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Abstract

We reconsider the problem of aggregating individual preference orderings into a
single social ordering when alternatives are lotteries and individual preferences are
of the von Neumann-Morgenstern type. Relative egalitarianism ranks alternatives
by applying the leximin ordering to the distributions of (0-1) normalized utilities
they generate. We propose an axiomatic characterization of this aggregation rule
and discuss related criteria.
Keywords: preference aggregation, lotteries, relative egalitarianism
JEL classi�cation numbers: D63, D71

1. Introduction

The problem of aggregating individual preference orderings into a single social ordering
admits nontrivial solutions if Arrow�s (1963) axiom of Independence of Irrelevant Alter-
natives is suitably weakened. Several interesting aggregation rules are known in at least
three contexts.
In the traditional voting model, Young and Levenglick (1978) de�ne and axiomatize

the so-called maximum likelihood rule suggested by Condorcet (1785). If there exists a
�correct�ordering of the social alternatives which individual orderings re�ect imperfectly,
this rule chooses an ordering that has the highest probability of being the correct one.
The axiomatization of this rule by Young and Levenglick relies on a weakening of Arrow�s
axiom known as Local Independence of Irrelevant Alternatives (Young, 1995).
When social alternatives are lotteries and individual preferences obey the von Neumann-

Morgenstern axioms, Dhillon (1998) and Dhillon and Mertens (1999) advocate relative util-
itarianism: order social alternatives according to the sum of (0-1) normalized utilities they
generate for the individuals who are not completely indi¤erent between all alternatives.
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The axiomatizations by Dhillon and Mertens use several weak axioms that are implied by
Arrow�s axiom.
In economic models where alternatives are production and allocation decisions, the

literature focuses on inequality-averse aggregation rules. These rules compare allocations
according to the welfare enjoyed by the worst-o¤ individual, where the appropriate measure
of welfare is endogenously determined by the axioms imposed on the aggregation rule
itself. Examples include Maniquet and Sprumont (2004, 2005) for public-good economies
and Fleurbaey (2007) and Fleurbaey and Maniquet (2008) for private-good economies.
The axiomatizations use variants of a weakening of Arrow�s axiom known as Hansson
Independence (Hansson, 1973)1.
While the rules proposed in these three contexts share some fundamental properties

�they rely on purely ordinal information, obey the Pareto principle and are anonymous�,
they are based on di¤erent views of the social good. In particular, Dhillon and Mertens�s
proposal follows the utilitarian tradition while the work of Fleurbaey, Maniquet and Spru-
mont is rooted in the egalitarian conception of justice.
The purpose of the current paper is to reconsider the aggregation problem in Dhillon

and Mertens�s random framework from an egalitarian perspective. If there are just two
pure alternatives, a and b; and society consists of just two individuals with opposite von
Neumann-Morgenstern preferences over the lotteries between a and b; relative utilitari-
anism deems all lotteries equally good. Flipping a fair coin is not better than choosing,
say, b: Of course, relative utilitarianism shares this view with standard utilitarianism (or
any theory requiring society�s preference to obey the independence axiom of expected util-
ity theory). Utilitarians essentially contend that �ipping the coin has no value because,
eventually, either a or b will be selected anyway: see, for instance, Harsanyi (1975) and
Broome (1984). Critics of utilitarianism, such as Diamond (1967) and Sen (1970), argue
that it prevents society from valuing the process through which social decisions are made.
They claim that a lottery between a and b is superior to b because it gives a chance to the
supporter of b.
We push this argument one step further. In practice, lotteries are used as social decision

devices primarily when serious indivisibilities are present and compensatory payments
between individuals are ruled out (see Elster, 1989 for a discussion). Their raison d�être is
to permit some form of compromise between decisions that seem too radical. In some social
choice problems, however, compromises may exist which are not lotteries. In a problem
where all individuals have strict preferences between a and b; let us de�ne a compromise
between these two alternatives to be any alternative strictly preferred to b (but not to a)
by the supporters of a and strictly preferred to a (but not to b) by the supporters of b:
Lotteries are compromises but compromises need not be lotteries. We are interested in
aggregation rules which �value compromise�in general. The axiom we propose, Preference
for Compromise, says that if all individuals have strict preferences between a and b and
alternative a is deemed at least as good as b from the social viewpoint, then any compromise

1In private-good economies, Fleurbaey, Suzumura and Tadenuma (2005) study how much Arrow�s
axiom must be weakened to allow for Paretian and anonymous (or non-dictatorial) aggregation rules.
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between a and b is at least as good as b:
We combine this axiom with a weakening of Arrow�s independence condition which

we call Independence of Inessential Expansions. This condition requires that society�s
preference over a set of alternatives be una¤ected by the addition of new alternatives
that no individual �nds better than his most preferred alternative or worse than his least
preferred one.
We set up our formal model in Section 2 and present our results in Sections 3 to 5.

Theorem 1 states that Preference for Compromise and Independence of Inessential Expan-
sions, along with the Pareto Principle and Anonymity, lead to what we call the relative
maximin principle: society should prefer an alternative a to an alternative b whenever the
lowest individual normalized utility generated by a is higher than the lowest individual
normalized utility generated by b: Theorem 2 asserts that only the relative leximin rule,
which uses the leximin ordering to compare vectors of normalized utilities, satis�es the
four axioms of Theorem 1 and Separability, a condition demanding that the social ranking
be independent of the preferences of �unconcerned� individuals. Next, we weaken Pref-
erence for Compromise to a condition named Preference for Lotteries which requires that
randomizing between two alternatives be at least as good as choosing the worst of these
two. Theorem 3 says that the rules satisfying the Pareto Principle, Anonymity, Preference
for Lotteries, Independence of Inessential Expansions, and Separability compare alterna-
tives by applying a strictly monotonic, symmetric, convex, and separable ordering to the
vectors of normalized utilities they generate. Theorem 4 clari�es the role of Independence
of Inessential Expansions by identifying the class of rules meeting that axiom and the
basic condition of Pareto Indi¤erence. Section 6 o¤ers a discussion of our results and a
comparison with related work. Proofs are gathered in Section 7.

2. Framework

Let A be an in�nite reference set of pure (social) alternatives and let A denote the set of
nonempty �nite subsets of A: For eachX 2 A, let�(X) be the set of lotteries onX; that is,
�(X) =

n
a 2 [0; 1]X j

P
x2X a(x) = 1

o
: If x 2 X; we abuse notation and also denote by x

the lottery in �(X) assigning probability 1 to x: Let R(X) and R�(X) denote respectively
the set of all preference orderings and the subset of von Neumann-Morgenstern preference
orderings over �(X): Write R = [X2AR(X) and R� = [X2AR�(X):
Let N = f1; :::; ng be a �xed �nite set of individuals. A (social choice) problem is a

list (X;R) where X 2 A and R 2 (R�(X))
N : We call R a preference pro�le. The set of

all problems is denoted by P. An (aggregation) rule is a mapping R : P ! R such that
R(X;R) 2 R(X) for every (X;R) 2 P :
We make �ve comments on the above framework.
1) As in Dhillon and Mertens (1999), the set X is meant to include the pure social

alternatives that are both feasible and just. The term �just� is used here in the weak
sense of �ethically acceptable� and could be approximated by �lawful�. We call X the
set of acceptable pure alternatives and �(X) the set of acceptable alternatives. When
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there is no risk of confusion, we refer to either set as the �acceptable set�. De�ning X
is a fundamental ethical issue which cannot be addressed without further knowledge of
the nature of the alternatives in A. We discuss the issue in Section 6 in the context of a
particular application to multi-stage social decision problems.
2) We interpret R(X;R) as the ordering over �(X) that should guide society�s choices

when individual preferences are given by the pro�le R. We refer to it as society�s preference.
Note that society�s preference over �(X) is constrained to depend only upon individual
preferences over that set. This is a serious restriction. But it is a natural one because
A is a large unstructured set and individual preferences over lotteries involving arbitrary
alternatives in A may therefore be di¢ cult to elucidate. Moreover, since no structure is
imposed on A, there is no natural reference point outside X which could help de�ne the
aggregation rule.
3) When the set of acceptable alternatives expands, the social preference over the

originally acceptable alternatives is allowed to change: if X � X 0 and the preference
pro�le R0 over �(X 0) coincides over �(X) with the pro�le R; R(X 0; R0) need not coincide
with R(X;R) on �(X)2:
4) Even though individual preferences are of the von Neumann-Morgenstern type, so-

ciety�s preference is not restricted to be of that type. As we explained in the Introduction,
we believe that it should not be. See Section 6 for more discussion.
5) All individual von Neumann-Morgenstern preferences over the acceptable alterna-

tives are admissible. This is in line with Arrow�s universal domain assumption and guar-
antees that the aggregation rules we discuss are not restricted to a particular type of social
choice problem. In applications, however, it may be desirable to impose restrictions on
preferences. For instance, if X is the set of acceptable allocations in a private-good econ-
omy, it is natural to require that preferences be sel�sh. We believe that our results can be
reformulated in such restricted contexts but such a reformulation is not straightforward.
Our proofs do rely on the universal domain assumption.

3. A set of axioms implying the relative maximin principle

What we call the relative maximin principle says that society should prefer an alternative
a to an alternative b whenever the lowest individual normalized utility generated by a is
higher than the lowest individual normalized utility generated by b: This section proposes
a set of axioms leading to that principle.
We begin with two familiar conditions. If (X;R) 2 P and i 2 N; let us write R(i) = Ri

and denote by Pi and Ii the strict preference and indi¤erence relations associated with
Ri: Likewise, P(X;R) and I(X;R) denote the strict social preference and indi¤erence
relations associated withR(X;R): Let �(N) be the set of permutations on N: If � 2 �(N);

2In Dhillon and Mertens (1999), the acceptable set (which they denote by A) is kept �xed. No axiom
linking social preferences accross di¤erent acceptable sets is used to characterize relative utilitarianism.
Yet, if the acceptable set is allowed to expand, the social preference recommended by relative utilitarianism
over the originally acceptable alternatives may be �and often is�a¤ected.
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�R 2 (R�(X))
N denotes the preference pro�le such that (�R)�(i) = Ri for all i 2 N .

Pareto Principle. If (X;R) 2 P, a; b 2 �(X), and aRib for all i 2 N , then aR(X;R)b:
If, in addition, aPjb for some j 2 N , then aP(X;R)b:
Anonymity. For all (X;R) 2 P and � 2 �(N); R(X;R) = R(X; �R):
Next we state our central axiom. Preference for Compromise expresses the ethical

judgement that it is desirable to compromise between two social alternatives over which
individual preferences are antagonistic.

Preference for Compromise. Let (X;R) 2 P; a; b; c 2 �(X); and ? $ S $ N: If
aR(X;R)b; aRicPib for all i 2 S and bRjcPja for all j 2 N n S; then cR(X;R)b:
The justi�cation goes as follows. If a is deemed at least as good as b from the social

viewpoint, choosing b would constitute an unfair treatment of the individuals supporting a
against b: This is true even if society is exactly indi¤erent between a and b: the supporters
of a are treated unfairly because society cannot invoke any reason3 to select b rather than
a. Therefore, if a third alternative c makes the supporters of a better o¤ than at alternative
b (where they are treated unfairly) while keeping the supporters of b better o¤ than at a
(where they could perhaps claim to be treated unfairly), society should prefer c to b: In
other words: if switching from b to a is a social improvement, then switching from b to an
alternative that is a �compromise�between b and a should also be.
Two remarks are in order. First, the above argument suggests that society�s preference

for compromise should be strict: if ? $ S $ N; aR(X;R)b; aRicPib for all i 2 S and
bRjcPja for all j 2 N n S; then in fact cP(X;R)b: While we strongly believe that this
strict version of Preference for Compromise is desirable, we do not impose it. Section 4
shows how it follows from the weak version and other axioms. Second, the alternative c
in the axiom is a compromise between a and b in the sense that aRicPib for all i 2 S
and bRjcPja for all j 2 N n S: This does not imply that c is a lottery between a and
b: Preference for Compromise therefore goes beyond the requirement that randomizing
between two alternatives be at least as good as choosing the worst of the two. We will
consider that alternative requirement in Section 5.

We now turn to our weakening of Arrow�s independence axiom. As pointed out in
Comment 3 in Section 2, the de�nition of an aggregation rule allows the social preference
over a given subset of alternatives to vary with the set of acceptable alternatives. Such
�exibility is necessary in order to construct �fair� aggregation rules. In particular, it is
needed if society values compromise. To see this, suppose that the acceptable set consists
of the lotteries between two pure alternatives, a and b. If society is composed of two
individuals with opposite von Neumann-Morgenstern preferences over�(fa; bg); very basic

3In our view, there is a fundamental di¤erence between social and individual choices. While an indi-
vidual needs no reason to select one of two alternatives between which he is indi¤erent because he decides
for himself, society does need a reason because it does not decide for itself. Its choices matter exactly to
the extent that they a¤ect individuals. Even if society is indi¤erent between two alternatives, choosing
remains a nontrivial issue as long as some members of society are not indi¤erent.
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requirements (such as the usual Anonymity and Neutrality axioms) force social indi¤erence
between a and b: But if a third pure alternative, c, becomes acceptable and individual 1
strictly prefers a to b to c while 2 strictly prefers c to b to a; society should probably strictly
prefer b to a in �(fa; b; cg): The reason is that b may now be regarded as a compromise
between the two agents while a has become a more extreme alternative.
In this example, adding the pure social alternative c to the set fa; bg alters the prefer-

ence aggregation problem in an essential way because it changes the worst possible outcome
for individual 1 and the best outcome for 2: Independence of Inessential Expansions says
that society�s preferences over �(X) should be una¤ected by the addition of new alterna-
tives that leave the best and worst outcomes of all individuals unchanged �what we call
an �inessential expansion�of the acceptable set. Given (X;R) 2 P and i 2 N , denote by
A(X;Ri) and A(X;Ri) the sets of best and worst alternatives in �(X) according to Ri:
Our formal requirement is the following.

Independence of Inessential Expansions. Let (X;R); (X 0; R0) 2 P be two problems
such that X � X 0 and R0 coincides with R on �(X): If aR0ia

0R0ia for all i 2 N and all
a 2 A(X;Ri); a0 2 X 0; a 2 A(X;Ri); then R(X 0; R0) coincides with R(X;R) on �(X):

While we argued that the social preference should be allowed to vary when the individ-
uals�best or worst alternatives change, it is not clear why it should remain una¤ected by
�inessential expansions�of the acceptable set. We do not think there are compelling ethical
reasons to insist on this requirement. As is the case with other independence axioms (such
as those proposed by Arrow, 1963, Hansson, 1973, or Young and Levenglick, 1978), the
primary justi�cation is practical convenience. An aggregation rule satisfying Independence
of Inessential Expansions is relatively simple to implement in practice because the social
ranking of alternatives is only a¤ected by fairly radical changes in the environment.
The restriction to those expansions which do not change the best and worst outcomes of

all individuals, though de�nitely somewhat ad hoc, is rather natural. Notice the similarity
between our axiom and the Restricted Monotonicity condition often used in bargaining
theory to characterize the Kalai-Smorodinsky (1975) solution. Restricted Monotonicity
(see, e.g., Thomson, 1994) says that no individual should su¤er from an expansion of the
utility possibility set which does not a¤ect the minimal and maximal utilities of anyone.
Our axiom is a relative �in the ordinal aggregation context�of this cardinal choice ax-
iom4. It retains the idea that �inessential�changes in the environment should not distort
social decisions but it does not incorporate the solidarity concerns embedded in Restricted
Monotonicity.

In order to state our �rst result, let us now give the formal de�nition of normal-
ized utilities. Given X 2 A, we denote by R0 the complete indi¤erence relation on
�(X): Given (X;R) 2 P and i 2 N; we let u(:; X;Ri) : �(X) ! [0; 1] be the nor-
malized von Neumann-Morgenstern numerical representation of Ri : if Ri 6= R0, then
u(a;X;Ri) = � , aIi [�a+ (1� �)a] for any a 2 A(X;Ri) and a 2 A(X;Ri); if Ri = R0,
then u(a;X;Ri) = 1 for all a 2 �(X):

4See de Clippel (2008) for an ordinal reformulation of Restricted Monotonicity.
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Theorem 1. If the aggregation rule R satis�es the Pareto Principle, Anonymity, Prefer-
ence for Compromise, and Independence of Inessential Expansions, then for all (X;R) 2 P
and a; b 2 �(X); mini2N u(a;X;Ri) > mini2N u(b;X; Ri) ) aP(X;R)b:

The discussion following Theorem 2 shows that the axioms in Theorem 1 are indepen-
dent.
It is important to recall that no utility information is available in our framework. An

aggregation rule is a purely ordinal procedure transforming pro�les of individual preference
orderings into social orderings. The axioms in Theorem 1 thus perform a double task: 1)
they select the (0-1) normalized von Neumann-Morgenstern representation of preferences
as the adequate measure of individual welfare and 2) they force the use of the maximin
criterion to compare welfare vectors. Very roughly, Independence of Inessential Expansions
performs the �rst task while the other axioms take care of the second.
Pinning down the 0-1 normalization involves two main di¢ culties: a priori, the ade-

quate numerical representation of an individual�s preference need not be a von Neumann-
Morgenstern utility function and it could vary with the preferences of the other individuals.
The two examples blow illustrate these di¢ culties. They show that the Pareto Principle,
Anonymity and Preference for Compromise allow for a complex variety of �welfare egali-
tarian�rules incompatible with the relative maximin principle.

Example 1. Given (X;R) 2 P and i 2 N; de�ne v(:; X;Ri) : �(X) ! [0; 1] by let-
ting v(a;X;Ri) =

�(fb2�(X)jaRibg)
�(�(X))

for all a 2 �(X), where � is the Lebesgue measure on
RjXj�1: That is, an individual�s utility from alternative a is measured by the proportion
of acceptable alternatives that he does not consider better than a: Note that even though
v(:; X;Ri) is not linear, it is a numerical representation of the von Neumann-Morgenstern
preference Ri: For all (X;R) 2 P and a; b 2 �(X); let aR(X;R)b , (v(a;X;R1); :::;
v(a;X;Rn)) %L (v(b;X;R1) ; :::; v(b; X;Rn)), where %L is the leximin ordering on [0; 1]N :
This aggregation rule satis�es all axioms in Theorem 1 except Independence of Inessential
Expansions.
The di¢ culty exempli�ed by this rule is proper to our framework. In Dhillon and

Mertens (1999), the assumption that society�s preference obeys the independence axiom
prevents the construction of comparable examples. The �utilitarian�ordering aR(X;R)b,P

i2N v(a;X;Ri) �
P

i2N v(b;X;Ri) is generally not a von Neumann-Morgenstern prefer-
ence over �(X):

Example 2. For each (X;R) 2 P ; let U(X;R) denote the normalized utility set generated
by (X;R), that is, U(X;R) = f(u(a;X;R1); :::; u(a;X;Rn) j a 2 �(X)g. Let �(X;R) =
(�1(X;R); :::; �n(X;R)) be the unique maximizer of

Q
i2N zi over all z 2 U(X;R): For each

i 2 N , de�ne the function vi(:; X;R) : �(X)! [0; 1] by vi(a;X;R) = u(a;X;Ri)�i(X;R) for
all a 2 �(X): This function is a numerical representation of Ri but it is one that changes
with the preferences of the agents other than i: The rule aR(X;R)b , (v1(a;X;R); :::;
vn(a;X;Rn)) %L (v1(b;X;R) ; :::; vn(b; X;R)) for all (X;R) 2 P and a; b 2 �(X) satis�es
all axioms in Theorem 1 except Independence of Inessential Expansions.
Observe that this aggregation rule satis�es the following weakening of Independence of

7



Inessential Expansions.

Independence of Redundant Alternatives. Let (X;R); (X 0; R0) 2 P be two problems
such thatX � X 0 and R0 coincides with R on�(X): If for all a0 2 X 0 there exists a 2 �(X)
such that a0I 0ia for all i 2 N; then R(X 0; R0) coincides with R(X;R) on �(X):

This condition merely says that adding alternatives that are Pareto equivalent to some
originally acceptable alternatives does not change the social ranking over the original ac-
ceptable set. This axiom is the translation in our framework of the property bearing the
same name in Dhillon and Mertens (1999). It cannot replace Independence of Irrelevant
Expansions in Theorem 1.

4. An axiomatization of the relative leximin rule

Theorem 1 is not a complete characterization result because it does not identify all the
aggregation rules meeting the stated axioms. A prominent example of a rule satisfying
all these axioms is the relative leximin aggregation rule RL de�ned as follows: for all
(X;R) 2 P and a; b 2 �(X); aRL(X;R)b, (u(a;X;R1); :::; u(a;X;Rn)) %L (u(b;X;R1)
; :::; u(b; X;Rn)), where %L is again the leximin ordering on [0; 1]N : When there are only
two individuals, it turns out that no other rule satis�es the axioms in Theorem 1.

Corollary to Theorem 1. Let n = 2: Then the aggregation rule R satis�es the Pareto
Principle, Anonymity, Preference for Compromise, and Independence of Inessential Ex-
pansions if and only if R = RL:

This corollary does not extend beyond the two-individual case. For instance, it is
straightforward to check that the lexicographic combination of relative maximin and rel-
ative utilitarianism, RMU ; satis�es all the axioms in Theorem 1. This rule is de�ned
by letting aRMU(X;R)b if and only if (i) mini2N u(a;X;Ri) > mini2N u(b;X;Ri) or (ii)
mini2N u(a;X;Ri) = mini2N u(b;X;Ri) and

P
i2N u(a;X;Ri) �

P
i2N u(b;X;Ri).

A key property distinguishing RL from RMU is the following separability condition,
adapted to our context from Fleming (1952).

Separability. Let X 2 A; a; b 2 �(X); and S � N: Let R;R0 2 (R�(X))
N be such that

Ri = R
0
i for all i 2 S and aIjb and aI 0jb for all j 2 N n S: Then aR(X;R)b if and only if

aR(X;R0)b:

Separability says that the social ranking of two alternatives should be independent of
the preferences of all unconcerned individuals, namely those who are indi¤erent between
the two alternatives in any case. This is a familiar condition in social choice theory: see
d�Aspremont (1985) for references.
It is easy to see that RL satis�es Separability while RMU does not. In fact, relative

leximin is the only rule satisfying Separability and the axioms in Theorem 1.

Theorem 2. The aggregation rule R satis�es the Pareto Principle, Anonymity, Preference
for Compromise, Independence of Inessential Expansions, and Separability if and only if
R = RL:
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We note that the relative leximin rule actually exhibits a �strict preference for com-
promise�. Speci�cally, our proof of Theorem 2 establishes the following statement: if
? $ S $ N; aRL(X;R)b; aRicPib for all i 2 S and bRjcPja for all j 2 N n S; then in
fact cPL(X;R)b : the �compromise�alternative c is strictly preferred to b: In particular,
when two individuals have opposite preferences over the lotteries between two alternatives,
the relative leximin rule strictly prefers to toss a coin rather than choose either of the two
alternatives.

A few comments are in order regarding the role of Separability. The axiom is used
in our proof of Theorem 2 only to bridge the gap between relative maximin and relative
leximin when n � 3 and it can be replaced with the following weaker requirement5.
Weak Separability. Let X 2 A; a; b 2 �(X); R 2 (R�(X))

N ; i 2 N; and let (R0; R�i)
denote the pro�le obtained from R by replacing Ri with the complete indi¤erence relation
R0: If aP(R0; R�i)b and aIib; then aP(R)b:

It is clear, however, that Separability (or Weak Separability) is a powerful condition
which does exclude some welfare egalitarian rules where the representation of an individ-
ual�s preference depends upon others�preferences, such as the rule described in Example
2. But Separability does not disqualify all such rules, as the following example shows.

Example 3. Partition R� into two sets R1
�; R� nR1

�; each containing preferences di¤ering
from complete indi¤erence. For instance, R1

� could be the set of preferences with at most
two indi¤erence classes of pure alternatives. For each (X;R) 2 P and i 2 N; de�ne
�i(X;R) = jfj 2 N n fig j Rj 2 R� n R1

�gj and de�ne wi(:; X;R) : �(X)! [0; 1] by letting
wi(a;X;R) = u(a;X;Ri)

2�i(X;R) for all a 2 �(X): Then let aR(X;R)b, (w1(a;X;R); :::;
wn(a;X;R)) %L (w1(b;X;R) ; :::; wn(b; X;R)) for all a; b 2 �(X): This aggregation rule
satis�es all axioms in Theorem 2 except Independence of Inessential Expansions. To see
why Separability is satis�ed, consider two problems (X;R); (X;R0) where Ri = R0i for all
i 6= 1; R1 2 R1

�; and R
0
1 2 R� n R1

�: Then, for all i 6= 1;

wi(:; X;R
0) = u(:; X;Ri)

2�i(X;R
0)

= u(:; X;Ri)
2�i(X;R)+1

= (u(:; X;Ri)
2�i(X;R))2

= (wi(:; X;R))
2;

that is, the numerical representations of the preferences of all agents other than 1 are
modi�ed according to a common increasing transformation when 1�s preference changes
from R1 to R01. Using the fact that the leximin ordering %L is separable (in the usual sense
de�ned just before Theorem 3), it follows easily that for all a; b 2 �(X) such that aI1b
and aI 01b; aR(X;R)b, aR(X;R0)b:

We conclude this section by showing that the axioms in Theorem 2 are independent.

5Weak Separability is the translation in our framework of the strict part of the condition dubbed
�consistency�in Dhillon and Mertens (1999).
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1) The constant complete indi¤erence rule aI(X;R)b for all (X;R) 2 P and a; b 2 �(X)
satis�es all the axioms except the Pareto Principle. This rule does not satisfy the strict
version of Preference for Compromise described just after Theorem 2. For an example
satisfying that version along with Anonymity, Independence of Inessential Expansions,
and Separability, consider the opposite of the relative leximin rule de�ned as follows: for
all (X;R) 2 P and a; b 2 �(X); aR(X;R)b , (1 � u(a;X;R1); :::; 1 � u(a;X;Rn)) %L
(1� u(b;X;R1) ; :::; 1� u(b; X;Rn)).
2) An example of a rule violating only Anonymity is relative serial dictatorship: for

all (X;R) 2 P and a; b 2 �(X); aR(X;R)b , (u(a;X;R1); :::; u(a;X;Rn)) %(1;:::;n)
(u(b;X;R1) ; :::; u(b; X;Rn)), where %(1;:::;n) is the lexicographic ordering on [0; 1]N corre-
sponding to the natural ordering over N:
3) The rules in Examples 1 and 3 satisfy all axioms in Theorem 2 but Independence

of Inessential Expansions. (The rule in Example 1 satis�es Separability because the nu-
merical representation of an individual�s preference does not depend on the preferences
of the others.) Notice that both rules violate the weaker requirement of Independence of
Redundant Alternatives. An interesting and di¢ cult question is whether that axiom can
replace Independence of Inessential Expansions in the statement of Theorem 2.
4) Relative utilitarianism aR(X;R)b ,

P
i2N u(a;X;Ri) �

P
i2N u(b;X;Ri) for all

(X;R) 2 P and a; b 2 �(X) violates only Preference for Compromise.
5) The lexicographic combination of relative maximin and relative utilitarianism RMU

violates only Separability.

5. Related aggregation rules

We call an aggregation rule �relative�if it compares alternatives according to the individual
normalized utilities they generate. The purpose of this section is twofold. First, we study
relative aggregation rules which �value compromise�to a lesser degree than what is required
by Preference for Compromise. Second, we clarify the role of Independence of Inessential
Expansions in obtaining characterizations of relative rules.
A natural alternative to Preference for Compromise is the requirement that randomizing

between two alternatives be at least as good as choosing the worst of these two. More
precisely, we consider the following axiom.

Preference for Lotteries. Let (X;R) 2 P ; a; b 2 �(X). If aR(X;R)b; then (�a+ (1�
�)b)R(X;R)b for all � 2 (0; 1) :
A variant of this axiom for a di¤erent aggregation exercise is used by Epstein and

Segal (1992). Translated in our framework, Epstein and Segal�s Randomization Preference
axiom states that if (X;R) 2 P ; a; b 2 �(X); aI(X;R)b; and a is not Pareto equivalent to
b; then (1

2
a + 1

2
b)P(X;R)b: We discuss the di¤erences between Epstein and Segal�s work

and ours in the next section.
Our �rst result in this section, Theorem 3, is a variant of Theorem 2. A few de�nitions

are needed in order to state it. Let % be an ordering on [0; 1]N and let � and � denote
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the symmetric and asymmetric components of % : Using the notation �; >;� for vector
inequalities, we say that % is strictly monotonic if, for all v; w 2 [0; 1]N ; v > w implies
v � w: Using the obvious notation, % is symmetric if, for all v; w 2 [0; 1]N and � 2 �(N);
v % w if and only if �v % �w: We say that % is convex if, for all v; w 2 [0; 1]N and
� 2 (0; 1) v % w implies �v + (1� �)w % w:6 Finally, % is separable if, for all S � N and
v; v0; w; w0 2 [0; 1]N such that vi = v0i and wi = w0i for all i 2 S and vj = wj and v0j = w0j
for all j 2 N n S; we have v % w if and only if v0 % w0:
Theorem 3. The aggregation rule R satis�es the Pareto Principle, Anonymity, Preference
for Lotteries, Independence of Inessential Expansions, and Separability if and only if there
exists a strictly monotonic, symmetric, convex and separable ordering % on [0; 1]N such
that for all (X;R) 2 P and a; b 2 �(X); aR(X;R)b , (u(a;X;R1); :::; u(a;X;Rn)) %
(u(b;X;R1) ; :::; u(b; X;Rn)):

Note an important di¤erence with respect to Theorem 2: the aggregation rules in
Theorem 3 need not satisfy the strict version of Preference for Lotteries requiring that if
(X;R) 2 P ; a; b 2 �(X); aR(X;R)b; and a is not Pareto equivalent to b, then (�a+ (1�
�)b)P(X;R)b for all � 2 (0; 1) :
Theorem 3 suggests a natural conjecture: Pareto Indi¤erence (whose de�nition will

be recalled shortly) and Independence of Inessential Expansions might su¢ ce to force
society to compare alternatives by ranking the vectors of individual normalized utilities
they generate according to a �xed ordering on [0; 1]N . The Pareto Principle, Anonymity,
Preference for Lotteries, and Separability would then simply translate, respectively, into
strict monotonicity, symmetry, convexity, and separability of that �xed ordering of utility
vectors.
This conjecture is not quite correct. While an aggregation rule satisfying Pareto In-

di¤erence and Independence of Inessential Expansions must indeed be based solely on the
individual normalized utilities, the criterion used to aggregate these utilities may in fact
vary with the preference pro�le �albeit in a very restricted way. We conclude this section
with a precise formulation of this assertion.
First, we recall the de�nition of Pareto Indi¤erence and introduce one last piece of

notation.

Pareto Indi¤erence. If (X;R) 2 P, a; b 2 �(X), and aIib for all i 2 N , then aI(X;R)b:
Given (X;R) 2 P, de�ne N0(X;R) = fi 2 N j Ri = R0g: For each S � N; let

PS = f(X;R) 2 P j N0(X;R) = Sg : This is the set of problems where the individuals
indi¤erent between all acceptable alternatives are the members of S:

Theorem 4. The aggregation rule R satis�es Pareto Indi¤erence and Independence of
Inessential Expansions if and only if for each S � N there exists an ordering %S on
[0; 1]N such that for all (X;R) 2 PS and a; b 2 �(X); aR(X;R)b , (u(a;X;R1); :::;
u(a;X;Rn)) %S (u(b;X;R1) ; :::; u(b; X;Rn)):

6This slightly unusual statement is equivalent to the more standard de�nition requiring that for all
v; w; z 2 [0; 1]N and � 2 (0; 1) ; v % z and w % z imply �v + (1� �)w % z:
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If, in addition to the axioms listed in Theorem 4, the aggregation rule also meets
Separability, then the ordering used to aggregate normalized utility vectors must be �xed.
It is then easy to show that the Pareto Principle, Anonymity, and Preference for Lotteries
imply strict monotonicity, symmetry, and convexity of that ordering. Indeed, Section 6
proves Theorem 3 as a corollary to Theorem 4. Without Separability, however, the ordering
used to compare utility vectors may vary with the set of completely indi¤erent individuals.
In particular, Theorem 1 is not a direct corollary of Theorem 4.

6. Discussion

In this section we compare relative egalitarianism with related theories of social evaluation.
We also address some of the criticisms often formulated against theories which, like relative
egalitarianism, recommend social orderings violating the independence axiom of expected
utility theory. In particular, we explain how relative egalitarianism may be applied in
multi-stage social decision problems.

6.1. Relative egalitarianism and relative utilitarianism

Relative egalitarianism is a purely ordinal theory of social evaluation requiring no compar-
ison of individual utilities. It may therefore be regarded as an �operational� egalitarian
theory, just like relative utilitarianism is an operational version of classical utilitarianism.
Society is dispensed with the delicate task of comparing individual utilities. Of course,
it still must decide which feasible alternatives should be included in the acceptable set X
over which individual preferences are to be aggregated. But this is the only ethical issue
society must settle, and it is expressed in simple terms.
The primary advantage of relative egalitarianism over relative utilitarianism is that

it embodies a concern for fairness. More speci�cally: it satis�es the strict version of
Preference for Compromise. Obviously, that axiom re�ects a value judgement about the
social good. It is our view that promoting compromise and fairness is an important social
goal.
A second important advantage, which relative egalitarianism shares with all aggregation

rules comparing social alternatives by applying a strictly convex ordering to the vectors
of relative utilities they generate, is its lack of ambiguity. Relative utilitarianism faces
the following di¢ culty: if several Pareto non-comparable alternatives maximize the sum of
normalized utilities over the acceptable set, which alternative should society choose? On
the one hand, no tie-breaking device can be recommended without contradicting the theory.
On the other hand, society is not an individual: having no free will or decision ability of
its own, it cannot choose. Nor should it be allowed to choose. In a fully satisfactory
normative theory, all social choices should follow unambiguously from the knowledge of
individual preferences, unless of course all individuals themselves are indi¤erent. Except
in that case, relative egalitarianism always delivers a unique best alternative.
Relative egalitarianism leads to social preferences that violate the independence ax-

iom. Proponents of (relative or classical) utilitarianism criticize such social orderings on
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two grounds. First, they argue that the implicit reason invoked for abandoning the inde-
pendence axiom, namely, a concern for fairness, suggests that individuals themselves care
about fairness: in that case, they claim, social alternatives should be rede�ned so as to
encompass everything that matters to the individuals. The second criticism is that viola-
tions of the independence axiom lead to time-inconsistent choices: if society prefers to �ip
a coin rather than choose a or b, then it should also ignore the result of the �ip and toss
the coin again, inde�nitely. A related di¢ culty is that the stochastic dominance principle
may be violated.
Regarding the �rst criticism, it is important to keep in mind that relative egalitarianism

does satisfy Pareto Indi¤erence. Note that social indi¤erence between two alternatives a
and b may arise in two di¤erent cases: it may re�ect unanimous individual indi¤erence or
result from the aggregation of opposite individual preferences. In the former case, rela-
tive egalitarianism deems any lottery between alternatives a and b equally good as either
alternative. Only in the second case does society prefer a lottery. We see no logical incon-
sistency in having a social ordering embody collective values that complement individual
preferences as long as these values do not contradict the Pareto Principle. In particular,
a social concern for fairness is perfectly valid even if the individuals themselves are com-
pletely sel�sh7. Ultimately, collective values cannot be dispensed with anyway: relative
egalitarianism and relative utilitarianism face the preliminary problem of delimiting the
set of acceptable alternatives X: This, by the very speci�cation of the model, cannot be
done on the basis of individual preferences.
Regarding the second criticism, we claim that a proper de�nition of the set X in an

explicit model of multi-stage social decisions avoids the time-inconsistency problem8. In
the spirit of Hammond (1988, 1996), let us describe a multi-stage (social decision) problem
as a list (T; �;R): The decision tree T has a �nite set of nodes V (T ) which is partitioned
into a set of (social) decision nodes V �(T ) at which society must make a choice, a set
of chance nodes V 0(T ) at which nature decides the course of events, and a set Z(T ) of
terminal nodes at which all uncertainty is resolved. To �x ideas, we assume that the initial
node of the tree, v0(T ), is a decision node. The probability function � assigns to each
chance node v a lottery �(:; v) over V+1(v); the set of nodes which immediately follow v:
The preference pro�le R is a list of von Neumann-Morgenstern preferences over �(Z(T ));
the set of lotteries over the terminal nodes.
In order to apply relative egalitarianism, we �rst need to de�ne the feasible alternatives

7The utilitarian argument seems to be based on the belief that a social concern for fairness necessarily
contradicts Pareto Indi¤erence if individuals themselves do not care about fairness. But this is incorrect:
�not caring about fairness�is not a property of preferences which should be respected by an aggregation rule
satisfying Pareto Indi¤erence. Consider again two individuals with purely sel�sh opposite von Neumann-
Morgenstern preferences over the lotteries between a and b: Neither individual cares about fairness, yet
Pareto Indi¤erence places no constraint at all on society�s preference.

8For a completely di¤erent line of argument showing that a strict social preference for lotteries need not
generate time-inconsistent decisions, see Epstein and Segal (1992). These authors point out that the source
of the alleged time inconsistency is the implicit assumption that society�s preference after the coin �ip is
the same as before. They show how a meaningful preference updating procedure avoids time-inconsistent
choices.
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at each decision node v 2 V �(T ) in a way that guarantees that individual preferences over
such alternatives are well de�ned. Denote by Tv the subtree of T starting at node v: We
consider as a feasible alternative at v any (social) strategy for the decision tree Tv: A pure
strategy for Tv is a function s which assigns to each decision node v0 2 V �(Tv) a node
s(v0) 2 V+1(v0): Denoting by S(Tv) the set of such pure strategies, a strategy for Tv is an
element �v of �(S(Tv)): Since each strategy �v 2 �(S(Tv)) determines via the probability
function � a unique lottery a(�v) 2 �(Z(T )); the individual preferences over �(Z(T ))
induce preferences over �(S(Tv)) in an unambiguous way.
It should now be clear that not all feasible alternatives at v need be acceptable. This is

the crucial di¤erence between social and individual multi-stage decision problems. Which
alternative is acceptable may depend on past choices. Indeed, we submit that if society
chooses strategy � at the initial node v0(T ), the continuation of � in Tv should be regarded
as the only acceptable alternative at v: Our view is that the strategy � constitutes a
complete �contract� between society and its members. Any deviation from this fully
speci�ed plan of action is therefore ethically unacceptable. By choosing � at node v0(T );
society creates a right for individuals to insist that the continuation of � be followed at
node v: Under this de�nition of acceptability, relative egalitarianism needs to be applied
only once at the initial node in order to determine the best social strategy for the entire
multi-stage problem (T; �;R): Any multi-stage problem arising at any subsequent node is
completely degenerate because the set of acceptable alternatives reduces to a singleton.
To illustrate this point, consider the classical puzzle of a mother who must decide how to
allocate a treat among her two children, A and B (Machina, 1989, Grant, 1995). A concern
for fairness leads the mother to prefer to �ip a coin rather than allocate the treat to either
child. After the �ip, she gives the treat to the lucky winner, say A, simply because �ipping
the coin again would violate A�s newly acquired right to get the treat. This is a perfectly
consistent sequence of ethically optimal decisions.
To sum up, relative egalitarianism is applicable if social alternatives are de�ned as

complete plans of actions and respect of past commitments is taken as a social value.
De�ning feasible alternatives as complete plans of action seems unavoidable. The alterna-
tive approach which would take �(V+1(v)); the set of lotteries over the nodes immediately
following v, as the set of feasible alternatives at v is unsatisfactory because individual
preferences over �(V+1(v)) cannot be inferred without ambiguity from the preferences
originally de�ned over �(Z(T )):
The necessity to restrict the set of acceptable strategies at decision nodes other than

the initial node is not proper to relative egalitarianism. Relative utilitarianism faces it too.
Consider a tree T with two decision nodes v0; v1; no chance node, and four terminal nodes
a; b; c; d: The nodes d and v1 immediately follow v0 and the nodes a; b; c immediately follow
v1: There are two individuals. Their preferences R1; R2 over �(fa; b; c; dg) are represented
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by the von Neumann-Morgenstern utility functions u01; u
0
2 such that

u01(x) =

( 1 if x = a;
2
3
if x = b;

1
6
if x = c;

0 if x = d;

u02(x) =

( 5
6
if x = a;

1 if x = b;
2
3
if x = c;

0 if x = d:

At the initial node v0; the feasible pure alternatives are the pure strategies for T , namely,
in obvious notation, (v1; a); (v1; b); (v1; c); and d: The feasible alternatives are the strategies
for T and the preferences of individuals 1 and 2 over these alternatives are derived from their
preferences over �(fa; b; c; dg) by identifying each strategy with the lottery it generates
over the terminal nodes. If all feasible alternatives are acceptable, relative utilitarianism
recommends the pure alternative (v1; a) because it yields the highest sum of normalized
utilities, namely, with some abuse of notation, u01(v1; a) + u

0
2(v1; a) = 1 +

5
6
= 11

6
.

At node v1; however, the set of feasible alternatives has changed: it is now the set
of strategies for Tv1 ; namely, �(fa; b; cg): If all feasible alternatives at v1 are accept-
able, relative utilitarianism recommends to maximize the sum of the normalized von
Neumann-Morgenstern utility functions representing the individuals�preferences restricted
to �(fa; b; cg). These utility functions are such that

u11(x) =

( 1 if x = a;
3
5
if x = b;

0 if x = c;
u12(x) =

( 1
2
if x = a;

1 if x = b;
0 if x = c:

(This follows from the de�nition of normalized utilities. For instance, u11(b) =
3
5
because

bI1(
3
5
a+ 2

5
c); which holds since u01(b) =

3
5
u01(a)+

2
5
u01(c):) Relative utilitarianism now prefers

b to a since u11(b) + u
1
2(b) =

3
5
+ 1 > u11(a) + u

1
2(a) = 1 +

1
2
: Thus it recommends at v1 to

deviate from the strategy it chose at v0. This time inconsistency arises because relative
utilitarianism uses di¤erent numerical representations of individual preferences at di¤erent
decision nodes9.
To conclude this discussion, we address the related criticism that relative egalitarianism

leads to violations of the stochastic dominance principle. There exist problems where the
relative leximin rule deems a lottery between two pure alternatives strictly better than a
third pure alternative even though it �nds each pure outcome of the lottery strictly worse
than that third alternative. Consider the problem of allocating money between two equally
deserving risk-neutral individuals. Suppose that the set X contains the three allocations
(1; 0); (0; 1); (0:4; 0:4); where the �rst coordinate of each vector denotes the payment to
individual 1 and the second denotes the payment to individual 2. According to the relative
leximin rule, the lottery yielding the allocations (1; 0) and (0; 1) with equal probability is

9Classical utilitarianism does not. Nor would ordinal variants of utilitarianism under which the numer-
ical representation of preferences would be independent of the set of acceptable alternatives. Under such
variants, however, the social preference over the acceptable set would depend on the pro�le of preferences
outside that set.
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strictly better than the allocation (0:4; 0:4) even though both (1; 0) and (0; 1) are strictly
worse than (0:4; 0:4):
We stress that this social preference is not inconsistent in itself: the equal-chances

lottery is simply regarded as a better compromise than the allocation (0:4; 0:4). A di¢ culty
seems to arise only because we think of a multi-stage scenario of the following type. A
choice is o¤ered between the equal-chances lottery and the allocation (0:4; 0:4): If the
lottery is chosen, and once its outcome is known, a new choice is o¤ered between this
outcome and the allocation (0:4; 0:4): It seems that relative egalitarianism would reject
(0:4; 0:4) in the �rst stage only to accept it in the second. This is correct only if (0:4; 0:4)
is regarded as an acceptable alternative in the second stage. But (0:4; 0:4) is not the
continuation of the strategy originally chosen by relative egalitarianism. Therefore, as we
argued earlier, it should not be acceptable in the second stage. Sticking with the outcome
of the lottery is the only ethically correct alternative.

6.2. Relative egalitarianism and quadratic social welfare functions

Epstein and Segal (1992) are interested in the following problem. Given a �xed set of lot-
teries �(X); how should we aggregate a given pro�le of preferences R1; :::; Rn represented
by the von Neumann-Morgenstern utility functions u1; :::; un over �(X) into a social order-
ing R�? They propose a set of axioms guaranteeing that there exists a strictly increasing
and strictly quasiconcave quadratic (Bergson-Samuelson) social welfare function W de-
�ned over f(u1(x); :::; un(x)) j x 2 �(X)g such that, for all a; b 2 �(X); aR�b if and only
if W ((u1(a); :::; un(a)) � W ((u1(b); :::; un(b)): A quadratic social welfare function takes the
form

W (z1; :::; zn) =
nX
i=1

nX
j=1

aijzizj +
nX
i=1

bizi; (6.1)

where aij and bi are real numbers such that aij = aji for all i; j: A key axiom, guaranteeing
the strict quasiconcavity of W , is Randomization Preference: if a; b 2 �(X); aI�b; and
aPib; bPja for some individuals i; j; then

�
1
2
a+ 1

2
b
�
P�b:

Our paper shares with Epstein and Segal�s work a common concern for ex ante fairness.
In particular, our Preference for Lotteries axiom is essentially a restatement of Epstein and
Segal�s Randomization Preference.
There are two major di¤erences between Epstein and Segal�s contribution and ours.

A �rst di¤erence is that our main result, Theorem 2, uses a variant of Randomization
Preference expressing a social preference for any type of compromise rather than just
lotteries. Preference for Compromise leads to a form of welfare egalitarianism rather than
simply welfare inequality aversion.
The second di¤erence is more important. We shall argue that Epstein and Segal�s

result is of little practical help to aggregate ordinal preferences, and that this weakness is
particularly serious in an Arrovian multi-pro�le framework. This, of course, is precisely the
criticism that is addressed by Dhillon and Mertens (1999) to Harsanyi�s (1955) theorem
and motivates their de�nition of relative utilitarianism. Let us explain it in detail.
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All axioms used by Epstein and Segal are restrictions on the preference pro�le (R1; :::; Rn);
the social ordering R�; and the relationship between the two; none bears on the numerical
representations of the individual preferences. These axioms may therefore be reformulated
in our framework as conditions on the aggregation rule R in a completely straightfor-
ward manner: see, for instance, the restatement of Randomization Preference in Sec-
tion 5. It follows from Epstein and Segal�s theorem that an aggregation rule R satis�es
these reformulated conditions if and only if, for every problem (X;R) 2 P, there exist
von Neumann-Morgenstern utility functions u(X;R)1 ; :::; u

(X;R)
2 representing R1; :::; Rn and a

strictly increasing and strictly quasiconcave quadratic welfare function W (X;R) de�ned onn
(u
(X;R)
1 (x); :::; u

(X;R)
n (x)) j x 2 �(X)

o
such that, for all a; b 2 �(X); aR(X;R)b if and

only if W (X;R)((u
(X;R)
1 (a); :::; u

(X;R)
n (a)) � W (X;R)((u

(X;R)
1 (b); :::; u

(X;R)
n (b)):

This restatement shows that two crucial questions remain unanswered: which numer-
ical representations u(X;R)i of individual preferences should we choose and which welfare
function W (X;R) should we use? Even if the social choice problem (X;R) is �xed, as in
Epstein and Segal�s context, choosing the parameters aij and bi for all i; j 2 N in formula
(6.1) does not solve the ordinal aggregation problem as long as the numerical representa-
tions of preferences are left unspeci�ed. Interpersonal comparisons are needed in order to
eliminate the indeterminacy. Moreover, this indeterminacy becomes particularly serious in
our variable-problem framework because the numerical representations of preferences and
the welfare function are allowed to vary arbitrarily with the social choice problem under
consideration.
Theorem 3 may be regarded as an answer to the �rst question above and a partial

response to the second: the von Neumann-Morgenstern numerical representations should
be (0,1) normalized and the social welfare function �more precisely, the social ordering
over utility space that it represents�should be independent of the social choice problem.
Theorem 4 is a complete answer in the sense that it pins down that social ordering.

7. Proofs

We begin by establishing three lemmas. The �rst lemma shows that Pareto Indi¤erence
and Independence of Inessential Expansions imply a strong form of neutrality. Let �(A)
denote the set of permutations on A: If (X;R) 2 P ; � 2 �(A); and a 2 �(X), then
a� 2 �(�(X)) is the lottery on �(X) given by a�(�(x)) = a(x) for all x 2 X and the
preference pro�le R� 2 (R�(�(X)))

N is de�ned by a�R�i b
� , aRib for all i 2 N and

a; b 2 �(X):
Neutrality. For all (X;R) 2 P, a; b 2 �(X) and � 2 �(A); aR(X;R)b, a�R(�(X); R�)b�:

Denoting by �(X) the set of permutations on X 2 A, Neutrality implies that for all
(X;R) 2 P, a; b 2 �(X) and � 2 �(X); aR(X;R)b, a�R(X;R�)b�:

Lemma 1. If the aggregation rule R satis�es Pareto Indi¤erence and Independence of
Inessential Expansions, then R satis�es Neutrality.
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Proof. Let R satisfy Pareto Indi¤erence and Independence of Inessential Expansions. Let
(X;R) 2 P, a; b 2 �(X) and � 2 �(A): We prove that aR(X;R)b ) a�R(�(X); R�)b�:
The converse implication follows immediately since a = (a�)�

�1
; b = (b�)�

�1
; X = ��1(�(X));

and R = (R�)�
�1
: Let us thus assume that

aR(X;R)b: (7.1)

Step 1. We prove that a�R(�(X); R�)b� if �(X) \X = ;:
Let X = X[�(X): For each i 2 N , let Ri be the von Neumann-Morgenstern preference

over �(X) which coincides with Ri on �(X) and is such that xI i�(x) for all x 2 X: This
is well de�ned because �(X) \ X = ;: Observe that Ri coincides with R�i on �(�(X)):
Moreover, aRixRia for all a 2 A(X;Ri) [ A(�(X); R�i ); x 2 X; and a 2 A(X;Ri) [
A(�(X); R�i ): Let R = (R1; :::; Rn): Applying Independence of Inessential Expansions to
(7.1),

aR(X;R)b: (7.2)

Since a�I ia and b�I ib for all i 2 N; Pareto Indi¤erence implies a�I(X;R)a and b�I(X;R)b:
Hence from (7.2),

a�R(X;R)b�: (7.3)

Applying Independence of Inessential Expansions to (7.3) and recalling that R coincides
with R� on �(�(X)); we obtain a�R(�(X); R�)b�:

Step 2. We prove that a�R(�(X); R�)b�:

Choose � 2 �(A) such that �(X) \X = �(X) \ �(X) = ;: By Step 1, (7.1) implies

a�R(�(X); R�)b�: (7.4)

Next consider the permutation � � ��1 2 �(A): Since (� � ��1)(�(X)) \ �(X) = ;, Step 1
and (7.4) imply

(a�)���
�1
R((� � ��1)(�(X)); (R�)����1)(b�)����1 : (7.5)

By de�nition, (� � ��1)(�(X)) = �(X): Moreover, (a�)���
�1
= a� since (a�)���

�1
(�(x))

= (a�)���
�1
((� � ��1)(�(x))) = a�(�(x)) = a(x) for all x 2 X: Likewise, (b�)����1 = b� and

(R�)���
�1
= R�: Hence (7.5) reduces to a�R(�(X); R�)b�:�

The reader may have noticed that the above proof does not use the full force of Inde-
pendence of Inessential Expansions. In fact, the axiom can be replaced with Independence
of Redundant Alternatives in the statement of Lemma 1.
The second lemma proves a simple but useful property of the normalized von Neumann-

Morgenstern representation of preferences.

Lemma 2. For all (X;R) 2 P ; i 2 N; � 2 �(X) and a 2 �(X); u(a;X;Ri) =
u(a�; X;R�i ):

Proof. Fix (X;R) 2 P; i 2 N; � 2 �(X) and a 2 �(X): If Ri = R0, then R�i = R0 and
therefore u(a;X;Ri) = u(a�; X;R�i ) = 1: If Ri 6= R0, let u(a;X;Ri) = �: By de�nition of
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u(:; X;Ri), this means that aIi [�a+ (1� �)a)] for all a 2 A(X;Ri) and a 2 A(X;Ri): By
de�nition ofR�i ; it follows that a

�I�i [�a+ (1��)a]� = [�a� + (1� �)a�] for all a 2 A(X;Ri)
and a 2 A(X;Ri): But a 2 A(X;Ri) , a� 2 A(X;R�i ) and a 2 A(X;Ri) , a� 2
A(X;R�i ): Therefore a

�I�i
�
�b+ (1� �)b

�
for all b 2 A(X;R�i ) and b 2 A(X;R�i ); that is,

u(a�; X;R�i ) = �:�
The third lemma establishes a normalized version of the so-called Suppes-Sen principle.

Given (X;R) 2 P, we recall that N0(X;R) = fi 2 N j Ri = R0g and we let �0(N;X;R) =
f� 2 �(N) j �(N0(X;R)) = N0(X;R)g:
Lemma 3. Let the aggregation rule R satisfy the Pareto Principle, Anonymity, Indepen-
dence of Inessential Expansions, and let (X;R) 2 P ; a; b 2 �(X); and � 2 �0(N;X;R): If
u(a;X;R�(i)) � u(b;X;Ri) for all i 2 N; then aR(X;R)b: If in addition u(a;X;R�(j)) >
u(b;X;Rj) for some j 2 N; then aP(X;R)b:
Proof. Let R satisfy the Pareto Principle, Anonymity, Independence of Inessential Ex-
pansions, and let (X;R) 2 P : By Lemma 1, R satis�es Neutrality.

Step 1. We enlarge (X;R) to a symmetric problem (X;R):

For each x 2 X and each � 2 �0(N;X;R), choose some alternative x� 2 A such
that xid = x and x� 6= x�0 if � 6= �0 (where id is the identity mapping). Let X =
fx� j � 2 �0(N;X;R)g :
For each i 2 N , let ui : �(X) ! [0; 1] be the (unique) von Neumann-Morgenstern

utility function such that, for each x� 2 X;

ui(x�) = u(x;X;R��1(i)): (7.6)

Let Ri 2 R�(X) be the preference represented by ui: Observe that Ri is the complete
indi¤erence relation on �(X) if Ri is the complete indi¤erence relation on �(X): More
generally, Ri coincides with Ri on �(X) and aRix�Ria for all a 2 A(X;Ri); x� 2 X;
a 2 A(X;Ri): Note that ui is the normalized von Neumann-Morgenstern representation of
Ri, that is,

ui(:) = u(:; X;Ri): (7.7)

Let R = (R1; :::; Rn): The preference pro�le R is highly symmetric. In particular, for
all i 2 N; x� 2 X and � 2 �0(N;X;R);

u�(i)(x���) = ui(x�): (7.8)

Indeed, u�(i)(x���) = u(x;X;R(���)�1(�(i))) = u(x;X;R(��1���1)(�(i))) = u(x;X;R��1(i)) =
ui(x�):

Step 2. We show how R can be mapped onto itself by combining a permutation on N
with one on X:

With each � 2 �0(N;X;R) we associate a permutation �� 2 �(X) de�ned as follows:
for all x� 2 X;

��(x�) = x���: (7.9)
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This is a permutation because x��� 6= x���0 whenever � 6= �0. Notice also that

��1� (x�) = x��1�� (7.10)

since ��(x��1��) = x����1�� = x�:
We claim that �

�R
���

= R for all � 2 �0(N;X;R): (7.11)

To see why, �x � 2 �0(N;X;R); x� 2 X and i 2 N: We have

u(x�; X; (�R)
��
i ) = u(��1� (x�); X; (�R)i)

= u(x��1��; X; (�R)i)

= u(x��1��; X;R��1(i))

= u��1(i)(x��1��)

= ui(x�)

= u(x�; X;Ri):

These equalities hold, respectively, because of Lemma 2, (7.10), the de�nition of (�R)i;
(7.7), (7.8), and (7.7) again. This proves that

�
�R
���
i
= Ri for all i 2 N; hence (7.11).

Step 3. We show that xI(X;R)x� for all x 2 X and � 2 �0(N;X;R):
Fix � 2 �0(N;X;R): Let k be a a positive integer such that

�k = id; (7.12)

where �k denotes the k-repeated composition of � with itself. (Such an integer exists: for
instance, we may take k equal to the product of the lengths of all the cycles of �). Fix
x 2 X. Then

xR(X;R)x� (7.13)

or
x�R(X;R)x: (7.14)

Suppose (7.13) holds. By Anonymity,

xR(X; �R)x�: (7.15)

Letting �� 2 �(X) be the permutation de�ned in (7.9), we get

��(x)R(X; (�R)
��)��(x�)

) x�R(X; (�R)
��)x���

) x�R(X;R)x���

by Neutrality, (7.9) and (7.11). Repeating this argument k times, we obtain

x�R(X;R)x���R(X;R):::R(X;R)x�k :
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By (7.12), x�R(X;R)x which together with (7.13) yields xI(X;R)x�.
The same argument holds, mutatis mutandis, if (7.14) holds instead of (7.13).

Step 4. We establish the lemma for the case of pure alternatives.

Let x; y 2 X; � 2 �0(N;X;R) and assume u(x;X;R�(i)) � u(y;X;Ri) for all i 2 N ,
which we rewrite

u(x;X;Ri) � u(y;X;R��1(i)) for all i 2 N: (7.16)

Let (X;R) be the enlarged problem de�ned in Step 1. From (7.16) and (7.6),

ui(x) � ui(y�) for all i 2 N;

that is, xRiy� for all i 2 N: By the Pareto Principle, xR(X;R)y�: From Step 3, however,
y�I(X;R)y: Hence xR(X;R)y: By Independence of Inessential Expansions, xR(X;R)y:
If in addition u(x;X;R�(j)) > u(y;X;Rj) for some j 2 N; the argument is easily

adapted to show that xP(X;R)y:

Step 5. We conclude the proof.

Let a; b 2 �(X); � 2 �0(N;X;R) and assume u(a;X;R�(i)) � u(b;X;Ri) for all i 2 N .
Choose distinct pure alternatives a0; b0 2 A nX and let X 0 = X [ fa0; b0g : For each i 2 N ,
let R0i be the von Neumann-Morgenstern preference on �(X

0) which coincides with Ri on
�(X 0) and is such that a0I 0ia and b

0I 0ib. Let R
0 = (R01; :::; R

0
n):

By construction,

u(a0; X 0; R0i) = u(a;X;Ri) � u(b;X;R��1(i)) = u(b0; X 0; R0��1(i)) for all i 2 N:

Using this inequality instead of (7.16), we may repeat the argument in Step 4 with
a0; b0; X 0; R0 replacing x; y;X;R and obtain a0R(X 0; R0)b0: By the Pareto Principle, aI(X 0; R0)a0

and bI(X 0; R0)b0:Hence aR(X 0; R0)b: By Independence of Inessential Expansions, aR(X;R)b:
If in addition u(a;X;R�(j)) > u(b;X;Rj) for some j 2 N; the argument is easily

adapted to show that aP(X;R)b:�
We are now equipped to prove Theorem 1.

Proof of Theorem 1. Let the aggregation ruleR satisfy the Pareto Principle, Anonymity,
Independence of Inessential Expansions, and Preference for Compromise. By Lemma 1, R
also satis�es Neutrality. Let (X;R) 2 P, a; b 2 �(X); and assume mini2N u(a;X;Ri) =
� > � = mini2N u(b;X;Ri): For all c 2 �(X) and i 2 N , write ui(c) = u(c;X;Ri):
Without loss of generality, assume un(b) = �: Suppose, contrary to the claim, that

bR(X;R)a: (7.17)

Step 1. We derive a contradiction under the assumptions that

u1(b) = ::: = un�1(b) = 1; (7.18)

and
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u1(a) < ::: < un(a): (7.19)

Choose a0 2 A nX and let X 0 = X [ fa0g : For i = 1; :::; n � 1, let u0i : �(X 0) ! [0; 1]
be the von Neumann-Morgenstern utility function such that u0i(x) = ui(x) for all x 2 X
and u0i(a

0) = ui+1(a): Let u0n : �(X
0) ! [0; 1] be the von Neumann-Morgenstern utility

function such that u0n(x) = un(x) for all x 2 X and u0n(a
0) = �+�

2
: For each i 2 N; let R0i

be the preference on �(X 0) represented by u0i: By Independence of Inessential Expansions,
(7.17) implies bR(X 0; R0)a: Since bR0ia

0P 0ia for i = 1; :::; n� 1 and aR0na0P 0nb; Preference for
Compromise implies a0R(X 0; R0)a: But Lemma 3 implies aP(X 0; R0)a0: (Indeed, (7.18) and
(7.19) imply Ri 6= R0 for all i 2 N: Therefore �0(N;X;R) = �(N) and the permutation
�(i) = i + 1(modn) belongs to �0(N;X;R): Then u(a;X 0; R0�(i)) = u(a0; X 0; R0i) for i =

1; :::; n� 1 while u(a;X 0; R0�(n)) = � >
�+�
2
= u(a0; X 0; R0n), hence aP(X

0; R0)a0 by Lemma
3.)

Step 2. We derive a contradiction under assumption (7.18) only.

Choose a00 2 A n X and let X 00 = X [ fa00g : Let u00i : �(X 00) ! [0; 1] ; i = 1; :::; n; be
von Neumann-Morgenstern utility functions such that u00i (x) = ui(x) for all x 2 X and

� � u001(a00) < ::: < u00n(a00) � �: (7.20)

Such functions exist because � < �: For each i 2 N , let R00i be the preference on �(X 00)
represented by u00i : By Independence of Inessential Expansions, (7.17) implies bR(X

00; R00)a:
By the Pareto Principle, aR(X 00; R00)a00: Hence bR(X 00; R00)a00:
We may now repeat the argument in Step 1 (with X 00; R00; a00 replacing X;R; a and

(7.20) replacing (7.19)) to obtain a contradiction.

Step 3. We drop both assumptions (7.18) and (7.19) and derive a contradiction.

Choose b 2 A nX and let X = X [ fbg: Let ui : �(X)! [0; 1] ; i = 1; :::; n; be the von
Neumann-Morgenstern utility functions such that ui(x) = ui(x) for all x 2 X and

un(b) = � < u1(b) = ::: = un�1(b) = 1: (7.21)

For each i 2 N , let Ri be the preference on �(X) represented by ui: By Independence
of Inessential Expansions, (7.17) implies bR(X;R)a: By the Pareto Principle, bR(X;R)b:
Hence bR(X;R)a:
We may now repeat the argument in Step 2 (with X;R; b replacing X;R; b) to obtain

a contradiction.�
Proof of Corollary to Theorem 1. For a proof of the �if�statement, see step 1 of the
proof of Theorem 2. To prove the �only if� statement, combine Theorem 1 and Lemma
3.�
The proof of Theorem 2 relies on one more lemma. This lemma is restricted to problems

where preferences have multiple best and worst elements. Formally, let P� = f(X;R) 2
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P j
��A(X;Ri)�� � 2 and jA(X;Ri)j � 2 for all i 2 Ng. If (X;R) 2 P�, � 2 �0(N;X;R);

i 2 N , and a 2 X; let ua;�i : �(X) ! [0; 1] be the von Neumann-Morgenstern utility
function such that

ua;�i (x) =

(
u(x;X;Ri) if x 2 X n fag ;
u(a;X;R��1(i)) if x = a:

Note that ua;�i is a normalized von Neumann-Morgenstern utility function because
��A(X;Ri)��,

jA(X;Ri)j � 2 and because � 2 �0(N;X;R): The (a; �)-transform of Ri 2 R�(X) is the
preference Ra;�i 2 R�(X) whose normalized von Neumann-Morgenstern representation is
ua;�i : Observe that R

a;�
i = R0 if and only if Ri = R0:

Lemma 4. Let the aggregation rule R satisfy the Pareto Principle, Anonymity, and
Independence of Inessential Expansions. If (X;R) 2 P�, a 2 X and � 2 �0(N;X;R);
then for all x; y 2 X, xR(X;R)y , xR(X;Ra;�)y.

Proof. Let R satisfy the Pareto Principle, Anonymity, and Independence of Inessential
Expansions. By Lemma 1, R also satis�es Neutrality. Let (X;R) 2 P�, a; x; y 2 X and
� 2 �0(N;X;R): We prove that xR(X;R)y ) xR(X;Ra;�)y: The converse implication
follows immediately since R = (Ra;�)a;�

�1
: Let us thus assume

xR(X;R)y: (7.22)

If x = y, it is trivial that xR(X;Ra;�)y: From now on, suppose x 6= y.
Choose a 2 A nX and de�ne X = X [ fag : For each i 2 N , let ui : �(X)! [0; 1] be

the von Neumann-Morgenstern utility function such that

ui(x) =

(
u(x;X;Ri) if x 2 X;

u(a;X;R��1(i)) if x = a;

and let Ri be the preference on �(X) represented by ui. Thus, u(:; X;Ri) = ui for each
i 2 N and the pro�le R = (R1; :::; Rn) coincides with R on �(X): Applying Independence
of Inessential Expansions to (7.22), we have

xR(X;R)y:

De�ne � 2 �(X) by �(a) = a; �(a) = a and �(b) = b for all b 2 X n fa; ag and consider
the pro�le R

�
on �(X). Observe that for all i 2 N;

u(x;X;R
�

i ) = u(�
�1(x); X;Ri) =

(
u(x;X;Ri) if x 2 X n fag ;
u(a;X;R��1(i)) if x = a;

that is, R
�

i coincides with R
a;�
i on �(X): Now, distinguish two cases.

Case 1. x 6= a and y 6= a: We get

xR(X;R)y ) �(x)R(X;R
�
)�(y)

) xR(X;R
�
)y

) xR(X;Ra;�)y;
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successively by Neutrality, the de�nition of �, and Independence of Inessential Expansions
and the fact that R

�
coincides with Ra;� on �(X):

Case 2. x = a or y = a: We assume x = a 6= y; the case x 6= a = y is treated similarly.
By Lemma 3, aI(X;R)a: Hence,

aR(X;R)y ) aR(X;R)y

) �(a)R(X;R
�
)�(y)

) aR(X;R
�
)y

) aR(X;Ra;�)y;

completing the proof.�
With Lemma 4 in hand we may now prove Theorem 2.

Proof of Theorem 2.
Step 1. We check that RL satis�es the axioms in Theorem 2.
The Pareto Principle and Anonymity are obviously met. Independence of Inessential

Expansions holds because u(x;X;Ri) = u(x;X 0; R0i) for all x 2 X and i 2 N whenever
(X;R); (X 0; R0) satisfy the premises of the axiom.
To check that RL satis�es Preference for Compromise, let (X;R) 2 P ; a; b; c 2 �(X);

? $ S $ N be such that aRL(X;R)b; aRicPib for all i 2 S and bRjcPja for all j 2 N n S:
We claim that

min
i2N

u(c;X;Ri) > min
i2N

u(b;X;Ri); (7.23)

which in turn implies cPL(X;R)b (that is, RL satis�es the strict version of Preference
for Compromise mentioned in the last paragraph of Section 4). Suppose (7.23) does not
hold. Let j 2 N be such that u(c;X;Rj) = mini2N u(c;X;Ri) � mini2N u(b; X;Ri): Since
aRL(X;R)b; we get u(c;X;Rj) � mini2N u(b;X;Ri) � mini2N u(a;X;Ri): In particular,
u(c;X;Rj) � u(b;X;Rj) and u(c;X;Rj) � u(a;X;Rj), that is, bRjc and aRjc: Hence
j =2 S and j =2 N n S; a contradiction.
We omit the standard argument showing that RL satis�es Separability.

Step 2. We show that any aggregation rule satisfying the axioms coincides with RL:
LetR satisfy the Pareto Principle, Anonymity, Independence of Inessential Expansions,

Preference for Compromise, and Separability. By Lemma 1, R also satis�es Neutrality.

Step 2.1. We prove that for all (X;R) 2 P, R(X;R) coincides with RL(X;R) when
comparing any two pure alternatives.

Fix (X;R) 2 P and a; b 2 X: Suppose �rst that aIL(X;R)b: Then (u(a;X;R1); :::;
u(a;X;Rn)) �L (u(b;X;R1) ; :::; u(b; X;Rn)), hence there exists � 2 �0(N;X;R) such
that u(a;X;R�(i)) = u(b;X;Ri) for all i 2 N: Lemma 3 implies aI(X;R)b:
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Suppose now that aPL(X;R)b: This means that there exist k 2 N and �; � 2 �(N)
such that

u(a;X;R�(1)) � ::: � u(a;X;R�(n));
u(b;X;R�(1)) � ::: � u(b;X;R�(n));
u(a;X;R�(i)) = u(b;X;R�(i)) for all i 2 N such that i < k;

u(a;X;R�(k)) > u(b;X;R�(k)):

Let us assume that �(i) = �(i) for all i 2 N0(X;R): This is without loss of generality
because u(a;X;Ri) = u(b;X;Ri) = 1 for i 2 N0(X;R): If k = 1, Theorem 1 implies
aP(X;R)b: From now on, assume k > 1: Suppose, by way of contradiction, that

bR(X;R)a: (7.24)

Choose distinct a0; a1 2 A nX and let X = X [fa0; a1g : For each i 2 N , let Ri be the
von Neumann-Morgenstern preference on �(X) which coincides with Ri on �(X) and is
such that a0I ia for a 2 A(X;Ri) and a1I ia for a 2 A(X;Ri). We have

u(a;X;R�(1)) � ::: � u(a;X;R�(n));
u(b;X;R�(1)) � ::: � u(b;X;R�(n));
u(a;X;R�(i)) = u(b;X;R�(i)) for all i 2 N such that i < k;

u(a;X;R�(k)) > u(b;X;R�(k)):

From (7.24) and Independence of Inessential Expansions,

bR(X;R)a: (7.25)

Notice that (X;R) 2 P�. De�ne � 2 �(N) by �(i) = �(��1(i)) for all i 2 N: Be-
cause �(i) = �(i) whenever Ri = R0; � 2 �0(N;X;R): For each i 2 N; let R

a;�

i be
the (a; �)-transform of Ri as de�ned just before Lemma 4. By de�nition, u(a;X;R

a;�

�(i)) =

u(a;X;R��1(�(i))) = u(a;X;R�(��1(�(i)))) = u(a;X;R�(i)) while u(b;X;R
a;�

�(i)) = u(b;X;R�(i)).
Therefore

u(a;X;R
a;�

�(1)) � ::: � u(a;X;Ra;��(n));
u(b;X;R

a;�

�(1)) � ::: � u(b;X;Ra;��(n));
u(a;X;R

a;�

�(i)) = u(b;X;R
a;�

�(i)) for all i 2 N such that i < k;

u(a;X;R
a;�

�(k)) > u(b;X;R
a;�

�(k)):

By Lemma 4, (7.25) implies
bR(X;R

a;�
)a: (7.26)

De�ne the preference pro�le R
0
on �(X 0) by R

0
�(i) = R0 for all i 2 N such that i < k

and R
0
�(i) = R

a;�

�(i) for all i 2 N such that i � k: By Separability (or repeated application of
Weak Separability), (7.26) implies

bR(X;R
0
)a:
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But mini2N u(a;X;R
0
i) = u(a;X;R

0
�(k)) = u(a;X;R

a;�

�(k)) > u(b;X;R
a;�

�(k)) = u(b;X; R
0
�(k))

= mini2N u(b;X; R
0
i); contradicting Theorem 1.

Step 2.2. We prove that for all (X;R) 2 P, R(X;R) coincides with RL(X;R) when
comparing any two alternatives.

Fix (X;R) 2 P and a; b 2 �(X): Suppose aIL(X;R)b: Choose distinct pure alternatives
a0; b0 2 A n X and let X 0 = X [ fa0; b0g : For each i 2 N; let R0i be the von Neumann-
Morgenstern preference on �(X 0) which coincides with Ri on �(X) and is such that
a0I 0ia and b

0I 0ib: Then a
0IL(X 0; R0)b0: By Step 2.1, a0I(X 0; R0)b0: By the Pareto Principle,

aI(X 0; R0)b: By Independence of Inessential Expansions, aI(X;R)b: The argument carries
over to show that aPL(X;R)b implies aP(X;R)b:�
As explained in Section 5, we prove Theorem 3 as a corollary to Theorem 4.

Proof of Theorem 4.
Step 1. We prove the �if�statement.

Fix a collection of orderings %S on [0; 1]N and suppose that for all S � N; all (X;R) 2
PS and all a; b 2 X; aR(X;R)b , (u(a;X;R1); :::; u(a;X;Rn)) %S (u(b;X;R1) ; :::; u(b;
X;Rn)): It is obvious that R satis�es Pareto Indi¤erence. To check Independence of
Inessential Expansions, �x (X;R); (X 0; R0) satisfying the premises of the axiom. Then for
each i 2 N and c 2 �(X); u(c;X;Ri) = u(c;X 0; R0i): Moreover, since R

0
i is the complete

indi¤erence relation on �(X 0) if and only if Ri is the complete indi¤erence relation on
�(X), we have N0(X;R) = N0(X 0; R0): Therefore, for all a; b 2 �(X);

aR(X;R)b , (u(a;X;R1); :::; u(a;X;Rn)) %N0(X;R) (u(b;X;R1); :::; u(b;X;Rn))
, (u(a;X 0; R01); :::; u(a;X

0; R0n)) %N0(X0;R0) (u(b;X
0; R01); :::; u(b;X

0; R0n))

, aR(X 0; R0)b:

Step 2. We prove the �only if�statement.

Let R satisfy Pareto Indi¤erence and Independence of Inessential Expansions. By
Lemma 1, R also satis�es Neutrality. For each S � N; de�ne the binary relations �S;�S
;%S on [0; 1]N as follows:
(i) v �S w if and only if there exist (X;R) 2 PS and a; b 2 �(X) such that u(a;X;Ri) =

vi and u(b;X;Ri) = wi for all i 2 N and aP(X;R)b;
(ii) v �S w if and only if there exist (X;R) 2 PS and a; b 2 �(X) such that

u(a;X;Ri) = vi and u(b;X;Ri) = wi for all i 2 N and aI(X;R)b;
(iii) v %S w if and only if v �S w or v �S w:
The relations �S;�S;%S are equivalently de�ned by replacing �(X) with X in state-

ments (i) and (ii). To see why, �x v; w 2 [0; 1]N and suppose there exist (X;R) 2 PS
and a; b 2 �(X) such that u(a;X;Ri) = vi and u(b;X;Ri) = wi for all i 2 N and
aP(X;R)b (respectively, aI(X;R)b). Choose distinct pure alternatives a0; b0 2 A n X; let
X 0 = X [ fa0; b0g and, for each i 2 N; let R0i be the von Neumann-Morgenstern preference
on�(X 0) which coincides with Ri on�(X) and is such that a0I 0ia and b

0I 0ib: Then (X
0; R0) 2
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PS; a0; b0 2 X 0; u(a0; X 0; R0i) = vi and u(b
0; X 0; R0i) = wi for all i 2 N and, using Indepen-

dence of Inessential Expansions and Pareto Indi¤erence, a0I(X 0; R0)aP(X 0; R0)bI(X 0; R0)b0

(respectively, a0I(X 0; R0)aI(X 0; R0)bI(X 0; R0)b0).

Step 2.1. We claim that each %S is consistent in Suzumura�s (1976) sense: if there exist
v1; :::; vm 2 [0; 1]N such that v1 %S ::: %S vm %S v1; then v1 �S ::: �S vm �S v1: Suppose,
on the contrary, that, say, v1 %S ::: %S vm �S v1: Then there exist (X1; R1); :::; (Xm; Rm) 2
PS and a1; b1 2 X1; :::; am; bm 2 Xm such that

akR(Xk; Rk)bk for k = 1; :::;m� 1 and amP(Xm; Rm)bm; (7.27)

and

u(ak; Xk; Rki ) = v
k
i and u(b

k; Xk; Rki ) = v
k+1(modm)
i for all i 2 N and k = 1; :::;m: (7.28)

By Neutrality, we may assume that X1; :::; Xm are pairwise disjoint. Let X = [mk=1Xk:
For each i 2 N; let ui : �(X) ! [0; 1] be the von Neumann-Morgenstern utility function
such that

ui(x) = u(x;X
k(x); R

k(x)
i ) for all x 2 X; (7.29)

where k(x) is the unique k such that x 2 Xk: Let Ri be the preference on�(X) represented
by ui and let R = (R1; :::; Rn):
Note that R coincides with Rk on �(Xk) for each k: Moreover, since N0(X1; R1) =

::: = N0(X
m; Rm) (= S); (7.29) implies that aRixRia for all i 2 N; all a 2 [mk=1A(Xk; Rki );

all x 2 X; and all a 2 [mk=1A(Xk; Rki ): Applying Independence of Inessential Expansions
to (7.27),

akR(X;R)bk for k = 1; :::;m� 1 and amP(X;R)bm: (7.30)

On the other hand, (7.28) and (7.29) imply that bkIiak+1(modm) for all i 2 N and
k = 1; ::;m: By Pareto Indi¤erence,

bkI(X;R)ak+1(modm) for k = 1; ::;m;

which together with (7.30) contradicts the transitivity of R(X;R):

Step 2.2. If S 6= ?; the relation%S need not be complete. Since%S is consistent, however,
it has an ordering extension (by Suzumura, 1976): denote it %0S : By the very de�nition
of %S; we have that for all (X;R) 2 PS and a; b 2 �(X), aR(X;R)b , (u(a;X;R1); :::;
u(a;X;Rn)) %0S (u(b;X;R1); :::; u(b;X;Rn)):�
Proof of Theorem 3. We leave the proof of the �if�statement to the reader. To prove
the �only if� statement, �x an aggregation rule R satisfying the required axioms. By
Theorem 4, there exists a collection of orderings %S on [0; 1]N such that for all S � N; all
(X;R) 2 PS and all a; b 2 �(X);

aR(X;R)b, (u(a;X;R1); :::; u(a;X;Rn)) %S (u(b;X;R1); :::; u(b;X;Rn)): (7.31)
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Step 1. We claim that for all (X;R) 2 P and all a; b 2 �(X); aR(X;R)b, (u(a;X;R1); :::;
u(a;X;Rn)) %; (u(b;X;R1) ; :::; u(b;X;Rn)):
Suppose not. Then there exist S � N; (X;R) 2 PS; and a; b 2 �(X) such that one of

the following statements holds:

aP(X;R)b and (u(b;X;R1); :::; u(b;X;Rn)) %; (u(a;X;R1); :::; u(a;X;Rn)); (7.32)

aR(X;R)b and (u(b;X;R1); :::; u(b;X;Rn)) �; (u(a;X;R1); :::; u(a;X;Rn)): (7.33)

Assume (7.32). Without loss of generality, suppose also that jXj � 3: (If jXj < 3;
simply choose X 2 A such that X � X and

��X�� � 3: For each i 2 N let Ri be a von
Neumann-Morgenstern preference on �(X) coinciding with Ri on �(X) and such that
aRixRia for all a 2 A(X;Ri); x 2 X; a 2 A(X;Ri): Then aP(X;R)b by Independence of
Inessential Expansions and (u(b;X;R1); :::; u(b;X;Rn)) = (u(b;X;R1); :::; u(b;X;Rn)) %;
(u(a;X;R1); :::; u(a;X;Rn)) = (u(a;X;R1); :::; u(a;X;Rn)); so that the argument below
would apply with (X;R) instead of (X;R):)
Let R0 = (R01; :::; R

0
n) be a pro�le of preferences over �(X) such that

R0i 6= R0 and aI 0ibR
0
ix for all x 2 X and all i 2 S;

R0i = Ri for all i 2 N n S:

Such a pro�le exists because
��X�� � 3: By construction, (X;R0) 2 P; and

u(a;X;R0i) = u(a;X;Ri) = u(b;X;R
0
i) = u(b;X;Ri) = 1 for all i 2 S;

u(a;X;R0i) = u(a;X;Ri) and u(b;X;R0i) = u(b;X;Ri) for all i 2 N n S;

so that (7.32) implies (u(b;X;R01); :::; u(b;X;R
0
n)) %; (u(a;X;R01); :::; u(a;X;R0n)):

But by Separability, aP(X;R)b implies aP(X;R0)b; contradicting (7.31) for S = ;:
Essentially the same argument applies if we assume (7.33) instead of (7.32).

Step 2. We show that %; is a strictly monotonic, symmetric, convex, and separable
ordering.
Let us �rst check that %; is an ordering. To prove completeness, �x distinct vectors

v; w 2 [0; 1]N : Choose a; b 2 A; X 2 A containing a; b and such that jXj � 3; and R a
pro�le of preferences over �(X) such that i) u(a;X;Ri) = vi and u(b;X;Ri) = wi for all
i 2 N and ii) (X;R) 2 P?: Restriction ii) can be satis�ed because jXj � 3: Since R(X;R)
is complete, aR(X;R)b or bR(X;R)a: By de�nition of %;; v %; w or w %; v: Re�exivity
and transitivity of %; are proved in a similar way.
To check that %; is strictly monotonic, �x v; w 2 [0; 1]N such that v > w: As in the

previous paragraph, we may choose a; b 2 A and (X;R) 2 P? such that u(a;X;Ri) =
vi and u(b;X;Ri) = wi for all i 2 N: Since (u(a;X;R1); :::; u(a;X;Rn)) = v > w =
(u(b;X;R1); :::; u(b;X;Rn)); the Pareto Principle implies aP(X;R)b: It follows from the
de�nition of %; that v %; w:
To check that %; is symmetric, �x v; w 2 [0; 1]N ; � 2 �(N); and suppose v %; w:

Again, let a; b 2 A and (X;R) 2 P? be such that u(a;X;Ri) = vi and u(b;X;Ri) = wi for
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all i 2 N: By de�nition of %;, aR(X;R)b. By Anonymity, aR(X; �R)b: But for all i 2 N;
u(a;X; (�R)i) = u(a;X;R��1(i)) = v��1(i) = (�v)i and, likewise, u(b;X; (�R)i) = (�w)i:
Therefore, by de�nition of %;, aR(X; �R)b implies �v %; �w:
To check that %; is convex, �x v; w 2 [0; 1]N such that v %; w and let � 2 (0; 1) : Let

a; b 2 A and (X;R) 2 P? be such that u(a;X;Ri) = vi and u(b;X;Ri) = wi for all i 2 N:
By de�nition of %;; aR(X;R)b: By Preference for Lotteries, (�a+(1��)b)R(X;R)b: But
for all i 2 N;

u(�a+ (1� �)b;X;Ri) = �u(a;X;Ri) + (1� �)u(b;X;Ri)
= �vi + (1� �)wi
= (�v + (1� �)w)i;

so that by de�nition of %;; (�a+ (1� �)b)R(X;R)b implies �v + (1� �)w %; w:
Finally, let us check that %; is separable. Fix S � N and v; v0; w; w0 2 [0; 1]N and

such that vi = v0i and wi = w
0
i for all i 2 S and vj = wj and v0j = w0j for all j 2 N n S:

Suppose v %; w: Let a; b 2 A and (X;R); (X;R0) 2 P? be such that Ri = R0i for all i 2 S;
u(a;X;Ri) = vi and u(b;X;Ri) = wi for all i 2 S; and u(a;X;Rj) = u(b;X;Rj) = vj
and u(a;X;R0j) = u(b;X;R

0
j) = v

0
j for all j 2 N n S: By de�nition of %;; aR(X;R)b: By

Separability, aR(X;R0)b: By de�nition of %; again, v0 %; w0:�
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