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Résumé

Le débat entre connexionnisme et symbolisme est l’une des forces majeures qui animent le

développement de l’Intelligence Artificielle. L’apprentissage profond et la linguistique théo-

rique sont les domaines d’études les plus représentatifs pour les deux écoles respectivement.

Alors que la méthode d’apprentissage profond a fait des percées impressionnantes et est

devenue la principale raison de la récente prospérité de l’IA pour l’industrie et les univer-

sités, la linguistique et le symbolisme occupent quelque domaines importantes, notamment

l’interprétabilité et la fiabilité.

Dans cette thèse, nous essayons de construire une connexion entre les deux écoles en

introduisant des biais inductifs linguistiques pour les modèles d’apprentissage profond. Nous

proposons deux familles de biais inductifs, une pour la structure de circonscription et une

autre pour la structure de dépendance. Le biais inductif de circonscription encourage les mo-

dèles d’apprentissage profond à utiliser différentes unités (ou neurones) pour traiter séparé-

ment les informations à long terme et à court terme. Cette séparation fournit un moyen pour

les modèles d’apprentissage profond de construire les représentations hiérarchiques latentes

à partir d’entrées séquentielles, dont une représentation de niveau supérieur est composée

et peut être décomposée en une série de représentations de niveau inférieur. Par exemple,

sans connaître la structure de vérité fondamentale, notre modèle proposé apprend à trai-

ter l’expression logique en composant des représentations de variables et d’opérateurs en

représentations d’expressions selon sa structure syntaxique. D’autre part, le biais inductif

de dépendance encourage les modèles à trouver les relations latentes entre les mots dans la

séquence d’entrée. Pour le langage naturel, les relations latentes sont généralement modé-

lisées sous la forme d’un graphe de dépendance orienté, où un mot a exactement un nœud

parent et zéro ou plusieurs nœuds enfants. Après avoir appliqué cette contrainte à un mo-

dèle de type transformateur, nous constatons que le modèle est capable d’induire des graphes

orientés proches des annotations d’experts humains, et qu’il surpasse également le modèle

de transformateur standard sur différentes tâches. Nous pensons que ces résultats expéri-

mentaux démontrent une alternative intéressante pour le développement futur de modèles

d’apprentissage profond.
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Abstract

The debate between connectionism and symbolism is one of the major forces that drive

the development of Artificial Intelligence. Deep Learning and theoretical linguistics are

the most representative fields of study for the two schools respectively. While the deep

learning method has made impressive breakthroughs and became the major reason behind

the recent AI prosperity for industry and academia, linguistics and symbolism still holding

some important grounds including reasoning, interpretability and reliability.

In this thesis, we try to build a connection between the two schools by introducing syn-

tactic inductive biases for deep learning models. We propose two families of inductive biases,

one for constituency structure and another one for dependency structure. The constituency

inductive bias encourages deep learning models to use different units (or neurons) to sep-

arately process long-term and short-term information. This separation provides a way for

deep learning models to build the latent hierarchical representations from sequential inputs,

that a higher-level representation is composed of and can be decomposed into a series of

lower-level representations. For example, without knowing the ground-truth structure, our

proposed model learns to process logical expression through composing representations of

variables and operators into representations of expressions according to its syntactic struc-

ture. On the other hand, the dependency inductive bias encourages models to find the latent

relations between entities in the input sequence. For natural language, the latent relations

are usually modeled as a directed dependency graph, where a word has exactly one parent

node and zero or several children nodes. After applying this constraint to a transformer-like

model, we find the model is capable of inducing directed graphs that are close to human

expert annotations, and it also outperforms the standard transformer model on different

tasks. We believe that these experimental results demonstrate an interesting alternative for

the future development of deep learning models.

Keywords: Artificial Intelligence, Deep Learning, Syntactic inductive Biases, Con-

stituency inductive Biases, Dependency inductive Biases.
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the node pair. âijk is the micro gate that controls the amount of information

propagate from j to i through k-th channel. Each channel takes vjk, gik as inputs

and outputs respectively to represent the information that is propagated via the

k-th channel. gik allows the receiving node i to filter the information. . . . . . . . . . . 72

11 A example of gold tree and model generated dependency tree. . . . . . . . . . . . . . . . . . . 77

12 Relationship between parsing performance and mask rate for MLM. . . . . . . . . . . . . . 78

18



13 The training pipeline of OCN. Our model is composed of a controller (circle) and

a options pool (rectangles). The controller and options are randomly initialized,

which means each option does not correspond to a meaningful subtask. After

behavior cloning, both options and controllers are induced (marked blue) and the

options correspond to meaningful subtasks from demonstrations (e.g., get wood).

Then we freeze the parameters in the options and re-initialize the controller. The

controller is trained to adapt to the new environment with HRL (marked red). . 86

14 An example of OCN. The controller c models the task make bridge. Three options

separately model subtasks get iron, get wood or make at factory. . . . . . . . . . . . . . . . . 87

15 The three different phase of OCN: (a) At the first time step, the controller selects

an option oi; The option oi outputs the first action a1. (b) If the previous option

oi predict that the subtask is not finish; The option oi then continue outputs

action at; The controller hidden state is copied from previous time step. (c) If the

previous option oi predict that the subtask is done; The controller then selects a

new option oj and updates the controller hidden state; The new option oj outputs

action at. Blue arrows represent probability distributions output by controller and

options. Red arrows represent recurrent hidden states between time steps.. . . . . . . 88

16 The learning curve of different methods on three finetuning tasks of S1. dense

means dense reward setting. sparse means sparse reward setting. . . . . . . . . . . . . . . . 92

17 The learning curve of different methods on three finetuning tasks of S2. OMPN

is not included because it does not learn an explicit set of options. . . . . . . . . . . . . . . 93

18 A trajectory of model finetuned on task DCA in S1. switch represents the value

of et at every time step. The option distribution is computed with pc

t . . . . . . . . . . . . 94

19 Comparison of unsupervised trajectory parsing results during the imitation phase

with OMPN [Lu et al., 2021]. We use F1 scores with tolerance (Left) and Task

Alignment (Center) to show the quality of learned task boundaries. We compute

the normalized mutual information (Right) between the emerged option selection

pc

t and the ground-truth to show that our model learns to associate each option to

one subtask. T=1 means that the temperature term in the controller is removed. . 94

20 Comparison of parsing results during different K at F1 scores with tolerance, task

align accuracy and NMI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

21 Comparison of prediction accuracy of actions and the returns during different K 95

19



22 The spectrum from connectionism to symbolism of our proposed models. . . . . . . . . 98

20



List of acronyms and abbreviations

NLP Natural Language Processing

UF1 Unlabeled F1 score for evaluating constituency parsing perfor-

mance

UAS Unlabeled (directed) Attachment Score for evaluating depen-

dency parsing performance

UUAS Unlabeled Undirected Attachment Score for evaluating depen-

dency parsing performance

RNN Recurrent Neural Network

LSTM Long-Short Term Memory

CNN Convolutional Neural Network

21





Acknowledgements

The past five years at the University of Montreal and Mila have been the most valuable and

unforgettable experience for me so far. It’s not easy to say goodbye to such a wonderful time,

as well as the people and life. When I started my Ph.D. study in September 2016, I only

have a vague idea about the path and challenges in front of me. In 2016, deep learning is

already on its hype, some researchers suggested that its era will end in a few years. But the

fact is that exciting breakthrough and challenge new questions still emerge every year. The

technique gradually becomes an essential part of everyone’s life. From self-driving car to the

photo album in a smartphone, they all include at least one deep learning model to provide

some functions that you wouldn’t expect 10 years ago. It’s fair to say that the development

of Artificial Intelligence (AI, mostly deep learning) is reforming our society. Although I have

some different opinions on the future directions and still believe in them. But it doesn’t stop

me from feeling excited about what is happening over the last few years and now. It’s a great

honor to witness and participate in this evolution in the front seat. I would not have been

able to make this journey without the help and support of many people and I feel deeply

indebted to them.

My greatest thanks should go to my advisor Aaron Courville. It was a great privilege

to work with one of the most important researchers in the deep learning community. I can

always rely on him to provide good advice for my research as well as my career. I am

not a student who always listens carefully to the professor’s advice, but Aaron is always

supportive. His support is the most important reason that allows me to focus on studying

a relatively niche field. He has a very insightful, high-level view of the field while he can

also quickly understand details and understands the nature of the problems very well. More

importantly, he always encourages collaboration, not only between his students but also with

other professors and external researchers. Collaborations grant me access to lots of mental

resources and allow me to understand problems from very different prospects.

I would like to thank Alessandro Sordoni and Siva Reddy – the other two mentors in

my Ph.D. study, for a lot of guidance and help throughout the last few years. Alessandro

is my host during my 3-years long part-time research internship at Microsoft Research (this

program also provides many free meals and unexpected high life quality for a Ph.D. student).

23



He is a good criticizer and almost like a co-supervisor for me. I can only have enough

confidence in my work after passing his trial of insightful questions. Siva is a charming

person and knowledgeable NLP researcher. He provides a lot of valuable linguistic-related

advice, while I am in desperate need of this guidance and both Aaron and Alessandro focus

their study on the machine learning field. Personally, his attitude towards life also affects

me. I want to be the same energetic and responsible person as him someday. I want to thank

Aaron, Alessandro, and Siva for all the guidance and patience that they have provided, and

I will always be proud to be your student.

I also want to thank Shawn Tan and Zhouhan Lin. They’re the most important collabo-

rators for me. Almost all of my works are done in close collaborations with either Zhouhan

or Shawn. I want to thank Shawn for the countless discussions that we have had. He is

capable of understanding the most complicated idea and formalize it with clear and rigorous

math equations. Together, we wrote Ordered Neurons [Shen et al., 2018c] and some other

papers that this thesis is based on. I want to thank Zhouhan for been the big buddy that

helps me adapt to my Ph.D. life and booting my research. Our works on unsupervised and

supervised parsing [Shen et al., 2017, 2018b] leads me to the works presented in this thesis.

We are also very close friends. I want to thanks them for providing lots of support in my

difficult time and tolerate my occasional aggressiveness.

I want to thank the Mila community. It gathers a lot of brilliant researchers and created

a unique atmosphere of collaboration. I met many interesting people in Mila. Among them,

I especially want to thank Ying Zhang, Jie Fu, Jae Hyun Lim, Min Lin, Chin-Wei Huang,

Saizheng Zhang, Yuchen Lu, Xing Chen, Amina Madzhun, Zhen Liu. I had a lot of joyful

times with them. They also gave me a lot of help at various times. Outside of Mila, I also

met many great friends including Peng Lu, Yi Tay, Che Zheng, Xingdi Yuan, Lili Mou (just

to name a few). I also want to thank my parents for their unwavering support and love

during the last three decades.

24



Chapter 1

Introduction

1.1. The Evolution of Paradigm in NLP

While research in Natural Language Processing (NLP) is now dominant by deep learning

methods, the two fields were separately developed for decades. Prior to the deep learning

revolution, the difference between the two domains can trace back to the difference between

connectionism and symbolism.

Before the 1990s, approaches for solving NLP problems were predominantly sym-

bolic [Chao, 1968]. Symbolic systems directly model abstract concepts and the innate

structure of the human mind. Elementary semantics are represented by symbols. Com-

plex semantics are represented by a group of symbols combined by operations and syntactic

structures. Many early AI advances utilized a symbolic approach to AI programming, striv-

ing to create smart systems by modeling relationships and using symbols and programs to

convey meaning. Symbolic systems also allow straightforward generalization through assem-

bling known rules and symbols into a new syntactic structure. But symbolic systems have

several defects: 1) limited fault tolerance, a failure of a small component usually causes the

entire system break; 2) they can’t process inputs that include undefined rules or symbols

resulting in a relatively limited learning capacity; 3) applying symbolic methods to a new

problem requires lots of human expertise.

In the 1990s, the paradigm shifts from symbolic methods to empirical or statistical meth-

ods [Abney, 1996]. The empirical view assumes that language is a natural phenomenon whose

effects are observable in the world as data. The best way to build a NLP model is to learn

from the data. Empirical methods nicely solved some defects of the symbolic methods. For

example, a probabilistic framework can handle the ambiguity in natural language by as-

signing probabilities to different analyses. Applying an empirical method to a new problem

could be as simple as training the method on a set of pre-collected data. These methods en-

joyed great success in almost all problems in natural language processing until deep learning

methods became prominent.



Starting from the middle of the 2010s, the paradigm shifts again to deep learning meth-

ods, which try to process input with a powerful universal function approximator, without

explicitly modeling discrete structure and operations. The idea of deep learning can trace its

roots back to the concept of connectionism. Some advantages of the connectionist approach

include its applicability to a broad array of functions, a structural approximation to biolog-

ical neurons, low requirements for innate structure, and capacity for graceful degradation.

Recent progress shows that deep learning models could be trained in an end-to-end schema

from human annotations or unsupervised losses. Deep learning models can be easily applied

to different tasks that have enough training data and clear input/output definitions. The

capacity of a neural model can be easily improved by increasing the number of parameters.

The data-driven feature and expansibility of the deep learning model make it very popular

in industrial applications. Recent studies show that deep learning-based NLP models have

proven to be capable of learning a remarkable amount of syntax, despite having much weaker

structural priors than Chomsky’s model of Universal Grammar.

1.2. Motivation

Despite being very popular and empirically successful, the limitation of deep learning

methods is starting to draw more attention: 1) they heavily rely on training data and

computation resources, GPT-3 [Brown et al., 2020] has 170 billion parameters and is trained

on a dataset of about 500 billion tokens; 2) they fail to generalize to unexpected data points,

for example, an unforeseen combination of known tokens and extra-long inputs [Tay et al.,

2020]; 3) it lacks explainability, state-of-the-art deep learning models are like black boxes,

such that it is almost always impossible to understand why decisions are made, and it’s

also impossible to identify the source of an error or fix the error in a way that will not

potentially hurt the other functionalities of the model [Zhang and Zhu, 2018]. However,

even with exponential increases in computing power and increasingly vast quantities of data,

the improvement curve for predictive power is leveling off, suggesting that there is a cap to

how far connectionism can take us.

One major difference between deep learning methods and many previous approaches is

the assumption that there exist a syntax and a set of semantic functions. Syntax is the set

of rules, principles, and processes that govern the structure of sentences (sentence structure)

in a given language, usually including word order. The syntax of a language describes

the latent structure of a valid sentence, but does not provide any information about the

meaning of that sentence. The meaning given to a combination of symbols is handled by

semantics. In other words, for a given sentence x1, ..., xT , its syntactic structure can be seen

as a computation graph G that is equipped with semantic functions. The computation graph

G takes the meaning of each token xi as input, and outputs the meaning of the sentence.
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This assumption provides powerful generalizations and explainability. The disentanglement

of structure and functions allows the same set of semantic functions to be combined in many

different ways to process different inputs and solve different tasks. The existence of a clear

structure also provides rich and meaningful intermediate results. These advantages provide

a potential solution to the defects of deep learning.

1.3. Syntactic Inductive Biases

In this thesis, we study the problem of building syntax-sensitive deep learning models.

In particular, we introduce syntactic inductive biases – a new family of inductive biases

that use a probabilistic relaxation of discrete syntactic structure to regularize the internal

connection of deep learning models.

An inductive bias of a learning algorithm is a set of assumptions that the learner uses

to predict outputs of given inputs that it has not encountered [Mitchell, 1980]. In the field

of deep learning, inductive bias usually refers to special neural network architecture designs,

that leverage prior knowledge to regularize a more general version of deep learning model.

These special designs encourage the model to prioritise solutions with specific properties

that requires hand-engineering in traditional methods. One famous example of an inductive

bias for deep learning is Convolutional Neural Network (CNN). CNNs regularize multilayer

perceptrons through weight sharing. Multilayer perceptrons are fully connected networks,

that is, each neuron in one layer is connected to all neurons in the next layer. CNNs use

convolution in place of general matrix multiplication in at least one of their layers. CNNs

learn to optimize the filters (or kernels) through automated learning, whereas in traditional

methods these filters are hand-engineered. This independence from prior knowledge and

human intervention in feature extraction is a major advantage.

Since there are two major classes of natural language syntax: dependency grammar and

constituency grammar. We introduce two respective types of inductive bias: constituency

inductive bias and dependency inductive bias.

Constituency grammars model the assembly of one or several corresponded words. From

a syntactic point of view, a constituent is a word or a group of words that function as a single

unit within a hierarchical structure. From a semantic point of view, a constituent is a unit

with a stand-alone meaning. Although some syntactically well-formed constituents are non-

sensical, e.g.“Colorless green ideas sleep furiously”. For most NLP applications, a constituent

should be syntactically and semantically well-formed. Furthermore, in constituency trees,

larger constituents are composed of smaller constituents. The process of composition is mod-

eled by compositional semantic functions. Traditionally, constituency grammars treat the

structure as primitive. Constituency grammars derive the functions from the constellation.

For instance, the object is identified as the NP appearing inside finite VP, and the subject
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as the NP appearing outside of finite VP. The constituency inductive bias should encour-

age deep learning models to: 1) induce the latent constituency structure of input sentences,

2) model the compositional semantic functions, 3) compute meaningful representations for

constituents.

Dependency grammars model one-to-one correspondences between words. In a depen-

dency graph, the main verb is taken to be the structural center of a clause structure. All

other syntactic units (words) are either directly or indirectly connected to the verb in terms

of the directed links, which are called dependencies. Dependency grammars have flatter

tree structures than constituency grammars in part because they lack a finite verb phrase

constituent, and they are thus well suited for the analysis of languages with free word order,

such as Czech or Warlpiri. Different from constituency grammars, dependency grammars

treat the syntactic functions as primitive. They posit an inventory of functions (e.g. sub-

ject, object, oblique, determiner, attribute, predicative, etc.). These functions can appear as

labels on the dependencies in the tree structures. The dependency inductive bias should: 1)

explicitly model different syntactic functions as separate modules, 2) induce latent depen-

dency edges between words, 3) compute meaningful representations for each node (words)

in the dependency graph.

Furthermore, the idea of syntactic inductive bias is not exclusive for NLP tasks. In fact,

one school of thought sees syntax as a non-innate adaptation to innate cognitive mechanisms

[Hawkins, 2004]. Cross-linguistic tendencies are considered as being based on language users’

preference for grammars that are organized efficiently, and on their avoidance of word or-

derings which cause processing difficulty. This suggest that an effective syntactic inductive

bias could capture some fundamental cognitive mechanisms. In the real world, lots of tasks

have sparse rewards and long time horizons, which typically pose significant challenges in

reinforcement learning. HIL and HRL handle this problem by introducing a temporal ab-

straction [Stolle and Precup, 2002] – a innate hierarchical structure over time. This idea is

coherent with constituency structure. Based on this observation, we extend the application

of our constituency inductive bias to Hierarchical Imitation Learning (HIL) and Hierarchical

Reinforcement Learning (HRL) domain. In the setting of HIL and HRL, we expect the con-

stituency inductive bias can encourage the agent to: 1) segment a given task into meaningful

subtasks; 2) model the subtasks as separate skills (neural network modules); 3) recompose

these skills to solve a new tasks.

1.4. Why not Supervised Parsing?

Learning structures from treebanks has its advantages – it is very well studied, a su-

pervised parsing can achieve very high accuracy. But a trained parsing has the limitation
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of domain dependence. Parsers trained on English Penn Treebank [Marcus et al., 1994] de-

grade substantially when applied to new genres and domains, and fail when applied to new

languages. This has spurred an area of research on parser adapation [Üstün et al., 2020,

Zeman and Resnik, 2008, McClosky et al., 2006]. Treebanks now exist for several domains

and languages, but each treebank requires many resources and years of work to construct,

and most languages are without treebank.

Taking the domain dependency problem to the extreme, we have modality problem.

Modern deep learning models, like Transformer [Vaswani et al., 2017], are considered as

foundation models for AI [Bommasani et al., 2021]. A new deep learning technique could

potentially be applied to many different modalities (e.g. vision, robotic, and language), and

some multi-modality problems. Many of these domains have latent structures. For example,

images can be parsed to a hierarchical structure [Tu et al., 2005], hierarchical reinforcement

learning [Barto and Mahadevan, 2003] is an important technique for robotic. But most of

these domains don’t have a convention for human-labeled latent structure. A model that

requires structural supervision would have limited versatility.

A further limitation of treebanks is that they always have a fixed convention. But the

“right” kind of syntactic structure seems to depend heavily on the beneficiary task. There

have been studies comparing different kinds of syntactic structures for their usefulness on

specific tasks [Gildea, 2004]. Finetuning pretrained language models on a specific task makes

them learn a convention that suits better the targeted task [Dai et al., 2021]. From this

perspective, a method that can induce syntactic structure from downstream tasks could be

more useful than a supervised parser.

1.5. Thesis Outline

Following the discussion in previous section, the rest of this thesis is organized around

following themes:

• In Chapter 2, we review some widely used neural network components and archi-

tectures. These components and architectures are foundation of models introduced

in this thesis. We then provide definitions to the tasks that we will use to evaluate

syntactic inductive biases.

• In Chapter 3, we first review the history of constituency-augmented neural networks

and constituency inductive biases. We then introduce Ordered Neurons – a con-

stituency inductive bias for recurrent neural networks. Based on the ordered neu-

rons, we further introduce two neural network architectures: ON-LSTM and Ordered

Memory. We present experiment results on formal language tasks, language model-

ing, and unsupervised constituency parsing.
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• In Chapter 4, we first review the history of dependency-augmented neural networks

and dependency inductive biases. We then introduce dependency-constrained con-

nection – an inductive bias for transformer or graph neural networks. We present

experiment results on masked language modeling, unsupervised dependency parsing

and semantic textual similarity tasks.

• In Chapter 5, we first review the history of Hierarchical Imitation and Reinforcement

Learning (HIRL). We then introduce the Option-Controller Network – an HIRL

model with a constituency inductive bias. In experiments, we perform behavior

cloning from unstructured demonstrations coming from different tasks, and during

the RL finetuning, we freeze the learned options and only re-initialize the controller.

• In Chapter 6, we first conclude the thesis, then review three important research

questions in this field. The first question is emerging better and more discrete struc-

ture. The second question discusses inducing reusable operators. The last question

discusses systematic generalization based on the induced structure and operators.

These questions still remain as open questions and yet to be answered in the future.

1.6. Contributions

The contributions of this thesis are summarized as follows:

• I systematically studied syntactic inductive bias for deep learning methods. I studied

a wide spectrum of neural network architecture design. I summarized our works and

proposed two inductive biases: constituency inductive bias and dependency inductive

bias.

• I were among the first to study neural unsupervised parsing. I proposed several

models that can achieve strong results on unsupervised dependency and constituency

parsing.

• I also show that understanding the latent structure of input is essential for strong

generalization on language tasks.

• I further expand the application of syntactic inductive bias to hierarchical imitation

and reinforcement learning domain. This application result in a highly modularized

model that can effectively reuse learnt skills to solve new tasks.

1.7. Article Details

This thesis includes materials from four papers, that I wrote as the first author or co-

first author. This section provides a detailed list of these papers and explanations of my

contribution to these papers:
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• Ordered Neurons: Integrating Tree Structures into Recurrent Neural Net-

works. Yikang Shen, Shawn Tan, Alessandro Sordoni, Aaron Courville. Interna-

tional Conference on Learning Representations, 2019.

Personal Contribution. I proposed the idea of Ordered Neurons; implemented the

ON-LSTM model; wrote the introduction, model, and most of the experiment section;

conducted the language model, unsupervised constituency parsing, and targeted syn-

tactic evaluation experiments. Shawn Tan was intensively involved in the discussions

that results in the idea, wrote the related work section, significantly contributed

to the writing of other sections, and conducted the logical inference experiments.

Alessandro Sordoni and Aaron Courville co-supervised the project and significantly

contributed to the writing.

• Ordered Memory. Yikang Shen, Shawn Tan, Arian Hosseini, Zhouhan Lin,

Alessandro Sordoni, Aaron Courville. Advances in Neural Information Processing

Systems, 2019.

Personal Contribution. I proposed the idea of Ordered Memory; implemented the

model; wrote most of the paper; conducted the ListOps experiment. Shawn was

heavily involved in the discussion about model details; significantly contributed to

the paper writing; conducted the logical inference experiment. Arian Hosseini con-

ducted the sentiment analysis experiment. Zhouhan Lin was heavily involved in the

discussion and paper writing. Alessandro Sordoni and Aaron Courville co-supervised

the project; were heavily involved in the discussion; contributed to the writing.

• Unsupervised Dependency Graph Network. Yikang Shen, Shawn Tan,

Alessandro Sordoni, Peng Li, Jie Zhou, Aaron Courville. Annual Meeting of the

Association for Computational Linguistics, 2022.

Personal Contribution. I proposed the idea of UDGN; implemented the model; wrote

the introduction, model, and most of the experiment section; conducted the language
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Chapter 2

Preliminaries

2.1. Neural Network Components and Architectures

2.1.1. Word embeddings

The first key idea of word embeddings is to represent words as low-dimensional (e.g.,

300), real-valued vectors. Before deep learning, it was common to represent a word as an

index into the vocabulary, which is a notational variant of using one-hot word vectors: each

word is represented as a high-dimensional, sparse vector where only one entry of that word

is 1 and all other entires are 0’s:

vcar = [0, 0, . . . , 0, 0, 1, 0, . . . , 0]⊺

vvehicle = [0, 1, . . . , 0, 0, 0, 0, . . . , 0]⊺

The biggest problem with these sparse vectors is that they don’t share any semantic

similarity between words, i.e., for any pair of different words a, b, cos(va, vb) = 0.

Low-dimensional word embeddings effectively alleviated this problem and similar words

can be encoded as similar vectors in space: cos(vcar, vvechicle) < cos(vcar, vman). These word

embeddings can be effectively learned from large unlabeled text corpora, based on the as-

sumption that words occurred in similar contexts tend to have similar meanings (a.k.a. the

distributional hypothesis) [Harris, 1954]. Indeed, learning word embeddings from text has a

long-standing history and has been popularized by scalable algorithms and released sets of

pretrained word embeddings such as word2vec [Mikolov et al., 2013], glove [Pennington

et al., 2014] and fasttext [Bojanowski et al., 2017]. In modern NLP models [Vaswani et al.,

2017, Devlin et al., 2018], word embeddings are still essential components for representing

the input and output tokens. But they are optimized together with the other components

of neural network models.



2.1.2. Recurrent neural networks

Recurrent neural networks are a class of neural networks which are suitable to handle se-

quences of variable length. More concretely, they apply a parameterized function recursively

on a sequence x1, . . . , xn:

ht = f(ht−1, xt; Θ) (2.1.1)

For NLP applications, we represent a sentence or a paragraph as a sequence of words where

each word is transformed into a vector (usually through pre-trained word embeddings):

x = x1, x2, . . . , xn ∈ R
d and ht ∈ R

h can be used to model the contextual information of

x1:t.

Vanilla RNNs take the form:

ht = tanh(Whhht−1 + Whxxt + b), (2.1.2)

where Whh ∈ R
h×h, Whx ∈ R

h×d, b ∈ R
h are the parameters to be learned. To ease the

optimization, many variants of RNNs have been proposed. Among them, long short-term

memory networks (LSTMs) [Hochreiter and Schmidhuber, 1997] and gated recurrent units

(GRUs) [Cho et al., 2014] are the commonly used ones. Arguably, LSTM is still the most

competitive RNN variant for NLP applications today and also our default choice for the

neural models that we will describe. Mathematically, LSTMs can be formulated as follows:

it = σ(Wihht−1 + Wixxt + bi) (2.1.3)

ft = σ(Wfhht−1 + Wfxxt + bf ) (2.1.4)

ot = σ(Wohht−1 + Woxxt + bo) (2.1.5)

gt = tanh(Wghht−1 + Wgxxt + bg) (2.1.6)

ct = ft ⊙ ct−1 + it ⊙ gt (2.1.7)

ht = ot ⊙ tanh(ct), (2.1.8)

where Wih, Wfh, Woh, Wgh ∈ R
h×h, Wix, Wfx, Wox, Wgx ∈ R

h×d and bi, bf , bo, bg ∈ R
h

are the parameters to be learned.

Finally, a useful elaboration of an RNN is a bidirectional RNN. The idea is simple: for a

sentence or a paragraph, x = x1, . . . , xn, a forward RNN is used from left to right and then

another backward RNN is used from right to left:

−→
h t = f(

−→
h t−1, xt;

−→
Θ), t = 1, . . . , n (2.1.9)

←−
h t = f(

←−
h t+1, xt;

←−
Θ), t = n, . . . , 1 (2.1.10)

We define ht = [
−→
h t;
←−
h t] ∈ R

2h as the concatenation of the hidden vectors from the RNNs

in both directions. These representations can usefully encode information from both the
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left context and the right context and are suitable for general-purpose trainable feature-

extracting component of many NLP tasks.

2.1.3. Attention mechanism

The third important component is an attention mechanism. It was first introduced in the

sequence-to-sequence (seq2seq) models Sutskever et al. [2014] for neural machine translation

[Bahdanau et al., 2014, Luong et al., 2015] and has later been extended to other NLP tasks.

Before introducing attention mechanism, if we want to predict the sentiment of a sentence,

or translate a sentence of one language to the other, we apply recurrent neural networks to

encode a single sentence (or the source sentence for machine translation): h1, h2, . . . , hn

and use the last time step hn to predict the sentiment label or the first word in the target

language. The label probability or first-word distribution can be modeled by the softmax

function:

P (Y = y) = softmax (Wyhn) =
exp(Wyhn)

∑

y′ exp (Wy′hn)
(2.1.11)

This requires the model to be able to compress all the necessary information of a sentence

into a fixed-length vector. This information bottleneck could result in a loss of details.

An attention mechanism is designed to solve this problem: instead of squashing all the

information into the last hidden vector, it looks at the hidden vectors at all time steps and

chooses a subset of these vectors adaptively:

αi =
exp (g(hi, w; Θg))

∑n
i′=1 exp (g(hi′ , w; Θg))

(2.1.12)

c =
n
∑

i=1

αihi (2.1.13)

Here w can be a task-specific vector learned from the training process, or taken as the

current target hidden state in machine translation and g is a parameteric function which can

be chosen in various ways, such as dot product, bilinear product, or one hidden layer of an

MLP:

gdot(hi, w) = hi
⊺w (2.1.14)

gbilinear(hi, w) = hi
⊺Ww (2.1.15)

gMLP(hi, w) = v⊺ tanh(Whhi + Www) (2.1.16)

An attention mechanism computes a similarity score for each hi and then a softmax

function is applied which returns a discrete probability distribution over all time steps. Thus

α essentially captures which parts of the sentence are relevant and c aggregates over all the
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time steps with a weighted sum and can be used for final prediction. Interested readers are

referred to Bahdanau et al. [2014], Luong et al. [2015] for more details.

Attention mechanisms have proved widely effective in numerous applications and be-

come an integral part of neural NLP models. Parikh et al. [2016] and Vaswani et al. [2017]

conjectured that attention mechanisms don’t have to be used in conjunction with recurrent

neural networks and can be built purely based on word embeddings and feed-forward net-

works while providing minimal sequence information. This class of models usually requires

fewer parameters and is more parallelizable and scalable — in particular, the Transformer

model proposed in Vaswani et al. [2017] has become a recent trend and our model also has

a strong connection to it. Recent developments of pretrained language model [Devlin et al.,

2018, Brown et al., 2020] have made the attention mechanism one of the most important

components for modern NLP models.

2.1.4. Memory Networks

A memory network is a neural network extended with a memory component that can

be read and written to. The model is trained to learn how to operate effectively with the

memory component. The high-level view of a memory network is as follows:

• There is a memory, m, an indexed array of objects (e.g. vectors or arrays of strings).

• An input feature map I, which converts the incoming input to the internal feature

representation.

• A writing component W which updates old memories given the new input.

• An output feature map O, which produces a new output in the feature representation

space given the new input and the current memory state.

• A response component R which converts the output into the response format desired

– for example, a textual response or an action.

I, W, O and R can all potentially be learned components and make use of any ideas from

the existing machine learning literature.

Fig. 1. The architecture of a memory network
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I can make use of standard pre-processing such as parsing, coreference, and entity reso-

lution. It could also encode the input into an internal feature representation by converting

from text to a sparse or dense feature vector. The simplest form of W is to introduce a

function H which maps the internal feature representation produced by I to an individual

memory slot and just updates the memory at H(I(x)). More sophisticated variants of W

could go back and update earlier stored memories (potentially, all memories) based on the

new evidence from the current input x. If the input is at the character or word level one

could group inputs (i.e., by segmenting them into chunks) and store each chunk in a memory

slot. O Reads from memory and performs inference to deduce the set of relevant memories

needed to perform a good response. R would produce the actual wording of the question-

answer based on the memories found by O. For example, R could be an RNN conditioned on

the output of O. When the components I, W, O and R are neural networks, the resulting

system is a Memory Neural Network (MemNN).

2.1.5. Transformer

Vaswani et al. [2017] introduces a novel architecture called a Transformer, that uses

the attention-mechanism we saw earlier. Like a LSTM-based sequence-to-sequence model,

the Transformer is an architecture for transforming one sequence into another one with the

help of two parts: an Encoder and a Decoder. But it differs from the previously existing

sequence-to-sequence models because it does not imply any Recurrent Networks.

The Transformer follows this overall architecture using stacked self-attention and point-

wise, fully connected layers for both the encoder and decoder, shown in the left and right

halves of Figure 2, respectively.

The inputs and outputs (target sentences) are first embedded into an dk-dimensional

space. One slight but important part of the model is the positional encoding of the different

words. Since the transformer has no recurrent networks that can remember how sequences

are fed into a model, we need to inform every word in the sequence of their positions. These

positions are represented by vectors and are added to the embedded representation of each

word.

The attention function used in transformer can be described by the following equation:

Attention(Q,K,V ) = softmax

(

QKT

√
dk



V (2.1.17)

Given the input matrix X, Q = WQX is a matrix that contains the query, K = WKX are

all the keys, and V = WV X are the values, dk is the dimension of word embeddings and

hidden states. For self-attention, V consists of the same word sequence as Q. However, for

the intra-attention that takes into account the encoder and the decoder sequences, V and K

are different from the sequence represented by Q.
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Fig. 2. The Transformer architecture [Vaswani et al., 2017].

One set of (WQ,WK ,WV ) matrices and the attention function form an attention head.

Each layer in a Transformer model has multiple attention heads. While each attention head

attends to the tokens that are relevant to each token, with multiple attention heads the model

can do this for different definitions of "relevance". The computations for each attention head

can be performed in parallel, which allows for fast processing. The outputs for the attention

layer are concatenated to pass into the feed-forward neural network layers.

After the multi-headed attention in both the encoder and decoder, we have a pointwise

feed-forward layer. This feed-forward network has identical parameters for each position,

which can be described as a separate, identical linear transformation of each element from

the given sequence. After each multi-headed attention layer and pointwise feed-forward

layer, the Transformer has a skip connection and layer normalization. Figure 2 shows the

architecture of Transformer.
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2.1.6. Graph Neural Networks

Graph neural network is first introduced in Scarselli et al. [2008]. Consider a graph

G = (V, E), where ♣V ♣ = N is the number of nodes in the graph and ♣E♣ = N e is the number

of edges. A ∈ RN×N is the adjacency matrix. For graph representation learning, we use hv

as the hidden state of node v.

The graph structures are different from task to task. There are usually two scenarios:

structural scenarios and non-structural scenarios. In structural scenarios, the graph structure

is explicit in the applications, such as applications on molecules, physical systems, knowledge

graphs, and so on. In non-structural scenarios, graphs are implicit so that we have to first

build the graph from the task, such as building a fully-connected “word” graph for text

or building a scene graph for an image. After we get the graph, the later design process

attempts to find an optimal GNN model on this specific graph. In chapter 4, we propose a

third scenario: the model needs to induce the graph structure given an inductive bias.

Although graph structure could be very different, they usually can be categorized from

three perspectives:

• Directed/Undirected Graphs. Edges in directed graphs are all directed from one

node to another, which provides more information than undirected graphs. Each

edge in undirected graphs can also be regarded as two directed edges.

• Homogeneous/Heterogeneous Graphs. Nodes and edges in homogeneous graphs

have the same types, while nodes and edges have different types in heterogeneous

graphs. For example, social networks are mostly homogeneous graphs, because all

nodes belong to the same type – user. But an author-paper network is a heterogeneous

graph because it includes two types of nodes: author and paper. Types for nodes

play important roles in heterogeneous graphs and should be further considered.

• Static/Dynamic Graphs. When input features or the topology of the graph vary

with time, the graph is regarded as a dynamic graph. The time information should

be carefully considered in dynamic graphs.

The dependency graph can be categorized as a directed, homogeneous and static graph. The

direction is usually from a dependent to its head. Since the only type of nodes is words, the

graph is homogeneous. And a dependency graph does not change with time.

After identifying the graph type, we need to design the propagation module for a graph

neural network. The propagation module is used to propagate information between nodes so

that the aggregated information could capture both feature and topological information. In

propagation modules, the convolution operator and recurrent operator are usually used to

aggregate information from neighbors while the skip connection is used to gather information

from previous layers. In Chapter 4, we will propose a multi-channel competitive mechanism

to propagate information that is inspired by dependency functions.
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2.1.7. Recursive Neural Network

A recursive neural network [Socher et al., 2010] is a kind of deep neural network created by

applying the same set of weights recursively over a structured input, to produce a structured

prediction over variable-size input structures, or a scalar prediction on it, by traversing

a given structure in topological order. Recursive neural networks, sometimes abbreviated

as RvNNs, have been successful, for instance, in learning sequence and tree structures in

natural language processing, where they are used mainly to learn continuous representations

of phrases and sentences based on word embedding. RvNNs have first been introduced to

learn distributed representations of structure, such as logical terms.

In the most simple architecture, nodes are combined into parents using a weight matrix

that is shared across the whole network, and a non-linearity such as tanh. If c1 and c2

are n-dimensional vector representation of nodes, their parent will also be an n-dimensional

vector, calculated as

p1,2 = tanh (W [c1; c2]) (2.1.18)

Where W is a learned n× 2n weight matrix.

2.2. Tasks for Evaluating Syntactic Inductive Biases

2.2.1. Language Modeling

Language modeling (LM) is the use of various statistical and probabilistic techniques to

determine the probability of a given sequence of words occurring in a sentence. Given such a

sequence, say of length m, a language model usually assigns a probability P (w1, . . . ,wm) to

the whole sequence. In this thesis, we use word-level language modeling task for two purposes:

1) an unsupervised training method for other tasks, including unsupervised parsing and

syntactic evaluation; 2) a macroscopic evaluation of the model’s ability to deal with various

linguistic phenomena (e.g. co-occurrence, syntactic structure, verb-subject agreement, etc).

We expect that a good syntactic inductive bias should improve the model’s performance in

modeling natural language.

In recent years, two language modeling tasks have been widely used. The first is recur-

rent language modeling, which requires that the model predicts the next token based on

the previous context.

p(wt♣w<t) = f(w1, ..., wt−1) (2.2.1)

where f(·) is a neural network that uses word embeddings to make its predictions. In this

way, one can easily compute the probability for the entire sentence or document.

P (w1, . . . ,wm) = p(w1)p(w1♣w2)...p(wm♣w1, ..., wm−1) (2.2.2)
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To train a recurrent language model, we can use gradient descent methods to optimize the

log probability. The performance of a recurrent language model is quantified by perplexity

(ppl):

ppl(w1, . . . ,wm) = P (w1, . . . ,wm)− 1

m = exp

(

− 1

m

m
∑

i=1

log p(wi♣w1, ..., wi−1)



(2.2.3)

During the evaluation, we compare the perplexity of different models on the test set.

The other task is masked language modeling, which is widely used for pretraining

on a large-scale dataset. Under Masked Language Modelling, we typically mask a certain

percentage of words in a given sentence and the model is expected to predict those masked

words based on other words in that sentence. Such a training scheme makes this model

bidirectional in nature because the representation of the masked word is learned based on

the words that occur to its left as well as its right.

p(wmasked♣wunmasked) = f(wunmasked) (2.2.4)

Similar to the recurrent language model, a masked language model can also be optimized

with gradient descent. But it’s not straightforward to compute the sentence or document

probability from a masked language model. The precision of prediction also attracts less

interest. Because the task is primarily used as a pre-training method before fine-tuning on

downstream tasks. However, for the same architecture, models with better pretraining loss

usually have better fine-tuning performance [Devlin et al., 2018, Liu et al., 2019].

2.2.2. Unsupervised Parsing

Work on unsupervised parsing (also known as grammar induction) attempts to find meth-

ods for syntactic parsing that do not require expensive and difficult-to-design expert labeled

treebanks for training [Carroll and Charniak, 1992, Klein and Manning, 2002, Smith and

Eisner, 2005]. Recent work on latent tree learning offers a new family of approaches to the

problem [Yogatama et al., 2016, Maillard et al., 2017, Choi et al., 2018]. Latent tree learning

models attempt to induce syntactic structure using the supervision from a non-parsing task

such as language modeling and textual entailment. Syntactic inductive biases can be used as

tools to solve unsupervised parsing, while unsupervised parsing tasks are also good ways to

examine the correlation between human-annotated structures and model-induced structures.

There are two major unsupervised parsing tasks: 1) unsupervised constituency parsing

and 2) unsupervised dependency parsing.

Unsupervised constituency parsing compares the predicted constituency trees with

human annotations. The performance of an unsupervised constituency parser is often eval-

uated with the Unlabeled F1 (UF1) score. It calculates the overlap of constituents proposed
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by the reference tree and induced tree:

R =
# of correct constituents in induced tree of s

# of constituents in reference tree of s
(2.2.5)

P =
# of correct constituents in induced tree of s

# of constituents in induced tree of s
(2.2.6)

UF1 =
2PR

P + R
(2.2.7)

Unsupervised dependency parsing compares the predicted dependency graphs with

human annotations. Unlabeled Attachment Score (UAS) is a standard evaluation metric in

dependency parsing: the percentage of words that are assigned the correct syntactic head.

UAS =
# of words with correct heads in induced graph of s

# of words in s
(2.2.8)

2.2.3. Syntactic Evaluation

Syntactic evaluations are designed for evaluating the grammaticality of the predictions

of a language model. The method provides hand-crafted minimal pairs of sentences that

differ only in the main verb’s conjugation, then evaluates whether language models rate each

grammatical sentence as more likely than its ungrammatical counterpart. For example, given

the two strings “The keys to the cabinet are on the table” and “The keys to the cabinet is

on the table”, a model that has learned the proper subject-verb number agreement rules for

English should assign a higher probability to the grammatical plural verb in the first sentence

than to the ungrammatical singular verb in the second [Linzen et al., 2016]. This method can

be used to evaluate many different syntactic phenomenons, including Agreement, Licensing,

Garden-Path Effects, Gross Syntactic Expectation, Center Embedding, and Long-Distance

Dependencies [Hu et al., 2020].

2.2.4. Synthetic Tasks

Studying the parsing ability of syntactic inductive biases in natural language can be

challenging due to the inherent complexities of natural language, like having several valid

parses for a single sentence. Another way to check whether a model can understand latent

structure is using synthetic data generated from well-formed grammar. There are three major

advantages of using synthetic data: 1) the ground-truth structure is known and unique, so

the parsing result can be accurately evaluated; 2) the solution of such task usually relies on

the latent structure, which provides a strong pressure for the model to learn the grammar;

3) given the well-formed grammar, one can easily generate new data to evaluate the model’s

generalization ability. Given these three advantages, several synthetic datasets are proposed

to evaluate latent tree models. They are usually in the form of logical or mathematical

expressions. Nangia and Bowman [2018] proposed ListOps, which is in the style of prefix
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arithmetic. It is comprised of deeply nested lists of mathematical operations and a list of

single-digit integers. The task requires the model to compute the result of a given equation.

Bowman et al. [2014] proposed a logical inference dataset, comprised of propositional logical

statements. The task requires the model to reason over two logical statements and compute

their relations.
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Chapter 3

Constituency Inductive Bias: Ordered

Neurons

A constituency grammar is hierarchically structured: smaller units (e.g., phrases) are nested

within larger units (e.g., clauses). When a larger constituent ends, all of the smaller con-

stituents that are nested within it must also be closed. While the standard recurrent networks

and memory network architectures allows different neurons (memory slots) to track informa-

tion at different time scales, it does not have an explicit bias towards modeling the hierarchy

of constituents. In this chapter, we will introduce a constituency inductive bias and two

instantiations of the idea.

We start by reviewing the history of constituency-related models (Section 3.1). In Sec-

tion 3.2, we propose ordered neurons – a inductive bias that models the hierarchy of con-

stituents through the assigning of an order to neurons. We then proposed two models as

instantiations of the inductive bias. In Section 3.3 and Section 3.4, we propose ON-LSTM

– a variant of the LSTM model. It use a vector of master input and forget gates to ensures

that when a given neuron is updated, all the neurons that follow it in the ordering are also

updated. In Section 3.5 and Section 3.6, we propose the Ordered Memory. It use a soft stack

mechanism to enforce an order in memory slots. Finally, we summarize recent advances in

Section 3.7.

3.1. Previous Approaches

3.1.1. Constituency-Augmented Neural Networks

Theoretically, RNNs and LSTMs can model data produced by context-free grammars

and context-sensitive grammars [Gers and Schmidhuber, 2001]. However, recent results

suggest that introducing structure information into neural networks is beneficial. Kuncoro

et al. [2018] showed that RNNGs [Dyer et al., 2016], which have an explicit bias to model



the syntactic structures, outperform LSTMs on the subject-verb agreement task [Linzen

et al., 2016]. In this thesis, we use a more extensive suite of grammatical tests recently

provided by Marvin and Linzen [2018] to evaluate the grammar acceptability of our model.

Bowman et al. [2014, 2015] also demonstrate that tree-structured models are more effective

for downstream tasks whose data was generated by recursive programs. Interestingly, Shi

et al. [2018] suggests that while the prescribed grammar tree may not be ideal, some sort of

hierarchical structure, perhaps task dependent, might help. Kuncoro et al. [2020] shows that

syntactic biases help large scale pre-trained models, like BERT, to achieve better language

understanding.

Recursive Neural Networks. There has been prior work leveraging tree structures for

natural language tasks in the literature. Socher et al. [2010], Alvarez-Melis and Jaakkola

[2016], Zhou et al. [2017], Zhang et al. [2015] use supervised learning on expert-labeled

treebanks for predicting parse trees. Socher et al. [2013], Tai et al. [2015] and Zhu et al.

[2015], explicitly model the tree-structure using parsing information from an external parser.

Later, Bowman et al. [2016] exploited guidance from a supervised parser [Klein and Manning,

2003] in order to train a stack-augmented neural network.

Composition with recursive structures has been shown to work well for certain types of

tasks. Pollack [1990] first suggests their use with distributed representations. Later, Socher

et al. [2013] shows their effectiveness on sentiment analysis tasks. Recent work has demon-

strated that recursive composition of sentences is helpful for systematic generalisation [Bow-

man et al., 2015, Bahdanau et al., 2018]. Kuncoro et al. [2018] also demonstrate that ar-

chitectures like RNNG [Dyer et al., 2016] handle syntax-sensitive dependencies better for

language-related tasks.

Stack-Augmented Neural Networks. Schützenberger [1963] first showed an equivalence

between push-down automata (stack-augmented automatons) and context-free grammars.

Knuth [1965] introduced the notion of a shift-reduce parser that uses a stack for a subset of

formal languages that can be parsed from left to right. This technique for parsing has been

applied to natural language as well: Shieber [1983] applies it to English, using assumptions

about how native English speakers parse sentences to remove ambiguous parse candidates.

More recently, Maillard et al. [2017] shows that a soft tree could emerge from all possible

tree structures through back propagation.

The idea of using neural networks to control a stack is not new. Zeng et al. [1994] uses

gradient estimates to learn to manipulate a stack using a neural network. Das et al. [1992]

and Mozer and Das [1993] introduced the notion of a continuous stack in order for the model

to be fully differentiable. Much of the recent work with stack-augmented networks built

upon the development of neural attention [Graves, 2013, Bahdanau et al., 2014, Weston

et al., 2014]. Graves et al. [2014] proposed methods for reading and writing using a head,

along with a “soft” shift mechanism. Apart from using attention mechanisms, Grefenstette
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et al. [2015] proposed a neural stack where the push and pop operations are made to be

differentiable, which worked well in synthetic datasets. Yogatama et al. [2016] proposes RL-

SPINN where the discrete stack operations are directly learned by reinforcement learning.

3.1.2. Constituency Inductive Biases

The task of learning the underlying grammar from data is known as grammar induc-

tion [Chen, 1995, Cohen et al., 2011]. Early work incorporated syntactic structure in the

context of language modeling [Roark, 2001, Charniak, 2001, Chelba and Jelinek, 2000]. More

recently, there have been attempts at incorporating some structure for downstream tasks us-

ing neural models [Grefenstette et al., 2015, Sun et al., 2017, Joulin and Mikolov, 2015].

Generally, these works augment a main recurrent model with a stack and focus on solving

algorithmic tasks. Yogatama et al. [2018] focus on language modeling and syntactic eval-

uation tasks [Linzen et al., 2016] but they do not show the extent to which the structure

learnt by the model align with gold-standard parse trees. Shen et al. [2017] introduced the

Parsing-Reading-Predict Networks (PRPN) model, which attempts to perform parsing by

solving a language modeling task. The model uses self-attention to compose previous states,

where the range of attention is controlled by a learnt “syntactic distance”. The authors show

that this value corresponds to the depth of the parse tree. However, the added complexity

in using the PRPN model makes it unwieldy in practice.

Another possible solution is to develop models with varying time-scales of recurrence

as a way of capturing this hierarchy. El Hihi and Bengio [1996], Schmidhuber [1991], Lin

et al. [1998] describe models that capture hierarchies at pre-determined time-scales. More

recently, Koutnik et al. [2014] proposed Clockwork RNN, which segments the hidden state of

a RNN by updating at different time-scales, while Xu et al. [2016] rescales the forget gates at

different pre-determined scales. These approaches typically make a strong assumption about

the regularity of the hierarchy involved in modelling the data. Chung et al. [2016] proposed a

method that, unlike the Clockwork RNN, would learn a multi-scale hierarchical recurrence.

However, the model still has a pre-determined depth to the hierarchy, depending on the

number of layers. Rippel et al. [2014] proposed to encourage a hierarchy in the representation

units by applying “nested” dropout masks: units are not dropped independently at random

but whenever a unit is dropped, all the units that follow in the ordering are also dropped.

Our work can be seen as a soft and controllable version of the dropout, that we apply a

monotonically decreasing mask to the hidden state. Moreover, we propose to condition

the update masks on the particular input and apply our overall model to sequential data.

Therefore, our model can adapt the structure to the observed data, while both Clockwork

RNN and nested dropout impose a predefined hierarchy to hidden representations.
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3.2. Ordered Neurons

Fig. 3. An instantiation of Ordered Neurons: ON-LSTM A sequence of tokens S =
(x1, x2, x3) and its corresponding constituency tree are illustrated in (a). We provide a
block view of the tree structure in (b), where both S and VP nodes span more than one
time-step. The representation for high-ranking nodes should be relatively consistent across
multiple time-steps. (c) Visualization of the update frequency of groups of hidden state
neurons. At each time-step, given the input word, dark grey blocks are completely updated
while light grey blocks are partially updated. The three groups of neurons have different
update frequencies. Topmost groups update less frequently while lower groups are more
frequently updated.

Given a sequence of tokens S = (x1, . . . , xT ) and its corresponding constituency tree (Fig-

ure 3(a)), our goal is to infer the unobserved tree structure while processing the observed

sequence, i.e. while computing the hidden state ht for each time-step t. At each time-step,

ht would ideally contain information about all the nodes on the path between the current

leaf node xt and the root S. In Figure 3(c), we illustrate how ht would contain information

about all the constituents that include the current token xt even if those are only partially

observed. This intuition suggests that each node in the tree can be represented by a set

of neurons in the hidden states. However, while the dimensionality of the hidden state is

fixed in advance, the length of the path connecting the leaf to the root of the tree may be

different across different time-steps and sentences. Therefore, a desiderata for the model is

to dynamically reallocate the dimensions of the hidden state to each node.

Given these requirements, we introduce ordered neurons, an inductive bias that forces

neurons to represent information at different time-scales. In our model, high-ranking neurons

contain long-term or global information that will last anywhere from several time-steps to

the entire sentence, representing nodes near the root of the tree. Low-ranking neurons

encode short-term or local information that only last one or a few time-steps, representing

smaller constituents, as shown in Figure 3(b). The differentiation between high-ranking and

low-ranking neurons is learnt in a completely data-driven fashion by controlling the update

frequency of single neurons: to erase (or update) high-ranking neurons, the model should first
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erase (or update) all lower-ranking neurons. In other words, some neurons always update

more (or less) frequently than the others, and that order is pre-determined as part of the

model architecture.

3.3. ON-LSTM

While natural languages’ grammar remains an open question to study, many neural

network models already show strong performance on many NLP tasks. Thus, the most rea-

sonable next step is adding the structural inductive bias to an established neural network

model to improve its grammar acceptability. In this section, we present ON-LSTM (“ordered

neurons LSTM”) – a LSTM variant augmented with constituency inductive bias. The differ-

ence with the LSTM is that we replace the update function for the cell state ct with a new

function that will be explained in the following sections. The forget gates ft and input gates

it are used to control the erasing and writing operation on cell states ct, as before. Since

the gates in the LSTM act independently on each neuron, it may be difficult in general to

discern a hierarchy of information between the neurons. To this end, we propose to make

the gate for each neuron dependent on the others by enforcing the order in which neurons

should be updated.

3.3.1. Activation Function: cummax()

To enforce an order to the update frequency, we introduce a new activation function:

ĝ = cummax(. . .) = cumsum(softmax(. . .)) (3.3.1)

where cumsum denotes the cumulative sum. We will show that the vector ĝ can be seen as

the expectation of a binary gate g = (0,...,0,1,...,1). This binary gate splits the cell state

into two segments: the 0-segment and the 1-segment. Thus, the model can apply different

update rules on the two segments to differentiate long/short-term information. Denote by d

a categorical random variable representing the index for the first 1 in g:

p(d) = softmax(. . .) (3.3.2)

The variable d represents the split point between the two segments. We can compute the

probability of the k-th value in g being 1 by evaluating the probability of the disjunction

of any of the values before the k-th being the split point, that is d ≤ k = (d = 0) ∨ (d =

1)∨ · · · ∨ (d = k). Since the categories are mutually exclusive, we can do this by computing

the cumulative distribution function:

p(gk = 1) = p(d ≤ k) =
∑

i≤k

p(d = i) (3.3.3)
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Ideally, g should take the form of a discrete variable. Unfortunately, computing gradients

when a discrete variable is included in the computation graph is not trivial [Schulman et al.,

2015], so in practice we use a continuous relaxation by computing the quantity p(d ≤ k),

obtained by taking a cumulative sum of the softmax. As gk is binary, this is equivalent to

computing E[gk]. Hence, ĝ = E[g].

3.3.2. Structured Gating Mechanism

Based on the cummax() function, we introduce a master forget gate f̃t and a master

input gate ĩt:

f̃t = cummax(Wf̃xt + Uf̃ht−1 + bf̃ ) (3.3.4)

ĩt = 1− cummax(Wĩxt + Uĩht−1 + bĩ) (3.3.5)

Following the properties of the cummax() activation, the values in the master forget gate are

monotonically increasing from 0 to 1, and those in the master input gate are monotonically

decreasing from 1 to 0. These gates serve as high-level control for the update operations of

cell states. Using the master gates, we define a new update rule:

ωt = f̃t ◦ ĩt (3.3.6)

f̂t = ft ◦ ωt + (f̃t − ωt) = f̃t ◦ (ft ◦ ĩt + 1− ĩt) (3.3.7)

ît = it ◦ ωt + (̃it − ωt) = ĩt ◦ (it ◦ f̃t + 1− f̃t) (3.3.8)

ct = f̂t ◦ ct−1 + ît ◦ ĉt (3.3.9)

where ft and it are the original forget and input gate in the LSTM.

In order to explain the intuition behind the new update rule, we assume that the master

gates are binary:

• The master forget gate f̃t controls the erasing behavior of the model. Suppose

f̃t = (0, . . . ,0,1, . . . ,1) and the split point is d
f
t . Given the Eq. (3.3.7) and (3.3.9),

the information stored in the first d
f
t neurons of the previous cell state ct−1 will be

completely erased. In a parse tree (e.g. Figure 3(a)), this operation is akin to closing

previous constituents. A large number of zeroed neurons, i.e. a large d
f
t , represents

the end of a high-level constituent in the parse tree, as most of the information in

the state will be discarded. Conversely, a small d
f
t represents the end of a low-level

constituent as high-level information is kept for further processing.

• The master input gate ĩt is meant to control the writing mechanism of the model.

Assume that ĩt = (1, . . . ,1,0, . . . ,0) and the split point is di
t. a large di

t means that the

current input xt contains long-term information that needs to be preserved for several

time-steps. Conversely, a small di
t means that the current input xt just provides local

information that could be erased by f̃t in the next few time-steps.
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• The product of the two master gates ωt represents the overlap of f̃t and ĩt. Whenever

an overlap exists (∃k, ωtk > 0), the corresponding segment of neurons encodes the

incomplete constituents that contain some previous words and the current input

word xt. Since these constituents are incomplete, we want to update the information

inside the respective blocks. The segment is further controlled by the ft and it in

the standard LSTM model to enable more fine-grained operations within blocks. For

example, in Figure 3, the word x3 is nested into the constituents S and VP. At this

time-step, the overlap gray blocks would represent these constituents, such that f̃t

and ĩt can decide whether to reset or update each individual neurons in these blocks.

As the master gates only focus on coarse-grained control, modeling them with the same

dimensions as the hidden states is computationally expensive and unnecessary. In practice,

we set f̃t and ĩt to be Dm = D
C

dimensional vectors, where D is the dimension of hidden

state, and C is a chunk size factor. We repeat each dimension C times, before the element-

wise multiplication with ft and it. The downsizing significantly reduces the number of extra

parameters that we need to add to the LSTM. Therefore, every neuron within each C-sized

chunk shares the same master gates.

3.3.3. Syntactic Distance

We first proposed Syntactic distance in Shen et al. [2018b] to quantify the process of

splitting sentences into smaller constituents.

Definition 3.3.1. Let T be a constituency tree for sentence (w1, ..., wn). The height of

the lowest common ancestor for consecutive words xi and xi+1 is τ̃i. Syntactic distances

T = (τ1, ..., τn−1) are defined as a sequence of n− 1 real scalars that share the same rank as

(τ̃1, ..., τ̃n−1).

In other words, each syntactic distance di is associated with a split point (i,i + 1) and

specify the relative order in which the sentence will be split into smaller components. Thus,

any sequence of n−1 real values can unambiguously map to an unlabeled binary constituency

tree with n leaves through Algorithm 1 [Shen et al., 2018b]. As Shen et al. [2018c,a], Wang

et al. [2019] pointed out, the syntactic distance reflects the information communication

between constituents. More concretely, a large syntactic distance τi represents that short-

term or local information should not be communicated between (x≤i) and (x>i). While

cooperating with appropriate neural network architectures, we can leverage this feature to

build unsupervised constituency parsing models.

In ON-LSTM and other methods developed from Ordered Neurons, the syntactic distance

has a more specific meaning. It represent the amount of low-level information that has been

erased at each steps. To infer the tree structure of a sentence from a pre-trained model, we

initialize the hidden states with the zero vector, then feed the sentence into the model as
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Algorithm 1 Distance to binary constituency tree

1: function Constituent(w, d)
2: if d = [] then
3: T⇐ Leaf(w)
4: else
5: i⇐ arg maxi(d)
6: childl ⇐ Constituent(w≤i, d<i)
7: childr ⇐ Constituent(w>i, d>i)
8: T⇐ Node(childl, childr)
9: end if

10: return T

11: end function

done in the language modeling task. At each time step, we compute an estimate of d
f
t :

d̂
f
t = E

[

d
f
t

]

=
Dm
∑

k=1

kpf (dt = k) =
Dm
∑

k=1

k
∑

i=1

pf (dt = k) = Dm −
Dm
∑

k=1

f̃tk (3.3.10)

where pf is the probability distribution over split points associated to the master forget gate

and Dm is the size of the hidden state. Given d̂
f
t , we can use the top-down greedy parsing

algorithm proposed in Shen et al. [2017] for unsupervised constituency parsing. We first sort

the ¶d̂f
t ♢ in decreasing order. For the first d̂

f
i in the sorted sequence, we split the sentence into

constituents ((x<i), (xi, (x>i))). Then, we recursively repeat this operation for constituents

(x<i) and (x>i), until each constituent contains only one word.

3.4. Natural Language Experiments

In this section, we study the performance of ON-LSTM in natural language settings.

We first train and evaluate the model on language modeling task. We then compared the

syntactic structures induced by ON-LSTM with human-annotated structures. Finally, We

test its grammar acceptability on a synthetic dataset. Results show that the proposed

inductive bias can indeed improve model’s grammar acceptability while preserve the strong

performance on language modeling.

3.4.1. Language Modeling

Word-level language modeling is a macroscopic evaluation of the model’s ability to deal

with various linguistic phenomena (e.g. co-occurence, syntactic structure, verb-subject

agreement, etc). We evaluate our model by measuring perplexity on the Penn TreeBank

(PTB) [Marcus et al., 1993, Mikolov, 2012] task.

For fair comparison, we closely follow the model hyper-parameters, regularization and

optimization techniques introduced in AWD-LSTM [Merity et al., 2017]. Our model uses

a three-layer ON-LSTM model with 1150 units in the hidden layer and an embedding of
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size 400. For master gates, the downsize factor C = 10. The total number of parameters

is 25 millions, which is 1 millions more then the AWD-LSTM. The extra parameters are

used for computing the master gates. We manually searched some of the dropout values

for ON-LSTM based on the validation performance. The values used for dropout on the

word vectors, the output between LSTM layers, the output of the final LSTM layer, and

embedding dropout where (0.5, 0.3, 0.45, 0.1) respectively. A weight-dropout of 0.45 was

applied to the recurrent weight matrices.

Model Parameters Validation Test

Zaremba et al. [2014] - LSTM (large) 66M 82.2 78.4
Gal and Ghahramani [2016] - Variational LSTM (large, MC) 66M − 73.4
Kim et al. [2016] - CharCNN 19M − 78.9
Merity et al. [2016] - Pointer Sentinel-LSTM 21M 72.4 70.9
Grave et al. [2016] - LSTM − − 82.3
Grave et al. [2016] - LSTM + continuous cache pointer − − 72.1
Inan et al. [2016] - Variational LSTM (tied) + augmented loss 51M 71.1 68.5
Zilly et al. [2016] - Variational RHN (tied) 23M 67.9 65.4
Zoph and Le [2016] - NAS Cell (tied) 54M − 62.4
Shen et al. [2017] - PRPN-LM − − 62.0
Melis et al. [2017] - 4-layer skip connection LSTM (tied) 24M 60.9 58.3
Merity et al. [2017] - AWD-LSTM - 3-layer LSTM (tied) 24M 60.0 57.3

ON-LSTM - 3-layer (tied) 25M 58.29± 0.10 56.17± 0.12

Yang et al. [2017] - AWD-LSTM-MoS* 22M 56.5 54.4

Table 1. Single model perplexity on validation and test sets for the Penn Treebank language
modeling task. Models labelled tied use weight tying on the embedding and softmax weights
[Inan et al., 2016, Press and Wolf, 2017]. Models labelled * focus on improving the softmax
component of RNN language model. Their contribution is orthogonal to ours.

As shown in Table 1, our model performs better than the standard LSTM while sharing

the same number of layers, embedding dimensions, and hidden states units. Recall that the

master gates only control how information is stored in different neurons. It is interesting

to note that we can improve the performance of a strong LSTM model without adding skip

connections or a significant increase in the number of parameters.

3.4.2. Unsupervised Constituency Parsing

The unsupervised constituency parsing task compares the latent stree structure induced

by the model with those annotated by human experts. Following the experiment settings

proposed in Htut et al. [2018], we take our best model for the language modeling task, and

test it on WSJ10 dataset and WSJ test set. WSJ10 has 7422 sentences, filtered from the

WSJ dataset with the constraint of 10 words or less, after the removal of punctuation and

null elements [Klein and Manning, 2002]. The WSJ test set contains 2416 sentences with

various lengths. It is worth noting that the WSJ10 test set contains sentences from the
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training, validation, and test set of the PTB dataset, while WSJ test uses the same set of

sentences as the PTB test set.

Training
Data

Vocab
Size

Parsing F1
Depth
WSJ

Accuracy on WSJ by Tag
Model WSJ10 WSJ

ADJP NP PP INTJ
µ (σ) µ (σ)

PRPN-UP AllNLI Train 76k 66.3 (0.8) 38.3 (0.5) 5.8 28.7 65.5 32.7 0.0
PRPN-LM AllNLI Train 76k 52.4 (4.9) 35.0 (5.4) 6.1 37.8 59.7 61.5 100.0

PRPN-UP WSJ Train 15.8k 62.2 (3.9) 26.0 (2.3) 5.8 24.8 54.4 17.8 0.0
PRPN-LM WSJ Train 10k 70.5 (0.4) 37.4 (0.3) 5.9 26.2 63.9 24.4 0.0

ON-LSTM 1st-layer WSJ Train 10k 35.2 (4.1) 20.0 (2.8) 5.6 38.1 23.8 18.3 100.0
ON-LSTM 2nd-layer WSJ Train 10k 65.1 (1.7) 47.7 (1.5) 5.6 46.2 61.4 55.4 0.0
ON-LSTM 3rd-layer WSJ Train 10k 54.0 (3.9) 36.6 (3.3) 5.3 44.8 57.5 47.2 0.0

CCM WSJ10 Full – 71.9 – – – – – –
DMV+CCM WSJ10 Full – 77.6 – – – – – –
UML-DOP WSJ10 Full – 82.9 – – – – – –

Random Trees – – 31.7 (0.3) 18.4 (0.1) 5.3 17.4 22.3 16.0 40.4
Balanced Trees – – 43.4 (0.0) 24.5 (0.0) 4.6 22.1 20.2 9.3 55.9
Left Branching – – 19.6 (0.0) 9.0 (0.0) 12.4 – – – –
Right Branching – – 56.6 (0.0) 39.8 (0.0) 12.4 – – – –

Table 2. Unlabeled parsing F1 results evaluated on the full WSJ10 and WSJ test set. Our
language model has three layers, each of them provides a sequence of d̂

f
t . We provide the

parsing performance for all layers. Results with RL-SPINN and ST-Gumbel are evaluated on
the full WSJ [Williams et al., 2017]. PRPN models are evaluated on the WSJ test set [Htut
et al., 2018]. We run the model with 5 different random seeds to calculate the average F1.
The Accuracy columns represent the fraction of ground truth constituents of a given type
that correspond to constituents in the model parses. We use the model with the best F1
score to report ADJP, NP, PP, and INTJ. WSJ10 baselines are from [Klein and Manning,
2002, CCM], [Klein and Manning, 2005, DMV+CCM], and [Bod, 2006, UML-DOP]. As the
WSJ10 baselines are trained using POS tags, they are not strictly comparable with the latent
tree learning results. Italics mark results that are worse than the random baseline.

The performance is shown in Table 2. The second layer of ON-LSTM achieves state-of-

the-art unsupervised constituency parsing results on the WSJ test set, while the first and

third layers do not perform as well. One possible interpretation is that the first and last

layers may be too focused on capturing local information useful for the language modeling

task as they are directly exposed to input tokens and output predictions respectively, thus

may not be encouraged to learn the more abstract tree structure. Since the WSJ test

set contains sentences of various lengths which are unobserved during training, we find

that ON-LSTM provides better generalization and robustness toward longer sentences than

previous models. We also see that the ON-LSTM model can provide strong results for phrase

detection, including ADJP (adjective phrases), PP (prepositional phrases), and NP (noun

phrases). This feature could benefit many downstream tasks, like question answering, named

entity recognition, co-reference resolution, etc.

54



3.4.3. Targeted Syntactic Evaluation

Targeted syntactic evaluation tasks have been proposed in Marvin and Linzen [2018].

It is a collection of tasks that evaluate language models along three different structure-

sensitive linguistic phenomena: subject-verb agreement, reflexive anaphora and negative

polarity items. Given a large number of minimally different pairs of English sentences, each

consisting of a grammatical and an ungrammatical sentence, a language model should assign

a higher probability to a grammatical sentence than an ungrammatical one.

Using the released codebase1 and the same settings proposed in Marvin and Linzen [2018],

we train both our ON-LSTM model and a baseline LSTM language model on a 90 million

word subset of Wikipedia. Both language models have two layers of 650 units, a batch size

of 128, a dropout rate of 0.2, a learning rate of 20.0, and were trained for 40 epochs. The

input embeddings have 200 dimensions and the output embeddings have 650 dimesions.

Table 3 shows that the ON-LSTM performs better on the long-term dependency cases,

while the baseline LSTM fares better on the short-term ones. This is possibly due to the

relatively small number of units in the hidden states, which is insufficient to take into account

both long and short-term information. We also notice that the results for NPI test cases

have unusually high variance across different hyper-parameters. This result maybe due to the

non-syntactic cues discussed in Marvin and Linzen [2018]. Despite this, ON-LSTM actually

achieves better perplexity on the validation set.

3.5. Ordered Memory

While modern neural network models achieve surprising performance on many natural

language tasks, our later experiment sections will show that they fall short on some formal

language tasks. Especially when standard neural network models face a systematic gener-

alization setting, they tend suffer a dramatic performance drop. This exposes the problem

that these models fail to capture the internal mechanism of formal languages. In this section,

we present Ordered Memory – a new model that is developed from ordered neurons to solve

formal language tasks.

Ordered Memory is another instantiation of ordered neurons that groups neurons into

memory slots and assigns a predetermined order to the memory slots. The model explicitly

models constituency structure through memory writing and erasing operations. OM maps

the latent syntax into a T × N memory grid M̃ , where T is the length of input sequence

and N is the maximum number of memory slots. Figure 4 gives an intuition of what the

grid contains. Empty blocks in the figure represent memory slots that can be discarded

1https://github.com/BeckyMarvin/LM_syneval. We notice that the test set generated from the code is
different from the one used in the original paper [Marvin and Linzen, 2018]. Therefore, our results are not
strictly comparable with the results in Marvin and Linzen [2018].
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ON-LSTM LSTM

Short-Term Dependency

Subject-verb agreement:

Simple 0.99 1.00
In a sentential complement 0.95 0.98
Short VP coordination 0.89 0.92
In an object relative clause 0.84 0.88
In an object relative (no that) 0.78 0.81

Reflexive anaphora:

Simple 0.89 0.82
In a sentential complement 0.86 0.80

Negative polarity items:

Simple (grammatical vs. intrusive) 0.18 1.00
Simple (intrusive vs. ungrammatical) 0.50 0.01
Simple (grammatical vs. ungrammatical) 0.07 0.63

Long-Term Dependency

Subject-verb agreement:

Long VP coordination 0.74 0.74
Across a prepositional phrase 0.67 0.68
Across a subject relative clause 0.66 0.60
Across an object relative clause 0.57 0.52
Across an object relative (no that) 0.54 0.51

Reflexive anaphora:

Across a relative clause 0.57 0.58

Negative polarity items:

Across a relative clause (grammatical vs. intrusive) 0.59 0.95
Across a relative clause (intrusive vs. ungrammatical) 0.20 0.00
Across a relative clause (grammatical vs. ungrammatical) 0.11 0.04

Table 3. Overall accuracy for the ON-LSTM and LSTM on each test case. “Long-term
dependency” means that an unrelated phrase (or a clause) exist between the targeted pair
of words, while “short-term dependency” means there is no such distraction.

during inference. Ideally, the memory network should generate the t-th column of the grid

M̃t at time-step t. But generating M̃t requires the model to have access about the tree

structure which is usually latent. The OM model actively maintains its memory as a stack

and processes the input from left to right, with a one-step lookahead in the sequence. This

allows the OM model to decide the local structure more accurately, much like a shift-reduce

parser [Knuth, 1965].

At a given point t in the input sequence x (the t-th time-step), we have a memory of

candidate sub-trees spanning the non-overlapping sub-sequences in x1, . . . , xt−1, with each

sub-tree being represented by one slot in the memory stack. We also maintain a memory

stack of sub-trees that contains x1, . . . , xt−2. We use the input xt to choose its parent node

from our previous candidate sub-trees. The descendant sub-trees of this new sub-tree (if they

exist) are removed from the memory stack, and this new sub-tree is then added. We then
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Fig. 4. The grid view of a tree structure. Blue arrows represent composing children into
parent. Pink arrows represent copying from previous time-step. Orange slots are memories
generated at the current time-step. Pink slots are memories copied from previous time-step.

build the new candidate sub-trees that include xt using the current input and the memory

stack. Figure 5 provides an example of one time-step in OM. In what follows, we describe

the OM model in detail. To facilitate a clearer description, a discrete attention scheme is

assumed, but only “soft" attention is used in both the training and evaluation of this model.

Fig. 5. The transition from time-step 4 to 5. (1) The one-step look-ahead parser combines
M̂t−1 and Mt−1 considering on the current input xt, in this example, the split point of M̂t−1

and Mt−1 is i = 2. (2) Current input xt is written into the lower slot of new candidate
memory M̂ i−1

t . (3) The rest of new candidate memories M̂≥i
t are generated with bottom-up

recurrent composition.

Let D be the dimension of each memory slot and N be the number of memory slots. At

time-step t, the model takes four inputs:
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• Memory Mt−1: a matrix of dimension N × D, where each occupied slot is a dis-

tributed representation for a node spanning a subsequence in x1, .., xt−2 conditioned

on xt−1, i.e. Mt−1 represents a one-step look-ahead parser stack. It’s represented by

gray blocks in Figure 5.

• Candidate memory M̂t−1: a matrix of dimension N ×D contains representations

for all possible new nodes at time-step t − 1. At next time-step t, the model will

decide whether or not to write these candidates into memory Mt conditioned on xt.

They are represented by orange blocks in Figure 5. If the model is making correct

parsing decisions, then Mt = M̃t−1.

• Memory mask −→π t−1:
−→π t−1 ∈ ¶0, 1♢N , where each entry indicates whether the

respective slot in M̂t−1 is occupied by a candidate, e.g., if −→π t−1 = (0, 1, 1), then the

occupied slots are ˆM − 1
≥2

t . At time-step t, the model can only choose a candidate

from masked slots to write into the memory Mt.

• Input xt: a vector of dimension Din that represent the input at time-step t.

The model first transforms xt to a D dimension vector.

x̃t = LN(Wxt + b) (3.5.1)

where LN(·) is the layer normalization function [Ba et al., 2016].

To select the candidate representations from M̂t−1, the model uses x̃t as its query to

attend on M̂t−1:

pt = Att(x̃t, M̂t−1,
−→π t−1) (3.5.2)

−→π i
t =

∑

j≤i

p
j
t (3.5.3)

←−π i
t =

∑

j≥i

p
j
t (3.5.4)

where Att(·) is a masked attention function, −→π t−1 is the mask, pt is a distribution over

different memory slots in M̂t−1, and p
j
t is the probability on the j-th slot. The attention

mechanism will be described in section 3.5.1. Intuitively, pt can be viewed as a pointer to

the head of the stack, −→π t is an indicator value over where the stack exists, and ←−π t is an

indicator over where the top of the stack is and where it is non-existent.

To compute Mt, we combine M̂t−1 and Mt−1 through:

M i
t = M i

t−1 · (1−←−π )i + M̂ i
t−1 · ←−π i

t, ∀i (3.5.5)

Suppose pt points at a memory slot yt in m̂. Then ←−π t will write M̂ i
t−1 to M i

t for i ≤ yt,

and (1−←−π t) will write M i
t−1 to M i

t for i > yt. In other words, Eqn. 3.5.5 copies everything

from Mt−1 to the current timestep, up to where pt is pointing.
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Algorithm 2 Ordered Memory algorithm. The attention function Att(·) is defined in section
3.5.1. The recursive cell function cell(·) is defined in section 3.5.2.

1: function OM(x1, ..., xT )
2: initialize M0, M̂0

3: for i← 1 to T do
4: x̃t = LN(Wxt + b)

5: pt = Att(x̃t, M̂t−1,
−→π t−1)

6:
−→π i

t =
∑

j≤i p
j
t

7:
←−π i

t =
∑

j≥i p
j
t

8: M̂0
t = x̃t

9: for i← 1 to N do
10: M i

t = M i
t−1 · (1−←−π t)

i + M̂ i
t−1 · ←−π i

t

11: oi
t = c(M i

t , M̂ i−1
t )

12: M̂ i
t = x̃t · (1−−→π t)

i + oi
t · −→π i

t

13: end for
14: end for
15: return oN

T

16: end function

We believe that this is a crucial point that differentiates our model from past stack-

augmented models like Yogatama et al. [2016] and Joulin and Mikolov [2015]. Both con-

structions have the 0-th slot as the top of the stack, and perform a convex combination of

each slot in the memory / stack given the action performed. More concretely, a distribution

over the actions that is not sharp (e.g. 0.5 for pop) will result in a weighted sum of an

un-popped stack and a pop stack, resulting in a blurred memory state. Compounded, this

effect can make such models hard to train. In our case, because (1−←−π t)
i is non-decreasing

with i, its value will accumulate to 1 at or before N . This results in a full copy, guaranteeing

that the earlier states are retained. This full retention of earlier states may play a part in the

training process, as it is a strategy also used in Gulcehre et al. [2017], where all the memory

slots are filled before any erasing or writing takes place.

To compute candidate memories for time-step t, we recurrently update all memory slots

with

oi = c(M i
t , M̂ i−1

t ) (3.5.6)

M̂ i
t = x̃t · (1−−→π t)

i+1 + oi
t · −→π i

t,∀i (3.5.7)

where M̂0
t is xt. The c(·) function can be seen as a recursive composition function in a

recursive neural network [Socher et al., 2013]. We propose a new cell function in section

3.5.2.
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The output of time-step t is the last memory slot M̂N
t of the new candidate memory, which

summarizes all the information from x1, ..., xt using the induced structure. The pseudo-code

for the OM algorithm is shown in Algorithm 2.

3.5.1. Masked Attention

Given the projected input x̃t and candidate memory M̂ i
t−1. We feed every (x̃t, M̂ i

t−1) pair

into a feed-forward network:

αi
t =

wAtt
2 tanh



WAtt
1





M̂ i
t−1

x̃t



+ b1



+ b2

√
N

(3.5.8)

βi
t = exp

(

αi
t −max

j
α

j
t

)

(3.5.9)

where WAtt
1 is N×2N matrix, wAtt

2 is N dimension vector, and the output βi
t is a scalar. The

purpose of dividing by
√

N is to scale down the logits before softmax is applied, a technique

similar to the one seen in Vaswani et al. [2017]. We further mask the βt with the cumulative

probability from the previous time-step to prevent the model attending on non-existent parts

of the stack:

β̂i
t = βi

t
−→π i+1

t−1 (3.5.10)

where −→π N+1
t−1 = 1 and −→π ≤N

0 = 0. We can then compute the probability distribution:

pi
t =

β̂i
t

∑

j β̂
j
t

(3.5.11)

This formulation bears similarity to the method used for the multi-pop mechanism seen in

Yogatama et al. [2018].

3.5.2. Gated Recursive Cell

Instead of using the recursive cell proposed in TreeLSTM [Tai et al., 2015] and RNTN

[Socher et al., 2010], we propose a new gated recursive cell, which is inspired by the feed-

forward layer in Transformer [Vaswani et al., 2017]. The inputs M i
t and M̂ i−1

t are concate-

nated and fed into a fully connect feed-forward network:














vi
t

hi
t

ci
t

ui
t















= WCell
2 ReLU



WCell
1





M̂ i−1
t

M i
t



+ b1



+ b2 (3.5.12)
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Like the TreeLSTM, we compute the output with a gated combination of the inputs and ui
t:

oi
t = LN(σ(vi

t)⊙ M̂ i−1
t + σ(hi

t)⊙M i
t + σ(ci

t)⊙ ui
t) (3.5.13)

where vi
t is the vertical gate that controls the input from previous slot, hi

t is horizontal gate

that controls the input from previous time-step, cgi
t is cell gate that control the ui

t, oi
t is the

output of cell function, and LN(·) share the same parameters with the one used in the Eqn.

3.5.1.

3.5.3. Relations to ON-LSTM and Shift-reduce Parser

Ordered Memory is implemented following the principles introduced in Ordered Neurons.

Our model is related to ON-LSTM in several aspects: 1) The memory slots are similar to

the chunks in ON-LSTM, when a higher ranking memory slot is forgotten/updated, all lower

ranking memory slots should likewise be forgotten/updated; 2) ON-LSTM uses the mono-

tonically non-decreasing master forget gate to preserve long-term information while erasing

short term information, the OM model uses the cumulative probability −→π t; 3) Similarly, the

master input gate used by ON-LSTM to control the writing of new information into the

memory is replaced with the reversed cumulative probability ←−π t in the OM model.

At the same time, the internal mechanism of OM can be seen as a continuous version

of a shift-reduce parser. At time-step t, a shift-reduce parser could perform zero or several

reduce steps to combine the heads of stack, then shift the word t into stack. The OM

implement the reduce step with Gated Recursive Cell. It combines M̂ i−1
t , the output of

previous reduce step, and M i
t , the next element in stack, into M̂ i

t , the representation for

new sub-tree. The number of reduce steps is modeled with the attention mechanism. The

probability distribution pt models the position of the head of the stack after all necessary

reduce operations are performed. The shift operations is implemented as copying the current

input word xt into memory.

The upshot of drawing connections between our model and the shift-reduce parser is

interpretability: We can approximately infer the computation graph constructed by our

model with Algorithm 3. The algorithm can be used for the latent tree induction tasks in

Williams et al. [2018].

3.6. Formal Language Experiments

Formal languages are artificial languages, constructed from a well-defined grammar.

Many formal language tasks requires the model to have a comprehensive understanding about

the grammar. It’s also straightforward to produce special training and test set, so that the

model need to transfer the learned syntax and operators to out-of-distribution data points.
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Algorithm 3 Shift-reduce parsing algorithm for generate parsing tree from Ordered Memory
model. Here we greedily choose the argmax(pt) as the head of stack for each slot.

1: function Constituent((w1, p1), ..., (wT , pT ))
2: queue = [w2,...,wT ]
3: stack = [w1]
4: h = argmax(p1)− 1
5: for i← 2 to T do
6: yi = argmax(pi)
7: d = yi − h

8: if d > 0 then
9: for j ← 1 to d do

10: if len(stack) < 2 then
11: Break
12: end if
13: e1 = stack.pop()
14: e2 = stack.pop()
15: stack.push(node(e1,e2))
16: end for
17: end if
18: stack.push(queue.popleft())
19: h = yi − 1
20: end for
21: while len(stack) > 2 do
22: e1 = stack.pop()
23: e2 = stack.pop()
24: stack.push(node(e1,e2))
25: end while
26: return T

27: end function

In this section, we will focus on test OM performance on two tasks: Logical Inforence [Bow-

man et al., 2014] and ListOps [Nangia and Bowman, 2018]. Experiment results show that

OM outperformance all baseline models, including ON-LSTM. On out-of-distribution test

sets, OM also demonstrates a symbolic-like systematical generalization ability.

3.6.1. Logical Inference

The logical inference task described in Bowman et al. [2015] has a vocabulary of six

words and three logical operations, or, and, not. The task is to classify the relationship of

two logical clauses into seven mutually exclusive categories. We use a multi-layer perceptron

(MLP) with (h1, h2, h1◦h2, ♣h1−h2♣) as input, where h1 and h2 are the M̂N
T of their respective

input sequences. We compare our model with LSTM, RRNet [Jacob et al., 2018], Tranformer

[Vaswani et al., 2017], Universal Transformer [Dehghani et al., 2018], TreeLSTM [Tai et al.,

2015], TreeRNN [Bowman et al., 2015], and TreeCell. We used the same hidden state size for
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Table 4. Partitions of the Logical Inference task from Bowman et al. [2014]. Each partitions
include a training set filtered out all data points that match the rule indicated in Excluded,
and a test set formed by matched data points.

Part. Excluded Training set size Test set example

A * ( and (not a) ) * 128,969 f (and (not a))

B * ( and (not *) ) * 87,948 c (and (not (a (or b))))

C * ( {and,or} (not *) ) * 51,896 a (or (e (and c)))

Full 135,529

a or not d and not not b and c a or not d and not not b and c a or not d and not not b and c

Fig. 6. Variations in induced parse trees under different runs of the logical inference ex-
periment. The left most tree is the ground truth and one of induced structures. We have
removed the parentheses in the original sequence for this visualization. It is interesting to
note that the different structures induced by our model are all valid computation graphs to
produce the correct results.

our model and baselines for proper comparison. The model is trained on sequences containing

up to 6 operations and tested on sequences with higher number (7-12) of operations.

The Transformer models were implemented by modifying the code from the Annotated

Transformer2. The number of Transformer layers are the same as the number of slots in

OM. Unfortunately, we were not able to successfully train a Transformer model on the task,

resulting in a model that only learns the marginal over the labels. Tran et al. [2018] achieves

similar results, suggesting this could be a problem intrinsic to self-attention mechanisms for

this task.

Length Generalization Tests. The TreeRNN model represents the best results achievable

if the structure of the tree is known. The TreeCell experiment was performed as a control

to isolate the performance of using the c(·) composition function versus using both using

c(·) and learning the composition with OM. The performance of our model degrades only

marginally with increasing number of operations in the test set, suggesting generalization on

these longer sequences never seen during training.

Parsing results. OM achieve an unsupervised parsing performance 84.3± 14.4. There is a

variability in parsing performance over several runs under different random seeds, but the

model’s ability to generalize to longer sequences remains fairly constant. The model learns

a slightly different method of composition for consecutive operations. Perhaps predictably,

these are variations that do not affect the logical composition of the subtrees. The source

2http://nlp.seas.harvard.edu/2018/04/03/attention.html
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Table 5. Test accuracy of the models, trained on operation lengths of ≤ 6, with their
out-of-distribution results shown here (lengths 7-12). We ran 5 different runs of our models,
giving the error bounds in the last row. The F1 score is the parsing score with respect to
the ground truth tree structure. The TreeCell is a recursive neural network based on the
Gated Recursive Cell function proposed in section 3.5.2. For the Transformer and Universal
Transformer, we follow the entailment architecture introduced in Radford et al. [2018]. The
model takes <start> sentence1 <delim> sentence2 <extract> as input, then use the
vector representation for <extract> position at last layer for classification. ∗The results for
RRNet were taken from Jacob et al. [2018].

Model Number of Operations Sys. Gen.
7 8 9 10 11 12 A B C

Sequential sentence representation
LSTM 88 84 80 78 71 69 84 60 59
RRNet* 84 81 78 74 72 71 – – –

Inter sentence attention
Transformer 51 52 51 51 51 48 53 51 51
Universal Transformer 51 52 51 51 51 48 53 51 51

Our models
ON-LSTM 91 87 85 81 78 75 70 63 60
OM 98 ± 0.0 97 ± 0.4 96 ± 0.5 94 ± 0.8 93 ± 0.5 92 ± 1.1 94 91 81

Recursive NN + ground-truth structure
TreeLSTM 94 92 92 88 87 86 91 84 76
TreeCell 98 96 96 95 93 92 95 95 90
TreeRNN 98 98 97 96 95 96 94 92 86

of different parsing results can be seen in Figure 6. The results suggest that these latent

structures are still valid computation graphs for the task, in spite of the variations.

Systematic Generalization Tests. Inspired by Loula et al. [2018], we created three splits

of the original logical inference dataset with increasing levels of difficulty. Each consecutive

split removes a superset of the previously excluded clauses, creating a harder generalization

task. Each model is then trained on the ablated training set, and tested on examples unseen

in the training data. As a result, the different test splits have different numbers of data

points. Table 4 contains the details of the individual partitions.

The results are shown in the right section of Table 5 under Sys. Gen. Each column labeled

A, B, and C are the model’s aggregated accuracies over the unseen operation lengths. As

with the length generalization tests, the models with the known tree structure performs the

best on unseen structures, while sequential models degrade quickly as the tests get harder.

Our model greatly outperforms all the other sequential models, performing slightly below

the results of TreeRNN and TreeCell on different partitions.

Combined with the parsing results, and our model’s performance on these generalization

tests, we believe this is strong evidence that the model has both (i) learned to exploit
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symmetries in the structure of the data by learning a good c(·) function, and (ii) learned

where and how to apply said function by operating its stack memory.

3.6.2. ListOps

Model Accuracy F1

Baselines
LSTM* 71.5±1.5 –
RL-SPINN* 60.7±2.6 71.1
Gumbel Tree-LSTM* 57.6±2.9 57.3
Transformer 57.4±0.4 –
Universal Transformer 71.5±7.8 –
Havrylov et al. [2019] 99.2±0.5 –

OM 99.97±0.014 100

(a) (b)

Fig. 7. (a) shows the accuracy of different models on the ListOps dataset. All models have
128 dimensions. Results for models with * are taken from Nangia and Bowman [2018]. (b)
shows our model accuracy on the ListOps task when varying the the size of the training set.

Nangia and Bowman [2018] build a dataset with nested summary operations on lists of

single digit integers. The sequences comprise of the operators MAX, MIN, MED, and SUM_MOD.

The output is also an integer in [0, 9] As an example, the input: [MAX 2 9 [MIN 4 7 ] 0 ]

has the solution 9. As the task is formulated to be easily solved with a correct parsing strat-

egy, the task provides an excellent test-bed to diagnose models that perform tree induction.

The authors binarize the structure by choosing the subtree corresponding to each list to be

left-branching: the model would first take into account the operator, and then proceed to

compute the summary statistic within the list. A right-branching parse would require the

entire list to be maintained in the model’s hidden state.

OM achieves 99.9% accuracy, and an F1 score of 100% on the model’s induced parse

tree (See Table 7a). This result is consistent across 3 different runs of the same experiment.

In Nangia and Bowman [2018], the authors perform an experiment to verify the effect of

training set size on the latent tree models. As the latent tree models (RL-SPINN and

ST-Gumbel) need to parse the input successfully to perform well on the task, the better

performance of the LSTM than those models indicate that the size of the dataset does not

affect the ability to learn to parse much for those models. Our model seems to be more data

efficient and solves the task even when only training on a subset of 90k examples (Fig. 7b).
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3.7. Recent Advances

After ON-LSTM was first presented in 2018, many new developments on constituency

inductive bias and unsupervised constituency parsing have been introduced. In URNNG

[Kim et al., 2019b], amortized variational inference was applied between a recurrent neural

network grammar (RNNG) [Dyer et al., 2016] decoder and a tree structure inference network,

which encourages the decoder to generate reasonable tree structures. DIORA [Drozdov et al.,

2019] proposed using inside-outside dynamic programming to compose latent representations

from all possible binary trees. The representations of inside and outside passes from the same

sentences are optimized to be close to each other. The compound PCFG [Kim et al., 2019a]

achieves grammar induction by maximizing the marginal likelihood of the sentences which are

generated by a probabilistic context-free grammar (PCFG). Neural L-PCFG [Zhu et al., 2020]

demonstrated that PCFG can benefit from modeling lexical dependencies. The Neural L-

PCFG induces both constituents and dependencies within a single model. Tree Transformer

[Wang et al., 2019] share a similar inductive bias as ordered neurons. It adds extra locality

constraints to the Transformer encoder’s self-attention to encourage the attention heads to

follow a tree structure such that each token can only attend on nearby neighbors in lower

layers and gradually extend the attention field to further tokens when climbing to higher

layers.
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Chapter 4

Dependency Inductive Bias: Unsupervised

Dependency Graph Network

In this chapter, we focus on the other facet of syntax: Dependency grammar. Dependency

is the notion that linguistic units, e.g. words, are connected to each other by directed links.

The natural of dependency graph makes it compatible with modern graph neural networks.

However the actually graph structure is latent, which means the ground-truth structure is

usually unavailable to model. Hence, we propose a dependency inductive bias to induce the

structure, and a dependency graph network to model the information propagation between

words.

We start from reviewing related works which either augment neural networks with depen-

dency graph or induce the dependency graph from raw data (Section 4.1). In Section 4.2, we

introduce Unsupervised Dependency Graph Network (UDGN) that includes a Dependency

Graph Network and a parser. The Dependency Graph Network (DGN) uses different chan-

nels and a competitive mechanism to model information propagation on different types of

dependency edges. Alongside the DGN, an independent parsing module provides a soft and

differentiable dependency mask to constrain the information propagation. In Section 4.3,

we train UDGN with a Masked Language Model (MLM) objective. We find that the model

learns to induce dependency trees. It achieves strong performance on MLM and state-of-

the-art results in unsupervised dependency parsing on the Wall Street Journal treebank. We

also perform analysis on the mechanisms that give rise to this behavior and evaluate the

model’s potential for finetuning on a downstream task.



4.1. Previous Approaches

4.1.1. Dependency-Augmented Models

In many Transformer-based models, attention masks are often used to limit the input

tokens that a particular timestep can attend over. This attention mask can be viewed as

an adjacency matrix over a graph whose nodes are the input tokens. From this perspective,

Transformers are a form of Graph Convolution network (GCN; [Kipf and Welling, 2016])

— specifically, a Graph Attention Network (GAT; [Veličković et al., 2017]), as it attends

over the features of its neighbors. Several works have made this connection, and integrated

dependency structures into transformers [Ahmad et al., 2020, Wang et al., 2019, Tang et al.,

2020]. Results from Omote et al. [2019] and Deguchi et al. [2019] suggest that embedding

these structures can improve translation models.

However, these dependency parses may not always be present to be used as input to the

model. Strubell et al. [2018] trains the self-attention to attend the syntactic governor (head)

of a particular token, resulting in a model that does not require dependency structure as

input during inference time. We take a further step in our work and attempt to learn these

structures in an unsupervised fashion from the MLM objective.

4.1.2. Unsupervised Dependency Parsing

Previous works on unsupervised dependency parsing are primarily based on the depen-

dency model with valence (DMV) [Klein and Manning, 2004] and its extension [Daumé III,

2009, Gillenwater et al., 2010]. To effectively learn the DMV model for better parsing ac-

curacy, a variety of inductive biases and handcrafted features, such as correlations between

parameters of grammar rules involving different part-of-speech (POS) tags, have been pro-

posed to incorporate prior information into learning. The most recent progress is the neural

DMV model [Jiang et al., 2016], which uses a neural network model to predict the grammar

rule probabilities based on the distributed representation of POS tags. However, most exist-

ing unsupervised dependency parsing algorithms require the gold POS tags to ge provided

as inputs. These gold POS tags are labeled by humans and can be potentially difficult (or

prohibitively expensive) to obtain for large corpora. Spitkovsky et al. [2011] proposed to

overcome this problem with unsupervised word clustering that can dynamically assign tags

to each word considering its context. He et al. [2018] overcame the problem by combining

DMV model with invertible neural network to jointly model discrete syntactic structure and

continuous word representations.

Dependency Model with Valence (DMV; [Klein and Manning, 2004]) is the basis of several

unsupervised dependency parsing methods [Daumé III, 2009, Gillenwater et al., 2010]. Jiang

et al. [2016] updates the method using neural networks to predict grammar rule probabilities.
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Fig. 8. The architecture of Unsupervised Dependency Graph Network (UDGN). The model
includes a parser and a Dependency Graph Network (DGN). Given an input sentence, the
parser can predict the dependency relation between tokens and generate a soft mask to
approximate the undirected dependency graph. The DGN takes the sentence and mask as
input, and output contextual word embeddings. Since the mask is soft, the gradient can
be backpropagated from the DGN into the parser. Thus UDGN can induce grammar while
training on downstream tasks.

These methods require additional Part-of-Speech (POS) information. Spitkovsky et al. [2011]

tackled the issue by performing clustering to assign tags to each word by considering its

context. In our proposal, the parser predicts pseudo-probabilities for POS tags for each

word. These probabilities are then used for predicting the head word.

4.2. Unsupervised Dependency Graph Network

In this section, we propose the Unsupervised Dependency Graph Networks (UDGN). The

UDGN includes two components:

• A parser, which computes the dependency head probability distribution pi for each

word wi in the input sentence, and then converts it to a matrix of edge probability

mij that approximates an undirected dependency graph;

• A multilayer Dependency Graph Network (DGN) that propagates information be-

tween words to compute a contextualized embedding hi for each word wi. It use mij

to control information propagation between word pair (wi, wj).

As shown in Figure 8, the parser computes a dependency head distribution for each token

and then converts it to a soft dependency mask mij. The DGN takes mij and the sentence

as input and uses a competitive mechanism to propagate information between tokens.

While training with the masked language modeling objective, the gradient can flow

through the DGN to the parser network through its dependence on mij. As a result, UDGN

can induce a dependency grammar while solely relying on the masked language modeling

objective.
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To better model and induce dependency relations, we propose three key components for

the DGN:

• A competitive mechanism is proposed to control information propagation between

words. The competitive mechanism controls several channels. A channel is a function

that models a specific type of information propagation. Given a word pair (wi,wj),

channels will compete to get more weight to propagate information from word wj to

wi. The mechanism is inspired by syntactic functions in dependency graphs.

• A gated non-linear network is designed to parameterize each channel. The gating

mechanism allows each word to filter information extracted from other tokens. And

the non-linear function can increase the capacity of the channel.

• Relative position biases are proposed to model the sequential order of words. The

bias allows some channels to focus on extracting information from positions before

the current position, while other channels focus on future positions.

Fig. 9. Details of the UDGN. Given the input sentence, the parser (left) produces a de-
pendency head distribution for each token. These distributions form a distribution matrix
pij. During inference, the Chu-Liu algorithm generates the most likely dependency graph
given pij. While training, however, we remove the direction of dependency in pij and ob-
tain an undirected dependency mask mij (middle). mij is symmetric and with zeroes along
the diagonal. The DGN (right) takes mij and the sentence as input and uses a competi-
tive mechanism to propagate information between tokens. Inside each layer of the DGN,
every node (token) will extract information from all other nodes. mij controls the amount
of information being propagated between nodes. If mij is small then less information will
be communicated between xi and xj, and vice versa. After several layers, DGN outputs
the contextual embedding for each token. These embeddings can be used either to predict
missing tokens or as features for downstream tasks.
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4.2.1. Head Selective Parser

We use a simplified version of the dependency neural selection parser [Zhang et al.,

2016] that only predicts unlabelled dependency relations. The parser takes the sentence

s = w1w2...wT as input, and, for each token wi, it produces a distribution pi over all tokens

in the sentence, resulting in a T × T weight matrix.

The parser first maps the sequence of tokens w1w2...wT into a sequence of embeddings

[x1, x2, ..., xT ]. The standard word embedding method usually maps the input token wi to a

unique vector ewi
. Under this setting, we found that the unsupervised parsing performance

becomes increasingly unstable with increasing vocabulary size. We hypothesize that the

randomly initialized embedding for low-frequency tokens confuse the parser and cause an

extra optimization problem. On the other hand, low-frequency tokens usually share similar

grammatical roles. So we propose an extra embedding component e
tag
k that is shared across

tokens with similar grammatical roles:

xi = ewi
+
∑

k

p
tag
wik

e
tag
k (4.2.1)

p
tag
wik

= softmax(τwik) (4.2.2)

where ewi
is the original word embedding, p

tag
wik

is a probability distribution that associate

the wi with different e
tag
k .

Then the word embeddings are fed into a stack of a Bidirectional LSTM:

hi = BiLSTM(xi) (4.2.3)

hi is the output of the BiLSTM at i-th timestep. Linear transforms are applied to the output

of the BiLSTM to extract head and dependent information.

hH
i = WHhi + bH (4.2.4)

hD
i = WDhi + bD (4.2.5)

To map the head and dependents, we use bilinear attention:

eij =
hD

i hH
j√

D
(4.2.6)

pij =
exp(eij)

∑

k exp(eik)
(4.2.7)

where pij is the probability that wi depends on wj, D is the dimension of hidden states.

To extract the most likely directed dependency graph from the matrix pij, one can use the

Chu-Liu/Edmonds’ algorithm Chu and Liu [1965].

Conceptually, this bears a lot of similarity to Dependency Neural Selection (DeNSe;

Zhang et al. [2016]). In both cases, dependency parsing is reformulated as head selection,
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without ensuring a tree structure. During inference for parsing, the same logits can be used

in a spanning tree algorithm to retrieve a valid tree for the sentence.

4.2.2. Dependency Mask

Given the dependency probabilities, Structformer [Shen et al., 2020] uses a weighted

sum of matrix p and p⊤ to produce a mask for self-attention layers in the transformer. We

found that simply using the adjacency matrix of the undirected dependency graph provides

better parsing results and perplexities. However, simply using the sum of the matrix and

its transpose to create a symmetric weight matrix does not ensure that the attention mask

has values < 1. When pij=1 and pji = 1, for instance, the mask violates the constraints

of a dependency mask. Thus, we treat pij and pji as parameters for independent Bernoulli

variables, and we compute the probability that either wi depends on wj or wj depends on

wi.

mij = p(i→ j or j → i)

= pij + pji − pij × pji (4.2.8)

4.2.3. Dependency Graph Network

(a) Competitive Mechanism and Gated
Channel

(b) A example of the competitive mechanism.

Fig. 10. For a given pair of nodes (i, j), the competitive mechanism takes qi·, kj· as input,
output a probability distribution âij across different channels. This allows the model to
select a channel for the information propagation from j to i. Then the probability âijk is
multiplied by dependency mask mij to get aijk. The mask mij functions as a macro gate to
control the amount of information propagate between the node pair. âijk is the micro gate
that controls the amount of information propagate from j to i through k-th channel. Each
channel takes vjk, gik as inputs and outputs respectively to represent the information that
is propagated via the k-th channel. gik allows the receiving node i to filter the information.
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To better use the dependency information, we propose a new Dependency Graph Network

(DGN) with Competitive Mechanism. One DGN layer includes several gated channels and

a competitive mechanism. The gated channels can process and propagate information from

one node to another. Different channels can learn to process and propagate different types

of information. The competitive mechanism is designed to select the correct channel to

propagate information between a specific pair of nodes.

We take inspiration from the linguistic theory that dependencies are associated with

different syntactic functions. These functions can appear as labels, e.g. ATTR (attribute),

COMP-P (complement of preposition), and COMP-TO (complement of to). However, DGN

learns functions from training tasks, which in our experiments is the masked language model

objective. Since these objectives tend to be statistical in nature, these functions may not be

correlated with ground truth labels given by human experts.

Inside each layer, the input vector hl−1
i is first projected into N groups of vectors, where

N is the number of channels. Each group contains four different vectors, namely, query q,

key k, and gate g:














qik

kik

vik

gik















= Wchannelkhl−1
i + bchannelk (4.2.9)

Competitive Mechanism. Lamb et al. [2021] proposed the idea of using a competition method

to encourage channels to specialize over training iterations to achieve independence. In this

work, we view these gated channels as mechanisms. Their function is to propagate infor-

mation from one node to another. To satisfy the independence requirement, a competitive

mechanism is designed to assign a channel to each pair of nodes (i, j). However discrete

assignment is hard to optimize, we replace it with a soft relaxation:

eijk =
qikkjk√

D
(4.2.10)

âijk = softmaxk(eijk) (4.2.11)

where âijk is the probability that the k-th channel is assigned to propagate information from

the j-th token to the i-th token. To obtain the actual channel weights, we multiply the

probability of edge existence with the probability of choosing a specific attention head:

aijk = âijk ×mij (4.2.12)

where aijk is the attention weight from the i-th token to the j-th token for k-th attention

head.
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Gated Channel. To model the information propagation from node j to node i, we proposed

a gated channel:

cijk = σ(vjk)⊙ sigmoid(gik) (4.2.13)

where σ is a non-linear activation function, and gates sigmoid(g) allows the i-th token to

filter the extracted information. We also found that the gate effectively improves the model’s

ability to induce latent dependency structures that are coherent to human-annotated trees.

The activation function can be chosen from a wide variety of functions, including the identity

function, tanh, ReLU, and ELU, etc. According to our experiments, we found that tanh

function provides the best overall performance.

At the end, a matrix multiplication is used to aggregate information from different posi-

tions.

oik =
∑

j

aijkcijk (4.2.14)

Then, the output o from different channels are concatenated, and then projected back to the

hidden state space with a linear layer.

hl
i = hl−1

i + Wo











oi1

...

oin











+ bo (4.2.15)

where hl
i is the output of the l-th gated self attention layers. The shared hidden state space

can be seen as the shared global workspace Goyal et al. [2021] for different independent

mechanisms.

4.2.4. Relative Position Bias

Transformer models use positional encoding to represent the absolute position for each

token. In DGN, we only model whether the token is before or after the current token.

The motivating intuition is the association of different channels with different directions. In

equation 4.2.11, we can introduce a relative position bias:

âijk = softmaxk(eijk + blr
k ) (4.2.16)

blr
k =











bl
k, i > j

br
k, i < j

(4.2.17)

where bl
k and br

k are trainable parameters. The relative position bias allows the attention head

k to prioritize forward or backward directions. A mere forward and backward differentiation

may seem weak compared to other parameterizations of positional encoding Vaswani et al.

[2017], Shaw et al. [2018], but in conjunction with the dependency constraints, this method
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is a more effective way to model the relative position in a tree structure. Compared to

positional encoding, this relative position bias achieves stronger masked language modeling

and parsing performance.

4.3. Experiments

In the experiment section, we first train the UDGN on the masked language modeling

task, then evaluate it on masked language modeling and unsupervised parsing. Our experi-

mental results show that UDGN can effectively induce the latent dependency graph from raw

corpus, and achieve competitive performance on language modeling tasks. Furthermore, all

three key components of DGN play important roles in both grammar induction and language

modeling. We also finetuned the pretrained UDGN on Semantic Textual Similarity (STS)

tasks. Our experiments also show that UDGN outperforms a transformer-based model that

is trained on the same corpus.

4.3.1. Masked Language Modeling

Masked Language Modeling (MLM) is a macroscopic evaluation of the model’s ability to

deal with various semantic and linguistic phenomena (e.g. co-occurrence, syntactic structure,

verb-subject agreement, etc). The performance of MLM is evaluated by measuring perplexity

on masked words. We trained and evaluated our model on 2 different datasets: the Penn

TreeBank (PTB) and BLLIP. In our MLM experiments, each token has an independent

chance to be replaced by a mask token <mask>, except that we never replace <unk> token.

Model PTB
BLLIP BLLIP BLLIP

-SM -MD -XL

Transformer 68.9 44.6 22.8 17.0
StructFormer 64.8 43.1 23.4 16.8
UDGN 60.4 40.2 24.2 19.7

Table 6. Masked Language Model perplexities on different datasets.

PTB. The Penn Treebank Marcus et al. [1993] is a standard dataset for language modeling

[Mikolov, 2012] and unsupervised constituency parsing [Shen et al., 2018c, Kim et al., 2019a].

It contains 1M words (2499 stories) from Wall Street Journal. Following the setting proposed

in Shen et al. [2020], we preprocess the Penn Treebank dataset by removing all punctuations,

lower case all letters, and replaces low frequency tokens (< 5) with <unk>. The preprocessing

results in a vocabulary size of 10798 (including <unk>, <pad> and <mask>).

BLLIP. The Brown Laboratory for Linguistic Information Processing dataset is a large Penn

Treebank-style parsed corpus of approximately 24 million sentences from Wall Street Journal.

We train and evaluate UDGN on four splits of BLLIP: BLLIP-XS (40k sentences, 1M tokens),
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BLLIP-SM (200K sentences, 5M tokens), BLLIP-MD (600K sentences, 14M tokens), and

BLLIP-LG (2M sentences, 42M tokens). Following the same setting proposed in Hu et al.

[2020] for sentence selection, resulting in each BLLIP split being a superset of smaller splits.

All models are then tested on a shared held-out test set (20k sentences, 500k tokens). To make

the mask language modeling and parsing results comparable, we use a shared vocabulary

for all splits. Just like the PTB dataset, we preprocess the BLLIP dataset by removing all

punctuations and lower case all letters. The shared vocabulary is obtained by counting word

frequencies on BLLIP-LG dataset and select the words that appear more than 27 times. The

resulting vocabulary size is 30232 (including <unk>, <pad> and <mask>), and covers more

than 98% tokens in BLLIP-LG split.

The word mask rate when training on both corpora is 30%. In Section 4.3.4, we further

explore the relationship between mask rate and parsing results. Other hyperparameters

are tuned separately for each model and dataset. The masked language model results are

shown in Table 6. UDGN outperforms the baselines on smaller datasets (PTB, BLLIP-SM),

but underperforms against baselines trained on large datasets (BLLIP-MD, BLLIP-LG).

However, in Section 4.3.5, we find that the UDGN pretrained on BLLIP-LG dataset can

achieve stronger performance when finetuned on a downstream task. This may suggest that

our model learns more generic contextual embeddings.

4.3.2. Unsupervised Dependency Parsing

Methods UAS

DMV [Klein and Manning, 2004] 35.8
E-DMV [Headden III et al., 2009] 38.2
UR-A E-DMV [Tu and Honavar, 2012] 46.1
CS* [Spitkovsky et al., 2013] 64.4*
Neural E-DMV [Jiang et al., 2016] 42.7
Gaussian DMV [He et al., 2018] 43.1 (1.2)
INP [He et al., 2018] 47.9 (1.2)
Neural L-PCFGs [Zhu et al., 2020] 40.5 (2.9)
StructFormer [Shen et al., 2020] 46.2 (0.4)
UDGN (Chu-Liu) 50.2 (1.5)
UDGN (Argmax)† 52.5 (0.7)

Table 7. Dependency Parsing Results on WSJ test set without gold POS tags. Starred
entries (*) benefit from additional punctuation-based constraints. Daggered entries (†) takes
the argmax of head distribution without a tree constraint. Baseline results are from He et al.
[2018]. UAS stands for Unlabeled Attachment Score. Unsupervised dependency parsing
results with the knowledge of gold POS tags are excluded from this table.

We convert the human-annotated constituency trees from the Wall Street Journal test set

Marcus et al. [1993] to dependency trees and use the unlabelled attachment score (UAS) as
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Fig. 11. A example of gold tree and model generated dependency tree.

Models prep pobj det compound nsubj amod

UDGN 0.65(0.12) 0.60(0.11) 0.68(0.15) 0.42(0.04) 0.50(0.06) 0.39(0.07)
StructFormer 0.39(0.05) 0.38(0.07) 0.57(0.03) 0.33(0.01) 0.25(0.06) 0.26(0.01)
Transformer 0.43(0.00) 0.46(0.03) 0.46(0.12) 0.30(0.01) 0.39(0.15) 0.26(0.02)

Table 8. The pearson correlation coefficients between most frequent dependency types and
their most correlated channel. All results are average across four random seeds, standard
derivation are in parentheses. Types are arrange from the highest frequency to lower fre-
quency.

our metric. To derive valid trees from the attention mask, we use the Chu-Liu Chu and Liu

[1965] (or Edmonds’ Edmonds 1967) algorithm to obtain the maximum directed spanning

tree. We also report the argmax over the p — we take the word at the maximum p value

for each word the word i. This can result in non-tree structures, but we believe that this

metric gives a better indication of how often the parser predicts the right head of each word.

Following previous research [Shen et al., 2020], we use the model trained on the preprocessed

PTB dataset (no punctuations), and test its parsing performance on section 23 of the WSJ

corpus. Punctuation is ignored during the evaluation.

Table 7 shows that our model outperforms baseline models. This result suggests that,

given our minimum inductive bias (a token must attach to another, but the graph is not

necessarily a tree), predicting missing tokens implicitly learns a good graph that correlates

well with human-annotated dependency trees. This may suggest that some of the dependency

relations proposed by linguists correspond with efficient ways of propagating information

through the sentence. Figure 11 shows a parsing example of our model after training with

different mask rates.
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4.3.3. Correlation Between Channels and Dependency Types

In this section, we test the correlation between channels and dependency types. We

consider each dependency edge i → j (i depends on j) in the ground truth structure as a

data point. Given all the edges, we can obtain three sets of quantities: channel probabilities

Ak = ¶âk
ji♢ and type values Y l = ¶yl

ij♢. âk
ij is a real value between 0 and 1, represents the

probability that channels k is used to model the information propagation from the child i to

the parent j. Details about this value can be found at Equation 4.2.11. yl
ij is a binary value,

represents whether the label l is assigned to edge i → j. We can then compute Pearson

Correlation Coefficient (PCC) for every pair of Ak and Y l across all ground truth edges

¶i→ j♢:
ρAk,Y l =

cov(Ak, Y l)

σAkσY l

(4.3.1)

where cov(·) is the covariance function, σ· is the standard deviation of the respective variable.

Hence, ρAk,Y l measures the correlation between channel k and dependency type l. ρAk,Y l > 0

means that the model tends to use channel k for propagating information from child to parent

for dependency edges of the type l. Here, we only consider the information propagation from

child to parent even though information can propagate in both directions in masked language

models.

Table 8 shows the PCC between the most frequent dependency types and their most

correlated channels. We can observe that all three models have channels that are positively

correlated to human-annotated dependency types. This result is coherent with the observa-

tion of Htut et al. [2019]. Meanwhile, the UDGN achieves a significantly better correlation

than the StructFormer and the Transformer. This confirms our intuition that competitive

gated channels can better induce dependency types.

4.3.4. Ablation Experiments

Fig. 12. Relationship between parsing performance and mask rate for MLM.
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Mask rate and parsing interaction. One of the more surprising findings in our experi-

ments with this architecture was the relationship between the word mask rate in the MLM

task and how much the resulting parse trees corresponded to the ground-truth parse trees.

We trained 5 models for different word masking rates from 0.1 to 0.9, in 0.1 increments,

and computed the argmax, UAS, and undirected UAS (UUAS) scores for each of these

models. Figure 12 shows the plot for these results.

Firstly, we observe that the acceptable range of masking rate for achieving a decent UUAS

score was fairly large: the optimal was at about 0.3, but values of 0.2 up to 0.8 worked to

induce tree structures that resulted in fairly good undirected trees. Secondly, as we move

away from the optimum of 0.3-0.4, the variance of our results increases, with the highest

variance when we mask at a rate of 0.9. Finally, our model supplies the attention mask as a

symmetric matrix— the directionality of the mask is decimated when we perform Equation

4.2.8. Consequently, we find that the variance of the UAS is higher than UUAS as the

connectivity of the nodes in the tree is more important than the direction of the connection

in our architecture.

Model
MLM Argmax Chu-Liu
PPL UAS UUAS UAS UUAS

UDGN 60.4(0.8) 52.5(0.7) 58.8(0.9) 50.2(1.5) 61.2(0.4)
- Nonlinear 61.2(1.0) 49.5(1.1) 56.8(1.4) 45.6(2.0) 60.8(1.4)
- Gates 69.5(1.9) 31.5(2.2) 40.7(0.3) 26.1(2.1) 48.9(0.5)
- Competition + Sigmoid 73.6(3.1) 44.7(1.9) 54.4(1.9) 40.4(1.6) 56.6(2.1)
- Competition + Single channel 663.1(18.6) 3.2(0) 6(0) 1.3(0) 6.1(0)
- relative pos bias + pos enc 65.2(3.4) 47.1(7.3) 55.4(4.1) 44.8(7.2) 58.2(5.2)

Table 9. The performance of UDGN after removing different components. “- Nonlinear”
means remove the tanh activation function gated channels. “- relative pos bias + pos enc”
means using a trainable positional encoding to replace the relative position bias. “- Gates”
means remove the gate g in gated channels. “- Competition + Sigmoid” means using a
non-competitive sigmoid function to replace the competitive softmax in the competitive
mechanism. “- Competition + Single channel” means using a single big channel to replace
multi-channels in competitive mechanism, and the number of total remains the same. UUAS
stands for Undirected Unlabeled Attachment Score.

Effects of Model Components. Table 9 shows the model’s performance when individual

components are removed. The most significant decrease is caused by replacing multiple

channels with one single big channel in each layer. Although the total number of parameters

remains the same, MLM and parsing performance is greatly affected. The parser for this

model cannot induce structure and predicts a uniform distribution over the other tokens.

The second, and more important, parsing performance decrease is caused by removing the

gating mechanism. This change forces each channel to always extract the same information

from a given key node hj, regardless of the query node hi. This has a similar effect as
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the previous change, reducing the diversity of different functions that can be modeled by

channels. These two observations may suggest that the diversity of information propagation

function (multiple channels) is essential to induce a meaningful structure.

Another interesting observation is that relative position bias helps the model to achieve

better perplexity and parsing performance in comparison with positional encoding. This may

suggest that the combination of dependency graphs and relative position is more informative

than absolute positions.

Dataset #tokens
MLM Argmax Chu-Liu
PPL UAS UUAS UAS UUAS

BLLIP-XS 1M 133.7(3.1) 51.4(2.0) 57.6(1.6) 47.9(2.7) 61.2(1.6)
BLLIP-SM 5M 40.2(0.8) 53.7(2.5) 60.7(0.6) 50.9(5.3) 65.1(1.6)
BLLIP-MD 14M 24.2(0.5) 50.5(6.1) 59.8(2.9) 47.7(8.1) 63.0(4.2)
BLLIP-LG 42M 19.7(0.3) 45.6(2.9) 61.7(1.8) 41.6(4.2) 62.5(1.6)

Table 10. The performance of UDGN after trained on different BLLIP splits. Since they
share the same vocabulary and test set, results are comparable. While UAS have a high
variance, UUAS remain stable across different corpus sizes. Since DGN only use an undi-
rected dependency mask, the choice of dependency direction could be arbitrary.

Corpus Size. Table 10 shows UDGN’s performance after training on datasets of different

sizes. While the MLM performance improves significantly, the unsupervised parsing per-

formance (UUAS) remains stable. This may suggest that syntax can be acquired with a

relatively small amount of data. It is possible then, that where extra data helps is in terms

of semantic knowledge, like common sense.

4.3.5. Fine-tuning

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Transformer 76.17 61.48 73.97 74.35 53.72 64.26 80.00 69.14

UDGN 80.51 75.02 80.54 82.16 64.73 72.49 81.94 76.77
UDGN (Freeze parser) 77.71 71.17 78.71 82.30 66.04 70.13 82.17 75.46

Table 11. Sentence embedding performance on STS tasks. All models are pretrained on
BLLIP-LG, and finetuned on STS. The sentence embeddings are obtained by averaging the
output vector across all positions. Freeze parser means that the parameters for the parser
are not updated during finetuning.

In this experiment, the goal was to determine if a better representation of semantics

can be encoded if the model was constrained for structure. We pretrain a UDGN model on

the BLLIP-XL dataset, and then finetune it on the STS-B Cer et al. [2017] dataset. For

a controlled experiment, we compare the results we attain with the previously mentioned

80



Transformer model. We then evaluate the resulting classifier on the STS 2012-2016 Agirre

et al. [2012, 2013, 2014, 2015, 2016], the SICK-Relatedness Marelli et al. [2014] dataset, and

STS-B Cer et al. [2017]. These datasets were downloaded and prepared using the scripts

from Infersent Conneau et al. [2017]. We then report the Spearman correlation score for

each dataset (the ‘all’ setting in Gao et al. 2021).

We find that the UDGN model performs better overall compared to the transformer

model. While these are not state-of-the-art results on these tasks, the purpose of our com-

parison was to examine the benefit of the UDGN model over the Transformer when trained

on the same dataset, without conflating the effects of the pretraining dataset size. Other

models trained on more data exist, with better performance on these tasks.

4.4. The Future of Dependency-based Models

UDGN shows that dependency grammars have strong compatibility with transformer like

models. Replacing the transformer in BERT-like models with UDGN seems to be a natural

next step. Experimental result also suggest that UDGN seems capable of achieving better

finetuning performance compared to the Transformer. Beside simply improving performance,

there may be other benefits. Such as the ability to use it as an unsupervised dependency

parser. Structures revealed by this unsupervised parser could have interest to some linguis-

tician and help researchers to evaluate the quality of language model. Furthermore, the

separation of parser and DGN provides a better schema for cross-lingual language models

(XLMs). Given that most languages can be parsed into the same universal dependency

grammar, we could image a XLM that has a separate parser for each language and a shared

DGN. The language-specific parser should parse the input sentence into a language-agnostic

dependency graph, and the shared DGN compute contextualized embedding from the graph.

Another potential application is unsupervised or semi-supervised knowledge extraction. The

unsupervised dependency parser provide a way to extract noisy relations from the training

corpus. With some filtering and post-processing, these relations could form a large scale

knowledge graph.

81





Chapter 5

Beyond Natural Language: Hierarchical

Imitation and Reinforcement Learning

(HIRL)

Acquiring primitive skills from demonstrations and reusing them to solve a novel long-horizon

task is a hallmark in human intelligence. For example, after learning the necessary skills (e.g.,

steering wheel, changing lanes) at a driving school, one could be capable of driving across

the country by recombining the learned skills, which has a much longer time-scale than

driving school practice. On the other hand, the idea of decompose a long-horizon task to a

sequence of skills is very coherent with the idea of parsing sentences, if two hypothesis are

satisfied: 1) the agent can only execute one skill at a time; 2) once a skill is in execution, it

must keep executing until it’s finished. Under this two hypothesis, we can view the normal

task-skill hierarchy as a two level tree structure, and a complicated multi-level hierarchy as

a multi-level tree structure.

In this chapter, we propose Option-Control Network (OCN) – a new HIRL model that

can decompose a long-horizon task to several subtasks and separately model these subtasks

as reusable skills. We start from reviewing related works in HIRL (Section 5.1). We then

introduce OCN (Section 5.2). The model is developed from Ordered Memory Policy Network

(OMPN) [Lu et al., 2021]. It includes the ordered neurons inductive bias to build a innate

hierarchical structure. Finally, we present the experiment results in two different settings

(Section 5.3). These experiment results show that OCN and effectively induce and reuse

skills in the Craft environment [Andreas et al., 2017].

5.1. Previous Approaches

One general approach is to leverage the additional unstructured demonstrations during

pretraining, e.g., compILE [Kipf et al., 2019] pretrains a VAE [Kingma and Welling, 2013]



on the demonstrations and uses an action decoder for finetuning. Our work is in this line of

research.

Learning to solve temporally extended tasks is an important question for Hierarchical Re-

inforcement Learning (HRL). Different temporal abstractions are proposed to achieve struc-

tured exploration and transfer to a long-horizon task, including option frameworks [Sutton

et al., 1999], HAM [Parr and Russell, 1998] and max-Q [Dietterich, 2000]. With the popu-

larity of neural nets, recent works propose to use a bi-level neural network such as option

critics [Bacon et al., 2017], feudal networks [Vezhnevets et al., 2017], generative models with

latents [Nachum et al., 2018], and modulated networks [Pashevich et al., 2018]. These models

can be furthered combined with hindsight memory [Levy et al., 2018] to increase the sample

efficiency. Our work can also be viewed as designing a specific neural architecture for HRL.

However, a pure HRL method suffers from serious exploration challenges when learning

from scratch [Gupta et al., 2019]: it takes a significant amount of samples for random walk

to induce a good temporal abstraction that leads to positive rewards at the beginning of

training. A general approach to tackle this problem is to introduce a pretraining phase to

“warm up” the policy. Recent works propose to pretrain the policy with an intrinsic diversity

reward [Eysenbach et al., 2018] or language abstraction [Jiang et al., 2019], which is shown

to be useful in the HRL. Other works [Le et al., 2018, Levy et al., 2018, Gupta et al., 2019]

have focused on learning useful skills in a pretraining phase first, and then reusing these

skills when finetuning with HRL in the new environment. However, these methods either

assume the existence of goal-conditioned policies or access to environments, which limits

the practical values of these approaches. One general approach is to leverage the additional

unstructured demonstrations during pretraining, e.g., compILE [Kipf et al., 2019] pretrains

a VAE [Kingma and Welling, 2013] on the demonstrations and uses an action decoder for

finetuning. Our work is in this line of research.

Recent works build upon this “imitation - finetune” paradigm. With the prevalence of

goal-conditioned policies [Schaul et al., 2015, Kaelbling, 1993, Levy et al., 2018] in robotics,

these methods leverage demonstrations with relabelling technique to pretrain the low-level

policy [Gupta et al., 2019] or a generative model [Lynch et al., 2020]. However, they exploit

the fact that the ending state of a trajectory segment can be described as a point in the goal

space. Hence it is difficult to apply them beyond goal-conditioned policies. CompILE [Kipf

et al., 2019] treats the segment boundaries as latent variables, and their model can be

trained end-to-end with soft trajectory masking. However, CompILE requires specifying

the number of segments, which is a much more limiting constraint than that required by

OCN. Nevertheless, it is designed to be a general method so we use it as our main baseline.

Modular policy networks [Andreas et al., 2017, Shiarlis et al., 2018] are also used in this

paradigm, where each subtask corresponds to a single modular policy. However, in this

setting, the demonstration needs to be segmented beforehand, which requires additional
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human labor. On the contrary, our work focused on using unstructured demonstrations.

OptionGAN [Henderson et al., 2018] proposes a Mixture-of-Expert (MoE) formulation and

performs IRL on the demonstration. However, without an explicit termination function, the

learnt expert networks do not provide time-extended actions for the high-level controller. As

a result, this method still suffers from problems of exploration with sparse rewards (as also

seen in our experimental comparison with an MoE baseline).

Extracting meaningful trajectory segments from the unstructured demonstration is the

focus of Hierarchical Imitation Learning (HIL). These works can be summarized as finding

the optimal behavior hierarchy so that the behavior can be better predicted [Solway et al.,

2014]. DDO [Fox et al., 2017] proposes an iterative EM-like algorithm to discover multiple

levels of options, and it is applied in the continuous action space [Krishnan et al., 2017] and

program modelling [Fox et al., 2018]. VALOR [Achiam et al., 2018] extends this idea by in-

corporating powerful inference methods like VAE [Kingma and Welling, 2013]. Directed-Info

GAIL [Sharma et al., 2018] extracts meaning segments by maximizing the mutual informa-

tion between the subtask latent variables and the generated trajectory. Ordered Memory

Policy Network (OMPN) [Lu et al., 2021] proposes a hierarchical inductive bias to infer the

skill boundaries. The above works mainly focus on skill extraction, so it is unclear how to

use the segmented skills for RL finetuning. Although OCN shares a similar inductive bias

with OMPN, OCN replaces the continuous hidden states communication with a softmax

distribution over multiple low-level modules (options). This enables OCN to model different

subtasks with different options and to effectively reuse them in a new task.

5.2. Option-Controller Network

In this section, we propose Option-Control Network (OCN). Unlike previous works, our

method does not require generative models [Eysenbach et al., 2018], goal-conditioned poli-

cies [Gupta et al., 2019], pre-specified policy sketch [Shiarlis et al., 2018] or constraints on

the number of segments [Kipf et al., 2019], making our approach conceptually simple and

general. An OCN includes a set of N options ¶o1, ..., oN♢ and a controller c. As shown in

figure 13, the OCN starts by using the controller to choose an option to execute the first

subtask. Once the subtask is done, the controller will choose another option to execute

the second subtask, and so on, until the goal of the task is achieved. Inspired by OM and

OMPN [Lu et al., 2021], we use the ordered neurons inductive bias to enforce the hierarchical

constraint between the controller and the options so that the high-level controller is updated

less frequently than the low-level options while keeping the model end-to-end differentiable.

Another intuition behind the OCN is making controllers and options running indepen-

dently. So options can be easily reused by another controller to solve a new task. Each

component directly takes raw observation as input and only interacts with other components
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Fig. 13. The training pipeline of OCN. Our model is composed of a controller (circle) and a
options pool (rectangles). The controller and options are randomly initialized, which means
each option does not correspond to a meaningful subtask. After behavior cloning, both
options and controllers are induced (marked blue) and the options correspond to meaningful
subtasks from demonstrations (e.g., get wood). Then we freeze the parameters in the options
and re-initialize the controller. The controller is trained to adapt to the new environment
with HRL (marked red).

through the probability distribution pt. In other words, an option can always execute the

induced skill by itself, regardless of the higher-level task. A controller can consider options

as black boxes with an on/off switch so the controller can achieve structured exploration.

Given a new (possibly) complicated and long-horizon task and a set of learnt options, the

controller can then quickly find a solution from the induced option space, enabling structured

exploration.

As shown in Figure 13, OCN can jointly learn options and controllers with multitask

behavior cloning from unstructured demonstrations. When given a new task, one could

perform HRL finetuning by re-initializing the controller and freezing the options. This

enables our model to generalize combinatorially to unforeseen conjunctions [Denil et al.,

2017].

5.2.1. Option and Controller

Option As shown in the middle of Figure 14, an option oi models a skill that can solve

one specific subtask, for example get wood, get iron or make at workbench. It can be described

as:

po

i,t, ho

i,t, ei,t = oi(xt, ho

i,t−1) (5.2.1)

where xt is the observation at time step t, and ho

i,t−1 is the hidden state of the respective

option at time step t− 1; ho

i,t is the hidden state of oi at time step t; ei,t is a scalar between

0 and 1, represents the probability that the current option is done; po

i,t is a distribution of

actions, including move up, move left and use. These actions are the smallest elementary

operations that an agent can execute. During the execution of an option, if probability ei,t
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is 0, the option will keep executing the current subtask; if ei,t is 1, the option will stop

the execution and return to the controller for the next subtask. In our work, each option

maintains a separate set of parameters.

Fig. 14. An example of OCN. The controller c models the task make bridge. Three options
separately model subtasks get iron, get wood or make at factory.

Controller As shown at the top of Figure 14, a controller c models a higher level task,

like make bed, make axe, or make bridge. Each of these tasks can be decompose to a sequence

of subtasks. For example, make bridge can be decompose to 3 steps: 1) get iron, 2) get wood,

3) make at factory. Thus a controller can also be represented as:

pc

t , hc

t , ec

t = c(xt, hc

t−1) (5.2.2)

where pc

t is a distribution over the set of options ¶oi♢, hc

t is the hidden state for controller,

ec

t is the probability that the current task is done. In this OCN architecture, we don’t need

the ec

t , since the environment will provide signal(reward) once the task is done. However,

OCN can be easily expanded to a multi-level model. In this multi-levels model, a set of

multiple controllers become options for a higher-level controller, and their respective tasks

become subtasks for a more complicated task.

Cell Network In OCN, options and controllers share the same format for input and

output. Thus, we parameterize them with the same neural network architecture. To model

the policy of controllers and options, we proposed the following cell network:

ĥt = MLP
([

xt, ht−1

])

(5.2.3)

pt = softmax(Wactĥt + bact) (5.2.4)

ht = tanh(Whidĥt + bhid) (5.2.5)

et = sigmoid(wendĥt + bend) (5.2.6)

xt is the raw observation, the shape of the vector depends on the environment. ht−1 is the

recurrent hidden state of size dhid, it allows the model to remember important information

from previous time steps. MLP is a multi-layer neural network of Depth lMLP and hidden

size dMLP. We use tanh as activation function for MLP. ĥt is a vector of size dMLP. Wact

is a matrix of size nact × dMLP, where nact is number of actions. Whid is a matrix of size

dhid×dMLP. wend is a vector of size dMLP. Following the fast and slow learning idea proposed
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in Madan et al. [2021], we introduce a temperature term T to controller’s softmax function:

pc

t = softmax





Wactĥt + bact

T



 (5.2.7)

A large temperature T allows the option to output smoother distribution at the beginning

of training. It also reduces the scale of gradient backpropagated into the controller. This

results in the controller changes and updates slower than options. We found T makes OCN

become more stable in imitation learning and converge to a better hierarchical structure.

5.2.2. Option-Controller Framework

(a) First time step (b) Inside a subtask (c) Switching between subtasks

Fig. 15. The three different phase of OCN: (a) At the first time step, the controller selects
an option oi; The option oi outputs the first action a1. (b) If the previous option oi predict
that the subtask is not finish; The option oi then continue outputs action at; The controller
hidden state is copied from previous time step. (c) If the previous option oi predict that the
subtask is done; The controller then selects a new option oj and updates the controller hidden
state; The new option oj outputs action at. Blue arrows represent probability distributions
output by controller and options. Red arrows represent recurrent hidden states between time
steps.

Given the definition for options and controllers, we can further formulate OCN. As shown

in Figure 15a, at the first time step, the controller computes a probability distribution over

options for the first subtask, and options execute their first steps:

pc

1, hc

1 = c(x1, hc

0) (5.2.8)

po

i,1, ho

i,1, ei,1 = oi(x1, ho

i,0) (5.2.9)

pa

1 =
∑

i

pc

1,ip
o

i,1 (5.2.10)

where hc

0 and ho

i,0 are initial hidden states for controller and options, pa

1 is a distribution for

actions. The output pa

1 is formulated as a mixture of experts, where experts are options and

the gating model is the controller.

At time steps t > 1, the options first execute one step to decide whether this subtask is

done. If the subtask is unfinished, the option then outputs an action distribution, as shown
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in Figure 15b:

p̂o

i,t, ĥo

i,t, ei,t = oi(xt, ho

i,t−1) (5.2.11)

et =
∑

i

pc

t−1,iei,t (5.2.12)

p̂a

i,t =
∑

i

pc

t−1,ip̂
o

i,t (5.2.13)

where et is the probability that the previous subtask is done and p̂a

i,t is the action distribution

if the subtask is not done. If the previous subtask is done, the controller c need to select a

new option distribution for the next subtask and reinitialize the option, as shown in Figure

15c:

p′c
t , h′c

t = c(xt, hc

t−1) (5.2.14)

p′o
i,t, h′o

i,t, e′
i,t = oi(xt, ho

i,0) (5.2.15)

p′a
t =

∑

i

p′c
t,ip

′o
i,t (5.2.16)

where h′c
t , h′c

t , p′c
t and p′c

t,i are hidden states and distributions for the next subtask if the

previous subtask is done. Thus, we can formulate the output at time step t as a weighted

sum of the two situations:














hc

t

pc

t

ho

t
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t
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

= et
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
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(5.2.17)

The equation 5.2.17 provides OCN an internal hierarchical inductive bias, that a higher-level

component (c) only update its recurrent hidden state and output a new command (p′c
t ) when

its current functioning subordinate (oi) reports “done”.

5.2.3. Inducing and Reusing Skills

Imitation Learning and Inducing Skills OCN imitates and induces skills from

unstructured demonstrations. In the rest of this paper, d represents an unstructured

demonstration ¶(xt, at)♢T
t=1 D represents a set of demonstrations of different tasks

[(d1, τ1), (d2, τ2), ...], where τi are task ids, belongs to a shared task set T.

Given a demonstration d, OCN can perform behavior cloning with a negative log-

likelihood loss:

loss = averaget (NLLLoss(pa

t , at)) (5.2.18)

For different tasks τ , we can use two different methods to model their associated controllers.

The first method is to assign one controller cτ and a initial hidden state hc

τ,0 to each τ . The
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second method is to share the controller c, but assign a different initial hidden state hc

τ,0

to each τ . We choose the second method in this work because sharing c could avoid the

risk that different controllers choose to model the same subtask with options. During the

imitation learning, OCN allows gradient backpropagation through all probabilities p. Thus,

the gradient descent will try to induce an optimal set of options that can best increase the

likelihood of the data.

Reinforcement Learning and Reusing Skills Given the induced options from imita-

tion learning, our model can learn to solve a new task by reusing these skills via reinforcement

learning. For example, after training on demonstrations of task 1 and task 2, OCN induce

N options ¶o1, ..., oN♢. Given a new task 3 without demonstrations, we can initialize a new

controller c3, that takes observations as input and outputs a probability distribution over

N induced options. To learn c3, we freeze all options and use PPO [Schulman et al., 2017]

algorithm to learn c3 from interactions with the environment.

Algorithm 4 PPO, Adapt OCN to a new task

1: Initialize controller c

2: Freeze all options ¶o1...N♢
3: for iterations=1,2,... do
4: for actor=1,2,... do
5: for step t=1,2,...,T do
6: pc = c(xt, hc

t−1)
7: i = sample(pc)
8: Rollout oi until sample(ei) = 1
9: end for

10: Compute advantage estimates Â1, ..., ÂT

11: end for
12: Optimize surrogate L wrt c, with K epochs and minibatch size B

13: end for

During the training, once the controller outputs an option distribution pc, OCN samples

from the distribution, the sampled option will rollout until it’s done, then the process will

repeat until the task is solved. We outline the process in Algorithm 4. Thus, in the RL

phase, our model only needs to explore at options space, which significantly reduces the

number of interaction steps to solve the new tasks.

5.3. Experiments

We perform experiments in Craft [Andreas et al., 2017], a grid-world environment focus-

ing on navigation and collecting objects. Our results show that with unstructured demon-

strations, OCN can jointly learn to segment the trajectories into meaningful skills as well

as model this rich set of skills with our pool of low-level options. During HRL finetuning,

we show that OCN achieves better performance in more complex long-horizon tasks with
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either sparse or dense reward compared with existing baselines. We also provide further

visualization to show the discovered options are reused during finetuning.

Environment. Craft is adapted from previous works [Lu et al., 2021, Andreas et al., 2017].

In this environment, an agent can move in a 2D grid map with actions (up, down, left, right)

and interact with the objects with the action use. In our experiments, a subtask requires

the agent to locate and collect a specific type of object. For example, subtask A, get wood,

requires the agent to first navigate to the block that contains wood, then execute a use action

to collect one unit of wood. Table 12 provides a list of subtasks used in our experiments. A

task requires the agent to finish a sequence of subtasks in the given order. The environment

can provide either sparse reward or dense reward. In the dense reward, the agent receives

rewards after completing each subtask while in the sparse reward, the agent only receives

rewards after completing all subtasks.

Subtask A B C D

Goal get wood get gold get iron get grass

Table 12. Subtasks and their goals

Baselines. We compare OCN with a number of baselines including task decomposition

methods and hierarchical methods. Our baselines are: (1) compILE [Kipf et al., 2019],

which leverages Variational Auto-Encoder to recover the subtask boundaries and models the

subtasks with different options. (2) OMPN [Lu et al., 2021] which studies inductive bias

and discovers hierarchical structure from demonstrations. (3) Mixture-of-Experts (MOE),

which uses a similar architecture as OCN, but the options are only executed for one time

step. This baseline is inspired by OptionGAN [Henderson et al., 2018] which proposes the

MoE framework without modeling termination functions.

Implementation Details. We train all imitation learning methods by utilizing behaviour

cloning with a batch size of 512 and a learning rate of 0.001. For each task, we sample

6000 demonstrations and split 80% for training and 20% for validation. For reinforcement

learning, we use PPO algorithm with a batch size of 1024 and a learning rate of 0.0003. We

use Adam optimizer and a linear schedule to adjust the learning rate. The hidden state size

dhid of OCN and baselines is 128. The depth lMLP of cell network is 2. The temperature T

for controller’s softmax function is 10.

5.3.1. S1: Transferring from Single Model

In this setting, the training task set is ¶AC, CD, DA♢. During the imitation phase,

we pretrain an OCN with one controller c1 and three options ¶o1, o2, o3♢ to imitate these

demonstrations. During the fine-tuning phase, the model needs to solve three new tasks:

¶ADC, CAD, DCA♢. We initialize a new controller for each while freezing the parameters
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Fig. 16. The learning curve of different methods on three finetuning tasks of S1. dense

means dense reward setting. sparse means sparse reward setting.

of options. This is the classical setting where an agent is required to learn skills from short

expert demonstrations and to transfer to long-horizon tasks.

As is shown in Figure 16, our method converges faster and achieves higher performance

than baselines in both dense and sparse reward settings. With dense rewards, our method

achieves double the returns than the strongest baseline. In the sparse reward setting, our

method can get an average return of 0.7 with the maximum being 1, while other baselines

struggle. We find that MoE fails to achieve similar performance even with a very similar

architecture as OCN, since MoE does not model the termination function and the controller

selects a new option every time step. This result shows that exploring in option space is

more efficient than other schemes, provided the new task is expressible as a combination of

previous observed subtasks.

5.3.2. S2: Transferring from Multiple Models

In this setting, we have two disjoint task set. The first set is ¶AB, BA♢ and the second

task set is ¶CD, DC♢ We train two separate OCN models. Each model includes a controller

and two options. Thus, at the end of imitation phase, we obtain four options ¶o1, ..., o4♢.
Then we initialize three new controllers to solve three new tasks: ¶BADC, ACBD, CABD♢.

This setting is related to the problem of data islands and federated learning [Yang et al.,

2019], where two companies could each pretrain models on their separate datasets, merge
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Fig. 17. The learning curve of different methods on three finetuning tasks of S2. OMPN
is not included because it does not learn an explicit set of options.

the induced options, and share the controller finetuned on more challenging tasks. This is

made possible because of the highly modularized design of our architecture.

The results are shown in Figure 17. We show that our model can still reuse merged option

pools, while other baseline methods fail at this setting. CompILE uses a continuous latent

variable for communication between the controller and the action decoder, which causes

compatibility issues while merging skills from different models. The MoE method still suffers

from the long horizon problem. Overall, this result highlights the flexibility of OCN and its

promise in maintaining data privacy for collaborative machine learning applications.

5.3.3. Model Analysis

Visualization. Figure 18 shows a trajectory of the model, which includes options trained

on tasks (AC, CD), and controller finetuned on task DCA. As shown in the Figure 18,

the discovered options from the demonstrations with shorter horizon (AC, CD) are reused

when we finetune the controller in a longer horizon task (DCA). This observation confirms

our hypothesis, that options can model subtasks and be reused for another task, from a

qualitative perspective.

Quantitative Analysis. Figure 19 shows the performances of parsing and option-subtask

correlation during imitation phase. We find that OCN can converge faster and achieve

better parsing performance than the OMPN model. Figure 19 right shows that, during the

imitation phase, randomly initialized options slowly converged to model different subtasks.

93



Agent

Grass

Wood

Iron

Gold

Fig. 18. A trajectory of model finetuned on task DCA in S1. switch represents the value
of et at every time step. The option distribution is computed with pc

t .

Fig. 19. Comparison of unsupervised trajectory parsing results during the imitation phase
with OMPN [Lu et al., 2021]. We use F1 scores with tolerance (Left) and Task Align-
ment (Center) to show the quality of learned task boundaries. We compute the normalized
mutual information (Right) between the emerged option selection pc

t and the ground-truth
to show that our model learns to associate each option to one subtask. T=1 means that the
temperature term in the controller is removed.

At the end of imitation, OCN shows strong alignment between options and subtasks. In

4 out of 5 runs, OCN actually achieves NMI=1, which means that the alignment between

option and subtask is perfect. On the other hand, if we remove the temperature term (i.e.

set T = 1) in controller, the NMI drops significantly. This result suggest that the fast and

slow learning schema is important for the model to learn the correct alignment between

options and subtasks. Furthermore, Table 13 shows the success rate of using each option to

solve each subtask. We find that there is a one-to-one correspondence between subtasks and

learnt options. Overall, these results confirmed our hypothesis that options can be used to

model subtasks from a quantitative perspective.
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Option
subtask

A C D

1 0.96 0.07 0.03
2 0.00 0.02 0.95
3 0.01 0.98 0.01

Table 13. The success rate of each option when testing on different subtasks.
5.3.4. Hyperparameters Analysis

Fig. 20. Comparison of parsing results during different K at F1 scores with tolerance, task
align accuracy and NMI.

Fig. 21. Comparison of prediction accuracy of actions and the returns during different K

Our model does not require the assumption about the number of skills. We analyze the

effect of the number of options K. As shown in Figure 20, when K is larger than or equal to

the number of skills, which is 3 in this experiment, our model basically remains similar results

at three metrics: Align Acc, F1 Tol1, and NMI and achieve almost 1. When K = 2, which

means K is smaller than the number of skills, one of the options must execute two different
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skills, which is contrary to our assumption and only achieves 0.4 at NMI. We also compare

the prediction accuracy of the actions and the returns in Figure 21. Our performance isn’t

influenced by the number of skills when K is larger than the number of skills.

5.4. Rethinking Modularization

Modern Neural Network research focuses on training end-to-end models on a large amount

of data. This data-driven paradigm has enjoyed great success. However, it also has some

drawbacks: 1) a neural network model usually focuses on a single task, which means that

we need to deploy a standalone model to the user’s device for each functionality; 2) neural

network models function like black boxes, when it fails we usually don’t have a method to

diagnose the source of failure; 3) fixing a fault requires retraining the entire model, which is

too expensive for many cases and potentially brings in other problems.

We want to suggest that the combination of syntactic inductive bias and modularization

could be a potential solution to these problems. For example, OCN uses the syntactic induc-

tive bias to induce the latent structure of a given task, while maintaining the use of an end-to-

end schema. At the same time, OCN recognizes and models each repetitive component in the

tree structure as a standalone neural network module (skill) with a human-understandable

semantic meaning. This process allows researchers and engineers to understand the internal

mechanism of the trained model. Furthermore, each module could be reused to solve other

tasks, this could minimize the cost of solving a new task and allow us to deploy a new func-

tion to a device without sending an entirely new model. Researchers and engineers can also

quickly diagnose the faults in a given model, by identifying the malfunction components.

They can then use a small amount of specifically prepared data to retrain the component,

such that the fault can be fixed with less cost and without touching the other components

of the model.

Though the proposed method and experimental settings in this chapter are toyish, we do

hope this could inspire other researchers who want to study the aforementioned problems.
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Chapter 6

Conclusion

In this thesis, we introduced a group of syntactic inductive biases for neural network models,

as well as their applications in Natural Language Processing and Reinforcement Learning.

In Chapter 3, we reviewed the history of constituency-augmented neural networks and

unsupervised constituency parsing. Traditionally, researchers tend to recognize the two as

separated domains. However, limited resources and lack of flexibility restricted the devel-

opment of constituency-augmented models. Grammar induction also suffered from a lack of

practical use cases. We proposed to combine the two domains. The basic idea is to add a

constituency inductive bias to generic neural network architecture. Thus, the new model is

constituency augmented, but only requires raw corpus as training data and does not require

extra parsed corpus. On the other hand, the induced grammar can be directly used to im-

prove the model’s performance on downstream tasks. We introduced Ordered Neurons – a

constituency inductive bias for recurrent neural networks. Based on the ordered neurons,

we further introduce two neural network architectures: ON-LSTM and Ordered Memory

(OM). The ON-LSTM is a simple combination of Ordered Neurons and the LSTM model. It

has the same generic interface as a standard LSTM model, making it a good alternative for

many natural language tasks. The OM model is designed from scratch based on the same

inductive bias. It includes a soft shift-reduce parsing mechanism and an explicit composition

function to compose lower-level constituents to higher-level constituents. These mechanisms

make OM a good fit for formal language tasks. We present experimental results on formal

language tasks, language modeling, and unsupervised constituency parsing.

In Chapter 4, we reviewed the history of dependency-augmented neural networks and

unsupervised dependency parsing. Previous works also revealed that the self-attention dis-

tributions in transformers have a strong connection to the corresponding dependency rela-

tions. Inspired by this observation, we proposed the dependency-constrained connection –

an inductive bias for transformer or graph neural networks. Based on this inductive bias, we

introduced Unsupervised Dependency Graph Network (UDGN). It combines a dependency



parser and a graph neural network. The dependency parser computes probability distribu-

tion for a dependency graph. The graph neural network uses the probability distribution to

control the information propagation between nodes. While training on a task, the gradient

backpropagation updates both the information propagation mechanism (the graph neural

network) and the parser to minimize the loss function. We then present experimental results

on masked language modeling, unsupervised dependency parsing, and semantic textual sim-

ilarity tasks. Experiment results confirm our hypothesis that a dependency graph is efficient

for information propagation. The proposed model achieves competitive performance when

compared to the transformer and other baselines.

In Chapter 5, we reviewed the history of Hierarchical Imitation and Reinforcement Learn-

ing (HIRL). We found that the temporal hierarchical structure used in HIRL is similar to the

constituency tree structure. Thus, we introduced the Option-Controller Network (OCN) – a

HIRL model with constituency inductive bias. A typical OCN includes a controller and a set

of options. The controller focuses on higher-level planning, while the options provide lower-

level skills. During execution, the controller starts by selecting an option to execute, then it

will wait until the selected option report finish to select a second option. This mechanism

is developed from Ordered Neurons inductive bias. In experiments, we perform behavior

cloning from unstructured demonstrations coming from different tasks, and during the RL

finetuning, we freeze the learned options and only re-initialize the controller. Experiment

results show that the learned options can function as a plug-and-play module for other OCN

models. While facing a new task, we can simply gather previously learned options and ini-

tialize a new controller, then the RL algorithm will optimize the controller to solve the new

task.

Fig. 22. The spectrum from connectionism to symbolism of our proposed models.

In Figure 22, we provide a spectrum of our models, arranged according to their level

of discreteness. In general, a model that has a discrete inner structure and a symbolic-like

pattern is considered more symbolic. On the contrary, a model that has no inner structure

(fully connected) and no symbolic patterns (distributed representations) are considered as

more connectionist. In our works, ON-LSTM is the most connectionist model, because it has

the least discrete internal structures and no vector representations for non-terminal nodes

in the tree structure. UDGN is less connectionist than ON-LSTM because it learns a more

discrete internal structure and it has a vector representation for each node in the dependency

graph. OM is more symbolic than UDGN, because it can converge to a discrete internal

structure, has a vector representation for each node, and also models the compositional
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function for these nodes. OCN is the most symbolic model in our work, because it has all

the previous features (except that it models decomposition instead of composition), and it

also models each task and subtask as an individual module, that a new agent or user can

reuse them as simple meaningful symbols.

Altogether, we are excited about the progress that has been made in this field for the past

few years and have been glad to be able to contribute. At the same time, we also believe that

current progress is just the initial steps for this newly emerged domain. As we relentlessly

argued through this thesis, the goal of this field is not just to induce the latent structure

of natural language, but also to encourage neural network models to use it as the innate

structure of reasoning. Based on this reason, we want to encourage researchers to evaluate

their model on both unsupervised parsing performance and how the model performance in

terms of generalization and robustness. In the rest of this chapter, we will discuss some

important future milestones.

6.1. Future Directions

6.1.1. Emerging Discrete and Useful Structure

Syntactic inductive biases are first proposed as a guideline to develop unsupervised pars-

ing models. For most of the current methods, the induced structure is greedily sampled from

a distribution of all possible structures. Almost all methods focus on evaluating the coher-

ence between the sampled structure and the gold structure given by expert annotators. The

sharpness of the distribution is usually not taken into consideration. However, as we argued

in the introduction, the other important role of syntactic inductive bias is to regularize the

internal connection of neural network models. In this case, a smooth distribution could result

in a weak or nonexistent regularization effect. For example, in UDGN, if the dependency

distribution is close to a uniform distribution, then the latent structure of the model reduces

to fully connected. In Ordered Memory, if the attention distribution at every time step is

uniform, the model cannot compose information as a recursive neural network, thus failing

to model the intrinsic composition function. In this case, it’s less likely that the model can

still generalize to Out-Of-Distribution datapoints. Similarly, in Option-Controller Network,

learning reusable skills also require the structural decisions to be sharp. Hence, we would

like to argue that the sharpness of distribution is at least as important as the correctness of

induced latent structure for tasks that require strong generalization ability.

Encouraging a sharp distribution is also an important step towards combining symbolism

and connectionism. The discrete structure given by a sharp distribution can be considered

as the computation graph in a symbolic system. A sharp distribution can guarantee that

information can only be combined or communicated through the induced structure. In a
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tree-like structure, this effect can create information bottlenecks. So the model can learn the

vector representation of a phrase or a sentence. This is similar to the symbolic system, that

we can find meaningful intermediate results in the computation graph. These intermediate

results contribute to the excellent interpretability of symbolic methods. In the Ordered

Memory model, we can find these intermediate results stored in memory slots. For example,

after processing a ListOps equation, each parenthesis in the equation can find its distributed

representation stored in at least one memory slot. For natural language, we proposed ON-

LSTM and UDGN to learn different types of latent structures. However, how we emerge

sharp distributions and get interpretable intermediate results in a natural language task

remains an open question.

On the other hand, we also want to argue that the quality of latent structure can be

evaluated by multiple metrics. Unsupervised parsing performance is an important metric.

It can provide us insights into what structure the model induced. Also, gold trees are

just human annotations. They are not necessarily the ground-truth structure or the best

structure for certain tasks [Dai et al., 2021]. For future works, we would like to explore

other evaluation metrics that assess the quality of induced structure from a practical angle,

for example, the systematic generalization ability or fine-tuning performance on downstream

tasks.

6.1.2. Inducing Reusable Operators

Once a model could stably produce a discrete structure, a reasonable next step is to try to

replace the single composition/communicate function with a set of operators. For example,

in UDGN, we use the competitive mechanism to select different communication channels for

each pair of tokens. In OCN, we have different options for different subtasks. The idea is

inspired by the operators in the formal language and the syntactic functions in theoretical

linguistics. In Logical Inference, we have operators like or and and. In dependency grammar,

we have syntactic functions like SUBJ and PRED. One common feature of these operators

is reusability. It means that the same operator can be used in many different contexts and

still hold the same functionality. The only constraint is that inputs of the operator should

share some common features.

Introducing a set of operators has two major advantages. The first one is that simpler

operators usually have better reusability because they require less input information and

are less sensitive to the context. For example, in OCN, an option that models only one

subtask can be reused by any controller when the subtask is encountered. If the option

models two different subtasks, the controller will have to pass a command vector to the

option to disambiguate the subtask. This command vector could cause extra effort for the

new controller to learn the protocol. Secondly, it’s easier to diagnose and fix a bug. For
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example, in OCN, it’s possible to associate some particular failures with a specific component

(an option or a controller). An easy fix would be simply reinitializing the failed component

and fixing the rest of the model, then retraining the model on a specially designed dataset.

In our work, UDGN provides a potential solution to learn syntactic functions in a natural

language setting. In an undirected dependency graph, UDGN uses a competitive mechanism

to select the module for each edge to propagate information. But, how to clearly define and

learn reusable operators in natural language tasks remains an open question.

6.1.3. Systematic Generalization

For language, systematic generalization requires a model to be able to reason about all

valid sequences of tokens despite being trained on a very small subset of them. In a symbolic

framework, systematic generalization is straightforward. Once the operators and grammar

are well-defined, any inputs that satisfy the pre-defined grammar can be processed by the

system. However, this setting also has great limitations in the real world. Firstly, natural

language has very complicated grammar, and even a state-of-the-art parser could fail in many

cases. Secondly, the operators used by natural language are complicated to be pre-defined.

In this thesis, we try to solve the two problems with a data-driven approach, that is, given a

pre-designed inductive bias, we want the model to induce the syntax and operators from the

supervised or unsupervised training losses. We observe some successes on synthetic tasks,

including ListOps, Logical Inference, and Craft. But reaching systematic generalization on

natural language will still require a lot of future effort and creativity.
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