
Université de Montréal

Some Phenomenological Investigations
in Deep Learning

par

Aristide Baratin

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en informatique

Décembre, 2021

© Aristide Baratin, 2021.

Université de Montréal
Faculté des arts et des sciences

Cette thèse intitulée:

Some Phenomenological Investigations
in Deep Learning

présentée par:

Aristide Baratin

a été évaluée par un jury composé des personnes suivantes:

Ioannis Mitliagkas, président-rapporteur
Simon Lacoste-Julien, directeur de recherche
Aaron Courville, membre du jury
Joan Bruna, examinateur externe

Thèse acceptée le: .

iv

Là, tout n’est qu’ordre et beauté,
Luxe, calme et volupté.

Charles Baudelaire, « L’Invitation au voyage ».

Don’t panic.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy.

Résumé

Les remarquables performances des réseaux de neurones profonds dans de nombreux
domaines de l’apprentissage automatique au cours de la dernière décennie soulèvent un
certain nombre de questions théoriques. Par exemple, quels mecanismes permettent à ces
reseaux, qui ont largement la capacité de mémoriser entièrement les exemples d’entrainement,
de généraliser correctement à de nouvelles données, même en l’absence de régularisation
explicite ? De telles questions ont fait l’objet d’intenses e�orts de recherche ces dernières
années, combinant analyses de systèmes simplifiés et études empiriques de propriétés qui
semblent être corrélées à la performance de généralisation. Les deux premiers articles présentés
dans cette thèse contribuent à cette ligne de recherche. Leur but est de mettre en évidence
et d’etudier des mécanismes de biais implicites permettant à de larges modèles de prioriser
l’apprentissage de fonctions "simples" et d’adapter leur capacité à la complexité du problème.

Le troisième article aborde le problème de l’estimation de information mutuelle en haute,
en mettant à profit l’expressivité et la scalabilité des reseaux de neurones profonds. Il
introduit et étudie une nouvelle classe d’estimateurs, dont il présente plusieurs applications en
apprentissage non supervisé, notamment à l’amélioration des modèles neuronaux génératifs.

Mots-Clés: Apprentissage statistique, réseaux de neurones profonds, théorie de
l’apprentissage, information mutuelle, modèles génératifs.

v

Abstract

The striking empirical success of deep neural networks in machine learning raises a number
of theoretical puzzles. For example, why can they generalize to unseen data despite their
capacity to fully memorize the training examples? Such puzzles have been the subject of
intense research e�orts in the past few years, which combine rigorous analysis of simplified
systems with empirical studies of phenomenological properties shown to correlate with
generalization. The first two articles presented in these thesis contribute to this line of work.
They highlight and discuss mechanisms that allow large models to prioritize learning ‘simple’
functions during training and to adapt their capacity to the complexity of the problem.

The third article of this thesis addresses the long standing problem of estimating mutual
information in high dimension, by leveraging the scalability of neural networks. It introduces
and studies a new class of estimators and present several applications in unsupervised learning,
especially on enhancing generative models.

Keywords: machine learning, deep neural networks, statistical learning theory, mutual
information, generative models.

vii

Contents

Résumé . v

Abstract . vii

List of tables . xv

List of figures . xvii

Remerciements .xxiii

Chapter 1. Introduction . 1

1. Motivating Challenges . 1

2. Summary of Contributions . 3

3. Excluded Research. 5

Chapter 2. Background . 7

1. Learning with Neural Networks . 7
1.1. Supervised learning . 7
1.2. Generative modeling . 9

2. Complexity and Generalization . 10
2.1. Generalization bounds . 11
2.2. Empirical complexity measures . 13
2.3. Lessons from linear models. 14

3. Linear Regime . 14
3.1. Linearized networks. 14
3.2. Lazy training . 15
3.3. Deep learning versus kernel learning . 16

4. Information in Deep Learning . 16
4.1. Entropy and mutual information . 16
4.2. Neural estimation . 17

ix

Chapter 3. First Article: On the Spectral Bias of Neural Networks 19

Prologue . 19

1. Introduction . 20

2. Fourier analysis of ReLU networks . 21
2.1. Preliminaries. 21
2.2. Fourier Spectrum . 21

3. Lower Frequencies are Learned First . 23
3.1. Synthetic Experiments . 23
3.2. Real-Data Experiments . 26

4. Not all Manifolds are Learned Equal . 28

5. Related Work. 32

6. Conclusion. 33

Chapter 4. Second Article: Neural Tangent Feature Alignment 35

Prologue . 35

1. Introduction . 36

2. Preliminaries . 37

3. Neural Feature Alignment . 40
3.1. Setup . 40
3.2. Spectrum Evolution . 40
3.3. Alignment to class labels. 42
3.4. Hierarchical Alignment . 43
3.5. Ablation . 44

4. Measuring Complexity . 45
4.1. Insights from Linear Models . 45

4.1.1. Setup. 45
4.1.2. Feature Alignment as Implicit Regularization . 46

4.2. A New Complexity Measure for Neural Networks . 48

5. Related Work. 49

6. Conclusion. 50

x

Chapter 5. Third Article: Mutual Information Neural Estimation 51

Prologue . 51

1. Introduction . 52

2. Background. 54
2.1. Mutual Information. 54
2.2. Dual representations of the KL-divergence. 55

3. The Mutual Information Neural Estimator . 56
3.1. Method. 56
3.2. Correcting the bias from the stochastic gradients . 57
3.3. Theoretical properties. 57

3.3.1. Consistency. 57
3.3.2. Sample complexity. 58

4. Empirical comparisons . 59
4.1. Comparing MINE to non-parametric estimation . 59
4.2. Capturing non-linear dependencies . 59

5. Applications . 60
5.1. Maximizing mutual information to improve GANs . 60
5.2. Maximizing mutual information to improve inference in bi-directional

adversarial models . 63
5.3. Information Bottleneck . 66

6. Conclusion. 67

Chapter 6. Conclusion . 69

References. 71

Appendix A. Spectral Bias: Supplementary Material . 95

A.1. Experimental Details . 95
A.1.1. Experiment 1. 95
A.1.2. Experiment 5. 96
A.1.3. Experiment 3. 96
A.1.4. Experiment 4. 96
A.1.5. Qualitative Ablation over Architectures . 98
A.1.6. MNIST: A Proof of Concept . 100

xi

A.1.7. Cifar-10: It’s All Connected . 101

A.2. The Continuous Piecewise Linear Structure of Deep ReLU Networks 103

A.3. Fourier Analysis of ReLU Networks . 104
A.3.1. Proof of Lemma 3.1 . 104
A.3.2. Fourier Transform of Polytopes . 105
A.3.3. On Theorem 3.3 . 107
A.3.4. Spectral Decay Rate of the Parameter Gradient. 108
A.3.5. Convergence Rate of a Network Trained on Pure-Frequency Targets. 108
A.3.6. Proof of the Lipschtiz bound . 109
A.3.7. The Fourier Transform of a Function Composition . 110

A.4. Volume of High-Frequency Parameters in Parameter Space 111

A.5. Kernel Machines and KNNs . 112
A.5.1. Kernel Machines vs DNNs . 112
A.5.2. K-NN Classifier vs. DNN classifier . 113

Appendix B. Tangent Feature Alignment: Supplementary Material 115

B.1. Tangent Features and Geometry . 115
B.1.1. Metric . 115
B.1.2. Tangent Kernels . 116
B.1.3. Spectral Decomposition. 116
B.1.4. Sampled Versions . 117
B.1.5. Spectral Bias . 118

B.2. Complexity Bounds . 121
B.2.1. Rademacher Complexity . 121
B.2.2. Generalization Bounds. 122
B.2.3. Complexity Bounds: Proofs. 123
B.2.4. Bounds for Multiclass Classification. 124
B.2.5. Which Norm for Measuring Capacity? . 127
B.2.6. SuperNat: Proof of Prop 4.3 . 129

B.3. Additional experiments . 130
B.3.1. Synthetic Experiment: Fig. 4.1 . 130
B.3.2. More Alignment Plots . 131
B.3.3. E�ect of depth on alignment . 131

xii

B.3.4. Spectrum Plots with lower learning rate : Fig. B.8. 132

Appendix C. Mutual Information Neural Estimation: Supplementary
Material . 135

C.1. Experimental Details . 135
C.1.1. Adaptive Clipping . 135
C.1.2. GAN+MINE: Spiral and 25-gaussians . 135
C.1.3. GAN+MINE: Stacked-MNIST. 136
C.1.4. ALI+MINE: MNIST and CelebA . 137
C.1.5. Information bottleneck with MINE . 140

C.2. Proofs . 141
C.2.1. Donsker-Varadhan Representation . 141
C.2.2. Consistency Proofs . 142
C.2.3. Sample complexity proof . 144
C.2.4. Bound on the reconstruction error . 146
C.2.5. Embeddings for bi-direction 25 Gaussians experiments . 146

xiii

List of tables

5.1 Number of captured modes and Kullblack-Leibler divergence between the training
and samples distributions for DCGAN (Radford et al., 2015), ALI (Dumoulin
et al., 2016), Unrolled GAN (Metz et al., 2017), VeeGAN (Srivastava et al., 2017),
PacGAN (Lin et al., 2017). 63

5.2 Comparison of MINE with other bi-directional adversarial models in terms of
euclidean reconstruction error, reconstruction accuracy, and MS-SSIM on the
MNIST and CelebA datasets. MINE does a good job compared to ALI in terms of
reconstructions. Though the explicit reconstruction based baselines (ALICE) can
sometimes do better than MINE in terms of reconstructions related tasks, they
consistently lag behind in MS-SSIM scores and reconstruction accuracy on CelebA.
. 65

5.3 Permutation Invariant MNIST misclassification rate using Alemi et al. (2016)
experimental setup for regularization by confidence penalty (Pereyra et al., 2017),
label smoothing (Pereyra et al., 2017), Deep Variational Bottleneck(DVB) (Alemi
et al., 2016) and MINE. The misclassification rate is averaged over ten runs. In
order to control for the regularizing impact of the additive Gaussian noise in the
additive conditional, we also report the results for DVB with additional additive
Gaussian noise at the input. All non-MINE results are taken from Alemi et al.
(2016). 67

C.1 Generator network for Stacked-MNIST experiment using GAN+MINE. 136

C.2 Discriminator network for Stacked-MNIST experiment. 137

C.3 Statistics network for Stacked-MNIST experiment. 137

C.4 Encoder network for bi-directional models on MNIST. ‘ ≥ N128(0, I). 138

C.5 Decoder network for bi-directional models on MNIST. z ≥ N256(0, I) 138

C.6 Discriminator network for bi-directional models experiments MINE on MNIST.. . 138

C.7 Statistics network for bi-directional models using MINE on MNIST. 139

C.8 Encoder network for bi-directional models on CelebA. ‘ ≥ N256(0, I). 139

xv

C.9 Decoder network for bi-directional model(ALI, ALICE) experiments using MINE
on CelebA. 139

C.10 Discriminator network for bi-directional models on CelebA. 140
C.11 Statistics network for bi-directional models on CelebA. 140
C.12 Statistics network for Information-bottleneck experiments on MNIST. 141

xvi

List of figures

3.1 Left (a, b): Evolution of the spectrum (x-axis for frequency) during training (y-axis).
The colors show the measured amplitude of the network spectrum at the corresponding
frequency, normalized by the target amplitude at the same frequency (i.e. |f̃ki |/Ai)
and the colorbar is clipped between 0 and 1. Right (a, b): Evolution of the spectral
norm (y-axis) of each layer during training (x-axis). Figure-set (a) shows the setting
where all frequency components in the target function have the same amplitude, and
(b) where higher frequencies have larger amplitudes. Gist: We find that even when
higher frequencies have larger amplitudes, the model prioritizes learning lower frequencies
first. We also find that the spectral norm of weights increases as the model fits higher
frequency, which is what we expect from Theorem 3.3. 23

3.2 The learnt function (green) overlayed on the target function (blue) as the training
progresses. The target function is a superposition of sinusoids of frequencies Ÿ =
(5, 10, ..., 45, 50), equal amplitudes and randomly sampled phases. 24

3.3 Normalized spectrum of the model (x-axis for frequency, colorbar for magnitude) with
perturbed parameters as a function of parameter perturbation (y-axis). The colormap
is clipped between 0 and 1. We observe that the lower frequencies are more robust to
parameter perturbations than the higher frequencies. 24

3.4 (a,b,c,d): Validation curves for various settings of noise amplitude — and frequency k.
Corresponding training curves can be found in Figure A.2 in appendix A.1.3. Gist:
Low frequency noise a�ects the network more than their high-frequency counterparts.
Further, for high-frequency noise, one finds that the validation loss dips early in the
training. Both these observations are explained by the fact that network readily fit lower
frequencies, but learn higher frequencies later in the training. 25

3.5 Spectrum of the network as it is trained on MNIST target with high-frequency noise
(Noised Target). We see that the network fits the true target at around the 200th
iteration, which is when the validation score dips (Figure A.4 in appendix). 28

3.6 Spectrum (x-axis for frequency, colorbar for magnitude) of the n-th (y-axis) eigenvector of
the Gaussian RBF kernel matrix Kij = k(xi, xj), where the sample set is {xi œ [0, 1]}50

i=1

xvii

is N = 50 uniformly spaced points between 0 and 1 and k is the Gaussian RBF kernel
function. Gist: The eigenfunctions with increasing n roughly correspond to sinusoids of
increasing frequency. Refer to Appendix A.1.4 for more details. 28

3.7 Functions learned by two identical networks (up to initialization) to classify the binarized
value of a sine wave of frequency k = 200 defined on a “L=20 manifold. Both yield close
to perfect accuracy for the samples defined on the manifold (scatter plot), yet they
di�er significantly elsewhere. The shaded regions show the predicted class (Red or Blue)
whereas contours show the confidence (absolute value of logits). 30

3.8 (a,b,c,d): Evolution of the network spectrum (x-axis for frequency, colorbar for magnitude)
during training (y-axis) for the same target functions defined on manifolds “L for various
L. Since the target function has amplitudes Ai = 1 for all frequencies ki plotted, the
colorbar is clipped between 0 and 1. (e): Corresponding learning curves. Gist: Some
manifolds (here with larger L) make it easier for the network to learn higher frequencies
than others. 30

3.9 Heatmap of training accuracies of a network trained to predict the binarized value of a
sine wave of given frequency (x-axis) defined on “L for various L (y-axis). 31

4.1 Evolution of eigenfunctions of the tangent kernel, ranked in nonincreasing order of the
eigenvalues (in columns), at various iterations during training (in rows), for the 2d

Disk dataset. After a number of iterations, we observe modes corresponding to the class
structure (e.g. boundary circle) in the top eigenfunctions. Combined with an increasing
anistropy of the spectrum (e.g ⁄20/⁄1 = 1.5% at iteration 0, 0.2% at iteration 2000), this
illustrates a stretch of the tangent kernel, hence a (soft) compression of the model, along
a small number of features that are highly correlated with the classes. 39

4.2 Evolution of the tangent kernel spectrum (max, average and median eigenvalues),
e�ective rank (5) and trace ratios (6) during training of a VGG19 on CIFAR10 with
various ratio of random labels, using cross-entropy and SGD with batch size 100, learning
rate 0.01 and momentum 0.9. Tangent kernels are evaluated on batches of size 100 from
both the training set (solid lines) and the test set (dashed lines). The plots in the top
row show train/test accuracy. 41

4.3 Evolution of the (tangent) feature alignment with class labels as measured by CKA
(7), during training of a VGG19 on CIFAR10 (same setup as in Fig. 4.2). Tangent kernels
and label vectors are evaluated on batches of size 100 from both the training set (solid
lines) and the test set (dashed lines). The plots in the last two rows show the alignment

xviii

of tangent features associated to each layer. Layers are mapped to colors sequentially
from input layer (-), through intermediate layers (-), to output layer (-). See Fig. B.5
and B.7 in Appendix B.3 for additional architectures and datasets. 42

4.4 Alignment easy versus di�cult: We augment a dataset composed of 10.000 easy MNIST
examples with 1000 di�cult examples from 2 di�erent setups: (left) 1000 MNIST
examples with random label (right) 1000 KMNIST examples. We train a MLP with
6 layers of 80 hidden units using SGD with learning rate=0.02, momentum=0.9 and
batch size=100. We observe that the alignment to (train) labels increases faster and to a
higher value for the easy examples. 43

4.5 (left) SuperNat algorithm and (right) validation curves obtained with standard
and SuperNat gradient descent, on the noisy linear regression problem. At each
iteration, SuperNat identifies dominant features and stretches the kernel along
them, thereby slowing down and eventually freezing the learning dynamics in the
noise direction. This naturally yields better generalization than standard gradient
descent on this problem. 47

4.6 Complexity measures on MNIST with a 1 hidden layer MLP (left) as we increase the
hidden layer size, (center) for a fixed hidden layer of 256 units as we increase label
corruption and (right) for a VGG19 on CIFAR10 as we vary the number of channels.
All networks are trained until cross-entropy reaches 0.01. Our proposed complexity
measure and the one by Neyshabur et al. 2018 are the only ones to correctly reflect the
shape of the generalization gap in these settings. 49

5.1 Mutual information between two multivariate Gaussians with component-wise
correlation fl œ (≠1,1). 60

5.2 MINE is invariant to choice of deterministic nonlinear transformation. The heatmap
depicts mutual information estimated by MINE between 2-dimensional random
variables X ≥ U(≠1, 1) and Y = f(X) + ‡ § ‘, where f(x) œ {x, x3, sin(x)} and
‘ ≥ N (0, I). 60

5.3 The generator of the GAN model without mutual information maximization after
5000 iterations su�ers from mode collapse (has poor coverage of the target dataset)
compared to GAN+MINE on the spiral experiment.. 62

5.4 Kernel density estimate (KDE) plots for GAN+MINE samples and GAN samples
on 25 Gaussians dataset. 63

xix

5.5 Samples from the Stacked MNIST dataset along with generated samples from
DCGAN and DCGAN with MINE. While DCGAN only shows a very limited
number of modes, the inclusion of MINE generates a much better representative
set of samples. 63

5.6 Reconstructions and model samples from adversarially learned inference (ALI)
and variations intended to increase improve reconstructions. Shown left to right
are the baseline (ALI), ALICE with the l2 loss to minimize the reconstruction
error, ALICE with an adversarial loss, and ALI+MINE. Top to bottom are the
reconstructions and samples from the priors. ALICE with the adversarial loss has
the best reconstruction, though at the expense of poor sample quality, where as
ALI+MINE captures all the modes of the data in sample space. 65

A.1 Loss curves averaged over multiple runs. (cf. Experiment 1) . 96

A.2 (a,b,c,d): Training curves for various settings of noise amplitude — and frequency k

corresponding to Figure 3.4. 97

A.3 Two extreme eigenvectors of the Gaussian RBF kernel for 50 uniformly spaced samples
between 0 and 1. 98

A.4 Loss curves for the Figure 3.5. We find that the validation loss dips at around the 200th
iteration. 98

A.5 The target function used in Experiment 7. 99

A.6 Evolution with training iterations (y-axis) of the Fourier spectrum (x-axis for frequency,
and colormap for magnitude) for a network with varying depth, width = 16 and weight
clip = 10. The spectrum of the target function is a constant 0.005 for all frequencies.. . 99

A.7 Evolution with training iterations (y-axis) of the Fourier spectrum (x-axis for frequency,
and colormap for magnitude) for a network with varying width, depth = 3 and weight
clip = 10. The spectrum of the target function is a constant 0.005 for all frequencies.. . 99

A.8 Evolution with training iterations (y-axis) of the Fourier spectrum (x-axis for frequency,
and colormap for magnitude) for a network with varying weight clip, depth = 6 and
width = 64. The spectrum of the target function is a constant 0.005 for all frequencies.100

A.9 Evolution with training iterations (y-axis) of the network prediction (x-axis for input,
and colormap for predicted value) for a network with varying weight clip, depth = 6
and width = 64. The target function is a ” peak at x = 0.5. 100

xx

A.10 Loss curves of two identical networks trained to regress white-noise under identical
conditions, one on MNIST reconstructions from a DAE with 64 encoder features (blue),
and the other on 64-dimensional random vectors (green). 101

A.11 Path between CIFAR-10 adversarial examples (e.g. “frog” and “automobile”, such
that all images are classified as “airplane”). 102

A.12 Each row is a path through the image space from an adversarial sample (right) to a true
training image (left). All images are classified by a ResNet-20 to be of the class of the
training sample on the right with at least 95% softmax certainty. This experiment shows
we can find a path from adversarial examples (right, Eg. "(cat)") that are classified as
a particular class ("airplane") are connected to actual training samples from that class
(left, "airplane") such that all samples along that path are also predicted by the network
to be of the same class. 103

A.13 (a,b,c,d): Heatmaps of training accuracies (L-vs-k) of KNNs for various K. When
comparing with figure 3.9, note that the y-axis is flipped. (e): The frequency
spectrum of KNNs with di�erent values of K, and a DNN. The DNN learns a
smoother function compared with the KNNs considered since the spectrum of the
DNN decays faster compared with KNNs. 114

B.1 Variations of fw (evaluated on a test set) when perturbing the parameters in the
directions given by the right singular vectors of the Jacobian (first 50 directions) or
in randomly sampled directions (last 50 directions) on a VGG11 network trained
for 10 epochs on CIFAR10. We observe that perturbations in most directions have
almost no e�ect, except in those aligned with the top singular vectors. 118

B.2 Eigendecomposition of the tangent kernel matrix of a random 6-layer deep 256-unit
wide MLP on 1D uniform data (50 equally spaced points in [0,1]). (left) Fourier
decomposition (y-axis for frequency, colorbar for magnitude) of each eigenvector (x-axis),
ranked in nonincreasing order of the eigenvalues. We observe that eigenvectors with
increasing index j (hence decreasing eigenvalues) correspond to modes with increasing
Fourier frequency. (middle) Plot of the j-th eigenvectors with j œ {0, 5, 20} and (right)
distribution of eigenvalues. We note the fast decay (e.g ⁄10/⁄1 ¥ 4‰). 121

B.3 Left: 2D projection of the minimum ¸2-norm interpolators wú
S , S ≥ fln, for linear models

fw = Èw, �cÍ, as the feature scaling factor varies from 0 (white features) to 1 (original,
anisotropic features). For larger c, the solutions scatter in a very anisotropic way. Right:
Average test classification loss and complexity bounds (60) with A = Id (blue plot)

xxi

for the solution vectors wú
S , as we increase the scaling factor c. As feature anisotropy

increases, the bound becomes increasingly loose and fails to reflect the shape of the test
error. By contrast, the bound (10) with A optimized as in Proposition B.7 (red plot)
does not su�er from this problem. 128

B.4 Disk dataset. Left: Training set of n = 500 points (xi, yi) where x ≥ Unif[≠1,1]2,
yi = 1 if ÎxiÎ2 Æ r =

p
2/fi and ≠1 otherwise. Right: Large test sample (2500

points forming a 50 ◊ 50 grid) used to evaluate the tangent kernel. 130
B.5 Evolution of the CKA between the tangent kernel and the class label kernel KY = Y Y T

measured on a held-out test set for di�erent architectures: (left) 6 layers of 80 hidden
units MLP on MNIST (middle) VGG19 on CIFAR10 (right) Resnet18 on CIFAR10.
We observe an increase of the alignment to the target function. 131

B.6 Same as figure B.5 but without centering the kernel. Evolution of the uncentered kernel
alignment between the tangent kernel and the class label kernel KY = Y Y T measured
on a held-out test set for di�erent architectures: (left) 6 layers of 80 hidden units MLP
on MNIST (middle) VGG19 on CIFAR10 (right) Resnet18 on CIFAR10. We observe
an increase of the alignment to the target function. 132

B.7 E�ect of depth on alignment. 10.000 MNIST examples with 1000 random labels MNIST
examples trained with learning rate=0.01, momentum=0.9 and batch size=100 for
MLP with hidden layers size 60 and (in rows) varying depths (in columns) varying
random initialization/minibatch sampling. As we increase the depth, the alignment
starts increasing later in training and increases faster; and the ratio between easy and
di�cult alignments reaches a higher value. 133

B.8 Evolution of tangent kernel spectrum, e�ective rank and trace ratios of a VGG19 trained
by SGD with batch size 100, learning rate 0.003 and momentum 0.9 on dataset (left)
CIFAR10 and (right) CIFAR10 with 50% random labels. We highlight the top 40, 80
and 160 trace ratios in red. 134

C.1 Embeddings from adversarially learned inference (ALI) and variations intended to
increase the mutual information. Shown left to right are the baseline (ALI), ALICE
with the L2 loss to minimize the reconstruction error, ALI with an additional
adversarial loss, and MINE. 147

xxii

Remerciements

Je tiens d’abord à exprimer ma gratitude à mon directeur de recherche, Simon Lacoste-
Julien, pour sa disponibilité, son e�cacité, et l’attention constante dont il a fait preuve à
mon égard tout au long de mon parcours au Mila. Mon travail doit beaucoup aux multiples
échanges et discussions avec mes collaborateurs et amis, parmi lesquels Ishmaël Belghazi,
Akram Erraqabi, Thomas George, Devon Hjelm, Guillaume Lajoie, César Laurent, Nasim
Rahaman and Alessandro Sordoni, ainsi qu’avec mes nombreux compagnons d’infortune du
Mila.

Je remercie les équipes de cet extraordinaire laboratoire qu’est le Mila pour leur e�cacité
et leur devouement. Je remercie également chaleureusement les membres de mon jury de
thèse, Ioannis Mitliagkas et Aaron Courville – et tout particulièrement Joan Bruna, pour le
temps qu’il aura consacré à l’examen de cette thèse.

Ma famille, mes amis – qu’ils soient parisiens, ontariens, berlinois ou montréalais – savent
combien je leur dois. Je remercie tout particulierement ma compagne et super-partenaire
Sarah, dont la présence chaleureuse et confiante m’a si bien accompagné dans cette aventure.

xxiii

Chapter 1

Introduction

1. Motivating Challenges
Deep learning methods (Goodfellow et al., 2016a) have become ubiquitous in data science

and machine learning in the last decade. They played a pivotal role in recent breakthroughs
in various complex learning problems such as image classification (Krizhevsky et al., 2012),
language translation (Sutskever et al., 2014), playing Go (Silver et al., 2017) and Starcraft
(Vinyals et al., 2019), or protein structure prediction (Senior et al., 2020).

The enormous practical success of these methods, however, contrasts with our limited
theoretical understanding of their performance (e.g., Goldblum et al., 2020). This large gap
between theory and practice brings immediate challenges for these models treated as black-box,
such as the lack of reliable guarantees of accuracy, robustness, and fairness.1 Moreover one can
hope that a better theoretical grasp of deep learning will (i) yield mathematically grounded
principles for model and algorithm selection (ii) trigger progress towards overcoming notorious
limitations of current models, such as their brittleness under adversarial perturbations (Xu
et al., 2020) or distribution shift (Taori et al., 2020).

There are two related questions that theory should address:
(i) Understanding generalization: when does deep learning work and why?

Using large and flexible models has a long history in machine learning, but it usually
comes along with some form of capacity control to avoid overfitting, such as a regularizer
term added to the loss that penalizes complex hypotheses. Somewhat surprisingly (Geman
et al., 1992), high-capacity neural networks can often perform well on real data even without
explicit regularization (Neyshabur et al., 2015; Zhang et al., 2017a) or early stopping (Ho�er
et al., 2017), and even while (over)fitting some added noise in the training data. Empirical
observations like double descent curves (Advani & Saxe, 2017; Belkin et al., 2019a; Geiger
et al., 2019; Nakkiran et al., 2020) even suggest that generalization performance improves with
1See the NeuriPS 2019 Workshop on ‘Machine Learning with Guarantees’ for an overview of these issues.

capacity (e.g, model size).2 While choices related to the architecture and the optimization
procedure introduce biases that can e�ectively reduce capacity, such biases do not a�ect
the ability of these models to memorize even random training data (Zhang et al., 2017a).
Explaining such behavior is a challenge for statistical learning theory, especially for complexity-
based and uniform convergence approaches to generalization (Nagarajan & Kolter, 2019a).

(ii) Understanding failures modes: when does deep learning fail and why?

Deep learning models have also shown important weaknesses such as extreme sensitivity to
distribution shifts. For example, in image classification, translating an image by a few pixels
(Azulay & Weiss, 2019) or modifying the background (Beery et al., 2018) can drastically
change the model’s output. This suggests that predictions tend to be based on superficial
heuristics and correlations rather than robustly informative features (Arjovsky et al., 2019;
Geirhos et al., 2020). Similarly, a high average test accuracy can hide disproportionately
high errors on atypical or under-represented groups of the data (Buolamwini & Gebru, 2018);
this can occur when the model exploits spurious input-output correlations that hold for
the majority of the training examples – and uses its excess capacity to memorize the other
examples (Sagawa et al., 2020a,b). This is part of a more general struggle of these systems to
learn long-tailed distributions, which are ubiquitous in the natural world (Newman, 2005).

A major di�culty to address both questions theoretically is due to underspecification
(D’Amour et al., 2020). In large function classes such as neural networks, there are many
functions that fit perfectly the training data, yet behave very di�erently on new samples from
the same distribution; there are even many functions that have a similar strong performance
on new samples drawn from the training distribution, but behave very di�erently when tested
outside the training domain. The challenge is to understand what type of solutions is favoured
among all possible ones, depending both on the various inductive biases encoded in the choice
of architecture and the training algorithm and on the specific properties of natural data.

The first two contributions presented in this thesis were motivated by the question (i)
above, and specifically by the problem of characterizing biases introduced by the training
dynamics and acting as implicit regularizers (Neyshabur et al., 2015). Given the mathematical
challenges posed by the highly non-linear training dynamics of deep networks, research e�orts
in this direction have focused either on (i) theoretical analysis of simpler systems or idealized
limits of deep learning; (ii) empirical studies of phenomenological properties of deep learning
and their correlation with generalization. The works presented in Chapter 3 and 4 belong to

2As it was recognized already in the 90s (e.g., Seung et al., 1992; Opper, 1995; Bös, 1998), some of
these observations (such as double descent) are not specific to deep learning but correspond to universal
characteristics of high dimensional statistical inference. These early results, derived in teacher-student linear
settings using heuristics from statistical physics such as the replica method, have been put on rigorous grounds
and considerably extended in a recent line of works (e.g., Hastie et al., 2019; Mei & Montanari, 2019; Loureiro
et al., 2021). See Bartlett et al. (2021a) for a review of these.

2

the latter category. One of our goals was to formulate, formalize and test the hypothesis that
neural networks training is biased towards learning simple functions, i.e., typically, functions
supported on a small number of highly predictive features. Question (ii) is not directly
investigated in this thesis, but some of our results naturally suggest the hypothesis that such
a simplicity bias, while it may drive the generalization ability of deep learning models in a
wide range of supervised tasks, also underpins their failure to generalize out-of-distribution.

One specificity of deep learning is to produce e�cient representations of the data. Whereas
learning in high dimension is a notoriously cursed problem (Donoho, 2000), an intuitive idea
is that the relevant information for most tasks of interest is encoded in some low-dimensional
structure in data space. Most modern deep learning architectures can be thought of as
encoding some prior knowledge on such structure, e.g., by exploiting symmetries of the input
data (Bronstein et al., 2021). In the context of supervised learning, our experiments in
Chapter 4 illustrate how the internal layer representations improve their alignment to such a
low-dimensional structure during training. In the more ambitious context of unsupervised
representation learning, the recent self-supervised methods (Misra & Maaten, 2020; Chen
et al., 2020; He et al., 2020; Caron et al., 2020) aim at learning features invariant under some
irrelevant information, such as the one added by data augmentation.

This leads to a third challenge for a theory of deep learning:

(iii) Understanding the structure of natural data: how to characterize good representations?

Although this question is not investigated in this thesis, Chapter 5 indirectly contributes
to it by designing a method to e�ciently compute information measures for high dimensional
random variables. Specifically, we design new estimators of mutual information (Shannon,
1948) that leverage the scalability of neural networks. Mutual information plays a central
role in approaches to representation learning such as information bottleneck (Tishby et al.,
2000) or information maximization (Linsker, 1988; Hjelm et al., 2019). We also use it as an
attempt to enhance deep generative models.

2. Summary of Contributions
The first two contributions presented in this report are driven by two mains ideas:

(1) to investigate implicit regularization mechanisms directly in function space (as opposed
to parameter space);

(2) to go beyond the usual analysis at stationary points (e.g., via parameter, Jacobian or
Hessian norms) and study the whole trajectories of optimization.

Some of our main insights can be summarized as follows:

Insight 1: We formulate the hypothesis that neural networks prioritize learning ‘simple’
functions during training (Chapter 3). We examine this hypothesis through the lens of Fourier

3

analysis of the network function, i.e. using Fourier frequency as measure of complexity. We
find empirical evidence of a ‘spectral bias’ towards low frequency functions.

Next, we seek a notion of complexity that is more intrinsic to the network function and
the data distribution (as opposed to the somewhat ad-hoc Fourier basis). We note that
the dynamics of gradient descent in (kernelized) linear regression provides a mathematically
precise instantiation of the ‘spectral bias’, using the kernel eigenbasis: the leading spectral
components are learned faster, see Lemma B.5 for a proof of this (well-known) fact. Now,
while the network training dynamics is not linear, it can be locally linearized and expressed
in terms of neural tangent kernels (Jacot et al., 2018), whose eigendecomposition yields a
natural (though local) notion of function complexity. Neural tangent kernels have attracted a
lot of interest recently, due to a specific training regime where neural networks can provably
be well approximated by their linearization around initialization (Jacot et al., 2018; Du et al.,
2019b,a; Allen-Zhu et al., 2019; Chizat et al., 2019) during optimization. In such a regime,
deep learning inherits all (optimization and generalization) properties of kernel learning.

Insight 2: We propose to analyze the spectral bias of deep networks through the lens of
neural tangent kernels (Chapter 4, section 2).

Fig. B.2 in Appendix B.1.5 makes the link with the synthetic experiments of Chapter 3:
for a randomly initialized MLP on 1D uniform data, the Fourier decomposition of the tangent
kernel’s eigenfunctions show a remarkable alignment to sinusoids of increasing frequencies.
During the course of the project, several works (e.g., Yang & Salman, 2019) came out which
explored this idea, by providing detailed spectral analysis of the neural tangent kernel in the
linear regime, for tractable data distributions allowing for explicit computations. As a result,
we refocused our work on the impact of feature learning: our main goal in Chapter 4 is to
study how the (time dependent) tangent kernel and its spectrum adapt to the task during
training for standard training setups.

Insight 3: We observe a dynamical alignment of the neural tangent features along a
small number of task-relevant directions during training (Chapter 4, sections 2 and 3). In
the language of the spectral bias, this evolution makes these ‘task-relevant’ features (which
depend on the labels via the loss gradients) ‘easy-to-fit’ (w.r.t to the learned tangent kernel).
We interpret this as a combined mechanism of feature selection and geometrical compression,
and argue that it helps the network adapt to the intrinsic complexity of the problem.

The next goal is to leverage these insights to tentatively define a quantitative notion of
e�ective capacity for neural networks trained by gradient descent. This part of the work
follows a line of research on complexity measures (see, Jiang et al., 2020, and references
therein), some of which are theoretically motivated by generalization bounds (e.g., Neyshabur
et al., 2019; Bartlett et al., 2017); others (e.g., Keskar et al., 2016; Fort et al., 2019; Chatterjee,
2020) are justified by experimentation and observation. The main purpose of such measures

4

is to identify factors inherent to the model, the algorithm and properties of the data, which
would explain, or at least correlate with, generalization.

Insight 4: By extrapolating an analysis of Rademacher complexity bounds for linear
models, we design a complexity measure for deep networks in terms of sequences of tangent
kernel classes along optimization paths. We run basic ablation experiments which suggest a
correlation with generalization (Chapter 4, section 4). We illustrate in a toy setting how this
measure suggests a modification of the learning algorithm where the geometry in which to
perform gradient steps is optimized at each iteration.

Finally, Chapter 5 contributes to the deep learning toolbox by proposing and studying
new estimators of mutual information, which leverage the scalability of neural networks.
We introduce MINE (Mutual Information Neural Estimation) and provide some theoretical
analysis. We present a handful of applications on which MINE can be used to optimize
mutual information. We apply MINE to improve adversarially trained generative models
(Goodfellow et al., 2014a) ; we also use it to implement Information Bottleneck (Tishby et al.,
2000), applying it to supervised classification.

3. Excluded Research
Part of my research contributions and publications during my Ph.D does not appear in

this manuscript. These include work on:

• adversarial robustness through domain adaptation techniques (Erraqabi et al., 2017)

• revisiting the bias-variance tradeo� for neural networks (Neal et al., 2018)

• studying regularity properties of self-attention (Vuckovic et al., 2020)

5

Chapter 2

Background

This chapter introduces some context, background and notations for the work presented
in the rest of the thesis.

1. Learning with Neural Networks
1.1. Supervised learning

The goal of supervised learning1 is to infer-output mappings from examples. A typical
task is to predict an output y œ Y from an input x œ X , where the pairs (x, y) are drawn from
some unknown joint distribution p(x, y). The learner is given a finite set of training points
(x1, y1), · · · , (xn, yn), generally assumed to be independently and identically distributed (i.i.d)
according to fl. The goal of the learner is to devise a map f : X æ Y with low expected error,

L(f) = E(x,y)≥p [¸(f(x), y)] (1)

for some bounded loss function ¸ : Y ◊ Y æ R. In classification problems, for instance, Y is a
finite set of class labels. A standard choice of loss function is the 0-1 loss, ¸(y, yÕ) = 1y ”=yÕ . In
this case, the expected loss gives the probability Pr{f(x) ”= y} to make a wrong prediction.

Since the distribution fl is unknown, in practice, the empirical loss

L̂(f) := 1
n

nX

i=1
¸(f(xi), yi) (2)

is used as a proxy for the expected loss. However having a small empirical loss does not
guarantee a small expected loss (1). This is the problem of generalization: two learners
that achieve a similar performance on the training data might perform very di�erently on
unseen data. The di�erence L(f) ≠ L̂(f) is often called generalization gap. Note that, for any
predictor f chosen independently of the training set, L̂(f) is an average of independent random
1Standard textbook references include Bousquet et al. (2003); Mohri et al. (2012); Shalev-Shwartz & Ben-David
(2014).

variables and L(f) is the average of the training loss over the training data, L(f) = E[L̂(f)];
so the generalization gap can be controlled by standard concentration inequalities such as
Hoe�ding’s inequality (e.g., Boucheron et al., 2013, §2.6). The story is more complicated
for training set-dependent predictors, such as minimizers of (2) or any predictor picked by
the learning algorithm. A standard strategy to obtain generalization guarantees in this case
is to extend concentration inequalities to uniform bounds over some class F of predictors
considered by the learner. The tightness of these bounds depends on specific properties of
the model class. We discuss this further in the next section.

Neural networks. Supervised learning problems are commonly addressed by choosing
a parametric model, i.e a class of predictors fw labelled by some w œ W , where W µ RP is a
space of parameters. For example, one can choose fw(x) = Èw, �(x)Í to depend linearly on
finite-dimensional feature vectors �(x) œ RP , where � : X æ RP is a fixed representation
map that can be designed to encode some prior knowledge of the data.

Neural networks are examples of non-linear parametric models. The most basic archi-
tecture, a.k.a the multilayer perceptron (MLP) or fully connected network, characterized
by L representation layers with given widths d1, · · · dL, defines functions that take inputs
x œ X µ Rd0 and apply successive transformations T (k) : Rdk≠1 æ Rdk to produce an output,

f(x) = T (L+1) (T (L)(· · · T (1)(x))). (3)

The basic transformations T (k) usually take the form T (k)(u) = ‡(W (k)u + b(k)) for some
learnable weight matrix W (k) and learnable vector b(k), where ‡ is a fixed non-linear activation
function acting component-wise on vectors. A common choice of activation function is the
Rectified Linear Unit (ReLU) (Jarrett et al., 2009; Glorot et al., 2011), ‡(u) = max(0, u).
The idea with the compositional structure of (3) is to produce, through the learning process,
a hierarchy of representations of the input data that are relevant for the task.

Most modern architectures result from this idea of stacking together many layers of neural
components with trainable parameters. These components are often designed to produce
representations that capture specific structures and symmetries of the input data (Bronstein
et al., 2021). For example, many architectures used for computer vision applications include
convolutional layers, which capture the action of local spatial translations on the input
image. The transformer architecture (Vaswani et al., 2017) processes sequential inputs or
set-structured data, in a way that model correlations between inputs elements and can capture
permutation invariance (Lee et al., 2018).

Neural networks provide flexible model classes with high approximation power. Classical
results (Hornik et al., 1989; Cybenko, 1989; Leshno et al., 1993) show that two-layer networks
with a variety of activation functions can approximate any continuous function with arbitrarily
high precision. More recent work analyzed the role of depth (number of layers) for e�cient

8

approximation (Lu et al., 2017; Poole et al., 2016; Telgarsky, 2016; Eldan & Shamir, 2016;
Safran & Shamir, 2017; Yarotsky, 2017). This high flexibility, combined with the strong
inductive biases induced by the architectural choices, make these systems powerful candidate
models to capture the complexities and regularities of real-world prediction tasks.

Gradient-based training. Given a parametric model, we may consider the problem

arg min
wœW

L̂(fw) := 1
n

nX

i=1
¸(fw(xi), yi). (4)

Training neural networks to minimize the empirical error is, in principle, a hard problem.
In fact it is generally NP-hard, even with very small networks (Judd, 1988; Blum & Rivest,
1989), even in the realizable case where we know the labels can be predicted correctly by
such a small network (Goel et al., 2021), and even with convex losses (Vu, 1998; Bartlett
& Ben-David, 1999). Heuristics used in deep learning are all based on variants of gradient
descent, for some surrogate di�erentiable loss function. Gradient descent iteratively updates
the model parameters in the negative direction of the loss gradient,

wt+1 = wt ≠ ÷tÒwL̂(fwt), (5)

where ÷t > 0 is an adjustable hyperparameter, called learning rate, which controls the size of
the gradient step. Most modern approaches use stochastic versions of gradient descent, where
the gradients are estimated using mini-batch samples; they also add momentum, adaptive
learning rates, or combinations of the two (Kingma & Ba, 2015).2 Gradients across layers, as
defined by the chain rule, can be e�ciently calculated by backpropagation (Rumelhart et al.,
1986), using distributed implementations (Dean et al., 2012) based on GPUs (Chellapilla
et al., 2006), even for networks with hundreds of billions (Brown et al., 2020) and even
trillions (Fedus et al., 2021; Lin et al., 2021) of parameters.

1.2. Generative modeling

Generative modeling aims at producing samples from a distribution that approximates
the true distribution of the data. To make the learning problem tractable in high-dimension,
the distribution is often modeled using low dimensional latent variables. In this context,
the generative process can be thought of as inverting an inference process. For example,
variational autoencoders (Kingma & Welling, 2014; Rezende et al., 2014) model both processes
stochastically, through probabilistic encoder and a decoder networks q„(z|x), p◊(x|z) jointly
trained to maximize a lower bound of the log likelihood (Blei et al., 2017).

The generative adversarial framework proposed by Goodfellow et al. (2014a) considers
distributions p◊(x) induced by deterministic generator functions g◊ : Z æ X between latent
2See e.g., Ruder (2016) for a didactic overview of gradient-based optimizers most commonly used in deep
learning.

9

and observed variables, as the push-forward of some simple (e.g., gaussian) distribution q(z):

x ≥ p◊ ≈∆ x = g◊(z), z ≥ q. (6)

The generator is trained jointly with a second model dÏ : X æ [0, 1] called discriminator, so
as to optimize the following min max objective

min
◊

max
Ï

V (dÏ,p◊) := Ex≥p [dÏ(x)] + Ex≥p◊
[log(1 ≠ dÏ(x))] (7)

where p denotes the true data distribution. In words, the discriminator is trained to distinguish
true versus modeled samples, whereas the goal of the generator is to fool the discriminator.

Empirically, generative adversarial networks (GANs) have been shown to perform re-
markably well, reaching unprecedented performance on high resolution image synthesis (e.g.,
Karras et al., 2018; Brock et al., 2019). However they are not exempt of weaknesses. For
example, mode collapse is a common pathology where the generator fails to produces samples
with su�cient diversity (i.e., they poorly represent some modes). We will investigate in
Chapter 5 an approach that regularizes the generator’s loss with the neg-entropy of the
samples, so as to encourage their diversity. As the sample entropy is intractable, we propose
to use an estimator of mutual information as a proxy.

2. Complexity and Generalization
Understanding generalization with neural networks is a long-standing problem (e.g.,

Watkin et al., 1993). In light of the empirical success of deep learning, this problem has
been revived in the last few years, stimulated in part by thought-provoking experiments
(Neyshabur et al., 2015; Zhang et al., 2017a; Nakkiran et al., 2020) with large networks
trained on data with various levels of noise.

A general idea in classical statistical theory is that the learning ability of a model results
from a balance between goodness-of-fit and complexity. While a model should be flexible
enough to capture regularities in the data, overly complex models tend to be too sensitive
to random fluctuations in the training data and perform poorly on unseen data. This, for
example, yields Occam’s razor as a guiding principle for model selection and algorithm design:
among models that fit well the training data, it favours the simplest ones. In practice, many
methods using large models also involve explicit regularization schemes, which e�ectively
reduce their complexity and prevent overfitting.

In some respects, the empirical performance of deep learning seems at odds with this idea.
Neural networks are complex models with high expressive power; they often have vastly more
free parameters than training points and can be trained to fit perfectly even unstructured
random data (Zhang et al., 2017a). Yet they often show high generalization performance on
natural data even without explicit regularization (Neyshabur et al., 2015; Ho�er et al., 2017).

10

On the other hand, the type of solutions and their generalization ability depend implicitly on
various aspects of the training procedure, such as the choice of architecture and optimizer.
The challenge is to understand the bias introduced by such choices and their role as implicit
regularizers (Neyshabur et al., 2015).

Note that the notion of ‘complexity’ is equivocal. They are many ways to measure
complexity, for instance by the number of free parameters, an upper bound on some parameter
norm, or the description length of the model in some programming language. Because of the
no-free-lunch theorem, we should not expect a priori that one is better (in the sense that
it drives generalization more) than the other. The notion of complexity that best describes
real-data regularities ultimately depends on the problem of interest.

2.1. Generalization bounds

Here we give a few examples of classical generalization guarantees that can be obtained
in the statistical learning framework, based on uniform convergence arguments. They are all
di�erent ways to show that with enough training samples, models with bounded complexity
can be guaranteed to give probably approximately correct (PAC) (Valiant, 1984) predictions
on unseen data.

Consider the setting of Section 1.1. We assume for simplicity that the loss function takes
values in [0, 1]. The basic tool is Hoe�ding’s inequality: given any predictor f in the model
class F , it gives bounds on the generalization gap with high probability on the choice of
training samples:

Pr{L(f) ≠ L̂(f) > ‘} Æ e≠2n‘
2 (8)

Equivalently (by setting ” := e≠2n‘
2 above), this says that for arbitrarily small ” > 0, with

probability at least 1 ≠ ”,

L(f) Æ L̂(f) +
r

log(1/”)
2n

(9)

The probability is with respect to the sampling of the training data, so this does not apply to
data-dependent functions such as the one picked by the learning algorithm. To extend this
result to these, we need bounds that hold uniformly over some class of functions considered a
priori by the learner.

Uniform bounds. In the case of a finite class F , uniform bounds can be easily obtained
by applying union bound (Boole’s inequality) over all functions in F . This brings a cardinality
factor |F| on the right hand side of (8). We obtain the following bound that holds for all
f œ F , with probability at least 1 ≠ ” over the sampling of the training data,

L(f) Æ L̂(f) +
r

log |F| + log(1/”)
2n

(10)

where the term ln |F| can be interpreted as a measure of complexity for the model class.

11

Occam bounds give a new interpretation of (10) – and allow for an extension to countably
infinite model classes. Consider a nonnegative function fi on F such that

P
fœF fi(f) Æ 1,

e.g., some probability distribution on F . For ” > 0, the trick is to apply union bound to (8)
with an f -dependent ‘f such that ” = fi(f)e≠2n‘

2
f . We obtain the following uniform bound

with probability 1 ≠ ”,

L(f) Æ L̂(f) +
r

log(1/fi(f)) + log(1/”)
2n

(11)

where the description length (Pu, 2006, Chap 2) log(1/fi(f)) shows up as a measure of
complexity for the predictor f .

Vapnik-Chervonenkis (VC) theory allows for further extensions of the bound (10) to
uncountable model classes F , in terms of generalized notions of cardinality such as the VC-
dimension3 (Vapnik, 1995). VC dimension yields a purely combinatorial notion of complexity:
it is defined as the size of the largest subset S µ X such that any labelling of S can be
predicted correctly by some predictor in F . Classical results (Maass, 1994; Bartlett et al.,
1999, 2019a) however show that the VC-dimension of neural networks scales with the number
of parameters. This typically leads to spurious generalization bounds for the large networks
used in practice, whose number of parameters exceeds by far the number of training samples.
It also fails to explain several empirical learning phenomena such as the double descent of
the test error as the network size increases (Neyshabur et al., 2015; Neal et al., 2018; Belkin
et al., 2019a; Nakkiran et al., 2020). Even if we could restrict the analysis to some identified
subclass of ‘typical’ networks obtained from the standard training procedures, the fact that
such a subclass is able to fit all possible labels (Zhang et al., 2017a) suggests that VC-theory
is not su�cient to explain generalization for such systems.

Margin-based bounds. Methods using scale-sensitive versions of the VC-dimension
(Bartlett, 1996), such as the fat-shattering dimension or Rademacher complexity (Bartlett &
Mendelson, 2002) can in principle overcome these limitations. These methods exploit the fact
that, in many practical settings, prediction problems are addressed by considering classes
of real or vector-valued score functions. Score functions and score-based losses depend not
only on prediction accuracies, but also on prediction margins. Since margins depend on the
magnitude of the function output, such methods can bypass the cardinality-based analysis of
VC theory by controlling complexity in terms of the size of the parameters (Bartlett, 1996).

Let us give a simple instance of margin bounds based on Rademacher complexity, which
we use in Chapter 4. For simplicity we consider a binary classification task Y = {±1} and
a class F of real-valued score functions. Given any scale parameter “ > 0, we define the
expected margin loss as

L“(f) = E(x,y)≥fl

⇥
1yf(x) Æ“

⇤
(12)

3and its extensions to non-binary classes (Natarajan, 1989; Daniely et al., 2011).

12

and denote by bL“(f) its empirical estimate. Note that setting “ = 0 in this formula reproduces
the expected classification error, L0(f). The following bound on the expected classification
error holds (Mohri et al., 2012, Theorems 4.4) for all f œ F with probability 1 ≠ ”:

L0(f) Æ bL“(f) + 2
“

R(F) + 3
r

log(2/”)
2n

(13)

where R(F) is the empirical Rademacher complexity defined as,

R(F) = E‡œ{±1}n

"
sup
fœF

1
n

nX

i=1
‡if(xi)

#
. (14)

Rademacher complexity measures how well on average F correlates with a random labelling
of the inputs. Unlike VC-dimension, it is a data-dependent measure of complexity, which
can yield much tighter bounds on some problems. Such a framework yields generalization
bounds for neural networks subject to norm constraints on the parameters (such as an upper
bound on the spectral norm of the weights) and independent of the network size (Bartlett &
Mendelson, 2002; Bartlett et al., 2017; Golowich et al., 2017; Neyshabur et al., 2018).

PAC-Bayes bounds. The PAC-Bayes approach (McAllester, 1999) yields bounds similar
to (11) but with a twist: it bounds the expected performance of randomized predictors,

Ef≥Q[L(f)] Æ Ef≥Q[L̂(f)] +
r

KL(Q||Q0) + log(1/”)
2n

, (15)

uniformly for all distributions Q on F , given some fixed prior distribution Q0. Here the
complexity of a random predictor is quantified by its distance (as measured by KL divergence)
to the fixed prior. Several works including Langford & Caruana (2002); Nagarajan & Kolter
(2019b) proposed a PAC-Bayes analysis of neural networks. The notion of stability under
parameter perturbation around solutions can also be formalized in a natural way in this
framework, which leads to useful insights for generalization (Dziugaite & Roy, 2017; Neyshabur
et al., 2017a, 2018).

2.2. Empirical complexity measures

Despite such progress, most of these bounds are numerically vacuous (e.g., a bound Ø 1 for
the classification error) when evaluated empirically on realistic dataset sizes. Although non-
vacuous bounds have been obtained in recent analysis, these hold only on modified networks
obtained after a suitable compression (Arora et al., 2018b) or optimization (Dziugaite &
Roy, 2017) procedure. Worse, the analysis of Nagarajan & Kolter (2019a) illustrates with
an example a scenario where any uniform bound over a class that is likely to contain the
algorithm’s possible outputs is provably nearly vacuous.

13

Even without providing tight generalization guarantees, these approaches can nevertheless
give useful insights for generalization. They theoretically motivate distribution-dependent
measures of complexity that may be expected to correlate well with generalization for natural
data. Other complexity measures have been proposed in the recent literature, such as
sharpness (Keskar et al., 2016) or gradient coherence (Fort et al., 2019; Chatterjee, 2020),
which do not arise from bounds but are justified by experimentation and observation. One
such empirical measure will be motivated and studied in Chapter 4. The goal with these
measures is to identify factors inherent to the model, the algorithm and properties of the data,
which are correlated, and ideally causally related to, generalization. Large scale correlation
studies for a large family of existing measures have been recently undertaken by Jiang et al.
(2020); Dziugaite et al. (2020).

2.3. Lessons from linear models

Motivated by the empirical success of deep learning, there has recently been a wealth
of work on linear or random feature models. Many of the puzzling properties observed
empirically for large neural networks and kernel methods (Belkin et al., 2018), such as benign
overfitting – i.e. good generalization performance despite a near-prefect fit to noisy training
data –, the benefit of overparametrization, and the potentially hurtful role of regularization,
have been rigorously analyzed in various linear setups (e.g., Bartlett et al., 2020; Muthukumar
et al., 2019, 2020; Ghorbani et al., 2020; Bartlett et al., 2021b). Rigorous derivations of
double descent curves for the test error have been obtained in this context (Hastie et al.,
2019; Mei & Montanari, 2019; Belkin et al., 2019b).

While such theoretical analysis do not directly extend to deep learning, they can be
appreciated in light of a recent line of work on a certain linear regime of deep learning. This
is a training regime where the network can be well approximated by its first-order Taylor
expansion around initialization, which yields a linear dynamics characterized by a specific,
architecture-dependent kernel (Jacot et al., 2018; Du et al., 2019b,a; Allen-Zhu et al., 2019;
Yang, 2020). We discuss this below.

3. Linear Regime
3.1. Linearized networks

Let fw(x) represent a parametrized scalar function with parameter w œ RP . For a neural
network, the parameter can be thought of as a vector combining the entries of all trainable
weights. Given any w0 œ RP , one can naively expand fw(x) in w around w0,

fw(x) = fw0(x) + Èw ≠ w0, �w0(x)Í + O(Îw ≠ w0Î
2) (16)

14

for any input x, where �w(x) := Òwfw(x) œ RP is the output gradient with respect to the
parameter and È, Í denotes the scalar product. The right-hand-side is a linear (a�ne) model

f̄w = fw0 + Èw ≠ w0, �w0Í (17)

over some feature space of vectors �w0(x). This is the linearization of the model at w0. The
feature map �w defines the tangent kernel (Jacot et al., 2018),

kw(x, x̃) = È�w(x), �w(x̃)Í, for any inputs x, x̃. (18)

3.2. Lazy training

Suppose we train the network under gradient descent with the loss L and learning rate
÷, initialized at w0. Applying an expansion (16) around each iterate wt, we see that the
function iterates ft := fwt , up to higher order terms (vanishing for gradient flow), follow the
steepest gradient with respect to the time varying tangent kernel kt := kwt ,

ft+1 = ft ≠ ÷tKt · ÒftL + O(÷2) (19)

where Kt denotes the operator defined as (Kt · g)(x) =
P

n

i=1 kt(x, xi)g(xi). By contrast,
training the linearized model at w0 corresponds to steepest descent with respect to a fixed
kernel, the tangent kernel at initialization k0,

f̄t+1 = f̄t ≠ ÷tK0 · Ò
f̄t

L (20)

The linearized dynamics (20) is a good approximation of the full dynamics as long as the
parameter iterates wt remain close to their initial value w0. Following the terminology of
Chizat et al. (2019), lazy training refers to the situation where the approximation remains
accurate until the training algorithm is stopped. In such a regime, the tangent kernel remains
approximately constant during training, i.e., kt ¥ k0 for all t and the model behaves like a
kernel method.

Showing that the optimization of a deep network is in the lazy regime allows us to
import well-known results from linear models, such as guarantees of convergence to a global
optimum (Du et al., 2019b,a; Allen-Zhu et al., 2019). The inductive bias of learning can also
be characterized by analyzing the tangent kernel and its reproducing kernel Hilbert space
(RKHS) (Bietti & Mairal, 2019; Yang & Salman, 2019).

When does lazy training occur? Several works pointed out how the variance of the initial
random weights controls the transition between the linearized and the full training dynamics
(Chizat et al., 2019; Woodworth et al., 2020). The very notion of tangent kernel, however,
arose from the study of infinite-width networks. Jacot et al. (2018) proved that, for an MLP
with appropriate parametrization and scaling of the initial random weights, when the network
widths grow to infinity, (i) the tangent kernel at initialization converges to a deterministic

15

limit; (ii) the tangent kernel remains constant during training by gradient descent. Yang
(2020); Yang & Littwin (2021) extended this result to a large class of modern architectures and
gave concrete algorithms to compute the tangent kernel in the limit. While the linearization
is only exact in the infinite width limit, some empirical results (Lee et al., 2019) suggest that
it can accurately describe the training of realistic finite-sized networks.

3.3. Deep learning versus kernel learning

On the other hand, it is also clear from other results that the kernel approximation does
not fully capture the behavior of deep models – including, in fact, infinitely wide networks
(Yang & Hu, 2021). For example, in the so-called mean field limit, training two-layer networks
by gradient descent learns adaptive representations (Chizat & Bach, 2018; Mei et al., 2018)
and it can be shown that the inductive bias cannot be characterized in terms of a RKHS norm
(Savarese et al., 2019; Williams et al., 2019). Performance gaps between the two regimes
are also often observed in practice (Chizat et al., 2019; Arora et al., 2019), although the
architecture and structure of the data seem to play a key role in the relative performance
(Geiger et al., 2020b).

An interesting challenge is to explain this performance gap. In other words, we seek to
qualitatively and quantitatively characterize the impact of the non-linear dynamics in the
feature learning regime. The local linearizations (19) with time varying tangent kernel can
give useful insights on this problem. Several recent works, which includes the contribution in
Chapter 4 and other concurrent works (Kopitkov & Indelman, 2020; Paccolat et al., 2021;
Fort et al., 2020; Ortiz-Jiménez et al., 2021), study how tangent kernels evolve during training,
in the full deep learning regime.

4. Information in Deep Learning
In this section we introduce some basic concepts from information theory (Shannon, 1948),

as a background for Chapter 5. We use capital letters X, Z... for random variables, curves
letters X , Z · · · for the sets of possible outcomes x, z · · · , and PX ,PZ · · · for probability
distributions. For discrete distributions, we also denote by p(x) the probability mass function,
i.e., p(x) = PX(X = x). We use the same notation p(x) for the density of a continuous
distribution over X µ Rd that is absolutely continuous with respect to the Lebesgue measure.

4.1. Entropy and mutual information

Let X be a discrete random variable. The Shannon entropy is a measure of uncertainty
of the distribution,

H(X) = ≠

X

xœX

p(x) log p(x) = ≠Ex [log p(x)] (21)

16

where it is understood that 0 log(0) = 0. For a finite sample space X , the entropy is maximum,
Hmax = log |X |, for the uniform distribution; and it is minimum, Hmin = 0, for deterministic
ones, i.e., p(x) = ”xx0 for some x0 œ X . The definition (21) can be extended to continuous
distributions on some domain of Rd with well-defined density p with respect to the Lebesgue
measure dx. This yields the di�erential entropy, H(p) = ≠

R
p(x) log p(x)dx.

Mutual information is a Shannon entropy-based measure of dependence between random
variables. The mutual information between X and Z can be understood as the decrease of
the uncertainty in X given Z:

I(X; Z) := H(X) ≠ H(X | Z), (22)

where H(X | Z) := Ez [H(X|Z = z)] is the conditional entropy of X given Z. The mutual
information can also be expressed as the Kullback-Leibler (KL-) divergence between the joint,
PXZ , and the product of the marginals PX ¢ PZ :

I(X,Z) = DKL(PXZ || PX ¢ PZ) (23)

where DKL is defined as4:

DKL(P || Q) := EP


log dP

dQ

�
=
Z

p(x) log p(x)
q(x)dx (24)

The intuitive meaning of Eqn. (23) is clear: the larger the divergence between the joint and
the product of the marginals, the stronger the dependence between X and Z. This divergence,
hence the mutual information, vanishes for fully independent variables.

4.2. Neural estimation

Many statistical divergences such as f -divergences (Ali & Silvey, 1966) and integral
probability metrics (Müller, 1997) have variational formulations as the maximum of some
optimization problem over a large class of functions. Parametric lower-bound estimators can
then be defined by restricting the class of functions to some parametric family F . Neural
estimation consists of choosing F to be a neural network and to optimize over the parameters.

Let us consider the case of f -divergences. Given a convex function f : [0, Œ) æ R such
that f(1) = 0, these are defined as

Df (P ||Q) := EQ


f

✓
dP
dQ

◆�
=
Z

q(x)f
✓

p(x)
q(x)

◆
dx. (25)

when P π Q and +Œ otherwise. These include the KL-divergence (23) by setting f(t) =
t log(t). Variational formulations arises from Fenchel convex duality (Rockafellar, 1970).
Thus, if f is convex and lower semi-continuous, it can be written in terms of its dual conjugate

4For continuous distributions, the KL divergence is defined by (24) if P π Q and +Œ otherwise. Note that,
for non-singular distributions, the joint is absolutely continuous with respect to the product of marginals.

17

as f(t) = sup
uœR{ut ≠ f ú(u)}; substituting into (25) yields a supremum over all measurable

functions such that the integral involved is well-defined (Keziou, 2003; Nguyen et al., 2010).
Alternatively (Ruderman et al., 2012), one can view the f -divergence itself as a convex
operator Df,P : r ‘æ EQ [f(r)] acting on the space �(Q) of positive functions with unit 1-norm
with respect to Q (just like the Radon Nykodym derivative dP/dQ), and write it in terms of
its dual conjugate Dú

f,P(T) := sup
rœ�(Q){EQ[rT] ≠ Df,P(r)}. Interestingly, the latter approach

yields tighter parametric lower bound estimators.
More explicitly, for the KL-divergence, such constructions yield the key properties that

for any reasonable scalar function T ,

DKL(P || Q) Ø EP[T] ≠ log(EQ[eT)] Ø EP[T] ≠ EQ[eT
≠ 1] (26)

The first inequality leads to the so-called Donsker-Varadhan representation (Donsker &
Varadhan, 1983) of the divergence. It is tight for optimal functions T ú that relate the
distributions to the Gibbs density as,

dP = 1
Z

eT
ú
dQ, where Z = EQ[eT

ú]. (27)

The second inequality leads to the dual f -divergence representation. It is tight for the optimal
function T ú = log dP

dQ . In both cases, we see that a tight estimation of the KL divergence
amounts to an estimation of the likelihood ratio dP/dQ. Neural estimators are obtained by
taking the supremum of these inequalities over the parameters ◊ œ � of a neural network T◊.
Chapter 5 uses this approach to propose a general purpose parametric estimator of mutual
information.

18

Chapter 3

First Article: On the Spectral Bias of Neural
Networks

Prologue

Article Details. On the Spectral Bias of Neural Networks. Nasim Rahamanú,
Aristide Baratinú, Devansh Arpit, Felix Draxler, Min Lin, Fred A. Hamprecht, Yoshua Bengio,
Aaron Courville. The paper has been published at ICML 2019 (Rahaman et al., 2019).

ú Co-first authors.

Personal Contribution. The original idea of studying the evolution of the Fourier modes of
neural networks is from Nasim Rahaman, who conceived this project. My main contributions
was to shape the theoretical results, help with the genesis of the idea and propose experiments.
I took the lead, along with Nasim and with inputs of our co-authors, in writing the paper.

Discussion and Recent Developments. This project follows a line of work pioneered by
Neyshabur et al. (2015), arguing that the optimization dynamics in deep learning induces
some sort of implicit regularization – which in turns allows for generalization. It can also
be viewed as an attempt to formalize the observations of Arpit et al. (2017) that neural
networks prioritize learning ‘simple’ patterns of the data during training. By decomposing
the input-ouput map into Fourier modes and using Fourier frequency as notion of complexity,
our results indeed highlight a learning bias towards ‘simple’ functions that gradually increase
in complexity during training.

Several subsequent works delve further into the hypothesis of our paper and o�er interesting
complementary insights. For example, the experiments of Zhang et al. (2021) suggest an
intriguing non-monotonicity of the spectral bias, which mirrors the so-called epoch-wise
double descent of the test error observed in Nakkiran et al. (2020). It was also shown that,
early in training, the network predictions are aligned to that of a simple linear prediction

rule (Nakkiran et al., 2019) ; and more generally that networks rely preferentially on linearly-
predictive features (Shah et al., 2020).

1. Introduction

The remarkable success of deep neural networks at generalizing to natural data is at odds
with the traditional notions of model complexity and their empirically demonstrated ability
to fit arbitrary random data to perfect accuracy (Zhang et al., 2017a; Arpit et al., 2017). This
has prompted recent investigations of possible implicit regularization mechanisms inherent in
the learning process which induce a bias towards low complexity solutions (Neyshabur et al.,
2015; Soudry et al., 2017; Poggio et al., 2018; Neyshabur et al., 2017a).

In this work, we take a slightly shifted view on implicit regularization by suggesting that
low-complexity functions are learned faster during training by gradient descent. We expose
this bias by taking a closer look at neural networks through the lens of Fourier analysis. While
they can approximate arbitrary functions, we find that these networks prioritize learning the
low frequency modes, a phenomenon that we call spectral bias. This bias manifests itself not
just in the process of learning, but also in the parameterization of the model itself: in fact,
we show that the lower frequency components of trained networks are more robust to random
parameter perturbations. Finally, we also expose and analyze the rather intricate interplay
between the spectral bias and the geometry of the data manifold by showing that high
frequencies get easier to learn when the data lies on a lower-dimensional manifold of complex
shape embedded in the input space of the model. We focus the discussion on networks with
rectified linear unit (ReLU) activations, whose continuous piece-wise linear structure enables
an analytic treatment.

Contributions

(1) We exploit the continuous piecewise-linear structure of ReLU networks to evaluate its
Fourier spectrum (Section 2).

(2) We find empirical evidence of a spectral bias: i.e. lower frequencies are learned first.
We also show that lower frequencies are more robust to random perturbations of the
network parameters (Section 3).

(3) We study the role of the shape of the data manifold: we show how complex manifold
shapes can facilitate the learning of higher frequencies and develop a theoretical
understanding of this behavior (Section 4).

20

2. Fourier analysis of ReLU networks

2.1. Preliminaries

Throughout the paper we call ‘ReLU network’ a scalar function f : Rd
‘æ R defined by a

neural network with L hidden layers of widths d1, · · · dL and a single output neuron:

f(x) =
�
T (L+1)

¶ ‡ ¶ T (L)
¶ · · · ¶ ‡ ¶ T (1)� (x) (1)

where each T (k) : Rdk≠1 æ Rdk is an a�ne function (d0 = d and dL+1 = 1) and
‡(u)i = max(0, ui) denotes the ReLU activation function acting elementwise on a vec-
tor u = (u1, · · · un). In the standard basis, T (k)(x) = W (k)x + b(k) for some weight matrix
W (k) and bias vector b(k).

ReLU networks are known to be continuous piece-wise linear (CPWL) functions, where
the linear regions are convex polytopes (Raghu et al., 2016; Montufar et al., 2014; Zhang
et al., 2018a; Arora et al., 2018a). Remarkably, the converse also holds: every CPWL function
can be represented by a ReLU network (Arora et al., 2018a, Theorem 2.1), which in turn
endows ReLU networks with universal approximation properties. Given the ReLU network f

from Eqn. 1, we can make the piecewise linearity explicit by writing,

f(x) =
X

‘

1P‘(x) (W‘x + b‘) (2)

where ‘ is an index for the linear regions P‘ and 1P‘ is the indicator function on P‘. As
shown in Appendix A.2 in more detail, each region corresponds to an activation pattern1 of
all hidden neurons of the network, which is a binary vector with components conditioned on
the sign of the input of the respective neuron. The 1 ◊ d matrix W‘ is given by

W‘ = W (L+1)W (L)
‘

· · · W (1)
‘

(3)

where W (k)
‘ is obtained from the original weight W (k) by setting its jth column to zero

whenever the neuron j of the kth layer is inactive.

2.2. Fourier Spectrum

In the following, we study the structure of ReLU networks in terms of their Fourier
representation, f(x) := (2fi)d/2

R
f̃(k) eik·xdk, where f̃(k) :=

R
f(x) e≠ik·xdx is the Fourier

transform2. Lemmas 3.1 and 3.2 yield the explicit form of the Fourier components (we refer
to Appendix A.3 for the proofs and technical details).

1We adopt the terminology of Raghu et al. (2016); Montufar et al. (2014).
2Note that general ReLU networks need not be squared integrable: for instance, the class of two-layer ReLU
networks represent an arrangement of hyperplanes (Montufar et al., 2014) and hence grow linearly as x æ Œ.

21

Lemma 3.1. The Fourier transform of ReLU networks decomposes as,

f̃(k) = i
X

‘

W‘k
k2 1̃P‘(k) (4)

where k = ÎkÎ and 1̃P (k) =
R

P
e≠ik·xdx is the Fourier transform of the indicator function of

P .

The Fourier transform of the indicator over linear regions appearing in Eqn. 4 are fairly
intricate mathematical objects. Diaz et al. (2016) develop an elegant procedure for evaluating
it in arbitrary dimensions via a recursive application of Stokes theorem. We describe this
procedure in detail3 in Appendix A.3.2, and present here its main corollary.

Lemma 3.2. Let P be a full dimensional polytope in Rd. Its Fourier spectrum takes the
form:

1̃P (k) =
dX

n=0

Dn(k)1Gn(k)
kn

(5)

where Gn is the union of n-dimensional subspaces that are orthogonal to some n-codimensional
face of P , Dn : Rd

æ C is in �(1) (k æ Œ) and 1Gn the indicator over Gn.

Lemmas 3.1, 3.2 together yield the main result of this section.

Theorem 3.3. The Fourier components of the ReLU network f◊ with parameters ◊ is given
by the rational function:

f̃◊(k) =
dX

n=0

Cn(◊, k)1H◊
n
(k)

kn+1 (6)

where H◊

n
is the union of n-dimensional subspaces that are orthogonal to some n-codimensional

faces of some polytope P‘ and Cn(·, ◊) : Rd
æ C is �(1) (k æ Œ).

Note that Eqn 6 applies to general ReLU networks with arbitrary width and depth4.

Discussion. We make the following two observations. First, the spectral decay of ReLU
networks is highly anisotropic in large dimensions. In almost all directions of Rd, we have a
k≠d≠1 decay. However, the decay can be as slow as k≠2 in specific directions orthogonal to
the d ≠ 1 dimensional faces bounding the linear regions5.

Second, the numerator in Eqn 6 is bounded by NfLf (cf. Appendix A.3.3), where Nf is
the number of linear regions and Lf = max‘ ÎW‘Î is the Lipschitz constant of the network.

In such cases, the Fourier transform is to be understood in the sense of tempered distributions acting on
rapidly decaying smooth functions „ as Èf̃ , „Í = Èf, „̃Í. See Appendix A.3 for a formal treatment.
3We also generalize the construction to tempered distributions.
4Symmetries that might arise due to additional assumptions can be used to further develop Eqn 6, see e.g.
Eldan & Shamir (2016) for 2-layer networks.
5Note that such a rate is not guaranteed by piecewise smoothness alone. For instance, the function

p
|x| is

continuous and smooth everywhere except at x = 0, yet it decays as k≠1.5 in the Fourier domain.

22

(a) Equal Amplitudes (b) Increasing Amplitudes

Fig. 3.1. Left (a, b): Evolution of the spectrum (x-axis for frequency) during training (y-axis).
The colors show the measured amplitude of the network spectrum at the corresponding frequency,
normalized by the target amplitude at the same frequency (i.e. |f̃ki |/Ai) and the colorbar is clipped
between 0 and 1. Right (a, b): Evolution of the spectral norm (y-axis) of each layer during training
(x-axis). Figure-set (a) shows the setting where all frequency components in the target function
have the same amplitude, and (b) where higher frequencies have larger amplitudes. Gist: We
find that even when higher frequencies have larger amplitudes, the model prioritizes learning lower
frequencies first. We also find that the spectral norm of weights increases as the model fits higher
frequency, which is what we expect from Theorem 3.3.

Further, the Lipschitz constant Lf can be bounded as (cf. Appendix A.3.6):

Lf Æ

L+1Y

k=1
ÎW (k)

Î Æ Î◊Î
L+1
Œ

Ô

d
LY

k=1
dk (7)

where Î · Î is the spectral norm and Î · ÎŒ the max norm, and dk is the number of units in
the k-th layer. This makes the bound on Lf scale exponentially in depth and polynomial in
width. As for the number Nf of linear regions, Montufar et al. (2014) and Raghu et al. (2016)
obtain tight bounds that exhibit the same scaling behaviour (Raghu et al., 2016, Theorem
1). In Appendix A.1.5, we qualitatively ablate over the depth and width of the network to
expose how this reflects on the Fourier spectrum of the network.

3. Lower Frequencies are Learned First

We now present experiments showing that networks tend to fit lower frequencies first
during training. We refer to this phenomenon as the spectral bias, and discuss it in light of
the results of Section 2.

3.1. Synthetic Experiments

Experiment 1. The setup is as follows6: Given frequencies Ÿ = (k1, k2, ...) with corresponding
amplitudes – = (A1, A2, ...), and phases „ = (Ï1, Ï2, ...), we consider the mapping ⁄ : [0, 1] æ

6More experimental details and additional plots are provided in Appendix A.1.1.

23

(a) Iteration 100 (b) Iteration 1000 (c) Iteration 10000 (d) Iteration 80000

Fig. 3.2. The learnt function (green) overlayed on the target function (blue) as the training
progresses. The target function is a superposition of sinusoids of frequencies Ÿ = (5, 10, ..., 45, 50),
equal amplitudes and randomly sampled phases.

R given by
⁄(z) =

X

i

Ai sin(2fikiz + Ïi). (8)

A 6-layer deep 256-unit wide ReLU network f◊ is trained to regress ⁄ with Ÿ = (5, 10, ..., 45, 50)
and N = 200 input samples spaced equally over [0, 1]; its spectrum f̃◊(k) in expectation over
Ïi ≥ U(0, 2fi) is monitored as training progresses. In the first setting, we set equal amplitude
Ai = 1 for all frequencies and in the second setting, the amplitude increases from A1 = 0.1 to
A10 = 1. Figure 3.1 shows the normalized magnitudes |f̃◊(ki)|/Ai at various frequencies, as
training progresses with full-batch gradient descent. Further, Figure 3.2 shows the learned
function at intermediate training iterations. The result is that lower frequencies (i.e. smaller
ki’s) are regressed first, regardless of their amplitudes.

Fig. 3.3. Normalized spectrum of the model (x-axis for frequency, colorbar for magnitude) with
perturbed parameters as a function of parameter perturbation (y-axis). The colormap is clipped
between 0 and 1. We observe that the lower frequencies are more robust to parameter perturbations
than the higher frequencies.

Experiment 2. Our goal here is to illustrate a phenomenon that complements the one
highlighted above: lower frequencies are more robust to parameter perturbations. The set
up is the same as in Experiment 1. The network is trained to regress a target function with
frequencies Ÿ = (10, 15, 20, ..., 45, 50) and amplitudes Ai = 1 ’ i. After convergence to ◊ú, we
consider random (isotropic) perturbations ◊ = ◊ú + ”◊̂ of given magnitude ”, where ◊̂ is a
random unit vector in parameter space. We evaluate the network function f◊ at the perturbed

24

(a) k = 0.1 (b) k = 1 (c) — = 0.5 (d) — = 1.

Fig. 3.4. (a,b,c,d): Validation curves for various settings of noise amplitude — and frequency k.
Corresponding training curves can be found in Figure A.2 in appendix A.1.3. Gist: Low frequency
noise a�ects the network more than their high-frequency counterparts. Further, for high-frequency
noise, one finds that the validation loss dips early in the training. Both these observations are
explained by the fact that network readily fit lower frequencies, but learn higher frequencies later in
the training.

parameters, and compute the magnitude of its discrete Fourier transform at frequencies
ki to obtain |f̃◊(ki)|. We also average over 100 samples of ◊̂ to obtain |f̃E◊(ki)|, which we
normalize by |f̃◊ú(ki)|. Finally, we average over the phases „ (see Eqn 8). The result, shown
in Figure 3.3, demonstrates that higher frequencies are significantly less robust than the lower
ones, guiding the intuition that expressing higher frequencies requires the parameters to be
finely-tuned to work together. In other words, parameters that contribute towards expressing
high-frequency components occupy a small volume in the parameter space. We formalize this
in Appendix A.4.

Discussion . Multiple theoretical aspects may underlie these observations. First, for
a fixed architecture, recall that the numerator in Theorem 3.3 is7

O(Lf) (where Lf is the
Lipschitz constant of the function). However, Lf is bounded by the parameter norm, which
can only increase gradually during training by gradient descent. This leads to the higher
frequencies being learned8 late in the optimization process. To confirm that the bound indeed
increases as the model fits higher frequencies, we plot in Fig 3.1 the spectral norm of weights
of each layer during training for both cases of constant and increasing amplitudes.

Second (cf. Appendix A.3.4), the exact form of the Fourier spectrum yields that for
a fixed direction k̂, the spectral decay rate of the parameter gradient ˆf̃/ˆ◊ is at most one
exponent of k lower than that of f̃ . If for a fixed k̂ we have f̃ = O(k≠�≠1) where 1 Æ � Æ d,
we obtain for the residual h = f ≠ ⁄ and (continuous) training step t:

7The tightness of this bound is verified empirically in appendix A.1.5.
8This assumes that the Lipschitz constant of the (noisy) target function is larger than that of the network at
initialization.

25

����
dh̃(k)

dt

���� =
����
df̃(k)

dt

���� =
����
df̃(k)

d◊

����
| {z }

O(k≠�)

|÷·dL/d◊|z}|{����
d◊

dt

���� = O(k≠�) (9)

where we use the fact that d◊/dt is just the learning rate times the parameter gradient of
the loss which is independent9 of k, and assume that the target function ⁄ is fixed. Eqn 9
shows that the rate of change of the residual decays with increasing frequency, which is what
we find in Experiment 1.

3.2. Real-Data Experiments

While Experiments 1 and 2 establish the spectral bias by explicitly evaluating the Fourier
coe�cients, doing so becomes prohibitively expensive for larger d (e.g. on MNIST). To
tackle this, we propose the following set of experiments to measure the e�ect of spectral bias
indirectly on MNIST.

Experiment 3. In this experiment, we investigate how the validation performance dependent
on the frequency of noise added to the training target. We find that the best validation
performance on MNIST is particularly insensitive to the magnitude of high-frequency noise,
yet it is adversely a�ected by low-frequency noise. We consider a target (binary) function
·0 : X æ {0, 1} defined on the space X = [0, 1]784 of MNIST inputs. Samples {xi, ·0(xi)}i

form a subset of the MNIST dataset comprising samples xi belonging to two classes. Let
Âk(x) be a noise function:

Âk(x) = sin(kÎxÎ) (10)

corresponding to a radial wave defined on the 784-dimensional input space10. The final target
function ·k is then given by ·k = ·0 + —Âk, where — is the e�ective amplitude of the noise.
We fit the same network as in Experiment 1 to the target ·k with the MSE loss. In the first
set of experiments, we ablate over k for a pair of fixed —s, while in the second set we ablate
over — for a pair of fixed ks. In Figure 3.4, we show the respective validation loss curves,
where the validation set is obtained by evaluating ·0 on a separate subset of the data, i.e.
{xj, ·0(xj)}j. Figure A.2 (in appendix A.1.3) shows the respective training curves.

Discussion. The profile of the loss curves varies significantly with the frequency of noise
added to the target. In Figure 3.4a, we see that the validation performance is adversely

9Note however that the loss term might involve a sum or an integral over all frequencies, but the summation
is over a di�erent variable.
10The rationale behind using a radial wave is that it induces oscillations (simultaneously) along all spatial
directions. Another viable option is to induce oscillations along the principle axes of the data: we have
verified that the key trends of interest are preserved.

26

a�ected by the amplitude of the low-frequency noise, whereas Figure 3.4b shows that the
amplitude of high-frequency noise does not significantly a�ect the best validation score. This
is explained by the fact that the network readily fits the noise signal if it is low frequency,
whereas the higher frequency noise is only fit later in the training. In the latter case, the dip
in validation score early in the training is when the network has learned the low frequency
true target function ·0; the remainder of the training is spent learning the higher-frequencies
in the training target · , as we shall see in the next experiment. Figures 3.4c and 3.4d confirm
that the dip in validation score exacerbates for increasing frequency of the noise. Further,
we observe that for higher frequencies (e.g. k = 0.5), increasing the amplitude — does not
significantly degrade the best performance at the dip, confirming that the network is fairly
robust to the amplitude of high-frequency noise.

Finally, we note that the dip in validation score was also observed by Arpit et al. (2017)
with i.i.d. noise11 in a classification setting.

Experiment 4. To investigate the dip observed in Experiment 3, we now take a more direct
approach by considering a generalized notion of frequency. To that end, we project the
network function to the space spanned by the orthonormal eigenfunctions Ïn of the Gaussian
RBF kernel Braun et al. (2006). These eigenfunctions Ïn (sorted by decreasing eigenvalues)
resemble sinusoids Fasshauer (2011), and the index n can be thought of as being a proxy for
the frequency, as can be seen from Figure 3.6 (see Appendix A.1.4 for additional details and
supporting plots). While we will call f̃ [n] as the spectrum of the function f , it should be
understood as f̃ [n] = ÈfH, ÏnÍH, where fH œ span{Ïn}n and fH(xi) = f(xi) on the MNIST
samples xi œ X. This allows us to define a noise function as:

Â“(x) =
NX

n

⇣ n

N

⌘“

Ïn(x) (11)

where N is the number of available samples and “ = 2. Like in Experiment 3, the target
function is given by · = ·0 + —Â, and the same network is trained to regress · . Figure 3.5
shows the (generalized) spectrum · and ·0, and that of f as training progresses. Figure A.4
(in appendix) shows the corresponding dip in validation loss, where the validation set is same
as the training set but with true target function ·0 instead of the noised target · .

Discussion. From Figure 3.5, we learn that the drop in validation score observed in
Figure 3.4 is exactly when the higher-frequencies of the noise signal are yet to be learned.
As the network gradually learns the higher frequency eigenfunctions, the validation loss
increases while the training loss continues to decrease. Thus these experiments show that the

11Recall that i.i.d. noise is white-noise, which has a constant Fourier spectrum magnitude in expectation, i.e.
it also contains high-frequency components.

27

Fig. 3.5. Spectrum of the network as it is trained on MNIST target with high-frequency noise
(Noised Target). We see that the network fits the true target at around the 200th iteration, which is
when the validation score dips (Figure A.4 in appendix).

Fig. 3.6. Spectrum (x-axis for frequency, colorbar for magnitude) of the n-th (y-axis) eigenvector
of the Gaussian RBF kernel matrix Kij = k(xi, xj), where the sample set is {xi œ [0, 1]}50

i=1 is
N = 50 uniformly spaced points between 0 and 1 and k is the Gaussian RBF kernel function. Gist:
The eigenfunctions with increasing n roughly correspond to sinusoids of increasing frequency. Refer
to Appendix A.1.4 for more details.

phenomenon of spectral bias persists on non-synthetic data and in high dimensional input
spaces.

4. Not all Manifolds are Learned Equal

In this section, we investigate subtleties that arise when the data lies on a lower dimensional
manifold embedded in the higher dimensional input space of the model. We find that the
shape of the data-manifold impacts the learnability of high frequencies in a non-trivial way.
As we shall see, this is because low frequency functions in the input space may have high

28

frequency components when restricted to lower dimensional manifolds of complex shapes.
We demonstrate results in an illustrative minimal setting12, free from unwanted confounding
factors, and present a theoretical analysis of the phenomenon.

Manifold hypothesis. We consider the case where the data lies on a lower dimensional
data manifold M µ Rd embedded in input space (Goodfellow et al., 2016b), which we assume
to be the image “([0,1]m) of some injective mapping “ : [0,1]m æ Rd defined on a lower
dimensional latent space [0, 1]m. Under this hypothesis and in the context of the standard
regression problem, a target function · : M æ R defined on the data manifold can be
identified with a function ⁄ = · ¶ “ defined on the latent space. Regressing · is therefore
equivalent to finding f : Rd

æ R such that f ¶ “ matches ⁄. Further, assuming that the data
probability distribution µ supported on M is induced by “ from the uniform distribution U

in the latent space [0,1]m, the mean square error can be expressed as:

MSE(x)
µ

[f, ·] = Ex≥µ|f(x) ≠ ·(x)|2 =

Ez≥U |(f(“(z)) ≠ ⁄(z)|2 = MSE(z)
U

[f ¶ “, ⁄] (12)

Observe that there is a vast space of degenerate solutions f that minimize the mean squared
error – namely all functions on Rd that yield the same function when restricted to the data
manifold M.

Our findings from the previous section suggest that neural networks are biased towards
expressing a particular subset of such solutions, namely those that are low frequency. It
is also worth noting that there exist methods that restrict the space of solutions: notably
adversarial training (Goodfellow et al., 2014b) and Mixup (Zhang et al., 2017b).

Experimental set up. The experimental setting is designed to a�ord control over both
the shape of the data manifold and the target function defined on it. We will consider the
family of curves in R2 generated by mappings “L : [0,1] æ R2 given by

“L(z) = RL(z)(cos(2fiz), sin(2fiz)) (13)

where RL(z) = 1 + 1
2 sin(2fiLz)

Here, “L([0, 1]) defines the data-manifold and corresponds to a flower-shaped curve with L

petals, or a unit circle when L = 0 (see e.g. Fig 3.7). Given a signal ⁄ : [0,1] æ R defined
on the latent space [0, 1], the task entails learning a network f : R2

æ R such that f ¶ “L

matches the signal ⁄.
Experiment 5. The set-up is similar to that of Experiment 1, and ⁄ is as defined in Eqn. 8
with frequencies Ÿ = (20, 40, ..., 180, 200), and amplitudes Ai = 1 ’ i. The model f is trained

12We include additional experiments on MNIST and CIFAR-10 in appendices A.1.6 and A.1.7.

29

Fig. 3.7. Functions learned by two identical networks (up to initialization) to classify the binarized
value of a sine wave of frequency k = 200 defined on a “L=20 manifold. Both yield close to perfect
accuracy for the samples defined on the manifold (scatter plot), yet they di�er significantly elsewhere.
The shaded regions show the predicted class (Red or Blue) whereas contours show the confidence
(absolute value of logits).

(a) L = 0 (b) L = 4 (c) L = 10 (d) L = 16

(e) Loss curves

Fig. 3.8. (a,b,c,d): Evolution of the network spectrum (x-axis for frequency, colorbar for magnitude)
during training (y-axis) for the same target functions defined on manifolds “L for various L. Since
the target function has amplitudes Ai = 1 for all frequencies ki plotted, the colorbar is clipped
between 0 and 1. (e): Corresponding learning curves. Gist: Some manifolds (here with larger L)
make it easier for the network to learn higher frequencies than others.

on the dataset {“L(zi), ⁄(zi)}N

i=1 with N = 1000 uniformly spaced samples zi between 0 and 1.
The spectrum of f ¶ “L in expectation over Ïi ≥ U(0, 2fi) is monitored as training progresses,
and the result is shown in Fig 3.8 for various L. Fig 3.8e shows the corresponding mean
squared error curves. More experimental details in appendix A.1.2.

The results demonstrate a clear attenuation of the spectral bias as L grows. Moreover,
Fig 3.8e suggests that the larger the L, the easier the learning task.

30

Fig. 3.9. Heatmap of training accuracies of a network trained to predict the binarized value of a
sine wave of given frequency (x-axis) defined on “L for various L (y-axis).

Experiment 6. Here, we adapt the setting of Experiment 5 to binary classification by simply
thresholding the function ⁄ at 0.5 to obtain a binary target signal. To simplify visualization,
we only use signals with a single frequency mode k, such that ⁄(z) = sin(2fikz + Ï). We
train the same network on the resulting classification task with cross-entropy loss13 for
k œ {50, 100, ..., 350, 400} and L œ {0, 2, ..., 18, 20}. The heatmap in Fig 3.9 shows the
classification accuracy for each (k, L) pair. Fig 3.7 shows visualizations of the functions
learned by the same network, trained on (k, L) = (200, 20) under identical conditions up to
random initialization.

Observe that increasing L (i.e. going up a column in Fig 3.9) results in better (classification)
performance for the same target signal. This is the same behaviour as we observed in
Experiment 5 (Fig 3.8a-d), but now with binary cross-entropy loss instead of the MSE.

Discussion. These experiments hint towards a rich interaction between the shape of the
manifold and the e�ective di�culty of the learning task. The key mechanism underlying this
phenomenon (as we formalize below) is that the relationship between frequency spectrum of
the network f and that of the fit f ¶ “L is mediated by the embedding map “L. In particular,
we argue that a given signal defined on the manifold is easier to fit when the coordinate
functions of the manifold embedding itself has high frequency components. Thus, in our
experimental setting, the same signal embedded in a flower with more petals can be captured
with lower frequencies of the network.

To understand this mathematically, we address the following questions: given a target
function ⁄, how small can the frequencies of a solution f be such that f ¶ “ = ⁄? And further,
how does this relate to the geometry of the data-manifold M induced by “? To find out, we

13We use Pytorch’s BCEWithLogitsLoss. Internally, it takes a sigmoid of the network’s output (the logits)
before evaluating the cross-entropy.

31

write the Fourier transform of the composite function,

(̂f ¶ “)(l) =
R

dkf̃(k)P“(l, k) (14)

where P“(l, k) =
R

[0,1]m dz ei(k·“(z)≠l·z)

The kernel P“ depends on only “ and elegantly encodes the correspondence between frequencies
k œ Rd in input space and frequencies l œ Rm in the latent space [0, 1]m. Following a procedure
from Bergner et al., we can further investigate the behaviour of the kernel in the regime
where the stationary phase approximation is applicable, i.e. when l2 + k2

æ Œ (cf. section
3.2. of Bergner et al.). In this regime, the integral P“ is dominated by critical points z̄ of its
phase, which satisfy

l = J“(z̄) k (15)

where J“(z)ij = Òi“j(z) is the m ◊ d Jacobian matrix of “. Non-zero values of the kernel
correspond to pairs (l, k) such that Eqn 15 has a solution. Further, given that the components
of “ (i.e. its coordinate functions) are defined on an interval [0, 1]m, one can use their Fourier
series representation together with Eqn 15 to obtain a condition on their frequencies (shown
in appendix A.3.7). More precisely, we find that the i-th component of the RHS in Eqn 15 is
proportional to p“̃i[p]ki where p œ Zm is the frequency of the coordinate function “i. This
yields that we can get arbitrarily large frequencies li if “̃i[p] is large14 enough for large p,
even when ki is fixed.

This is precisely what Experiments 5 and 6 demonstrate in a minimal setting. From
Eqn 13, observe that the coordinate functions have a frequency mode at L. For increasing L,
it is apparent that the frequency magnitudes l (in the latent space) that can be expressed
with the same frequency k (in the input space) increases with increasing L. This allows the
remarkable interpretation that the neural network function can express large frequencies on a
manifold (l) with smaller frequencies w.r.t its input domain (k), provided that the coordinate
functions of the data manifold embedding itself has high-frequency components.

5. Related Work

A number of works have focused on showing that neural networks are capable of approxi-
mating arbitrarily complex functions. Hornik et al. (1989); Cybenko (1989); Leshno et al.
(1993) have shown that neural networks can be universal approximators when given su�cient
width; more recently, Lu et al. (2017) proved that this property holds also for width-bounded
networks. Montufar et al. (2014) showed that the number of linear regions of deep ReLU
networks grows polynomially with width and exponentially with depth; Raghu et al. (2016)
generalized this result and provided asymptotically tight bounds. There have been various
14Consider that the data-domain is bounded, implying that “̃ cannot be arbitrarily scaled.

32

results of the benefits of depth for e�cient approximation (Poole et al., 2016; Telgarsky, 2016;
Eldan & Shamir, 2016). These analysis on the expressive power of deep neural networks can
in part explain why over-parameterized networks can perfectly learn random input-output
mappings (Zhang et al., 2017a).

Our work more directly follows the line of research on implicit regularization in neural
networks trained by gradient descent (Neyshabur et al., 2015; Soudry et al., 2017; Poggio
et al., 2018; Neyshabur et al., 2017a). In fact, while our Fourier analysis of deep ReLU
networks also reflects the width and depth dependence of their expressivity, we focused on
showing a learning bias of these networks towards simple functions with dominant lower
frequency components. We view our results as a first step towards formalizing the findings
of Arpit et al. (2017), where it is empirically shown that deep networks prioritize learning
simple patterns of the data during training.

A few other works studied neural networks through the lens of harmonic analysis. For
example, Candès (1999) used the ridgelet transform to build constructive procedures for
approximating a given function by neural networks, in the case of oscillatory activation
functions. This approach has been recently generalized to unbounded activation functions
by Sonoda & Murata (2017). Eldan & Shamir (2016) use insights on the support of the
Fourier spectrum of two-layer networks to derive a worse-case depth-separation result. Barron
(1993) makes use of Fourier space properties of the target function to derive an architecture-
dependent approximation bound. In a concurrent and independent work, Xu et al. (2018)
make the same observation that lower frequencies are learned first. The subsequent work by
Xu (2018) proposes a theoretical analysis of the phenomenon in the case of 2-layer networks
with sigmoid activation, based on the spectrum of the sigmoid function.

In light of our findings, it is worth comparing the case of neural networks and other
popular algorithms such that kernel machines (KM) and K-nearest neighbor classifiers.
We refer to the Appendix A.5 for a detailed discussion and references. In summary, our
discussion there suggests that 1. DNNs strike a good balance between function smoothness
and expressivity/parameter-e�ciency compared with KM; 2. DNNs learn a smoother function
compared with KNNs since the spectrum of the DNN decays faster compared with KNNs in
the experiments shown there.

6. Conclusion

We studied deep ReLU networks through the lens of Fourier analysis. Several conclusions
can be drawn from our analysis. While neural networks can approximate arbitrary functions,
we find that they favour low frequency ones – hence they exhibit a bias towards smooth
functions – a phenomenon that we called spectral bias. We also illustrated how the geometry

33

of the data manifold impacts expressivity in a non-trivial way, as high frequency functions
defined on complex manifolds can be expressed by lower frequency network functions defined
in input space.

We view future work that explore the properties of neural networks in Fourier domain as
promising. For example, the Fourier transform a�ords a natural way of measuring how fast a
function can change within a small neighborhood in its input domain; as such, it is a strong
candidate for quantifying and analyzing the sensitivity of a model – which in turn provides a
natural measure of complexity (Novak et al., 2018). We hope to encourage more research in
this direction.

34

Chapter 4

Second Article: Neural Tangent Feature
Alignment

Prologue

Article Details. Implicit Regularization via Neural Tangent Feature Alignment.
Aristide Baratinú, Thomas Georgeú, César Laurent, R Devon Hjelm, Guillaume Lajoie, Pascal
Vincent, Simon Lacoste-Julien. The paper has been published at AISTATS 2021.

ú Co-first authors.

Personal contribution. I conceived and lead the project, contributed to all theoretical
results and to the design of all experiments. Thomas George took the lead in implementing
the experiments of Sections 3 and 4.2 and produced all corresponding figures. We used the
NNGeometry library (George, 2021) for e�cient evaluation of tangent kernels, which Thomas
developed independently during the course of the project. I did most of the writing, with
assistance from Thomas and all our co-authors.

Discussion and Recent Developments. A limitation of the work presented in the previous
chapter is the somewhat ad-hoc notion of complexity based on Fourier decomposition. Here
we take a new look at the spectral bias through the lens of tangent kernels (Jacot et al.,
2018). This idea was concurrently explored by Bietti & Mairal (2019); Basri et al. (2019);
Yang & Salman (2019), where spectral analysis of the tangent kernel have been investigated
in the linearized regime where it remains constant during training (Jacot et al., 2018; Du
et al., 2019b; Allen-Zhu et al., 2019), and for architectures and data (e.g, uniform data on
the sphere) allowing for explicit computations (e.g., decomposition in terms of spherical
harmonics). This is a setup where the spectral bias can be rigorously analyzed, i.e., we can
get explicit information of the type of functions that are learned quickly and generalize well.

Even though we do not expect standard training to remain in the linearized regime, this
pespective can also explain some of the observations of the previous chapter: for example,
Fig. B.2 in Appendix B.1.5 illustrates that for a randomly initialized MLP on 1D uniform
data, the tangent kernel’s eigenvectors (evaluated using a large test set) ranked in decreasing
order of the eigenvalues align well with sinusoids of increasing frequencies. This seems to be
a general feature of smooth kernels on uniform data (Braun, 2005) (e.g., RBF kernels, see
Fig 3.6 in Chap 3).

The main focus of the work below, however, is to study deviations from the linear regime,
and the impact of feature learning. The strategy is to look at the evolution of the tangent
kernel and its spectral decomposition during training, using metrics that are known to be
correlated to performance in kernel learning. One such metric is the alignment with the class
labels, which has been used for kernel selection (Cristianini et al., 2002; Cortes et al., 2012).
Intuitively, it measures both how much the label vector is contained in the subspace spanned
by the first kernel eigenvectors, and how much the corresponding eigenvalues contribute to
the whole spectrum. Our results can also be understood in geometric terms, since tangent
kernel and Fisher information metric share the non-zero part of their spectrum.

Several recent works follow a similar line and o�er complimentary insights. The experi-
ments of Fort et al. (2020) suggest that the tangent kernel evolves very rapidly in the first
few epochs, before slowing down and stabilizing later in training. Paccolat et al. (2021); Shan
& Bordelon (2021) study more explicitly, on tractable models, the alignment and compression
mechanism that we highlight here. The experiments of Ortiz-Jiménez et al. (2021) also
complement ours. In particular, while we argue in our work that the alignment of the tangent
kernel is a form of implicit regularization, they illustrate with a toy example a scenario where
the tangent kernel dynamics overfits the target vector and degrades the performance of the
linearized network. More generally, as we mention in the conclusion below, a generic situation
where we expect feature alignment to be detrimental is in the presence of spurious input-label
correlations in the training data. Exploring the feature learning dynamics in this context is
an important direction for future work.

1. Introduction

One important property of deep neural networks is their ability to generalize well on
real data. Surprisingly, this is even true with very high-capacity networks without explicit
regularization (Neyshabur et al., 2015; Zhang et al., 2017a; Ho�er et al., 2017). This seems at
odds with the usual understanding of the bias-variance trade-o� (Geman et al., 1992; Neal
et al., 2018; Belkin et al., 2019a): highly complex models are expected to overfit the training
data and perform poorly on test data (Hastie et al., 2009). Solving this apparent paradox

36

requires understanding the various learning biases induced by the training procedure, which
can act as implicit regularizers (Neyshabur et al., 2015, 2017b).

In this paper, we help clarify one such implicit regularization mechanism, by examining the
evolution of the neural tangent features (Jacot et al., 2018) learned by the network along the
optimization paths. Our results can be understood from two complementary perspectives: a
geometric perspective – the (uncentered) covariance of the tangent features defines a metric on
the function class, akin to the Fisher information metric (e.g., Amari, 2016); and a functional
perspective – through the tangent kernel and its RKHS. In standard supervised classification
settings, our main observation is a dynamical alignment of the tangent features along a
small number of task-relevant directions during training. We interpret this phenomenon as
a combined mechanism of feature selection and compression. The intuition motivating this
work is that such a mechanism allows large models to adapt their capacity to the task, which
in turn underpins their generalization abilities.

Specifically, our main contributions are as follows:

(1) Through experiments with various architectures on MNIST and CIFAR10, we give
empirical insights on how the tangent features and their kernel adapt to the task during
training (Section 3). We observe in particular a sharp increase of the anisotropy of their
spectrum early in training, as well as an increasing similarity with the class labels, as
measured by centered kernel alignment (Cortes et al., 2012).

(2) Drawing upon intuitions from linear models (Section 4.1), we argue that such a dy-
namical alignment acts as implicit regularizer. We motivate a new heuristic complexity
measure which captures this phenomenon, and empirically show better correlation with
generalization compared to various measures proposed in the recent literature (Section 4).

2. Preliminaries

Let F be a class of functions (e.g a neural network) parametrized by w œ RP . We restrict
here to scalar functions fw : X æ R to keep notation light.1

Tangent Features. We define the tangent features as the function gradients w.r.t the
parameters,

�w(x) := Òwfw(x) œ RP . (1)

The corresponding kernel kw(x, x̃) = È�w(x), �w(x̃)Í is the tangent kernel (Jacot et al.,
2018). Intuitively, the tangent features govern how small changes in parameter a�ect the

1The extension to vector-valued functions, relevant for the multiclass classification setting, is presented in
Appendix B.1, along with more mathematical details.

37

function’s outputs,
”fw(x) = È”w, �w(x)Í + O(Î”wÎ

2). (2)

More formally, the (uncentered) covariance matrix gw = Ex≥fl

⇥
�w(x)�w(x)€

⇤
w.r.t the input

distribution fl acts as a metric tensor on F : assuming F µ L2(fl), this is the metric induced
on F by pullback of the L2 scalar product. It characterizes the geometry of the function class
F . Metric (as symmetric P ◊ P matrices) and tangent kernels (as rank P integral operators)
share the same spectrum (see Prop B.1 in Appendix B.1.3).

Spectral Bias. The structure of the tangent features impacts the evolution of the function
during training. To formalize this, we introduce the covariance eigenvalue decomposition
gw =

P
P

j=1 ⁄wjvwjv€
wj

, which summarizes the predominant directions in parameter space.
Given n input samples (xi) and fw œ Rn the vector of outputs fw(xi), consider gradient
descent updates ”wGD =≠÷ÒwL for some cost function L :=L(fw). The following elementary
result (see Appendix B.1.5) shows how the corresponding function updates in the linear
approximation (2), ”fGD(x) := È”wGD, �w(x)Í, decompose in the eigenbasis2 of the tangent
kernel:

uwj(x) = 1p
⁄wj

Èvwj, �w(x)Í (3)

Lemma 4.1 (Local Spectral Bias). The function updates decompose as ”fGD(x) =
P

P

j=1 ”fjuwj(x) with
”fj = ≠÷⁄wj(u€

wj
ÒfwL), (4)

where uwj = [uwj(x1), · · · uwj(xn)]€ œ Rn and Òfw denotes the gradient w.r.t the sample
outputs.

This illustrates how, from the point of view of function space, the metric/tangent kernel
eigenvalues act as a mode-specific rescaling ÷⁄wj of the learning rate.3 This is a local version
of a well-known bias for linear models trained by gradient descent (e.g in linear regression,
see Appendix B.1.5.2), which prioritizes learning functions within the top eigenspaces of
the kernel. Several recent works (Bietti & Mairal, 2019; Basri et al., 2019; Yang & Salman,
2019) investigated such bias for neural networks, in linearized regimes where the tangent
kernel remains constant during training (Jacot et al., 2018; Du et al., 2019b; Allen-Zhu et al.,
2019). As a simple example, for a randomly initialized MLP on 1D uniform data, Fig. B.2 in
Appendix B.1.5 shows an alignment of the tangent kernel eigenfunctions with Fourier modes
of increasing frequency, in line with prior empirical observations (Rahaman et al., 2019; Xu
et al., 2019) of a ‘spectral bias’ towards low-frequency functions.

2The functions (uwj)P
j=1 form an orthonormal family in L2(fl), i.e. Ex≥fl[uwjuwjÕ] = ”jjÕ , and yield the

spectral decomposition kw(x, x̃) =
PP

j=1 ⁄wjuwj(x)uwj(x̃) of the tangent kernel as an integral operator (see
Appendix B.1.3).
3Intuitively, the eigenvalue ⁄wj can be thought of as defining a local ‘learning speed’ for the mode j.

38

iteration 0

�0.02

0.00

0.02

0.04
iteration 0

�0.04

�0.02

0.00

0.02

0.04

0.06

iteration 0

�0.075

�0.050

�0.025

0.000

0.025

0.050

iteration 0

�0.050

�0.025

0.000

0.025

0.050

iteration 2000

�0.02

0.00

0.02

iteration 2000

�0.075

�0.050

�0.025

0.000

0.025

0.050

iteration 2000

�0.075

�0.050

�0.025

0.000

0.025

0.050

0.075
iteration 2000

�0.050

�0.025

0.000

0.025

0.050

iteration 10000

0.00

0.02

0.04

0.06

0.08

Component 0

iteration 10000

�0.04

�0.02

0.00

0.02

0.04

0.06

Component 20

iteration 10000

�0.15

�0.10

�0.05

0.00

0.05

0.10

Component 100

iteration 10000

�0.02

0.00

0.02

0.04

Component 1000

Fig. 4.1. Evolution of eigenfunctions of the tangent kernel, ranked in nonincreasing order of the
eigenvalues (in columns), at various iterations during training (in rows), for the 2d Disk dataset.
After a number of iterations, we observe modes corresponding to the class structure (e.g. boundary
circle) in the top eigenfunctions. Combined with an increasing anistropy of the spectrum (e.g
⁄20/⁄1 = 1.5% at iteration 0, 0.2% at iteration 2000), this illustrates a stretch of the tangent kernel,
hence a (soft) compression of the model, along a small number of features that are highly correlated
with the classes.

Tangent Features Adapt to the Task. By contrast, our aim in this paper is to
highlight and discuss non-linear e�ects, in the (standard) regime where the tangent features
and their kernel evolve during training (e.g., Geiger et al., 2020a; Woodworth et al., 2020).

As a first illustration of such e�ects, Fig. 4.1 shows visualizations of eigenfunctions of the
tangent kernel (ranked in nonincreasing order of the eigenvalues), during training of a 6-layer
deep 256-unit wide MLP by gradient descent of the binary cross entropy loss, on a simple
classification task: y(x) = ±1 depending on whether x ≥ Unif[≠1,1]2 is in the centered
disk of radius

p
2/fi (details in Appendix B.3.1). After a number of iterations, we observe

(rotation invariant) modes corresponding to the class structure (e.g. boundary circle) showing
up in the top eigenfunctions of the learned kernel. We also note an increasing spectrum
anisotropy – for example, the ratio ⁄20/⁄1, which is 1.5% at iteration 0, has dropped to 0.2%
at iteration 2000. The interpretation is that the tangent kernel (and the metric) stretch along
a relatively small number of directions that are highly correlated with the classes during
training. We quantify and investigate this e�ect in more detail below.

39

3. Neural Feature Alignment

In this section, we study in more detail the evolution of the tangent features during
training. Our main results are to highlight (i) a sharp increase of the anisotropy of their
spectrum early in training; (ii) an increasing similarity with the class labels, as measured
by centered kernel alignment (CKA) (Cristianini et al., 2002; Cortes et al., 2012). We
interpret this as a combined mechanism of feature selection and model compression.

3.1. Setup

We run experiments on MNIST (LeCun et al., 2010) and CIFAR10 (Krizhevsky & Hinton,
2009) with standard MLPs, VGG (Simonyan & Zisserman, 2014) and Resnet (He et al.,
2016) architectures, trained by stochastic gradient descent (SGD) with momentum, using
cross-entropy loss. We use PyTorch (Paszke et al., 2019) and NNGeometry (George, 2021)
for e�cient evaluation of tangent kernels.

In multiclass settings, tangent kernels evaluated on n samples carry additional class
indices y œ {1 · · · c} and thus are nc ◊ nc matrices, (Kw)yy

Õ

ij
:= kw(xi, y; xj, yÕ) (details in

Appendix B.1.4). In all our experiments, we evaluate tangent kernels on mini-batches of size
n = 100 from both the training set and the test set; for c = 10 classes, this yields kernel
matrices of size 1000 ◊ 1000. We report results obtained from centered tangent features
�w(x) æ �w(x) ≠ Ex�w(x), though we obtain qualitatively similar results for uncentered
features (see plots in Appendix B.3.2).

3.2. Spectrum Evolution

We first investigate the evolution of the tangent kernel spectrum for a VGG19 on CIFAR
10, trained with and without label noise (Fig. 4.2). The take away is an anisotropic increase
of the spectrum during training. We report results for kernels evaluated on training examples
(solid line) and test examples (dashed line).4

The first observation is a significant increase of the spectrum, early in training (note
the log scale for the x-axis). By the time the model reaches 100% training accuracy, the
maximum and average eigenvalues (Fig. 4.2, 2nd row) have gained more than 2 orders of
magnitude.

The second observation is that this evolution is highly anisotropic, i.e larger eigenvalues
increase faster than lower ones. This results in a (sharp) increase of spectrum anisotropy,

4The striking similarity of the plots for train and test kernels suggests that the spectrum of empirical tangent
kernels is robust to sampling variations in our setting.

40

250
500

e�
.

ra
n
k

0

1
ac

c.
no random labels

train
test

104

� max
average
median

101 103 105

sgd iterations

0.0

0.5

1.0

tr
.

ra
ti

o
s

T40, T80, T160

250
500

e�
.

ra
n
k

0

1

ac
c.

20% random labels

train
test

104

� max
average
median

101 103 105

sgd iterations

0.0

0.5

1.0

tr
.

ra
ti

o
s

T40, T80, T160

250
500

e�
.

ra
n
k

0

1

ac
c.

50% random labels
train
test

103� max
average
median

101 103 105

sgd iterations

0.0

0.5

1.0

tr
.

ra
ti

o
s

T40, T80, T160

Fig. 4.2. Evolution of the tangent kernel spectrum (max, average and median eigenvalues),
e�ective rank (5) and trace ratios (6) during training of a VGG19 on CIFAR10 with various
ratio of random labels, using cross-entropy and SGD with batch size 100, learning rate 0.01 and
momentum 0.9. Tangent kernels are evaluated on batches of size 100 from both the training set
(solid lines) and the test set (dashed lines). The plots in the top row show train/test accuracy.

early in training. We quantify this using a notion of e�ective rank based on spectral entropy
(Roy & Vetterli, 2007). Given a kernel matrix K in Rr◊r with (strictly) positive eigenvalues
⁄1, · · · , ⁄r, let µj = ⁄j/

P
r

i=1 ⁄j be the trace-normalized eigenvalues. The e�ective rank is
defined as erank = exp(H(µ)) where H(µ) is the Shannon entropy,

erank = exp(H(µ)), H(µ) = ≠

rX

j=1
µj log(µj). (5)

This e�ective rank is a real number between 1 and r, upper bounded by rank(K), which
measures the ‘uniformity’ of the spectrum through the entropy. We also track the various
trace ratios

Tk =
X

j<k

⁄j/
X

j

⁄j, (6)

which quantify the relative importance of the top k eigenvalues.

We note (Fig. 4.2, third row) a drop of the e�ective rank early in training (e.g. to less
than 10% of its initial value in our experiments with no random labels; less than 20% when
half of the labels are randomized). This can also be observed from the highlighted (in red)
trace ratios T40, T80 and T160 (Fig. 4.2, fourth row), e.g. the first top 40 eigenvalues (T40),
over 1000 in total, accounting for more than 70% of the total trace.

Remarkably, in the presence of high label noise, the e�ective rank of the tangent kernel
(and hence that of the metric) evaluated on training examples (anti)-correlates nicely with
the test accuracy: while decreasing and remaining relatively low during the learning phase
(increase of test accuracy), it begins to rise again when overfitting starts (decrease of test

41

sgd iterations
0.00

0.25

al
ig

n
.

0

1
a
cc

u
ra

cy

no random labels

train

test

0.0

0.5

la
ye

r
a
li
gn

.

101 103 105

sgd iterations

0.0

0.5

la
ye

r
al

ig
n
.

sgd iterations
0.0

0.1

al
ig

n
.

0

1

a
cc

u
ra

cy

20% random labels

train

test

0.00

0.25

la
ye

r
a
li
gn

.

101 103 105

sgd iterations

0.0

0.5

la
ye

r
al

ig
n
.

sgd iterations
0.00

0.05

al
ig

n
.

0

1

a
cc

u
ra

cy

50% random labels

train

test

0.00

0.25

la
ye

r
a
li
gn

.

101 103 105

sgd iterations

0.00

0.25

la
ye

r
al

ig
n
.

Fig. 4.3. Evolution of the (tangent) feature alignment with class labels as measured by CKA
(7), during training of a VGG19 on CIFAR10 (same setup as in Fig. 4.2). Tangent kernels and label
vectors are evaluated on batches of size 100 from both the training set (solid lines) and the test set
(dashed lines). The plots in the last two rows show the alignment of tangent features associated
to each layer. Layers are mapped to colors sequentially from input layer (-), through intermediate
layers (-), to output layer (-). See Fig. B.5 and B.7 in Appendix B.3 for additional architectures
and datasets.

accuracy). This suggests that this e�ective rank already provides a good proxy for the
e�ective capacity of the network.

3.3. Alignment to class labels

We now include the evolution of the eigenvectors in our study. We investigate the similarity
of the learned tangent features with the class label through centered kernel alignment. Given
two kernel matrices K and K Õ in Rr◊r, it is defined as (Cortes et al., 2012)

CKA(K, K Õ) = Tr[KcK Õ
c
]

ÎKcÎF ÎK Õ
c
ÎF

œ [0, 1] (7)

where the subscript c denotes the feature centering operation, i.e. Kc = CKC where
C = Ir ≠

1
r
11T is the centering matrix, and Î · ÎF is the Froebenius norm. CKA is a

normalized version of the Hilbert-Schmidt Independence Criterion (Gretton et al., 2005)
designed as a dependence measure for two sets of features. The normalization makes CKA
invariant under isotropic rescaling.

Let Y œ Rnc be the vector resulting from the concatenation of the one-hot label repre-
sentations Yi œ Rc of the n samples. Similarity with the labels is measured through CKA
with the rank-one kernel KY := Y Y €. Intuitively, CKA(K, KY) is high when K has
low (e�ective) rank and such that the angle between Y and its top eigenspaces is small.5

Maximizing such an index has been used as a criterion for kernel selection in the literature
on learning kernels (Cortes et al., 2012).
5In the limiting case CKA(K, KY) = 1, the features are all aligned with each other and parallel to Y .

42

0.00

0.05

0.10
al

ig
nm

en
t easy

difficult

101 102 103 104

sgd iterations

2.5

5.0

7.5

ra
tio

al
ig

nm
en

t
ea

sy
/d

iffi
cu

lt

0.5

1.0

ac
cu

ra
cy

MNIST + 1000 KMNIST examples

test easy
test diff

train easy
train diff

0.0

0.1

0.2

al
ig

nm
en

t easy
difficult

101 102 103 104

sgd iterations

10

20

30

ra
tio

al
ig

nm
en

t
ea

sy
/d

iffi
cu

lt

0.5

1.0

ac
cu

ra
cy

MNIST + 1000 random labels

test easy
test diff

train easy
train diff

Fig. 4.4. Alignment easy versus di�cult: We augment a dataset composed of 10.000 easy MNIST
examples with 1000 di�cult examples from 2 di�erent setups: (left) 1000 MNIST examples with
random label (right) 1000 KMNIST examples. We train a MLP with 6 layers of 80 hidden units
using SGD with learning rate=0.02, momentum=0.9 and batch size=100. We observe that the
alignment to (train) labels increases faster and to a higher value for the easy examples.

With the same setup as in Section 3.2, we observe (Fig. 4.3, 2nd row) an increasingly
high CKA between the tangent kernel and the labels as training progresses. The trend is
similar for other architectures and datasets (e.g., Fig. B.5 in Appendix B.3 shows CKA plots
for MLP on MNIST and Resnets 18 on CIFAR10).

Interestingly, in the presence of high level noise, the CKA reaches a much higher value
during the learning phase (increase of test accuracy) for tangent kernels and labels evaluated
for test than for train inputs (note test labels are not randomized). Together with Equ. 4,
this suggests a stronger learning bias towards features predictive of the clean labels. This is
line with empirical observations that, in the presence of noise, deep networks ‘learn patterns
faster than noise’ (Arpit et al., 2017) (see Section 3.4 below for additional insights).

We also report the alignments of the layer-wise tangent kernels. By construction, the
tangent kernel, obtained by pairing features �wp(x)�wp(x̃) and summing over all parameters wp

of the network, can also be expressed as the sum of layer-wise tangent kernels, Kw =
P

L

¸=1 K¸

w,
where K¸

w results from summing only over parameters of the layer ¸. We observe a high
CKA, reaching more than 0.5 for a number of intermediate layers.6 In the presence of high
label noise, we note that CKAs tend to peak when the test accuracy does.

3.4. Hierarchical Alignment

A key aspect of the generalization question concerns the articulation between learning
and memorization, in the presence of noise (Zhang et al., 2017a) or di�cult examples (e.g.,

6We were expecting to see a gradually increasing CKA with ¸; we do not have any intuitive explanation for
the relatively low alignment observed for the very top layers.

43

Sagawa et al., 2020b). Motivated by this, we would like to probe the evolution of the tangent
features separately in the directions of both types of examples in such settings. To do so,
our strategy is to measure CKA for tangent kernels and label vectors evaluated on examples
from two subsets of the same size in the training dataset – one with ‘easy’ examples, the
other with ‘di�cult’ ones. Our setup is to augment 10.000 MNIST training examples with
1000 di�cult examples of 2 types: (i) examples with random labels and (ii) examples from
the dataset KMNIST (Clanuwat et al., 2018). KMNIST images present features similar to
MNIST digits (grayscale handwritten characters) but represent Japanese characters.

The results are shown in Fig. 4.4. As training progresses, we observe that the CKA on
the easy examples increases faster (and to a higher value) than that on the di�cult ones; in
the case of the (structured) di�cult examples from KMNIST, we also note an increase of
the CKA later in training. This demonstrates a hierarchy in the adaptation of the kernel,
measured by the ratio between both alignments. From the intuition developed in the paper
(see spectral bias in Equ.(4)), we interpret this aspect of the non-linear dynamics as favoring
a sequentialization of learning across patterns of di�erent complexity (‘easy patterns first’), a
phenomenon analogous to one pointed out in the context of deep linear networks (Saxe et al.,
2014; Lampinen et al., 2018; Gidel et al., 2019).

3.5. Ablation

E�ect of depth. In order to study the influence of depth on alignment and test the
robustness to the choice of seeds, we reproduce the experiment of the previous section for
MLP with di�erent depths, while varying parameter initialization and minibatch sampling.
Our results, shown in Fig B.7 (Appendix B.3), suggest that the alignment e�ect is magnified
as depth increases. We also observe that the ratio of the maximum alignment between
easy and di�cult examples is increased with depth, but stays high for a smaller number of
iterations.

E�ect of the learning rate. We observed in our experiments that increasing the
learning rate tend to enhance alignment e�ects.7 As an illustration, we reproduce in Fig. B.8
the same plots as in Fig. 4.2, for a learning rate reduced to 0.003. We observe a similar drop
of the e�ective rank as in Fig. 4.2 at the beginning of training, but to a much (about 3 times)
higher value.

7Note that for wide enough networks and small enough learning rate, we expect to recover the linear regime
where the tangent features are constant during training (Jacot et al., 2018; Du et al., 2019b; Allen-Zhu et al.,
2019).

44

4. Measuring Complexity

In this section, drawing upon intuitions from linear models, we illustrate in a simple setting
how the alignment of tangent features can act as implicit regularization. By extrapolating
Rademacher complexity bounds for linear models, we also motivate a new complexity measure
for neural networks and compare its correlation to generalization against various measures
proposed in the literature. We refer to Appendix B.2 for a review of classical results, further
technical details, and proofs.

4.1. Insights from Linear Models

4.1.1. Setup. We restrict here to scalar functions fw(x)=Èw, �(x)Í linearly parametrized
by w œ RP . Such a function class defines a constant (tangent) kernel and geometry, as defined
in Section 2. Given n input samples, the n features �(xi) œ RP yield an n ◊ P feature matrix
�.

Our discussion will be based on the (empirical) Rademacher complexity, which shows
up in generalization bounds (Bartlett & Mendelson, 2002); see Appendix B.2.2 for a review.
It measures how well F correlates with random noise on the sample set S:

bRS(F) = E‡œ{±1}n

"
sup
fœF

1
n

nX

i=1
‡if(xi)

#
. (8)

The Rademacher complexity depends on the size (or capacity) of the class F . Constraints
on the capacity, such as those induced by the implicit bias of the training algorithm, can
reduce the Rademacher complexity and lead to sharper generalization bounds.

A standard approach for controlling capacity is in terms of the norm of the weight vector
– usually the ¸2-norm. In general, given any invertible matrix A œ RP ◊P , we may consider
the norm ÎwÎA :=

p
w€gAw induced by the metric gA = AA€. Consider the (sub)classes of

functions induced by balls of given radius:

F
A

MA
= {fw : x ‘æ Èw, �(x)Í | ÎwÎA Æ MA}. (9)

A direct extension of standard bounds for the Rademacher complexity (see Appendix B.2.3)
yields,

bRS(FA

MA
) Æ (MA/n)ÎA≠1�€

ÎF (10)

where ÎA≠1�€
ÎF is the Froebenius norm of the rescaled feature matrix.8

This freedom in the choice of rescaling matrix A raises the question of which of the norms
Î · ÎA provide meaningful measures of the model’s capacity. Recent works (Belkin et al.,

8We also have ÎA≠1�€
ÎF =

Ô
TrKA in terms of the (rescaled) kernel matrix KA = �g≠1

A �€.

45

2018; Muthukumar et al., 2020) pointed out that using ¸2 norm is not coherently linked
with generalization in practice. We discuss this issue in Appendix B.2.5, illustrating how
meaningful norms critically depend on the geometry defined by the features.

4.1.2. Feature Alignment as Implicit Regularization. Here we describe a simple procedure
making the geometry adaptive along optimization paths. The goal is to illustrate in a simple
setting how feature alignment can impact complexity and generalization, in a way that mimics
the behaviour of a non-linear dynamics. The idea is to learn a rescaling metric at each
iteration of our algorithm, using a local version of the bounds (10).

Complexity of Learning Flows. Since we are interested in functions fw that result
from an iterative algorithm, we consider functions fw =

P
t
”fwt written in terms of a

sequence of updates9 ”fwt(x) = È”wt, �(x)Í (we set f0 = 0 to keep the notation simple), with
local constraints on the parameter updates:

F
A
m = {fw : x ‘æ

P
t
È”wt, �(x)Í | Î”wtÎAt Æ mt} (11)

The result (10) extends as follows.

Theorem 4.2 (Complexity of Learning Flows). Given any sequences A and m of invertible
matrices At œ RP ◊P and positive numbers mt > 0, we have the bound

bRS(FA
m) Æ

P
t
(mt/n)ÎA≠1

t
�€

ÎF. (12)

Note that, by linear reparametrization invariance w ‘æ A€w, � ‘æ A≠1�, the same result
can be formulated in terms of the sequence � = {�t}t of feature maps �t = A≠1

t �. The
function class (11) can equivalently be written as

F
�
m = {fw : x ‘æ

P
t
È”̃wt, �t(x)Í | Î”̃wtÎ2 Æ mt} (13)

In this formulation, the result (12) reads:

bRS(F�
m) Æ

P
t
(mt/n)Î�tÎF. (14)

Optimizing the Feature Scaling. To obtain learning flows with lower complexity,
Thm. 4.2 suggests modification of the algorithm to include, at each iteration t, a reparametriza-
tion step with a suitable matrix Ãt giving a low contribution to the bound (12). Applied
to gradient descent (GD), this leads to a new update rule sketched in Fig. 4.5 (left), which
we call SuperNat10, where optimization in Step 2 is over a given class of reparametrization

9In order to not assume a specific upper bound on the number of iterations, we can think of the updates from
an iterative algorithm as an infinite sequence {”w0, · · · ”wt, · · · } such that for some T , ”wt = 0 for all t > T .
10This was meant to suggest that our gradient step is not merely natural, but supernatural.

46

SuperNat update (Ã0 = I, �0 = �, K0 = K):

(1) Perform gradient step ewt+1 Ω wt + ”wGD
(2) Find minimizer Ãt+1 of Î”wGDÎ

Ã
ÎÃ≠1�€

t
ÎF

(3) Reparametrize:
wt+1 Ω Ã€

t+1 ewt+1, �t+1 Ω Ã≠1
t+1�t

0 2000 4000 6000 8000 10000
Training Iteration

6.1

6.2

6.3

6.4

6.5

6.6

m
ea

n
sq

ua
re

er
ro

rs

Validation standard gradient
Validation supernatural gradient

Fig. 4.5. (left) SuperNat algorithm and (right) validation curves obtained with standard
and SuperNat gradient descent, on the noisy linear regression problem. At each iteration,
SuperNat identifies dominant features and stretches the kernel along them, thereby slowing
down and eventually freezing the learning dynamics in the noise direction. This naturally
yields better generalization than standard gradient descent on this problem.

matrices. The successive reparametrizations yield a varying feature map �t = A≠1
t � where

At = Ã0 · · · Ãt.11

In the original representation �, SuperNat amounts to natural gradient descent (Amari,
1998) with respect to the local metric gAt = AtA€

t
. By construction, we also have ”fwt(x) =

È”wGD, �t(x)Í where ”wGD are standard gradient descent updates in the linear model with
feature map �t.

As an example, let � =
P

n

j=1
p

⁄jujv€
j

be the SVD of the feature matrix. We restrict to
the class of matrices

Ã‹ =
nX

j=1

Ô
‹jvjv

€
j

+ Idspan{v}‹ (15)

labelled by weights ‹j > 0, j = 1, · · · , n. With such a class, the action �€
t

æ A≠1
‹ �€

t
merely

rescales the singular values ⁄jt æ ⁄jt/‹j, leaving the singular vectors unchanged. We work
with gradient descent w.r.t a cost function L, so that ”wGD = ≠÷ÒwL.

Proposition 4.3. Any minimizer in Step 2 of SuperNat over matrices Ã‹ in the class (15),
takes the form

‹ú
jt

= Ÿ
1

|u€
j
ÒfwL|

(16)

where Òfw denotes the gradient w.r.t the sample outputs fw := [fw(x1), · · · fw(xn)]€, for some
constant Ÿ > 0.

11Note that upon training a non-linear model, the updates of the tangent features take the same form
�t = Ã≠1

t �t≠1 as in Step 3 of SuperNat, the di�erence being that Ãt is now a di�erential operator, e.g. at
first order Ãt = Id ≠ ”w€

t
ˆ

ˆwt
.

47

In this context, this yields the following update rule, up to isotropic rescaling, for the
singular values of �t:

⁄j(t+1) = |u€
j
ÒfwL|⁄jt. (17)

In this illustrative setting, we see how the feature map (or kernel) adapts to the task, by
stretching (resp. contracting) its geometry in directions uj along which the residual ÒfwL

has large (resp. small) components. Intuitively, if a large component |u€
j
ÒfwL| corresponds

to signal and a small one |u€
k
ÒfwL| corresponds to noise, then the ratio ⁄jt/⁄kt of singular

values gets rescaled by the signal-to-noise ratio, thereby increasing the alignment of the
learned features to the signal.

As a proof of concept, we consider the following regression setup. We consider a linear
model with Gaussian features � = [Ï,Ïnoise] œ Rd+1 where Ï ≥ N (0,1) and Ïnoise ≥ N (0, 1

d
Id).

Given n input samples, the n features �(xi) yield Ï œ Rn and Ïnoise œ Rn◊d. We assume
the label vector takes the form y = Ï + Pnoise(‘), where Gaussian noise ‘ ≥ N (0, ‡2In)
is projected onto the noise features through Pnoise = ÏnoiseÏ€

noise. The model is trained by
gradient descent of the mean squared loss and its SuperNat variant, where Step 2 uses the
analytical solution of Proposition 4.3. We set d = 10, ‡2 = 0.1 and use n = 50 training points.

Fig 4.5 (right) shows test error obtained with standard and SuperNat gradient descent
on this problem. At each iteration, SuperNat identifies dominant features (feature selection,
here Ï) and stretches the metric along them, thereby slowing down and eventually freezing
the dynamics in the orthogonal (noise) directions (compression). The working hypothesis in
this paper, supported by the observations of Section 3, is that for neural networks, such a
(tangent) feature alignment is dynamically induced as an e�ect of non-linearity.

4.2. A New Complexity Measure for Neural Networks

Equ. (14) provides a bound of the Rademacher complexity for the function classes (11)
specified by a fixed sequence of feature maps (see Appendix B.2.4 for a generalization to the
multiclass setting). By extrapolation to the case of non-deterministic sequences of feature
maps, we propose using

C(fw) =
X

t

Î”wtÎ2Î�tÎF (18)

as a heuristic measure of complexity for neural networks, where �t is the learned tangent
feature matrix12 at training iteration t, and Î”wtÎ2 is the norm of the SGD update. Following
a standard protocol for studying complexity measures, (e.g., Neyshabur et al., 2017a), Fig. 4.6
shows its behaviour for MLP on MNIST and VGG19 on CIFAR10 trained with cross entropy
loss, with (left) fixed architecture and varying level of corruption in the labels and (right)

12In terms of tangent kernels, Î�tÎF =
Ô

TrKt where Kt is the tangent kernel (Gram) matrix.

48

0.0

0.5

Er
ro

r
MNIST MLP

varying label corruption

0.00

0.05

MNIST MLP
varying hidden size

0.0

0.2

CIFAR10 VGG19
varying #channels

Train
Test

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Our capacity measure

0.00 0.25 0.50 0.75
Proportion of corrupted labels

0

1

N
or

m
al

iz
ed

ca
pa

ci
ty

105 106

Number of parameters

0

1

107

Number of parameters

0

1

L3,1.5 Bound (Neyshabur et al. 2015)

Fisher-Rao
Frobenius Bound (Neyshabur et al. 2015)
L1 max Bound (Bartlett and Mendelson 2002)
Ney18 (Neyshabur et al. 2018)
Spec L1 (Bartlett et al. 2017)
Spec Fro Bound (Neyshabur et al. 2018)
VC (Harvey et al. 2017)

Fig. 4.6. Complexity measures on MNIST with a 1 hidden layer MLP (left) as we increase the
hidden layer size, (center) for a fixed hidden layer of 256 units as we increase label corruption and
(right) for a VGG19 on CIFAR10 as we vary the number of channels. All networks are trained
until cross-entropy reaches 0.01. Our proposed complexity measure and the one by Neyshabur et al.
2018 are the only ones to correctly reflect the shape of the generalization gap in these settings.

varying hidden layer size/number of channels up to 4 millions parameters, against other
capacity measures proposed in the recent literature. We observe that it correctly reflects the
shape of the generalization gap.

5. Related Work

Role of Feature Geometry in Linear Models. Analysis of the relation between
capacity and feature geometry can be traced back to early work on kernel methods (Schölkopf
et al., 1999a), which lead to data-dependent error bounds in terms of the eigenvalues of the
kernel Gram matrix (Schölkopf et al., 1999b).

Recently, new analysis of minimum norm interpolators and max margin solutions for
overparametrized linear models emphasize the key role of feature geometry, and specifically
feature anisotropy, in the generalization performance (Bartlett et al., 2019b; Muthukumar
et al., 2019, 2020; Xie et al., 2020). Feature anisotropy combined to a high predictive power
of the dominant features is the condition for a high centered alignment between kernel and
class labels. In the context of neural networks, our results highlight the role of the non linear
training dynamics in favouring such conditions.

Generalization Measures. There has been a large body of work on complex-
ity/generalization measures for neural networks (see, Jiang et al., 2020, and references
therein), some of which theoretically motivated by norm or margin based bounds (e.g.,
Neyshabur et al., 2019; Bartlett et al., 2017). Liang et al. (2019) proposed using the Fisher-
Rao norm of the solution as a geometrically invariant complexity measure. By contrast,

49

our approach to measuring complexity takes into account the geometry along the whole
optimization trajectories. Since the geometry we consider is defined through the gradient
second moments, our perspectice is closely related to the notions of sti�ness (Fort et al., 2019)
and coherent gradients (Chatterjee, 2020).

Dynamics of Tangent Kernels. Several recent works investigated the ’feature learning’
regime where neural tangent kernels evolve during training (Geiger et al., 2020a; Woodworth
et al., 2020). Independent concurrent works highlight alignment and compression phenomena
similar to the one we study here (Kopitkov & Indelman, 2020; Paccolat et al., 2021). We
o�er various complementary empirical insights, and frame the alignment mechanism from the
point of view of implicit regularization.

6. Conclusion

Through experiments with modern architectures, we highlighted an e�ect of dynamical
alignment of the neural tangent features and their kernel along a small number of task-
dependent directions during training, reflected by an early drop of the e�ective rank and an
increasing similarity with the class labels, as measured by centered kernel alignment. We
interpret this e�ect as a combined mechanism of feature selection and model compression
around dominant features.

Drawing upon intuitions from linear models, we argued that such a dynamical alignment
acts as implicit regularizer. By extrapolating a new analysis of Rademacher complexity bounds
for linear models, we also proposed a complexity measure that captures this phenomenon, and
showed that it correlates with the generalization gap when varying the number of parameters,
and when increasing the proportion of corrupted labels.

The results of this paper open several avenues for further investigation. The type of
complexity measure we propose suggests new principled ways to design algorithms that learn
the geometry in which to perform gradient descent (Srebro et al., 2011; Neyshabur et al.,
2017b). Whether a procedure such as SuperNat can produce meaningful practical results
for neural networks remains to be seen.

One of the consequences one can expect from the alignment e�ects highlighted here is to
bias learning towards explaining most of the data with a small number of highly predictive
features. While this feature selection ability might explain in part the performance of neural
networks on a range of supervised tasks, it may also make them brittle under spurious
correlation (e.g., Sagawa et al., 2020b) and underpin their notorious weakness to generalize
out-of-distribution (e.g., Geirhos et al., 2020). Resolving this tension is an important challenge
towards building more robust models.

50

Chapter 5

Third Article: Mutual Information Neural
Estimation

Prologue

Article Details. Mutual Information Neural Estimation. Mohamed Ishmael Belg-
hazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, Aaron Courville, R Devon
Hjelm. This paper was pusblished at ICML 2019.

Personal contributions. This project was conceived and lead by Ishamel Belghazi. I was in
charge of the theoretical aspects of the paper and contributed to the general writing together
with Ishmael and Devon, with assistance from all the other co-authors.

Discussion and Recent Developments. As we have seen in Chapter 2, many statistical
divergences, such as f -divergences (including the KL-divergence) and integral probability
metrics, have a variational formulation as the maximum of some optimization problem over
su�ciently large classes of functions F . The idea of neural estimation is to parametrize F

using a neural network and optimize over the parameter space. This work introduces and
study neural estimators of mutual information.

Since the publication of the paper, several works dwelt further on the problem of estimating
mutual information from finite data. Notably, McAllester & Stratos (2020) describes a
limitation of lower-bound estimators: they show that any distribution-free high confidence
lower-bound requires a sample size that is exponential in the value of the bound. This
suggests that empirical estimation can be unfeasible in practice when the mutual information
is large. Since this results from a worse-case analysis on the distributions at play, it remains
to be seen whether such limitations can be avoided upon suitable assumptions that would
hold for realistic data. Other works highlighted bad bias-variance tradeo�s of variational
estimators, and proposed ways to mitigate the problem (Poole et al., 2019; Song & Ermon,

2020). In practice, depending on the applications, some variational estimators are more stable
and produce better results than others (see e.g., Hjelm et al., 2019).

The question of the consistency of neural estimation splits into an approximation problem
related to the finite size of the network, and an empirical estimation problem related to the
use of finite samples. We prove consistency of one of our estimators below, using standard
techniques; we also give non-asymptotic sample complexity bounds for the estimation of the
parametrized form of mutual information. A few works derived analogous bounds in the
context of GANs (Arora et al., 2017; Zhang et al., 2018b). In a very recent work, Sreekumar
& Goldfeld (2021) tackle the (much harder) problem of quantifying the approximation error
and studying rigorously approximation-estimation tradeo�s.

Note that, as it has probably long been recognized among researchers working on GANs,
as argued in Tschannen et al. (2020) (see also Huang et al. (2017)), the empirical success
of neural divergences and mutual estimation estimators might be due less to properties of
mutual information per se than to the specific parametrization of the estimator. A further
understanding of how the choice of statistic network, and the inductive bias that it introduces,
impact the properties of the estimator, is an interesting direction for future research.

Considering the ubiquitous role of mutual information in a number of applications, the
paper had numerous follow-ups. A landmark example is an adaptation of the infomax
principle (Linsker, 1988), Deep InfoMax (Hjelm et al., 2019), which performs unsupervised
representation learning by maximizing an estimate of the mutual information between the
inputs and their representation, or between di�erent views of the data (Bachman et al., 2019;
Tian et al., 2020).

1. Introduction

Mutual information is a fundamental quantity for measuring the relationship between
random variables. In data science it has found applications in a wide range of domains and
tasks, including biomedical sciences (Maes et al., 1997), blind source separation (BSS, e.g.,
independent component analysis, Hyvärinen et al., 2004), information bottleneck (IB, Tishby
et al., 2000), feature selection (Kwak & Choi, 2002; Peng et al., 2005), and causality (Butte
& Kohane, 2000).

Put simply, mutual information quantifies the dependence of two random variables X

and Z. It has the form,

I(X; Z) =
Z

X ◊Z
log dPXZ

dPX ¢ PZ

dPXZ , (1)

52

where PXZ is the joint probability distribution, and PX =
R

Z dPXZ and PZ =
R

X dPXZ are
the marginals. In contrast to correlation, mutual information captures non-linear statistical
dependencies between variables, and thus can act as a measure of true dependence (Kinney
& Atwal, 2014).

Despite being a pivotal quantity across data science, mutual information has historically
been di�cult to compute (Paninski, 2003). Exact computation is only tractable for discrete
variables (as the sum can be computed exactly), or for a limited family of problems where
the probability distributions are known. For more general problems, this is not possible.
Common approaches are non-parametric (e.g., binning, likelihood-ratio estimators based on
support vector machines, non-parametric kernel-density estimators; see, Fraser & Swinney,
1986; Darbellay & Vajda, 1999; Suzuki et al., 2008; Kwak & Choi, 2002; Moon et al., 1995;
Kraskov et al., 2004), or rely on approximate gaussianity of data distribution (e.g., Edgeworth
expansion, Van Hulle, 2005). Unfortunately, these estimators typically do not scale well with
sample size or dimension (Gao et al., 2014), and thus cannot be said to be general-purpose.
Other recent works include Kandasamy et al. (2017); Singh & Póczos (2016); Moon et al.
(2017).

In order to achieve a general-purpose estimator, we rely on the well-known characterization
of the mutual information as the Kullback-Leibler (KL-) divergence (Kullback, 1997) between
the joint distribution and the product of the marginals (i.e., I(X; Z) = DKL(PXZ || PX ¢PZ)).
Recent work uses a dual formulation to cast the estimation of f -divergences (including the
KL-divergence, see Nguyen et al., 2010) as part of an adversarial game between competing
deep neural networks (Nowozin et al., 2016). This approach is at the cornerstone of generative
adversarial networks (GANs, Goodfellow et al., 2014a), which train a generative model
without any explicit assumptions about the underlying distribution of the data.

In this paper we demonstrate that exploiting dual optimization to estimate divergences
goes beyond the minimax objective as formalized in GANs. We leverage this strategy to
o�er a general-purpose parametric neural estimator of mutual information based on dual
representations of the KL-divergence (Ruderman et al., 2012), which we show is valuable
in settings that do not necessarily involve an adversarial game. Our estimator is scalable,
flexible, and completely trainable via back-propagation. The contributions of this paper are
as follows:

• We introduce the Mutual Information Neural Estimator (MINE), which is scalable,
flexible, and completely trainable via back-prop, as well as provide a thorough
theoretical analysis.

53

• We show that the utility of this estimator transcends the minimax objective as
formalized in GANs, such that it can be used in mutual information estimation,
maximization, and minimization.

• We apply MINE to palliate mode-dropping in GANs and to improve reconstructions
and inference in Adversarially Learned Inference (ALI, Dumoulin et al., 2016) on
large scale datasets.

• We use MINE to apply the Information Bottleneck method Tishby et al. (2000) in a
continuous setting, and show that this approach outperforms variational bottleneck
methods (Alemi et al., 2016).

2. Background

2.1. Mutual Information

Mutual information is a Shannon entropy-based measure of dependence between random
variables. The mutual information between X and Z can be understood as the decrease of
the uncertainty in X given Z:

I(X; Z) := H(X) ≠ H(X | Z), (2)

where H is the Shannon entropy, and H(X | Z) is the conditional entropy of Z given X.
As stated in Eqn. 1 and the discussion above, the mutual information is equivalent to the
Kullback-Leibler (KL-) divergence between the joint, PXZ , and the product of the marginals
PX ¢ PZ :

I(X,Z) = DKL(PXZ || PX ¢ PZ), (3)

where DKL is defined as1,

DKL(P || Q) := EP


log dP

dQ

�
. (4)

whenever P is absolutely continuous with respect to Q2.

The intuitive meaning of Eqn. 3 is clear: the larger the divergence between the joint
and the product of the marginals, the stronger the dependence between X and Z. This
divergence, hence the mutual information, vanishes for fully independent variables.

1Although the discussion is more general, we can think of P and Q as being distributions on some compact
domain � µ Rd, with density p and q respect the Lebesgue measure ⁄, so that DKL =

R
p log p

q d⁄.
2and infinity otherwise.

54

2.2. Dual representations of the KL-divergence.

A key technical ingredient of MINE are dual representations of the KL-divergence. We
will primarily work with the Donsker-Varadhan representation (Donsker & Varadhan, 1983),
which results in a tighter estimator; but will also consider the dual f -divergence representa-
tion (Keziou, 2003; Nguyen et al., 2010; Nowozin et al., 2016).

The Donsker-Varadhan representation. The following theorem gives a representation
of the KL-divergence (Donsker & Varadhan, 1983):
Theorem 5.1 (Donsker-Varadhan representation). The KL divergence admits the following
dual representation:

DKL(P || Q) = sup
T :�æR

EP[T] ≠ log(EQ[eT]), (5)

where the supremum is taken over all functions T such that the two expectations are finite.

Proof. See the Supplementary Material.

A straightforward consequence of Theorem 5.1 is as follows. Let F be any class of
functions T : � æ R satisfying the integrability constraints of the theorem. We then have
the lower-bound3:

DKL(P || Q) Ø sup
T œF

EP[T] ≠ log(EQ[eT]). (6)

Note also that the bound is tight for optimal functions T ú that relate the distributions to the
Gibbs density as,

dP = 1
Z

eT
ú
dQ, where Z = EQ[eT

ú]. (7)

The f-divergence representation. It is worthwhile to compare the Donsker-Varadhan
representation to the f -divergence representation proposed in Nguyen et al. (2010); Nowozin
et al. (2016), which leads to the following bound:

DKL(P || Q) Ø sup
T œF

EP[T] ≠ EQ[eT ≠1]. (8)

Although the bounds in Eqns. 6 and 8 are tight for su�ciently large families F , the Donsker-
Varadhan bound is stronger in the sense that, for any fixed T , the right hand side of Eqn. 6
is larger4 than the right hand side of Eqn. 8. We refer to the work by Ruderman et al. (2012)
for a derivation of both representations in Eqns. 6 and 8 from the unifying perspective of
Fenchel duality. In Section 3 we discuss versions of MINE based on these two representations,
and numerical comparisons are performed in Section 4.

3The bound in Eqn. 6 is known as the compression lemma in the PAC-Bayes literature (Banerjee, 2006).
4To see this, just apply the identity x Ø e log x with x = EQ[eT].

55

3. The Mutual Information Neural Estimator

In this section we formulate the framework of the Mutual Information Neural Estimator
(MINE). We define MINE and present a theoretical analysis of its consistency and convergence
properties.

3.1. Method

Using both Eqn. 3 for the mutual information and the dual representation of the KL-
divergence, the idea is to choose F to be the family of functions T◊ : X ◊Z æ R parametrized
by a deep neural network with parameters ◊ œ �. We call this network the statistics network.
We exploit the bound:

I(X; Z) Ø I�(X,Z), (9)

where I�(X,Z) is the neural information measure defined as

I�(X,Z) = sup
◊œ�

EPXZ [T◊] ≠ log(EPX¢PZ [eT◊]). (10)

The expectations in Eqn. 10 are estimated using empirical samples5 from PXZ and PX ¢ PZ

or by shu�ing the samples from the joint distribution along the batch axis. The objective
can be maximized by gradient ascent.

It should be noted that Eqn. 10 actually defines a new class information measures. The
expressive power of neural networks insures that they can approximate the mutual information
with arbitrary accuracy with large enough networks.

In what follows, given a distribution P, we denote by P̂(n) as the empirical distribution
associated to n i.i.d. samples.

Definition 5.1 (Mutual Information Neural Estimator (MINE)). Let F = {T◊}◊œ� be the
set of functions parametrized by a neural network. MINE is defined as,

\I(X; Z)
n

= sup
◊œ�

EP(n)
XZ

[T◊] ≠ log(EP(n)
X ¢P̂(n)

Z
[eT◊]). (11)

Details on the implementation of MINE are provided in Algorithm 1. An analogous
definition and algorithm also hold for the f -divergence formulation in Eqn. 8, which we refer
to as MINE-f . Since Eqn. 8 lower-bounds Eqn. 6, it generally leads to a looser estimator of
the mutual information, and numerical comparisons of MINE with MINE-f can be found
in Section 4. However, in a mini-batch setting, the SGD gradients of MINE are biased. We
address this in the next section.

5Note that samples x̄ ≥ PX and z̄ ≥ PZ from the marginals are obtained by simply dropping x, z from
samples (x̄, z) and (x, z̄) ≥ PXZ .

56

Algorithm 1 MINE
◊ Ω initialize network parameters
repeat

Draw b minibatch samples from the joint distribution:
(x(1), z(1)), . . . , (x(b), z(b)) ≥ PXZ

Draw b samples from the Z marginal distribution:
z̄(1), . . . , z̄(b)

≥ PZ

Evaluate the lower-bound:
V(◊) Ω

1
b

Pb
i=1 T◊(x(i), z(i)) ≠ log(1

b

Pb
i=1 eT◊(x(i),z̄(i)))

Evaluate bias corrected gradients (e.g., moving average):
bG(◊) Ω eÒ◊V(◊)
Update the statistics network parameters:
◊ Ω ◊ + bG(◊)

until convergence

3.2. Correcting the bias from the stochastic gradients

A naive application of stochastic gradient estimation leads to the gradient estimate:

bGB = EB[Ò◊T◊] ≠
EB[Ò◊T◊ eT◊]

EB [eT◊] . (12)

where, in the second term, the expectations are over the samples of a minibatch B, leads to a
biased estimate of the full batch gradient6.

Fortunately, the bias can be reduced by replacing the estimate in the denominator by an
exponential moving average. For small learning rates, this improved MINE gradient estimator
can be made to have arbitrarily small bias. We found in our experiments that this improves
all-around performance of MINE.

3.3. Theoretical properties

In this section we analyze the consistency and convergence properties of MINE. All the
proofs can be found in the Supplementary Material.

3.3.1. Consistency. MINE relies on a choice of (i) a statistics network and (ii) n samples
from the data distribution PXZ .

Definition 5.2 (Strong consistency). The estimator \I(X; Z)
n

is strongly consistent if for
all ‘ > 0, there exists a positive integer N and a choice of statistics network such that:

’n Ø N, |I(X, Z) ≠ \I(X; Z)
n
| Æ ‘, a.e.

6From the optimization point of view, the f -divergence formulation has the advantage of making the use of
SGD with unbiased gradients straightforward.

57

where the probability is over a set of samples.

In a nutshell, the question of consistency is divided into two problems: an approximation
problem related to the size of the family, F , and an estimation problem related to the use
of empirical measures. The first problem is addressed by universal approximation theorems
for neural networks (Hornik, 1989). For the second problem, classical consistency theorems
for extremum estimators apply (Van de Geer, 2000) under mild conditions on the parameter
space.

This leads to the two lemmas below. The first lemma states that the neural information
measures I�(X,Z), defined in Eqn. 10, can approximate the mutual information with arbitrary
accuracy:
Lemma 5.2 (approximation). Let ‘ > 0. There exists a neural network parametrizing
functions T◊ with parameters ◊ in some compact domain � µ Rk, such that

|I(X, Z) ≠ I�(X,Z)| Æ ‘, a.e.

The second lemma states the almost sure convergence of MINE to a neural information
measure as the number of samples goes to infinity:

Lemma 5.3 (estimation). Let ‘ > 0. Given a family of neural network functions T◊ with
parameters ◊ in some bounded domain � µ Rk, there exists an N œ N, such that

’n Ø N, | \I(X; Z)
n

≠ I�(X,Z) |Æ ‘, a.e. (13)

Combining the two lemmas with the triangular inequality, we have,

Theorem 5.4. MINE is strongly consistent.

3.3.2. Sample complexity. In this section we discuss the sample complexity of our estimator.
Since the focus here is on the empirical estimation problem, we assume that the mutual
information is well enough approximated by the neural information measure I�(X, Z). The
theorem below is a refinement of Lemma 5.3: it gives how many samples we need for an
empirical estimation of the neural information measure at a given accuracy and with high
confidence.

We make the following assumptions: the functions T◊ are L-Lipschitz with respect to
the parameters ◊, and both T◊ and eT◊ are M -bounded (i.e., |T◊|, eT◊ Æ M).7 The domain
� µ Rd is bounded, so that Î◊Î Æ K for some constant K. The theorem below shows a
sample complexity of eO

�
d log d

‘2

�
, where d is the dimension of the parameter space.

7We thank David McAllester for pointing out a mistake in the original published version of this work, which
assumed only |T◊| Æ M . The bound (15) has an exponential dependence in the range of the statistic network
T◊.

58

Theorem 5.5. Given any values ‘,” of the desired accuracy and confidence parameters, we
have,

Pr
⇣

| \I(X; Z)
n

≠ I�(X, Z)| Æ ‘
⌘

Ø 1 ≠ ”, (14)

whenever the number n of samples satisfies

n Ø
2M2(d log(16KL

Ô
d/‘) + 2dM + log(2/”))

‘2 . (15)

4. Empirical comparisons

Before diving into applications, we perform some simple empirical evaluation and compar-
isons of MINE. The objective is to show that MINE is e�ectively able to estimate mutual
information and account for non-linear dependence.

4.1. Comparing MINE to non-parametric estimation

We compare MINE and MINE-f to the k-NN-based non-parametric estimator found
in Kraskov et al. (2004). In our experiment, we consider multivariate Gaussian random
variables, Xa and Xb, with componentwise correlation, corr(X i

a
, Xj

b
) = ”ij fl, where fl œ (≠1,1)

and ”ij is Kronecker’s delta. As the mutual information is invariant to continuous bijective
transformations of the considered variables, it is enough to consider standardized Gaussians
marginals. We also compare MINE (using the Donsker-Varadhan representation in Eqn. 6)
and MINE-f (based on the f -divergence representation in Eqn. 8).

Our results are presented in Figs. 5.1. We observe that both MINE and Kraskov’s
estimation are virtually indistinguishable from the ground truth when estimating the mutual
information between bivariate Gaussians. MINE shows marked improvement over Krakov’s
when estimating the mutual information between twenty dimensional random variables. We
also remark that MINE provides a tighter estimate of the mutual information than MINE-f .

4.2. Capturing non-linear dependencies

An important property of mutual information between random variables with relationship
Y = f(X) + ‡ § ‘, where f is a deterministic non-linear transformation and ‘ is random noise,
is that it is invariant to the deterministic nonlinear transformation, but should only depend
on the amount of noise, ‡ § ‘. This important property, that guarantees the quantification
dependence without bias for the relationship, is called equitability (Kinney & Atwal, 2014).
Our results (Fig. 5.2) show that MINE captures this important property.

59

Fig. 5.1. Mutual information between two multivariate Gaussians with component-wise
correlation fl œ (≠1,1).

Fig. 5.2. MINE is invariant to choice of deterministic nonlinear transformation. The heatmap
depicts mutual information estimated by MINE between 2-dimensional random variables
X ≥ U(≠1, 1) and Y = f(X) + ‡ § ‘, where f(x) œ {x, x3, sin(x)} and ‘ ≥ N (0, I).

5. Applications

In this section, we use MINE to present applications of mutual information and compare
to competing methods designed to achieve the same goals. Specifically, by using MINE
to maximize the mutual information, we are able to improve mode representation and
reconstruction of generative models. Finally, by minimizing mutual information, we are able
to e�ectively implement the information bottleneck in a continuous setting.

5.1. Maximizing mutual information to improve GANs

Mode collapse (Che et al., 2016; Dumoulin et al., 2016; Donahue et al., 2016; Salimans
et al., 2016; Metz et al., 2017; Saatchi & Wilson, 2017; Nguyen et al., 2017; Lin et al.,
2017; Ghosh et al., 2017) is a common pathology of generative adversarial networks (GANs,
Goodfellow et al., 2014a), where the generator fails to produces samples with su�cient
diversity (i.e., poorly represent some modes).

60

GANs as formulated in Goodfellow et al. (2014a) consist of two components: a dis-
criminator, D : X æ [0, 1] and a generator, G : Z æ X , where X is a domain such as a
compact subspace of Rn. Given Z œ Z follows some simple prior distribution (e.g., a spherical
Gaussian with density, PZ), the goal of the generator is to match its output distribution to a
target distribution, PX (specified by the data samples). The discriminator and generator are
optimized through the value function,

min
G

max
D

V (D,G) := EPX [D(X)] + EPZ [log (1 ≠ D(G(Z))]. (16)

A natural approach to diminish mode collapse would be regularizing the generator’s loss
with the neg-entropy of the samples. As the sample entropy is intractable, we propose to use
the mutual information as a proxy.

Following Chen et al. (2016), we write the prior as the concatenation of noise and
code variables, Z = [‘, c]. We propose to palliate mode collapse by maximizing the mutual
information between the samples and the code. I(G([‘, c]); c) = H(G([‘, c]))≠H(G([‘, c]) | c).
The generator objective then becomes,

arg max
G

E[log(D(G([‘, c])))] + —I(G([‘, c]); c). (17)

As the samples G([‘, c]) are di�erentiable w.r.t. the parameters of G, and the statistics
network being a di�erentiable function, we can maximize the mutual information using
back-propagation and gradient ascent by only specifying this additional loss term. Since the
mutual information is theoretically unbounded, we use adaptive gradient clipping (see the
Supplementary Material) to ensure that the generator receives learning signals similar in
magnitude from the discriminator and the statistics network.

Related works on mode-dropping. Methods to address mode dropping in GANs can
readily be found in the literature. Salimans et al. (2016) use mini-batch discrimination. In
the same spirit, Lin et al. (2017) successfully mitigates mode dropping in GANs by modifying
the discriminator to make decisions on multiple real or generated samples. Ghosh et al.
(2017) uses multiple generators that are encouraged to generate di�erent parts of the target
distribution. Nguyen et al. (2017) uses two discriminators to minimize the KL and reverse
KL divergences between the target and generated distributions. Che et al. (2016) learns a
reconstruction distribution, then teach the generator to sample from it, the intuition being
that the reconstruction distribution is a de-noised or smoothed version of the data distribution,
and thus easier to learn. Srivastava et al. (2017) minimizes the reconstruction error in the
latent space of bi-directional GANs (Dumoulin et al., 2016; Donahue et al., 2016). Metz et al.
(2017) includes many steps of the discriminator’s optimization as part of the generator’s
objective. While Chen et al. (2016) maximizes the mutual information between the code

61

and the samples, it does so by minimizing a variational upper bound on the conditional
entropy (Barber & Agakov, 2003) therefore ignoring the entropy of the samples. Chen et al.
(2016) makes no claim about mode-dropping.

Experiments: Spiral, 25-Gaussians datasets. We apply MINE to improve mode
coverage when training a generative adversarial network (GAN, Goodfellow et al., 2014a).
We demonstrate using Eqn. 17 on the spiral and the 25-Gaussians datasets, comparing two
models, one with — = 0 (which corresponds to the orthodox GAN as in Goodfellow et al.
(2014a)) and one with — = 1.0, which corresponds to mutual information maximization.

(a) GAN (b) GAN+MINE

Fig. 5.3. The generator of the GAN model without mutual information maximization after
5000 iterations su�ers from mode collapse (has poor coverage of the target dataset) compared
to GAN+MINE on the spiral experiment.

Our results on the spiral (Fig. 5.3) and the 25-Gaussians (Fig. 5.4) experiments both
show improved mode coverage over the baseline with no mutual information objective. This
confirms our hypothesis that maximizing mutual information helps against mode-dropping in
this simple setting.

Experiment: Stacked MNIST. Following Che et al. (2016); Metz et al. (2017); Srivas-
tava et al. (2017); Lin et al. (2017), we quantitatively assess MINE’s ability to diminish mode
dropping on the stacked MNIST dataset which is constructed by stacking three randomly
sampled MNIST digits. As a consequence, stacked MNIST o�ers 1000 modes. Using the
same architecture and training protocol as in Srivastava et al. (2017); Lin et al. (2017), we
train a GAN on the constructed dataset and use a pre-trained classifier on 26,000 samples
to count the number of modes in the samples, as well as to compute the KL divergence
between the sample and expected data distributions. Our results in Table 5.1 demonstrate
the e�ectiveness of MINE in preventing mode collapse on Stacked MNIST.

62

(a) Original data (b) GAN (c) GAN+MINE

Fig. 5.4. Kernel density estimate (KDE) plots for GAN+MINE samples and GAN samples
on 25 Gaussians dataset.

Stacked MNIST
Modes

(Max 1000) KL

DCGAN 99.0 3.40
ALI 16.0 5.40
Unrolled GAN 48.7 4.32
VEEGAN 150.0 2.95
PacGAN 1000.0 ± 0.0 0.06 ± 1.0e≠2

GAN+MINE (Ours) 1000.0 ± 0.0 0.05 ± 6.9e≠3

Table 5.1. Number of captured modes and Kullblack-Leibler divergence between the training
and samples distributions for DCGAN (Radford et al., 2015), ALI (Dumoulin et al., 2016),
Unrolled GAN (Metz et al., 2017), VeeGAN (Srivastava et al., 2017), PacGAN (Lin et al.,
2017).

(a) Training set (b) DCGAN (c) DCGAN+MINE

Fig. 5.5. Samples from the Stacked MNIST dataset along with generated samples from
DCGAN and DCGAN with MINE. While DCGAN only shows a very limited number of
modes, the inclusion of MINE generates a much better representative set of samples.

5.2. Maximizing mutual information to improve inference in bi-
directional adversarial models

Adversarial bi-directional models were introduced in Adversarially Learned Inference (ALI,
Dumoulin et al., 2016) and BiGAN (Donahue et al., 2016) and are an extension of GANs
which incorporate a reverse model, F : X æ Z jointly trained with the generator. These

63

models formulate the problem in terms of the value function in Eqn. 16 between two joint
distributions, p(x, z) = p(z | x)p(x) and q(x, z) = q(x | z)p(z) induced by the forward
(encoder) and reverse (decoder) models, respectively8.

One goal of bi-directional models is to do inference as well as to learn a good generative
model. Reconstructions are one desirable property of a model that does both inference and
generation, but in practice ALI can lack fidelity (i.e., reconstructs less faithfully than desired,
see Li et al., 2017; Ulyanov et al., 2017; Belghazi et al., 2018). To demonstrate the connection
to mutual information, it can be shown (see the Supplementary Material for details) that the
reconstruction error, R, is bounded by,

R Æ DKL(q(x, z) || p(x, z)) ≠ Iq(x, z) + Hq(z) (18)

If the joint distributions are matched, Hq(z) tends to Hp(z), which is fixed as long as the
prior, p(z), is itself fixed. Subsequently, maximizing the mutual information minimizes the
expected reconstruction error.

Assuming that the generator is the same as with GANs in the previous section, the
objectives for training a bi-directional adversarial model then become:

arg max
D

Eq(x,z)[log D(x, z)] + Ep(x,z)[log (1 ≠ D(x, z))]

arg max
F,G

Eq(x,z)[log (1 ≠ D(x, z))] + Ep(x,z)[log D(x, z)]

+—Iq(x, z). (19)

Related works. Ulyanov et al. (2017) improves reconstructions quality by forgoing the
discriminator and expressing the adversarial game between the encoder and decoder. Kumar
et al. (2017) augments the bi-directional objective by considering the reconstruction and
the corresponding encodings as an additional fake pair. Belghazi et al. (2018) shows that a
Markovian hierarchical generator in a bi-directional adversarial model provide a hierarchy
of reconstructions with increasing levels of fidelity (increasing reconstruction quality). Li
et al. (2017) shows that the expected reconstruction error can be diminished by minimizing
the conditional entropy of the observables given the latent representations. The conditional
entropy being intractable for general posterior, Li et al. (2017) proposes to augment the
generator’s loss with an adversarial cycle consistency loss (Zhu et al., 2017) between the
observables and their reconstructions.

Experiment: ALI+MINE. In this section we compare MINE to existing bi-directional
adversarial models. As the decoder’s density is generally intractable, we use three di�erent
metrics to measure the fidelity of the reconstructions with respect to the samples; (i) the

8We switch to density notations for convenience throughout this section.

64

(a) ALI (b) ALICE (l2) (c) ALICE (A) (d) ALI+MINE

Fig. 5.6. Reconstructions and model samples from adversarially learned inference (ALI)
and variations intended to increase improve reconstructions. Shown left to right are the
baseline (ALI), ALICE with the l2 loss to minimize the reconstruction error, ALICE with
an adversarial loss, and ALI+MINE. Top to bottom are the reconstructions and samples
from the priors. ALICE with the adversarial loss has the best reconstruction, though at the
expense of poor sample quality, where as ALI+MINE captures all the modes of the data in
sample space.

Model Recons.
Error

Recons.
Acc.(%) MS-SSIM

MNIST
ALI 14.24 45.95 0.97
ALICE(l2) 3.20 99.03 0.97
ALICE(Adv.) 5.20 98.17 0.98
MINE 9.73 96.10 0.99

CelebA
ALI 53.75 57.49 0.81
ALICE(l2) 8.01 32.22 0.93
ALICE(Adv.) 92.56 48.95 0.51
MINE 36.11 76.08 0.99

Table 5.2. Comparison of MINE with other bi-directional adversarial models in terms of
euclidean reconstruction error, reconstruction accuracy, and MS-SSIM on the MNIST and
CelebA datasets. MINE does a good job compared to ALI in terms of reconstructions.
Though the explicit reconstruction based baselines (ALICE) can sometimes do better than
MINE in terms of reconstructions related tasks, they consistently lag behind in MS-SSIM
scores and reconstruction accuracy on CelebA.

euclidean reconstruction error, (ii) reconstruction accuracy, which is the proportion of labels
preserved by the reconstruction as identified by a pre-trained classifier; (iii) the Multi-scale
structural similarity metric (MS-SSIM, Wang et al., 2004) between the observables and their
reconstructions.

65

We train MINE on datasets of increasing order of complexity: a toy dataset composed of
25-Gaussians, MNIST (LeCun, 1998), and the CelebA dataset (Liu et al., 2015). Fig. 5.6
shows the reconstruction ability of MINE compared to ALI. Although ALICE does perfect
reconstruction (which is in its explicit formulation), we observe significant mode-dropping in
the sample space. MINE does a balanced job of reconstructing along with capturing all the
modes of the underlying data distribution.

Next, we measure the fidelity of the reconstructions over ALI, ALICE, and MINE. Tbl. 2
compares MINE to the existing baselines in terms of euclidean reconstruction errors, re-
construction accuracy, and MS-SSIM. On MNIST, MINE outperforms ALI in terms of
reconstruction errors by a good margin and is competitive to ALICE with respect to recon-
struction accuracy and MS-SSIM. Our results show that MINE’s e�ect on reconstructions is
even more dramatic when compared to ALI and ALICE on the CelebA dataset.

5.3. Information Bottleneck

The Information Bottleneck (IB, Tishby et al., 2000) is an information theoretic method
for extracting relevant information, or yielding a representation, that an input X œ X contains
about an output Y œ Y . An optimal representation of X would capture the relevant factors
and compress X by diminishing the irrelevant parts which do not contribute to the prediction
of Y . IB was recently covered in the context of deep learning (Tishby & Zaslavsky, 2015), and
as such can be seen as a process to construct an approximation of the minimally su�cient
statistics of the data. IB seeks an encoder, q(Z | X), that induces the Markovian structure
X æ Z æ Y . This is done by minimizing the IB Lagrangian,

L[q(Z | X)] = H(Y |Z) + —I(X,Z), (20)

which appears as a standard cross-entropy loss augmented with a regularizer promoting
minimality of the representation (Achille & Soatto, 2017). Here we propose to estimate the
regularizer with MINE.

Related works. In the discrete setting, Tishby et al. (2000) uses the Blahut-Arimoto
Algorithm Arimoto (1972), which can be understood as cyclical coordinate ascent in function
spaces. While IB is successful and popular in a discrete setting, its application to the
continuous setting was stifled by the intractability of the continuous mutual information.
Nonetheless, IB was applied in the case of jointly Gaussian random variables in Chechik et al.
(2005).

In order to overcome the intractability of I(X; Z) in the continuous setting, Alemi et al.
(2016); Kolchinsky et al. (2017); Chalk et al. (2016) exploit the variational bound of Barber
& Agakov (2003) to approximate the conditional entropy in I(X; Z). These approaches di�er

66

only on their treatment of the marginal distribution of the bottleneck variable: Alemi et al.
(2016) assumes a standard multivariate normal marginal distribution, Chalk et al. (2016) uses
a Student-t distribution, and Kolchinsky et al. (2017) uses non-parametric estimators. Due
to their reliance on a variational approximation, these methods require a tractable density
for the approximate posterior, while MINE does not.

Experiment: Permutation-invariant MNIST classification. Here, we demonstrate
an implementation of the IB objective on permutation invariant MNIST using MINE. We
compare to the Deep Variational Bottleneck (DVB, Alemi et al., 2016) and use the same
empirical setup. As the DVB relies on a variational bound on the conditional entropy, it
therefore requires a tractable density. Alemi et al. (2016) opts for a conditional Gaussian
encoder z = µ(x) + ‡ § ‘, where ‘ ≥ N (0, I). As MINE does not require a tractable
density, we consider three type of encoders: (i) a Gaussian encoder as in Alemi et al. (2016);
(ii) an additive noise encoder, z = enc(x + ‡ § ‘); and (iii) a propagated noise encoder,
z = enc([x, ‘]). Our results can be seen in Tbl. 5.3, and this shows MINE as being superior
in these settings.

Model Misclass. rate(%)
Baseline 1.38%
Dropout 1.34%

Confidence penalty 1.36%
Label Smoothing 1.40%

DVB 1.13%
DVB + Additive noise 1.06%
MINE(Gaussian) (ours) 1.11%

MINE(Propagated) (ours) 1.10%
MINE(Additive) (ours) 1.01%

Table 5.3. Permutation Invariant MNIST misclassification rate using Alemi et al. (2016)
experimental setup for regularization by confidence penalty (Pereyra et al., 2017), label
smoothing (Pereyra et al., 2017), Deep Variational Bottleneck(DVB) (Alemi et al., 2016)
and MINE. The misclassification rate is averaged over ten runs. In order to control for the
regularizing impact of the additive Gaussian noise in the additive conditional, we also report
the results for DVB with additional additive Gaussian noise at the input. All non-MINE
results are taken from Alemi et al. (2016).

6. Conclusion

We proposed a mutual information estimator, which we called the mutual information
neural estimator (MINE), that is scalable in dimension and sample-size. We demonstrated

67

the e�ciency of this estimator by applying it in a number of settings. First, a term of
mutual information can be introduced alleviate mode-dropping issue in generative adversarial
networks (GANs, Goodfellow et al., 2014a). Mutual information can also be used to improve
inference and reconstructions in adversarially-learned inference (ALI, Dumoulin et al., 2016).
Finally, we showed that our estimator allows for tractable application of Information bottleneck
methods (Tishby et al., 2000) in a continuous setting.

68

Chapter 6

Conclusion

In this thesis, we described the results of some preliminary investigations towards a better
understanding of generalization in deep learning. We formulated the hypothesis that neural
network training is biased towards learning simple functions supported on a small number of
highly predictive features. As an attempt to understand the role of feature learning in such a
bias, we studied the evolution of the neural tangent kernel and its spectrum during training.
We highlighted a combined mechanism of feature selection and geometrical compression, and
argue that it helps the network adapt to the intrinsic complexity of the problem. Finally,
as a contribution to the deep learning toolbox, we proposed and studied a new estimator of
mutual information, which plays a central role in some approaches to representation learning;
and we used it as an attempt to enhance deep generative models.

This work opens several avenues for further investigation. Understanding the representa-
tion learning dynamics is key to explain generalization. This is a hard problem, but theoretical
insights can be derived in simplified settings. For example, for deep linear networks trained
on linearly separable data with logistic loss, Ji & Telgarsky (2019) analytically derive a
mechanism, closely related to the one described in Chapter 4, of a dynamical alignment of the
weight matrices along the max-margin direction. The hierarchical feature alignment observed
in Section 3.4 deserves deeper analysis. Further experiments could explore training on more
hierarchically structured data such as the dataset used in Saxe et al. (2019). Known results
about the sequential learning dynamics of deep linear networks (Saxe et al., 2014; Lampinen
et al., 2018; Gidel et al., 2019) or in matrix factorization (Gunasekar et al., 2017) should
be extended to the non-linear case. Precise conditions under which ‘subdominant’ patterns
of hierarchical data can be learned without a�ecting the performance of the dominant ones
should be investigated; this can viewed as a generalization of the phenomenon of benign
overfitting (Bartlett et al., 2019b, 2021a). An important theoretical problem is also to amend
the classical generalization bound techniques so as to integrate and explain such a behaviour.

More broadly, we seek a deeper theoretical understanding and a better control of the way
the network distributes its capacity during training depending on geometrical and statistical
skews in the data, and articulates learning and memorization to both fit the head and the
(long) tail of the data distribution (Sagawa et al., 2020a,b; Hooker et al., 2020; Feldman
& Zhang, 2020). This requires reliable metrics that quantify memorization, e.g., through
the notion of influence each training example has on the model’s test predictions (Koh &
Liang, 2017; Barshan et al., 2020), and use these as regularizers to bias learning towards
more diverse representations and more robust models.

70

References

A Achille and S Soatto. Emergence of invariance and disentanglement in deep representations.
arXiv preprint 1706.01350v2[cs.LG], 2017.

Madhu S Advani and Andrew M Saxe. High-dimensional dynamics of generalization error in
neural networks. arXiv preprint arXiv:1710.03667, 2017.

Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational
information bottleneck. arXiv preprint arXiv:1612.00410, 2016.

S. M. Ali and S. D. Silvey. A general class of coe�cients of divergence of one distribution
from another. Journal of the Royal Statistical Society: Series B (Methodological), 28(1):
131–142, 1966. doi: https://doi.org/10.1111/j.2517-6161.1966.tb00626.x.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning
via over-parameterization. volume 97 of Proceedings of Machine Learning Research, pp.
242–252, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

Shun-Ichi Amari. Natural gradient works e�ciently in learning. Neural computation, 10(2):
251–276, 1998.

Shun-Ichi Amari. Information Geometry and Its Applications, volume 194. Springer, 2016.

Suguru Arimoto. An algorithm for computing the capacity of arbitrary discrete memoryless
channels. IEEE Transactions on Information Theory, 18(1):14–20, 1972.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk
minimization. arXiv preprint arXiv:1907.02893, 2019.

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding
deep neural networks with rectified linear units. In International Conference on Learning
Representations, 2018a.

Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and
equilibrium in generative adversarial nets (gans). In ICML, pp. 224–232, 2017.

Sanjeev Arora, Rong Ge, Behnam @phdthesis, and Yi Zhang. Stronger generalization bounds
for deep nets via a compression approach. arXiv preprint arXiv:1802.05296, 2018b.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d�Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio,
Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al.
A closer look at memorization in deep networks. arXiv preprint arXiv:1706.05394, 2017.

Aharon Azulay and Yair Weiss. Why do deep convolutional networks generalize so poorly to
small image transformations?, 2019.

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by
maximizing mutual information across views. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d�Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

A Banerjee. On baysian bounds. ICML, pp. 81–88, 2006.

David Barber and Felix Agakov. The im algorithm: a variational approach to information
maximization. In Proceedings of the 16th International Conference on Neural Information
Processing Systems, pp. 201–208. MIT Press, 2003.

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Transactions on Information theory, 39(3):930–945, 1993.

Elnaz Barshan, Marc-Etienne Brunet, and Gintare Karolina Dziugaite. Relatif: Identifying
explanatory training samples via relative influence. In Silvia Chiappa and Roberto Calandra
(eds.), Proceedings of the Twenty Third International Conference on Artificial Intelligence
and Statistics, volume 108 of Proceedings of Machine Learning Research, pp. 1899–1909,
Online, 26–28 Aug 2020. PMLR.

Peter Bartlett and Shai Ben-David. Hardness results for neural network approximation
problems. In Paul Fischer and Hans Ulrich Simon (eds.), Computational Learning Theory,
pp. 50–62, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. ISBN 978-3-540-49097-5.

Peter Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear vc dimension bounds for
piecewise polynomial networks. In M. Kearns, S. Solla, and D. Cohn (eds.), Advances in
Neural Information Processing Systems, volume 11. MIT Press, 1999.

Peter L. Bartlett. For valid generalization, the size of the weights is more important than
the size of the network. In Proceedings of the 9th International Conference on Neural
Information Processing Systems, NIPS’96, pp. 134–140, Cambridge, MA, USA, 1996. MIT
Press.

72

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. JMLR, 2002.

Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin
bounds for neural networks. In NIPS, 2017.

Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight
vc-dimension and pseudodimension bounds for piecewise linear neural networks. Journal
of Machine Learning Research, 20(63):1–17, 2019a.

Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in
linear regression. arXiv preprint arXiv:1906.11300[stat.ML], 2019b.

Peter L. Bartlett, Philip M. Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in
linear regression. Proceedings of the National Academy of Sciences, 117(48):30063–30070,
2020. ISSN 0027-8424. doi: 10.1073/pnas.1907378117.

Peter L. Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical
viewpoint. arXiv:2103.09177 [math.ST], 2021a.

Peter L. Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical
viewpoint. arxiv preprint arXiv 2103.0917 [math.ST], 2021b.

Ronen Basri, David Jacobs, Yoni Kasten, and Shira Kritchman. The convergence rate of
neural networks for learned functions of di�erent frequencies. In Advances in Neural
Information Processing Systems 32, pp. 4761–4771. 2019.

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceedings
of the European Conference on Computer Vision (ECCV), September 2018.

Mohamed Ishmael Belghazi, Sai Rajeswar, Olivier Mastropietro, Jovana Mitrovic, Negar
Rostamzadeh, and Aaron Courville. Hierarchical adversarially learned inference. arXiv
preprint arXiv:1802.01071, 2018.

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to
understand kernel learning. In ICML, 2018.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-o�. Proceedings of the National
Academy of Sciences, 116(32):15849–15854, 2019a.

Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features.
arXiv preprint arXiv:1903.07571, 2019b.

Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux, Jean-François Paiement, Pascal Vincent,
and Marie Ouimet. Learning eigenfunctions links spectral embedding and kernel PCA.
Neural Computation, 16(10):2197–2219, 2004.

73

Yoshua Bengio et al. Learning deep architectures for ai. Foundations and trends® in Machine
Learning, 2(1):1–127, 2009.

Steven Bergner, Torsten Möller, Daniel Weiskopf, and David J Muraki. A spectral analysis
of function concatenations and its implications for sampling in direct volume visualization.

Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. In Advances
in Neural Information Processing Systems 32, pp. 12893–12904. 2019.

David M. Blei, Alp Kucukelbir, and Jon D. McAuli�e. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017. doi:
10.1080/01621459.2017.1285773.

Avrim Blum and Ronald Rivest. Training a 3-node neural network is np-complete. In
D. Touretzky (ed.), Advances in Neural Information Processing Systems, volume 1. Morgan-
Kaufmann, 1989.

Siegfried Bös. Statistical mechanics approach to early stopping and weight decay. Phys. Rev.
E, 58:833–844, Jul 1998. doi: 10.1103/PhysRevE.58.833.

S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities. A nonasymptotic theory
of independence. Oxford University Press, 2013.

Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to statistical learning
theory. In Olivier Bousquet, Ulrike von Luxburg, and Gunnar Rätsch (eds.), Advanced
Lectures on Machine Learning, volume 3176 of Lecture Notes in Computer Science, pp.
169–207. Springer, 2003. ISBN 3-540-23122-6.

Mikio L Braun. Spectral properties of the kernel matrix and their relation to kernel methods
in machine learning. PhD thesis, Universitäts-und Landesbibliothek Bonn, 2005.

Mikio L Braun, Tilman Lange, and Joachim M Buhmann. Model selection in kernel methods
based on a spectral analysis of label information. In Joint Pattern Recognition Symposium,
pp. 344–353. Springer, 2006.

Andrew Brock, Je� Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
natural image synthesis. In International Conference on Learning Representations, 2019.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478
[cs.LG], 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel Ziegler, Je�rey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric

74

Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901.
Curran Associates, Inc., 2020.

Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities
in commercial gender classification. In Sorelle A. Friedler and Christo Wilson (eds.),
Proceedings of the 1st Conference on Fairness, Accountability and Transparency, volume 81
of Proceedings of Machine Learning Research, pp. 77–91. PMLR, 2018.

Atul J Butte and Isaac S Kohane. Mutual information relevance networks: functional genomic
clustering using pairwise entropy measurements. In Pac Symp Biocomput, volume 5, pp. 26,
2000.

Emmanuel J Candès. Harmonic analysis of neural networks. Applied and Computational
Harmonic Analysis, 6(2):197–218, 1999.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand
Joulin. Unsupervised learning of visual features by contrasting cluster assignments. arXiv
preprint arXiv:2006.09882, 2020.

Matthew Chalk, Olivier Marre, and Gasper Tkacik. Relevant sparse codes with variational
information bottleneck. In Advances in Neural Information Processing Systems, pp. 1957–
1965, 2016.

Satrajit Chatterjee. Coherent gradients: An approach to understanding generalization in gra-
dient descent-based optimization. In International Conference on Learning Representations,
2020.

Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li. Mode regularized
generative adversarial networks. arXiv preprint arXiv:1612.02136, 2016.

Gal Chechik, Amir Globerson, Naftali Tishby, and Yair Weiss. Information bottleneck for
gaussian variables. Journal of Machine Learning Research, 6(Jan):165–188, 2005.

Kumar Chellapilla, Sidd Puri, and Patrice Simard. High Performance Convolutional Neural
Networks for Document Processing. In Guy Lorette (ed.), Tenth International Workshop
on Frontiers in Handwriting Recognition, La Baule (France), October 2006. Université de
Rennes 1, Suvisoft. http://www.suvisoft.com.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geo�rey Hinton. A simple framework
for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
Infogan: Interpretable representation learning by information maximizing generative

75

adversarial nets. In Advances in Neural Information Processing Systems, pp. 2172–2180,
2016.

Lénaïc Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 31, pp. 3036–3046. Curran Associates, Inc., 2018.

Lénaïc Chizat, Edouard Oyallon, and Francis Bach. On lazy training in di�erentiable
programming. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d�Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto,
and David Ha. Deep learning for classical japanese literature. 2018.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). CoRR, abs/1511.07289, 2015.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels
based on centered alignment. JMLR, 13(1):795–828, 2012. ISSN 1532-4435.

Nello Cristianini, John Shawe-Taylor, André Elissee�, and Jaz S. Kandola. On kernel-target
alignment. In NIPS. 2002.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals, and Systems (MCSS), 2(4):303–314, 1989.

Alexander D’Amour, Katherine Heller, Dan Moldovan, and et al. Underspecification presents
challenges for credibility in modern machine learning. arXiv preprint arXiv:2011.03395
[cs.LG], 2020.

Amit Daniely, Sivan Sabato, Shai Ben-David, and Shai Shalev-Shwartz. Multiclass learnability
and the erm principle. In Sham M. Kakade and Ulrike von Luxburg (eds.), Proceedings
of the 24th Annual Conference on Learning Theory, volume 19 of Proceedings of Machine
Learning Research, pp. 207–232, Budapest, Hungary, 09–11 Jun 2011. PMLR.

Georges A Darbellay and Igor Vajda. Estimation of the information by an adaptive partitioning
of the observation space. IEEE Transactions on Information Theory, 45(4):1315–1321,
1999.

Je�rey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc� au-
relio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc Le, and Andrew Ng. Large
scale distributed deep networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger (eds.), Advances in Neural Information Processing Systems, volume 25. Curran
Associates, Inc., 2012.

76

Luc Devroye, László Györfi, and Gábor Lugosi. Consistency of the k-nearest neighbor rule.
In A Probabilistic Theory of Pattern Recognition, pp. 169–185. Springer, 1996.

Ricardo Diaz, Quang-Nhat Le, and Sinai Robins. Fourier transforms of polytopes, solid angle
sums, and discrete volume. arXiv preprint arXiv:1602.08593, 2016.

Je� Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv
preprint arXiv:1605.09782, 2016.

David L. Donoho. High-dimensional data analysis: The curses and blessings of dimensionality.
In AMS Conference on math challenges of the 21st century, 2000.

M.D Donsker and S.R.S Varadhan. Asymptotic evaluation of certain markov process expecta-
tions for large time, iv. Communications on Pure and Applied Mathematics, 36(2):183?212,
1983.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred A Hamprecht. Essentially no
barriers in neural network energy landscape. arXiv preprint arXiv:1803.00885, 2018.

Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds
global minima of deep neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine
Learning Research, pp. 1675–1685. PMLR, 2019a.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. In International Conference on Learning
Representations, 2019b.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier
Mastropietro, and Aaron Courville. Adversarially learned inference. arXiv preprint
arXiv:1606.00704, 2016.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds
for deep (stochastic) neural networks with many more parameters than training data. In
Proceedings of the 33rd Annual Conference on Uncertainty in Artificial Intelligence (UAI),
2017.

Gintare Karolina Dziugaite, Alexandre Drouin, Brady Neal, Nitarshan Rajkumar, Ethan
Caballero, Linbo Wang, Ioannis Mitliagkas, and Daniel M. Roy. In search of robust measures
of generalization. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020.

77

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In
Conference on Learning Theory, pp. 907–940, 2016.

Akram Erraqabi, Aristide Baratin, Yoshua Bengio, and Simon Lacoste-Julien. A3t: Ad-
versarially augmented adversarial training. Machine Deception Workshop, NIPS 2017,
2017.

Gregory E Fasshauer. Positive definite kernels: past, present and future. Dolomite Research
Notes on Approximation, 4:21–63, 2011.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and e�cient sparsity. CoRR, abs/2101.03961, 2021.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering
the long tail via influence estimation. arXiv preprint arXiv:2008.03703 [cs.LG], 2020.

Stanislav Fort, Pawel Krzysztof Nowak, Stanislaw Jastrzebski, and Srini Narayanan. Sti�ness:
A new perspective on generalization in neural networks. arXiv preprint arXiv:1901.09491,
2019.

Stanislav Fort, Karolina Gintare Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M.
Roy, and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss
landscape geometry and the time evolution of the neural tangent kernel. arXiv preprint
arXiv:2010.15110 [cs.LG], 2020.

Andrew M Fraser and Harry L Swinney. Independent coordinates for strange attractors from
mutual information. Physical review A, 33(2):1134, 1986.

Shuyang Gao, Greg Ver Steeg, and Aram Galstyan. E�cient estimation of mutual information
for strongly dependent variables. Arxiv preprint arXiv:1411.2003[cs.IT], 2014.

Mario Geiger, Stefano Spigler, Stéphane d’Ascoli, Levent Sagun, Marco Baity-Jesi, Giulio
Biroli, and Matthieu Wyart. Jamming transition as a paradigm to understand the loss
landscape of deep neural networks. Physical Review E, 100(1):012115, 2019.

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature
and lazy training in deep neural networks. 2020(11):113301, nov 2020a. doi: 10.1088/
1742-5468/abc4de.

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature
and lazy training in deep neural networks. Journal of Statistical Mechanics: Theory and
Experiment, 2020(11):113301, nov 2020b. doi: 10.1088/1742-5468/abc4de.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. arxiv
preprint arXiv:2004.07780 [cs.CV], 2020.

78

Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance
dilemma. Neural Computation, 4(1):1–58, 1992. doi: 10.1162/neco.1992.4.1.1.

Thomas George. NNGeometry: Easy and Fast Fisher Information Matrices and Neural
Tangent Kernels in PyTorch, February 2021.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When do neural
networks outperform kernel methods? arXiv preprint arXiv:2006.13409[stat.ML], 2020.

Arnab Ghosh, Viveka Kulharia, Vinay Namboodiri, Philip HS Torr, and Puneet K Dokania.
Multi-agent diverse generative adversarial networks. arXiv preprint arXiv:1704.02906,
2017.

Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete
gradient dynamics in linear neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing
Systems 32, pp. 3202–3211. Curran Associates, Inc., 2019.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Geo�rey Gordon, David Dunson, and Miroslav Dudík (eds.), Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings
of Machine Learning Research, pp. 315–323, Fort Lauderdale, FL, USA, 11–13 Apr 2011.
PMLR.

Surbhi Goel, Adam R. Klivans, Pasin Manurangsi, and Daniel Reichman. Tight hardness
results for training depth-2 relu networks. In ITCS, pp. 22:1–22:14, 2021.

Micah Goldblum, Jonas Geiping, Avi Schwarzschild, Michael Moeller, and Tom Gold-
stein. Truth or backpropaganda? an empirical investigation of deep learning theory.
arXiv:1910.00359 [cs.LG], 2020.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity
of neural networks. arXiv preprint arXiv:1712.06541, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pp. 2672–2680, 2014a.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press, 2016a.
ISBN 0262035618, 9780262035613.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016b.
http://www.deeplearningbook.org.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014b.

79

Arthur Gretton, Olivier Bousquet, Alexander Smola, and Bernhard Schölkopf. Measuring
statistical dependence with hilbert-schmidt norms, 2005.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and
Nati Srebro. Implicit regularization in matrix factorization. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in
Neural Information Processing Systems, volume 30, pp. 6151–6159. Curran Associates, Inc.,
2017.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit
bias in terms of optimization geometry. In Jennifer Dy and Andreas Krause (eds.), ICML,
volume 80 of Proceedings of Machine Learning Research, pp. 1832–1841, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018. PMLR.

L Györfi and E. C van der Meulen. Density-free convergence properties of various estimators
of entropy. Computational Statistics and Data Analysis, 5:425?436, 1987.

Barbara Hammer and Kai Gersmann. A note on the universal approximation capability of
support vector machines. Neural Processing Letters, 17(1):43–53, 2003.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning:
data mining, inference and prediction. Springer, 2009.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in
high-dimensional ridgeless least squares interpolation. arXiv:1903.08560 [math.ST], 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. In International Conference on Learning Representations,
2019.

Elad Ho�er, Itay Hubara, and Daniel Soudry. Train longer, generalize better: Closing the
generalization gap in large batch training of neural networks. In NIPS, 2017.

Sara Hooker, Aaron Courville, Gregory Clark, Yann Dauphin, and Andrea Frome. What do
compressed deep neural networks forget? arXiv preprint arXiv:1911.05248 [cs.LG], 2020.

80

K Hornik. Multilayer feedforward networks are universal approximators. Neural Networks, 2:
359–366, 1989.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366, 1989.

Gabriel Huang, Hugo Berard, Ahmed Touati, Gauthier Gidel, Pascal Vincent, and Simon
Lacoste-Julien. Parametric adversarial divergences are good task losses for generative
modeling. arXiv preprintarXiv:1708.02511, 2017.

Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent component analysis, volume 46.
John Wiley & Sons, 2004.

Sergey Io�e and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. In NIPS, pp. 8571–8580. 2018.

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the
best multi-stage architecture for object recognition? In 2009 IEEE 12th International
Conference on Computer Vision, pp. 2146–2153, 2009. doi: 10.1109/ICCV.2009.5459469.

Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In
International Conference on Learning Representations, 2019.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio.
Fantastic generalization measures and where to find them. In International Conference on
Learning Representations, 2020.

J. Stephen Judd. On the complexity of loading shallow neural networks. J. Complex., 4(3):
177–192, 1988. doi: 10.1016/0885-064X(88)90019-2.

K Kandasamy, A Krishnamurthy, B Poczos, L Wasserman, and J.M Robins. Nonparametric
von mises estimators for entropies, divergences and mutual informations. NIPS, 2017.

Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Pathological spectra of the fisher
information metric and its variants in deep neural networks. arXiv:1910.05992 [stat.ML],
2019a.

Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal statistics of fisher information
in deep neural networks: Mean field approach. AISTATS 2019, 2019b.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs
for improved quality, stability, and variation. In International Conference on Learning
Representations, 2018.

81

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp
minima. arXiv preprint arXiv:1609.04836, 2016.

Amor Keziou. Dual representation of phi-divergences and applications. 336:857–862, 05 2003.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR
(Poster), 2015.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Ban�, AB, Canada, April 14-16,
2014, Conference Track Proceedings, 2014.

Justin B Kinney and Gurinder S Atwal. Equitability, mutual information, and the maximal
information coe�cient. Proceedings of the National Academy of Sciences, 111(9):3354–3359,
2014.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1885–
1894, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

Artemy Kolchinsky, Brendan D Tracey, and David H Wolpert. Nonlinear information
bottleneck. arXiv preprint arXiv:1705.02436, 2017.

Esben L Kolsbjerg, Michael N Groves, and Bjork Hammer. An automated nudged elastic
band method. The Journal of chemical physics, 145(9):094107, 2016.

D. Kopitkov and V. Indelman. Neural spectrum alignment: Empirical study. In International
Conference on Artificial Neural Networks (ICANN), September 2020.

Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information.
Physical review E, 69(6):066138, 2004.

Alex Krizhevsky and Geo�rey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger (eds.), Advances in Neural Information Processing Systems, volume 25. Curran
Associates, Inc., 2012.

Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

82

Abhishek Kumar, Prasanna Sattigeri, and P Thomas Fletcher. Improved semi-supervised
learning with gans using manifold invariances. arXiv preprint arXiv:1705.08850, 2017.

Nojun Kwak and Chong-Ho Choi. Input feature selection by mutual information based on
parzen window. IEEE transactions on pattern analysis and machine intelligence, 24(12):
1667–1671, 2002.

Andrew K Lampinen, Andrew K Lampinen, and Surya Ganguli. An analytic theory of
generalization dynamics and transfer learning in deep linear networks. arXiv.org, 2018.

S. Lang. Fundamentals of Di�erential Geometry. Graduate Texts in Mathematics. Springer
New York, 2012. ISBN 9781461205418.

John Langford and Rich Caruana. (not) bounding the true error. In T. Dietterich, S. Becker,
and Z. Ghahramani (eds.), Advances in Neural Information Processing Systems, volume 14.
MIT Press, 2002.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperimetry and Processes.
Springer Science & Business, New York, 2013.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Je�rey Pennington. Wide neural networks of any depth evolve as linear
models under gradient descent. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché
Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems
32, pp. 8572–8583. Curran Associates, Inc., 2019.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and Yee Whye Teh.
Set transformer: A framework for attention-based permutation-invariant neural networks.
In ICML, 2018.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function. Neural
networks, 6(6):861–867, 1993.

Chunyuan Li, Hao Liu, Changyou Chen, Yunchen Pu, Liqun Chen, Ricardo Henao, and
Lawrence Carin. Towards understanding adversarial learning for joint distribution matching.
arXiv preprint arXiv:1709.01215, 2017.

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric,
geometry, and complexity of neural networks. In Proceedings of Machine Learning Research,

83

volume 89, pp. 888–896, 2019.

Junyang Lin, An Yang, Jinze Bai, Chang Zhou, Le Jiang, Xianyan Jia, Ang Wang, Jie Zhang,
Yong Li, Wei Lin, Jingren Zhou, and Hongxia Yang. M6-10t: A sharing-delinking paradigm
for e�cient multi-trillion parameter pretraining. arXiv preprint arXiv:2110.03888 [cs.LG],
2021.

Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong Oh. Pacgan: The power of two samples
in generative adversarial networks. arXiv preprint arXiv:1712.04086, 2017.

R. Linsker. Self-organization in a perceptual network. Computer, 21(3):105–117, 1988. doi:
10.1109/2.36.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in
the wild. In Proceedings of the IEEE International Conference on Computer Vision, pp.
3730–3738, 2015.

Bruno Loureiro, Cédric Gerbelot, Hugo Cui, Sebastian Goldt, Florent Krzakala, Marc Mézard,
and Lenka Zdeborová. Capturing the learning curves of generic features maps for realistic
data sets with a teacher-student model. CoRR, abs/2102.08127, 2021.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive
power of neural networks: A view from the width. In Advances in Neural Information
Processing Systems, pp. 6231–6239, 2017.

Siyuan Ma and Mikhail Belkin. Diving into the shallows: a computational perspective on
large-scale shallow learning. In Advances in Neural Information Processing Systems, pp.
3781–3790, 2017.

Wolfgang Maass. Neural nets with superlinear vc-dimension. Neural Computation, 6(5):
877–884, 1994. doi: 10.1162/neco.1994.6.5.877.

Frederik Maes, Andre Collignon, Dirk Vandermeulen, Guy Marchal, and Paul Suetens. Mul-
timodality image registration by maximization of mutual information. IEEE transactions
on Medical Imaging, 16(2):187–198, 1997.

David McAllester and Karl Stratos. Formal limitations on the measurement of mutual
information. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the Twenty
Third International Conference on Artificial Intelligence and Statistics, volume 108 of
Proceedings of Machine Learning Research, pp. 875–884. PMLR, 26–28 Aug 2020.

David A. McAllester. Pac-bayesian model averaging. In In Proceedings of the Twelfth Annual
Conference on Computational Learning Theory, pp. 164–170. ACM Press, 1999.

Song Mei and Andrea Montanari. The generalization error of random features regression:
Precise asymptotics and double descent curve. arXiv:1908.05355 [math.ST], 2019.

84

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape
of two-layer neural networks. Proceedings of the National Academy of Sciences, 115(33):
E7665–E7671, 2018. ISSN 0027-8424. doi: 10.1073/pnas.1806579115.

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial
networks. 2017.

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant
representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral nor-
malization for generative adversarial networks. In International Conference on Learning
Representations, 2019.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine
Learning. The MIT Press, 2012. ISBN 026201825X, 9780262018258.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number
of linear regions of deep neural networks. In Advances in neural information processing
systems, pp. 2924–2932, 2014.

K.R Moon, K Sricharan, and A. O Hero III. Ensemble estimation of mutual information.
arXiv preprint arXiv:1701.08083, 2017.

Young-Il Moon, Balaji Rajagopalan, and Upmanu Lall. Estimation of mutual information
using kernel density estimators. Physical Review E, 52(3):2318, 1995.

Vidya Muthukumar, Kailas Vodrahalli, Vignesh Subramanian, and Anant Sahai. Harmless
interpolation of noisy data in regression. arXiv preprint arXiv:1903.09139[cs.LG], 2019.

Vidya Muthukumar, Adhyyan Narang, Vignesh Subramanian, Mikhail Belkin, Daniel Sahai,
Hsu, and Anant Sahai. Classification vs regression in overparameterized regimes: Does the
loss function matter? arXiv preprint arXiv:2005.08054 [cs.LG], 2020.

Alfred Müller. Integral probability metrics and their generating classes of functions. Advances
in Applied Probability, 29(2):429–443, 1997. doi: 10.2307/1428011.

Vaishnavh Nagarajan and J. Zico Kolter. Uniform convergence may be unable to explain
generalization in deep learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d�Alché-
Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems
32, pp. 11615–11626. Curran Associates, Inc., 2019a.

Vaishnavh Nagarajan and Zico Kolter. Deterministic PAC-bayesian generalization bounds for
deep networks via generalizing noise-resilience. In International Conference on Learning
Representations, 2019b.

85

Preetum Nakkiran, Gal Kaplun, Dimitris Kalimeris, Tristan Yang, Benjamin L. Edelman,
Fred Zhang, and Boaz Barak. SGD on neural networks learns functions of increasing
complexity. In NeurIPS 2019 (spotlight), volume abs/1905.11604, 2019.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever.
Deep double descent: Where bigger models and more data hurt. In International Conference
on Learning Representations, 2020.

B. K. Natarajan. On learning sets and functions. Machine Learning, 4:67–97, 1989.

Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna, Simon
Lacoste-Julien, and Ioannis Mitliagkas. A modern take on the bias-variance tradeo� in
neural networks. arXiv:1810.08591 [cs.LG], 2018.

MEJ Newman. Power laws, pareto distributions and zipf’s law. Contemporary Physics, 46(5):
323–351, 2005. doi: 10.1080/00107510500052444.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias:
On the role of implicit regularization in deep learning. ICLR workshop track, 2015.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring
generalization in deep learning. In Advances in Neural Information Processing Systems, pp.
5949–5958, 2017a.

Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan Srebro. Geometry
of optimization and implicit regularization in deep learning. arXiv:1705.03071 [cs.LG],
2017b.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian approach to
spectrally-normalized margin bounds for neural networks. In International Conference on
Learning Representations, 2018.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro.
Towards understanding the role of over-parametrization in generalization of neural networks.
International Conference on Learning Representations (ICLR), 2019.

Tu Nguyen, Trung Le, Hung Vu, and Dinh Phung. Dual discriminator generative adversarial
nets. In Advances in Neural Information Processing Systems, pp. 2667–2677, 2017.

XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence
functionals and the likelihood ratio by convex risk minimization. IEEE Transactions on
Information Theory, 56(11):5847–5861, 2010.

Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Je�rey Pennington, and Jascha Sohl-
Dickstein. Sensitivity and generalization in neural networks: an empirical study. In
International Conference on Learning Representations, 2018.

86

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural
samplers using variational divergence minimization. In Advances in Neural Information
Processing Systems, pp. 271–279, 2016.

Manfred Opper. Statistical mechanics of learning: Generalization. The Handbook of Brain
Theory and Neural Networks, 922-925., 1995.

Guillermo Ortiz-Jiménez, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. What can
linearized neural networks actually say about generalization? arXiv:2106.06770 [cs.LG],
2021.

Jonas Paccolat, Leonardo Petrini, Mario Geiger, Kevin Tyloo, and Matthieu Wyart. Geometric
compression of invariant manifolds in neural networks. Journal Of Statistical Mechanics-
Theory And Experiment, 2021(4):044001, 2021.

Liam Paninski. Estimation of entropy and mutual information. Neural computation, 15(6):
1191–1253, 2003.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing
Systems 32, pp. 8024–8035. Curran Associates, Inc., 2019.

Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual information
criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on
pattern analysis and machine intelligence, 27(8):1226–1238, 2005.

Gabriel Pereyra, George Tucker, Jan Chorowski, £ukasz Kaiser, and Geo�rey Hinton. Reg-
ularizing neural networks by penalizing confident output distributions. ICLR Workshop,
2017.

T Poggio, K Kawaguchi, Q Liao, B Miranda, L Rosasco, X Boix, J Hidary, and HN Mhaskar.
Theory of deep learning iii: the non-overfitting puzzle. Technical report, Technical report,
CBMM memo 073, 2018.

Ben Poole, Subhaneil Lahiri, Maithreyi Raghu, Jascha Sohl-Dickstein, and Surya Ganguli.
Exponential expressivity in deep neural networks through transient chaos. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 29, pp. 3360–3368. Curran Associates, Inc., 2016.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),

87

Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 5171–5180. PMLR, 09–15 Jun 2019.

Ida Mengyi Pu. Fundamental data compression. Butterworth-Heinemann, 2006. ISBN
1-281-03498-3.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On
the expressive power of deep neural networks. arXiv preprint arXiv:1606.05336, 2016.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In Proceedings
of the 36th International Conference on Machine Learning, 2019.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In NIPS,
2007.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced lectures on
machine learning, pp. 63–71. Springer, 2004.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In Eric P. Xing and Tony Jebara
(eds.), Proceedings of the 31st International Conference on Machine Learning, volume 32
of Proceedings of Machine Learning Research, pp. 1278–1286, Bejing, China, 22–24 Jun
2014. PMLR.

G Rockafellar. Convex Analysis. Princeton U, 1970.

Olivier Roy and Martin Vetterli. The e�ective rank: A measure of e�ective dimensionality.
In 2007 15th European Signal Processing Conference, pp. 606–610. IEEE, 2007.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arxiv preprint
arXiv:1609.04747 [cs.LG], 2016.

Avraham Ruderman, Mark Reid, Darío García-García, and James Petterson. Tighter vari-
ational representations of f-divergences via restriction to probability measures. arXiv
preprint arXiv:1206.4664, 2012.

David E. Rumelhart, Geo�rey E. Hinton, and Ronald J. Williams. Learning Representations
by Back-propagating Errors. Nature, 323(6088):533–536, 1986. doi: 10.1038/323533a0.

Yunus Saatchi and Andrew G Wilson. Bayesian gan. In Advances in Neural Information
Processing Systems, pp. 3625–3634, 2017.

Itay Safran and Ohad Shamir. Depth-Width Tradeo�s in Approximating Natural Functions
with Neural Networks. In Proceedings of the 34th International Conference on Machine

88

Learning, pp. 2979–2987. PMLR, 2017.

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally
robust neural networks. In International Conference on Learning Representations, 2020a.

Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of why
overparameterization exacerbates spurious correlations. arXiv:2005.04345 [cs.LG], 2020b.

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans. arXiv preprint arXiv:1606.03498, 2016.

Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro. How do infinite width
bounded norm networks look in function space? In Proceedings of the 32nd Annual
Conference on Learning Theory (COLT), volume PMLR 99, pp. 2667–2690, 2019.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural network. In In International Conference on
Learning Representations, 2014.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. A mathematical theory of
semantic development in deep neural networks. Proceedings of the National Academy of
Sciences, 116(23):11537–11546, 2019. ISSN 0027-8424. doi: 10.1073/pnas.1820226116.

B. Schölkopf, S. Mika, C. J.C. Burges, P. Knirsch, K. R. Muller, G. Ratsch, and A. J. Smola.
Input space versus feature space in kernel-based methods. Trans. Neur. Netw., 10(5):
1000–1017, September 1999a. ISSN 1045-9227.

B. Schölkopf, J. Shawe-Taylor, AJ. Smola, and RC. Williamson. Kernel-dependent support
vector error bounds. In Artificial Neural Networks, 1999. ICANN 99, volume 470 of
Conference Publications, pp. 103–108. Max-Planck-Gesellschaft, IEEE, 1999b.

Andrew W. Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim
Green, Chongli Qin, Augustin Zidek, Alexander W. R. Nelson, Alex Bridgland, Hugo
Penedones, Stig Petersen, Karen Simonyan, Steve Crossan, Pushmeet Kohli, David T.
Jones, David Silver, Koray Kavukcuoglu, and Demis Hassabis. Improved protein structure
prediction using potentials from deep learning. Nature, 577(7792):706–710, 2020. doi:
10.1038/s41586-019-1923-7.

Valery Serov. Fourier series, Fourier transform and their applications to mathematical physics.
Springer, 2017.

H. S. Seung, H. Sompolinsky, and N. Tishby. Statistical mechanics of learning from examples.
Phys. Rev. A, 45:6056–6091, Apr 1992. doi: 10.1103/PhysRevA.45.6056.

Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli.
The pitfalls of simplicity bias in neural networks. In NeurIPS, 2020.

89

Shai Shalev-Schwartz and Shai Ben-David. Understanding Machine Learning - from Theory
to Algorithms. Cambridge university press, 2014.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From Theory
to Algorithms. Cambridge University Press, 2014. ISBN 978-1-10-705713-5.

Haozhe Shan and Blake Bordelon. Rapid feature evolution accelerates learning in neural
networks. arXiv:2105.14301 [stat.ML], 2021.

Claude Elwood Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27:379–423, 1948.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis
Hassabis. Mastering the game of go without human knowledge. Nature, 550:354–, October
2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

S Singh and B Póczos. Finite-sample analysis of fixed-k nearest neighbor density functional
estimators. arXiv preprint 1606.01554, 2016.

Jiaming Song and Stefano Ermon. Understanding the limitations of variational mutual
information estimators. In International Conference on Learning Representations, 2020.

Sho Sonoda and Noboru Murata. Neural network with unbounded activation functions is
universal approximator. Applied and Computational Harmonic Analysis, 43(2):233–268,
2017.

Daniel Soudry, Elad Ho�er, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
implicit bias of gradient descent on separable data. arXiv preprint arXiv:1710.10345, 2017.

Michael Spivak. Calculus On Manifolds: A Modern Approach To Classical Theorems Of
Advanced Calculus. CRC press, 2018.

Nati Srebro, Karthik Sridharan, and Ambuj Tewari. On the universality of online mirror
descent. In Advances in Neural Information Processing Systems 24. 2011.

Sreejith Sreekumar and Ziv Goldfeld. Neural estimation of statistical divergences.
arXiv:2110.03652 [math.ST], 2021.

Akash Srivastava, Lazar Valkov, Chris Russell, Michael Gutmann, and Charles Sutton.
Veegan: Reducing mode collapse in gans using implicit variational learning. arXiv preprint
arXiv:1705.07761, 2017.

90

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger
(eds.), Advances in Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014.

Taiji Suzuki, Masashi Sugiyama, Jun Sese, and Takafumi Kanamori. Approximating mutual
information by maximum likelihood density ratio estimation. In New challenges for feature
selection in data mining and knowledge discovery, pp. 5–20, 2008.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig
Schmidt. Measuring robustness to natural distribution shifts in image classification. arXiv
preprint arXiv:2007.00644 [cs.LG], 2020.

Matus Telgarsky. Benefits of depth in neural networks. Conference on Learning Theory
(COLT), 2016, 2016.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding, 2020.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle.
In Information Theory Workshop (ITW), 2015 IEEE, pp. 1–5. IEEE, 2015.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method.
arXiv preprint physics/0004057, 2000.

Michael Tschannen, Josip Djolonga, Paul K. Rubenstein, Sylvain Gelly, and Mario Lucic. On
mutual information maximization for representation learning. In International Conference
on Learning Representations, 2020.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Adversarial generator-encoder
networks. arXiv preprint arXiv:1704.02304, 2017.

Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984. doi:
10.1145/1968.1972.

Sara Van de Geer. Empirical Processes in M-estimation. Cambridge University Press, 2000.

Marc M Van Hulle. Edgeworth approximation of multivariate di�erential entropy. Neural
computation, 17(9):1903–1910, 2005.

Vladimir N. Vapnik. The nature of statistical learning theory. Springer-Verlag New York,
Inc., 1995. ISBN 0-387-94559-8.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
£ ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

91

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michael Mathieu, Andrew Dudzik,
Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Jun-
hyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor
Cai, John P. Agapiou, Max Jaderberg, Alexander S. Vezhnevets, Remi Leblond, Tobias
Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L. Paine,
Caglar Gulcehre, Ziyu Wang, Tobias Pfa�, Yuhuai Wu, Roman Ring, Dani Yogatama,
Dario Wunsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray
Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver. Grandmaster level in star-
craft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019. doi:
10.1038/s41586-019-1724-z.

Van H. Vu. On the infeasibility of training neural networks with small squared errors. In
M. Jordan, M. Kearns, and S. Solla (eds.), Advances in Neural Information Processing
Systems, volume 10. MIT Press, 1998.

James Vuckovic, Aristide Baratin, and Remi Tachet des Combes. On the regularity of
attention. arXiv preprint arXiv:2007.02876 [stat.ML], 2020.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13:
600–612, 2004.

Timothy L. H. Watkin, Albrecht Rau, and Michael Biehl. The statistical mechanics of
learning a rule. Rev. Mod. Phys., 65:499–556, Apr 1993. doi: 10.1103/RevModPhys.65.499.

Francis Williams, Matthew Trager, Daniele Panozzo, Claudio Silva, Denis Zorin, and Joan
Bruna. Gradient dynamics of shallow univariate relu networks. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d�Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pedro Savarese, Itay
Golan, Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized
models. arXiv:2002.09277 [cs.LG], 2020.

Yuege Xie, Rachel Ward, Holger Rauhut, and Chou Hung-Hsu. Weighted optimization: better
generalization by smoother interpolation. arXiv preprint arXiv:2006.08495, 2020.

Han Xu, Ya Ma, Hao-Chen Liu, Debayan Deb, Hui Liu, Ji-Liang Tang, and Anil K. Jain.
Adversarial attacks and defenses in images, graphs and text: A review. International
Journal of Automation and Computing, 17(2):151–178, 2020.

Zhi-Qin John Xu, Yaoyu Zhang, and Yanyang Xiao. Training behavior of deep neural network
in frequency domain. arXiv preprint arXiv:1807.01251, 2018.

92

Zhi-Qin John Xu, Yaoyu Zhang, and Yanyang Xiao. Training behavior of deep neural network
in frequency domain. In Tom Gedeon, Kok Wai Wong, and Minho Lee (eds.), Neural
Information Processing, pp. 264–274, Cham, 2019. Springer International Publishing. ISBN
978-3-030-36708-4.

Zhiqin John Xu. Understanding training and generalization in deep learning by fourier
analysis. arXiv preprint arXiv:1808.04295, 2018.

Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. arXiv preprint
arXiv:2006.14548 [stat.ML], 2020.

Greg Yang and Edward J. Hu. Tensor programs IV: feature learning in infinite-width neural
networks. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139
of Proceedings of Machine Learning Research, pp. 11727–11737. PMLR, 2021.

Greg Yang and Etai Littwin. Tensor programs iib: Architectural universality of neural tangent
kernel training dynamics. ICML, 2021.

Greg Yang and Hadi Salman. A fine grained spectral perspective on neural networks. arxiv
preprint arXiv:1907.10599[cs.LG], 2019.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks,
94:103–114, 2017. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2017.07.002.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning requires rethinking generalization. ICLR, 2017a.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017b.

Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. Tropical geometry of deep neural networks.
arXiv preprint arXiv:1805.07091, 2018a.

Pengchuan Zhang, Qiang Liu, Dengyong Zhou, Tao Xu, and Xiaodong He. On the
discrimination-generalization tradeo� in GANs. In International Conference on Learning
Representations, 2018b.

Xiao Zhang, Haoyi Xiong, and Dongrui Wu. Rethink the connections among generalization,
memorization, and the spectral bias of dnns. In Zhi-Hua Zhou (ed.), Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual
Event / Montreal, Canada, 19-27 August 2021, pp. 3392–3398. ijcai.org, 2021. doi: 10.
24963/ijcai.2021/467.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593,

93

2017.

94

Appendix A

Spectral Bias: Supplementary Material

A.1. Experimental Details

A.1.1. Experiment 1

We fit a 6 layer ReLU network with 256 units per layer f◊ to the target function ⁄, which
is a superposition of sine waves with increasing frequencies:

⁄ : [0, 1] æ R, ⁄(z) =
X

i

Ai sin(2fikiz + Ïi)

where ki = (5, 10, 15, ..., 50), and Ïi is sampled from the uniform distribution U(0, 2fi). In
the first setting, we set equal amplitude for all frequencies, i.e. Ai = 1 ’ i, while in the second
setting we assign larger amplitudes to the higher frequencies, i.e. Ai = (0.1, 0.2, ..., 1). We
sample ⁄ on 200 uniformly spaced points in [0, 1] and train the network for 80000 steps
of full-batch gradient descent with Adam (Kingma & Ba, 2015). Note that we do not use
stochastic gradient descent to avoid the stochasticity in parameter updates as a confounding
factor. We evaluate the network on the same 200 point grid every 100 training steps and
compute the magnitude of its (single-sided) discrete fourier transform at frequencies ki which
we denote with |f̃ki|. Finally, we plot in figure 3.1 the normalized magnitudes |f̃ki

|
Ai

averaged
over 10 runs (with di�erent sets of sampled phases Ïi). We also record the spectral norms
of the weights at each layer as the training progresses, which we plot in figure 3.1 for both
settings (the spectral norm is evaluated with 10 power iterations). In figure 3.2, we show an
example target function and the predictions of the network trained on it (over the iterations),
and in figure A.1 we plot the loss curves.

(a) Equal Amplitudes. (b) Increasing Amplitudes.

Fig. A.1. Loss curves averaged over multiple runs. (cf. Experiment 1)

A.1.2. Experiment 5

We use the same 6-layer deep 256-unit wide network and define the target function

⁄ : D æ R, z ‘æ ⁄(z) =
X

i

Ai sin(2fikiz + Ïi)

where ki = (20, 40, ..., 180, 200), Ai = 1 ’ i and Ï ≥ U(0, 2fi). We sample „ on a grid with
1000 uniformly spaced points between 0 and 1 and map it to the input domain via “L to
obtain a dataset {(“L(zj), ⁄(zj))}999

j=0, on which we train the network with 50000 full-batch
gradient descent steps of Adam. On the same 1000-point grid, we evaluate the magnitude of
the (single-sided) discrete Fourier transform of f◊ ¶ “L every 100 training steps at frequencies
ki and average over 10 runs (each with a di�erent set of sampled zi’s). Fig 3.8 shows the
evolution of the spectrum as training progresses for L = 0, 4, 10, 16, and Fig 3.8e shows the
corresponding loss curves.

A.1.3. Experiment 3

In Figure A.2, we show the training curves corresponding to Figure 3.4.

A.1.4. Experiment 4

Consider the Gaussian Radial Basis Kernel, given by:

k : X ◊ X æ R, k‡(x, y) ‘æ exp
✓

Îx ≠ yÎ

‡2

◆
(1)

96

(a) k = 0.1 (b) k = 1 (c) — = 0.5 (d) — = 1.

Fig. A.2. (a,b,c,d): Training curves for various settings of noise amplitude — and frequency k
corresponding to Figure 3.4.

where X is a compact subset of Rd and ‡ œ R+ is defined as the width of the kernel1. Since
k is positive definite Fasshauer (2011), Mercer’s Theorem can be invoked to express it as:

k(x, y) =
ŒX

n=1
⁄iÏn(x)Ïn(y) (2)

where Ïn is the eigenfunction of k satisfying:
Z

k(x, y)Ïn(y)dy = Èk(x, ·), ÏnÍ = ⁄nÏn(x) (3)

Due to positive definiteness of the kernel, the eigenvalues ⁄i are non-negative and the
eigenfunctions Ïn form an orthogonal basis of L2(X), i.e. ÈÏi, ÏjÍ = ”ij. The analogy to the
final case is easily seen: let X = xi

N

i=1 be the set of samples, f : X æ R a function. One
obtains (cf. Chapter 4 Rasmussen (2004)):

Èk(x, ·), fÍ =
NX

i=1
k(x, xi)fi (4)

where fi = f(xi). Now, defining K as the positive definite kernel matrix with elements
Kij = k(xixj), we consider it’s eigendecomposition V �V T where � is the diagonal matrix
of (w.l.o.g sorted) eigenvalues ⁄1 Æ ... Æ ⁄N and the columns of V are the corresponding
eigenvectors. This yields:

k(xi, xj) = Kij = (V �V T)ij =
NX

n=1
⁄nvnivnj

Like in Braun et al. (2006), we define the spectrum f̃ [n] of the function f as:

f̃ [n] = f · vn (5)

where f = (f(x1), ..., f(xN)). The value n can be thought of a generalized notion of frequency.
Indeed, it is known Fasshauer (2011); Rasmussen (2004), for instance, that the eigenfunctions
Ïn resemble sinusoids with increasing frequencies (for increasing n or decreasing ⁄n). In
1We drop the subscript ‡ to simplify the notation.

97

(a) Eigenvector with the largest eigenvalue
(n = 1).

(b) Eigenvector with the smallest eigenvalue
(n = 50).

Fig. A.3. Two extreme eigenvectors of the Gaussian RBF kernel for 50 uniformly spaced samples
between 0 and 1.

Figure A.3, we plot the eigenvectors v0 and vN for {xi}
50
i=1 uniformly spaced between [0, 1].

Further, in Figure 3.6 we evaluate the discrete Fourier transform of all N = 50 eigenvectors,
and find that the eigenfunction index n does indeed coincide with frequency k. Finally, we
remark that the link between signal complexity and the spectrum is extensively studied in
Braun et al. (2006).

Fig. A.4. Loss curves for the Figure 3.5. We find that the validation loss dips at around the 200th
iteration.

A.1.4.1. Loss Curves Accompanying Figure 3.5.

A.1.5. Qualitative Ablation over Architectures

Theorem 3.3 exposes the relationship between the fourier spectrum of a network and
its depth, width and max-norm of parameters. The following experiment is a qualitative
ablation study over these variables.
Experiment 7. In this experiment, we fit various networks to the ”-function at x = 0.5 (see
Fig A.5a). Its spectrum is constant for all frequencies (Fig A.5b), which makes it particularly
useful for testing how well a given network can fit large frequencies. Fig A.8 shows the

98

(a) Sampled ”-function at x = 0.5. (b) Constant Spectrum of the ”-function.

Fig. A.5. The target function used in Experiment 7.

(a) Depth = 3. (b) Depth = 4. (c) Depth = 5. (d) Depth = 6.

Fig. A.6. Evolution with training iterations (y-axis) of the Fourier spectrum (x-axis for frequency,
and colormap for magnitude) for a network with varying depth, width = 16 and weight clip = 10.
The spectrum of the target function is a constant 0.005 for all frequencies.

(a) Width = 16. (b) Width = 32. (c) Width = 64. (d) Width = 128.

Fig. A.7. Evolution with training iterations (y-axis) of the Fourier spectrum (x-axis for frequency,
and colormap for magnitude) for a network with varying width, depth = 3 and weight clip = 10.
The spectrum of the target function is a constant 0.005 for all frequencies.

ablation over weight clip (i.e. max parameter max-norm), Fig A.6 over depth and Fig A.7
over width. Fig A.9 exemplarily shows how the network prediction evolves with training
iterations. All networks are trained for 60K iterations of full-batch gradient descent under
identical conditions (Adam optimizer with lr = 0.0003, no weight decay).

We make the following observations.

(a) Fig A.6 shows that increasing the depth (for fixed width) significantly improves the
network’s ability to fit higher frequencies (note that the depth increases linearly).

99

(a) Weight Clip = 0.1. (b) Weight Clip = 0.15. (c) Weight Clip = 0.2. (d) Weight Clip = 2.

Fig. A.8. Evolution with training iterations (y-axis) of the Fourier spectrum (x-axis for frequency,
and colormap for magnitude) for a network with varying weight clip, depth = 6 and width = 64.
The spectrum of the target function is a constant 0.005 for all frequencies.

(a) Weight Clip = 0.1. (b) Weight Clip = 0.15. (c) Weight Clip = 0.2. (d) Weight Clip = 2.

Fig. A.9. Evolution with training iterations (y-axis) of the network prediction (x-axis for input,
and colormap for predicted value) for a network with varying weight clip, depth = 6 and width
= 64. The target function is a ” peak at x = 0.5.

(b) Fig A.7 shows that increasing the width (for fixed depth) also helps, but the e�ect is
considerably weaker (note that the width increases exponentially).

(c) Fig A.8 shows that increasing the weight clip (or the max parameter max-norm) also
helps the network fit higher frequencies.

The above observations are all consistent with Theorem 3.3, and further show that lower
frequencies are learned first (i.e. the spectral bias, cf. Experiment 1). Further, Figure A.8
shows that constraining the Lipschitz constant (weight clip) prevents the network from
learning higher frequencies, furnishing evidence that the O(Lf) bound can be tight.

A.1.6. MNIST: A Proof of Concept

In the following experiment, we show that given two manifolds of the same dimension –
one flat and the other not – the task of learning random labels is harder to solve if the input
samples lie on the same manifold. We demonstrate on MNIST under the assumption that
the manifold hypothesis is true, and use the fact that the spectrum of the target function
we use (white noise) is constant in expectation, and therefore independent of the underlying
coordinate system when defined on the manifold.
Experiment 8. In this experiment, we investigate if it is easier to learn a signal on a more
realistic data-manifold like that of MNIST (assuming the manifold hypothesis is true), and

100

compare with a flat manifold of the same dimension. To that end, we use the 64-dimensional
feature-space E of a denoising2 autoencoder as a proxy for the real data-manifold of unknown
number of dimensions. The decoder functions as an embedding of E in the input space
X = R784, which e�ectively amounts to training a network on the reconstructions of the
autoencoder. For comparision, we use an injective embedding3 of a 64-dimensional hyperplane
in X. The latter is equivalent to sampling 784-dimensional vectors from U([0, 1]) and setting
all but the first 64 components to zero. The target function is white-noise, sampled as scalars
from the uniform distribution U([0, 1]). Two identical networks are trained under identical
conditions, and Fig A.10 shows the resulting loss curves, each averaged over 10 runs.

This result complements the findings of Arpit et al. (2017) and Zhang et al. (2017a),
which show that it’s easier to fit random labels to random inputs if the latter is defined on
the full dimensional input space (i.e. the dimension of the flat manifold is the same as that
of the input space, and not that of the underlying data-manifold being used for comparison).

Fig. A.10. Loss curves of two identical networks trained to regress white-noise under identical
conditions, one on MNIST reconstructions from a DAE with 64 encoder features (blue), and the
other on 64-dimensional random vectors (green).

A.1.7. Cifar-10: It’s All Connected

We have seen that deep neural networks are biased towards learning low frequency
functions. This should have as a consequence that isolated bubbles of constant prediction
are rare. This in turn implies that given any two points in the input space and a network
function that predicts the same class for the said points, there should be a path connecting
them such that the network prediction does not change along the path. In the following, we
present an experiment where we use a path finding method to find such a path between all
Cifar-10 input samples indeed exist.
2This experiment yields the same result if variational autoencoders are used instead.
3The xy-plane is R3 an injective embedding of a subset of R2 in R3.

101

Fig. A.11. Path between CIFAR-10 adversarial examples (e.g. “frog” and “automobile”,
such that all images are classified as “airplane”).

Experiment 9. Using AutoNEB Kolsbjerg et al. (2016), we construct paths between (ad-
versarial) Cifar-10 images that are classified by a ResNet20 to be all of the same target class.
AutoNEB bends a linear path between points in some space Rm so that some maximum
energy along the path is minimal. Here, the space is the input space of the neural network,
i.e. the space of 32 ◊ 32 ◊ 3 images and the logit output of the ResNet20 for a given class is
minimized. We construct paths between the following points in image space:

• From one training image to another,
• from a training image to an adversarial,
• from one adversarial to another.

We only consider pairs of images that belong to the same class c (or, for adversarials, that
originate from another class ”= c, but that the model classifies to be of the specified class c).
For each class, we randomly select 50 training images and select a total of 50 random images
from all other classes and generate adversarial samples from the latter. Then, paths between
all pairs from the whole set of images are computed.

The AutoNEB parameters are chosen as follows: We run four NEB iterations with 10
steps of SGD with learning rate 0.001 and momentum 0.9. This computational budget is
similar to that required to compute the adversarial samples. The gradient for each NEB step
is computed to maximize the logit output of the ResNet-20 for the specified target class c.
We use the formulation of NEB without springs Draxler et al. (2018).

The result is very clear: We can find paths between all pairs of images for all CIFAR10
labels that do not cross a single decision boundary. This means that all paths belong to the
same connected component regarding the output of the DNN. This holds for all possible

102

Fig. A.12. Each row is a path through the image space from an adversarial sample (right) to a
true training image (left). All images are classified by a ResNet-20 to be of the class of the training
sample on the right with at least 95% softmax certainty. This experiment shows we can find a path
from adversarial examples (right, Eg. "(cat)") that are classified as a particular class ("airplane") are
connected to actual training samples from that class (left, "airplane") such that all samples along
that path are also predicted by the network to be of the same class.

combinations of images in the above list. Figure A.12 shows connecting training to adversarial
images and Figure A.11 paths between pairs of adversarial images. Paths between training
images are not shown, they provide no further insight. Note that the paths are strikingly
simple: Visually, they are hard to distinguish from the linear interpolation. Quantitatively,
they are essentially (but not exactly) linear, with an average length (3.0 ± 0.3)% longer than
the linear connection.

A.2. The Continuous Piecewise Linear Structure of
Deep ReLU Networks

We consider the class of ReLU network functions f : Rd
‘æ R defined by Eqn. 1. Following

the terminology of Raghu et al. (2016); Montufar et al. (2014), each linear region of the
network then corresponds to a unique activation pattern, wherein each hidden neuron is
assigned an activation variable ‘ œ {≠1, 1}, conditioned on whether its input is positive or
negative. ReLU networks can be explictly expressed as a sum over all possible activation
patterns, as in the following lemma.

Lemma A.1. Given L binary vectors ‘(1), · · · ‘(L) with ‘(k)
œ {≠1, 1}

dk , let T (k)
‘(k) : Rdk≠1 æ Rdk

the a�ne function defined by T (k)
‘(k)(u)i = (T (k)(u))i if (‘k)i = 1, and 0 otherwise. ReLU

103

network functions, as defined in Eqn. 1, can be expressed as

f(x) =
X

‘(1),···‘(L)

1Pf,‘
(x)

⇣
T (L+1)

¶ T (L)
‘(L) ¶ · · · ¶ T (1)

‘(1)

⌘
(x) (6)

where 1P denotes the indicator function of the subset P µ Rd, and Pf,‘ is the polytope defined
as the set of solutions of the following linear inequalities (for all k = 1, · · · , L):

(‘k)i (T (k)
¶ T (k≠1)

‘(k≠1) ¶ · · · ¶ T (1)
‘(1))(x)i Ø 0, i = 1, · · · dk (7)

f is therefore a�ne on each of the polytopes Pf,‘, which finitely partition the input space
Rd to convex polytopes. Remarkably, the correspondence between ReLU networks and CPWL
functions goes both ways: Arora et al. (2018a) show that every CPWL function can be
represented by a ReLU network, which in turn endows ReLU networks with the universal
approximation property.

Finally, in the standard basis, each a�ne map T (k) : Rdk≠1 æ Rdk is specified by a weight
matrix W (k)

œ Rdk≠1 ◊ Rdk and a bias vector b(k)
œ Rdk . In the linear region Pf,‘, f can be

expressed as f‘(x) = W‘x + b‘, where in particular

W‘ = W (L+1)W (L)
‘L

· · · W (1)
‘1 œ R1◊d, (8)

where W (k)
‘ is obtained from W (k) by setting its jth column to zero whenever (‘k)j = ≠1.

A.3. Fourier Analysis of ReLU Networks

A.3.1. Proof of Lemma 3.1

Proof. Case 1: The function f has compact support. The vector-valued function
kf(x)eik·x is continuous everywhere and has well-defined and continuous gradients almost
everywhere. So by Stokes’ theorem (see e.g Spivak (2018)), the integral of its divergence is a
pure boundary term. Since we restricted to functions with compact support, the theorem
yields Z

Òx ·
⇥
kf(x)e≠ik·x⇤dx = 0 (9)

The integrand is (k · (Òxf)(x) ≠ ik2f(x))e≠ik·x, so we deduce,

f̂(k) = 1
≠ik2 k ·

Z
(Òxf)(x) e≠ik·x (10)

Now, within each polytope of the decomposition (6), f is a�ne so its gradient is a constant
vector, Òxf‘ = W T

‘
, which gives the desired result (3.1).

104

Case 2: The function f does not have compact support. Without the assumption
of compact support, the function f is not squared-integrable. The Fourier transform therefore
only exists in the sense of distributions, as defined below.

Let S be the Schwartz space over Rd of rapidly decaying test functions which together with
its derivatives decay to zero as x æ Œ faster than any power of x. A tempered distribution is
a continuous linear functional on S. A function f that doesn’t grow faster than a polynomial
at infinity can be identified with a tempered distribution Tf as:

Tf : S æ R, Ï ‘æ Èf, ÏÍ =
Z

Rd

f(x)Ï(x)dx (11)

In the following, we shall identify Tf with f . The Fourier transform f̃ of the tempered
distribution is defined as:

Èf̃ , ÏÍ := Èf, Ï̃Í (12)

where Ï̃ is the Fourier transform of Ï. In this sense, the standard notion of the Fourier
transform is generalized to functions that are not squared-integrable.

Consider the continuous piecewise-linear ReLU network f : Rd
æ R. Since it can grow at

most linearly, we interpret it as a tempered distribution on Rd. Recall that the linear regions
P‘ are enumerated by ‘. Let f‘ be the restriction of f to P‘, making f‘(x) = W T

‘
x. The

distributional derivative of f is given by:

Òxf =
X

‘

Òxf‘ · 1P‘ =
X

‘

W T

‘
1P‘ (13)

where 1P‘ is the indicator over P‘ and we used Òxf‘ = W T

‘
. It then follows from elementary

properties of Schwartz spaces (see e.g. Chapter 16 of Serov (2017)) that:

[gÒxf](k) = ≠ikf̃(k) (14)

=∆ f̃(k) = 1
≠ik2 k · [gÒxf](k) (15)

Together with Eqn 13 and linearity of the Fourier transform, this gives the desired result
(3.1).

⇤

A.3.2. Fourier Transform of Polytopes

A.3.2.1. Theorem 1 of Diaz et al. (2016). Let F be a m dimensional polytope in Rd, such
that 1 Æ m Æ d. Denote by k œ Rd a vector in the Fourier space, by „k(x) = ≠k · x the
linear phase function, by F̃ the Fourier transform of the indicator function on F , by ˆF the
boundary of F and by volm the m-dimensional (Hausdor�) measure. Let Proj

F
(k) be the

105

orthogonal projection of k on to F (obtained by removing all components of k orthogonal to
F). Given a m ≠ 1 dimensional facet G of F , let NF (G) be the unit normal vector to G that
points out of F . It then holds:

1. If Proj
F

(k) = 0, then „k(x) = �k is constant on F , and we have:

F̃ = volF (F)ei�k (16)

2. But if Proj
F

(k) ”= 0, then:

F̃ = i
X

GœˆF

Proj
F

(k) · NF (G)
ÎProj

F
(k)Î2 G̃(k) (17)

A.3.2.2. Discussion. The above theorem provides a recursive relation for computing the
Fourier transform of an arbitrary polytope. More precisely, the Fourier transform of a m-
dimensional polytope is expressed as a sum of fourier transforms over the m ≠ 1 dimensional
boundaries of the said polytope (which are themselves polytopes) times a O(k≠1) weight term
(with k = ÎkÎ). The recursion terminates if Proj

F
(k) = 0, which then yields a constant.

To structure this computation, Diaz et al. (2016) introduce a book-keeping device called
the face poset of the polytope. It can be understood as a weighted directed acyclic graph
(DAG) with polytopes of various dimensions as its nodes. We start at the root node which is
the full dimensional polytope P (i.e. we initially set m = n). For all of the codimension-one
boundary faces F of P , we then draw an edge from the root P to node F and weight it with
a term given by:

WF,G = i
Proj

F
(k) · NF (G)

ÎProj
F

(k)Î2 (18)

and repeat the process iteratively for each F . Note that the weight term is O(k≠1) where
Proj

F
(k) ”= 0. This process yields tree paths T : F0 = P æ F1 æ ... æ F|T | where each

Fi+1 œ ˆFi has one dimension less than Fi. For a given path and k, the terminal node for
this path, FnT , is the first polytope for which Proj

FnT
(k) = 0. The final Fourier transform is

obtained by multiplying the weights along each path and summing over all tree paths:

1̃P (k) =
X

T

|T |≠1Y

i=0
WFi,Fi+1volF|T |(F|T |)ei�k (19)

where �(T) = k · xT

0 for an arbitrary point xT

0 in F|T |.

To write this as a weighted sum of indicator functions, as in Lemma 3.2, let Tn denote the
set of all tree paths T of length n, i.e. |T | = n. For a tree path T , let S(T) be the orthogonal
to the terminal node Fn, i.e the vectors k such that Proj

Fn
(k) = 0. The sum over T in Eqn

106

(19) can be split as:

1̃P =
dX

n=0

1Gn

kn

X

T œTn

1S(T)

n≠1Y

i=0
W̄F

T
i ,F

T
i+1

volF T
n

(F T

n
)ei�(T)

k (20)

where W̄F,G = kWF,G and Gn =
S

T œTn
S(T). In words, Gn is the set of all vectors k that are

orthogonal to some n-codimensional face of the polytope. We identify:

Dq =
X

T œTn

1S(T)

n≠1Y

i=0
W̄F

T
i ,F

T
i+1

volF T
n

(F T

n
)ei�(T)

k (21)

and D0(k) = vol(P) to obtain Lemma 3.2. Observe that Dn depends on k only via the phase
term ei�(T)

k , implying that Dn = �(1) (k æ Œ).

Informally, for a generic vector k, all paths terminate at the zero-dimensional vertices of
the original polytope, i.e. dim(Fn) = 0, implying the length of the path n equals the number
of dimensions d, yielding a O(k≠d) spectrum. The exceptions occur if a path terminates
prematurely, because k happens to lie orthogonal to some d≠r-dimensional face Fr in the path,
in which case we are left with a O(k≠r) term (with r < d) which dominates asymptotically.
Note that all vectors orthogonal to the d ≠ r dimensional face Fr lie on a r-dimensional
subspace of Rd. Since a polytope has a finite number of faces (of any dimension), the k’s
for which the Fourier transform is O(k≠r) (instead of O(k≠d)) lies on a finite union of closed
subspaces of dimension r (with r < d). The Lebesgue measure of all such lower dimensional
subspaces for all such r is 0, leading us to the conclusion that the spectrum decays as O(k≠d)
for almost all k’s.

A.3.3. On Theorem 3.3

Equation 6 can be obtained by swapping the (finite) sum over ‘ in Lemma 3.1 with that
over the paths T in Eqn 20. In particular, we have:

f̃ =
dX

n=0

1Hn

kn+1

X

‘

W‘D
‘

n
1G‘

n
(22)

Now, the sum
P

‘
W‘D‘

n
(k̂)IG‘

n
(k) is supported on the union:

Hn =
[

‘

G‘

n
(23)

Identifying:

Cn(·, ◊) =
X

‘

W‘D
‘

n
1G‘

n
(24)

107

where Cn(·, ◊) = O(1) (k æ Œ), we obtain Theorem 3.3. Further, if Nf is the number of
linear regions of the network and Lf = max‘ ÎW‘Î, we see that Cn = O(LfNf). Indeed, in
Appendix A.1.5, we empirically find that relaxing the constraint on the weight clip (which
can be identified with Lf) enabled the network to fit higher frequencies, implying that the
O(Lf) bound can be tight.

A.3.4. Spectral Decay Rate of the Parameter Gradient

Proposition A.2. Let ◊ be a generic parameter of the network function f . The spectral
decay rate of ˆf̃/ˆ◊ is O(kf̃).

Proof. For a fixed k̂, observe from Eqn 22 and Eqn 21 that the only terms dependent on k

are the pure powers k≠n≠1 and the phase terms ei�(T)
k , where �(T)

k = kk̂ · xq(T)
0 . However, the

term xq(T)
0 is in general a function of ◊, and consequently the partial derivative of ei�(T)

k w.r.t
◊ yields a term that is proportional to k. This term now dominates the asymptotic behaviour
as k æ Œ, adding an extra power of k to the total spectral decay rate of f̃ . ⇤

Therefore, if f = O(k≠�≠1) where � is the codimension of the highest dimensional polytope
k̂ is orthogonal to, we have that ˆf/ˆ◊ = O(k≠�).

A.3.5. Convergence Rate of a Network Trained on Pure-Frequency
Targets

In this section, we derive an asymptotic bound on the convergence rate under the
assumption that the target function has only one frequency component.

Proposition A.3. Let ⁄ : [0, 1] æ R be a target function sampled in its domain at N

uniformly spaced points. Suppose that its Fourier transform after sampling takes the form:
⁄̃(k) = A0”k,k0, where ” is the Kronecker delta. Let f be a neural network trained with
full-batch gradient descent with learning rate ÷ on the Mean Squared Error, and denote by ft

the state of the network at time t. Let h(·, t) = ft ≠ ⁄ be the residual at time t. We have that:
����
ˆh̃(k0, t)

ˆt

���� = O(k≠1
0) (25)

Proof. Consider that:
����
ˆh̃(k0)

ˆt

���� =
���ˆf̃(k0)

ˆ◊

���
��ˆ◊

ˆt

�� (26)

=
���÷ ˆf̃

ˆ◊

���
���ˆL[f̃ ,⁄̃]

ˆ◊

��� (27)

108

where L is the sampled MSE loss and the first term is O(k≠1
0) as can be seen from Proposi-

tion A.2. With Parceval’s Theorem, we obtain:

L[f, ⁄] =
P

N≠1
x=0 |f(x) ≠ ⁄(x)|2 =

PN/2≠1
k=≠N/2 |f̃(k) ≠ ⁄̃(k)|2

= L[f̃ , ⁄̃] (28)

For the magnitude of parameter gradient, we obtain:
����
ˆL[f̃ , ⁄̃]

ˆ◊

���� = 2
���
PN/2≠1

k=≠N/2 Re[f̃(k) ≠ ⁄̃(k)]ˆf̃(k)
ˆ◊

���

Æ 2
PN/2≠1

k=≠N/2 |f̃(k) ≠ ⁄̃(k)|
���ˆf̃(k)

ˆ◊

���

Æ 2
���A0

ˆf̃(k0)
ˆ◊

���+ 2
PN/2≠1

k=≠N/2

���f̃(k)ˆf̃(k)
ˆ◊

��� (29)

where in the last line we used that ⁄̃ is a Kronecker-” in the Fourier domain. Now, the second
summand does not depend on k0, but the first summand is again O(k≠1

0). ⇤

A.3.6. Proof of the Lipschtiz bound

Proposition A.4. The Lipschitz constant Lf of the ReLU network f is bound as follows
(for all ‘):

ÎW‘Î Æ Lf Æ

L+1Y

k=1
ÎW (k)

Î Æ Î◊Î
L+1
Œ

Ô

d
LY

k=1
dk (30)

Proof. The first equality is simply the fact that Lf = max‘ ÎW‘Î, and the second inequality
follows trivially from the parameterization of a ReLU network as a chain of function com-
positions4, together with the fact that the Lipschitz constant of the ReLU function is 1 (cf.
Miyato et al. (2019), equation 7). To see the third inequality, consider the definition of the
spectral norm of a I ◊ J matrix W :

ÎWÎ = max
ÎhÎ=1

ÎWhÎ (31)

Now, ÎWhÎ =
pP

i
|wi · h|, where wi is the i-th row of the weight matrix W and i = 1, ..., I.

Further, if ÎhÎ = 1, we have |wi · h| Æ ÎwiÎÎhÎ = ÎwiÎ. Since ÎwiÎ =
qP

j
|wij| (with

j = 1, ..., J) and |wij| Æ Î◊ÎŒ, we find that ÎwiÎ Æ
Ô

JÎ◊ÎŒ. Consequently,
pP

i
|wi · h| Æ

Ô
IJÎ◊ÎŒ and we obtain:

ÎWÎ Æ

Ô

IJÎ◊ÎŒ (32)

4Recall that the Lipschitz constant of a composition of two or more functions is the product of their respective
Lipschtiz constants.

109

Now for W = W (k), we have I = dk≠1 and J = dk. In the product over k, every dk except
the first and the last occur in pairs, which cancels the square root. For k = 1, dk≠1 = d

(for the d input neurons) and for k = L + 1, dk = 1 (for a single output neuron). The final
inequality now follows. ⇤

A.3.7. The Fourier Transform of a Function Composition

Consider Equation 14. The general idea is to investigate the behaviour of P“(l, k) for
large frequencies l on manifold but smaller frequencies k in the input domain. In particular,
we are interested in the regime where the stationary phase approximation is applicable to P“ ,
i.e. when l2 + k2

æ Œ (cf. section 3.2. of Bergner et al.). In this regime, the integrand in
P“(k, l) oscillates fast enough such that the only constructive contribution originates from
where the phase term u(z) = k · “(z) ≠ l · z does not change with changing z. This yields
the condition that Òzu(z) = 0, which translates to the condition (with Einstein summation
convention implied and ˆ‹ = ˆ/ˆx‹):

l‹ = kµˆ‹“µ(z) (33)

Now, we impose periodic boundary conditions5 on the components of “, and without loss of
generality we let the period be 2fi. Further, we require that the manifold be contained in a
box6 of some size in Rd. The µ-th component “µ can now be expressed as a Fourier series:

“µ(z) =
P

pœZm “̃µ[p]e≠ipflzfl

ˆ‹“µ(z) =
P

pœZm ≠ip‹ “̃µ[p]e≠ipflzfl (34)

Equation 34 can be substituted in equation 33 to obtain:

ll̂‹ = ≠ik
X

pœZm

p‹ k̂µ“̃µ[p]e≠ipflzfl (35)

where we have split kµ and l‹ in to their magnitudes k and l and directions k̂‹ and l̂µ
(respectively). We are now interested in the conditions on “ under which the RHS can be
large in magnitude, even when k is fixed. Recall that “ is constrained to a box – consequently,
we can not arbitrarily scale up “̃µ. However, if “̃µ[p] decays slowly enough with increasing p,
the RHS can be made arbitrarily large (for certain conditions on z, l̂µ and k̂‹).

5This is possible whenever “ is defined on a bounded domain, e.g. on [0, 1]m.
6This is equivalent to assuming that the data lies in a bounded set.

110

A.4. Volume of High-Frequency Parameters in Param-
eter Space

For a given neural network, we now show that the volume of the parameter space containing
parameters that contribute ‘-non-negligibly to frequency components of magnitude kÕ above
a certain cut-o� k decays with increasing k. For notational simplicity and without loss of
generality, we absorb the direction k̂ of k in the respective mappings and only deal with the
magnitude k.

Definition A.1. Given a ReLU network f◊ of fixed depth, width and weight clip K with
parameter vector ◊, an ‘ > 0 and � = BŒ

K
(0) a LŒ ball around 0, we define:

�‘(k) = {◊ œ �|÷kÕ > k, |f̃◊(kÕ)| > ‘}

as the set of all parameters vectors ◊ œ �‘(k) that contribute more than an ‘ in expressing
one or more frequencies kÕ above a cut-o� frequency k.

Remark 1. If k2 Ø k1, we have �‘(k2) ™ �‘(k1) and consequently vol(�‘(k2)) Æ vol(�‘(k1)),
where vol is the Lebesgue measure.

Lemma A.5. Let 1‘

k
(◊) be the indicator function on �‘(k). Then:

÷ Ÿ > 0 : ’k Ø Ÿ, 1‘

k
(◊) = 0

Proof. From theorem 3.3, we know that7
|f̃◊(k)| = O(k≠�≠1) for an integer 1 Æ � Æ d. In

the worse case where � = 1, we have that ÷M < Œ : |f̃◊(k)| < M

k2 . Now, simply select a
Ÿ >

q
M

‘
such that M

Ÿ2 < ‘. This yields that |f̃◊(Ÿ)| < M

Ÿ2 < ‘, and given that M

Ÿ2 Æ
M

k2 ’ k Ø Ÿ,
we find |f̃◊(k)| < ‘ ’ k Ø Ÿ. Now by definition A.1, ◊ ”œ �‘(Ÿ), and since �‘(k) ™ �‘(Ÿ) (see
remark 1), we have ◊ ”œ �‘(k), implying 1‘

k
(◊) = 0 ’ k Ø Ÿ. ⇤

Remark 2. We have 1‘

k
(◊) Æ |f̃◊(k)| for large enough k (i.e. for k Ø Ÿ), since |f̃◊(k)| Ø 0.

Proposition A.6. The relative volume of �‘(k) w.r.t. � is O(k≠�≠1) where 1 Æ � Æ d.

Proof. The volume is given by the integral over the indicator function, i.e.

vol(�‘(k)) =
Z

◊œ�
1‘

k
(◊)d◊

For a large enough k, we have from remark 2, the monotonicity of the Lebesgue integral
and theorem 3.3 that:

7Note from Theorem 3.3 that � implicitly depends only on the unit vector k̂.

111

vol(�‘(k)) =
R

◊œ� 1‘

k
(◊)d◊ (36)

Æ
R

◊œ� |f̃◊(k)|d◊ = O(k≠�≠1)vol(�) (37)

=∆
vol(�‘(k))

vol(�) = O(k≠�≠1) (38)

⇤

A.5. Kernel Machines and KNNs

In this section, in light of our findings, we want to compare DNNs with K-nearest neighbor
(k-NN) classifier and kernel machines which are also popular learning algorithms, but are, in
contrast to DNNs, better understood theoretically.

A.5.1. Kernel Machines vs DNNs

Given that we study why DNNs are biased towards learning smooth functions, we note
that kernel machines (KM) are also highly Lipschitz smooth (Eg. for Gaussian kernels all
derivatives are bounded). However there are crutial di�erences between the two. While kernel
machines can approximate any target function in principal (Hammer & Gersmann, 2003),
the number of Gaussian kernels needed scales linearly with the number of sign changes in the
target function (Bengio et al., 2009). Ma & Belkin (2017) have further shown that for smooth
kernels, a target function cannot be approximated within ‘ precision in any polynomial of
1/‘ steps by gradient descent.

Deep networks on the other hand are also capable of approximating any target function
(as shown by the universal approximation theorems Hornik et al. (1989); Cybenko (1989)),
but they are also parameter e�cient in contrast to KM. For instance, we have seen that deep
ReLU networks separate the input space into number of linear regions that grow polynomially
in width of layers and exponentially in the depth of the network (Montufar et al., 2014; Raghu
et al., 2016). A similar result on the exponentially growing expressive power of networks
in terms of their depth is also shown in (Poole et al., 2016). In this paper we have further
shown that DNNs are inherently biased towards lower frequency (smooth) functions over a
finite parameter space. This suggests that DNNs strike a good balance between function
smoothness and expressibility/parameter-e�ciency compared with KM.

112

A.5.2. K-NN Classifier vs. DNN classifier

K-nearest neighbor (KNN) also has a historical importance as a classification algorithm
due to its simplicity. It has been shown to be a consistent approximator Devroye et al. (1996),
i.e., asymptotically its empirical risk goes to zero as K æ Œ and K/N æ 0, where N is
the number of training samples. However, because it is a memory based algorithm, it is
prohibitively slow for large datasets. Since the smoothness of a KNN prediction function is
not well studied, we compare the smoothness between KNN and DNN. For various values of
K, we train a KNN classifier on a k = 150 frequency signal (which is binarized) defined on
the L = 20 manifold (see section 4), and extract probability predictions on a box interval
in R2. On this interval, we evaluate the 2D FFT and integrate out the angular components
(where the angle is parameterized by Ï) to obtain ’(k):

’(k) = d

dk

Z
k

0
dkÕkÕ

Z 2fi

0
dÏ|f̃(kÕ, Ï)| (39)

Finally, we plot ’(k) for various K in figure A.13e. Furthermore, we train a DNN on the very
same dataset and overlay the radial spectrum of the resulting probability map on the same
plot. We find that while DNN’s are as expressive as a K = 1 KNN classifier at lower (radial)
frequencies, the frequency spectrum of DNNs decay faster than KNN classifier for all values
of K considered, indicating that the DNN is smoother than the KNNs considered. We also
repeat the experiment corresponding to Fig. 3.9 with KNNs (see Fig. A.13) for various K’s,
to find that unlike DNNs, KNNs do not necessarily perform better for larger L’s, suggesting
that KNNs do not exploit the geometry of the manifold like DNNs do.

113

(a) K = 5. (b) K = 10.

(c) K = 15. (d) K = 20.

(e) Frequency spectrum

Fig. A.13. (a,b,c,d): Heatmaps of training accuracies (L-vs-k) of KNNs for various K.
When comparing with figure 3.9, note that the y-axis is flipped. (e): The frequency spectrum
of KNNs with di�erent values of K, and a DNN. The DNN learns a smoother function
compared with the KNNs considered since the spectrum of the DNN decays faster compared
with KNNs.

114

Appendix B

Tangent Feature Alignment: Supplementary
Material

B.1. Tangent Features and Geometry

We describe in more formal detail some of the notions introduced in Section 2 of the
paper. We will consider general classes of vector-valued predictors:

F = {fw : X æ Rc
| w œ W}, (1)

where the parameter space W is a finite dimensional manifold of dimension P (typically RP).
For multiclass classification, fw outputs a score fw(x)[y] for each class y œ {1 · · · c}. Each
function can also be viewed as a scalar function on X ◊ Y where Y = {1 · · · c} is the set of
classes.

B.1.1. Metric

We assume that w æ fw is a smooth mapping from W to L2(fl,Rc), where fl is some
input data distribution. The inclusion F µ L2(fl,Rc) equips F with the L2 scalar product
and corresponding norm:

Èf, gÍfl := Ex≥fl[f(x)€g(x)], ÎfÎfl :=
q

Èf, fÍfl (2)

The parameter space W inherits a metric tensor gw by pull-back of the scalar product
Èf, gÍfl on F . That is, given ’, › œ TwW ≥= RP on the tangent space at w (Lang, 2012),

gw(’, ›) = Èˆ’fw, ˆ›fwÍfl (3)

where ˆ’fw = Èdfw, ’Í is the directional derivative in the direction of ’. Concretely, in a
given basis of RP , the metric is represented by the matrix of gradient second moments:

(gw)pq = Ex≥fl

"✓
ˆfw(x)

ˆwp

◆€ ˆfw(x)
ˆwq

#
(4)

where wp, p = 1, · · · , P are the parameter coordinates. The metric shows up by spelling out
the line element ds2 := ÎdfwÎ

2
fl
, since we have,

ÎdfwÎ
2
fl

=
PX

p,q=1
È
ˆfw
ˆwp

dwp,
ˆfw
ˆwq

dwqÍfl =
PX

p,q=1
(gw)pq dwpdwq (5)

B.1.2. Tangent Kernels

This geometry has a dual description in function space in terms of kernels. The idea is to
view the di�erential of the mapping w æ fw at each w as a map dfw : X ◊ Y æ T

ú
wW ≥= Rp

defining (joined) features in the (co)tangent space. In a given basis, this yields the tangent
features given by the function derivatives w.r.t the parameters,

�wp(x)[y] := ˆfw(x)[y]
ˆwp

(6)

The tangent feature map �w can be viewed as a function mapping each pair (x, y) to a vector
in RP . It defines the so-called tangent kernel (Jacot et al., 2018) through the Euclidean
dot product È·, ·Í in RP :

kw(x, y; x̃, yÕ) = È�w(x)[y], �w(x̃)[yÕ]Í =
PX

p=1
�wp(x)[y]�wp(x̃)[yÕ] (7)

It induces an integral operator on L2(fl,Rc) acting as

(kw Û f)(x)[y] = Èkw(x, y; ·), fÍ (8)

The metric tensor (4) is expressed in terms of the tangent features as (gw)pq = È�wp ,�wqÍfl.

B.1.3. Spectral Decomposition

The local metric tensor (as symmetric P ◊ P matrix) and tangent kernel (as rank P

integral operator) share the same spectrum. More generally, let

gw =
PX

j=1
⁄wjvwjv

€
wj

(9)

be the eigenvalue decomposition of the positive (semi-)definite symmetric matrix (4), where
v€

wj
vwjÕ = ”jjÕ . Assuming non-degeneracy, i.e ⁄wj > 0, let uwj, j œ {1 · · · P} be the functions

116

in L2(fl,Rc) defined as:
uwj(x)[y] = 1p

⁄wj

v€
wj

�w(x)[y] (10)

The following result holds.
Proposition B.1 (Spectral decomposition). The functions (ujw)P

j=1 form an orthonormal
family in L2(fl,Rc). They are eigenfunctions of the tangent kernel as an integral operator,
which admits the spectral decomposition:

kw(x, y; x̃, yÕ) =
PX

j=1
⁄wj uwj(x)[y] uwj(x̃)[yÕ] (11)

In particular metric tensor and tangent kernels share the same spectrum.

Proof. We first show orthonormality, i.e ÈuwjuwjÕÍfl = ”jjÕ . We have indeed,

Èuwj, uwjÕÍfl = 1Ô
⁄wj⁄wjÕ

P
P

p,q=1(vwj)p(vwj)qÈ�wp ,�wqÍfl (12)

= 1Ô
⁄wj⁄wjÕ

v€
wj

gw vwjÕ (13)

= 1
⁄wj

⁄wj”jjÕ (14)

= ”jjÕ (15)

where we used the definition of the matrix (gw)pq and its eigenvalue decomposition. Next,
using the action (8) of the tangent kernel, we prove that the functions uwj defined in (10) is
an eigenfunction with eigenvalue ⁄wj:

(kw Û uwj)(x)[y] =
P

P

p=1 �wp(x)[y]È�wp , uwjÍfl (16)

= 1Ô
⁄wj

P
P

p,q=1(vwj)q �wp(x)[y]È�wp , �wqÍ (17)

= 1Ô
⁄wj

v€
wj

gw �w(x)[y] (18)

= 1Ô
⁄wj

(⁄wjv€
wj

) �w(x)[y] (19)

= ⁄wj
1Ô
⁄wj

v€
wj

�w(x)[y] (20)

= ⁄wj uwj (21)

Inserting the resolution of unity IdP =
P

P

j=1 vwjv€
wj

in the expression (7) of the tangent
kernel directly yields the spectral decomposition (11). ⇤

B.1.4. Sampled Versions

Given n input samples x1, · · · xn, any function f : X æ Rc yields a vector f œ Rnc obtained
by concatenating the outputs f(xi) œ Rc of the n input samples xi. The sample output
scores fw(xi)[y] thus yields fw œ Rnc; and the tangent features �wp(xi)[y] are represented as

117

10 20 30 40 50 60 70 80 90

Directions vj

-1.0

-0.5

0.0

0.5

1.0

P
er

tu
rb

a
ti
o
n

sc
al

in
g

�

0.2

0.4

0.6

0.8

�
fw

+
�
w

�
fw

�
2

Fig. B.1. Variations of fw (evaluated on a test set) when perturbing the parameters in
the directions given by the right singular vectors of the Jacobian (first 50 directions) or in
randomly sampled directions (last 50 directions) on a VGG11 network trained for 10 epochs
on CIFAR10. We observe that perturbations in most directions have almost no e�ect, except
in those aligned with the top singular vectors.

a nc ◊ P matrix �w. Using this notation, (4) and (7) yield the sample covariance P ◊ P

matrix and kernel (Gram) nc ◊ nc matrix:

Gw = �w
€�w, Kw = �w�w

€ (22)

The eigenvalue decompositions of Gw and Kw follow from the (SVD) of �w: assuming
P > nc, we can write this SVD by indexing the singular values by a pair J = (i, y) with
i = 1, · · · n and y = 1 · · · c as

�w =
ncX

J=1

q
⁄̂wJ ûwJ v̂€

wJ
(23)

Such decompositions summarize the predominant directions both in parameter and feature
space, in the neighborhood of w: a small variation ”w induces the first order variation ”fw of
the function,

”fw := �w”w =
ncX

J=1

q
⁄̂wJ(v̂T

wJ
”w)ûwJ (24)

Fig. B.1 illustrates this ‘hierarchy’ for a VGG11 network (Simonyan & Zisserman, 2014) trained
for 10 epoches on CIFAR10 (Krizhevsky & Hinton, 2009). We observe that perturbations in
most directions have almost no e�ect, except in those aligned with the top singular vectors.
This is reflected by a strong anisotropy of the tangent kernel spectrum. Recent analytical
results for wide random neural networks also point to such a pathological structure of the
spectrum (Karakida et al., 2019a,b).

B.1.5. Spectral Bias

B.1.5.1. Proof of Lemma 4.1. We consider parameter updates ”wGD := ≠÷ÒwL for gradient
descent w.r.t a loss L := L(fw), which is a function of the vector fw œ Rnc of sample output
scores. We reformulate Lemma 4.1, extended to the multiclass setting.

118

Proposition B.2 (Lemma 4.1 restated). The gradient descent function updates in first order
Taylor approximation, ”fGD(x)[y] := È”wGD, �w(x)[y]Í, decompose as,

”fGD(x)[y] =
PX

j=1
”fj uwj(x)[y], ”fj = ≠÷⁄wj(u€

wj
ÒfwL) (25)

where uwj are the eigenfunctions (10) of the tangent kernel and uwj œ Rnc are their corre-
sponding sample vector.

Proof. Inserting the resolution of unity IdP =
P

P

j=1 vwjv€
wj

in the expression for ”fGD

yields

”fGD(x)[y] =
P

P

j=1(v€
wj

”wGD) v€
wj

�w(x)[y] (26)

=
P

P

j=1
p

⁄wj(v€
wj

”wGD) uwj(x)[y] (27)

Next, by the chain rule ÒwL = �w
€

ÒfwL, so we can spell out:

”wGD = ≠÷
PX

j=1

p
⁄wj(u€

wj
ÒfwL) vwj, (28)

which implies that (v€
wj

”wGD) =
p

⁄wj(u€
wj

ÒfwL). Substituting in (26) gives the desired
result. ⇤

The decomposition (30) has a sampled version in terms of tangent feature and kernel
matrices. Using the notation of SVD (23), let ⁄̂wJ , ûwj and v̂wj be correspond to the (non-
zero) eigenvalues and eigenvectors of the sample covariance and kernel (22). We consider the
tangent kernel principal components, defined as the functions

ûwJ(x)[y] = 1
Ô

⁄wJ

Èv̂wJ , �w(x)[y]Í, (29)

which form an orthonormal family for the in-sample scalar product Èf, gÍin =
P

n

i=1 f(xi)g(xi)
and approximate the true kernel eigenfunctions (10) (e.g., Bengio et al., 2004; Braun, 2005).
One can easily check from (23) that the vector ûwJ œ Rnc of sample outputs û(xi)[y] coincides
with the J-th eigenvector of the tangent kernel matrix.

Proposition B.3 (Sampled version of Prop B.2). The gradient descent function updates in
first order Taylor approximation, ”fGD(x)[y] := È”wGD, �w(x)[y]Í decompose as,

”fGD(x)[y] =
ncX

j=1
”fJ ûwJ(x)[y], ”fJ = ≠÷⁄̂wJ(û€

wJ
ÒfwL) (30)

in terms of the principal components (29) of the tangent kernel.

119

Proof. Same proof as for the previous Proposition, using the resolution of unity Idnc =
P

nc

J=1 v̂wJ v̂€
wJ

. ⇤

B.1.5.2. The Case of Linear Regression. The previous Proposition gives a ‘local’ version
of a classic decomposition of the training dynamics in linear regression (e.g., Advani & Saxe,
2017)). In such a setting, fw = Èw, �(x)Í are linearly parametrized scalar functions (c = 1)
and L = 1

2Îfw ≠ yÎ
2. We denote by � =

P
n

j=1 ⁄̂jûjv̂€
j

the n ◊ P feature matrix and its SVD.

Proposition B.4. Gradient descent of the squared loss yields the function iterates,

fwt = fwú + (Id ≠ ÷K)t(fw0 ≠ fwú) (31)

where Id is the identity map and K is the operator acting on functions as (K Û f)(x) =
P

n

i=1 k(x, xi)f(xi) in terms of the kernel k(x, x̃) = È�(x), �(x̃)Í.

Proof. The updates ”wGD := ≠÷ÒwL induce the (exact) functional updates ”fGD =fwt+1 ≠

fwt given by

”fGD(x) = ≠÷
nX

i=1
k(x, xi)(fwt(xi) ≠ yi) (32)

Substituting yi = fwú(xi) gives fwt+1 ≠ fwú = (id ≠ ÷K)(fwt ≠ fwú). Equ. 31 follows by
induction. ⇤

Lemma B.1. The kernel principal components ûj(x) = 1Ô
⁄̂j

Èv̂j, �w(x)Í are eigenfunctions

of the operator K with corresponding eigenvalues ⁄̂j.

Proof. By inserting Idn =
P

j
v̂jv̂€

j
in the expression of the kernel, one can write k(x, xi) =

P
n

j=1 ûj(x)ûj(xi). Substituting in the definition of K and using the orthonormality of ûj for
the in-sample scalar product yield K Û ûj = ⁄̂jûj. ⇤

Together with(31), this directly leads to the decoupling of the training dynamics in the basis
of kernel principal components.
Proposition B.5 (Spectral Bias for Linear Regression). By initializing w0 = �€–0 in the
span of the features, the function iterates in (31) uniquely decompose as,

fwt(x) =
nX

j=1
fjtûj(x), fjt = f ú

j
+ (1 ≠ ÷⁄̂j)t (fj0 ≠ f ú

j
) (33)

where f ú
j

are the coe�cients of the (mininum ¸2-norm) interpolating solution.

This standard result shows how each independent mode labelled by j has its own linear
convergence rate. For example setting ÷ = 1/⁄̂1, this gives fjt ≠ f ú

j
Ã e≠t/·j , where ·j =

≠ log(1 ≠
⁄̂j

⁄̂1
) is the time constant (number of iterations) for the mode j. Top modes f ú

j
of

the target function are learned faster than low modes.

120

0 10 20 30 40

Eigenvector Idx

0

5

10

15

20

Fo
ur

ie
rF

re
qu

en
cy

Fourier decomposition

0 10

0.0

0.1

0.2

0.3

0.4

Spectrum

0.0 0.5 1.0

�0.2

0.0

0.2

Eigenvectors

j = 0, �0 = 0.4587

j = 5, �5 = 0.0072

j = 20, �20 = 0.0005

2

4

Fig. B.2. Eigendecomposition of the tangent kernel matrix of a random 6-layer deep 256-unit
wide MLP on 1D uniform data (50 equally spaced points in [0,1]). (left) Fourier decomposition
(y-axis for frequency, colorbar for magnitude) of each eigenvector (x-axis), ranked in nonincreasing
order of the eigenvalues. We observe that eigenvectors with increasing index j (hence decreasing
eigenvalues) correspond to modes with increasing Fourier frequency. (middle) Plot of the j-th
eigenvectors with j œ {0, 5, 20} and (right) distribution of eigenvalues. We note the fast decay (e.g
⁄10/⁄1 ¥ 4‰).

In linearized regimes where deep learning reduces to kernel regression (Jacot et al., 2018;
Du et al., 2019b; Allen-Zhu et al., 2019), one can dwell further the nature of such a bias by
analyzing the eigenfunctions of the neural tangent kernel (e.g., Yang & Salman, 2019). As a
simple example, for a randomly initialized MLP on 1D uniform data, Fig. B.2 shows the Fourier
decomposition of such eigenfunctions, ranked in nonincreasing order of the eigenvalues. We
observe that eigenfunctions with increasing index j (hence decreasing eigenvalues) correspond
to modes with increasing Fourier frequency, with a remarkable alignment with Fourier modes
for the first half of the spectrum. This in line with observations (e.g., Rahaman et al., 2019)
that deep networks tend to prioritize learning low frequency modes during training.

B.2. Complexity Bounds

In this section, we spell out details and proofs for the content of Section 4.

B.2.1. Rademacher Complexity

Given a family G µ RZ of real-valued functions on a probability space (Z, fl), the empirical
Rademacher complexity of G with respect to a sample S = {z1, · · · zn} ≥ fln is defined as
(Mohri et al., 2012):

bRS(G) = E‡œ{±1}n

"
sup
gœG

1
n

nX

i=1
‡ig(zi)

#
, (34)

where the expectation is over n i.i.d uniform random variables ‡1, · · · ‡n œ {±1}. For any n Ø

1, the Rademacher complexity with respect to samples of size n is then Rn(G) = ES≥fln bRS(G).

121

B.2.2. Generalization Bounds

Generalization bounds based on Rademacher complexity are standard (Bartlett et al.,
2017; Mohri et al., 2012). We give here one instance of such a bound, relevant for classification
tasks.

Setup. We consider a family F of functions fw : X æ Rc that output a score or probability
fw(x)[y] for each class y œ {1 · · · c} (we take c = 1 for binary classification). The task is to
find a predictor fw œ F with small expected classification error, which can be expressed e.g.
as

L0(fw)=P(x,y)≥fl {µ(fw(x), y) < 0} (35)

where µ(f(x), y) denotes the margin,

µ(f(x), y) =

8
<

:
f(x)y binary case

f(x)[y] ≠ maxyÕ ”=y f(x)[yÕ] multiclass case
(36)

Margin Bound. We consider the margin loss,

¸“(fw(x), y)) = „“(µ(fw(x), y)) (37)

where “ > 0, and „“ is the ramp function: „“(u) = 1 if u Æ 0, „(u) = 0 if u > “ and
„(u) = 1 ≠ u/“ otherwise. We have the following bound for the expected error (35). With
probability at least 1 ≠ ” over the draw S = {zi = (xi, yi)}n

i=1 of size n, the following holds
for all fw œ F (Mohri et al., 2012, Theorems 4.4.and 8.1):

L0(fw) Æ bL“(fw) + 2 bRS(¸“(F , ·)) + 3

s
log 2

”

2n
(38)

where bL“(fw) = 1
n

P
n

i=1 ¸“(fw(xi), yi) is the empirical margin error and ¸“(F , ·) is the loss
class,

¸“(F , ·) = {(x, y) ‘æ ¸“(fw(x), y) | fw œ F} (39)

For binary classifiers, because „“ is 1/“-Lipschitz, we have in addition

RS(¸“(F , ·)) Æ
1
“

RS(F) (40)

by Talagrand’s contraction lemma (Ledoux & Talagrand, 2013) (see e.g. Mohri et al., 2012,
lemma 4.2 for a detailed proof).

122

B.2.3. Complexity Bounds: Proofs

We first derive standard bounds for the linear classes of scalar functions,

F
A

MA
= {fw : x ‘æ Èw, �(x)Í | ÎwÎA Æ MA} (41)

Proposition B.6. The empirical Rademacher complexity of F
A

MA
is bounded as,

bRS(FA

MA
) Æ (MA/n)

p
TrKA (42)

where (KA)ij = kA(xi, xj) is the kernel matrix associated to the rescaled features A≠1�.

Proof. We use the notation of Section 4. For given Rademacher variables ‡ œ {±1}
n, we

have,

sup
fœFA

MA

nX

i=1
‡if(xi) = sup

ÎwÎAÆMA

nX

i=1
‡iÈw, �(xi)Í

= sup
ÎA€wÎ2ÆMA

nX

i=1
‡iÈA

€w, A≠1�(xi)Í

= sup
Îw̃Î2ÆMA

Èw̃,
nX

i=1
‡iA

≠1�(xi)Í

= MA

�����

nX

i=1
‡iA

≠1�(xi)

�����
2

= MA

p
‡€KA‡ (43)

From (43) and the definition (34) we obtain:

bRS(FA

MA
) = MA

n
E‡

hp
‡€KA‡

i

Æ
MA

n

p
E‡ [‡€KA‡]

Æ
MA

n

p
TrKA (44)

where we used Jensen’s inequality to pass E‡ under the root, and that E[‡i] = 0 and ‡2
i

= 1
for all i. ⇤

We now extend the result to the families (11) of learning flows:

F
A
m = {fw : x ‘æ

P
t
È”wt, �(x)Í | Î”wtÎAt Æ mt} (45)

Theorem B.1 (Theorem 4.2 restated). The empirical Rademacher complexity of F
A
m is

bounded as,
bRS(FA

m) Æ
P

t
(mt/n)

p
TrKAt (46)

123

where (KAt)ij = kAt(xi, xj) is the kernel matrix associated to the rescaled features A≠1
t �.

Proof. This is simple extension of the previous proof:

sup
fœFA

m

nX

i=1
‡if(xi) = sup

Î”wtÎAt Æmt

nX

i=1
‡i

X

t

È”wt, �(xi)Í

=
X

t

sup
Î”̃wtÎ2Æmt

È”̃wt,
nX

i=1
‡iA

≠1
t

�(xi)Í

=
X

t

mt

p
‡€KAt‡ (47)

and we conclude as in (44). ⇤

Finally, we note that the same result can be formulated in terms of an evolving feature
map �t = A≠1

t � with kernel kt(x, x̃) = È�t(x), �t(x̃)Í In fact by reparametrization invariance,
the function updates can also be written as ”fwt(x) = È”̃wt, �t(x)Í where ”̃wt = A€

t
”wt. The

function class (11) can equivalently be written as F
A
m = F

�
m where � denotes a fixed sequence

of feature maps, � = {�t}t and

F
�
m = {fw : x ‘æ

P
t
È”̃wt, �t(x)Í | Î”̃wtÎ2 Æ mt} (48)

In this formulation, the result (46) is expressed as,

bRS(F�
m) Æ

P
t
(mt/n)

p
TrKt (49)

where (Kt)ij = kt(xi, x̃j) is the kernel matrix associated to the feature map �t.

B.2.4. Bounds for Multiclass Classification

The generalization bound (38) is based on the margin loss class (39). In this section,
we show how to bound bRS(¸“(F , ·)) in terms of tangent kernels for the original class F of
functions fw : X æ Rc instead. Although the proof is adapted from standard techniques, to
our knowledge Lemma B.2 and Theorem B.2 below are new results. In what follows, we
denote by µF the margin class,

µF = {(x, y) æ µ(fw(x), y) | fw œ F} (50)

where µ(fw(x), y)) is the margin (36). We also define, for each y œ {1 · · · c},

Fy = {x ‘æ fw(x)[y] | fw œ F}, µF ,y = {x ‘æ µ(fw(x), y) | fw œ F} (51)

124

Lemma B.2. The following inequality holds:

bRS(¸“(F , ·)) Æ
c

“

cX

y=1

bRS(Fy) (52)

Proof. We first follow the first steps of the proof of (Mohri et al., 2012, Theorem 8.1) to
show that

bRS(¸“(F , ·)) Æ
1
“

cX

y=1

bRS(µF ,y) (53)

We reproduce these steps here for completeness: first, it follows from the 1/“-Lipschitzness
of the ramp loss „“ in (37) and Talagrand’s contraction lemma (Mohri et al., 2012, lemma
4.2) that

bRS(¸“(F , ·)) Æ
1
“
bRS(µF) (54)

Next, we write

bRS(µF) := 1
n
E‡

"
sup

fwœF

nX

i=1
‡iµ(fw(xi), yi)

#

= 1
n
E‡

"
sup

fwœF

nX

i=1
‡i

cX

y=1
µ(fw(xi), y) ”y,yi

#

= 1
n

cX

y=1
E‡

"
sup

fwœF

nX

i=1
‡iµ(fw(xi), y) ”y,yi

#
(55)

where ”y,yi = 1 if y = yi and 0 otherwise; the second inequality follows from the sub-additivity
of sup. Substituting ”y,yi = 1

2(‘i + 1
2) where ‘i = 2”y,yi ≠ 1 œ {±1}, we obtain

bRS(µF) Æ
1

2n

cX

y=1
E‡

"
sup

fwœF

nX

i=1
(‘i‡i)µ(fw(xi), y)

#
+ 1

2n

cX

y=1
E‡

"
sup

fwœF

nX

i=1
‡iµ(fw(xi), y)

#

=
cX

y=1

1
n
E‡

"
sup

fwœF

nX

i=1
‡iµ(fw(xi), y)

#

=
cX

y=1

bRS(µF ,y) (56)

Together with (54), this leads to (53).

125

Now, spelling out µ(fw(xi, y)) gives

bRS(µF ,y) = 1
n
E‡

"
sup

fwœF

nX

i=1
‡i(fw(xi)[y] ≠ max

yÕ ”=y

fw(xi)[yÕ])
#

= bRS(Fy) + 1
n
E‡

"
sup

fwœF

nX

i=1
(≠‡i) max

yÕ ”=y

fw(xi)[yÕ]
#

= bRS(Fy) + 1
n
E‡

"
sup

fwœF

nX

i=1
‡i max

yÕ ”=y

fw(xi)[yÕ]
#

Æ bRS(Fy) + bRS(Gy) (57)

where Gy = {max{fyÕ : yÕ
”= y} | fyÕ œ FyÕ}. Now (Mohri et al., 2012, lemma 8.1) show that

bRS(Gy) Æ
P

yÕ ”=y
bRS(FyÕ). This leads to

cX

y=1

bRS(µF ,y) Æ

cX

y=1

bRS(Fy) +
cX

y=1

cX

y
Õ=1

y
Õ ”=y

bRS(FyÕ)

=
cX

y=1

bRS(Fy) + (c ≠ 1)
cX

y=1

bRS(Fy)

= c
cX

y=1

bRS(Fy) (58)

Substituting in (53) finishes the proof. ⇤

In the linear case, this results leads to analogous theorems as in B.2.3 in the multiclass setting.
For example, considering the linear families of functions X æ Rc,

F
A

MA
= {x ‘æ fw(x)[y] := Èw, �(x)[y]Í | ÎwÎA Æ MA} (59)

where (x, y) ‘æ �(x)[y] is some joint feature map, we have the following
Theorem B.2. The emp. Rademacher complexity of the margin loss class ¸“(FA

MA
, ·) is

bounded as,
bRS(¸“(FA

MA
, ·)) Æ (c3/2MA/“n)

p
TrKA (60)

where (KA)yy
Õ

ij
is the kernel nc ◊ nc matrix associated to the rescaled features A≠1�(x)[y].

Proof. Eq.52, and Theorem B.2 applied to each linear family Fy of (scalar) functions leads
to

bRS(¸“(FA

MA
, ·)) Æ

c

“

cX

y=1

MA

n

q
TrKyy

A
(61)

126

where TrKyy

A
:=
P

n

i=1(KA)yy

ii
is computed w.r.t to the indices i = 1,...,n for fixed y. Passing

the average 1
c

P
c

y=1 under the root using Jensen inequality, we conclude:

bRS(¸“(FA

MA
, ·)) Æ

c2MA

“n

vuut1
c

cX

y=1
TrKyy

A

= c3/2MA

“n

p
TrKA (62)

⇤

The proof of the extension of these bounds to families learning flows follows the same line as
in B.2.3.

B.2.5. Which Norm for Measuring Capacity?

Implicit biases of gradient descent are relatively well understood in linear models (e.g
Gunasekar et al. (2018)). For example when using square loss, it is well-known that gradient
descent (initialized in the span of the data) converges to minimum ¸2 norm (resp. RKHS
norm) solutions in parameter space (resp. function space). Yet, as pointed out by Belkin
et al. (2018); Muthukumar et al. (2020), measuring capacity in terms of such norms is not
coherently linked with generalization in practice. Here we discuss this issue by highlighting
the critical dependence of meaningful norm-based capacity on the geometry defined by the
features. We use the notation of Section 4.1: � =

P
n

j=1
p

⁄jujv€
j

denote the n ◊ P feature
matrix and its SVD decomposition.

A standard approach is to measure capacity in terms of the ¸2 norm the weight vector, e.g
using bounds (10) with A = Id. If the distribution of solutions wú

S , where S ≥ fln is sampled
from the input distribution, is reasonably isotropic, taking the smallest ¸2 ball containing
them (with high probability) gives an accurate description of the class of trained models.
However for very anisotropic distributions, the solutions do not fill any such ball so describing
trained models in terms of ¸2 balls is wasteful (Schölkopf et al., 1999a).

Now, for minimum ¸2 norm interpolators (Hastie et al., 2009),

wú =�€K≠1y =
nX

j=1

u€
j
y

p
⁄j

vj, (63)

where K = ��€ is the kernel matrix, the solution distribution typically inherits the
anisotropy of the features. For example, if yi = ȳ(xi) + Ái where Ái ≥ N (0, ‡2), the covariance
of the solutions with respect to noise is covÁ[wú, wú] =

P
j

‡
2

⁄j
vjv€

j
, which scales as 1/⁄j along

vj.

127

�2 0 2
w1 � w̄1

�25

0

25
w

10
�

w̄
10

c = 0.4

�2 0 2
w1 � w̄1

c = 0.6

�2 0 2
w1 � w̄1

c = 0.8

�2 0 2
w1 � w̄1

c = 0.9

0.0 0.5 1.0

value of c

0.0

0.1

0.2

0.3

0.4

Lo
ss

0-1 Test Loss

0.0 0.5 1.0

value of c

0.4

0.5

0.6

0.7

0.8

op
tim

al
bo

un
d

Complexity Bound

2

4

6

8

�2
bo

un
d

Fig. B.3. Left: 2D projection of the minimum ¸2-norm interpolators wú
S , S ≥ fln, for linear

models fw = Èw, �cÍ, as the feature scaling factor varies from 0 (white features) to 1 (original,
anisotropic features). For larger c, the solutions scatter in a very anisotropic way. Right: Average
test classification loss and complexity bounds (60) with A = Id (blue plot) for the solution vectors wú

S ,
as we increase the scaling factor c. As feature anisotropy increases, the bound becomes increasingly
loose and fails to reflect the shape of the test error. By contrast, the bound (10) with A optimized
as in Proposition B.7 (red plot) does not su�er from this problem.

To visualize this on a simple setting, we consider P random features of a RBF kernel1,
fit on 1D data x modelled by N equally spaced points in [≠a, a]. In this setting, the (true)
feature map is represented by a N ◊ P matrix with SVD � =

P
j

p
ljÂjÏ€

j
. We assume

the (true) labels are defined by the deterministic function y(x) = sign(Â1(x)). To highlight
the e�ect of feature anisotropy, we further rescale the singular values as lc

j
= 1 + c(lj ≠ 1)

so as to interpolate between whitened features (c=0) and the original ones (c=1). We set
P =N =1000. Fig B.3 (left) shows 2D projections in the plane (Ï1, Ï10) of the (centered)
minimum ¸2 norm solutions wú

S ≠ ESwú
S , for a pool of 100 training (sub)samples S of size

n = 50, for increasing values of the scaling factor c. As c approaches 1, the solutions begin
to scatter in a very anisotropic way in parameter space; as shown in Fig B.3 (right), the
complexity bound (42) based on the ¸2 norm, i.e A = Id (blue plot), becomes increasingly
loose and fails to reflect the shape of the test error.

To find a more meaningful capacity measure, Prop B.2 suggests optimizing the bound
(10) with MA = Îwú

ÎA, over a given class of rescaling matrices A. We give an example of this
in the following Proposition.
Proposition B.7. Consider the class of matrices A‹ =

P
n

j=1
Ô

‹jvjv€
j

+ Idspan{v}‹ , which
act as mere rescaling of the singular values of the feature matrix. Any minimizer of the upper
bound (42) for the mininum ¸2-norm interpolator takes the form

‹ú
j

= Ÿ

p
⁄j

|v€
j
wú|

= Ÿ
⁄j

|u€
j
y|

(64)

1We used RBFsampler of scikit-learn, which implements a variant of Random Kitchen Sinks (Rahimi & Recht,
2007) to approximate the feature map of a RBF kernel with parameter “ = 1.

128

where Ÿ > 0 is a constant independent of j.

Proof. From (63) and the definition of A‹ , we first write

Îwú
Î

2
A‹

=
nX

j=1

‹j

⁄j

(u€
j
y)2, TrKA‹ =

nX

j=1

⁄j

‹j

(65)

The product of the above two terms has the critical points ‹ú
j
, j = 1 · · · n which satisfy

(u€
j
y)2

⁄j

TrKA‹ ≠
⁄j

‹ú2
j

Îwú
Î

2
A‹

= 0 (66)

giving the desired result ‹ú
j

Ã ⁄j/|u€
j
y|. ⇤

In the context of Proposition B.7, we see that the optimal norm Î · ÎA‹ú depends both on
the feature geometry – through the singular values – and on the task – through the labels –.
As shown in Fig 1 (right, red plot), in the above RBF feature setting, the resulting optimal
bound on the Radecher complexity has a much nicer behaviour than the standard bound
based on the ¸2 norm.2

B.2.6. SuperNat: Proof of Prop 4.3

Prop. 4.3 is a local version of Prop B.7, where the feature rescaling factors are applied at
each step of the training algorithm. The procedure is described in Fig 4.5 (left); the term to
be optimized shows up in Step 2. With the chosen class of matrices described in Prop 4.3,
the action �t æ A≠1

‹
�t merely rescale its singular values ⁄jt æ ⁄jt/‹j, leaving its singular

vectors uj, vj unchanged.
Proposition B.8 (Prop 4.3 restated). For the class of rescaling matrices A‹ defined in Prop
B.7, any minimizer in Step 2 in Fig 4.5, where ”wGD = ≠÷ÒwL, takes the form

‹ú
jt

= Ÿ
1

|u€
j
ÒfwL|

(67)

where Ÿ > 0 is a constant independent of j.

Proof. Using the chain rule and the SVD of the feature map �t we write the gradient
descent updates at iteration t of SuperNat as

”wGD = ≠÷�€
t

ÒfwL (68)

= ≠÷
P

n

j=1
p

⁄jt(u€
j
ÒfwL) vj, (69)

2Note however that, since the optimal norm depends on the sample set S, the resulting complexity bound
does not directly yield a high probability bound on the generalization error as in (38). The more thorough
analysis, which requires promoting (38) to uniform bounds over the choice of matrix A, is left for future work.

129

Fig. B.4. Disk dataset. Left: Training set of n = 500 points (xi, yi) where x ≥ Unif[≠1,1]2,
yi = 1 if ÎxiÎ2 Æ r =

p
2/fi and ≠1 otherwise. Right: Large test sample (2500 points

forming a 50 ◊ 50 grid) used to evaluate the tangent kernel.

From the definition of A‹ , we then spell out

Î”wGDÎ
2
A‹

= ÷2
nX

j=1
(‹j⁄j)(u€

j
ÒfwL)2, ÎA≠1

‹
�tÎF := TrKtA‹ =

nX

j=1

⁄j

‹j

(70)

The product of the above two terms has the critical points ‹ú
j
, j = 1 · · · n which satisfy

⁄j(u€
j
ÒfwL)2TrKA‹ ≠

⁄j

‹ú2
j

Î”wGDÎ
2
A‹

= 0 (71)

giving the desired result ‹ú
j

Ã 1/|u€
j
ÒfwL|. ⇤

B.3. Additional experiments

B.3.1. Synthetic Experiment: Fig. 4.1

To visualize the adaptation of the tangent kernel to the task during training, we perform
the following synthetic experiment. We train a 6-layer deep 256-unit wide MLP on n = 500
points of the Disc dataset (x, y) where x ≥ Unif[≠1,1]2 and y(x) = ±1 depending on whether
is within the disk of center 0 and radius

p
2/fi, see Fig B.4. Fig. 4.1 in the main text shows

visualizations of eigenfunctions sampled using a grid of N = 2500 points on the square, and
ranked in non-increasing order of the spectrum ⁄1 Ø · · · Ø ⁄N . After a number of iterations,
we begin to see the class structure (e.g. boundary circle) emerge in the top eigenfunctions.
We note also an increasingly fast spectrum decay (e.g ⁄20/⁄1 = 1.5% at iteration 0 and
0.2% at iteration 2000). The interpretation is that the kernel stretches in directions of high
correlation with the labels.

130

101 102 103 104

sgd iterations

0.0

0.1
al

ig
nm

en
t

0.0

0.5

1.0

ac
cu

ra
cy train

test

MNIST, 6 layers MLP

101 102 103 104

sgd iterations

0.0

0.1

0.2

al
ig

nm
en

t

0.0

0.5

1.0

ac
cu

ra
cy train

test

CIFAR10, VGG19

101 102 103 104

sgd iterations

0.0

0.1

0.2

al
ig

nm
en

t

0.0

0.5

1.0

ac
cu

ra
cy train

test

CIFAR10, Resnet18

Fig. B.5. Evolution of the CKA between the tangent kernel and the class label kernel KY = Y Y T

measured on a held-out test set for di�erent architectures: (left) 6 layers of 80 hidden units MLP
on MNIST (middle) VGG19 on CIFAR10 (right) Resnet18 on CIFAR10. We observe an increase
of the alignment to the target function.

B.3.2. More Alignment Plots

Varying datasets and architectures: Fig B.5.

Uncentered kernel Experiments: Fig B.6. The evolution of the alignment to the
uncentered kernel, in order to assess whether this e�ect is consistent when removing centering.
The experimental details are the same as in the main text; we also observe a similar increase
of the alignment as training progresses.

B.3.3. E�ect of depth on alignment

In order to study the influence of the architecture on the alignment e�ect, we measure the
CKA for di�erent networks and di�erent initialization as we increase the depth. The results
in Fig B.7 suggest that the alignment e�ect is magnified as depth increases. We also observe
that the ratio of the maximum alignment between easy and di�cult examples is increased
with depth, but stays high for a smaller number of iterations.

131

101 102 103 104

sgd iterations

0.00

0.05
al

ig
nm

en
t

0.0

0.5

1.0

ac
cu

ra
cy train

test

MNIST, 6 layers MLP

101 102 103 104

sgd iterations

0.0

0.1

al
ig

nm
en

t

0.0

0.5

1.0

ac
cu

ra
cy train

test

CIFAR10, VGG19

101 102 103 104

sgd iterations

0.0

0.1

al
ig

nm
en

t

0.0

0.5

1.0

ac
cu

ra
cy train

test

CIFAR10, Resnet18

Fig. B.6. Same as figure B.5 but without centering the kernel. Evolution of the uncentered kernel
alignment between the tangent kernel and the class label kernel KY = Y Y T measured on a held-out
test set for di�erent architectures: (left) 6 layers of 80 hidden units MLP on MNIST (middle)
VGG19 on CIFAR10 (right) Resnet18 on CIFAR10. We observe an increase of the alignment to
the target function.

B.3.4. Spectrum Plots with lower learning rate : Fig. B.8

132

de
pt

h
3

0.00

0.05

al
ig

n. easy
difficult

101 102 103 104

sgd iterations

5

10

15

ra
tio

0.5

1.0
ac

cu
ra

cy test easy
test diff

train easy
train diff

de
pt

h
4

0.00

0.05

al
ig

n.

101 102 103 104

sgd iterations

10

20

ra
tio

0.5

1.0

ac
cu

ra
cy

de
pt

h
5

0.0

0.1

al
ig

n.

101 102 103 104

sgd iterations

10

20

ra
tio

0.5

1.0

ac
cu

ra
cy

de
pt

h
6

0.0

0.1

al
ig

n.

101 102 103 104

sgd iterations

20

40

ra
tio

0.5

1.0

ac
cu

ra
cy

de
pt

h
7

0.0

0.1

al
ig

n.

101 102 103 104

sgd iterations

10
20
30

ra
tio

0.5

1.0

ac
cu

ra
cy

0.00

0.05

101 102 103 104

sgd iterations

5

10

15

0.5

1.0

0.00

0.05

101 102 103 104

sgd iterations

10

20

0.5

1.0

0.0

0.1

101 102 103 104

sgd iterations

10
20
30

0.5

1.0

0.0

0.1

101 102 103 104

sgd iterations

10
20
30

0.5

1.0

0.0

0.1

101 102 103 104

sgd iterations

10

20

0.5

1.0

0.00

0.05

101 102 103 104

sgd iterations

5

10

0.5

1.0

0.00

0.05

101 102 103 104

sgd iterations

10

20

0.5

1.0

0.0

0.1

101 102 103 104

sgd iterations

10
20
30

0.5

1.0

0.0

0.1

101 102 103 104

sgd iterations

10
20
30

0.5

1.0

0.0

0.1

101 102 103 104

sgd iterations

10
20
30

0.5

1.0

Fig. B.7. E�ect of depth on alignment. 10.000 MNIST examples with 1000 random labels MNIST
examples trained with learning rate=0.01, momentum=0.9 and batch size=100 for MLP with hidden
layers size 60 and (in rows) varying depths (in columns) varying random initialization/minibatch
sampling. As we increase the depth, the alignment starts increasing later in training and increases
faster; and the ratio between easy and di�cult alignments reaches a higher value.

133

250

500
e�

.
ra

n
k

0

1

ac
c.

no random labels

train
test

104� max
average
median

101 103 105

sgd iterations

0.0

0.5

1.0

tr
.

ra
ti

o
s

T40, T80, T160

250

500

e�
.

ra
n
k

0

1

ac
c.

20% random labels

train
test

104� max
average
median

101 103 105

sgd iterations

0.0

0.5

1.0

tr
.

ra
ti

o
s

T40, T80, T160

250

500

e�
.

ra
n
k

0

1

a
cc

.

50% random labels
train
test

104� max
average
median

101 103 105

sgd iterations

0.0

0.5

1.0

tr
.

ra
ti

os

T40, T80, T160

Fig. B.8. Evolution of tangent kernel spectrum, e�ective rank and trace ratios of a VGG19 trained
by SGD with batch size 100, learning rate 0.003 and momentum 0.9 on dataset (left) CIFAR10 and
(right) CIFAR10 with 50% random labels. We highlight the top 40, 80 and 160 trace ratios in red.

134

Appendix C

Mutual Information Neural Estimation:
Supplementary Material

C.1. Experimental Details

C.1.1. Adaptive Clipping

Here we assume we are in the context of GANs described in Sections 5.1 and 5.2, where
the mutual information shows up as a regularizer in the generator objective.

Notice that the generator is updated by two gradients. The first gradient is that of the
generator’s loss, Lg with respect to the generator’s parameters ◊, gu := ˆLg

ˆ◊
. The second flows

from the mutual information estimate to the generator, gm := ≠
ˆ \I(X;Z)

ˆ◊
. If left unchecked,

because mutual information is unbounded, the latter can overwhelm the former, leading to a
failure mode of the algorithm where the generator puts all of its attention on maximizing the
mutual information and ignores the adversarial game with the discriminator. We propose to
adaptively clip the gradient from the mutual information so that its Frobenius norm is at
most that of the gradient from the discriminator. Defining ga to be the adapted gradient
following from the statistics network to the generator, we have,

ga = min(ÎguÎ , ÎgmÎ) gm

ÎgmÎ
. (1)

Note that adaptive clipping can be considered in any situation where MINE is to be maximized.

C.1.2. GAN+MINE: Spiral and 25-gaussians

In this section we state the details of experiments supporting mode dropping experiments
on the spiral and 25-Gaussians dataset. For both the datasets we use 100,000 examples

sampled from the target distributions, using a standard deviation of 0.05 in the case of
25-gaussians, and using additive noise for the spiral. The generator for the GAN consists
of two fully connected layers with 500 units in each layer with batch-normalization (Io�e &
Szegedy, 2015) and Leaky-ReLU as activation function as in Dumoulin et al. (2016). The
discriminator and statistics networks have three fully connected layers with 400 units each.
We use the Adam (Kingma & Ba, 2014) optimizer with a learning rate of 0.0001. Both GAN
baseline and GAN+MINE were trained for 5,000 iterations with a mini batch-size of 100.

C.1.3. GAN+MINE: Stacked-MNIST

Here we describe the experimental setup and architectural details of stacked-MNIST task
with GAN+MINE. We compare to the exact same experimental setup followed and reported
in PacGANLin et al. (2017) and VEEGANSrivastava et al. (2017). We use a pre-trained
classifier to classify generated samples on each of the three stacked channels. Evaluation
is done on 26,000 test samples as followed in the baselines. We train GAN+MINE for 50
epochs on 128,000 samples. Details for generator and discriminator networks are given below
in the tableC.1 and tableC.2. Specifically the statistics network has the same architecture
as discriminator in DCGAN with ELU (Clevert et al., 2015) as activation function for the
individual layers and without batch-normalization as highlighted in Table C.3. In order to
condition the statistics network on the z variable, we use linear MLPs at each layer, whose
output are reshaped to the number of feature maps. The linear MLPs output is then added
as a dynamic bias.

Generator
Layer Number of outputs Kernel size Stride Activation function

Input z ≥ U(≠1, 1)100 100
Fully-connected 2*2*512 ReLU
Transposed convolution 4*4*256 5 ú 5 2 ReLU
Transposed convolution 7*7*128 5 ú 5 2 ReLU
Transposed convolution 14*14*64 5 ú 5 2 ReLU
Transposed convolution 28*28*3 5 ú 5 2 Tanh
Table C.1. Generator network for Stacked-MNIST experiment using GAN+MINE.

136

Discriminator
Layer Number of outputs Kernel size Stride Activation function

Input x 28 ú 28 ú 3
Convolution 14*14*64 5 ú 5 2 ReLU
Convolution 7*7*128 5 ú 5 2 ReLU
Convolution 4*4*256 5 ú 5 2 ReLU
Convolution 2*2*512 5 ú 5 2 ReLU
Fully-connected 1 1 Valid Sigmoid

Table C.2. Discriminator network for Stacked-MNIST experiment.

Statistics Network
Layer number of outputs kernel size stride activation function

Input x, z

Convolution 14*14*16 5 ú 5 2 ELU
Convolution 7*7*32 5 ú 5 2 ELU
Convolution 4*4*64 5 ú 5 2 ELU
Flatten - - - -
Fully-Connected 1024 1 Valid None
Fully-Connected 1 1 Valid None

Table C.3. Statistics network for Stacked-MNIST experiment.

C.1.4. ALI+MINE: MNIST and CelebA

In this section we state the details of experimental setup and the network architectures
used for the task of improving reconstructions and representations in bidirectional adversarial
models with MINE. The generator and discriminator network architectures along with the
hyper parameter setup used in these tasks are similar to the ones used in DCGAN (Radford
et al., 2015).

Statistics network conditioning on the latent code was done as in the Stacked-MNIST
experiments. We used Adam as the optimizer with a learning rate of 0.0001. We trained the
model for a total of 35,000 iterations on CelebA and 50,000 iterations on MNIST, both with
a mini batch-size of 100.

137

Encoder
Layer Number of outputs Kernel size Stride Activation function

Input [x, ‘] 28*28*129
Convolution 14*14*64 5 ú 5 2 ReLU
Convolution 7*7*128 5 ú 5 2 ReLU
Convolution 4*4*256 5 ú 5 2 ReLU
Convolution 256 4 ú 4 Valid ReLU
Fully-connected 128 - - None

Table C.4. Encoder network for bi-directional models on MNIST. ‘ ≥ N128(0, I).

Decoder
Layer Number of outputs Kernel size Stride Activation function

Input z 128
Fully-connected 4*4*256 ReLU
Transposed convolution 7*7*128 5 ú 5 2 ReLU
Transposed convolution 14*14*64 5 ú 5 2 ReLU
Transposed convolution 28*28*1 5 ú 5 2 Tanh

Table C.5. Decoder network for bi-directional models on MNIST. z ≥ N256(0, I)

Discriminator
Layer Number of outputs Kernel size Stride Activation function

Input x 28 ú 28 ú 3
Convolution 14*14*64 5 ú 5 2 LearkyReLU
Convolution 7*7*128 5 ú 5 2 LeakyReLU
Convolution 4*4*256 5 ú 5 2 LeakyReLU
Flatten - - -
Concatenate z - - -
Fully-connected 1024 - - LeakyReLU
Fully-connected 1 - - Sigmoid

Table C.6. Discriminator network for bi-directional models experiments MINE on MNIST.

138

Statistics Network
Layer number of outputs kernel size stride activation function

Input x, z

Convolution 14*14*64 5 ú 5 2 LeakyReLU
Convolution 7*7*128 5 ú 5 2 LeakyReLU
Convolution 4*4*256 5 ú 5 2 LeakyReLU
Flatten - - - -
Fully-connected 1 - - None

Table C.7. Statistics network for bi-directional models using MINE on MNIST.

Encoder
Layer Number of outputs Kernel size Stride Activation function

Input [x, ‘] 64*64*259
Convolution 32*32*64 5 ú 5 2 ReLU
Convolution 16*16*128 5 ú 5 2 ReLU
Convolution 8*8*256 5 ú 5 2 ReLU
Convolution 4*4*512 5 ú 5 2 ReLU
Convolution 512 4 ú 4 Valid ReLU
Fully-connected 256 - - None

Table C.8. Encoder network for bi-directional models on CelebA. ‘ ≥ N256(0, I).

Decoder
Layer Number of outputs Kernel size Stride Activation function

Input z ≥ N256(0, I) 256
Fully-Connected 4*4*512 - - ReLU
Transposed convolution 8*8*256 5 ú 5 2 ReLU
Transposed convolution 16*16*128 5 ú 5 2 ReLU
Transposed convolution 32*32*64 5 ú 5 2 ReLU
Transposed convolution 64*64*3 5 ú 5 2 Tanh

Table C.9. Decoder network for bi-directional model(ALI, ALICE) experiments using MINE
on CelebA.

139

Discriminator
Layer Number of outputs Kernel size Stride Activation function

Input x 64 ú 64 ú 3
Convolution 32*32*64 5 ú 5 2 LearkyReLU
Convolution 16*16*128 5 ú 5 2 LeakyReLU
Convolution 8*8*256 5 ú 5 2 LeakyReLU
Convolution 4*4*512 5 ú 5 2 LeakyReLU
Flatten - - -
Concatenate z - - -
Fully-connected 1024 - - LeakyReLU
Fully-connected 1 - - Sigmoid

Table C.10. Discriminator network for bi-directional models on CelebA.

Statistics Network
Layer number of outputs kernel size stride activation function

Input x, z

Convolution 32*32*16 5 ú 5 2 ELU
Convolution 16*16*32 5 ú 5 2 ELU
Convolution 8*8*64 5 ú 5 2 ELU
Convolution 4*4*128 5 ú 5 2 ELU
Flatten - - - -
Fully-connected 1 - - None

Table C.11. Statistics network for bi-directional models on CelebA.

C.1.5. Information bottleneck with MINE

In this section we outline the network details and hyper-parameters used for the information
bottleneck task using MINE. To keep comparison fair all hyperparameters and architectures
are those outlined in Alemi et al. (2016). The statistics network is shown, a two layer MLP
with additive noise at each layer and 512 ELUs (Clevert et al., 2015) activations, is outlined
in tableC.12.

140

Statistics Network
Layer number of outputs activation function

input [x, z]
Gaussian noise(std=0.3) - -
dense layer 512 ELU
Gaussian noise(std=0.5) - -
dense layer 512 ELU
Gaussian noise(std=0.5) - -
dense layer 1 None

Table C.12. Statistics network for Information-bottleneck experiments on MNIST.

C.2. Proofs

C.2.1. Donsker-Varadhan Representation

Theorem C.1 (Theorem 5.1 restated). The KL divergence admits the following dual repre-
sentation:

DKL(P || Q) = sup
T :�æR

EP[T] ≠ log(EQ[eT]), (2)

where the supremum is taken over all functions T such that the two expectations are finite.

Proof. A simple proof goes as follows. For a given function T , consider the Gibbs distribution
G defined by dG = 1

Z
eT dQ, where Z = EQ[eT]. By construction,

EP[T] ≠ log Z = EP


log dG

dQ

�
(3)

Let � be the gap,
� := DKL(P || Q) ≠

�
EP[T] ≠ log(EQ[eT])

�
(4)

Using Eqn 3, we can write � as a KL-divergence:

� = EP


log dP

dQ ≠ log dG
dQ

�
= EP log dP

dG = DKL(P || G) (5)

The positivity of the KL-divergence gives � Ø 0. We have thus shown that for any T ,

DKL(P || Q) Ø EP[T] ≠ log(EQ[eT]) (6)

and the inequality is preserved upon taking the supremum over the right-hand side. Finally,
the identity (5) also shows that this bound is tight whenever G = P, namely for optimal
functions T ú taking the form T ú = log dP

dQ + C for some constant C œ R. ⇤

141

C.2.2. Consistency Proofs

This section presents the proofs of the Lemma and consistency theorem stated in the
consistency in Section 3.3.1.

In what follows, we assume that the input space � = X ◊ Z is a compact domain of Rd,
and all measures are absolutely continuous with respect to the Lebesgue measure. We will
restrict to families of feedforward functions with continuous activations, with a single output
neuron, so that a given architecture defines a continuous mapping (Ê, ◊) æ T◊(Ê) from � ◊ �
to R.

To avoid unnecessary heavy notation, we denote P = PXZ and Q = PX ¢ PZ for the joint
distribution and product of marginals, and Pn,Qn for their empirical versions. We will use
the notation Î(T) for the quantity:

Î(T) = EP[T] ≠ log(EQ[eT]) (7)

so that I�(X, Z) = sup
◊œ� Î(T◊).

Lemma C.1 (Lemma 5.2 restated). Let ÷ > 0. There exists a family of neural network
functions T◊ with parameters ◊ in some compact domain � µ Rk, such that

|I(X, Z) ≠ I�(X,Z)| Æ ÷ (8)

where
I�(X, Z) = sup

◊œ�
EPXZ [T◊] ≠ log(EPX¢PZ [eT◊]) (9)

Proof. Let T ú = log dP
dQ . By construction, T ú satisfies:

EP[T ú] = I(X, Z), EQ[eT
ú] = 1 (10)

For a function T , the (positive) gap I(X, Z) ≠ Î(T) can be written as

I(X, Z) ≠ Î(T) = EP[T ú
≠ T] + logEQ[eT] Æ EP[T ú

≠ T] + EQ[eT
≠ eT

ú] (11)

where we used the inequality log x Æ x ≠ 1.

Fix ÷ > 0. We first consider the case where T ú is bounded from above by a constant M .
By the universal approximation theorem (see corollary 2.2 of Hornik (1989)1), we may choose
a feedforward network function T

◊̂
Æ M such that

EP|T ú
≠ T

◊̂
| Æ

÷

2 and EQ|T ú
≠ T

◊̂
| Æ

÷

2e≠M (12)

1Specifically, the argument relies on the density of feedforward network functions in the space L1(�, µ) of
integrable functions with respect the measure µ = P + Q.

142

Since exp is Lipschitz continuous with constant eM on (≠Œ, M], we have

EQ|eT
ú

≠ eT◊̂ | Æ eM EQ|T ú
≠ T

◊̂
| Æ

÷

2 (13)

From Equ 11 and the triangular inequality, we then obtain:

|I(X, Z) ≠ Î(T
◊̂
)| Æ EP|T ú

≠ T
◊̂
| + EQ|eT

ú
≠ eT◊̂ | Æ

÷

2 + ÷

2 Æ ÷ (14)

In the general case, the idea is to partition � in two subset {T ú > M} and {T ú
Æ M} for

a suitably chosen large value of M . For a given subset S µ �, we will denote by S its
characteristic function, S(Ê) = 1 if Ê œ S and 0 otherwise. T ú is integrable with respect
to P2, and eT

ú is integrable with respect to Q, so by the dominated convergence theorem,
we may choose M so that the expectations EP[T ú

T ú>M] and EQ[eT
ú

T ú>M] are lower than
÷/4. Just like above, we then use the universal approximation theorem to find a feed forward
network function T

◊̂
, which we can assume without loss of generality to be upper-bounded by

M , such that
EP|T ú

≠ T
◊̂
| Æ

÷

2 and EQ|T ú
≠ T

◊̂
| T úÆM Æ

÷

4e≠M (15)

We then write

EQ[eT
ú

≠ eT◊̂] = EQ[(eT
ú

≠ eT◊̂) T úÆM] + EQ[(eT
ú

≠ eT◊̂) T ú>M]

Æ eMEQ[|T ú
≠ T

◊̂
| T úÆM] + EQ[eT

ú
T ú>M]

Æ
÷

4 + ÷

4 (16)

Æ
÷

2 (17)

where the inequality in the second line arises from the convexity and positivity of exp.
Eqns. 15 and 16, together with the triangular inequality, lead to Eqn. 14, which proves the
Lemma.

⇤

Lemma C.2 (Lemma 5.3 restated). Let ÷ > 0. Given a family F of neural network functions
T◊ with parameters ◊ in some compact domain � µ Rk, there exists N œ N such that

’n Ø N, Pr
⇣

| \I(X; Z)
n

≠ IF(X,Z)| Æ ÷
⌘

= 1 (18)

Proof. We start by using the triangular inequality to write,

| \I(X; Z)
n

≠ sup
T◊œF

Î(T◊)| Æ sup
T◊œF

|EP[T◊] ≠ EPn [T◊]| + sup
T◊œF

| logEQ[eT◊] ≠ logEQn [eT◊]| (19)

2This can be seen from the identity (Györfi & van der Meulen, 1987)

EP

����log dP
dQ

���� Æ DKL(P || Q) + 4
p

DKL(P || Q)

143

The continuous function (◊, Ê) æ T◊(Ê), defined on the compact domain � ◊ �, is bounded.
So the functions T◊ are uniformly bounded by a constant M , i.e |T◊| Æ M for all ◊ œ �. Since
log is Lipschitz continuous with constant eM in the interval [e≠M , eM], we have

| logEQ[eT◊] ≠ logEQn [eT◊]| Æ eM
|EQ[eT◊] ≠ EQn [eT◊]| (20)

Since � is compact and the feedforward network functions are continuous, the families of
functions T◊ and eT◊ satisfy the uniform law of large numbers (Van de Geer, 2000). Given
÷ > 0 we can thus choose N œ N such that ’n Ø N and with probability one,

sup
T◊œF

|EP[T◊] ≠ EPn [T◊] Æ
÷

2 and sup
T◊œF

|EQ[eT◊] ≠ EQn [eT◊]| Æ
÷

2e≠M (21)

Together with Eqns. 19 and 20, this leads to

| \I(X; Z)
n

≠ sup
T◊œF

Î(T◊)| Æ
÷

2 + ÷

2 = ÷ (22)

⇤

Theorem C.2 (Theorem 5.4 restated). MINE is strongly consistent.

Proof. Let ‘ > 0. We apply the two Lemmas to find a a family of neural network function
F and N œ N such that (8) and (18) hold with ÷ = ‘/2. By the triangular inequality, for all
n Ø N and with probability one, we have:

|I(X, Z) ≠ \I(X; Z)
n
| Æ |I(X, Z) ≠ sup

T◊œF
Î(T◊)| + | \I(X; Z)

n
≠ IF(X,Z)| Æ ‘ (23)

which proves consistency. ⇤

C.2.3. Sample complexity proof

Theorem C.3 (Theorem 5.5 restated). Assume that the functions T◊ in F are L-Lipschitz
with respect to the parameters ◊; and that both T◊ and eT◊ are M -bounded (i.e., |T◊|, eT◊ Æ M).
The domain � µ Rd is bounded, so that Î◊Î Æ K for some constant K. Given any values ‘,”

of the desired accuracy and confidence parameters, we have,

Pr
⇣

| \I(X; Z)
n

≠ IF(X,Z)| Æ ‘
⌘

Ø 1 ≠ ” (24)

whenever the number n of samples satisfies

n Ø
2M2(d log(16KL

Ô
d/‘) + 2dM + log(2/”))

‘2 (25)

144

Proof. The assumptions of Lemma 5.3 apply, so let us begin with Eqns. 19 and 20. By the
Hoe�ding inequality, for all function f ,

Pr
⇣

|EQ[f] ≠ EQn [f]| >
‘

4

⌘
Æ 2 exp (≠ ‘2n

2M2) (26)

To extend this inequality to a uniform inequality over all functions T◊ and eT◊ , the standard
technique is to choose a minimal cover of the domain � µ Rd by a finite set of small balls
of radius ÷, � µ fijB÷(◊j), and to use the union bound. The minimal cardinality of such
covering is bounded by the covering number N÷(�) of �, known to satisfy(Shalev-Schwartz
& Ben-David, 2014)

N÷(�) Æ

2K

Ô
d

÷

!d

(27)

Successively applying a union bound in Eqn 26 with the set of functions {T◊j }j and {eT◊j }j

gives

Pr
✓

max
j

|EQ[T◊j] ≠ EQn [T◊j]| >
‘

4

◆
Æ 2N÷(�) exp (≠ ‘2n

2M2) (28)

and
Pr
✓

max
j

|EQ[eT◊j] ≠ EQn [eT◊j]| >
‘

4

◆
Æ 2N÷(�) exp (≠ ‘2n

2M2) (29)

We now choose the ball radius to be ÷ = ‘

8L
e≠2M . Solving for n the inequation,

2N÷(�) exp (≠ ‘2n

2M2) Æ ” (30)

we deduce from Eqn 28 that, whenever Eqn 25 holds, with probability at least 1 ≠ ”, for all
◊ œ �,

|EQ[T◊] ≠ EQn [T◊]| Æ |EQ[T◊] ≠ EQ[T◊j]| + |EQ[T◊j] ≠ EQn [T◊j]| + |EQn [T◊j] ≠ EQn [T◊]|

Æ
‘

8e≠2M + ‘

4 + ‘

8e≠2M

Æ
‘

2 (31)

Similarly, using Eqn 20 and 29, we obtain that with probability at least 1 ≠ ”,

| logEQ[eT◊] ≠ logEQn [eT◊]| Æ
‘

2 (32)

and hence using the triangular inequality,

| \I(X; Z)
n

≠ IF(X,Z)| Æ ‘ (33)

⇤

145

C.2.4. Bound on the reconstruction error

Here we clarify relationship between reconstruction error and mutual information, by
proving the bound in Equ 18. We begin with a definition:
Definition C.1 (Reconstruction Error). We consider encoder and decoder models giving
conditional distributions q(z|x) and p(x|z) over the data and latent variables. If q(x) denotes
the marginal data distribution, the reconstruction error is defined as

R = Ex≥q(x)Ez≥q(z|x)[≠ log p(x|z)] (34)

We can rewrite the reconstruction error in terms of the joints q(x,z) = q(z|x)p(x) and
p(x,z) = p(x|z)p(z). Elementary manipulations give:

R = E(x,z)≥q(x,z) log q(x,z)
p(x,z) ≠ E(x,z)≥q(x,z) log q(x,z) + Ez≥q(z) log p(z) (35)

where q(z) is the aggregated posterior. The first term is the KL-divergence DKL(q || p) ; the
second term is the joint entropy Hq(x,z). The third term can be written as

Ez≥q(z) log p(z) = ≠DKL(q(z) || p(z)) ≠ Hq(z)

Finally, the identity

Hq(x,z) ≠ Hq(z) := Hq(z|x) = Hq(z) ≠ Iq(x,z) (36)

yields the following expression for the reconstruction error:

R = DKL(q(x,z) || p(x,z)) ≠ DKL(q(z) || p(z)) ≠ Iq(x,z) + Hq(z) (37)

Since the KL-divergence is positive, we obtain the bound:

R Æ DKL(q(x, z) || p(x, z)) ≠ Iq(x,z) + Hq(z) (38)

which is tight whenever the induced marginal q(z) matches the prior distribution p(z).

C.2.5. Embeddings for bi-direction 25 Gaussians experiments

Here (Fig. C.1) we present the embeddings for the experiments corresponding to Fig. 5.6.

146

(a) ALI (b) ALICE (L2) (c) ALICE (A) (d) MINE

Fig. C.1. Embeddings from adversarially learned inference (ALI) and variations intended
to increase the mutual information. Shown left to right are the baseline (ALI), ALICE with
the L2 loss to minimize the reconstruction error, ALI with an additional adversarial loss, and
MINE.

147

