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Résumé 
 
 
Plusieurs insertions/délétions (indels) génétiques ont été identifiées en lien avec des troubles du 

neurodéveloppement, notamment le trouble du spectre de l’autisme (TSA) et la déficience 

intellectuelle (DI). Bien que ce soit le deuxième type de variant le plus courant, la détection et 

l’identification des indels demeure difficile à ce jour, et on y retrouve un grand nombre de faux 

positifs. Ce projet vise à trouver une méthode pour détecter des indels de haute qualité ayant une 

forte probabilité d’être des vrais positifs. 

  

Un « ensemble de vérité » a été construit à partir d’indels provenant de deux cohortes familiales 

basé sur un diagnostic d’autisme. Ces indels ont été filtrés selon un ensemble de paramètres 

prédéterminés et ils ont été appelés par plusieurs outils d’appel de variants. Cet ensemble a été 

utilisé pour entraîner trois modèles d’apprentissage automatique pour identifier des indels de haute 

qualité. Par la suite, nous avons utilisé ces modèles pour prédire des indels de haute qualité dans 

une cohorte de population générale, ayant été appelé par une technologie d’appel de variant.  

  

Les modèles ont pu identifier des indels de meilleure qualité qui ont une association avec le QI, 

malgré que cet effet soit petit. De plus, les indels prédits par les modèles affectent un plus petit 

nombre de gènes par individu que ceux ayant été filtrés par un seuil de rejet fixe. Les modèles ont 

tendance à améliorer la qualité des indels, mais nécessiteront davantage de travail pour déterminer 

si ce serait possible de prédire les indels qui ont un effet non-négligeable sur le QI. 

 
Mots clés : Variants nucléotide simple, indels, QI, apprentissage automatique, scores génétiques, 
analyses statistiques, trouble du spectre de l’autisme. 
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Abstract 
 
 Genetic insertions/deletions (indels) have been linked to many neurodevelopmental 

disorders (NDDs) such as autism spectrum disorder (ASD) and intellectual disability (ID). 

However, although they are the second most common type of genetic variant, they remain to this 

day difficult to identify and verify, presenting a high number of false positives. We sought to find 

a method that would appropriately identify high-quality indels that are likely to be true positives.  

 We built an indel “truth set” using indels from two diagnosis-based family cohorts that 

were filtered according to a set of threshold values and called by several variant calling tools in 

order to train three machine learning models to identify the highest quality indels. The two best 

performing models were then used to identify high quality indels in a general population cohort 

that was called using only one variant calling technology.  

 The machine learning models were able to identify higher quality indels that showed a 

association with IQ, although the effect size was small. The indels predicted by the models also 

affected a much smaller number of genes per individual than those predicted through using 

minimum thresholds alone. The models tend to show an overall improvement in the quality of the 

indels but would require further work to see if it could a noticeable and significant effect on IQ.  

  

Keywords: single-nucleotide variants, indels, IQ, machine learning, genetic scores, statistical 

analysis, ASD.  
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Introduction 
 

 Rare single-nucleotide variants (SNVs) are major contributors to neurodevelopmental 

psychiatric disorders (NPDs), such as autism spectrum disorder (ASD) and intellectual disability 

(ID). However, our understanding of the impact of SNVs on neuropsychiatric phenotypes is 

limited in at least two ways: Firstly, the effects sizes of the vast majority of pathogenic SNVs on 

neuropsychiatric phenotypes remain undocumented, and their scarcity will prevent any individual 

association studies. Most studies have focused on de novo mutations 1,2, yet rare inherited 

mutations remain understudied. Secondly, it is unknown if deleterious SNVs in NPD genes have 

specific effects or if they impact the same neuropsychiatric domains through shared mechanisms. 

Exploring this hypothesis, previous work has shown that genetic scores and functional annotations 

can accurately predict the effect of any rare copy number variants (CNVs) on the intelligence 

quotient (IQ) with 78% accuracy3. These approaches have not yet been extended to SNVs and 

other dimensional neuropsychiatric phenotypes 

 

 This work will focus on indels that represent some of the most difficult variants to identify. 

Indels are genetic insertions or deletions of up to 1000 base pairs (bp). Their functional effects are 

as of yet not fully understood in the general population 4. Indels that are not multiples of three can 

lead to a loss-of-function (LoF) mutation called a frameshift mutation. This type of variant is 

marked by a change in the frame of a codon, which could lead to changes in the mRNA pathway, 

or could create a premature stop 5. These disruptions have been found to be linked to both ID and 

ASD 6,7. However, despite their clinical importance, indels remain to this day difficult to identify 

and present a high number of false positives 4,8,9.  
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DNA Sequencing 

  

 In 1977, Fred Sanger developed a new DNA sequencing method using labelled chain-

terminating inhibitors 10. This method, now commonly known as Sanger sequencing, has since 

become the gold standard method for identifying DNA sequences, particularly for shorter DNA 

fragments 11. Although it presents a per-base accuracy of greater than 99.99% 12, Sanger 

sequencing works by sequencing one DNA fragment at a time 13, making it difficult to apply this 

method on a large quantity of data. Throughout the years, there were attempts to improve this 

method to render it more efficient 14–16, but it wasn't until the advent of Next Generation 

Sequencing (NGS) that DNA sequencing on a larger and faster scale became feasible 17. 

 Developed in the late 1990s, NGS is a series of technologies that have since become the 

modern standard. All NGS technologies are able to sequence small DNA fragments in parallel, 

making them more time effective and allowing for a greater discovery of disease-causing 

mutations as they do not require any prior knowledge of the region under investigation 17. While 

Sanger sequencing remains the ultimate method of validation 11,18, NGS technologies accuracies 

can be as high as 99.9% 19, with an inter-technology concordance of 99.20% 20, making them 

reliable tools for DNA sequencing. Many NGS technologies are currently available, but the most 

popular amongst them is Illumina technology, which sequencing depending on the target and has 

a multitude of sequencing machines that have many levels of throughput 21. 

 After NGS came the next wave in genomics: third generation sequencing (TGS), also 

known as long-read sequencing. TGS has the advantage of having longer reads than NGS, as well 

as providing real-time sequencing 22. The first long-read technology to appear on the market was 

Single Molecule Real Time (SMRT) sequencing released by Pacific Biosciences 23  in 2009, 
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followed by nanopore sequencing, as provided by Oxford Nanopore Technologies 24 in 2014. 

Long-read sequencing is notorious for having a high error-rate as compared to NGS. For example, 

SMRT sequencing has a 12.86% error rate across the entire genome, as opposed to 0.8% in 

Illumina 25.  

 Genome sequencing can be broken down into several groups, the two most pertinent being 

whole-exome sequencing (WES) and whole-genome sequencing (WGS). The core difference 

between the two is that WGS targets the entire genome, both coding and non-coding regions, 

whereas WES only targets exons, of which protein-coding exons cover ~1% of the genome 26. 

WGS is an essential tool in detection of longer variants, as many of them extend into non-coding 

regions that are not accessible by WES. When sequencing for regions that were targeted by WES, 

WGS detected a greater number of SNVs 27,28. Furthermore, WES is known to be biased by the 

GC content, with coverage bias found in regions of high or low GC content29. While WGS is an 

overall more powerful technology, it is also more expensive and many of the non-coding regions 

are difficult to interpret due to lack of information on their roles 28. However, although WES covers 

only a small percentage of the genome as compared to WGS, many monogenic diseases and high-

penetrance protein-altering variants are detected in the coding region, which are known to have 

functional consequences and to potentially be deleterious 30. Furthermore, WES is a more cost-

effective sequencing method as well as being time-effective and provides a higher coverage than 

WGS 31,32.  
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Variant Identification Pipeline  

 

 DNA sequencing is the first step in the process of analysing genomic data. Once the 

genome is sequenced, the next step is the sequence alignment. Alignment is the process of 

comparing DNA sequences against the reference sequence in order to find their similarities and 

differences 33. This comparison allows the detection of variants that may have been inserted, 

deleted or substituted28. Different types of needs require different types of alignment; for example, 

multiple sequence alignment compares three or more sequences of the same length in part to infer 

the evolutionary relationship between them 34. However, when trying to determine where on a 

genome a sequence is located, pairwise alignment is used 34, particularly using tools adapted for 

short-read sequence alignment 35.  Technologies such as Bowtie2, BWA, HISAT2 and many more 

can be used for short-read alignment. Out of the many different software, BWA was found to be 

the best performing technology with a better alignment rate and gene coverage in sequences shorter 

than 500 base pairs (bp) 35,36.  

 After alignment, the final step in variant identification is variant calling. This is the process 

where variants that differ from the reference genome are identified and written into a Variant 

Calling Format (VCF) or Genome Variant Calling Format (gVCF) file 37. Variant calling can be 

computed by several different algorithms, such as the Genome Analysis Tool Kit (GATK) 

HaplotypeCaller 38, Freebayes 39, DeepVariant and WeCall40. GATK HaplotypeCaller uses de 

novo assembly within the region, therefore, when it encounters an area with a potential variant, it 

discards the existing mapping region and re-writes with the variants. It determines the likelihood 

of given haplotypes being present according to the read data. This makes the variant calling much 

more sensitive, which means that more variants are read. However, the downside of the increased 
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sensitivity is that there are a lot more false positives which then need to be filtered out. The filtering 

is carried out by the Variant Quality Score Recalibration (VQSR). VQSR determines which 

variants are of higher quality and discards those that do not pass the filtering process. The filtering 

is done in two steps: the first step involves building a model using a high-quality variant sample 

set and the second step is to use a random forest model to calculate a score for each variant. It is 

important to note that not all datasets have a high-quality sample set, which means that it is not 

possible to apply VQSR filtering to every dataset. Furthermore, this type of modelling requires a 

large amount of data to be effective. So, while this score is more reliable than the standard QUAL 

score generally computed by variant calling algorithms, it is only available for a few datasets 38.    

 Freebayes is a bayesian model variant caller, based on the literal sequence of reads within 

a target and uses bayesian modeling to determine the most-likely combination of genotypes based 

on the reference genome. This allows for a smaller error rate, requires less computation power and 

allows us to read different sequences on the same position 39. WeCall is used to call variants in 

NGS data. It infers the presence of variants using genomic sites where variants exist and compares 

these sites to the reference genome36. Lastly, DeepVariant is a variant caller that works using the 

deep learning method and is used for high throughput sequencing data. It constructs images 

containing multiple channels, which are the different colours of the image. Each channel represents 

a certain characteristic of the sample, such as read depth or mapping quality. DeepVariant analyzes 

these images and determines the likelihood of it being true 41. Using Genome in a Bottle (GIAB) 

42 datasets for validation and benchmarking, it aligns to the reference genome and then infers the 

true sequences based on that. The raw data, consisting of multiple reads of overlapping fragments, 

are mapped to the reference genome. The model is trained to read and identify these locations and 

separate them from sequencing errors  43. 
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 After variant calling, the final step in the data analysis pipeline is the annotation of the 

variants. Annotation is the step that assigns functional information to the variants 43 and allows us 

to see whether the variant is present on a protein-coding gene and if it has any effect on that gene 

44. Annotation can be broken down into three steps: identification of coding regions, prediction of 

genes affected and identification of the processes and pathways affected 45. Annotation can be 

done manually or through the use of different algorithms such as the NCBI Eukaryotic Genome 

Annotation Pipeline41 or the Ensembl Variant Effect Predictor (VEP)42.  

 

Data Formats 

 

  Throughout the DNA analysis process, the data is stored in several types of files, one of 

the first being the FASTA file. A FASTA file is a text file that stores nucleotide sequences read 

and is represented by the sequence of bases 27. The first line begins with a greater-than symbol “>” 

and is followed by the description of the sequence. The next line is the sequence itself22. A FASTQ 

file is an extension of the FASTA format, however, a FASTQ file has a score associated with each 

nucleotide, called a Phred score, which is determined by the sequencing accuracy. The Phred score 

considers the probability that a sequencer called a given base incorrectly. The equation is the 

following: Q=-10 log10 P where Q is the Phred score and P is the base-error probability. It has now 

become the standard for quality scoring 46, thus making the FASTQ format a superior tool to the 

FASTA format. However, it is important to note that the Phred score does not encompass every 

aspect of a nucleotide, and further algorithms are required to determine accuracy in later steps 47.    

 After the sequences are aligned, a Sequence Alignment Map (SAM) file is generated. A 

SAM file is a tab-delimited text file with the sequences aligned according to the reference genome. 
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It can consist of one header line beginning with ‘@’ followed by the aligned sequence. The binary 

equivalent of a SAM file is a Binary Alignment Map (BAM) file, which is generated in order to 

improve performance. BAM files are compressed in BGZF format which makes them more 

compact and allows for faster retrieval of information 48.   

 After variant calling, the variants are stored in files containing formatted genotyping 

information, such as a VCF or gVCF file. A VCF is a text-based file that stores information on 

sequence variations in the genome, such as single nucleotide polymorphisms (SNP), structural 

variants (SV) and copy number variants (CNV). This file is a standardised output of all variant 

calling technologies and is separated by columns that include the basic information of each variant 

such as chromosome, position, reference allele, alternate allele, VQSR filter as well as any 

additional information such as genotype, read depth of the alternate allele and the total read depth, 

mapping quality, genome quality and any other relevant information 37. A gVCF file is a VCF on 

which the 1000 Genome Project conventions for the representation of a genotype have been 

applied and which is compressed by gzip 49. VCF and gVCF files can be manipulated using a 

number of tools, the most common of which are VCFtools37 and BCFtools50, which are software 

that work especially with VCF and gVCF files for any necessary manipulations such as merging 

files or comparing them 37.       

 

Sequencing Errors 

 
 
 While sequencing methods have improved significantly over the years, errors can still 

occur. Errors are possible along every step of the pipeline, from sequencing to annotation.  Some 

errors can occur due to the nature of the sequences, which make it harder for sequencing 
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technologies to accurately detect bases. For example, homopolymers of seven bases or longer and 

repeated sequences within the DNA tend to have higher base call errors; one example of such is 

that after sequencing a homopolymer, the first base after the homopolymer will have a substitution 

error, and it will be substituted to the same base as the homopolymer 51. Furthermore, segmental 

duplications, which are DNA sequences that are mostly repeated, can produce more errors during 

sequencing because of an increased chance of mis-assembly52,53,54. Other errors can be attributed 

to the region in which the sequence is found. Certain regions of the genome with a high number 

of repetitive regions or repeated nucleotides can have a high signal yet yield inaccurate results due 

to an amplification of noise47,48. Thus, while sequencing has improved drastically and continues to 

improve, there continue to be errors that can potentially bias research, particularly when 

sequencing for difficult to read regions and sequences.  

 

Genetic Variants 

 
 The variant calling and identification process can help us identify all types of genetic  

variants. These variants can be split into three categories: SVs, single nucleotide variants (SNVs)  

and insertions-deletions (indels) 55. SVs can be either inversions of the genome, translocations,  

insertions or deletions. If they cover 1kb or more, they are referred to as CNVs 56. They can be  

benign 56 or they can be associated with several types of diseases and neurodevelopmental  

disorders, such as many types of cancers and autism 3,57.These variants can be inherited from  

the parents or can emerge as a novel mutation found in an individual, called de novo, caused by  

mutagenesis in parental gametes58. While both types of inheritance can be potentially deleterious,  

de novo variants are a more rare form of mutation and can be far more deleterious than  

inherited variants59. De novo mutations have a very low incidence in the human genome, likely  
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due to their deleteriousness and their detection shows a high number of false positives60.  

 SNVs are changes in the genome that affect one nucleotide, notably a substitution of a 

given base from one nucleotide to another 55. While they are the most common type of genetic 

variation, the average person carries many SNVs that show no risk to their health 61. Such types of 

SNVs are commonly called synonymous mutations and they are considered to be functionally 

silent 62. However, the SNVs that are found in coding regions have been found to have an effect 

on protein-coding genes, and have been linked to several diseases 63. In the case of SNVs, there 

are two types of these loss-of-function (LoF) variants that can occur: nonsense mutations and 

splice-site mutations. Nonsense mutations are variants that introduce a premature stop codon that 

can disrupt protein functioning; splice-site mutations are variants that can disrupt a splice-site, 

which is on the boundary between an intron and an exon 9. 

  The third type of variants, indels, are small insertions and deletions of bases in the genome, 

as suggested by their name. They are the second most common type of variant, after SNVs, but 

they have proven to be difficult to detect and validate due to their size 64. While they can be benign, 

they can also lead to the final type of LoF called a frameshift mutation. These mutations occur 

when an indel is not a multiple of three and creates a disruption in a codon’s reading frame 9,65. 

This shift can lead to the coding of an entirely different amino acid or could result in a premature 

stop codon 65.  

 Changes in protein-coding genes have been linked to a wide range of neurodevelopmental 

disorders (NDDs) and SNVs have been found to play a major role in genes linked with ASD. 

Despite the heterogeneity of the disorder, LoF mutations are enriched in individuals with ASD as 

opposed to those without 66. Frameshift mutations in particular have been found to be linked to 

both intellectual disability and ASD6,7. For example, disruptions due to frameshift variants on the 
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BCL11A and SCN2A genes have been linked to Intellectual Disabilities (ID) 6,67. Furthermore, 

frameshift disruptions found on the SHANK3 gene has been found in 18 individuals with ASD 68, 

while a frameshift mutation found on the TCF20 gene has been found in a woman with both ASD 

and an ID 69. 

Difficulties in Identifying Indels 

 

Despite their important role in gene function, indels are notoriously hard to detect. The first 

challenge in detecting indels is their very small size, often as small as a single base pair, therefore 

making them particularly difficult to map according to the reference genome because several 

candidate sequences exist for the same site8. Furthermore, the presence of repeated bases can also 

be an obstacle in indel detection, particularly in areas with homopolymers, which potentially leads 

to incorrect nucleotide alignment 5.  Indels that are detected show low concordance between 

different variant callers, with only 26.8% concordance rate70. While all indels are difficult to detect 

due to their nature, indels with low read rates lead to more call-rate errors71 and indels with low 

mapping quality are filtered out to improve calling rate 72. However, despite these filters and 

improvements in technology the problem remains that current tools have trouble accurately 

detecting indels 5.  It is therefore important to develop a protocol that will not only filter out any 

low-quality data, but also confidently assess the likelihood that a given indel is a true positive.  
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Hypothesis 

Using a dataset with multiple variant-calling technologies can help delineate features that identify 

high quality indels. 

Aims 

Overarching aim: To identify high quality indels regardless of the number and type of variant 

calling algorithms.  

 

Specific aims: 

1) Establish a set of “high quality indels” by using the initial filtering method, intersecting 

multiple calls and using parental information.  

2) Train a logistic regression model and a random forest model to identify features that best 

predict high quality indels. 

3) Validate and test performance of the model. 

4) Apply to a general population cohort and test effects of indels on cognitive ability. 
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Methodology 

Cohorts 

 Two diagnosis-based autism family cohorts were used, in addition to one general 

population cohort. The two autism family cohorts are Simons Foundation Power Autism 

(SPARK)73 and Simons Simplex Collection (SSC)74 whereas the general population cohort is the 

UK Biobank (UKBB)75. We were provided with SNV calling data from different genetic data 

repositories such as Autism Speaks and Simons Foundation.  

 

Table I: Distribution of individuals in each cohort 

 

Cohorts 

 

Pedigree 

 

N 

(Total= 236,572) 

 

N with ASD 

(Total=12,144) 

 

N males (%) 

 

N with Intelligence 

measures (%) 

(Total = 161,917) 

 

 

 

 

Autism 

family 

 

SPARK 

Parents 14,522 161 6,122 (42.16) 841 (5.79) 

Probands 9,607 9,607 7,615 (79.27) 1,394 (14.51) 

Siblings 3,134 0 1,599 (51.02) 325 (10.36) 

 

SSC 

Parents 4,511 0 2,136 (46.35) 4 (0.09) 

Probands 2,376 2,376 2,072 (87.20) 2,376 (100) 

Siblings 1,791 0 908 (50.70) 0 (0) 

General 
Population 

UKBB NA 200,631 NA 90,020 
(44.87) 

156,784 (78.14) 
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Table II: Data collection information 

Cohort Sample 
size 

Sequencing 
Type 

Sequencing 
Technology 

SNV 
mapping 
genome  

Alignment 
Technology 

Variant Calling 
Technology 

     SSC 8,678 Exome 
Illumina HiSeq 

2000 76 
Hg38  BWA36 

GATK 

HaplotypeCaller/ 

Freebayes 

     
SPARK 27,263 Exome 

Illumina 

NovaSeq 

600077 

Hg38  BWA 

GATK 

HaplotypeCaller/ 

DeepVariant / 

WeCall 

UKBB 200,631 Exome 
Illumina 

NovaSeq 6000 

Hg38 

 
BWA DeepVariant 

 

 

SPARK was sequenced using Illumina NovaSeq6000 and aligned with BWA version 

0.6.2-r126. Variant calling was performed using three algorithms: GATK Haploytypecaller, 

DeepVariant and WeCall. All variants were written into gVCF files. These gVCF files were used 

to convert the variants from the GRCh38 genome to the GRCh37 genome by a process called 

“lifting over” using CrossMap version 0.4.278.   

SSC was sequenced using Illumina HiSeq 2000 and aligned with BWA. Variant calling 

was done by two algorithms: GATK HaplotypeCaller and Freebayes. All variants were written 

into gVCF files. These gVCF files were used to lift over the variants from the GRCh38 genome to 

the GRCh37 genome.  
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UKBB was sequenced using Illumina NovaSeq 6000 and aligned using BWA mem version 

0.7.15. After alignment, the variants were called using DeepVariant version 0.8.0 using the 

GRCh38 genome as the reference and output into gVCF files. Finally, the gVCF files were used 

to lift over the variants from the GRCh38 to the GRCh37 genome, as it is the standard used in our 

lab.  

 

Establishing a truth set  

 

 Before beginning any manipulations, it was important to create a set of criteria to apply to 

the indels in order to create a “truth set” on which to train our machine learning models. We set 

the following criteria: high quality indels are called by a maximum number of variant calling 

technologies, they have passed the quality thresholds we have set, and they are not de novo. The 

first criterion is crucial in establishing our set because of the high number of false positives found 

in indels; we therefore go by the assumption that an indel that is called by multiple variant calling 

technologies has a higher likelihood of being true, as established by many previous works2,42. 

Establishing a truth set requires the highest quality indels, therefore we are being stringent and 

selecting indels that have been called by all variant calling technologies available for a given cohort 

(3 for SPARK and 2 for SSC). The second criterion allows us to filter out any low quality indels 

with a small number of reads as we consider them less likely to be true. Finally, the reason for the 

exclusion of de novo variants is two-fold: we believe if a variant is seen more than once in a cohort, 

it has a higher likelihood to be true; furthermore, de novo variants are extremely rare and would 

therefore present a high number of false positives60.  Because we are excluding de novo variants, it 

is important to relabel the transmission of all the probands and siblings. The reason for this is that, 
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through filtering, a parent is excluded because they do not meet the threshold, the child must be 

relabelled as de novo because we consider the indel carried by the parent as a false positive. While 

this level of stringency may cause us to eliminate many potentially true indels, this is a loss we are 

willing to accommodate because our final set will have the highest likelihood of being true.  

 

Normalisation 

 

 The first step before beginning any filtering is the normalisation of the variants we are 

using. Indels are normalised when they are both parsimonious and left-aligned. Parsimony, in this 

case, is the shortest possible representation of the variant that is not an allele of size zero, and left 

alignment is the process in which the start of the variant is at its leftmost position. These two 

methods allow a given variant to begin at the same position and to be identified using the same 

criteria within all sets79. 

 Because the indels in each cohort were called using many different technologies, it is 

important to normalise them to create uniformity as there is no set standard for variant calling70. 

SPARK and SSC indels were extracted from the VCF files using VCFtools (version 0.1.16) and 

were then normalised according to the Hg19 reference genome using BCFtools norm (version 

1.13). After normalisation, certain variants that were considered indels were revealed to be point 

mutations. The indels were therefore re-extracted from the dataset and the SNVs were discarded.   
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Genotype Information Storage 

 

 Once the indels are normalised and re-extracted, they are written into a genotype feature 

file where each line represents a given indel per individual. This file includes important 

information on the individual, the genotype and the family. Each line contains the following: the 

individual ID, the variant they carry, the alternate allele depth, the total read depth, the ratio of the 

alternate allele depth over the total read depth (mutant read ratio or MRR), the genotype, the 

transmission (inherited from the mother, father or de novo), the parental genotype and variant 

calling information. The genotype thus contains all the information necessary for filtering and 

annotating variants, which is the following step.  

 

Filtering, retagging and annotation 

 

According to the criteria set by our truth set, the normalised indels were filtered, retagged 

and annotated in order to keep the highest quality indels. The filtering is done in three parts: the 

exclusion of variants not called by all calling technologies available, the implementation of a 

genotype exclusion filter and the filtering through annotation. We began by removing all indels 

that were not called by all the variant callers. Therefore, the only remaining indels in SPARK were 

called by GATK, WeCall and DeepVariant and the remaining indels in SSC were called by both 

GATK and Freebayes. This method ensures that the SNVs have a much higher likelihood of being 

true indels because they were detected by multiple technologies (link GIAB and Krumm).  

 We followed this with genotype filtering, which is the process of filtering the indels 

according to genotype criteria such as total read depth, alternate allele depth, MRR, VQSR quality 
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and the genome Aggregation Database (gnomAD) 80 allele frequency. While all the probands and 

siblings were filtered according to the same criteria, the parents were split into two filtering groups: 

Those carrying an indel that they transmit to their offspring and those that do not. In the case of 

parents who do not transmit a given indel, these criteria filter out any potentially low-quality 

variants, which have a higher risk of being false positives. However, this level of stringency can 

potentially create bias in terms of the transmission of a given indel in a child. For example, 

probands carrying an indel inherited from the parent would be re-labelled as carrying a de novo 

variant if the parents have been filtered out because they do not pass the cut-off points. If the level 

of stringency amongst parents with transmitted variants is too high, this can artificially inflate the 

number of de novo variants and create a bias. This is important because de novo variants are then 

filtered out of the dataset, as we do not consider them in our analysis.  

 The filtering criteria is as follows: for parents who carry a variant that is not transmitted, 

probands and siblings, we set a minimum threshold of 20 for the total read depth and 5 for the 

alternate read depth. For the parents that carry a variant that they transmit to a proband or sibling, 

the total read depth threshold is set at 10 reads and the alternate read depth is of 1 read. The 

following cut-offs apply to all individuals: a minimum of 0.05 for the MRR, a “PASS” for the 

VQSR quality and an allele frequency <=0.001 for both the parental minor allele frequency and 

the gnomAD minor allele frequency, which is the frequency of the variant found in the general 

population81.  These initial filters are what we refer to as our “cold cut-off” method, which selects 

variants according to whether or not they meet the above threshold.  
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Figure 1: Inheritance retagging process. The initial inheritance tag of the individual (inherited from 
the father, mother, both or de novo) is on the left and the consequence of the filtering is on the right. The 
arrows in the middle represent the action taken during filtering.   

 

 After filtering the SNVs by their genotype features, the next step is to annotate the variants 

in order to evaluate the consequences of the indels; to see whether there is any potential 

haploinsufficiency in the genes or whether the indel is an LoF variant. We used Ensembl’s VEP 

annotator (release 99) with the following plugins: GeneSplicer for splicing loss of function 

predictions, dbNSFP (version 4) for pathogenicity predictions, and LOFTEE to estimate the 

confidence of LoF indels (see figure 2). We excluded any indels that were not tagged as frameshift 

variants, all “Low Confidence” LOFTEE calls and any GeneSplicer calls that were not “High”. 

Although applying quality and annotation filters allows us to discard the majority of lower 

quality indels, there will still be some regions where variant calling is unreliable due to the nature 
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of the region or the variants. Therefore, we excluded all the following: regions found in the 

ENCODE blacklist82, regions found in the NCBI “Sanger dead zones” 83,  segmental 

duplications84, repeats85, centromeres86 and pseudogenes87 (see figure 2).  

 

 
Following these filters, our “truth set” was established and we were able to use these 

variants to train our machine learning models. 

The same filters were applied to the UKBB dataset with a few changes made. Considering 

the UKBB cohort was called using one variant calling technology, the maximum number of variant 

Figure 2: Filtering and annotation pipeline. All filters and tags applied to the indels 
during the filtering and annotation process. This pipeline was used for SPARK, SSC and 
UKBB. Adapted from Jean-Louis, M., 2021, unpublished. 
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calling technologies was 1. Furthermore, as it is a general population cohort and not a family-based 

one, we did not split the genotype filters into two categories; the minimum cut-off value for the 

alternate allele depth was 5 and the minimum cut-off value for the total read depth was 20. The 

cohort was also not retagged for inheritance.  

 

Table III: Number of indels after each filter 

          Cohort 

Filter 

SPARK SSC UKBB 

N N per 
individual N N per 

individual N N per 
individual 

No filter 101,869,571 3,736.55 16,420,192 1,892.16 3,103,405,081 15,468.22 

Genotype 
filter 50,290,355 1,844.64 10,012,750 1,153.80 1,577,352,801 7,861.96 

Frequency 
filter 511,484 18.75 75,986 8.75 549,592,333 2739.32 

Annotated 84,857 3.11 18,901 2.18 13,456,233 60.87 

 

Machine Learning Models 

 

 We used two machine learning models in order to predict which indels have the highest 

likelihood of being true: a logistic regression model, and a random forest model. We also took the 

result of the intersection of the prediction of the two models. 

 A logistic regression model is a supervised learning classifier that makes a binary 

prediction, where 1 is a success and 0 is a failure88. It is a simple model that can be used for many 

classification purposes. In our case, a 1 represents a true positive indel and a 0 is a true negative 

indel.  



 

 22 

 A random forest model is an ensemble supervised learning classifier that uses multiple 

decision trees in order to make a prediction. Each decision tree makes a prediction of its own and 

the model chooses the best prediction by means of a vote. One of the strengths of the random forest 

model is that it is able to correct for overfitting by the use of the multiple decision trees. Unlike 

the logistic regression model, it is capable of making multiple predictions, not just binary ones89. 

However, the predictions will be made in the same way as that of the logistic regression model (1 

for true positives, 0 for true negatives).  

 The intersection of the two methods is manual set of predictions we are making based on 

the results of the logistic regression model and the random forest model. If both models predict a 

true positive, then the intersection will predict a true positive as well. Otherwise, the prediction is 

set as a true negative.  

 The set of features used to make the predictions follow two rules: they must be numerical 

in value and they must not be correlated. Numerical features are important because machine 

learning models cannot perform arithmetical operations on string data. Therefore, all non-

numerical features have been transformed into numerical values. Moreover, the values must not 

correlate, as correlation can hinder the capacity of a model to make an accurate prediction, due to 

a tendency to overtrain90.  

 

Training 

 

     Having established our truth set through filtering, annotated relabeling, we were left 

with a set of 103,760 indels. These indels have all been called by the maximum number of variant 

calling algorithms for their cohort, they passed all the quality thresholds, they were tagged as 
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frameshift variants (see figure 2) and none are de novo indels. This set was then used to train a 

logistic regression model that would be used to predict the likelihood of an indel being a true 

positive. 50% of the training dataset is SPARK and SSC variants that had passed all the filters, 

whereas the other 50% was a random selection of normalised SPARK and SSC variants that did 

not pass the filtering process (n=103,760). The filtered indels were tagged as positives (labelled as 

“1”) whereas the variants that had been filtered out were tagged as negatives (labelled as “0”). The 

features used to train the model are the following: alternate allele depth (AC), MRR, the count of 

each nucleotide in a given INDEL, the GC% and the length of the variant. Using the scikit-learn 

package (version 0.20.4) of python (version 2.7), the dataset was split 80%-20% into a training set 

and a test set, respectively. We chose this split because of the relatively small dataset at hand; with 

an 80/20 split, we had enough of data points to train on, without compromising the quantity of data 

on which to apply our prediction, as in the case of a 90/10 split. A k-fold cross validation was done 

in order to ensure that we selected the appropriate number of groups the data was split into. Before 

commencing training, a correlation analysis was done on the features to determine whether there 

was any intra-feature correlation using the .corr() command of scikit-learn.  

 Once it was established that there was no strong correlation between the features, we 

trained the logistic regression model on the 80% train set. Once trained, we evaluated the model 

by making predictions on the test set, all through scikit-learn. The parameters for evaluation were 

the feature importance, a confusion matrix and by the area under the curve (AUC) of the receiver 

operating characteristic (ROC) curve. The feature importance of each variable, which is the 

evaluation method, is the coefficient value, which indicates the relationship between the predictor 

and the prediction. A negative value implies that the feature is more important in the prediction of 

a failure (“0” label) whereas a positive value implies that the feature is more important in the 
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prediction of a success (“1” label). The second method, the confusion matrix, is a heat map of the 

predicted labels vs the true labels we’ve assigned them. Similar numbers will have similar colours. 

Finally, the ROC is a probability curve that models the relationship between the true positive rate 

(TPR) otherwise known as the sensitivity (y-axis) and the false positive rate (FPR) otherwise 

known as the specificity (x-axis).  The AUC is a measure of how well the model is able to 

distinguish the two classes. The higher the AUC, the better it is at determining which of the two 

classes a particular variable belongs to.   

      After training and testing the logistic regression model, we trained a random forest 

model using the same train dataset. This model was evaluated in the same way as the logistic 

regression; by evaluating the feature importance, creating a confusion matrix and a ROC curve. 

After training this model, we created a new prediction by looking at the overlapping prediction 

between the two models. If both models had labelled an indel as a true indel (label “1”), then the 

prediction was that it was a true indel. Otherwise, it was predicted to be a false indel (label “0”). 

We were thus left with 3 possible predictions for each variant. A confusion matrix was created for 

each method of prediction, as well as a calculation of their accuracy. 
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Table IV: Number of indels predicted by each model 

Model                            Cohort                  

SPARK + SSC (20%) UKBB 

N N per 
individual N N per individual 

Logistic Regression 22,871 1.61 12,803,219 57.43 

Random Forest 21,455 1.44 2,593,701 10.88 

Intersection 17,030 1.57 2,497,290 10.41 

 

 

Table V: Distribution of feature values in SPARK and SSC cohorts 

        Features
              

Model 
Random Forest Logistic 

Regression 
Intersection Cold cut-off 

Min Max Mean Min Max Mean Min Max Mean Min Max Mean 
Length -83 17 -1.31 -122 24 -1.52 -32 16 -1.65 -122 144 -0.69 
AC 2 295 28.23 1 447 29.2 1 295 31.29 1 447 21.82 
MRR 0.07 1.00 0.46 0.05 1 0.42 0.05 0.79 0.46 0.05 1.00 0.52 
A 0 7 0.36 0 8 0.32 0 6 0.30 0 34 0.51 
C 0 8 0.47 0 18 0.45 0 8 0.43 0 44 0.58 
G 0 9 0.39 0 21 0.35 0 9 0.33 0 67 0.51 
T 0 11 0.37 0 4 0.31 0 4 0.29 0 28 0.53 
GC% 0 1 0.54 0 1 0.55 0 1 0.56 0 1 0.51 

 

 
  

AC=alternate allele depth, MRR=mutant read ratio, A=number of A nucleotides, C=number of C nucleotides, 
G=number of G nucleotides, T=number of T nucleotides, GC%=ratio of G and C nucleotides over total number of 
nucleotides 
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Table VI: Distribution of feature values in UKBB cohort 

        Features
              

Model 
Random Forest Logistic 

Regression 
Intersection Cold cut-off 

Min Max Mean Min Max Mean Min Max Mean Min Max Mean 
Length -541 20 -2.388 -154 47 -1.62 -121 20 -1.72 -556 59 -6.63 
AC 5 260 19.02 5 317 10.15 5 260 19.12 5 317 10.26 
MRR 0.06 1.00 0.22 0.06 1 0.12 0.06 1.00 0.21 0.06 1.00 0.13 
A 0 11 0.27 0 8 0.25 0 8 0.26 0 20 0.25 
C 0 13 0.47 0 27 0.33 0 13 0.45 0 27 0.34 
G 0 11 0.58 0 19 0.38 0 11 0.58 0 30 0.39 
T 0 11 0.175 0 6 0.32 0 6 0.15 0 18 0.33 
GC% 0 1 0.69 0 1 0.53 0 1 0.70 0 1 0.53 

 

 
 
Genetic Scores 
 

 We used three genetic scores in order to determine the indel effects on cognition: a 

modified version of the "loss-of-function observed/expected upper bound fraction" (LOEUF) 

score (1/LOEUF), the cortical differential stability score (DS_C) and the average number of genes 

affected per individual. Furthermore, we evaluated the effect on the IQ of each gene according to 

their tolerance, based on the LOEUF score. The scores were compiled by calculating the sum of 

each score for the affected genes in each individual. 

 The LOEUF score is the estimate of the number of observed LoF variants over the number 

of expected LoF variants, based on the upper-bound of a Poisson-derived confidence interval. The 

smaller the LOEUF score, the more deleterious the effect. The LOEUF score can be anywhere 

between 0.03 to 2 and is deleterious from 0.03 to 0.03591. We therefore use a modified version of 

the score in order to simplify our understanding of it; seeing as we use the sum of scores for each 

gene, by inversing the score (1/LOEUF), we have a more deleterious effect the higher the LOEUF 

score is. Therefore, it is better adapted to our usage.  

AC=alternate allele depth, MRR=mutant read ratio, A=number of A nucleotides, C=number of C nucleotides, 
G=number of G nucleotides, T=number of T nucleotides, GC%=ratio of G and C nucleotides over total number of 
nucleotides 
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 The DS_C score is a correlation-based metric which assesses reproducibility of regional 

patterns of gene expression in the cortical brain structures92. This score was computed as the mean 

pairwise correlation between gene expression patterns of six adult human brains from the Allen 

human brain atlas project93. The highest scores represent the genes with a stable regional 

expression in the 6 adult brains, and the lowest scores represent the genes with a non-specific 

regional expression across the human cortex.  

 In order to evaluate the IQ according to gene tolerance, we first divided all genes into 4 

categories: highly intolerant genes (LOEUF<0.2; n=1,088), moderately intolerant genes 

(0.2£LOEUF<0.35; n=1,898), tolerant genes (0.35£LOEUF<1; n=7,710) and highly tolerant 

genes (LOEUF³1; n=8,501).  

 

Statistical Analysis 

 

 We began by evaluating the effect of the SPARK and SSC indels on IQ based on the 

predictions made by each model. We created three different sets of the test SPARK and SSC indels: 

One of all the indels that were predicted as true positives using the logistic regression model, one 

of all the indels predicted as true positives by the random forest model, and one of the intersection 

of the true positive predictions of the logistic regression and random forest models.  

 We then applied a linear regression model to determine whether the predicted indels show 

any effect on IQ, based on the LOEUF and DS_C score and on the number of genes affected. This 

was computed using the lm() function of R (version 3.6.1). The model could be written as follows: 

𝐼𝑄		~	𝛼𝑋 + 	𝛽𝑆𝑐𝑜𝑟𝑒 
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where IQ is the z-score of a standardised measure of intelligence, X represents any covariates in 

the model (sex and ancestry) and the 𝛽score is any of the three scores. Individuals who did not 

have an IQ value were eliminated from the analysis (see table I).  

 Afterwards, using a linear regression, we evaluated the effect of all the indels in the UKBB 

cohort before any predictions were made, in order to compare these results with the effect on IQ 

of the predicted indels. This cohort was filtered and annotated in the same method as SPARK and 

SSC. After this initial evaluation, we created three different datasets of the UKBB cohort, as with 

the SPARK and SSC set, in order to evaluate the strength of the models. Any individual in the 

cohort for which we did not have an IQ value was eliminated from our analysis (see table I). Our 

analyses correct for both sex and ancestry for all individuals in all cohorts.   

 The result of the linear model shows an estimate of the effect on IQ. The higher the absolute 

value of the estimate, the stronger the impact on cognition. In terms of IQ, a high estimate means 

a bigger loss of IQ. Therefore, when mentioning the effect on IQ, we are referring the amount of 

loss of IQ in an individual.  
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Results 
 

Model Features 

 The correlation matrix (figure 3) shows that there is no strong correlation (> 0.7) between 

each feature of the model, with the exception of some correlation between the number of A 

nucleotides and GC% as well as the number of T nucleotides and GC%. The most important feature 

in the logistic regression model is the MRR, followed by the number of T nucleotides. Both of 

these features tend to be important in the prediction of a true negative (label “0”). The most 

important feature in the random forest model is the MRR, but it is closely followed by the AC, and 

then the length.  All the features are important in the prediction of a true positive model (label “1”).  

 

 

Figure 3: Correlation matrix of features. Yellow represents a positive correlation and purple is a 
negative correlation. The closer a value is to 1 or -1, the stronger the correlation.  
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Model Accuracy 

 

The confusion matrix of the logistic regression model (figure 5.a) shows that of the total 

22,875 true positive predictions, 16,193 of them were concordant with those we labelled as true 

positives. Out of the total 41,504 predictions, 30,340 of them were concordant with the label we 

gave them. This gives us an accuracy of 73.10%. The confusion matrix generated by the random 

forest model (figure 5.b) shows us that the model made a total of 21,416 true positive predictions, 

of which 17,822 are actual positives. Out of the total 41,504 predictions made, 35,177 were correct, 

which gives us an accuracy of 84.76%. The confusion matrix generated by the intersection model 

(figure 5.b) shows that the model made a total of 17,030 true positive predictions, of which 14,845 

were correct. Out of the total 41,504 predictions made, 33,489 of them were correct, which 

indicates an accuracy of 80.69%.  

Figure 4: The importance of each feature in a machine learning model. (A) The feature 
importance for the logistic regression model. A negative importance coefficient means the feature is 
important in the prediction of a true negative (B) The feature importance for the random forest model. A 
positive value means the feature is important in the prediction of a true positive. AC represents the 
alternate allele depth; MRR is the mutant read ratio (alternate depth/total depth); A, C, G, T are the 
numbers of each nucleotide in an indel, respectively; GC% is the ratio of the number of G and C 
nucleotides over the total length of the nucleotide 

A. Logistic Regression Feature Importance B. Random Forest Confusion Matrix 
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 The ROC curve of the logistic regression model shows an AUC of 0.80, the ROC curve 

of the random forest model has an AUC of 0.91 and the ROC curve of the intersection of the two 

has an AUC of 0.81.  

 

 

Figure 5: The number of predictions for each model. (A) Logistic regression predictions vs actual 
values. (B) Random forest predictions vs actual values. (C) The intersection of random forest and logistic 
regression predictions vs actual values. 1 represents a true positive indel, 0 represent a false negative. Similar 
colours represent similar values  

A. Logistic Regression Confusion Matrix B. Random Forest Confusion Matrix C. Intersection Confusion Matrix 
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 The average number of genes per individual in the SPARK and SSC dataset that have 

been filtered by cold cut off (see figure 2) shows an average of 2.19 genes per individual. In the 

case of UKBB, the average is 60.87 genes per individual. The SPARK and SSC predictions 

made by the logistic regression model show an average of 1.61 whereas the UKBB logistic 

regression predictions show 57.43.  

Specificity 

Figure 6: ROC curves of different models. (A) The ROC curve of the logistic regression model (B) the 
random forest model (C) the intersection of the two models. The specificity represents the true positive rate 
(TPR) of the model, and the sensitive is the false positive rate (FPR) for all three plots.  

A. ROC curve of the logistic regression model  B. ROC curve of the random forest model  

C. ROC curve of the intersection model  

Specificity 
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 The SPARK and SSC dataset as predicted by the intersection model shows an average of 

1.44 genes per individual while dataset predicted by the random forest model shows an average 

of 1.57. The UKBB dataset as predicted by the intersection model shows an average of 10.41 

genes per individual, whereas the dataset predicted by the random forest model has an average of 

10.88 

 

 

Figure 7: Average number of genes per cohort. The average number of genes per cohort as 
predicted by each model, according to the model used to predict indels. SPARK and SSC are in 
pink, and UKBB is in blue.  
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Effect on IQ 

 We evaluated the effect of the indels predicted by the random forest model and intersection 

of the two models on IQ using a linear regression. The indels predicted using the random forest 

model had a significant impact on IQ when evaluated based on the DS_C score and the LOEUF 

score (DS_C: est.=-0.34, 95% CI=[-0.63, -0.05], p=0.02; LOEUF: est.=-0.09, 95% CI=[-0.17,-

0.007], p-value=0.03). Furthermore, the number of genes affected by the indels shows a significant 

effect on IQ (est.=-0.2, 95% CI=[-0.35,-0.04], p-value=0.014) for the random forest predictions as 

well. However, when considering the intersection of the random forest and linear regression, we 

see no impact when evaluating the two scores (DS_C: est.=-0.36, 95% CI=[-0.48,-0.23], p-
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Figure 8: Effect of indels on IQ in SPARK and SSC cohorts. The estimate is calculated based 
on each score. The random forest model is in red and the intersection model is in blue. P-values 
range according to the size of each point; the bigger the point, the smaller the p-value. 
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value=0.2; LOEUF: est.=-0.06, 95% CI=[-0.09,-0.03], p-value=0.38) and when evaluating the 

number of genes affected (est.=-0.13, 95% CI=[-0.33,0.06], p-value=0.2). 

 

 
 We evaluated the predictions of the intersection and random forest model by evaluating the 

impact of IQ according to the tolerance of each gene. The indels predicted by the intersection 

model have no significant effect on IQ regardless of gene tolerance (HI: est.=0.018, 95% CI=[-

0.91;0.95], p=0.97; I: est.=-0.35, 95% CI=[-0.95;0.24], p=0.24; T: est.=-0.07, 95% CI=[-

0.31;0.16], p=0.55; HT: est.=-0.16, 95% CI=[-0.39;0.06]). The indels predicted by the random 

forest show no significant effect on the IQ for the highly intolerant, intolerant and highly tolerant 
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Figure 9: Effect on IQ According to Gene Tolerance in SPARK and SSC. The estimate is 
calculated based on gene tolerance. Indels predicted by the intersection model are in blue and indels 
predicted by the random forest model are in pink. P-values range according to the size of each point; 
the bigger the point, the smaller the p-value.  
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genes (HI: est.=-0.17, 95% CI=[-1.06;0.72], p=0.71; I: est.=-0.37, 95% CI=[-0.89;0.14], p=0.16; 

HT: est.=-0.18, 95% CI= [-0.36;], p=6e-02) and only slightly significant for the tolerant genes 

(est.=-0.19, 95% CI=[-0.39;1.5e-03], p=0.05).   

 
 

 

   

 When looking at the indel effect on IQ after the application of the filters (see figure 2) but 

before the application of a machine learning model, we can see that there is no significant 

relationship between any of the scores and IQ (DS_C: est.= -6.4e-04, 95% CI=[1.4e-03, 7e-04], 

p=0.12; LOEUF: est.=-1.084e-04, 95% CI=[ -2.3e-04, 2.0e-05], p=0.1) and no relationship 
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Figure 10: Effect of indels on IQ in the UKBB cohort. The estimate is calculated based on 
each score. The indels predicted by the intersection model are in pink, the indels predicted by the 
random forest model is in blue and the indels not predicted by any model (cold cut-off) are in green. 
P-values range according to the size of each point; the bigger the point, the smaller the p-value.  
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between the number of genes affected and IQ (est.=-2.5e-04, 95% CI=[-6e-04, 1.15e-04], p-

value=0.18). 

 The effect of the indels predicted by the random forest model on IQ shows a significant 

relationship for the DS_C score and IQ (est.= -5.2e-03, 95% CI= [-8.9e-03; -1.6e-03], p=0.005) 

but no significance between the LOEUF score and IQ (LOEUF: est.=-1.084e-04, 95% CI=[-9e-

03, -1.5e-03], p-value=0.08). Furthermore, there is a significant effect on IQ when considering the 

number of genes that have been affected (est.=-0.003, CI=[-0.004, -9.34e-4], p-value=0.002).   

 The effect of the indels predicted by the intersection model on IQ shows a significant 

relationship for the DS_C score and IQ (est.= -0.005, 95% CI= [-8.9e-03; -1.5e-03], p=0.006) but 

no significance between the LOEUF score and IQ (LOEUF: est.= -5.146e-04, 95% CI=[-1.0e-03; 

3.3e-05], p=0.06). There is a significant relationship between the number of genes affected and the 

IQ (est.=-2e-03, CI=[-4.0e-03, -9.03e-04], p-value=0.003). 
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 When measuring the effect of gene tolerance of the indels predicted by the intersection 

model on IQ , we see that there is no significant relationship for the highly intolerant, intolerant 

and highly intolerant genes (HI: est.=-2e-03, 95% CI=[-8e-03;4.5e-03], p=0.55; I: est.=-3.5e-03, 

95% CI=[-9e-03;2.1e-03], p=0.22; HT: est.=-2.0e-03, 95% CI=[-5.4e-03;1.5e-3]) but there is a 

small but significant effect when considering the tolerant genes (est.=-3e-03, 95% CI=[-5.7e-03;-

1.1e-04], p=0.04;). The results are similar for the indels predicted by the random forest model; 

highly intolerant, intolerant and highly tolerant genes show no significant effect (HI: est.=-1.6e-

03, 95% CI=[-8e-03;4.8e-03], p=0.62; I: est.=-3.6e-03, 95% CI=[-9.3e-03;2e-03], p=0.22; HT: 
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Figure 11: Effect on IQ According to Gene Tolerance in UKBB. The estimates are 
calculated based on each score. Indels predicted by the intersection model are in blue and indels 
predicted by the random forest model are in pink. P-values range according to the size of each point; 
the bigger the point, the smaller the p-value. 
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est.=-2.4e-03, 95% CI=[-5.76e-03;9.4e-04], p=0.16), with tolerant genes showing a small but 

significant effect on IQ (est.=-2.7e-03, 95% CI=[-5.5e-03;4.5e-05], p=0.05). 
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Discussion 
 
Model Features  
 
 
 The first step of the work was the selection of a set of features which would be used to 

describe our indels, on which I would base my predictions. The current set of features (see figure 

3) shows that there is no strong correlation between any of the features, save for a small correlation 

between the number of A nucleotides and GC% and the number of T nucleotides and GC%. This 

correlation is to be expected as the GC% is the ratio of the number of G and C nucleotides over 

the total number of nucleotides.  

 When assessing the importance of each feature, the logistic regression model shows that 

the most important feature is the MRR, which could lead to potential bias in the model. Indeed, 

when compared to the random forest model, for which there are three important features (MRR, 

AC and length), the logistic regression model does not perform as well, showing worse accuracy 

(see figure 5). This could be explained by the random forest’s ensemble method of machine 

learning; by taking into consideration multiple decision trees, it is able to correct for any 

overfitting, which is not possible in the logistic regression model.   

 

Model Accuracy 
 
 
 After determining the best set of features for prediction, the next step was to test the 

accuracy of each model. While none of the models were completely inaccurate (see figure 5), the 

random forest and the intersection models showed the best accuracy with 84.76% and 80.69% 

respectively. Seeing as the intersection of the model represents both the random forest predictions 

and the logistic regression predictions, it’s understandable that the accuracy is lower; the logistic 
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regression prediction had a smaller accuracy than the random forest, therefore it could have biased 

the intersection results.  

 The ROC curve of each of the three models shows that the models are indeed good at 

categorising indels as true positives or true negatives. When basing our evaluation on both the 

AUC and the accuracy of each model, we can see that the random forest and intersection models 

are stronger. Although the AUC of the linear regression model and the intersection are similar, the 

accuracy of the intersection makes it a better choice than the linear regression. 

 The predictions made by both the random forest model and the intersection model show a 

significant reduction in the average number of genes affected per individual for all the cohorts. For 

the SPARK and SSC datasets, the predicted indels have half the average value as those that have 

been selected through cold cut-off only, which are the variants that pass a quality threshold that 

we’ve set. The criteria is as follows: a minimum threshold for 20 for the total read depth and 5 for 

the alternate read depth for all probands, siblings and parents carrying a variant that is not 

transmitted; a minimum threshold of 10 for the total read depth and 1 for the alternate read depth 

for parents that carry a variant they transmit to a proband or a sibling; a minimum ratio of 0.05 for 

the MRR for all individuals; a “PASS” in VQSR quality for all individuals; and an allele frequency  

<=0.001 for both the parental minor allele frequency and the gnomAD minor allele frequency. For 

the UKBB dataset, the cold cut-off values have an average of 60.87, whereas the random forest 

and intersection predicted indels have an average of 10.88 and 10.41 respectively, showing a six-

fold decrease. This suggests that the models are able to clean up the dataset more efficiently than 

simply using threshold values; a reduction in the average number of genes affected will show a 

reduction in noise during analysis.  
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Effect on IQ  

 

 The effect on IQ was first measured using the predicted indels in SPARK and SSC. The 

random forest model shows a significant effect when basing our model on the LOEUF score, the 

DS_C score and the number of genes affected by the predicted indels, thus implying that the model 

was able to detect and identify indels that have a higher likelihood of being true positive indels. 

However, when evaluating the effect of gene tolerance on IQ, although there is a slight significance 

for tolerant genes, the gene tolerance for most categories has no significant effect on IQ, suggesting 

that there is not enough power to explain any cognitive effect. The results of the random forest 

model tend to suggest that it is not so much the quality of the genes that affects IQ, but rather the 

quantity. This is further supported by the fact that the p-value of the relationship between the 

number of genes affected and the IQ is smaller than for any other significant score. 

 Although there is no significant effect on IQ in the intersection of the two models for the 

LOEUF and DS_C scores, the number of genes and the tolerance of the genes, the negative effect 

sizes suggest that the indels predicted by the model have a higher likelihood of being true positive, 

high-quality indels. This lack of significance could once again be explained by the lack of power 

in the analysis, considering the smaller number of indels predicted (see table IV). 

 Following SPARK and SSC, the effect of IQ of all the filtered and annotated indels of the 

UKBB cohort was measured in order to compare those results with those of the predicted indels. 

The indels without prediction show a very small negative effect size, but no significant effect on 

IQ. Considering that these indels were called using only one calling algorithm, these results could 

be biased by a high number of false positives. Furthermore, UKBB is a general population cohort 

(meaning there is no diagnosis requirement to be included), therefore, the vast majority of the 
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called indels could be benign, with no significant effect on gene expression. Finally, since the 

average number of genes affected by the indels is quite high, this lack of significance could also 

be explained by the noise found in the cohort.  

 When evaluating the effect of the indels predicted by random forest on IQ, however, we 

can see that there is a significant decrease in IQ when we assess the model using the DS_C score 

and the number of genes. However, the effect size is quite small, and the uncertainty is high, as 

demonstrated by the large confidence intervals. Furthermore, although the LOEUF score shows 

no significant decrease in IQ, the p-value decreases, as opposed to the p-value with no machine 

learning predictions, suggesting an improvement in quality of indels. This could also be a 

consequence of the sample size, as the random forest predictions represent a much smaller number 

of variants when compared to the variants that were selected through cold cut-off. When estimating 

IQ according to gene tolerance, we see that there is only a mildly significant effect when 

considering tolerant genes. However, the effect size is small, and the p-value is borderline 

significant (p=0.05), therefore the effect has no tangible impact on the IQ.  The large confidence 

interval can be explained by the small number of genes in each category, particularly for the highly 

intolerant and intolerant genes.  

 The indels predicted by the intersection model show a significant effect on the loss of IQ 

when based on the DS_C score and the number of genes, thus suggesting this model is also able 

to predict higher quality indels, although the effect sizes are small. And while there is no effect on 

IQ when considering the LOEUF score, it is important to note that the p-value of the effect is 

smaller for the intersection model than it is without any model or the random forest model, 

implying that the intersection model was able to predict higher quality indels that have an effect 



 

 46 

on IQ across all scores. As with the random forest model, the intersection model shows that tolerant 

genes have a small, mildly significant effect on IQ; it could almost be negligeable.  

 These results suggest that, while the indels predicted by the random forest model and the 

intersection are more likely to be high-quality, true positive indels than those simply filtered with 

cold cut-off value, the model is not quite able to predict indels that will show a strong effect size 

on the IQ. The results of the gene tolerance and the effect of the number of genes on IQ further 

testify to the additive nature of IQ, as suggested by the SPARK and SSC results.   

 It is important to note that by removing de novo variants from the analysis, the effect sizes 

will have a tendency to be smaller. De novo variants tend to have a more extreme effect on genes60, 

thus leading to bigger effect sizes when estimating IQ. Therefore, it is not surprising to see small 

effect sizes, even when the results are significant. However, the effect sizes in the SPARK and 

SSC cohort are larger than those in UKBB; being autism-diagnosis based cohorts, it is to be 

expected as ASD presents a comorbidity with loss of IQ94.  

 Moreover, of all the individuals in SPARK and SSC, only 4,944 individuals out of a total 

of 35,941 have an IQ value that we were able to use in our analysis. Therefore, the small effect 

sizes could be a problem due more to the lack of power in the analysis, rather than the strength of 

the models. This could potentially explain why the intersection model showed more significant 

results for UKBB than for SPARK and SSC. We therefore expect to find a stronger association 

between the scores and the loss of IQ if we have more individuals with an IQ value.   

 Measuring the effect on IQ is one of the indirect ways of assessing the strength of the 

model, as our general assumption is that true quality indels are more likely to show an effect on 

cognition. However, considering UKBB is a general population cohort, the model could be 

predicting truly, high-quality indels that simply do not have an effect on IQ; these indels could 
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affect different aspects of cognition, or different spheres of a person’s health, or they could simply 

have no effect on protein function. When comparing the number of genes affected per individual 

of the predicted indels to those of the cold cut-off indels, it is quite clear there is a certain 

improvement; the decrease in numbers shows that the model is able to “clean” the dataset more 

efficiently than with cold cut-offs alone, which leads to a decrease in noise. 

 

Conclusion 

 This study sought to develop a method to better identify high-quality, true positive indels 

using machine learning algorithms. We also sought to measure the impact of these indels on IQ. 

While the cognitive effect of the predicted indels is small, the random forest and the intersection 

of the random forest and logistic regression models show a significant effect on IQ in the UKBB 

cohort. Furthermore, as evidenced by the average number of genes per individual found for each 

model, the models were able to select indels that impacted a smaller number of genes, as opposed 

to no model. Therefore, the use of machine learning models is able to select higher quality indels, 

and can be considered an extra filtering step, but would require further work in order to determine 

whether we can select indels that have a higher impact on cognitive ability.  

 

Limitations 

 

 The machine learning models were trained using a dataset of 207,520 indels, of which 50% 

were labelled as true indels (label “1”) and 50% were labelled as false indels (label “0”). While 

this balance is necessary for the training of a model, the reality of the datasets is not as such. In the 

example of SPARK and SSC, only 0.09% of the dataset was labelled as a true positive indel. 
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Ideally, the entire dataset of negatives and positives would be used to train the model and methods 

such as boosting, and bagging can compensate for the unbalance in the positive and negative labels. 

However, more sophisticated technologies and more computing power are required to attempt this 

method of training and to improve our models. 

 

  

  



 

 49 

References 
 

1. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. 

Nature 515, 216–221 (2014). 

2. Krumm, N. et al. Excess of rare, inherited truncating mutations in autism. Nat. Genet. 47, 

582–588 (2015). 

3. Huguet, G. et al. Measuring and Estimating the Effect Sizes of Copy Number Variants on 

General Intelligence in Community-Based Samples. JAMA Psychiatry 75, 447–457 (2018). 

4. Montgomery, S. B. et al. The origin, evolution, and functional impact of short insertion-

deletion variants identified in 179 human genomes. Genome Res. 23, 749–761 (2013). 

5. Bennett, E. P. et al. INDEL detection, the “Achilles heel” of precise genome editing: a survey 

of methods for accurate profiling of gene editing induced indels. Nucleic Acids Res. 48, 

11958–11981 (2020). 

6. Sanders, S. J. et al. Progress in Understanding and Treating SCN2A-Mediated Disorders. 

Trends Neurosci. 41, 442–456 (2018). 

7. Bernier, R. et al. Disruptive CHD8 mutations define a subtype of autism early in 

development. Cell 158, 263–276 (2014). 

8. Albers, C. A. et al. Dindel: accurate indel calls from short-read data. Genome Res. 21, 961–

973 (2011). 

9. MacArthur, D. G. et al. A systematic survey of loss-of-function variants in human protein-

coding genes. Science 335, 823–828 (2012). 

10. Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. 

Proc. Natl. Acad. Sci. U. S. A. 74, 5463–5467 (1977). 



 

 50 

11. Arteche-López, A. et al. Sanger sequencing is no longer always necessary based on a single-

center validation of 1109 NGS variants in 825 clinical exomes. Sci. Rep. 11, 5697 (2021). 

12. Wang, X. V., Blades, N., Ding, J., Sultana, R. & Parmigiani, G. Estimation of sequencing 

error rates in short reads. BMC Bioinformatics 13, 185 (2012). 

13. NGS vs. Sanger Sequencing. https://www.illumina.com/science/technology/next-generation-

sequencing/ngs-vs-sanger-sequencing.html. 

14. Jorgenson, J. W. & Lukacs, K. D. Free-zone electrophoresis in glass capillaries. Clin. Chem. 

27, 1551–1553 (1981). 

15. Smith, L. M. et al. Fluorescence detection in automated DNA sequence analysis. Nature 321, 

674–679 (1986). 

16. Messing, J., Crea, R. & Seeburg, P. H. A system for shotgun DNA sequencing. Nucleic Acids 

Res. 9, 309–321 (1981). 

17. Behjati, S. & Tarpey, P. S. What is next generation sequencing? Arch. Dis. Child. Educ. 

Pract. Ed. 98, 236–238 (2013). 

18. Totomoch-Serra, A., Marquez, M. F. & Cervantes-Barragán, D. E. Sanger sequencing as a 

first-line approach for molecular diagnosis of Andersen-Tawil syndrome. F1000Res. 6, 1016 

(2017). 

19. Salk, J. J., Schmitt, M. W. & Loeb, L. A. Enhancing the accuracy of next-generation 

sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 19, 269–285 (2018). 

20. Kung, A., Munné, S., Bankowski, B., Coates, A. & Wells, D. Validation of next-generation 

sequencing for comprehensive chromosome screening of embryos. Reprod. Biomed. Online 

31, 760–769 (2015). 



 

 51 

21. Slatko, B. E., Gardner, A. F. & Ausubel, F. M. Overview of Next-Generation Sequencing 

Technologies. Curr. Protoc. Mol. Biol. 122, e59 (2018). 

22. van Dijk, E. L., Jaszczyszyn, Y., Naquin, D. & Thermes, C. The Third Revolution in 

Sequencing Technology. Trends Genet. 34, 666–681 (2018). 

23. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 

133–138 (2009). 

24. Jain, M. et al. MinION Analysis and Reference Consortium: Phase 2 data release and analysis 

of R9.0 chemistry. F1000Res. 6, 760 (2017). 

25. Quail, M. A. et al. A tale of three next generation sequencing platforms: comparison of Ion 

Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13, 341 (2012). 

26. Ng, S. B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. 

Nature 461, 272–276 (2009). 

27. Meynert, A. M., Ansari, M., FitzPatrick, D. R. & Taylor, M. S. Variant detection sensitivity 

and biases in whole genome and exome sequencing. BMC Bioinformatics 15, 247 (2014). 

28. Belkadi, A. et al. Whole-genome sequencing is more powerful than whole-exome sequencing 

for detecting exome variants. Proc. Natl. Acad. Sci. U. S. A. 112, 5473–5478 (2015). 

29. Barbitoff, Y. A. et al. Systematic dissection of biases in whole-exome and whole-genome 

sequencing reveals major determinants of coding sequence coverage. Sci. Rep. 10, 2057 

(2020). 

30. Bamshad, M. J. et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. 

Rev. Genet. 12, 745–755 (2011). 

31. van Dijk, E. L., Auger, H., Jaszczyszyn, Y. & Thermes, C. Ten years of next-generation 

sequencing technology. Trends Genet. 30, 418–426 (2014). 



 

 52 

32. Schwarze, K., Buchanan, J., Taylor, J. C. & Wordsworth, S. Are whole-exome and whole-

genome sequencing approaches cost-effective? A systematic review of the literature. Genet. 

Med. 20, 1122–1130 (2018). 

33. Wiltgen, M. Algorithms for Structure Comparison and Analysis: Homology Modelling of 

Proteins. in Encyclopedia of Bioinformatics and Computational Biology (eds. Ranganathan, 

S., Gribskov, M., Nakai, K. & Schönbach, C.) 38–61 (Academic Press, 2019). 

34. EMBL-EBI. [No title]. https://www.ebi.ac.uk/Tools/psa/. 

35. Musich, R., Cadle-Davidson, L. & Osier, M. V. Comparison of Short-Read Sequence 

Aligners Indicates Strengths and Weaknesses for Biologists to Consider. Front. Plant Sci. 12, 

657240 (2021). 

36. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. 

Bioinformatics 25, 1754–1760 (2009). 

37. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 

(2011). 

38. Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome 

Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1-11.10.33 

(2013). 

39. Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. 

arXiv [q-bio.GN] (2012). 

40. wecall: Fast, accurate and simple to use command line tool for variant detection in NGS 

data. (Github). 

41. Blog. Google AI Blog https://ai.googleblog.com/2020/09/improving-accuracy-of-genomic-

analysis.html. 



 

 53 

42. Zook, J. M. et al. A robust benchmark for detection of germline large deletions and insertions. 

Nat. Biotechnol. 38, 1347–1355 (2020). 

43. Stein, L. Genome annotation: from sequence to biology. Nat. Rev. Genet. 2, 493–503 (2001). 

44. Salzberg, S. L. Next-generation genome annotation: we still struggle to get it right. Genome 

Biol. 20, 92 (2019). 

45. de Sá, P. H. C. G. et al. Chapter 11 - Next-Generation Sequencing and Data Analysis: 

Strategies, Tools, Pipelines and Protocols. in Omics Technologies and Bio-Engineering (eds. 

Barh, D. & Azevedo, V.) 191–207 (Academic Press, 2018). 

46. Cock, P. J. A., Fields, C. J., Goto, N., Heuer, M. L. & Rice, P. M. The Sanger FASTQ file 

format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic 

Acids Res. 38, 1767–1771 (2010). 

47. Liao, P., Satten, G. A. & Hu, Y.-J. PhredEM: a phred-score-informed genotype-calling 

approach for next-generation sequencing studies. Genet. Epidemiol. 41, 375–387 (2017). 

48. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–

2079 (2009). 

49. gVCF Files. 

https://support.illumina.com/help/BS_App_TSA_help/Content/Vault/Informatics/Sequencin

g_Analysis/BS/swSEQ_mBS_gVCF.htm. 

50. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and 

population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–

2993 (2011). 

51. Stoler, N. & Nekrutenko, A. Sequencing error profiles of Illumina sequencing instruments. 

NAR Genom Bioinform 3, lqab019 (2021). 



 

 54 

52. Kelley, D. R. & Salzberg, S. L. Detection and correction of false segmental duplications 

caused by genome mis-assembly. Genome Biol. 11, R28 (2010). 

53. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. 

Nature 437, 376–380 (2005). 

54. Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: 

computational challenges and solutions. Nat. Rev. Genet. 13, 36–46 (2011). 

55. Eichler, E. E. Genetic Variation, Comparative Genomics, and the Diagnosis of Disease. N. 

Engl. J. Med. 381, 64–74 (2019). 

56. Freeman, J. L. et al. Copy number variation: new insights in genome diversity. Genome Res. 

16, 949–961 (2006). 

57. Collins, R. L. et al. Defining the diverse spectrum of inversions, complex structural variation, 

and chromothripsis in the morbid human genome. Genome Biol. 18, 36 (2017). 

58. Pranckėnienė, L., Jakaitienė, A., Ambrozaitytė, L., Kavaliauskienė, I. & Kučinskas, V. 

Insights Into de novo Mutation Variation in Lithuanian Exome. Front. Genet. 9, 315 (2018). 

59. Veltman, J. A. & Brunner, H. G. De novo mutations in human genetic disease. Nat. Rev. 

Genet. 13, 565–575 (2012). 

60. Mani, A. Pathogenicity of De Novo Rare Variants: Challenges and Opportunities. 

Circulation. Cardiovascular genetics vol. 10 (2017). 

61. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. 

Nature 526, 68–74 (2015). 

62. Cooper, G. M. & Shendure, J. Needles in stacks of needles: finding disease-causal variants in 

a wealth of genomic data. Nat. Rev. Genet. 12, 628–640 (2011). 



 

 55 

63. Ng, P. C. et al. Genetic variation in an individual human exome. PLoS Genet. 4, e1000160 

(2008). 

64. Mullaney, J. M., Mills, R. E., Pittard, W. S. & Devine, S. E. Small insertions and deletions 

(INDELs) in human genomes. Hum. Mol. Genet. 19, R131-6 (2010). 

65. Rodriguez-Murillo, L. & Salem, R. M. Insertion/Deletion Polymorphism. in Encyclopedia of 

Behavioral Medicine (eds. Gellman, M. D. & Turner, J. R.) 1076–1076 (Springer New York, 

2013). 

66. de la Torre-Ubieta, L., Won, H., Stein, J. L. & Geschwind, D. H. Advancing the 

understanding of autism disease mechanisms through genetics. Nat. Med. 22, 345–361 

(2016). 

67. Korenke, G. C., Schulte, B., Biskup, S., Neidhardt, J. & Owczarek-Lipska, M. A Novel de 

novo Frameshift Mutation in the BCL11A Gene in a Patient with Intellectual Disability 

Syndrome and Epilepsy. Mol. Syndromol. 11, 135–140 (2020). 

68. Loureiro, L. O. et al. A recurrent SHANK3 frameshift variant in Autism Spectrum Disorder. 

NPJ Genom Med 6, 91 (2021). 

69. Babbs, C. et al. De novo and rare inherited mutations implicate the transcriptional coregulator 

TCF20/SPBP in autism spectrum disorder. J. Med. Genet. 51, 737–747 (2014). 

70. O’Rawe, J. et al. Low concordance of multiple variant-calling pipelines: practical 

implications for exome and genome sequencing. Genome Med. 5, 28 (2013). 

71. Fang, H. et al. Reducing INDEL calling errors in whole genome and exome sequencing data. 

Genome Med. 6, 89 (2014). 

72. Yang, R., Van Etten, J. L. & Dehm, S. M. Indel detection from DNA and RNA sequencing 

data with transIndel. BMC Genomics 19, 270 (2018). 



 

 56 

73. SPARK Consortium. Electronic address: pfeliciano@simonsfoundation.org & SPARK 

Consortium. SPARK: A US Cohort of 50,000 Families to Accelerate Autism Research. 

Neuron 97, 488–493 (2018). 

74. Sanders, S. J. et al. Insights into Autism Spectrum Disorder Genomic Architecture and 

Biology from 71 Risk Loci. Neuron 87, 1215–1233 (2015). 

75. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide 

range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015). 

76. HiSeq 2500 System. https://www.illumina.com/systems/sequencing-platforms/hiseq-

2500.html. 

77. NovaSeq Applications & Methods. https://www.illumina.com/systems/sequencing-

platforms/novaseq/applications.html. 

78. Zhao, H. et al. CrossMap: a versatile tool for coordinate conversion between genome 

assemblies. Bioinformatics 30, 1006–1007 (2014). 

79. Tan, A., Abecasis, G. R. & Kang, H. M. Unified representation of genetic variants. 

Bioinformatics 31, 2202–2204 (2015). 

80. gnomAD. https://gnomad.broadinstitute.org/about. 

81. Hall, C. L. et al. Frequency of genetic variants associated with arrhythmogenic right 

ventricular cardiomyopathy in the genome aggregation database. Eur. J. Hum. Genet. 26, 

1312–1318 (2018). 

82. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist: Identification of 

Problematic Regions of the Genome. Sci. Rep. 9, 1–5 (2019). 

83. Mandelker, D. et al. Navigating highly homologous genes in a molecular diagnostic setting: 

a resource for clinical next-generation sequencing. Genet. Med. 18, 1282–1289 (2016). 



 

 57 

84. Sharp, A. J. et al. Segmental duplications and copy-number variation in the human genome. 

Am. J. Hum. Genet. 77, 78–88 (2005). 

85. Tørresen, O. K. et al. Tandem repeats lead to sequence assembly errors and impose multi-

level challenges for genome and protein databases. Nucleic Acids Res. 47, 10994–11006 

(2019). 

86. Barra, V. & Fachinetti, D. The dark side of centromeres: types, causes and consequences of 

structural abnormalities implicating centromeric DNA. Nat. Commun. 9, 4340 (2018). 

87. Tutar, Y. Pseudogenes. Comp. Funct. Genomics 2012, 424526 (2012). 

88. Sperandei, S. Understanding logistic regression analysis. Biochem. Med.  24, 12–18 (2014). 

89. Schonlau, M. & Zou, R. Y. The random forest algorithm for statistical learning. Stata J. 20, 

3–29 (2020). 

90. Nicodemus, K. K. & Malley, J. D. Predictor correlation impacts machine learning algorithms: 

implications for genomic studies. Bioinformatics 25, 1884–1890 (2009). 

91. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 

141,456 humans. Nature 581, 434–443 (2020). 

92. Hawrylycz, M. et al. Canonical genetic signatures of the adult human brain. Nat. Neurosci. 

18, 1832–1844 (2015). 

93. Arnatkeviciute, A., Fulcher, B. D. & Fornito, A. A practical guide to linking brain-wide gene 

expression and neuroimaging data. Neuroimage 189, 353–367 (2019). 

94. Cervantes, P. E. & Matson, J. L. Comorbid Symptomology in Adults with Autism Spectrum 

Disorder and Intellectual Disability. J. Autism Dev. Disord. 45, 3961–3970 (2015). 


