
Université de Montréal

Game theoretical characterization of the multi-agent
network expansion game

par

Flore Caye

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)
en Recherche opérationnelle

April 30, 2022

© Flore Caye, 2022

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

Game theoretical characterization of the
multi-agent network expansion game

présenté par

Flore Caye

a été évalué par un jury composé des personnes suivantes :

Gauthier Gidel
(président-rapporteur)

Margarida Carvalho
(directrice de recherche)

Sandra Ngueveu
(codirectrice)

Michel Gendreau
(membre du jury)

Résumé

Dans les chaînes d’approvisionnement, les producteurs font souvent appel à des entreprises
de transport pour livrer leurs marchandises. Cela peut entraîner une concurrence entre les
transporteurs qui cherchent à maximiser leurs revenus individuels en desservant un produc-
teur. Dans ce travail, nous considérons de telles situations où aucun transporteur ne peut
garantir la livraison de la source à la destination en raison de son activité dans une région
restreinte (par exemple, une province) ou de la flotte de transport disponible (par exemple,
uniquement le transport aérien), pour ne citer que quelques exemples. La concurrence est
donc liée à l’expansion de la capacité de transport des transporteurs.

Le problème décrit ci-dessus motive l’étude du jeu d’expansion de réseau multi-agent
joué sur un réseau appartenant à de multiples transporteurs qui choisissent la capacité de
leurs arcs. Simultanément, un client cherche à maximiser le flux qui passe par le réseau en
décidant de la politique de partage qui récompense chacun des transporteurs. Le but est de
déterminer un équilibre de Nash pour le jeu, en d’autres termes, la strategie d’extension de
capacité et de partage la plus rationnelle pour les transporteurs et le client, respectivement.
Nous rappelons la formulation basée sur les arcs proposée dans la littérature, dont la solution
est l’équilibre de Nash avec le plus grand flux, et nous identifions ses limites. Ensuite,
nous formalisons le concept de chemin profitable croissant et nous montrons son utilisation
pour établir les conditions nécessaires et suffisantes pour qu’un vecteur de stratégies soit un
équilibre de Nash. Ceci nous conduit à la nouvelle formulation basée sur le chemin. Enfin,
nous proposons un renforcement du modèle basé sur les arcs et une formulation hybride arc-
chemin. Nos résultats expérimentaux soutiennent la valeur des nouvelles inégalités valides
obtenues à partir de notre caractérisation des équilibres de Nash avec des chemins croissants
rentables. Nous concluons ce travail avec les futures directions de recherche pavées par les
contributions de cette thèse.

Mots Clés: Expansion de réseau multi-agent, Théorie algorithmique des jeux, Recherche
opérationnelle, Équilibres de Nash, Programmation en nombres entiers mixtes, Inégalités
valides, Flux maximum.

5

Abstract

In supply chains, manufacturers often use transportation companies to deliver their goods.
This can lead to competition among carriers seeking to maximize their individual revenues
by serving a manufacturer. In this work, we consider such situations where no single carrier
can guarantee delivery from source to destination due to its operation in a restricted region
(e.g., a province) or the available transportation fleet (e.g., only air transportation), to name
a few examples. Therefore, competition is linked to the expansion of transportation capacity
by carriers.

The problem described above motivates the study of the multi-agent network expansion
game played over a network owned by multiple transporters who choose their arcs’ capacity.
Simultaneously, a customer seeks to maximize the flow that goes through the network by
deciding the sharing policy rewarding each of the transporters. The goal is to determine a
Nash equilibrium for the game, in simple words, the most rational capacity expansion and
sharing policy for the transporters and the customer, respectively. We recap the arc-based
formulation proposed in literature, whose solution is the Nash equilibirum with the largest
flow, and we identify its limitations. Then, we formalize the concept of profitable increasing
path and we show its use to establish necessary and sufficient conditions for a vector of
strategies to be a Nash equilibrium. This lead us to the first path-based formulation. Finally,
we propose a strengthening for the arc-based model and a hybrid arc-path formulation.
Our experimental results support the value of the new valid inequalities obtained from our
characterization of Nash equilibria with profitable increasing paths. We conclude this work
with the future research directions paved by the contributions of this thesis.

Keywords: Multi-agent network expansion, Algorithmic game theory, Operations research,
Nash Equilibria, Mixed-integer programming, Valid inequalities, Maximum flow.

7

Contents

Résumé . 5

Abstract . 7

List of Tables. 11

List of Figures. 13

List of Acronyms & Abbreviations . 15

Notation . 17

Acknowledgment . 19

Introduction . 21

Context . 21

Contributions . 22

Organization of the thesis . 22

Chapter 1. Literature review . 25

1.1. Integer programming techniques for games . 25

1.2. Games on networks . 26

Chapter 2. Multi-agent network expansion game . 29

2.1. Definitions and notation . 29

2.2. Arc-based formulation . 35

2.3. Identification of limitations . 38

Chapter 3. Set partitioning reformulation . 41

3.1. Profitable increasing paths . 41

3.2. Path-based reformulation . 44

9

3.3. Discussion of formulations strengths and weaknesses. 47

Chapter 4. Improvements: Taking the best of both formulations 49

4.1. Enhanced formulations . 49
4.1.1. Tuning M . 49
4.1.2. Valid inequalities: No player has a negative profits . 50
4.1.3. Valid inequalities: Filtering . 51

4.2. Hybrid formulation . 52

Chapter 5. Computational experiments . 55

5.1. Experimental setup . 55

5.2. Experimental results . 57
5.2.1. Formulations. 57
5.2.2. Valid inequalities . 58

Chapter 6. Conclusions and future work . 65

Bibliography . 67

Appendices . 70

Appendix A. Linearization of Constraints (2.2.17) . 71

Appendix B. Detailed results . 73

10

List of Tables

2.1 Influence of M in the performance . 39
2.2 Influence of the valid inequalities (VI) with (a large) M = 106 39

5.1 Computational summary for each formulation . 58
5.2 Impact of valid inequalities on ARCIP . 59

B.1 Detailed results with m = 2 . 74
B.2 Detailed results with m = 5 . 75

11

List of Figures

2.1 Example with 4 players: 3 carriers and 1 customer . 30
2.2 Example of residual graphs . 34
2.3 Example with 3 carriers. 39

5.1 Performance profiles for each formulation . 61
5.2 Performance profiles for each α . 62
5.3 Performance profiles for each formulation and activation set of valid inequalities . 63

13

List of Acronyms & Abbreviations

MANEG Multi-agent network expansion game

ARCIP Arc-based formulation

PATHIP Path-based formulation

HYBIP Hybrid formulation

noneg Non-negative profit cuts

filter Never-profitable path cuts

15

Notation

Game description
Parameters and sets
A finite set of players
G = (V,E) digraph (network) with set of nodes V and

set of arcs E
Eu set of arcs in G of agent u ∈ A
EF set of forward arcs in the residual graph as-

sociated to G
EB set of backward arcs in the residual graph as-

sociated to G
C := (cij)ij∈E vector of dimension |E| where each entry ij

provides the unit cost of expanding the ca-
pacity of arc (i,j) ∈ E

Q := (qij)ij∈E vector of dimension |E| where each entry ij
provides an upper bound qij on the capacity
of the arc ij ∈ E

Q := (q
ij

)ij∈E vector of dimension |E| where each entry ij
provides a lower bound q

ij
on the capacity of

the arc ij ∈ E
π total reward awarded by the customer
o,d nodes in V representing the origin and the

destination
o ∼ d path from o ∈ V to d ∈ V
P set of all o ∼ d paths
K max

ij∈E
qij

Fmax theoretical maximum flow in the network

17

Acknowledgment

First and foremost, I want to thank my supervisors, Pr. Carvalho and Ngueveu. They
provided an excellent scientific environment, but also a lot of their time and patience. Their
kind mentorship helped me to not only finish this master thesis, but more importantly to
develop a steady basis on which I can confidently start a Ph.D. For their investment and
trust, I am forever grateful.
I want to thank all my fellow students, for always making me feel like I belong and I could
do it. Despite working remotely most of the time, we managed to create an caring and
stimulating dynamic which I hope to benefit from in my future years as a student. Carl,
Federico, Justine, Warley: you made this lab the best environment to succeed!
Finally, I thank my family and friends who supported me throughout this process, despite
being on the other side of the ocean in the middle of a pandemic. I will fly back to you soon!

19

Introduction

Context
In Operations Research, the vehicle routing problem is one of the most classical and

challenging optimization problems studied. Typically, this problem involves a single decision
maker controlling fully the planning of the routes of its fleet in a given network. However, in
some real-world applications, carriers may not have access to the full network or, in partic-
ular, they may not be able to make a delivery between an origin and a destination specified
by a customer. This limitation may be caused by the fact that the networks encompass dif-
ferent modes of transportation or authorized operating locations. Consequently, the study
of problems involving different transportation agents operating in a network is motivated.
In addition, consideration of non-cooperative game-theoretic aspects is also motivated, since
the decisions of the various transportation agents operating in a network are expected to
influence each other.

In this work, we study the game proposed by Chaabane et al. [2017], the multi-agent net-
work expansion game (MANEG), where different carriers compete for the flow of a customer
in a network. The decisions (strategies) of the carriers (players) pertain to investments to in-
crease the capacity of their arcs. In turn, the customer (also a player of the game) decides the
sharing policy, i.e., how to split a reward among the carriers. All players are self-interested
which means they aim to maximize their own profits. While each carrier profit is given by the
revenue received from the sharing policy minus the investment costs on capacity expansion,
the customer profit is the maximum flow going through the network from a given origin to
a destination.

To analyze a game, we must anticipate its outcome, i.e., the decisions that we expect
the players to select. In this way, we can evaluate various elements of the game such as
whether there are players that will leave the game (e.g., due to null profits), players that
dominate the game, and the social welfare associated with it, to name a few. Such analyzes
support policy-makers in their task of regulating competition. Thus, the goal of our work
is to determine and characterize the outcome of MANEG. This lead us to concentrate on
the well-known game solution concept called Nash equilibria. Roughly speaking, a Nash

21

equilibirum specifies a vector of strategies (i.e., it fixes their decisions) for the players such
that no player has incentive to unilaterally deviate from it. Therefore, it is reasonable to
expect that a game outcome is a Nash equilibrium.

Contributions
Chaabane et al. [2017] showed that MANEG has always a (pure) Nash equilibrium and

that the problem of determining the equilibrium achieving the largest flow is NP-hard. For
the latter problem, they propose a mixed-integer linear program which we designate by
arc-based formulation (ARCIP).

Our contribution is the characterization of Nash equilibria through a necessary and suf-
ficient condition based on the formalization of the concept of profitable increasing paths.
This lead us to a novel path-based formulation (PATHIP). As expected, the path-based
formulation has the issue of requiring, as a preprocessing step, the computation of all paths
between a pre-defined origin and destination. To overcome this problem, our third contri-
bution is the enhancement of both ARCIP and PATHIP through valid inequalities based
on profitable increasing paths and the fine-tuning of the big-M parameter fot ARCIP . We
also combine the formulations in a hybrid arc-path based formulation. Fourth, we provide
extensive computational experiments allowing us to evaluate the different ingredients of our
contributions and to prescribe different formulations accordingly with the instance at hand.

Our work also contributes to close the gap between the Game Theory and Operations
Research communities by tackling a game through mathematical programming tools.

Organization of the thesis
In Chapter 1, we revise the literature related to the game tackled in this thesis. The goal

is to position our work within the literature in game theory using mixed-integer programming
techniques and on similar graph games. Chapter 2 provides background on the arc-based
formulation for MANEG as well as the identification of two of its limitations. In Chapter 3,
we provide a novel characterization of equilibria for MANEG based on the new concept of
profitable increasing paths. This leads to an intuitive and simple to describe path-based
formulation. In Chapter 4, (i) we provide a fine-tuning of the big-M parameters for the
arc-based formulation, (ii) we devise two new families of valid inequalities for both arc and
path-based formulations with the aim to overcome their respective drawbacks, and (iii)
we propose a strengthened hybrid arc-path formulation. In Chapter 5, through extensive
empirical experiments, we show that the theoretical contributions of the previous Chapter

22

lead to better performance than the state-of-the-art formulation. Finally, we summarize this
thesis contributions and suggest future research directions in Chapter 6.

23

Chapter 1

Literature review

The field of game theory formalizes concepts aiming at modelizing and analizing situations
where different agents interact and are self-driven. Such concepts are widely used to exploit
classical problems such as electricity markets or kidney exchange (e.g., in Carvalho et al.
[2017]) to name a few. In this literature review, we describe some links between mathematical
programming, particularly, integer programming, game theory, and networks. In Section 1.1,
we focus on integer programming techniques used to solve non-cooperative games, i.e., games
in which players are self-interested and no bidding agreements can be established. Then in
Section 1.2, we review relevant work concerning games played in networks to position the
one tackled in this thesis.

1.1. Integer programming techniques for games
The use of integer programming tools to solve games dates back to Sandholm et al. [2005]

and Sagratella [2016] and it is more recently prominent for tackling Integer Programming
Games (IPGs), defined first by Köppe et al. [2011], then by Carvalho [2016]. An integer
programming (IP) game with n players is a non-cooperative game where the set of strategies
for each player is a set of integer points inside a polytope. Nash equilibria, defined in Nash
[1950], are a common solution concept to compute for games, as they guarantee stability. In
the case of IPGs, it has been proven by Carvalho et al. [2018] that the problem of deciding if
an IPG has a Nash equilibrium is Σp

2-complete. As a consequence, recent research is interested
into exploiting the integrality property of such games. Traditional mathematical (integer)
programming frameworks are explored to fit the specific context of games and facilitate Nash
equilibria computation. We focus here on three main approaches: Column-row generation,
Branch and Cut and convex approximation.

First, in Carvalho et al. [2022] an algorithm, Cut and Play, is presented. Its core concept
is to use a decomposition framework, column (and row) generation (Gilmore and Gomory
[1961]), to compute only relevant strategies and associated constraints. By using only a

25

subset of the feasible set of strategies, it becomes easier to compute Nash equilibria. An-
other approach, deeply rooted in integer programming, is Branch and Cut. Carvalho et al.
[2021] uses well studied families of cuts (e.g., Gomory Mixed-Integer as well as Mixed-Integer
Rounding, and Knapsack Cover Cuts) and game-tailored cuts (value cuts) to compute equi-
libria in IPGs polyhedral representable games (e.g., IPGs and multi-leader bilevel games).
A third angle is convexification of games. Harks and Schwarz [2022] prove that there exists
a convexified instance of generalized IPGs such that for a fixed situation, every player has a
linear cost function and a polyhedral strategy. This result allows new characterizations of the
existence and computability of generalized Nash equilibria. Other forms of reformulations
are proposed by Guo et al. [2021], using Burer [2009] methods and cutting planes to compute
pure NE. In this work, they develop specific KKT conditions for equilibria of games. Lastly,
Dragotto and Scatamacchia [2021] develop a cutting plane algorithm for the computation
of pure Nash equilibria of IPGs, and show great performances on network games, which we
will introduce in the following section.

1.2. Games on networks
Networks are present in numerous real life situations such as transport networks. Some

of these situations involve more than one agent, which naturally calls for a game theory
insight. This game theoretical perspective on network problems like congestion games is well
established, and developed in Roughgarden [2007] as well as Tardos and Wexler [2007]. We
present here some examples of games on networks that we consider relevant for the following
work as well as we review the works closely related to ours. To this aim, we focus exclusively
on non-cooperative games.

First, we consider a classic network problem, the network design, tackled with a game
theoretical approach in Chen and Roughgarden [2006]. In this work, focused on the price
of stability (roughly, measure of social welfare benefit), different concepts of equilibria are
developed, such as approximate Nash equilibria. Then, we consider Sagratella et al. [2020],
where the non-cooperative fixed charge transportation problem (NFCTP) is studied. This
is the extension of the fixed charge transportation problem to multiple players. Here, all
players solve a fixed charge transportation problem simultaneously. This problem is formal-
ized as a mixed integer program, and the associated properties are exploited to prove the
existence of Nash equilibria as well as numerical methods to compute them.

Finally, we mention a game on networks closely related to the multi-agent network ex-
pansion game (MANEG): the multi-agent project scheduling problem (with controllable

26

processing times) presented in Agnetis et al. [2015]. In such problem, the objective is to
minimize the make span of a project. As in the MANEG, the activity of each agents is mod-
eled with the arcs in the network representing the different activities to complete a project.
The project scheduling problem can be view as a min-cost-flow problem while the MANEG is
a max-flow on similar networks. In Agnetis et al. [2015], a characterization of Nash equilibria
in terms of the existence of certain types of cuts, modeled after the network structure, is
proposed. At last, the following work takes its roots into Chaabane et al. [2017], for which
the formulation of MANEGs as a mixed-integer program is developped in Chapter 2. Along
with Chaabane et al. [2017]’s formulation, a proof of existence for MANEGs’ Nash equilibria
is given.

27

Chapter 2

Multi-agent network expansion game

In this chapter we provide the background and the state-of-the-art mathematical program-
ming formulation of the multi-agent network expansion game (MANEG). In Section 2.1, we
formally present the game and specify the notations used in this work. After some basic
definitions and properties, we go into more detail into the concept of residual graph. In Sec-
tion 2.2, we first detail how this residual graph is used to model Nash equilibria in a MANEG.
We then explain the mathematical formulation by Chaabane et al. [2017] of the maximum
flow Nash equilibrium in a MANEG, designated by ARCIP . Finally, in Section 2.3, a small
example is used to show some limitations of ARCIP , and thus motivate the remaining work.

2.1. Definitions and notation
We are considering a game on a network, as described in Chaabane et al. [2017]. There are

two sets of players, a customer and a set of agents (carriers), taking decisions simultaneously.
The goal of the customer is to obtain the highest possible flow going from a pre-defined origin
to a pre-defined destination of the network. The customer controls the reward proportion
paid to each agent. The goal of each agent is to maximize their individual profits. The agents
manage the arcs’ capacity in the network. The difficulty arises from the fact that the profit for
each agent depends (in part but not only) on the maximum flow going through the network
and the split of the reward decided by the customer. Moreover, the maximum flow depends
on the capacities of the arcs decided by the agents. This underscores the interaction between
the players and the challenge of anticipating the most rational strategies for the game.

Next, we describe the components defining our game.
Definition 2.1.1. A multi-agent network is given by the following tuple:

< A, G,Q,Q, C, π > ,

where

29

• A = {A1,A2, . . . ,Am,Am+1} is the set of players with player Am+1 denoting the cus-
tomer;
• G = (V,E) is a digraph with a set of nodes V , including an origin o and a destination
d, and a set of arcs E given by the union of the disjoint sets Eu for each u ∈ A
(where EAm+1 = ∅);
• Q := (qij)ij∈E is a vector representing the maximum capacity of each arc of G;
• Q := (q

ij
)ij∈E is a vector representing the minimum capacity of each arc of G;

• C := (cij)ij∈E is a vector representing the unit capacity expansion cost of each arc of
G;
• π is the total reward given by Am+1, to be split between the m transportation agents.

All game parameters are integer.
Figure 2.1 provides an example of a multi-agent network. In our example, there are 3

carriers: one owning the dotted arcs, one owning the dashed arcs and one owning the full
arcs. In the figure, for each arc (i,j), we provide in parenthesis their minimum and maximum
capacities,

[
q

ij
,qij

]
, as well as the unit capacity expansion cost cij$. Given that all arcs have

a minimum capacity of 0, no flow can go through the network without the players investing
in expanding the capacity of their arcs. To completely define the game, the total reward π
and the origin and destination nodes would need to be defined.

1 3

2

4 6

5

7

[0,
3] ,

1$

[0,2] , 1$

[0,3] , 1$

[0,2] , 3$

[0,
3] ,

1$

[0,2] , 1$

[0,3] , 1$

[0,2] , 3$

Figure 2.1. Example with 4 players: 3 carriers and 1 customer

Before preceding with the definition of strategies and utilities of the players in a MANEG,
we make the simplifying assumptions:
Assumptions

• No agent owns a full path o ∼ d by herself.
Since such a path would not be related to the other agents’ strategies, we can safely
make this assumption without altering the game.
• The vector of minimum capacities Q is 0.

30

The last assumption above allows us to not take into consideration the free flow that
could go through the network, i.e., the flow that could cross the network with no invest-
ment on capacity expansion. In addition, it does not compromise the use of the instances
from Chaabane et al. [2017] since Q is set to 0. Moreover, as discussed later in Chapter 6, the
concepts and valid inequalities that we are presenting here can be adapted to fit non-trivial
minimum capacity vectors by representing the cost of each arc as a stair function instead of
a fixed value.

As mentioned initially, the goal of the customer is to maximize the flow going from an
origin to a destination of the network. Thus, the profit of the customer in the game is the
associated maximum flow. This leads to an immediate simplification observed by Chaabane
et al. [2017]: the customer may not be considered a player like the others in the sense that
any change in the reward sharing policy of the customer has no direct effect on her profit;
in other words, the customer cannot exert a direct influence on the maximum flow since she
does not control the capacity of the arcs. On the other hand, a carrier can directly influence
the flow going through the network. Due to this status difference, even though all players are
playing simultaneously, we allow ourselves to shorten and define a strategy vector as follows:
Definition 2.1.2. A strategy vector for a multi-agent network

〈
A,G,Q,Q, C, π

〉
is given by

S = (S1, . . . , Sm) ,

where Su = (qij)ij∈Eu is the vector of capacities over the arcs of player u ≤ m. The strategy
vector can be completed with a corresponding sharing policy (namely, the customer’s strategy)
Sm+1 = (wu)u=1,...,m providing the proportion of π allocated to each carrier.

Now, we have all the elements to define the set of feasible strategies for each player and
trivial strategy.
Definition 2.1.3. Given a multi-agent network

〈
A,G,Q,Q, C, π

〉
, a strategy vector S =

(S1, . . . , Sm, Sm+1) is feasible if the following conditions hold
(1) For each arc (i,j) ∈ E

qij ∈ N.

(2) For each arc (i,j) ∈ E
q

ij
≤ qij ≤ qij.

(3) The customer’s strategy is a sharing policy, i.e.,
m∑

u=1
wu = 1 and wu ≥ 0 for u =

1, . . . ,m.

31

We remark that in the original definition of feasible strategies by Chaabane et al. [2017],
the decisions (strategies) of the carriers are not (explicitly) restricted to integer values. How-
ever, in their mathematical programming formulation to solve the game, they impose arcs’
capacity expansions to be integer. Thus, we make this restriction explicit in Definition 2.1.3.
Definition 2.1.4. Given a multi-agent network

〈
A,G,Q,Q, C, π

〉
, a strategy vector

S =
(
(q

ij
)ij∈Eu)

)
u∈{1,...,m}

is called a trivial strategy.
Note that in a trivial strategy, no agent increases any of her arc’s capacity. We also

remark that a trivial strategy vector remains feasible for any sharing policy. It would be
more correct (yet heavier) to write that there exists an infinity of trivial feasible strategies.
Due to the assumption made in the beginning of this section, the trivial strategy is equal to
zero, corresponding to the case for which the maximum flow is zero. For any strategy S, we
denote by F (S) the maximum flow going through the network G from o ∈ V to d ∈ V under
the capacities given by the strategy S.We denote v = F (S).
Definition 2.1.5. Given a multi-agent network

〈
A,G,Q,Q, C, π

〉
, a profit vector is

Z(S) = (Z1(S), . . . , Zm+1(S)) ,

where
• For agents u ≤ m: Zu(S) = wuπ (F (S)− v)−

∑
ij∈Eu

cij

(
qij − qij

)
.

• For customer: Zm+1 = F (S).
Finally, we can mathematically define MANEG:

Definition 2.1.6. A Multi-Agent Network Expansion Game (MANEG) is composed of:
• A multi-agent network

〈
A,G,Q,Q, C, π

〉
;

• A strategy vector S and a sharing policy (wu)u=1,...,m;
• A profit vector Z(S).

The broadly accepted concept of solution for a game is Nash equilibria. A Nash equilib-
rium specifies a strategy vector for each player such that none has incentive to unilaterally
deviate. Under a Nash equilibrium, all players select their optimal strategies given the fixed
strategies of the opponents. Chaabane et al. [2017] showed that MANEG has always a pure
Nash equilibrium and thus, we focus on this solution concept:
Definition 2.1.7. A strategy vector S is a (pure) Nash equilibrium of

〈
A,G,Q,Q, C, π

〉
if

for each player u = 1, . . . ,m:

Zu(S) ≥ Zu(S1, . . . ,Su−1,S
′
u,Su+1, . . . ,Sm+1) ∀S ′u feasible, (2.1.1)

32

and for the customer m+ 1:

Zm+1(S) ≥ Zm+1(S1, . . . ,Sm,S
′
m+1) ∀S ′m+1 feasible. (2.1.2)

Definition 2.1.7 makes it clear that the customer can never improve her profit by herself
(i.e., by unilaterally deviating from the strategy vector). Hence, to characterize a Nash
equilibrium in a MANEG, it is enough to consider that no transportation agent has incentive
to deviate. Thus, we only need to consider Inequalities (2.1.1). The key point to represent
an equilibrium strategy in Chaabane et al. [2017] is to define for each transportation agent
u a residual graph Gu

r , and check in that graph if player u can make savings (i.e., decrease
costs).
Definition 2.1.8. A strategy vector S in

〈
A,G,Q,Q, C, π

〉
is a non-poor strategy if there

is no agent who can increase her profit unilaterally without changing the flow going through
the network. In a non-poor strategy, all arcs are saturated.
Definition 2.1.9. Consider a multi-agent network

〈
A,G,Q,Q, C, π

〉
, a feasible strategy S

and a transportation agent u ∈ A. The corresponding residual graph Gu
r (S) = (V u

r , EF ∪EB)
is a network such that:

• The nodes are the same as G(V = V u
r);

• If (i,j) ∈ E, then (i,j) ∈ EF (forward arc) and (j,i) ∈ EB (backward arc); moreover,
δiju

F (resp. δjiu
B) denote the costs for forward (resp. backward) arcs in the residual

graph.
As we will see next, Chaabane et al. [2017] set the costs of each arc in a residual graph

so that it reflects whether the capacity can be increased or decreased, and whether or not
such deviation can affect agent u. In Figure 2.2, we provide an example of a residual graph
associated with a strategy vector S; we will get back to it later in this section.
Remark 2.1.10. A direct consequence of the assumption on the lower bound capacities is
that a non-poor strategy is now equivalent to a strategy where all arcs are saturated in the
case of a maximum flow.

33

1 2 3
1, [0,2] , c1 2, [0,2] , c2

(a) MANEG with 2 transports and strategy S
given by the left-most number in each arc label

1 2 3
c1 ∞

0−c1

(b) Residual graph associated with the
current strategy S for the full arc agent

1 2 3∞ ∞

−c20

(c) Residual graph associated with the
current strategy S for the dash arc
agent

Figure 2.2. Example of residual graphs

Next, we present the residual costs by Chaabane et al. [2017]. We note that our exposition
is a simplified version of the one presented in the original paper given our initial assumption
on Q = 0.

More precisely, here is how the residual costs for a strategy S are defined in the case of
a MANEG under the trivial lower bounds assumption. For each (i,j) ∈ E:

• if (i,j) ∈ Eu, qij < qij: Agent u has rights on this arc and can increase its capacity
with respect to the bounds. Here, δiju

F = cij;
• if (i,j) ∈ Eu, qij = qij: Agent u has rights on this arc but cannot increase its capacity
with respect to the bounds. Here, δiju

F = M where M is a large constant;
• if (i,j) /∈ Eu: Agent u has no rights on this arc Here δiju

F = M ;
• if (j,i) ∈ Eu, qij > 0: Agent u has rights on this arc and can decrease its capacity
with respect to the bounds. Here, δjiu

B = −cij;
• if (j,i) ∈ Eu, qij = 0: Agent u has rights on this arc but cannot decrease its capacity
with respect to the bounds. Here, δjiu

B = M ;
• if (i,j) /∈ Eu: Agent u has no rights on this arc. Here, δjiu

B = 0.
In a MANEG, a Nash equilibrium can be described as a strategy where no agent has

incentive to unilaterally invest or desinvest in any arc. Since the strategy we are dealing
with are non-poor, no agent has incentive to increase her capacities. Thus, for a strategy to
be a Nash equilibrium, it only has to have no saving paths. To do so, we are looking for a
least expensive d ∼ o path in the residual graph. The cost of such a path in the residual

34

graph represents the savings an agent would make by decreasing her capacities along this
path. For a strategy to be a Nash equilibrium, the cost of this path must be strictly lower
than the benefits from earning one unit of flow.

In our example in Figure 2.2, the cost for the full arc agent of such path would be −c1

(see Figure 2.2b). For the dash arc agent it would be −c2 (see Figure 2.2b).
Remark 2.1.11. Because of how the residual costs are defined for the backward arcs with
the trivial lower bound assumption, the least expensive path for u in the residual graph is the
same as the most expensive path for agent u in the network G taken backward.

2.2. Arc-based formulation
We will refer to the mathematical program formulated in Chaabane et al. [2017] as the

arc-based formulation. The main idea of their model is
• to define a feasible strategy as in Definition 2.1.3;
• to describe the residual graph for each player u and the associated strategy vector;
• to make sure that in each residual graph, even the most expensive invested path is
profitable (hence, no player has incentive to decrease her expansion).

The last condition, central to obtain a Nash equilibrium, does not seem linear; recall, Def-
inition 2.1.5 for the profit of the transportation agents which depends on computing the
maximum flow. Chaabane et al. [2017] propose a set of primal-dual constraints to express
it.

We can define for each Gu
r , a min-cost flow problem (LPu) associated with a demand of

1 unit of flow between nodes d and o. Let ϕ be the decision vector of the flow in the residual
graph, for each u ∈ A, we have:

(LPu) min
ϕu

∑
ij∈EF (Gu)

δiju
F ϕu

ij +
∑

ji∈EB(Gu)
δjiu

B ϕu
ji

s.t.
∑

ij∈EF∪EB

ϕu
ij −

∑
ji∈EF∪EB

ϕu
ji =


0,∀i 6= o,d

−1, i = o

1,i = d

, ∀i ∈ V (Gu)

ϕu
ij ≥ 0, ∀ij ∈ E(Gu).

35

We can write the associated dual (DPu):

(DPu) max
t

tuo − tud

s.t. tuj − tui ≤ δiju
F , ∀ij ∈ EF (Gu)

tui − tuj ≤ δjiu
B , ∀ji ∈ EB(Gu)

tui ∈ R, ∀i ∈ V (Gu).

By strong duality, we know that if (LPu) has an optimum ϕ?, then (DPu) is feasible and

Z(DPu) = Z(LPu),

where the operator Z(LPu) and Z(DPu) represent the optimal value the problems in paren-
thesis.

Bringing this back to our problem, it means that:
• If we can design an optimal solution for each (LPu) (i.e., Constraint (2.2.16) holds
and ϕ is optimal), then the dual is feasible (i.e., Constraints (2.2.14) and (2.2.15)
hold for all u ∈ A);
• Moreover, if we can determine a feasible solution for each (LPu), then we have by
weak duality:

tuo − tud ≤
∑

ij∈EF (Gu)
δiju

F ϕu
ij +

∑
ji∈EB(Gu)

δjiu
B ϕu

ji,∀u ∈ A.

By strong duality, this inequality only holds with equality for optimal solutions. This
is the configuration we are aiming at in the arc-based formulation.

To summarize, we aim at building a path d ∼ o with a minimal residual cost, (i.e., the most
expensive combination of arcs for an agent u) in the residual graph of each transportation
agent. This cost is carried to dual variables t and compared to the benefits obtained by
agent u from one unit of flow. If by disinvesting one unit in such path, the agent is saving
more than the benefits reached from one unit of flow, then she has incentive to unilaterally
deviate, and hence the current strategy is not a Nash equilibrium.

There are two auxiliary parameters in the arc-based formulation: ε and M . As advised
in Chaabane et al. [2017], we set ε to 1. M is supposed to be a rebarbative cost; we discuss
in Section 2.3 the challenges associated with this parameter. Finally, we can provide the arc-
based formulation (ARCIP) whose solution is a Nash equilibrium achieving the maximum
flow:

36

max F −
∑

ij∈E cijqij

1 +∑
ij∈E cijqij

The next three constraints assure that a strategy is feasible for the game

∑
ij∈E

qij −
∑

ji∈E

qji =


0, i 6= s,t

F, i = s

−F, i = t

, ∀i ∈ V (2.2.1)

qij ≤ qij, ∀(i,j) ∈ E (2.2.2)∑
u∈A

wu = 1 (2.2.3)

The next constraints are setting binary values in order to define the residual costs

xij ≤ qij − qij ≤ qijxij, ∀(i,j) ∈ E (2.2.4)

yij ≤ qij ≤ qijyij, ∀(i,j) ∈ E (2.2.5)

(1− xij)qij ≤ qij ≤ (1− αij)qij − εxij, ∀(i,j) ∈ E (2.2.6)

ε(βij + yij) ≤ qij ≤ yijqij, ∀(i,j) ∈ E (2.2.7)

αij ≤ xij, ∀(i,j) ∈ E (2.2.8)

yij + βij ≤ 1, ∀(i,j) ∈ E (2.2.9)

The next constraints are defining the residual costs

δij,u
F = cij − (cij −M)(1− xij)− cijαij, ∀(i,j) ∈ Eu,∀u ∈ A (2.2.10)

δij,u
F = M(2− xij − αij), ∀(i,j) ∈ E \ Eu,∀u ∈ A (2.2.11)

δji,u
B = (1− βij − yij)M − cijyij, ∀(i,j) ∈ Eu,∀u ∈ A (2.2.12)

δji,u
B = (1− βij − yij)M, ∀(i,j) ∈ E \ Eu, ∀u ∈ A (2.2.13)

The next constraints describe the feasibility set of (DPu)

tuj − tui ≤ δij,u
F , ∀(i,j) ∈ E,∀u ∈ A (2.2.14)

tui − tuj ≤ δji,u
B , ∀(i,j) ∈ E,∀u ∈ A (2.2.15)

37

The next constraint describes the feasibility set of (LPu)

∑
ij∈EF∪EB

ϕu
ij −

∑
ji∈EF∪EB

ϕu
ji =


0, ∀i 6= s,t

−1, i = s

1,i = t

, ∀i ∈ V, ∀u ∈ A (2.2.16)

The next constraint imposes the necessary strong duality condition

tu0 − tun+1 ≥
∑

ij∈EF (Gu)
δiju

F ϕu
ij +

∑
ji∈EB(Gu)

δjiu
B ϕu

ji, ∀u ∈ A (2.2.17)

This last constraint makes sure that the optimal solution to (LPu) is not a saving path for
each agent u

tun+1 − tu0 < wuπ, ∀u ∈ A (2.2.18)

xij,αij,yij,βij, ϕ
u
ij, ϕ

u
ji ∈ B, ∀(i,j) ∈ E,∀u ∈ A

F ≥ 0

wu ≥ 0,∀u ∈ A

qij ∈ N,∀(i,j) ∈ E

δjiu
B , δiju

F , tui , t
u
j ∈ R,∀(i,j) ∈ E,∀u ∈ A

The objective function maximizes the flow and the second penalization term aims to avoid
non-poor strategies; we refer the reader to Chaabane et al. [2017] for details.

We remark that the right-hand side of Constraints (2.2.17), is not linear. Its lineariza-
tion can be done through standard techniques and thus, we provide the equivalent linear
reformulation in Appendix A.

2.3. Identification of limitations
Now that the arc-based formulation has been detailed, we use the following simple in-

stance to analyze the performance of solving ARCIP :
As in the previous examples, each arc (i,j) is labeled

[
q

ij
, qij

]
, cij$. We call player 1 the

agent managing the full arcs, player 2 the agent owning the dashed arcs, and players 3 the
agent controlling the dotted ones. The origin is node 1 and the destination node 7. This
instance is used to motivate the work in the upcoming chapters.

38

1 3

2

4 6

5

7

[0,
3] ,

1$

[0,2] , 1$

[0,3] , 1$

[0,2] , 3$

[0,
3] ,

1$

[0,2] , 1$

[0,3] , 1$

[0,2] , 3$

Figure 2.3. Example with 3 carriers

For this brief computational results, we use the same setup as for all our experiments,
detailed in Chapter 5 so here we refrain from repeating those details. In Table 2.1, we
present our results for two instances based on the illustrated network where only the reward
π differs. For each of these instances, we solved ARCIP for two values of the big-M auxiliary
parameter. The table provides in the third column the maximum flow of the computed
equilibrium, in the fourth column the time to solve ARCIP in seconds, and in the fifth
column the number of nodes explored by the solver.

π M Flow F runtime (s) nodes
7 14 2 0.015 1

106 4 0.024 17
1 5 0 0.005 0

106 3 0.024 33
Table 2.1. Influence of M in the performance

π VI Flow F runtime (s) nodes
7 none 4 0.024 17

noneg 2 0.025 1
filter 4 0.026 17

1 none 3 0.024 33
noneg 0 0.004 0
filter 0 0.004 0

Table 2.2. Influence of the valid inequalities (VI) with (a large) M = 106

In both instances, large values of M result in more nodes explored by the MIP solver.
This is not surprising as the use of big-M parameters is known to contribute to non-tight

39

linear relaxations and thus to result in large branch-and-bound trees. More importantly, for
the large values of M (i.e., M = 106), the model produces incorrect solutions, i.e., solutions
that do not represent a Nash equilibrium. This is especially visible when π = 1. In this case,
due to a reward lower than any unitary capacity expansion cost, only the trivial strategy is
a Nash equilibrium. Hence any solution with a flow higher than zero, will lead to non-Nash
strategies. Remark that ARCIP with M = 106 provides a solution with flow equal to 3,
demonstrating that the solution is not correct. Please note that this does not invalidate
the theoretical correctness of ARCIP ; the issue described here is associated with numerical
issues introduced by the large values of M .

These observations leads us to try to improve the model, by making it more robust to
big-M variations, to assure that the trivial solutions are found fast when they are the unique
Nash equilibrium, and to improve the associated linear relaxation.

To that aim, we devise a combinatorial formulation based on o-d paths in Chapter 3.
This model inspires the development of valid inequalities for the arc-based formulation. We
anticipate through Table 2.2, the impact of our valid inequalities, namely, noneg for non-
negative profit cuts, and filter for never-profitable path cuts. Indeed, when the reward is (high)
π = 7, the non-negative profit inequalities correct the error induced by the big-M . When
the reward is (low) π = 1, the never-profitable path inequalities fix the solution correctness
and improve efficiency.

In Chapter 4, we propose an hybrid reformulation, joining both arc and path-based
formulations. Finally, we present in Chapter 5, our instances and discuss the performances
of all three formulations.

40

Chapter 3

Set partitioning reformulation

In the domain of integer programming, mathematical programming formulations based on
decision variables associated with the arcs of a graph can frequently be reformulated through
paths in that graph. In this chapter, we follow this research direction and we present the
first path-based formulation for MANEG.

In Section 3.1, we provide a necessary and sufficient condition for the characterization of
Nash equilibria for MANEG using the definition of profitable increasing paths. Our path-
based formulation is described in Section 3.2. We end this chapter by discussing in Section 3.3
the advantages and disadvantages of our new formulation in comparison with the arc-based
formulation.

3.1. Profitable increasing paths
In what follows, we define the notation of profitable increasing paths and combination of

o ∼ d paths. This allow us to describe, using paths, a Nash equilibrium for MANEG. In a
sightly abuse of notation, for path a p in a graph G = (V,E) and Eu ⊂ E, we define p ∩ Eu

as the set of arcs belonging to Eu used by the path p.
Definition 3.1.1 (Profitable increasing path). Consider a multi-agent network〈
A,G,Q,Q, C, π

〉
and a sharing policy w. A path p from o to d is called a profitable

increasing path if for each player u ∈ A:∑
ij∈p∩Eu

cij ≤ wuπ.

Definition 3.1.2 (Combination of paths). Consider a multi-agent network〈
A,G,Q,Q, C, π

〉
. A combination of paths is a set of paths {p1, . . . , pn} , all non-

null, in the graph from o to d associating a strictly positive number λi, to each path pi in
the set. Such λ is called the path multiplicity.

The idea behind the definition of combination of paths is the following: a strategy vector
S for a MANEG can be described by a combination of paths such that for each arc (i,j) ∈ E

41

the sum of multiplicities associated with the paths passing in that arc is equal to the qij

given by the strategy vector S.
Theorem 3.1.3. In a multi-agent network expansion game

〈
A,G,Q,Q, C, π

〉
, a non-poor

strategy S is a pure Nash equilibrium if, and only if, it can only be expressed with a combi-
nation of profitable increasing paths.

Proof. (=⇒, by contradiction) We prove the following statement: a non-poor strategy
S that can be expressed as a combination of paths, not all profitable increasing, is not a pure
Nash equilibrium.

Let S be a non-poor strategy vector, with a corresponding combination of n paths
{p1, . . . , pn} with multiplicities λi for i = 1, . . . , n, all non-null (guaranteed by definition).
Without loss of generality, let p1 be a non-profitable increasing path for an agent u ∈ A. Then
such player has incentive to unilaterally deviate, e.g., by decreasing the capacity expansion
of an arc in p ∩ Eu. To see this, note that the profit of player u is

Zu(S) = wuπF (S)−
∑

ij∈Eu

cijqij = wuπ
n∑

k=1
λk−

n∑
k=1

∑
ij∈pk∩Eu

cijλk =
n∑

k=1
λk

wuπ −
∑

ij∈pk∩Eu

cij

 .
Remark that for k = 1, the term in parenthesis for the last equality is negative since p1 is
not a profitable increasing path. If player u decreases by one unit the capacity of an arc in
∈ p1 ∩Eu (note that this is possible since all arcs of player u along p1 have capacity at least
λ1), then the multiplicity of path p1 would be λ1 − 1 decreasing the value of the negative
term in the profit of player u.

Therefore S is not a Nash equilibrium.
(⇐=, by contradiction) Next, we prove the following statement: if a non-poor strategy

vector S is not a pure Nash equilibrium, then it can be expressed as a combination of paths
including at least one non-profitable path.

Let S be a non-poor strategy vector, such that agent 1 (w.l.o.g.) has incentive to deviate.
Let us start by characterizing the deviations from a non-poor strategy by a player. Recall-

ing Chapter 2, we assumed that no player controls all the arcs of an o ∼ d path (essentially,
such path can be removed from the game since the related flow is controlled by a single
player). Therefore, if a player has incentive to deviate, then there is an arc whose increase
or decrease by one unit of capacity results in a strict increase of the player profit. Moreover,
since S is non-poor, the incentive is always to decrease capacity as all arcs are saturated; oth-
erwise, if the player increases the capacity, there is no flow increase and the player increases
costs.

42

Using the considerations above, we suppose that player 1 has incentive to decrease by
one unit the capacity of e ∈ E1, resulting in the vector of strategies Ŝ = (Ŝ1,S−1) where
S−1 is vector S without S1, i.e., it represents the unilateral deviation of player 1 from S.
Therefore, it holds Z1(S) < Z1(Ŝ).

The strategy vector Ŝ is not a non-poor strategy anymore. However, we can derive a
non-poor strategy S̃ from it such that F (Ŝ) = F (S̃). Such strategy S̃ = (S̃1, S̃−1) is built
the following way:

• S̃1:
Because we removed capacity on e to build Ŝ, we can choose the most expensive
path for player 1 from o to d containing e, i.e., p̃ ∈ arg max

p∈P|e∈p

∑
ij∈p∩E1

cij. Then S̃1 is

the strategy of player 1 when all arcs in E1 along p̃ see their capacities decrease by
one unit from S1 (including e). Then all arcs managed by player 1 are saturated.

• S̃−1 is the strategy on arcs E \ E1 where each arc is saturated.
Since all arcs in E1 and all arcs in E \ E1 are saturated, the strategy S̃ is non-poor.

Then, player 1 profit is:

Z1(S̃) = w1π (F (S)− 1)−
∑

ij∈E1

cijqij +
∑

ij∈p̃∩E1

cij

= Z1(S)−
w1π −

∑
ij∈p̃∩E1

cij

 .

By construction,
Z1(S) < Z1(Ŝ) ≤ Z1(S̃).

Thus:

Z1(S) < Z1(S̃)

⇐⇒ Z1(S) < Z1(S)−
w1π −

∑
ij∈p̃∩E1

cij


⇐⇒ w1π −

∑
ij∈p̃∩E1

cij < 0

⇐⇒ w1π <
∑

ij∈p̃∩E1

cij

43

Hence p̃ is a non-profitable path along which there is a positive flow under S. Thus, p̃ can
be used together with other paths to form a combination of paths describing S.

�

This theorem provide us a complete characterization of a pure Nash equilibrium through
the use of combinations of paths under certain conditions (i.e., being all profitable). The
following formulation aims at exploiting this result by producing such combinations.

3.2. Path-based reformulation
As previously explained, it is straightforward to see that any vector of strategies can

be represented through a combination of paths (together with their multiplicities). With
Theorem 3.1.3, we obtain a strong link between o ∼ d paths and a Nash equilibrium. This
motivated the path-based formulation that we present next.

Notation. Given a MANEG and the set P of all o ∼ d paths in the network, we define K
as

K = max
ij∈E

(
qij

)
.

This parameter K is the theoretical maximum multiplicity possible for any o ∼ d path in
the network. We introduce also a new parameter, du

p for each path p ∈ P and agent u ∈ A
such that:

du
p = |p ∩ Eu|.

Essentially, du
p is the number of arcs owned by player u in the path p.

In the following reformulation of the Nash equilibrium attaining the maximum flow for the
multi-agent network expansion game, we use a binary variable xk

p to express the exploitation
of a path p ∈ P with a multiplicity of k = 1, . . . , K; in other words, xk

p equals 1 if there is at
least a capacity expansion (or equivalently, flow) of k along path p, and 0 otherwise. This
definition imposes a ordering of the x variables associated with a path p: if xk

p = 1, then
xi

p = 1 for all i < k. Variables wu for each u ∈ A have the same meaning as in the arc-based
formulation (sharing policy).

We also introduce two new sets of (auxiliary) binary variables, zu
p and yij, linked by a

third set of variables, tiju
p = yij × zu

p , for each (i,j) ∈ E, u ∈ A, p ∈ P . The variable zu
p

is 1 when a path p satisfies the condition of profitable increasing path for agent u, and 0
otherwise. The decision variable yij is actually the same as in ARCIP : yij is 1 if arc (i,j) ∈ E
is used (i.e., there is p ∈ P such that (i,j) ∈ p and x1

p > 0), and 0 when x1
p = 0,∀p ∈ P with

44

(i,j) ∈ p. Finally, tiju
p , defined as a product of two binary variables, represents the fact that

an arc (i,j) ∈ E is exploited by player u through a path p.
The goal of our formulation is to find a combination of profitable increasing paths, while

making sure that no non-profitable path is formed inadvertently.

Path-based formulation. In order to describe the mathematical program, we have to
respect the maximum allowed capacity expansion on each arc. We also need to make sure
that all the paths forming the combination of paths in the solution (i.e., the variables xk

p) are
profitable increasing paths, and that no non-profitable path can be formed by recombining
the arcs exploited. Finally, we need to make sure that a path p is exploited at a level k only if
it is exploited at a level k− 1, for k = 1, . . . , K. This leads us to the following reformulation
(PATHIP) of the maximum flow Nash equilibrium problem in a MANEG:

max
∑
p∈P

K∑
k=1

xk
p

st.
∑

p∈P|ij∈p

K∑
k=1

xk
p ≤ qij, ∀ij ∈ E (3.2.1)

∑
u∈A

wu = 1 (3.2.2)

xk+1
p − xk

p ≤ 0, ∀p ∈ P ,∀k = 1, . . . , K − 1 (3.2.3)

zu
p

∑
ij∈p∩Eu

cij − wuπ ≤ 0, ∀p ∈ P , ∀u ∈ A (3.2.4)

x1
p − zu

p ≤ 0, ∀p ∈ P , ∀u ∈ A (3.2.5)

du
px

1
p −

∑
ij∈p∩Eu

yij ≤ 0, ∀p ∈ P , ∀u ∈ A (3.2.6)

∑
ij∈p∩Eu

(
yij − tiju

p

)
≤ du

p −
du

p

|p|
, ∀p ∈ P , ∀u ∈ A (3.2.7)

tiju
p − zu

p ≤ 0, ∀p ∈ P ,∀ij ∈ E,∀u ∈ A (3.2.8)

tiju
p − yij ≤ 0, ∀p ∈ P ,∀ij ∈ E,∀u ∈ A (3.2.9)

yij − tiju
p + zu

p ≤ 1, ∀p ∈ P , ∀ij ∈ E,∀u ∈ A (3.2.10)

xk
p, z

u
p , yij, t

iju
p ∈ {0,1} , ∀p ∈ P , ∀k = 1, . . . , K,∀ij ∈ E (3.2.11)

wu ≥ 0, ∀u ∈ A. (3.2.12)

While considering a MANEG and a Nash equilibrium, a first necessary criterion is for
a strategy to be feasible. This is guaranteed by Constraints (3.2.1) and (3.2.2), together

45

with the domain Constraints (3.2.11) and (3.2.12). Concretely, Constraints (3.2.1) assure
that the capacity expansions chosen by the agents respect the maximum capacity bound;
Constraints (3.2.2) enforce that the customer’s strategy is a sharing policy. We add Con-
straint (3.2.3) to impose the ordering of the paths multiplicity. Due to Theorem 3.1.3, we
are only interested in combinations of profitable increasing paths. Constraints (3.2.4) verify
if a path satisfies the profitable increasing path constraint for a player u ∈ A by activating
and deactivating the Boolean variable zu

p , while Constraint (3.2.5) forbids the use of a non-
profitable path in the path combination. Finally, we set the value of yij for (i,j) ∈ E through
Constraint (3.2.6): if a path is used, then all the arcs along it are used. These values are
then used in Constraints (3.2.7) to make sure that no profitable path has been formed. This
constraint is actually equivalent to the following:∑

ij∈p∩Eu

(
yij − tiju

p

)
≤ du

p −
du

p

|p|

⇐⇒
∑

ij∈p∩Eu

(
yij − zu

p × yij

)
≤ du

p −
du

p

|p|

⇐⇒
(
1− zu

p

) ∑
ij∈p∩Eu

yij ≤ du
p −

du
p

|p|
.

The right-hand side needs a more detailed explanation: we want to ensure that if a path is
not profitable increasing for an agent u, at least one of its arcs is not used. It might seem
like we could have use the right-hand side du

p − 1, but this would have lead to infeasibility
when du

p = 0. This specific case is covered with this more complex right-hand side.
Finally, Constraints (3.2.8) to (3.2.10) force tiju

p to be equal to the product zu
p × yij.

The objective function sums the multiplicity of all used paths, which is the value of the
total flow going through the network from o to d.

Combinatorial formulations like this one, with almost only binary variables, and an ex-
ponential number of both variables and constraints, are often challenging to solve and do
not scale well. On the other hand, a lot of information from a MANEG can be exploited
before the optimization. We will discuss in the next section the theoretical strengths and
weaknesses of PATHIP relatively to ARCIP .

46

3.3. Discussion of formulations strengths and weak-
nesses

The most obvious flaw for PATHIP is its potential large size, both in terms of variables
and constraints. Large integer programs are generally slower to solve and, in particular, the
enumeration of paths can become unpractical for large graphs. Then, one might advocate
that generating all the paths and related data (e.g., du

p) requires too much preprocessing
effort. However, that is true only for large and/or dense networks. For small and/or sparse
graphs, we can gather the model parameters and enumerate paths efficiently, allowing us to
see possible advantages of PATHIP over ARCIP .

Regardless, ARCIP has a few weaknesses that PATHIP does not have. We have shown
in Table 2.1 that the use of a large value for the parameter M in ARCIP can lead to
numerical inaccuracies and eventually produce strategies that are not Nash equilibria. In
PATHIP , we do not have such big-M constraints. Furthermore, ARCIP relies on a set of
strict constraints, Constraints 2.2.18, which are also known to lead to numerical issues while
solving mixed-integer programs.

Taking all these observations into consideration, we aim at counteract the drawbacks of
each formulation and exploit all of their strengths as much as possible. This is the aim of the
next chapter, where this objective is sought in the form of valid inequalities of two different
types, as well as an hybrid formulation, merging both ARCIP and PATHIP in one single
mathematical program denoted by HYBIP .

47

Chapter 4

Improvements: Taking the best of both
formulations

We ended Chapter 2 with a small computational example. At this occasion, we noticed the
importance of fine tuning the parameterM for ARCIP . In Section 4.1, we will finally discuss
the tuning of this parameter. Then, we propose a set of valid inequalities to limit the impact
of a badly chosen M on the correctness of the optimal solution. We will also propose valid
inequalities (which can also be seen as a preprocessing step) to reduce the size of PATHIP ,
its main weakness. In Section 4.2, we detail a third and last formulation, HYBIP , formed
by merging the arc and path-based mathematical programs.

4.1. Enhanced formulations
We start this section by discussing the tuning of the big-M parameter for ARCIP in

Section 4.1.1. Then, we present two key ideas to create valid inequalities for our problem. We
give their explicit form for each formulation, ARCIP and PATHIP . The first one, described
in Section 4.1.2, can be seen as a way to reduce the sensitivity of ARCIP to numerical
inaccuracies induced by big-M constraints. Our second idea, presented in Section 4.1.3,
aims at reducing the size of PATHIP as much as possible by exploiting all the MANEG
data gathered during a prepossessing step. Even if these concepts were conceived to improve
each specific formulation, we show in Chapter 5 that ARCIP and PATHIP can benefit from
both families of valid inequalities.

4.1.1. Tuning M

In mathematical programming, big-M constraints are known to cause numerical impre-
cisions and to contribute to loose linear relaxations. This is what we observed in Table 2.1.
As detailed in Section 2.2, M is designed to be a rebarbative cost on an arc in a residual
graph. For example, let us consider a strategy S, an agent u ∈ A and the existence of an arc

49

(i,j) ∈ Eu with a null capacity expansion. In the residual graph associated with agent u, Gu
r ,

even though (j,i), the backward arc associated, exists, its residual cost will be, according to
Constraint (2.2.12) of ARCIP , M .
Actually, M is a parameter designed to make sure that paths going through impossible arcs
(i.e., arcs with a capacity of 0, or forward arcs owned by a different agent) in the residual
graphs are very expensive (and thus, not considered in a Nash equilibrium). We recall that
for each u ∈ A, (LPu) is a min-cost flow in the residual graph. Thus, a theoretically correct
M must have a value strictly greater than the most expensive path in the MANEG’s net-
work1. With this in mind, we can devise tight suitable M values. Depending on how much
computational effort one would like to put into analyzing a MANEG, we could choose (from
the tightest to the most computationally efficient) :

• For a player u, the highest cost for a path plus one, i.e., Mu = 1 + max
p∈P

∑
ij∈p∩Eu

cij;

• the cost of the most expensive path plus one M = 1 + max
p∈P

∑
ij∈p

cij;

• For a player u, the sum of all her expansion costs plus one, i.e., Mu = 1 +
∑

ij∈Eu

cij;

• the sum of all expansion costs2, i.e., M =
∑

ij∈E

cij .

4.1.2. Valid inequalities: No player has a negative profits

One of the main drawbacks of ARCIP came from the big-M constraints, as highlighted
in Table 2.1; in the associated example, we observed that the use in ARCIP of a very large
M in a MANEG where the trivial strategy is the unique Nash equilibrium, led to an incorrect
solution. Puzzled by this technical challenge (theoretically, the use of a big-M is correct),
we focus on the trivial strategy, which is a Nash equilibrium in any MANEG:
Proposition 4.1.1. Any agent can unilaterally reach a reward of at least 0

Proof. Due to our assumption stating that the minimum capacity for all arcs is zero, any
player u ∈ A can set qij = 0 for (i,j) ∈ Eu. In this way, the player has a null cost. �

Corollary 4.1.2. For each agent, the profit obtained from a strategy vector S corresponding
to a Nash equilibrium achieving the maximum flow is non-negative.
By Corollary 4.1.2, we can affirm that a constraint inferring that all agents have a positive
or null profit is a valid inequality. Next, we lift the space of variables and we represent for

1Indeed, there is no need to consider path composed of both forward and backward arcs under the 0 lower
bound expansion condition.
2Here we do not need to add a plus one, since we assumed no player owned a full path

50

both formulations the benefit achieved by each agent u ∈ A (i.e., the total part of reward
the agent earns) with a new variable fu. We start by describing the new inequalities in the
context of the formulation ARCIP . After detailing them, we propose an alternative way to
express the same inequalities within PATHIP .

In ARCIP , the variables qij for each arc (i,j) ∈ E provide us a direct access to each
player strategy. In this way, we devise the following set of inequalities:

πwuF − fu ≥ 0, ∀u ∈ A (4.1.1)

fu −
∑

ij∈Eu

cijqij ≥ 0, ∀u ∈ A (4.1.2)

∑
u∈A

fu − πF = 0 (4.1.3)

fu ≥ 0, ∀u ∈ A.

The revenue of each player u ∈ A in the game is πwuF , thus the goal of the inequalities above
is to approximate fu to that value. Sadly, making fu = πwuF is not desirable as it creates
the bilinear term wuF . To thwart this, we upper bound our variables (revenue) fu with
the maximum theoretical flow F in Constraints (4.1.1).3 We also lower bound the revenue
through the costs of the expansion strategy in Constraints (4.1.2); this forbids negative
profits for the players. Furthermore, since ∑u∈Awu = 1, we can precise the bounds on each
revenue variable fu with Constraints (4.1.3).

While Constraints (4.1.1) and (4.1.3) can be added directly to PATHIP , this is not the
case for Constraint (4.1.2) since PATHIP has no variables qij for (i,j) ∈ E. Instead, we must
use the binary variables describing providing the multiplicity of the paths. Constraint (4.1.2)
is thus equivalent to

fu −
∑

ij∈Eu

cij

 ∑
p∈P|ij∈p

K∑
k=1

xk
p

 ≥ 0, ∀u ∈ A. (4.1.4)

We designate the valid inequalities developed in this section by non-negative profit cuts
(noneg).

4.1.3. Valid inequalities: Filtering

The main weakness of PATHIP is its size, highly related with the preprocessing step
enumerating the set of paths for the formulation. Our goal is to exploit as much as possible
this step in order to reduce the size of the model. The idea is to forbid the exploitation

3The maximum theoretical flow is the maximum o ∼ d flow achieve when qij = qij ,∀(i,j) ∈ E.

51

of any path that is non-profitable for any feasible sharing policy. A path p ∈ P fits this
non-profitability characteristic if there is one agent u ∈ A such that:∑

ij∈p∩Eu

cij > π. (4.1.5)

Since this condition was initially formulated with PATHIP in mind. We start by describing
the valid inequalities inspired by this condition for PATHIP s. We thus propose the following
inequalities for all paths p respecting Condition (4.1.5):

x1
p ≤ 0. (4.1.6)

In practice, we can simply remove from the definition of P for PATHIP , the paths for which
Condition (4.1.5) holds.

Now, we show how to convert Constraint (4.1.6) to ARCIP . Remark that in PATHIP ,
we use a set of variables, y, in common with ARCIP . Recall that in PATHIP , we use this set
of variables to forbid some paths with Constraints (3.2.7). It is this constraint in PATHIP

that provide us a valid inequality for ARCIP :∑
ij∈p∩Eu

yij ≤ du
p −

du
p

|p|
∀p ∈ P ,∀u ∈ A such that Condition (4.1.5) holds. (4.1.7)

We designate the valid inequalities developed in this section by filtering the never-profitable
paths cuts (filter).

Even though filtering through all the paths can be tedious, we expect - for in-
stances with a small reward π - these inequalities to reduce the significantly the feasible
set, making the problem almost trivial. We saw on Table 2.2 that the valid inequalities
described here, noneg and filter, could actually improve the performances.

4.2. Hybrid formulation
The second set of valid inequalities that we defined, i.e., the filter cuts, highlights an

important relationship between the two formulations, ARCIP and PATHIP . Furthermore,
we thought the previous valid inequalities to adorn specific extreme cases (namely low reward
π and big parameter M). We also noticed during our experiments (detailed in Chapter 5)
that PATHIP out-performs ARCIP for instances with a small reward, while the opposite
occurs for high rewards. Our idea is that for instances with medium rewards, merging both
formulation into one could be more efficient than having to choose between the two, and
taking the risk of not picking the best one.

52

With that in mind, we define an hybrid formulation HYBIP as follow4:

max F

s.t. (2.2.1) to (2.2.18)

(3.2.1) to (3.2.10)

xij,αij,yij,βij, ϕ
u
ij, ϕ

u
ji ∈ B, ∀(i,j) ∈ E,∀u ∈ A

F ≥ 0

wu ≥ 0,∀u ∈ A

qij ∈ N,∀(i,j) ∈ E

δjiu
B , δiju

F , tui , t
u
j ∈ R,∀(i,j) ∈ E,∀u ∈ A

xk
p, z

u
p , yij, t

iju
p ∈ {0,1} , ∀p ∈ P ,∀k = 1, . . . , K,∀ij ∈ E

wu ≥ 0, ∀u ∈ A.

Now, we have two different formulations, ARCIP and PATHIP , as well as a third one
combining them, HYBIP . We also formulated two sets of valid inequalities applicable to
all three formulations. In the next chapter, we demonstrate the value of all the individual
enhancements as well as their combination described here on a set of instances based on the
one used in Chaabane et al. [2017].

4All variables keep the same meaning as in the arc and path-based formulations.

53

Chapter 5

Computational experiments

In Chapter 3, we presented an alternative formulation for the computation of a Nash equi-
librium achieving the maximum flow in a MANEG, PATHIP . In Chapter 4, we described
an hybrid formulation, HYBIP , joining both the alternative formulation, PATHIP , and the
state-of-the-art one, ARCIP . We also detailed two new families of valid inequalities in order
to improve the performances related to solving those three formulations.

In Section 5.1, we detail implementation specifications and how we build a meaningful
set of instances for the computational experiments. We then provide and discuss the results
of our implementations in Section 5.2.

This chapter validates empirically the value of our contributions, enabling us to identify
their individual advantages and joint synergies.

5.1. Experimental setup
Instances. Our work departs from the arc-based formulation and observations by Chaabane
et al. [2017]. In this context, we mimic the generation of a set of instances similar to the
one in Chaabane et al. [2017] by using the same generative tool RanGen 1, as developed
in Demeulemeester et al. [2003].

To use RanGen 1, we must input the value of a parameter designated by order of strength
(OS) and the number of nodes. As in Chaabane et al. [2017], each network has OS equal
to 0.5. This parameter controls the number of arcs in the network. We build two sets of 30
networks, with |V | ∈ {10,50}. We focus on instances with 2 transport agents (i.e., m = 2).

Once a network is generated, the origin and destination nodes are determined as the first
and last nodes generated. Moreover, for each (i,j) ∈ E of a generated network, we assign
uniformly at random in the indicated domains, the following parameters:

• The maximum capacity expansion qij ∈ [0,10];
• The unitary cost of expansion cij ∈ [0,80];
• The ownership of the arc by agent u ∈ A.

55

Each network produced as described above leads to 5 instances, differing on the value assigned
to the total reward π:

π = α× cmax

with α ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and cmax = max
p∈P

∑
ij∈p

cij, i.e., the most expensive o ∼ d path.

In summary, for each graph size |V | ∈ {10,50}, we produce 150 = 5 · 30 instances.
Remark: The computational experiments in Chaabane et al. [2017] show that the compu-
tational time to solve ARCIP increases with the number of players. This is expected since
the formulation size increases with the number of players (particularly, the number of extra
auxiliary variables needed in the linearization described in Appendix A). In fact, except for
α = 0.1, the authors report average computational times significantly higher than our time
limit of 1800 seconds. Similarly, both the size of PATHIP and HYBIP increases with the
number of players since the very definition of profitable increasing path depends on the set
of players. This motivates our focus on instances with m = 2 in this chapter. Neverthe-
less, in Appendix B, we take the 150 instances with |V | = 10, we redistribute uniformly
at random the arcs among m = 5 transport agents, and we provide detailed computational
results. This allow us to see that the same trend of advantages and limitations reported for
our contributions hold when the number of players increases, although with an unsurprising
deterioration of the computational time.

Computational environment. All our code is implemented in Julia 1.7.1, and optimiza-
tion problems are solved with Gurobi 9.5.0. We ran our experiments on an Intel Xeon
Gold 6226 CPU processor at 2.70 GHz, running under Oracle Linux Server, restricting the
optimization solver to one thread and a time limit of 1800 seconds.

Before proceeding with the experiments, we have to describe the computation of auxiliary
elements for our formulations. First, we compute the big-M parameter for ARCIP , as de-
tailed in Section 4.1.1. In particular, we setM = cmax +1, i.e., the cost of the most expensive
path from o to d plus one. Second, we compute a few more parameters to build PATHIP

and the valid inequalities. Those take a a negligible amount of resources in comparison to
the optimization (and thus, they are not included within our time limit):

• Set P of all paths from o to d;
• For each path p ∈ P and each player u ∈ A: du

p = |p ∩ Eu|;
• The theoretical maximum flow F (needed for the no-neg valid inequalities).

56

5.2. Experimental results
In this section , we aim to evaluate the advantages and the limits of the contributions

developed in this thesis. In Section 5.2.1, we first compare the three mixed-integer linear
programming formulations, ARCIP , PATHIP and HYBIP , and we identify their individual
strengths. Then, in Section 5.2.2, we analyze under which conditions the valid inequalities
are useful, i.e., they speed up computations.

In the following sections, we show the results obtained on our instances with |V | = 50. In
the Appendix B, we provide detailed tables of results for all instances, including |V | = 10. The
reason why we focus on these larger instances in the main body of the thesis is because they
are harder to solve, consequently, allowing a more effective evaluation of our contributions,
and because similar performance trends are observed for the remaining instances.

5.2.1. Formulations

At first, we compare the behavior of each formulation over our 5 categories, i.e., according
to the generation of π. Recall that the generation of π depends on 5 possible values of the
parameter α. For each of the 5 categories, we have 30 instances. We categorize instances
according to the setup of the reward π because of the expected high impact of this value
on the number of profitable increasing paths. In particular, the higher the parameter α, the
higher the total reward is.

Figure 5.1 provides the performance plots for each formulation and value of α. Table 5.1
complements the performance plots with additional details on average computational time
(CPU), average number of explored nodes in the branch-and-bound procedure (B & B nodes),
and on the percentage of instances solved (% solved).

In Figure 5.1a, concerning ARCIP , we see that as the reward (or α) increases, the more
time is needed to solve the problem, with even some instances not being solved within the
time limit. Interestingly, this behavior is not monotonic. When α = 0.9, more instances
are solved than for α ∈ {0.5, 0.7}; actually the line corresponding to this category is the
one solving the most instances within short running times. We hypothesize that when the
reward is very high, the theoretical maximum flow can be achieved and such equilibria are
easier to determine; indeed, the experiments by Chaabane et al. [2017], show that for such
instances the flow corresponding to the determined equilibrium is close to the theoretical
maximum flow. For PATHIP and HYBIP , we observe a significantly different behavior in
Figures 5.1b and 5.1c. For these two formulations, the computational time increases as the
reward increases. The easiest and fastest category has α = 0.1. This behavior is expected

57

as low rewards must allow the formulations using paths to eliminate several (non-profitable)
paths.

Note the variability in performance is lower for ARCIP than for PATHIP and HYBIP .
Thus, even though PATHIP and HYBIP are more efficient for instances with a small reward
(i.e., more instances are solved within the time limit, as detailed in Table 5.1), ARCIP

appears as a better choice overall since it is less susceptible to be affected by α variations.
Lastly, even if the performances of PATHIP and HYBIP seem similar in a lot of aspects, it
is important to notice that during the branch-and-bound method, HYBIP has a very small
amount of nodes explored (this is visible in Table 5.1). This is because HYBIP has a good
linear relaxation in comparison with the other formulations. This is logical since HYBIP is
based on the arc and path-formulations.

Nodes CPU B&B nodes % of instances solved
|V | α ARCIP PATHIP HYBIP ARCIP PATHIP HYBIP ARCIP PATHIP HYBIP

50 0.1 209.31 24.17 3.23 5885.86 932.70 0.00 0.97 1.00 1.00
0.3 388.88 511.54 309.53 10767.71 920.46 0.70 0.80 0.80 0.90
0.5 689.16 703.81 707.30 32273.91 885.00 3.00 0.37 0.20 0.27
0.7 429.71 1182.01 684.08 46558.63 732.00 1.00 0.27 0.03 0.03
0.9 24.08 NaN 678.89 1197.83 NaN 1.00 0.60 0.00 0.13

Table 5.1. Computational summary for each formulation

To complement the discussion on how to decide which formulation to use, in Figure 5.2,
we present the performance profiles for each category of instances. This allows us to identify
which formulation is better suited for each category. We can conclude that, as shown in
Figures 5.2a and 5.2b, HYBIP and PATHIP are more efficient than ARCIP for α = 0.1 or
α = 0.3. Starting at α = 0.5, the trend is reversed. It is very clear then in Figure 5.2d that
ARCIP gives better results for a high α.

In summary, the results presented here show that we already have quite fast results to
solve instances with small rewards using PATHIP and HYBIP . Next, we aim to show that
our enhancements presented in Chapter 4 improve the performance of the formulations over
instances with medium-high rewards.

5.2.2. Valid inequalities

In Chapter 4, we introduced two families of valid inequalities, noneg and filter. In this
section, we aim at showing how those valid inequalities can improve the performances of our
three formulations. Detailed results can be found in Tables B.1 and B.2 of Appendix B where

58

we use Boolean variables to indicate the inequalities activated and the remaining rows follow
the same meaning as in the previous section. In what follows, we take particular instance
categories and formulations to support our analysis, referring the reader to Appendix B for
additional results.

Figure 5.3 showcases the impact of each family of valid inequalities in each formulation.
Since similar result trends are observed among the different categories, we provide use Figure
5.3 to showcase the impact of each family of valid inequalities in each formulation for the
category of instances with α = 0.3. Although the filter inequalities were motivated as
an improvement for PATHIP , Figure 5.3b shows that the optimization of PATHIP is not
improved by any of the inequalities. Neither the proportion of problems solved, nor the
solving time was improved. In Figure 5.3c, we observe the same tendency. However, ARCIP

seems to benefit significantly from all valid inequalities, as shown in Figure 5.3a. Both the
solving time and the proportion of problems solved is increased.

Nodes CPU B & B nodes % of instances solved
|V | α noneg filter ARCIP ARCIP ARCIP

50 0.1 0 0 209.31 5885.86 0.97
1 0 0.35 1.00 1.00
0 1 0.21 0.17 1.00
1 1 0.20 0.03 1.00

0.3 0 0 388.88 10767.71 0.80
1 0 50.25 7779.33 0.90
0 1 4.08 1051.13 1.00
1 1 3.43 869.93 1.00

0.5 0 0 689.16 32273.91 0.37
1 0 409.82 88993.70 0.33
0 1 384.41 24200.24 0.70
1 1 378.91 45968.90 0.67

0.7 0 0 429.71 46558.63 0.27
1 0 171.44 25764.57 0.23
0 1 204.10 11101.00 0.47
1 1 229.16 21628.20 0.50

0.9 0 0 24.08 1197.83 0.60
1 0 19.16 1422.50 0.60
0 1 177.21 13947.95 0.73
1 1 231.54 15577.43 0.77

Table 5.2. Impact of valid inequalities on ARCIP

In Table 5.2, we obtain additional insights on the impact of valid inequalities on ARCIP .
For α up to 0.7, the valid inequalities all together, and specifically the filter, decrease the

59

number of nodes in the branch and bound algorithm. For α = 0.9, the opposite occurs,
although one must keep in mind that the percentage of instances solved within the time
limit increases.

60

(a) ARCIP profile plot

(b) PATHIP profile plot

(c) HYBIP profile plot

Figure 5.1. Performance profiles for each formulation

61

(a) Comparison of formulations for α = 0.1 (b) Comparison of formulations for α = 0.3

(c) Comparison of formulations for
α = 0.5 (d) Comparison of formulations for α = 0.7

(e) Comparison of formulations for α = 0.9

Figure 5.2. Performance profiles for each α

62

(a) ARCIP profile plot

(b) PATHIP profile plot

(c) HYBIP profile plot

Figure 5.3. Performance profiles for each formulation and activation set of valid inequalities

63

Chapter 6

Conclusions and future work

Conclusions. In this thesis, we tackle the multi-agent network expansion game. This is a
game played by set of carriers and a customer. The customer aims to maximize the flow
traversing a network from an origin to a destination and she controls the proportion of reward
allocated to each player. In turn, each carrier decides the capacity expansion of each of her
arcs and aims to maximize individual profits. Our goal is to compute a strategy vector for
the players corresponding to a Nash equilibrium attaining the maximum flow.

We recapped the state-of-the-art arc-based formulation, ARCIP , and we identified its
drawbacks. Then, we formalized the concept of profitable increasing path and we showed
sufficient and necessary conditions based on it to characterize Nash equilibria. This led us to
a novel path-based formulation (PATHIP). Motivated by the exponential size of the latter,
we developed a new family of valid inequalities for both formulations to filter paths that are
never profitable. We also proposed a new set of valid cuts on the lifted space of profits with
the aim of modeling that each player revenue must be superior or equal to the incurred costs.
Additionally, we described procedures to fine-tune the big-M in ARCIP and we devised an
hybrid arc-path based formulation (HYBIP). Finally, we evaluated through computational
experiments, the three formulations as well as the valid inequalities. We were able to show
categories of instances where HYBIP and ARCIP dominate. With regards to the valid
inequalities, ARCIP was by far the formulation benefiting the most from their inclusion.
Indeed, not only were instances solved faster previously un-solved instances became solvable
within the time limit. Interestingly, the reward seems to one of the main elements controlling
the game complexity given its direct effect on the performance of the different formulations.

In conclusion, the contributions provided in this thesis bring not only new theoretical
characterizations of the game but also lead to new integer programming formulations that
can be solved more efficiently in practice. Moreover, our work has the potential to provide
building stones for future work as we describe next.

65

Future work. The current work strongly relies on the assumption that Q = 0. However,
the concepts developed here can be enriched to fit more general problems, namely problems
free from this assumption, by representing the cost expansion with stair functions. Addi-
tionally, considering MANEGs to be sequential games, making the customer the leader in
a Stackelberg fashion, seems like an interesting direction to follow. This angle could allow
not only to increase the flow, but also to better model the practical situation between the
customer and agents. Finally, the inequalities added to PATHIP make it suitable for the
application of a column generation framework, generating profitable increasing paths to solve
its linear relaxation. The pricing problem is based a linear program obtained by dropping
the non-unprofitable path constraints in the linear relaxation of PATHIP , and using the
paths reduced costs in the objective. These results are useful for instances where the root
gap is small, which happens to be the instances were the path-based formulation struggles
relatively to the arc-based formulation. It can also be a powerful tool for large instances, as
such algorithm does not need all o ∼ d paths as parameters.

66

Bibliography

A. Agnetis, C. Briand, J.-C. Billaut, and P. Sůcha. Nash equilibria for the multi-agent project
scheduling problem with controllable processing times. Journal of Scheduling, 18(1):pp.15–
27, 2015. doi: 10.1007/s10951-014-0393-x. URL https://hal.archives-ouvertes.fr/
hal-01231028.

S. Burer. On the copositive representation of binary and continuous nonconvex quadratic
programs. Mathematical Programming, 120(2):479–495, Sept. 2009. ISSN 1436-4646. doi:
10.1007/s10107-008-0223-z. URL https://doi.org/10.1007/s10107-008-0223-z.

M. Carvalho. Computation of equilibria on integer programming games. PhD thesis, Facul-
dade de Ciências da Universidade do Porto, 2016.

M. Carvalho, A. Lodi, J. P. Pedroso, and A. Viana. Nash equilibria in the two-player kidney
exchange game. Mathematical Programming, 161(1):389–417, Jan 2017. ISSN 1436-4646.
doi: 10.1007/s10107-016-1013-7. URL https://doi.org/10.1007/s10107-016-1013-7.

M. Carvalho, A. Lodi, and J. P. Pedroso. Existence of Nash Equilibria on Integer Pro-
gramming Games. In A. I. F. Vaz, J. P. Almeida, J. F. Oliveira, and A. A. Pinto,
editors, Operational Research, Springer Proceedings in Mathematics & Statistics, pages
11–23, Cham, 2018. Springer International Publishing. ISBN 9783319715834. doi:
10.1007/978-3-319-71583-4_2.

M. Carvalho, G. Dragotto, A. Lodi, and S. Sankaranarayanan. The Cut and Play Algorithm:
Computing Nash Equilibria via Outer Approximations. arXiv:2111.05726 [cs, math], Nov.
2021. URL http://arxiv.org/abs/2111.05726. arXiv: 2111.05726.

M. Carvalho, A. Lodi, and J. P. Pedroso. Computing equilibria for integer programming
games. European Journal of Operational Research, Mar. 2022. ISSN 0377-2217. doi:
10.1016/j.ejor.2022.03.048. URL https://www.sciencedirect.com/science/article/
pii/S0377221722002727.

N. Chaabane, C. Briand, M.-J. Huguet, and A. Agnetis. Finding a Nash equilibrium and an
optimal sharing policy for multiagent network expansion game. Networks, 69(1):94–109,
2017. doi: 10.1002/net.21711. URL https://onlinelibrary.wiley.com/doi/abs/10.
1002/net.21711. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.21711.

67

https://hal.archives-ouvertes.fr/hal-01231028
https://hal.archives-ouvertes.fr/hal-01231028
https://doi.org/10.1007/s10107-008-0223-z
https://doi.org/10.1007/s10107-016-1013-7
http://arxiv.org/abs/2111.05726
https://www.sciencedirect.com/science/article/pii/S0377221722002727
https://www.sciencedirect.com/science/article/pii/S0377221722002727
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.21711
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.21711

H.-L. Chen and T. Roughgarden. Network design with weighted players. In Proceedings of the
eighteenth annual ACM symposium on Parallelism in algorithms and architectures, SPAA
’06, pages 29–38, New York, NY, USA, July 2006. Association for Computing Machinery.
ISBN 9781595934529. doi: 10.1145/1148109.1148114. URL https://doi.org/10.1145/
1148109.1148114.

E. Demeulemeester, M. Vanhoucke, and W. Herroelen. RanGen: A Random Network Gen-
erator for Activity-on-the-Node Networks. Journal of Scheduling, 6(1):17–38, Jan. 2003.
ISSN 1099-1425. doi: 10.1023/A:1022283403119. URL https://doi.org/10.1023/A:
1022283403119.

G. Dragotto and R. Scatamacchia. ZERO Regrets Algorithm: Optimizing over Pure Nash
Equilibria via Integer Programming. arXiv:2111.06382 [cs, math], Nov. 2021. URL http:
//arxiv.org/abs/2111.06382. arXiv: 2111.06382.

P. C. Gilmore and R. E. Gomory. A Linear Programming Approach to the Cutting-Stock
Problem. Operations Research, 9(6):849–859, Dec. 1961. ISSN 0030-364X. doi: 10.
1287/opre.9.6.849. URL https://pubsonline.informs.org/doi/abs/10.1287/opre.9.
6.849.

C. Guo, M. Bodur, and J. A. Taylor. Copositive Duality for Discrete Markets and Games.
arXiv:2101.05379 [econ, math], Jan. 2021. URL http://arxiv.org/abs/2101.05379.
arXiv: 2101.05379.

T. Harks and J. Schwarz. Generalized Nash Equilibrium Problems with Mixed-Integer Vari-
ables. arXiv:2107.13298 [cs, math], Feb. 2022. URL http://arxiv.org/abs/2107.13298.
arXiv: 2107.13298.

M. Köppe, C. T. Ryan, and M. Queyranne. Rational Generating Functions and Integer
Programming Games. Operations Research, 59(6):1445–1460, Dec. 2011. ISSN 0030-
364X. doi: 10.1287/opre.1110.0964. URL https://pubsonline.informs.org/doi/abs/
10.1287/opre.1110.0964.

J. F. Nash. Equilibrium points in <i>n</i>-person games. Proceedings of the National
Academy of Sciences, 36(1):48–49, 1950. doi: 10.1073/pnas.36.1.48. URL https://www.
pnas.org/doi/abs/10.1073/pnas.36.1.48.

T. Roughgarden. Routing Games, page 461–486. Cambridge University Press, 2007. doi:
10.1017/CBO9780511800481.020.

S. Sagratella. Computing all solutions of nash equilibrium problems with discrete strategy
sets. SIAM Journal on Optimization, 26(4):2190–2218, 2016. doi: 10.1137/15M1052445.
URL https://doi.org/10.1137/15M1052445.

68

https://doi.org/10.1145/1148109.1148114
https://doi.org/10.1145/1148109.1148114
https://doi.org/10.1023/A:1022283403119
https://doi.org/10.1023/A:1022283403119
http://arxiv.org/abs/2111.06382
http://arxiv.org/abs/2111.06382
https://pubsonline.informs.org/doi/abs/10.1287/opre.9.6.849
https://pubsonline.informs.org/doi/abs/10.1287/opre.9.6.849
http://arxiv.org/abs/2101.05379
http://arxiv.org/abs/2107.13298
https://pubsonline.informs.org/doi/abs/10.1287/opre.1110.0964
https://pubsonline.informs.org/doi/abs/10.1287/opre.1110.0964
https://www.pnas.org/doi/abs/10.1073/pnas.36.1.48
https://www.pnas.org/doi/abs/10.1073/pnas.36.1.48
https://doi.org/10.1137/15M1052445

S. Sagratella, M. Schmidt, and N. Sudermann-Merx. The noncooperative fixed charge trans-
portation problem. European Journal of Operational Research, 284(1):373–382, July 2020.
ISSN 0377-2217. doi: 10.1016/j.ejor.2019.12.024. URL https://www.sciencedirect.
com/science/article/pii/S0377221719310483.

T. Sandholm, A. Gilpin, and V. Conitzer. Mixed-integer programming methods for finding
nash equilibria. In Proceedings of the 20th National Conference on Artificial Intelligence
- Volume 2, AAAI’05, page 495–501. AAAI Press, 2005. ISBN 157735236x.

E. Tardos and T. Wexler. Network Formation Games and the Potential Function Method,
page 487–516. Cambridge University Press, 2007. doi: 10.1017/CBO9780511800481.021.

69

https://www.sciencedirect.com/science/article/pii/S0377221719310483
https://www.sciencedirect.com/science/article/pii/S0377221719310483

Appendix A

Linearization of Constraints (2.2.17)

In the arc based formulation proposed by Chaabane et al. [2017], the strong duality constraint
describing the cost in the min-cost flow residual graph is non-linear.

tu0 − tun+1 ≥
∑

ij∈EF

ϕu
ijδ

iju
F +

∑
ji∈EB

ϕu
jiδ

jiu
B , ∀u ∈ A. (2.2.17)

Since ϕ are binary variables, and the residual costs δ are bounded, we can use a standard
linearization methods. First, we set

µu
ij = ϕu

ijδ
iju
F , ∀(i,j) ∈ EF , u ∈ A

νu
ji = ϕu

jiδ
jiu
B , ∀(j,i) ∈ EB, u ∈ A.

Furthermore, we know:

0 ≤ δiju
F ≤ 2M,∀(i,j) ∈ EF , u ∈ A

−cij ≤ δjiu
B ≤M,∀(j,i) ∈ EB, u ∈ A.

Therefore Constraints (2.2.17) can be replaced with:

tu0 − tun+1 ≥
∑

ij∈EF

µu
ij +

∑
ji∈EB

νu
ji, ∀u ∈ A

µu
ij ≤ 2Mϕu

ij ∀(i,j) ∈ E,∀u ∈ A

µu
ij ≤ δij,u

F ∀(i,j) ∈ E,∀u ∈ A

δij,u
F − µu

ij ≤ 2M(1− ϕu
ij), ∀(i,j) ∈ E,∀u ∈ A

νu
ji ≤Mϕu

ji, ∀(i,j) ∈ E,∀u ∈ A

νu
ji ≤ δji,u

B , ∀(i,j) ∈ E,∀u ∈ A

δji,u
B − νu

ji ≤M(1− ϕu
ji), ∀(i,j) ∈ E,∀u ∈ A.

Appendix B

Detailed results

Nodes CPU B & B nodes % of instances solved
|V | α noneg filter ARCIP PATHIP HYBIP ARCIP PATHIP HYBIP ARCIP PATHIP HYBIP

10 0.1 0 0 0.02 0.00 0.01 0.93 14.00 0.00 1.00 1.00 1.00
1 0 0.01 0.00 0.01 0.00 14.00 0.00 1.00 1.00 1.00
0 1 0.01 0.00 0.01 0.00 14.00 0.00 1.00 1.00 1.00
1 1 0.01 0.00 0.01 0.00 14.00 0.00 1.00 1.00 1.00

0.3 0 0 0.03 0.02 0.02 5.30 14.00 0.00 1.00 1.00 1.00
1 0 0.01 0.02 0.01 0.00 14.00 0.00 1.00 1.00 1.00
0 1 0.01 0.02 0.01 0.90 14.00 0.00 1.00 1.00 1.00
1 1 0.01 0.02 0.01 0.00 14.00 0.00 1.00 1.00 1.00

0.5 0 0 0.06 0.04 0.05 13.00 14.00 0.73 1.00 1.00 1.00
1 0 0.06 0.04 0.05 7.70 14.00 0.70 1.00 1.00 1.00
0 1 0.03 0.05 0.05 2.53 14.00 0.70 1.00 1.00 1.00
1 1 0.03 0.05 0.05 2.20 14.00 0.70 1.00 1.00 1.00

0.7 0 0 0.08 0.07 0.10 18.70 14.00 1.00 1.00 1.00 1.00
1 0 0.06 0.07 0.10 11.23 14.00 1.00 1.00 1.00 1.00
0 1 0.05 0.08 0.10 18.10 14.00 1.00 1.00 1.00 1.00
1 1 0.05 0.09 0.10 5.53 14.00 1.00 1.00 1.00 1.00

0.9 0 0 0.03 0.14 0.12 4.00 14.00 1.00 1.00 1.00 1.00
1 0 0.02 0.12 0.12 2.33 14.00 1.00 1.00 1.00 1.00
0 1 0.03 0.14 0.12 3.27 14.00 1.00 1.00 1.00 1.00
1 1 0.02 0.12 0.13 2.33 14.00 1.00 1.00 1.00 1.00

50 0.1 0 0 209.31 24.17 3.23 5885.86 932.70 0.00 0.97 1.00 1.00
1 0 0.35 25.34 3.14 1.00 932.70 0.00 1.00 1.00 1.00
0 1 0.21 25.04 3.33 0.17 932.70 0.00 1.00 1.00 1.00
1 1 0.20 25.66 3.09 0.03 932.70 0.00 1.00 1.00 1.00

0.3 0 0 388.88 511.54 309.53 10767.71 920.46 0.70 0.80 0.80 0.90
1 0 50.25 506.00 304.66 7779.33 920.46 0.74 0.90 0.80 0.90
0 1 4.08 506.66 311.23 1051.13 920.46 0.70 1.00 0.80 0.90
1 1 3.43 504.19 318.58 869.93 920.46 0.74 1.00 0.80 0.90

0.5 0 0 689.16 703.81 707.30 32273.91 885.00 3.00 0.37 0.20 0.27
1 0 409.82 789.68 764.44 88993.70 843.60 0.88 0.33 0.17 0.27
0 1 384.41 830.18 739.35 24200.24 885.00 4.50 0.70 0.20 0.27
1 1 378.91 806.47 731.35 45968.90 843.60 0.88 0.67 0.17 0.27

0.7 0 0 429.71 1182.01 684.08 46558.63 732.00 1.00 0.27 0.03 0.03
1 0 171.44 1281.40 561.66 25764.57 732.00 1.00 0.23 0.03 0.03
0 1 204.10 1189.29 649.62 11101.00 732.00 1.00 0.47 0.03 0.03
1 1 229.16 1329.76 549.18 21628.20 732.00 1.00 0.50 0.03 0.03

0.9 0 0 24.08 NaN 678.89 1197.83 NaN 1.00 0.60 0.00 0.13
1 0 19.16 NaN 766.08 1422.50 NaN 1.00 0.60 0.00 0.17
0 1 177.21 NaN 803.80 13947.95 NaN 1.00 0.73 0.00 0.17
1 1 231.54 NaN 845.32 15577.43 NaN 1.00 0.77 0.00 0.17

Table B.1. Detailed results with m = 2

74

Nodes CPU B & B nodes % of instances solved
|V | α noneg filter ARCIP PATHIP HYBIP ARCIP PATHIP HYBIP ARCIP PATHIP HYBIP

10 0.1 0 0 0.08 0.02 0.01 4.77 0.00 0.00 1.00 1.00 1.00
1 0 0.02 0.02 0.01 0.00 0.00 0.00 1.00 1.00 1.00
0 1 0.01 0.02 0.01 0.00 0.00 0.00 1.00 1.00 1.00
1 1 0.01 0.02 0.01 0.00 0.00 0.00 1.00 1.00 1.00

0.3 0 0 0.13 0.11 0.05 15.10 0.00 0.00 1.00 1.00 1.00
1 0 0.03 0.11 0.05 1.00 0.00 0.00 1.00 1.00 1.00
0 1 0.05 0.17 0.05 2.53 0.00 0.00 1.00 1.00 1.00
1 1 0.02 0.17 0.05 0.03 0.00 0.00 1.00 1.00 1.00

0.5 0 0 0.19 0.18 0.19 74.47 1.00 0.77 1.00 1.00 1.00
1 0 0.19 0.18 0.20 52.17 1.00 1.00 1.00 1.00 1.00
0 1 0.15 0.18 0.19 47.90 1.00 0.77 1.00 1.00 1.00
1 1 0.16 0.19 0.20 35.33 1.00 1.00 1.00 1.00 1.00

0.7 0 0 0.29 0.36 0.55 197.17 1.00 1.00 1.00 1.00 1.00
1 0 0.23 0.38 0.64 84.93 1.00 1.00 1.00 1.00 1.00
0 1 0.29 0.36 0.55 195.40 1.00 1.00 1.00 1.00 1.00
1 1 0.24 0.38 0.65 88.23 1.00 1.00 1.00 1.00 1.00

0.9 0 0 0.25 0.73 0.60 63.43 1.00 1.00 1.00 1.00 1.00
1 0 0.20 0.68 0.75 30.67 1.00 1.00 1.00 1.00 1.00
0 1 0.25 0.73 0.59 63.43 1.00 1.00 1.00 1.00 1.00
1 1 0.20 0.68 0.74 30.67 1.00 1.00 1.00 1.00 1.00

Table B.2. Detailed results with m = 5

75

	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Acronyms & Abbreviations
	Notation
	Acknowledgment
	Introduction
	Context
	Contributions
	Organization of the thesis

	Chapter 1. Literature review
	1.1. Integer programming techniques for games
	1.2. Games on networks

	Chapter 2. Multi-agent network expansion game
	2.1. Definitions and notation
	2.2. Arc-based formulation
	2.3. Identification of limitations

	Chapter 3. Set partitioning reformulation
	3.1. Profitable increasing paths
	3.2. Path-based reformulation
	3.3. Discussion of formulations strengths and weaknesses

	Chapter 4. Improvements: Taking the best of both formulations
	4.1. Enhanced formulations
	4.1.1. Tuning M
	4.1.2. Valid inequalities: No player has a negative profits
	4.1.3. Valid inequalities: Filtering

	4.2. Hybrid formulation

	Chapter 5. Computational experiments
	5.1. Experimental setup
	5.2. Experimental results
	5.2.1. Formulations
	5.2.2. Valid inequalities

	Chapter 6. Conclusions and future work
	Bibliography
	Appendices

	Appendix A. Linearization of Constraints (2.2.17)
	Appendix B. Detailed results

