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Résumé

Les réseaux de neurones sont un type de modèle d’apprentissage automatique (ML) qui
résolvent des tâches complexes d’intelligence artificielle (AI) sans nécessiter de représentations
de données élaborées manuellement. Bien qu’ils aient obtenu des résultats impressionnants
dans des tâches nécessitant un traitement de la parole, d’image, et du langage, les réseaux
de neurones ont encore de la difficulté à résoudre des tâches de compréhension de scènes
dynamiques. De plus, l’entraînement de réseaux de neurones nécessite généralement de
nombreuses données annotées manuellement, ce qui peut être un processus long et coûteux.
Cette thèse est composée de quatre articles proposant des modèles génératifs pour des scènes
dynamiques. La modélisation générative est un domaine du ML qui étudie comment apprendre
les mécanismes par lesquels les données sont produites. La principale motivation derrière les
modèles génératifs est de pouvoir, sans utiliser d’étiquettes, apprendre des représentations
de données utiles ; c’est un sous-produit de l’approximation du processus de génération de
données. De plus, les modèles génératifs sont utiles pour un large éventail d’applications telles
que la super-résolution d’images, la synthèse vocale ou le résumé de texte.

Le premier article se concentre sur l’amélioration de la performance des précédents auto-
encodeurs variationnels (VAE) pour la prédiction vidéo. Il s’agit d’une tâche qui consiste à
générer les images futures d’une scène dynamique, compte tenu de certaines observations
antérieures. Les VAE sont une famille de modèles à variables latentes qui peuvent être utilisés
pour échantillonner des points de données. Comparés à d’autres modèles génératifs, les VAE
sont faciles à entraîner et ont tendance à couvrir tous les modes des données, mais produisent
souvent des résultats de moindre qualité. En prédiction vidéo, les VAE ont été les premiers
modèles capables de produire des images futures plausibles à partir d’un contexte donné,
un progrès marquant par rapport aux modèles précédents car, pour la plupart des scènes
dynamiques, le futur n’est pas une fonction déterministe du passé. Cependant, les premiers
VAE pour la prédiction vidéo produisaient des résultats avec des artefacts visuels visibles
et ne fonctionnaient pas sur des ensembles de données réalistes complexes. Dans cet article,
nous identifions certains des facteurs limitants de ces modèles, et nous proposons pour chacun
d’eux une solution pour en atténuer l’impact. Grâce à ces modifications, nous montrons que
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les VAE pour la prédiction vidéo peuvent obtenir des résultats de qualité nettement supérieurs
par rapport aux références précédentes, et qu’ils peuvent être utilisés pour modéliser des
scènes de conduite autonome.

Dans le deuxième article, nous proposons un nouveau modèle en cascade pour la génération
vidéo basé sur les réseaux antagonistes génératifs (GAN). Après le succès des VAE pour
prédiction vidéo, il a été démontré que les GAN produisaient des échantillons vidéo de
meilleure qualité pour la génération vidéo conditionnelle à des classes. Cependant, les GAN
nécessitent de très grandes tailles de lots ainsi que des modèles de grande capacité, ce qui rend
l’entraînement des GAN pour la génération vidéo coûteux computationnellement, à la fois en
termes de mémoire et en temps de calcul. Nous proposons de scinder le processus génératif en
une cascade de sous-modèles, chacun d’eux résolvant un problème plus simple. Cette division
nous permet de réduire considérablement le coût computationnel tout en conservant la qualité
de l’échantillon, et nous démontrons que ce modèle peut s’adapter à de très grands ensembles
de données ainsi qu’à des vidéos de haute résolution.

Dans le troisième article, nous concevons un modèle basé sur le principe qu’une scène est
composée de différents objets, mais que les transitions de trame (également appelées règles
dynamiques) sont partagées entre les objets. Pour mettre en œuvre cette hypothèse de
modélisation, nous concevons un modèle qui extrait d’abord les différentes entités d’une
image. Ensuite, le modèle apprend à mettre à jour la représentation de l’objet d’une image à
l’autre en choisissant parmi différentes transitions possibles qui sont toutes partagées entre
les différents objets. Nous montrons que, lors de l’apprentissage d’un tel modèle, les règles de
transition sont fondées sémantiquement, et peuvent être appliquées à des objets non vus lors
de l’apprentissage. De plus, nous pouvons utiliser ce modèle pour prédire les observations
multimodales futures d’une scène dynamique en choisissant différentes transitions.

Dans le dernier article nous proposons un modèle génératif basé sur des techniques de rendu
3D qui permet de générer des scènes avec plusieurs objets. Nous concevons un mécanisme
d’inférence pour apprendre les représentations qui peuvent être rendues avec notre modèle
et nous optimisons simultanément ce mécanisme d’inférence et le moteur de rendu. Nous
montrons que ce modèle possède une représentation interprétable dans laquelle des change-
ments sémantiques appliqués à la représentation de la scène sont rendus dans la scène générée.
De plus, nous montrons que, suite au processus d’entraînement, notre modèle apprend à
segmenter les objets dans une scène sans annotations et que la représentation apprise peut
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être utilisée pour résoudre des tâches de compréhension de scène dynamique en déduisant la
représentation de chaque observation.

Mots clés. Réseaux de neurones, apprentissage profond, auto-encodeurs variationnels,
réseaux antagonistes génératifs, prédiction vidéo, génération de vidéo, champs de rayonnement
neuronal.
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Abstract

Neural networks are a type of Machine Learning (ML) models that solve complex Artificial
Intelligence (AI) tasks without requiring handcrafted data representations. Although they
have achieved impressive results in tasks requiring speech, image and language processing,
neural networks still struggle to solve dynamic scene understanding tasks. Furthermore,
training neural networks usually demands lots data that is annotated manually, which can be
an expensive and time-consuming process. This thesis is comprised of four articles proposing
generative models for dynamic scenes. Generative modelling is an area of ML that investigates
how to learn the mechanisms by which data is produced. The main motivation for generative
models is to learn useful data representations without labels as a by-product of approximating
the data generation process. Furthermore, generative models are useful for a wide range of
applications such as image super-resolution, voice synthesis or text summarization.

The first article focuses on improving the performance of previous Variational AutoEncoders
(VAEs) for video prediction, which is the task of generating future frames of a dynamic scene
given some previous occurred observations. VAEs are a family of latent variable models that
can be used to sample data points. Compared to other generative models, VAEs are easy
to train and tend to cover all data modes, but often produce lower quality results. In video
prediction VAEs were the first models that were able to produce multiple plausible future
outcomes given a context, marking an advancement over previous models as for most dynamic
scenes the future is not a deterministic function of the past. However, the first VAEs for video
prediction produced results with visible visual artifacts and could not operate on complex
realistic datasets. In this article we identify some of the limiting factors for these models, and
for each of them we propose a solution to ease its impact. With our proposed modifications,
we show that VAEs for video prediction can obtain significant higher quality results over
previous baselines and that they can be used to model autonomous driving scenes.

In the second article we propose a new cascaded model for video generation based on
Generative Adversarial Networks (GANs). After the success of VAEs in video prediction,
GANs were shown to produce higher quality video samples for class-conditional video
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generation. However, GANs require very large batch sizes and high capacity models, which
makes training GANs for video generation computationally expensive, both in terms of
memory and training time. We propose to split the generative process into a cascade of
submodels, each of them solving a smaller generative problem. This split allows us to
significantly reduce the computational requirements while retaining sample quality, and we
show that this model can scale to very large datasets and video resolutions.

In the third article we design a model based on the premise that a scene is comprised of
different objects but that frame transitions (also known as dynamic rules) are shared among
objects. To implement this modeling assumption we design a model that first extracts
the different entities in a frame, and then learns to update the object representation from
one frame to another by choosing among different possible transitions, all shared among
objects. We show that, when learning such a model, the transition rules are semantically
grounded and can be applied to objects not seen during training. Further, we can use this
model for predicting multimodal future observations of a dynamic scene by choosing different
transitions.

In the last article we propose a generative model based on 3D rendering techniques that
can generate scenes with multiple objects. We design an inference mechanism to learn
representations that can be rendered with our model and we simultaneously optimize this
inference mechanism and the renderer. We show that this model has an interpretable
representation in which semantic changes to the scene representation are shown in the output.
Furthermore, we show that, as a by product of the training process, our model learns to
segment the objects in a scene without annotations and that the learned representation can
be used to solve dynamic scene understanding tasks by inferring the representation of each
observation.

Keywords. Neural Networks, Deep Learning, Variational AutoEncoders, Generative Adver-
sarial Networks, Video Prediction, Video Generation, Neural Radiance Fields.
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Chapter 1

Introduction

The field of Artificial Intelligence (AI) and Machine Learning (ML) has seen large advances
over the last years. Much of this progress has been fueled by Neural Networks (NNs) (LeCun
et al., 2015), which are a type of machine learning model defined by compositions of functions.
Each of these functions or neurons performs a computation with adjustable parameters
and, by composing multiple of these units, neural networks can compute highly non-linear
operations. Through optimization, neural networks learn to solve tasks by extracting infor-
mative data representations, as opposed to other machine learning techniques that require
hand-engineered data features. In particular, among many other applications, NNs have been
successfully used for machine translation (Radford et al., 2018), speech recognition (Wang
et al., 2017), image recognition (Krizhevsky et al., 2012) and generation (Brock et al., 2018),
reinforcement learning (Mnih et al., 2013), board game playing (Silver et al., 2017) and
protein folding (Jumper et al., 2021).

While neural networks have revolutionized AI, there are still tasks and challenges at which
NNs have so far been unsuccessful. Specifically, neural networks have difficulties solving
tasks involving dynamic scenes. Dynamic scenes are scenes that evolve over time. Typical
tasks associated with dynamic scenes include object tracking, temporal reasoning or video
generation. To illustrate the current capabilities of NNs when it comes to dynamic scene
tasks, let us consider the snitch localization task in the CATER dataset (Girdhar & Ramanan,
2019), which involves tracking an object, the snitch, while moving and being occluded by
other objects in an evolving visual scene. While this is a simple task for humans, the current
state-of-the-art at CATER (Ding et al., 2020) fails more than once every three times at
predicting the right location of the snitch at the end of a video with camera motion. Another
example is the PHYRE dataset (Bakhtin et al., 2019), in which the goal is to place an
object in a simple 2D scene so that the scene reaches a target state after the new placed



object interacts with the environment. While the environment has very simple dynamics
and object interactions, the state-of-the-art models fail to solve the task more than half
the time (Qi et al., 2020). As a last example, let us consider the task of video generation.
The current state-of-the-art techniques (e.g., DVD-GAN (Clark et al., 2019)) require large
amounts of computational resources and still have trouble generating coherent scenes. While
in recent years there have been advancements in all these areas, there is still much room for
improvement.

Figure 1.1 – Examples of Dynamic Scene Understanding tasks: We show two images
of scenes from two dynamic scene understanding datasets. On the left, we show an image of the
CATER (Girdhar & Ramanan, 2019) dataset. The goal is to observe the evolution of the scene and
predict the location of the small yellow ball, called the snitch. On the right, we show an image from
the PHYRE dataset (Bakhtin et al., 2019). The goal is to place an object in the scene, so that after
the interaction of the object with the environment the scene reaches a target goal. Despite their
simplicity, both tasks are not yet systematically solved.

Why are these examples important? We argue that dynamic scene tasks should not be
overlooked as they are often proxy tasks for AI capabilities that can enable applications
with significant real-world impact. Let us consider the task of autonomous driving, which
holds the promise to revolutionize transportation and reduce the number of road accidents.
Autonomous driving requires tracking and forecasting the state of all the entities (cars,
bicycles, pedestrians, etc.) in a scene to avoid collisions. Human drivers are able to drive
safely under different weather conditions, with partial views of the scene and even with
object occlusions. We can consider the snitch localization task in CATER as a simplified
version of the problem, in which we have to track the state of multiple objects and predict
the localization of the snitch when it is occluded by other objects. Arguably, we would need
AI systems that can solve the simplified CATER task systematically before we can safely
replace human drivers.
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Another relevant example is robotics. Robots that can successfully interact with varying
environmental conditions and objects can revolutionize our daily lives by automating menial
tasks and assisting humans. In robotic manipulations it is crucial to understand the 3D
geometry of objects and the rules governing different object interactions in order to accomplish
a particular goal. Similarly, in the PHYRE dataset the objective is to place an object in a
dynamic scene so that it reaches a target state due to the interactions of the newly placed
object. While certain robotics tasks can be accomplished with great accuracy in constrained
environments, the current methods to solve PHYRE dataset illustrate the difficulties faced
when trying to learn and simulate the dynamics of an environment over long temporal
horizons.

This thesis consists of articles that describe models to generate videos. Generative video
models, which we define as machine learning methods capable of generating views of dynamic
scenes, are an interesting area of research for two main reasons. First, they can be used
to aid tasks involving content generation. For example, one of the most promising new
technologies is Virtual Reality (VR) headsets, which can be used to display and interact with
3D content. One crucial aspect in VR is to display detailed visuals to produce immersive
simulations, which requires high resolution content. Further, VR requires rendering consistent
motions from one frame that react to user movements. This requires high framerates and
a lightweight rendering process to be able to incorporate user interactions without delay.
These requirements make generating VR content very expensive in terms of computational
resources, which are usually limited by the size of the VR headset. Video generation models
can help reduce the rendering costs. By designing models that can upscale and increase the
framerate of a particular video, traditional rendering techniques can be combined with video
generation models to create high resolution VR content while reducing the computational
requirements.

On the other hand, generative models can also be used to learn useful data representations.
For instance, the task of video prediction consists in extrapolating the future frames in a given
context sequence. Arguably, a model that is able to perform this task captures the dynamic
rules of an environment, as it is able to simulate its future states. The representations learned
by these models can subsequently be used to perform downstream dynamic understanding
tasks. As an example, if we have a model that can perfectly predict the future frames in
sequences from the CATER dataset, then these model captures the location of the different
objects in the scene and we can use its representation to find the location of the snitch.

In the first article in this thesis we investigate variational autoencoders for video. Variational
autoencoders are a type of generative models for video that are well-known due to being
able to capture stochasticity in the generation. Because of this, they are often used for video
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prediction, in which multiple future states might be possible given a context sequence. In
this article we propose several improvements over previous variational autoencoders for video
prediction that result in sharper generated videos. We also showcase that these improvements
allow our model to generate data from more realistic scenarios than possible before.

In the second article we investigate a different type of generative model - generative adversarial
networks. Compared to variational autoencoders, generative adversarial networks often
produce more realistic generations, and therefore are popular to generate high fidelity content.
In this article we propose a model that can produce state-of-the-art videos while requiring
half the computational resources needed with competing approaches. The core idea is to
decompose the generative process into multiple simpler steps, and use an independence
assumption that reduces the memory and computational complexity of the overall model.
Furthermore, we showcase that this model can generate long and high resolution videos
beyond what is possible with previous methods due to its better scaling properties.

While the first and second article investigated different types of generative models and
proposed improvements that increased the quality of the generations or reduced their cost,
the rest of the articles in this thesis focus on designing methods incorporating inductive biases
known to better capture different aspects of dynamic scenes. In the third article, we design a
video prediction model that considers that a scene state can be represented by the state of
the multiple objects contained in it. Further, all objects in our model representation share
the same set of dynamic rules, which are used to update predict their future state. These
design decisions represent the fact that a scene is composed of multiple objects and that the
rules of motion (gravity, object interactions, etc.) are the same for all objects. We show that
this model can be used for video prediction, and we show that, as a result of incorporating
these inductive biases, our model has the capability to represent and generate sequences not
seen during the training phase.

Finally, in the last article we design a model that incorporates 3D understanding of the
different objects in the scene. Similarly to the previous article, our model represents a scene
state as the state of its different objects. However, this model represents each object as a
3D model that can be rendered with ray marching, a technique from the computer graphics
literature, and explicitly factorizes the information about its pose and its appearance. With
this design we can use the model to generate novel scene views by adding or removing objects,
or by modifying their appearances or poses. Furthermore, we show that the representations
learned by our model can be used to tackle the snitch localization task of the CATER dataset.
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1.1. Structure of this Document

The main content of this thesis are four articles. First, in Chapter 2 we introduce the basics of
machine learning needed to understand the rest of the contents of this thesis. Chapters 4, 6, 8
and 10 contain the articles that form the core of the thesis. Each one of this articles is
prefaced by a short prologue chapter that contains details about the context, contributions
and recent developments related to the article. Finally, in Chapter 11 we discuss the main
findings in each of the articles and discuss possible future follow-up work.
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Chapter 2

Background

In this section we review concepts in artificial intelligence necessary to understand the contents
of this thesis. We start by presenting the basics of machine learning. Then, we review neural
networks, including the layers and optimizers. We then present a family of machine learning
algorithms called generative models which are the main subject of this thesis. Finally, we
provide a brief introduction to neural rendering techniques, which are a key component of
the last article in this thesis.

2.1. Machine Learning

2.1.1. Introduction

Software engineering consists in using programming languages to implement algorithms,
which can be understood as a set of steps to perform a calculation. For example, we can
code a program that implements the rules to map roman numbers to integers. Such program
would receive as input a character string such as ’XV’ and output the corresponding integer
15. There are a few steps required to transform roman numerals to the decimal system, they
mostly include translating letters to a value, adding these values and taking into account
special cases in which we substract values instead of adding them, as in the case of the
number ’IX’ (9), in which the value of ’I’ (1) is substracted to the value of ’X’ (10). For many
common computations we can design efficient algorithms that perform them.

However, we cannot always design algorithms that cover all possible input-output pairs for
a particular task. Let’s assume that we are interested in writing a program that decides
whether there is a dog in an image. This program takes as input a picture, which can be



understood as a matrix of pixels, in which for each pixel we have its corresponding color
value (usually represented in 24 bits, 8 bits for each red, green and blue color channels). It is
hard to design an algorithm that would correctly classify all images containing (or not) a
dog, as there are many different breeds and poses leading to very different pixel patterns.

The field of machine learning (ML) studies algorithms that perform flexible computations
influenced by data. These algorithms, which we often call models, usually specify a trans-
formation of inputs into outputs. These transformations are not static, and instead can be
modified to adjust the input to output mapping. In ML, these transformations are tuned by
data.

There are different types of ML models. We categorize them according to the task they
perform as follows:

- Supervised learning: supervised models try to learn an input-output mapping from
a dataset consisting in examples and associated labels.

- Unsupervised learning: unsupervised models only have access to unlabeled data
with the main objective of learning a data representation. There are different types of
unsupervised learning, including clustering, density estimation or generative modeling.

- Reinforcement learning: in which an agent interacts with an environment and
learns a policy of actions that maximizes a reward signal.

The articles in this thesis focus on unsupervised learning. More specifically, they focus on a
type of unsupervised learning algorithms called generative models, which we describe in more
detail in Section 2.3. For a detailed overview of the field of machine learning we refer the
reader to the excellent book Murphy (2012).

2.1.2. Unsupervised Learning

In unsupervised learning the main goal is to maximize the likelihood of the data given by a
model. More formally, given a dataset of data examples x = {x1, ..., xN} and a model with
parameters θ = {θ1, ..., θK}, we would like to solve the following optimization problem:

max
θ
p(x|θ) = max

θ
log p(x|θ) = min

θ
− log p(x|θ) (2.1)

In general we assume that the data instances are independent and identically distributed
(IID assumption), which allows us to further expand this objective:
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Figure 2.1 – Model capacity and overfitting We fit M-degree polynomial models to noisy
samples from a sin function. Low degree polynomials (M = 0,1) have low capacity and do not
fit well the sin function. As we increase the polynomial degree (M = 5), the model has higher
representational power and fits well the unknown function. By further increasing the capacity
(M = 9) the model can fit perfectly the training samples, but this fit does not represent well the
unknown function, as phenomenon known as overfitting. Example insipired by Bishop & Nasrabadi
(2006).

p(x) = p(x1, ..., xN) =
N∏

i=0
p(xi) (2.2)

or, equivalently when using logarithms:

log p(x) = log p(x1, ..., xN) =
N∑

i=0
log p(xi) (2.3)

Maximizing the empirical data likelihood under certain models can be trivial. However, in
general we care about maximizing the likelihood of the true data distribution, for which our
training set is only a sample. This concept is commonly known as generalization, and it is
tightly related to the concept of model capacity. The capacity of a model usually refers to
its number of parameters. In general, higher capacity models can represent higher order
functions and more easily fit the training data, but that fit might not necessarily mean
that the model is better approximating the true data distribution. We can measure the
generalization capabilities of a model by using a held-out data set, which is not used for
training. A model that fits well the empirical data likelihood but not the validation data is
said to be overfitting.

To illustrate this phenomenon, consider the example shown in Figure 2.1, inspired by a
similar problem in Bishop & Nasrabadi (2006). We want to fit a model to an unknown
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function sin(2πx) for which we have some noisy observations. These observations are obtained
by adding Gaussian noise to samples from the unknown function y = sin(2πx) + N (0, 1).
Our model consists of a polynomial function of the form f(x) = ∑M

i=0 wix
i, where M is

the degree of the polynomial and wi are the parameters of the model. The capacity of the
model is defined by the degree of the polynomial, with higher degree polynomial having
more parameters and higher representational power. Figure 2.1 shows the fitting of different
models of increased capacity to the observations using a method known as linear regression.
Using M = 0 or M = 1, our model is too simple and does not provide a good fit to the
true function, which commonly known as underfitting. When we choose M = 5, our model
approximates the unknown function well. As we further increase the capacity of the model,
it starts to overfit to the observations, not generalizing well to the unknown function.

The models presented in this thesis are all neural networks (NNs). We discuss all aspects
related to neural networks in the following section.

2.2. Neural Networks

2.2.1. Definition

Neural networks compute a function gθ : X → Y mapping inputs in input space X to outputs
in space Y . Neural networks are parametrized by a vector θ = {θ1, ..., θK} ∈ RK also known
as a vector of weights. These parameters can be adjusted to modify the mapping computed
by the neural network. Generally, the function g compute by a neural network is the result
of composing L simpler functions gl also called layers:

gθ = gL
θL ◦ gL−1

θL−1 ◦ · · · ◦ g1
θ1 (2.4)

Each layer has its own parameters θl, and θ can alternatively be expressed as a concatenation
of layer parameters θ = {θ1, . . . ,θL} = {θ1, . . . , θK}. Not all the layers in a neural network
have weights. For example, it is common to compose non-linear functions without parameters
such as tanh, also known as activation functions, which make the mapping g capable of
representing a wider family of functions. The number of layers in a neural network is often
known as its depth. The use of neural networks with a large number of layers has led to a
revolution in the field of machine learning, and the study of these networks is known as deep
learning.
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2.2.2. Types of Layers

In this section we provide an overview of the most common layers used in current neural
networks.

Fully-connected layers. FC layers compute an affine mapping of inputs to outputs. They
are parametrized by a weight matrix W and a bias vector b and perform the following
computation:

f(x) = Wx + b (2.5)

There are a few special cases to consider for fully-connected layers. When using a network
with a single fully-connected layer and a mean-square error loss, we have a model that is
equivalent to linear regression. A network that consists of multiple fully-connected layers
computes a linear function of its input, as the composition of linear functions is a linear
function. A network that stacks multiple fully-connected layers interspersed with non-linear
activation functions is called a multilayer perceptron (MLP).

Convolutional layers. Convolutional layers compute functions on sequences of inputs.
Similarly to fully-connected layers, they are parametrized by a weight matrix W also called
the kernel and a bias vector b, and compute the following function:

f(x) = W ∗ x + b (2.6)

where ∗ denotes the convolution operation.

Convolutions can be used to process sequences with different dimensionalities. For example,
audio signals can be processed with one dimensional convolutions, images can be processed
with two-dimensional convolutions, and videos can be seen as 3D sequences. When defining a
convolutional layer, there are a few design choices to be made. In particular, the kernel size
determines how many elements are considered at each processing step, the stride determines
how many elements are skipped at each convolution location, and the padding scheme
determines which values to use when a position uses elements outside of the input sequence
length. For a more detailed explanation of convolutions with intuitive visualizations we
refer the reader to the tutorial by Dumoulin & Visin (2016). Similarly to how MLPs define
networks of fully connected layers, a network composing convolutions with interspersed
activation functions is commonly known as a Convolutional Neural Network (CNN) or a
ConvNet.
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Activation functions. Activation functions are mappings that are used in neural networks
so that they can represent non-linear functions. Traditionally neural networks used the
sigmoid (noted by σ(x)) or hyperbolic tangent tanh(x) activations functions, defined as
follows:

tanh(x) = exp(x)− exp(−x)
exp(x) + exp(−x)σ(x) = 1

1 + exp(x) (2.7)

In recent years Rectified Linear Units (ReLUs) are used instead:

ReLU(x) = max(0, x) (2.8)

The final activation function to mention is the softmax function:

Softmax(xi) = exp(xi)∑
j exp(xj)

(2.9)

Normalization layers. Normalization layers, as their name indicate, normalize the values
of their inputs. There are different normalization schemes that can be used, and when inputs
have multiple dimensions, an important consideration is over which dimensions are values
normalized. Normalization helps the optimization of neural networks, and are currently an
important part of state-of-the-art models. We consider three different normalization schemes
in this thesis, namely batch, layer and instance normalization.

Figure 2.2 – Normalization schemes For each normalization scheme we show the dimensions
used to compute the mean and variance used in the normalization step. We show a tensor for each
scheme with B as the batch dimension, C the features dimension and S the sequence dimension(s).
Orange tensor elements are normalized using the same mean and variance, which is obtained by
aggregating the values of these elements. Figure inspired by Wu & He (2018).

These normalization layers perform the following computation:
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Norm(xk) = γk
xk − µk√

σ2
k

+ βk (2.10)

where µk and σ2
k denote an empirical mean and variance:

µk = 1
M

M∑
i=1

xi,k and σ2
k = 1

M

M∑
i=1

(xi,k − µk)2 (2.11)

The dimensions over which these mean and variance are computed differ across normalization
schemes. We assume that inputs are sequences and that they come in batches, so that they
are tensors with dimensions B×S×C, where B denotes batch dimension, S denotes sequence
dimension(s), and C denotes the feature dimension. Figure 2.2 shows over which dimensions
the mean and variance are computed for each normalization scheme.

Recurrent layers. Another alternative to process sequential data is to use recurrent
layers (Rumelhart et al., 1985). While convolutional layers process elements in a sequence
independently, the main characteristic of recurrent layers is that their computation is affected
by previous values in the sequence. This allows recurrent layers to model long-term correlations
in a sequence.

There are different types of recurrent layers. In general, they all perform the following
computation:

yt = gθ(ht−1,xt) (2.12)

with each type of recurrent layer implementing a different recurrent function g. The most
basic recurrent layer is commonly known as Tanh-RNN and operates as follows:

ht = tanh(Wxxt + Whht−1 + b) (2.13)

Optimizing neural networks with Tanh-RNN layers is difficult. To alleviate these training
difficulties, the Long Short-Term Memory (LSTM) layer (Hochreiter & Schmidhuber, 1997)
was proposed. LSTMs perform the following computation:
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
it

ft

ot

gt

 = Wh ∗ ht−1 + Wx ∗ xt + b (2.14)

ct = σ(ft)⊙ ct−1 + σ(it)⊙ tanh(gt)

ht = σ(ot)⊙ tanh(ct)

Here i, f , o denote the input, forget, and output gate, h is the hidden state and c is the
cell state. σ denotes the sigmoid function, ⊙ indicates an element-wise product and ∗ a
convolution. Wh denotes the hidden-to-state convolution kernel and Wx the input-to-state
convolution kernel.

Another alternative with similar properties to LSTMs is the Gated Recurrent Unit (GRU) (Cho
et al., 2014):

 rt

zt

 = Wu ∗ ht−1 + Uu ∗ xt + bu (2.15)

ĥt = tanh(Whht−1 + rt ⊙Uhxt + bh)

ht = zt ⊙ ht−1 + (1− zt)⊙ ĥt

A neural network formed by recurrent layers is called Recurrent Neural Network (RNN).

2.2.3. Optimization

In unsupervised learning we are usually interested in optimizing the data likelihood given by
our model. More generally, when optimizing neural networks we are interested in optimization
problems of the following form:

θ∗ = argmin
θ
L(θ) (2.16)

where the solution is a weight vector θ that minimizes a loss function L(θ). In general the
loss function can be a non-linear non-convex function of the model parameters and we might
not have a closed-form solution to the problem. However, we can use first-order optimization
methods to obtain approximate solutions to the problem. In particular, neural networks are
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often optimized through gradient descent, which consists in iteratively updating a candidate
weight vector in the opposite direction of the gradient of L(θ) wrt to θ:

θi+1 ← θi − λ
∂L(θ)
∂θi

(2.17)

λ is called the learning rate, and controls how far along the direction of the negative gradient
the weight vector is updated. λ is a hyperparameter - a variable defined by the user that
influences the behavior of the model.

In general the gradient of the loss function with respect to the model parameters should be
computed on all training examples used to fit the model. However, in practice this might not
be possible due to computational constraints. Instead, it is more common to use only a subset
of training examples at each optimization step. In this case, the optimization procedure is
called stochastic gradient descent (SGD), and the examples used for a particular optimization
step are called a mini batch.

When it comes to the loss function, the particular choice usually resides in the type of model
and task that we are trying to solve. Some common losses include the mean-squared error
(MSE) loss:

ℓMSE(fθ(xi), ti) = 1
2 ∥fθ(xi)− ti∥2

2 (2.18)

or the cross-entropy (CE) loss:

ℓCE(fθ(xi), ti) = −
K∑

k=1
tik log (fθ(xi)k) (2.19)

To compute gradients wrt to the model parameters in neural networks we use backpropagation.
Backpropagation consists in applying the chain rule to compute derivates noting that neural
networks are composition of functions. Starting from equation 2.4 we apply the chain rule
backwards and, for a given layer l, we obtain the following expression for computing the
derivative of the loss function wrt to its parameters θl:

∂L(θ)
∂θl

= ∂f l
θl

∂θl

∂f l+1
θl+1

∂f l
θl

· · · ∂f
L
θL

∂fL−1
θL−1

∂L(θ)
∂fL

θL

(2.20)
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This can be efficiently implemented by computing the gradient layer by layer, starting from
the last layer L, and backpropagating it through the network up to the first layer. The
computation that each layer needs to perform can be summarised in two equations:

∂L(θ)
∂θl

= ∂f l
θl

∂θl

∂L(θ)
∂f l

θl

(2.21)

∂L(θ)
∂f l−1

θl−1

= ∂f l
θl

∂f l−1
θl−1

∂L(θ)
∂f l

θl

(2.22)

where Equation 2.21 computes the gradient with respect to the input of the layer and
Equation 2.22 computes the gradient with respect to its own parameters.

While SGD is still used to train neural networks, specially a variant called SGD with
momentum, other optimization schemes have been proposed that sometimes converge faster
or to better solutions. In this thesis most of our models are trained using the Adam
optimizer (Kingma & Ba, 2014). Although great care is taken to parameterise and initialise
neural networks to ease gradient propagation, it might still be difficult to move around the
loss landscape L(θ) following only stochastic gradient information. To alleviate this issue, one
can use the more fancy optimisers presented below to train neural networks more efficiently.

We refer the reader to the excellent book on deep learning (Goodfellow et al., 2016) for a
more complete overview of the field of neural networks.

2.3. Generative Models

2.3.1. Introduction

We define generative models as statistical models that can generate data instances. This is in
contrast with discriminative models which, as their name indicates, focus on discriminating
between different types of data instances.

More formally, generative models capture the joint data X and label Y distribution p(X, Y ),
while discriminative models capture the conditional probability p(Y |X). If there are no labels
present, then generative models capture the data distribution p(X). Note that in this case
generative models are a specific type of unsupervised learning that involves models that can
generate data instances. Not all unsupervised models are generative, as models that perform
representation learning or clustering are not necessarily able to generate data instances.
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2.3.2. Latent Variable Models

Most generative models investigated in this thesis are latent variable models. Latent variable
models are a type of probabilistic graphical model (PGM). PGMs are a formal way of
defining joint distributions on sets of random variables through graphs, in which nodes denote
random variables and (the absence of) edges between nodes indicate conditional independence
relationship between random variables.

In particular, the latent variable models presented in this thesis are Directed Graphical
Models (DGMs), also known as Bayesian Networks. PGMs use directed acyclical graphs to
define probability distributions. A full in-depth explanation of DGMs goes beyond the scope
of this thesis, for an overview we refer the reader to (Murphy, 2023).

The generative models in this thesis follow a simple PGM, with hidden variables z and data
instances x. The latent variables capture hidden factors of variation in the data. More
specifically, they define a generative process in which a deterministic function maps each
possible value of the latent variables to data instances.

Formally, this latent variable model defines a joint probability over latents and data factorized
as follows:

p(x, z) = p(x|z)p(z) (2.23)

In general we are interested in obtaining the data probability p(x), which can be obtained by
marginalizing over z:

p(x) =
∫

z
p(x|z)p(z) (2.24)

However, computing this integral is usually intractable. The generative models we introduce
subsequently provide alternatives to approximating this computation.

2.3.3. Variational AutoEncoders

Variational AutoEncoders (VAEs) are a type of latent variable generative model. They use
variational inference to approximate the data distribution.

As we saw before, we consider the following computation:
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p(x) =
∫

z
p(x|z)︸ ︷︷ ︸

likelihood

p(z)︸ ︷︷ ︸
prior

(2.25)

Computing the data marginal distribution is intractable. We can resort to variational
inference to approximate this distribution. Variational inference introduces an approximate
posterior distribution q(z|x), that approximates the true posterior distribution p(z|x).

Using the posterior distribution, we can derive what is known as the Evidence Lower Bound
(ELBO) on the data probability as follows:

log p(x) = log(
∫

z
p(x|z)p(z))

= log(
∫

z
p(x|z)p(z)q(z|x)

q(z|x))

= log(Eq(z|x)
p(z)
q(z|x)p(x)

≥ Eq(z|x) log( p(z)
q(z|x)p(x))

≥ Eq(z|x) log p(x|z)−DKL(p(z)||q(z|x))

Since we are interested in maximizing the likelihood of the data, we can maximize this lower
bound and formulate the following loss for a VAE:

min
θ

Eq(z|x) − log p(x|z)︸ ︷︷ ︸
reconstruction term

+DKL(p(z)||q(z|x))︸ ︷︷ ︸
divergence term

(2.26)

VAEs additionally define q(z|x) and p(x|z) as diagonal gaussian distributions with parameters
obtained through a neural network. To train VAEs, the expectation over samples from the
approximate posterior is approximated with Monte Carlo sampling, while the KL divergence
can be computed in closed-form since we typically use gaussian distributions. To estimate
the gradients through sampling q(z|x), VAEs use the reparametrization trick (Kingma &
Welling, 2013).
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2.3.4. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a family of latent variable models. Different
from VAEs, GANs do not learn explicitly data distributions p(x). Instead, they can generate
data samples which implicitly follow the data distribution, thus they belong to a family of
models commonly called implicit generative models.

To approximate the data distribution without having an explicit data likelihood distribution,
GANs rely on discriminating populations of samples. Intuitively, if the samples generated
from the model are undistinguishable from those of the data distribution, then the model has
recovered the data generation process.

GANs define a two-player game between a generator network G, whose goal is to transform
samples from a latent noise distribution into data samples such as those from the data
distribution, and a discriminator D function that tries to tell apart real datapoints coming
from the data distribution from the fake ones produced by G.

Formally, the original GAN formulation defines the following optimization problem:

min
G

max
D

V (G,D) = Ex∼Px [logD(x)] + Ez∼Pz [1− logD(G(z))] (2.27)

where x denotes datapoints and z is a latent variable vector.

Optimizing such minimax objectives with Stochastic Gradient Descent when G and D are
parametrized by deep neural networks is difficult. Empirically, it has been found that the
optimization is highly unstable and often diverges, only converging with very particular sets
of hyperparameters. Different alternative versions of the original GAN have been proposed
such as Wasserstein GANs (Arjovsky et al., 2017) or Least Squares GANs (Mao et al., 2017),
with different objective functions. These alternative formulations usually aim to make GAN
training more stable. Regularization techniques such as Spectral Normalization (Miyato et al.,
2018) have also been found to stabilize the GAN training regime.

Despite the abundant literature on alternatives to the original GAN formulation, it has been
disputed whether these modified GAN objectives have any advantages in practice over the
original objective (Lucic et al., 2018). Instead, the current state of the art GAN models for
images rely on powerful neural architectures, strong regularization and careful hyperparameter
tuning (Brock et al., 2018).
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2.3.5. Generative models for Video

GANs and VAEs are often used to generate images. In this thesis we focus on improving
generative models for videos. We distinguish between different types of tasks in generative
video modeling. Video generation is the task of generating complete videos from scratch. In
contrast, in video prediction tasks the goal is to generate plausible future frames given certain
past frames, which form what is known as the context for the video prediction.

In both settings we might or might not have additional conditioning information such as
information about the actions taken by different entities of the scene through time or a general
video class label. When such information is available, we talk about conditional tasks. The
articles in this thesis mostly focus on class-conditional video generation and unconditional
video prediction.
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Chapter 3

Prologue to the First Article

3.1. Article Details

Improved Conditional VRNNs for Video Prediction. Lluis Castrejon, Nicolas Ballas
and Aaron Courville, In Proceedings of the 2009 IEEE/CVF International Conference on
Computer Vision (ICCV 2019).

Author contributions. I developed and implemented the method presented in this article,
ran most of the experiments, and co-wrote the article. Nicolas Ballas helped define benchmarks
and experiments, provided support with the implementation, and co-wrote the article. Aaron
Courville supervised the project and revised the article.

3.2. Context

SV2P (Babaeizadeh et al., 2018) proposed a model based on VAEs for video prediction that
was able to generate multiple plausible future outcomes given a few context frames. However,
this model used a single latent variable to capture uncertainty over full video sequences.
Learning a mapping from a single latent variable to all possible future outcomes is a complex
task, and the proposed model only worked properly on toy datasets. Improving upon this,
Denton & Fergus (2018) proposed a model with a latent variable per time-step and a learnable
prior, which allowed it to go beyond toy datasets to more complex scenarios. This model,
called SVG, is still unable to model realistic videos, which limits its applications to tasks
involving real world data.



3.3. Contributions

In this work we consider improvements over the VAE models presented in (Babaeizadeh et al.,
2018; Denton & Fergus, 2018). We identify limitations in the main components of these models
and propose solutions that improve their performance, validated through model ablations.
Finally, we use our proposed model in an autonomous driving dataset, showing for the first
time successful video predicitions in the Cityscapes dataset without using annotations.

3.4. Recent Developments

Our model highlighted important issues with VAEs for video prediction.

Similar to our paper, Villegas et al. (2019) highlighted that increasing the capacity of video
prediction models lead to better generation quality. Inspired by hierarchical latent structures
such as the one presented in our model, Saxena et al. (2021) proposed a model with hierarchical
latent variables operating at different temporal resolutions, which allows to model long-term
dynamics. Chatterjee et al. (2021) extends our model with a weighted loss based on the
prediction uncertainty at each time-step that leads to improved generations under certain
metrics.

More recently, our finding that video prediction models underfit to the training data has been
highlighted as a main limiting factor in video prediction, and FitVid (Babaeizadeh et al.,
2021) builds upon it to propose a high-capacity model that is currently the state-of-the-art
model in video prediction.
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Chapter 4

Improved Conditional VRNNs for Video
Prediction

Abstract. Predicting future frames for a video sequence is a challenging generative modeling
task. Promising approaches include probabilistic latent variable models such as the Variational
AutoEncoder (VAE). While VAEs can handle uncertainty and model multiple possible future
outcomes, they have a tendency to produce blurry predictions. In this work we argue that
this is a sign of underfitting. To address this issue, we propose to increase the expressiveness
of the latent distributions and to use higher capacity likelihood models. Our approach relies
on a hierarchy of latent variables, which defines a family of flexible prior and posterior
distributions in order to better model the probability of future sequences. We validate our
proposal through a series of ablation experiments and compare our approach to current
state-of-the-art latent variable models. Our method performs favorably under several metrics
in three different datasets.

4.1. Introduction

We investigate the task of video prediction, a particular instantiation of self-supervision (Devlin
et al., 2018; Gidaris et al., 2018) where generative models learn to predict future frames in
a video. Training such models does not require any annotated data, yet the models need
to capture a notion of the complex dynamics of real-world phenomena (such as physical
interactions) to generate coherent sequences.

Uncertainty is an inherent difficulty associated with video prediction, as many future outcomes
are plausible for a given sequence of observations (Babaeizadeh et al., 2018; Denton & Fergus,
2018). Predictions from deterministic models rapidly degrade over time as uncertainty grows,



Context Predicted Frames
t = 2 t = 3 t = 5 t = 10 t = 20

G
T

SVG-LP

OURS

Figure 4.1 – Can generative models predict the future? We propose an improved VAE
model for video prediction. Our model uses hierarchical latents and a higher capacity likelihood
network to improve upon previous VAE approaches, generating more visually appealing samples
that remain coherent for longer temporal horizons.

converging to an average of the possible future outcomes (Srivastava et al., 2015a). To
address this issue, probabilistic latent variable models such as Variational Auto-Encoders
(VAEs) (Kingma & Welling, 2013; Rezende et al., 2014), and more specifically Variational
Recurrent Neural Networks (VRNNs) (Chung et al., 2015), have been proposed for video
prediction (Babaeizadeh et al., 2018; Denton & Fergus, 2018). These models define a prior
distribution over a set of latent variables, allowing different samples from these latents to
capture multiple outcomes.

It has been empirically observed that VAE and VRNN-based models produce blurry pre-
dictions (Larsen et al., 2015; Lee et al., 2018). This tendency is usually attributed to the
use of a similarity metric in pixel space (Larsen et al., 2015; Mathieu et al., 2015) such as
Mean Squared Error (corresponding to a log-likelihood loss under a fully factorized Gaussian
distribution). This has lead to alternative models such as the VAE-GAN (Larsen et al., 2015;
Lee et al., 2018), which extends the traditional VAE objective with an adversarial loss in
order to obtain more visually compelling generations.

In addition, the lack of expressive latent distributions has been shown to lead to poor model
fitting (Hoffman & Johnson, 2016). Training VAEs involves defining an approximate posterior
distribution over the latent variables which models their probability after the generated data
has been observed. If the approximate posterior is too constrained, it will not be able to
match the true posterior distribution and this will prevent the model from accurately fitting
the training data. On the other hand, the prior distribution over the latent variables can be
interpreted as a model of uncertainty.
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The decoder or likelihood network needs to transform latent samples into data observations
covering all plausible outcomes. Given a simple prior, this transformation can be very complex
and require high capacity networks. We hypothesize that the reduced expressiveness of current
VRNN models is limiting the quality of their predictions and investigate two main directions
to improve video prediction models. First, we propose to scale the capacity of the likelihood
network. We empirically demonstrate that by using a high capacity decoder we can ease the
latent modeling problem and better fit the data.

Second, we introduce more flexible posterior and prior distributions (Sønderby et al., 2016b).
Current video prediction models usually rely on one shallow level of latent variables and
the prior and approximate posterior are parameterized using diagonal Gaussian distribu-
tions (Babaeizadeh et al., 2018). We extend the VRNN formulation by proposing a hierarchical
variant that uses multiple levels of latents per timestep.

Models leveraging a hierarchy of latents are known to be hard to optimize as they are required
to backpropagate through a stack of stochastic latent variables, usually resulting in models
that only make use of a small subset of the latents (Kingma & Welling, 2013; Maaløe et al.,
2016; Sønderby et al., 2016b). We mitigate this problem by using a warmup regime for
the KL loss (Sønderby et al., 2016a) and a dense connectivity pattern (Huang et al., 2017;
Maaløe et al., 2019) between the input and latent variables. Specifically, each stochastic latent
variable is connected to the input and to all subsequent stochastic levels in the hierarchy.
Our empirical findings confirm that only with these techniques our model is able to take
advantage of different layers in a latent hierarchy.

We validate our hierarchical VRNN in three datasets with varying levels of future uncer-
tainty and realism: Stochastic Moving MNIST (Denton & Fergus, 2018), the BAIR Push
Dataset (Ebert et al., 2017) and Cityscapes (Cordts et al., 2016). When compared to current
state of the art models (Denton & Fergus, 2018; Lee et al., 2018), our approach performs
favorably under several metrics. In particular for the BAIR Push Dataset, our hierarchical-
VRNN shows an improvement of 44% in Video Fréchet Distance (FVD) (Unterthiner et al.,
2018) and 9.8% in terms of LPIPS score (Zhang et al., 2018a) over SVG-LP (Denton &
Fergus, 2018), the previous best VAE-based model. It also achieves a similar FVD than the
SAVP VAE-GAN model (Lee et al., 2018), while showing a 11.2% improvement in terms of
LPIPS over this baseline.
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4.2. Related Work

Since Ranzato et al. (2014) and Srivastava et al. (2015a) applied techniques from the language
modeling literature to model videos, there have been a number of papers that investigate
different models for generating videos.

Initial video prediction approaches relied on deterministic models. For example, Ranzato
et al. (2014) divided frames into patches and predicted their evolution in time given previous
neighboring patches. In (Srivastava et al., 2015a) the authors used LSTM networks on
pretrained image embeddings to predict the future. Similarly, Oh et al. (2015) used LSTMs
on CNN representations to predict frames in Atari games when given the player actions.

ConvLSTMs (Xingjian et al., 2015) adapt the LSTM equations to spatial feature maps by
replacing matrix multiplications with convolutions. They were originally used for precipitation
nowcasting and are commonly used for video prediction.

Other works have proposed to disentangle the motion and context of the frames to gener-
ate (Villegas et al., 2017a; Tulyakov et al., 2018; Denton et al., 2017). They assume that a
scene can be decomposed as multiple objects, which allows them to use a fixed representation
for the background. Our approach does not follow this modeling assumption and instead
tries to capture the stochasticity in predicting the visual future.

Autoregressive models (Kalchbrenner et al., 2017; Reed et al., 2017) approximate the full
joint data distribution p(x1, x2, ..., xN) over pixels, which allows them to capture complex
pixel dependencies but at the expense of making their inference mechanism slow and not
scalable to high resolutions. Latent variable models using GANs (Goodfellow et al., 2014)
were proposed in Vondrick et al. (2016b,a); Tulyakov et al. (2018). Training GAN video
models is still an open research direction, as training is unstable and most models require
auxiliary losses.

A more successful approach so far has been based on VAEs (Kingma & Welling, 2013; Rezende
et al., 2014) and VRNN (Chung et al., 2015) models. SV2P (Babaeizadeh et al., 2018) proposed
to capture sequence uncertainty in a single set of latent variables kept fixed for each predicted
sequence. SVG (Denton & Fergus, 2018) adopted the VRNN formulation (Chung et al., 2015),
introducing per-step latent variables (SVG-FP) and a variant with a learned prior (SVG-LP),
which makes the prior at a certain timestep a function of previous frames. In recent work,
SAVP (Lee et al., 2018) proposed to use the VAE-GAN (Larsen et al., 2015) framework for
video, a hybrid model that offers a trade-off between the accuracy of VAEs and the visual
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results of GANs. Our model extends the VRNN formulation by introducing a hierarchy of
latents to better approximate the data likelihood.

There are multiple works addressing hierarchical VAEs for non-sequential data (Ranganath
et al., 2016; Maaløe et al., 2016; Sønderby et al., 2016a; Kingma et al., 2016). While
hierarchical VAEs can model more flexible latent distributions, training them is usually
difficult due to the multiple layers of conditional latents (Sønderby et al., 2016b), resulting
in most latents being unused. Ladder Variational Autoencoders (Sønderby et al., 2016a)
proposed a series of techniques to partially alleviate this issue. IAF (Kingma et al., 2016)
used a similar architecture to Ladder VAEs and extended it with a novel normalizing flow.
Recent work (Maaløe et al., 2019) has trained very deep hierarchical models that produce
visually compelling samples. We extend hierarchical latent variable models to sequential data
and apply them to the task of video prediction.

4.3. Preliminaries

We follow previous work in video prediction (Denton & Fergus, 2018). Given D context
frames c = (c1, c2, ..., cD) and the T following future frames x = (x1, x2, ..., xT ), our goal is to
learn a generative model that maximizes the probability p(x|c).

VRNN follows the VAE formalism and introduces a set of latent variables z = (z1, z2, ..., zT )
to capture the variations in the observed variables x at each timestep t. It defines a likelihood
model p(x|z, c) = ∏T

t=1 p(xt|z≤t,x<t, c) and a prior distribution p(z|c) = ∏T
t=1 p(zt|z<t,x<t, c)

which are parametrized in an autoregressive manner; i.e. at each timestep observed and latent
variables are conditioned on the past latent samples and observed frames. VRNN therefore
uses a learned prior (Chung et al., 2015; Denton & Fergus, 2018). Taking into account the
temporal structure of the data, the probability p(x, z|c) is factorized as

p(x, z|c) =
T∏

t=1
p(xt|z≤t,x<t, c)p(zt|z<t,x<t, c). (4.1)

Computing p(x|c) requires marginalizing over the latent variables z, which is computationaly
intractable. Instead, VRNN relies on Variation Inference (Jordan et al., 1999) and defines
an amortized approximate posterior q(z|x, c) = ∏T

t=1 q(zt|z<t,x≤t, c) that approximates the
true posterior distribution p(z|x,c). We then can derive the evidence lower bound (ELBO), a
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lower bound to the marginal log-likelihood p(x|c):

log p(x|c) ≥
T∑

t=1
Eq(z≤t|x≤t,c) log p(xt|z≤t,x<t, c)

−DKL(q(zt|z<t,x≤t, c)||p(zt|z<t,x<t, c)) (4.2)

VRNN can be optimized to fit the training data by maximizing the ELBO using stochastic
backpropagation and the reparameterization trick (Kingma & Welling, 2013; Rezende et al.,
2014).

4.4. Hierarchical VRNN

We now introduce a hierarchical version of the VRNN model. At each timestep, we consider
L levels of latents variables zt = (z1

t , ..., z
L
t ). We then further factorize the latent prior as

p(zt|z<t,x<t, c) =
L∏

l=1
p(zl

t|z<l
t , zl

<t,x<t, c). (4.3)

The sampling process of the latent variable zl
t now depends on the latent variables from

previous time steps zl
<t for that level and on the latent variables of the previous levels at the

current timestep z<l
t . Similarly, we can write the approximate posterior as:

q(zt|z<t,x≤t, c) =
L∏

l=1
q(zl

t|z<l
t , zl

<t,x≤t, c). (4.4)

Using eq. 4.3 and eq. 4.4, we can rewrite the ELBO as

log p(x|c) ≥
T∑

t=1
[Eq(zt|z<t,x≤t,c) log p(xt|z≤t,x<t, c)

−
L∑

l=1
DKL(q(zl

t|z<l
t , zl

<t,x≤t, c)||p(zl
t|z<l

t , zl
<t,x<t, c))]. (4.5)

Refer to Appendix 4.A.1 for a full derivation of the ELBO.

4.4.1. Dense Latent Connectivity

Training a hierarchy of latent variables is known to be challenging as it requires to backprop-
agate through multiple stochastic layers. Usually this results in models that only use one
specific level of the hierarchy (Kingma & Welling, 2013; Maaløe et al., 2016; Sønderby et al.,
2016b). To ease the optimization we use a dense connectivity pattern between latent levels
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Figure 4.2 – Graphical model with a learned prior and a dense latent connectivity
pattern. Arrows in red show the connections from the input at the previous timestep to current
latent variables. Arrows in green highlight skip connections between latent variables and connections
to outputs. Arrows in black indicate recurrent temporal connections. We empirically observe that
this dense-connectivity pattern eases the training of latent hierarchies.

both for the prior and the approximate posterior, following Huang et al. (2017); Maaløe et al.
(2019).

Figure 4.2 illustrates the dense connection of the learned prior (refer to Appendix 4.A.2 for
the approximate posterior). For each latent level, the prior and posterior are implemented
using recurrent neural networks which take as input a deterministic transformation of xt−1

(red arrows in Figure 4.2), and to all the latent variables from the previous levels (green
arrows in in Figure 4.2). In addition, each latent variable has a direct connection to the
output variables xt.

4.4.2. Model Parametrization

We now describe an instantiation of the VRNN model that we will use in the experiments,
illustrated in Figure 4.3. First we compute features for each context frame and use them to
initialize the hidden state of the prior/posterior/decoder networks, all of which have recurrent
components. At a given timestep t, the model takes as input the latent variable samples
zt = (z0

t , ..., z
L
t ) with the embedding of the previously generated frame xt−1 and outputs

the next frame x̂t. During training we draw latent samples from the approximate posterior
distribution q(zt|z<t,x≤t, c) and maximize the ELBO. To generate unseen sequences, we
sample zt from the learned prior p(zt|z<t,x<t, c). Note that since we have multiple levels of
conditional latents we use ancestral sampling to generate zt, i.e. we first sample from the top
level of the hierarchy and we then sequentially sample the lower levels conditioning on the
sampled values of the previous layers in the hierarchy.
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Figure 4.3 – Model Parametrization. Our model uses a CNN to encode frames individually.
The representation of the context frames is used to initialize the states of the prior, posterior and
likelihood networks, all of which use recurrent networks. At each timestep, the decoder receives an
encoding of the previous frame, a set of latent variables (either from the prior or the posterior) and
its previous hidden state and predicts the next frame in the sequence.

Frame Encoder. We use a 2D CNN with ResNet (He et al., 2016) blocks and max-pooling
layers to represent input frames.

Prior/Approximate Posterior. We parametrize both the prior and the posterior as
a hierarchy of diagonal Normal distributions N (µ, σ), where the parameters µ and σ are
recurrent functions of samples from i) previous levels in the hierarchy and ii) the frame
encoder features. Each level in the hierarchy operates at a different spatial resolution, with
the top level features operating at a 1x1 resolution, i.e. not having a spatial topology. At a
given timestep t, the parameters for a specific latent level zl

t are given by a ConvLSTM that
consumes i) a previous hidden state, ii) samples from the previous levels in the hierarchy z<l

t ,
iii) the feature map of a frame with the same spatial resolution as the ConvLSTM. For the
prior network, the input frame embedding corresponds to the previously generated frame
xt−1, while for the posterior the input comes from the frame to generate xt.

Likelihood/Frame Decoder. At each timestep t, the decoder takes a representation
of the previously generated frame xt−1 and the samples zt = (z1

t , ..., z
L
t ) and generates xt

according to p(xt|zt,x<t, c). The decoder consists of ConvLSTMs interleaved with transposed
convolutions that upscale the feature maps back to the input resolution.
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Initial State. The initial states of our prior, posterior and decoder/likelihood models are
functions of the context. We use small CNNs to initialize each of the ConvLSTMs layers used
in the VAE components.

4.5. Experiments

All our models are trained with Adam (Kingma & Ba, 2014) and a batch size of b = 128
on Nvidia DGX-1s. We use a learning rate warmup (Goyal et al., 2017) starting with an
initial learning rate λ = 2e-5 that is linearly increased at each timestep until reaching λ =
1.6e-4 in 5 epochs. We use β1 = 0.5 and β2 = 0.9 and weight decay δ = 1e-4. We train the
autoregressive components of our models using teacher forcing (Williams & Zipser, 1989).

Our models are also trained using beta warmup (Sønderby et al., 2016a), which consists in
gradually increasing the weight of the KL divergence in the ELBO, turning the model from
an unregularized Autoencoder into a VAE progressively. VAEs trained with beta warmup
usually encode more information in the latent variables. Refer to the Appendix 4.B for a
complete description of our models.

4.5.1. Ablation Study

We first investigate the importance of each VRNN component, namely the likelihood, the
prior and the posterior. We focus on the BAIR Push dataset (Ebert et al., 2017) with 64x64
color sequences of a robotic arm interacting with children toys in a sandbox. Similarly to
previous works (Lee et al., 2018), we use trajectories 256 to 511 as our test set and the rest
for training, resulting in the 43264 train and 256 test sequences. At training we randomly
subsample 12 frames from each train sequence, use the first 2 frames as the context, and learn
to predict the remaining 10 frames. To evaluate the different model variations, we report the
training objective (ELBO) obtained for the training set and the test set.

Scaling the Likelihood Model. We assess the importance of the likelihood model
p(xt|z≤t,x<t, c). For this purpose, we build a VRNN with a single level of latent vari-
ables and modify the number of ConvLSTM layers in the decoder. Our aim is to investigate
whether increasing the capacity of the mapping from latent to the observations results in
better predictions.

In this experiment, our baseline likelihood model has one LSTM at 1x1 spatial resolution.
We then gradually replace convolutional layers in the decoder with ConvLSTM layers, which
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Model Parameters Train/Test ELBO(↓)

1-ConvLSTM 62.22M 3237/3826
3-ConvLSTM 86.64M 1948/2355
6-ConvLSTM 93.81M 1279.21/1731.31

+ higher capacity 194.15M 1113.31/1589.72

Table 4.1 – Ablation - Likelihood We compare models with different number of recurrent
layers for the likelihood network. We observe that the model performance increases monotonically
as we add more ConvLSTMs. We further increase the size of the recurrent hidden states for the
6-ConvLSTM model (+ higher capacity variant), also leading to a better data fit. These results
suggest that current video prediction models might underfit the data because of reduced likelihood
capacity.

increases the amount of information that can be carried from previous timesteps and, by
extension, also increases the overall likelihood model capacity. We compare to a model with
3 ConvLSTM layers at resolutions 1x1, 4x4 and 8x8 and a model with 6 ConvLSTM layers
at 1x1, 4x4, 8x8, 16x16, 32x32 and 64x64. Additionally, we also increase the size of the
ConvLSTM layers for the model with 6 layers as another way of adding capacity.

Results can be found in Figure 4.1. We observe that, as a general trend, both the training
and test ELBO decrease as we increase the model capacity, which suggests that current video
prediction models might operate in an underfitting regime and benefit from higher capacity
decoders.

More Flexible Prior and Posterior. We now investigate the importance of having more
flexible prior and approximate posterior distributions and augment the 6-ConvLSTM VRNN
model with a hierarchy of latent variables. For all models, we fix the frame encoder and
likelihood model 1 and change the networks that estimate the learned prior p(zt|z<t,x<t, c),
and the approximate posterior q(zt|z<t,x≤t, c) over the latent variables. All these models
use a dense connectivity pattern and beta warmup.

We compare a VRNN baseline with a single level of latents with no spatial topology, with a
model with two levels of latents at resolutions 1x1 and 8x8 (1-8), three levels of latents at
1x1, 8x8 and 32x32 (1-8-32), and four levels of latents (1-8-16-32) in the top half of Table 4.2.
All models are trained with beta warmup and dense latent connectivity. We observe that
in general adding more levels of latents with higher resolution reduces the train and test
ELBOs, supporting the hypothesis that a more flexible prior and posterior leads to a better
data fit. However, we observe diminishing returns past 3 levels, as our 1-8-16-32 model does

1. To add the multiple levels of latents in the decoder we need to modify the likelihood network and
slightly increase the number of parameters. However, most (> 85%) of the added capacity when adding a
new level of latents goes towards the prior and posterior networks.
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Model Parameters Train/Test ELBO (↓)

1 166.55M 1141.85/1536.93
1-8 220.60M 989.39/1313.02

1-8-32 230.74M 883.10/1162.24
1-8-16-32 245.19M 956.63/1256.22

Naive Training 224.18M 1127.33/1440.58
BW 224.18M 1101.39/1440.62

Dense 230.74M 1182.60/1547.05
BW and Dense 230.74M 883.10/1162.24

Table 4.2 – Ablation - Hierarchy of Latents Top half: We compare a VRNN baseline with a
single level of latents with no spatial topology (1), a model with two levels of latents at resolutions
1x1 and 8x8 (1-8), our full model with three levels of latents at 1x1, 8x8 and 32x32 (1-8-32), and a
model with 4 levels of latents (1-8-16-32). Adding more levels of latents leads to a better fit, with
reduced ELBOs. However, adding extra levels of latents without increasing the spatial resolution
reduces the performance of the model due to the difficulties in training hierarchical latent variable
models. Bottom half: To highlight the difficulties in training hierarchies of latents, we investigate
the effects of using beta warmup (BW) (Sønderby et al., 2016a) and having a dense connectivity
(Dense) between latents when training the 1-8-32 model. Without these techniques the hierarchy of
latents does not bring any benefit compared to the VRNN with 1 level of latent.

not outperform the 3 layers model. We attribute this to the difficulties in training deep
hierarchies of latents, which remains a challenging optimization problem.

To further highlight the difficulties in training hierarchies of latents, we investigate the
importance of using beta warmup (Sønderby et al., 2016a) and having a dense connectivity
between latents.

The results of this experiment can be found in the bottom half of Table 4.2. We observe that
these techniques are required to make our 1-8-32 model make use of the hierarchy of latents
and improve upon the single level model.

This is analyzed in more detail in Figure 4.4, where we visualize the KL between the prior
and the posterior distributions for the test sequences of the BAIR Push dataset for the 1-8-32
model and the variant without warmup or dense connectivity (Naive training). We consider
a channel to be active if its average KL is higher than 0.01 following Maaløe et al. (2019),
and consider that a unit with a KL higher than 0.15 is maximally activated. We observe that
without these techniques the model only uses a few latents of the top level in the hierarchy.
However, when using beta warmup and a dense connectivity most of the latents are active
across levels.
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Figure 4.4 – Average normalized KL divergence per latent channel. We visualize the
mean normalized KL for each latent channel for models from Table 4.2. Without beta warmup and
dense connectivity the hierarchy of latents is underutilized, with most information being encoded in
a few latents of the top level. In contrast, the same model with these techniques utilizes all latent
levels.

4.5.2. Comparisons to Previous Approaches

Next, we compare our single latent level VRNN (Ours w/o Hier), and our hierarchical VRNN
with 3 levels of latents (Ours w/ Hier) to previous video approaches on Stochastic Moving
MNIST (Denton & Fergus, 2018), BAIR Push (Ebert et al., 2017) and the Cityscapes (Cordts
et al., 2016) datasets.

Evaluation and Metrics. Defining evaluation metrics for video prediction is an open
research question. In general we want models to predict sequences that are plausible, look
realistic and cover all possible outcomes. Unfortunately, we are not aware of any metric that
reflects all these aspects.

To measure coverage and plausibility we adopt the evaluation protocol proposed in (Denton
& Fergus, 2018; Lee et al., 2018). For each ground truth test sequence, we sample N random
predictions from the model which are conditioned on the test sequence initial frames. Then
we find the sample that best matches the ground truth sequence according to a given metric
and report that metric value. Some common metric choices are Mean-Square Error (MSE),
Structural Similarity (SSIM) Wang et al. (2004b) or Peak Signal-to-Noise Ratio (PSNR).
In practice, these metrics have been shown to not correlate well with human judgement as
they tend to prefer blurry predictions over sharper but imperfect generations (Zhang et al.,
2018a; Lee et al., 2018; Unterthiner et al., 2018). LPIPS (Zhang et al., 2018a), on the other
hand, is a perceptual metric that employs CNN features and has better correlation to human
judgment. For this evaluation we choose to produce N = 100 samples following previous
work and use SSIM and LPIPS as metrics. We have empirically observed that using 100

56



Model FVD (↓) LPIPS (↓) SSIM (↑)

SVG-LP 90.81 0.153 ± 0.03 0.668 ± 0.04
Ours w/o hier 63.81 0.102 ± 0.04 0.763 ± 0.09
Ours w/ hier 57.17 0.103 ± 0.03 0.760 ± 0.08

Table 4.3 – Stochastic Moving MNIST comparison. We compute the FVD metric between
samples from different models and test sequences as well as the average LPIPS and SSIM of the
best sample for each test sequence. Our models outperform the SVG-LP baseline on all metrics by
a significant margin. While our model with hierarchical latent variables obtains a better FVD score,
both variants obtain comparable results in this relatively simple dataset.

samples the results stay fairly consistent across different samplings. We report the metric
average over the test set.

Additionally, we also use the recently proposed Fréchet Video Distance (FVD), which measures
sample realism. FVD uses features from a 3D CNN and has also been shown to correlate well
with human perception Unterthiner et al. (2018). FVD compares populations of samples to
assert whether they were both generated by the same distribution (it does not compare pairs
of ground truth/generated frames directly). We form the ground truth population by using
all the test sequences with their context. For the predicted population we randomly sample
one video out of the N generated for each test sequence. We repeat this process 5 times and
report the mean of the FVD scores obtained, which stay fairly stable across samplings.

Stochastic Moving MNIST. Stochastic Moving MNIST is a synthetic dataset proposed
in (Denton & Fergus, 2018) which consists of black and white sequences of MNIST digits
moving over a black background and bouncing off the frame borders. As opposed to the
original Moving MNIST dataset (Srivastava et al., 2015a) with completely deterministic
motion, Stochastic Moving MNIST has uncertain digit trajectories - the digits bounce off the
border with a random new trajectory. We train two variants of our model and compare to
the SVG-LP baseline (Denton & Fergus, 2018), for which we use a pretrained model from
the official codebase. All models are trained using 5 frames of context and 10 future frames
to predict. To evaluate the models, we follow the procedure in (Denton & Fergus, 2018)
described in section 4.5.2.

We report the results of the experiment in Table 4.3. We observe that both versions of
our model (with/out the latent hierarchy) outperform the SVG-LP baseline by a significant
margin on all metrics. Note that LPIPS and FVD might not be suited to this dataset as they
use features from CNNs trained on real world images, but we report them for completeness.
Visually, our samples (found in Appendix 4.D) reproduce the digits more faithfully with
reduced degradation over time. There are small differences between the two versions of our
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Figure 4.5 – Selected Samples for BAIR Push and Cityscapes. We show a sequence
for BAIR Push and Cityscapes and random generations from our model and baselines. On BAIR
Push we observe that the SAVP predictions are crisp but sometimes depict inconsistent arm-object
interactions. SVG-LP produces blurry predictions in uncertain areas such as occluded parts of the
background or those showing object interactions. Our model generates plausible interactions with
reduced blurriness relatively to SVG-LP. On Cityscapes, the SVG-LP baseline is unable to model
any motion. Our model, using a hierarchy of latents, generates more visually compelling predictions.
More samples can be found in the Appendix.

model, suggesting that the extra expressiveness of the hierarchical model is not necessary in
this synthetic dataset.

BAIR Push. We compare our VRNN models to SVG-LP (Denton & Fergus, 2018) and
SAVP (Lee et al., 2018). We use their official implementations and pretrained models to
reproduce their results. We use the experimental setup of previous works (Denton & Fergus,
2018; Lee et al., 2018), using 2 context frames and generating 28 frames.

Results can be found on Figure 4.6. When the robotic arm is interacting with an object, SVG-
LP tends to generate blurry predictions characterized by a high FVD score. SAVP exhibits a
lower FVD as it produces more realistically looking predictions. However, SAVP does not
have a better coverage of the ground truth sequences compared to SVG-LP as measured by
LPIPS and SSIM. By inspecting the SAVP samples we notice that the SAVP generations tend
to be sharper but sometimes they exhibit temporal inconsistencies or implausible interactions
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Model FVD (↓) LPIPS (↓) SSIM (↑)
SVG-LP 256.62 0.061± 0.03 0.816± 0.07

SAVP 143.43 0.062± 0.03 0.795± 0.07
Ours w/o Hier 149.22 0.058± 0.03 0.829 ± 0.06
Ours w/ Hier 143.40 0.055 ± 0.03 0.822± 0.06

Figure 4.6 – BAIR Push - Results. Left: We show the evolution in time of the Average LPIPS
and SSIM of the best predicted sample per test sequence. Right: We report the Average FVD, SSIM
and LPIPS of the best sample for each test sequence. Compared to SVG-LP, both our model with
a single level of latents and the hierarchical models improve all metrics. Compared to SAVP, we
obtain better LPIPS and SSIM. Our model with a single level of latents performs better in SSIM
but worse on perceptual metrics. When adding the hierarchy of latents, our model matches the
FVD of SAVP and improves the LPIPS, indicating samples of similar visual quality and better
coverage of the ground-truth sequences.

(see Figure 4.5). Our w/o Hier VRNN models obtain better scores than SVG-LP, the previous
best VAE-type model. This supports the importance of having a high-capacity likelihood
model. In addition, our hierarchical VRNN further improves both the FVD and LPIPS
metrics, suggesting that the hierarchy of latents helps modeling the data In particular, our
hierarchical VRNN shows an improvement of 44% in terms of FVD and 9.8% in terms of
LPIPS over SVG-LP, the previous best VAE-based model. It also achieves a similar FVD
than the SAVP GAN-VAE model, while outperforming it in terms of LPIPS by 11.2%.

Cityscapes. The Cityscapes dataset contains sequences recorded from a car driving around
multiple cities under different conditions. Cityscapes is a challenging dataset - while contiguous
frames are locally similar, uncertainty grows significantly with time. Compared to previous
datasets, the backgrounds in Cityscapes do not stay constant across time.

We consider sequences with 30 frames from the training set cities for a total of 1877 train
sequences and randomly select 256 test sequences. We use 2 context and 10 prediction
frames to train the models. At test time we predict 28 frames following the BAIR Push
experimental protocol. We preprocess the videos by taking a 1024x1024 center crop of the
original sequences and resizing them to 128x128 pixels. For evaluating the models we use
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Model FVD (↓) LPIPS (↓) SSIM (↑)
SVG-LP 1300.26 0.549± 0.06 0.574± 0.08

Ours w/o Hier 682.08 0.304± 0.10 0.609± 0.11
Ours w/ Hier 567.51 0.264 ± 0.07 0.628 ± 0.10

Figure 4.7 – Cityscapes - Quantitative Results We report FVD, SSIM and LPIPS scores
on Cityscapes at 128x128 resolution for the SVG-LP Denton & Fergus (2018) baseline and two
variants of our model. Increasing the capacity of the likelihood model brings an improvement in all
metrics over the SVG baseline. When adding a hierarchy of latents we observe further improvements,
validating its usefulness. Even though SVG matches our models in SSIM at later timesteps, this
does not correlate well with human judgement, as the generated SVG samples show more blurriness
(see Figure 4.5).

the standard setup where we generate 100 samples per test sequence and report FVD, SSIM
and LPIPS metrics. Since none of the baselines from previous experiments are trained on
Cityscapes, we use the official SVG implementation (that defines models with 128x128 inputs)
and train a SVG-LP model. We train all models for 100 epochs.

Results for this experiment can be found in Figure 4.7. SVG-LP has trouble modelling motion
in the dataset, usually predicting a static image similar to the last context frame. In contrast,
our model without a hierarchy of latents is able to model the changing scene. When adding
hierarchical latents our model is able to capture more fine-grained details, and as a result, it
produces more visually appealing samples with a boost in all metrics. We note that the SSIM
scores for SVG-LP match those of our models at later timesteps in the prediction, however
this does not translate to better samples as can be seen in Figure 4.5 or in the Appendix.
This further indicates that SSIM might not be suitable to evaluate video prediction models.

4.6. Conclusions

We propose a hierarchical VRNN for video prediction that features an improved likelihood
model and a hierarchy of latent variables. Our approach compares favorably to current
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state of the art models in terms of the Fréchet Video Distance, LPIPS and SSIM metrics,
producing visually appealing and coherent samples. Our results demonstrate that current
video prediction models benefit from increased capacity, opening the door to further gains
with bigger and more flexible generative models.
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4.A. Appendix - Hierarchical VRNN

4.A.1. ELBO Derivation

We start from the ELBO for VRNNs (Chung et al., 2015):

log p(x|c) ≥
T∑

t=1
Eq(zt|z<t,x≤t,c) log p(xt|z≤t,x<t, c)−DKL(q(zt|z<t,x≤t, c)||p(zt|z<t,x<t, c))

(4.6)

Recall we defined zt = (z1
t , ..., z

L
t ) and factorized the prior as:

p(zt|z<t,x<t, c) =
L∏

l=1
p(zl

t|z<l
t , zl

<t,x<t, c). (4.7)

And the posterior:

q(zt|z<t,x≤t, c) =
L∏

l=1
q(zl

t|z<l
t , zl

<t,x≤t, c). (4.8)

We then substitute these terms in the VRNN ELBO, first looking at the reconstruction term
inside the summation over time:

T∑
t=1

Eq(zt|z<t,x≤t,c) log p(xt|z≤t,x<t, c) =

T∑
t=1

Eq(z1
t ,...,zL

t |z<t,x≤t,c) log p(xt|z1
t , ..., z

L
t , z<t,x<t, c) =

T∑
t=1

Eq(z1
t |z<t,x≤t,c)...q(zL

t |z<L
t ,z<t,x≤t,c) log p(xt|z1

t , ..., z
L
t , z<t,x<t, c)

(4.9)
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Figure 4.8 – Schematic view of the approximate posterior with the dense-connectivity
pattern. Arrows in red show the connections from the input at the previous timestep to current
latent variables. Arrows in green highlight skip connections between latent variables to outputs.
Arrows in black indicate recurrent temporal connections. We empirically observe that this dense-
connectivity pattern eases the training of latent hierarchy.

And then looking at the summation of KL divergences:

−
T∑

t=1
Eq(zt|z<t,x≤t,c) log q(zt|z<t,x≤t, c)

p(zt|z<t,x<t, c) =

−
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t=1
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t ,...,zL
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1
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L
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L
t |z<t,x<t, c)
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T∑
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t |z<t,x≤t,c)...q(zL
t |z<L

t ,z<t,x≤t,c) log q(z
1
t |z<t,x≤t, c)...q(zL

t |z<L
t , z<t,x≤t)
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t |z<t,x≤t, c)...q(zL

t |z<L
t , z<t,x<t)

= −
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Eq(z1

t |z<t,x≤t,c)...q(zL
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1
t |z<t,x≤t, c)...q(zL

t |z<L
t , z<t,x≤t)

p(z1
t |z<t,x≤t, c)...q(zL

t |z<L
t , z<t,x<t)

(by definition of conditional KL divergence)

= −
T∑

t=1

L∑
l=1

DKL((q(zt|z<t,x≤t, c)||p(zt|z<t,x<t, c))

(4.10)

Adding both terms together we obtain the ELBO defined in eq. 4.5.

4.A.2. Posterior Dense Connectivity

Figure 4.8 illustrates the dense connection of the approximate posterior. For each latent
variable has a deterministic connection to xt−1 (red arrows in Figure 4.2), in addition to all
the latent variables from the layers below (green arrow in in Figure 4.2). Finally , each latent
variable has a direct connection to the output variables xt, corresponding to the inference
path.
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4.B. Model Specification

We specify the architecture used for the 64x64 model. Convolutional layers in our model use
3x3 kernels with stride s = 1 and padding p = 1 unless otherwise specified. We use modified
Resnet blocks made up of two groups of ReLU + Conv2D + GroupNorm. GroupNorm layers
use g = 16 groups. Transposed Convolutions use 4x4 kernels with stride s = 2 and padding p
= 1, which upscales 2x the input tensor. ConvLSTM layers use 3x3 kernels with stride s = 1
and padding p = 1 and GroupNorm.

Layers Details
Conv2D input → 64

ResNet Block 64 → 64
MaxPool 2x2, s = 2

ResNet Block 64 → 128
ResNet Block 128 → 128

MaxPool 2x2, s = 2
ResNet Block 128 → 256
ResNet Block 256 → 256

MaxPool 2x2, s = 2
ResNet Block 256 → 512
ResNet Block 512 → 512

MaxPool 2x2, s = 2
ResNet Block 512 → 512, ks = 4
ResNet Block 512 → 512

Table 4.4 – Frame Encoder Architecture

Layers Details
ConvLSTM 512 → 512, ks = 4

UpConv 512 → 512, scale = 4
ConvLSTM 512 → 512

UpConv 512 → 512
ConvLSTM 512 → 512

UpConv 512 → 256
ConvLSTM 256 → 256

UpConv 256 → 128
ConvLSTM 128 → 128

UpConv 128 → 64
ConvLSTM 64 → 64

Conv2D + GroupNorm + ReLU 64 → 64
Conv2D 64 → input

Table 4.5 – Likelihood/Decoder Architecture
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Level Layer Details
1x1 Conv2D + GroupNorm 128 → 128, ks = 1

ConvLSTM 128 → 128
Conv2D + GroupNorm 128 → 128x2, ks = 1

8x8 Conv2D + GroupNorm 512 → 512, ks = 1
ConvLSTM 512 → 512

Conv2D + GroupNorm 512 → 512x2, ks = 1
32x32 Conv2D + GroupNorm 512 → 512, ks = 1

ConvLSTM 512 → 512
Conv2D + GroupNorm 512 → 512x2, ks = 1

Table 4.6 – Prior/Posterior Architecture

Level Layer Details
1x1 Conv2D + GroupNorm + ReLU 512 → 512, ks = 1

Conv2D + GroupNorm 512 → 512x2, ks = 1
4x4 Conv2D + GroupNorm + ReLU 512 → 512, ks = 1

Conv2D + GroupNorm 512 → 512x2, ks = 1
8x8 Conv2D + GroupNorm + ReLU 512 → 512, ks = 1

Conv2D + GroupNorm 512 → 512x2, ks = 1
16x16 Conv2D + GroupNorm + ReLU 256 → 256, ks = 1

Conv2D + GroupNorm 256 → 256x2, ks = 1
32x32 Conv2D + GroupNorm + ReLU 128 → 128, ks = 1

Conv2D + GroupNorm 128 → 128x2, ks = 1
64x64 Conv2D + GroupNorm + ReLU 64 → 64, ks = 1

Conv2D + GroupNorm 64 → 64x2, ks = 1

Table 4.7 – Initial State Network Architecture

4.C. PredNet Comparison

We additionally compare to PredNet on Cityscapes using the official implementation. Note
that PredNet is deterministic and can’t model future uncertainty. The model is only able to
correctly predict a few timesteps before becoming blurry, as the uncertainty increases with
time. PredNet obtained a FVD score of 1079.19 and a LPIPS score of 0.397, while ours with
the hierarchical model are 567.51 and 0.264 respectively (lower is better).

4.D. Additional Samples
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Figure 4.9 – Additional samples on the Cityscapes dataset (1)
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Figure 4.10 – Additional samples on the Cityscapes dataset (2)
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Figure 4.11 – Additional samples on the BAIR Push dataset (1)
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Figure 4.12 – Additional samples on the BAIR Push dataset (2)
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Figure 4.13 – Additional samples on the Stochastic Moving MNIST dataset (1)
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Figure 4.14 – Additional samples on the Stochastic Moving MNIST dataset (2)
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Chapter 5

Prologue to the Second Article

5.1. Article Details

Cascaded Video Generation for Videos In-the-Wild. Lluis Castrejon, Nicolas Bal-
las and Aaron Courville, In Proceedings of the 26th International Conference in Pattern
Recognition (ICPR 2022).

Authors contributions. I developed and implemented the method presented in this article,
ran most of the experiment and co-wrote the article. Nicolas Ballas helped with benchmarks
and experiments, provided support with the implementation and co-wrote the article. Aaron
Courville supervised the project and revised the article.

5.2. Context

While VAEs had been proved as effective methods to capture stochasticity in video prediction,
VAE generations are often blurry and lower quality than other generative methods. This was
a well-known phenomenon in the image domain. Following the success of BigGAN (Brock
et al., 2018) for images, DVD-GAN (Clark et al., 2019) successfully adapted ideas from the
image GAN community to the field of video generation. However, DVD-GAN required a
large amount of computational resources and had very long training times, which difficulted
its adoption..



5.3. Contributions

To reduce the computational cost of GANs for video, we design a cascaded approach to
video generation in which a low resolution video is first generated and then refined by one or
more upscaling stages. Each stage in our model is trained independently and deals with a
lower dimensional view of a video, thus reducing the overall computational requirements and
training time. Furthermore, we use the better scaling capabilities of our model to generate
long high-dimensional videos beyond what was possible with previous GAN approaches.

5.4. Recent Developments

While our article proposed more scalable GANs for video, they still remain expensive and
difficult to train. The most notable development in GANs for video has been TriVD-GAN (Luc
et al., 2020), which builds upon DVD-GAN and obtains good results in video prediction, but
still requires a large amount of computational resources.
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Chapter 6

Cascaded Video Generation for Videos
In-the-Wild

Abstract. Videos can be created by first outlining a global view of the scene and then
adding local details. Inspired by this idea we propose a cascaded model for video generation
which follows a coarse to fine approach. First our model generates a low resolution video,
establishing the global scene structure, which is then refined by subsequent cascade levels
operating at larger resolutions. We train each cascade level sequentially on partial views of
the videos, which reduces the computational complexity of our model and makes it scalable to
high-resolution videos with many frames. We empirically validate our approach on UCF101
and Kinetics-600, for which our model is competitive with the state-of-the-art. We further
demonstrate the scaling capabilities of our model and train a three-level model on the
BDD100K dataset which generates 256x256 pixels videos with 48 frames.

6.1. Introduction

Humans have the ability to simulate visual objects and their dynamics using their imagination.
This ability is linked to the ability to perform temporal planning or counter-factual thinking.
Replicating this ability in machines is a longstanding challenge that video generative models
try to address. Advances in generative modeling and increased computational resources have
enabled the generation of realistic high-resolution images (Brock et al., 2018) or coherent text
in documents (Brown et al., 2020). Yet, video generation models have been less successful, in
part due to their high memory requirements that scale with the generation resolution and
length.



When creating visual data, artists often first produce a rough outline of the scene, to which
then they add local details in multiple iterations (Locher, 2010). The outline ensures global
scene consistency and divides the creative process into multiple tractable local steps. Inspired
by this process we propose CVG, a cascaded video generation model which divides the
generative process into a set of simpler problems. CVG first generates a rough video that
depicts a scene at a reduced framerate and resolution. This scene outline is then progressively
upscaled and temporally interpolated to obtain the desired final video by one or more upscaling
levels as depicted in Figure 6.1. Every cascade level outputs a video that serves as the input
to the next one, with each level specializing in a particular aspect of the generation.

Levels in our model are trained greedily, i.e. in sequence and not end-to-end. This allows to
train only one level at a time and thus reduce the overall training memory requirements. We
formulate each level as a adversarial game that we solve leveraging the GAN framework. Our
training setup has the same global solution as an end-to-end model.

Figure 6.1 – Cascaded Video Generation We propose to divide the generative process into
multiple simpler problems. CVG first generates a low resolution video that depicts a full scene at a
reduced framerate. This scene outline is then progressively upscaled and temporally interpolated.
Levels are trained sequentially and do not backprogagate gradient to previous levels. Additionally,
upscaling levels can be trained on temporal crops of previous level outputs (illustrated by the
non-shaded images) to reduce their computational requirements. Our model outperforms or matches
the state-of-the-art in video generation and enables the generation of longer high resolution videos
due to better scaling properties than previous methods.

To further reduce the computational needs of our model, upscaling cascade levels can be
applied only on temporal crops from previous outputs during training. Despite this temporally-
local training, upscaling levels are capable of producing videos with temporal coherence at
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inference time, as they upscale the output of the first level, which is temporally complete
albeit at a reduced resolution. This makes CVG more scalable than previous methods, making
it capable of generating high resolution videos with a larger number of frames.

Our contributions can be summarized as follows:

— We define a cascade model for video generation which divides the generation process
into multiple tractable steps.

— We empirically validate our approach on UCF101, Kinetics-600 and BDD100K,
large-scale datasets with complex videos in real-world scenarios. CVG matches or
outperforms the state-of-art video generation models on these datasets.

— We demonstrate that our approach has better scaling properties than comparable
non-cascaded approaches and train a three-level model to generate videos with 48
frames at a resolution of 256x256 pixels.

6.2. Cascaded Video Generation

Video scenes can be created by first outlining the global scene and then adding local details.
Following this intuition we propose CVG, a cascade model in which each level only treats
a lower dimensional view of the data. Video generation models struggle to scale to high
frame resolutions and long temporal ranges. The goal of our method is to break down
the generation process into smaller steps which require less computational resources when
considered independently.

Problem Setting We consider a dataset of videos (x1, ...,xn) where each video xi =
(xi;0, ...,xi;T ) is a sequence of T frames xi;t ∈ RH×W ×3. Let fs denote a spatial bilinear
downsampling operator and ft a temporal subsampling operator. For each video xi, we
can obtain lower resolution views of our video by repeated application of fs and ft, i.e.
xl

i = fs(ft(xl+1
i ), ∀l ∈ [1..L] with xL

i = xi.

Each (x1
i , ..., xL

i ) comes from a joint data distribution pd. The task of video generation
consists in learning a generative distribution pg such that pg = pd.

Cascaded Generative Model We define a generative model that approximates the joint
data distribution according to the following factorization:

pg(x1, ...,xL) = pgL
(xL|xL−1)...pg2(x2|x1)pg1(x1). (6.1)

Each pgi
defines a level in our model. This formulation allows us to decompose the generative

process in to a set of smaller problems. The first level pg1 produces low resolution and
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temporally subsampled videos from a latent variable. For subsampling factors KT and KS (for
time and space respectively), the initial level generates videos x1

i = (x1
i;0,x1

i;KT
,x1

i;2KT
, ...,x1

i;T ),
which is a sequence of T

KT
frames x1

i;t ∈ R
H

KS
× W

KS
×3. The output of the first level is spatially

upscaled and temporally interpolated by one or more subsequent upscaling levels.

Training We train our model greedily one level at a time and in order, i.e. we train the
first level to generate global but downscaled videos, and then we train upscaling stages on
previous level outputs one after each other. We do not train the levels in an end-to-end
fashion, which allows us to break down the computation into tractable steps by only training
one level at a time. We formulate a GAN objective for each stage of our model. We consider
the distribution pg1 in eq. 6.1 and solve a min-max game with the following value function:

Ex1∼pd
[log(D1(x1))] + Ez1∼pz1

[log(1−D1(G1(z1)))], (6.2)

where G1 and D1 are the generator/discriminator associated with the first stage and pz1

is a noise distribution. This is the standard GAN objective (Goodfellow et al., 2014). For
upscaling levels corresponding to pgl

, l > 1, we consider the following value function:

Exl−1,...,x1∼pd
Exl∼pd(.|xl−1,...,x1)[log(Dl(xl, xl−1))] +

Ex̂l−1∼pgl−1
Ezl∼pzl

[log(1−Dl(Gl(zl, x̂l−1), x̂l−1))], (6.3)

where Gl, Dl are the generator and discriminator of the current level and pgl−1 is the
generative distribution of the level l − 1. The min-max game associated with this value
function has a global minimum when the two joint distributions are equal, pd(x, ...,xl) =
pgl

(xl|xl−1)..pg1(x1) Dumoulin et al. (2016); Donahue et al. (2016). We also see from eq. 6.3
that the discriminator for upscaling stages operates on pairs (xl,xl−1) videos to determine
whether they are real or fake. This ensures that the upscaling stages are grounded on their
inputs, i.e that xl "matches" its corresponding xl−1 .

Partial View Training Computational requirements for upscaling levels can be high when
generating large outputs. As we increase the length and resolution of a generation, the need
to store activation tensors during training increases the amount of GPU memory required.
To further reduce the computational requirements, we propose to train the upscaling levels
on only temporal crops of their inputs. This strategy reduces training costs since we upscale
smaller tensors, at the expense of having less available context to interpolate frames. We
define convolutional upscaling levels that learn functions that can be applied in a sliding
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window manner over their inputs. At inference time, we do not crop the inputs and CVG is
applied to all possible input windows, thus generating full-length videos.

6.3. Model Parametrization

In this section we describe the parametrization of the different levels of CVG. We keep the
discussion at a high level, briefly mentioning the main components of our model. Precise
details on the architecture are provided in the appendix.

First Level The first level generator stacks units composed by a ConvGRU layer (Ballas
et al., 2015), modeling temporal information, and 2D-ResNet blocks that upsample the
spatial resolution. Similar to MoCoGAN (Tulyakov et al., 2018) and DVD-GAN (Clark et al.,
2019), we use a dual discriminator with both a spatial discriminator that randomly samples
k full-resolution frames and discriminates them individually, and a temporal discriminator
that processes spatially downsampled but full-length videos.

Upsampling Levels The upsampling levels are composed by a conditional generator and
three discriminators (spatial, temporal and matching). The conditional generator produces an
upscaled version x̂l of a lower resolution video x̂l−1. To discriminate samples from real videos,
upscaling stages use a spatial and temporal discriminator, as in the first level. Additionally,
we introduce a matching discriminator. The goal of the matching discriminator is to ensure
that the output is a valid upsampling of the input, and its necessity arises from the model
formulation. Without this discriminator, the upsampling generator could learn to ignore
the low resolution input video. The conditional generator is trained jointly with the spatial,
temporal and matching discriminators.

Conditional Generator The conditional generator takes as input a lower resolution video
x̂l−1, a noise vector z and optionally a class label y, and generates x̂l. Our conditional
generator stacks units composed by one 3D-ResNet block and two 2D-ResNet blocks. Spatial
upsampling is performed gradually by progressively increasing the resolution of the generator
blocks. To condition the generator we add residual connections (He et al., 2016; Srivastava
et al., 2015b) from the low-resolution video to the output of each generator unit. We sum
nearest-neighbor interpolations of the lower resolution input to each unit output.

Matching Discriminator The matching discriminator uses an architecture like that of the
temporal discriminator. It discriminates real or generated input-output pairs. The output
is downsampled to the same size as the input, and both tensors are concatenated on the
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channel dimension. A precise description of all discriminator architectures can be found in
the appendix.

6.4. Related Work

The modern video generation literature (Ranzato et al., 2014; Srivastava et al., 2015a) first
started as a result of adapting techniques for language modeling to video. Since then, many
papers have proposed different approaches to represent and generate videos (Luc et al., 2017,
2018; Villegas et al., 2017a,b; Xue et al., 2016), including different kinds of tasks, conditionings
and models. We review the most common types of generative video models below.

Autoregressive models (Larochelle & Murray, 2011; Dinh et al., 2016; Kalchbrenner et al.,
2017; Reed et al., 2017; Weissenborn et al., 2020; Yan et al., 2021) model the conditional
probability of each pixel value given the previous ones. They do not use latent variables and
their training can be easily parallelized. Inference in autoregressive models often requires
a full forward pass for each output pixel, which does not scale well to long high resolution
videos.

Normalizing flows (Rezende & Mohamed, 2015; Kingma & Dhariwal, 2018; Kumar et al.,
2019) learn bijective functions that transform latent variables into data samples. Normalizing
flows are able to directly maximize the data likelihood. However, they require the latent
variable to have the same dimensionality as its output, which becomes an obstacle when
generating videos due to their large dimensionality.

Variational AutoEncoders (VAEs) (Kingma & Welling, 2013; Rezende et al., 2014; Babaeizadeh
et al., 2018) also transform latent variables into data samples. While more scalable, VAEs
often produce blurry results when compared to other generative models. Models based on
VRNNs (Chung et al., 2015; Denton & Fergus, 2018; Lee et al., 2018; Castrejon et al., 2019)
use one latent variable per video frame and often produce better results.

Generative Adversarial Networks (GANs) are also latent variable models and optimize a
min-max game between a generator G and a discriminator D trained to tell real and generated
data apart (Goodfellow et al., 2014). Empirically, GANs usually produce better samples than
competing approaches but might suffer from mode collapse. GAN models for video were
first proposed in (Vondrick et al., 2016b,a; Mathieu et al., 2015). In recent work, SAVP (Lee
et al., 2018) proposed to use the VAE-GAN (Larsen et al., 2015) framework for video.
TGANv2 (Saito & Saito, 2018) improves upon TGAN (Saito et al., 2017) and proposes a
video GAN trained on data windows, similar to our approach. However, unlike TGANv2, our
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model is composed of multiple stages which are not trained jointly. MoCoGAN (Tulyakov et al.,
2018) first introduced a dual discriminator architecture for video, with DVD-GAN (Clark et al.,
2019) scaling up this approach to high resolution videos in the wild. DVD-GAN outperforms
MoCoGAN and TGANv2, and is arguably the current state-of-the-art in adversarial video
generation.

Our model is also related to work that proposes hierarchical or progressive training approaches
for generative models (Karras et al., 2017; Denton et al., 2015; Xiong et al., 2018; Zhao et al.,
2020). Our model is different in that our stages are trained greedily in separate steps without
backpropagation from one stage to the other, which reduces its computational requirements.

6.5. Experiments

t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45

Figure 6.2 – Randomly selected CVG 48/128x128 frame samples for Kinetics-600:
These samples were generated by unrolling CVG 12/128x128 to generate 48 frame sequences, 4
times its training horizon. Each row shows frames from the same sample at different timesteps. The
generations are temporally consistent and the frame quality does not degrade over time.

In this section we empirically validate our proposed approach. First, we show that our
approach outperforms or matches the state-of-the-art on Kinetics-600 and UCF101. Then,
we analyze the scaling properties of our model in Section 6.5.4. Finally, we ablate the main
components of our model in Section 6.5.5.
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Table 6.1 – Results on Kinetics-600 128x128 We compare our two-level CVG against the
reported metrics for DVD-GAN (Clark et al., 2019). Our model is trained on 12-frame windows and
matches the performance of the 12-frame DVD-GAN model. Furthermore, the same CVG model
is able to generate 48 frames when applied convolutionally over a full-length first level output. In
that setup our model also matches the quality of a 48-frame DVD-GAN model, but has significantly
lower computational requirements.

Evaluated on 12 frames Evaluated on 48 frames
Model Trained on IS (↑) FID (↓) FVD (↓) IS (↑) FID (↓) FVD (↓)
DVD-GAN 12/128x128 77.45 1.16 - N/A N/A N/A
DVD-GAN 48/128x128 N/A N/A N/A 81.41 28.44 -
2-Level CVG 12/128x128 104.00 2.09 591.90 77.36 14.00 517.21

Figure 6.3 – Scaling computational costs We report the required GPU memory for a two-level
CVG. We observe that, given the same batch size, the memory cost scales linearly with the output
length. Our model scales better than a comparable non-cascaded model.

6.5.1. Experimental Setting

Datasets. We consider the Kinetics-600 (Kay et al., 2017; Carreira et al., 2018) and the
UCF101 (Soomro et al., 2012) datasets for class conditional video generation. Kinetics-600 is
a large scale dataset of Youtube videos depicting 600 action classes. The videos are captured
in the wild and exhibit lots of variability. The amount of videos available from Kinetics-600 is
constantly changing as videos become unavailable from the platform. We use a version of the
dataset collected on June 2018 with around 350K videos. UCF101 contains approximately
13K videos with around 27 hours of video from 101 human action categories. Its videos
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Figure 6.4 – Random 48/256x256 BDD100K samples: We show samples from our three-
stage BDD100K model. Each row shows a different sample over time. Despite the two stages of
local upsampling, the frame quality does not degrade noticeably through time.

have camera motion and cluttered backgrounds, and it is a common benchmark in the video
generation community.

Additionally, we use the BDD100K dataset (Yu et al., 2018) for unconditional video generation.
BDD100K contains 100k videos showing more than 1000 hours of driving under different
conditions. We use the training set split of 70K videos.

For the rest of the section we denote video dimensions by their output resolution DxD and
number of frames F as F/DxD.

Evaluation metrics. Defining evaluation metrics for video generation is an open research
area. We use metrics from the image generation literature adapted to video. On Kinetics, we
report three metrics: i) Inception Score (IS) given by an I3D model (Carreira & Zisserman,
2017) trained on Kinetics-400, ii) Frechet Inception Distance on logits from the same I3D
network, also known as Frechet Video Distance (FVD) (Unterthiner et al., 2018), and iii)
Frechet Inception Distance on the last layer activations of an I3D network trained on Kinetics-
600 (FID). On BDD100K we report FVD and FID as described before, but we omit IS scores
as they are not applicable since there are no classes. On UCF101 we report IS scores following
the standard setup in the literature.

Implementation details. All CVG models are trained with a batch size of 512 and using
up to 4 nVidia DGX-1. Levels for Kinetics-600 are trained for 300k iterations, while levels
for BDD100K and UCF101 are trained for 100k iterations, all with early stopping when
evaluation metrics stop improving. We use PyTorch and distribute training across multiple
machines using data parallelism. We synchronize the batch norm statistics across workers.
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We employ the Adam (Kingma & Ba, 2014) optimizer to train all levels with a fixed learning
rate of 1× 10−4 for G and 5× 10−4 for D. We use orthogonal initializations for all the weights
in our model as well as spectral norm in the generator and the discriminator. More details
can be found in the appendix.

Baselines. As baselines we consider DVD-GAN (Clark et al., 2019), TGANv2 (Saito et al.,
2017; Saito & Saito, 2018), VideoGPT (Yan et al., 2021) and MoCoGAN Tulyakov et al.
(2018). Comparisons are mostly against DVD-GAN, as the current state-of-the-art model for
class-conditional video generation and the only approach that can generate realistic samples
on Kinetics-600.

6.5.2. Kinetics-600

We first evaluate the performance of CVG on the Kinetics-600 dataset with complex natural
videos.

We train a two-level CVG on Kinetics-600 that generates either 12/128x128 or 48/128x128
videos, to compare to the previous state-of-the-art. The first level of CVG generates 24/32x32
videos with a temporal subsampling of 4 frames. The second level upsamples the first
level output using a factor of 2 for the temporal resolution and a factor 4 for the spatial
resolution, producing 48/128x128 videos with a temporal subsampling of 2 frames. Since these
generations are large, we employ partial views on first level outputs to train the second level,
which takes as input windows of 6/32x32 frames and is trained to generate 12/128x128 video
snippets (4x lower dimensional than the final output). As a result, this level has approximately
the same training cost than a model generating videos of size 12/128x128. At inference time
we run the second level convolutionally over all the 24 first level frames to generate 128x128
videos with 48 frames. We also use the same model to generate 12/128x128 videos by using
random 6 frame windows from the first level output (i.e. we use the same training and
inference setup). We compare to DVD-GAN for both 12/128x128 and 48/128x128 videos with
temporal subsampling 2, as the current state-of-the-art in this dataset. Note that DVD-GAN
outperforms by a large margin other approaches on Kinetics-600 such as (Weissenborn et al.,
2020).

We report the scores obtained by our model in Table 6.1. For 12/128x128 videos, our model
achieves higher IS and comparable FID to DVD-GAN, validating that both models perform
comparably when using a similar amount of computational resources. Additionally, CVG
outperforms a 48/128x128 DVD-GAN model in FID score and reaches a similar IS score,
despite only being trained on reduced views of the data. Qualitatively, the generations of both
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Table 6.2 – UCF101 16/128x128 comparison: We compare CVG to previous video generation
approaches on UCF101. Our method obtains significantly higher Inception Score.

Model IS(↑)
MoCoGAN (Tulyakov et al., 2018) 12.42

VideoGPT (Yan et al., 2021) 24.69
TGANv2 (Saito & Saito, 2018) 28.87
DVD-GAN (Clark et al., 2019) 32.97

CVG (ours) 53.72

models are similar - they do not degrade noticeable in appearance through time although
both have some temporal inconsistencies. For CVG temporal inconsistencies are often due to
a poor first level generation. For DVD-GAN we hypothesize that inconsistencies are due to
the reduced temporal field of view of its discriminator, which is of less than 10 frames while
the model has to generate 48 frames.

6.5.3. UCF101

We further evaluate our approach on the smaller UCF101 dataset. We train a two-level CVG
to generate 16/128x128 videos, as commonly done in the literature. The first level generates
8/64x64 videos with a temporal subsampling of 2 frames. The second level upscales the
output of the first level to 16/128x128 videos, without temporal subsampling to match the
literature. Since these are small videos, we do not use temporal windows to train the second
upscaling level.

We report the scores obtained by our model in Table 6.2. Our model obtains state-of-the-art
results, outperforming previous approaches by a large margin. Qualitatively, CVG generates
coherent samples with high fidelity details, with small temporal inconsistencies. Samples for
the UCF101 dataset can be found in the appendix.

6.5.4. Scaling up CVG on BDD100K

To show that our model scales well with the video dimensionality, we train a three-stage
model on the BDD dataset to generate 48/256x256 videos. A training iteration with a single
48/256x256 video for a similarly sized non-cascaded model requires more than 32GB of GPU
memory. Such model is therefore not trainable on most current GPUs without techniques
like gradient checkpointing which add a significant overhead to the training time. Instead,
with our cascaded model we can fit 4 examples per GPU without any engineering tricks.
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No MD - Stage 1

No MD - Stage 2

MD - Stage 1

MD - Stage 2

Figure 6.5 – Matching discriminator samples We show a random sample from our two-level
model on Kinetics-600 with the matching discriminator and without the matching discriminator
(No MD). For each sample we show the output of the first level and the corresponding second level
output. While the No MD model generates plausible local snippets at level 2, it does not remain
temporally coherent. Our model with the matching discriminator is temporally consistent because
it is grounded in the low resolution input.

We train the first level to output 12 frames at 64x64 resolution with a temporal subsampling
of 8 frames. The second level upsamples 12 frame windows at 128x128 resolution with
temporal subsampling of 4 frames (since we are doubling the framerate of the first level). The
third level is trained to upscale 12 frame windows at 256x256 resolution for a final temporal
subsampling of 2 frames. Figure 6.4 shows samples from this model. The videos appear crisp,
show multiple settings and do not degrade through time.

To further illustrate the scaling capabilities of our model, we report the memory requirements
for a two-level 128x128 CVG as a function of the number of output frames in Figure 6.3.
The first level generates half the output frames at 64x64, while the second level is trained
to upscale windows of 6 frames into 12 128x128 frames, regardless of the first level output
length. Compared to a non-cascaded 128x128 model, our first level scales better due to the
lower resolution and reduced number of frames, and the second level has a fixed memory cost
of 10290MB since it is trained on 6 frames windows. Given the same GPU memory budget,
our model can generate sequences of up to 140 frames, more than double the frames of a
non-cascaded model.

6.5.5. Model Ablations

Matching Discriminator Ablation. To assess the importance of the matching discrimi-
nator, we compare two-level CVG models with and without the matching discriminator (we
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Table 6.3 – Matching discriminator comparison We report metrics on Kinetics-600 and
BDD100K for our model with and without the matching discriminator. Both models perform
similarly for 6 frames, corresponding to the training video length. However, the model without the
matching discriminator produces incoherent generations when applied over the full first level input
because it can ignore it.

6 Frames 50 Frames
Dataset Model IS (↑) FID (↓) FVD (↓) IS (↑) FID (↓) FVD (↓)

Kinetics-600 CVG (No MD) 50.31 1.62 594.99 37.81 42.29 1037.79
CVG 48.44 1.06 565.95 49.44 31.87 790.97

BDD100K CVG (No MD) N/A 1.36 211.69 N/A 26.52 575.51
CVG N/A 1.07 144.96 N/A 18.73 326.78

Table 6.4 – Temporal Window Ablation We compare two-level models trained with different
window sizes for the upscaling levels. The 6-frame model has higher computational requirements
but outperforms the 3-frame model, confirming a trade-off between computational savings and final
performance when selecting the temporal window size.

Kinetics-600 48 Frames
Window IS (↑) FID (↓) FVD (↓)
3-frame 58.21 31.59 714.74
6-frame 77.36 14.00 517.21

refer to the latter as No MD). As in Section 6.5.2, we generate 48 frames with a two-level
model on Kinetics-600. We train the upscaling level on 3-frame windows of the first level to
generate 6 frames. We expect the No MD model to generate inconsistent full-length videos
when applied over the full first level since its outputs are not necessarily valid upscalings of
the inputs. On 6 frame generations (i.e. the training setup), CVG and CVG No MD obtain
similar scores as reported in Table 6.3. While the No MD model ignores its previous level
inputs, it still learns to generate plausible 6 frame videos at 128x128. However, when we
use the models to generate full-length 48 frame videos, CVG No MD only generates valid
local snippets and is inconsistent through time. Figure 6.5 shows an example of a full length
No MD generation in which this effect is observable. In contrast, our model (MD) stays
grounded to the input and remains consistent through time. This is reflected in the reported
metrics in Table 6.3, where the No MD model has worse scores. This ablation shows the need
of a matching discriminator to ground upsampling level outputs to their inputs.

Temporal Window Ablation. One modelling choice in CVG is the temporal window
length used in the upsampling levels. Shorter inputs provide less context to upsample frames,
while longer inputs require more compute. To assess the impact of the window length, we
compare two-level models trained on Kinetics-600 128x128: one trained on first level windows
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of 6 frames (same setup as in Section 6.5.2) and one trained on windows of only 3 frames.
The 6-frame level requires approximately 2x GPU memory than the 3-frame level during
training, but we expect it to perform better due to the larger context available for upscaling.
We compare their performance to generate 48 frames in Table 6.4. We conclude that the
window size defines a trade-off between computational resources and sample quality. We refer
the reader to the appendix for an additional ablations and experiments.

6.6. Conclusions

We propose CVG, a cascaded video generator that divides the generative process into simpler
steps. Our model is competitive with state-of-the-art approaches in terms of sample quality,
while requiring significantly less computational resources due to the cascaded approach.
Higher capacity models and larger outputs are key aspects in improving video generation,
and CVG is a step in that direction with better scaling properties than previous approaches.

Acknowledgments. We acknowledge the support from the FAIR and Mila teams. L.C.
was supported by an IVADO PhD fellowship.

6.A. Appendix - Additional Implementation Details

We use the Adam optimizer (Kingma & Ba, 2014) with learning rate λG = 1 × 10−4 and
λD = 5 × 10−4 for the generator and the discriminator, respectively. The discriminator is
updated twice for each generator update.

We use orthogonal initialization for all the weights in our model and use spectral normalization
both in the generator and the discriminator. We only use the first singular value to normalize
the weights. We do not use weight moving averages nor orthogonal penalties.

Conditional batch normalization layers use the input noise as the condition, concatenated
with the class label when applicable. Features are normalized with a per-frame mean and
standard deviation.

To unroll a generator beyond its training temporal horizon, we apply it convolutionally
over longer input sequences. We perform 200 “dummy” forward passes to recompute the
per-timestep batch normalization statistics at test time.

All convolutions in our models use 3x3 or 3x3x3 filters with padding=1 and stride=1, for 2D
or 3D convolutions respectively. All models were implemented in PyTorch.
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For the rest of the appendix, we use B to denote the batch size, T for the number of frames
or timesteps, C for the number of channels, H for the height of the frame and W is the width
of the frame.

6.A.1. Model Architecture - First level

Generator. The generator is composed by a stack of units where each unit is comprised of
a ConvGRU layer and two 2D-ResNet upsampling blocks. We describe our network using a
base number of channels ch and the channel multipliers associated with each unit. Our first
level generator is formed by 4 units with channel multipliers [8, 8, 4, 2]. The base number of
channel is 128.

The first input of this network is of size BxTx(8xch)x4x4. This input is obtained by first
embedding the class label onto a 128 dimensional space, then concatenating the embedding
to a 128 dimensional noise vector. This concatenation is mapped to a Bx(8xch)x4x4 tensor
with a linear layer and a reshape, and then the final tensor is obtained by replicating the
output of the linear layer T times.

The ConvGRU layer (Ballas et al., 2015) follows the ConvGRU implementation of (Clark
et al., 2019) and uses a ReLU non-linearity to compute the ConvGRU update.

The 2D ResNet blocks are of the norm-act-conv-norm-act-conv style. We use conditional
batch normalization layers, ReLU activations and standard 2D convolutions. Before the first
convolution operation and after the first normalization and activation, there is an optional
upsampling operation when increasing the resolution of the tensor. We use standard nearest
neighbor upsampling. Except for the last unit, all units perform this upsampling operation.
The conditional batch normalization layers receive the embedded class label (if applicable)
and the input noise as a condition and map it to the corresponding gain and bias term of the
normalization layer using a learned linear transformation. The 2D ResNet blocks process all
frames independently by reshaping their input to be (B*T)xCxHxW.

The output of the last stack goes through a final norm-relu-conv-tanh block that maps the
output tensor to RGB space with values in the [-1, 1] range.

Discriminator. There are two discriminators, a 2D spatial discriminator and a 3D temporal
discriminator. The 2D discriminator is composed of 2D ResNet blocks. Each ResNet block is
formed by a sequence of relu-conv-relu-conv layers. There are no normalization layers in the
discriminator. After the last conv in each block there is an optional downsampling operation,
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which is implemented with average pooling layers. The 2D discriminator receives as input 8
randomly sampled frames from real or generated samples.

The 3D discriminator is equal to the 2D discriminator except that its first two layers are
3D ResNet blocks, implemented by replacing 2D convolutions with regular 3D convolutions.
The 3D discriminator receives as input a spatially downsampled (by a factor of two) real or
generated sample. The 2D blocks process different timesteps independently.

We concatenate the output of both discriminators and use a geometric hinge loss. The loss is
averaged over samples and outputs.

We use 128 as base number of channel for both discriminators, with the following channel
multipliers for each ResNet block: [16, 16, 8, 4, 2]

6.A.2. Model Architecture - Upsampling levels

The upsampling levels follow the same architecture as the first level but with the following
modifications.

Generator. The generator units replace the ConvGRU layers with a Separable 3D convo-
lution. We first convolve over the temporal dimension with a 1D temporal kernel of size 3
and then convolve over the spatial dimension with 2D 3x3 kernel. We empirically compare
generators with ConvGRU and separable convolutions in Section 6.B, showing that the 3D
convolution performs as well as the ConvGRU but it can be run in parallel.

We add residual connections at the end of each 3D and 2D ResNet block to an appropriately
resized version of xl−1. We use nearest neighbor spatial downsampling for this operation, and
we use nearest neighbor temporal interpolation to increase the number of frames of xl−1. We
then map the residual to the appropriate number of channels using a linear 1x1 convolution.
We do not add xl−1 residual connections to feature maps with spatial resolutions (HxW)
greater than the resolution of xl−1.

Discriminator. We reuse the same 2D and 3D discriminators as for the first stage.
Additionally, we add a matching discriminator that discriminates (xl,xl−1) pairs. The
matching discriminator utilizes the same architecture as the 3D discriminator. It receives as
input a concatenation of xl−1 and a downsampled version of xl to match the resolution of
xl−1. We concatenate the outputs of all three networks and use a geometric hinge loss, as
done for the first level discriminator. The overall loss is averaged over samples and output
locations.
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Figure 6.6 – Comparison of recurrent layers We compare two variants of the same generator,
one with a single ConvGRU layer per generator block and one with a separable 3D convolution per
generator block. On the left we show the evolution of the FVD score during training, and on the
right we show the Inception Score. Both scores are normalized to the [0, 1] range where 1 is the
highest score obtained by these models and 0 the lowest. Both models have similar behaviour and
computational costs, but the 3D convolution processes inputs in parallel.

For 128x128 generations on Kinetics, the generator uses 128 as base number of filters with the
following channel multipliers [8, 8, 4, 2, 1]. All discriminators have 96 base channels and the
following channel multipliers [1, 2, 4, 8, 16, 16]. All our Kinetics models at 128x128 are two-
level models. We train models to upsample inputs of sizes 3/32x32 or 6/32x32 to 6/128x128
or 12/128x128, respectively. Since we train our first level for 24/32x32 outputs, our two-level
models can generate 48/128x128 outputs when unrolled.

For 128x128 generations on BDD100K, the generator uses 96 as the base number of channels
with channel multipliers [8, 8, 4, 2, 1]. All discriminators have 96 base channels and channel
multipliers [1, 2, 4, 8, 16, 16]. Our BDD100K 128x128 models upsample 6/64x64 inputs to
12/128x128, and can generate outputs of up to 24/128x128.

For 256x256 generations on BDD100K, the generator uses 96 as the base number of channels
with channel multipliers [8, 4, 4, 4, 2, 1]. All discriminators have 96 base channels and channel
multipliers [1, 2, 4, 8, 8, 16, 16]. Our 256x256 model upsamples 6/128x128 inputs to 12/256x256,
and can generate outputs of up to 48/256x256.

6.B. Comparison of Recurrent Layers

In this section we justify the change of the ConvGRU for Separable 3D convolutions in
upsampling levels. In Figure 6.6 we compare the evolution of two metrics (IS and FVD)
during training for two variants of the same two-stage model, one using ConvGRUs and one
using separable 3D convolutions. Both models show similar behavior during training and
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achieve similar final metrics. However, ConvGRUs perform sequential operations over time
whereas 3D convolutions can be parallelized.

Figure 6.7 – Power Spectrum Density (PSD) plots for different time steps We show
a comparison of the PSD between the original data and our generations at different steps in the
predictions. We observe that our generations have a similar PSD to that of the original data, even
at the end of the generation, indicating that the generations do not blur over time significantly.
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6.C. Power Spectrum Density

Some video generation models produce blurry results over time. As an additional evaluation,
we generate Power Spectrum Density (PSD) plots to assess whether our generations become
blurrier over time, following (Ayzel et al., 2020).

We conduct this experiment on Kinetics for videos of 48 frames at 128x128 resolution. We
use our model with the first level trained on 24/32x32 sequences and the second level trained
to generate 12/128x128 video snippets from 6/32x32 windows, and unrolled after training to
produce 48/128x128 videos. We took 1800 random videos from the ground truth data (GT)
and 1800 generations from our model. We compute the PSD at frames 1, 10, 24, and 48 of
each video. For each set of 600 videos, we compute the average PSD across videos, on a per
frame basis. Finally, we use the three sets of 600 videos to compute the standard deviation
and mean for the average PSD of the original data and our generations. Figure 6.7 shows the
plots for different frame indices. Our generations have a very similar PSD to that of GT in
all video frames. This indicates that our generations, while they might not be accurate, have
very similar frequency statistics as the ground-truth data. We do not observe any significant
blurring over time, which is confirmed by the plots - they show that even for frame 48 high
frequencies are very similar between the original data and our generations.

6.D. Influence of Motion on the Results

In this section we analyze whether our model has different performance for categories with
different motion characteristics as an additional analysis.

We conduct this experiment for CVG trained on Kinetics-600 to generate 24/32x32 videos in
the first level and then to upscale 6/32x326 videos to 12/128x128 videos for the second level.
The second level is unrolled over the full first level generation to obtain 48/128x128 videos.

We randomly select five categories of videos with high motion content (bungee jumping,
capoeira, cheerleading, kitesurfing and skydiving) and five categories with less dynamic videos
(doing nails, cooking egg, crying, reading book and yawning). We generate 1000 samples
from CVG for each category, and use all available samples in the dataset to compute IS and
FID scores per category.

Table 6.5 shows the IS and FID scores of each class, while Figure 6.8 and Figure 6.9 show
samples from high motion and low motion categories, respectively. We do not observe a
trend that indicates that CVG produces worse generations for high motion classes. Some
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48 frames
Class IS (↑) FID (↓) # Videos

H
ig

h
M

ot
io

n Bungee Jumping 11.66 82.21 799
Capoeira 9.48 84.57 816
Cheerleading 12.10 116.84 982
Kitesurfing 11.36 108.81 648
Skydiving 5.99 90.25 983

L
ow

M
ot

io
n Doing Nails 13.32 91.67 537

Cooking Egg 7.60 111.63 441
Crying 8.92 70.74 627
Reading Book 11.13 64.97 793
Yawning 9.71. 79.08 530

Table 6.5 – Per category scores for classes with different amounts of motion (Kinetics-
600) We report per-class IS and FID scores for 5 randomly selected categories with high motion
and 5 categories with low motion. We observe that there is a high variability in FID scores, with
some classes with low motion having high scores as well as some high motion classes. In IS scores
there are few differences between the two groups, with the high motion group having a slightly
higher mean score.

low motion categories have high FID scores similar to the highest scores for the high motion
categories, while on average the IS scores for the high motion categories are slightly better.
We do not notice a qualitative difference. Instead, we believe there might be other factors -
amount of structure present in a scene for example - that have greater impact on the output
quality.

6.E. Cascaded Training Objective

In this section we describe our training objective more formally. For a CVG model with L

levels, our goal is to model the joint probability distribution pd(x1, ...,xL) = pg(x1, ...,xL) =
pgL

(xL|xL−1)..pg1(x1), where each pgl
is defined by a level l in our model.

Training Level 1. We consider the distribution pg1 and solve a min-max game with the
following value function:

V1(G1, D1) =

Ex1∼pd
[log(D1(x1))] + Ez1∼pz1

[log(1−D1(G1(z1)))],

where G1 and D1 are the generator/discriminator associated with the first stage and pz1 is a
noise distribution.
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t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45

Figure 6.8 – Samples from Kinetics-600 classes with high motion content

t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45

Figure 6.9 – Samples from Kinetics-600 classes with low motion content

This is the standard GAN objective. As shown in (Goodfellow et al., 2014), the min-max
game minG1 maxD1 V1(G1, D1) has a global minimum when pg1(x1) = pd(x1).
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t = 0 t = 2 t = 4 t = 6 t = 8 t = 16 t = 24 t = 32 t = 40 t = 48

Figure 6.10 – DVD-GAN fails to generate samples beyond its training horizon These
samples were obtained by changing the spatial dimensions of the latent in a 6/128x128 DVD-GAN
model to produce 48/128x128 videos. The samples quickly degrade after the first few frames and
become motionless.

Training upsampling levels. For each upscaling level l > 1 we formulate a min-max game
with the following value function:

Vl(Gl, Dl) =

Exl−1,...,x1∼pd
Exl∼pd(.|xl−1,...,x1)[log(Dl(xl, xl−1))] +

Ex̂l−1∼pgl−1
Ezl∼pzl

[log(1−Dl(Gl(zl, x̂l−1), x̂l−1))],

where Gl, Dl are the generator and discriminator of the current level and pgl−1 is the
generative distribution of the level l − 1.

The min-max game minGl
maxDl

Vl(Gl, Dl) has a global minimum when the two joint dis-
tributions are equal, pd(x, ...,xl) = pgl

(xl|xl−1)..pg1(x1) Dumoulin et al. (2016); Donahue
et al. (2016). It follows that pd(xl|xl−1) = pgl

(xl|xl−1) when pgl−1(xl−1|xl−2)..pg1(x1) =
pd(xl−1, ...,x1). Level l only learns the parameters associated with the distribution pgl

, as all
pgi
, 1 ≤ i ≤ l − 1 levels are trained previously and their training objectives admit a global

minimum when they match the data distribution. However, even if the distribution pgl−1

does not match exactly the marginal data distribution, our model still aims at learning a
distribution pgl

such that pgl
(xl|xl−1)..pg1(x1) approximates the joint data distribution.

6.F. DVD-GAN unrolling

One of the main characteristics of CVG is the ability to change the training and inference
setup for upscaling levels. Since DVD-GAN is mostly a convolutional model, we investigate
whether it can generate videos of longer duration than those it is trained on. The number
of frames in that model is controlled by the RNN that receives as input the latent variable
sample and outputs as many tensors as frames to be generated. We adjust the number of
steps for this RNN and recompute batch normalization statistics to account for the extended
amount of frames. A prototypical example from an extended DVD-GAN model generation
can be found in Figure 6.10. We observe that for this model videos are coherent up until
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Iteration time Total time

CVG Level 1 3.45s 4 days
CVG Level 2 3.20s 3.7 days
DVD-GAN 11.90s 13.8 days

Table 6.6 – Training time comparison

the training length, but then they visibly degrade and quickly become motionless, producing
implausible generations.

6.G. Time Complexity

In Table 6.6 we compare a two-level CVG and a DVD-GAN model with similar capacity
trained on 48/128x128 Kinetics-600 videos with a batch size of 512 and 64 GPUs. In addition
to the memory savings, the total training time of CVG (7.7 days) is significantly shorter. Our
approach uses smaller networks at each level and produces smaller outputs. Therefore, each
level can have a reduced training iteration time. Using an additional third level to generate
larger outputs increases the CVG training time. However, we cannot train the equivalent
DVD-GAN baseline for the three-level model due to memory constraints, as it does not fit in
GPU memory even with a batch size of 1 example.

6.H. BDD100K metrics

Evaluated on 12 frames Evaluated on 48 frames
Model Trained on FID (↓) FVD (↓) FID (↓) FVD (↓)

3-Level CVG 12/256x256 3.66 541.37 21.38 391.69

Table 6.7 – BDD100K 256x256 Metrics We report the FID and FVD scores for our three-level
CVG trained on BDD100K. The model is trained to generate 12/256x256 videos and at inference it
produces 48/256x256 videos.

We report the metrics for our three-level BDD100K model for help future comparison to
CVG in Table 6.7.

Qualitative comparison with DVD-GAN. As a point of comparison we provide sam-
ples from the official DVD-GAN 48/128x128 trained on Kinetics-600 and released by the
authors. Samples can be download at this URL: https://drive.google.com/file/d/
1P8SsWEGP6tEGPPNPH-iVycOlN6vpIgE8/view?usp=sharing. We observe that the samples
from DVD-GAN and our CVG model are of similar quality.
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6.I. Additional Samples

6.I.1. Upsampling Visualizations

In this section we show some examples of level 1 generations on Kinetics-600 for a 24/32x32
model, as well as the corresponding 48/128x128 generations from level 2 trained to upscale
6/32x32 windows to 12/128x128 and unrolled over the whole first level generation. Examples
are shown in Figure 6.14, in which, for each example, we show the level 1 generation on the
top row and the corresponding level 2 generation in the lower row. We observe that the
second level adds details and refines the low resolution generation beyond simple upsampling,
but at the same time keeps the overall structure of the low resolution generation and is
properly grounded.
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t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45

Figure 6.11 – Additional samples for Kinetics 12/128x128 We show additional samples
from our two-level Kinetics 12/128x128 model unrolled to generate 48/128x128 videos.
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t = 1 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45 t = 48

Figure 6.12 – Additional samples for BDD100K 48/256x256 We show additional samples
from our three-level BDD100K 48/256x256 model.
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t = 0 t = 2 t = 4 t = 6 t = 8 t = 10 t = 12 t = 14

Figure 6.13 – Samples from our model trained on UCF101 We show samples from our
16/128x128 model trained on UCF101.
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t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45

Figure 6.14 – Pairs of samples from stage 1 and their corresponding stage 2 output We
show a few examples from our 12/128x128 two-level model trained on Kinetics-600 and unrolled to
generate 48/128x128 videos. For each example, we show the first level low resolution generation and
the corresponding level 2 upsampling. Level 2 outputs refine the details of the first level generations
but retain the overall scene structure.
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Chapter 7

Prologue to the Third Article

7.1. Article Details

VIM: Variational Independent Modules for Video Prediction. Rim Assouel 1, Lluis
Castrejon1, Nicolas Ballas, Aaron Courville and Yoshua Bengio. In Proceedings of the
Conference on Causal Learning and Reasoning (CLeaR 2022).

Authors contributions. I came up with ideas to improve the model, implemented later
versions of the model, ran some of the experiments and co-wrote the paper. Rim Assouel
implemented the first version of the model, ran some of the experiments and co-wrote the
paper. Nicolas Ballas came up with the model idea and provided support with the experiments
and writing. Aaron Courville and Yoshua Bengio supervised the project.

7.2. Context

While video prediction and generation had benefited from advances in generative modeling,
it seemed we had hit a ceiling in terms of the kind of dataset and generations we were able
to produce. High capacity models were still not capable of generating detailed videos at
high resolutions, and GANs and autoregressive models required extensive computational
resources. Due to this observation we began to look at building better inductive biases into
video prediction models. In particular, for this project we wanted to design video prediction
models that consider objects independently and learn dynamics rules that are shared among
objects.

1. Equal Contribution



7.3. Contributions

We propose a model for video prediction that automatically learns to decompose a scene into
entities or objects. Our model learns a set of dynamics rules and selects one of the rules to
update object states at each time step. These transition functions are shared among objects,
following the intuition that dynamics rules are common to all physical entities. We show that
the transition functions learned by our model are interpretable, and we show that our model
decomposition allows it to generalize to out-of-distribution settings not seen during training.

7.4. Recent Developments

This article has been published recently, and therefore it is early to analyze its impact.
Our method follows previous work (Goyal et al., 2021, 2020, 2019) that factorizes dynamic
scenes into entities and transitions. Contrary to these works, our model is able to handle
stochasticity due to its ability to choose different dynamics transitions for each object at
each time step. Further, our model is also inspired by the literature on unsupervised scene
decomposition (Locatello et al., 2020; Burgess et al., 2019a), although our model is centered
on dynamic scenes. Recently there has been follow-up work on Slot-Attention that extends it
to video (Kipf et al., 2021). We hope that our work will inspire researchers to build video
prediction models with better inductive biases.
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Chapter 8

VIM: Variational Independent Modules for
Video Prediction

Abstract. We introduce a variational inference model called VIM, for Variational Indepen-
dent Modules, for sequential data that learns and infers latent representations as a set of
objects and discovers modular causal mechanisms over these objects. These mechanisms -
which we call modules - are independently parametrized, define the stochastic transitions of
entities and are shared across entities. At each time step, our model infers from a low-level
input sequence a high-level sequence of categorical latent variables to select which transition
modules to apply to which high-level object. We evaluate this model in video prediction
tasks where the goal is to predict multi-modal future events given previous observations. We
demonstrate empirically that VIM can model 2D visual sequences in an interpretable way
and is able to identify the underlying dynamically instantiated mechanisms of the generation
process. We additionally show that the learnt modules can be composed at test time to
generalize to out-of-distribution observations.

8.1. Introduction

Predicting future events is believed to be a fundamental function of the human brain (Clark,
2013; Mullally & Maguire, 2014) having implications for representation learning, planning or
counterfactual reasoning. Humans have the ability to decompose a visual scene into abstract
objects and predict their changes far into the future (Kahneman et al., 1992; Spelke et al.,
1993). Most interestingly, humans can adapt to a new situation quickly by re-using relevant
prior knowledge about objects and their dynamics. In particular, they are good at generalizing
in a compositional way because they represent knowledge as re-usable components that can
be further composed to explain new observations.



Recent work (Eslami et al., 2016; Burgess et al., 2019b; Greff et al., 2019b; Crawford &
Pineau, 2019; Locatello et al., 2020) have made significant progress in learning unsupervised
entity-centric representations of images and a few of them (Lin et al., 2020; Kossen et al.,
2019; Jiang et al., 2019a; Crawford & Pineau, 2020; Kosiorek et al., 2018) have extended
those models to generate both deterministic and stochastic videos. However, except for
SCOFF (Goyal et al., 2020), to the best of our knowledge none of them have considered
architectures that disentangle the underlying dynamic rules of the generation process and
rather model the transition part of their models with a shared monolithic module that is
applied at each time step. We extend the architectural inductive biases from SCOFF and
incorporate them in a probabilistic generative model of videos.

In this work we propose a variational framework to learn both entity-centric representations
and entity-centric transition modules. We show that in a simple 2D stochastic environment
we are able to identify the exact generating factors of variation both in terms of declarative
(e.g. constitutive objects of the visual scene) and procedural knowledge (e.g. transitions
rules that govern the stochastic dynamics of the objects). We argue that having those 2
layers of structure in a generative model is an essential first step towards generalizing out-of
distribution, particularly when the new unseen data results from a composition of seen
dynamic rules.

Our model called Variational Independent Modules (VIM), is a probabilistic generative
model where both latent states and transitions functions over these latents have an entity-
centric inductive bias. It thus learns a latent state composed of a set of abstract entities, or
slots (Locatello et al., 2020) and a set of stochastic transition functions over the entities. These
transitions functions, which we call modules, are independently parametrized and are shared
across entities, following the principle of reusable independent causal mechanisms (Peters
et al., 2017; Goyal et al., 2019, 2020). At each time step t, our model infers a set of categorical
latent variables (called selection variables rt) to select which transition modules to apply to
each represented entity in the latent set zt. We train VIM using variational inference over
both the entity-centric set of K latents {zk}k=1,,K and their respective selection variables
{rk}k=1,,K . In particular, the distribution of the categorical selection variables is implemented
with a key-query attention mechanism (Bahdanau et al., 2014; Vaswani et al., 2017) in which
all the possible modules compete (Goyal et al., 2019, 2020, 2021; Locatello et al., 2020) to
explain future states and they are sampled according to their attention importance weights.

One of the key assumptions behind our framework is that the abstract entities are evolving
mostly independently and only interact sparsely with each other (Pearl, 2009; Goyal et al.,
2019). Consequently, the causal graph is sparse (Bengio, 2017; Goyal & Bengio, 2020) and
a module can only consider a handful of slots as input argument. However in this work we
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will mostly consider unary modules and leave the exploration of n-ary modules to model
interactions between multiple entities for future work.

We evaluate VIM in a 2D stochastic setting where the goal is to predict multi-modal future
events given previous observations and we make the following contributions:

— We propose a simple stochastic environment in which we know the rules of the
dynamics, corresponding to the different modes in the transition distribution, to
enable checking for correctly identified solutions (Locatello et al., 2018).

— We show via simulations that in this environment, our framework is able to identify
the ground truth dynamics rules that govern the data generation process.

— We show that VIM is able to generalize in a compositional and interpretable way in a
simple out-of-distribution (OOD) tracking task.

8.2. Background : Recurrent State Space Models

Given a set of D observed frames c = (c1, ..., cD) and the T following future frames
x = (x1, ..., xT ), our goal is to learn a generative model that maximizes the probability
p(x|c). To solve this task, our proposed model builds upon the Recurrent State-Space Model
(RSSM) (Hafner et al., 2019).

RSSMs define a variational framework to model sequential data. They introduce a sequence
of latent variables z = (z1, z2, ..., zT ) to capture the stochasticity of the observation at each
time step such that the joint distribution is factorized as:

p(x, z|c) =
T∏

t=1
p(xt|z≤t)p(zt|z<t)p(z0|c). (8.1)

where p(xt|z≤t) is the likelihood model, p(zt|z<t) is the prior transition model, c is some given
context and p(z0|c) the discovery model that maps the observed context to a distribution over
the initial latent state. The main advantage of RSSMs over previous autoregressive models is
computational: it can make multi-step future predictions without having to render/encode
observed frames at each time step.

RSSMs are trained using variational inference (Jordan et al., 1999), using an amortized
approximate posterior q(z|x, c) = ∏T

t=1 q(zt|z<t,xt)p(z0|c) where q(zt|z<t,xt) is called the
posterior transition model and q(z|x, c) approximates the true posterior distribution p(z|x,c).
Training is done end-to-end by maximizing the Evidence Lower Bound (ELBO) (Kingma &
Welling, 2013; Rezende et al., 2014).
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8.3. VIM: Variational Independent Modules

Similar to (Lin et al., 2020; Kossen et al., 2019; Jiang et al., 2019a; Crawford & Pineau, 2020;
Kosiorek et al., 2018), VIM is a probabilistic RSSM where the latent space is structured as a
set of K hidden vectors h = {hk}k=1..K (e.g. slots (Locatello et al., 2020)) where each slot is
supposed to represent an abstract entity of the input (e.g. visual objects). In VIM we add
an additional layer of structure to account for the fact that only a few rules (Goyal et al.,
2020) govern the dynamics of objects in the world and that these rules (that we call modules)
are shared amongst entities. Our transition distribution pθ(zt|z<t) is thus parametrized with
M independent modules that compete against each other to explain future observations.
The modules operate over entities and can have a predefined number of arguments. For our
experiments, we only use unary modules that operate independently on a single entity. The
high-level computation steps of our model’s transition function are the following:

— For each entity k we first compute all the M possible next distribution given its
current latent state hk

t defined by the M independent transition modules.
— We then score each candidate with a learned key-query attention mechanism to define

a categorical distribution over these possible futures represented by an entity-centric
selection variable rk

t .
— Finally we sample the module index according to rk

t and select the corresponding
future candidate as the next step entity state hk

t+1.
VIM can thus be interpreted as a RSSM with 2 latent variables, r = {rt}t=1..T and z =
{zt}t=1..T where r is a module selection variable and z is a Gaussian additive update to hidden
slot representation h. Its generative model is factorized as

pθ(x, r, z|c) = pθ(z0|c)︸ ︷︷ ︸
discovery model

T∏
t=1

pθ(xt|hk
≤t)︸ ︷︷ ︸

observation model

K∏
k=1

pθ(zk
t |hk

<t,rk
t )︸ ︷︷ ︸

latent update

) pθ(rk
t |hk

<t)︸ ︷︷ ︸
module selection︸ ︷︷ ︸

transition model

(8.2)

where the observation model pθ(xt|h≤t) and the discovery model pθ(z0|c) are both parametrized
with a slot-attention network (Locatello et al., 2020). In the following we describe in more
details the parametrization of both the inference and generation model of the transition part
of VIM.

8.3.1. Generation

We denote the representation of slot k at time-step t as hk
t . We initialize slots as h0 = z0

and update them recurrently at each time-step: hk
t = gθ(hk

t−1, zk
t , rk

t ). We also introduce
the set of M possible future candidates for each entity k and denote it sk

t = {fθm(hk
t−1) =
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Figure 8.1 – Overview of VIM VIM disentangles both Objects and Dynamics with slots and
transition modules. Left: structure of the transitions, controlled by the selection of an inferred rule
r and its application to the latent state z, and by an observation model of x. Right: generative
decoder architecture mapping a set of object descriptions z to an image where the different objects
are rendered and composed using a Spatial Guassian Mixture Model.

fθ(hk
t−1, rk

t = m)}m=1..M where the modules are parametrized with M independent MLPs
whose parameters are indexed by {θm=1..M}.

Module Selection Prior. In this step we describe the parametrization of the module
selection prior p(rk

t+1|h<t) where rk
t+1 defines a categorical variable that indexes which module

to apply to entity k at time step t. The probability of the categorical distribution from which
rk

t+1 is obtained with a key-query attention mechanism where the keys are extracted from
the M candidates sk

t and the query from a function of the current hidden state hk
t . We then

sample the module m to apply with Gumbel softmax (Jang et al., 2016).

Latent Update Prior. The latent update is the result of 2 additive updates followed
by a layer normalization such that at each time step t we recurrently update slot k :
hk

t = LayerNorm(hk
t−1 + zk

t + fθ(hk
t−1,rk

t ) where zk
t is sampled from a gaussian prior whose

mean and variance are computed as follows: µt
k, σ

k
t = MLP(fθ(hk

t−1,rk
t )) and zk

t ∼ N (µt
k, σ

k
t ).

8.3.2. Inference

In this section we describe the parametrization of our inference model, which is factorized as:
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q(z, r|x) =
T∏

t=1

K∏
k=1

qϕ(zk
t |fθ(zk

<t, rk
t ),xt)qϕ(rk

t |z<t,xt). (8.3)

During inference we need to encode information about the target frame to infer the updates
to apply to each entity slot k. However not all the visual information is needed for all the
abstracted entities. Each entity needs to attend to a specific perceptual grouping of the target
frame. To that end, we propose to use a slot-attention mechanism where the grouping is
learned through a key-query attention mechanism. We denote xk

t the perceptual grouping for
entity k obtained at time step t such that :

x̂t
k =

∑
i

βt
k,iV

t
i with βt = softmax(KQ

T

√
D
, dim="slots") (8.4)

where the keys K are extracted from the current states {hk
t }k=1..K and the queries and values

are extracted from the target input xt, encoded with a size-preserving CNN backbone and a
positional encoding.

Module Selection Posterior. We describe the rule selection posterior qϕ(rk
t |h<t,xt) for

each entity k. Like with the module selection prior in generation, the idea is to score the set
of candidates with a key-query attention mechanism where this time the query for entity k is
obtained from the entity-centric target encoding xk

t . The intuition behind this design choice
is to select the update that best explains the current observation. We sample the module m
to apply with a Gumbel softmax trick.

Latent Update Posterior. The latent update posterior is similar to prior, where this
time the Gaussian parameters of zk

t are computed as a function of an entity-centric target
encoding xk

t such that: µ̂t
k, σ̂

k
t = MLP([fθ(hk

t−1,rk
t ); xk

t ]) and zk
t ∼ N (µ̂t

k, σ̂
k
t )

8.3.3. Training

Training is done using variational inference maximizing the following evidence lower bound:

L(θ, ϕ) =
T∑

t=1
Eqϕ

[log pθ(xt|zt, z<t)]−KL(qϕ(zt|rt,xt,z<t)||pθ(zt|rt, z<t))︸ ︷︷ ︸
gaussian KL

−KL(qϕ(rt|xt, z<t)||pθ(rt|z<t))︸ ︷︷ ︸
module KL
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where there is a tension between explaining the multi-modality of the future outcomes either
using the Gaussian distribution of a single module (but this would mean trying to fit a
unimodal Gaussian distribution to multimodal observations and would result in a high noise
KL) or using several modules indexed by r to explain the different modes. The module KL also
prevents the model to learn duplicate transition modules and we verify this experimentally
by training the model with more modules than actual modes in the distribution. In that case,
additional modules are simply rarely selected during inference.

8.4. Related Work

Video Prediction. Since the initial models inspired by language modelling (Ranzato et al.,
2014; Srivastava et al., 2015a), video prediction has seen great progress leveraging advances
in generative models and deep learing architectures. The temporal and spatial dependencies
between pixels is typically captured via autoregressive models (Larochelle & Murray, 2011;
Dinh et al., 2016; Kalchbrenner et al., 2017; Reed et al., 2017; Weissenborn et al., 2020)
or latent variables models such as the VAE (Kingma & Welling, 2013; Chung et al., 2015;
Denton & Fergus, 2018; Lee et al., 2018; Castrejon et al., 2019; Villegas et al., 2017a,b) or
GAN (Goodfellow et al., 2014; Vondrick et al., 2016a; Mathieu et al., 2015). Our approach
uses variational inference for training, like other VAE-like models. Most of those previous
models, however, rely on fixed-size unstructured vectorial representations of the state and
monolithic prediction models while we explore the use of structured latent space (as a set
of slots) and modular architectures (for the mechanisms) to explain multimodality in the
transitions.

Unsupervised Object Discovery. A recent research direction explores unsupervised
object-centric representation learning from visual inputs. The main motivation behind this
line of work is to disentangle a latent representation in terms of objects composing the visual
scene. They can be divided into two types of models: on one hand, the spatial mixture
models (Locatello et al., 2020; Burgess et al., 2019b; Greff et al., 2019b) learn a set of
unstructured latents that are decoded into a pixel-wise mean and mask such that each pixel
location defines a Gaussian mixture model weighted by the slot masks. On the other hand,
spatial-transformer based models propose to further disentangle each slot latent representation
into several variables (e.g. content, location, presence, depth) where the location variable
parametrizes the input to a spatial transformer that fills a canvas, as in (Eslami et al., 2016;
Crawford & Pineau, 2019; Stelzner et al., 2019; Lin et al., 2020). The contribution of our
work is orthogonal and we want to show the benefits of disentangling the mechanisms that
process the slots in the transition module of a sequential generative model when the target
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distribution has multimodal uncertainty. Lin et al. (2020) argues that a careful design of
the prior is needed to account for multimodal future trajectories and propose to do so with
a slot-wise hierarchical Gaussian prior model. In this work we propose an interpretable
alternative to account for several modes in the target distribution and show that a modular
approach is capable of capturing the underlying factors (e.g. modes in our case) of the
generating process. In terms of architectural components, we extend Locatello et al. (2020)’s
slot attention module to a sequential setting where the slot attention module is used to
encode a meaningful part of the target frame in a slot-wise manner. We show that by using
independently parametrized modules in the recurrent transition function, our approach is
able to discover object-centric dynamical rules in an unsupervised manner and that the slot
attention inference machinery is able to select compositions of those dynamical rules at test
time.

Independent Mechanisms. Recent approaches have explored architectures composed of a
set of independently parametrized modules which compete with each other to communicate
and attend or process an input (Goyal et al., 2019, 2020, 2021). Those architectures are
inspired by the notion of independent mechanisms (Pearl, 2009; Goyal et al., 2019), which
suggests that a set of independently parametrized modules capturing causal mechanisms
should remain robust in case of distribution shift due to an intervention, as adapting one
should not require adapting the other modules. The recurrent independent mechanisms
architectures (Goyal et al., 2019, 2020, 2021) however are not probabilistic models; they
cannot capture the uncertainty inherent with future predictions. In this work we formulate
the same intuition of mechanisms separation in a variational inference framework where the
selection of the the mechanisms is expressed as a categorical random variable whose posterior
distribution the model must infer. We further showcase an interpretability advantage in the
case of a simple 2D stochastic environment.

8.5. Experiments

In this section we describe experiments designed to showcase three main properties of VIM: i)
object-centric multi-modality of the predictions in stochastic environments, ii) interpretability
of the learned modules, and iii) generalization to compositional out-of-distribution settings in
an interpretable way.
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8.5.1. Interpretability

In this section we show that the modular architecture of VIM is able to capture the underlying
generating factors of the target distribution in an interpretable way. Through an ablation
study on the number of available modules we also show that with enough modules to capture
the different distribution modes precisely, VIM performs better than models that rely on a
unimodal prior.

Dataset. We evaluate VIM on a dataset built to showcase interpretability of the modules.
This dataset, called the Random Walk Dataset, consists of 2D image sequences of multiple
colored-balls that evolve on a black background. At each time step each ball can move
randomly in one of the 4 cardinal directions. The resolution of the videos is 32× 32 and the
model is trained on up to 15 consecutive frames.

Setup. We train VIM with N modules and K = 4 slots on trajectories that contain 3
balls. During training, the selection variable r is sampled using a Gumbel-softmax (Jang
et al., 2016) with a fixed temperature of 1 and we use the hard version during testing so that
the variables are categorical. For evaluation we match each ground truth ball of the visual
scene to a latent slot explaining it. Note that Spatial-Transformer based models (Jang et al.,
2016; Crawford & Pineau, 2019) directly exploit the slot bounding box center coordinate
to compute this matching. Our model does not consider object bounding boxes. Instead,
we use the slot-wise masks outputted by the observation model to match them to objects.
More specifically, to determine the location (xk, yk) of the object explained by the k-th slot
we sample coordinates uniformly over the 2D space covering the whole frame and then we
average these coordinates weighted by the value of the slot mask value at each location mx,y

k ,
such that:

xk, yk =
∑

(x,y)∈[1,H]×[1,W ](x,y) ∗mx,y
k

mx,y
k

.

Once we have those slot-wise coordinates we compare them against ground truth balls
positions and match a slot with the closest ball position in the first frame and keep the same
matching for the rest of the sequence. We then use these matched pairings to compute ball
position errors for tracking purposes or to compare the slot-wise module selection variable to
the ground-truth action transition.

Results. Our objective is to verify that the learnt modules can directly be interpreted as
causal dynamics rules underlying the generation process for the Random Walk dataset. We
show that each module correspond to a particular mode of the generating distribution (e.g.
moving in one of the cardinal directions). To do so, we evaluate our inference model on some
test sequences of length 20 and store the selection variables of all the slots ((rt

k)k=1..K)t=1..20.
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Using the first set of slots of the sequence we match each ground truth ball with its explaining
slot (whose location has been obtained with its decoded mask) by choosing the closest one.
We denote the slot associated with the d-th ball by id. We compare at each time step t the
ground truth transitions of each ball d with the index of the module that slot id has selected
and report the proportion of the correct correspondences. The percentage in Figure 8.2 shows
that each cardinal transition can be explained by one of the modules. We further visualize
the repeated effect of each module on a single ball to confirm that correspondence. Figure 8.2
shows that four of the modules move a ball in one of the cardinal direction exclusively.
When the model is trained with more modules than actually needed (e.g. more modules than
modes in the distribution), then additional modules are not used. This behaviour is in part
encouraged by the module KL term of the loss which will be larger if 2 modules are identical:
given the way we compute the module selection weights with a key-query attention machinery,
modules that explain the same mechanisms would have the same selection probability. We
show in Figure 8.2 the correspondence between selected modules and ground truth actions
for VIM trained with 5 modules. In this case, only 4 modules appear to be selected by the
slots that contain balls.

Figure 8.2 – Discovery of Dynamics Rules The proposed VIM model learns to match modules
to ground truth entity transitions. Left: For each rule, we show the distribution over selected
modules for a 4-module model. Modules specialize to implement one rule, with additional modules
not being used. Right: We show the effects of repeatedly applying a module to a slot. Module
transitions are interpretable and correspond to ground-truth transitions.

Effect of the number of Modules. In this section we study the effect of the number
of available modules to model the sequences in terms of generation abilities. The model is
trained on the Random Walk dataset with a varying number of modules. Larger per-module
capacity is given to models with less modules to factor out the effect of total number of
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parameters in the modeling ability. In Figure 8.3 we identify three regimes: monolithic
transition module (e.g. 1 Module does the work), transition function with less modules
than actual modes in the distribution (e.g. 2 modules share the work), and a transition
function with more modules than actual modes in the distribution (5 and 7 modules). The
monolithic transition model can only rely on the unimodal Gaussian distribution to capture
the multimodal stochasticity of the transitions, which results in lesser ability to capture
multimodality. In the low modules regime, the model separates the modules to explain the
modes in a hierarchical way, but some modes are shared between modules which results in
lower modeling capacity than the model with enough modules to explain all the modes. In
the case of 5 modules, module number 1 is never selected and thus doesn’t appear in the color
map. When VIM has more modules than actual modes in the distribution, additional (and
non useful) modules are almost never selected. We show the resulting modules specialization
and mode-module matching in Figure 8.3.

Figure 8.3 – Ablation of the number of modules Left: MSE/KL of the inference model
averaged over 10 time steps for VIM with a varying number of modules Right: Modules specialize
to each explain a mode in the distribution when enough modules are available.

8.5.2. Compositionality

Dataset. In this section we introduce a variant of the Random Walk dataset where the
coloured balls dynamics at each step is a composition (e.g. left-up-up-left) of the previous
atomic cardinal transitions. Between two consecutive frames, we sample the sequence of
modules that composes the transition of each ball at random. When trained on this dataset,
the model never sees the the atomic transitions that compose the random walk of each ball.
We call it the Compositional Random Walk.
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Setup. We introduce a variant of VIM where at each time step we allow the model to
perform multiple selections and update steps before rendering. The rationale behind this
variant is that for sequences whose transition dynamics rules are compositional we want
to check whether VIM is able to compose some atomic building blocks (e.g. the modules)
to explain an observation both at training and testing time. When the model is allowed k

iterations before rendering we simply denote the variant VIM-k.

Results. The insights we derived from the results of these experiments are two-fold:
— When trained on the atomic setting, VIM generalizes in an interpretable manner to

compositions of transitions seen during training.
— When trained on the compositional setting, the individual modules that are learned

in the multi-step version of VIM are still interpretable in terms of atomic transitions
that were never seen during training.

Figure 8.4 – OOD Tracking. VIM’s ability to track to out-of-distribution composition of
transitions seen during training. Compositional dynamics tracking comparison of VIM and G-SWM
and their respective multi-step versions. Both trained on the atomic setting and are compared
qualitatively Right: and quantitatively Left reporting their respective ball position errors.

OOD Compositional Generalization. We train VIM on the atomic setting and test it on
out-of-distribution compositional sequences where up to 5 choices of atomic transitions are
allowed for each ball between two consecutive frames.(e.g. left-down-right-down-right). At
test time we consider a multi-step version of VIM where 8 iterations of the selection-update
step are allowed in between frames. We show that the inference key-query selection part of
VIM acts at each iteration as a kind of planner in the space of modules and selects the module
that best explains the current observation. In Figure 8.5 we render the resulting frame at
each iteration and notice that VIM composes modules in an iterative manner such that each
ball progressively gets closer its target position before oscillating around it. Additionally, in
Figure 8.4 we compare the tracking ability of a state-of-the art object-centric video generation
model, G-SWM (Lin et al., 2020), with this multi-step version of VIM . We show that both
the key-query selection mechanism and the composable modules enables VIM to better
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track objects that have a different amplitude than the one seen during training. For a fair
comparison we also consider a multi-step version of G-SWM where several iterations of the
same monolithic propagation module is allowed between 2 consecutive frames.

Figure 8.5 – Iterative Refinement. We show that VIM can model out-of-distribution com-
positions of transitions. Left: VIM trained on the Random Walk Dataset and tested on the
Compositional Dataset allowing 8 iterations between frames. Between 2 consecutive frames, the ball
position error decreases with the number of iterations. Right: Visualization of the module iterations.
VIM iteratively selects modules to modify the starting observation and reconstruct the target frame.

Multi-step Interpretability. We train a 2-step version of VIM on the compositional setting
and restrict the number of modules to 5 so that we still have more modules than atomic
transitions (that are never seen) but less modules than possible compositional transitions
seen during training (e.g. left-right, up-left, down-down, and so on). We test this model on
sequences of atomic transitions to evaluate the proportion of selected modules corresponding
to each ground truth transition. We show in Figure 8.6 that the same modularisation emerges
as when VIM is trained on the atomic setting. In this compositional setting, when evaluated
on atomic transitions we observe the same module specialization as when it was trained on
atomic transitions. This shows that when trained with 2 selection/update iterations between
2 consecutive frames VIM successfully identifies the underlying atomic transformations that
compose the transitions VIM has been trained on without directly observing them.

8.5.3. Dynamics Transfer

In this section we are interested in showing that VIM learns a factorized representation
formed by entities and transition rules over these entities. In particular we would like to
evaluate whether VIM is able to recognize known dynamics applied to unseen objects and
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Figure 8.6 – Rule-Module matching for compositional transitions We show a rule-module
matching histogram for a VIM model with 5 modules and 2 module iterations per frame trained on
the Compositional Random Walk dataset. We observe that, despite only observing compositions of
actions, the modules implement and match ground-truth atomic transitions.

that the inference machinery proposes to transfer those dynamics to known objects using the
selection variables for these dynamics.

Dataset. In this section we test VIM on a dataset where objects have out-of-distribution
attributes (e.g. shape, color, size), beyond those seen during training, but following the
same Random Walk dynamics seen during training: they can go in one of the four cardinal
directions between two consecutive frames and with the same amplitude.

Results. We train VIM on the Random Walk Dataset with coloured balls of the same size
and test it on a OOD version where objects have different shape, colour and size than the
balls seen during training. During testing, we run the inference model on these OOD target
sequences (xtarget

t )t=0..T and extract the selection variables at each time step (rtarget
t )t=1..T .

We then consider an image c where balls with known attributes are placed at the exact same
location as the first frame of the target sequence and transfer the extracted target dynamics
such that the rendered sequence is sampled following :

{xtransfer
t }0:T ∼

T∏
t=1

p(xtransfer
t |zt)

K∏
k=1

p(zk
t |f(zk

t−1, r
target,k
t ))p(zk

0|c).

In Figure 8.7 we show that VIM is able to recognize known dynamics of objects that have
OOD attributes. VIM has successfully factorized individual objects identity and the shared
dynamic rules that are applied in the same way irrespective of the objects identity.
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Figure 8.7 – Transfer of dynamics with OOD objects. VIM is able to recognize and transfer
known dynamics of novel objects with OOD attributes. Left: Target trajectory from OOD objects
from which we extract the module selection variables. Right: Transferred dynamics on known
objects by applying the same selected modules as for the target sequences.

8.6. Conclusions

VIM introduces a variational framework to disentangle both the constituent entities (slots)
and the generating factors (rules) of object dynamics in stochastic scenes. We show that the
modular architecture of VIM captures different dynamics rules in an interpretable manner.
Moreover, VIM modules can be composed at test time to explain OOD dynamics not seen
during training. Additionally, we show that VIM is able to recognize the dynamics of objects
with OOD attributes and transfer them to known objects by re-using the learned modules on
different slots. The work presented here could be extended in different ways. For example, we
could add interactions between slots through the use of n-ary modules. We could additionally
scale up the model architecture and capacity to more complex datasets with in-the-wild 3D
scenes and test its performance on downstream tasks. We plan to explore these directions in
follow-up work.
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supported by an IVADO PhD Fellowship to L.C., an Antidote PhD Fellowship to R.A and
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8.A. Appendix - Additional Details

In this section we provide additional details. The architecture of the slot attention encoder is
described in Table 8.1, the broadcast decoder is described in Table 8.2, while the architecture
of the transition modules is described in Table 8.3.
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Table 8.1 – Slot Attention CNN Encoder

Type Size/Channels Activation Other
Conv 5× 5 64 ReLU stride 1
Conv 5× 5 64 ReLU stride 1
Conv 5× 5 64 ReLU stride 1
Conv 5× 5 64 ReLU stride 1

Positional Encoding 64 - LayerNorm(64)
Linear 64 ReLU -
Linear 64 ReLU -

Table 8.2 – Broadcast Decoder

Type Size/Channels Activation Other
Spatial Broadcast H ×W - -

Positional Encoding 64 - -
Conv 5× 5 64 ReLU stride 1
Conv 5× 5 64 ReLU stride 1
Conv 5× 5 64 ReLU stride 1
Conv 5× 5 4 ReLU stride 1

Split Channels RGB(3) masks (1) softmax on masks -
Recombine slots - - spatial mixture

Table 8.3 – Architecture of the Transition Modules

Type Size/Channels Activation Other
Linear 128 ReLU -
Linear 128 - Layernorm(128)

Candidates - - 1 module example
Linear 128 ReLU -
Linear 64 ReLU -

Stochastic update : - - -
Linear 64 ReLU -
Linear 128 - -
Chunk Mean (64) Std (64) - -

8.A.1. Key-query Selection Mechanism

The key and query network that are used for the module selection bottleneck are implemented
with simple 2 layer MLP of hidden sizes [64, 64] and a ReLU activation on the first layer.
We used a fixed temperature of 1 for the Gumbel-Softmax computation.
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8.A.2. Training Schedule

In our model, the slot attention module is first pre-trained on the first images of the videos
following the same learning rate warmup suggested in (Locatello et al., 2020) for about 100
epochs to obtain initial slot separation. We found that it stabilized and speeded up training
on the rest of the videos sequences. We trained the model on sequences of length 20 using a
length schedule that starts at 6 frames. We increase the number of frames by two every 40
epochs.

8.B. Comparison with SCOFF/RIM

SCOFF (Goyal et al., 2020) proposes an architectural component to process a visual input
such that it can be explained in terms K object files (corresponding to slots in our model) and
M schemata (modules) processing those objects files. They propose to test their architecture
in several downstream tasks and one of them is video prediction. To do so they train SCOFF
on a next-step prediction task with an autoregressive formulation. RIM (Goyal et al., 2019)
corresponds to a SCOFF with M = 1 schema (in other words, with a single module). At each
time step t the computations are conditioned on the previous frame. The model is trained
using teacher forcing, and its training setup can be summarized as follows:

(1) Each object file hk
t−1 competes to attend to a part of the previous input frame (similar

to slot attention) xk
t−1.

(2) For each object file, the M possible slot candidates given by the application of each
schemata are computed.

(3) Each object file selects the most plausible candidate with a key-query attention
mechanism and updates its state.

(4) Each updated object file is then decoded to reconstruct the next-frame.

A key assumption in SCOFF and RIM is that the outcome is deterministic given previous
frames. Similar to Babaeizadeh et al. (2018); Denton & Fergus (2018), we argue that this leads
to blurry predictions in settings with stochastic dynamics, as the model is trying to capture
the mean of all plausible future outcomes. To overcome this limitation we propose to include
the intuition behind SCOFF’s architectural inductive biases in a variational framework, where
the schemata would rather correspond to the different modes/rules of the stochastic dynamics
of the environment.
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We show in Figure 8.8 a reconstructed sequence with a SCOFF model trained with 4 slots
and 5 schemata on our Random Walk Dataset. We notice that:

— The object files capture the different objects in the scene, as slots do for VIM.

— Each object file attends to the part of the input that belongs to its represented object.

— The reconstructed frames show the mean position in all 4 possible directions, instead
of capturing different directions with different schemata.

We also report in Table 8.4 the MSE averaged over 5 time-steps sequences for SCOFF (with
teacher forcing at each time step) and VIM (using its inference network), both trained with 5
modules and 4 slots. We expect SCOFF to fail to produce sharp samples since it assumes
the future is deterministic given the previous frame. whereas we expect VIM to be able to
handle the multimodality of the future outputs.

Model Reconstruction MSE (↓)
RIM (Goyal et al., 2019) 91.7± 5.4

SCOFF (Goyal et al., 2020) 81.9± 1.0
VIM (Ours) 4.2± 0.5

Table 8.4 – Comparison to RIM and SCOFF We compare our model to RIM and SCOFF.
All models use 4 slots/object files, and for SCOFF and VIM we use 5 modules/schemata. We
report the reconstruction MSE averaged over sequences of 5 frames. The ground-truth previous
frame is given to SCOFF/RIM at each time step. We observe that our model produces significantly
better reconstructions of the input sequences. This is due to the sequences being stochastic, as
RIM and SCOFF are deterministic models that cannot capture stochasticity in the environment
dynamics. We propose VIM as a variational approach inspired by SCOFF that can multimodal
future outcomes.
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Figure 8.8 – Sample from SCOFF We show a sample of SCOFF in our proposed dataset. This
sample illustrates the performance of RIM and SCOFF on this dataset. We observe that the slots
correctly segment the input objects and model them as distinct entities. However, the model fails to
produce sharp next step predictions, and instead produces the mean of all possible future outcomes
from the previous frame. This is because RIM and SCOFF are deterministic models. Note that
here we are showing sequences using teacher forcing.
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Chapter 9

Prologue to the Fourth Article

9.1. Article Details

INFERNO: Inferring Object-Centric 3D Scene Representations without Supervi-
sion. Lluis Castrejon, Nicolas Ballas and Aaron Courville. Submitted to the Conference on
Lifelong Learning Agents (CoLLAs 2022).

Authors contributions. I developed and implemented the method presented in this article,
ran most of the experiments and co-wrote the article. Nicolas Ballas helped with benchmarks
and experiments and co-wrote the article. Aaron Courville supervised the project and revised
the article.

9.2. Context

One of the limitations of current video prediction models is that they usually produce wrong
predictions when showing object interactions. While it is not fully understood why, we argue
that such events are often rare in training datasets and require generalizing beyond the 2D
object appearance seen in previous frames of a video, as interactions often make objects
change their 3D pose. At the same time Neural Radiance Fields (NeRFs) (Mildenhall et al.,
2020) obtained really good 3D shape reconstructions from multiple views. In this project we
use NeRFs to model scenes with multiple objects.



9.3. Contributions

Inspired by the limitations of video prediction models and the impressive reconstructions
of NeRFs we propose INFERNO. INFERNO is a scene autoencoder that represents a
scene as a set of objects (and a background). Each object in the scene is represented
as a NeRF, and the representation explicitly captures the pose and appearance of each
object. Scene representations are inferred from a single view of the scene and without
requiring any annotations or ground-truth camera information. Through manipulating scene
representations, we show that our model can generate out-of-distribution scenes not seen
during training. Furthermore, our model is competitive with the state-of-the-art unsupervised
scene decomposition methods and can be used for downstream scene understanding tasks
such as the snitch localization task in CATER (Girdhar & Ramanan, 2019), which involves
tracking an object in a dynamic scene.

9.4. Recent Developments

This article has been submitted recently, and as such it is too early to measure its impact.
Previous work combined object-centric scene representations with NeRFs (Niemeyer & Geiger,
2021; Stelzner et al., 2021; Yu et al., 2021b). As opposed to our model, these methods either
do not have an inference mechanism or do not explicitly model the pose of objects in the
scene. We hope that INFERNO inspires work in object-centric scene representations that
can be used for generating dynamic scenes and for downstream tasks. More specifically, we
hope that future work can scale up our model to more realistic datasets.
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Chapter 10

INFERNO: Inferring Object-Centric 3D Scene
Representations without Supervision

Abstract. We propose INFERNO, a method to infer object-centric representations of
visual scenes without relying on annotations. Our method learns to decompose a scene
into multiple objects, with each object having a structured representation that disentangles
its shape, appearance and pose. To impose this structure we rely on recent advances in
neural 3D rendering. Each object representation defines a localized neural radiance field
that is used to generate 2D views of the scene through a differentiable rendering process.
Our model is subsequently trained by minimizing a reconstruction loss between inputs and
corresponding rendered scenes. We empirically show that INFERNO discovers objects in a
scene without supervision. We also validate the interpretability of the learned representations
by manipulating inferred scenes and showing the corresponding effect in the rendered output.
Finally, we demonstrate the usefulness of our object representations in a visual reasoning
task using the CATER dataset.

10.1. Introduction

Inferring objects and their geometry in a scene is a fundamental ability of biological visual
systems (Kahneman et al., 1992; Roelfsema et al., 1998; Spelke et al., 1993). Replicating this
ability in machine is a promising step towards visual reasoning valuable to several applications
involving object manipulation, navigation or forecasting.

Recent works (Jiang et al., 2019b; Locatello et al., 2020; Burgess et al., 2019a) have shown that
neural networks can learn object-centric representations from low-level perceptual features.
They learn to recognize the objects in a visual scene from a singe image without relying on



supervision. However, most of those approaches only consider the 2D structure of images
and ignore the underlying 3D geometry of the visual scenes. On the other hand, Neural
Radiance Fields (NeRFs) (Mildenhall et al., 2020) have demonstrated that differentiable
renderers can be combined with gradient-based optimization to learn high-fidelity 3D scene
reconstructions. NeRFs have been subsequently used to learn 3D-aware generative models,
including compositional scene models (Niemeyer & Geiger, 2021).

In this work, we leverage these recent advances in object-centric representation learning (Lo-
catello et al., 2020) and 3D modelling through implicit functions (Mildenhall et al., 2020;
Niemeyer & Geiger, 2021) and propose INFERNO, a model which infers a structured repre-
sentation of objects and their poses from a single image. Each object is represented by latent
variables characterizing its shape and appearance, together with an explicit representation of
their poses (translation, scale and rotation). The object representations are then decoded
using implicit functions that are localized in the scene according to the objects poses and
combined together to generate a 2D output view. Our model does not need supervision and
instead is fitted through minimizing a reconstruction loss, akin to an auto-encoder.

Disentangling the object appearance and pose in a scene representation allows the model to
manipulate a visual scene. In particular, we demonstrate that INFERNO learns interpretable
object poses, which we can modify and render to alter the pose of an object in a scene.
We also validate that our approach learns meaningful representations for object discovery
and visual reasoning. More specifically, we show that our approach obtains competitive
performance on the CLEVR6 object discovery benchmark (Johnson et al., 2017; Greff et al.,
2019a) as well as for the snitch localization visual reasoning task of CATER (Girdhar &
Ramanan, 2019).

In summary, our contributions are the following:

— We propose a model able to infer and render 3D scene representations composed of
multiple objects, each of them modeled by an implicit function and explicitly localized
in the scene.

— We show that the representations learned by the model are interpretable and amenable
to manipulations.

— We demonstrate that the inferred representations are useful for downstream tasks by
showing competitive performance in object discovery and reasoning tasks.
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Figure 10.1 – Model Overview: We propose INFERNO, a model that infers and renders
object-centric 3D scene representations. 1 Our model first decomposes an input observation into
multiple object slots. 2 For each slot we infer a structured 3D representation. 3 The shape and
appearance determine canonical objects rendered through NeRFs. 4 Objects are transformed and
located in the overall scene according to their pose. 5 We combine objects and background and
render a low-resolution scene given a camera location. 6 The input is reconstructed by upscaling
the low resolution scene.

10.2. Method

We propose INFERNO (Infer NeRF Objects). The goal of our method is to infer object-
centric 3D scene representations from single 2D views. Given an image x ∈ RH×W ×3, we
learn an inference function fθ that maps images to scene representations s = fθ(x) =
(o1, o2, ..., oK , obg, c). Scenes are composed of K objects oi, a background object obg and a
camera location c.

Each object is composed of three tensors oi = (oshape
i , oapp

i , opose
i ). The object shape oshape

i ∈
RDshape and object appearance oapp ∈ RDshape are tensors that respectively describe the shape
occupancy and color of an object with an implicit function. The object location opose

i ∈ R4×4

is an affine matrix that describes the object pose (i.e. scale, translation and rotation) in the
scene.
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The background object obg = (bgshape, bgapp) only models shape and color, and its location is
fixed, encompassing the back-of-scene cube. We also define a camera matrix c ∈ R3×4, that
determines the location of the scene camera and defines a 2D projection of the 3D scene.

To optimize our inference function we formulate an optimization problem in which we
minimize a reconstruction loss over a dataset, similar to an auto-encoder. We define a
rendering function gγ that takes as input a scene representation and generates a 2D view
of that scene x̂ = gγ(fθ(x)). We assume a isotropic Gaussian likelihood model with unit
covariance and optimize the probability of the data under our model, which is equivalent to
minimizing the mean squared error of inputs and reconstructions:

γ∗, θ∗ = arg min
γ,θ

p(X|γ, θ)

= arg min
γ,θ

1
N

∑
i≤N

(xi − gγ(fθ(xi)))2
(10.1)

In the following sections we describe in more detail our inference mechanism, our rendering
pipeline and their implementation.

10.2.1. Rendering Pipeline

We represent objects as Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020) with a
similar setup as that of GIRAFFE (Niemeyer & Geiger, 2021). A NeRF is a function gτ that
defines a 3D shape implicitly. It takes as input a 3D location l = (x, y, z) and a 2D viewing
direction d = (ψ, ϕ) and outputs an occupancy value σ and a color value a = (r, g, b). NeRFs
are usually implemented using fully connected neural networks. Additionally, the inputs are
usually embedded into a higher-dimensional space using positional encodings γ that embed
locations and viewing directions into higher dimensional spaces RPl and RPd , respectively.

gτ : RPl × RPd → R+ × R3;

(γ(l), γ(d))→ (σ, a)
(10.2)

To represent multiple shapes with the same NeRF function, we can augment it with latent
variables that determine which shape is being modeled (Schwarz et al., 2020). NeRFs are
usually augmented with two random variables: one random variable µ ∈ RDshape defines the
shape of the entity being modeled, while υ ∈ RDapp models its appearance. In practice, this
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specialization is enforced by making the occupancy output a function of only the shape latent,
while the color output is conditioned on the appearance latent.

g′
τ : RPl × RPd × RDshape×RDapp → R+ × R3;

(γ(l), γ(d), µ, υ)→ (σ, a)
(10.3)

In INFERNO, we share a single parametrization of a NeRF function across all objects. Each
object specific shape and appearance is defined by the shape and appearance latent variables,
which correspond to the object attributes oshape, oapp. The background is defined as another
NeRF with separate parameters. The background NeRF also has shape and appearance
latent variables to model different backgrounds.

The pose of an object oi in the scene is determined by the affine transformation matrix opose
i .

We denote the coordinate system of the NeRF function of an object as the object space, and
the coordinate system of the scene (and the background NeRF) as scene space. Given an
object pose, we can convert points from the scene space to the object space by applying the
opose transformation matrix on those points, and we can transform points from object space
to scene space by computing the inverse of the object pose matrix.

To render a scene, we cast rays from each pixel in the 2D plane defined by a given camera to
the 3D scene. We evaluate NeRFs at different points along a given ray, and integrate their
occupancy and color outputs to determine pixel values. Rays might traverse multiple object
NeRFs in addition to the background NeRF. To determine the occupancy and color of points
described by multiple NeRFs, we first query each NeRF at those particular points. To query
the object NeRFs, we first need to transform the points from scene space to the particular
object space. Then, we compose the results of each NeRF with a pooling function C, which
in our case is a weighted average:

C(l,d) = (σ =
N∑

i=1
σi,

1
σ

N∑
i=1

σiai) (10.4)

Since rendering with NeRFs as originally proposed is computationally expensive, at the
beginning of training we render output views at a fixed low resolution. Low resolution scenes
are then upscaled to the desired output resolution using a convolutional neural network,
keeping the entire rendering pipeline differentiable. Additionally, low resolution scenes are
rendered with additional channels, allowing for more detailed upscalings beyond those possible
when just rendering low resolution RGB outputs. After some iterations and once the model is
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capable of reconstructing the input view, we remove the neural network upscaler and render
with NeRFs at full resolution. This second stage of training has slower iteration times and
higher memory requirements.

10.2.2. Inference

Given the rendering pipeline, the goal of our method is to infer representations that reconstruct
a given scene. Our inference mechanism computes image features through a neural network
encoder and then extracts K object and a background slots. These slots are then mapped to
our structured scene representation through learned neural networks.

To extract image features for each object and background slots, we use Slot Attention (Lo-
catello et al., 2020). Slot Attention is a mechanism that maps a set of K entities, called slots,
to image features without annotations. It extracts image features I ∈ RH×W ×D from a given
input using a resolution-preserving convolutional encoder. These features are then attended
to by a set of K randomly sampled slots πj ∼ N (µ, σ) of dimension D, where µ and σ are
learnable parameters. We denote by π the matrix concatenating all the sampled slots. Slots
attend spatial chunks of the input features I through soft-attention u = TQT , where T = k(I)
and Q = q(π) are the embeddings of the inputs and slots respectively. The attention weights
are normalized through a softmax operating on the slots axis, which makes slots compete
among themselves and discourages multiple slots from attending the same input region
w = softmax(u). The weighted average of I according to the attention weights is then com-
puted and fed to a GRU network, to update each slot value: πj = GRU(wj ∗ I, πj) ∀j ∈ 1, K.
Multiple rounds of soft attention are performed to iteratively refine the slots. For more details
about Slot-Attention, please refer to (Locatello et al., 2020).

Object slots are unstructured tensors that result from aggregating image features. We map
these slots to our structured scene representation through small fully-connected networks
that operate on individual objects. More concretely, we map object slots to their 3D pose
in the scene through a 2-layer MLP. To infer the object shape and appearance tensors we
also use 2-layer MLPs, but we make them conditional on the predicted object pose through
conditional normalization (Dumoulin et al., 2018).
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10.3. Related Work

10.3.1. 3D Shape Representations

There are different ways to represent 3D geometry such as voxels or meshes (Rematas &
Ferrari, 2020; Gkioxari et al., 2019). For example, the GAN models of Nguyen-Phuoc et al.
(2019, 2020) successfully use voxel-based representations to render images. Voxel-based
methods have trouble scaling up to high resolutions as the size of a voxel representation
scales cubically with the resolution.

Recently, the use of functions that implicitly model 3D volumes has gained popularity (Park
et al., 2019; Mescheder et al., 2019; Sitzmann et al., 2019, 2020b,a; Kosiorek et al., 2021;
Pumarola et al., 2021; Yu et al., 2021a). Implicit representations have better scaling properties,
as usually the output resolution does not directly affect the dimensionality of the learned
function. NeRFs (Mildenhall et al., 2020) generate scenes by learning a function that outputs
the occupancy and color of points in a scene when viewed from a particular direction. By
casting rays through a plane and aggregating the output values NeRFs can generate 2D views
of an implicitly modeled 3D scenes. NeRFs have obtained superior reconstructions compared
to other implict methods, and our model uses NeRFs to represent multiple objects and the
background of a scene.

Most methods using NeRFs represent scenes monolithically as a single entity. GI-
RAFFE (Niemeyer & Geiger, 2021) is a GAN-based method that represents multiple
objects in a scene using NeRFs as part of their generator. Their factored representations
are amenable to object manipulations. Our model uses a rendering pipeline inspired by
GIRAFFE. However, we focus on recovering scene representations from existing images,
while GIRAFFE does not have an inference mechanism. ObjSURF (Stelzner et al., 2021)
and UORF (Yu et al., 2021b) infer scene representations composed of multiple objects,
each object represented with a differently instantiated NeRF. Different from our work, they
focus on novel view generation. These methods do not explicitly infer the pose of the
different objects in the scene. Both methods require multiple scene views and their associated
ground-truth camera locations, and ObjSURF additionally requires depth annotations.

10.3.2. Object-Centric Scene Models

Segmenting objects in a scene is a landmark computer vision task with an extensive literature.
Recently, there is a line of work on object-centric generative models of scenes (Kosiorek et al.,
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2021; Burgess et al., 2019a; Locatello et al., 2020; Lin et al., 2020; Greff et al., 2019a). These
models learn to generate scenes as a composition of multiple objects and a background. When
equipped with an inference mechanism, these models learn to segment objects in a scene
without annotations, driven by their compositional generative process. MONet (Burgess et al.,
2019a) implements a multi-object VAE that segments object sequentially by infering latents
corresponding over parts of the scene not yet attended to iteratively. IODINE (Greff et al.,
2019a) uses a similar multi-object VAE and performs multiple rounds of inference to settle on
a scene decomposition. Slot-Attention (Locatello et al., 2020) maps a set of entities, called
slots, to image features through multiple rounds of soft attention. The slots compete among
themselves to attend to features, making each slot attend to a region of the input image.
When driven with alpha-compositing decoder, slot attention learns to segment objects in a
scene. Our model uses a variant of Slot Attention to decide on which part of a 2D view should
each object in our scene attend to, but we infer 3D-aware representations for each object.
Object-centric scene models have also been implemented as world models, with the goal of
simulating dynamics (Lin et al., 2020). By decomposing the scene into objects, these methods
can simulate dynamics at an object level, which are usually simpler and shared among objects.
Contrary to most previous approaches which segment 2D shapes, our method infers object-
centric scene representations in 3D space. ROOTS (Chen et al., 2021) extends G-SWM (Lin
et al., 2020) and GQN (Eslami et al., 2018) to learn object-centric 3D scene representations
from multiple observations that can be rendered from arbitrary viewpoints. INFERNO
focuses instead on using a single scene view to infer object-centric scene representations and
uses differentiable rendering to generate 2D views of scene representations.

10.4. Experiments

In this section we showcase the capabilities of INFERNO with three main experiments. First,
we demonstrate the interpretability of the scene representations through manipulating scenes
and verifying the corresponding effects in the rendered outputs. Then we show that it learns
to identify and segment the objects in a scene without supervision. Finally, we highlight
the usefulness of such representations for downstream tasks by applying our model on the
CATER snitch localization task.

10.4.1. Training Setup

We use the same training setup for all experiments unless otherwise mentioned. We train our
models for 400K iterations using the Adam optimizer Kingma & Ba (2014) with a learning
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rate of 1× 10−4. We use a batch size of 128 and we use up to 16 nVidia V100 GPUs. We use
learning rate warmup (Goyal et al., 2017), which is helpful to avoid optimization issues with
Slot Attention. We use a weight decay rate λ = 1 × 10−6. We use three iterations of slot
attention during training and evaluation. We remove the neural upscaler and render at full
resolution after 100K iterations. We set up the number of objects in a scene as the maximum
possible number of objects in a dataset, i.e. five objects for CLEVR2345, 6 for CLEVR6 and
10 for CATER. Refer to Appendix 10.B for more details on the experimental setup.

10.4.2. Scene Inference

Input Recon. Addition Removal Scale Forward Right

Figure 10.2 – Manipulations on CLEVR2345: we show some examples of the manipulations
we perform to CLEVR2345 images, including object removal and addition, changing the scale of an
object, and object translation. Our model can perform these transformations because it disentangles
object pose and appearance.

In this section we demonstrate the properties of our scene representation. Our model infers 3D
object-centric scene representations from single 2D views. These representations disentangle
the appearance and pose of objects, which allows for semantic manipulations of the scene not
possible otherwise. These manipulations can be validated by rendering the modified scene
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Table 10.1 – Reconstruction error on CLEVR2345 We consider an autoencoder baseline
with a single NeRF object capturing the whole scene (NeRF-AE), and compare it to our model
on the test set of CLEVR-2345. NeRF-AE struggles to reconstruct multiple objects accurately.
In contrast, INFERNO produces better reconstructions under all metrics and allows for object
identity/pose manipulations.

Model MSE (↓) PSNR (↑) SSIM (↑) LPIPS (↓)
NeRF-AE 5.14× 10−4 44.89 59.24 % 168.9× 10−3

Ours 1.22× 10−4 52.07 72.4 % 18.93× 10−3

Table 10.2 – FID on CLEVR2345 We consider our model as a NeRF scene generator and
compare it to the state-of-the-art. When reconstructing ground-truth images, our model obtains
better FID than GIRAFFE. We then consider object manipulations to generate novel scenes from
existing ones. While adding new objects to a scene slightly increases our FID score, when exchanging
object identities across scenes we set a new state-of-the-art for image generation on CLEVR2345.

Model FID (↓)
GIRAFFE 37.7
Ours - Reconstruction 23.5
Ours - Remove Object 42.4
Ours - Add Object 27.2
Ours - Swap Object 23.7

representations. Additionally, we verify that decomposing the scene into multiple objects
leads to better reconstructions.

First, we verify the quality of INFERNO’s generations by comparing them two baselines: i) a
version of our model that does not consider multiple objects, and ii) the GAN method of
GIRAFFE (Niemeyer & Geiger, 2021). We perform this comparison on the CLEVR-2345
dataset introduced by GIRAFFE, which contains CLEVR images with 2 to 5 objects. For
reconstruction, we compare models using reconstruction metrics including mean-squared
error, PSNR and SSIM. We rely on the population metric Frechet Inception Distance (FID)
to evaluate the generation quality.

In INFERNO, we generate novel scenes by inferring representations for ground-truth images
and then manipulating them. To compare to GIRAFFE, we manipulate scenes by adding
additional objects and swapping object shapes and appearances across scenes. Manipulations
are described in more detail in the Appendix. We highlight that GIRAFFE is an unconditional
model, while INFERNO generates novel scenes conditioned on existing ones.

We also investigate different interpretable manipulations of scene representations and visualize
the effects in the corresponding output renderings. We also conduct this experiment on the
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CLEVR-2345 dataset. We validate that our model is able to render out-of-distribution scenes
not corresponding to training examples, such as scenes having 1 or 6 objects, and verify that
the pose manipulations have semantically coherent effects.

Table 10.1 shows the reconstruction metrics obtained by our model and baseline on the
CLEVR2345 dataset. Note that GIRAFFE is a GAN-method that does not have an inference
mechanism, and therefore it cannot reconstruct scenes. We observe that the NeRF-AE baseline
obtains higher reconstruction error than our regular model, as our object-centric method
can make better use of its capacity. In Table 10.2 we compare INFERNO with GIRAFFE
using the FID metric. Our model reconstructions have better FID than the generations of
the GIRAFFE. Additionally, our model can perform inference and manipulations on existing
scenes. We use that capability to generate novel scenes by manipulating existing ones. Our
model is able to generate novel scenes with additional objects or with altered object shapes
and appearances, with better FID than GIRAFFE.

In Figure 10.2 we show some examples of the scene manipulations possible with our model.
Given a scene representation, we can remove or add objects, rearrange object poses, translate
the objects to new locations or change the object scales. While some of these manipulations
can be performed with regular object-centric models, modifications to the scale and location
of the objects are hard to implement without explicitly modeling 3D object pose.

INFERNO is able to synthesize novel views of a scene despite being trained with single scene
views and without ground-truth camera locations. We refer the reader to the Appendix 10.D
for additional details.

10.4.3. Object Discovery

Table 10.3 – Object Discovery Metrics on CLEVR6 INFERNO, despite inferring more
complex 3D object segmentations without annotations, is competitive with the current state-of-the-
art 2D object discovery methods on CLEVR6.

Model ARI % (↑)
Slot-Attention 98.8± 0.3
IODINE 98.8± 0.0
MONet 96.2± 0.6
Slot MLP 60.4± 6.6
Ours 96.7± 0.2

Unsupervised object discovery consists in learning to segment the objects in a scene without
using annotations. We test our model on CLEVR6 benchmark, a variant of the CLEVR
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Input Background Object 1 Object 2 Object 3 Object 4 Object 5 Object 6

Figure 10.3 – Object Discovery on CLEVR6: INFERNO identifies the different objects in a
scene without supervision. For each input image, we show which regions of the input are attended
by each object as well as the background. We include an example of a failed segmentation in the
last row, where one object slot (4) is trying to represent multiple objects at the same time.

dataset with scenes of up to 6 objects and annotated with 2D object masks. We choose this
dataset to compare to previous work in unsupervised object discovery. Note that this setup
evaluates 2D segmentation masks, although our model naturally provides 3D segmentations.
We evaluate the quality of the segmentations using the Adjusted Random Index (ARI)
metric (Rand, 1971), which is a measure of clustering similarity. In line with previous work,
we compute only the foreground ARI, which does not take into account the background
segmentation mask. In particular, we consider object as a different clusters and compare
the cluster assignment of each foreground pixel in the original image to its prediction. To
determine which pixels correspond to each object in our model we make use of the input
segmentation masks predicted by our inference mechanism.

Table 10.3 reports the ARI metric of our model and different baselines in this task. We
observe that INFERNO is competitive with state-of-the-art methods, surpassing MONet and
having slightly lower ARI than Slot-Attention and IODINE. However, our model learns to
segment objects in 3D, while the other baselines extract 2D segmentation masks. Figure 10.3
shows some examples of the discovered object masks. We can see that the model learns to
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segment different objects and properly discards object slots when the number of objects in
the scene is lower than needed. We also include an example that our model fails to segment
properly - multiple objects are segmented by the same object slot, and a single object is
represented in multiple parts by different slots.

10.4.4. Snitch Localization

Table 10.4 – Snitch Localization on CATER. We report Top-1 and Top-5 accuracies for
the snitch localization task. Our model outperforms the R3D LSTM and R3D NL LSTM models
that learn unstructured representation. It indicates that the structured representation learned by
INFERNO is useful for this task. INFERNO pretraining is also critical, showing that the pretraining
and not the encoder architecture is a key component. Overall, INFERNO achieves performances
close to the state-of-art approaches.

Model Top-1 Top-5

Q
A

M
et

ho
ds R3D LSTM 60.2 81.8

R3D + NL LSTM 46.2 69.9
Hopper 73.2 93.8
Aloe (w/out SSL loss) 60.1 -
Aloe 74.0 94.0

Fi
ne

-t
un

e Slot-Attention 59.1 88.0
Ours (w/out pretraining) 2.91 12.9
Ours (w/out SSL loss) 69.17 87.68
Ours 71.7 88.9

The goal of this experiment is to show that the representation learned by our model is useful
for the snitch localization task from the CATER dataset (Girdhar & Ramanan, 2019). We
focus on the CATER task involving videos with a static camera. The objective is to predict
the final position of an object (the snitch) in a video. The scenes show multiple objects that
move over time, one being the snitch object. The snitch can be occluded and moved around
simultaneously by other objects, requiring object tracking and reasoning about dynamics to
solve the task.

We follow the experimental setup of Ding et al. (2020). First, we train INFERNO to
reconstruct images from the CATER dataset. Once INFERNO is trained, we discard its
rendering pipeline, and instead feed the scene representations to a 12-layer transformer to
predict the final snitch position. Each object in our representation is given as an input element
to the transformer. We add a learned positional encoding to the object representations based
on their frame index. Objects in the same frame have the same positional encoding. The last
output of the transformer is fed to a MLP head that predicts the logits for the 36 possible
output positions.
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We minimize the sum of the cross-entropy and a L1 loss between the predicted and the true
snitch final position. Following (Ding et al., 2020), we optionally use anauxiliary SSL loss
after pretraining. The SSL loss randomly masks one object per-frame and tries to predict
its representation at the corresponding object output, through minimizing the L2 distance
between the predicted object representation and the observed but masked one. The SSL loss
is only backpropagated through the transformer and not the inference network.

During training, we randomly sample 40 frames from a video and predict the snitch location
from these frames. At test time, we randomly sample 10 temporal crops of 40 frames each
and average the model predictions to compute the final probabilities. Refer to Appendix 10.B
for more details about the experimental setup.

Table 10.4 reports CATER Top-1 and Top-5 accuracies for different methods. We first
compare our model pretrained to reconstruct images on CATER with a randomly initialized
encoder. Using a randomly initialized encoder does not perform well, suggesting that the
pretraining rather than the encoder architecture is key to learn useful representations for the
task. We also observe that the additional SSL loss slightly improves the performance of our
model.

We next compare our approach to Aloe (Ding et al., 2020), an object-centric baseline, R3D
and R3D NL, 3D convolutional models proposed by (Girdhar & Ramanan, 2019), and
Hopper (Zhou et al., 2021), that use a strong inductive bias towards object tracking. Our
model outperforms the R3D and R3D NL models that rely on unstructured representation.
This result suggests that the object-centric representation learned by INFERNO is useful
for the visual reasoning task. Our model also outperforms Aloe, an object-centric method
using 2D object representation, when both methods do not use additional SSL loss. However
Aloe benefits more from the use of an additional SSL loss. Overall, INFERNO achieves
performances close to the state-of-art approaches.

We finally evaluate the performance of a slot-attention baseline (Locatello et al., 2020) in
Table 10.4. The slot-attention baseline first pretrains a slot-attention encoder, with a similar
architecture than our model, by reconstructing CATER frames using a mask decoder. It
then fine-tunes the encoder using the same procedure than our model to solve the snitch
localization task. We observe that our model significantly outperforms the slot-attention
model which focus on the 2D geometry of the scene. This result supports the advantage of
3D-aware representation for solving the CATER task.
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10.4.5. Limitations

Based on the conducted experiments we highlight two main limitations of our model.

First, INFERNO has difficulty in inferring the hidden sides of objects. That is due to training
our model without ground-truth camera locations and from a single view, as opposed to
models that reconstruct scenes across multiple views using their corresponding ground-truth
camera locations.

The other main limitation is in scaling up our model to more complex datasets. This is
usually due to a wrong slot decomposition, and it is a common failure mode of Slot Attention
whether its driven by a 2D mask decoder or by our rendering mechanism.

10.5. Conclusions

We propose INFERNO, a model for inferring object-centric 3D scene representations. Our
model is able to discover objects in a scene without annotations, and the inferred scene
representations are interpretable and amenable to manipulations. Further, the scene repre-
sentation is useful for visual reasoning downstream tasks such as the snitch localization task
in CATER.

Acknowledgements. We thank the Mila Quebec AI Institute for managing the computer
clusters on which this research was conducted. This work was supported by an IVADO PhD
Fellowship to L.C. and by funding from CIFAR.

10.A. Appendix - Additional Model Details

Our model is composed of five main modules: encoder, slot attention, slot to object mapping,
NeRF decoder, neural network upscaler. In this section we provide additional details about
each of these modules as well as describe their architecture.

Table 10.5 – Encoder Neural Network

Layer Type Size Normalization Activation Other details
Conv 5× 5 64 - ReLU Stride 1 Pad. 1
Conv 5× 5 64 - ReLU Stride 1 Pad. 1
Conv 5× 5 64 - ReLU Stride 1 Pad. 1
Conv 5× 5 64 - ReLU Stride 1 Pad. 1
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Table 10.6 – Slot Attention Neural Network

Name Size Description

Positional emb. 64 Additive embedding, same size as CNN input features
Flatten - Flattens the spatial dimensions of CNN features

QKV MLP 128 Linear layers that map slots and input features to the same dimension
LayerNorm 128 Normalizes the slots/inputs

MLP + GRU 128 The output of soft-attention goes through a linear layer + GRU

Table 10.7 – Slot to Object MLP details

MLP Name Size Act and Norm. Description

Obj Pose 7 ReLU, LayerNorm Slot to translation, scale and rotation
Obj Shape/App. 128 ReLU, CondLayerNorm Slot to shape and appearance
BG Shape/App. 128 ReLU, LayerNorm Background slot to its shape/app, fixed pose.

Table 10.8 – Details about the NeRF MLPs used

MLP Name Layers Size Description
Obj MLP 8 64 ReLU activation, no norm. Skip connection with layer 4.
BG MLP 4 16 ReLU activation , no norm.

Table 10.9 – Neural Upscaler architecture

Layer Size Activation Normalization Other
Conv 3× 3 64 ReLU Instance Stride=1 Pad=1
Upsample - - - Nearest Neighbors
Conv 3× 3 64 ReLU Instance Stride=1 Pad=1
Upsample - - - Nearest Neighbors

(Only 128px) Conv 3× 3 64 ReLU Instance Stride=1 Pad=1
(Only 128px) Upsample - - - Nearest Neighbors

Conv 3× 3 3 - - Stride=1 Pad=1

Encoder. The goal of the encoder is to extract image features. We use an encoder with
no downsampling, as it is typically used with Slot Attention. Details about the encoder
architecture are described in Table 10.5.

Slot Attention. We employ Slot Attention to map image features to object slots. Slots are
sampled randomly from a Gaussian distribution with learned parameters. We use different
distributions for the background slot and the object slots. During training we employ three
iterations of slot attention to refine the image features to slot assignments.
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Slot to Object Net. The background and object slots are mapped to scene parameters
using a series of MLP. For each object slot, we first map the object to its pose parameters.
We use a 2-layer MLP with LayerNorm to map a slot to its pose. The size of the hidden
dimension is the same than the output dimension size. We parametrize object pose as a
7-dimensional tensor. We use three dimensions for the object location along each axis, three
dimensions for the scale of the object and a single dimension to express a rotation of the
object along the X axis. These parameters are then mapped to their corresponding 4 × 4
affine transformation matrix for each object. Note that in practice we are not modeling
rotations in the experimental section.

Once we have inferred the object poses, we infer object shapes and appearances. These are
inferred individually for each object using a common 2-layer MLP. The MLPs are conditional
on the object pose using Conditional Layer Normalization, that makes the learned parameters
of LayerNorm be a function of a condition. Specifically, we map the 7-dimensional pose tensor
to LayerNorm parameters with a single linear layer with no activation or normalization. Shapes
and appearances are defined by the output of the MLPs, which produce two 128-dimensional
tensors.

For the background object we only infer shape and appearance, and define its pose to be
that of the scene cube. The shape and appearance of the background are inferred through
another 2-layer MLP with ReLU and LayerNorm. A summary of the models discussed in
this section can be found in Table 10.7.

Note that our scene representation also admits a camera pose. In our experiments we fix
the camera location to look at the scene from a standard location (centered and 33 degrees
above the Z plane). Other concurrent approaches (Yu et al., 2021b; Stelzner et al., 2021) use
ground-truth camera locations to generate novel views, while we focus on recovering scene
representations without the use of ground-truth annotations.

NeRF MLPs. With the object shape and appearance tensors we can render them following
GRAF (Schwarz et al., 2020). We use one NeRF for the objects and one NeRF MLP for the
background. The details about each NeRF architecture can be found in Table 10.8. Note
that, to render objects according to their pose, we query their NeRF MLP in a canonical
object space by transforming input coordinates in scene space to object space using the object
pose. To reduce the computational complexity of rendering with many NeRFs, we render
scenes at a fixed resolution of 16x16. Instead of rendering RGB pixels, we render feature
images with 128 channels. The output of the rendering is then upscaled and mapped to RGB
views with a neural network upscaler.
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Neural Upscaler. The neural upscaler takes the low resolution output of the NeRF MLPs
and upscales it to the full output resolution. Additionally, it maps the rendered image to
RGB space. This module is implemented using a convolutional neural network. We always
render the NeRF output at 16px when using a neural network upscaler. Consequently, we
add additional layers to the neural upscaler depending on the desired output resolution. For
most experiments we use a resolution of 64px, while for the Scene Inference experiments on
CLEVR2345 we use a resolution of 128px. The architecture of the neural upscaler can be
found in Table 10.9. After some training iterations and once the model correctly reconstructs
its inputs, we remove the neural upscaler and render scenes using NeRFs at full resolution.

10.B. Experiment Details

10.B.1. Scene Manipulation

Dataset. For generating manipulated scenes we consider the CLEVR2345 dataset (Niemeyer
& Geiger, 2021). Images in the CLEVR2345 dataset contain from 2 to 5 objects. We use
the original train and test splits. Images are resized to 128x128 pixels and RGB values are
normalized in the [0, 1] range.

Training. We use a batch size of 128 and train our model for 400k iterations. We use Adam
with a learning rate of 1× 10−4 and weight decay 1× 10−6. We use 5 objects and rely on
the model to not use additional slots if the scene shows less than 5 objects. We use the
neural upscaler with additional layers to upscale to 128px. We remove the neural upscaler
and render at full resolution after 100K iterations. Additionally, for this experiment we use
an additional LPIPS loss. We use the LPIPS metric computed by an AlexNet network, and
we add this loss to our regular MSE loss. We weight the LPIPS loss by a factor of 100, so
that it has a comparable order of magnitude to the MSE loss.

Manipulations. Manipulations are done as follows:

— Substraction: We randomly delete up to two of the object slots.

— Addition: We randomly add an object slot from another scene.

— Scale: We reduce the scale (in all XYZ axis) of one of the objects in the substraction
scene.

— Forward: We manipulate the pose vector of one object in the substraction scene and
move it forward on the Z axis.
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— Right: We manipulate the pose vector of one object in the substraction scene and
move it forward on the X axis.

Additionally, we consider the Swap transformation for Table 10.1. This transformations
modifies a scene by replacing the object shape and appearance vectors with those of an object
from another scene.

Metrics. To compare reconstructions we use Mean-Squared Error, Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity (SSIM) and the LPIPS metrics.

MSE measure the average squared difference between pixel values.

MSE(x, x′) = 1
N

∑
N

(x− x′)2 (10.5)

PSNR is a metric commonly used in signal processing.

PSNR(x, x′) = −10 log10(MSE(x, x′)) (10.6)

SSIM (Wang et al., 2004a) provides scores more aligned with human perception, specially
under the presence of image noise. Scores are computed convolutionally by applying a kernel
over images, which are then contrasted.

LPIPS (Zhang et al., 2018b) computes differences in neural network activations for two
images. It is a perceptual metric that has been shown to have higher correlation to human
perception than other metrics not based on neural networks.

To compare populations of generated images we use the Frechet Inception Distance (Heusel
et al., 2017). The Frechet Inception Distance embeds images into a neural network space and
then fits a Gaussian distribution to the generated and ground-truth activation statistics. The
score is obtained by then computing the Frechet distance between the two. Note that other
metrics such as Inception Score are not applicable for the CLEVR2345 since there are no
well-defined classes.

10.B.2. Object Discovery

Dataset. For object discovery we consider the CLEVR6 dataset. We use the original
CLEVR6 dataset and extract the images from TFRecord files available at this URL. We use
the original training/test split, using the first 70% images for training and the remaining
ones for test. We take a crop between pixels [29, 221] and [64, 256], for the height and width
respectively, and then resize the crop to 64px. We normalize the value of the images between
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[0, 1]. To generate the CLEVR6 dataset, we keep only those images that have at maximum 6
objects according to the annotation files.

Training. We use a batch size of 128 and train our model for 400k iterations. We use Adam
with a learning rate of 1× 10−4 and weight decay 1× 10−6. We use 6 objects and rely on the
model to not use additional slots when needed.

Metrics. We follow previous work (Greff et al., 2019a) and use the Adjusted Rand Index
(ARI) (Rand, 1971) to evaluate cluster assignments in object discovery. ARI scores range
from 0 (random assigment) to 1 (perfect match). As in previous works, we do not consider a
segmentation mask for the background.

10.B.3. Visual Reasoning on CATER

For the visual reasoning task, we consider the CATER dataset and uses 5K videos that do
not have camera motion. All the videos are resized to a 64x64 resolution.

Pretraining. We first pretrain our INFERNO to reconstruct individual frames from the
CATER dataset. We bootstrap a model trained on CLEVR6 for object discovery for 400k
iterations and train it on the CATER dataset for an additional 100k iterations to speed-up
training, as the iteration time of a model with 10 objects is larger. We use a batch size of 128
and we use Adam with a learning rate of 1× 10−4 and weight decay 1× 10−6. When training
on CLEVR6 we use 6 object slots, while when training on CATER we use 10 object slots.

Finetuning. After pretraining, we finetune the INFERNO encoder to the supervised task
of snitch localization. We discard the rendering pipeline of our model, and instead feed the
inferred object slots representations to a transformer that aims at predicting the final position
of the snitch.

To predict the snitch, we consider a 12 layers transformer with the hidden dimension of 128
which takes the slot representation as input. The transformer treats each object as input
element. A learned positional embedding is added each slots representation based on their
frames index, i.e. the position of the objects is the same within a frame. The final output
to the transformer is given to a 1 layer MLP head with an hidden dimension of 128. It
outputs 36 logits that correspond to possible snitch location. We minimize the sum of the
cross-entropy between the predicted position and the true target and a the l1 loss between
the prediction and target.
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We optionally use a SSL loss similar to Ding et al. (2020). The SSL loss randomly masks
one object per-frame and tries to predict its representation at the corresponding output.
The model minimizes the L2 distance between the predicted object representation and the
observed one. The SSL loss is only backpropagated through the transformer and not the
encoder. We weight the SSL loss by a factor of 1.0e− 3.

We use an Adam optimizer to minimize the loss. The initial learning rate is set to the 1.0e−4
and gradually decreased to 1.0e− 6 using a cosine learning rate decay. Similarly, we use a
initial weight decay of 1.0e− 5 that we increases to 1.0e− 3 using a cosine schedule. Our
model is finetuned for 500 epochs. We don’t make use of learning rate decay.

During training, we randomly samples 40 frames from a video and predict the snitch localiza-
tion from this one crop. At test time, we randomly sample 10 temporal crop of 40 frames
each and average the prediction over the 10 crops as our final prediction.

10.C. Additional Visualizations

We have included additional manipulations of one scene in GIF format in the supplementary
material. We show: i) each object rendered individually, ii) object identity swaps with other
scenes, iii) object translations along one axis, iv) translations in diagonal (two axis), and v)
objects moving in a circle.

We also include more examples of reconstructions and scene manipulations where we add
and remove objects in Figure 10.4 and Figure 10.5, respectively.

10.D. Novel View Synthesis

In this section we synthesize novel views of a scene by modifying the camera pose. For each
example we show the input image, our reconstruction, then two images as a result of moving
the camera ±15◦ in the azimuth axis, and two images as a result of zooming in the scene.
This experiment is shown in Figure 10.6. While our model is trained without ground-truth
camera poses and with single views of scenes, it is able to generalize to small camera pose
modifications and render novel views of a scene.
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Input Recon. Input Recon. Input Recon.

Figure 10.4 – Additional reconstructions on CLEVR2345.

10.E. NeRF output with Neural Upscaler

In this section we show the raw outputs of the NeRF function. These outputs show scene
views rendered at low resolution, which are then upscaled with a neural network. While
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Input Add Remove Input Add Remove

Figure 10.5 – Additional object additions and removals on CLEVR2345. For each scene,
we show images with one randomly added object, and with 1-3 random objects removed. Some of
these images show out-of-distribution samples with a number of objects not seen during training
(2-5 objects).

these generations have reduced details due to their resolution, they clearly show the different
objects and their location in the scene. We show these visualizations in Figure 10.7. NeRFs
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are rendered at low resolution to ease the computational costs, as the time and memory
requirements of rendering with a NeRF are linearly correlated with the number of casted
rays/pixels in the output image. After we bootstrap the model with the neural upscaler, we
then remove it and render with NeRFs at full resolution.

10.F. Slot visualization

In this section we show the rendering of individual slots. Given an input scene, we first infer
its representation. Then, for each object in the representation, we render it individually
against a black background. Examples from this visualization are shown in Figure 10.8. We
observe that, in general, each object slot is rendering a part of the scene corresponding to a
single object instance. Additionally, for some objects their slot captures parts of its shading.

10.G. Ethics Discussion

INFERNO can be used to generate views of novel scenes. As with other generative models,
there is a chance that similar methods as the one we propose might be used to create
"deepfakes". Note however that it would require extensive follow-up work and that it would
not be a direct application of our method.

At the same time, generative models have multiple positive applications. For example, novel
generations can be used to train better image classifiers, and image generators can also be
used to facilitate content creation for visual artists.

Overall our model would require follow-up work to enable some of the positive and negative
applications described, as in its current form it operates on synthetic datasets.
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Input Recon. Rot. +15 deg. Rot. -15 deg. Zoom x1.5 Zoom x2

Figure 10.6 – Novel view synthesis on CLEVR2345. For each scene, we move the camera
±15◦ on the azimuth axis. Additionally, we zoom in the scene twice. While our model is trained
with a fixed default camera pose and single scene views, it is able to generalize to small camera
pose modifications and render novel views of a scene.
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Input Recon. NeRF out Input Recon. NeRF out

Figure 10.7 – NeRF outputs on CLEVR2345. For each input scene we show the reconstructed
image as well as each the low resolution output of the NeRF function. This output is then upscaled
with a neural network to obtain the reconstructed scene. While NeRF output lack full detail, they
correctly depict each individual object and their position in the scene.
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Input Object 1 Object 2 Object 3 Object 4 Object 5 Object 6 Object 7

Figure 10.8 – Object Slots rendered individually on CATER: For each input scene we show
the reconstructed image as well as each individual object slot rendered against a black background.
We observe that each object slot is rendering a part of the scene corresponding to a single object
instance.
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Chapter 11

Discussion and Conclusions

The articles in this thesis present novel generative models, with a focus on applying them
to dynamic scenes. The first two articles investigated different types of generative models
for video, found some of their limitations, and proposed improved versions that produced
better quality results or reduced the computational requirements of the generation process.
On the other hand, the two last articles propose video models with inductive biases that
better reflect the characteristics of real world dynamic scenes.

In the first article we sought to improve VAEs for video prediction. We first identified its
different components, namely the prior and approximate posterior distributions and the
likelihood model. For each component, we then analyzed some of its limitations, such as
underfitting or limiting distribution families. We proposed a model incorporating mitigations
for all the identified issues, including a higher capacity decoder and more expressive latent
distributions and strategies to ease the optimization of these models. With these modifications,
we showed that our model can generate better quality results under different metrics for
two popular video prediction datasets. Furthermore, we also demonstrate that with the
improvements our model can be used to predict videos on more realistic datasets than possible
with previous methods.

The issues highlighted in this paper remain important for video prediction. With GANs
being difficult to train and producing implausible continuations for video prediction, and
autoregressive models having high computational requirements, VAEs have remained one
of the most popular methods for video prediction. The current state-of-the-art in video
prediction (Babaeizadeh et al., 2021) builds directly upon our finding that video prediction
methods tend to underfit the training data, thus indicating that higher capacity models are
needed. In fact, the major innovation in these models has been to replace the neural network



architectures with higher capacity models inspired by advances in the image generation
literature.

While our VAE model generated higher quality predictions than previous approaches, VAEs
tend to produce worse quality outputs than GANs. In the case of videos, DVD-GAN (Clark
et al., 2019) showed for the first time realistic generations from the Kinetics-600 dataset, which
was not possible with any model before. However, DVD-GAN has very high computational
requirements that prevented it from being widely adopted. Therefore, in the second article
we investigated alternative GAN methods with reduced costs and we proposed a cascaded
GAN model for video generation which consists of multiple levels that are trained sequentially
and independently. Our model requires half the computational resources of DVD-GAN
while retaining its generation quality due to decomposing the generation process into simpler
steps and introducing an independence assumption. Furthermore, we use the better scaling
capabilities of our model to generate videos of higher dimensionality than possible with
previous GAN methods.

Despite our efforts, GANs for video have not been widely adopted by the video community.
While for image GANs there are engineering techniques and neural architectures that alleviate
the training instabilities, the equivalent best practices for training video GANs have not been
found yet. In addition, even with the cost reductions proposed by our model or alternatives
such as TGAN, video GANs still require large amounts of computational resources. There
have been few developments in recent years, with the main development being an extension
of DVD-GAN to video prediction (Luc et al., 2020).

Given the limitations of GANs and VAEs and the fact that most improvements were due
to increased resources, we decided to focus on designing video models that implemented
inductive biases that more accurately reflected our understanding of dynamic scenes. In the
third article of this thesis we propose a model that models dynamic scenes as a set of entities
that are updated independently but following the same transition rules. This reflects our
understanding that the world is made of distinct objects and that they all share the same
dynamics laws. While we only apply our model on simple 2D datasets, we show that our
model can handle stochasticity and that it learns interpretable transition rules compared to
previous approaches. Additionally, we show that our model generalizes to out-of-distribution
scenes not seen during training due to its factorized representation.

While it is early to assess the impact of our model, it follows a recent line of research
literature (Goyal et al., 2019, 2020) of object-centric models that implement a factorization
between state and the transition function. Our model extends these previous works by
adding the ability to handle multimodal future transitions and showing out-of-distribution

154



generalization properties not seen in other models. Recent work (Lin et al., 2020; Locatello
et al., 2020) has proposed different approaches towards implementing the same inductive
biases, with similar limitations as our work. As a natural follow-up direction we expect the
community to extend these models to more realistic scenarios and to show more applications
of such models.

The last article proposes a model that combines object-centric scene representations with a
differentiable 3D renderer. Our model explicitly factorizes object appearance and pose in
a scene, where objects are represented as localized neural radiance fields (Mildenhall et al.,
2020). Due to this scene representation, our model can generate out-of-distribution scene
compositions not seen during training by adding or removing objects or modifying their poses
and appearances. Furthermore, different from previous approaches we show that our model
can be used to tackle downstream tasks that require tracking objects across time.

Similarly to the third article in the thesis, it is too early to assess its impact. Our work
follows a line of research that incorporates differentiable rendering techniques with generative
models (Niemeyer & Geiger, 2021; Stelzner et al., 2021; Yu et al., 2021b; Chen et al., 2021),
and extends them with a factorized pose and appearance representation. While all these
models operate on simple datasets, we expect follow-up work to extend them to more realistic
scenarios and to show more downstream applications of these models. We believe that
modeling 3D objects in video prediction is an important step necessary to systematically
model object interactions and simulate camera motion, and we hope our model inspires future
work in this direction.

While each of the articles presented in this thesis has been an improvement over previous
approaches, there are still many open research directions concerning dynamic scenes. Currently,
systematically solving simple tasks such as CATER and PHYRE is still an unsolved question.
Specialized models designed exclusively for these tasks are not able to reach high success
rates, and models based on learning representations videos are not as good as these models.
As a positive note, at the time of writing this thesis, there has been progress in solving action
classification tasks using general unsupervised methods. However, the limited success in tasks
beyond classification, even in simple scenarios such as PHYRE, indicates that more research
is needed to solve general dynamic scene understanding tasks.

In this thesis we focused on generative models of video. The main conclusion of our research
is that improvements in model capacity have produced the best results so far. However,
scaling traditional generative models such as GANs and VAEs has provided diminishing
returns, and more research is needed to find alternatives to these models that produce better
results with less computational resources. Models that implement better inductive biases,
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such as the models presented in our two last articles, are a promising avenue towards this
goal, and is a research direction that is actively being explored by the community. Finally, at
the time of writing, a novel family of generative methods called Diffusion models is gaining
popularity and holds promise to improve the generations of other generative model families
without requiring more computational resources.

Overall, it is an exciting time to conduct research in the field of video generation and we
hope that this thesis and its findings motivate future developments in this area.
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