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Résumé

Le principe d’invariance par rapport à la causalité est au cœur d’approches notables telles que
la minimisation du risque invariant (IRM) qui cherchent à résoudre les échecs de généralisation
hors distribution (OOD). Malgré la théorie prometteuse, les approches basées sur le principe
d’invariance échouent dans les tâches de classification courantes, où les caractéristiques
invariantes (causales) capturent toutes les informations sur l’étiquette. Ces échecs sont-ils dus
à l’incapacité des méthodes à capter l’invariance ? Ou le principe d’invariance lui-même est-il
insuffisant ? Pour répondre à ces questions, nous réexaminons les hypothèses fondamentales
dans les tâches de régression linéaire, où il a été démontré que les approches basées sur
l’invariance généralisent de manière prouvée l’OOD. Contrairement aux tâches de régression
linéaire, nous montrons que pour les tâches de classification linéaire, nous avons besoin de
restrictions beaucoup plus fortes sur les changements de distribution, sinon la généralisation
OOD est impossible. De plus, même avec des restrictions appropriées sur les changements de
distribution en place, nous montrons que le principe d’invariance seul est insuffisant. Nous
prouvons qu’une forme de contrainte de goulot d’étranglement d’information avec l’invariance
aide à résoudre les échecs clés lorsque les caractéristiques invariantes capturent toutes les
informations sur l’étiquette et conservent également le succès existant lorsqu’elles ne le font
pas. Nous proposons une approche qui combine ces deux principes et démontre son efficacité
sur des tests unitaires linéaires [10] et sur divers jeux de données réelles de grande dimension.

Mots-clés: Apprentissage en profondeur, généralisation, généralisation hors distribution
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Abstract

The invariance principle from causality is at the heart of notable approaches such as invariant
risk minimization (IRM) that seek to address out-of-distribution (OOD) generalization
failures. Despite the promising theory, invariance principle-based approaches fail in common
classification tasks, where invariant (causal) features capture all the information about
the label. Are these failures due to the methods failing to capture the invariance? Or
is the invariance principle itself insufficient? To answer these questions, we revisit the
fundamental assumptions in linear regression tasks, where invariance-based approaches were
shown to provably generalize OOD. In contrast to the linear regression tasks, we show that
for linear classification tasks we need much stronger restrictions on the distribution shifts, or
otherwise OOD generalization is impossible. Furthermore, even with appropriate restrictions
on distribution shifts in place, we show that the invariance principle alone is insufficient. We
prove that a form of the information bottleneck constraint along with invariance helps address
the key failures when invariant features capture all the information about the label and also
retains the existing success when they do not. We propose an approach that combines both
these principles and demonstrate its effectiveness on linear unit tests [10] and on various
high-dimensional real datasets.

Keywords: Deep Learning, Generalization, Out-of-Distribution Generalization
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Chapter 1

Introduction

Machine Learning is a set of methods for getting machines to learn from data. The purpose of
this learning is usually to perform tasks that people find to be economically valuable. Ideally,
we want the machine(s) to learn things (e.g. representations) that generalize to data that is
nonidentical (in raw data (e.g. pixel) space) to previous data the machine has learned from
because most of the real configurations of raw data space happen only once.

There are a few paradigms (such as supervised learning, unsupervised learning, and
reinforcement learning) by which this learning can take place, but for now we will focus on
supervised learning to elucidate how the topic of generalization manifests.

Supervised learning is the task of learning a function hypothesis f ∈ H from a hypothesis
class H that map inputs to outputs: X → Y . In this problem setup, the machine learning
model is usually provided inputs x ∈ X and outputs y ∈ Y , where each pair (x, y) is drawn
from an unknown joint distribution, D. Given a loss function ℓ, typical supervised learning
evaluates the performance of a predictor via the expected loss (also known as the risk):
R(f) = E(x,y)∼D

[
ℓ(f(x), y)

]
.

In practice, only a finite number of samples S (usually) from D can be trained on,
so what ends up being directly minimized while learning is the empirical risk: R̂(f) =
E(x,y)∼S

[
ℓ(f(x), y)

]
. This learning via minimization of empirical risk is formally called

empirical risk minimization (ERM).
One way we usually measure the generalization ability of f is via the generalization gap:

R(f)− R̂(f). Often, it is assumed that the samples S used to minimize R̂(f) are sampled
i.i.d. (independent and identically distributed) from distribution D that we are evaluating
performance on via R(f). When this assumption is met, we refer to the generalization
gap as the in-distribution (or out-of-sample) generalization gap. However, in practice this
assumption often is not met due to reasons such as selection bias and confounding.

A more ambitious form of generalization referred to as out-of-distribution (OOD) gener-
alization seeks to find function f that best generalizes to the set of distributions (each of



which is also sometimes referred to as a dataset D) from all possible environments e ∈ Eall.
We use the word "possible" in the modal realist sense that invokes all possible worlds [35];
for example, one could intervene such that the sun is removed [7]. In this setting, data D

is generated from a set of environments Eall: D = {De}e∈Eall
, where De = {xe

i , ye
i }ne

i=1 is the
dataset from environment e ∈ Eall and ne is the number of instances in environment e. The
risk in each individual environment is Re(f) = E(xe,ye)∼De

[
ℓ(f(xe), ye)

]
. Formally stated, the

goal of the OOD generalization problem statement is to find the predictor which minimizes
the following minimax:

min
f

max
e∈Eall

Re(f). (1.0.1)

The solution to this minimax is the function that satisfies these two criteria:
(1) the function only uses features of X that are causes of Y to predict Y

(2) the function is the most predictive (of Y ) mapping from X to Y that also meets
criterion 1

We now present an example SEM (Structural Equation Model) [46] which shows how
satisfying these two criteria yields the solution to the minimax in equation (1.0.1), which is
borrowed from [7].

1.1. Structural Equation Model Example
1.1.1. Structural equation models and assumptions on Eall

Definition 1. A structural equation model C = (S, N) that describes the random vector
X = (X1, . . . ,Xd) is given as follows

Si : Xi ← fi(Pa(Xi), Ni), (1.1.1)

where Pa(Xi) are the parents of Xi, Ni is independent noise, and N = (N1, . . . , Nd) is the
noise vector. Xj is said to cause Xi if Xj ∈ Pa(Xi). We draw the causal graph by placing
one node for each Xi and drawing a directed edge from each parent to the child. The causal
graphs are assumed to be acyclic.
Definition 2. An intervention e on C is the process of replacing one or several of its structural
equations to obtain a new intervened SEM Ce = (Se, N e), with structural equations given as

Se
i : Xe

i ← f e
i (Pa(Xe

i ), N e
i ), (1.1.2)

where the variable Xe
i is said to be intervened if Si ̸= Se

i or Ni ̸= N e
i

The above family of interventions are used to model the environments.
Definition 3. Consider a SEM C that describes the random vector (X, Y ), where X =
(X1, . . . , Xd), and the learning goal is to predict Y from X. The set of all environments
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obtained using interventions Eall(C) indexes all the interventional distributions Pe, where
(Xe,Y e) ∼ Pe. An intervention e is valid if the following conditions are met: i) the causal
graph remains acyclic, ii) E[Y e|Pa(Y )] = E[Y |Pa(Y )], i.e. expectation conditional on parents
is invariant, and the variance Var[Y e|Pa(Y )] remains within a finite range.

Following the above definitions it is possible to show that a predictor that relies on
causal parents only v : Rd → Y and is given as v(x) = E[fY (Pa(Y ), NY )] solves the OOD
generalization problem in equation (1.0.1) over the environments Eall(C) that form valid
interventions as stated in Definition 3. Next, we provide an example to show why v is OOD
optimal.

Example to illustrate why predictors that rely on causes are robust. We reuse
the toy example from [7] to explain why models that rely on causes are more robust to valid
interventions Eall discussed in the previous section.

Y e ← Xe
inv + ϵe

Xe
spu ← Y e + ζe

(1.1.3)

where Xe
inv ∈ N (0,(σe)2) is the cause of Y e, ϵe ∈ N (0,(σe)2) is noise, Xe

spu is the effect of Y e

and ζe ∈ N (0, σ) is also noise. Suppose there are two training environments Etr = {e1,e2},
in the first (σe1)2 = 1 and in the second (σe2)2 = 2. In each of every environment, σ2 = 1.
The three possible models winvX

e
inv + wspuXe

spu we could build are as follows: a) regress only
on Xe

inv, then in the optimal model winv = 1, wspu = 0, b) regress only on Xe
spu and get

winv = 0, wspu = σ2

(σe)2+ 1
2
, c) regress on (Xe

inv, Xe
spu) to get winv = 1

(σe)2+1 and wspu = (σe)2

(σe)2+1 .
Observe that the predictor that focuses on the cause only does not depend on σ2 and is
thus invariant to distribution shifts induced by change in (σe)2, which is not the case with
the other models. For environments in Eall we can change the distribution of Xe

inv and Xe
spu

arbitrarily. Consider an environment e ∈ Eall where Xe
spu is set to a very large constant c, the

square error of the model that relies on spurious features grows with the magnitude of c but
the error of the model that relies on Xe

inv does not change.

1.2. IRM background
IRM (Invariant Risk Minimization) [7] proposed one way to address the OOD Generaliza-

tion problem statement. In IRM, the training data is gathered from multiple environments.
The set of training environments is defined as Etr. Define the training dataset D = {De}e∈Etr ,
where De = {xi

e, yi
e}ne

i=1 is the dataset gathered from environment e ∈ Etr and ne is the number
of points in environment e. xi

e ∈ X and yi
e ∈ Y correspond to the feature value for ith data

point and the label for ith data point respectively. Each (xi
e,y

i
e) is an i.i.d. draw from Pe.

IRM’s objective is to use these datasets D to construct a predictor f : X → R that performs
well across many environments Eall, where Etr ⊂ Eall. Define the risk of f in environment e
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as Re(f) = Ee

[
ℓ(f(Xe), Ye)

]
, where ℓ can be cross-entropy loss, error rate, square loss, and

(Xe, Ye) ∼ Pe and the expectation Ee is defined w.r.t to distribution of points in environment
e. Formally stated the goal is to solve

min
f

max
e∈Eall

Re(f) (1.2.1)

In the above problem, we have not stated any restrictions on Eall. Without any restriction
on Eall it is easy to see that we can always construct an unseen environment adversarially
that ensures that any method has error rate of one. Suppose a method uses the training
environments and learns a function f ∗

tr; the adversary can use this function f ∗
tr to create a

test environment with labels based on 1− f ∗
tr. This shows that the set of environments Eall

need to be restricted in a meaningful manner.
We describe the approach taken by [7] to restrict the environments. Assume that the data

across all the environments is governed by a family of structural equation models (SEMs)
defined as follows, for each variable W ∈ {X1, . . . , Xd} ∪ Ye:

W ← fW (Pa(W ), ϵ), (1.2.2)

where fW is a map from the feature space to the domain of the corresponding random variable
and ϵ is noise. An intervention is defined as the modification to the SEM, i.e. for at least
one of the variables W the SEM is modified, i.e. either fW is changed or ϵ is changed. Each
environment is represented by an intervention and Eall contains all the interventions except
the ones in which the variable Y has been intervened on. Having defined constraints on
the environments, we now describe a solution to the problem in equation 1.0.1. We make
a few more assumptions: (a) Y ← fY (Pa(Y )) + ϵ the SEM of Y has additive noise and the
noise is zero mean and variance in the noise is bounded; (b) ∃ a map Φ∗ : X → H, which
we call an invariant feature map, such that E

[
Y e

∣∣∣Φ∗
(
Xe

)]
is the same for all e ∈ Eall and

Y e ̸⊥ Φ∗(Xe); (c) the set of parents Pa(Y ) = Φ∗(X); (d) ∃ an environment e ∈ Eall where
Y e ⊥ Xe|Φ∗(Xe) [4]. Under these assumptions fY (Φ∗(X)) solves the problem in equation
(1.0.1). The objective of IRM that we describe in the next section tries to solve for fY (Φ∗(X)).

In the entire description above, we took the assistance of SEMs. However, we can state
the above requirements in a more general way and require that Ee[Ye|Φ∗(Xe)] is invariant
across environments.

Invariant predictor and IRM optimization: An invariant predictor is composed of
two parts: a representation map and a classifier. Define a representation map Φ : X → H
(that transforms Xe as Φ(Xe)) and define a linear classifier w : H → Y (that operates on the
representation as w ◦ Φ(Xe)).

We want to search for representation map Φ such that E[Y e|Φ(Xe)] is invariant. We say
that a representation map Φ elicits an invariant predictor w ◦ Φ across the set of training
environments Etr if there is a predictor w that simultaneously achieves the minimum risk,
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i.e., w ∈ arg minw̃ Re(w̃ ◦ Φ), ∀e ∈ Etr. The main objective of IRM is stated as

min
w:H→Y,Φ:X →H

1
|Etr|

∑
e∈Etr

Re(w ◦ Φ) s.t. w ∈ arg min
w:H→Y

Re(w̃ ◦ Φ), ∀e ∈ Etr. (1.2.3)

Note that [7] and others sometimes use a simplified notation in which Φ (and Φ(X))
represents the hidden state output by the representation map and w represents the parameter
vector of the linear classifier on the top of the hidden state; throughout the rest of this thesis,
this simplified notation is sometimes used.

Define the set of invariant predictors w ·Φ satisfying the constraints in (1.2.3) as S IV.
Informally stated, the main idea behind the above optimization is inspired from invariance
principles in causality [11][46]. Each environment can be understood as an intervention.
By learning an invariant predictor the learner hopes to identify a representation Φ that
transforms the observed features into the causal features, and the optimal model trained on
causal representations is likely to be same (invariant) across the environments provided we
do not intervene on the label itself. These invariant models can be shown to have a good
out-of-distribution performance.

The authors of [7] also propose a more practical algorithm called IRMv1 for solving the
IRM problem:

min
Φ∈Rr×d

∑
e∈Etr

Re(Φ(Xe)) + λ∥∇wRe(w ·Φ(Xe)∥2
2 (1.2.4)

in which w is a fixed vector of ones, and λ controls the weighting of the penalty term on the
gradients on w.

1.3. Related works
1.3.1. Invariance principles in causality

The foundations of invariance principles are rooted in the theory of causality [45]. There
are several different forms in which the invariance principles or principles similar to it appear
in the literature on causality. Modularity condition states that a variable Y is caused by a set
of variables XPa(Y ) if and only if under all interventions other than those on Y the conditional
probability P(Y |XPa(Y )) remains invariant. Related and similar notions are stability [46],
autonomy [57], invariant causal prediction principle [48, 26]. These principles lead to a
powerful insight – if we model all the environments (train and test) using interventions, then
as long as these interventions do not affect the causal mechanism that generates the target
variable Y , a classifier trained only on the transformation that extracts causal variables
(Φ(X) = XPa(y)) to predict Y is invariant under interventions.
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1.3.2. Invariance principles in OOD generalization

In recent years, there has been a surge in the works inspired from causality, examples
of some notable works are [48, 7], which seek to address OOD generalization failures. The
invariance principle is at the heart of many of these works. For a better understanding, we
divide these works into two categories – theory and methods, though some works belong to
both.

Theory. In [53] it was shown that the predictors trained on the causes are min-max
optimal under a large class of distribution shifts modeled by the interventions. These findings
were generalized in [33]. Given that we know that predictors that focus on the causes are
min-max optimal under many distribution shifts, the central question then is – can we learn
these predictors from a finite set of training distributions/environments? [7] showed how to
achieve such causal predictors that generalize OOD from a finite set of training environments
for linear regression tasks under very general assumptions. [55] considered linear classification
tasks where invariant features were partially informative w.r.t. the label and showed that
under assumptions of support overlap for invariant and spurious features, it is possible to
learn predictors that generalize OOD.

Recent works [55, 54, 29, 25] have pointed to several limitations of invariance based
approaches for addressing OOD generalization failures. In [55], the authors showed that
if we use the IRMv1 objective, then for non-linear tasks the solutions from IRMv1 are no
better than ERM in generalizing OOD. In [37], the authors present a two-phased approach
to addressing the difficulties faced by IRM in the non-linear regime. In the first phase, an
identifiable variational autoencoder [31] is used to extract the latent representations from the
raw input data. In the second phase, causal discovery-based approaches are used to identify
the causal parents of the label and then learn predictors based on the causal parents only. The
entire analysis in [37] is for the setting when the invariant features are partially informative
about the label. Also, the analysis assumes that we have access to side information (possibly
in the form of environment index) that can help disentangle all the latent features, i.e., all
the latent features are independent conditioned on this side information. Having access
to such information, in general, is a strong assumption. In [29], the authors show that if
the label and feature space is finite and if the distribution shifts are captured by analytic
functions, then the set of invariant predictors found from two environments exactly capture
all the invariant predictors described by the analytic function. While this is a very interesting
and important result, we would like to point out that the distribution shifts captured using
analytic functions represent a small family of interventions that are otherwise allowed when
learning predictors that focus on causes.

Methods. Following the original works ICP (Invariant Causal Prediction) [48] and IRM
[7], there have been several interesting works — [61, 34, 3, 28, 16, 2, 38, 33, 41, 44,
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1, 52, 66] is an incomplete representative list — that build new methods inspired from
IRM to address the OOD generalization problem. We would not go into the details of these
different works. However, we believe it is important to talk about works that use conditional
independence-based criterion to achieve invariance [33, 27]. Invariance can be enforced using
conditional independence as follows. Suppose the environment is given as a random variable
E. In this case, if we can learn a representation Φ(X) such that Y ⊥ E|Φ(X), then the
predictors learned on Φ are invariant predictors. This conditional independence constraint is
formulated in the form of mutual information-based criterion in [33, 27].

1.3.3. Theory of domain adaptation and domain generalization

In the previous section, we discussed works that were directly based on causality/invariance
or inspired from it. We now briefly review other relevant works on domain adaptation and
domain generalization that are not based on invariance principle from causality. Starting
with the seminal works [14, 13], there have been many other interesting works in the area
of domain adaptation and domain generalization. [40, 67, 5, 50, 39, 20, 43, 24, 22] is
an incomplete representative list of works that build the theory of domain adaptation and
generalization and construct new methods based on it. We recommend the reader to [51] for
further references.

In the case of domain adaptation, many of these works develop bounds on the loss
over the target domain using train data and unlabeled target data. In the case of domain
generalization, these works develop bounds on the loss over the target domains using training
data from multiple domains. Other works [15, 18] analyze the minimal conditions under
which domain adaptation is possible. In [18], the authors showed that the two most common
assumptions, a) covariate shifts, and b) the presence of a classifier that achieves close to
ideal performance simultaneously in train and test domains, are not sufficient for guaranteed
domain adaptation.

There has been a long line of research focused on learning domain invariant feature
representations [21, 36, 68]. In these works, the common assumption is that the there exist
highly predictive representations whose distributions P(Φ(Xe))(or distributions conditional
on the labels P(Φ(Xe)|Y e)) do not change across environments. Note that this is a much
stronger assumption than the one typically made in works based on invariance principle [7],
where the labelling function (P(Y e|Φ(Xe)) does not change. For a detailed analysis of why
the assumptions made in these works are too strong and can often fail refer to [7, 67].

1.3.4. Other works on OOD generalization

In [42] the authors explained why ERM based models trained with gradient descent based
approaches fail to generalize OOD in terms of two failure modes – a) gradient descent during
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training early on relies on shortcut features, b) overparametrized models exhibit geometric
biases that cause the models to rely on spurious features. [56] studied how overparametrized
models can exacerbate the impact of selection biases, [65] studied the role of auxilliary
information and how it can help OOD generalization.

1.3.5. Information bottleneck penalties and impact on generalization

Information bottleneck principle [62] has been used to explain the success of deep learning
models; the principle has also been used to build regularizers that can help build models that
achieve better in-distribution generalization. In short, the information bottleneck principle
says that we should prefer the predictor f that has lower I(X; Φ(X)) (mutual information
between X and Φ(X)). We refer the reader to [32], which presents an excellent summary of
the existing works on information bottleneck in deep learning. [32] also present a unified
framework to view many of the information bottleneck objectives in the literature such as the
deterministic information bottleneck [60] and the standard information bottleneck. Other
works [6, 8] have argued for how information bottleneck can help achieve robustness to
adversarial examples, and also to OOD generalization failures. In [8], the authors argued
that information bottleneck constraints help filter out features that are less correlated with
the label. However, the principle of invariance argues for selecting the invariant features even
if they have small but invariant correlation with the label over features that maybe strongly
correlated but have a varying correlation. As we show in the next section, considering both
the principles of invariance and information bottleneck in conjunction is important to achieve
OOD generalization (eq. (1.0.1)) in a wide range of settings.
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Chapter 2

Invariance Principle Meets Information
Bottleneck for Out-of-Distribution

Generalization

Authors: Kartik Ahuja† and Ethan Caballero∗† and Dinghuai Zhang1 ∗† and Yoshua Bengio†

and Ioannis Mitliagkas† and Irina Rish2

Abstract: The invariance principle from causality is at the heart of notable approaches
such as invariant risk minimization (IRM) that seek to address out-of-distribution (OOD)
generalization failures. Despite the promising theory, invariance principle-based approaches
fail in common classification tasks, where invariant (causal) features capture all the information
about the label. Are these failures due to the methods failing to capture the invariance?
Or is the invariance principle itself insufficient? To answer these questions, we revisit the
fundamental assumptions in linear regression tasks, where invariance-based approaches were
shown to provably generalize OOD. In contrast to the linear regression tasks, we show that
for linear classification tasks we need much stronger restrictions on the distribution shifts, or
otherwise OOD generalization is impossible. Furthermore, even with appropriate restrictions
on distribution shifts in place, we show that the invariance principle alone is insufficient. We
prove that a form of the information bottleneck constraint along with invariance helps address
key failures when invariant features capture all the information about the label and also
retains the existing success when they do not. We propose an approach that combines both
these principles and demonstrate its effectiveness on linear unit tests [10] and on various
high-dimensional real datasets.

Contribution: I designed, implemented, and ran most of the experiments. I wrote
most of the Experiments section of paper. I co-designed the practical version of the informa-
tion bottleneck penalty. I implemented, ran, and co-conceived high-dimensional real-world

1* means equal contribution
2† means affiliation is Mila - Quebec AI Institute, Université de Montréal, Quebec, Canada.



experiments for the NeurIPS rebuttal. There are two github repositories: A final github
repositories (https://github.com/ahujak/IB-IRM) posted by Kartik Ahuja for the official
release and a github repository (https://github.com/ethancaballero/ib_irm) posted by
me that contains most of my code contributions during development of this work.

Submission: This work is accepted as conference track paper (and conference spotlight
presentation) of NeurIPS 2021.

2.1. Introduction
Recent years have witnessed an explosion of examples showing deep learning models are

prone to exploiting shortcuts (spurious features) [23, 49] which make them fail to generalize
out-of-distribution (OOD). In [12], a convolutional neural network was trained to classify
camels from cows; however, it was found that the model relied on the background color
(e.g., green pastures for cows) and not on the properties of the animals (e.g., shape). These
examples become very concerning when they occur in real-life applications (e.g., COVID-19
detection [19]).

To address these out-of-distribution generalization failures, invariant risk minimization
[7] and several other works were proposed [3, 49, 34, 52, 66]. The invariance principle from
causality [47, 45] is at the heart of these works. The principle distinguishes predictors that
only rely on the causes of the label from those that do not. The optimal predictor that only
focuses on the causes is invariant and min-max optimal [53, 33, 4] under many distribution
shifts but the same is not true for other predictors.

Our contributions. Despite the promising theory, invariance principle-based approaches
fail in settings [10] where invariant features capture all information about the label contained
in the input. A particular example is image classification (e.g., cow vs. camel) [12] where the
label is a deterministic function of the invariant features (e.g., shape of the animal), and does
not depend on the spurious features (e.g., background). To understand such failures, we revisit
the fundamental assumptions in linear regression tasks, where invariance-based approaches
were shown to provably generalize OOD. We show that, in contrast to the linear regression
tasks, OOD generalization is significantly harder for linear classification tasks; we need much
stronger restrictions in the form of support overlap assumptions3 on the distribution shifts, or
otherwise it is not possible to guarantee OOD generalization under interventions on variables
other than the target class. We then proceed to show that, even under the right assumptions
on distribution shifts, the invariance principle is insufficient. However, we establish that
information bottleneck (IB) constraints [62], together with the invariance principle, provably
works in both settings – when invariant features completely capture the information about
3Support is the region where the probability density for continuous random variables (probability mass
function for discrete random variables) is positive. Support overlap refers to the setting where train and test
distribution maybe different but share the same support. We formally define this later in Assumption 5.
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the label and also when they do not. (Table 2.1 summarizes our theoretical results presented
later). We propose an approach that combines both these principles and demonstrate its
effectiveness on linear unit tests [10] and on various high-dimensional real datasets.

Task Invariant features Support overlap Support overlap OOD generalization guarantee (Etr → Eall)
capture label info invariant features spurious features ERM IRM IB-ERM IB-IRM

Linear
Classification

Full/Partial No Yes/No Impossible for any algorithm to generalize OOD [Thm2]
Full Yes No ✗ ✗ ✓ ✓ [Thm3,4]

Partial Yes No ✗ ✗ ✗ ✓ [Appendix]
Full Yes Yes ✓ ✓ ✓ ✓ [Thm3,4]

Partial Yes Yes ✗ ✓ ✗ ✓
Linear
Regression

Full No No ✓ ✓ ✓ ✓
Partial No No ✗ ✓ ✗ ✓ [Thm4]

Table 2.1. Summary of the new and existing results [7, 55]. IB-ERM (IRM): information
bottleneck - empirical (invariant) risk minimization ERM (IRM).

2.2. OOD generalization and invariance: background &
failures

Background. We consider a supervised training data D gathered from a set of training
environments Etr: D = {De}e∈Etr , where De = {xe

i , ye
i }ne

i=1 is the dataset from environment
e ∈ Etr and ne is the number of instances in environment e. xe

i ∈ Rd and ye
i ∈ Y ⊆ Rk

correspond to the input feature value and the label for ith instance respectively. Each (xe
i ,y

e
i )

is an i.i.d. draw from Pe, where Pe is the joint distribution of the input feature and the label in
environment e. Let X e be the support of the input feature values in the environment e. The
goal of OOD generalization is to use training data D to construct a predictor f : Rd → Rk

that performs well across many unseen environments in Eall, where Eall ⊃ Etr. Define the
risk of f in environment e as Re(f) = E

[
ℓ(f(Xe), Y e)

]
, where for example ℓ can be 0-1 loss,

logistic loss, square loss, (Xe, Y e) ∼ Pe, and the expectation E is w.r.t. Pe. Formally stated,
our goal is to use the data from training environments Etr to find f : Rd → Y to minimize

min
f

max
e∈Eall

Re(f). (2.2.1)

So far we did not state any restrictions on Eall. Consider binary classification: without any
restrictions on Eall, no method can reduce the above objective (ℓ is 0-1 loss) to below one.
Suppose a method outputs f ∗; if ∃ e ∈ Eall \ Etr with labels based on 1− f ∗, then it achieves
an error of one. Some assumptions on Eall are thus necessary. Consider how Eall is restricted
using invariance for linear regressions [7].
Assumption 1. Linear regression structural equation model (SEM). In each e ∈ Eall

Y e ← w∗
inv · Ze

inv + ϵe, Ze
inv ⊥ ϵe, E[ϵe] = 0,E

[
|ϵe|2

]
≤ σ2

sup

Xe ← S(Ze
inv, Ze

spu)
(2.2.2)
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where w∗
inv ∈ Rm, Ze

inv ∈ Rm, Zspu ∈ Ro, S ∈ Rd×(m+o), S is invertible (m + o = d). We focus
on invertible S but several results extend to non-invertible S as well (see Appendix).

Assumption 1 states how Y e and Xe are generated from latent invariant features Ze
inv

4,
latent spurious features Ze

spu and noise ϵe. The relationship between label and invariant
features is invariant, i.e., w∗

inv is fixed across all environments. However, the distributions
of Ze

inv, Ze
spu, and ϵe are allowed to change arbitrarily across all the environments. Suppose

S is identity. If we regress only on the invariant features Ze
inv, then the optimal solution is

w∗
inv, which is independent of the environment, and the error it achieves is bounded above

by the variance of ϵe (σ2
sup). If we regress on the entire Ze and the optimal predictor places

a non-zero weight on Ze
spu (e.g., Ze

spu ← Y e + ζe), then this predictor fails to solve equation
(2.2.1) (∃ e ∈ Eall, Ze

spu →∞, error→∞, see Appendix for details). Also, not only regressing
on Ze

inv is better than on Ze, it can be shown that it is optimal, i.e., it solves equation (2.2.1)
under Assumption 1 and achieves a value of σ2

sup for the objective in equation (2.2.1).
Invariant predictor. Define a linear representation map Φ : Rr×d (that transforms Xe as

Φ(Xe)) and define a linear classifier w : Rk×r (that operates on the representation w ·Φ(Xe)).
We want to search for representations Φ such that E[Y e|Φ(Xe)] is invariant (in Assumption 1
if Φ(Xe) = Ze

inv, then E[Y e|Φ(Xe)] is invariant). We say that a data representation Φ elicits
an invariant predictor w · Φ across the set of training environments Etr if there is a predictor
w that simultaneously achieves the minimum risk, i.e., w ∈ arg minw̃ Re(w̃ · Φ), ∀e ∈ Etr.
The main objective of IRM is stated as

min
w∈Rk×r,Φ∈Rr×d

1
|Etr|

∑
e∈Etr

Re(w · Φ) s.t. w ∈ arg min
w̃∈Rk×r

Re(w̃ · Φ), ∀e ∈ Etr. (2.2.3)

Observe that if we drop the constraints in the above which search only over invariant
predictors, then we get the standard empirical risk minimization (ERM) [64] (assuming
all the training environments occur with equal probability). In all our theorems, we use
0-1 loss for binary classification Y = {0,1} and square loss for regression Y = R. For
binary classification, the output of the predictor is given as I(w · Φ(Xe)), where I(·) is
the indicator function that takes 1 if the input is ≥ 0 and 0 otherwise, and the risk is
Re(w · Φ) = E

[
|I(w · Φ(Xe))− Y e|

]
. For regression, the output of the predictor is w · Φ(Xe)

and the corresponding risk is Re(w · Φ) = E
[
(w · Φ(Xe)− Y e)2

]
. We now present the main

OOD generalization result from [7] for linear regressions.
Theorem 1. (Informal) If Assumption 1 is satisfied, Rank[Φ] > 0, |Etr| > 2d, and Etr lie
in a linear general position (a mild condition on the data in Etr, defined in the Appendix),
then each solution to equation (2.2.3) achieves OOD generalization (solves equation (2.2.1),
∄ e ∈ Eall with risk > σ2

spu).

4In many examples in the literature, invariant features are causal, but not always [55].
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Despite the above guarantees, IRM has been shown to fail in several cases including linear
SEMs in [10]. We take a closer look at these failures next.
Understanding the failures: fully informative invariant features vs. partially
informative invariant features (FIIF vs. PIIF). We define properties salient to the
datasets/SEMs used in the OOD generalization literature. Each e ∈ Eall, the distribution
(Xe,Y e) ∼ Pe satisfies the following properties. a) ∃ a map Φ∗ (linear or not), which we call an
invariant feature map, such that E

[
Y e

∣∣∣Φ∗
(
Xe

)]
is the same for all e ∈ Eall and Y e ̸⊥ Φ∗(Xe).

These conditions ensure Φ∗ maps to features that have a finite predictive power and have
the same optimal predictor across Eall. For the SEM in Assumption 1, Φ∗ maps to Ze

inv. b)
∃ a map Ψ∗ (linear or not), which we call spurious feature map, such that E

[
Y e

∣∣∣Ψ∗
(
Xe

)]
is not the same for all e ∈ Eall and Y e ̸⊥ Ψ∗(Xe) for some environments. Ψ∗ often creates
a hindrance in learning predictors that only rely on Φ∗. Note that Ψ∗ should not be a
transformation of some Φ∗. For the SEM in Assumption 1, suppose Ze

spu is anti-causally
related to Y e, then Ψ∗ maps to Ze

spu (See Appendix for an example).
In the colored MNIST (CMNIST) dataset [7], the digits are colored in such a way that

in the training domain, color is highly predictive of the digit label but this correlation
being spurious breaks down at test time. Suppose the invariant feature map Φ∗ extracts
the uncolored digit and the spurious feature map Ψ∗ extracts the background color. [4]
studied two variations of the colored MNIST dataset, which differed in the way final labels
are generated from original MNIST labels (corrupted with noise or not). They showed that
the IRM exhibits good OOD generalization (50% improvement over ERM) in anti-causal-
CMNIST (AC-CMNIST, original data from [7]) but is no different from ERM and fails
in covariate shift-CMNIST (CS-CMNIST). In AC-CMNIST, the invariant features Φ∗(Xe)
(uncolored digit) are partially informative about the label, i.e., Y ̸⊥ Xe|Φ∗(Xe), and color
contains information about label not contained in the uncolored digit. On the other hand in
CS-CMNIST, invariant features are fully informative about the label, i.e., Y ⊥ Xe|Φ∗(Xe),
i.e., they contains all the information about the label that is contained in input Xe. Most
human labelled datasets have fully informative invariant features; the labels (digit value) only
depend on the invariant features (uncolored digit) and spurious features (color of the digit)
do not affect the label. 5 In the rare case, when the humans are asked to label images in
which the object being labelled itself is blurred, humans can rely on spurious features such as
the background making such a data representative of PIIF setting. In Table 2.2, we divide
the different datasets used in the literature based on informativeness of the invariant features.
We observe that when the invariant features are fully informative, both IRM and ERM fail
but only in classification tasks and not in regression tasks [4]; this is consistent with the linear
regression result in Theorem 1, where IRM succeeds regardless of whether Y e ⊥ Xe|Ze

inv holds

5The deterministic labelling case was referred as realizable problems in [7].
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Fully informative invariant features (FIIF) Partially informative invariant features (PIIF)
∀e ∈ Eall, Y e ⊥ Xe|Φ∗(Xe) ∃ e ∈ Eall Y e ̸⊥ Xe|Φ∗(Xe)
Task: classification Task: classification or regression
Example 2/2S, CS-CMNIST Example 1/1S, Example 3/3S, AC-CMNIST
SEM in Assumption 2 SEM in [55]
ERM and IRM fail ERM fails, IRM succeeds sometimes
Theorem 3,4 (This paper) Theorem 9, 5.1 [7, 55]

Table 2.2. Categorization of OOD evaluation datasets and SEMs. Example 1/1S, 2/2S,
3/3S from [10], AC-CMNIST[7], CS-CMNIST[4].

or not. Motivated by this observation, we take a closer look at the classification tasks where
invariant features are fully informative.

2.3. OOD generalization theory for linear classification
tasks

A two-dimensional example with fully informative invariant features. We start
with a 2D classification example (based on [42]), which can be understood as a simplified
version of the CS-CMNIST dataset [4], Example 2/2S of [10], where both IRM and ERM
fail. The example goes as follows. In each training environment e ∈ Etr

Y e ← I
(

Xe
inv −

1
2

)
, where Xe

inv ∈ {0,1} is Bernoulli
(1

2

)
,

Xe
spu ← Xe

inv ⊕W e, where W e ∈ {0,1} is Bernoulli
(
1− pe

)
with selection bias pe >

1
2 ,

(2.3.1)

where Bernoulli(a) takes value 1 with probability a and 0 otherwise. Each training environment
is characterized by the probability pe. Following Assumption 1, we assume that the labelling
function does not change from Etr to Eall, thus the relation between the label and the
invariant features does not change. Assume that the distribution of Xe

inv and Xe
spu can change

arbitrarily. See Figure 2.1a) for a pictorial representation of this example illustrating the
gist of the problem: there are many classifiers with the same error on Etr while only the one
identical to the labelling function I(Xe

inv − 1
2) generalizes correctly OOD. Define a classifier

I(winvxinv + wspuxspu − 1
2(winv + wspu)). Define a set of classifiers S = {(winv, wspu) s.t. winv >

|wspu|}. Observe that all the classifiers in S achieve a zero classification error on the training
environments. However, only classifiers for which wspu = 0 solve the OOD generalization (eq.
(2.2.1)). With Φ as the identity, it can be shown that all the classifiers S form an invariant
predictor (satisfy the constraint in equation (2.2.3) over all the training environments when ℓ

is the 0-1 loss). Observe that increasing the number of training environments to infinity does
not address the problem, unlike with the linear regression result discussed in Theorem 1 [7],
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Fig. 2.1. a) 2D classification example illustrating multiple invariant predictors: Most of
these predictors rely on spurious features and each of them achieve zero error across all Etr, b)
illustration of the impossibility result. If latent invariant features in the training environments
are separable, then there are multiple equally good candidates that could have generated the
data, and the algorithm cannot distinguish between these.

where it was shown that if the number of environments increases linearly in the dimension of
the data, then the solution to IRM also solves the OOD generalization (eq. (1.0.1)). 6 We
use the above example to construct general SEMs for linear classification when the invariant
features are fully informative. We follow the structure of the SEM from Assumption 1 in our
construction.
Assumption 2. Linear classification structural equation model (FIIF). In each
e ∈ Eall

Y e ← I
(
w∗

inv · Ze
inv

)
⊕N e, N e ∼ Bernoulli(q), q <

1
2 , N e ⊥ (Ze

inv, Ze
spu),

Xe ← S
(
Ze

inv, Ze
spu

)
,

(2.3.2)

where w∗
inv ∈ Rm with ∥w∗

inv∥ = 1 is the labelling hyperplane, Ze
inv ∈ Rm, Ze

spu ∈ Ro, N e is
binary noise with identical distribution across environments, ⊕ is the XOR operator, S is
invertible.

If noise level q is zero, then the above SEM covers linearly separable problems. See Figure
2.2a) for the directed acyclic graph (DAG) corresponding to this SEM. From the DAG observe
that Y e ⊥ Xe|Ze

inv, which implies that the invariant features are fully informative. Contrast
this with a DAG that follows Assumption 1 shown in Figure 2.2b), where Y e ̸⊥ Xe|Ze

inv and
thus the invariant features are not fully informative. If Eall follows the SEM in Assumption
2 and suppose the distribution of Ze

inv, Ze
spu can change arbitrarily, then it can be shown

that only a classifier identical to the labelling function I(w∗
inv · Ze

inv) can solve the OOD
generalization (eq. (2.2.1)); such a classifier achieves an error of q (noise level) in all the
environments. As a result, if for a classifier we can find e ∈ Eall that follows Assumption
2 where the error is greater than q, then such a classifier does not solve equation (2.2.1).
6Please note that this example illustrates certain important facets in a very simple fashion; only in this
example a max-margin classifier can solve the problem but not in general. (Further explanation in the
Appendix).
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Now we ask – what are the minimal conditions on training environments Etr to achieve OOD
generalization when Eall follow Assumption 2? To achieve OOD generalization for linear
regressions, in Theorem 1, it was required that the number of training environments grows
linearly in the dimension of the data. However, there was no restriction on the support of
the latent invariant and latent spurious features, and they were allowed to change arbitrarily
from train to test (for further discussion on this, see the Appendix). Can we continue to work
with similar assumptions for the SEM in Assumption 2 and solve the OOD generalization
(eq. (2.2.1))? We state some assumptions and notations to answer that. Define the support
of the invariant (spurious) features Ze

inv (Ze
spu) in environment e as Ze

inv (Ze
spu).

Assumption 3. Bounded invariant features. ∪e∈EtrZe
inv is a bounded set.7

Assumption 4. Bounded spurious features. ∪e∈EtrZe
spu is a bounded set.

Assumption 5. Invariant feature support overlap. ∀e ∈ Eall,Ze
inv ⊆ ∪e′∈EtrZe′

inv

Assumption 6. Spurious feature support overlap. ∀e ∈ Eall,Ze
spu ⊆ ∪e′∈EtrZe′

spu
Assumption 5 (6) states that the support of the invariant (spurious) features for unseen

environments is the same as the union of the support over the training environments. It
is important to note that support overlap does not imply that the distribution over the
invariant features does not change. We now define a margin that measures how much the
is training support of invariant features Ze

inv separated by the labelling hyperplane w∗
inv.

Define Inv-Margin = minz∈∪e∈Etr Ze
inv

sgn
(
w∗

inv · z
)(

w∗
inv · z

)
. This margin only coincides with the

standard margin in support vector machines when the noise level q is 0 (linearly separable)
and S is identity. If Inv-Margin > 0, then the labelling hyperplane w∗

inv separates the support
into two halves (see Figure 2.1b)).
Assumption 7. Strictly separable invariant features. Inv-Margin > 0.

Next, we show the importance of support overlap for invariant features.
Theorem 2. Impossibility of guaranteed OOD generalization for linear classifi-
cation. Suppose each e ∈ Eall follows Assumption 2. If for all the training environments Etr,
the latent invariant features are bounded and strictly separable, i.e., Assumption 3 and 7 hold,
then every deterministic algorithm fails to solve the OOD generalization (eq. (2.2.1)), i.e.,
for the output of every algorithm ∃ e ∈ Eall in which the error exceeds the minimum required
value q (noise level).

The proofs to all the theorems are in the Appendix. We provide a high-level intuiton as
to why invariant feature support overlap is crucial to the impossibility result. In Figure 2.1b),
we show that if the support of latent invariant features are strictly separated by the labelling
hyperplane w∗

inv, then we can find another valid hyperplane w+
inv that is equally likely to have

generated the same data. There is no algorithm that can distinguish between w∗
inv and w+

inv.
As a result, if we use data from the region where the hyperplanes disagree (yellow region
Figure 2.1b)), then the algorithm fails.
7A set Z is bounded if ∃M <∞ such that ∀z ∈ Z, ∥z∥ ≤M .
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Significance of Theorem 2. We showed that without the support overlap assumption
on the invariant features, OOD generalization is impossible for linear classification tasks.
This is in contrast to linear regression in Theorem 1 [7], where even in the absence of the
support overlap assumption, guaranteed OOD generalization was possible. Applying the
above Theorem 2 to the 2D case (eq. (2.3.1)) implies that we cannot assume that the support
of invariant latent features can change, or else that case is also impossible to solve.

Next, we ask what further assumptions are minimally needed to be able to solve the OOD
generalization (eq. (2.2.1)). Each classifier can be written as w̄ · Xe = w̄ · S(Ze

inv, Ze
spu) =

w̃inv · Ze
inv + w̃spuZe

spu. If w̃spu ̸= 0, then the classifier w̄ is said to rely on spurious features.
Theorem 3. Sufficiency and Insufficiency of ERM and IRM. Suppose each e ∈ Eall

follows Assumption 2. Assume that a) the invariant features are strictly separable, bounded,
and satisfy support overlap, b) the spurious features are bounded (Assumptions 3-5, 7 hold).
• Sufficiency: If the spurious features satisfy support overlap (Assumption 6 holds),

then both ERM and IRM solve the OOD generalization problem (eq. (2.2.1)). Also, there
exist solutions to ERM and IRM solutions that rely on the spurious features and still achieve
OOD generalization.
• Insufficiency: If spurious features do not satisfy support overlap, then both ERM and

IRM fail at solving the OOD generalization problem (eq. (2.2.1)). Also, there exist no such
classifiers that rely on spurious features and also achieve OOD generalization.

Significance of Theorem 3. From the first part, we learn that if the support overlap
is satisfied for both the invariant features and the spurious features, then either ERM or
IRM can solve the OOD generalization (eq. (2.2.1)). Interestingly, in this case we can
have classifiers that rely on the spurious features and yet solve the OOD generalization (eq.
(2.2.1)). For the 2D case (eq. (2.3.1)) this case implies that the entire set S solves the OOD
generalization (eq. (2.2.1)). From the second part, we learn that if support overlap holds
for invariant features but not for spurious features, then the ideal OOD optimal predictors
rely only on the invariant features. In this case, methods like ERM and IRM continue to
rely on spurious features and fail at OOD generalization. For the above 2D case (eq. (2.3.1))
this implies that only the predictors that rely only on Xe

inv in the set S solve the OOD
generalization (eq. (2.2.1)).

To summarize, we looked at SEMs for classification tasks when invariant features are
fully informative, and find that the support overlap assumption over invariant features is
necessary. Even in the presence of support overlap for invariant features, we showed that
ERM and IRM can easily fail if the support overlap is violated for spurious features. This
raises a natural question – Can we even solve the case with the support overlap assumption
only on the invariant features? We will now show that the information bottleneck principle
can help tackle these cases.
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2.4. Information bottleneck principle meets invariance
principle

Why the information bottleneck? The information bottleneck principle prescribes to
learn a representation that compresses the input X as much as possible while preserving all the
relevant information about the target label Y [62]. Mutual information I(X; Φ(X)) is used
to measure information compression. If representation Φ(X) is a deterministic transformation
of X, then in principle we can use the entropy of Φ(X) to measure compression [32]. Let us
revisit the 2D case (eq. (2.3.1)) and apply this principle to it. Following the second part of
Theorem 3, where ERM and IRM failed, assume that invariant features satisfy the support
overlap assumption, but make no such assumption for the spurious features. Consider three
choices for Φ: identity (selects both features), selects invariant feature only, selects spurious
feature only. The entropy of H(Φ(Xe)) when Φ is the identity is H(pe) + log(2), where H(pe)
is the Shannon entropy in Bernoulli(pe). If Φ selects the invariant/spurious features only, then
H(Φ(Xe)) = log(2). Among all three choices, the one that has the least entropy and also
achieves zero error is the representation that focuses on the invariant feature. We could find
the OOD optimal predictor in this example just by using information bottleneck. Does it
mean the invariance principle isn’t needed? We answer this next.

Why invariance? Consider a simple classification SEM. In each e ∈ Etr, Y e ←
X1,e

inv ⊕X2,e
inv ⊕N e and Xe

spu ← Y e ⊕ V e, where all the random variables involved are binary
valued, noise N e, V e are Bernoulli with parameters q (identical across Etr), ce (varies across
Etr) respectively. If ce < q, then in Etr predictions based on Xe

spu are better than predictions
based on X1,e

inv ,X2,e
inv . If both X1,e

inv , X2,e
inv are uniform Bernoulli, then these features have a

higher entropy than Xe
spu. In this case, the information bottleneck would bar using X1,e

inv , X2,e
inv .

Instead, we want the model to focus on X1,e
inv , X2,e

inv and not on Xe
spu. Invariance constraints

encourage the model to focus on X1,e
inv , X2,e

inv . In this example, observe that invariant features
are partially informative unlike the 2D case (eq. (2.3.1)).

Why invariance and information bottleneck? We have illustrated through simple
examples when the information bottleneck is needed but not invariance and vice-versa. We
now provide a simple example where both these constraints are needed at the same time.
This example combines the 2D case (eq. (2.3.1)) and the example we highlighted in the
paragraph above: Y e ← Xe

inv ⊕ N e, X1,e
spu ← Xe

inv ⊕W e, and X2,e
spu ← Y e ⊕ V e. In this case,

the invariance constraint does not allow representations that use X2,e
spu but does not prohibit

representations that rely on X1,e
spu. However, information bottleneck constraints on top ensure

that representations that only use Xe
inv are used. We now describe an objective 8 that combines

both these principles:

8Results extend to alternate objective with information bottleneck constraints and average risk as objective.
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Fig. 2.2. Comparison of the DAG from Assumption 2 (fully informative invariant features)
vs. DAGs from [55, 7] (partially informative invariant features).

min
w,Φ

∑
e∈Etr

he
(
w ·Φ

)
s.t. 1
|Etr|

∑
e∈Etr

Re
(
w ·Φ

)
≤ rth, w ∈ arg min

w̃∈Rk×r
Re(w̃ ·Φ),∀e ∈ Etr, (2.4.1)

where he in the above is a lower bounded differential entropy defined below and rth is the
threshold on the average risk. Typical information bottleneck based optimization in neural
networks involves minimization of the entropy of the representation output from a certain
hidden layer. For both analytical convenience and also because the above setup is a linear
model, we work with the simplest form of bottleneck which directly minimizes the entropy
of the output layer. Recall the definition of differential entropy of a random variable X,
h(X) = −EX [log dPX ] and dPX is the Radon-Nikodym derivative of PX with respect to
Lebesgue measure. Because in general differential entropy has no lower bound, we add a small
independent noise term ζ [32] to the classifier to ensure that the entropy is bounded below.
We call the above optimization information bottleneck based invariant risk minimization
(IB-IRM). In summary, among all the highly predictive invariant predictors we pick the ones
that have the least entropy. If we drop the invariance constraint from the above optimization,
we get information bottleneck based empirical risk minimization (IB-ERM). In the above
formulation and following result, we assume that Xe are continuous random variables; the
results continue to hold for discrete Xe as well (See Appendix for details).
Theorem 4. IB-IRM and IB-ERM vs. IRM and ERM
• Fully informative invariant features (FIIF). Suppose each e ∈ Eall follows

Assumption 2. Assume that the invariant features are strictly separable, bounded, and satisfy
support overlap (Assumptions 3,5 and 7 hold). Also, for each e ∈ Etr Ze

spu ← AZe
inv + W e,

where A ∈ Ro×m, W e ∈ Ro is continuous, bounded, and zero mean noise. Each solution
to IB-IRM (eq. (2.4.1), with ℓ as 0-1 loss, and rth = q), and IB-ERM solves the OOD
generalization (eq. (2.2.1)) but ERM and IRM (eq.(2.2.3)) fail.
• Partially informative invariant features (PIIF). Suppose each e ∈ Eall follows

Assumption 1 and ∃ e ∈ Etr such that E[ϵeZe
spu] ̸= 0. If |Etr| > 2d and the set Etr lies in

a linear general position (a mild condition defined in the Appendix), then each solution to
IB-IRM (eq. (2.4.1), with ℓ as square loss, σ2

ϵ < rth ≤ σ2
Y , where σ2

Y and σ2
ϵ are the variance
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in the label and noise across Etr) and IRM (eq.(2.2.3)) solves OOD generalization (eq. (2.2.1))
but IB-ERM and ERM fail.

Significance of Theorem 4 and remarks. In the first part (FIIF), IB-ERM and
IB-IRM succeed without assuming support overlap for the spurious features, which was
crucial for success of ERM and IRM in Theorem 3. This establishes that support overlap
of spurious features is not a necessary condition. Observe that when invariant features are
fully informative, IB-ERM and IB-IRM succeed, but when invariant features are partially
informative IB-IRM and IRM succeed. In real data settings, we do not know if the invariant
features are fully or partially informative. Since IB-IRM is the only common winner in both
the settings, it would be pragmatic to use it in the absence of domain knowledge about the
informativeness of the invariant features. In the paragraph preceding the objective in equation
(2.4.1), we discussed examples where both the IB and IRM constraints were needed at the
same time. In the Appendix, we generalize that example and show that if we change the
assumptions in linear classification SEM in Assumption 2 such that the invariant features are
partially informative, then we see the joint benefit of IB and IRM constraints. At this point,
it is also worth pointing to a result in [55], which focused on linear classification SEMs (DAG
shown in Figure 2.2c) with partially informative invariant features. Under the assumption of
complete support overlap for spurious and invariant features, authors showed IRM succeeds.

2.4.1. Proposed approach

We take the three terms from the optimization in equation (2.4.1) and create a weighted
combination as∑

e

(
Re(Φ)+λ∥∇w,w=1.0R

e(w·Φ)∥2+νhe(Φ)
)
≤

∑
e

(
Re(Φ)+λ∥∇w,w=1.0R

e(w·Φ)∥2+νh(Φ)
)

.

In the LHS above, the first term corresponds to the risks across environments,
the second term approximates invariance constraint (follows the IRMv1 objec-
tive [7]), and the third term is the entropy of the classifier in each environment.

Fig. 2.3. Comparing
convergence of |wspu|√

w2
spu+w2

inv
(metric from [42]) for average
selection bias p = 0.9.

In the RHS, h(Φ) is the entropy of Φ unconditional on the
environment (the entropy on the left-hand side is entropy con-
ditional on the environment assuming all the environments
are equally likely). Optimizing over differential entropy is not
easy, and thus we resort to minimizing an upper bound of it
[32]. We use the standard result that among all continuous
random variables with the same variance, Gaussian has the
maximum differential entropy. Since the entropy of Gaussian
increases with its variance, we use the variance of Φ instead of
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the differential entropy (For further details, see the Appendix). Our final objective is given as∑
e

(
Re(Φ) + λ∥∇w,w=1.0R

e(w · Φ)∥2 + γVar(Φ)
)

. (2.4.2)
On the behavior of gradient descent with and without information bottleneck.

In the entire discussion so far, we have focused on ensuring that the set of optimal solutions
to the desired objective (IB-IRM, IB-ERM, etc.) correspond to the solutions of the OOD
generalization problem (eq. (2.2.1)). In some simple cases, such as the 2D case (eq. (2.3.1)),
it can be shown that gradient descent is biased towards selecting the ideal classifier [59, 42].
Even though gradient descent can eventually learn the ideal classifier that only relies on the
invariant features, training is frustratingly slow as was shown by [42]. In the next theorem,
we characterize the impact of using IB penalty (Var(Φ)) in the 2D example (eq. (2.3.1)). We
compare the methods in terms of |wspu(t)

winv(t) |, which was the metric used in [42]; wspu(t) and
winv(t) are the weights for the spurious feature and the invariant feature at time t of training
(assuming training happens with continuous time gradient descent).
Theorem 5. Impact of IB on learning speed. Suppose each e ∈ Etr follows the 2D case
from equation (2.3.1). Set λ = 0, γ > 0 in equation (2.4.2) to get the IB-ERM objective with
ℓ as exponential loss. Continuous-time gradient descent on this IB-ERM objective achieves
|wspu(t)

winv(t) | ≤ ϵ in time less than W0( 1
2γ

)
2(1−p)ϵ (W0(·) denotes the principal branch of the Lambert W

function), while in the same time the ratio for ERM |wspu(t)
winv(t) | ≥ ln(1+2p

3−2p
)/ln

(
1 + W0( 1

2γ
)

2(1−p)ϵ

)
, where

p = 1
|Etr|

∑
e∈Etr

pe .
|wspu(t)

winv(t) | converges to zero for both methods, but it converges much faster for IB-ERM (for
p = 0.9, ϵ = 0.001, γ = 0.58, the ratio for IB-ERM is |wspu(t)

winv(t) | ≤ 0.001 and ratio for ERM is
|wspu(t)

winv(t) | ≥ 0.09). In the above theorem, we analyzed the impact of information bottleneck
only. The convergence analysis for both the penalties jointly comes with its own challenges,
and we hope to explore this in future work. However, we carried out experiments with
gradient descent on all the objectives for the 2D example (eq. (2.3.1)). See Figure 3 for the
comparisons.

2.5. Experiments
Methods, datasets & metrics. We compare our approaches – information bottleneck

based ERM (IB-ERM) and information bottleneck based IRM (IB-IRM) with ERM and IRM.
We also compare with an Oracle model trained on data where spurious features are permuted
to remove spurious correlations. We use all the datasets in Table 2.2, Terra Incognita dataset
[12], and COCO [1]. We follow the same protocol for tuning hyperparameters from [10, 7] for
their respective datasets (see the Appendix for more details). As is reported in literature, for
Example 2/2S, Example 3/3S we use classification error and for AC-CMNIST, CS-CMNIST,
Terra Incognita, and COCO we use accuracy. For Example 1/1S, we use mean square error
(MSE). The code for experiments can be found at https://github.com/ahujak/IB-IRM.

39

https://github.com/ahujak/IB-IRM


Summary of results. In Table 2.3, we provide a comparison of methods for different
examples in linear unit tests [10] for three and six training environments. In Table 2.4, we
provide a comparison of the methods for different CMNIST datasets, Terra Incognita and
COCO dataset. Based on our Theorem 4, we do not expect ERM and IB-ERM to do well on
Example 1/1S, Example 3/3S and AC-CMNIST as these datasets fall in the PIIF category,
i.e, the invariant features are partially informative. On these examples, we find that IRM
and IB-IRM do better than ERM and IB-ERM (for Example 3/3S when there are three
environments all methods perform poorly). Based on our Theorem 4, we do not expect IRM
and ERM to do well on Example 2/2S, CS-CMNIST, Terra Incognita and COCO dataset,9

as these datasets fall in the FIIF category, i.e., the invariant features are fully informative.
On these FIIF examples, we find that IB-ERM always performs well (close to oracle), and
in some cases IB-IRM also performs well. Our experiments confirm that IB penalty has a
crucial role to play in FIIF settings and IRMv1 penalty has a crucial role to play in PIIF
settings (to further this claim, we provide an ablation study in the Appendix). On Example
1/1S, AC-CMNIST, we find that IB-IRM is able to extract the benefit of IRMv1 penalty.
On CS-CMNIST and Example 2/2S we find that IB-IRM is able to extract the benefit of
IB penalty. In settings such as COCO dataset, where IB-IRM does not perform as well as
IB-ERM, better hyperparameter tuning strategies should be able to help IB-IRM adapt and
put a higher weight on IB penalty. Overall, we can conclude that IB-ERM improves over
ERM (significantly in FIIF and marginally in PIIF settings), and IB-IRM improves over IRM
(improves in FIIF settings and retains advantages in PIIF settings).

Remark. As we move from three to six environments, we observe that MSE in Example
1/1S exhibits a larger variance. This is because of the way data is generated, the new
environments that are sampled have labels that have a higher noise level (we follow the same
procedure as in [10]).

2.6. Extensions, limitations, and future work
Extension to non-linear models and multi-class classification. In this work

our theoretical analysis focused on linear models. Consider the map X ← S(Zinv, Zspu) in
Assumption 2. Suppose S is non-linear and bijective. We can divide the learning task into
two parts a) invert S to obtain Zinv, Zspu and b) learn a linear model that only relies on the
invariant features Zinv to predict the label Y . For part b), we can rely on the approaches
proposed in this work. For part a), we need to leverage advancements in the field of non-linear
ICA [31]. The current state-of-the-art to solve part a) requires strong structural assumptions
on the dependence between all the components of Zinv, Zspu [37]. Therefore, solving part a)
and part b) in conjunction with minimal assumptions forms an exciting future work. In the

9We place Terra Incognita and COCO dataset in the FIIF assuming that the humans who labeled the images
did not need to rely on unreliable/spurious features such as background to generate the labels.
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#Envs ERM IB-ERM IRM IB-IRM Oracle
Example1 3 13.36 ± 1.49 12.96 ± 1.30 11.15± 0.71 11.68 ± 0.90 10.42±0.16
Example1s 3 13.33 ± 1.49 12.92 ± 1.30 11.07 ± 0.68 11.74 ± 1.03 10.45±0.19
Example2 3 0.42 ± 0.01 0.00 ± 0.00 0.45 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Example2s 3 0.45 ± 0.01 0.00 ± 0.01 0.45 ± 0.01 0.06 ± 0.12 0.00 ± 0.00
Example3 3 0.48 ± 0.07 0.49 ± 0.06 0.48 ± 0.07 0.48 ± 0.07 0.01 ± 0.00
Example3s 3 0.49 ± 0.06 0.49 ± 0.06 0.49 ± 0.07 0.49 ± 0.07 0.01 ± 0.00
Example1 6 33.74 ± 60.18 32.03 ± 57.05 23.04 ± 40.64 25.66 ± 45.96 22.21±39.25
Example1s 6 33.62 ± 59.80 31.92 ± 56.70 22.92 ± 40.60 25.60 ± 45.62 22.13±38.93
Example2 6 0.37 ± 0.06 0.02 ± 0.05 0.46 ± 0.01 0.43 ± 0.11 0.00±0.00
Example2s 6 0.46 ± 0.01 0.02 ± 0.06 0.46 ± 0.01 0.45 ± 0.10 0.00±0.00
Example3 6 0.33 ± 0.18 0.26 ± 0.20 0.14 ± 0.18 0.19 ± 0.19 0.01±0.00
Example3s 6 0.36 ± 0.19 0.27 ± 0.20 0.14 ± 0.18 0.19 ± 0.19 0.01±0.00

Table 2.3. Comparisons on linear unit tests in terms of mean square error (regression) and
classification error (classification). “#Envs” means the number of training environments.

ERM IB-ERM IRM IB-IRM
CS-CMNIST 60.27 ± 1.21 71.80 ± 0.69 61.49 ± 1.45 71.79 ± 0.70
AC-CMNIST 16.84 ± 0.82 50.24 ± 0.47 66.98 ± 1.65 67.67 ± 1.78
Terra Incognita 49.80 ± 4.40 56.40 ± 2.10 54.60 ± 1.30 54.10 ± 2.00
COCO 22.70 ± 1.04 31.66 ± 2.39 18.47 ± 10.20 25.10 ± 1.03

Table 2.4. Classification accuracy percentage on colored MNISTs, Terra Incognita and
COCO dataset.

entire work, the discussion was focused on binary classification tasks and regression tasks. For
multi-class classification settings, we consider natural extension of the SEM in Assumption 2
(See the Appendix) and our main results continue to hold.

On the choice for IB penalty and IRMv1 penalty. We use the approximation
for entropy (in equation (2.4.2)) described in [32]. The approximation (even though an
upper bound) serves as an effective proxy for the true information bottleneck as shown
in the experiments in [32] (e.g., see their experiment on Imagenette dataset). Also, our
experiments validate this approximation even in moderately high dimensions, as an example
in CS-CMNIST, the dimension of the layer at which bottleneck constraints are applied is
256. Developing tighter approximations for information bottleneck in high dimensions and
analyzing their impact on OOD generalization is an important future work. In recent works
[55, 29, 25], there has been criticism of different aspects of IRM, e.g., failure of IRMv1
penalty in non-linear models, the tuning of IRMv1 penalty, etc. Since we use IRMv1 penalty
in our proposed loss, these criticisms apply to our objective as well. Other approximations of
invariance have been proposed in the literature [33, 3, 16]. Exploring their benefits together
with information bottleneck is a fruitful future work. Before concluding, we want to remark
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that we have already discussed the closest related works. However, we also provide a detailed
discussion of the broader related literature in the Appendix.

2.7. Conclusion
In this work, we revisited the fundamental assumptions for OOD generalization for settings

when invariant features capture all the information about the label. We showed how linear
classification tasks are different and need much stronger assumptions than linear regression
tasks. We provide a sharp characterization of performance of ERM and IRM under different
assumptions on support overlap of invariant and spurious features. We showed that support
overlap of invariant features is necessary or otherwise OOD generalization is impossible.
However, ERM and IRM seem to fail even in the absence of support overlap of spurious
features. We prove that a form of the information bottleneck constraint along with invariance
goes a long way in overcoming the failures while retaining the existing provable guarantees.
We propose an approach that combines both these principles and demonstrate its effectiveness
on linear unit tests [10] and on various high-dimensional real datasets.
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2.8. Appendix
Organization. In Section 2.8.1, we discuss the societal impact of this work. In Section

2.8.2, we provide further details on the experiments. In Section 1.1, we provide a detailed
discussion on structural equation models and the linear general position assumption used to
prove Theorem 1. In Section 2.8.4, we first cover the notations used in the proofs, followed
by some technical remarks to be kept in mind for all the proofs, and then we provide the
proof of the impossibility result in Theorem 2. In Section 2.8.5, we provide the proof for
sufficiency and insufficiency characterization of ERM and IRM discussed in Theorem 3. In
Section 2.8.6, we provide the proof for Theorem 4, which compares IB-IRM, IB-ERM with
IRM and ERM. In Section 2.8.7, we discuss the step-by-step derivation of the final objective
in equation (2.4.2). In Section 2.8.8, we provide the proof for Theorem 5, which compares the
impact of information bottleneck penalty on the learning speed. In Section 2.8.9, we provide
an analysis of settings when both IRM and IB penalty work together in conjunction. Also, at
the end of each section describing a proof, we provide remarks on various aspects, including
some simple extensions that our results already cover. Although in the main manuscript we
covered the relevant related works, in Section 1.3, we provide a more detailed discussion on
other related works.

2.8.1. Societal impact

When machine learning models are deployed to assist in making decisions in safety-
critical applications (e.g., self-driving cars, healthcare, etc.), we want to ensure that they
make decisions that can be trusted well beyond the regime of the training data that they
are exposed to. The models used in current practice are prone to exploiting spurious
correlations/shortcuts in arriving at decisions and are thus not always reliable. In this work,
we took some steps towards building a well-founded theory and proposing methods based on
the same that can eventually help us build machines that work well beyond the training data
regime. At this point, we do not anticipate a negative impact specifically of this work.

2.8.2. Experiments details

In this section, we provide further details on the experiments. The codes to reproduce
the experiments is provided at https://github.com/ahujak/IB-IRM. We have also added
the codes to DomainBed (https://github.com/facebookresearch/DomainBed).

2.8.2.1. Datasets. We first describe the datasets (Example 1/1S, Example 2/2S, Example
3/3S) introduced in [10]; these datasets are referred to as the linear unit tests. The results
for linear unit tests are presented in Table 2.3.
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Example 1/1S (PIIF). This example follows the linear regression SEM from Assumption
1. The dataset in environment e ∈ Eall is sampled from the following

Ze
inv ∼ Nm(0, (σe)2), Ỹ e ∼ Nm(WyzZe

inv, (σe)2),

Ze
spu ∼ No(WzyỸ e, 1), Ze ← (Ze

inv,Z
e
spu),

Y e ← 2
(m + o)1T

mỸ e, Xe ← S(Ze),

where Wyz ∈ Rm×m, Wzy ∈ Ro×m are matrices drawn i.i.d. from the standard normal
distribution, 1m ∈ Rm is a vector of ones, Nk is a k dimensional vector from the normal
distribution. For the first three environments (e0, e1,e2), the variances are fixed as (σe0)2 = 0.1,
(σe1)2 = 1.5, and (σe2)2 = 2.0. When the number of environments is greater than three, then
(σej )2 ∼ Uniform(10−2, 10). The scrambling matrix S is set to identity in Example 1 and a
random unitary matrix is selected to rotate the latents in Example 1S. In the above dataset,
the invariant features are causal and partially informative about the label. The spurious
features are anti-causally related to the label and carry extra information about the label not
contained in the invariant features.

Example 2/2S (FIIF). This example follows the linear classification SEM from As-
sumption 2 with zero noise. The dataset generalizes the 2D cow versus camel classification
task in equation (2.3.1). Let

θcow = 1m, θcamel = −θcow, νanimal = 10−2,

θgrass = 1o, θsand = −θgrass, νbackground = 1.

The dataset in environment e ∈ Eall is sampled from the following distribution

U e ∼ Categorical
(
pese, (1− pe)se, pe(1− se), (1− pe)(1− se)

)
,

Ze
inv ∼

(Nm(0, 0.1) + θcow)νanimal if U e ∈ {1,2},
(Nm(0, 0.1) + θcamel)νanimal if U e ∈ {3,4},

Ze
spu ∼

(No(0, 0.1) + θgrass)νbackground if U e ∈ {1,4},
(No(0, 0.1) + θsand)νbackground if U e ∈ {2,3},

Ze ← (Ze
inv,Z

e
spu), Xe ← S(Ze),

Y e ← I(1T
mZe

inv),

where for the first three environments the background parameters are pe0 = 0.95, pe1 = 0.97,
pe2 = 0.99 and the animal parameters are se0 = 0.3, se1 = 0.5, se2 = 0.7. When the number of
environments are greater than three, then pej ∼ Uniform(0.9,1), and sej ∼ Uniform(0.3, 0.7).
The scrambling matrix S is set to identity in Example 2 and a random unitary matrix is
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selected to rotate the latents in Example 2S. In the above dataset, the invariant features are
causal and carry full information about the label. The spurious features are correlated with
the invariant features through a confounding selection bias U e.

Example 3/3S (PIIF). This example is a classification problem following the SEM
assumed in [55]. The example is meant to present a linear version of the spiral classification
problem in [44]. Let θinv = 0.1 · 1m, and θe

spu ∼ No(0,1) for all the environments. The dataset
in environment e ∈ Eall is sampled from the following distribution

Y e ∼ Bernoulli
(1

2

)
,

Ze
inv ∼

Nm(+θinv, 0.1) if Y e = 0,

Nm(−θinv, 0.1) if Y e = 1,

Ze
spu ∼

No(+θe
spu, 0.1) if Y e = 0,

No(−θe
spu, 0.1) if Y e = 1,

,

Ze ← (Ze
inv,Z

e
spu), Xe ← S(Ze).

(2.8.1)

The scrambling matrix S is set to identity in Example 3 and a random unitary matrix is
selected to rotate the latents in Example 3S. In the above dataset, the invariant features are
anti-causally related to the label Y e. The spurious features carry extra information about
the label not contained in the invariant features.

AC-CMNIST dataset (PIIF). We follow the same construction as was proposed in [7].
We set up a binary classification task– identify whether the digit is less than 5 (not including
5) or more than 5. There are three environments – two training environments containing
25,000 data points each, one test environment containing 10,000 points. Define a preliminary
label Ỹ = 0 if the digit is between 0-4 and Ỹ = 1 if the digit is between 5-9. We add noise
to this preliminary label by flipping it with a 25 percent probability to construct the final
label. We flip the final labels to obtain the color id Ze

spu, where the flipping probabilities are
environment-dependent. The flipping probabilities are 0.2, 0.1, and 0.9, in the first, second,
and third environment respectively. The third environment is the testing environment. If
Ze

spu = 1, we color the digit red, otherwise we color it to be green. In this dataset, the color
(spurious feature) carries extra information about the label not contained in the uncolored
image.

CS-CMNIST dataset (FIIF). We follow the same construction based on [4], except
instead of a binary classification task, we set up a ten-class classification task, where the ten
classes are the ten digits. For each digit class, we have an associated color.10 There are also

10The list of the RGB values for the ten colors are: [0, 100, 0], [188, 143, 143], [255, 0, 0], [255, 215, 0], [0,
255, 0], [65, 105, 225], [0, 225, 225], [0, 0, 255], [255, 20, 147], [160, 160, 160].
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three environments – two training environments containing 20,000 data points each, one test
containing 20,000 points. In the two training environments, the pe is set to 1.0 and 0.9, i.e.,
given the digit label the image is colored with the associated color with probability pe and
with a random color with probability 1− pe. In the testing environment, the pe is set to 0,
i.e., all the images are colored completely at random. In this dataset, the color (spurious
feature) does not carry any extra information about the label that is not already contained
in the uncolored image.

Terra Incognita dataset (FIIF). This dataset is a subset of the Caltech Camera Traps
dataset [12] as formulated in [25]. We set up a ten-class classification task for 3× 224× 224
images - identifying between 9 different species of wild animal and no animal ({ bird, bobcat,
cat, coyote, dog, empty, opossum, rabbit, raccoon, squirrel}). There are four domains - {L100,
L38, L43, L46} - which represents different locations of the cameras in the American Southwest.
For a given location the background never change, except for illumination difference across
the time of day and vegetation changes across seasons. The data is unbalanced in the number
of images per location, distribution of species per location, and distribution of species overall.

COCO dataset (FIIF). We use COCO on colours dataset described in [1] (See the
details in Appendix A.2 of [1]). There are ten object classes and for each object class there is
a majority color associated with it, i.e., an object class assumes the background color assigned
to it with 0.8 probability. At test time, the object backgrounds are colored randomly with
colors different from the ones seen in training.

2.8.2.2. Training and evaluation procedure. Example 1/1S, 2/2S, 3/3S. We follow the
same protocol as was prescribed in [10] for the model selection, hyperparameter selection,
training, and evaluation. For all three examples, the models used are linear. The training loss
is the square error for the regression setting (Example 1/1S), and binary cross-entropy for the
classification setting (Example 2/2S, 3/3S). For the two new approaches, IB-IRM, and IB-
ERM, there is a new hyperparameter γ associated with the Var(Φ) term in the final objective
in equation (2.4.2). We use random hyperparameter search and use 20 hyperparameter
queries and average over 50 data seeds; these numbers are the same as what was used in
[10]. We sample the γ from 1− 10Uniform(−2,0) following the practice in unit test experiments
[10]. Note that the hyperparameters are trained using training environment distribution
data, which is called the train-domain validation set evaluation procedure in [25]. For the
evaluation of performance on Example 1/1s, we reported mean square errors and standard
deviations. For the evaluation of performance on Example 2/2S, Example 3/3s, we reported
classification errors and standard deviations.

AC-CMNIST dataset. We use the default MLP architecture from https://github.
com/facebookresearch/InvariantRiskMinimization. There are two fully connected layers
each with output size 256, ReLU activation, and ℓ2-regularizer coefficient of 1e− 3. These
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layers are followed by the output layer of size two. We use Adam optimizer for training with
a learning rate set to 1e− 3. We optimize the cross-entropy loss function. We set the batch
size to 256. The total number of steps is set to 500. We use grid search to search the following
hyperparameters, λ for IRMv1 penalty, and γ for the IB penalty. For IRM, we need to select
the IRMv1 penalty λ, we set a grid of 25 values uniformly spaced in the interval [1e−1, 1.8e4].
For IB-ERM, we need to select the IB penalty γ, we set a grid of 25 values uniformly spaced
in the interval [1e− 1, 1.8e4]. For IB-IRM, we need to select both λ and γ, we set a 5× 5
uniform grid that searches over [1e− 1, 1.8e4]× [1e− 1, 1.8e4]. Thus for IB-IRM, IB-ERM,
and IRM, we search over 25 hyperparameter values. There are two procedures we tried to
tune the hyperparameters – a) train-domain validation set tuning procedure [25] which takes
samples from the same distribution as train domain and does limited model queries (we set
25 queries), b) oracle test-domain validation set hyperparameter tuning procedure [25], which
takes samples from the same distribution as test domain and does limited model queries
(we set 25 queries). In [7], the authors had used oracle test-domain validation set-based
tuning, which is not ideal and is a limitation of all current approaches on AC-CMNIST. We
used the same procedure in Table 2.4 (5 percent of the total data 50000 follows the test
environment distribution). In Section 2.8.2.3, we show the results for all the methods when
we use train-domain validation set tuning. For the evaluation, we reported the accuracy and
standard deviations (averaged over thirty trials).

CS-CMNIST dataset. We use a ConvNet architecture with three convolutional layers
with feature map dimensions of 64,128 and 256. Each convoluional layer is followed by a
ReLU activation and batch normalization layer. The final output layer is a linear layer with
output dimension equal to the number of classes. We use SGD optimizer for training with a
learning rate set to 1e − 1 and decay every 600 steps. We optimize the cross-entropy loss
function without weight decay. We set the batch size to 128. The total number of steps
is set to 2000. We use grid search to search the following hyperparameters, λ for IRMv1
penalty, and γ for the IB penalty. For IRM, we need to select the IRMv1 penalty λ, we
set a grid of 25 values uniformly spaced in the interval [1e − 1, 1.8e4]. For IB-ERM, we
need to select the IB penalty γ, we set a grid of 25 values uniformly spaced in the interval
[1e− 1, 1.8e4]. For IB-IRM, we need to select both λ and γ, we set a 5× 5 uniform grid that
searches over [1e− 1, 1.8e4]× [1e− 1, 1.8e4]. Thus for IB-IRM, IB-ERM, and IRM, we search
over 25 hyperparameter values. In the paragraph above, we described that for AC-CMNIST
all the procedures only work when using the oracle test-domain validation procedure. In
the results of the CS-CMNIST experiment in the main manuscript, we showed results for
the train domain validation procedure and found that IB-IRM and IB-ERM yield better
performance. For completeness, we also carried oracle test-domain validation procedure-based
hyperparameter tuning for CS-CMNIST and the results are discussed in Section 2.8.2.3. For
the evaluation, we reported accuracy and standard deviations (averaged over five trials). In
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both CMNIST datasets, we had experimented with placing the IB penalty at the output layer
(logits) and the penultimate layer (layer just before the logits), and found that it is much
more effective to place the IB penalty on the penultimate layer. Thus in both the CMNIST
datasets, the results presented use IB penalty on the penultimate layer.

Terra Incognita dataset. We use the pretrained ResNet-50 model as a featurizer that
outputs feature maps of size 2048 for a given image on top of which we add a 1 layer MLP
which makes the classification (2048 → 9). We use a random hyper parameter sweep over 20
random hyperparameter configurations on which we look at the train-domain validation set
to perform model selection, as described in [25]. The distribution of the hyper parameters
are shown in Table 2.5. Results shown in Table 2.4 are for the environment L100 as test
environment, the reported accuracies are averaged over 3 random trial seed. For both the
information bottleneck penalized algorithms (IB-ERM and IB-IRM), we apply the penalty
on the feature map given by the featurizer, conditional on the environment.

Table 2.5. Hyperparameters distributions for random search given included penalty of the
algorithm.

Penalty Parameter Random distribution

All
dropout RandomChoice([0, 0.1, 0.5])
learning rate 10Uniform(−5,−3.5)

batch size 2Uniform(3,5.5)

weight decay 10Uniform(−6,−2)

IRMv1 penalty weight 10Uniform(−1,5)

annealing steps 10Uniform(0,4)

IB penalty weight 10Uniform(−1,5)

annealing steps 10Uniform(0,4)

COCO dataset. Other than the IB penalty, we use the exact same hyperparameters
(default values) and setup as describe in Appendix B.2 of [1] paper and the codebase that
[1] paper provides. For all experiments that involve an IB loss term component, IB penalty
weighting of 1.0 is used and IB penalty weighting is linearly ramped up to 1.0 from epoch 1 to
200. For all experiments that involve an IRM loss term component, IRM penalty weighting
of 1.0 is used, and IRM penalty weighting is linearly ramped up to 1.0 from epoch 1 to 200.
Batch size of 64 is used for all experiments. We do not tune the hyperparameters in this
experiment. Mean and standard deviation of classification accuracy are obtained via 4 seeds
for each method.

2.8.2.3. Supplementary experiments. AC-CMNIST. In the AC-CMNIST dataset, for
completeness, we report the accuracy of the Oracle model, where the Oracle model at train
time is fed images where the background colors do not have any correlation with the label.
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Oracle model achieved a test accuracy 70.39 ± 0.47 percent. In Table 5, we provide the
supplementary experiments for AC-CMNIST carried out with train-domain validation set
tuning procedure [25]. It can be seen that none of the methods work in this case. In Table 6,
we provide the supplementary experiments for AC-CMNIST carried out with test-domain
validation set tuning procedure [25]. In this case, both IB-IRM and IRM perform well.

Method 5% 10% 15% 20%
ERM 17.17± 0.62 18.06± 1.72 18.74± 1.23 19.11± 1.18

IB-ERM 17.69± 0.54 17.80± 1.81 16.27± 1.20 18.18± 1.46
IRM 16.48± 2.50 17.85± 1.67 17.32± 2.12 18.09± 2.78

IB-IRM 18.37± 1.44 17.83± 0.65 18.54± 1.42 19.24± 1.49

Table 2.6. AC-CMNIST. Comparisons of the methods using the train-domain validation set
tuning procedure [25]. The percentages in the columns indicate what fraction of the total
data (50000 points) is used for validation.

Method 5% 10% 15% 20%
ERM 16.84± 0.82 17.01± 0.83 16.79± 0.89 16.27± 0.93

IB-ERM 50.24± 0.47 50.25± 0.46 50.52± 0.45 50.34± 0.56
IRM 66.98± 1.65 67.57± 1.39 67.01± 1.86 67.29± 1.62

IB-IRM 67.67± 1.78 68.22± 1.62 67.56± 1.71 67.24± 1.36

Table 2.7. CS-CMNIST. Comparisons of the methods using the oracle test-domain validation
set tuning procedure [25]. The percentages in the columns indicate what fraction of the total
data (50000 points) is used for validation.

AC-CMNIST. In the CS-CMNIST dataset, for completeness, we report the accuracy
of the Oracle model, which achieved a test accuracy of 99.03 ± 0.08 percent. In Table 7,
we provide the supplementary experiments for CS-CMNIST carried out with train-domain
validation set tuning procedure [25]. In Table 8, we provide the supplementary experiments
for CS-CMNIST carried out with test-domain validation set tuning procedure [25]. In both
cases, both IB-IRM and IB-ERM RM perform well. Unlike AC-CMNIST, in the CS-CMNIST
dataset both the validation procedures lead to a similar performance.

Method 5% 10% 15% 20%
ERM 60.27± 1.21 61.02± 0.59 60.35± 1.01 58.59± 1.67

IB-ERM 71.80± 0.69 71.51± 1.01 71.27± 1.04 70.68± 1.02
IRM 61.49± 1.45 61.74± 1.28 60.01± 0.59 59.96± 0.96

IB-IRM 71.79± 0.70 71.57± 1.01 71.37± 0.62 70.65± 0.90

Table 2.8. CS-CMNIST. Comparisons of the methods using the train-domain validation set
tuning procedure [25]. The percentages in the columns indicate what fraction of the total
data (50000 points) is used for validation.
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Method 5% 10% 15% 20%
ERM 61.27± 1.40 61.02± 1.59 60.35± 1.01 58.59± 1.67

IB-ERM 71.65± 0.76 71.68± 1.23 71.27± 0.89 70.07± 1.18
IRM 62.00± 1.60 62.01± 1.33 60.26± 0.51 59.96± 0.96

IB-IRM 71.90± 0.78 71.07± 0.95 71.18± 0.80 70.75± 1.00

Table 2.9. CS-CMNIST. Comparisons of the methods using the oracle test-domain validation
set tuning procedure [25]. The percentages in the columns indicate what fraction of the total
data (50000 points) is used for validation

IRM penalty

Example 1

38

29

27

31

0.46 0.46

0.380.02

0.31 0.34

0.18

IB
 p

en
al

ty

(On, Off)

(On, On)(Off, On)

IRM penalty

(On, Off)

(On, On)(Off, On)

IB
 p

en
al

ty

IRM penalty

(On, Off)

(On, On)(Off, On)

IB
 p

en
al

ty 0.27

Example 2 Example 3

Fig. 2.4. Illustrating the impact of the IB and IRM penalty on linear unit tests [10]

Ablation to understand the role of invariance penalty and information bottle-
neck. In the main body, we compared IB-IRM, IB-ERM, IRM, and ERM with the penalty
of the respective methods tuned using the validation procedures from [25]. In this section, we
carry out an ablation analysis on linear unit tests [10] to understand the role of the different
penalties. In Figure 2.4, for each example we consider the setting with six environments and
show four points on a square with corresponding performance values. The bottom corner
corresponds to ERM when both penalties are turned off, top corner is when both penalties
are turned on, and the other two corners are when one of the penalties are on. In Example
1, which corresponds to PIIF setting, we find that IRM penalty alone helps the most. In
Example 2, which corresponds to FIIF setting, we find that IB penalty helps the most. In
Example 3, which again corresponds to PIIF, we find that both penalties help.

2.8.2.4. Compute description. Our computing resource is one Tesla V100-SXM2-16GB
with 18 CPU cores.
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2.8.2.5. Assets used and the license details. In this work, we mainly relied on the following
github repositories – Domainbed11, IRM 12, linear unit tests13. All the repositories mentioned
above use the MIT license. We used the standard MNIST dataset 14 to generate the colored
MNIST datasets. Other datasets we used are synthetic.

11https://github.com/facebookresearch/DomainBed based on [25]
12https://github.com/facebookresearch/InvariantRiskMinimization based on [7]
13https://github.com/facebookresearch/InvarianceUnitTests based on [10]
14http://yann.lecun.com/exdb/mnist/
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2.8.3. Remark on the linear general position assumption and its
implications on support overlap

In Theorem 1 that we informally stated from [7], there is one more technical condition on
that we explain below. We also explain how this assumption does not restrict the support of
the latents Ze from changing arbitrarily.
Assumption 8. Linear general position. A set of training environments Etr lie in a
linear general position of degree r if |Etr| > d − r + d

r
for some r ∈ N and for all non-zero

x ∈ Rd

dim
span

({
EXe [XeXeT]x− EXeϵe [Xeϵe]

}
e∈Etr

) > d− r. (2.8.2)

The above assumption merely requires non-co-linearity of the training environments
only. The set of matrices EXe [XeXeT] not satisfying this assumption have a zero measure
(Theorem 10 [7]). Consider the case when S is identity and observe that the above assumption
translates to only a restriction on co-linearity of EZe [ZeZeT], where Ze = (Ze

inv, Ze
spu). Assume

that EZe [ZeZeT] is positive definite. We explain how this Assumption 8 does not constraint
the support of the latent random variables Ze. From the set of matrices EZe [ZeZeT] and
EZe [Zeϵe] that satisfy the Assumption 8, we can construct another set of matrices with norm
one that satisfy the above Assumption 8. Define a random variable Z̃e = Ze

c
and the matrices

corresponding to it also satisfy the Assumption 8, where c =
√
∥EZe [ZeZeT]∥.

For all non-zero z ∈ R,

dim
span

({
EZe [ZeZeT]z − EZeϵe [Zeϵe]

}
e∈Etr

) > d− r =⇒

dim
span

({
EZ̃e [Z̃eZ̃eT]z̃ − EZ̃eϵe [Z̃eϵe]

}
e∈Etr

) > d− r,

(2.8.3)

where z̃ = zc. Define Σe = E[ZeZeT] (Σ̃e = E[Z̃eZ̃eT]) and ρe = E[Zeϵe] (ρ̃e = E[Z̃eϵe]).
Observe that ∥Σ̃e∥ = 1. So far we established that if there exist a set of matrices {Σe, ρe}e∈Etr

satisfying the linear general position assumption (Assumption 8), then it also implies that
there exist a set of matrices {Σ̃e, ρ̃e}e∈Etr , where ∥Σ̃e∥ = 1, that satisfy the linear general
position assumption (Assumption 8). Next, we will show that the set of matrices {Σ̃e}e∈Etr ,
{ρ̃e}e∈Etr can be constructed from random variables with bounded support. We will show that
Σ̃e can be constructed by transforming a uniform random vector. Define a uniform random
vector Ke, where each component Ke

i ∼ Uniform[−
√

3,
√

3]. Define Z̄e = BKe. Observe that

E[Z̄eZ̄e,T] = BBt. (2.8.4)
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Since every positive definite matrix can be decomposed as BBt, we can use matrix B to
construct the required Σ̃e. Since ∥Σ̃e∥ = 1, we get ∥BBt∥| = 1 =⇒ ∥B∥ = 1. Also,
∥Z̄e∥ ≤ ∥B∥∥Ke∥ = ∥Ke∥. Having fixed the matrix B above, we use it to set the correlation
E[Keϵe]

BE[Keϵe] = ρ̃e =⇒ E[Keϵe] = B−1ρ̃e (2.8.5)

Thus we can conclude without loss of generality that from any set of matrices {Σe, ρe}e∈Etr

satisfying the linear general position assumption, we can construct random variables with
bounded support that satisfy the linear general position assumption. By solving IRM
(equation (2.2.3)) over such training environments with bounded support, we can still recover
the ideal invariant predictor that solves the OOD generalization problem in equation (2.2.1)
(i.e., ∄e ∈ Eall for which risk > σ2

sup). The above conditions show that we can have the data
in Etr come from a region with bounded support, and the environments in Eall \ Etr are not
required to satisfy support overlap with data from Etr, which is in stark contrast to the linear
classification results that we showed.
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2.8.4. Notations and proof of Theorem 2 (impossibility of guaran-
teed OOD generalization for linear classification)

Notations for the proofs. We describe the common notations used in the proofs that
follow. We also remind the reader of the notation from the main manuscript for convenience.
◦ is used to denote the composition of functions, · is used for matrix multiplication. Pe

denotes the probability distribution over the input feature values Xe, and the labels Y e

in environment e. Ze describes the latent variables decomposed into (Ze
inv, Ze

spu). S is the
matrix relating Xe and Ze and Xe = S(Ze). w denotes a linear classifier, Φ denotes the
representation map that transforms input data into a representation, which is then fed to the
classifier. I is the indicator function, which takes a value 1 when the input is greater than or
equal to zero, and 0 otherwise. sgn is the sign function, which takes a value 1 when the input
is greater than or equal to zero, and −1 otherwise. In all the results, except for Theorem 5,
we use ℓ as 0-1 loss for classification, and square loss for regression. For a discrete random
variable X ∈ Rd, the support is defined as X = {x ∈ Rd | PX(x) > 0}, where PX(x) is the
probability of X = x. For a continuous random variable X ∈ Rd, the support is defined as
X = {x ∈ Rd | dPX(x) > 0}, where dPX(x) is the Radon-Nikodym derivative of PX w.r.t the
Lebesgue measure over the completion of the Borel sets in Rd [9]. Ze, Ze

inv, Ze
spu, and X e are

the support of Ze, Ze
inv, Ze

spu, and Xe respectively in environment e.
Remark on Assumption 2. In all the proofs that follow, we assume that the dimension

of invariant feature m is greater than or equal to 2. Also, all the components w∗
inv are non-zero

without loss of generality (if some component was zero, then such a latent can be a part of
Ze

spu. X = Rd and Y = {0,1} for classification and Y = R for regression. Before we can prove
Theorem 2, we need to prove intermediate lemmas needed as preliminary results for it.

Define

Winv =
{

(winv,0) ∈ Rm+o
∣∣∣ ∥winv∥ = 1, ∀zinv ∈ ∪e∈EtrZe

inv, I
(
w∗

inv ·zinv
)

= I
(
winv ·zinv

)}
(2.8.6)

This set Winv defines a family of hyperplanes equivalent to the labelling hyperplane w∗
inv

on the training environments. Define a classifier g∗ : X → Y as

g∗ = I ◦
((

w∗
inv,0

)
◦ S−1

)
(2.8.7)

The classifier g∗ takes Xe as input and outputs I(w∗
inv · Ze

inv).
Lemma 1. If we consider the set of all the environments that follow Assumption 2, then the
classifier based on the labelling hyperplane g∗ solves equation (2.2.1) and achieves a risk of q

in each environment.
Proof of Lemma 1. Observe that g∗ is the classifier one would get by solving for the

Bayes optimal classifier on each environment. The justification goes as follows. If w∗
inv ·Ze

inv ≥ 0,
then P(Y e = 0|Xe) < P(Y e = 1|Xe) (since q < 1

2), which implies the prediction is 1. If
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w∗
inv · Ze

inv < 0, then P(Y e = 1|Xe) < P(Y e = 0|Xe), which implies the prediction is 0. We
show that g∗ achieves an error of q in each environment,

Re(g∗) = E
[
Y e ⊕ I(w∗

inv · Ze
inv)

]
= E

[(
I(w∗

inv · Ze
inv)⊕N e

)
⊕ I(w∗

inv · Ze
inv)

]
= q.

(2.8.8)

Define F to be the set of all the maps Rd → Y . From the equation (2.8.8) we get,

∀e ∈ Eall,∀f ∈ F , Re(f) ≥ q,

=⇒ ∀f ∈ F , max
e∈Eall

Re(f) ≥ q,

=⇒ min
f∈F

max
e∈Eall

Re(f) ≥ q.

(2.8.9)

g∗ achieves the lower bound above as it achieves an error of q in each environment. This
completes the proof. Λ

We relax the Assumption 2 to the case where we allow for spurious features to carry extra
information about the label.
Assumption 9. Linear classification structural equation model. (PIIF) In each
e ∈ Eall,

Y e ← I
(
w∗

inv · Ze
inv

)
⊕N e, N e ∼ Bernoulli(q), q <

1
2 , N e ⊥ Ze

inv,

Xe ← S
(
Ze

inv, Ze
spu

)
.

(2.8.10)

Observe that the SEM above in Assumption 9 is analogous the the SEM in Assumption 1.
Also, observe that in the above SEM ∃ e such that N e ̸⊥ Ze

spu, which makes the invariant
features partially informative about the label. We show that the Lemma 1 extends to the
above SEMs (Assumption 9) as well.
Lemma 2. If we consider the set of all the environments that follow Assumption 9, then g∗

solves equation (2.2.1) and achieves a risk of q in each environment.
Proof of Lemma 2. Consider the environment e′ ∈ Eall, where N e′ ⊥ (Ze′

inv, Ze′
spu).

Observe that in this environment g∗ is a Bayes optimal classifier and achieves a risk value of
q.

∀f ∈ F , Re′(f) ≥ q =⇒ ∀f ∈ F , max
e∈Eall

Re(f) ≥ q,

=⇒ min
f∈F

max
e∈Eall

Re(f) ≥ q
(2.8.11)

g∗ achieves the lower bound above as it achieves an error of q in each environment. This
completes the proof. Λ
Lemma 3. If Assumption 2, 3, and 7 hold, and m ≥ 2, then the set Winv (eq. (2.8.6))
consists of infinitely many hyperplanes that are not aligned with w∗

inv.
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Proof of Lemma 3. For each zinv ∈ ∪e∈EtrZe
inv define y∗ = sgn(w∗

inv · zinv).
From the definition of Inv-Margin in Assumption 7, it follows that ∃ c > 0 such that

∀zinv ∈ ∪e∈EtrZe
inv

y∗
(
w∗

inv · zinv
)
≥ c. (2.8.12)

Next, we choose a γ ∈ Rm that is not in the same direction as w∗
inv, i.e., ∄ a ∈ R such that

γ = aw∗
inv (such a direction always exists since m ≥ 2). Define the margin of w∗

inv + γ w.r.t
labels y∗ from w∗

inv

y∗
(
w∗

inv · zinv + γ · zinv
)
. (2.8.13)

Using Cauchy-Schwarz inequality we get

|y∗(γ · zinv)| = |γ · zinv| ≤ ∥γ∥∥zinv∥. (2.8.14)

Since the support of the invariant features in training set ∪e∈EtrZe
inv is bounded, we set the

magnitude of γ sufficiently small to control y∗
(
γ ·zinv

)
. Since ∪e∈EtrZe

inv, is bounded ∃ zsup > 0
such that ∀zinv ∈ ∪e∈EtrZe

inv, ∥zinv∥ < zsup. If ∥γ∥ ≤ c
2zsup , then from equation (2.8.14), we get

that for each zinv ∈ ∪e∈EtrZe
inv, |y

(
γ · zinv

)
| ≤ c

2 . Using this we get for each zinv ∈ ∪e∈EtrZe
inv

y∗
((

w∗
inv + γ

)
· zinv

)
= y∗

(
w∗

inv · zinv
)

+ y∗
(
γ · zinv

)
≥ y∗winv · zinv − |y∗γ · zinv| ≥

c

2 . (2.8.15)

From equation (2.8.12) and (2.8.15), we have that

sgn
(
(w∗

inv + γ) · zinv
)

= sgn
(
w∗

inv · zinv
)

=⇒ I
(
(w∗

inv + γ) · zinv
)

= I
(
w∗

inv · zinv
)
.

The same condition would also hold if we normalized the classifier. As a result,( 1
∥w∗

inv + γ∥
(w∗

inv + γ),0
)
∈ Winv.

Also, observe that we can construct infinite such vectors that belong toWinv. A simple way to
check this this is consider γ

′ = θγ, where θ ∈ (0,1). The same condition in equation (2.8.15)
also holds with γ replaced with γ

′ . We define this set as follows

Winv(γ) =
{( 1
∥w∗

inv + θγ∥
(w∗

inv + θγ),0
)
∈ Rm+o

∣∣∣ θ ∈ [0,1]
}

, (2.8.16)

and from the reasoning presented above it follows that Winv(γ) ⊆ Winv. This completes
the proof.

□

We restate Theorem 2 for convenience.
Theorem 6. Impossibility of guaranteed OOD generalization for linear classifi-
cation. Suppose each e ∈ Eall follows Assumption 2. If for all the training environments Etr,
the latent invariant features are bounded and strictly separable, i.e., Assumption 3 and 7 hold,
then every deterministic algorithm fails to solve the OOD generalization (eq. (2.2.1)), i.e.,
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for the output of every algorithm ∃ e ∈ Eall in which the error exceeds the minimum required
value q (noise level).

Proof of Theorem 6. Consider any algorithm, it takes the data from all the training
environments as inputs and outputs a classifier. We write the algorithm as a map F :
∪∞

i=1

(
X × Y

)i

. . . |Etr| times ∪∞
i=1

(
X × Y

)i

→ YX , where F takes as input data from
each of the training environments and outputs a classifier, which takes as input a data
point from X and outputs the label in Y . For datasets {De}e∈Etr from the different training
environments the output of the learner is F

(
{De}e∈Etr). For simplicity of notation, let us

denote F
(
{De}e∈Etr) as f . We first show that if f ̸= g∗, where g∗ is defined in equation

(2.8.7), then the learner cannot be OOD optimal. Take the point x where the f ̸= g∗. Let
z = S−1(x). Define a test environment where Ze = z occurs with probability 1. In such an
environment, the error achieved by f would be 1− q (E[f ⊕ g∗ ⊕N e] = E[1⊕N e] = 1− q).
As a result, f cannot solve equation (2.2.1). This observation combined with Lemma 1 leads
us to the conclusion that f = g∗ is necessary and sufficient to solve equation (2.2.1) when
Eall follow Assumption 2.

We define a family of classifiers using Winv (from eq. (2.8.6)) as follows

W†
inv =

{
I ◦

(
(w,0) ◦ S−1

) ∣∣∣∣ (w,0) ∈ Winv

}
. (2.8.17)

Next, we would like to show that the setW†
inv consists of infinitely many distinct functions.

Choose any w
′
inv such that (w′

inv,0) ∈ Winv and w
′
inv ̸= w∗

inv. Define g
′ = I ◦

(
(w′

inv,0) ◦S−1
)

.
We will next show that g∗ ̸= g

′ , where g∗ was defined in equation (2.8.7).
Define w∗

inv

w
′
inv

 zinv =
 1
−1

 . (2.8.18)

There are two possibilities a) w
′
inv is not aligned with w∗

inv in which case the rank of
the matrix in the above equation (2.8.18) is two and as a result the range space of the
matrix spans all two-dimensional vectors, b) w

′
inv is aligned with w∗

inv but since ∥w′
inv∥ = 1,

w
′
inv = −w∗

inv in which case zinv = w∗
inv solves the above equation (2.8.18). In both the cases

the equation (2.8.18) has a solution. Let the solution of the above equation (2.8.18) be z̃inv.
Define x̃ = S · (z̃inv,0). Therefore, from equation (2.8.18) it follows that g∗(x̃) ̸= g

′(x̃). See
the simplification below for the justification.

g∗(x̃) = I
(

(w∗
inv,0) · S−1(x̃)

)
= I(w∗

inv · z̃inv) = 1

g
′(x̃) = I

(
(w′

inv,0) · S−1(x̃)
)

= I(w′

inv · z̃inv) = 0
(2.8.19)

We showed above that g∗ ∈ W†
inv and g

′ ∈ W†
inv are two distinct functions. Recall in

Lemma 4, we showed Winv has infinitely many distinct hyperplanes. We can select any pair
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of hyperplanes Winv, for the corresponding functions in the set W†
inv the condition in equation

(2.8.18) continues to hold. Thus we can conclude that there are infinitely many distinct
functions in W†

inv.
Recall we described above that an algorithm can successfully solve equation (2.2.1), if

and only if the output f = g∗. Observe that the same exact training data {De}e∈Etr can be
generated by any other labelling hyperplane w

′
inv ̸= w∗

inv, where (w′
inv,0) ∈ Winv (this follows

from the definition ofWinv in equation (2.8.6)). Define g
′ = I◦

(
(w′

,0)◦S−1
)

, where g
′ ∈ W†

inv.
From the justification above, we know that g

′ ̸= g. Since g
′ ̸= g∗ the algorithm can only

be successful on one of the two labelling hyperplanes w
′
inv or w∗

inv. In fact, since we showed
that there are infinitely many possible distinct hyperplanes in Winv, the algorithm can only
succeed on one of them. To summarize, the algorithm fails almost everywhere on the entire
set, Winv, of equivalent generating models. This completes the proof. Λ

Remark on extension under partially informative invariant features, i.e., As-
sumption 9. The impossibility result extends to the case when the environments follow
Assumption 9. The first thing to note is that from Lemma 2, g∗ continues to be the OOD
optimal solution hyperplane. In the above proof, we had shown the construction of how there
are infinitely many possible equally good hyperplanes that could have generated the data. To
arrive at those hyperplanes, we relied on Lemma 3, where we showed that there are multiple
candidate hyperplanes that could have generated the same training data. In the lemma, we
only exploited the separability of latent invariant features and boundedness. If we continue
to assume separability and boundedness for invariant features, then the result from Lemma 3
can be used in this case as well. As a result, we can continue to use the claim that there are
multiple equally good candidate hyperplanes that the algorithm cannot distinguish. Thus
the impossibility result extends to this setup too.

Remark on inveribility of S. The entire proof only requires us to assume to be able
to have invertibility on the latent invariant features, i.e., we should be able to recover Ze

inv

from Xe. Therefore, Theorem 2 extends to matrices S that are only invertible upto the Ze
inv.

Remark on impossibility under continuous random variable assumption. In
the proof, we showed that if the test environment e places all the mass on the solution of
equation (2.8.18), then the algorithm fails. In the setting, where we are only allowed to work
with continuous random variables, can we continue to claim impossibility? The answer is
yes. The reason is quite simple, we can instead of using the solution to equation (2.8.18)
construct a small ball around that region. Since the solution to equation (2.8.18) that we
constructed is in the interior of the half-spaces such an argument works.

Remark on multi-class classification. We describe a natural extension of the model
in Assumption 2 to k-class classification.

58



Assumption 10. Linear classification structural equation model (FIIF) for multi-
class classification. In each e ∈ Eall

Y e ← arg max(W ∗
inv · Ze

inv)

Xe ← S
(
Ze

inv, Ze
spu

)
,

(2.8.20)

where W ∗
inv ∈ Rk×m, arg max is taken over the k rows to generate the label Y e, S ∈ Rd×d.

We can add noise as well in the above SEM, which uniformly at random switches the class.
The key geometric intuition for the impossibility result that we proved above, which was
illustrated in Figure 2.1, carries over to this case provided the label generating hyperplane
separates the supports of adjacent classes with a finite margin. Following the same geometric
intuition, we can generalize the formal impossibility proof to this case as well for the SEM in
Assumption 10.
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2.8.5. Proof of Theorem 3: sufficiency and insufficiency of ERM
and IRM

Lemma 4. If Assumptions 2, 4, 7 hold, then there exists a classifier which puts a non-
zero weight on the spurious feature and continues to be Bayes optimal in all the training
environments.

Proof of Lemma 4. We will follow the construction based on Lemma 3’s proof.
Choose an arbitrary non-zero vector γ ∈ Ro. We will derive a bound on the margin of

(w∗
inv, γ). Consider a zinv ∈ ∪e∈EtrZe

inv and a zspu ∈ ∪e∈EtrZe
spu. Define y∗ = sgn(w∗

inv · zinv). The
margin (w∗

inv, γ) at this point (zinv, zspu) with respect to y∗ is defined as

y∗
(
w∗

inv · zinv
)

+ y∗
(
γ · zspu

)
. (2.8.21)

Using Cauchy-Schwarz inequality, we get

|y∗
(
γ · zspu

)
| = |γ · zspu| ≤ ∥γ∥∥zspu∥. (2.8.22)

Since the train support of spurious feature is bounded we can set the magnitude of γ

sufficiently small to control y∗
(
γ · zspu

)
. If ∥γ∥ ≤ c

2zsup , then |γ · zspu| ≤ c
2 , where zsup satisfies

the following condition – for each z ∈ ∪e∈EtrZe
spu and ∥z∥ ≤ zsup. We can use this to find a

bound on the margin as follows. Recall from equation (2.8.12) we have

y∗
(
w∗

inv · zinv
)
≥ c. (2.8.23)

We use the condition |γ · zspu| ≤ c
2 in the simplification below

y∗
(
w∗

inv · zinv
)

+ y∗
(
γ · zspu

)
≥ c− |γ · zspu| ≥

c

2 . (2.8.24)

From the above equation it follows that sgn
(
(w∗

inv, γ) · (zinv, zspu)
)

= sgn
(
(w∗

inv,0) ·
(zinv, zspu)

)
=⇒ I

(
(w∗

inv, γ) · (zinv, zspu)
)

= I
(
(w∗

inv,0) · (zinv, zspu)
)
. This condition holds

for each zinv ∈ ∪e∈EtrZe
inv and a zspu ∈ ∪e∈EtrZe

spu. We use this condition to compute the error
of a classifier based on (w∗

inv, γ) below. Define g∗
spu = I ◦ (w∗

inv, γ) ◦ S−1. The error achieved by
g∗

spu is

Re(g∗
spu) = E

[
Y e ⊕ I

(
(w∗

inv, γ) · (zinv, zspu)
)]

= E
[
I
(
(w∗

inv,0) · (zinv, zspu)
)
⊕N e ⊕ I

(
(w∗

inv, γ) · (zinv, zspu)
)]

= E
[
N e

]
= q.

(2.8.25)

The same calculation as above equation (2.8.25) holds in all the training environments. Thus
g∗

spu achieves the minimum error possible q for all the training environments e ∈ Etr. Λ
We restate Theorem 3 for convenience.
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Theorem 7. Sufficiency and Insufficiency of ERM and IRM. Suppose each e ∈ Eall

follows Assumption 2. Assume that a) the invariant features are strictly separable, bounded,
and satisfy support overlap, b) the spurious features are bounded (Assumptions 3-5, 7 hold).
• Sufficiency: If the spurious features satisfy support overlap (Assumption 6 holds),

then both ERM and IRM solve the OOD generalization problem (eq. (2.2.1)). Also, there
exist ERM and IRM solutions that rely on the spurious features and still achieve OOD
generalization.
• Insufficiency: If spurious features do not satisfy support overlap, then both ERM and

IRM fail at solving the OOD generalization problem (eq. (2.2.1)). Also, there exist no such
classifiers that rely on the spurious features and still achieve OOD generalization.

Proof of Theorem 7. Let us begin with the first part of the Theorem. We first show
that there exist solutions to ERM and IRM that rely on spurious features that also achieve
OOD generalization (that is solve (2.2.1)). Since Assumptions 2, 4, 7, hold we can use Lemma
4. From Lemma 4, it follows that for each zinv ∈ ∪e∈EtrZe

inv and for each zspu ∈ ∪e∈EtrZe
inv:

I
(
(w∗

inv, γ) · (zinv, zspu)
)

= I
(
(w∗

inv,0) · (zinv, zspu)
)
. (2.8.26)

From Assumption 5 and 6 it follows that for each zinv ∈ ∪e∈Eall
Ze

inv and for each zspu ∈
∪e∈Eall

Ze
inv.

I
(
(w∗

inv, γ) · (zinv, zspu)
)

= I
(
(w∗

inv,0) · (zinv, zspu)
)

(2.8.27)

Therefore, the error of the classifier g∗
spu = I ◦ (w∗

inv, γ) ◦ S−1 in each environment e ∈ Eall is

Re(g∗
spu) = E

[
Y e ⊕ I

(
(w∗

inv, γ) · (zinv, zspu)
)]

= E
[
I
(
(w∗

inv,0) · (zinv, zspu)
)
⊕N e ⊕ I

(
(w∗

inv, γ) · (zinv, zspu)
)]

= E
[
N e

]
= q.

(2.8.28)

g∗
spu is Bayes optimal on each environment e ∈ Eall. Therefore, g∗

spu also solves equation (2.2.1).
Since g∗

spu is optimal in all the environments, it also solves ERM as it also minimizes the
sum of risks across training environments. g∗

spu is also a valid invariant predictor since it is
simultaneously optimal across all the environments. Since g∗

spu achieves an average error of q

across training environments, each solution to ERM and IRM has to achieve an error of q

in all the training environments as well. Since the solution to ERM and IRM achieves an
error of q it cannot differ from g∗ at any point in the training support. This argument holds
in a pointwise sense when Ze

inv is a discrete random variable, otherwise, say when Ze
inv is a

continuous random variable this argument can only be violated over a set of measure zero.15

Owing to the support overlap between Etr and Eall, each solution to ERM and IRM continues
to succeed in Eall. This completes the first part of the proof.

15The continuous random variable case can give rise to some pathological shifts. We show later in the proof
of Theorem 4 as to why we do not need to worry about these pathological shifts.
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We now move to the next part of the theorem, where the spurious features do not satisfy
support overlap assumption (Assumption 6). Consider a linear classifier that the method
learns I ◦ w, where I is composed with a linear function. The classifier operates on x, and
we get I(w · x) and since x = Sz (from Assumption 2) we can write this as I(w · S(z)). To
simplify notation, we call I ◦ w ◦ S = I ◦ w̃. Our goal is to show that if w̃ assigns a non-zero
weight to the spurious features, then I ◦ w ◦ S cannot solve the OOD generalization problem
(eq. (2.2.1)). We write w̃ = (w̃inv, w̃spu). Suppose w̃spu ̸= 0 and yet the classifier solves the
problem in equation (2.2.1). Consider the classifier that generates the data (w∗

inv,0). Pick any
point zinv ∈ ∪e∈Eall

Ze
inv and pick any non-zero ze

spu ∈ Ro. Call z = (zinv, zspu) We divide the
analysis into two cases.

Case 1: I
(
(w̃inv, w̃spu) · z

)
̸= I

(
(w∗

inv, 0) · z
)
. In this case, (w̃inv, w̃spu) cannot solve equation

(2.2.1) as there exists a test environment where we have all the mass on z.
Case 2: I

(
(w̃inv, w̃spu) · z

)
= I

(
(w∗

inv, 0) · z
)
. Observe that since w̃spu ≠ 0, we can increase

or decrease one of the components of zspu corresponding to a non-zero w̃spu until the two
classifiers disagree in which case we get Case 1. Note that since Assumption 6 does not hold,
we are allowed to change zspu arbitrarily.

Thus we have established that a classifier cannot be OOD optimal if it assigns a non-zero
weight to the spurious feature. As a result, the classifier from the first part g∗

spu which assigned
non-zero weight to spurious features cannot be OOD optimal without the Assumption 6.
However, g∗

spu continues to be in the solution space of both ERM and IRM as it is still Bayes
optimal across all the train environments, which is why both ERM and IRM fail. At this
point the proof of the statement of theorem is complete. However, we give a characterization
of optimal solutions in the next paragraph.

Now let us consider any classifier in w ∈ Winv (from equation (2.8.6)) written as w =
(winv,0). For such a classifier by definition it is true that for each zinv ∈ ∪e∈EtrZe

inv, I
(
winv·zinv

)
=

I
(
w∗

inv · zinv
)
. From Assumption 5 it follows that for each zinv ∈ ∪e∈Eall

Ze
inv, I

(
winv · zinv

)
=

I
(
w∗

inv ·zinv
)

and thus the classifier continues to achieve an error of q on all the test environments.
Thus we can conclude that I ◦w ◦ S−1 is OOD optimal. Therefore, all the elements in the set
W†

inv (from eq. (2.8.17)) are OOD optimal.
Λ

Remark on invertibility of S. The proof extends to the case when we can invert and
recover entire Ze

inv and also recover at least one component of the spurious features Ze
spu.

Remark on failure of ERM and IRM under continuous random variable
assumption. In the proof, we showed that if the test environment e places all the mass on
the solution to Case 1, then the algorithm fails. In the setting, where we are only allowed to
work with continuous random variables, can we continue to make the claim for impossibility?
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The answer is yes. The reason is quite simple, we can instead of using the solution to Case 1
construct a small ball around that region, where the classifiers continue to disagree.

Remark on multi-class classification. We extend the result to the above SEM in
Assumption 10. The reason ERM and IRM fail in this case is two fold – a) there exists a
hyperplane that perfectly separates the support of the invariant features with a finite margin
and b) support of spurious features are allowed to change. In the multi-class case, we can use
the same reasoning – if there is a hyperplane that perfectly separates for adjacent classes,
ERM and IRM continue to fail as long as the support of spurious features is allowed to
change.
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2.8.6. Proof of Theorem 4: IB-IRM and IB-ERM vs. IRM and
ERM

We now lay down some properties of the entropy of discrete random variables and in
parallel also lay down the properties of differential entropy of continuous random variables.
Recall that a discrete random variable has a non-zero probability at each point in its support
and a continuous random variable has a zero probability (and a positive density) at each
point in the support.

The entropy or the Shannon entropy of a discrete random variable X ∼ PX with support
X is defined as

H(X) = −
∑
x∈X

PX(X = x) log
(
PX(X = x)

)
. (2.8.29)

The differential entropy of a continuous random variable X ∼ PX with support X is given
as follows

h(X) = −
∫

x∈X
log

(
dPX(x)

)
dPX(x), (2.8.30)

where dPX(x) is the Radon-Nikodym derivative of PX w.r.t the Lesbegue measure.
Lemma 5. If X and Y are discrete scalar valued random variables that are independent,
then

H(X + Y ) ≥ max
{

H(X), H(Y )
}

.

Proof of Lemma 5. Define Z = X + Y .

H(Z|X) = −
∑
x∈X

PX(x)
∑
z∈Z

PZ|X(Z = z|X = x) log
(
PZ|X(Z = z|X = x)

)

= −
∑
x∈X

PX(x)
∑
z∈Z

PY |X(Y = z − x|X = x) log
(
PY |X(Y = z − x|X = x)

)

= −
∑
x∈X

PX(x)
∑
z∈Z

PY |X(Y = z − x|X = x) log
(
PY |X(Y = z − x|X = x)

)
(use X ⊥ Y )

= −
∑
x∈X

PX(x)
∑
z∈Z

PY (Y = z − x) log
(
PY (Y = z − x)

)
= H(Y )

(2.8.31)

I(Z; X) = H(Z)−H(Z|X) = H(X + Y )−H(Y )

I(Z; Y ) = H(Z)−H(Z|Y ) = H(X + Y )−H(X)
(2.8.32)
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From equation (2.8.32) and the property of mutual information that I(Z; X) ≥
0, I(Z; Y ) ≥ 0 it follows that

H(X + Y ) ≥ H(Y ), H(X + Y ) ≥ H(X) =⇒ H(X + Y ) ≥ max{H(X),H(Y )}. (2.8.33)

This completes the proof. Λ
Lemma 6. If X and Y are continuous scalar valued random variables that are independent,
then

h(X + Y ) ≥ max
{

h(X), h(Y )
}

.

Proof of Lemma 6. Define Z = X + Y .

h(Z|X) = EPX

[
EPZ|X

[
log

(
dPZ|X(Z = z|X = x)

)]]
= EPX

[
EPY |X

[
log

(
dPY |X(Y = z − x|X = x)

)]]
(use X ⊥ Y )

= h(Y )

(2.8.34)

Note that I(Z; X) ≥ 0 =⇒ h(Z) ≥ h(Z|X). Combining this with the above equation
(2.8.34) we get

h(X + Y ) ≥ h(Y ). (2.8.35)

From symmetry it follows that h(X + Y ) ≥ h(X). This completes the proof. Λ
Lemma 7. If X and Y are discrete scalar valued random variables that are independent with
the supports satisfying 2 ≤ |X | <∞, 2 ≤ |Y| <∞, then

H(X + Y ) > max
{

H(X), H(Y )
}

.

Proof of Lemma 7. Suppose |X | = {xmin, . . . , xmax} and Y = {ymin, . . . , ymax}. The
smallest value of X + Y is xmin + ymin and the largest value is xmax + ymax. Suppose that the
inequality in the claim is not true in which case from Lemma 5 it follows H(X + Y ) = H(X)
or H(X + Y ) = H(Y ). Suppose H(X + Y ) = H(X), then from equation (2.8.32) it follows
that I(X + Y ; Y ) = 0 =⇒ X + Y ⊥ Y . Observe that if Z = xmax + ymax =⇒ Y = ymax.
Therefore, P(Y = ymax|Z = xmax + ymax) = 1. However, P(Y = ymax) ̸= 1 as the support of Y

has at least two elements. This contradicts X + Y ⊥ Y . As a result, H(X + Y ) ̸= H(X). We
can symmetrically show that H(X + Y ) ̸= H(Y ). Combining this with Lemma 5, it follows
that H(X + Y ) > max{H(X), H(Y )}. Λ
Lemma 8. If X and Y are continuous scalar valued random variables that are independent
and have a bounded support, then

h(X + Y ) > max
{

h(X), h(Y )
}
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Proof of Lemma 8. The steps of the proof are similar to Lemma 7. Suppose the inequality
in the claim is not true in which case from Lemma 6 it follows that either h(X +Y ) = h(X) or
h(X+Y ) = h(Y ). Suppose h(X+Y ) = h(X) which implies I(X+Y ; Y ) = 0 =⇒ X+Y ⊥ Y .
The support of X can be written in the form of union of intervals. Suppose we consider the
rightmost interval and we write it as [xmax−∆, xmax]. Similarly for Y , we write the rightmost
interval as [ymax −∆, ymax]. 16 Define an event M : xmax + ymax − δ ≤ X + Y ≤ xmax + ymax.
If M occurs, then Y ≥ ymax − δ and X ≥ xmax − δ.

PX(X ≤ xmax − δ|M) = 0

PY (Y ≤ ymax − δ|M) = 0
(2.8.36)

If δ < ∆ we know that
PX(X ≤ xmax − δ) > 0

PY (Y ≤ ymax − δ) > 0
(2.8.37)

If X + Y ⊥ Y then PY (Y ≤ ymax − δ) = PY (Y ≤ ymax − δ|M), which is not the case from
the above equations (2.8.36) and (2.8.37). Thus X + Y ̸⊥ Y =⇒ I(X + Y ; Y ) > 0 =⇒
h(X + Y ) > h(X). We can say the same for Y and conclude that h(X + Y ) > h(Y ). This
completes the proof. Λ

Theorem 4 has two versions – one for discrete random variables, and the other for
continuous random variables. We discuss the discrete random variable case first as its easier
to understand and then move to the continuous random variable case.

2.8.6.1. Discrete random variables. In this section, we assume that in each e ∈ Eall, random
variables Ze

inv,Z
e
spu, N e, W e in Assumption 8 are discrete. We formulate the optimization in

terms of Shannon entropy as follows.

min
w∈Rk×r,Φ∈Rr×d

1
|Etr|

∑
e

He
(
w · Φ)

s.t. 1
|Etr|

∑
e

Re
(
w · Φ

)
≤ r∗

w ∈ arg min
w̃∈Rk×r

Re(w̃ · Φ)

(2.8.38)

Note that the only difference between equation (2.8.38) and the equation (2.4.1) is that
the objective here is Shannnon entropy, while the objective in the other case is the differential
entropy.
Theorem 8. IB-IRM and IB-ERM vs IRM and ERM

Fully informative invariant features (FIIF). Suppose each e ∈ Eall follows As-
sumption 2. Assume that the invariant features are strictly separable, bounded, and satisfy

16We use same ∆ for both X and Y because can take the smaller of the rightmost intervals for X and Y .
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support overlap (Assumptions 3,5 and 7 hold). Also, for each e ∈ Etr Ze
spu ← AZe

inv + W e,
where A ∈ Ro×m, W e ∈ Ro is discrete, bounded noise, with zero mean (and each component
takes at least two distinct values). Each solution to IB-IRM (eq. (2.4.1), with ℓ as 0-1 loss,
and rth = q), and IB-ERM solves the OOD generalization (eq. (2.2.1)) but ERM and IRM
(eq.(2.2.3)) fail.

In the above Theorem 8, we only state the first part of the Theorem 4, the reason is
that the proof of the second part proof is exactly the same in both discrete and continuous
random variable case and we describe the proof for the second part in the continuous random
variable section next.

Proof of Theorem 8. First, let us discuss why IRM and ERM fail in the above setting.
We argue that the failure, in this case, follows directly from the second part of Theorem 3.
To directly use the second part of Theorem 3, we need Assumptions 2-5 and 7 to hold. In the
statement of the above theorem, Assumption 2, 3, 5, and 7 already hold. We are only required
to show that Assumption 4 holds. Since Ze

inv and W e are bounded on training environments
we can argue that Ze

spu is also bounded in training environments (∥Ze
spu∥ ≤ ∥A∥Ze

inv∥+ ∥W e∥).
We can now directly use the second part of Theorem 3 because Assumptions 2-5 and 7 hold.
Since Assumption 6 is not required to hold, both ERM and IRM will fail as their solution
space continue to contain classifiers that rely on spurious features. To further elaborate on
why ERM and IRM fail, recall that in the second part of Theorem 3, we relied on Lemma 4.
In Lemma 4, we had shown that if latent invariant features are strictly separable, and latent
spurious features are bounded, then there exist classifiers that rely on spurious features and
yet are Bayes optimal on all the training environments. In this case, we have latent invariant
features that are strictly separable and spurious features that are bounded, which is why we
can use Theorem 3. We now move to the part, where we establish why IB-IRM and IB-ERM
succeed.

Consider a solution to equation (2.8.38) and call it Φ†. Consider the prediction made by
this model

Φ† ·Xe = Φ† · S(Ze
inv, Ze

spu) = Φinv · Ze
inv + Φspu · Ze

spu. (2.8.39)

We first show that Φspu is zero. We prove this by contradiction. Assume Φspu ̸= 0 and use
the condition in the theorem to simplify the expression for the prediction as follows

67



Φinv · Ze
inv + Φspu · Ze

spu

= Φinv · Ze
inv + Φspu · (AZe

inv + W e)

= Φinv · Ze
inv + Φspu · (AZe

inv + W e)

=
[
Φinv + Φspu · A

]
· Ze

inv + Φspu ·W e.

(2.8.40)

We will show that Φ+ =
([

Φinv +Φspu ·A
]
, 0

)
S−1 =

[
Φinv +Φspu ·A

]
S†

inv, where S†
inv corresponds

to the first m rows of the matrix S−1, can continue to achieve an error of q and has a lower
entropy than Φ†. Recall that Φ† achieves an average error across the training environments
of q (because rth = q the average cannot fall below q as in that case at least one environment
would have a lower error than q which is not possible), which implies each environment also
achieves an error of q.

Consider an environment e ∈ Etr. Since the error Φ† is q it implies that for each training
environment e

I(w∗
inv · Ze

inv) = I(Φinv · Ze
inv + Φspu · Ze

spu) (2.8.41)

holds over all the points in the support of environment e. Suppose the above claim was not
true, i.e. suppose the set I(w∗

inv ·Ze
inv) ̸= I(Φinv ·Ze

inv + Φspu ·Ze
spu) occurs with a for some point

in the support (suppose that point occurs with probability θ). Let us compute the error

Re(Φ†) = E
[(

I(w∗
inv · Ze

inv)⊕N e ⊕ I(Φinv · Ze
inv + Φspu · Ze

spu)
)]

= θE[1⊕N e] + (1− θ)E[N e] > q
(2.8.42)

If the above is true, then that contradicts the claim that Φ† achieves an error of q. Thus
the statement in equation (2.8.41) has to hold at all points in the training support of the
invariant features. LetWe be the support of W e. In each training environment, if we consider
a ze

inv ∈ Ze
inv, then ∀we ∈ We, the following holds – if I(w∗

inv · ze
inv) = 1, then

Φinv · ze
inv + Φspu · (Aze

inv + we) ≥ 0

=⇒ Φinv · ze
inv + Φspu · (Aze

inv) ≥ −Φspu · we

=⇒
(
Φinv + Φspu · A

)
· ze

inv ≥ max
we∈W̃e

−Φspu · we

=⇒
(
Φinv + Φspu · A

)
· ze

inv ≥ 0

=⇒ Φ+Xe ≥ 0.

(2.8.43)
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Similarly, we can argue that if I(w∗
inv · ze

inv) = 0, then(
Φinv + Φspu · A

)
· ze

inv < 0

Φ+Xe < 0.
(2.8.44)

In the above simplification equation (2.8.43), we use maxwe −Φspu · we ≥ 0. Consider
any component of −Φspu; if the sign of the component is positive (negative), then set the
corresponding component of we to be positive (negative). As a result, −Φspu · we ≥ 0. In
this argument, we only relied on the assumption that we can take both signs in the set We.
Suppose We had either positive or negative values only then this would imply that the mean
of we is strictly positive or negative, which cannot be true because W e is zero mean. From
equation (2.8.43) and (2.8.44), we can conclude that Φ+ achieves the same error of q in all
the training environments.

Observe that we can write Φ† ·Xe = Φ+ ·Xe + Φspu ·W e. We state two properties that
we use to show that entropy Φ+ is smaller than Φ†:

a) Φspu ·W e ⊥ Φ+ ·Xe (Φ+ ·Xe =
[
Φinv + Φspu · A

]
· Ze

inv and Ze
inv ⊥ W e),

b) Φ+ ·X, Φspu ·W e are discrete random variables with finite support of size at least two.
We justify why b) is true in the above. Φ+ ·Xe is a bounded random variable (Ze

spu is
bounded as Ze

inv and W e are bounded. Thus Xe is also bounded). Φ+ ·Xe has at least two
elements in its support this follows from equation (2.8.43) and (2.8.44). Φspu ·W e is bounded
since W e is bounded and takes at least two values because each component of W e takes at
least two distinct values.

From a), b), and Lemma 7 it follows that Φ+ ·Xe is a classifier with lower entropy. We
already established that Φ+ achieves the same error as Φ† for all the training environments.
Φ+ achieves an error of q for all the training environments simultaneously. Since q is the
smallest value for the error that is achievable, the invariance constraint in equation (2.8.61)
is automatically satisfied. Therefore, Φ+ is strictly preferable to Φ†. Thus the solution Φ†

cannot rely on the spurious features and Φspu = 0.
Thus any solution Φ† to equation (2.8.38) has to satisfy Φ† · S = (Φinv, 0) and Φ† · S also

satisfies
I(w∗

inv · Ze
inv) = I(Φinv · Ze

inv). (2.8.45)

Recall that in the second part of Theorem 3’s proof we showed that if a solution does not
rely on spurious features and satisfies equation (2.8.55) for all the points in the support,
then under the support overlap assumptions such a solution is OOD optimal as well. Since
we assume support overlap assumption holds for the invariant features, we use the same
argument from the second part of Theorem 3 and it follows that the solution to equation
(2.8.38) also solves equation (2.2.1). Λ
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2.8.6.2. Continuous random variables. In this section, we assume that in each e ∈ Eall, the
random variables Ze

inv,Z
e
spu, N e, W e in Assumption 2 are continuous.

Lower bounding the differential entropy objective: In general, the differential
entropy can be unbounded below. Following the work of [32], we add an independent noise
term to the predictor to ensure that the entropy is lower bounded. Suppose w ·Φ is the output
of the predictor and the entropy of the predictor for the data in environment e as he(w · Φ).
Consider a prediction made by the classifier w ·Φ(Xe); we add noise κe (continuous, bounded
random variable with a finite entropy) to this prediction to get w ·Φ(X) + κe. The differential
entropy after noise addition as he(w · Φ(Xe) + κe). Observe that he(w · Φ(Xe) + κe) ≥ h(κe).
In the rest of the discussion, we just write he(w · Φ(Xe) + κe) as he(w · Φ) to make the
notation less cumbersome. We constrain HΦ (Hw) in the optimization in equation (2.4.1) to
a set H̃Φ = {Φ ∈ Rr×d | 0 < ϕinf ≤ ∥Φ∥ ≤ ϕsup} (H̃w = {w ∈ Rk×r | 0 < winf ≤ ∥w∥ ≤ wsup})
instead of HΦ = Rr×d (Hw = Rk×r). The reason to do this is that while the 0-1 loss does not
change with scaling of the predictor but the entropy can change a lot. The lower bound on
the norm of the classifier ensures that the optimization does not shrink it to zero in trying to
minimize the entropy. We restate the optimization in equation (2.4.1) after accounting for
the pathologies of differential entropy that we described above:

min
w∈H̃w,Φ∈H̃Φ

1
|Etr|

∑
e

he
(
w · Φ)

s.t. 1
|Etr|

∑
e

Re
(
w · Φ

)
≤ rth

w ∈ arg min
w̃∈H̃w

Re(w̃ · Φ)

(2.8.46)

We restate Theorem 4 for convenience.
Theorem 9. IB-IRM and IB-ERM vs IRM and ERM
• Fully informative invariant features (FIIF). Suppose each e ∈ Eall follows

Assumption 2. Assume that the invariant features are strictly separable, bounded, and satisfy
support overlap (Assumptions 3,5 and 7 hold). Also, for each e ∈ Etr Ze

spu ← AZe
inv + W e,

where A ∈ Ro×m, W e ∈ Ro is continuous, bounded, and zero mean noise. Each solution
to IB-IRM (eq. (2.4.1), with ℓ as 0-1 loss, and rth = q), and IB-ERM solves the OOD
generalization (eq. (2.2.1)) but ERM and IRM (eq.(2.2.3)) fail.
• Partially informative invariant features (PIIF). Suppose each e ∈ Eall follows

Assumption 1 and ∃ e ∈ Etr such that E[ϵeZe
spu] ̸= 0. If |Etr| > 2d and the set Etr lies in

a linear general position (a mild condition defined in the Appendix), then each solution to
IB-IRM (eq. (2.4.1), with ℓ as square loss, σ2

ϵ < rth ≤ σ2
Y , where σ2

Y and σ2
ϵ are the variance

in the label and noise across Etr) and IRM (eq.(2.2.3)) solves OOD generalization (eq. (2.2.1))
but IB-ERM and ERM fail.
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Proof of Theorem 9. First, let us discuss why IRM and ERM fail in the above setting.
We argue that the failure, in this case, follows directly from the second part of Theorem 3.
To directly use the second part of Theorem 3, we need Assumptions 2-5 and 7 to hold. In the
statement of the above theorem, Assumption 2, 3, 5, and 7 already hold. We are only required
to show that Assumption 4 holds. Since Ze

inv and W e are bounded on training environments
we can argue that Ze

spu is also bounded in training environments (∥Ze
spu∥ ≤ ∥A∥Ze

inv∥+ ∥W e∥).
We can now directly use the second part of Theorem 3 because Assumptions 2-5 and 7 hold.
Since Assumption 6 is not required to hold, both ERM and IRM will fail as their solution
space continue to contain classifiers that rely on spurious features. 17

Consider a solution to IB-IRM (eq. (2.8.46)) and call it Φ†. Consider the prediction made
by this model

Φ† ·Xe = Φ† · S(Ze
inv, Ze

spu) = Φinv · Ze
inv + Φspu · Ze

spu. (2.8.47)

We first show that Φspu is zero. We prove this by contradiction. Assume Φspu ̸= 0 and use
the condition in the theorem to simplify the expression for the prediction as follows.

Φinv · Ze
inv + Φspu · Ze

spu

= Φinv · Ze
inv + Φspu · (AZe

inv + W e)

= Φinv · Ze
inv + Φspu · (AZe

inv + W e)

=
[
Φinv + Φspu · A

]
· Ze

inv + Φspu ·W e.

(2.8.48)

We will show that Φ+ =
([

Φinv +Φspu ·A
]
, 0

)
S−1 =

[
Φinv +Φspu ·A

]
S†

inv, where S†
inv corresponds

to the first m rows of the matrix S−1, can continue to achieve an error of q and has a lower
entropy than Φ†. Recall that Φ† achieves an average error across the training environments
of q (because rth = q the average cannot fall below q as in that case at least one environment
would have a lower error than q which is not possible), which implies each environment also
achieves an error of q.

Consider an environment e ∈ Etr. Since the error Φ† is q it implies that for each training
environment

I(w∗
inv · Ze

inv) = I(Φinv · Ze
inv + Φspu · Ze

spu), (2.8.49)

holds with probability 1. Suppose the above claim was not true, i.e. suppose the set
I(w∗

inv · Ze
inv) ̸= I(Φinv · Ze

inv + Φspu · Ze
spu) occurs with a non-zero probability say θ. Let us

17In the remark following the proof of Theorem 3, we had discussed the failure of ERM and IRM continues
to hold even when we are restricted to use continuous random variables.
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compute the error

Re(Φ†) = E
[(

I(w∗
inv · Ze

inv)⊕N e ⊕ I(Φinv · Ze
inv + Φspu · Ze

spu)
)]

= θE[1⊕N e] + (1− θ)E[N e] > q
(2.8.50)

If the above is true, then that contradicts the claim that Φ† achieves an error of q. Thus the
statement in equation (2.8.49) has to hold with probability 1. Let We denote the support of
W e in environment e. We can restate the above observation as – there exists sets Z̃e

inv ⊆ Ze
inv

and a set W̃e ⊆ We such that P(Z̃e
inv × W̃e) = 1 18 and for each element in Z̃e

inv × W̃e

I(w∗
inv · Ze

inv) = I(Φinv · Ze
inv + Φspu · Ze

spu) (2.8.51)

Consider a training environment e ∈ Etr. For each ze
inv ∈ Z̃e

inv, the following conditions
hold ∀we ∈ W̃e – if I(w∗

inv · ze
inv) = 1, then

Φinv · ze
inv + Φspu · (Aze

inv + we) ≥ 0

=⇒ Φinv · ze
inv + Φspu · (Aze

inv) ≥ −Φspu · we

=⇒
(
Φinv + Φspu · A

)
· ze

inv ≥ max
we∈W̃e

−Φspu · we

=⇒
(
Φinv + Φspu · A

)
· ze

inv ≥ 0

=⇒ Φ+Xe ≥ 0.

(2.8.52)

Similarly, we can argue that if I(w∗
inv · ze

inv) = 0, then(
Φinv + Φspu · A

)
· ze

inv < 0

Φ+Xe < 0.
(2.8.53)

In the above simplification in equation (2.8.52), we use maxwe −Φspu · we ≥ 0. Consider
any component of −Φspu; if the sign of the component is positive (negative), then set the
corresponding component of we to be positive (negative). As a result, −Φspu · we ≥ 0. In
this argument, we only relied on the assumption that we can take both signs in the set W̃e.
Suppose we can only take either positive or negative values in W̃e this would imply that the
mean of we is strictly positive or negative, which cannot be true because W e is zero mean.
From equation (2.8.52), (2.8.53), and P(Z̃e

inv × W̃e) = 1, we can conclude that Φ+ achieves
the same error of q in all the training environments.

Observe that we can write Φ† ·Xe = Φ+ ·Xe + Φspu ·W e. We state two properties that
we use to show that entropy Φ+ is smaller than Φ†:

a) Φspu ·W e ⊥ Φ+ ·Xe (Φ+ ·Xe =
[
Φinv + Φspu · A

]
· Ze

inv and Ze
inv ⊥ W e),

b) Φ+
inv ·X, Φspu ·W e are continuous bounded random variables,

18Owing to the independence of the noise we also have P(Z̃e
inv) = 1, P(W̃e) = 1.
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We justify why b) is true in the above. Φ+
inv ·Xe is a bounded random variable (Ze

spu is
bounded as Ze

inv is bounded and as a result Xe is bounded as well). Observe that Φ+
inv ̸= 0, this

follows from equation (2.8.52) and (2.8.53). Φ+
inv ·Xe is a continuous random variable as well.

Suppose Φ+
inv ·Xe was not continuous, which implies for some constant b, Φ+

inv ·Xe = b with a
finite probability. If Φ+

inv ·Xe = b with a finite probability, then X cannot be a continuous
random vector (as there exists a hyperplane which occurs with a non-zero probability).

From a), b), and Lemma 8 it follows that

he(Φ+ ·Xe) < he(Φ† ·Xe) (2.8.54)

Note that the above equation (2.8.54) is true independent of whether we added a bounded
noise to keep the entropy bounded from below. Therefore, so far we have established that
Φ+ is a classifier with lower entropy and the same error as Φ†. Observe that Φ+ achieves an
error of q for all the training environments simultaneously. Since q is the smallest value for
the error that is achievable, the invariance constraint in equation (2.8.61) is automatically
satisfied with Φ† as the classifier and the representation as the identity. Thus Φ+ is a strictly
preferable solution Φ†, which contradicts the optimality of Φ†. Therefore, it follows that
Φspu = 0

Thus any solution Φ† to equation (2.8.46) has to satisfy Φ† · S = (Φinv, 0) and Φ† · S also
satisfies

I(w∗
inv · Ze

inv) = I(Φinv · Ze
inv) (2.8.55)

with probability one. From the second part of Theorem 3’s proof we know if a solution
satisfies two properties a) does not rely on spurious features, and b) satisfies equation (2.8.55)
for all the points in the support, then under the support overlap of invariant features such a
solution is OOD optimal (solves equation (2.2.1)) as well. In this case, we have also assumed
support overlap assumption holds for the invariant features. We have established that the
solution does not rely on spurious features. Also, we have shown that equation (2.8.55) holds
not pointwise but with probability one. We can still use the same argument from the second
part of Theorem 3 and it follows that the solution to equation (2.8.46) also solves equation
(2.2.1). Next, we show why it suffices for the equation (2.8.55) to hold with probability one.

Since the equation (2.8.55) does not hold pointwise at all the points in the support and
can be violated over a set of probability zero we need to be careful about some pathological
shifts at test time that place a finite mass in the region where equation (2.2.1) is violated.
We now argue using arguments based on standard measure theory [9] that such pathological
shifts cannot occur under the assumptions made in this setting.

Recall that we defined Z̃e
inv × W̃e to be the set where equation (2.8.55) holds pointwise.

P(Z̃e
inv×W̃e) = 1. Owing to the independence Ze ⊥ W e, we have P(Z̃e

inv) = 1, P(W̃e) = 1. It
can be shown that the Lebesgue measure µ of the set Ze

inv \ Z̃e
inv is zero, i.e., µ(Ze

inv \ Z̃e
inv) = 0.

If the Lebesgue measure was positive, i.e., µ(Ze
inv \ Z̃e

inv) > 0, then the probability of this set
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would also be non-zero, i.e., P(Ze
inv \ Z̃e

inv) > 0. The main insight to show this follows from
the observation that the probability density is positive on the set Ze

inv \ Z̃e
inv since the set is

part of the support of Ze
inv.

A formal argument to show µ(Ze
inv \ Z̃e

inv) > 0 =⇒ P(Ze
inv \ Z̃e

inv) > 0 goes as follows.
Assume the contrary, i.e., P(Ze

inv \ Z̃e
inv) = 0. Let the density be denoted as fZe

inv
. Define

the set Pk = {zinv ∈ Ze
inv \ Z̃e

inv | fZe
inv

(z) > 1
k
}.

Ze
inv \ Z̃e

inv = ∪∞
k=1Pk (2.8.56)

Pk ↑ Ze
inv \ Z̃e

inv =⇒ µ(Pk) → µ(Ze
inv \ Z̃e

inv). Since µ(Ze
inv \ Z̃e

inv) > 0, ∃ some s for which
µ(Ps) > 0.

Define gs

gs(x) =


1
s

if x ∈ Pk

0 otherwise
(2.8.57)

P(Ze
inv \ Z̃e

inv) =
∫

Ze
inv\Z̃e

inv

fZe
inv

dµ ≥
∫

Ze
inv\Z̃e

inv

gsdµ ≥ 1
s

µ(Ps) > 0 (2.8.58)

µ(Ze
inv \ Z̃e

inv) > 0 =⇒ P(Ze
inv \ Z̃e

inv) > 0 =⇒ P(Z̃e
inv) < 1 which is a contradiction.

Therefore, µ(Ze
inv \ Z̃e

inv) = 0.
We now describe how our assumptions already eliminate the possibility of distribution

shifts that happen in such a way that the a finite mass of the distribution resides in the region
Ze

inv \ Z̃e
inv. Recall we assume that ∀e ∈ Eall, Ze

inv is a continuous random variable. Since the
probability of continuous random is absolutely continuous w.r.t the Lebesgue measure it
follows that for each e ∈ Eall, µ(Ze

inv \ Z̃e
inv) = 0 =⇒ P(Ze

inv \ Z̃e
inv) = 0. Thus all distribution

shifts would place a zero mass in the region of disagreement.
This completes the first part of the proof.
The second part of the theorem follows directly from the analysis of linear regression SEM

in [7]. The conditions in the second part of the theorem cover the conditions that are required
in Theorem 1. Under those conditions there can be two invariant predictors one is the trivial
invariant predictor that maps every input to zero. The other is the ideal invariant predictor
that focuses on the causes. The constraint rth is set to a low enough value such that only
the ideal invariant predictor gets selected. Observe that the risk achieved by the trivial zero
invariant predictor is 1

|Etr|E[(Y e)2] = σ2
Y and the risk achieved by the ideal 1

|Etr|E[(N e)2] = σ2
N .

If σ2
N < rth < σ2

Y , then the only predictor that is selected is the ideal invariant predictor.
We now describe why ERM fails in this case. In the theorem, we assume that ∃ e where

v = E[ϵeZe
spu] ̸= 0, which implies E[ϵeXe] ̸= 0. We show why this is the case next.

E[ϵeXe] = E[ϵeS(Ze
inv, Ze

spu)] = E[Sϵe(Ze
inv, Ze

spu)] = S(0,v) ̸= 0; since S is invertible (2.8.59)
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The rest of the proof follows from Proposition 17 in [4]. If rth is set low enough to assume the
same risk achieved by ERM, then IB-ERM and ERM are identical and IB-ERM also fails.

Λ
Remark on invertibility of S. The entire proof extends to the case when S is not

invertible but Ze
inv can still be recovered. Note that at no point in the proof we required to

have full S to be invertible.
Remark on regularized ERM, IRM. Note that while we showed that the ERM and

IRM fail, the failures extend to ℓ1 or ℓ2 regularized models as well. We would like to also
mention that it may seem that information bottleneck and sparsity constraints such as ℓ1

have similarity. We want to point out that there is a major difference between the two. In
our model, we observe scrambled data. As a result, even if there is sparsity in the latent
space, that does not translate to the observed space. ℓ1 constraints operate in the input space
and that is why they cannot fetch the same outcome as information bottleneck constraints.

Remark on multi-class classification. The proof presented in this section extends to
multi-class setting described in Assumption 10. The simplification in equation (2.8.43) along
with the lemmas (Lemma 6, Lemma 7) help establish why low-entropy representation based
classifier discourages the use of spurious features. We can adapt the analysis in equation
(2.8.43) to the multi-class case (Assumption 10) and follow the same line of reasoning to
justify why IB-IRM and IB-ERM succeed.
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2.8.7. Derivation of the final objective in equation (2.4.2)

In this section, we give a step-by-step description of derivation of the objective in equation
(2.4.2). We rewrite the IB-IRM optimization below in equation (2.8.60).

min
Φ∈Rk

1
|Etr|

∑
e

he
(
w · Φ

)
s.t. 1
|Etr|

∑
e

Re
(
w · Φ

)
≤ rth,

1 ∈ arg min
w̃∈R

Re(w̃ · Φ).

(2.8.60)

In the above we assumed that the classifiers are scalar. We state a new optimization that
we show is equivalent to the optimization in equation (2.8.60).

min
Φ∈Rk

1
|Etr|

∑
e

he
(
Φ

)
s.t. 1
|Etr|

∑
e

Re
(
Φ

)
≤ rth,

1 ∈ arg min
w̃∈R

Re(w̃ · Φ).

(2.8.61)

It can be shown that the two forms of optimization in equation (2.8.60) and equation
(2.8.61) are equivalent. First, we would like to show that the set of feasible classifiers w · Φ
for the first optimization in equation (2.8.61) and Φ in the second optimization in equation
(2.8.61) are the same.

Suppose w∗, Φ∗ is a feasible solution to the constraints in equation (2.8.60). Construct
Φ† = w∗ ·Φ∗. Φ† satisfies the constraint 1

|Etr|
∑

e Re
(
Φ†

)
≤ rth. Suppose for some environment

e, 1 ̸∈ arg minw̃ Re(w̃ · Φ†) =⇒ ∃ w ̸= 1 such that Re(w · Φ†) < Re(Φ†). If this is the case,
then w×w∗ improves over w∗ and contradicts the optimality of w∗ in equation (2.8.60). This
establishes that Φ† satisfies the constraints in equation (2.8.60). This shows that the set of
feasible classifiers for the first optimization in equation (2.8.60) are a subset of the feasible
classifiers in the second optimization (2.8.61).

Suppose Φ∗ is a feasible solution to the constraints in equation (2.8.61). Take any scalar
w and corresponding representation Φ∗/w. The combined classifier w · (Φ∗/w) satisfies the
first constraint. Suppose w ̸∈ arg minw̃∈R Re(w̃ · Φ

w
), this implies that ∃ w+ ̸= w such that

Re(w+

w
· Φ∗) < Re(Φ∗). If this was true, then that contradicts the optimality of 1 in equation

(2.8.61). This shows that the set of feasible classifiers for the second optimization in equation
(2.8.61) are a subset of the feasible classifiers in the first optimization (2.8.60).

From the above discussion, it is clear that the two formulations result in the same set of
feasible w · Φ, which are finally fed into the same entropy minimization objective. Thus the
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two optimizations are equivalent. To get to the penalized objective in equation (2.4.2) from
the equation (2.8.61) there are two key steps: i) converting the invariance constraint into
the gradient-based penalty, i.e., the IRMv1 penalty from [7], ii) converting the differential
entropy term into a constraint on the variance. For ii), as we explained in the manuscript,
minimization of variance is equivalent to minimizing an upper bound on the entropy. Also,
note that since variance has a lower bound, we can directly work with Φ and do not need
to add a noise term like earlier, which was done to ensure that differential entropy is lower
bounded. Below we break down the steps to arrive at the objective. We first start with a
weighted combination of the terms in equation (2.4.1).

∑
e

(
Re(Φ) + λ∥∇w,w=1.0R

e(w · Φ)∥2 + νhe(Φ)
)

. (2.8.62)

where ∥∇w,w=1.0R
e(w ·Φ)∥2 is the norm of the gradient computed w.r.t scalar classifier w

at 1.0. Note that in general the gradient can be computed w.r.t a fixed vector as well. In
our experiments, we found that using entropy conditioned on the environment or entropy
unconditioned on the environment works equally well. Thus, we introduce the unconditional
entropy h(Φ). We assume that all the environments occur with an equal probability.

h(Φ) = −EX∼P[log(dP(Φ(X))] (2.8.63)

where dP(Φ(X)) is the probability density of predictions (unconditional on the environment),
P = 1

|Etr|
∑

e∈Etr
Pe is the uniform mixture of data from all environments. Note here X denotes

an input sample and we do not know the environment it comes from unlike the sample Xe.
The entropy of predictions computed in environment e is given as

he(Φ) = −EXe∼Pe [log(dPe(Φ(Xe))], (2.8.64)

where dPe is the probability density of the predictions in environment e. The conditional
entropy over predictions conditioned on a random environment is given as

h(Φ|E) = − 1
|Etr|

∑
e∈Etr

E[log(dPe(Φ(Xe))]. (2.8.65)

Conditioning reduces entropy h(Φ) ≥ h(Φ|E) and thus we propose an upper bound on the
objective in equation (2.8.62) below

∑
e

(
Re(Φ) + λ∥∇w,w=1.0R

e(w · Φ)∥2 + νh(Φ)
)

. (2.8.66)

Finally, instead of h(Φ) we use variance in predictions Φ denoted as Var(Φ) =
EX∼P[(Φ(X)− E[Φ(X)])2] to get
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∑
e

(
Re(Φ) + λ∥∇w,w=1.0R

e(w · Φ)∥2 + γVar(Φ)
)

. (2.8.67)
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2.8.8. Proof of Theorem 5: impact of IB on the learning speed

In this section, we present a detailed analysis of 2D case in equation (2.3.1) leading up to
the proof of Theorem 5. For convenience, we will restate the equation (2.3.1). Also, instead
of assuming the binary values are from the set {0,1} we would shift them to {−1,1}; we do
this purely for making notation clearer.

Y e ← sgn
(

Xe
inv

)
, where Xe

inv ∈ {−1,1} is Bernoulli
(1

2

)
,

Xe
spu ← Xe

invW
e, where W e ∈ {−1,1} is Bernoulli

(
1− pe

)
with selection bias pe >

1
2 ,

(2.8.68)

Connection between the discrete and the continuous case. Before discussing the
proof of Theorem 5, we provide an explanation as to why can we use the variance penalty as a
proxy for the 2D example (eq. (2.8.68)), where the random variables are discrete (recall that
variance is monotonically related to upper bound on the differential entropy of continuous
random variables). We present a variation of equation (2.8.68), where the input feature values
are continuous. For each e ∈ Etr we have

Xe
inv ← Ce + U e,

Y e ← sgn(Xe
inv),

(2.8.69)

where Ce ∈ {−1,1} with equal probability for −1 and 1 and U e is a uniform random variable
with range [−δ, δ] with δ < 1

2 . Similarly, with probability 1− pe,

Xe
spu ← Ce + M e,

and with probability pe,
Xe

spu ← −Ce + M e,

where M e is a uniform random variable with range [−δ, δ].
Suppose ℓ is exponential loss and the predictor has two dimensions winv and wspu. For the

above problem description, we write the ERM objective (λ = 0, γ = 0 in equation (2.4.2))
and we get the following

RERM(winv, wspu) =
1
|Etr|

∑
e∈Etr

(
pee−(winv+wspu)E[e−winvUe

e−wspuMe ] + (1− pe)e−(winv−wspu)E[e−winvUe

ewspuMe ]
)

E[e−winvUe

e−wspuMe ] = E[e−winvUe ]E[e−wspuMe ]

E[e−winvUe ] =
( ∫ δ

−δ
e−winvudu

) 1
2δ

= ewinvδ − e−winvδ

2winvδ
≈ (1 + winvδ)− (1− winvδ)

2winvδ
= 1

(2.8.70)
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If δ is small, then we can approximate the loss as if the each of the feature values were
discrete and only assumed one of the four possible values in {−1,1} × {−1,1}.

RERM(winv, wspu) ≈ pe−(winv+wspu) + (1− p)e−(winv−wspu) (2.8.71)

where p = 1
|Etr|p

e. On the same lines, we expand the IB-ERM objective as follows

RIB−ERM(winv, wspu) ≈ pe−(winv+wspu) + (1− p)e−(winv−wspu) + γ[winv, wspu]Σ[winv, wspu]T (2.8.72)

where Σ =
1 + δ2 2p− 1

2p− 1 1 + δ2

. Since δ is small, we approximate Σ as
 1 2p− 1

2p− 1 1

.

Theorem on impact of information bottleneck. We would compare the rate of
convergence of continuous-time gradient descent for RIB−ERM and RERM.
Theorem 10. Suppose each e ∈ Etr follows the 2D case from equation (2.3.1). Set λ = 0,
γ > 0 in equation (2.4.2) to get the IB-ERM objective with ℓ as exponential loss. Continuous-
time gradient descent on this IB-ERM objective achieves |wspu(t)

winv(t) | ≤ ϵ in time less than W0( 1
2γ

)
2(1−p)ϵ

(W0(·) denotes the principal branch of the Lambert W function), while in the same time the
ratio for ERM |wspu(t)

winv(t) | ≥ ln(1+2p
3−2p

)/ln
(
1 + W0( 1

2γ
)

2(1−p)ϵ

)
, where p = 1

|Etr|
∑

e∈Etr
pe .

Proof of Theorem 10. We simplify the ERM and the IB-ERM objective in equation
(2.4.2) for the 2D case.

RERM(winv, wspu) = pe−(winv+wspu) + (1− p)e−(winv−wspu)

RIB−ERM(winv, wspu) = pe−(winv+wspu) + (1− p)e−(winv−wspu) + γ[winv, wspu]Σ[winv, wspu]T

where winv, wspu ∈ R are the weights for invariant and spurious features, p = 1
|Etr|

∑
e∈Etr

pe

Σ as
 1 2p− 1

2p− 1 1

. We first find the equilibrium point of the continuous-time gradient

descent for RIB−ERM.
∂RIB−ERM(winv, wspu)

∂winv
= −pe−(winv+wspu) − (1− p)e−(winv−wspu) + 2γ(winv + (2p− 1)wspu)

∂RIB−ERM(winv, wspu)
∂wspu

= −pe−(winv+wspu) + (1− p)e−(winv−wspu) + 2γ((2p− 1)winv + wspu)

(2.8.73)
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∂RIB−ERM(winv,wspu)
∂winv

+ ∂RIB−ERM(winv, wspu)
∂wspu

= −2pe−(winv+wspu) + 4γp(winv + wspu) = 0

=⇒ 1
2γ

e−(winv+wspu) = winv + wspu

=⇒ winv + wspu = W0

( 1
2γ

)
(2.8.74)

∂RIB−ERM(winv, wspu)
∂winv

− ∂RIB−ERM(winv, wspu)
∂wspu

= −2(1− p)pe−(winv−wspu) + 4γ(1− p)(winv − wspu) = 0

=⇒ 1
2γ

e−(winv−wspu) = winv − wspu

=⇒ winv − wspu = W0

( 1
2γ

)
(2.8.75)

Therefore, the equilibrium point is winv = W0
(

1
2γ

)
and wspu = 0. Having established that the

equilibrium point of the differential equation coincides with ideal predictor, we now analyze
the convergence of the trajectory. Let winv + wspu = x and winv − wspu = y.

∂x

∂t
= −

(
∂RIB−ERM(winv, wspu)

∂winv
+ ∂RIB−ERM(winv, wspu)

∂wspu

)
= 2p(e−x − 2γx) (2.8.76)

∂y

∂t
= 2(1− p)(e−y − 2γy) (2.8.77)

Let us call x∗ = W0
(

1
2γ

)
; x∗ is equilibrium point for both x(t) and y(t). Denote winv(t) =

x(t)+y(t)
2 and wspu(t) = x(t)−sy(t)

2 . Let us assume that x(0) = 0 and y(0) = 0. We would first
like to argue that the solution to the above differential equations exist and are unique given
the initial conditions x(0) = 0 and y(0) = 0. Since (e−x − 2γx) is Lipschitz continuous in
x on R the solution to the differential equation exists and is unique for any finite interval
t ∈ [0, T ] [58]. With T set to a sufficiently large value, we now show that the solution to the
ODE converges to x∗.

Define an energy function V (z) = z2 and define V (x− x∗) = (x− x∗)2

∂V (x− x∗)
∂t

= 2(x− x∗)∂x

∂t
= 4p(x− x∗)(e−x − 2γx) (2.8.78)

Observe that ∂V (x−x∗)
∂t

< 0 for all x ̸= x∗ and ∂V (x−x∗)
∂t

= 0 when x = x∗. Therefore, from
Lyapunov’s asymptotic global stability theorem [30] we obtain that x(t) would converge to
x∗.

Observe that for x < x∗, ∂x
∂t

> 0 and moreover 2p(e−x−2γx) is a monotonically decreasing
function. For all x < x∗ − ϵ, we can bound the rate at which x increases is bounded below
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by 2p(e−x∗+ϵ − 2γ(x∗ − ϵ)) ≈ 2p(e−x∗(1 + ϵ) − 2γx∗ + 2γϵ) = 2pϵ(e−x∗ + 2γ). Let us call
γ∗ = ϵ(e−x∗ + 2λ). The rate at which x increases is greater than 2pϵγ∗ and the rate at which
y increases is greater than 2(1 − p)ϵγ∗. Thus the time to convergence for x is atmost x∗

2pϵ
.

Similarly, the time to convergence for y is atmost x∗

2(1−p)ϵ . Since p > 1
2 the time to convergence

for y(t) is more than the time taken for the convergence of x(t).
If |x(t) − x∗| ≤ ϵ and |y(t) − x∗| ≤ ϵ, then |wspu(t)| = |x(t)−y(t)

2 | = |x(t)−x∗+x∗−y(t)
2 | ≤

|x(t)−x∗|
2 + |y(t)−x∗|

2 ≤ ϵ.
If |x(t)−x∗| ≤ ϵ and |y(t)−x∗| ≤ ϵ, then |winv(t)−x∗| = |x(t)+y(t)

2 −x∗| = |x(t)−x∗+y(t)−x∗

2 | ≤
|x(t)−x∗|

2 + |y(t)−x∗|
2 ≤ ϵ.

As a result, if |x(t)− x∗| ≤ ϵ and |y(t)− x∗| ≤ ϵ, then
|wspu(t)|
|winv(t)|

≤ ϵ

x∗ − ϵ
≈ ϵ

x∗ (2.8.79)

Therefore, to get the ratio |wspu(t)|
|winv(t)| ≤

ϵ
x∗ the time taken is at most x∗

2(1−p)ϵ .
In comparison in the same amount of time the ratio |wspu(t)

winv(t) | achieved by gradient descent

on RERM is at least ln( 1+2p
3−2p

)
ln(1+ x∗

2(1−p)ϵ
) . The expression for lower bound on the ratio |wspu(t)

winv(t)
| is derived

by substituting the time taken, i.e., x∗

2(1−p)ϵ , in the expression for the lower bound derived in
Section B.3 in [42]). Λ

Remark on max-margin classifiers. In the 2D example, the max-margin classifier
seems to solve the problem. In general max-margin classifier would not work. In the more
general setting, if there is noise in the labels, which is allowed by the SEM in Assumption 8,
and the data is scrambled, which is also the case in Assumption 8, there is no guarantee that
max-margin classifier would not rely on the spurious features.
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2.8.9. Illustrating both invariance and information bottleneck acting
in conjunction

In this section, we present a case to illustrate why the invariance principle and the
information bottleneck are needed simultaneously. The model we present follows a DAG that
combines the DAGs in Figure 2.2a) and Figure 2.2b).

Example extending the 2D case from equation (2.3.1). For all the environments
e ∈ Etr

Y e ← Xe
inv ⊕N e

X1,e
spu ← Y e ⊕W e

X2,e
spu ← Xe

inv ⊕ V e

(2.8.80)

where all the variables in the above SEM are binary {0,1} random variables. N e ∼
Bernoulli(q), V e ∼ Bernoulli(a); the distribution of noise N e and V e are the same across the
environments. W e ∼ Bernoulli(ue) where ue is an environment dependent probability. For
all the environments e ∈ Eall, we assume that the distribution of Xe

inv, N e, and V e does not
change. The labelling function to generate Y e is also the same. The distribution of X1,e

spu

can change arbitrarily. In this example, observe that E[Y e|Xe] varies across the training
environments. We show the simplification below.

E[Y e|Xe] = E
[
Xe

inv ⊕N e
∣∣∣(Xe

inv, X1,e
spu, X2,e

spu)
]

(2.8.81)

If Xe
inv = 0, Xe

spu = 0, then E[Y e|Xe] = P(N e = 1|Xe
inv = 0, X1,e

spu = 0). We show that
P(N e = 1|Xe

inv = 0, X1,e
spu = 0) varies across the environments.

P(N e = 1|Xe
inv = 0, X1,e

spu = 0) =
P(N e = 1,Xe

inv = 0, X1,e
spu = 0)

P(N e = 1,Xe
inv = 0, X1,e

spu = 0) + P(N e = 0,Xe
inv = 0, X1,e

spu = 0)

= P(N e = 1,Xe
inv = 0)ue

P(N e = 1,Xe
inv = 0)ue + P(N e = 0,Xe

inv = 0)(1− ue)
(2.8.82)

Note that the above equation (2.8.82) describes the probability computed by the Bayes optimal
classifier that relies on input feature dimensions are used. Observe that the above probability
in equation (2.8.82) can only be equal across two environments if ue was the same. Therefore, if
|Etr| ≥ 2 and the probability ue varies across the environments, then the invariance constraint
restrict us from using the identity representation. However, E[Y e|Xe

inv, X2,e
spu] is invariant and

so is E[Y e|Xe
inv]. Based on the same arguments that we discussed in the main manuscript,

we can show that one can construct classifiers that output probability distributions that
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minimize cross-entropy (maximize likelihood) and continue to depend on X2,e
spu as follows

P̂(Y e = 1|Xe
inv, X2,e

spu) = (1− q)I
(

winvX
e
inv + wspuXe

spu −
(winv + wspu)

2

)
+

q
(

1− I
(

winvX
e
inv + wspuXe

spu −
(winv + wspu)

2

))
.

(2.8.83)

If winv > |wspu|, then above classifier P̂(Y e = 1|Xe
inv, X2,e

spu) matches the true probability dis-
tribution conditional on the invariant feature P(Y e = 1|Xe

inv) on all the training environments
and it thus forms a valid invariant predictor with representation that focuses on Xe

inv, X2,e
spu.

Since the classifier relies on X2,e
spu, the classifier fails as the support of spurious features can

change. If we place an entropy constraint, then the representation that focuses only on Xe
inv

is strictly prefered to one that focuses on both Xe
inv, X2,e

spu and continues to achieve the same
cross-entropy loss. Thus in this example, IRM fails as its solution space contains classifiers
that rely on spurious features but IB-IRM would succeed. In the above example, ERM
and IB-ERM (with rth set to match the loss of ERM) will rely on X1,e

spu on top of Xe
inv as

conditioning on X1,e
spu in addition to Xe

inv further reduces the conditional entropy thus reducing
the cross-entropy loss.

Let us consider a generalization of the above example.
Assumption 11. Each environment e ∈ Eall follows

Y e ← I
(
w∗

inv ·Xe
inv

)
⊕N e (2.8.84)

N e is binary noise, and Xe
inv are binary features. Both N e and Xe

inv have identical distributions
across all the environments Eall

Divide the spurious features into two parts Xe
spu = (X1,e

spu, X2,e
spu).

Assumption 12. Each environment e ∈ Etr follows

X1,e
spu ← Y e1⊕W e

X2,e
spu ← Xe

inv ⊕ V e
(2.8.85)

where 1 ∈ Ro′ is a vector of ones, W e ∈ Ro′ is a binary 0-1 vector with each component drawn
i.i.d. from Bernoulli(ue) vector, V e is also a binary 0-1 vector with each component drawn
i.i.d. from Bernoulli(a) vector. The distribution of W e changes across environments and no
two training environments have the same ue. The distribution of V e is identical across all the
training environments. Also, assume that there are at least two training environments, i.e.,
|Etr| ≥ 2.
Assumption 13. HΦ is a set of diagonal matrices, where each element in the matrix is 0
or 1 (HΦ act as matrices that seletct subset of input features). Hw is set of all probability
distributions on Rd. ℓ is the cross-entropy loss.
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We use the Shannon entropy formulation of IB-IRM in this case as all the random variables
involved are discrete. Moreover, we carry out entropy minimization for the representation
directly and not the predictor. The IB-IRM optimization is given as follows.

min
Φ∈HΦ

1
|Etr|

∑
e

He(Φ)

s.t. 1
|Etr|

∑
e

Re
(
w ◦ Φ

)
≤ rth

w ∈ arg min
w̃∈Hw

Re(w̃ ◦ Φ)

(2.8.86)

Theorem 11. Suppose the data follows Assumption 11, Assumption 12. Suppose Hw and
HΦ follow Assumption 13. If invariant features are strictly separable, i.e., Assumption 7
holds, then IRM fails but IB-IRM succeeds.

Proof of Theorem 11. We carry out the analysis for different types of representations
separately.

Case 1: Consider a representation that selects a subset X̃e
1 of (Xe

inv, X2,e
spu) and a subset

X̃e
2 of X1,e

spu.

P(Y e = 1|X̃e
1 = 0, X̃e

2 = 0) = P(Y e = 1,X̃e
1 = 0, X̃e

2 = 0)
P(Y e = 1,X̃e

1 = 0, X̃e
2 = 0) + P(Y e = 0,X̃e

1 = 0, X̃e
2 = 0)

= P(Y e = 1,X̃e
1 = 0)(ue)o′

P(Y e = 1,X̃e
1 = 0)(ue)o′ + P(Y e = 1,X̃e

1 = 0)(1− ue)o′

(2.8.87)

Since P(Y e = 1|X̃e
1 = 0, X̃e

2 = 0) is strictly monotonic in ue, this probability cannot be
same across two environments. Hence, any X̃e

1 , X̃e
2 cannot lead to an invariant predictor

across the two environments.
Case 2: Consider a representation that selects a subset X̃e of X1,e

spu.

P(Y e = 1|X̃e = 0) = P(Y e = 1, X̃1,e = 0)
P(Y e = 1, X̃1,e = 0) + P(Y e = 0, X̃1,e = 0)

= P(Y e = 1)(ue)o′

P(Y e = 1)(ue)o′ + P(Y e = 0)(1− ue)o′

(2.8.88)

For the above class of representations also, we can use the same argument as the one
discussed in Case 1 and show that the above probability cannot be the same across two
environments.

Case 3: At this point, our only option is to consider representations that select subsets of
(Xe

inv, X2,e
spu). Each subset of (Xe

inv, X2,e
spu) satisfies invariance. Among this set all the subsets

that lead to lowest cross-entropy are selected by IRM. Among those sets IRM does not exclude
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the inclusion of spurious covariates X2,e
spu. However, when we impose entropy minimization

objective, then X2,e
spu will never be selected as entropy can be strictly reduced by not including

these covariates in the set without sacrificing invariance or cross-entropy. To explicitly show a
construction of the failure of IRM in this case, we can use the same construction as equation
(2.8.83) but replacing the hyperplane in the indicator function with hyperplane constructed
in Lemma 4.
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Chapter 3

Conclusion

In this work, we revisited the fundamental assumptions for OOD generalization for settings
when invariant features capture all the information about the label. We showed how linear
classification tasks are different and need much stronger assumptions than linear regression
tasks. We provide a sharp characterization of performance of ERM and IRM under different
assumptions on support overlap of invariant and spurious features. We showed that support
overlap of invariant features is necessary or otherwise OOD generalization is impossible.
However, ERM and IRM seem to fail even in the absence of support overlap of spurious
features. We prove that a form of the information bottleneck constraint along with invariance
goes a long way in overcoming the failures while retaining the existing provable guarantees.
We propose an approach that combines both these principles and demonstrate its effectiveness
on linear unit tests [10] and on various high-dimensional real datasets.

In the future, we are interested in finding all the downstream evaluations and measure-
ments that matter and finding that which scales best on all those downstream evaluations
simultaneously. We believe with high probability that the model size (number of parameters),
the dataset size, and the amount of compute used by the largest (and most economically and
scientifically valuable) ML training runs are going to increase drastically over the coming
years [17]. However, no organization currently has direct access to these larger resources of
the future; and it has been empirically verified many, many times (e.g., see Figure 2 (right)
of [63]) that methods which perform best at smaller scales often are no longer the best
performing methods at larger scales. In order to stand the test of time, we now think that it
is important to view all downstream evaluations (including OOD Generalization) through the
lens of how performance on that downstream evaluation changes as the amount of compute
used for training, the dataset size, and the number of model parameters keep increasing.
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