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Abstract

This paper revisits manipulation via capacities in centralized two-sided

matching markets. Sönmez (1997) showed that no stable mechanism is non-

manipulable via capacities. We show that non-manipulability via capacities

can be equivalently described by two types of non-manipulation via capaci-

ties: non-Type-I-manipulability meaning that no college with vacant positions

can manipulate by dropping some of its empty positions; and non-Type-II-

manipulability meaning that no college with no vacant positions can manip-

ulate by dropping some of its filled positions. Our main result shows that

the student-optimal stable mechanism is the unique stable mechanism which

is non-Type-I-manipulable via capacities and independent of truncations. Our

characterization supports the use of the student-optimal stable mechanism in

these matching markets because of its limited manipulability via capacities by

colleges.
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1 Introduction

Matching markets arise in many economic environments. There are two sides of the

market, called students (or workers) and colleges (or hospitals or schools) and students

need to be matched to colleges. Specifically we are interested in many-to-one matching

markets where monetary compensations are fixed, i.e. salaries are prespecified in

each match and colleges can admit one or possibly more students. In a number of

those environments decentralized markets have failed and centralized clearinghouses

(or mechanisms) have emerged. Leading examples are entry-level medical markets

in Great Britain and the United States, college admissions, and school choice in

American municipalities. In those markets the success of a centralized matching

procedure has been proven to depend on the (in)stability of the mechanism. More

precisely, it has been shown that stable mechanisms outperform unstable mechanisms

in centralized matching markets.

This is surprising because any stable mechanism is susceptible to different kinds

of manipulation. In centralized matching markets colleges’ preferences are private in-

formation and need to be reported to the clearinghouse. A mechanism is manipulable

via preferences if a college can gain (in terms of the true preference) by submitting

a false preference instead of its true preference. Roth (1985) showed that any sta-

ble mechanism is manipulable via preferences (for colleges).1 Similarly the colleges’

capacities are private information and a mechanism is manipulable via capacities if

a college can gain (in terms of the true preference) by underreporting its true ca-

pacity. Sönmez (1997) showed a counterpart of Roth’s result: any stable mechanism

is manipulable via capacities. Our first result links these two types of manipulation

as follows: for any given problem, if a stable mechanism is manipulable via capac-

ities, then this mechanism is manipulable via preferences. Hence, the impossibility

result (for preference manipulation) by Roth (1985) is a direct consequence of the

1Roth (1982) showed that any stable mechanism is manipulable via preferences for colleges or

students.

2



impossibility result (for capacity manipulation) by Sönmez (1997).

Motivated by the impossibility result by Sönmez (1997), one strand of recent lit-

erature (Konishi and Ünver, 2006; Kojima, 2006; Romero-Medina and Triossi, 2007)

considered games of capacity manipulation induced by the student-optimal stable

mechanism and the college-optimal stable mechanism. Unfortunately pure strategy

Nash equilibria may not exist (Konishi and Ünver, 2006). Two other contributions

(Kojima, 2007; Kesten, 2008) determine domains where no college can gain by ma-

nipulation via capacities. More precisely, Kojima (2007) shows that a college with a

fixed preference relation and capacity of at least two can almost always be embedded

in a problem such that the student-optimal stable mechanism or the college-optimal

stable mechanism is manipulable via capacities by this college. Similarly, Kesten

(2008) shows that the student-optimal stable mechanism for a given problem is non-

manipulable via capacities if and only if the problem satisfies a strong “acyclicity”

condition. All these results are disappointing regarding manipulation via capacities

(of the student-optimal stable mechanism and/or the college-optimal stable mecha-

nism).

Here we will not narrow ourselves to the student-optimal stable mechanism or the

college-optimal stable mechanism and not restrict the domain of problems under con-

sideration. We try to understand when and how mechanisms can be manipulated via

capacities. We show that the non-manipulability via capacities of an arbitrary mech-

anism can be equivalently described by two types of non-manipulation via capacities:

(i) non-Type-I-manipulability meaning that no college with vacant positions can ma-

nipulate by dropping some of its empty positions, and (ii) non-Type-II-manipulability

meaning that no college with no vacant positions can manipulate by dropping some

of its filled positions. We show that a mechanism is non-manipulable via capacities

if and only if the mechanism is both non-Type-I-manipulable via capacities and non-

Type-II-manipulable via capacities. Our main result shows that the student-optimal

stable mechanism is the unique stable mechanism which is non-Type-I-manipulable
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via capacities and independent of truncations. Hence, the student-optimal stable

mechanism is characterized in terms of non-manipulation properties of colleges and

these properties imply that the mechanism is non-manipulable via preferences for

students.

Our main result further supports the use of the student-optimal stable mechanism

in applications. The NRMP changed the mechanism from the college-optimal stable

mechanism to the student-optimal stable mechanism because of its non-manipulability

via preferences for students. This change did not have only a positive effect on the stu-

dents’ side, but also on the colleges’ side because a limited form of non-manipulability

via capacities is guaranteed. Note that this is not guaranteed by the college-optimal

stable mechanism because it is both Type-I- and Type-II-manipulable via capacities.

Our main result also points out positive effects of the use of the student-optimal sta-

ble mechanism in school choice (like in Boston): here priorities of schools are fixed or

known and a school may only manipulate via capacities. Again under the student-

optimal stable mechanism schools with vacant seats cannot manipulate by dropping

some of their empty seats.

A consequence of our main result is that any stable mechanism is Type-II-manipulable

via capacities. Indeed avoiding manipulability via capacities by colleges with no va-

cant positions is difficult. Of course, any such solution will be unstable. For problems

where each college has exactly one position no college can gain by underreporting

its capacity. We show that one may use an iterative stable mechanism in order to

avoid manipulations via capacities.2 In determining which “no blocking” conditions

an iterative stable mechanism may possess, recall that in school choice stability (of

a matching) is equivalent to non-wastefulness (no empty positions are wasted) and

fairness (no student justifiably envies another student at a college). We adopt weaker

notions of these two “no blocking” conditions and establish in school choice a variant

of the impossibility result by Sönmez (1997): (a) there exists no mechanism which is

2We provide details later.
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non-wasteful, weakly fair, and non-manipulable via capacities; and (b) there exists no

mechanism which is weakly non-wasteful, fair, and non-manipulable via capacities.

If both “no blocking” conditions are weakened, then a possibility emerges. Namely,

any iterative stable mechanism satisfies weak non-wastefulness, weak fairness and

non-manipulability via capacities. In applications, if non-manipulation via capacities

is more important than stability, then an iterative stable mechanism may provide a

practical solution since it satisfies the weaker versions of the “no blocking” conditions

non-wastefulness and fairness.

The paper is organized as follows. Section 2 introduces the two-sided matching

market, stability and manipulation via capacities. Section 3 provides the direct link

for stable mechanisms between manipulation via capacities and manipulation via

preferences. Section 4 introduces two types of non-manipulation via capacities and

gives our main result: the characterization of the student-optimal mechanism. Section

5 introduces iterative (stable) mechanisms and establishes the variant of Sönmez

(1997) for school choice.

2 The Model

A college admissions problem is a quadruple (S, C, q, R) where (i) S denotes the

finite set of students, (ii) C denotes the finite set of colleges, (iii) q = (qc)c∈C is list of

natural numbers where qc is the capacity (or the number of available slots at college

c), and (iv) R = (Rv)v∈S∪C is a list of preference relations. Since we consider the case

where S and C remain fixed, we write (q, R) instead of (S, C, q, R). Furthermore,

for any T ⊆ C, let qT = (qc)c∈T and q−T = (qc)c∈C\T , and for any c ∈ C, let

R−c = (Rv)v∈S∪(C\{c}).

For any v ∈ S ∪ C, Rv is a complete and transitive preference relation. Let Pv

denote the strict preference relation associated with Rv. For any s ∈ S, Rs is a strict

preference relation on C ∪ {∅} where ∅ stands for being unmatched. For any c ∈ C,

Rc is a preference relation on 2S such that Rc is strict on S∪{∅} and Rc is responsive
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over 2S (to Rc|S∪∅3): for all S ′ ⊆ S and all s, s′ ∈ S\S ′,

(i) S ′ ∪ {s}PcS
′ ∪ {s′} ⇔ sPcs

′ and (ii) S ′ ∪ {s}PcS
′ ⇔ sPc∅.4

Let Rc denote the set of all responsive preferences over 2S.

Given Rs, college c is acceptable under Rs if cPs∅. Similarly, for any Rc, student s

is acceptable under Rc if sPc∅. Let A(Rc) = {s ∈ S : sPc∅} denote the set of students

who are acceptable under Rc.

A matching for a given capacity vector q is a function µ : S ∪C → 2S∪C such that

(i) for all s ∈ S, |µ(s)| ≤ 1 and µ(s) ⊆ C;

(ii) for all c ∈ C, |µ(c)| ≤ qc and µ(c) ⊆ S; and

(iii) for all s ∈ S and all c ∈ C, µ(s) = c if and only if s ∈ µ(c).

The main concept is stability of a matching: no student should be matched to an

unacceptable college, no college should be matched to any unacceptable student, and

no student-college pair blocks the matching because they mutually prefer each other.

Given a problem (q, R), a matching µ for q is stable if

(a) (individual rationality for students) for all s ∈ S, µ(s)Rs∅;

(b) (individual rationality for colleges) for all c ∈ C, µ(c) ⊆ A(Rc);

(c) (no blocking pair) there exists no s ∈ S and c ∈ C such that cPsµ(s) and either

[|µ(c)| < qc and sPc∅] or [sPcs
′ for some s′ ∈ µ(c)].

Gale and Shapley (1962) show that the set of stable matchings is non-empty for any

problem (q, R). Furthermore, the set of stable matchings has a lattice structure and

there exists a stable matching, called the student-optimal stable matching which is

weakly preferred to any other stable matching by the students and which is worst

3Here Rc|S∪∅ denotes the restriction of Rc to S ∪ ∅.
4For convenience, we drop set brackets for singleton sets and write s instead of {s}.
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for the colleges among all stable matchings. Similarly, there exists a college-optimal

stable matching which is weakly preferred to any other stable matching by the colleges.

The student-optimal stable matching can be calculated via the deferred-algorithm

(DA) with students proposing and the college-optimal stable matching via the DA-

algorithm with colleges proposing. Furthermore, at any two stable matchings, any

college fills the same number of positions; and if a college does not fill all its positions

at a stable matching, then this college is matched to the same set of students under

all stable matchings.5

A mechanism (or mechanism) ϕ associates with any problem (q, R) a matching

ϕ(q, R) for the capacity vector q. A mechanism ϕ is stable if for any problem (q, R),

ϕ(q, R) is stable. Let DAS denote student-optimal stable mechanism choosing for each

problem (q, R) its student-optimal stable matching (determined for each problem via

the DA-algorithm with students proposing). Let DAC denote the college-optimal

stable mechanism.

In many situations capacities are private information and a college may attempt

to manipulate a mechanism via underreporting its capacity.

Definition 1 Let R be a profile, q be a capacity vector, and ϕ be a mechanism. Then

ϕ is manipulable via capacities at (q, R) if there exists c ∈ C and q′c ∈ {0, 1, . . . , qc}

such that

ϕ(q′c, q−c, R)(c)Pcϕ(q, R)(c).

We say that ϕ is non-manipulable via capacities if for any problem (q, R), ϕ is not

manipulable via capacities at (q, R).

The principal result of Sönmez (1997) is the following.

Theorem 1 (Sönmez, 1997, Theorem 1) Suppose there are at least three stu-

dents and two colleges. Then there exists no mechanism that is stable and non-

manipulable via capacities.

5All these properties of stable matchings are stated in the illuminating introduction to two-sided

matching by Roth and Sotomayor (1990).
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3 Manipulation via Preferences

An important concern of clearinghouses in centralized markets is whether a mecha-

nism can be profitably manipulated via misreporting preferences. If this is the case,

then the outcome of the mechanism may not be based on the true information of the

participants.

Definition 2 Let R be a profile, q be a capacity vector, and ϕ be a mechanism. Then

ϕ is manipulable via preferences at (q, R) if there exists c ∈ C and R′
c ∈ Rc such that

ϕ(q, R′
c, R−c)(c)Pcϕ(q, R)(c).

We say that ϕ is non-manipulable via preferences if for any problem (q, R), ϕ is not

manipulable via preferences at (q, R).

Note that the above definition focusses only on manipulation via preferences by

colleges. The following establishes for stable mechanisms an important link between

manipulation via capacities and manipulation via preferences.6

Theorem 2 Let ϕ be stable mechanism, q be a capacity vector, and R be a profile.

If ϕ is manipulable via capacities at (q, R), then ϕ is manipulable via preferences at

(q, R).

Proof. If ϕ is manipulable via capacities at (q, R), then there exists some c ∈ C

and q′c ∈ {1, . . . , qc} such that ϕ(q′c, q−c, R)(c)Pcϕ(q, R)(c). Let R′
c ∈ Rc be such

that A(R′
c) = ϕ(q′c, q−c, R)(c). Obviously, ϕ(q′c, q−c, R) is stable under (q, R′

c, R−c).

Since ϕ is stable, c fills the same number of positions under all stable matchings, and

A(R′
c) = ϕ(q′c, q−c, R)(c), we must have ϕ(q, R′

c, R−c)(c) = ϕ(q′c, q−c, R)(c). Hence,

ϕ(q, R′
c, R−c)(c)Pcϕ(q, R)(c) and ϕ is manipulable via preferences at (q, R), the desired

conclusion. �
6This result is related to the “Dropping Strategies Lemma” by Kojima and Pathak (2008).
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Remark 1 By Theorem 1, we know that there exists no stable mechanism that is

non-manipulable via capacities. Thus, for any stable mechanism there exist problems

at which the mechanism is manipulable via capacities. Now by Theorem 2, for any

stable mechanism there exist problems at which the mechanism is manipulable via

preferences. Hence, there exists no stable mechanism that is non-manipulable via

preferences (for colleges) and Roth (1985, Proposition 2) is a corollary from Sönmez

(1997, Theorem 1).

4 Two Types of Capacity Manipulation

In the sequel we will distinguish between two types of capacity manipulation.

Definition 3 Let q be a capacity vector, R be a profile, and ϕ be a mechanism. For

all c ∈ C, let |ϕ(q, R)(c)| = fc denote the number of filled positions at college c under

ϕ(q, R).

(i) Then ϕ is Type-I-manipulable via capacities at (q, R) if there exists c ∈ C and

q′c ∈ {fc, fc + 1, . . . , qc} such that

ϕ(q′c, q−c, R)(c)Pcϕ(q, R)(c).

We say that ϕ is non-Type-I-manipulable via capacities if for any problem (q, R),

ϕ is not Type-I-manipulable via capacities at (q, R).

(ii) Then ϕ is Type-II-manipulable via capacities at (q, R) if there exists c ∈ C with

fc = qc and q′c ∈ {1, . . . , fc − 1} such that

ϕ(q′c, q−c, R)(c)Pcϕ(q, R)(c).

We say that ϕ is non-Type-II-manipulable via capacities if for any problem

(q, R), ϕ is not Type-II-manipulable via capacities at (q, R).
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These two types of manipulation via capacities have the following interpretations.

Type-I-manipulability means that a college with vacant positions gains from giving

up some of its unfilled positions. Type-II-manipulability means that a college with

no vacant positions gains from giving up some of its filled positions. Then a college

is ready to forego some of its students (leaving these positions empty) in order to

exchange some of the other students for better students. Of course, a college could si-

multaneously give up some of its filled positions and forego some of its students, giving

rise to a third type of manipulability via capacities. By the lemma below, such a third

type of non-manipulability is unnecessary for determining the non-manipulability via

capacities of a mechanism.

Lemma 1 Let ϕ be a mechanism. Then ϕ is non-manipulable via capacities if and

only if ϕ is both non-Type-I-manipulable via capacities and non-Type-II-manipulable

via capacities.

Proof. (Only if) It is straightforward that if ϕ is non-manipulable via capacities,

then ϕ is both non-Type-I-manipulable via capacities and non-Type-II-manipulable

via capacities.

(If) Suppose that ϕ is both non-Type-I-manipulable via capacities and non-Type-

II-manipulable via capacities. Let q be a capacity vector and R be a profile. Let q′c ∈

{1, . . . , qc}. Now if |ϕ(q, R)(c)| = qc, then from non-Type-II-manipulability we obtain

ϕ(q, R)(c)Rcϕ(q′c, q−c, R)(c); and if |ϕ(q, R)(c)| < qc and |ϕ(q, R)(c)| ≤ q′c, then from

non-Type-I-manipulability we obtain ϕ(q, R)(c)Rcϕ(q′c, q−c, R)(c). Otherwise, if both

|ϕ(q, R)(c)| < qc and q′c < |ϕ(q, R)(c)| = fc, then from non-Type-I-manipulability we

obtain

ϕ(q, R)(c)Rcϕ(fc, q−c, R)(c). (1)

Now if |ϕ(fc, q−c, R)(c)| = fc, then from non-Type-II-manipulability we obtain that

ϕ(fc, q−c, R)(c)Rcϕ(q′c, q−c, R)(c). By transitivity of Rc and (1), ϕ(q, R)(c)Rcϕ(q′c, q−c, R)(c),

the desired conclusion. If both |ϕ(fc, q−c, R)(c)| < fc and |ϕ(fc, q−c, R)(c)| ≤ q′c, then
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from non-Type-I-manipulability we obtain ϕ(fc, q−c, R)(c)Rcϕ(q′c, q−c, R)(c). Thus,

by transitivity of Rc and (1), ϕ(q, R)(c)Rcϕ(q′c, q−c, R)(c), the desired conclusion. If

both |ϕ(fc, q−c, R)(c)| < fc and q′c < |ϕ(fc, q−c, R)(c)| = f ′
c, then from non-Type-I-

manipulability we obtain

ϕ(fc, q−c, R)(c)Rcϕ(f ′
c, q−c, R)(c).

By using similar arguments and the transitivity of Rc, this and (1) yield in a finite

number of steps (since qc is finite) ϕ(q, R)(c)Rcϕ(q′c, q−c, R)(c), the desired conclu-

sion. �

Before stating the main result, we introduce an invariance property for a mech-

anism: it says that for any given problem, if a college truncates its preference by

leaving unchanged its ranking over students and restricting its set of acceptable stu-

dents without dropping any of the students it is matched to, then for the problem with

the truncated preference the college should be matched to the same set of students.

Let Rc, R
′
c ∈ Rc. Then we call R′

c a truncation of Rc if (i) R′
c|S = Rc|S and

A(R′
c) ⊆ A(Rc) and (ii) for all S ′, S ′′ ⊆ A(R′

c), we have S ′R′
cS

′′ ⇔ S ′RcS
′′.

We say that a mechanism ϕ is independent of truncations if for any problem (q, R),

for any c ∈ C, and for any truncation R′
c of Rc such that ϕ(q, R)(c) ⊆ A(R′

c), we have

ϕ(q, R′
c, R−c)(c) = ϕ(q, R)(c).

Independence of truncations is a weak invariance property which is satisfied by

many stable mechanisms: DAS and DAC , or strictly order all matchings according to

> and choose for any problem (q, R) the >-greatest matching which is stable under

(q, R). Furthermore, as Ehlers (2008) shows, all mechanisms which are used in British

entry-level medical markets satisfy this property.7

The result below characterizes DAS in terms of stability and axioms of non-

manipulability for colleges. Furthermore, the properties of stability, independence of

7According to the author’s knowledge, any mechanism, which is used in a real life market, satisfies

this property.
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truncations and non-Type-I-manipulability via capacities imply that the mechanism

is non-manipulable via preferences for students since the student-optimal mechanism

DAS satisfies this property (Dubins and Freedman, 1981; Roth, 1982).

Theorem 3 The student-optimal stable mechanism DAS is the unique stable mecha-

nism which is independent of truncations and non-Type-I-manipulable via capacities.

Proof. First, we show that DAS is a stable mechanism which is independent of

truncations and non-Type-I-manipulable via capacities. By definition, DAS is stable

and by Ehlers (2008), independent of truncations. In order to show that DAS is

non-Type-I-manipulable via capacities, let q be a capacity vector and R be a profile.

Let q′c ∈ {|DAS(q, R)(c)|, |DAS(q, R)(c)|+ 1, . . . , qc}. Obviously, DAS(q, R) is stable

under (q′c, q−c, R). Since DAS(q′c, q−c, R) is the worst stable matching for the colleges,

it follows DAS(q, R)(c)RcDAS(q′c, q−c, R)(c), the desired conclusion.

Second, let ϕ be a stable mechanism which is independent of truncations and non-

Type-I-manipulable via capacities. Suppose that ϕ 6= DAS. Then for some problem

(q, R) and some c ∈ C we have ϕ(q, R)(c) 6= DAS(q, R)(c). Since both ϕ(q, R)

and DAS(q, R) are stable and ϕ(q, R)(c) 6= DAS(q, R)(c), college c must fill all its

positions at all stable matchings, i.e. |DAS(q, R)(c)| = qc. Since ϕ(q, R) is stable and

DAS(q, R) is the stable matching which is worst for the colleges, we obtain

ϕ(q, R)(c)PcDAS(q, R)(c). (2)

Let s′ be the Rc-worst student in DAS(q, R)(c) and R′
c be a truncation of Rc such that

s′ is the R′
c-worst acceptable student. Note that R′

c|S = Rc|S. Let R′ = (R′
c, R−c).

Since both ϕ and DAS are independent of truncations, we obtain both ϕ(q, R′) =

ϕ(q, R) and DAS(q, R′) = DAS(q, R). Thus, by (2),

ϕ(q, R′)(c)PcDAS(q, R′)(c). (3)

Consider the problem (qc + 1, q−c, R
′). We show that DAS(q, R′) is stable under

(qc +1, q−c, R
′): if not, then some pair (ŝ, ĉ) blocks DAS(q, R′) under (qc +1, q−c, R

′);
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obviously then we must have ĉ = c and ŝP ′
c∅. Since s′ is the R′

c-worst accept-

able student, we must have ŝP ′
cs

′, which means that DAS(q, R′) is not stable under

(q, R′), a contradiction. Since DAS(q, R′) is stable under (qc + 1, q−c, R
′) and and

|DAS(q, R′)(c)| = qc < qc + 1, c is matched to the same set of students at all match-

ings which are stable under (qc + 1, q−c, R
′). Thus, by stability of ϕ, we have ϕ(qc +

1, q−c, R
′)(c) = DAS(q, R′)(c). Now by (3), we obtain ϕ(q, R′)(c)Pcϕ(qc+1, q−c, R

′)(c).

Since |ϕ(qc + 1, q−c, R
′)(c)| = qc, this means that ϕ is Type-I-manipulable via capac-

ities, a contradiction. �

Note that in Theorem 3 non-Type-I-manipulability via capacities is a weak con-

dition because it requires only that colleges with vacant positions cannot profitably

manipulate by dropping some of its empty positions.

The independence of the properties in Theorem 3 is easily established: (i) DAC

is a stable mechanism which is independent of truncations (but DAC violates non-

Type-I-manipulability via capacities); (ii) the mechanism leaving for all problems all

students unmatched and all colleges having all positions empty is independent of

truncations and non-Type-I-manipulable via capacities (but violates stability); and

(iii) the mechanism choosing for all problems the same matching as DAS except for

the problems (q, R) where qc = 1 for all c ∈ C, all students are acceptable for all

colleges (i.e. A(Rc) = S for all c ∈ C), all colleges are acceptable for all students

(i.e. cPs∅ for all s ∈ S and all c ∈ C), and there are more students than colleges

(i.e. |S| > |C|)). For those problems the mechanism chooses the college-optimal

stable matching. It is straightforward to verify that this mechanism is stable and

non-Type-I-manipulable via capacities but violates independence of truncations.

Remark 2 The feature of the statement of Theorem 3 that optimal stable mecha-

nism for the students, DAS, is characterized in terms of non-manipulation properties

of the other side (by colleges) has appeared in iterative elimination of dominated

strategies. More precisely, for one-to-one matching markets Alcalde (1996) showed
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that the student-optimal mechanism is dominance solvable and for any problem it

uniquely implements (in terms of dominance solvability) the college-optimal stable

matching.

By Theorem 3, DAS is non-Type-I-manipulable via capacities. Now from Theorem

1 by Sönmez (1997) we obtain the following result.

Theorem 4 Suppose there are at least three students and at least two colleges. Then

there exists no mechanism that is stable and non-Type-II-manipulable via capacities.

Theorem 4 points out why manipulation via capacities is problematic: colleges

with no vacant positions may gain from manipulation.

5 Iterative Mechanisms

We know that any stable mechanism is susceptible to (Type-II-)manipulations via

capacities. Colleges may underreport their capacities and fewer positions (than the

true numbers) may be revealed which may result in more unmatched students. In

applications it may be important to deter such manipulations in order to avoid un-

employment (in entry-level labor markets) or unassigned students not attending any

college (in education).

We will propose an iterative procedure which will be non-manipulable via capac-

ities. We call (q, R) a base problem if for all c ∈ C, qc ∈ {0, 1}. A base mechanism

φ associates with any base problem a matching. Below we provide a heuristic way to

extend any base mechanism from the set of base problems to the set of all problems

such that non-manipulability via capacities is guaranteed.

For any set C ′ ⊆ C, let 1C′ denote the vector of capacities such that all colleges

in C ′ have capacity 1 and all other colleges have capacity 0. Let qmax = maxc∈C qc be

the maximal capacity in q.
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Iterative φ-Mechanism: Let (q, R) be a problem. For any natural number l, let

Cl = {c ∈ C : qc ≥ l} and Sl = ∪c∈Cφ(1Cl
, R−(S1∪···∪Sl−1))(c) (with the convention

S0 = ∅). The iterative φ-mechanism, denoted by I(φ), is defined as follows. For all

c ∈ C, let

I(φ)(q, R)(c) = ∪qmax

l=1 φ(1Cl
, R−(S1∪···∪Sl−1))(c).

In other words, I(φ) gives first each college capacity 1 and calculates φ(1C1 , R). Then

all assigned students are removed and it determines the colleges which have at least

capacity 2 and gives all those ones again capacity 1 and determines again φ for the

reduced problem, and so on. Each college is assigned to the union of all the students

it is matched to at all steps in the iterative φ-mechanism.

Examples of iterative mechanisms are I(DAS) and I(DAC), or iterative Boston

mechanism, iterative priority mechanisms, iterative top-trading cycles algorithm,

etc..8 An iterative stable mechanism is an iterative mechanism where the base mech-

anism chooses for any base problem a stable matching.

It turns out that any iterative mechanism is (coalitionally) non-manipulable via

capacities.

Definition 4 Let R be a profile, q be a capacity vector, and ϕ be a mechanism.

We say that ϕ is coalitionally manipulable via capacities at (q, R) if there exists

∅ 6= T ⊆ C and q′T = (q′c)c∈T with q′c ∈ {0, 1, . . . , qc} for any c ∈ T , such that

ϕ(q′T , q−T , R)(c)Pcϕ(q, R)(c) for all c ∈ T . We say that ϕ is coalitionally non-

manipulable via capacities if for any problem (q, R), ϕ is not coalitionally non-manipulable

via capacities at (q, R).

Proposition 1 Let φ be a base mechanism. The iterative φ-mechanism I(φ) is coali-

tionally non-manipulable via capacities.

Proof. Let (q, R) be a problem, ∅ 6= T ⊆ C and q′T = (q′c)c∈T be a capac-

ity vector such that q′c ≤ qc for all c ∈ T . Suppose that for all c ∈ T we have

8We refer the interested reader to Ehlers (2008) and Abdulkadiroğlu and Sönmez (2003) for a

detailed description of these mechanisms.
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I(φ)(q′T , q−T , R)(c)PcI(φ)(q, R)(c). Let q′ = (q′T , q−T ), C ′
l = {c ∈ C : q′c ≥ l}, and

S ′
l = ∪c∈Cφ(1C′

l
, R−(S′1∪···S′l−1))(c).

First, suppose that for some c ∈ T , we have I(φ)(q, R)(c)\I(φ)(q′T , q−T , R)(c) 6= ∅.

Choose the minimal index k ∈ {1, . . . , qmax} such that for some c′ ∈ T we have

φ(1Ck
, R−(S1∪···Sk−1))(c

′) /∈ I(φ)(q′T , q−T , R)(c′). Suppose that T ⊆ C ′
k. Then from the

fact that N\T did not change their capacities, by our choice of k and T ⊆ C ′
k,

we have for all l ∈ {1, . . . , k − 1}, 1Cl
= 1C′

l
, Sl = S ′

l, φ(1Cl
, R−(S1∪···Sl−1)) =

φ(1C′
l
, R−(S1∪···Sl−1)), and φ(1Cl

, R−(S1∪···Sl−1))(c) ∈ I(φ)(q′T , q−T , R−(S1∪···Sl−1))(c) for

all c ∈ C. By T ⊆ C ′
k, we then have 1Ck

= 1C′
k

and φ(1Ck
, R−(S1∪···Sk−1)) =

φ(1C′
k
, R−(S1∪···Sk−1)), which contradicts the fact φ(1Ck

, R−(S1∪···Sk−1))(c
′) /∈ I(φ)(q′T , q−T , R).

If T ( C ′
k, then there exists c ∈ T such that q′c < k. By our choice of k and

I(φ)(q′T , q−T , R)(c)PcI(φ)(q, R)(c), we have I(φ)(q, R)(c) ( I(φ)(q′T , q−T , R)(c). Then

the argument below can be used to show that this case cannot occur.

For all c ∈ T , let I(φ)(q, R)(c) ⊆ I(φ)(q′T , q−T , R)(c). If I(φ) were coalitionally

manipulable at (q, R), then for all c ∈ T we have I(φ)(q′T , q−T , R)(c)PcI(φ)(q, R)(c)

and I(φ)(q, R)(c) ( I(φ)(q′T , q−T , R)(c). Now for all c ∈ T we have

|I(φ)(q, R)(c)| < q′c ≤ qc. (4)

Choose c′ ∈ T such that q′c′ = k ≤ q′c for all c ∈ T . Then from the fact that N\T

did not change their capacities and by our choice of c′ and q′c′ = k, we have for

all l ∈ {1, . . . , |I(φ)(q, R)(c′)|}, 1Cl
= 1C′

l
, Sl = S ′

l, and φ(1Cl
, R−(S1∪···Sl−1))(c) =

φ(1C′
l
, R−(S1∪···Sl−1))(c). By (4) and our choice of c′ and k, we obtain that for all

l ∈ {|I(φ)(q, R)(c′)| + 1, . . . , q′c′}, 1Cl
= 1C′

l
, Sl = S ′

l, and φ(1Cl
, R−(S1∪···Sl−1)) =

φ(1C′
l
, R−(S1∪···Sl−1)). Thus, I(φ)(q, R)(c′) = I(φ)(q′T , q−T , R)(c′), a contradiction to

I(φ)(q, R)(c′) ( I(φ)(q′T , q−T , R)(c′).

Hence, I(φ) is not coalitionally manipulable via capacities at (q, R), the desired

conclusion. �

Remark 3 A weaker form of coalitional manipulation via capacities is where in Def-

inition 4 we have ϕ(q′T , q−T , R)(c)Rcϕ(q, R)(c) for all c ∈ T with strict preference
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holding for at least one c ∈ T . We say that ϕ strongly coalitionally non-manipulable

via capacities if for any problem, there is no weaker form of coalitional manipula-

tion via capacities. It can be checked that the iterative DAS-mechanism I(DAS)

is strongly coalitionally non-manipulable via capacities9 whereas the iterative DAC-

mechanism I(DAC) does not satisfy this property.

Now one may wonder which properties may be inherited by the iterative φ-

mechanism from the base mechanism φ. Recall that in school choice stability is

divided into two “no blocking” properties: non-wastefulness and fairness. We will

be interested whether iterative mechanism can satisfy any kind of these two “no

blocking” conditions.

Non-wastefulness means that there is no student-college pair (s, c) such that s

prefers c to her current assignment and c has a vacant position which it prefers to fill

with s instead of having the position empty.

Non-Wastefulness: For all problems (q, R), there exists no student-college pair

(s, c) such that cPsϕ(q, R)(s), |ϕ(q, R)(c)| < qc, and sPc∅.

Fairness means that there is no student-college pair (s, c) such that s prefers c to

her current assignment and c prefers s to one of its assigned students.

Fairness: For any problem (q, R), there exists no student-college pair (s, c) such that

cPsϕ(q, R)(s) and sPcs
′ for some s′ ∈ ϕ(q, R)(c).

We also introduce weaker notions of these two “no blocking” conditions. Weak

fairness requires that no student-college pair mutually prefers each other to the match-

9The proof follows closely the proof of Proposition 1 and uses in the second part the fact that for

any C ′ ( C ′′ ⊆ C and any profile R, if DAS(1C′′ , R)(c) = ∅ for all c ∈ C ′′\C ′, then DAS(1C′ , R) =

DAS(1C′′ , R).
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ing such that the college strictly prefers the student to all its assigned students.

Weak Fairness: For all (q, R), there exists no student-college pair (s, c) such that

cPsϕ(q, R)(s) and sPcs
′ for all s′ ∈ ϕ(q, R)(c).

A weaker notion of non-wastefulness is the following: there is no student-college

pair (s, c) such that both s is unmatched and s prefers c to her current assignment

and c has a vacant position which it prefers to fill with s instead of having the position

empty.

Weak Non-Wastefulness: For all problems (q, R), there exists no student-college

pair (s, c) such that ϕ(q, R)(s) = ∅, cPsϕ(q, R)(c), |ϕ(q, R)(c)| < qc, and sPc∅.

For school choice we establish the following variant of Sönmez’s impossibility result

for college admissions.

Theorem 5 Suppose there are at least four students and at least two colleges. Then

(a) there exists no mechanism that is non-wasteful, weakly fair, and non-manipulable

via capacities; and

(b) there exists no mechanism that is weakly non-wasteful, fair and non-manipulable

via capacities.

Proof. We prove both (a) and (b) via the same example. Consider the following

problem: let S = {s1, s2, s3, s4}, C = {c1, c2}, and R be a profile such that Rs1 :

c1c2∅10, Rs2 : c2c1∅, Rs3 : c1c2∅, Rs4 : c1c2∅, both Rc1 : s2s3s1s4∅ and s2Pc1{s1, s3, s4},

and Rc2 : s1s2s3s4∅. Let11

µ =

 c1 c2

s2 s1

 and µ′ =

 c1 c2

{s1, s3, s4} s2

 .

10This means c1Ps1c2Ps1∅.
11If a student is not indicated in the matching, then the student is unmatched under this matching.
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First, we show (a). Suppose to the contrary that there exists a mechanism ϕ

satisfying the properties of (a) in Theorem 5. By weak fairness of ϕ (which implies

fairness for base problems) and non-wastefulness, we have ϕ(1, 1, R) = µ. By non-

wastefulness, ϕ(4, 1, R) = µ′. Now by s2Pc1{s1, s3, s4}, ϕ(1, 1, R)(c1)Pc1ϕ(4, 1, R)(c1),

which means that ϕ is manipulable via capacities at (4, 1, R), a contradiction.

Second, we show (b). Suppose to the contrary that there exists a mechanism ϕ

satisfying the properties of (b) in Theorem 5. By fairness and weak non-wastefulness

we have ϕ(1, 1, R) = µ. Consider the problem (3, 1, R). By weak non-wastefulness

and our construction, for all s ∈ S, ϕ(3, 1, R)(s) 6= s. Now if ϕ(3, 1, R)(s4) = c2, then

c2Ps2ϕ(3, 1, R)(s2) and s2Pc2s4, which means that ϕ violates fairness, a contradiction.

Thus, ϕ(3, 1, R)(s4) = c1. Similarly, it follows that ϕ(3, 1, R)(s3) = c1.

Now from s4 ∈ ϕ(3, 1, R)(c1), s1Pc1s4, s1Pc1s4 and fairness we obtain ϕ(3, 1, R) =

µ′. By s2Pc1{s1, s3, s4}, we have ϕ(1, 1, R)(c1)Pc1ϕ(3, 1, R)(c1), which means that ϕ

is manipulable via capacities at (3, 1, R), a contradiction. �

Since stability implies (weak) non-wastefulness and (weak) fairness, Theorem 1

follows from Theorem 5 (when there are more than four students). Reformulated

for school choice, Sönmez (1997, Theorem 1) shows that there exists no mechanism

which is non-wasteful, fair, and non-manipulable via capacities. Weakening either

non-wastefulness or fairness as above still results in an impossibility regarding non-

manipulability via capacities.

When both “no blocking” properties are weakened, a possibility emerges.

Proposition 2 Let φ be a stable base mechanism. Then the iterative φ-mechanism

I(φ) is weakly non-wasteful, weakly fair, and non-manipulable via capacities.

Proof. By Proposition 1, I(φ) is non-manipulable via capacities. Let (q, R) be a

problem.

In showing weak non-wastefulness, suppose that there exists (s, c) such that

I(φ)(q, R)(s) = ∅, cPsI(φ)(q, R)(s), |I(φ)(q, R)(c)| < qc, and sPc∅. But then for all
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l ∈ {1, . . . , qmax}, s /∈ Sl, and for some k ∈ {1, . . . , qc}, φ(1Ck
, R−(S1∪···∪Sk−1))(c) = ∅.

This means that φ(1Ck
, R−(S1∪···∪Sk−1)) is not stable because cPs∅, sPc∅, and s /∈

S1 ∪ · · · ∪ Sk−1. Thus, φ is not a stable base mechanism, a contradiction.

In showing weak fairness, suppose that there exists (s, c) such that cPsI(φ)(q, R)(s)

and s′Pcs for all s′ ∈ I(φ)(q, R)(c). Since φ is stable for base problems, we have

φ(1C1 , R)(c) 6= ∅. Let s′ = φ(1C1 , R)(c). But then by stability of φ(1C1 , R) and s′ 6= s,

s′Pcs, a contradiction. �

In applications, if non-manipulation via capacities is more important than sta-

bility, then an iterative stable mechanism may provide a practical solution since it

satisfies the weaker versions of the two “no blocking” conditions non-wastefulness

and fairness. If stability is more important than non-manipulation via capacities,

then the student-optimal stable mechanism is a good solution because of its limited

manipulability via capacities.
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