrix of differences C ∈ Rm+1,m of rank m, vector of coefficients v ∈
Rm+1, such that

1T
m+1C = 0, vT 1n+1 = 1.

1: Form the matrices ∆X and ∆G as
∆X = XC, ∆G = GC.

2: Form the gradient direction w as
w = Gv

3: Call Algorithm 9 with ∆G, ∆X,w (and other parameters), and retrieve the qN direction
d.

4: Form the next iterate x+ using approximate line-search,
x+ = Xv − h∗d, where h∗ ≈ argmin

h
f(Xv − hd).

Algorithm 10 is inspired by the fact that, if Q is the true hessian such that

Q−1G = X−X⋆, where X⋆ = x⋆1T ,

when, if H ≈ Q−1 (equivalently B0−1 ≈ Q−1), we have

X−HG ≈ X⋆.
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Multiplying both size by v, where vT 1 = 1, we have X⋆v = x⋆ and

(X−HG)v = Xv −Hw︸ ︷︷ ︸
Generalized qN step

≈ x⋆.
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C.5. Convergence analysis on quadratics
We now analyze the convergence speed of the generalized qN step (Algorithm 10) when

applied on a quadratic function.

C.5.1. Setting

Objective function. We consider the minimization problem

min
x

f(x) def= 1
2(x− x⋆)T Q(x− x⋆) + f⋆. (C.5.1)

Notice that C.5.1 is equivalent to f(x) = xT Qx + bT x + c, but the notation in (C.5.1) is
more convenient. Since the function f is quadratic, we have the following relations,

Q∆X = ∆G, Q(X−X⋆) = G. (C.5.2)

Algorithm. We consider the algorithm

xk+1 = (Xk−HkGk)vk, where Xk = [x0, . . . , xk], Gk = [g0, . . . , gk], vk : vT
k 1k+1 = 1,

(C.5.3)
and Hk is formed by Algorithm 9.
Assumptions. We assume

• The spectrum of the true Hessian Q is bounded by ℓI ⪯ Q ⪯ LI, 0 < ℓ < L.
• (Simplifying assumption) We use only the notation Hk for the approximation of the

inverse of the Hessian at the iteration k, in opposition to making the distinction
between Hk and B−1

k .
• We assume that the qN approximation satisfies exactly the secant equations, i.e.,

Hk∆Gk = ∆Xk.

• The qN method is used with full memory, i.e., Xk contains all iterates from 0 to k

and grows indefinitely.
• The matrices ∆X and ∆G are full column rank.

C.5.2. Generic formula of H

In the case where H satisfies exactly the secant equation, the generic formula of H reads

Hk = ∆Xk∆G†
k + Θ̃k(I−Pk), Pk = ∆Gk∆G†

k, (C.5.4)

where Θk is a matrix that depends on the initialization Href, the constraints set C and the
regularization function R (but not on the loss since H satisfies exactly the secant equations).
The notation ∆G†

k is any left pseudo-inverse of ∆G that satisfies

∆G†
k∆Gk = Ik,
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which exists since ∆Gk is full column rank. The matrix P is a projector such that
P∆G = ∆G and P2 = P, which is not symmetric because it’s not an orthonormal projec-
tion (unlike most projection matrices). Finally, the matrix H̃ depends on the initialization
and constraints of the qN method.

Indeed, if Hk satisfies (C.5.4), we have that Hk satisfies the secant equations since

H∆G = ∆Xk ∆G†
k∆G︸ ︷︷ ︸

=I

+Θk (I−Pk)∆G︸ ︷︷ ︸
=0

= ∆X.

C.5.3. Independence of v

We first show that the generalized qN step (C.5.3) is (surprisingly) independent of the
choice of v. We omit the subscript k in this section for simplicity.
Proposition C.5.1 (Invariance under v). Let x̃+ and x+ be formed by (C.5.3) using resp.
ṽ and v. Then, x̃ = x.

Démonstration. We first write the difference between x+ and x̃+,

x+ − x̃+ = (X−HG) (v − ṽ)︸ ︷︷ ︸
∆v

.

However, ∆v = v − ṽ is a vector that sum to 0. Since C is a matrix such that

1T C = 0, C is full column rank,

this means C is a basis for all vectors that sum to zero. Therefore, there exists a vector of
coefficients α such that Cα = ∆v. Rewriting the difference, we obtain

x+ − x̃+ = (X−HG)Cα.

However, GC = ∆G and XC = ∆X. Since H∆G = ∆X, the difference is zero, which prove
the statement.

C.5.4. Krylov subspace structure of the iterates

Before proving the rate of convergence of the qN step, we show that the iterates follows
a Krylov structure.
Proposition C.5.2. Assume that, for all i = 0 . . . k, we have

xi ∈ x0 + H̃span{∇f(x0), . . . ,∇f(xi−1)}.

In such case,

xi − x⋆ ∈ x0 − x⋆ + span{H̃Q(x0 − x⋆), (H̃Q)2(x0 − x⋆), . . . , (H̃Q)i−1(x0 − x⋆)}

109



Démonstration. We prove the result iteratively. For i = 0, we have

x0 − x⋆ = I(x0 − x⋆).

For i = 1,
x1 − x⋆ ∈ x0 − x⋆ + H̃span{∇f(x0)}

Since ∇f(x0) = Q(x0 − x⋆),

x1 − x⋆ ∈ x0 − x⋆ + H̃span{Q(x0 − x⋆)} ∈ x0 − x⋆ + span{H̃Q(x0 − x⋆)}.

For i = 2,

x1 − x⋆ ∈ x0 − x⋆ + H̃span{Q(x0 − x⋆), Q(x1 − x⋆)}

∈ x0 − x⋆ + H̃span{Q(x0 − x⋆), Q
(
x0 − x⋆ + span{H̃Q(x0 − x⋆})

)
}

∈ x0 − x⋆ + H̃span{Q(x0 − x⋆), Q
(
H̃Q(x0 − x⋆)

)
}

∈ x0 − x⋆ + span{H̃Q(x0 − x⋆), H̃Q
(
H̃Q(x0 − x⋆)

)
}

∈ x0 − x⋆ + span{H̃Q(x0 − x⋆), (H̃Q)2(x0 − x⋆)}

We can repeat the process up to i.

C.5.5. Rate of convergence

We now analyse the rate of convergence of algorithm (C.5.3) in term of the distance to
the solution.
Theorem C.5.3. Assume that, for all i = 0 . . . k, we have

xi ∈ x0 + H̃span{∇f(x0), . . . ,∇f(xi−1)}.

Moreover, assume that

H̃Q is psd, and κ = ∥H̃Q∥
∥(H̃Q)−1∥

is bounded.

In such case, the accuracy of the k − th qN step is bounded by

∥xk − x⋆∥ ≤ ∥I−HkQ∥
(

1−
√

κ−1

1 +
√

κ−1

)k

∥x0 − x⋆∥

Démonstration. If we expand the expression, we obtain

xk+1 = (Xk −HkGk) v − x⋆,

= (I−HkGk) vk,

= (I−HkQ) (Xk −X⋆) vk. (C.5.5)
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By Proposition C.5.1, we can take any vk such that vT 1 = 1. In particular, we chose vk = v⋆
k

such that
v⋆

k
def= argmin

v:vT 1=1
∥ (Xk −X⋆) v∥2

2

Therefore,

∥∇f(xk+1)∥ ≤ ∥I−HkQ∥∥ (Xk −X⋆) vk∥ = ∥I−Hk∥ · min
v:vT 1=1

∥ (Xk −X⋆) v∥.

By definition of (Xk −X⋆), we have

(Xk −X⋆) vk =
(

k∑
i=0

vi (x0 − x⋆ + span{∇f(x0), . . . ,∇f(xi)})
)

.

Since v sum to one,

(Xk −X⋆) vk = x0 − x⋆ +
(

k∑
i=0

vispan{∇f(x0), . . . ,∇f(xi)}
)

.

By definition of a span,

(Xk −X⋆) vk ∈ x0 − x⋆ + span{∇f(x0), . . . ,∇f(xi)}.

By Proposition C.5.2,

(Xk −X⋆) vk ∈ x0 − x⋆ + span{H̃Q(x0 − x⋆), (H̃Q)2(x0 − x⋆), . . . , (H̃Q)i−1(x0 − x⋆)}.

Notice that, because G is full rank the span is a basis, therefore there is a one-to-one
correspondence between the span and vk (i.e., there exists a unique vector vk such that
vT

k 1 = 1 such that (Xk −X⋆)vk is a vector of the span). Using the definition of the span,

(Xk −X⋆) vk = Πk(H̃Q)(x0−x⋆), Πk is a polynomial of degree at most k, such that Πk(0) = 1.

Therefore,

∥∇f(xk+1)∥ ≤ ∥I−HkQ∥ · min
Π:deg(Π)≤k, Π(0)=1

∥∥∥Πk(H̃Q)(x0 − x⋆)
∥∥∥

Now, assume that H̃Q is symmetric, p.s.d., and let κ be its condition number, i.e.,

κ = ∥H̃Q∥
∥(H̃Q)−1∥

.

Then, standard result from Krylov subspace gives the bound

min
Π:deg(Π)≤k, Π(0)=1

∥∥∥Πk(H̃Q)(x0 − x⋆)
∥∥∥ ≤ (1−

√
κ−1

1 +
√

κ−1

)k

∥x0 − x⋆∥,

for k ≤ d, and converges exactly to 0 when k ≥ d, which prove the statement.
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C.5.6. Example of qN method satisfying the assumptions

We show here that standard qN method satisfies the assumptions of Theorem C.5.3. We
first show a simpler condition for the method that ensure it satisfies the assumptions of
Theorem C.5.3.
Proposition C.5.4. Let H be any matrix that satisfies the secant equation, which means

H = ∆X∆G† + Θ(I−P), ∆G† : ∆X∆G†∆G = ∆X, P : P∆G = ∆G.

If
Θ(I−P)Gv ∈ H̃span{G},

then x+ ∈ x0 + H̃span{G}. Moreover, if H̃ is symmetric positive definite then the method
satisfies the assumption of Theorem C.5.3.

Démonstration. We start by expanding the generalized qN step,

x+ = Xv −∆X∆G†Gv −Θ(I−P)Gv

= X
(
I−C∆G†G

)
v︸ ︷︷ ︸

=w

−Θ(I−P)Gv

= Xw−Θ(I−P)Gv.

Notice that 1T w = 1, since

1T w = 1T
(
I−C∆G†G

)
v = 1T v︸︷︷︸

=1

−1T C︸ ︷︷ ︸
=0

∆G†Gv.

We now show the property recursively. The property is true at x0, and assume it’s true up
to k. Therefore,

Xw = Xkwk =
k∑

i=0
wixi ∈

k∑
i=0

wi︸ ︷︷ ︸
=1

x0 +
k∑

i=0
wiH̃span{Gi−1} (recursivity assumption),

Which means Xw ∈ x0 + H̃span{Gk−1}. Therefore, if Θ(I− P)Gv ∈ H̃span{G}, we have
x+ ∈ x0 + H̃span{G}.

C.5.6.1. Multisecant Broyden Type-I.
TL;DR. The method satisfies Theorem C.5.3 if Bref is symmetric positive definite.

The Multisecant Broyden Type-I reads

B−1 = B−1
0 + (∆X−B−1

0 ∆G)(∆XT B−1
0 ∆G)−1∆XT B−1

0

After reorganization,

B−1 = ∆X∆G† + B−1
0 (I∆G∆G†), ∆G† = (∆XT B−1

0 ∆G)−1∆XT B−1
0 .
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We clearly identity Θ(I−P) = B−1
ref (I−∆G∆G†). After expansion,

Θ(I−P)Gv = B−1
ref (I−∆G∆G†)Gv = B−1

ref G(I−C∆G†G)v,

= B−1
ref Gṽ,

∈ B−1
ref span{G}.

Defining H̃ = B−1
ref , we have Θ(I− P)Gv ∈ H̃span{G}. If Href is full rank, symmetric and

positive definite, then by Proposition C.5.4 the method satisfies Theorem C.5.3.

C.5.6.2. Multisecant Broyden Type-II.
TL;DR. The method satisfies Theorem C.5.3 if Href is symmetric positive definite.

The Multisecant Broyden Type-II update reads

H = ∆X∆G† + Href(I−∆G∆G†).

We clearly identity Θ(I−P) = Href(I−∆G∆G†). After expansion,

Θ(I−P)Gv = Href(I−∆G∆G†)Gv = HrefG(I−C∆G†G)v,

= HrefGṽ,

∈ Hrefspan{G}.

Defining H̃ = Href, we have Θ(I − P)Gv ∈ H̃span{G}. If Href is full rank, symmetric and
positive definite, then by Proposition C.5.4 the method satisfies Theorem C.5.3.

C.5.6.3. Multisecant BFGS for quadratics.
TL;DR. The method satisfies Theorem C.5.3 if Href is symmetric positive definite.

The multisecant BFGS for quadratics reads

H = ∆X∆G† + ∆X(∆G†)T (I−P) + (I−P)T Href(I−P), ∆G† = (∆XT ∆G)−1∆XT ,

which is symmetric if and only if ∆XT ∆G is a symmetric matrix. Notice that this reduces
to the standard BFGS update when ∆X and ∆G are vectors. We identify Θ(I−P) as

Θ(I−P) =
(
∆X(∆G†)T + (I−P)T Href

)
(I−P).

After expanding P,

Θ(I−P) =
(
Href + ∆X

(
(∆G†)T −∆G†Href)T

))
(I−P).

Since ∆X already belong to the span, it suffices to show

Href(I−P)Gv ∈ H̃span{G}.

Following the same technique as before, we have H̃ = Href. Therefore, the methods satisfies
the assumptions if Href is symmetric and positive definite.
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C.6. Symmetric Procrustes Problem
Consider the following problem, known as Symmetric Procrustes.

Theorem C.6.1. Consider the Regularized Symmetric Procrustes (RSP) problem

Z⋆ = argmin
Z=ZT

∥ZA−D∥2 + λ

2∥Z− Zref∥2, (RSP)

where Zref is symmetric (otherwise, take the symmetric part of Zref), Z, Zref ∈ Rd×d, and
A, D ∈ Rd×m, m ≤ d, λ > 0. Then, the solution Z⋆ is given by

Z⋆ = V1Z1VT
1 + V1Z2 + ZT

2 VT
1 + (I−P)Zref(I−P) (Sol-RSP)

where

[U,Σ,V1] = SVD(AT , ’econ’), (economic SVD)

Z1 = S⊙
[
VT

1

(
ADT + DAT + λZref

)
V1
]

,

S = 1
Σ211T + 11T Σ2 + λ11T ,

P = V1VT
1 ,

Z2 = (Σ2 + λI)−1VT
1 (ADT+λZref)(I−P)

The fraction in S stands for the element-wise inversion (Hadamard inverse). The inverse
Z−1

⋆ reads

Z−1
⋆ =E

(
Z1 − Z2Z−1

ref ZT
2

)−1
ET + (I−P)Z−1

ref (I−P)

E = V1 − (I−P)Z−1
ref ZT

2 . (Inv-RSP)

Démonstration. We begin by deriving the solution of (RSP). By taking the transposition
of the matrices inside the Frobenius norm of the first term in (RSP), we obtain the equivalent
problem

min
Z=ZT ∈Rd×d

∥AT Z−DT∥2 + λ

2∥Z− Zref∥2
F . (C.6.1)

We write the (full) singular value decomposition of AT as

U
[
Σ 0

] VT
1

VT
2


︸ ︷︷ ︸

=V

, (C.6.2)

where U ∈ Rm×m, V ∈ Rd×d are orthogonal matrices, Σ ∈ Rm×m is a diagonal matrix
with nonnegative entries, and V1 ∈ Rm×d, V2 ∈ Rd−m×d. Thus, we obtain another problem
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equivalent to (RSP), that reads

min
Z̃=Z̃T ∈Rd×d

∥[Σ, 0]Z̃− D̃T∥2 + λ

2∥Z̃− Z̃ref∥2
F , (C.6.3)

where Z̃ = VZVT ,

D̃ = UT DT V,

Z̃ref = VT ZrefV.

Equation (C.6.3) is equivalent to (RSP) after multiplying the inside of the norm bu UT on the
left, and V on the right, since the Frobenius norm is invariant to orthonormal transformation.
We now decompose the matrices in blocks as follow,

Z̃ =
 Z̃1 Z̃D

Z̃T

D Z̃2

 D̃ =
[
D̃1 D2

]
Z̃ref =

 (Z̃ref)1 (Z̃ref)D

(Z̃ref)T
D (Z̃ref)2

 (C.6.4)

where Z1, (Z̃ref)1, D̃1 ∈ Rm×m, Z2, (Z̃ref)2 ∈ Rd−m×d−m, ZD, (Z̃ref)D, D2 ∈ Rm×d−m. Hence,
we can problem (C.6.3) as

min
Z̃=Z̃T ∈Rd×d

∥[Σ, 0]Z̃− D̃T∥2 + λ

2∥Z̃− Z̃ref∥2
F ,

= min
Z̃1=Z̃T

1 , Z̃2=Z̃T
2 , ZD

∥[ΣZ̃1, ΣZ̃D]− [D̃1,D̃2]∥2

+ λ

2
(
∥Z̃1 − (Z̃ref)1∥2 + 2∥Z̃D − (Z̃ref)D∥2 + ∥Z̃2 − (Z̃ref)2∥2

)
= min

Z̃1=Z̃T
1

∥ΣZ̃1 −D1∥2 + λ

2∥Z̃1 − (Z̃ref)1∥2 (i)

+ min
ZD

∥ΣZ̃D −D2∥2 + λ∥Z̃D − (Z̃ref)D∥2 (ii)

+ min
Z̃21=Z̃T

2

λ

2∥Z̃2 − (Z̃ref)2∥2 (iii)

Hence, we derive the solution to (RSP) by minimizing three independent terms as below.
Term (iii): The term

argmin
Z̃2=(Z̃2)T

λ

2∥Z̃2 − (Z̃ref)2∥2

imposes the constraint Z̃2 = (Z̃ref)2. In other words, we have

Z̃2 = VT
2 Z0V2. (C.6.5)

Term (ii): The term
min
ZD

∥ΣZ̃D −D2∥2 + λ∥Z̃D − (Z̃ref)D∥2
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is a simple regularized least-square, which can be solved by setting the derivative to zero.
Therefore,

Z̃D = (ΣT Σ + λI)−1(D2 + λ(Z̃ref)D) (C.6.6)

Term (i): In what follows, we solve the problem (similar to the one in [42])

min
Z̃1=(Z̃1)T ∈Rm×m

∥ΣZ̃1 − D̃1∥2 + λ∥Z̃1 − (Z̃0)1∥2,

We first rewrite the optimization problems in terms of the entries in Z̃ as below, using the
fact that Z̃1 is symmetric,

min
Z̃=ZT ∈Rm×m

m∑
i=1

(σi(Z̃1)ii − (D̃1)ii)2 +
m∑

i=1

m∑
j=i+1

((
σi(Z̃1)ij − (D̃1)ij

)2
+
(
σj(Z1)ij − (D̃1)ji

)2
)

+ λ

 m∑
i=1

(
(Z̃1)ii − (Z̃ref)ii

)2
+

m∑
i=1

m∑
j=i+1

((
(Z̃1)ij − (Z̃ref)ij

)2
+
(
(Z̃1)ij − (Z̃ref)ji

)2
) .

By setting the derivative w.r.t. zij, we obtain for λ > 0

(Z̃1)ij = σi(D̃1)ij + σj(D̃1)ji + λ((Z̃ref)ij + (Z̃ref)ji)
σ2

i + σ2
j + 2λ

,

Since ΣD̃T = ΣUT DT VT
1 = V1ADT VT

1 , We can equivalently write

Z̃1 =
( 1

Σ211T + 11T Σ2 + 2λ11T

)
⊙VT

1

(
ADT + DAT + λ(Zref + ZT

ref)
)

V1, (C.6.7)

(C.6.8)

where ⊙ is the Hadamard product computing the product element-wise.
Summing the terms together. From equations (C.6.5), (C.6.6) and (C.6.7), the

solution can be written as

Zλ =
[
V1 V2

]  Z̃1 Z̃D

(Z̃D)T Z̃2

 [V1 V2

]T
= V1Z̃1VT

1 + V1Z̃DVT
2 + V2Z̃

T

DVT
1 + V2Z̃2VT

2

= Z1 + ZD + ZT
D + (I−P)Zref(I−P), (C.6.9)

where P = V1VT
1 = I−V2VT

2 and ZD = V1
(
ΣT Σ + 2λI

)−1
VT

1

(
ADT + 2λ(Z0)D

)
(I−P),

and Z1 = V1Z̃1VT
1 .

Below we compute the inverse of Z∗. Since

Z∗ = V

 Z̃1 Z̃D

Z̃D
T Z̃2

VT (C.6.10)

= VZ̃VT ,
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we can write
Z−1

∗ = VZ̃−1VT .

By the Woodbury matrix identity [81], we have

Z̃−1 =
 M1 −M1Z̃DZ̃−1

2

−Z̃−1
2 Z̃T

DM1 Z̃−1
2 + Z̃−1

2 Z̃T

DM1Z̃DZ̃−1
2

 , (C.6.11)

with M1 = (Z̃1 − Z̃DZ̃2
−1Z̃T

D)−1. Hence Z−1
∗ = VZ̃−1VT can be rewritten as

Z−1
∗ = V1M1VT

1 + V2Z̃2
−1Z̃T

DM1Z̃DZ̃2
−1VT

2

+ V2Z̃2
−1VT

2 −V1M1Z̃DZ̃2
−1VT

2 −V2Z̃2
−1Z̃D

T M1VT
1

= QMQT + (I−P)Z−1
0 (I−P),

(C.6.12)

where M =
(
Z1 − ZDZ−1

0 ZT
D

)−1
and Q = V1 − (I−P)Z−1

0 ZT
D.
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C.7. Proof of Proposition 2.4.3
In this section, we divide the proof of Proposition 2.4.3 into Lemma C.7.1 and

Lemma C.7.3, which correspond to the effect of nonzero λ for (2.4.3) and the perturbation
of A and D for (2.4.4), respectively.

C.7.1. Effect of regularization

Lemma C.7.1. Let

Z∗ = lim
λ→0

argmin
Z=ZT ∈Rd×d

∥ZA−D∥2
F + λ∥Z− Zref∥2

F (C.7.1)

be the solution to the procrustes problem with λ going to 0, and Zλ be the solution to (RSP)
given λ > 0. Then, it holds that

∥Zλ − Z⋆∥F ≤
5λ∥Z⋆ − Zref∥F

σ2
min(A) + λ

. (C.7.2)

Démonstration. We rewrite (C.6.9) for Zλ and Z∗ respectively,

Zλ = (Zλ)1 + (Zλ)D + (Zλ)T
D + (I−P)Zref(I−P), (C.7.3)

Z∗ = (Z∗)1 + (Z∗)D + (Z∗)T
D + (I−P)Zref(I−P). (C.7.4)

With such notations, we have by triangle inequality,

∥Zλ − Z∗∥F ≤ ∥(Zλ)1 − (Z∗)1∥F︸ ︷︷ ︸
(i)

+2 ∥(Zλ)D − (Z∗)D∥F︸ ︷︷ ︸
(ii)

. (C.7.5)

To simplify notations, we define max |X| and min |X| as the maximum and minimum entry
with the absolute value of matrix X, respectively.
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For term (i), by (C.6.7) and the symmetry of Zref we have

∥(Zλ)1 − (Z∗)1∥F =
∥∥∥∥∥
(

1
Σ211T + 11T Σ2 + 2λ11T −

1
Σ211T + 11T Σ2

)
⊙ (ADT + DAT )

+ 1
Σ211T + 11T Σ2 + 2λ11T ⊙ 2λZref

∥∥∥∥∥
F

=
∥∥∥∥∥− 2λ ·

(
1

(Σ211T + 11T Σ2 + 2λ11T )⊙ (Σ211T + 11T Σ2)

)
⊙ (ADT + DAT )

+ 1
Σ211T + 11T Σ2 + 2λ11T ⊙ 2λZref

∥∥∥∥∥
F

= 2λ

∥∥∥∥∥
(

1
Σ211T + 11T Σ2 + 2λ11T

)
⊙
(

1
Σ211T + 11T Σ2 ⊙ (ADT + DAT )

)

−
(

1
Σ211T + 11T Σ2 + 2λ11T

)
⊙ Zref

∥∥∥∥∥
F

= 2λ

∥∥∥∥∥
(

1
Σ211T + 11T Σ2 + 2λ11T

)
⊙
(
(Z∗)1 − Zref

)∥∥∥∥∥
F

≤ 2λ · 1
min |Σ211T + 11T Σ2 + 2λ11T |

·
∥∥∥(Z∗)1 − Zref

∥∥∥
F

, (C.7.6)

where the computations of matrices are element-wise, and the first three equalities follows
from the identity A⊙X + B⊙X = (A + B)⊙X of the Hadamard product for any matrices
A, B and X of the same dimensions. The fourth equality in (C.7.6) holds by the definition
of (Z∗)1, and the last inequality is due to the fact that

∥A⊙B∥F ≤ max |A| · ∥B∥F (C.7.7)

for any two matrices A and B of the same dimensions.
For the term (ii), note that (Z∗)D = V1Σ−1UT DT V2VT

2 = V1
(
Σ⊤Σ

)−1
VT

1 ADT V2VT
2 .

Since VT
1 V1 = VT

2 V2 = I, we have

VT
1 (Z∗)DV2 =

(
Σ⊤Σ

)−1
VT

1 ADT V2. (C.7.8)
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Furthermore, by using the unitary invariance of the orthogonal matrix w.r.t. the Frobenius
norm, we obtain

∥(Zλ)D − (Z∗)D∥F =
∥∥∥V1

((
Σ⊤Σ + 2λI

)−1
VT

1

(
ADT + 2λZref

)
−
(
Σ⊤Σ

)−1
VT

1 ADT
)

V2VT
2

∥∥∥
F

(a)=
∥∥∥(Σ⊤Σ + 2λI

)−1
VT

1

(
ADT + 2λZref

)
V2 −

(
Σ⊤Σ

)−1
VT

1 ADT V2

∥∥∥
F

=
∥∥∥((Σ⊤Σ + 2λI

)−1
−
(
Σ⊤Σ

)−1
)

VT
1 ADT V2 + 2λ

(
Σ⊤Σ + 2λI

)−1
VT

1 ZrefV2

∥∥∥
F

(b)=
∥∥∥− 2λ

(
Σ⊤Σ + 2λI

)−1(
Σ⊤Σ

)−1
VT

1 ADT V2 + 2λ
(
Σ⊤Σ + 2λI

)−1
VT

1 ZrefV2

∥∥∥
F

(c)= 2λ

∥∥∥∥(Σ⊤Σ + 2λI
)−1

((
Σ⊤Σ

)−1
VT

1 ADT V2 −VT
1 ZrefV2

)∥∥∥∥
F

(d)= 2λ

∥∥∥∥(Σ⊤Σ + 2λI
)−1

VT
1

(
(Z∗)D − Zref

)
V2

∥∥∥∥
F

≤ 2λ max
∣∣∣(Σ⊤Σ + 2λI

)−1∣∣∣ · ∥∥∥VT
1

(
(Z∗)D − Zref

)
V2

∥∥∥
F

≤ 2λ max
∣∣∣(Σ⊤Σ + 2λI

)−1∣∣∣ · ∥∥∥(Z∗)D − Zref

∥∥∥
F

, (C.7.9)

where (a), (c) and the last equality hold by the unitary invariance of V1 and V2 w.r.t. the
Frobenius norm, (b) holds since Σ⊤Σ + 2λI and Σ⊤Σ are diagonal matrices, (d) follows
from (C.7.8), and the first inequality holds since (Σ⊤Σ + 2λI)−1 is a diagonal matrix. The
last inequality holds since V1VT

1 and V2VT
2 are projections.

Therefore, by combining (C.7.5), (C.7.6) and (C.7.9) we have

∥Zλ − Z∗∥F ≤ ∥(Zλ)1 − (Z∗)1∥F + 2∥(Zλ)D − (Z∗)D∥F

≤ 2λ
1

min |Σ211T + 11T Σ2 + 2λ11T |
·
∥∥∥(Z∗)1 − Zref

∥∥∥
F

+ 4λ max
∣∣∣(Σ⊤Σ + 2λI

)−1∣∣∣ · ∥∥∥(Z∗)D − Zref

∥∥∥
F

≤ λ

σ2
min(A) + λ

· ∥Z⋆ − Zref∥F + 4λ

σ2
min(A) + λ

· ∥Z⋆ − Zref∥F

= 5λ

σ2
min(A) + λ

· ∥Z⋆ − Zref∥F , (C.7.10)

where the last inequality follows from the definition of the element-wise operator and the
facts that ∥(Z∗)1 − Zref∥F ≤ ∥Z⋆ − Zref∥F and ∥(Z∗)D − Zref∥F ≤ ∥Z⋆ − Zref∥F . Hence, we
conclude the proof.

C.7.2. Perturbation of A and D

We first present a stability analysis result of the regularized least squares (RLS), which
is used in the analysis for the perturbation of A and D in Lemma C.7.3.
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Lemma C.7.2 (Stability analysis of regularized least squares). Let x∗ solve the problem

min
x
∥Ax− b∥2

2 + β∥x− x0∥2
2, (C.7.11)

where x,x0 ∈ Rp, A ∈ Rq×p, b ∈ Rq for some integer p,q > 0 and β > 0. Let x̂ solve

min
x
∥(A + δA)x− (b + δb)∥2

2 + β∥x− x0∥2
2, (C.7.12)

where δA ∈ Rq×p, δb ∈ Rq, and ∥δA∥2 ≪ ∥A∥2. Suppose that rank(A) = rank(A + δA),
we have

∥x∗ − x̂∥2 ≤ O
(∥δA∥2 + ∥δb∥2

β

)
. (C.7.13)

Démonstration. By definition, we have explicitly that

x∗ = (AT A + βI)−1(AT b + βx0). (C.7.14)

Let Ã = A + δA and P = −AT A + ÃT Ã, we can write

x̂ = (AT A + P + βI)−1((A + δA)T (b + δb) + βx0). (C.7.15)

Hence, we obtain

∥x̂− x∗∥2 ≤
∥∥∥∥((AT A + βI)−1 − (AT A + P + βI)−1

)
(AT b + βx0)

∥∥∥∥
2

+
∥∥∥(AT A + P + βI)−1

∥∥∥
2
∥δA∥2∥b + δb∥2 +

∥∥∥(AT A + P + βI)−1
∥∥∥

2
∥A∥2∥δb∥2

=
∥∥∥∥(AT A + P + βI)−1P(AT A + βI)−1(AT b + βx0)

∥∥∥∥
2

+
∥∥∥(AT A + P + βI)−1

∥∥∥
2
∥δA∥2∥b + δb∥2 +

∥∥∥(AT A + P + βI)−1
∥∥∥

2
∥A∥2∥δb∥2

≤ 1
β
·
(
∥P∥2∥x∗∥2 + ∥δA∥2∥b∥2 + ∥δb∥2∥A∥2 + ∥δb∥2∥δA∥2

)
. (C.7.16)

Since ∥δA∥2 ≪ ∥A∥2, we obtain

∥x̂− x∗∥2 ≤ O
(∥δA∥2 + ∥δb∥2

β

)
, (C.7.17)

which concludes the proof of the lemma.

Now we show the stability analysis with respect to the perturbation of A and D below.
Lemma C.7.3. Let Ẑ solve

min
Z=ZT ∈Rd×d

∥Z(A + δA)− (D + δD)∥2
F + λ

2∥Z− Zref∥2
F , (C.7.18)
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where δA, δD ∈ Rd×m, ∥δA∥2 ≪ ∥A∥2, and ∥δD∥2 ≪ ∥D∥2. Also, suppose Zλ to be the
solution to (RSP) given λ > 0. Then, it holds that

∥Ẑ− Zλ∥F ≤ O
(∥δA∥2 + ∥δd∥2

λ

)
. (C.7.19)

Démonstration. We first reduce (RSP) to an unconstrained regularized least squares
(RLS) problem as follows. Let r = md and s = d2. We denote by vec the operator
that stacks the columns of a matrix into a long vector. Then, for any Z = ZT ∈ Rd×d it
follows that

∥ZA−D∥F + λ

2∥Z− Zref∥F = ∥vec(ZA−D)∥2 + λ

2∥vec(Z− Zref)∥2

= ∥(Id ⊗A)z− d∥2 + λ

2∥vec(z− zref)∥2 (C.7.20)

Here (Id ⊗A)ij = δijA ∈ Rr×s, z = vec(Z) ∈ Rs, zref = vec(Zref) ∈ Rs, and d = vec(D) ∈
Rr. We define Sd as the matrix where the columns form an orthonormal basis for a d̄-
dimensional subspace of Rs, where d̄ = d(d + 1)

2 . By using the symmetry of X, letting
z = Sdy, zref = Sdyref and H = (Id⊗A)Sd, we are able to obtain an regularized LS problem
equivalent to (RSP) as follows,

min
y∈Rd̄
∥Hy− d∥2 + λ

2∥y− yref∥2. (C.7.21)

Here we have used the fact that for an orthonormal matrix Sd we have ∥Sd(y − yref)∥2 =
∥y− yref∥2. Likewise, we can identify the perturbed problem (C.7.18) with perturbations

H→ H + δH, d→ d + δd, y→ ỹ (C.7.22)

in (C.7.21), where

δH = (Id ⊗ δA)Sd, δd = vec(δD), Sdŷ = vec(Z̃). (C.7.23)

Furthermore, the solution to (C.7.21) can be written as

y∗ =
(
HT H + λI/2

)−1
HT d. (C.7.24)

Then, the solution is perturbed to

ŷ = y + δy =
(
(H + δH)T (H + δH) + λI/2

)−1
(H + δH)T (d + δd).

After the reduction of (RSP) to (C.7.21), we apply Lemma C.7.2 to (C.7.21), which yields

∥ŷ− y∗∥2 ≤ O
(∥δH∥2 + ∥δd∥2

λ

)
. (C.7.25)
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Also, by the definition of H we have ∥δH∥2 = ∥δA∥2 where A is defined in the original
problem (RSP). Hence, (C.7.25) reads

∥ŷ− y∗∥2 ≤ O
(∥δA∥2 + ∥δd∥2

λ

)
. (C.7.26)

Further, we can write ∥∥∥Ẑ− Zλ

∥∥∥
F

= ∥vec
(
Ẑ
)
− vec

(
Zλ

)
∥2

= ∥Sdỹ− Sdy∗∥2

= ∥ŷ− y∗∥2

≤ O
(∥δA∥2 + ∥δd∥2

λ

)
, (C.7.27)

where the third equality holds since the columns of Sd form an orthonormal basis. This
concludes the proof.

Furthermore, we remark that Lemma C.7.1 and Lemma C.7.3 together concludes the
proof of Proposition 2.4.3.
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C.8. Numerical Experiments
C.8.1. Datasets

We used several UCI datasets, whose main characteristics are summarized in Table C.1.
In the case of the P53 mutant dataset, we reduce its size to avoid memory problems. We
kept all labels where y = 1 (153 instances), and merge them with the 5000 first data points.

Dataset name Tag # features # data points Section
Madelon [38] Madelon 500 4400 C.8.7
Internet Advertisements [47] Ad 1558 3279 C.8.8
QSAR oral toxicity [4] Qsar 1024 8992 C.8.9
p53 Mutants Data Set [15] P53 mutant 5406 5000 C.8.10

Tableau C.1. Summary of the datasets used in the numerical experiments.

C.8.2. Setting

We consider the regression problem

minx∈Rd f(x) def= 1
N

∑N
i=0 ℓ(aT

i x,bi) + τ
2∥x∥

2
2, (C.8.1)

where ℓ(·,·) is either a quadratic or a logistic loss. The pair (A,b) is a dataset, where ai ∈ Rd

is a data point composed by d features, and bi is the label of the ith data point. We solve
the problem using deterministic and stochastic gradient, whose parameters are described in
Table C.2. The optimal value of (C.8.1) are obtained using the Matlab package minfunc
from [70].

Parameter Deterministic setting Stochastic setting
τ 1e-9 (ill-conditioned problem) 1e-2
Descent direction Full gradient SAGA (see [19])
Batch size Full batch 64
Limited memory m 10 and ∞ 25
Line-search None or approximate dichotomy None
B−1

ref and Href (No LS) 1
∥A∥2

2
(quad.), 1

4∥A∥2
2

(logistic) 1
3 maxi Li

[19]
B−1

ref and Href (with LS) 1 N/A.
Rel. reg. λ̄ (if applicable) 1e-20 (quad), 1e-10 (logistic) 1e-2
Max. iteration 250 (full batch) 1e4 (mini-batches)

Tableau C.2. Parameters used to optimize (C.8.1)
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C.8.3. Observation

Unitary step VS line search. Most of the presented method present a divergent behavior
when we do not apply line search. However, it seems that the Multisecant Type-I method
is the most robust one, converging for almost all instances. In fact, it seems that adding a
line-search to method slow it down - probably because the optimal stepsize is close to one,
but it takes time to have the guarantee. When it comes to line-search methods, there is no
clear method whose speed is superior. Surprisingly, in both cases, the Type-II symmetric
multisecant method seems to be the worst one (after gradient descent).
Stochastic optimization. As it may be expected, the symmetric multisecant type-I is the fas-
test method. Indeed, our updates have provably better robustness, and the type-I symmetric
multisecant update is the best one amongst all method with unitary step-size. However, its
performance are not much different than gradient descent. Moreover, the author indicate
that the mini-batch size plays an important role in the convergence of the method, as smaller
batches have too much variance. We suspect there is a trade-off to improve the speed of the
method, where we should balance the size of the batch and the number of secant equations.
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C.8.4. Spectrum Recovery on Madelon (Quadratic Loss)

Fig. C.1. Histogram of the eigenvalues of the estimate Hk or B−1
k in the function on the

iteration counter (i.e., the number of secant equations), when optimizing the square loss on
the Madelon dataset without regularization. Top left: Multisecant Broyden Type-I, Top
right: Multisecant Broyden Type-II, Bottom left: Type-I symmetric multisecant, Bottom
right: Type-II symmetric multisecant. For the non-symmetric updates, we took the real
part of the eigenvalues. We removed from the histogram the spike of eigenvalues associated
to Href or B−1

ref (initialized at 1/L, the smoothness constant of the function). It seems that
the spectrum converges faster to the ground truth when we use symmetric updates. We did
not report BFGS as the method is non-convergent with unitary stepsize.
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C.8.5. Organization of figures

Fig. C.2. Organization of figures for the numerical experiments.

C.8.6. Legend
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Fig. C.3. Legend for all subsequent figures
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C.8.7. Madelon
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C.8.8. Ad
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C.8.9. Qsar
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C.8.10. P53 Mutant
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