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Résumé

Les réseaux neuronaux sont remarquablement performants pour une grande variété de tiaches
d’apprentissage automatique et ont eu un impact profond sur la définition méme de I’intelligence
artificielle (IA). Cependant, malgré leur role important dans 1’état actuel de I’IA, il est important
de réaliser que nous sommes encore loin d’atteindre une intelligence de niveau humain. Une
étape cruciale a I’amélioration de la performance des réseaux neuronaux consiste a faire progresser
notre compréhension théorique, qui est en retard par rapport aux développements pratiques. Les
dynamiques d’optimisation complexes des réseaux neuronaux, qui résultent d’interactions en haute
dimension entre les nombreux parametres du réseau, constituent un défi majeur pour 1’élaboration
des fondements théoriques de I’apprentissage profond. Ces dynamiques non triviales donnent
lieu a des comportements empiriques déroutants qui, dans certains cas, contrastent fortement avec
les prédictions théoriques. L’absence de surapprentissage dans les réseaux sur-paramétrés, leur
recours a des corrélations fallacieuses et les courbes de généralisation non monotones font partie
des comportements de généralisation des réseaux neuronaux qui laissent perplexe.

Dans cette these, notre objectif est d’étudier certains de ces phénomenes perplexes en tant
que pieces différentes d’'un méme casse-téte; un casse-téte dans lequel chaque phénomene sert de
signal d’orientation pour développer une meilleure compréhension des réseaux neuronaux. Nous
présentons trois articles en vue d’atteindre cet objectif; Le premier article sur multi-scale feature
learning dynamics étudie les raisons qui sous-tendent la courbe de généralisation a double descente
observée dans les réseaux neuronaux modernes. L’une des principales conclusions est que la
double descente a travers les époques peut €tre attribuée a I’apprentissage de traits caractéristiques
distincts a différentes échelles : Alors que les représentations faciles/rapides a apprendre sont
en sur-apprentissage, les représentations plus complexes/lentes commencent a bien apprendre, ce
qui entraine une deuxieme descente de I’erreur sur I’ensemble de test. Le deuxieme article sur
la famine de gradient identifie un phénomene fondamental qui peut entrainer une inclination a
I’apprentissage dans les réseaux neuronaux. La famine de gradient se produit lorsqu’un réseau
neuronal apprend a minimiser la perte en ne capturant qu’un sous-ensemble des traits caractéristiques
pertinents a la classification, malgré la présence d’autres traits caractéristiques informatifs qui
ne sont pas découverts. La famine de gradient a des conséquences bénéfiques et néfastes dont

nous discutons. Le troisieme article sur les méthodes simples de ré-équilibrage des données



présente une étude empirique sur le probleme de la généralisation a des groupes sous-représentés
lorsque les données d’entrainement souffrent de déséquilibres importants. Ce travail porte sur les
modeles qui généralisent bien en moyenne mais ne parviennent pas a généraliser a des groupes
minoritaires. Notre principale conclusion est que des méthodes simples de ré-équilibrage de données
permettent d’atteindre 1’état de 1’art pour la précision sur les groupes minoritaires, ce qui appelle
a une examination plus approfondie des valeurs de référence et des méthodes de recherche sur la
généralisation en-dehors du support de la distribution.

Nos résultats permettent de mieux comprendre la mécanique interne des réseaux neuronaux et
d’identifier les obstacles a la construction de modeles plus fiables, et ont des implications pratiques
quant a I’entrainement des réseaux neuronaux.

Mots-clés: les réseaux de neurones, apprentissage automatique, 1’apprentissage en profondeur,
apprentissage de la représentation



Abstract

Neural networks perform remarkably well in a wide variety of machine learning tasks and have
had a profound impact on the very definition of artificial intelligence (AI). However, despite their
significant role in the current state of Al, it is important to realize that we are still far from achieving
human-level intelligence. A critical step in further improving neural networks is to advance
our theoretical understanding which is in fact lagging behind our practical developments. A key
challenge in building theoretical foundations for deep learning is the complex optimization dynamics
of neural networks, resulting from the high-dimensional interactions between a large number of
network parameters. Such non-trivial dynamics lead to puzzling empirical behaviors that, in some
cases, appear in stark contrast with existing theoretical predictions. Lack of overfitting in over-
parameterized networks, their reliance on spurious correlations, and double-descent generalization
curves are among the perplexing generalization behaviors of neural networks.

In this dissertation, our goal is to study some of these perplexing phenomena as different pieces
of the same puzzle. A puzzle in which every phenomenon serves as a guiding signal towards
developing a better understanding of neural networks. We present three articles towards this goal;
The first article on multi-scale feature learning dynamics investigates the reasons underlying the
double-descent generalization curve observed in modern neural networks. A central finding is that
epoch-wise double descent can be attributed to distinct features being learned at different scales: as
fast-learning features overfit, slower-learning features start to fit, resulting in a second descent in
test error. The second article on gradient starvation identifies a fundamental phenomenon that can
result in a learning proclivity in neural networks. Gradient starvation arises when a neural network
learns to minimize the loss by capturing only a subset of features relevant for classification, despite
the presence of other informative features which fail to be discovered. We discuss how gradient
starvation can have both beneficial and adverse consequences on generalization performance. The
third article on simple data balancing methods conducts an empirical study on the problem of
generalization to underrepresented groups when the training data suffers from substantial imbalances.
This work looks into models that generalize well on average but fail to generalize to minority groups
of examples. Our key finding is that simple data balancing methods already achieve state-of-the-art
accuracy on minority groups which calls for closer examination of benchmarks and methods for
research in out-of-distribution generalization. These three articles take steps towards bringing
insights into the inner mechanics of neural networks, identifying the obstacles in the way of building

reliable models, and providing practical suggestions for training neural networks.



Keywords: neural networks, machine learning, deep learning, representation learning



Contents

] 1 11 < 5
N ] T 7
Listoftables ....covveiinnniiiiiiiiiiiiiiiii ittt iiiiiiitttiintteeeienneccnnnnnnans 13
List of figures.....ovtiiiiiiiiiiiiiiiineneeeeeeeteeeeeesssssssssssssssssssssssssssssns 15
List of acronyms and abbreviations.......ccoiiiiiiiiitiiiiiereesssececeessssssesssons 21
Acknowledgment . .........ooiiiiiiiiiiiniieeeetriiteeesesssssscsesnssssssssssssccnns 23
Chapter 1. Introduction..........c.oiiiuiiiiiiiiiiiiiiiiieiiineeeeenenseecesnnseans 25
Chapter 2. Background ..........c.oiiiiiiiiiiiiiiiiiiiieteeiensceessenssccssnnssans 29
2.1. A primer on neural networks. ........... 29
2.1.1. BasiC COMPONENLS .« .ottt ettt et ettt e e ettt e e e e ee e 29
2.1.2.  Neural networks optimization. .............uuuuuttteeeeeeeeeennnnnniinnnn 30

2.2. Training dynamics in linear networks .. ............ . i 31
2.2.1. Problem SEtUP . . ...ttt 31
2.2.2. The dynamical SYStEIM .. ......onuutttt it e 32
2.2.3. Independent Mode Learning: Larger singular values are learned faster ......... 34

2.3. Generalization dynamics in linear networks ................ ... i . 35
2.3. 1. Problem SetUP . ... vttt 35
2.3.2. The dynamical SYStem ... .........oiiiiiiiiiii i, 36
2.3.3. The effect of input’s covariance and noise on generalization dynamics . ........ 38

2.4, The way forward . .......ooiiiii i e 39
Chapter 3. Prologue to First Article..........oiiiiiiiiiiiiiiiiininniiiiiieececennns 41
3.1, Article Details. . ... e 41
TN 0] 113 P 41



3.3, CONrADULIONS . . . v ot et et et e e e e e e e e e e e e e e e e e e 42

Chapter 4. Multi-scale Feature Learning Dynamics: Insights for Double Descent ..... 43
4.1, INtrodUCHION. . .. oottt et e e e e 43
4.2.  Analytical Framework .. ... e 45

4.2.1. A Teacher-Student SEtUP . ... ..ottt 45
422, Main Results .. ... 47
4.2.3. Sketch of derivations. . ..........uuu ittt e e 49
4.3. Experimental Results ......... ... i e 50
4.3.1. Analytical results compared with simulations................................ 51
4.3.2. ThePhase diagram. ..............oiiiiiiiiiiiiiii i 51
4.3.3. Qualitative comparison with ResNeton Cifar-10............................. 52
4.3.4. Diminishing the temporary overfitting . .............ccoiiiiiiiiiiiiina.. 54
4.4. Related Work and DisCUSSION . . ... et 55

Chapter 5. Prologue to Second Article .........ooviiiiiiiiiiiiiiiiiiiiiiiiiieninnnns 57
5.1, Article Details. . ..o 57
T8 10 ) 11 )€ 57
5.3 ContribUtIONS . .« oottt e 58

Chapter 6. Gradient Starvation: A Learning Proclivity in Neural Networks .......... 59
6.1, INtrodUCHION. . . ..ottt e e e 59
6.2. Gradient Starvation: A simple example ............ccouiiiiiiiiiiiiiiiine... 60
6.3. Theoretical Results ...........o i e 61

6.3.1. Problem Setup and Gradient Starvation Definition ........................... 62
6.3.2. Training DynamicCs .. ...ttt 63
6.3.3. Gradient Starvation Regime. ......... ... i 64
6.3.4. Spectral Decoupling . ...... ... e 65
6.4, EXPEIIMENtS . .. ..ottt e ettt e e e 66
6.4.1. Two-Moon classification and the margin ..................ccoiiiiiiinne. ... 66
6.4.2. CIFAR classification and adversarial robustness......................oouun... 66
6.4.3. Colored MNIST withcolorbias....... ... ... i, 67
6.4.4. CelebA with genderbias .......... ..o 69

10



6.5. Related Work and DiISCUSSION . . . . ..ottt e e e e e e e 70

6.6, CONCIUSION . ...ttt ettt e e 73
Chapter 7. Prologue to Third Article.........ccoiiiiiiiiiiiiiiiiiiiiiiiiiiiineneenn 75
7.1, Article Details .. ... 75
0 G0 ) 11 ) PP 75
7.3, CoNtribULIONS . .ottt t ettt e e e et e e e e et 76
Chapter 8. Simple data balancing achieves competitive worst-group-accuracy ........ 77
8.1, INtroducCtion. ... ..ot 77
8.2.  Popular worst-group-accuracy benchmarks................ ... ... ... 78
8.3. Popular worst-group-accuracy methods . ... 80
8.4. Simple data balancing baselines. .. ...t 80
8.5, EXPErIMEnts . ... ..ottt 82
8.5 1. ReSUILS . oo 84
8.5.2. Hyper-parameter analysiS. ... .......outueeenennnnniiiiiiiiiiiiiiiieeaean., 84
8.5.3. Evolution of worst-group-accuracy during training . ..............c.ceeeeee.... 86
8.5.4. Differences between reweighting and subsampling groups .................... 86

8.6, CONCIUSION. . ..\ttt e e e e e e e 87
Chapter 9. General conclusion.........c.coviiiiiiiiiinineeeeeeeeeeessosssssssnnnnns 89
References . ...ocoviiiiiiiiiiiiiiiiiiiiiiiiiiittiiiiieeeeeennseressessecssnnnsssanns 91
Supplementary Material For the First Article.............coiiiiiiiiiiiiiiiiiiiiiiae, 105
.1. Further Related Work and Discussion............ ... i, 105

2. Technical Proofs. .. ... ... 107
.2.1.  The generalization error as a function of R and () (Eq. 4.2.6)................... 107

.2.2. The general case exact dynamics (Eqs. 4.2.9-4.2.10).............. ..., 108

.2.3.  Special case of approximate dynamics (Egs. 4.2.14 and 4.2.15)................. 110

.2.4. Derivation of E(W, ) INEQ. 4.2.22. .o 114

2.5, Proofof Lemma4.3.1 ... 115

2.6, ReplicaTrick. .. ..o 115

11



.2.77. Computation of the free-energy ..., 115

Supplementary Material For the Second Article............ccoiiiiiiiiiiiiinnnnnnnes 121
3. Further diSCUSSIONS . . .. v vttt e e e 121
4. Experimental Details. .. ... o e 122

4.1. A Simple Experiment Summarizing the Theory .................... ... ... ... 122
4.2, Two-Moon Classification: Comparison with other regularization methods ....... 124
4.3, CIFAR classification . .. .......uuttii e 124
4.4. Colored MNIST with colorbias ... 124
4.5. CelebA with gender bias: The experimental details............................ 125
451, Hyper-parameters . . .. ...t e 126
4.6, Computational Resources. ... 126
.5. Proofs of the Theories and Lemmas ........... ... . i ... 126
5.1, Eq. 6.3.7 Legendre Transformation ..., 126
S.1.1. Extension to Multi-ClIass ... ..o 128
5.2, Eq. 6.3.8Dual DynamicCs . .. ...ttt 128
5.3 EQ 0.3 129
5.4, Eq. 6.3.10 Approximate Dynamics ... 129
5.5, Thm. 6.3.3 Attractive Fixed-Points .......... ... ... ... i, 129
.5.6. Eq. 6.3.11 Feature Response at Fixed-Point .............. ... ... ... ... .... 130
S5.7. Eq. 6.3.12Uncoupled Case 1 ... 130
5.8, Eq. 6.3.13Uncoupled Case 2. .....ovviiiini e 131
.5.9. Lemma 6.3.4 Perturbation Solution........... ... ... o i 132
5.10. Thm. 6.3.5 Gradient Starvation Regime . ............ ... ... .. 132
S.11. Eq. 6.3.18 Spectral Decoupling . ... 134

12



List of tables

1 Table compares adversarial robustness of ERM (vanilla cross-entropy) vs SD with a
CNN trained on CIFAR-2, 10, and 100 (setup of Nar et al. (2019)). SD consistently
achieves a better OOD performance. .............ccouiiuiiiiiiiiiieiiiiiiennnn.. 67

2 Test accuracy on test examples of the Colored MNIST after training for 1k epochs. The standard

deviation over 10 runs is reported in parenthesis. ERM stands for the empirical risk minimization.
Oracle is an ERM trained on grayscale images. Note that due to 25 % label noise, a hypothetical

optimum achieves 75 % accuracy (the upperbound).......... ... ... ... i i, 68

3 CelebA: blond vs dark hair classification with spurious correlation. We report test performance
over ten runs. SD significantly improves upon ERM. *Group DRO (Sagawa et al., 2019) requires
explicit information about the spurious correlation. LfF (Nam et al., 2020) requires simultaneous

training of tWo NEtWOTKS. . .. ... o e 70

1 Class and group counts for four popular worst-group-accuracy benchmarks. These
datasets exhibit large class (y) and group imbalance. In particular, class probabilities
shift significantly when conditioning on the attribute (a) value. For instance, the CelebA
dataset has only 15% of examples of class “blond”. Moreover, the probability of “blond”
is different when the attribute value is “female” (24%) or “male” (2%), creating a
SPUIIOUS COTTEIAtION. . .\ttt t ettt ettt ettt et e e e e et 79

2 Averages and standard deviations of test worst-group-accuracies for all methods and
datasets. #HP is the number of tuned hyper-parameters. Simple data balancing baselines
match the performance of state-of-the-art methods within error bars, with two exceptions.
Green backgrounds indicate datasets where algorithms exhibit a statistically different
performance at a significance level of o = 0.05. This is determined using an Alexander-
Govern test for the equality of means of multiple sets of samples with heterogeneous
variance (Alexander and Govern, 1994). All algorithms not using attribute information
perform similarly with the exception of SUBY, under-performing in CivilComments. All
algorithms using attribute information perform similarly, with the exception of gDRO
being better on MultiNLI. . ... . . 83

13



Some ablations on the experimental results, averaged over datasets. The first row

shows the best results test worst-group-accuracy, averaged across datasets, obtained by
employing a validation set with attribute annotations and allowing model regularization.
The second row shows the drop in test worst-group-accuracy when performing model
selection based on average validation accuracy (no attribute annotations). The third
row shows the drop in test worst-group-accuracy when performing model selection only
amongst those models with weak regularization (no early stopping, weight-decay 10~%).
The fourth row shows median running time per epoch (in minutes). SUBG is the only

algorithm whose performance does not degrade when taking out regularization. ...... 84

Means and standard deviations of the hyper-parameters chosen by the top 5 runs for
each dataset and method. The last column shows the range of the associated test

worst-group-accuracies. Blue indicates low values, yellow indicates large values. . .. .. 85

Hyper-parameters used for the Colored-MNIST experiment. Hyper-parameters of IRM

are obtained from their released code. “Anneal steps” indicates the number of iterations
done before applying the method. ....... ... ... i i 125
Dual forms of other common different loss functions. The dual form of the Hinge loss is

commonly used in Support Vector Machine (SVMs). For the ease of notation, we assume scalar

14



List of figures

1 Depiction of the neural network architecture.............. ... ... .. o i .. 31
2 Depiction of a* and b*" as the input and output connectivity modes.................. 32
3 (left): The sigmoidal-shaped dynamics of mode strength over time. Curves present

u = ab for different values of s according to the Eq. 2.2.22 which conforms that
modes with larger s converge faster. (right): Vector-filed presentation of phase diagram.
According to Egs. 2.2.15 and 2.2.16, a and b live on hyperbolas with the form a? —b% = c.
Two sample trajectories are shown in green. The red curve also presents solutions to

ab = s. (Figure adapted from Saxe etal. (2013a).)........ ..., 34

4 (a): Different densities of Marchenko-Pasteur distribution for different values of «. (b):
The generalization error as a function of «. Different shades of red presents the amount
of training: darker means more training while lighter means less training. In the case
of a« = 1, the number of parameters is equal to the number of data-points. In such a
case, there is a large number of small but non-zero eigenvalues that can lead to severe
over-fitting. (Figure adapted from Advani and Saxe (2017a)) ....................... 39

1 The generalization error as the training time proceeds. (left): The case where only the
fast-learning feature orslow-learning feature are trained. (right): The case with both
features. Features that are learned on a faster time-scale are responsible for the classical
U-shaped generalization curve, while the second descent can be attributed to the features

that are learned at @ SIOWET Tate. . . . . . oottt e e e e e 44

2 The teacher/student setup: The teacher is the data generating process that given the latent
features in z, generates student’s input, @ and its target, y. Student is trained on pairs of
{x;,y;}7, where x := F’ 2 follow an anisotropic Gaussian distribution such that the
directions with larger/smaller variance are learned faster/slower. The condition number
of F determines how much faster some features are learned than the others. One can
think of z as the latent factors of variation on which the teacher operates, while x can be
thought as the pixels that the student learns from........................ .. ... .... 46

3 Left: Analytical results of Eqs. 4.2.9, 4.2.10 compared to gradient descent dynamics.

15



The x-axis denotes the training time ¢. Right: Analytical results of scalar Eqgs. 4.2.14,
4.2.15 compared to ridge regression dynamics. The x-axis denotes the inverse ridge (L2)
coefficient 1 /). Analytical results closely match with empirical simulations. Consistent
with Ali et al. (2019), ridge regression appears to reasonably approximate gradient

descent dynamics. Analysis: With x = 1, all the features are learned at the same rate

(no double descent). x = 50 corresponds to the case where a subset of features are

learned 50 times faster than the rest and hence epoch-wise double descent is observed.

Finally, x = 100000 implies that a subset of of features are extremely slow to learn that

practically do not get learned (typical overfitting). ............. ... ...,

Left: Phase diagram of the generalization error as a function of R(t) and Q(¢) (Egs.
4.2.14 and 4.2.15). The generalization error for all pairs of (R, Q) € [0.0,1.0] x[0.0,1.2]
is contour-plotted in the background, with the best generalization performance being
attained on the lower right part of the plot. The trajectories describe the evolution of R(t)
and () as training proceeds. Each trajectory correspond to a different x, the condition
number of the modulation matrix /' in Eq. 4.2.2. k describes the ratio of the rates at
which two sets of features are learned. Right: The corresponding generalization curves.
Analysis: The trajectory with x = 1eb starts at the origin and advances towards point A
(a descent in generalization error). Then by over-training, it converges to point B (an
ascent). For the other trajectories with smaller x, a first descent occurs up to the point
A, then an ascent happens, but they no longer converge to point B. Instead, by further
training, these trajectories converge to point C' implying a second descent. ...........

A qualitative comparison between a ResNet-18 and our analytical results. (a):

Heat-map of empiricalgeneralization error (0-1 classification error) for the ResNet-18
trained on Cifar-10 with 15% label noise. X-axis denotes the inverse of weight-decay
regularization strength and Y-axis represents the training time. (c): Heat-map of the
analyticalgeneralization error (mean squared error) for the linear teacher-student setup
with £ = 100, the condition number of the modulation matrix. (b, d): Three slices of
the heat-maps for large, intermediate, and small amounts of regularization. Analysis:
As predicted by Eqgs. 4.2.14 and 4.2.15, x = 100 implies that a subset of features are
learned 100 times faster that the rest. Intuitively, large amounts of regularization (1)
allow for the fast-learning features to be learned but cause overfitting. Intermediate

levels of regularization () result in a classical U-shaped generalization curve but prevent
learning of slow features. Small amounts of regularization (1) allow for both fast and

slow features to be learned, leading to a double descentcurve. ......................

16

51

52



The effect of regularizing the quantity () on the generalization curve. Two setups with
(w/) and without (w/0) regularization are compared. Both the linear teacher-student
model and a ResNet-18 on a binary Cifar-10 benefit from such regularization as the
temporary overfitting is diminished. In accordance with Lemma 4.3.1, () regularization
is implemented by simply penalizing the norm of the model’s output.................

Diagram illustrating the effect of gradient starvation in a simple 2-D classification task.

(a) Data is not linearly separable and the learned decision boundary is curved. (b) Data
is linearly separable by a small margin (A = 0.1). This small margin allows the network
to discriminate confidently only along the horizontal axis and ignore the vertical axis.
(c) Data is linearly separable as in (b). However, with the proposed Spectral decoupling
(SD), a curved decision boundary with a large margin is learned. (d) Diagram shows
the evolution of two of the features (Eq. 6.3.4) of the dynamics in three cases shown as
dotted, dashed and solid lines. Analysis: (dotted) vs (dashed): Linear separability of the
data results in an increase in z; and a decrease (starvation) of 2. (dashed) vs (solid): SD
suppresses z; and hence allows z, to grow. Decision boundaries are averaged over ten

runs. More experiments with common regularization methods are provided in App. .4.

The plot shows the cumulative distribution function (CDF) of the margin for the CIFAR-2
binary classification. SD appears to improve the margin considerably. ...............

Diagram comparing ERM, SD, and IRM on four different test environments on which
we evaluate a pre-trained model. Top and bottom rows show the accuracy and the

entropy (inverse of confidence), respectively. Analysis: Compare three values of ElEA,
EFXZA, and 49.6 % : Both ERM and SD have learned the color feature but since it is
inversely correlated with the label, when only the color feature is provided, as expected
both ERM and SD performs poorly. Now compare [(flf] and 0.41 : Although both ERM
and SD have learned the color feature, ERM is much more confident on its predictions
(zero entropy). As a consequence, when digit features are provided along with the

color feature (colored-digit environment), ERM still performs poorly (123.9 %)) but SD
achieves significantly better results (67.2 % ). IRM ignores the color feature altogether
but it requires access to multiple training environments. .............. ...,

CelebA: blond vs dark hair classification. The HairColor and the Gender are spuriously
correlated which leads to poor OOD performance with ERM, however SD significantly improves

performance. ERM’s worst group accuracy is significantly lower than SD. .................

A linear binary classification task with a spurious feature (z-axis, ranging from -8 to

17

54

61

67

69

70



8), a core feature (y-axis, ranging from -2 to 2), and 1200 noise features (not depicted,
Normally distributed). Each class contains a majority group (quadrants II and III) and a
minority group (quadrants I and IV). Shades of red show the predicted probability of
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process carefully. The figures are averages over eight random seeds. ................
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The effect of common regularization methods on a simple task of two-moon classification.

It can be seen that common practices of deep learning seem not to help with learning
a curved decision boundary. The acronym “Ir” for the Adam optimizer refers to
the learning rate. Shown decision boundaries are the average over 10 runs in which

datapoints and the model initialization parameters are sampled randomly. Here, only the
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datapoints of one particular seed are plotted for visual clarity........................

Diagram illustrating the Legendre transformation of the function £(w) = log(1 + e~*) . The
function is shown in blue, and the tangent line is shown in red. The tangent line is the lower

bound of the function: H () — aw < L(W).e v v ettt
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reweighting classes

stochastic gradient descent

state of the art

singular value decomposition
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Chapter 1

Introduction

Over the last decade, a surge in the amount of available data combined with increasingly powerful
computational resources has resulted in neural networks achieving significant gains across a wide
range of tasks (see e.g. Sejnowski, 2018). Despite their outstanding empirical success, neural
networks remain unpredictable in many ways. For example, it is not entirely obvious, how a
neural network reacts to a particular alternation in the training algorithm, its regularization, or its
architecture. This can be exemplified, by the widely used batch normalization method (Ioffe and
Szegedy, 2015), whose reasons for effectiveness are still poorly understood. Another example is
the existence of adversarial examples (Goodfellow et al., 2014), examples that are intentionally
designed to cause misclassification. It is surprising to observe how drastically a neural network’s
prediction changes when fed with adversarial examples, whose key effectors are imperceptible to
humans.

To combat such unpredictabilities, we need a dependable theoretical understanding of neural
networks. Systematic study of neural network’s learning dynamics paves the path for robust
theoretical guarantees, navigate practitioners towards models with improved reliability, and allow
for more directed fine-tuning of them.

Theoretical works on neural networks started more than three decades ago with studies on
the capacity and generalization of shallow networks (e.g. Baldi and Hornik, 1989a; Heskes and
Kappen, 1993a; Le Cun et al., 1991; Watkin et al., 1993; Seung et al., 1992). After neural networks
regained popularity in the 2010s, seminal studies (Saxe et al., 2013b, 2019; Advani and Saxe,
2017b; Lampinen and Ganguli, 2018) investigated the learning dynamics of deep linear neural
networks, showing that several intuitions of deep linear models carry over to more complex non-
linear networks. These works, for example, provided explanations for the effectiveness of depth
observed in practice. More recently, significant progress has been made in studying more general
deep networks (e.g. Li et al., 2020; Chen et al., 2020b; Chizat and Bach, 2020; Arora et al., 2019¢)
as well as incorporating the structure of data in their analysis (e.g. Goldt et al., 2019, 2020; Gerace
et al., 2020).



Notwithstanding the significant progress made towards establishing theoretical foundations
for neural networks, several learning phenomena, well-known in practice, remain opaque when
studied in theory. One such phenomenon is the existence of perplexing non-monotonous patterns in
the generalization curves of neural networks (see e.g. Bartlett, 1998; Breiman, 2018; Neyshabur
et al., 2014; Zhang et al., 2021). This is unexpected as it is predicted by statistical learning theories
that generalization error follows a U-shaped curve: as model complexity (e.g. model size) is
increased, the generalization error initially descents and then increases beyond a certain threshold,
i.e., overfitting occurs (Vapnik, 1998). In practice, however, neural networks may follow a double
descent curve (Spigler et al., 2019; Belkin et al., 2019a): a U-shaped curved followed by a second
descent as the model size increases. Nakkiran et al. (2019a) show that double descent is not limited
to varying the model size but is also observed as the training time proceeds. Once again, the
so-called epoch-wise double descent is in apparent contradiction to the classical understanding of
over-fitting, where one expects that longer training of a sufficiently large model beyond a certain
threshold should result in overfitting (Bengio, 2012).

Another problem of neural networks’ dynamics is their reliance on spurious correlations. It
has been reported that, in many cases, state-of-the-art (SOTA) neural networks tend to focus on
low-level superficial correlations, rather than more abstract and robustly informative features of
interest (see e.g. Geirhos et al., 2020). As an example, in a recent study conducted by researchers at
Cambridge (Roberts et al., 2021), the authors review more than 300 papers on COVID prediction
given CT-Scan images. According to the article, none of the papers were able to generalize from one
hospital to another since the models tend to latch on to hospital-specific features, namely relying on
the specific characters printed at the corner of the images. Due to such reliances, neural networks
are vulnerable under slight distributional shifts between the training and test sets (see e.g. Nagarajan
et al., 2020).

The vulnerability of neural networks is particularly revealed when they are tested on out-of-
distribution (OoD) test data, where the test distribution differs from the training distribution. While
SOTA neural networks generally achieve excellent in-domain generalization performance, small
discrepancies between training and testing distributions could cause these neural networks to fail
in spectacular ways (Alcorn et al., 2019). Most of the existing learning methods rely on the
fundamental assumption that training and test data are identically and independently distributed
(IID) (Vapnik, 1998). However, in most practical applications, the IID assumption is violated and
distributional shifts are observed between the training and the test sets. Neural networks trained
with gradient-based optimization methods, latch onto features in the training distribution that might
not be of any use at the test time or could even hurt generalization.

On the quest for developing a scientific understanding of neural networks, throughout this

dissertation, our guiding question is:

“What features do neural networks learn, in which order, and how does it affect their generalization?”
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To answer this question, the puzzling phenomena and failure cases of neural networks provide
us with signals in the direction of developing a better understanding of neural networks. In the
remainder of this dissertation, we present three articles aimed at answering our guiding question:

e Chapters 3 and 4 present "Multi-scale Feature Learning Dynamics: Insights for Double Descent"
(Pezeshki et al., 2021) in which we study a linear teacher-student setup exhibiting epoch-wise
double descent similar to that observed in deep neural networks. In this setting, we derive
closed-form analytical expressions for the evolution of generalization error over the course of
training. We find that double descent can be attributed to distinct features being learned at
different scales: as fast-learning features overfit, slower-learning features start to fit, resulting in

a second descent in test error.

e Chapters 5 and 6 present "Gradient Starvation: A Learning Proclivity in Neural Networks"
(Pezeshki et al., 2020) in which we identify and formalize gradient starvation (GS), a fundamental
gradient descent phenomenon in neural networks. Gradient Starvation arises when the cross-
entropy loss is minimized by capturing only a subset of features relevant for the task, despite the
presence of other predictive features that fail to be discovered. This work provides a theoretical
explanation for the emergence of such feature imbalance in neural networks. Using tools from
dynamical systems, we identify simple properties of learning dynamics that lead to this imbalance
and prove that such a situation can be expected given certain statistical structures in training data.
Based on our proposed formalism, we develop guarantees for a novel regularization method
aimed at decoupling feature learning dynamics, improving accuracy and robustness in cases

hindered by gradient starvation.

e Chapters 7 and 8 present "Simple data balancing achieves competitive worst-group-accuracy”
(Idrissi et al., 2021) in which we empirically study the problem of generalization under distri-
butional shifts. We look into classifiers that generalize well to specific groups of data (good
average performance) but fail to generalize to underspecified groups (minority examples). After
observing that common worst-group-accuracy datasets suffer from substantial imbalances, we
set out to compare state-of-the-art methods to a simple balancing of classes and groups by either
subsampling or reweighting data. Our results show that these data balancing baselines achieve
state-of-the-art accuracy, begging closer examination of benchmarks and methods for research in

OoD generalization.

Before diving into the main articles, we review the necessary background in Chapter 2. Chapters

3 through 8 present the three articles. Lastly, Chapter 9 concludes this dissertation.
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Chapter 2

Background

2.1. A primer on neural networks

Inspired by the human brain, artificial neural networks (or simply neural networks) are data
processing systems composed of large numbers of processing units. In an analogy to the brain, each
of these processing units is called a neuron. Usually, lots of artificial neurons are connected to one
another in a hierarchical layered structure. In the following, we review neural networks’ structure

and their mathematical formulation.

2.1.1. Basic components

A neuron is a simple function from one or more inputs to a single output. Consider a set of inputs
X = {x1, Ty, ..., x4} containing d scalar variables. A set of d scalar weights w = {wy, wo, ..., wg}
are assigned to each input in addition to a single scalar bias term b. Formally, an artificial neuron
h(x) is defined as,

d
h(x) :g(Zwixi—i—b), (2.1.1)
i=1
in which g(.) is a nonlinear function called the activation function. Consequently, we refer to the

term >, w;x; + b as the pre-activation. For simplicity, the summation term can be written in vector

notation,
h(x) = g(Ww'x +b). (2.1.2)

Neural networks are usually organized in a layer-wise structure. Formally, a multi-layer neural

network is defined as,
h®(x) = g(b® + WHhED (x)), (2.1.3)

in which, h*) (x) is the nonlinear output of k" layer and h© (x) = x. With h(kfl)(x) c RP"™" and
h®(x) € RP", we have W e RP**P*"" and b® e RP", denoting the weight matrix and the



bias vector, respectively.

According to the universal approximation theorem (Hornik et al., 1989), multi-layer feedforward
networks are capable of approximating any measurable function to any desired degree of accuracy
given sufficient number of layers and neurons per each layer. However, finding the appropriate
network parameters remains a challenging problem. In the next section, we review methods for

training neural networks.

2.1.2. Neural networks optimization

In optimization problems, the loss function or objective function is a function from a set of
variables or values to a scalar value. This scalar value is called the loss. Usually the objective of the
training procedure is to minimize the loss.

Consider a network with parameters 6 with input x and output f(x): 6). In supervised learning,
the quantity of interest is the generalization loss that measures the performance of a network when

tested on new unseen examples. Given a distribution p(x,y), the generalization loss is defined as,

£G<9) = ]E(x,y)wp(x,y) [l(f(X, 9)7)’)]7 (2.1.4)

in which, depending on the task, I(f(x®;6),y®") can be mean square error (MSE), negative
log-likelihood (nll), O-1 classification loss, or other scalar functions.

In practice, we do not have access to p(xX,y) and hence L;(#) cannot be optimized directly.
Instead, the training loss is optimized. Given N pairs of (x*), y(*)), the training loss is defined as,

£2(0) = = S UTE;0).99). 2.15)

The training loss is typically optimized using gradient based optimization methods and specifi-
cally, using the gradient descent (GD) algorithm and its variants. GD finds a local minimum of a
function by taking small steps in the direction of negative gradient and proportional to its magnitude.
GD is an iterative process that at each iteration, the parameters are updated using the following

update rule,
Ory1 < 0p — Vo, L (6y), (2.1.6)

where 7 is called the learning rate.
Gradient descent is the workhorse underlying neural networks’ learning dynamics. In the next
sections, we review seminal studies on the learning and generalization dynamics of simple linear

neural networks.
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2.2. Training dynamics in linear networks

On the dynamics of learning in neural network, numerous works have been introduced since
the early days of neural networks. Baldi and Hornik (1989b) attempted to understand gradient
descent dynamics by analyzing the critical points of the loss landscape in a simple linear network.
Heskes and Kappen (1993b) derived online learning evolution equations with respect to time by
converting the discrete system of equations into a continuous system. Despite their interesting
findings, the derived equations are highly non-linear in general and do not have a closed-from
solution. Among more recent publications, Choromanska et al. (2014), Yosinski et al. (2014), Raghu
et al. (2017) developed a variety of approaches to better understand the dynamics and provided
practical improvements. Central to this work is Saxe et al. (2013a), for which we summarize the
main findings.

Saxe et al. (2013a) explore the dynamics of learning in linear networks, as a proxy to non-linear
networks. The authors present exact solutions to learning in deep linear neural networks that provide
intuitions for common behaviors of learning - such as existence of long plateaus of the loss function
followed by fast transitions to lower loss regions. Central to their work are the singular values of
the input-output correlation matrix. Below we review the Singular Value Decomposition (SVD) and
then reiterate their theoretical findings in linear networks.

Singular Value Decomposition (SVD) (Forsythe and Moler, 1967) is a powerful tool for matrix
analysis as it gives an explicit representation of the range, null space, and rank of a matrix.
Formally, if A € R™*™ with m > n, then a singular value decomposition of A is:

01 0

A=USVT,  where Y= h L o> . >0, >0, (2.2.1)

and U € R™ ™V € R™" are both unitary matrices. Scalars o, to 7, are called singular values
and the columns of matrices U and V' are called left and right singular vectors, respectively. If

rank(A) =r,theno,,1 = 0,10 = ... =0, = 0.
2.2.1. Problem setup

Consider a 3-layer linear neural network with /V; neurons
in layer 7 (See Figure. 1). This network maps inputs X &
RM to outputs y € R™ and is trained on a dataset of P

training examples {z*,y" }1<,<p. Let W?! the weight matrix

mapping the first and second layers and 3% be the weight

matrix mapping the second and third layers. Therefore, the Fig. 1. Depiction of the neural net-

network’s total input-output map is § = Wi W X. work architecture.
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2.2.2. The dynamical system

Consider the loss function associated with this network to be the Mean Square Error (MSE) as

following,
1
LW W) = Slly = WPWEXLS. (2.2.2)
Minimizing the loss using the gradient descent algorithm leads to the following update rules,
Wt2+11 — Wt21 X 7]Wt32T(yXT . Wt32Wt21XXT), (2.2.3)
W22 = W22 4 nyXT - WwRWEX X)W (2.2.4)

In the limit of infinitesimal learning rate,  — 0, the continuous-time learning dynamics in the

parameter space are derived as,
W = W3 (yXT — wRWA X XT), (2.2.5)
W3 = (yXT — WRw2x xT w2, (2.2.6)
where 7 is a time constant, X X7 is the input correlation matrix, and y X7 is the input-output

correlation matrix. To make analysis simpler, we must assume that the input X is whitened and

therefore
XXt =1. (2.2.7)

This assumption induces that the dynamics are fully governed by y X7, the input-target covariance

matrix. To proceed with the analysis, consider SVD of y X7,
yXT =USVT, (2.2.8)

in which columns in U and V represent independent modes of variations in output and input,
respectively. A change of variables such that W' = W2V and W = UTW3? simplifies the

dynamics,

- 21 _ 99
W =W (s - W, (2.2.9)

721T

= 32 ___99___
W= (S —-WIrWhw . (2.2.10)

It is worth noticing that the o' column of W~ noted M N

T
as a® represents all the weights connected to the o' input b

. . =32
mode. Likewise, the o' row of W°~ noted as b*" repre- V2 a N3

sents all the weights connected to the o output mode.

We refer to these variables as the connectivity modes (See 72l 7732
Figure 2). Derived from Egs. 2.2.9 and 2.2.10, the dynam-

i ) Fig. 2. Depiction of a® and b*" as the
ics for these variables become

input and output connectivity modes.
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7 = (0 — 0% D) — 300 (a7, 2.1

yFo
70 = (50 — a®. b*)a® — > a’(b™. a). (2.2.12)
YF
It can be seen that these dynamics arise from the following loss function,
Lo (80 —a® b2+ Y (a” b7)?, (2.2.13)
o o

which reveals interesting behaviors of the dynamics. We investigate this loss function in more
details in Section 2.2.3.

The time course of learning.
Solving Eq. 2.2.11 and Eq. 2.2.12 is not trivial, in general. As a result, we consider a specific initial
condition in which,

Vo # 3, a®. b =0. (2.2.14)

This initialization requires that for & = 3, a® and b to point along the same direction and only vary
in magnitude. Therefore, by defining an orthogonal basis based on vectors r*, we can project a®

and b* on r® such that a = a®. r* and b = b*. r*. The dynamics of a and b boil down to
Ta = b(s — ab), (2.2.15)
b = a(s — ab), (2.2.16)

where s = s,. These dynamics correspond to gradient descent on a simplified loss function,

1
L(a,b) = E(s —ab)?, (2.2.17)
which implies that ab gradually approaches s as learning proceeds. Consequently, defining u := ab

has the following dynamics,
TU = 2u(s — u), (2.2.18)

in which u starts at uy and ends at uy. The time required for learning is

t— / L (2.2.19)
ug U
uy du
_ _ 2.2.20
! /uo 2u(s — u) ( )
— M' (2.2.21)

2u up(s —u)f)
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uy = ab
\\

time

Fig. 3. (left): The sigmoidal-shaped dynamics of mode strength over time. Curves present u = ab
for different values of s according to the Eq. 2.2.22 which conforms that modes with larger s
converge faster. (right): Vector-filed presentation of phase diagram. According to Eqgs. 2.2.15 and
2.2.16, a and b live on hyperbolas with the form a? — b*> = c. Two sample trajectories are shown in
green. The red curve also presents solutions to ab = s. (Figure adapted from Saxe et al. (2013a).)

Inverting this equation leads to the following dynamics for u(t) as function of time,

8625t/T

t) = .
U( ) e2st/T _ 1 + S/UO

(2.2.22)
2.2.3. Independent Mode Learning: Larger singular values are learned faster

Eq. 2.2.13 exhibits cooperative forces from the first term against competitive forces from the
second term. In the first term, the two connectivity modes a® and b cooperate to approach s,.
At the same time, in the second term, the input connectivity mode competes with all other output
modes with a different index. This pressures the network to decouple the connectivity modes and
create an orthogonal basis.

Minimizing Eq. 2.2.17 leads to dynamics on hyperbolas with constant value of a® — b*. A
graphical depiction of the phase portrait is shown in Figure 3 (right). Besides, as illustrated in
Figure 3 (left), Eq. 2.2.22 shows a sigmoidal-shaped transition from no-learning to full-learning,
independent for each mode (input-target singular direction). Interestingly, larger singular values
make the sigmoidal pattern rise earlier. In other words, the larger a singular value is, the faster its
associated singular direction is learned.

This theoretical finding corresponds to the empirical observation that neural networks exhibit
a nonlinear learning behavior, alternating between plateaus and sharp improvement. Saxe et al.
(2013a) also presents theoretical results on deep linear neural network. As this dissertation is not
focused on depth, we leave some of the materials for the interested reader to follow up in the original
article.
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2.3. Generalization dynamics in linear networks

A principal concept in machine learning is the generalization ability of a learner which measures
how well a learner performs when tested on previously unseen data. On the generalization of
neural networks, Advani and Saxe (2017a) is among the seminal works that presents an analysis
of generalization of a student network in a scenario where a teacher network generates pairs of
input/target. Both the student and the teacher are linear networks and the student learns from the
teacher by the application of gradient descent. This work analyzes the dynamics of training and
generalization by solving the associated dynamical system and provides insights on how the number
of examples and the size of a network affect the evolution of training and generalization errors. In
the following, we introduce the setup and notations, re-derive the associated dynamical system, and

highlight the findings that are most relevant to our topic of interest.

2.3.1. Problem setup

Advani and Saxe (2017a) considers a linear teacher network that generates P pairs of input/target
as the training data. The data generation process is also considered noisy by explicitly adding noise

to the output of the network. The teacher network follows the following equation,
=wX ¢, (2.3.1)

in which y € R'? is the vector of targets, X € R¥*F is the matrix of inputs, @ € R*¥ is the
pre-defined and fixed weight matrix, and € € R'*¥ is a noise added to the output of the network.
All variables introduced here are drawn as i.i.d. from Gaussian distributions with zero means and
variances of afu, 062, and % for w, €, and X, respectively. Moreover, the following quantity is
introduced to better express the intuitions,

o =

N (2.3.2)
where « distinguishes between over and under-parameterized networks such that an o < 1 implies
a network with more parameters (/V) than the number of training examples (P).

Similarly, the student network follows the following equation,
7 =w(t)X, (2.3.3)

in which w(t) is trained to predict outputs for unseen examples of X. w(t), initialized at w(0), is
trained using the noisy data generated by the teacher using batch gradient descent. The initialization

w(0) is also drawn randomly from a Gaussian distribution with zero mean and a variance of (9 ).
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2.3.2. The dynamical system

The loss function denoted by F£; and associated with training the student network is the Mean
Squared Error (MSE),

Ey(w(t)) = |ly - dll5. (23.4)
To derive the dynamical equation, we consider a batch gradient descent with infinitesimal

learning rate which turns the system into a continuous-time system,
Ti(t) = yXT —wX X7, (2.3.5)

where 7 is a time constant, %% := X X7 is the input correlation matrix, and X¥% = y X7 is the
input-output correlation matrix.

To solve Eq. 2.3.5, it is useful to decompose X X7 by eigen-decomposition and re-parameterize

the system,
X = XX =VAVT. (2.3.6)
Considering X = VAY2UT | the input-output correlation could be written as follows,
Y = yXT = (wX + ) X7, (2.3.7)
= wXXT +eXT, (2.3.8)
= wVAVT + eUN/2VT, (2.3.9)
= wVAVT + eAV2y T, (2.3.10)

where € := €U is an orthogonal transformation of ¢ and still follows a Gaussian distribution with
zero mean and a variance of o2. Putting everything together, by applying a change of variables, we

analyze the vector z := wV instead of w in Eq. 2.3.5,
T4 = ZA + eAY? — 2A, (2.3.11)

in which z := wV.

Dynamics of each element of z, indexed by 7, can be rewritten as,

One apparent result from Eq. 2.3.12 is that learning each mode happens independently of the
others. The solution to the above equation is as follows,
it €

Zi— 2z = (Zi — z(0))e” = — Z)\ (1—e"

At
T

). (2.3.13)

Generalization error dynamics.
Given the learning dynamics of each mode from Eq. 2.3.13, we are interested in the dynamics

of the generalization error E,(t). The generalization error is defined as the expectation of error
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marginalized over all potential x and e. Here, we write the generalization error in terms of the

modes z as follows',

E,(t) = E, [(0X + € —wX)?, (2.3.16)
= E,[(wX — wX)?] + o2, (2.3.17)
=E.[((z - 2)VTX)?] + o2, (2.3.18)
= E,[(Z— 2)VIXXTV(z - 2)] + 02, (2.3.19)
= E,[(Z — 2)A(Z — 2)] + 02, (2.3.20)
— ]1[ Z Ni(Z — z) + o2 (2.3.21)

By substituting (z; — z;) with Eq. 2.3.13 we have,
2

1 it it
X T

i

E,(t) = 2\ + o2 (2.3.22)

€

A detailed interpretation of Eq. 2.3.22 is provided as we conclude this section.

Training error dynamics.

Unlike the generalization error, for training error there is no expectation as batch gradient descent
will go through the whole dataset multiple times. To derive the dynamics, we use the same change
of variables as those used in the previous section including X = VAY2UT . If P > N, we define
U= (U,U") € RP*P while if P < N, we define U := U. In any case, UU” = I. Therefore, the

training error can be re-written in the following way,

Ey(t) = |ly — wX|[3, (2.3.23)
= ||@wX + e — zAY2UT| 2, (2.3.24)
= |le+ (2 — 2)AV2UT2, (2.3.25)
= ||eU + (2 — 2)AV2UTT) 2, (2.3.26)
= |[eU + (2 = 2)A'2|[3 + [|eU ™5, (23.27)
= ||e4 (2 — 2)AV2||2 + ||eUt| 2. (2.3.28)

IThe derivation of generalization error that is provided here is done by the authors of this dissertation and is not provided
in the original paper. Advani and Saxe (2017a) mentions the following derivation,
1
Ey(t) = & Z(zi —2)? + o2 (2.3.14)

However, we have derived a slightly different equation,
1 _
E,(t) = v Z Ni(Z — 2)2 + o2 (2.3.15)

Nevertheless, this discrepancy does not change the presented interpretations significantly.

37



Substituting Eq. 2.3.13 into the equation above yields the following dynamics,

N 20t
E(t) =Y (YME — 5(0) +&) e+ ||leUt (2.3.29)

2

2.3.3. The effect of input’s covariance and noise on generalization dynamics

As it is evident from Eq. 2.3.22, the generalization error dynamics has the following properties,

e The term o2 outside of the brackets presents a time-constant error that bounds the general-
ization error from below.

e The first term inside of the brackets presents the initialization effect. As ¢ grows, the first
term vanishes meaning that more training fades the initialization effect away.

e The second term inside of the brackets starts at zero when ¢ = 0. However, as ¢ grows, it
approaches to ‘/7\—2 This term encodes the effects of over-fitting. Interestingly, the smallest but
non-zero eigenvalues lead to the most severe over-fitting as the \; appears in the denominator.

e Eigenvalues that are exactly zero form a subspace in which no learning occurs. Authors in
the original paper call this subspace a frozen subspace.

e The smallest eigenvalues not only cause over-fitting but also are slowest to learn. As a result,
early stopping is theoretically justified as it prevents these small eigenvalues from causing
over-fitting. However, as the learning speed of different modes are not equal, early stopping
would cause sub-optimality in learning.

From the properties above, the generalization error dynamics are governed by the \;’s, eigenval-
ues of the input correlation/covariance matrix. Consequently, it is desirable to look at the distribution
of these eigenvalues in term of model parameters. In the high-dimensional limit, given the ratio «
as in Eq. 2.3.2, the eigen-spectrum of X X7 follows a Marchenko-Pasteur distribution (Marchenko
and Pastur, 1967),

wo 1Ll@+1+2/a- N —a—1+2/a)
pPrA) =
2m A
whose density is depicted in Figure. 4 (a). As discussed, small but non-zero eigenvalues are not

F Laer(1 = a)5(N), (2.3.30)

desirable for learning. As a result, it is highly preferred to have a large eigen-gap between zero and
the smallest eigenvalues which corresponds to an « away from 1. The effect of « is shown in Figure.
4 (b).

Considering the training error dynamics from Eq. 2.3.29, it is evident that the training error
eU™t|
below. However, if P < N, this term is zero meaning that the network can get zero training error by

always decreases at ¢t grows. Besides, the second term, % bounds the training error from

memorizing every single data-point. It is also interesting to note that stronger \;’s are faster to learn.
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Fig. 4. (a): Different densities of Marchenko-Pasteur distribution for different values of a. (b):
The generalization error as a function of «. Different shades of red presents the amount of training:
darker means more training while lighter means less training. In the case of o = 1, the number of
parameters is equal to the number of data-points. In such a case, there is a large number of small

but non-zero eigenvalues that can lead to severe over-fitting. (Figure adapted from Advani and Saxe
(2017a))

2.4. The way forward

In this section, we reviewed two seminal works on the dynamics of learning (Sec. 2.2) and
generalization (Sec. 2.3) in simple linear neural networks. These and subsequent studies show
that various interesting neural network phenomena can already be detected in significantly simpler
models. However, as much as simple models are more tractable for analytical studies, they cannot
fully characterize the dynamics of complex large-scale neural networks. For example, the results of
Sec. 2.2 rely heavily on the assumption that the input covariance matrix is identity (Eq. 2.2.7). This
assumption induces independent mode/feature learning and enables deriving closed-form analytical
solutions. Similarly, in Sec. 2.3, in which the loss function is assumed to be the mean square error
(MSE). The gradient of the MSE loss with respect to its inputs is linear, and this linearity is essential

for the learning dynamics to be decomposed into independent components.

However, in most practical cases, different features are learned at different rates, implying that
the assumption in Eq. 2.2.7 does not hold. Additionally, the majority of modern neural networks are
trained using the cross-entropy (CE) loss rather than the MSE loss. Unlike MSE, CE has non-linear
derivatives and hence prevents learning dynamics from being decoupled. Relaxation of any of
these assumptions would introduce significant challenges but would also enable us to study novel
phenomena that result from coupled interactions between the learning of different features. This will
be the focus of this dissertation in the following chapters to allow for multi-scale features learning

and study the dynamics under the cross-entropy loss.
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Chapter 3

Prologue to First Article

3.1. Article Details

Multi-scale Feature Learning Dynamics: Insights for Double Descent. Mohammad
Pezeshki, Amartya Mitra, Yoshua Bengio, and Guillaume Lajoie. Proceeding of the thirty-ninth
International Conference on Machine Learning (ICML) 2022.

Personal Contributions. ~ Mohammad Pezeshki contributed to the original idea of this work and
the writing of the paper. Mohammad Pezeshki initially presented the idea of using the replica method
for studying epoch-wise double descent, however, there have been several challenges including the
connection to training time and enforcing different speeds of learning for distinct features. Amartya
Mitra and Mohammad Pezeshki had several discussions on conquering these challenges. Amartya
Mitra significantly contributed to the theory and proofs. Mohammad and Amartya proposed the
specific form of the teacher/student and conducted the experiments. Guillaume Lajoie and Yoshua
Bengio supervised the project and provided valuable feedback forming the paper. Guillaume Lajoie

made several rounds of improvements, provided insights, and significantly contributed to the writing.

3.2. Context

This project summarizes our efforts in explaining a perplexing generalization phenomenon of
modern neural networks, namely, the double descent phenomenon. The more commonly studied
aspect of this phenomenon corresponds to model-wise double descent where the test error exhibits a
second descent with increasing model complexity, beyond the classical U-shaped error curve.

There exists a rich literature on studying model-wise double descent and particularly using the
replica method of statistical physics. However, the epoch-wise one is much less studied. While the
replica method from statistical physics is an effective tool in studying high-dimensional systems, it
has the key limitation that it requires various system parameters (including time) to go to infinity.
This limitation prevents us from studying the “finite-time dynamics”, and thus, transient phenomena

such as epoch-wise double descent. As such, we set out to adapt the replica method to the epoch-wise



setting. This is performed through the usage of links between early-stopping and ridge regularization

along with the incorporation of anisotropic input features.

3.3. Contributions

This work investigates the origins of the epoch-wise double descent. We present a novel teacher-
student setup that despite its simplicity exhibits double descent curves similar to those observed
in deep neural networks. In this setting, we derive closed-form analytical expressions describing
the generalization error in terms of two interpretable scalar macroscopic variables. We provide
an explanation for the existence of epoch-wise double descent, suggesting that epoch-wise double

descent can be attributed to different features being learned at different time-scales.
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Chapter 4

Multi-scale Feature Learning Dynamics: Insights for
Double Descent

4.1. Introduction

Classical wisdom in statistical learning theory predicts a trade-off between the generalization
ability of a machine learning model and its complexity, with highly complex models less likely
to generalize well (Friedman et al., 2001). If the number of parameters measures complexity,
deep learning models sometimes go against this prediction (Zhang et al., 2016): deep neural
networks trained by stochastic gradient descent exhibit a so-called double descent behavior (Spigler
etal., 2019; Belkin et al., 2019a) with increasing model parameters. Specifically, with increasing
complexity, the generalization error first obeys the classical U-shaped curve consistent with statistical
learning theory. However, a second regime emerges as the number of parameters is further increased
past a transition threshold where generalization error drops again, hence the “double descent” or
more accurately model-wise double descent.

Nakkiran et al. (2019a) showed that the phenomenon of double descent is not limited to
varying model size and is also observed as a function of training time or epochs. In this case
as well, the so-called epoch-wise double descent is in apparent contradiction with the classical
understanding of overfitting (Vapnik, 1998), where one expects that longer training of a sufficiently
large model beyond a certain threshold should result in overfitting. This has important implications
for practitioners and raises questions about one of the most widely used regularization method
in deep learning (Goodfellow et al., 2016): early stopping. Indeed, while one might expect early
stopping to prevent overfitting, it might in fact prevent models from being trained at their fullest
potential.

While there has been significant interest, starting from 1990s, to understand the origins of the
non-trivial generalization behaviors of neural networks (Opper, 1995; Opper and Kinzel, 1996; Ba
et al., 2019; Mei and Montanari, 2019a; d’ Ascoli et al., 2020; Gerace et al., 2020), the majority of

this previous work has been to understand the asymptotic or end-of-training model performance.
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Fig. 1. The generalization error as the training time proceeds. (left): The case where only the fast-
learning feature or slow-learning feature are trained. (right): The case with both features. Features
that are learned on a faster time-scale are responsible for the classical U-shaped generalization
curve, while the second descent can be attributed to the features that are learned at a slower rate.

In recent years though, there has been an interest in studying the non-asymptotic (finite training)
performance (e.g. Saxe et al., 2013b; Advani and Saxe, 2017b; Kalimeris et al., 2019; Pezeshki et al.,
2020; Stephenson and Lee, 2021). Among the limited work studying the particular epoch-wise
double descent, Nakkiran et al. (2019a) introduces the notion of effective model complexity and
hypothesizes that it increases with training time and hence unifies both model-wise and epoch-wise
double descent phenomena. Heckel and Yilmaz (2020) also study the dynamics of evolution of
single and two layer networks and show that the superposition of two bias/variance trade-off curves
with different minima leads to a double descent.

In this work, we build on Bos et al. (1993); Bos (1998); Advani and Saxe (2017b); Mei and
Montanari (2019a) which analyze model-wise double descent through the lens of linear models, to

probe the origins of epoch-wise double descent. In particular,

e We introduce a linear teacher-student model with features of different strengths. Despite its
simplicity, such a model exhibits the epoch-wise double descent of the generalization error under
gradient-based training. (Section 4.2.1)

e In the high-dimensional limit (of number of parameters and sample size), we derive the dynamics
of a pair of low-dimensional macroscopic variables, R and (), describing the generalization
behavior of the model. (Egs. 4.2.6, 4.2.7)

e Consistent with recent findings, we provide an explanation for the existence of epoch-wise
double descent, suggesting that epoch-wise double descent can be attributed to different features
being learned at different time-scales. (Figure 1 and Eqs. 4.2.12-4.2.14)

e We perform simulation experiments to validate our analytical predictions. Furthermore, we
conduct experiments with a ResNet-18 model, to demonstrate qualitative similarity between the
generalization behavior of our teacher-student setup and that of the former. (Figures 5, 6)
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4.2. Analytical Framework

In this work, we focus on studying the generalization behavior of neural networks under the
quintessential gradient-based training scenario, namely (stochastic) gradient descent (SGD/GD).
SGD — the de facto optimization algorithm for neural networks — exhibits complex dynamics
arising from a large number of parameters (Kunin et al., 2020). While an exact analysis of such
dynamics is intractable due to the large number of microscopic parameters, it is though possible
to capture various aspects of this high-dimensional dynamics in terms of certain low-dimensional
comprehensible macroscopic entities. This was first demonstrated in a series of seminal papers by
Gardner (Gardner, 1988; Gardner and Derrida, 1988, 1989), where the replica method of statistical
physics was adopted to derive expressions describing the generalization behavior of linear models.
In this paper, we employ Gardner’s analysis to build upon an established line of work studying
linear and generalized linear models (Seung et al., 1992; Kabashima et al., 2009; Krzakala et al.,
2012). While most of previous work study the asymptotic (¢ — oco) generalization behavior, we
adapt these methods to study transient learning dynamics of generalization for finite training time.
In the following, we introduce a particular linear teacher-student model and study its generalization
performance as a function of training time and regularization strength.

Notation. Scalar variables are denoted in lower case (y), while vectorial entities are represented in
boldface (x). Lastly, matrices are shown capitalized (F).

4.2.1. A Teacher-Student Setup

Teacher. We study a supervised linear regression problem in which the training labels y, are
generated by a noisy linear model (Figure 2),
o «._ T 1

yi=y"+e yi=zw, z~ N(O’ﬁ)’ 4.2.1)
where z € R? is the teacher’s input and y*,y € R are the teacher’s noiseless and noisy outputs,
respectively. w € RY represents the (fixed) weights of the teacher and ¢ € R is the label noise.
Here, both w; and € are drawn 1.1.d. from Gaussian distributions with zero mean and variances of 1
and o2, respectively. Additionally, we choose to set ||w|| = 1, without loss of generality.
Student. A student model is correspondingly chosen to be a similar shallow network with trainable
weights @ € R?. The student model is trained on n training pairs { (", y*)}7_,, with the labels
y* being generated by the above teacher network and where student’s inputs x* correspond to
teacher inputs z* multiplied a predefined and fixed modulation matrix F € R%*¢ that regulates

input features’ strengths:
§ = axlw, st. x:=F'z (4.2.2)

One can perceive z to be the latent factors of variation on which the teacher operates, while x

corresponds to the pixels that the student learns from. (See Figure 2)
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Fig. 2. The teacher/student setup: The teacher is the data generating process that given the latent
features in z, generates student’s input,  and its target, y. Student is trained on pairs of {x;, y;},
where x := F” z follow an anisotropic Gaussian distribution such that the directions with larger/s-
maller variance are learned faster/slower. The condition number of F determines how much faster
some features are learned than the others. One can think of z as the latent factors of variation on
which the teacher operates, while  can be thought as the pixels that the student learns from.

Learning paradigm. To train our student network, we use stochastic gradient descent (SGD) on

the regularized mean-squared loss, evaluated on the n training examples as,
L ¢ I AV Al 2
Ly = TZ(Q —9")° + S l|w|)3, (4.2.3)
n = 2

where A\ € [0, 00) is the regularization coefficient. Optimizing Eq. 6.3.5 with stochastic gradient
descent (SGD) yields the typical update rule,

Wy <= W1 — NVelr + &, (4.2.4)

in which ¢ denotes the training step and 7 is the learning rate. Following the setup of Kuhn and
Bos (1993), £ ~ N(0, %) approximates the stochasticity noise of the optimization algorithm, with
[ corresponding to an inverse temperature parameter. The shape of the noise is assumed to be
Gaussian by virtue of the central limit theorem. See Bottou et al. (1991); Mandt et al. (2017); Wu
et al. (2020) for more details on modeling the stochasticity of SGD with Gaussian noise.

Macroscopic variables. The quantity of interest in this work is the average generalization error
of the student determined by averaging the student’s error over all possible input-target pairs of a

noiseless teacher, as

L= -E, [(y* - g)ﬂ. (4.2.5)
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As shown in Bos et al. (1993), if n, d — oo with a constant ratio 5 < oo, Eq. 4.2.5 can be written

as a function of two macroscopic scalar variables R, () € R,
1
Lo = 5(1 +Q —2R), (4.2.6)

where,
R := ;wTF'zb, Q= ClluaTFTFus, 4.2.7)
(See App. .2.1 for Proof.)

Remark: Both R and () have clear interpretations; R is the dot-product between the teacher’s
weights w and the student’s modulated weights Fw, hence can be interpreted as the alignment
between the teacher and the student. Similarly, () can be interpreted as the student’s modulated
norm. The negative sign of R in Eq. 4.2.6 suggests that the larger R is, the smaller the generalization
error gets. At the same time, () appears with a positive sign suggesting the students with smaller
(modulated) norm generalize better.

Note that both R and () are functions of w, which itself is a function of training iteration ¢ and
the regularization coefficient \. Therefore, from hereon, we denote the above quantities as L (t, A),
R(t,\), and Q(t, A).

4.2.2. Main Results

In this Section, we present our main analytical results, with Section 4.2.3 containing a sketch of
our derivations. For brevity, here, we only present the results for 0> = A\ = 0. See App. .2 for the
general case and the detailed proofs.

General matrix F. Let Z := [2/]"_, € R"*?and X := [x"]"'_, € R"*? denote the input matrices
for the teacher and student such that X := ZF. For a general modulation matrix F, the input

covariance matrix has the following singular value decomposition (SVD),
XTX = F'z"ZF = VAVT, (4.2.8)

with A containing the singular values of the student’s input covariance matrix. Solving the dynamics
of exact gradient descent as in Eq. 4.2.4, we arrive at the following exact analytical expressions for
R(t) and Q(1),

1

R(t) = gTr (D), where, D:=1-[I— nA]t , (4.2.9)
1
Q(t) = Tr (ATA), where, A := FVDV'F, (4.2.10)

in which Tr(.) is the trace operator. (See App. .2.2 for Proof.)
By plugging Eqgs. 4.2.9 and 4.2.10 into Eq. 4.2.6, one obtains an exact expression for Ls(¢).
Unfortunately, Egs. 4.2.9 and 4.2.10 are not straightforward to treat generally, and require the

numerical evaluation of the singular values in A. Nevertheless, with some simple but informative
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assumptions on the modulation matrix F’s structure, one can derive approximate solutions, as we
now demonstrate.
Bipartite matrix F. We now study a case where F obeys the following Assumption.
Assumption 4.2.1. The modulation matrix, F, under a SVD, F := UX V7 has two sets of singular
values such that the first p singular values are equal to o; and the remaining d — p singular values
are equal to o,. We let the condition number of F to be denoted by « := g—; > 1.

By employing the replica method of statistical physics (Gardner, 1988; Gardner and Derrida,
1988) and approximation of gradient descent dynamics with ridge regression, we derive closed-
form expressions for R(t) and (). To present the results, we first define the following auxiliary

variables,
o= 2 api= — @.2.11)
p d—p
- d 1 < d 1
A= —, yim —— —, 4.2.12)
p nott d—p nojt
—— ——
time scaled by a% time scaled by o%
and also let, for i € {1,2},
2\
a; =1+ . _ _ 4.2.13)
The scalar expression for R(t) is then given by,
R(t) = Ry + Ry, where,
n n (4.2.14)
= — d =—.
Rl ald, and, RQ a2d
Similarly, for Q(t), we have, Q(t) = Q1 + )2, where
bleCQ + blcl b1b2C1 + bQCQ
= d = 4.2.15
Ql 1_— b1b2 ) and, QQ 1— ble ( )
with (i € {1,2}),
i 2—uq
b= =1-2R;— oo (4.2.16)
a; — oy d a;

Plugging Eqgs. 4.2.14 and 4.2.15 into Eq. 4.2.6, one obtains an (approximate) expression for L ()
as a function of the training time. (See App. .2.3 for Proof.)

Remark: Eq. 4.2.12 indicates that the singular values of F, are directly multiplied by ¢. That
implies that the learning speed of each feature is scaled by the magnitude of its corresponding

singular value.
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4.2.3. Sketch of derivations

In this Section, we sketch the key steps in the derivation of our main results. For the sake of
simplicity, here again we only treat the case where 0. = A = 0. (See App. .2 for the general case
and detailed Proofs.)

General matrix F: Exact dynamics. Recall the gradient descent update rule in Eq. 4.2.4. For
the linear model defined in Eqs. 4.2.1-4.2.2, learning is governed by the following discrete-time

dynamics,
UA)t = ’uAJt,1 - nvuyt_lET, (4217)
=W — 7 [—XT(y - Xuat_l)] . (4.2.18)

With the assumption that w;—y = 0, the dynamics admit the following exact closed-form

solution,
W, = ([ — [[ — nXTXr) (XTX) ' XTy = (). (4.2.19)

With a SVD on XX, Eqs. 4.2.9-4.2.10 can then be obtained by substituting @, in Eq. 4.2.7. As
a remark, note that one can recover the results of Advani and Saxe (2017b) by setting F = II. In
that case, the eigenvalues of XX follow a Marchenko—Pastur distribution (Marchenko and Pastur,
1967).

Bipartite matrix F: Approximate dynamics. To employ the replica method, we first invoke
the results in Eq. 9 of Solla (1995) and Kuhn and Bos (1993) which state that the equilibrium
distribution of weights w trained via SGD on a loss £(), follow the Gibbs-Boltzmann distribution,
such that,

Plab) = e 90, (4.2.20)

Zs

in which Zg = [ dw exp(—FL(w)) is the partition function and /3 is called the inverse temperature
and is inversely proportional to the stochasticity of SGD (see Eq. 4.2.4). Such distribution is
a standard choice in statistical mechanics (see page 53 of Engel and Van den Broeck (2001)).
Intuitively, for small 3, the distribution of P(w) is almost uniform, while as § — oo, P(w)
becomes more concentrated around the minimum of the loss L(w).

It is important to highlight that Eq. 4.2.20 describes the equilibrium distribution of the student
network’s weights, i.e., at the end of training (t — oo). However, we are interested in studying the
trajectory of student’s weights during the course of training, i.e., for finite ¢. To this end, we employ
the connection between (continuous-time) SGD and L, regularization, as first quantified in Ali et al.
(2019, 2020). Specifically, it states that the MSE loss of a linear regression model under stochastic
gradient flow at time ¢ is bounded from above by the end-of-training loss in the presence of ridge
regression with an L, regularization coefficient A = 1/nt. We note that while there is no guarantee

that this bound is tight in general, we do observe that it matches the behavior of a wide range of
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numerical experiments extremely well (see Section 4.3).
Accordingly, we study the equilibrium distribution of the modified loss /j(’lf), t), such that,
1

P(W) = —e PE@D  ang, 4.2.21)
Zs4
Fla, 1) = " (' — 9?2 + 1(A + i)ku? (4.2.22)
’ 2n = 2 nt 2

See App. .2.4 for proof.

To determine the fypical generalization performance of students distributed according to P (),
one proceeds by computing the free-energy of the system as,

fo= —BldEw,z [In Zs,). (4.2.23)

Free-energy is a self-averaging property where its typical/most probable value coincides with
its average over proper probability distributions (Engel and Van den Broeck, 2001). Therefore, to
determine the typical values of R and (), we extremize the free-energy w.r.t. those variables.

Due to the logarithm inside the expectation, analytical computation of Eq. 4.2.23 is intractable.
However, the replica method (Mézard et al., 1987) allows us to tackle this through the following
identity,

m w (4.2.24)

E,.[InZs,] = 71~1—>0 .
Computation of the free-energy via replica method and its subsequent extremization w.r.t 2 and (),
we arrive at Egs. 4.2.14 and 4.2.15. See App. .2.3 for more details.

To summarize, using the replica method, we are able to cast the high-dimensional dynamics of
SGD into simple scalar equations governing R and () and, consequently, the generalization error
L. While our analysis is limited to the specific teacher and student setup, this simple model already
exhibits dynamics qualitatively similar to those observed in more complex networks, as we now

llustrate.

4.3. Experimental Results

In this Section, we conduct numerical simulations to validate our analytical results and provide
clear insights on the macroscopic dynamics of generalization. We also conduct experiments on
real-world neural networks showing a close qualitative match between the generalization behavior
of neural networks and our teacher-student setup. To ensure reproducibility, we include the complete

source code in a GitHub repositoryaswellasaColab notebook.
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https://github.com/mohammadpz/Epoch_wise_Double_Descent
https://colab.research.google.com/drive/1nz-hkWKRcLfCsrn7uBgpKtzDFHmfP52g?usp=sharing

— k=1 — k=1

. k=50 = k=50
u%’ 04 —— k=100000 u@J 0.4 1 —— k=100000
s o —=- Gradient descent 3 s W\ emmm—=———— - Ridge regression
2 0.3 4 = — : —— Analytical Egs. 9,10 'g 0.3 _,f’ —— Analytical Egs. 14,15
o N
T T
202 202
Q Q
(U] (U]
w w
201 Lo1

0.0 T T T T T 0.0 T T T T T

10° 10t 102 103 104 10° 106 10° 10! 10?2 103 104 10° 106
Training time t Inverse ridge coefficient 1/A

Fig. 3. Left: Analytical results of Egs. 4.2.9, 4.2.10 compared to gradient descent dynamics. The
x-axis denotes the training time ¢. Right: Analytical results of scalar Egs. 4.2.14, 4.2.15 compared
to ridge regression dynamics. The x-axis denotes the inverse ridge (L2) coefficient 1/\. Analytical
results closely match with empirical simulations. Consistent with Ali et al. (2019), ridge regression
appears to reasonably approximate gradient descent dynamics. Analysis: With 1 = 1, all the
features are learned at the same rate (no double descent). x = 50 corresponds to the case where a
subset of features are learned 50 times faster than the rest and hence epoch-wise double descent is
observed. Finally, x = 100000 implies that a subset of of features are extremely slow to learn that
practically do not get learned (typical overfitting).

4.3.1. Analytical results compared with simulations

Through numerical simulations, we validate our analytical results presented in Section 4.2.2.
Figure 3 depicts the comparisons for a teacher-student setup with d = 100, p = 50, and n = 150.
Several similar experiments for different configurations are available in our provided notebook. It is
observed that with k = 1, the generalization error does not follow a double descent curve. Recall
that x = 1 implies that all the features are learned at the same rate. However, by increasing the
value of k, double descent curves are observed. Very large values of x imply that some features are

practically non-learnable and hence a typical overfitting curve is observed.

4.3.2. The Phase diagram

To further investigate the transition between the two phases of classical single descent and double
descent, we explore the phase diagram. Recall that with Eq. 4.2.6, one can fully characterize the
evolution of the generalization dynamics in terms of two scalar variables instead of the d-dimensional
parameter space. R and () presented in Eq. 4.2.7 are macroscopic variables where R represents
the alignment between the teacher and the student and () is the student’s (modulated) norm.
Hence, a better generalization performance is achieved with larger R and smaller ().

The quantities R and () are not free parameters and both depend on the training dynamics
through Eqgs. 4.2.14 and 4.2.15. Nevertheless, it is instructive to visualize the generalization error for
all pairs of (R, Q). In Figure 4, we visualize the RQ-plane for (R, Q) € [0.0,1.0] x @ € [0.0,1.2].
At the time of initialization, (R, Q)) = (0,0) as the models are initialized at the origin. As training
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Fig. 4. Left: Phase diagram of the generalization error as a function of R(t) and Q(¢t) (Egs. 4.2.14
and 4.2.15). The generalization error for all pairs of (R, Q)) € [0.0,1.0] x [0.0, 1.2] is contour-plotted
in the background, with the best generalization performance being attained on the lower right part
of the plot. The trajectories describe the evolution of R(t) and (Q)(t) as training proceeds. Each
trajectory correspond to a different x, the condition number of the modulation matrix F' in Eq. 4.2.2.
r describes the ratio of the rates at which two sets of features are learned. Right: The corresponding
generalization curves. Analysis: The trajectory with x = 1eb starts at the origin and advances
towards point A (a descent in generalization error). Then by over-training, it converges to point
B (an ascent). For the other trajectories with smaller «, a first descent occurs up to the point A,
then an ascent happens, but they no longer converge to point B. Instead, by further training, these
trajectories converge to point C' implying a second descent.

time proceeds, values of R and () follow the depicted trajectories. In Figure 4, different trajectories
correspond to different values of «, the condition number of the modulation matrix F' in Eq. 4.2.2.
It is important to note that the closer a trajectory is to the lower-right, the better the generalization
error gets.

The yellow curve corresponds to the case with large k = 1e5, meaning that a subset of features
are extremely slower than the others that practically do not get learned. In that case, generalization
error exhibits traditional overfitting due to over-training. On the phase diagram, the yellow trajectory
starts at (0, 0) and moves towards Point A which has the lowest generalization error of this curve.
Then as the training continues, () increases and as ¢ — oo the trajectory lands at Point B which has
the worse generalization error (highly-overfitted). Other curves follow the case of k = 1e5 up to
the vicinity of Point B, but then the trajectories slowly incline towards another fixed point, Point C'
signalling a second descent in the generalization error.

The phase diagram along with the corresponding generalization curves in Figure 4 illustrate that
features that are learned on a faster time-scale are responsible for the initial conventional U-shaped
generalization curve, while the second descent can be attributed to the features that are learned at a

slower time-scale.

4.3.3. Qualitative comparison with ResNet on Cifar-10

We train a ResNet-18 (He et al., 2016) with layer widths [64,2 x 64,4 x 64,8 x 64]. We follow
the training setup of Nakkiran et al. (2019a); label noise with a probability 0.15 randomly assign an
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Fig. 5. A qualitative comparison between a ResNet-18 and our analytical results. (a): Heat-
map of empirical generalization error (0-1 classification error) for the ResNet-18 trained on Cifar-10
with 15% label noise. X-axis denotes the inverse of weight-decay regularization strength and
Y-axis represents the training time. (c¢): Heat-map of the analytical generalization error (mean
squared error) for the linear teacher-student setup with = 100, the condition number of the
modulation matrix. (b, d): Three slices of the heat-maps for large, intermediate, and small amounts
of regularization. Analysis: As predicted by Egs. 4.2.14 and 4.2.15, x = 100 implies that a subset
of features are learned 100 times faster that the rest. Intuitively, large amounts of regularization
(1) allow for the fast-learning features to be learned but cause overfitting. Intermediate levels of
regularization () result in a classical U-shaped generalization curve but prevent learning of slow
features. Small amounts of regularization () allow for both fast and slow features to be learned,
leading to a double descent curve.

incorrect label to training examples. Noise is sampled only once before the training starts. We train
using Adam (Kingma and Ba, 2014) with learning rate of 1e — 4 for 1K epochs. Experiments are
averaged over 50 random seeds.

We conduct an experiment on the classification task of Cifar-10 (Krizhevsky et al., 2009) with
varying amount of weight decay regularization strength A\. We monitor the generalization error (0-1
test error) during the course of training and visualize a heat-map of the generalization error for
different \’s in Figure 5 (a).

We also conduct a similar experiment with the teacher-student setup presented in Section 4.2.1.
We visualize a heat-map of the generalization error which is the mean squared error (MSE) over
test distribution in Figure 5 (c). Particularly, we plot Eqgs. 4.2.14 and 4.2.15 with a k = 100. Itis
observed that in both experiments, a model with intermediate levels of regularization displays a
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Fig. 6. The effect of regularizing the quantity () on the generalization curve. Two setups with
(w/) and without (w/0) regularization are compared. Both the linear teacher-student model and a
ResNet-18 on a binary Cifar-10 benefit from such regularization as the temporary overfitting is
diminished. In accordance with Lemma 4.3.1, () regularization is implemented by simply penalizing
the norm of the model’s output.

typical overfitting behavior where the generalization error decreases first and then overfits. This is
consistent with Eq. .2.36 of the appendix: The amount of regularization A, is inversely proportional

to the training time ¢ implying that larger amounts of regularization act as early stopping.
4.3.4. Diminishing the temporary overfitting

The phase diagram in Figure 4 along with Eq. 4.2.6 suggest that an inflation in the value () is
responsible for the temporary overfitting observed in epoch-wise double descent. As an illustrative
experiment, if we could diminish this temporary overfitting, we could expect to observe a single
descent rather than a double descent curve. To that end, a natural solution is to penalize () during
training. To do that, we introduce the following lemma.

Lemma 4.3.1. For a linear/linearized model, penalizing () amounts to adding the following regu-

larizer to the loss,

Lr « Lr+allg|? 4.3.1)

previously introduced in Pezeshki et al. (2020). (See App. .2.5 for Proof).

Figure 6 depicts the effect of this regularizer on the generalization curve. Both linear teacher-
student model and ResNet-18 show curves in which the overfitting cusps are diminished. The
ResNet experiment is on a binary classification version of the Cifar dataset.

We note that, for any linear model § = Xw, the regularization ||j||* translates to an L2
regularization on the weights that is scaled by the input covariance matrix, as ||J||> = w? X Xw.
Therefore, such regularization slows down the learning along the direction of faster features and
hence attempts to equalize the learning scale of different features. We should highlight that
mitigating double descent is not the purpose of our work and this experiment is presented to support

that the findings from a linear model can still carry over to non-linear networks.
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4.4. Related Work and Discussion

Although the term double descent has been introduced rather recently (Belkin et al., 2019b),
similar behaviors had already been observed and studied in several decades-old works form a
statistical physics perspective (Krogh and Hertz, 1992a; Opper, 1995; Opper and Kinzel, 1996;
Bos, 1998). More recently, these behaviors have been investigated in the context of modern
machine learning, both from an empirical (Amari et al., 2020; Yang et al., 2020) and theoretical
perspectives (Geiger et al., 2019; d’ Ascoli et al., 2021; Geiger et al., 2020).

Hastie et al. (2019); Advani and Saxe (2017b); Belkin et al. (2020) use random matrix theory
(RMT) tools to characterize the asymptotic generalization behavior of over-parameterized linear
and random feature models. Mei and Montanari (2019a) extend the same analysis to a random
feature model and theoretically derive the model-wise double descent curve for a model with
Tikhonov regularization. Jacot et al. (2020) also study double descent in ridge estimators and show
an equivalence to kernel ridge regression.

While most of the related work study the non-monotonicity of the generalization error as a
function of the model size or sample size, Nakkiran et al. (2019a) introduced the epoch-wise double
descent, where the double descent occurs as the training time increases. There has been limited
work on studying of epoch-wise double descent. Very recently, Heckel and Yilmaz (2020) and
Stephenson and Lee (2021) have focused on finding the roots of this phenomenon.

Heckel and Yilmaz (2020) provides upper bounds on the risk of single and two layer models in
a regression setting where the input data has distinct feature variances. Heckel and Yilmaz (2020)
demonstrate that a superposition of two or more bias-variance tradeoff curves leads to epoch-wise
double descent. The authors also show that different layers of the network are learned at different
epochs. For that reason, epoch-wise double descent can be eliminated by appropriate selection
of learning rates for individual weights. Stephenson and Lee (2021) arrive at similar conclusions.
A data model is constructed so that the noise is explicitly added only to the fast-learning features
while slow-learning features remain noise-free. Consequently, the noisy features form a U-shaped
generalization curve while noiseless but slow features are responsible for the second descent.

Our findings and those of Heckel and Yilmaz (2020) and Stephenson and Lee (2021) reinforce
one another with a common central finding that the epoch-wise double descent results from different
features/layers being learned at different time-scales. However, we also highlight that both Heckel
and Yilmaz (2020) and Stephenson and Lee (2021) use tools from random matrix theory to study
distinct data models from our teacher-student setup. We study a similar phenomenon by leveraging
the replica method from statistical physics to characterize the generalization behavior using a set of
informative macroscopic parameters. The key novel contribution from our approach is the derivation
of the macroscopic quantities R and () (see Eq. 4.2.7) which track teacher-student alignment, and
the student’s modulated norm, respectively. Crucially, these quantities can be used to study other

generalization phenomena and/or to modify the learning dynamics via their explicit regularization
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as illustrated in Section 4.3.4.

We believe our framework sets the stage for further understanding of generalization dynamics
beyond the double descent. A future direction to study is a case in which the first descent is strong
enough to bring down the training loss to zero such that learning slower features is practically
impossible (Pezeshki et al., 2020) or happens after a very large number of epochs (Power et al.,
2021). Grokking is an instance of such behavior reported by Power et al. (2021) in which the model
abruptly learns to perfectly generalize but long after the training loss has reached very small values.

Finally, we note that while our simple teacher-student setup exhibits the epoch-wise double
descent, its simplicity introduces several limitations. Studying finer details of the dynamics of
neural networks requires more precise, non-linear, and multi-layered models, which introduce novel

challenges that remain to be studied in future work.
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Chapter 5

Prologue to Second Article

5.1. Article Details

Gradient starvation: A learning proclivity in neural networks. Mohammad Pezeshki,
Oumar Kaba, Yoshua Bengio, Aaron C Courville, Doina Precup, Guillaume Lajoie. Proceed-
ing of Advances in Neural Information Processing Systems (NeurIPS) 2021.

Personal Contributions.  The original idea of gradient starvation (GS) was brought up in
meetings between Mohammad Pezeshki, Aaron Courville, and Yoshua Bengio. Guillaume Lajoie
later proposed a dynamical systems approach in formalizing the phenomenon and Doina Precup
contributed to several discussions on solving it. Mohammad Pezeshki proposed the specific dual-
form analysis, contributed to the general idea of theorem 1 (existence of GS) and proved theorem
2 (the solution to GS). Mohammad Pezeshki conducted the experiments. Sekou Oumar Kaba
contributed to designing and proving theorem 1 and assisted in writing. Guillaume Lajoie and
Mohammad Pezeshki equally contributed in writing. All the authors later revised the paper and

provided feedback in several rounds.

5.2. Context

This project was inspired by a series of observations showing that neural networks tend to latch
more onto superficial features than the true transferable features. We noticed that in either case,
the training loss is zero implying the lack of incentive for further learning. To understand and
formalize these observations, we looked into the learning dynamics of linearized models under
gradient descent.

Although there is a rich literature on the learning dynamics of neural networks, most of them
focus on the particular mean square error (MSE) loss which has linear derivatives and hence simpler
learning dynamics. However, the common loss function for classification in neural networks is
cross-entropy. Cross-entropy despite being convex has infinite solutions when the data is linearly

separable. This work summarizes our efforts at characterizing different zero-loss solutions, with



cross-entropy loss as well as developing a method to favor more generalizable solutions.

5.3. Contributions

This work identifies and formalizes Gradient Starvation, a phenomenon that arises when the
cross-entropy loss is minimized by capturing only a subset of features relevant for the task, despite
the presence of other predictive features that fail to be discovered. This work provides a theoretical
explanation for the emergence of such feature imbalances in neural networks. Based on the
proposed formalism, we develop guarantees for a novel but simple regularization method aimed
at decoupling feature learning dynamics, improving accuracy and robustness in cases hindered by
gradient starvation. We illustrate our findings with simple and real-world out-of-distribution (OOD)
generalization experiments.

Impact. This work has received a considerable amount of attention and has been cited in several
follow-up papers on OOD generalization. Independent studies, such as Galstyan et al. (2021);
Pohjonen et al. (2021); Shrestha et al. (2022), have compared our proposed method called spectral
decoupling (SD) against several other regularization methods. Pohjonen et al. (2021) validates the
effectiveness of SD for bias mitigation and states "We recommend using spectral decoupling as an
implicit bias mitigation method in any neural network intended for clinical use" as clinical datasets

often suffer from significant implicit biases.
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Chapter 6

Gradient Starvation: A Learning Proclivity in
Neural Networks

6.1. Introduction

In 1904, a horse named Hans attracted worldwide attention due to the belief that it was capable
of doing arithmetic calculations (Pfungst, 1911). Its trainer would ask Hans a question, and Hans
would reply by tapping on the ground with its hoof. However, it was later revealed that the horse was
only noticing subtle but distinctive signals in its trainer’s unconscious behavior, unbeknown to him,
and not actually performing arithmetic. An analogous phenomenon has been noticed when training
neural networks (e.g. Ribeiro et al., 2016; Zhao et al., 2017; Jo and Bengio, 2017; Heinze-Deml
and Meinshausen, 2017; Belinkov and Bisk, 2017; Baker et al., 2018; Gururangan et al., 2018;
Jacobsen et al., 2018; Zech et al., 2018; Niven and Kao, 2019; Ilyas et al., 2019; Brendel and
Bethge, 2019; Lapuschkin et al., 2019; Oakden-Rayner et al., 2020). In many cases, state-of-the-art
neural networks appear to focus on low-level superficial correlations, rather than more abstract
and robustly informative features of interest (Beery et al., 2018; Rosenfeld et al., 2018; Hendrycks
and Dietterich, 2019; McCoy et al., 2019; Geirhos et al., 2020).

The rationale behind this phenomenon is well known by practitioners: given strongly-correlated
and fast-to-learn features in training data, gradient descent is biased towards learning them first.
However, the precise conditions leading to such learning dynamics, and how one might intervene
to control this feature imbalance are not entirely understood. Recent work aims at identifying the
reasons behind this phenomenon (Valle-Pérez et al., 2018; Nakkiran et al., 2019b; Cao et al., 2019;
Nar and Sastry, 2019; Jacobsen et al., 2018; Niven and Kao, 2019; Wang et al., 2019; Shah et al.,
2020; Rahaman et al., 2019; Xu et al., 2019b; Hermann and Lampinen, 2020; Parascandolo et al.,
2020; Ahuja et al., 2020b), while complementary work quantifies resulting shortcomings, including
poor generalization to out-of-distribution (OOD) test data, reliance upon spurious correlations, and
lack of robustness (Geirhos et al., 2020; McCoy et al., 2019; Oakden-Rayner et al., 2020; Hendrycks
and Gimpel, 2016; Lee et al., 2018; Liang et al., 2017; Arjovsky et al., 2019). However most



established work focuses on squared-error loss and its particularities, where results do not readily
generalize to other objective forms. This is especially problematic since for several classification
applications, cross-entropy is the loss function of choice, yielding very distinct learning dynamics.
In this paper, we argue that Gradient Starvation, first coined in Combes et al. (2018), is a leading
cause for this feature imbalance in neural networks trained with cross-entropy, and propose a simple
approach to mitigate it.
Here we summarize our contributions:
e We provide a theoretical framework to study the learning dynamics of linearized neural
networks trained with cross-entropy loss in a dual space.
e Using perturbation analysis, we formalize Gradient Starvation (GS) in view of the coupling
between the dynamics of orthogonal directions in the feature space (Thm. 6.3.5).
e We leverage our theory to introduce Spectral Decoupling (SD) (Eq. 6.3.17) and prove this
simple regularizer helps to decouple learning dynamics, mitigating GS.
e We support our findings with extensive empirical results on a variety of classification and ad-
versarial attack tasks. All code and experiment details available at GitHub repository.
In the rest of the paper, we first present a simple example to outline the consequences of GS. We
then present our theoretical results before outlining a number of numerical experiments. We close
with a review of related work followed by a discussion.

6.2. Gradient Starvation: A simple example

Consider a 2-D classification task with a training set consisting of two classes, as shown in
Figure 1. A two-layer ReL.U network with 500 hidden units is trained with cross-entropy loss for
two different arrangements of the training points. The difference between the two arrangements is
that, in one setting, the data is not linearly separable, but a slight shift makes it linearly separable in
the other setting. This small shift allows the network to achieve a negligible loss by only learning to
discriminate along the horizontal axis, ignoring the other. This contrasts with the other case, where
both features contribute to the learned classification boundary, which arguably matches the data
structure better. We observe that training longer or using different regularizers, including weight
decay (Krogh and Hertz, 1992b), dropout (Srivastava et al., 2014), batch normalization (Ioffe and
Szegedy, 2015), as well as changing the optimization algorithm to Adam (Kingma and Ba, 2014) or
changing the network architecture or the coordinate system, do not encourage the network to learn a
curved decision boundary. (See App. .4 for more details.)

We argue that this occurs because cross-entropy loss leads to gradients “starved” of information
from vertical features. Simply put, when one feature is learned faster than the others, the gradient
contribution of examples containing that feature is diminished (i.e., they are correctly processed
based on that feature alone). This results in a lack of sufficient gradient signal, and hence prevents

any remaining features from being learned. This simple mechanism has potential consequences,
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Fig. 1. Diagram illustrating the effect of gradient starvation in a simple 2-D classification task. (a) Data is not linearly
separable and the learned decision boundary is curved. (b) Data is linearly separable by a small margin (A = 0.1).
This small margin allows the network to discriminate confidently only along the horizontal axis and ignore the vertical
axis. (c) Data is linearly separable as in (b). However, with the proposed Spectral decoupling (SD), a curved decision
boundary with a large margin is learned. (d) Diagram shows the evolution of two of the features (Eq. 6.3.4) of the
dynamics in three cases shown as dotted, dashed and solid lines. Analysis: (dotted) vs (dashed): Linear separability of
the data results in an increase in z; and a decrease (starvation) of 2. (dashed) vs (solid): SD suppresses z; and hence
allows zo to grow. Decision boundaries are averaged over ten runs. More experiments with common regularization
methods are provided in App. .4.

which we outline below.

Lack of robustness. In the example above, even in the right plot, the training loss is nearly zero,
and the network is very confident in its predictions. However, the decision boundary is located very
close to the data points. This could lead to adversarial vulnerability as well as lack of robustness
when generalizing to out-of-distribution data.

Excessive invariance. GS could also result in neural networks that are invariant to task-relevant
changes in the input. In the example above, it is possible to obtain a data point with low probability
under the data distribution, but that would still be classified with high confidence.

Implicit regularization. One might argue that according to Occam’s razor, a simpler decision
boundary should generalize better. In fact, if both training and test sets share the same dominant
feature (in this example, the feature along the horizontal axis), GS naturally prevents the learning
of less dominant features that could otherwise result in overfitting. Therefore, depending on our
assumptions on the training and test distributions, GS could also act as an implicit regularizer. We

provide further discussion on the implicit regularization aspect of GS in Section 6.5.

6.3. Theoretical Results

In this section, we study the learning dynamics of neural networks trained with cross-entropy
loss. Particularly, we seek to decompose the learning dynamics along orthogonal directions in
the feature space of neural networks, to provide a formal definition of GS, and to derive a simple
regularization method to mitigate it. For analytical tractability, we make three key assumptions:
(1) we study deep networks in the Neural Tangent Kernel (NTK) regime, (2) we treat a binary
classification task, (3) we decompose the interaction between two features. In Section 8.5, we
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demonstrate our results hold beyond these simplifying assumptions, for a wide range of practical

settings. All derivation details can be found in SM .5.

6.3.1. Problem Setup and Gradient Starvation Definition

Let D = {X,y} denote a training set containing n datapoints with d dimensions, where,
X = [x1,...,X,] € R™? and their corresponding class label y € {—1,+1}". Also let §(X) :=
fE(X) : R"*4 — R™ represent the logits of an L-layer fully-connected neural network where each
hidden layer h)(x) € R% is defined as follows,
fO(x;) = WORID(x,)
WOGes) = \f3E(Sx0)

in which W) € R%*4-1 i5 a weight matrix drawn from A/(0,I) and + is a scaling factor to ensure

,1e{0,1,.., L}, (6.3.1)

that norm of each AU~V is preserved at initialization (See Du et al. (2018a) for a formal treatment).
The function £(.) is also an element-wise non-linear activation function.

Let 0 = concat( Uk, Vec(W(l))) € R™ be the concatenation of all vectorized weight matrices
with m as the total number of parameters. In the NTK regime Jacot et al. (2018), in the limit of
infinite width, the output of the neural network can be approximated as a linear function of its
parameters governed by the neural tangent random feature (NTRF) matrix Cao and Gu (2019),
oy (X, 0)

00
In the wide-width regime, the NTRF changes very little during training Lee et al. (2019), and the

P (X,0) = € R™*™, (6.3.2)

output of the neural network can be approximated by a first order Taylor expansion around the
initialization parameters 8. Setting ®, = ® (X, ;) and then, without loss of generality, centering

parameters and the output coordinates to their value at the initialization (6 and y,), we get
¥ (X,0) = 2.0. (6.3.3)

Dominant directions in the feature space as well as the parameter space are given by principal

components of the NTRF matrix @, which are the same as those of the NTK Gram matrix (Yang
and Salman, 2019). We therefore introduce the following definition.
Definition 6.3.1 (Features and Responses). Consider the singular value decomposition (SVD) of
the matrix Y®, = USV7”, where Y = diag (). The jth feature is given by (V7); . The strength
of jth feature is represented by s; = (S),;. Also, (U) ; contains the weights of this feature in all
examples. A neural network’s response to a feature j is given by z; where,

z:=UTYy =8SV7e. (6.3.4)

In Eq. 6.3.4, the response to feature j is the sum of the responses to every example in (Yy)

multiplied by the weight of the feature in that example (U7). For example, if all elements of (U) ;
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are positive, it indicates a perfect correlation between this feature and class labels. We are now
equipped to formally define GS.
Definition 6.3.2 (Gradient Starvation). Recall the the model prescribed by Eq. 6.3.3. Let 2z} denote
the model’s response to feature j at training optimum 6*'. Feature i starves the gradient for feature
jifdzy/d(s7) < 0.

This definition of GS implies that an increase in the strength of feature ¢ has a detrimental effect
on the learning of feature 7. We now derive conditions for which learning dynamics of system 6.3.3
suffer from GS.

6.3.2. Training Dynamics

We consider the widely used ridge-regularized cross-entropy loss function,
. A
£(8)=1-log [l +exp (~Y)] + 76", (6.3.5)

where 1 is a vector of size n with all its elements equal to 1. This vector form simply represents a
summation over all the elements of the vector it is multiplied to. A € [0, c0) denotes the weight
decay coefficient.

Direct minimization of this loss function using the gradient descent obeys coupled dynamics
and is difficult to treat directly (Combes et al., 2018). To overcome this problem, we call on a
variational approach that leverages the Legendre transformation of the loss function. This allows
tractable dynamics that can directly incorporate rates of learning in different feature directions.
Following (Jaakkola and Haussler, 1999), we note the following inequality,

log[l+exp(=Yy) > Hla)—a®Yy, (6.3.6)

where H(a) = — [aloga + (1 — a) log (1 — )] is Shannon’s binary entropy function, o €
(0,1)™ is a variational parameter defined for each training example, and ® denotes the element-wise

vector product. Crucially, the equality holds when the maximum of r.h.s. w.r.t ¢ is achieved at

ot = %, which leads to the following optimization problem,

. o o Mgz
ngnﬁ (0) = nbmmaax <1 -H(a) —aYy + §||0H ) , (6.3.7)

where the order of min and max can be swapped (see Lemma 3 of Jaakkola and Haussler (1999)).
Since the neural network’s output is approximated by a linear function of 8, the minimization can
be performed analytically with an critical value 8*7 = %aYQDO, given by a weighted sum of the
training examples. This results in the following maximization problem on the dual variable, i.e.,

miny £ () is equivalent to,

1
min £ (6) = max <1 H(@) = 5 oY By®] YTaT) . (6.3.8)

!Training optimum refers to the solution to VgL(0) = 0.
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By applying continuous-time gradient ascent on this optimization problem, we derive an
autonomous differential equation for the evolution of a,, which can be written in terms of features
(see Definition 6.3.1),

1
a=n (— loga+1log (1 — ) — )\aUSQUT> , (6.3.9)

where 7 is the learning rate (see App. .5.1 for more details). For this dynamical system, we see
that the logarithm term acts as barriers that keep «; € (0,1). The other term depends on the matrix
US2U7, which is positive definite, and thus pushes the system towards the origin and therefore
drives learning.

When \ < s7, where k is an index over the singular values, the linear term dominates Eq. 6.3.9,
and the fixed point is drawn closer towards the origin. Approximating dynamics with a first order
Taylor expansion around the origin of the second term in Eq. 6.3.9, we get

1
Qo (— loga — caU (8*+ A1) UT) : (6.3.10)
with stability given by the following theorem with proof in App. .5.
Theorem 6.3.3. Any fixed points of the system in Eq. 6.3.10 is attractive in the domain «; € (0,1).

At the fixed point a*, corresponding to the optimum of Eq. 6.3.8, the feature response of the

neural network is given by,
1
z" = XSQUToﬁT. (6.3.11)

See App. .3 for further discussions on the distinction between "feature space" and "parameter
space". Below, we study how the strength of one feature could impact the response of the network
to another feature which leads to GS.

6.3.3. Gradient Starvation Regime

In general, we do not expect to find an analytical solution for the dynamics of the coupled
non-linear dynamical system of Eq. 6.3.10. However, there are at least two cases where a decoupled
form for the dynamics allows to find an exact solution. We first introduce these cases and then study
their perturbation to outline general lessons.

(1) If the matrix of singular values S? is proportional to the identity: This is the case where all
the features have the same strength s. The fixed points are then given by,

% )\W()\_ISZ + 1) . 82W(A_182 + 1)
ai - 32 —+ )\ ’ Z] = 82 4 )\ Zulju (6312)

7

where WV is the Lambert W function.
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(2) If the matrix U is a permutation matrix: This is the case in which each feature is associated
with a single example only. The fixed points are then given by,
. AWATs2 1) . sSTW(A1s? +1)

o = s
’ s7+ A J s7+ A

(6.3.13)

To study a minimal case of starvation, we consider a variation of case 2 with the following
assumption which implies that each feature is not associated with a single example anymore.
Lemma 6.3.4. Assume U is a perturbed identity matrix (a special case of a permutation matrix) in
which the off-diagonal elements are proportional to a small parameter § > 0. Then, the fixed point

of the dynamical system in Eq. 6.3.10 can be approximated by,
o = (1 log () [A + diag (o5 71)] 6.3.14)

where A = \71U(S? + NI)U” and o, is the fixed point of the uncoupled system with § = 0.
For sake of ease of derivations, we consider the two dimensional case where,
U= (”1_52 - ) (6.3.15)
) V1—42
which is equivalent to a U matrix with two blocks of features with no intra-block coupling and ¢
amount of inter-block coupling.
Theorem 6.3.5 (Gradient Starvation Regime). Consider a neural network in the linear regime,
trained under cross-entropy loss for a binary classification task. With definition 6.3.1, assuming
coupling between features 1 and 2 as in Eq. 6.3.15 and s? > s3, we have,
dz;
ds?

<0, (6.3.16)

which implies GS.

While Thm. 6.3.5 outlines conditions for GS in two dimensional feature space, we note that the
same rationale naturally extends to higher dimensions, where GS is defined pairwise over feature
directions. For a classification task, Thm. 6.3.5 indicates that gradient starvation occurs when
the data admits different feature strengths, and coupled learning dynamics. GS is thus naturally
expected with cross-entropy loss. Its detrimental effects however (as outlined in Sect. 6.2) arise in
settings with large discrepancies between feature strengths, along with network connectivity that
couples these features’ directions. This phenomenon readily extends to multi-class settings, and
we validate this case with experiments in Sect. 8.5. Next, we introduce a simple regularizer that

encourages feature decoupling, thus mitigating GS by insulating strong features from weaker ones.
6.3.4. Spectral Decoupling

By tracing back the equations of the previous section, one may realize that the term U7 S?U in
Eq. 9 is not diagonal in the general case, and consequently introduces coupling between «;’s and

hence, between the features z;’s. We would like to discourage solutions that couple features in this
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way. To that end, we introduce a simple regularizer: Spectral Decoupling (SD). SD replaces the
general L2 weight decay term in Eq. 6.3.5 with an L2 penalty exclusively on the network’s logits,
yielding

. A
L(0)=1-log[l+exp(—Yy)] + §Hy||2 (6.3.17)

Repeating the same analysis steps taken above, but with SD instead of general L2 penalty, the
critical value for 8" becomes 8" = %aY@OVS*ZVT. This new expression for 8 results in the
following modification of Eq. 6.3.9,

1o

| l—a 1
- aUSQSZUT> — (log @ _ a) , (6.3.18)
A « A

where as earlier, log and division are taken element-wise on the coordinates of cx.

a=n (log

Note that in contrast to Eq. 6.3.9 the matrix multiplication involving U and S in Eq. 6.3.18
cancels out, leaving «; independent of other ov;;’s. We point out this is true for any initial coupling,
without simplifying assumptions. Thus, a simple penalty on output weights promotes decoupled
dynamics across the dual parameter «;’s, which track learning dynamics of feature responses (see
Eq. 6.3.7). Together with Thm. 6.3.5, Eq. 6.3.18 suggests SD should mitigate GS and promote
balanced learning dynamics across features. We now verify this in numerical experiments. For
further intuition, we provide a simple experiment, summarized in Fig. 1, where directly visualizes

the primal vs. the dual dynamics as well as the effect of the proposed spectral decoupling method.

6.4. Experiments

The experiments presented here are designed to outline the presence of GS and its consequences,
as well as the efficacy of our proposed regularization method to alleviate them. Consequently, we
highlight that achieving state-of-the-art results is not the objective. For more details including the

scheme for hyper-parameter tuning, see App. .4.

6.4.1. Two-Moon classification and the margin

Recall the simple 2-D classification task between red and blue data points in Fig. 1.
Fig. 1 (¢) demonstrates the learned decision boundary when SD is used. SD leads to learning a
curved decision boundary with a larger margin in the input space. See App. .4 for additional details

and experiments.

6.4.2. CIFAR classification and adversarial robustness

To study the classification margin in deeper networks, we conduct a classification experiment on
CIFAR-10, CIFAR-100, and CIFAR-2 (cats vs dogs of CIFAR-10) (Krizhevsky et al., 2009) using a
convolutional network with ReLU non-linearity. Unlike linear models, the margin to a non-linear

decision boundary cannot be computed analytically. Therefore, following the approach in Nar et al.
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(2019), we use "the norm of input-disturbance required to cross the decision boundary" as a proxy
for the margin. The disturbance on the input is computed by projected gradient descent (PGD)

(Rauber et al., 2017), a well-known adversarial attack.

—_
fal
(=)
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Table 1. Table compares adversarial robustness of ERM loc norm of the disturbance applied

(vanilla cross-entropy) vs SD with a CNN trained on Fig. 2. The plot shows the cumulative distribution function
CIFAR-2, 10, and 100 (setup of Nar et al. (2019)). SD (CDF) of the margin for the CIFAR-2 binary classification.
consistently achieves a better OOD performance. SD appears to improve the margin considerably.

Table 1 includes the results for IID (original test set) and OOD (perturbed test set by epgp = 0.05).
Fig. 2 shows the percentange of mis-classifications as the norm of disturbance is increased for
the Cifar-2 dataset. This plot can be interpreted as the cumulative distribution function (CDF) of
the margin and hence a lower curve reads as a more robust network with a larger margin. This
experiment suggests that when trained with vanilla cross-entropy, even slight disturbances in the
input deteriorates the network’s classification accuracy. That is while spectral decoupling (SD)
improves the margin considerably. Importantly, this improvement in robustness does not seem
to compromise the noise-free test performance. It should also be highlighted that SD does not
explicitly aim at maximizing the margin and the observed improvement is in fact a by-product of
decoupled learning of latent features. See Section 6.5 for a discussion on why cross-entropy results

in a poor margin while being considered a max-margin classifier in the literature (Soudry et al.,
2018a).

6.4.3. Colored MNIST with color bias

We conduct experiments on the Colored MNIST Dataset, proposed in Arjovsky et al. (2019).
The task is to predict binary labels y = —1 for digits O to 4 and y = +1 for digits 5 to 9. A
color channel (red, green) is artificially added to each example to deliberately impose a spurious
correlation between the color and the label. The task has three environments:

e Training env. 1: Color is correlated with the labels with 0.9 probability.
e Training env. 2: Color is correlated with the labels with 0.8 probability.
e Testing env.: Color is correlated with the labels with 0.1 probability (0.9 reversely correlated).

Because of the opposite correlation between the color and the label in the test set, only learning to

classify based on color would be disastrous at testing. For this reason, Empirical Risk Minimization
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(ERM) performs very poorly on the test set (23.7 % accuracy) as shown in Tab. 2.

Method Train Accuracy Test Accuracy
ERM (Vanilla Cross-Entropy) 91.1 % (£0.4) 23.7 % (4+0.8)
REXx (Krueger et al., 2020) 71.5 % (£1.0) 68.7 % (£0.9)
IRM (Arjovsky et al., 2019) 70.5 % (£0.6) 67.1 % (+1.4)
SD (this work) 70.0 % (+£0.9) 68.4 % (+1.2)
Oracle - (grayscale images) 73.5 % (£0.2) 73.0 % (£0.4)
Random Guess 50 % 50 %

Table 2. Test accuracy on test examples of the Colored MNIST after training for 1k epochs. The standard
deviation over 10 runs is reported in parenthesis. ERM stands for the empirical risk minimization. Oracle is
an ERM trained on grayscale images. Note that due to 25 % label noise, a hypothetical optimum achieves 75
% accuracy (the upper bound).

Invariant Risk Minimization (IRM) (Arjovsky et al., 2019) on the other hand, performs well
on the test set with (67.1 % accuracy). However, IRM requires access to multiple (two in this
case) separate training environments with varying amount of spurious correlations. IRM uses the
variance between environments as a signal for learning to be “invariant” to spurious correlations.
Risk Extrapolation (REx) (Krueger et al., 2020) is a related training method that encourages learning
invariant representations. Similar to IRM, it requires access to multiple training environments in
order to quantify the concept of “invariance”.

SD achieves an accuracy of 68.4 %. Its performance is remarkable because unlike IRM and
REx, SD does not require access to multiple environments and yet performs well when trained on a
single environment (in this case the aggregation of both of the training environments).

A natural question that arises is “How does SD learn to ignore the color feature without
having access to multiple environments?”’ The short answer is that it does not! In fact, we argue
that SD learns the color feature but it also learns other predictive features, i.e., the digit shape
features. At test time, the predictions resulting from the shape features prevail over the color feature.
To validate this hypothesis, we study a trained model with each of these methods (ERM, IRM,

SD) on four variants of the test environment: 1) grayscale-digits: No color channel is provided

and the network should rely on shape features only. 2) colored-digits: Both color and digit are
provided however the color is negatively correlated (opposite of the training set) with the label. 3)
grayscale-blank: All images are grayscale and blank and hence do not provide any information. 4)
colored-blank: Digit features are removed and only the color feature is kept, also with reverse label
compared to training. Fig. 3 summarizes the results. For more discussions see App. .4.

As a final remark, we should highlight that, by design, this task assumes access to the test
environment for hyperparameter tuning for all the reported methods. This is not a valid assumption
in general, and hence the results should be only interpreted as a probe that shows that SD could

provide an important level of control over what features are learned.

68



ERM SD IRM

grayscale  colored grayscale  colored grayscale  colored
1 1 1 1 1 1 [ 100
digit-| 633 % digit-| 683% || 672% | digit-| 669% || 66.6% 80
60 %
grayscale  colored g
: ; L0 £
blank -| 49.9 % 9.4 % blank -| 50.0 % 9.4 % blank -| 49.7 % 49.6 % 20 <
L,
grayscale  colored grayscale  colored grayscale  colored
1 1 1 1 1 1 — Less
L 0.6 confident,
digit -|  0.54 0.44 digit | 0.66 0.63 digit {  0.60 0.59
es]
F04 2
=
Q
o
<
blank |  0.63 blank -{  0.66 041 | blank-| 0.65 0.64 I 0.2
More
——— 0.0 confident

Fig. 3. Diagram comparing ERM, SD, and IRM on four different test environments on which we evaluate a pre-trained
model. Top and bottom rows show the accuracy and the entropy (inverse of confidence), respectively. Analysis:
Compare three values of [ERIEA, EX¥ZA, and 49.6 % : Both ERM and SD have learned the color feature but since it is
inversely correlated with the label, when only the color feature is provided, as expected both ERM and SD performs
poorly. Now compare [(Xifl] and (0.41 : Although both ERM and SD have learned the color feature, ERM is much more
confident on its predictions (zero entropy). As a consequence, when digit features are provided along with the color
feature (colored-digit environment), ERM still performs poorly (23.9 %) but SD achieves significantly better results
(167.2 % ). IRM ignores the color feature altogether but it requires access to multiple training environments.

6.4.4. CelebA with gender bias

The CelebA dataset (Liu et al., 2015a) contains 162k celebrity faces with binary attributes
associated with each image. Following the setup of (Sagawa et al., 2019), the task is to classify
images with respect to their hair color into two classes of blond or dark hair. However, the Gender
€ {Male, Female} is spuriously correlated with the HairColor € {Blond, Dark} in the
training data. The rarest group which is blond males represents only 0.85 % of the training data
(1387 out of 162k examples). We train a ResNet-50 model (He et al., 2016) on this task. Tab. 3
summarizes the results and compares the performance of several methods. A model with vanilla
cross-entropy (ERM) appears to generalize well on average but fails to generalize to the rarest group
(blond males) which can be considered as “weakly" out-of-distribution (OOD). Our proposed SD
improves the performance more than twofold. It should be highlighted that for this task, we use a
variant of SD in which, 2| — 7||2 is added to the original cross-entropy loss. The hyper-parameters
A and 7 are tuned separately for each class (a total of four hyper-parameters). This variant of SD
does provably decouple the dynamics too but appears to perform better than the original SD in Eq.
6.3.17 in this task.

Other proposed methods presented in Tab. 3 also show significant improvements on the
performance of the worst group accuracy. The recently proposed “Learning from failure” (LfF)
(Nam et al., 2020) achieves comparable results to SD, but it requires simultaneous training of two
networks. Group DRO (Sagawa et al., 2019) is another successful method for this task. However,
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Table 3. CelebA: blond vs dark hair classifi-
cation with spurious correlation. We report test
performance over ten runs. SD significantly im-
proves upon ERM. *Group DRO (Sagawa et al.,
2019) requires explicit information about the spu-
rious correlation. LfF (Nam et al., 2020) requires
simultaneous training of two networks.

Fig. 4. CelebA: blond vs dark hair classification.
The HairColor and the Gender are spuriously
correlated which leads to poor OOD performance
with ERM, however SD significantly improves perfor-
mance. ERM’s worst group accuracy is significantly
lower than SD.

unlike SD, Group DRO requires explicit information about the spuriously correlated attributes. In
most practical tasks, information about the spurious correlations is not provided and, dependence

on the spurious correlation goes unrecognized.”

6.5. Related Work and Discussion

Here, we discuss the related work. Due to space constraints, further discussions are in App. .3.

On learning dynamics and Loss Choice

Several works including Saxe et al. (2013b, 2019); Advani and Saxe (2017b); Lampinen and
Ganguli (2018) investigate the dynamics of deep linear networks trained with squared-error loss.
Different decompositions of the learning process for neural networks have been used: Rahaman
et al. (2019); Xu et al. (2019a); Ronen et al. (2019); Xu et al. (2019b) study the learning in the
Fourier domain and show that low-frequency functions are learned earlier than high-frequency
ones. Saxe et al. (2013b); Advani et al. (2020); Gidel et al. (2019) provide closed-form equations
for the dynamics of linear networks in terms of the principal components of the input covariance
matrix. More recently, with the introduction of neural tangent kernel (NTK) (Jacot et al., 2018;
Lee et al., 2019), a new line of research is to study the convergence properties of gradient descent
(e.g. Allen-Zhu et al., 2019b; Mei and Montanari, 2019b; Chizat and Bach, 2018; Du et al., 2018b;
Allen-Zhu et al., 2019a; Huang and Yau, 2019; Goldt et al., 2019; Zou et al., 2020; Arora et al.,
2019b; Vempala and Wilmes, 2019). Among them, Arora et al. (2019¢); Yang and Salman (2019);
Bietti and Mairal (2019); Cao et al. (2019) decompose the learning process along the principal
components of the NTK. The message in these works is that the training process can be decomposed
into independent learning dynamics along the orthogonal directions.

ZRecall that it took 3 years for the psychologist, Oskar Pfungst, to realize that Clever Hans was not capable of doing any
arithmetic.
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Most of the studies mentioned above focus on the particular squared-error loss. For a linearized
network, the squared-error loss results in linear learning dynamics, which often admit an analytical
solution. However, the de-facto loss function for many of the practical applications of neural
networks is the cross-entropy. Using the cross-entropy as the loss function leads to significantly
more complicated and non-linear dynamics, even for a linear neural network. In this work, our

focus was the cross-entropy loss.

On reliance upon spurious correlations and robustness

In the context of robustness in neural networks, state-of-the-art neural networks appear to natu-
rally focus on low-level superficial correlations rather than more abstract and robustly informative
features of interest (e.g. Geirhos et al. (2020)). As we argue in this work, Gradient Starvation is
likely an important factor contributing to this phenomenon and can result in adversarial vulnerability.
There is a rich research literature on adversarial attacks and neural networks’ vulnerability (Szegedy
et al., 2013; Goodfellow et al., 2014; Ilyas et al., 2019; Madry et al., 2017; Akhtar and Mian,
2018; Ilyas et al., 2018). Interestingly, Nar and Sastry (2019), Nar et al. (2019) and Jacobsen et al.
(2018) draw a similar conclusion and argue that “an insufficiency of the cross-entropy loss” causes
excessive invariances to predictive features. Perhaps Shah et al. (2020) is the closest to our work in
which authors study the simplicity bias (SB) in stochastic gradient descent. They demonstrate that
neural networks exhibit extreme bias that could lead to adversarial vulnerability.

On implicit bias

Despite being highly-overparameterized, modern neural networks seem to generalize very well
(Zhang et al., 2016). Modern neural networks generalize surprisingly well in numerous machine
tasks. This is despite the fact that neural networks typically contain orders of magnitude more
parameters than the number of examples in a training set and have sufficient capacity to fit a
totally randomized dataset perfectly (Zhang et al., 2016). The widespread explanation is that the
gradient descent has a form of implicit bias towards learning simpler functions that generalize
better according to Occam’s razor. Our exposition of GS reinforces this explanation. In essence,
when training and test data points are drawn from the same distribution, the top salient features
are predictive in both sets. We conjecture that in such a scenario, by not learning the less salient
features, GS naturally protects the network from overfitting.

The same phenomenon is referred to as implicit bias, implicit regularization, simplicity bias
and spectral bias in several works (Rahaman et al., 2019; Neyshabur et al., 2014; Gunasekar et al.,
2017; Neyshabur et al., 2017b; Nakkiran et al., 2019b; Ji and Telgarsky, 2019; Soudry et al., 2018a;
Arora et al., 2019a; Arpit et al., 2017; Gunasekar et al., 2018; Poggio et al., 2017; Ma et al., 2018).

As an active line of research, numerous studies have provided different explanations for this
phenomenon. For example, Nakkiran et al. (2019b) justifies the implicit bias of neural networks by
showing that stochastic gradient descent learns simpler functions first. Baratin et al. (2020); Oymak
et al. (2019) suggests that a form of implicit regularization is induced by an alignment between
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NTK’s principal components and only a few task-relevant directions. Several other works such
as Brutzkus et al. (2017); Gunasekar et al. (2018); Soudry et al. (2018a); Chizat and Bach (2018)
recognize the convergence of gradient descent to maximum-margin solution as the essential factor
for the generalizability of neural networks. It should be stressed that these work refer to the margin
in the hidden space and not in the input space as pointed out in Jolicoeur-Martineau and Mitliagkas
(2019). Indeed, as observed in our experiments, the maximum-margin classifier in the hidden space

can be achieved at the expense of a small margin in the input space.

On Gradient Starvation and no free lunch theorem

The no free lunch theorem (Shalev-Shwartz and Ben-David, 2014; Wolpert, 1996) states that
“learning is impossible without making assumptions about training and test distributions”. Perhaps,
the most commonly used assumption of machine learning is the i.i.d. assumption (Vapnik, 1998),
which assumes that training and test data are identically distributed. However, in general, this
assumption might not hold, and in many practical applications, there are predictive features in
the training set that do not generalize to the test set. A natural question that arises is how fo
favor generalizable features over spurious features? The most common approaches include data
augmentation, controlling the inductive biases, using regularizations, and more recently training
using multiple environments.

Here, we would like to elaborate on an interesting thought experiment of Parascandolo et al.
(2020): Suppose a neural network is provided with a chess book containing examples of chess
games with the best movements indicated by a red arrow. The network can take two approaches:
1) learn how to play chess, or 2) learn just the red arrows. Either of these solutions results in zero
training loss on the games in the book while only the former is generalizable to new games. With
no external knowledge, the network typically learns the simpler solution.

Recent work aims to leverage the invariance principle across several environments to improve
robust learning. This is akin to present several chess books to a network, each with markings
indicating the best moves for different sets of games. In several studies (Arjovsky et al., 2019;
Krueger et al., 2020; Parascandolo et al., 2020; Ahuja et al., 2020a), methods are developed to
aggregate information from multiple training environments in a way that favors the generalizable /
domain-agnostic / invariant solution. We argue that even with having access to only one training
environment, there is useful information in the training set that fails to be discovered due to Gradient
Starvation. The information on how to actually play chess is already available in any of the chess
books. Still, as soon as the network learns the red arrows, the network has no incentive for further
learning. Therefore, learning the red arrows is not an issue per se, but not learning to play chess is.
Gradient Starvation: friend or foe?

Here, we would like to remind the reader that GS can have both adverse and beneficial conse-
quences. If the learned features are sufficient to generalize to the test data, gradient starvation can be
viewed as an implicit regularizer. Otherwise, Gradient Starvation could have an unfavorable effect,
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which we observe empirically when some predictive features fail to be learned. A better understand-
ing and control of Gradient Starvation and its impact on generalization offers promising avenues to
address this issue with minimal assumptions. Indeed, our Spectral Decoupling method requires an
assumption about feature imbalance but not to pinpoint them exactly, relying on modulated learning

dynamics to achieve balance.

GS social impact

Modern neural networks are being deployed extensively in numerous machine learning tasks.
Our models are used in critical applications such as autonomous driving, medical prediction, and
even justice system where human lives are at stake. However, neural networks appear to base their
predictions on superficial biases in the dataset. Unfortunately, biases in datasets could be neglected
and pose negative impacts on our society. In fact, aour Celeb-A experiment is an example of the
existence of such a bias in the data. As shown in the paper, the gender-specific bias could lead to a
superficial high performance and is indeed very hard to detect. Our analysis, although mostly on the
theory side, could pave the path for researchers to build machine learning systems that are robust to

biases and helps towards fairness in our predictions.

6.6. Conclusion

In this paper, we formalized Gradient Starvation (GS) as a phenomenon that emerges when
training with cross-entropy loss in neural networks. By analyzing the dynamical system correspond-
ing to the learning process in a dual space, we showed that GS could slow down the learning of
certain features, even if they are present in the training set. We derived spectral decoupling (SD)
regularization as a possible remedy to GS.
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Chapter 7

Prologue to Third Article

7.1. Article Details

Simple data balancing achieves competitive worst-group-accuracy. Badr Youbi Idrissi,
Martin Arjovsky, Mohammad Pezeshki, David Lopez-Paz. Proceeding of Conference on Causal
Learning and Reasoning (CLeaR) 2022.

Personal contributions.  The idea of this work was initially developed when Mohammad
Pezeshki was conducting experiments on the CelebA dataset before joining FAIR. This idea
later came up in discussions with Badr Youbi Idrissi and David Lopez-Paz during Mohammad’s
internship at FAIR. Mohammad provided the initial code that validated the idea on the CelebA
dataset. Badr led the project and conducted the majority of the experiments. David and Badr
designed and implemented the final hands-off experimental framework with automatic dataset
downloads and preparation, hyper-parameter search, model selection, and table generation. All
the authors contributed to the writing. Mohammad conducted the experiment in Section 8.4 and

prepared Figure 1. David Lopez-Paz and Martin Arjovsky supervised the project.

7.2. Context

An established practice in the fields of OoD generalization and causal reasoning is to test and
report new methods on datasets that suffer from some form of bias. The most commonly used
datasets are CelebA, Waterbirds, MultiNLI, and Civil Comments. There have been significant
improvements on these datasets in recent years, however, often through developing increasingly
complex algorithms, relying on large computational budgets, and learning multiple hyper-parameters.
However, a question that arises is what are the underlying reasons for the observed improvements,
and can we witness similar improvements with simpler methods? This work takes a step towards

answering this question.



7.3. Contributions

We observed that common worst-group-accuracy datasets suffer from substantial class imbal-
ances. A natural step when encountering such datasets is to rebalance the classes, a step that has
been missing from the existing literature. As a result, we set out to compare state-of-the-art methods
against simple balancing techniques in a systematic way. As the title of this work suggests, we
arrived at the conclusion that "simple data balancing baselines" can already achieve significant
improvements avoiding some of the complexities arising from other more complicated methods.
This is an important and novel result, calling for a closer look at both algorithms and benchmarks.
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Chapter 8

Simple data balancing achieves competitive
worst-group-accuracy

8.1. Introduction

Machine learning classifiers achieve excellent test average classification accuracy when both
training and testing data originate from the same distribution (Vapnik, 1995; LeCun et al., 2015).
In contrast, small discrepancies between training and testing distributions cause these classifiers
to fail in spectacular ways (Alcorn et al., 2019). While training and testing distributions can differ
in multiple ways, we focus on the problem of worst-group-accuracy (Sagawa et al., 2019). In this
setup, we discriminate between multiple classes, where each example also exhibits some (labeled or
unlabeled) artributes. We call each class-attribute combination a group, and assume that the training
and testing distributions differ in their group proportions. Then, our goal is to learn classifiers
maximizing worst test performance across groups.

Optimizing worst-group-accuracy is relevant because it reduces the reliance of machine learning
classifiers on spurious correlations (Arjovsky et al., 2019), that is, patterns that discriminate classes
only between specific groups (Shah et al., 2020; Geirhos et al., 2018, 2020). The problem of worst-
group-accuracy is also related to building fair machine learning classifiers (Barocas et al., 2019),
where groups may have societal importance (Datta et al., 2014; Chouldechova, 2017; Rahmattalabi
et al., 2020; Metz and Satariano, 2020).

Maximizing worst-group-accuracy is an active area of research, producing two main strands
of methods (reviewed in Section 8.3). On the one hand, there are methods that consider access to
attribute information during training, such as the popular group Distributionally Robust Optimization
(Sagawa et al., 2019, gDRO). On the other hand, there are methods that consider access only to
class information during training, such as the recently proposed Just Train Twice (Liu et al., 2021,
JTT). Unsurprisingly, methods using attribute information achieve the best worst-group-accuracy.
But, since labeling attributes for all examples is a costly human endeavour, alternatives such as JTT

are of special interest when building machine learning systems featuring strong generalization and



requiring weak supervision.

This work takes a step back and studies the characteristics of four common datasets to benchmark
worst-group-accuracy models (CelebA, Waterbirds, MultiNLI, CivilComments). In particular, we
observe that these datasets exhibit a large class imbalance which, in turn, correlates with a large
group imbalance (Section 8.2). In light of this observation, we study the efficacy of training systems

under data subsampling or reweighting to balance classes and groups (Section 8.4).

Our experiments (Section 8.5) provide the following takeaways:

e Due to class or attribute imbalance, simple data balancing baselines achieve competitive
performance in four common worst-group-accuracy benchmarks, are faster to train,
and require no additional hyper-parameters.

e While we obtained the best results by balancing groups, simple class balancing is also
a powerful baseline when attribute information is unavailable.

e Access to attribute information is most critical for model selection (in the validation
set), and not so much during training.

e We recommend practitioners to try data subsampling first, since (i) it is faster to
train, (i1) is less sensitive to regularization hyper-parameters, and (iii) has a stable
performance during long training sessions.

e Given the efficacy of subsampling methods, question the mantra “just collect more
data”, particularly when optimizing for test worst-group-accuracy (as opposed to the

classic goal of optimizing test average accuracy).

In essence, we beg for closer examination of both benchmarks and methods for future research
in worst-group-accuracy optimization.

8.2. Popular worst-group-accuracy benchmarks

We consider datasets {(x;, y;, a;) }_;, where each example is a triplet containing an input x;,
a class label y;, and an attribute label a;. The sequel studies four popular worst-group accuracy
benchmarks that follow this structure.

e CelebA (Liu et al., 2015b; Sagawa et al., 2019) consists of images of aligned celebrity faces.
Each face image is annotated with multiple traits. Here, our task is to classify if the person
has blond hair. The attribute indicates whether the person in the image is male or female.

e Waterbirds (Wah et al., 2011; Sagawa et al., 2019) contains images of birds cut and pasted
on different backgrounds. The task is to classify specimens into water birds or land birds.
The attribute indicates whether the bird appears on its natural habitat or not.

e MultiNLI (Williams et al., 2017; Sagawa et al., 2019) is a dataset containing pairs of
sentences. The task is to classify the relationship between the two sentences as being a

contradiction, an entailment, or none of the two. The attribute indicates whether there is a
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Dataset Target Group Counts Class Counts P(Y =y|A = a) P(Y =y)

ly a— Female Male Female Male
CelebA Blond 22880 1387 24267 24.2% 2.0% 14.9%
Not blond 71629 66874 138503 75.8% 98.0% 85.1%

Water Land Water Land
Waterbirds Land bird 56 1057 1113 1.6% 85.2% 23.2%
Water bird 3498 184 3682 98.4% 14.8% 76.8%

Identity Other Identity Other
CivilComments Non toxic 90337 148186 238523 83.6% 92.1% 88.7%
(Coarse) Toxic 17784 12731 30515 16.4% 7.9% 11.3%

No negation Negation No negation Negation

Contradiction 57498 11158 68656 30.0% 76.1% 33.3%
MultiNLI Entailment 67376 1521 68897 35.2% 10.4% 33.4%
Neutral 66630 1992 68622 34.8% 13.6% 33.3%

Table 1. Class and group counts for four popular worst-group-accuracy benchmarks. These datasets
exhibit large class (y) and group imbalance. In particular, class probabilities shift significantly
when conditioning on the attribute (a) value. For instance, the CelebA dataset has only 15% of
examples of class “blond”. Moreover, the probability of “blond” is different when the attribute
value is “female” (24%) or “male” (2%), creating a spurious correlation.

negation word in the second sentence. When a negation word is present, contradiction is the
most likely label.

e CivilComments (Borkan et al., 2019; Koh et al., 2021) is a dataset containing comments
from online forums. The task is to classify whether a comment is toxic or not. There are
multiple attributes annotating the content of each comment, relating to: male, female, LGBT,
black, white, Christian, Muslim, other religion. Following Sagawa et al. (2019), we consider
a coarse version of the CivilComments dataset to train gDRO.This coarse version provides a

binary attribute indicating if any of the eight attributes listed above appears in the comment.

Table 1 lists the number of examples per class and group for these four datasets. The data reveals
that three out of four datasets exhibit a large class imbalance, and that all of them exhibit a large
group imbalance. Furthermore, these imbalances are highly correlated: class probabilities vary
significantly when conditioning on the attribute value. In the Waterbirds dataset, class probabilities
invert when swapping attribute values. In the MultiNLI dataset, the class “contradiction” is much
more likely when there is a negation in the second sentence. In CelebA, it is unlikely to find examples
from the “male” class when the attribute is “blond”. Therefore, these datasets contain spurious
correlations helpful to discriminate only between some groups. When such groups represent most
of the dataset, learning algorithms latch onto the spurious correlations, and resort to memorization
to achieve zero training error (Sagawa et al., 2020).

These observations immediately motivate training classifiers under data subsampling or reweight-

ing to balance out classes and groups. After group balancing, we expect the spurious correlations
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between classes and attributes to vanish, improving test worst-group-accuracy. Before exploring the
efficacy of these simple balancing baselines, we first review some popular state-of-the-art methods

proposed to optimize worst-group-accuracy.

8.3. Popular worst-group-accuracy methods

We review three popular methods in the literature of worst-group-accuracy optimization.

e Empirical Risk Minimization (Vapnik, 1995, ERM) chooses the predictor minimizing the
empirical risk £+ >, £(f(x;),y;). ERM does not use attribute labels.

e Just Train Twice (Liu et al., 2021, JTT) proceeds in two steps. First, JTT trains an ERM
model for a small amount of epochs 7. Assuming that this “simplistic” ERM model
classifies examples based on spurious correlations, its errors should correlate to the subset
of examples where the spurious pattern does not appear. Following this assumption, JTT
trains a final ERM model on a dataset where the mistakes from the “simplistic” ERM model
appear \,, times. JTT does not use attribute labels.

e Group Distributionally Robust Optimization (Sagawa et al., 2019, gDRO) minimizes
the maximum loss across groups: sup,ea Zﬁl Z—z S 0(f (), y:), where G = Y x Ais
the set of all groups, A is the |G| —dimensional simplex and n, is the number of examples
from group g € G contained in the dataset. Therefore, gDRO uses attribute labels. In
particular, gDRO allocates a dynamic weight ¢, to the minimization of the empirical loss of

each group, proportional to its current error.

Other methods The literature in robust optimization is flourishing, so the comparison of all possible
methods renders itself impossible. Some further examples of robust learners not using attribute
information are Learning from Failure (Nam et al., 2020), the Too-Good-to-be-True prior (Dagaev
et al., 2021), Spectral Decoupling (Pezeshki et al., 2020), Environment Inference for Invariant
Learning (Creager et al., 2021), and the GEORGE clustering algorithm (Sohoni et al., 2020). Other
examples of methods that use attribute information include Conditional Value at Risk (Duchi et al.,
2019), Predict then Interpolate (Bao et al., 2021), Invariant Risk Minimization (Arjovsky et al.,
2019), and a plethora of domain-generalization algorithms (Gulrajani and Lopez-Paz, 2020).

8.4. Simple data balancing baselines
Given the class and group imbalance shown in Table 1, we explore the effectiveness of four data
balancing baselines on worst-group-accuracy:

e Subsampling large classes (SUBY), so every class is the same size as the smallest class.
Such subsampling is performed once and fixed before training starts. This baseline does not

use attribute labels.
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e Similarly, subsampling large groups (Sagawa et al., 2020, SUBG), so every group is the
same size as the smallest group. This baseline does use attribute labels.

e Reweighting the sampling probability of each example, so mini-batches are class-balanced
in expectation (RWY). This baseline does not use attribute labels.

e Similarly, reweighting the sampling probability of each example, so mini-batches are group-

balanced in expectation (RWG). This baseline does use attribute labels.

To motivate our baselines, we consider a synthetic logistic regression example (Sagawa et al.,
2020, Section 5.1.). The classes y € {—1,+1} are dependent on two attributes acore, Gspu €
{—1,+1} with correlations pcore, pspu € [—1, 1]. While p.,. remains invariant between the training
and the test data, ps,, varies from the training to the test set. Each attribute dictates a Gaussian
distribution over input features. In particular, each input example x is a concatenation of the

following three components,
_ 2
Yspu Lspu P(Ism ly) = N(“Spuv o°) €R,
T = | Yoore Teore | € R, where P(Zeore | ) = N(Geore, %) € R, (8.4.1)
“noise Tnoise ]P)(xnoise ’ y) = N(O 70'2> c Rd7

where (02, ;) are the variance and scale of each of the features. The scaling factors 7; control
the rate at which the model learns each feature: the larger ;, the faster the model learns about
x;. Moreover, the noise features x,q are independent from the class labels y, and therefore
uncorrelated in expectation. However, in over-parameterized settings where d is greater than the
number of training examples, there exists an empirical correlation between the noise features and
the class labels. Therefore, and depending on the values of ;, over-parametrized models can exploit
noise features to memorize training examples on their path to achieving zero training error.

Figure 1 implements one instance of this example where pcor. = 1 and pgp, = 0.8. Furthermore,
Yspu = 45 Yeore = 1, Ynoise = 20, and o = 0.15. Given these correlation and scaling coefficients, the
spurious feature is learnable much faster than the core and noise features. As shown on the first two
panels of Figure 1, a vanilla ERM model mainly relies on spurious features, and therefore achieves
poor test worst-group-accuracy. On the other hand, subsampling the majority group (SUBG)
decorrelates the spurious feature from the labels, leading to a model that relies on the core feature,
discards the spurious feature, and achieves good test worst-group-accuracy. While reweighting
groups (RWGQG) also solves this toy example, one has to pay special attention to model selection,
since test worst-group-accuracy degrades as the number of training iterations increases. We note
that the probability of misclassifying when using just Zeore 1S P(YZeore < 0) = P(y(1 +yoZ) <
0)=P (Z < —%) =1-9 (—%) =1-9 (%) (since ® is symmetrical) which is 107! in this
particular case. This means that the problem is separable using just z.., With high probability.
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Fig. 1. A linear binary classification task with a spurious feature (z-axis, ranging from -8 to 8),
a core feature (y-axis, ranging from -2 to 2), and 1200 noise features (not depicted, Normally
distributed). Each class contains a majority group (quadrants II and III) and a minority group
(quadrants I and I'V). Shades of red show the predicted probability of class +1 and shades of blue the
predicted probability of class -1, under the classifier w. The value of each position x on the heatmap
is sigmoid(w’ %), where we get & by adding the noise vector of the sample in the training set closest
to z. This enables us to visualize the regions of the 2D space (Zpu,Zcore) Where the model uses
the noise vectors to predict. We depict the performance of three models at their best iteration with
respect to validation worst-group-accuracy. On the left, an ERM model finds the easy solution of
using (i) the spurious feature to discriminate between majority examples of each class, and (ii) the
noise features to memorize the minority examples of each class (shown as small neighbourhoods).
This leads to poor test worst-group-accuracy. On the middle, subsampling the majority groups
(SUBG) of each class decorrelates the spurious feature and the class label, guiding the model to
rely on the core feature. This leads to improved test worst-group-accuracy. On the right, balancing
groups by data reweighting (RWG) also achieves good test worst-group-accuracy, but only when
early-stopping the training process carefully. The figures are averages over eight random seeds.

8.5. Experiments

We implement ERM, JTT, gDRO, SUBY, SUBG, RWY and RWG, as well as the necessary infras-
tructure to experiment on the Waterbirds, CelebA, MultiNLI, and CivilComments benchmarks. Our
implementation follows closely the ones of (Sagawa et al., 2019, gDRO) and (Liu et al., 2021, JTT).
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Method #HP Groups Worst Acc Average
CelebA  Waterbirds MultiNLI CivilComments

ERM 4 No 79.7£3.7 85.5+1.0 67.6£1.2 61.3+£2.0 73.5
JTT 6 No 75.6+£7.7 85.6+0.2 67.5£1.9 67.8+1.6 74.1
RWY 4 No 82.9+2.2 86.1£0.7 68.0£1.9 67.5+0.6 76.2
SUBY 4 No 799+33 82.4+1.7 649+£14 51.2£3.0 69.6
RWG 4 Yes 84.3+1.8 87.6£1.6 69.6+1.0 72.0£1.9 78.4
SUBG 4 Yes 85.6+£2.3 89.1£1.1 68.9+0.8 71.8+£1.4 78.8
gDRO 5 Yes 86.9+1.1 87.1+£3.4 78.0+0.7 69.9+1.2 80.5

Table 2. Averages and standard deviations of test worst-group-accuracies for all methods and
datasets. #HP is the number of tuned hyper-parameters. Simple data balancing baselines match the
performance of state-of-the-art methods within error bars, with two exceptions. Green backgrounds
indicate datasets where algorithms exhibit a statistically different performance at a significance
level of o = 0.05. This is determined using an Alexander-Govern test for the equality of means of
multiple sets of samples with heterogeneous variance (Alexander and Govern, 1994). All algorithms
not using attribute information perform similarly with the exception of SUBY, under-performing in
CivilComments. All algorithms using attribute information perform similarly, with the exception of
gDRO being better on MultiNLI.

For the image datasets Waterbirds and CelebA, we train ResNet50 models pre-trained on ImageNET
(He et al., 2016) using the SGD optimizer. For the NLP datasets MultiNLI and CivilComments, we
train BERT models pre-trained on Book Corpus and English Wikipedia (Devlin et al., 2018) using the
AdamW optimizer (Loshchilov and Hutter, 2017). We tune the learning rate in {10_5, 1074, 10_3},
weight decay in {107*,1073,107%,107*,1}, and JTT’s \,, in {4,5, 6, 20,50, 100}. We tune the
batch size in {2,4, 8,16, 32, 64, 128} for CelebA and Waterbirds and {2,4, 8, 16, 32} for MultiNLI
and CivilComments. We tune JTT’s 7" in {40, 50,60} for Waterbirds, {1, 5, 10} for CelebA, and
{1, 2} for MultiNLI and CivilComments. We fix gDRO’s 7 to 0.1 We allow 50 random combinations
of hyper-parameters for each method and dataset. In contrast to previous literature, we run each
hyper-parameter random combination 5 times to compute the average and standard deviation of the
reported test worst-group-accuracies. These error-bars relate to data shuffling, data subsampling, and
random initialization of last linear layers. We train Waterbirds for 360 epochs, CelebA for 60 epochs,
and both MultiNLI and CivilComments for 7 epochs. We select best models (hyper-parameter
combination and epoch) by computing the worst-group-accuracy on a validation set. Our code is

available at https://github.com/facebookresearch/BalancingGroups.
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ERM JTT RWY SUBY RWG SUBG gDRO
Best test worst-group-accuracy  73.5 74.1 762 69.6 784 788 80.5
L w/o attributes in validation set -15.6 -19.7 -13.1 -244 -17.2 -104 -149
L, w/o regularization 94 99 -65 -8.5 -12 -1.5 -10.3
Minutes per epoch 39 74 39 19 33 5 39

Table 3. Some ablations on the experimental results, averaged over datasets. The first row shows
the best results test worst-group-accuracy, averaged across datasets, obtained by employing a
validation set with attribute annotations and allowing model regularization. The second row shows
the drop in test worst-group-accuracy when performing model selection based on average validation
accuracy (no attribute annotations). The third row shows the drop in test worst-group-accuracy
when performing model selection only amongst those models with weak regularization (no early
stopping, weight-decay 10~%). The fourth row shows median running time per epoch (in minutes).
SUBG is the only algorithm whose performance does not degrade when taking out regularization.

8.5.1. Results

Table 2 reports test worst-group-accuracies for all methods and benchmarks. While some
methods do not require the use of attribute labels for training, we emphasize that all methods require
a validation set with attribute labels to perform model selection. As shown in the second row of
Table 3, the performance of all methods degrades when one performs model selection based on
the average validation accuracy (e.g., not assuming access to attribute labels in the validation set).
Table 2 also lists the number of hyper-parameters tuned by each method, four being the minimal
achieved by ERM, SUBG, SUBY, RWG, RWY (learning rate, weight decay, batch size, early
stopping epoch). In summary, reweighting baselines perform competitively: SUBG scores only
1.7 points less than gDRO on average, while RWY scores 2.1 points more than JTT on average.
Subsampling SUBY performs below its reweighting counterpart RWY, while SUBG outperforms
RWG by a small margin. Finally, the fourth row of Table 3 reports the running times employed
to find the best models discussed above. This shows that ERM and RWY is 1.9 times faster than
its competitor JTT, and that RWG is 1.2 times faster than its competitor gDRO.The subsampling
baselines are 3.8 times faster than JTT and 7 times faster than gDRO while only having slightly

Wworse worst-group-accuracy.
8.5.2. Hyper-parameter analysis

Table 4 summarizes the top 5 best hyper-parameters for each dataset and method, together with
their associated test worst-group-accuracies. We make three observations. First, the range of test
worst-group-accuracies (top 1st worst-group-accuracy - top Sth worst-group-accuracy) is smaller
for methods accessing group information. This means that if we used less than 50 hyperparameter

tuning runs, we would still get a good worst-group-accuracy, which implies that these methods
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Dataset Groups Method Hyperparameters Worst Acc
log,o(LR) log,,(WD) Epoch Batch Size  Range A
ERM 34405 -1.0£0.0  37.1£50  128.0+£0.0 [75.4,80.8] 5.4
No JTT 34409 -1.8404  30.8+6.4  48.04+50.3 [70.6,76.3] 5.8
RWY -4.6+0.5 -1.4405 14.0+8.7 2.8+1.1 [78.9,829] 4.1
CelebA SUBY 44409 -12+04 3144144 42.0+54.3 [78.4,799] 1.4
RWG -5.0+£0.0 -1.040.0 6.0+4.1  36.8+26.3 [82.8,84.4] 1.7
Yes SUBG  -42404 -20+12 27.0+11.5 4.8+1.8 [83.9,86.6] 2.7
gDRO  -5.0+0.0 -3.2+1.3 154+0.7  64.0+0.0 [86.7,87.4] 0.8
ERM -3.8404  -3.6+0.5 3.64+0.9 6.8+£5.6 [60.4,61.3] 0.9
No JTT -5.0+£0.0 -1.8%1.5 45+04  25.6+88 [62.6,68.3] 5.7
Civil RWY -3.6+£0.5  -3.6+0.5 43408  10.84+12.1 [52.6,68.3] 15.7
Comments SUBY  -3.4409 -3.4+09 3.140.6  25.64+8.8 [49.2,51.2] 2.1
RWG 48404 -2.4405 25404 6.4+54 [71.4,72.0] 0.6
Yes SUBG  -32404 -4.0+0.0 3.540.5 17.6+8.8 [70.2,71.8] 1.6
gDRO  -32+04 -3.4405 3.5+1.6 2644125 [68.0,69.9] 1.9
ERM -3.8404  -4.04+0.0 4.64+0.4 8.4+13.2 [65.6,67.6] 2.0
No JTT -5.0+£0.0 -2.240.8 4.340.9 44422 [65.3,67.5] 2.1
RWY -3.8404 -3.8404 4.140.9 9.2+46.6 [60.0,68.0] 8.0
MultiNLI SUBY  -3.840.8 -3.0+0.0 3.84+0.4 9.246.6 [56.2,64.9] 8.7
RWG 48404 -24405 22404  9.2+12.8 [68.1,69.8] 1.7
Yes SUBG  -3.440.5 -3.2+0.8 53403  13.6+12.4 [68.5,689] 04
gDRO  -4.0+0.0 -3.4+05 5.140.8 1924121 [76.4,78.0] 1.5
ERM 42404 28413 207.6+107.5 4.04+2.4 [79.4,85.6] 6.2
No JTT -3.6+0.5 -2.841.1 187.9+117.6 3.6+0.9 [83.7,85.6] 2.0
RWY 44405 -22408 129.64+84.4 40424 [83.2,86.1] 2.9
Waterbirds SUBY  -48404 -34+409 238.6+47.6 2.0+0.0 [79.2,82.4] 3.2
RWG -5.04+0.0 -1.0+£1.0 88.6+100.9 36.04+52.9 [85.4,87.6] 2.2
Yes SUBG  -4.0+0.0 -2.6+1.1 192.0+44.7 4.8+1.8 [87.9,89.1] 1.1
gDRO  -5.0+0.0 -0.6£0.5 2344272  4.04+24 [86.4,882] 1.8

Table 4. Means and standard deviations of the hyper-parameters chosen by the top 5 runs for each
dataset and method. The last column shows the range of the associated test worst-group-accuracies.
Blue indicates low values, yellow indicates large values.

are less sensitive to hyper-parameter choice. Second, methods are most sensitive to the choice

of learning rate, with multiple sets of top-5 runs preferring the same value. Third, RWG prefers

small-capacity models by choosing small learning rates, high weight decays, and early epochs.
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Fig. 2. Average evolution of worst-group-accuracy for the top-5 best runs of each dataset and
method. While reweighting methods (RWY, RWG, gDRO, JTT, ERM) sometimes degrade in
performance over long training sessions, subsampling methods (SUBY, SUBG) show a more robust
behavior.

8.5.3. Evolution of worst-group-accuracy during training

Figure 2 shows the evolution of the train and test worst-group-accuracy for all methods and
datasets. First, we observe that RWY, RWG, and gDRO peak in worst-group-accuracy early, and
then degrade in performance. On the contrary, SUBG has a more stable performance during long
sessions of training, for all datasets and especially in Waterbirds. Second, there is a consistent
generalization gap for all methods and datasets regardless of regularization strength. Since some
models reach 100% train worst-group-accuracy, they must have memorized some of the worst-group

examples.
8.5.4. Differences between reweighting and subsampling groups

While similar at a first glance, training models with data subsampling or reweighting may lead
to different decision boundaries due to different interactions with regularization (Sagawa et al.,
2020). For instance, in the absence of regularization, logistic regression converges to the maximum
margin classifier (Soudry et al., 2018b) in linear realizable problems. Therefore, since any strictly
positive reweighting of example probabilities has no effect on support vectors, we conclude that
regularization is necessary for reweighting to have any effect on the resulting classifier. In contrast,
subsampling changes the support of the dataset, likely removing support vectors and affecting the
final classifier even in the absence of regularization.

While the previous are proven facts only for linear problems, Table 3 shows similar findings for

the over-parametrized deep models used in this work. In particular, the reweighting methods (RWG
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and RWY) and gDRO, both degrade when removing regularization. That is consistent with findings
of Stowik and Bottou (2021) where they establish close theoretical connections between gDRO
and reweighting mechanisms. On the other hand, the subsampling method (SUBG) maintains its
performance in the long run without the need of regularization. Byrd and Lipton (2019); Sagawa
et al. (2019) reach a similar conclusion: strong regularization is necessary to benefit from data
reweighting. Table 4 ratifies this, since SUBG prefers smaller weight decays than RWG.The
superior performance of SUBG suggests two conclusions. On the one hand, we favor subsampling
under tight computational budgets, since the resulting models are faster to train and depend less on
regularization hyper-parameters. On the other hand, the considered benchmarks seem solvable with
small data, showing that either the tasks at hand are too easy or that the reweighting methods fail to
make good use of all the data.

To conclude, we comment on one similarity between early-stopped reweighting and subsam-
pling. Reweighting uses a weighted random sampler to produce mini-batches containing an equal
amount of minority and majority examples (in expectation). This weighted random sampler is with
replacement due to the scarcity of minority examples. Therefore, for a small amount of epochs, the
model has likely seen all the minority examples while only observed a subsample of the majority
examples. More specifically, the number of observed unique majority examples after sampling %
times is on average Np,j(1 — (1 — ﬁ)k ), where Ny, is the number of majority examples contained
in the dataset. Given that the best RWG model stops after 3 epochs for CelebA, it observes only

44% of majority examples on average, which amounts to subsampling the majority group.

8.6. Conclusion

We have shown that simple data balancing baselines achieve state-of-the-art performance in
four popular worst-group-accuracy benchmarks. While balancing groups leads to best worst-
group-accuracy, balancing class labels obtains competitive performance even in the absence of
attribute information. We have also revisited the critical importance of having access to attribute
information in the validation set, necessary to perform model selection based on worst-group-
accuracy. Therefore, hyper-parameter tuning for domain generalization under weak supervision
remains an open problem (Gulrajani and Lopez-Paz, 2020). We have illustrated some differences
between data reweighting and data subsampling, advocating to try data subsampling first, since
(1) it is faster to train and thus allows more hyper-parameter exploration, (ii) has less reliance on
regularization, and (iii) has a more stable performance during long training sessions. All in all, our
results raise two questions. First, are our current worst-group-accuracy benchmarks expressing a

real problem? If so, is there room to outperform simple data balancing baselines in these datasets?
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Chapter 9

General conclusion

Understanding the inner mechanics of neural networks, in some ways, is comparable to understand-
ing the human brain. Some of the significant advances in neuroscience have come from observing
patients with brain pathologies and puzzling out the underlying reasons. Similarly, the failure modes
of neural networks and their puzzling behaviors serve as guiding signals towards finding a better
understanding of neural networks. To that end, in this dissertation, we presented three articles in
which we studied three particular generalization behaviors of neural networks:

e In the first article, we studied the epoch-wise double descent phenomenon. We leveraged tools
from statistical physics to study a simple teacher-student setup exhibiting epoch-wise double
descent similar to deep neural networks. We derived closed-form analytical expressions for
the evolution of generalization error as a function of the training time. We provided a new
mechanistic explanation of epoch-wise double descent and validated our findings through
simple numerical experiments where our theory accurately predicts empirical findings.

e In the second article, we identified and formalized gradient starvation (GS), a deficiency of
gradient descent when optimizing the cross-entropy loss. Using tools from dynamical systems
we showed that GS could slow down the learning of certain features leading to adverse but also
possibly beneficial consequences. If the learned features are sufficient to generalize to the test
data, gradient starvation can be viewed as an implicit regularizer. Otherwise, gradient starvation
could have an unfavorable effect, which we observed empirically when some predictive features
fail to be learned.

e In the third article, we studied the problem of generalization to underrepresented groups.
Particularly, we studied datasets and models which achieve good generalization performance
on average but perform poorly on minority groups of examples. Our results suggest that simple
data balancing methods achieve state-of-the-art accuracy on minority groups, calling for closer
examination of benchmarks and methods for research in out-of-distribution generalization.

These findings will hopefully facilitate further progress in understanding the dynamics of neural

networks. Particularly, this dissertation highlighted two important aspects of research in neural



networks’ theory:

e The significance of incorporating the structure of data into neural networks’ analysis
was particularly highlighted in the first and second articles. We observed the crucial role of
having multi-scale features which were shown to result in the double descent phenomenon.
Developing a solid theory of learning in neural networks necessitates incorporating the interplay
between the structure of data and other components of learning.

e The importance and benefits of studying simpler models were underlined in the first and
third articles. In fact, with a plethora of increasingly complex models and algorithms, it is
becoming more and more difficult to get insight into the inner mechanics of learning. However,
as our findings suggest, interesting behaviors of complex neural networks can already be
observed in simpler linear models. Additionally, the third article highlighted the potential of
incredibly simpler models that require far less tuning and yet achieve competitive performances
and are easier to analyze. These findings offer the community a solid reason to consider simpler

models/algorithms when studying a phenomenon or tackling a problem.

That being said, it is also important to stress that there are several limitations to our studies on
learning theory. For example, in our analysis, we took into account the strength of different features
but imposed strong conditions on their distribution. Real world data such as images have much
more complex structure which renders similar analyses infeasible or extremely non-trivial. Another
limitation of our analysis is the simplicity of toy models. As much as toy models are important for
development of tractable analysis, they may fail to display many behaviors of large-scale neural
networks — behaviors that arise from entangled interactions between different elements of learning.

Certain behaviors are emergent only at a certain scale of complexity.

Despite the long way ahead towards developing a general and unified theory of learning, we
hope that the application of scientific experiments can set the stage for further theoretical analysis

and will enable the researchers to see through the haze of empirical results that surround us.
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Supplementary Material For the First Article

.1. Further Related Work and Discussion

If we consider plots where the generalization error on the y-axis is plotted against other quantities
on the z-axis, we find earlier works that have identified double descent behavior for quantities such
as the number of parameters, the dimensionality of the data, the number of training samples, or
the training time on the z-axis. In this paper, we studied epoch-wise double descent, i.e. we plot
the training time ¢, or the number of training epochs, on the z-axis. Literature displaying double
descent phenomena in generalization behavior w.r.t. other quantities do so in the limit of £ — oo.

From a random matrix theory perspective, Le Cun et al. (1991); Hastie et al. (2019); Advani and
Saxe (2017b), and Belkin et al. (2020) are among works which have analytically studied the spectral
density of the Hessian matrix. According to their analyses, at intermediate levels of complexity, the
presence of small but non-zero eigenvalues in the Hessian matrix results in high generalization error
as the inverse of the Hessian is calculated for the pseudo-inverse solution.

Neyshabur et al. (2014) demonstrated that over-parameterized networks does not necessarily
overfit thus suggesting the need of a new form of measure of model complexity other than network
size. Subsequently, Neyshabur et al. (2018) suggest a novel complexity measure based on unit-wise
capacities which correlates better with the behavior of test error with increasing network size. Chizat
and Bach (2020) study the global convergence and superior generalization behavior of infinitely
wide two-layer neural networks with logistic loss. Goldt et al. (2020) make use of the Gaussian
Equivalence Theorem to study the generalization performance of two-layer neural networks and
kernel models trained on data drawn from pre-trained generative models. Bai and Lee (2020)
investigated the gap between the empirical performance of over-parameterized networks and their
NTK counterparts, first proposed by Jacot et al. (2018).

From the perspective of bias/variance trade-off, Geman et al. (1992), and more recently, Neal
et al. (2018) empirically observe that while bias is monotonically decreasing, variance could be
decreasing too or unimodal as the number of parameters increases, thus manifesting a double
descent generalization curve. Hastie et al. (2019) analytically study the variance. More recently,
Yang et al. (2020) provides a new bias/variance decomposition of bias exhibiting double descent in

which the variance follows a bell-shaped curve. However, the decrease in variance as the model size



increases remains unexplained. For high dimensional regression with random features, d’ Ascoli
et al. (2020) provides an asymptotic expression for the bias/variance decomposition and identifies
three sources of variance with non-monotonous behavior as the model size or dataset size varies.
d’Ascoli et al. (2020) also employs the analysis of random feature models and identifies two forms
of overfitting which leads to the so-called sample-wise triple descent. More recently, Chen et al.
(2020a) show that as a result of the interaction between the data and the model, one may design
generalization curves with multiple descents.

From a statistical physics perspective, Opper (1995); Bos et al. (1993); Bos (1998); Opper and
Kinzel (1996) are among the first studies which theoretically observe sample-wise double-descent
in a ridge regression setup where the solution is obtained by the pseudo-inverse method. Most of
these studies employ the “Gardner analysis” (Gardner, 1988; Gardner and Derrida, 1988, 1989)
for models where the number of parameters and the dimensionality of data are coupled and hence
the observed form of double descent is different from that observed in deep neural networks. A
beautiful extended review of this line of work is provided in Engel and Van den Broeck (2001).
Among recent works, Gerace et al. (2020) also apply the Gardner analysis but to a novel generalized
data generating process called the hidden manifold model and derive the model-wise double-descent
equations analytically.

Finally, recall that towards providing an explanation for the epoch-wise double descent, we
argue that the epoch-wise double descent can be attributed to different features being learned
at different time-scales, resulting in a non-monotonous generalization curve. In relation to the
aspect of different feature learning scales, Rahaman et al. (2019) had observed that DNNs have
a tendency towards learning simple target functions first that can allow for good generalization
behavior of various data samples. Pezeshki et al. (2020) also identify and provide explanation for a
feature learning imbalance exhibited by over-parameterized networks trained via gradient descent
on cross-entropy loss, with the networks learning only a subset of the full feature spectrum over
training. More recently, Zhang et al. (2020), show that certain DNNs models prioritize learning
high-frequency components first followed by the learning of slow but informative features, leading
to the second descent of the test error as observed in epoch-wise double descent.

On the difference between model-wise and epoch-wise double descent curves. In accordance with
its name, model-wise double descent (in the test error) occurs due to an increase in model-size
(number of its parameters), i.e., as the model transitions from an under-parameterized to an over-
parameterized regime. A variety of works have tried to understand this phenomenon from the
lens of implicit regularization (Neyshabur et al., 2014) or defining novel complexity measures
(Neyshabur et al., 2017a). On the other hand, epoch-wise double descent (in the test error) as
treated in our work, is observed to occur for both over-parameterized (Nakkiran et al., 2019a) and
under-parameterized (Heckel and Yilmaz, 2020) setups. As found in our work along with the latter
reference, this phenomenon seems to be a result of different feature learning speeds rather than the

extent of model parameterization. The overlap of the test-error contributions from the different
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weights with varying scales of learning henceforth leads to a non-monotonous evolution of the
model test error as exemplified by epoch-wise double descent.

We also note that the peak in model-wise double descent is associated with the model’s capacity
to perfectly interpolate the data, we do not think an analogous notion exists for the case of epoch-
wise double descent. Our understanding of the peak in the latter is that it corresponds to a training
time configuration whereby a subclass of features are already learnt (due to a larger associated
signal-to-noise-ratio) and are being overfitted upon to fit the target. As training proceeds further, the
remaining set of features are eventually learnt thus allowing for a lowering of the test error.

On the link to complex networks. Generally, exact study of complex neural networks is often
intractable. A common practice is to study a simpler system that conserves key attributes and
then validate the findings on the original complex system. In this work, we build on the same
established practices: we propose a simple linear model with two key advantages, a) it can be solved
analytically, b) exhibits double descent, the property of interest. Subsequently, our experiments

support the extension of our findings and intuitions to complex neural networks.

.2. Technical Proofs
.2.1. The generalization error as a function of R and () (Eq. 4.2.6)

Recall that the teacher is the data generator and is defined as,

Y=y +e, y* = zTW, z ~ N(0, (2.1)

where z € R? is the teacher’s input and y*,y € R are the teacher’s noiseless and noisy outputs,
respectively. W € R? represents the (fixed) weights of the teacher and ¢ € R is the label noise.
While the student network is defined as,

§=a"W, st. x:=F'z, (2.2)
where the matrix F € R%*? is a predefined and fixed modulation matrix regulating the student’s
access to the true input z.

The average generalization error of the student, determined by averaging the student’s error over
all possible input configurations and label noise realizations is given by,
1 .
Lg:= E]Ez,e |:(y —y+ 6)2]7 (:2.3)
in which the variables (y*, §) form a bi-variate Gaussian distribution with zero mean and a covariance

of,

1 R
R Q

<YLyt > <yhi>.
<y*7g>z <?jag>z

Y= , (2.4)
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Here,

~ 1 ~
R:=E,[y*)] = E,][WT22"FW] = gWTFW, and, (2.5)

Q:=E.[)7g] = E.]WTF 22"FW] = dWTFTFW. (2.6)

Utilizing this, Eq. .2.3 can be expressed as,

1 A
Lo:=3E. (W =9+, (2.7)

1 ~ % ~ % x

=583 {(y — (R +/Q - R2j) + 6)2} : (2.8)
1

= 5(1+62+Q—2R). (2.9)

Additionally, we note that expectation w.r.t. a Gaussian variable x is defined as,
+oo g .1’2
K = - . 2.1
)= [T e () 1@ (210

.2.2. The general case exact dynamics (Eqs. 4.2.9-4.2.10)

Recall that to train our student network, we use gradient descent (GD) on the regularized

mean-squared loss, evaluated on the n training examples as,
n A NI
Z v =)+ SIWIE, (:2.11)

where \ € [0, 00) is the regularization coefficient.

The minimum of the loss function, denoted by ng, 1s achieved at,

1 A A e

Vilr = 0= Vy |Slly = XW|;+ J[WI| =0 (2.12)
= —XT(y — XWy) + \Wy =0 (2.13)

= Wy = (XTX + A 1XTy. (2.14)
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Additionally, the exact dynamics under gradient-descent, correspond to,
W, =W,_, — NV, L,
=W, — n[ — X' (y - XWt_l) + /\Wt_l}
= (1 =W, — XTXW,_, + X"y,

ﬁft—l + 77XT’£/7
(.2.15)

|
3
>
~
=
:%
_l’_
=1
>
~
<
_l’_
=
B
~
<
_l’_
=
]
>
~
<

—
|
3
>~
[
I 33
> X
N N
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T ¥
s =
>
N N
VR,
Yot
— 3
S
|
;5
=
+
=
e

which leads to,
W, — Wy = [(1 = )T = X X|(W,y — W),

L (.2.16)
= [(1 = AL = nX"X]' (W — W).

Assuming W, = 0, we arrive at the following closed-form equation,

A

W, = (I — [ —m1- nXTXT) W, (2.17)

where ng is defined in Eq .2.14.
Now back to definition of R in Eq. .2.5 and by substitution of Eq. .2.17, we have,

R(t): = ;WTFWt,

- CllWTF (I — [ =1 nXTXr) W,
— CllWTF (1 —[@=n01- nXTXD (XTX + M) 1XTy,
= ;WTFV (T=[(1 =T = AT) (A +AD VXY, (XTX = VAVT)
= CllWTFV (T=[(1 = n)T = pA") (A + ADTHAVTF'W + Ale),

(.2.18)

_ clz“ [(1— [(1 = A= nA]") Aﬁn} '
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Similarly for @, let D := (I —[(T =M — nA]t), then we have,

1. .
Qt): = EWTFTFW,
1. -
- W (1 — [ —mr- nXTXr)FTF (1 S [FD - nXTXD W,
1. N
— gW;(;VDVTFTFVDVTng,
]_ o ~ -~ a ~
= gWgEVDFTFDVTng, (F:=FV,X = UAY2VT & .= UT¢)
1 T ~T A
= (WIF 1 v4AY2% DF FD VIF'W + A1/2%€
4 AN Al AT, (2.19)
1 -17 =T = ~—1
= —(WTF A% DF FD F W4+ A Y%
4 MR ey Al AT,
1 -7 A T~ 1
= -W'F  —_DF FD F W
d A+ I A+ A ’
1 A ~T A
—AYV2e_— _DF FD A%
* d A+ A+ ©
1 T ‘752 T
=| T [ATA] + =<Tr [B'B
where,
A:=FD F' and, B—FD-t A} (.2.20)
L= re— an = B — 2. L.
A+ A ’ A+ A
.2.3. Special case of approximate dynamics (Eqgs. 4.2.14 and 4.2.15)
Recall that the teacher and student are defined as,
y:=y" +e Y =2TW, 7= W, x :=Fz, (.2.21)
where € ~ N(0, 02) is the label noise, F is the modulation matrix, and ||2||3 = [|[W |5 = 1.
The training and generalization losses are defined as,
1 . Aa 1 .
Lr=-3 - +5IIWIE  Lo=E[5-v)) (222)

According to Eq. 4.2.6, the generalization loss can be written in terms of two scalar variables ?
and @,

1
L= 5(1 +02+Q —2R), where, (.2.23)
o 1 o
R:=E.[y")) = E,[W!22"FW] = gWTFW, and, (2.24)
~ ~ 1.4 o
Q:=E.[99] = E. [WIF 22" FW] = gWTFTFW. (.2.25)
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In the following, we next determine the most probable values of the above scalar entities, from
statistical perspective.
Application of ¢ steps of GD on L results in the following distribution for the student’s weights:

. 1 o
P(W,t) = %e_MT(W’t), (.2.26)

in which ﬁT(W, t) is a modified loss that dictates the distribution of student weights 4% upon
t'" iterations of GD on the original loss ET(W), while 3 corresponds to an (inverse) temperature
parameter of our student weight distribution.

In Eq. .2.26, Z3, is the partition function which is defined as,

25 T A(W2) 0 (AW ETEW, — Qg ) #erv)
Z,B,t -

N N R ) (.2.27)
I I A(W)o (SWIFTFW, - Q)

in which, )y can be perceived to be a target norm the student weights W are being constrained to
and d is the dimensionality of the data.

We are now interested in finding R and () of the typical (most probable) students. Therefore, it
suffices to find the students that dominate the partition function (or more precisely the free-energy).
The free-energy is defined as,

1
sd

where W and z are the teacher’s weight and input, respectively.

fi=——Bw.|InZy,), (.2.28)

Due to the logarithm inside the expectation, analytical computation of Eq. .2.28 is intractable.
However, the replica method (Mézard et al., 1987) allows us to tackle this through the following
identity,

o Ew.|Z5,) —1
Ew :[InZg,] = ll_r}(l) [ f’t] .

(.2.29)

Case 1: F =1. As a first step, we first study a case where F = 1. In that case, as derived in Bos
(1998), Eq. .2.28 can be simplified to,

_1Q-R* 1 n nBG—2HR+ Q
—Bf = 20,-0 +5(Q - Q) - Q—dln[l +B(Qo — Q)] — 241+ 3(Qy— Q) (.2.30)
in which the scalar variables G and H are defined as,
H:=Ey; |[yy =Eq [y (v +¢)] =1, (.2.31)
G:=Eyp fyyl =By [y + ) (y" +6)] =1+ 02, (:2.32)

At this point, in order to find the most probable students, one can extremize the free-energy
f(R,Q, Qo) in Eq. .2.30. The solution to this extremisation is derived in Bos et al. (1993) and
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reads,

1
Vaf=0 = . (2.33)

da

n 1 n2—a
2\
Voo =0 = a=1+ — — = (.2.35)
L—n/d =X+ /(1 —njd—\)?+4)
in which,
a'—l—l—# and 5\'—)\—1—l (.2.36)
T BQ-Qy T -

Case 2: F follows Assumption 4.2.1. The modulation matrix, F, under a SVD, F := USVT has two

sets of singular values such that the first p singular values are equal to o, and the remaining d — p

singular values are equal to 0. We let the condition number of F to be denoted by « := 71 > 1.
Without loss of generality, we hereby assume that U = V = 1. Consequently, the (noiseless)

teacher and the student can be written as the composition of two sub-models as following,

Y=yl s =2l W+ 2l Wy, (teacher decomposition) (.2.37)
J=11+ 9o = alleWI + 02z2T W27 (student decomposition) (.2.38)

in which z; € R? and z, € R%P,
Let §); denote the output of the i*" component of the student. Also let y; and y; denote the

noiseless and noisy targets, respectively. Therefore, for the student components ¢ € 1,2, we have,

~ Txx N T3
i = o121 Wh, U2 = 0225 W,
* T x T
V=% W17 Yy = 29 W27
* T Txx % T T4
Y1 = Y] + 29 Wo — 0925 Wy +e, Yo = Yy + 21 Wi — 0127 W1 +e,
Y5 —fa=ea(t) Y7 —j1=e1(t)

in which e is the explicit noise, added to the teacher’s output while €;(¢) is an implicit variable
noise which decreases as the component j # ¢ learns to match ¢; and y;.

Accordingly, the variables H; and G; for each component ¢ are re-defined as,
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Hy = Elyiyi] = Ey: [y7y7]
G, = E[Z/l?h]?
=E[(y; +v5 — o) (yi +v5 — 02)] + 07,
= Elyiyi] + Elyov5] + E[9202],
— 2E[ys 0] + o7,

p d—p

=4 = -9 2
d+ d +Q2 R2+U€,

:1+Q2—2R2+0'62,

)

SHRS]

in which R; and (); are defined as,
1

R; = Ez[y;k@z] = d

-
Wl oW,

and, Q;:=E,[}:;0:] =

Hy = Elyiyn] = By lyas = 2.
Gy = E[?JzTyz]v
=El(ys +yi —90)" (5 +y1 — )] + 07,
= Elysy5] + E[yivi] + E[9191],
— 2E[yiin] + 0627
_d-p

d
:1+Q1—2R1+0'€2,

+§+Q1—231+U€27

1

WIa2W,
d 7 ) (3]

where o; denotes the singular values of the matrix F as defined in Assumption 4.2.1.

Rewriting Eqgs. .2.33, .2.34, and .2.35 for each of the student’s components, we arrive at,

n 1 n 1
Rlzga, R2:Eaj’
Ql:pa%—n<1+Q2_2R2+03_22;f1>’QQ:(d—pM%—n(leQl_QRl—i_az_ZZ;zaz
ap =1+ — 2 = — | aa =1+ 2) )
L—2 =5 +,/(1—2—X)2+4) — 5 A (- 25 - )P+ 4
hii= 0 ), e L]

where ()1 depends on ()5 and vice versa. However, with simple calculations, we can arrive at

the following standalone equation. Let,

=" ag= 2 (2.39)
p d—p
and also let,
o n2-—a; .

bz‘ = m, C;, = 1-— 2RZ — E a for 1€ {172}, (240)

with which the closed-from scalar expression for Q) (¢, A) reads,

b1 b b1 b

QUA) = Qi+ Qs where, Q= 22T gng i ABATRG - hyy)

1 — b1by
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.2.4. Derivation of £(W ) in Eq. 4.2.22.

The goal is to show,
W, = arg min ZT(W, t), where, W, =W, | — nVWt_lﬁ(Wt,l). (.2.42)
w
For brevity of derivations, here we only consider the case where A = 062 = 0. Recall the
closed-form derivation of Wt in Eq. 4.2.19,

W, — (1 ~ [~ nXTXD (XTX) "1 xTy, (2.43)
. 2
— arg min [XW - X<I - [I - nXTX} t) (XTX)_lXTy] , (.2.44)
14
1 - 2
= argmin - 3ot — <I —[1-nx"X] t) (XTX)_lXTy} , (.2.45)
; n —_—
w =W, assuming 02=0
1 r 2
= argmin 3" [ - J;“TV(I ~[r- nAr) VTW} , (XTX = VAVT)
W L
(.2.46)
1 [ ut o]
= argmin 5 gt - V(I — exp (t log[I — nA]))V Wi, (.2.47)
W L
1 r 2
A arg min o > gt - a:“TV(I — exp ( - nAt))VTW , (log(1 + ) =~ x)
W 2n— |
(2.48)
R~ aurgmini > -Q“ — m“TV(I — exp ( — log A +1 ))VTW i (log(1+z) =~ x)
W 2n | 1/nt ’
(.2.49)
1 . . 1 411N, g, 12
= argmin o 37 |7 ot V(I —[a+ %I} 7775)v wl, (2.50)
- 2
= arg min 1 > 9" - o (XTX + 1[)1XTXW} : (.2.51)
W 2n L nt
:argminlZ_jg’“‘—y“r%—lHWHQ (.2.52)
W 2n— | nt 2 -

Lr(W.,t)
which concludes the proof.

This proof have a core dependence on the findings of Ali et al. (2019, 2020). These works first
formalize the connection between (continuous-time) GD or SGD-based training of an ordinary least
squares (OLS) setup and that of ridge regression, providing bounds on the test error under these
algorithms over training time ¢, in terms of a ridge setup with ridge parameter A = 1/¢. We utilize
these results in the sense that by evaluating the generalization error L of our student-teacher setup
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with explicit ridge regularization, we invoke the connection between the ridge coefficient A and

training time ¢ as described in these works, to obtain the behavior of (ridgeless) L over training.

.2.5. Proof of Lemma 4.3.1

For a linear/linearized model, penalizing () amounts to adding the following regularizer to the
loss,

Ly <+ Lo+ 9]

previously introduced in Pezeshki et al. (2020).
Proof: Recall that the variable () is defined as,

1 - ~
Q= &WTFTFW.

Since Z is normally distributed with unit covariance, we can rewrite () as,

1. o 1. .
Q= QWTFTZTZFW = gWTXTXW.

We note that for a linear/linearized model of form § := X TTW, the following identity holds,
1911 =979 = W XTXW = dQ.
.2.6. Replica Trick

In the following, we detail the mathematical arguments leading to the replica trick expression
(Edwards and Anderson, 1975). For some » — 0, we can write for any scalar z:

2" =exp(rlnz) =liml+rlnzx
r—0

= limrhhz =limz" —1
r—0

r—0
ot =1 (.2.53)
= Inz = lim
r—0 r
Eflnz] = tim 221 =L g i
- Ellnz] = lim — > B averaging

.2.7. Computation of the free-energy

The self-averaged free energy (per unit weight) of our student network, is given by (Engel and
Van den Broeck, 2001),

~5f = < (0 2. (254)

Here, 5 = 1/T is the inverse temperature parameter corresponding to our statistical ensemble, d the
(teacher) student network width, and Z the partition function of the system defined as (n: number

of training examples).
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Leveraging the replica trick, we next obtain,

{Z))ew = H H /du W) dyd(y* e ANEr (way”)

a=1p=1

A -e) ez,

_ H H/d Wa dyady dy*“dg*ﬂe_/BNgT(ya7y*)€iy*ug*,u+iyg:gg

a=1p=1 2m

(oo,

where in the last line above, we have expressed the inserted ¢ functions using their integral represen-

(.2.55)

tations. To make further progress, we introduce the auxiliary variables,

S WEIA;W™ = dR,, (.2.56)
ija

> WolyWi = dQu (2.57)
ij(a,b)

via the respective ¢ functions, to arrive at,

((Z™)) 2 W = H /d (W?) dyadge dy™dg™ e BNET(Yary™) piy™ "™ H +iyay

b 2 2m
x [ Pa® [ PR s (Z WA, ;W% — PR ) 5 ( S WIT, Wi — PQab)
i ii(at)

x<<exp( %Ozw -3 Zya FQu =3 0" i e —;Z@"‘”>Q)>>

tya © W

(.2.58)
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Repeating the procedure of expressing the above ¢ functions using their integral representations, we
then get (aw = n/d),

n dQO d@Oa ananb dRa}? ab Aab
(2" Nz = /H\/ﬂ A 27m/d 27T/d ( ZQOQOG—FZP%Q Q

~ dWwe
LiPY R“R“) Jan \/VQV_W exp ( S Qo Wi, W
a 7,0 1,7,

—1 Z @abW;FijWg —1 Z EQAZ']'WC{) X

i,j,a<b i,5,a

/H dytdg” dy ® e BNET(Yary™) exp ( _ ; Z(y*u)Q +4 Zg}ﬁjyﬁ
Iz Ha
32 (- Ri) 05 it (@ w) i )
on ab) e
(.2.59)

If we now, perform a singular value decomposition of the covariance matrix I" as, ' = U7SU =
VTV, where S: matrix of singular values of I', and we have expressed, V = st/ 2U, then one can

proceed to write,

n dQO d@Ua ananb dRaéa 1P A
(Z"))aw = dot ]V] /H Vo dr 2rjd 2rjd exp (ZQOQOa

+zPZ@“b@“b+zPZRaRa> /H %—W exp(‘ ;ZQOG ()

a<b

dyzdge dy™ e
i Y Qu Wi — i R, WJ> /H 7 —anerer)  (2.60)
i,a<b 1,4, V2w

1 e L . a
o (=5 SO i it~ 5 3 (1= R 7~ iR
Iz Hya

a.p
1 PN a a
—5 X e ("R Rb))
Hn(a,b)

having expressed, W, = VIV, and identifying A = S/?U from our definitions. Now, since in the
above, the W/ integrals factorize in ¢, and similarly the y*, ¢ and dy** factorize in y, one can

proceed to write:

dQOdQOa ananb dRaRa p <P |:Z Z QOQOG

(2" aw = det|V| \/mw onjd  2n/d G
iy Q“bQ“b iy RB® + Gg(O0n,0™ B + aGu(Q™, R“)D
a<b
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where,

A oA A dWwe j N e
Gs(Qua Q™ 1) =1n [ [ 75 o (=55 Qo — i Y- Quitalli - PR )
a a<b

d ad a d * * ; 54
(Qa‘b Ra —In /H YaAY gﬂ- —BNET (Ya,y )eXp ( — —(y )2 + Zzyaya

5 Z (1 - RZ) Ja)? Z Tab (Qab RaRb) — Yt Z@GR“>

(2.62)

Now, in the limit d — oo, Eq. .2.61 can be approximated using the saddle-point approach (Bender
and Orszag, 2013),

<<Z">>LW =~ eXtrQo,Qoa,Q“anb,Raﬁ“ exp ( |: Z QOQOa + 4 Z Qaanb
ast (2.63)
+i SRR+ Gs(Qoa.Q R + aGp(Q, Ra)D

where, extr corresponds to extremization of ((Z")), w over the respective order parameters. Per-

forming this extremization over Qo,, Q% and %, then generates an expression of the form,

1Q-R* 1 a
2000 *111(@0—@)—5111[14‘5(@0—@)]

_of 1-2R+Q
2 1+8(Q—Q)

where we have invoked replica symmetry in the form, Q® = @ and R* = R, and that & =
(y* — y)?/2. Plugging this back into Eq. .2.54, then finally yields,

((Z™))ew = €xtrg, o.r €Xp {nN(
(.2.64)

2
Bf:—extrQO,QvR{;g RQ 1, (QO—Q)—%ln[lJrﬁ(Qo—Q)]
(.2.65)
_aB 1-2R+Q
21—1—5(@0—@)}

The remaining pair of order parameters generate the following set of transcendental equations on

extremization (Bos, 1998):

(6%
R:E
92—
Q= aZOia (1 -, aoz) (.2.66)
1
R T

where, a = max[1,a] for " — 0.
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Now, the above determined values of R,() and (), can be perceived as the maximally likely
values of R,() and ), of our teacher-student setup, for an inverse temperature 3 parameterizing the

system.
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Supplementary Material For the Second Article

3. Further discussions

On Primal (parameter space) vs. Dual (feature space) dynamics: Although the cross-
entropy loss is convex, it does not admit an analytical solution, even in a simple logistic regression
(Xu and Frank, 2004). Importantly, it also does not have a finite solution when the data is linearly
separable (Albert and Anderson, 1984) (which is the case in high dimensions (Cover, 1965)). As
such, our study is concerned with characterizing the solutions that the training algorithm converges
to. A dual optimization approach enables us to describe these solutions in terms of contributions of
the training examples (Hsieh et al., 2008). While primal and dual dynamics are not guaranteed to
match, the solution they converge to is guaranteed to match (Burges and Crisp, 2000), and that is
what our theory builds upon.

For further intuition, we provide a simple experiment in app .5, directly visualizing the primal
vs. the dual dynamics as well as the effect of the proposed spectral decoupling method.

The intuition behind Spectral Decoupling (SD): Consider a training datapoint z in the middle
of the training process. Intuitively, the model has two options for decreasing the loss of this example:

(1) Get more confident on a feature that has been learned already by other examples. or,

(2) Learn a new feature.

SD, a simple L2 penalty on the output of the work, would favor (2) over (1). The reason is that
(2) does not make the network over-confident on previously learned examples, while (1) results in
over-confident predictions. Hence, SD encourages learning more features by penalizing confidence.
Our principal novel contribution is to characterize this process formally and to theoretically and
empirically demonstrate its effectiveness.

From another perspective, here we describe how one can arrive at Spectral Decoupling. From
Thm. 6.3.5, we know that Gradient Starvation happens because of the coupling between features
(equivalently alphas). We notice that in Eq. 6.3.9, if we get rid of S?, then the alphas are decoupled.
To get rid of S? , one can see that instead of ||@||? as the regularizer, we should have ||SVT||2.
, since j = ® = UVTH. We would like to highlight that

|? as the regularizer means that different directions are penalized according to their strength.

Luckily, this is exactly equal to ||¢)?
|SVTe
It means that we suppress stronger directions more than others which would allow weaker directions




to flourish.

Then why not use Squared-error loss for classification too? The biggest obstacle when using
squared-error loss for classification is how to select the target. For example, in a cats vs. dogs
classification task, not all cats have the same amount of "catty features". However, recent results
favor using squared-error loss for classification and show that models trained with squared-error
loss are more robust (Hui and Belkin, 2020). We conjecture that the improved robustness can be
attributed to a lack of gradient starvation.

On using NTK: Theoretical analysis of neural networks in their general form is challenging
and generally intractable. Neural Tangent Kernel (NTK) has been an important milestone that has
simplified theoretical analysis significantly and provides some mechanistic explanations that are
applicable in practice. Inevitably, it imposes a set of restrictions; mainly, NTK is only accurate in
the limit of large width. Therefore, the common practice is to provide the theoretical analysis in
simplified settings and validate the results empirically in more general cases (see, e.g. Huang et al.
(2020); Chen et al. (2020b); Wang et al. (2021)). In this work, we build on the same established
practices: Our theories analytically study an NTK linearized network; and we further validate our
findings on several standard neural networks. In fact, in all of our experiments, learning is done
in the regular "rich" (non-NTK) regime, and we verify that our proposed method, as identified
analytically, mitigates learning limitations.

Future Directions: This work takes a step towards understanding the reliance of neural net-
works upon spurious correlations and shortcuts in the dataset. We believe identifying this reliance
in sensitive applications is among the next steps for future research directions. That would have
a pronounced real-world impact as neural networks have started to be used in many critical appli-
cations. As a recent example, we would like to point to an article by researchers at Cambridge
(Roberts, 2021) where they study more than 300 papers on detecting whether a patient has COVID
or not given their CT Scans. According to the article, none of the papers were able to generalize
from one hospital data to another since the models learn to latch on to hospital-specific features.
An essential first step is to uncover such reliance and then to design methods such as our proposed

spectral decoupling to mitigate the problem.

4. Experimental Details
4.1. A Simple Experiment Summarizing the Theory

Here, we provide a simple experiment to study the difference between the primal and dual form
dynamics. We also compare the learning dynamics in cases with and without Spectral Decoupling
(SD).
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Recall that primal dynamics arise from the following optimization,

Al A
rrbin (1.log [1+exp(—Yy)| + 3 0 2) :

while the dual dynamics are the result of another optimization,

Also recall that Spectral Decoupling suggests the following optimization,
Alis
mgin <1 log [1+exp (=Yy)] + 2HyHQ> .

We conduct experiments on a simple toy classification with two datapoints for which the

0.8 —0.6
matrix U of Eq. 6.3.15 is defined as, U = 06 08 )’ The corresponding singular values

S = [s1, 89 = 2] where s; € {2,3,4,5,6}. According to Eq. 6.3.13, when S = [2, 2], the dynamics
decouple while in other cases starvation occurs. Fig. 1 shows the corresponding features of z; and
z9. It is evident that by increasing the value of sy, the value of 2] increases while z3 decreases
(starves). Fig. 1 (left) also compares the difference between the primal and the dual dynamics. Note
that although their dynamics are different, they both share the same fixed points. Fig. 1 (right)
also shows that Spectral Decoupling (SD) indeed decouples the learning dynamics of z; and 2z, and

hence increasing the corresponding singular value of one does not affect the other.
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Fig. 1. An illustration of the learning dynamics for a simple 2D classification task. x-axis and y-axis represent
learning along features of z; and zo, respectively. Each trajectory corresponds to a combination of the
corresponding singular values of s; and so. It is evident that by increasing the value of si, the value of
2] increases while z5 decreases (starves). (Left) compares the difference between the primal and the dual
dynamics. Note that although their dynamics are different, they both share the same fixed points. (Right)
shows that Spectral Decoupling (SD) indeed decouples the learning dynamics of z; and 25 and hence
increasing the corresponding singular value of one does not affect the other.
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4.2. Two-Moon Classification: Comparison with other regularization meth-

ods

We experiment the Two-moon classification example of the main paper with different regu-
larization techniques. The small margin between the two classes allows the network to achieve
a negligible loss by only learning to discriminate along the horizontal axis. However, both axes
are relevant for the data distribution, and the only reason why the second dimension is not picked
up is the fact that the training data allows the learning to explain the labels with only one feature,
overlooking the other. Fig. 2 reveals that common regularization strategies including Weight Decay,
Dropout (Srivastava et al., 2014) and Batch Normalization (Ioffe and Szegedy, 2015) do not help
achieving a larger margin classifier. Unless states otherwise, all the methods are trained with Full

batch Gradient Descent with a learning rate of le — 2 and a momentum of 0.9 for 10k iterations.

Weight Decay

No regularization Training longer

Adam (Ir = 0.0001)

&

Adam (Ir = 0.003)
H /’

Fig. 2. The effect of common regularization methods on a simple task of two-moon classification. It can be seen that
common practices of deep learning seem not to help with learning a curved decision boundary. The acronym “Ir” for the
Adam optimizer refers to the learning rate. Shown decision boundaries are the average over 10 runs in which datapoints
and the model initialization parameters are sampled randomly. Here, only the datapoints of one particular seed are
plotted for visual clarity.

4.3. CIFAR classification

We use a four-layer convolutional network with ReLU non-linearity following the exact setup of
Nar et al. (2019). Sweeping A from O to its optimal value results in a smooth transition from green
to orange. However, larger values of A will hurt the IID test (zero perturbation) generalization. The
value that we cross-validate on is the average of IID and OOD generalization performance.

4.4. Colored MNIST with color bias

For the Colored MNIST task, we aggregate all the examples from both training environments.

Table. 1 reports the hyper-parameters used for each method.
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Method Layers Dim Weight decay LR Anneal steps Penalty coef

ERM 2 300 0.0 le-4 0/2000 n/a
SD 2 300 0.0 le-4 450/2000 2e-5
IRM 2 390  0.00110794568 0.00048985365 190/500 91257.18613115903

Table 1. Hyper-parameters used for the Colored-MNIST experiment. Hyper-parameters of IRM
are obtained from their released code. “Anneal steps” indicates the number of iterations done before
applying the method.

More on Fig. 3. ERM captures the color feature and in the absence of any digit features
(environment 4), the network’s accuracy is low, as is expected because of reverse color-label match
at testing. Moreover, the ERM network is very confident in this environment (confidence is inversely
proportional to entropy). The SD network appears to capture the color feature too, with identical
classification accuracy in environment 4, but much lower confidence which indicates the other
features it expects to classify are absent. Consistent with this, in the case where both color and
digit features are present (environment 2), SD achieves significantly better performance than ERM
which is fooled by the flipped colors. This is again consistent with SD mitigating GS caused by the
color feature onto the digit shape features. Meanwhile, IRM appears to not capture the color feature
altogether. Specifically, when only the color is presented to a network trained with IRM, network
predicts 50% accuracy with low confidence meaning that IRM is indeed “invariant” to the color as
its name suggests. We note that further theoretical justifications are required to fully understand the
underlying mechanisms in learning with spurious correlations.

As a final remark, we highlight that, by design, this task assumes access to the test environment
for hyperparameter tuning for all the reported methods. This is not a valid assumption in general,
and hence the results should be only interpreted as a probe that shows that SD could provide an
important level of control over what features are learned.

The hyperparameter search has resulted in applying the SD at 450" step. We observe that 450"
step is the step at which the traditional (in-distribution) overfitting occurs. This suggests that one
might be able to tune hyperparameters without the need to monitor on the test set.

For all the experiments, we use PyTorch (Paszke et al., 2017). We also use NNGeometry George
(2020) for computing NTK.

4.5. CelebA with gender bias: The experimental details

Figure 4 depicts the learning curves for this task with and without Spectral Decoupling. For the
CelebA experiment, we follow the same setup as in Sagawa et al. (2019) and use their released code.
We use Adam optimizer for the Spectral Decoupling experiments with a learning rate of 1e — 4 and

a batch size of 128. As mentioned in the main text, for this experiment, we use a different variant of
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Spectral Decoupling which also provably decouples the learning dynamics,

. & A <
g 1+ (106 1+ exp (Y3 + 515 1)

4.5.1. Hyper-parameters. We applied a hyper-parameter search on A\ and v for each of the
classes separately. Therefore, a total of four hyper-parameters are found. For class zero, A\g = 0.088,
Yo = 0.44 and for class one, A\; = 0.012, v; = 2.5 are found to result in the best worst-group
performance.

During the experiments, we found that for the CelebA dataset, classes are imbalanced: 10875
examples for class 0 and 1925 examples for class 1; meaning a ratio of 5.65. That is why we
decided to penalize examples of each class separately with different coefficients. We also found that
penalizing the outputs’ distance to different values 7, and 7, helps the generalization. As stated in
lines 842-844, the hyperparameter search results in the following values: 2.5 and 0.44.

.4.6. Computational Resources

For the experiments and hyper-parameter search an approximate number of 800 GPU-hours has
been used. GPUs used for the experiments are NVIDIA-V100 mostly on internal cluster and partly
on public cloud clusters.

.5. Proofs of the Theories and Lemmas

S.1. Eq. 6.3.7 Legendre Transformation

Following Jaakkola and Haussler (1999), we derive the Legendre transformation of the Cross-
Entropy (CE) loss function. Here, we reiterate this transformation as following,
Lemma .5.1 (CE’s Legendre transformation, adapted from Eq. 46 of Jaakkola and Haussler (1999)).
For a variational parameter o € |0, 1], the following linear lower bound holds for the cross-entropy
loss function,
L(w):= log(l + e_”) > H(a) — aw, (.5.1)
in which w := y{j and H(«) is the Shannon’s binary entropy. The equality holds for the critical

value of a* = —V L, i.e., at the maximum of r.h.s. with respect to a.

PROOF. The Legendre transformation converts a function £(w) to another function g(«) of conju-
gate variables a, £(w) — g(«). The idea is to find the expression of the tangent line to £(w) at wy
which is the first-order Taylor expansion of £(w),

t(w, WO) = E(wo) + (w — WQ)VU_;E’“J:MO, (52)

where t(w, wp) is the tangent line. According to the Legendre transformation, the function £(w)

can be written as a function of the intercepts of tangent lines (where w = 0). Varying w, along the
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x-axis provides us with a general equation, representing the intercept as a function of w,
tw=0,wy =w) =L(w) —wV,L. (.5.3)

The cross-entropy loss function can be rewritten as a soft-plus function,

L(w) =—logo(w) = 1og<1 + e“”), (.5.4)

in which w := yg. Letting o := —V L = o(—w) we have,
w:log<1_a> , (.5.5)

a

which allows us to re-write the expression for the intercepts as a function of « (denoted by g(«)),
g9(@) = L(w) —wV,L (:5.6)
= L(w) + aw (.5.7)
= —aloga — (1 —a)log(l — a) (.5.8)
= H(a), (.5.9)

where H(«) is the binary entropy function.
Now, since L is convex, a tangent line is always a lower bound and therefore at its maximum it
touches the original function. Consequently, the original function can be recovered as follows,
L(w) = fmax H(a) — aw. (.5.10)
Note that the lower bound in Eq. .5.1 is now a linear function of w := y but at the expense of
an additional maximization over the variational parameter o. An illustration of the lower bound is
depicted in Fig. 3. Also a comparison between the dual formulation of other common loss functions

is provided in Table. 2.
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“H()

a:=-V,L

Fig. 3. Diagram illustrating the Le-
gendre transformation of the function

Loss Primal form Dual form

Cross-Entropy  log(1 + e~ ") max [H (o) — aw}

0<a<l1

max [alT — aw]
0<a<l

Hinge loss max (0,1 — w)

Squared error (1—w)? mgx[ —1la?+a— aw}

Table 2. Dual forms of other common different loss func-
tions. The dual form of the Hinge loss is commonly used
in Support Vector Machine (SVMs). For the ease of nota-

L(w) =log(1 + e™) . The function is shown
in blue, and the tangent line is shown in red.
The tangent line is the lower bound of the
function: H(a) — aw < L(w).

tion, we assume scalar w and «.

.5.1.1. Extension to Multi-Class. Building on Eq. 65-71 of Jaakkola and Haussler (1999), which
derives the Legendre transform of multi-class cross-entropy, one can update Eq. 6.3.6 of the main

paper to

(5.11)

Za Ges

where H («) is the entropy function, C' = #classes, and vectors of o are defined for each class.

Then Eq. 6.3.8 of the paper is then updated to,
1 ¢©
(H(a) - 2A§:@ — a*)dP” (5, — a*)").

0, — a, the theory of SD should remain unchanged.

—ZyCIOg ) > H(a

c=1

(.5.12)
With a change of variable o¢ :=

5.2. Eq. 6.3.8 Dual Dynamics

In Eq. 6.3.7, the order of min and max can be swapped as proved in Lemma 3 of Jaakkola and
Haussler (1999), leading to,

A
meinﬁ () = moe}xmein (1 -H(a) —aYy + 2H0H2> :
The solution to the inner optimization is,

1
WT:XaY@m

which its substitution into Eq. 6.3.7 results in Eq. 6.3.8.
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5.3. Eq. 6.3.9

Simply taking the derivative of Eq. 6.3.8 will result in Eq. 6.3.9. When we introduce continuous
gradient ascent, we must define a learning rate parameter. This term is conceptually equivalent to

the learning rate in SGD, but in this continuous setting, it has no influence on the fixed point.

S5.4. Eq. 6.3.10 Approximate Dynamics

Approximating dynamics of Eq. 6.3.9 with a first order Taylor expansion around the origin of

the second term, we obtain

PRy <—loga _ iaU (82 + A1) UT) .

PROOF. Starting from the exact dynamics at Eq. 6.3.9,

Q=1 (— logax +log (1 — o) — iaUS2UT> : (.5.13)

we perform a first-order Taylor approximation of the second term at =0 :
log(1—a) = —a+0(c?). (.5.14)

Replacing in Eq. .5.13, we obtain

a~n (— logax — a — iaUSQUT> , (.5.15)
ERPp (— log @ — aUTU” — i\aUSZUT) , (5.16)
b (— log o — iaU (8% + A1) UT) . (5.17)
O

5.5. Thm. 6.3.3 Attractive Fixed-Points

Theorem .5.2. Any fixed points of the system in Eq. 6.3.10 is attractive in the domain «; € (0,1).

PROOF. We define

1— oy 1
fi(a;) =1 | log (1—a) - = Zuiksi(uT)kjaj (.5.18)
X2

Q5

as the gradient function of the autonomous system Eq. 6.3.9.
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We find the character of possible fixed points by linearization. We compute the jacobian of the

gradient function evaluated at the fixed point.

Jip = dfilay) (.5.19)
dozk o
Jik =1 (—&»k (1 —a))] =A™ Zuﬂsf(uT@ (.5.20)
!

The fixed point is an attractor if the jacobian is a negative-definite matrix. The first term is negative-
definite matrix while the second term is negative semi-definite matrix. Since the sum of a negative

matrix and negative-semi definite matrix is negative-definite, this completes the proof. U

.5.6. Eq. 6.3.11 Feature Response at Fixed-Point

At the fixed point a*, corresponding to the optimum of Eq. 6.3.8, the feature response of the
neural network is given by,

1
Z* — XSQUTOC*T.

PROOF. The solution to the converged 8" at the Fixed-Point a* of Eq. 6.3.10 is,

1
H*T = Xa*Y¢0,

which by substitution into Eq. 6.3.4, Eq. 6.3.11 is derived.

5.7. Eq. 6.3.12 Uncoupled Case 1

If the matrix of singular values S? is proportional to the identity, the fixed points of Eq. 6.3.10
are given by,

. AWATLs2 1) . SPWATE?4+1)
o = 82 n 3 , Z] = 32 T b\ Zl:uw, (521)

where W is the Lambert W function.

PROOF. When S? = s2I, Eq. 6.3.10 becomes

1

v~ (— logar — 1T (s + ) IUT) , (5.22)
1

amn (— G (s*+ )\)) . (.5.23)
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Fixed points of this system are obtained when & = 0 :

LD
0=n (— log o — i ;\F a) , (.5.24)
242
logax = _2 :\l_ . (.5.25)

The solution of this equation is

WA % +1)
¥ — 5.26
% s+ A ( )
With z given by Eq. 6.3.11, we have

. SW(AT1s? +1)

U1 5.27
2+ A ’ ( )
. SSWOATs? 4+ 1)
O
5.8. Eq. 6.3.13 Uncoupled Case 2
If the matrix U is a permutation matrix, the fixed points of Eq. 6.3.10 are given by,
WA s? +1 W2 4+ 1
of = WO s £1) o= SWOT s 1) (5.29)
Sy + A J S + A

PROOF. When U is a permutation matrix, it can be made an identity matrix with a meaningless

reordering of the class labels . Without loss of generality, we therefore consider U = 1

. L (a2
axn (— log o — Xa (S + )\) I) ) (.5.30)
Fixed points of this system are obtained when & = 0
1 2
0=n (— log a; — Xai (31‘ + A)) , (.5.31)
1 2
log oy = —a (s7+2) (.5.32)

The solution of this equation is

AW(ALs2 + 1)

¥ — ! . 5.33
i 2+ A ( )
With z given by Eq. 6.3.11, we have
1
7" = XSQIa*T, (.5.34)
. SWO T+ 1)
z; = Y : (.5.35)
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5.9. Lemma 6.3.4 Perturbation Solution

PROOF. Starting from the autonomous system Eq. 6.3.10 and assumption in 6.3.4, we have
a=n(-loga— aA) (.5.36)
where
A =\'U(S?+ AU (.5.37)

Since the off-diagonal terms are of order ¢, we treat them as a perturbation. The unperturbed

system has a solution oy given by case 2

Aii
;= Wﬁl.. ). (.5.38)

We can linearize the autonomous system Eq. 6.3.10 around the unperturbed solution to find,

. d .
a~n (— log (ap) — oy @ diag (A) + 1o [—log () — a ©® diag (A)]

a~n (1 — log (a*) — (diag (A) + aS_l) ©) a) . (.5.40)

la- a;;)> (539

0

We then apply the perturbation given by off-diagonal terms of A to obtain
& ~n (1—log (o) — o [A + diag (o ')]) | (.5.41)

where diag (ao_l) is the diagonal matrix obtained from o~ and where the inverse is applied
element by element.
Solving for & = 0, we obtain the solution
1

o’ = (1-log (o)) [A + diag (o ™")| (5.42)

.5.10. Thm. 6.3.5 Gradient Starvation Regime

Theorem .5.3 (Gradient Starvation Regime). Consider a neural network in the linear regime,
trained under cross-entropy loss for a binary classification task. With definition 6.3.1, assuming
coupling between features 1 and 2 as in Eq. 6.3.15 and s3 > s3, we have,
dz;
ds?

<0, (.5.43)

which implies GS.
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PROOF. From lemma 6.3.4, and with U given by Eq. 6.3.15, we find that the perturbatory solution
for the fixed point is

52 92—52 s2
* )‘+62( _82)+52 2 (.2 2 W<A+o (41/\ 2)+2>
al = | AW )\ +1 o\/1—-906 (82—81)-‘1-/\6

(=) Pl

W<>+62<sg—s§>+s§)
A+ 52 — 32 + Xe + 52
W(A+62(—sf))\+6zsg+s§)
A+ %82 — 1) 52 4 e

2 (_ 2 2.2 1 2
az = >‘<W<)\+5 ( 811+682+81)+1> 6\/1—52( —51)+)\ew

<A+52 2 —82)+s2> +1>>]

W(/\+52(5 752)+s§)
s 782) + /\+62( 732)+)\e . + 52

—1

<A+52(752{)+525§+5f )
X

W(<>> -
A+6%53 — (62 —1) 83+ de .

We have found at Eq. 6.3.11 that the corresponding steady-state feature response is given by

1
_ stuTa*T (.5.44)

In the perturbatory regime ¢ is taken to be a small parameter. We therefore perform a first-order
Taylor series expansion of z* around ¢ = 0 to obtain

o)
o (w (2) 1) (e VT 4 w(E) ried
AsZe (W( 1)+1) (W( A2)+1)
Z1 - A+s2 A+s2 + )\+52 )\+s2 (545)
() () () ()
A+ de +s% A+ e +s§ A+ de —i—s% A+ de +s%
Ats
2y o ()
W(At:l) A+e2 >\+52 58% (W (Aj; l) + 1) A+ de 0 —I—S%
v VT (w () #1) (w (55F) )
o — _ .5.46
o ) [ O T ) o )
A+ de +s% A+ de +s§ A+ de +s§ A+ e +s§
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Taking the derivative of 25 with respect to s;, we find

(O ey
ds _ _ . (.5.47)

dst (,\ + /\ew(ﬁ) + s%) 2 (A + Aew(ﬁ) + s%)

Knowing that the exponential of the W Lambert function is a strictly increasing function and
that s? > s3, we find

d ES
d%; <0. (.5.48)
1

U
S.11. Eq. 6.3.18 Spectral Decoupling

SD replaces the general L2 weight decay term in Eq. 6.3.5 with an L2 penalty exclusively on
the network’s logits, yielding

" Aa
L£(0) =1-log[1 +exp (—YF)] + J[Iy]".
The loss can be written as,
A
L£(0)=1"log[l+exp(-Yy)] + §H<I>0H2,
2

A
=1-log[l + exp (=Y¥)] + §HSVT@

>1-[H(a)— oYy + ;HSVTeHz.
Optimizing £ (@) wrt to 8 results in the following optimum,
0T = /1\04Y<I>0VS_2VT,
which by substitution into the loss function, the dynamics of gradient ascent leads to,

l-a 1 l-a 1
@ aUSQS‘2UT> — (log @ a) ,
A o A

where log and division are taken element-wise on the coordinates of ar and hence dynamics of each

a=n (log

«; is independent of other a;4;.
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