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Résumé

Les systèmes de recommandation typiques tentent d’imiter les comportements passés des
utilisateurs pour faire des recommandations futures. Par exemple, dans le domaine des re-
commandations alimentaires, ces algorithmes de recommandation apprennent généralement
d’abord l’historique de consommation de l’utilisateur, puis recommandent les aliments que
l’utilisateur préfère. Bien qu’il existe de nombreux systèmes de recommandation d’aliments
proposés dans la littérature, la plupart d’entre eux sont généralement des applications di-
rectes des algorithmes de recommandation génériques sur des ensembles de données alimen-
taires. Nous pensons que pour le problème de la recommandation alimentaire, les connais-
sances spécifiques au domaine joueraient un rôle vital dans la réussite d’un recommandeur
alimentaire. Cependant, la plupart des modèles existants n’intègrent pas ces connaissances.
Pour résoudre ce problème, dans cet article, nous intégrons des facteurs liés à la santé (tels
que l’IMC des utilisateurs, les changements de poids sous-jacents, les calories des aliments
candidats et les variétés d’aliments) dans des modèles de recommandations alimentaires sé-
quentielles pour les utilisateurs qui souhaitent mieux gérer leur alimentation et poids. Les
changements de poids sous-jacents des utilisateurs sont également traités comme leurs objec-
tifs ou leurs intentions (perdre, maintenir ou prendre du poids). Le modèle proposé devrait
adapter en douceur le flux d’articles recommandé vers l’objectif des utilisateurs en tenant
compte des préférences de consommation et des facteurs de santé antérieurs de l’utilisateur.

Pour étudier les meilleures stratégies pour incorporer des facteurs de santé spécifiques à
un domaine dans les recommandations alimentaires, dans cette étude, nous proposons deux
approches de modélisation: la recommandation du prochain article et la recommandation
du prochain panier. Ces deux méthodes prennent la séquence passée d’aliments (noms d’ali-
ments et calories) consommés par un utilisateur comme entrée et produisent une liste classée
d’aliments pour le prochain aliment (Next-item) ou le lendemain (Next-basket). En outre,
les recommandations de base sont améliorées sur la base des approches de pointe de chaque
approche de modélisation, qui sont respectivement GRU4Rec [65] et LSTM hiérarchique.

Pour étudier l’impact des facteurs de santé et ajuster le modèle vers un objectif, nous
construisons des sous-modèles spécifiques pour chaque groupe d’utilisateurs en fonction de
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l’IMC et de l’intention. À savoir, les utilisateurs sont regroupés en obèses, en surpoids, nor-
maux, sous-pondérés selon l’IMC. Leurs données (par semaines) sont segmentées en semaines
de perte/gain/maintien de poids en fonction du changement de poids au cours de la semaine.
Cette dernière segmentation vise à saisir les habitudes de consommation alimentaire liées au
poids, qui est traité comme l’intention sous-jacente de l’utilisateur.

Un modèle général formé sur l’ensemble des données historiques mixtes devrait capturer
les habitudes générales de consommation alimentaire de tous les utilisateurs, tandis qu’un
sous-modèle formé sur l’ensemble spécifique de données pour l’IMC et l’intention capture
celles des groupes ou semaines correspondants. Pour un utilisateur au sein d’un groupe
d’IMC et avec l’intention de changer de poids, nous appliquons le sous-modèle spécifique,
combiné avec le modèle général, pour la recommandation alimentaire.

Nos modèles sont formés sur une grande quantité de données de comportement alimen-
taire d’utilisateurs réels à partir d’une application de gestion du poids, où nous pouvons
observer la consommation alimentaire quotidienne et le poids corporel de plusieurs utilisa-
teurs.

Lorsque nous combinons le modèle complet général avec les modèles spécifiques à l’IMC
et spécifiques à l’intention avec un coefficient approprié, nous observons des améliorations
significatives par rapport aux performances du modèle général basé à la fois sur la recom-
mandation de l’article suivant et sur la recommandation du panier suivant. De plus, les
sous-modèles spécifiques à l’IMC et spécifiques à l’intention se sont avérés utiles, ce qui
donne de meilleurs résultats que le modèle complet général, tandis que les sous-modèles
spécifiques à l’IMC ont plus d’impact que le modèle spécifique à l’intention.

En pratique, pour un utilisateur qui a l’intention de perdre du poids, le système peut
appliquer le modèle de résultat Perte de poids (avec l’IMC correspondant) à l’utilisateur.
Cela tend à ajuster en douceur le modèle général de recommandation vers cet objectif. En
outre, le niveau d’ajustement pourrait être contrôlé par le coefficient de combinaison de
modèles. En d’autres termes, avec un coefficient plus élevé, le sous-modèle spécifique aura
un impact plus important sur la prédiction du classement final des aliments, ce qui implique
que le système donnera la priorité à la réalisation de l’objectif de l’utilisateur plutôt qu’à
l’imitation de ses habitudes alimentaires précédentes. Cette stratégie est plus efficace que de
toujours recommander certains types d’aliments hypocaloriques, qui ne sont pas appréciés par
l’utilisateur. L’intention est alignée sur le résultat de poids réel au lieu de l’intention indiquée
par l’utilisateur. Ce dernier s’avère beaucoup moins performant dans nos expérimentations.

Mots-clés: Recommandation alimentaire, Facteurs de santé, Perte de poids, L’appren-
tissage en profondeur
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Abstract

Typical recommender systems try to mimic the past behaviors of users to make future
recommendations. For example, in the food recommendation domain, those recommenders
typically first learn the user’s previous consumption history and then recommend the foods
the user prefers. Although there are lots of food recommender systems proposed in the
literature, most of them are usually some direct applications of generic recommendation
algorithms on food datasets. We argue that for the food recommendation problem, domain-
specific knowledge would play a vital role in a successful food recommender. However, most
existing models fail to incorporate such knowledge. To address this issue, in this paper, we
incorporate health-related factors (such as users’ BMI, underlying weight changes, calories of
the candidate food items, and food varieties) in sequential food recommendation models for
users who want to better manage their body weight. The users’ underlying weight changes
are also as treated as their goals or intents (either losing, maintaining, or gaining weight).
The proposed model is expected to smoothly adapt the recommended item stream toward
the users’ goal by considering the user’s previous consumption preferences and health factors.

To investigate the best strategies to incorporate domain-specific health factors into food
recommenders, in this study, we propose two modeling approaches: Next-item Recommenda-
tion and Next-basket Recommendation. These two methods take the past sequence of foods
(food names and calories) consumed by a user as the input and produce a ranked list of foods
for the next one (Next-item) or the next day (Next-basket). Besides, the basic recommen-
dations are improved based on the state-of-the-art approaches of each modeling approach,
which are GRU4Rec [65] and hierarchical LSTM, respectively. To investigate the impact of
health factors and tune the model toward a goal, we build specific sub-models for each group
of users according to BMI and intent. Namely, users are grouped into Obese, Overweighted,
Normal, Underweighted according to BMI. Their data (by weeks) are segmented into weight
losing/gaining/maintaining weeks according to the weight change during the week. This
latter segmentation aims to capture food consumption patterns related to weight outcome,
which is treated as the user’s underlying intent. A general model trained on the whole mixed
historical data is expected to capture the general food consumption patterns of all the users,
while a sub-model trained on the specific set of data for BMI and intent captures those of
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the corresponding groups or weeks. For a user within a BMI group and with the intent of
weight change, we apply the specific sub-model, combined with the general model, for food
recommendation. Our models are trained on a large amount of eating behavior data of real
users from a weight management app, where we can observe the daily food consumption and
the body weight of many users.

When we combine the general full-model with the BMI-specific and intent-specific models
with appropriate coefficient, we observe significant improvements compared with the perfor-
mance of the general model based on both Next-item Recommendation and Next-basket
Recommendation. Furthermore, both BMI-specific and intent-specific sub-models have been
proved useful, which achieves better results than the general full-model, while BMI-specific
sub-models are more impactful than the intent-specific model.

In practice, for a user who intends to lose weight, the system can apply the Losing-
weight outcome model (with the corresponding BMI) to the user. This tends to smoothly
adjust the general recommendation model toward this goal. Besides, the adjustment level
could be controlled by the coefficient of model combination. In other words, with a larger
coefficient, the specific sub-model will have a greater impact on predicting the final food
ranking list, implying that the system will prioritize achieving the user’s goal over mimicking
their previous eating habits. This strategy is more effective than always recommending some
types of low-calorie foods, which are not liked by the user. The intent is aligned with the
actual weight outcome instead of the indicated intention by the user. This latter turns out
to be much less successful in our experiments.

Keywords: Food recommendation, Health factors, Weight loss, Deep learning
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Chapter 1

Introduction

Overweight and obesity are among the main causes to chronic diseases [58]. Body weight is
a health aspect that many people care about today and try to manage. Many apps and web-
based programs have been developed to help users manage their body weight [73, 46, 38, 21].
It is known that the main factors important to body weight are related to genetics, behavior,
diet, and environment. Among them, diet is one of the most important controllable factors
that affect body weight and body health [5, 31]. However, according to the World Health
Report 2020, the incidence rate of numerous diet-related diseases, such as diabetes, obesity,
and malnutrition, is quickly growing over the world. 1 In particular, obesity has reached
epidemic proportions, with at least 2.8 million people dying each year as a result of being
overweighted or obese. Therefore, a well-balanced diet is crucial to maintain one’s physical
health.

Food recommendation has been an extensively studied topic because of its high potential
impact on the human physical health. Food recommendation can follow dietary guidelines
developed by experts. 2 For example, it is recommended to limit the amount of sodium
to less than 2,300 mg per day. While these guidelines are important, they can hardly be
translated by the general population into their daily life [72]. Recommendation systems can
offer more effective solutions by recommending concrete food items or ingredients to users
on the fly. The popularity of such tools is growing with the widespread utilization of mobile
devices or the web.

A typical type of food recommendation system attempts to capture users’ previous food
preferences and provide future recommendations accordingly, regardless of health factors [17,
56, 65, 20, 70]. For example, a recommender system may keep suggesting ‘pizza’ to a user
who often consumed ‘pizza’ in the past. The recommendation may be easily adopted by the
user, but this cannot lead the user to a healthy diet or eating pattern.

1https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/world-health-statistics
2https://food-guide.canada.ca/en/guidelines/; https://www.who.int/news-room/fact-sheets/detail/healthy-
diet



A second type of recommendation is to impose some diet constraints to users. For ex-
ample, the caloric consumption is controlled within the recommended range. In a system
developed to deal with malnutrition for elderly, Aberg [1] proposed a recommendation ap-
proach based on constraint satisfaction to meet a set of constraints on several aspects. While
such an approach can be applied in specific context which requires tight control, it is difficult
to impose strict dietary constraints to general users.

A third approach tries to balance the user preferences and the dietary needs. This ap-
proach may lead users to a healthier diet while taking into account the food preferences.
The recommended foods may be more easily adopted by users. Our study falls into this cat-
egory. The existing approaches in this category have been simplistic. [Harvey and Elsweiler
2015] [18] make recommendations based on user preferences at first; then the recommended
foods are filtered using the required dietary constraints (e.g. food with calories higher than a
required value are filtered out). The recommendations made with such a simplistic solution
may be hard to be adopted by users.

Different from the previous approaches, in our work, we propose an approach that makes
food recommendations based on both user’s preferences and the success stories of similar
users. The approach we develop relies on a large amount of eating behavior data of real
users from a weight management app, where we can observe the daily food consumption and
the body weight of many users. The eating behaviors that lead to weight loss are used as
good examples to guide food consumption of a similar user who wants to lose weight. This is
done by employing a goal-oriented recommendation model trained with eating behavior data
that truly led to the goal. This strategy differs from the one that relies on dietary guidelines
in the sense that the guidelines are now hidden in the concrete successful behaviors. For
a user who has a goal on body weight (e.g. losing weight), we make food recommendation
by combining a general preference-based recommendation model with a goal-oriented model
based on the successful behaviors of users who lost weight.

It is important to rely on the goal-oriented model of similar users. To this end, we train
several goal-oriented models for different groups of users. For our study, we group users into
different BMI (Body Mass Index) groups by assuming that users in the same group would
have (more) similar dietary needs. These groups can be refined in the future to take into ac-
count other factors such as age, sex, and so on. To train goal-oriented models, we segment the
data collected from an app into subsets of periods (weeks), where we observe that users truly
lose/maintain/gain body weights. Using the subset of data corresponding to each outcome,
we can train recommendation models respectively for the goals of losing/maintaining/gaining
weight. The intuition is that these users would have adopted food patterns during these pe-
riods that successfully lead to the observed weight loss/maintenance/gain. These patterns
can be generalized to similar users with the same goal. Therefore, the method we propose
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in this thesis is to make food recommendation for a user by combining a general recom-
mendation model based on the user’s past behaviors, and the goal-oriented model trained
on the success periods of similar users. We believe that such a combined model can make
smoother recommendations than traditional food recommendation system relying on strict
food guidelines.

In this thesis, we explore two modelling approaches for food recommendation: Next-item
Recommendation and Next-basket Recommendation. These two approaches use a user’s
previous sequence of foods (food names and calories) as input and generate a ranked list of
foods for the following one (Next-item) or the next day (Next-basket).

To evaluate the effectiveness, the ideal setting would be to let the users use the rec-
ommender system and observe their final weight outcome. Unfortunately, this evaluation
takes a long time and is not yet feasible. Instead, we use the recorded data as proxy in the
following way: For a user with a weight goal (e.g. losing weight), we compare our recom-
mendation approach to a general one for the test periods where the user reaches the goal.
If the recommendation accuracy of our approach is higher for these periods, it is considered
to be better suited to the the user and the goal. Experiments show that our combined
recommendation system can produce higher recommendation accuracy for different weight
goals. This suggests that the approach could effectively adapt the recommendations toward
the user’s goal, while also considering his/her preferences.

The main contributions of this thesis are summarized as follows: (1) We propose a new
food recommendation approach that is based on the success behavior of similar users. This
can be termed “following good examples“. To lead user’s food choices toward a goal, we
combine a general model with a goal-oriented model. This model combination approach is
different from the traditional one based on dietary guidelines. (2) We utilize two modeling
approaches, Next-item and Next-basket goal-oriented recommendation models for different
groups of users based on successful behavior data that meet the goals. (3) Our experiments on
a large set of real data demonstrate the effectiveness of this data-based food recommendation
approach.

The work presented in this thesis will also be presented in a paper accepted at The Web
Conference 2022 [39].

The remaining of the thesis is organized as follows: Background and related works are
summarized in Chapter 2. Problem formulation is described in Chapter 3. We introduce
dataset and evaluation in Chapter 4, our proposed model in Chapter 5. Then the experi-
mental Results and Conclusion are given in Chapter 6 and Chapter 7.
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Chapter 2

Background and Related Work

In this chapter, we describe some basic deep learning techniques we use in our work, as
well as the related work on food recommendation. There is a large body of work on deep
learning. It is impossible to cover all of them. We limit the coverage of this chapter to only
those that are strongly related to our work, i.e. word embedding, sequential neural models,
recommender systems and food recommendation.

2.1. Pre-trained Word Embedding
Generally, word embedding models learn a real-valued vector to represent word semantics

by taking into consideration of its neighboring words. The basic assumption is that words
occurring in similar contexts have similar meanings. After the training, words that are close
in this embedded vector space should have similar meanings [29].

Pre-training of word embedding is applied on a large set of texts. It is assumed that
the word embedding obtained from this process could be transferred to other application
contexts, i.e. to this is a special type of transfer learning [83]. Once pre-trained, those
word embeddings are used in downstream tasks, usually as the initial word representations.
Due to the capability to capture some basic language properties (both syntactic and seman-
tic), pre-trained word embedding becomes a mainstream word encoding method and has
proven to be highly useful in many current NLP tasks, such as sequence tagging [34, 41],
text classification [32], neural machine translation [53, 45, 3, 35], and recommendation
systems [67, 48, 81].

There are many ways to generate pre-trained word embeddings. Particularly, they could
be categorized into two approaches: context-independent methods (Bag of Words [23],
TF-IDF [37], Word2Vec [43], GloVe [50]) and context-aware methods (ELMo [52], Trans-
former [74], BERT [14], Transformer-XL [12]).

In our work, we adopt GloVe and BERT pre-trained word embeddings to conduct the
experiments. We describe the details of these embedding methods in Sections 2.1.1 and 2.1.2.



2.1.1. GloVe Word Embedding

Glove (Global Vectors for Word Representation) [50] is an unsupervised context-
independent generation approach for word embedding, which relies on the assumption that
words occurring in similar contexts have similar meanings, thus similar representations.

The GloVe model is trained on the non-zero entries of a global word-word co-occurrence
matrix, which tabulates how frequently words co-occur with one another in a given corpus.
Pennington et al [50] observes that ratios of word-word co-occurrence probabilities have the
potential for encoding some form of meaning. The most general form of the GloVe model is
given by:

F (wi, wj, w̃k) = Pik

Pjk

, (2.1.1)

where i, j are two target words, k refers to the different probe word (is also called context
word); w, w̃ ∈ R

d are two sets of word vectors with only random initialization differences;
Pik denotes the probability of seeing word i and k together, which is computed by dividing
the number of times word i and k appeared together by the total number of times word
i appeared in the corpus; Similarly, Pik denotes the probability of word i and k appear
together. The optimization process will adjust the word embeddings wi and wj so that they
tend to become similar if they occur frequently in the same contexts. We will not describe
the details about the process, which can be found in [50].

The Stanford website1 provides GloVe pre-trained word embedding, which we can down-
load. In our task, 100-dimension and 300-dimension GloVe word vectors are used to encode
food items in Section 5.2.1.1.

An alternative to GloVe is Word2Vec [43], which usually leads to similar results when
used as the initial word embeddings.

2.1.2. BERT Word Embedding

BERT (Bidirectional Encoder Representations from Transformers) [14] is an unsuper-
vised, deeply bidirectional, transformer-based [74] method for language representation that
is pre-trained from unlabeled text data. The pre-trained BERT model that we will use is
the one pre-trained on the BooksCorpus [82] with 800M words and English Wikipedia with
2,500M words [2].

In contrast to GloVe and Word2Vec, BERT pre-trained word embedding is considered to
be context-aware and have the capability to disambiguate the semantic of the same word in
different contexts. This is achieved by learning dynamic representations for the same word,
while considering its contexts. To better understand the way BERT embeddings are learned,

1https://nlp.stanford.edu/projects/glove/
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we present two example sentences as follows:

He is running a company.

He is running a marathon.

For the representation vectors of word “running”, the context-independent method like
GloVe (described in Section 2.1.1) has the same embeddings in these two sentences, whereas
the context-aware methods BERT will generate the contextualized embeddings that are
more adaptive according to the individual context of these sentences. Apparently, the same
word “running” has different semantics in the above two contexts: In the first sentence,
running means to physically run, while in the second sentence, running means to operate
a company. The different representations for the token “running” in the two sentences are
created by aggregating some of the representations of the neighboring words through an
attention mechanism. The basic idea is that if the word embedding of a neighboring word
is similar to that of the target word (i.e. “running”), then it will be more aggregated into
the word embedding of the target word at the next layer. This is the essence of transformer
through self-attention [74]. Again, we do not present the details of BERT model, as we only
use it as our initial word embedding for food names.

There are different models presented by Devlin et al. [14] and they are differentiated by
the model size, denoted as BERTBASE and BERTLARGE. In our work, we adopt BERTBASE

model (with 12 stacked Transformer blocks, hidden size is 768, 12 self-attention heads, total
parameters is 110M) in our experiments. Therefore, the dimension of our BERT word
embedding is 768.

2.2. Sequential Modeling Modules
Sequential models are special machine learning models that deal with (input or output)

sequential data. Real applications cvan generate different types of sequential data: Audio
and video clips are the natural sequences; text streams, which can be split into words or
characters sequences; and time-series data, one of it is users’ consecutive activities, such as
users’ shopping records, diet records with timesteps, and so on. Sequence modeling is used
in a wide range of applications in real-word scenarios based on different types of sequential
data, such as speech recognition, sentiment classification, machine translation, dialog system,
sequential recommendation and etc.

Recurrent Neural Network (RNN) is a popular algorithm used in sequence models. Sev-
eral typical forms of sequence models are like Long Short-Term Memory (LSTM) [27] and
Gated Recurrent Unit (GRU) [10], which achieve great performances on sequential tasks.
As we will also deal with sequence data (the sequence behavior of food consumptions) in
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Fig. 2.1. RNNs Architecture

our work, we provide a detailed description about RNN, LSTM and GRU in the following
sections.

2.2.1. RNN

One of the most basic sequential models is Recurrent Neural Networks, as also known as
RNNs, which is a deep learning algorithm and a type of neural networks that allow previous
outputs to be used as inputs while having hidden states. The typically RNNs architecture2,
which is also called vanilla RNN, is shown in Figure 2.1.

We can observe that for each timestep t, RNNs essentially have two inputs, one for the
current word x<t>, and one for the accumulated input a<t−1>, which contains the accumu-
lated information of the previous t − 1 words. Besides, RNNs also have two outputs, one is
the primary output y<t> (which is used when asked to produce an output) and the other is
the accumulated output a<t>, which represents all the accumulated information of the words
that have been input into the RNNs so far. Then a<t> is considered as one of the input
at timestep t + 1, which means the accumulated information keeps getting updated as the
RNNs processes each word in a sequence. Furthermore, the formulations of the accumulation
a<t> and the output y<t> are expressed in Equation :

a<t> = g1(Waaa<t−1> + Waxx<t> + ba), (2.2.1)

y<t> = g2(Wyaa<t> + by), (2.2.2)

where Wax, Waa, Wya, ba, by are the learnable coefficients that are shared across time
and g1, g2 are activation functions. As a result, we can see that the fundamental benefit
of adopting RNNs over other standard neural networks is that the features and weights
are shared across time in RNNs, and the computation takes historical information into

2https://stanford.edu/ shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
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Fig. 2.2. LSTM and GRU cells at timestep t.

consideration. Furthermore, RNNs can handle a variety of input lengths, and the model size
does not scale with the size of the input.

However, there are still certain shortcomings of RNNs when processing sequential data.
The two most challenging issues are:

(1) Vanishing or Exploding Gradient Problem:
The vanishing and/or exploding gradient problems are regularly experienced with
regards to RNNs. The reason for this is that any unfolded RNNs are trained in
multiple timesteps, with the error gradient calculated as the sum of all gradient
errors across timestamps. Then, Backpropagation Through Time, also as known as
BPTT [44], is is used to update the weights. The dominance of the multiplicative
term rises with time as a result of the chain rule while calculating error gradients,
and the gradient has a propensity to explode or vanish. The gradient will vanish if
the biggest eigenvalue is smaller than 1. The gradient will explodes if the biggest
eigenvalue is greater than 1.

(2) Long Term Dependency:
Another challenging problem faced by the vanilla RNN is the long-term dependency
that the network is different to capture the information which is far away of the
current timestep due to vanishing gradient [7]. In order to remedy the long-term
dependency problem, specific gates are used in some types of RNNs (such as LSTM
and GRU) to more easily pass the information or forget the information from the
previous timestep to the next one.

The problem of exploding gradients can be solved using gradient clipping, weight regular-
ization [49], which L1 (absolute weights) and L2 (squared weights) penalty of the recurrent
weights and gradients are often used. However, the problem of vanishing gradient and Long-
term dependency are tricky. LSTM [27] and GRU [10] have partially solved these issues to
some extent by introducing well-defined specific gates. We will provide a short description
of these mechanisms in the following subsections.
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2.2.2. LSTM

Traditional RNNs are not good at capturing long-time dependencies, this is mainly due
to the vanishing gradient problem. To overcome these problems, Long Short-Term Memory
(LSTM) was introduced by Sepp Hochreiter and Juergen Schmidhuber [27] in 1997. For each
LSTM cell in timestep t (See the left cell of Figure 2.2), it not only has the hidden states
(ht−1 and ht), but also has the cell states (ct−1 and ct) for previous and current timestamp
respectively. Moreover, the hidden state is known as short term memory and the cell state
is known as long term memory that carries the information along with all the timestamps.

In addition, memory manipulations are done by using three gates in each LSTM cell.
(1) Forget Gate: It decides whether the previous information should be kept or forgotten

in the cell state..
(2) Input Gate: It is used to quantify the importance of the new information carried by

the input xt, and adds it to the cell state ct−1.
(3) Output Gate: It determines the value of the next hidden state ht, which holds in-

formation on previous inputs, and adds additional relevant information to the cell
state.

The network has learned the circumstances for when to forget, ignore, or keep information
in the memory cell thanks to the LSTM’s gating mechanism described above.

Additionally, Bidirectional Long Short-term Memory (Bi-LSTM) [22] is an extension of
unidirectional LSTM (Uni-LSTM). On the input sequence, Bi-LSTM trains by two ways
instead of one way of LSTM. The first is from front to back and the second is from back to
front. This structure allows the networks to have both backward and forward information
about the sequence at every timestep. In other words, an element in a sequence will be able
to take into account the context information from both sides. Bi-LSTM achieves outstanding
results by better understanding the context in a variety of complex tasks [62, 42]. This is a
structure we will use to consider the interactions between food items consumed during the
same day (i.e. within a basket).

2.2.3. GRU

Gated Recurrent Unit (GRU) is a gating mechanism in recurrent neural networks, in-
troduced by Cho et al [10] in 2014. From the right part of Figure 2.2, we can observe that
GRU is very similar to LSTM. It also use gates to control the flow of information. However,
GRU only use hidden state (ht) to save and pass the information, unlike LSTM which has
a separate cell state (ct). Therefore, at each timestep t, it takes an input xt and the hidden
state ht−1 from the previous timestamp t−1. Then a new hidden state ht is output and sent
to the next timestep again.
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Talking about the gates, in contrast to the LSTM cell, which has three gates, a GRU cell
has primarily two gates:

(1) Reset Gate:
In essence, the reset gate is used by the network to determine how much informa-
tion from the past should be erased, which is in charge of the network’s short-term
memory.

(2) Update Gate:
The update gate, which is for long-term memory (i.e the hidden state ht), functions
similarly to the LSTM cell’s forget and input gates. It determines what information
should be discarded and what should be included.

GRU uses less parameters and tensor operations. As a result, the training time for GRU
model is a litter faster than LSTM.

2.3. General Recommender Systems
Traditional recommender systems, such as Collaborative Filtering (CF) [33, 60] Recom-

mendation, model the user-item historical interactions in a static way and capture users’
general preferences. However, these approaches ignore the sequential signals, such as the or-
der of users’ behaviors. So detecting the appetite of users and their evolution in time has been
an active research topic to solve this problem in recent years [56, 25, 65, 40, 30, 64]. The
problems can be further divided into Next-item and Next-basket recommendations based on
the input and output (only one item vs whole basket of items). We will test both modelling
methods in our work.

Three main approaches have been proposed to model the sequential behaviors of a user in
recommendation systems, which are respectively based on: Markov Chains (MC), Recurrent
Neural Network (RNN), and Attention Mechanism. Factorizing Personalized Markov Chains
(FPMC) [56] and Translation based Recommendation (TransRec) [25] are both based on
Markov Chains, which are represented in Section 2.3.1 and Section 2.3.2, respectively. We
also compare the RNN-based model, GRU4Rec [65], in Section 2.3.3. Besides, attention-
based models, namely Short-Term Attention/Memory Priority model (STAMP) [40], Self-
Attention based Sequential model (SASRec) [30], and BERT4Rec [64], are illustrated in the
Section 2.3.4, Section 2.3.5 and Section 2.3.6.

2.3.1. FPMC

In order to predict sequential user actions like the next item to consume, product to pur-
chase, or place to visit, it is essential (and challenging) to model the third-order interactions
between a user (u), the item he/she recently consumed (i), and the item to consume next
(j).
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Factorized Personalized Markov Chain (FPMC) [56] models third-order relationships
between u, i, and j by a summation of two pairwise relationships: one for the compatibility
between u and the next item j, and another for the sequential continuity between the previous
item i and the next item j. Ultimately, it combines both a common Markov Chain (MC)
and the normal Matrix Factorization (MF) model to model both sequential behaviors and
general interests.

2.3.2. TransRec

Translation-based Recommendation (TransRec) [25] is also a type of Markov Chain
model that uses a novel translation-based structure in a metric space. It has the advan-
tages of employing a single, interpretable component as well as a metric space.

The basic concept of TransRec is as follows: items are embedded as points in a (latent)
“transition space” and each user is represented as a “translation vector” in that space. The
previously indicated third-order interactions are then recorded by a tailored translation op-
eration: the coordinates of previous item i together with the translation vector of u define
(approximately) the coordinates of next item j. Finally, the (u,i,j) triplet’s compliance with
a distance function is modeled.

The benefits of such an approach are threefold: (1) TransRec naturally models third-order
interactions with only one component; (2) TransRec also reaps the generalisation benefits of
the implicit metricity assumption; and (3) TransRec can easily handle large sequences (e.g.,
millions of instances) due to its simple form.

2.3.3. GRU4Rec

RNN is also widely used in the sequential recommendation as it has the strong capability
of modeling sequential data. GRU and LSTM are the variants of RNNs to solving gradient
vanishing problem, which are described in Section 2.2.

GRU4Rec [65] is proposed as a session-based recommendation model, which considers
the first item a user clicks when entering a website as the initial input of the RNN, we
then would like to query the model based on this initial input for a recommendation. Each
consecutive click of the user will then produce an output (a recommendation) that depends
on all the previous clicks. As such, the model architecture is relatively simple, we can apply
one-hot encoding to the item sequence (input) and pass over to the GRU layer, which is
passed onto the forward feed layer and ultimately predicting a (likelihood) ranked list of the
next item.
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2.3.4. STAMP

Short-Term Attention/Memory Priority model (STAMP) [40] adopts attention mecha-
nism in which attention weights are generated from the session context and improved with
the users’ current interests. The output attention vector is interpreted as a compositional
representation of the user’s temporal interests, and it is more sensitive to the user’s interests
drifting across time than other neural attention-based solutions. The current interests can
be thought of as a form of short-term memory for the users’ preferences.

As a result, STAMP is capable of catching both the users’ long-term interests in general
(in response to the initial purpose) and their short-term attention at the same time (current
interests).

2.3.5. SASRec

Self-attention based Sequential model (SASRec) [30] considers to balance two popular
techniques for sequential recommendation, which are Markov Chains (MCs) and Recur-
rent Neural Networks (RNNs). Markov Chains presume that a user’s next action can be
anticipated based on only their previous (or recent) actions, whereas RNNs allow for the
discovery of longer-term semantics. RNNs perform better in denser datasets when increased
model complexity is affordable, whereas MC-based approaches perform best in extremely
sparse datasets where model parsimony is crucial. Furthermore, SASRec allows us to cap-
ture long-term semantics (like an RNN) while making predictions based on a small number
of actions (like an MC). It attempts to identify which things from a user’s activity history
are “relevant” at each timestep and uses them to anticipate the next item. Many empiri-
cal investigations show that SASRec outperforms several state-of-the-art sequential models
(including MC/CNN/RNN-based approaches).

2.3.6. BERT4Rec

BERT4Rec [64] is a sequential recommendation model that uses deep bidirectional self-
attention to represent user behaviour sequences. Besides, the Cloze objective is use to
sequential recommendation to avoid information leakage and quickly train the bidirectional
model, predicting randomly masked items in the sequence by concurrently conditioning on
their left and right contexts. In this way, we learn a bidirectional representation model to
make recommendations by allowing each item in user historical behaviors to fuse information
from both left and right sides, rather than the left-to-right unidirectional representation
models
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2.4. Food Recommendation
As we mentioned earlier, approaches to food recommendation can be categorized into the

following categories [69] that consider: (1). user’s preferences [17]; (2). nutritional needs of
users [1]; (3). both of them [18]. Our study is related to the third category, but we take a
different approach than the existing work.

Current methods for food recommendation mainly consider the nutrition information via
food analysis or external nutrition guide. For a weight goal, it may be recommended to con-
sume some groups of foods instead of others, or consume different groups of foods at some
proportion. Most automatic methods have tried to incorporate healthiness into the recom-
mendation process by substituting ingredients [68, 9], incorporating calorie counts [19], and
generating food plans [18]. A critical problem is that the recommended foods or food plans
may be very different from the user’s habits and food preferences. In many cases, a user
will start a diet program, but abandon it after a while [11, 61]. The key issue is that a too
drastic change in food choices can be hardly adopted by a user. An alternative approach
is to make gradual changes, by proposing some food alternatives that are acceptable to the
user. Over time, the accumulated changes will eventually lead the user to the goal. This
gradual approach has been found more successful, especially for users who are not monitored
by a professional [28, 4]. This is the general approach we take in this work.

Many food guidelines are created for general population, without taking into account the
specific health information of the user. While personalized food guides can be built with the
help of a nutrition professional, this solution is not accessible to many people. The general
food recommendation systems do not incorporate user’s personal health information such
as BMI. Some existing recommendation methods balance user’s food preference and user’s
health via simple fusion inside the model. For example, Ge et al. [19] simply calculated
the weighted mean between the preference component and health component. Elsweiler and
Harvey [18] used a simple approach to increase or reduce the amount of calories by 500
kilocalories for users who want to gain or to lose weight. However, it may also be the case
that the expected outcome is not produced, or the user will not adopt the recommended foods
- a critical challenge in this domain [69]. We believe that making food recommendation by
following real success examples we observed in data can truly lead to the expected outcome.
By combining goal-oriented recommendation with user preferences, the recommendations
can be more easily adopted by users.
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Chapter 3

Problem Description

Overweight and obesity are considered to be the fifth cause of death all over the world.
As in 2008, the number of overweight adults was 1.5 billion, of which 200 million of them
were obese men and nearly 300 million were obese women [5]. Therefore, many people are
concerned about their weight and try to control it nowadays.

Many health- and nutrition-related factors are important to consider for human weight
and health management. First, the main factors which may determine one’s ability of weight
management are genetics, behavior, diet, and environment. Among them, diet is the most
important factor that affects management of body weight [5, 31]. To have a healthy and
balanced diet, it is important to consume food which will provide enough but not too much
calorie and food’s calorie distribution is also an essential factor [47, 24, 71]. Studies have
shown that calorie intake less than the required amount or changes in the food calorie
distribution may have impacts on one’s weight management [75]. To better understand the
roles of calorie intake and food variety, we will describe the calorie factor and food variety
factor in details in Section 3.1 and Section 3.6, respectively.

Besides, regarding the food, many research papers [8, 16, 54, 78] in nutrition science
show that users’ starting weights and their intents could have huge impacts on their choices
of food, therefore resulting in quite different diets. Thus, we also consider these two health
factors, which are described in details in Section 3.2 and Section 3.3, respectively.

Each health factor may have positive, negative or no impact for human body weight
management. It is interesting to explore how these health factors could affect the food rec-
ommendation performances. Therefore, in our task, we will incorporate the above mentioned
health factors (Calorie, BMI, Intent, and Variety) into food recommendation, and conduct
experiments on the real-world data from a wildly-used weight control application.

Furthermore, these health factors are defined at different levels: Calorie is for item-level,
which means there are calorie values for each corresponding items; BMI and Intent are
defined at the user-level; Variety is calculated based on basket-level (a set of food items). So



Table 3.1. Average Calorie for Each Food in An Example Day

Item Average calorie

coffee 45.61
egg 121.41
chocolate 175.9
chicken 227.62
salad 105.33
bacon 132.64
watermelon 74.39

the several preliminary experiments have been conducted to determine the best approaches
to incorporate these three types of health factors.

• For Calorie, we treat it as an enhanced input of each item for the recommendation
system.

• For BMI and Intent, we divide all data into sub-groups depending on the user’s
starting BMI and periods’ intents.

• For Variety, we use greedy search to recalculate final ranking scores of every items,
then consist the new recommend basket.

3.1. Calorie
Caloric restriction is the most common method to control weight [78]. Weight loss occurs

when energy intake is less than energy expenditure [8, 16]. Therefore, to successfully build
a health recommendation system, it would be beneficial to incorporating calories factor in
to our system.

The data we collect form the weight loss applications has rich information of calories,
such as item calories, whole day calories, breakfast calories, lunch calories, etc. Nevertheless,
the amount of calorie input by the users for each meal is not very precise. In many cases,
it is difficult to determine if a food is consumed for lunch or diner. We also observe some
variations of calories for the same food item (e.g. sandwich). Therefore, we take a simplified
approach: we only consider item calorie and whole day calorie, and use the average calories
of a food item input by all the users. Table 3.1 lists an example day’s food with its average
calories among all dataset.
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Table 3.2. User Classification According to Body Mass Index (BMI)

Classification BMI Category

Underweight < 18.5
Normal weight 18.5 - 24.9
Overweight 25.0 - 29.9
Obese >= 30

Table 3.3. Top 10 items consumed based on different BMI groups

Top Underweight Normal Weight Overweight Obese

1 milk cheese cheese cheese
2 cheese milk milk chicken
3 yogurt coffee coffee milk
4 cereal chicken chicken coffee
5 coffee egg egg egg
6 peanut butter yogurt salad salad
7 salad salad yogurt yogurt
8 egg cereal cereal banana
9 chicken banana banana oil

10 candy oil oil cereal

3.2. BMI
Body Mass Index (BMI) is a measure of body fat based on height and weight that applies

to adult men and women. BMI can be calculated by the formula 3.2.1.

BMI = weight(kg)
height(m)2 , (3.2.1)

According to the BMI classification defined by Health Canada1, users can be divided to
6 groups (‘Underweight’, ‘Normal Weight’, ‘Overweight’, ‘Obese class I’, ‘Obese class II’ and
‘Obese class III’) based on their BMI values. To group users in our dataset, we use BMI
values from the users’ initial login day. Besides, ‘Obese class I’, ‘Obese class II’ and ‘Obese
class III’ are merged into one group called ‘Obese’. Table 3.2 shows the final classification of
BMI for our dataset.

In order to observe the differences of these BMI groups, we list the top 10 food items
which are consumed by users of these groups in Table 3.3. Several diverse eating habits may
be seen among these groups, which can be summarized as follows:

(1) The underweight group’s top-1 food is ‘milk’, while the other groups’ top-1 food is
‘cheese’.

1https://www.canada.ca/en/health-canada/services/food-nutrition/healthy-eating/healthy-weights/canadian-
guidelines-body-weight-classification-adults/body-mass-index-nomogram.html
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(2) In the underweight group, ‘yogurt’ is ranked third, while it is ranked sixth, seventh,
and seventh in the normal weight, overweight, and obese groups, respectively.

(3) ‘chicken’ is the second most preferred food among obese users, whereas it ranks at
ninth among underweight users.

(4) There are ‘oil’ on the top-10 popular in normal weight overweight and obese groups,
however, ‘oil’ is not the top-10 choose for the underweight users.

(5) ‘cereal’ ranked higher in the lower BMI groups (such as Underweight group) than it
in the higher BMI groups (like Obese group).

Although the popular food among these BMI groups are similar, the different orders
among different groups show the different eating patterns between Underweight, Normal
Weight, Overweight and Obese weight groups. Therefore, it is appropriate to make food
recommendation in taking into account the user’s BMI. The results of further experiments
are discussed in Chapter 6.

3.3. User Intent
Our dataset is collected and sorted from real-world users’ food records. Users choose their

long-term intents from the following five options at the beginning of their annual record:
(1) maintaining current weight;
(2) losing 0.5 pound per week;
(3) losing 1 pound per week;
(4) losing 1.5 pound per week;
(5) losing 2 pound per week.
However, users’ temporal weight change curves usually exhibit some fluctuations, no

matter their long-term intents are increasing, decreasing or maintaining the weight. To
demonstrate this, we randomly select three users with three different long-term intents and
plot their weight trends throughout the logged days in Figure 3.1.

We can observe that the red line, which records the weight changes of a user (ID: 450),
increases over time but with some fluctuations. Similarly, the blue line (user ID: 28403, whose
weight drops) and green line (user ID: 10378, whose weight remains relatively consistent)
also show these kind of oscillations.

Because of these fluctuations, the user’s long-term intent may not be able to accurately
reflect the user’s weight changes. So the users’ underlying short-term intents become a
crucial factor in our task. Dividing underlying short-term intents by week is an appropriate
time granularity according to the many nutrition aspect papers [75, 59, 51]. Specifically, we
segment users into three sub-groups as defined by whether they experience weight increase
(i.e., last observed weight is higher than start weight), weight maintenance (i.e., last observed
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Fig. 3.1. Weight Trends for Random selected Users with Three Different Intents

Table 3.4. Average Calories Among Different Groups

Data Average Item Calorie Average Whole Day Calorie

Total 137.20 1758.11
Underweight 89.63 1358.09
Normal Weight 124.12 1703.74
Overweight 143.31 1806.48
Obese 147.34 1768.51
Increase 140.23 1823.15
Decrease 135.41 1722.43
Maintenance 140.27 1743.33

weight is as same as start weight), and weight decrease (i.e., last observed weight is lower
than start weight) in each week.

3.4. Calorie Within BMI and Intent Groups
In order to analyze the impact of calorie factor within the BMI and intent groups, the

statistic is shown in Table 3.4.
Both the average item calorie and whole day calorie in the underweight group are the

lowest ones, which are 89.63 and 1358.09 separately. On the contrary, the obese group’s
average item calorie shows the highest value (147.34) among all the datasets. In addition,
compare these three user intent groups, increase, decrease and maintenance. The decrease
group’s average item calorie and whole day calorie are the lowest among them, at 135.41 and
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1722.43, respectively. And the average whole day calorie of the increase group is 1823.15,
which is the greatest value among all the groups.

Thus, we can observe that calorie restriction indeed shows positive impacts on weight loss.
Besides, lower weight groups, such as underweight group, typically consume fewer calories
than higher weight groups, such as overweight group. The similar phenomenon can also
be observed in intent groups, as calorie intakes are higher for increase group than decrease
group.

3.5. Combine BMI and Intent
The BMI categories of users, as well as their short-term intents, are crucial for weight

management. Therefore , we create sub-groups based on these two criteria. In particularly,
we take into account consumers’ intentions depending on distinct sub BMI groups.

As a result, we use ‘Un_In’, ‘Un_Ma’ and ‘Un_De’ to denote sub-groups inside the
‘underweight’ group, which represent ‘underweight Users with Increase Intent’, ‘underweight
Users with Maintenance Intent’ and ‘underweight Users with Decrease Intent’, respectively.
Similarly, we can also segment the ‘Normal Weight’, ‘overweight’ and ‘Obese Weight’ groups
into these three sub-groups. All the sub-groups’ statistics are shown in the last 12 rows in
Table 4.1.

3.6. Variety
The role of variety in nutrition aspect is debatable. On the one hand, ecological evidence

suggests that consuming greater variety in one’s diet usually increases consumption in the
overall diet, within food groups, and within eating bouts [55]. Thus, in those circumstances
in which negative energy balance or maintenance of energy balance is desired (i.e., during
weight loss and weight maintenance), consuming a diet with higher variety may make these
periods more difficult [47]. However, some researchers also consider that greater variety is
beneficial because occasional indulgence in energy-dense foods might help people make more
disciplined dietary choices [63, 24].

Therefore, given the potential role of variety in users’ eating habits, we would like to
explore if variety could have the positive impact of our health recommendation system.
Then we construct a concentration index for the share of calories consumed across each
of the food items. One commonly used index to measure concentration is the Herfindahl-
Hirschman Index (HHI) [57], which is used to measure the market concentration at the
beginning. Then many nutrition researches adopt it to measure the diet variety and achieve
great results [36, 15]. HHI can be easily computed as Equation 3.6.1 for each individual
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and time period:

HHI =
N∑

i=1
c2

i , (3.6.1)

ci = Calorie(item i)
Calorie(total) , (3.6.2)

where ci represents the daily calorie share that food item i contributes to, relative to the
total calories consumed during that day; N is the total number of items in a basket. A
higher value of this measure indicates that an individual has placed a high concentration of
their food calories towards a small set of foods (i.e., low variety). On the contrary, a lower
value of HHI expresses higher variety (low concentration) of this day.

3.7. Summary
From the above discussion, we can summarize our task as follows: Our goal is to build

a food recommendation system which incorporates item-level health factor (Calorie) and
basket-level health factor (Variety) to recommend healthy and diverse food to users. To
investigate the impact of incorporating these health factors into the recommendation model,
we will conduct experiments on a real-world dataset collected from a weight losing appli-
cation. Furthermore, we also experiment our models on sub-group datasets which divided
according to the user-level health factors (BMI and Intent). The details of the experimental
data and our methodology will be presented in Chapter 4 and Chapter 5.
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Chapter 4

Dataset and Evaluation Metrics

We begin with a description of Lost-it data in Section 4.1, followed by a full description of
data processing procedures in Section 4.2. The evaluation metrics, on the other hand, can
be found in Section 4.3.

4.1. Lose-it Data Description
Lose-It 1 is a popular weight management app. From the users, it collects rich information

about their daily food consumption ad exercises. In our work, we use a dataset that contains
12 months (January 2016 to December 2016) of food items consumption records on Lost-It
mobile application as well as a detailed description of each user: the initial weight, the initial
goal, age, gender, etc. The data we use have been anonymized so that the user’s identity
cannot be recognized (replaced by an ID number). In order to rely on the most reliable data,
we identify records from users who record their meals consistently. We apply some criteria
to select the users who fulfill all the following requirements:

• The user’s age should between 18 and 65;
• The user’s weight should change at least 5 times;
• The user should log in their meal more than 200 days (365 days in total);
• The user’s total records should more than 2,000.

After the selection, we have 15,408,719 food records belonging to 7,496 users as well as
312 food items. The statistics of Lose-It dataset are summarized in Table 4.1. In addition,
the most 80 popular consumed food items list can be found in the Appendix A.1. The food
entries in our dataset range from individual ingredients or foods (e.g. sugar, cheese) to foods
containing a mixture of ingredients/components (e.g. potato salad, burrito). Furthermore,
fruits and vegetables made up a large proportion of consumption frequency, indicating that
our dataset is actively attempting to lose weight through diet (and possibly also exercise).

1https://www.loseit.com/



Table 4.1. The statistic of Lose-It dataset based on different groups. No/Ov/Ob means
the BMI groups: Normal weight/Overweight/Obese, while In/De/Ma means weight out-
come/intent: increase/decrease/maintenance.

User Average Average Average Total Average #
Number BMI Weight Height Records Records / User

Total User 7,496 27.2 175.9 67.3 15,408,719 2,055.6
Male User 2,927 28.0 198.2 70.5 6,132,061 2,095.0
Female User 4,569 26.6 160.6 65.1 9,276,658 2,030.3
Underweight 39 17.9 110.8 65.9 114,316 2,931.2
Normal Weight 2,286 22.4 141.2 66.5 5,389,511 2,357.6
Overweight 2,576 26.4 173.0 67.8 5,382,564 2,089.5
Obese 2,595 33.3 216.7 67.6 4,522,328 1,742.7
Increase 6,335 26.7 173.6 67,5 3,402,773 537.1
Decrease 7,245 27.7 179.6 67.4 5,625,669 776.5
Maintenance 6,656 27.0 174.0 67.1 6,380,277 958.6
Un_In 35 17.8 106.3 64.7 31,979 913.7
Un_De 36 17.7 107.5 65.4 35,926 997.9
Un_Ma 34 18.1 114.9 66.8 46,411 1,365.0
No_In 2,079 22.5 142.6 66.6 1,350,754 649.7
No_De 2,191 22.4 141.4 66.5 1,675,282 764.6
No_Ma 2,098 22.3 140.2 66.4 2,363,475 1,126.5
Ov_In 2,251 26.5 175.2 68.0 1,214,837 539.7
Ov_De 2,504 26.3 172.5 67.8 1,910,671 763.0
Ov_Ma 2,310 26.4 172.1 67.6 2,257,056 977.1
Ob_In 1,970 33.3 218.7 67.9 805,203 408.7
Ob_De 2,514 33.2 215.5 67.5 2,003,790 797.1
Ob_Ma 2,214 33.4 217.1 67.5 1,713,335 773.9

In order to better design and verify our frameworks, we divide several sub-datasets based
on users’ start weight group and their intents. More specific descriptions are given in Sec-
tion 4.2.

4.2. Data Preprocessing
According to previous nutrition and health science researches [5, 63, 31, 16, 15], food

plays the most important role in maintaining a healthy weight or losing/gaining weight.
Furthermore, users in different weight groups usually require different recipes to achieve
their objectives. And their underlying intents usually have a significant impact on weight
loss, increase and maintenance.
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The way we distinguish users’ weight groups and underlying intents is according to their
BMI and actual weight changes, which are explained in Section 3.2 and Section 3.3, respec-
tively.

4.3. Evaluation Metrics
We adopt a number of common evaluation metrics to evaluate our frameworks, which

are widely used in recommendation systems and other ranking tasks.
Assume a set of n objects to rank. Given a user u in the user set U , we use R̂(u) to

represent a ranked list of items that a model outputs, and R(u) to represent a ground-truth
collection of items that user u has consumed. In our evaluation scenario, following the
common practice in recommendation, only the top-ranked K items are taken into account,
which means we truncate the recommendation list with a length K.

4.3.1. Hit@K

Hit@K (also known as Hit-Ratio at K) is a method for determining the number of ‘hits’
in a K-sized list of ranked items. We label a recommended item a ‘hit’ if it corresponds to
one item in the ground-truth set of daily food items.

Hit@K = 1
|U |

∑
u∈U

|R̂(u) ∩ R(u)|
|R(u)| , (4.3.1)

where |R(u)| denotes the item count of R(u).

4.3.2. Precision@K

Precision (also known as positive predictive value) is a metric for calculating the per-
centage of relevant items out of all the recommended items. The final result is computed by
averaging the metrics for each user u.

Precision@K = 1
|U |

∑
u∈U

|R̂(u) ∩ R(u)|
|R̂(u)| , (4.3.2)

where |R̂(u)| denotes the item count of R̂(u).

4.3.3. R-Precision

R-precision is defined as the proportion of the top-R retrieved items that are relevant,
where R is the number of ground-truth relevant items for the current user u, denotes as
|R(u)|. Therefore, the calculating formula is similar with Equation 4.3.2, with the different
cutoff R.

R-Precision = 1
|U |

∑
u∈U

|R̂(u) ∩ R(u)|
|R̂(u)| , (4.3.3)
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where |R̂(u)| and |R(u)| denote the item count of R̂(u) and R(u), respectively. Therefore,
|R̂(u)| = |R(u)|.

4.3.4. Recall@K

Recall is a metric that calculates the fraction of corrected recommendation items out of
all relevant items.

Recall@K = 1
|U |

∑
u∈U

|R̂(u) ∩ R(u)|
|R(u)| , (4.3.4)

where |R(u)| denotes the number of items in R(u), and |R̂(u) ∩ R(u)| represents the item
count of the intersection set of R̂(u) and R(u).

4.3.5. NDCG@K

NDCG (also known as Normalized Discounted Cumulative Gain) not only measures the
proportion of correct recommended items, but also it takes the positions of correct recom-
mended items into consideration by assigning higher scores to hits at top ranks.

NDCG@K = 1
|U |

∑
u∈U

⎛⎝ 1∑min(|R(u)|,K)
i=1

1
log2(i+1)

K∑
i=1

δ(i ∈ R(u)) 1
log2 i + 1

⎞⎠ , (4.3.5)

where δ(·) is an indicator function, which δ(x) = 1 if x is true and 0 otherwise.
Basically, the NDCG will be high if the ground-truth items are ranked high in the recom-

mended list. The lower the rank for ground-truth items, the more their gains are discounted
(in the logarithm form of its rank).

4.3.6. MRR@K

MRR (also known as Mean Reciprocal Rank) calculates the reciprocal rank of the first
relevant item retrieved by an algorithm. It is also known as the Average Reciprocal Hit Ratio
(ARHR).

MRR@K = 1
|U |

∑
u∈U

1
rank∗

u

, (4.3.6)

rank∗
u is the rank position of the first relevant item retrieved by an algorithm for a user u.
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Chapter 5

Healthy Food Recommendation System

In this chapter, we will describe the approaches we explore. We will start by some preliminary
exploration to determine the basic recommendation approach. Then a model combination
approach will be proposed to combine a general recommendation model with a goal-oriented
recommendation model for a user to achieve the goal. The chapter is organized as follows:

(1) We will describe the two basic modeling approaches for our task based on the entire
and sub datasets described in Section 4. The first approach is the next-item recommendation,
as discussed in Section 5.1, in which a sequence of previously consumed items are fed into the
model, and the model recommends new items one by one. Another method is the next-basket
recommendation, described in Section 5.2, takes the same sequence of previously consumed
items, but instead of recommending new items one by one, the model outputs a basket of
candidate items at a time, which is more realistic to many real-life scenarios.

(2) We will then describe methods to encode food items (through their names) and
calories amounts. The sequence of encoded information will be used as the input to a
recommendation model, which is then asked to recommend the next food item or next
basket of foods.

(3) A specific base recommendation model, called HHFR, will be described.
(4) The reason and approaches of our proposed model combination approach will be

described. Firstly, the “following good examples” philosophy of our food recommendation
will be explained. Then we will show how different BMI- and Int- models will be trained,
and how different models work in combination to make food recommendations.

5.1. Next-item Recommendation
The sequence of users’ consumed food items usually has a significant impact on their

future meal choices. There are certain predictable patterns in the sequence of users’ food
selection. For example, if a user chooses to consume a lot of dairy in the previous days, it
is possible that he or she has a strong dairy consumption habit and will probably consume



Fig. 5.1. An example of the training process of next-item recommendation modeling method

dairy again in the near future. Therefore, it is reasonable to employ a sequential prediction
model to predict the user’s future consumption. Among those sequential recommendation
approaches, a popular one is next-item recommendation, which aims to predict a user’s next
item choice based on the sequential interactions in the past [65, 66, 25, 26, 76].

Following the proposed sequence preprocessing method, which is introduced in [13]. We
treat each entire day’s food items for every user as a new training session. Therefore, there are
many new training sessions for each user, depending on how many days the user has logged in.
Given an input training session [x1, x2, · · · , xn], we generate the sequences and corresponding
labels ([x1], V (x2)), ([x1, x2], V (x3)), · · · , ([x1, x2, · · · , xn−1], V (xn)) for training. Figure 5.1
shows how we generate training sequences for an original session: [coffee, egg, chocolate,
chicken, salad, bacon, watermelon]. In this example, there are in total 7 items in the
session, so we can generate 6 training sequences from it.

5.1.1. Preliminary Experiments

The first question we are faced with is what basic recommendation method is the best
for the food recommendation application. To this end, we conduct several preliminary ex-
periments of previous models on Lose-it full data, which are described in Chapter 4. The
Results are shown in Table 5.1, which RNN based GRU4Rec model [65] shows the superior
performance among all the other models in full data. Thus, our subsequent experiments will
use this model as the basic recommendation model.
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Table 5.1. Preliminary Test of Next-item Recommendation based on Lose-it full data

Groups Models Recall@10 MRR@10 NDCG@10

Markov Chain FPMC 0.4014 0.1784 0.2332
TransRec 0.4010 0.1609 0.2169

RNN GRU4Rec 0.4291 0.1945 0.2493

Attention
STAMP 0.4258 0.1869 0.2426
SASRec 0.4141 0.1838 0.2375
BERT4Rec 0.4033 0.1739 0.2274

Fig. 5.2. Generic structure of the network used in our Next-item Recommendation.

5.1.2. Model Architecture

GRU4Rec [65] model is chosen as the base next-item recommendation model in our
future experiments and it has been described in Section 2.3.3. GRU4Rec follows the generic
structure of the RNN model shown in Figure 5.2. The Gated Recurrent Unit (GRU) [10] is
used as the recurrent layer. The 300-dimensional GloVe Pre-trained [50] item embeddings
are adopting in our model.

As for encoding the enhanced input health factor (Calorie) of each food items, we adopt
the traditional Look-up embedding, which will be described in the Section 5.2.1.2.

Then it is trained using standard mini-batch gradient descent on the cross-entropy loss
via Backpropagation Through Time (BPTT) [44] for a fixed number of time steps.
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Fig. 5.3. The training process of next-basket recommendation modeling method

5.2. Next-basket Recommendation
Next-basket modeling approach is an alternative choice. Instead of recommending a

single item at a time, Next-basket recommending approach recommends a set of items, or a
basket, to the user based on his or her historical baskets [6, 56, 77, 79, 80]. In our task,
we segment the items logged in a day as a basket for each user. Since we are recommending
a whole day’s foods to the user, the relative positions of each item in the basket is not
very important, which means [coffee, egg, chocolate] and [chocolate, egg, coffee] are
considered as the same basket.

The training procedure is illustrated in Figure 5.3. Given a sequential basket records
Bu = {Bu

1 , Bu
2 , · · · , Bu

T } of user u, we predict the last basket Bu
T based on the previous

basket sequence {Bu
1 , Bu

2 , · · · , Bu
T −1}.

5.2.1. Preliminary Experiments

As for the next-item recommendation, we also conduct several preliminary experiments
based on Lose-it full data to compare GloVe and Bert embeddings (Section 5.2.1.1), the
different encoding ways (Section 5.2.1.2) and incorporate health factors (Section 5.2.1.3).
Those preliminary results are described in Section 5.2.1.4.

5.2.1.1. Item Embedding.
For item embedding, we compare the commonly used GloVe and BERT word vectors, which
are represented in Section 2.1.1 and Section 2.1.2, respectively. GloVe word vectors have
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Table 5.2. Statistic of GloVe and Bert word embedding

Average Minimum Maximum Abs Average

GloVe 100d -0.0010 -2.2466 2.4304 0.4004
GloVe 300d -0.0069 -2.1935 1.8505 0.2959
Bert 768d -0.0048 -1.0000 1.0000 0.4011

Table 5.3. Statistic of Healthy Factor: Calorie.

Average Minimum Maximum Median Standard

Calorie 137.2 0.0 1000.0 100.0 134.0

100 and 300 dimensions, while Bert word vectors have 768 dimensions. There are 100-
dimension and 300-dimension for GloVe word vectors, and 768-dimension for Bert word
vector. Table 5.2 shows the statistics for Glove and Bert embeddings.

From Table 5.2 we can observe that the average values and extrema of the GloVe and
Bert embeddings are 10−1 and 10−3, respectively.

5.2.1.2. Health Factor Embedding.
For each item, our health factor is a real value and the order of magnitude is usually not
matched with the GloVe and Bert embedding (the order of magnitude of GloVe and Bert
embeddings’ average values are are 10−3, while it is 102 for the value of calorie). Therefore,
we cannot directly input it into the model. The statistics of health factors in our data are
summarized in Table 5.3.

Therefore, there are two ways to generate health factor embeddings in our work, tradi-
tional Look-up Embedding and Multi-dimensional Adaptation Transformation:

(1) Look-up Embedding: It is the one of the most often used strategies for generating
health factor’s embeddings to a neural model. It means we randomly initialize a
trainable embedding matrix for health factor, such as Calorie. Then we round-up
each health factor’s value to the closest integer as its index of embedding matrix.
Therefore, the size of calorie embedding matrix is [1001, embedding size], and can be
trained throughout the training process.

(2) Multi-dimensional Adaptation Transformation (MAT): Another option to
incorporate the health factor into our model is to build a multi-dimensional encoding.
Inspired by the Transformer [74], which employs sinusoidal vectors to encode the
position of each term, we could also construct transformations which maps the health
factor into an encoding vector. Here we follow the Transformers to map the scalar
health factor into a multi-dimensional vector in order to encode more discriminative
information to help the model to learn the impact of different health factor values.
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Fig. 5.4. Illustration of the Adaptation Transformation Functions at Each Dimension

We call this mapping the Multi-dimensional Adaptation Transformation. The desired
transformation should have the following design criteria:
(a) Monotonously increasing: As stated before, the health factors are real-valued

scalars such as Calories, which carries physical meanings. Therefore, given two
health factor values x1, x2 with x1 < x2, the desired transformation should map
a higher-value health factor to a vector in which each dimension is greater than
that of the smaller-value health factor. i.e. f(x1)(i) < f(x2)(i), ∀i = 1 · · · n, where
f(x1)(i) indicates the ith dimension of the mapped vector for health factor x1.

(b) Non-periodicity: Moreover the transformation need to be strictly monotonous,
i.e. given x1 �= x2, each dimension of the mapped vector should have different
values f(x1)(i) �= f(x2)(i), ∀i = 1 · · · n. Since we do not want to map two health
factors with the different values to vectors having same values at certain dimen-
sions, which will cause confusions to the model.

Taking into considerations of the above desired properties, we choose hyperbolic
tangent (tanh) with some translation and stretching as our transformation function.
Therefore, for a float health factor value, the transformation function generates v =
[v0, v1, · · · , vd−1] as its encoding. The calculation of the value in ith dimension vi is
presented in Equation 5.2.1.

vi = 2 tanh
(

x

500 + 1000
d−1 i

− 0.5
)

, 0 ≤ i < d, (5.2.1)

where d is the dimension of the mapped vector, x represents the value of health factor
(i.e., calorie) that x ∈ [0,1000].
Therefore, for every dimensions, the different degrees of translation and stretching
are dynamically employed. For example, when the dimension of vector d is set as 300,
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Table 5.4. Description of Next-basket Preliminary Models

Model Name Item Emb HF Emb Dimitem DimHF Incorporation Type

Glove_100d_cat GloVe MAT 100 100 Concatenation
Glove_100d_plus GloVe MAT 100 100 Plus
Glove_300d_cat GloVe MAT 300 300 Concatenation
Glove_300d_plus GloVe MAT 300 300 Plus
Glove_300d_train GloVe Look-up 300 300 Concatenation
BERT_768d_cat BERT MAT 768 768 Concatenation
BERT_768d_plus BERT MAT 768 768 Plus

1000
d−1 = 3.345, then the denominators in Equation 5.2.1 are [500, 503.345, 506.690, · · · ,
1500].
To better demonstrate the proposed transformation, we visualize the transformation
functions for dimension 0 and d − 1 and plot them in Figure 5.4, and the curves
of intermediate dimensions (dim 1 to dim d − 2) are omitted. We can observe that
the tanh function could transfer different health factor values in to different scalars
for each dimension of the vector while preserving the trends. Besides, the order of
magnitude and value domain of transformed scalars are similar as GloVe and BERT
embeddings that is shown in Table 5.2.

5.2.1.3. Incorporation of Health Factor.
There are two most frequent methods to incorporate the item embedding with health factor
embedding, which are concatenation and sum by each dimension.

(1) Concatenation: The straightforward approach of incorporating health factor into
item embedding is concatenation operation, which is also a stacking operation. Fig-
ure 5.5 shows the concatenation of item and health factor representation as input of
our model. Thus, the dimension of vector after concatenation would become item
embedding size + health factor embedding size.

(2) Sum: According to the ‘positional encoding’ in transformer model [74]. Each health
factor embedding is generated with the same dimension as the item embedding di-
mension, so that these two can be summed by each dimension. As a result, the
dimension of the vector after plus is the same as the size of the item embedding and
the size of the health factor embedding.

5.2.1.4. Results of Preliminary Experiments.
The preliminary experiments are conducted on different Item Embedding (Section 5.2.1.1),
Health Factor Embedding (Section 5.2.1.2) and Incorporation method (Section 5.2.1.3). A
summary of these preliminary models is presented in Table 5.4. The performances of the
above models are compared in Table 5.5.
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Table 5.5. Preliminary of next-basket recommendation based on Lose-it full data. P@K
and R@K represent precision@K and recall@K, respectively. The results of best model is
boldfaced.

Model Name P@1 P@5 P@10 R-Prec R@5 R@10 NDCG@5 NDCG@10

Glove_100d_cat 0.4371 0.3257 0.2633 0.2775 0.1923 0.2990 0.3196 0.2592
Glove_100d_plus 0.4367 0.3251 0.2628 0.2764 0.1920 0.2989 0.3199 0.2590
Glove_300d_cat 0.4420 0.3261 0.2654 0.2784 0.1926 0.3023 0.3219 0.2616
Glove_300d_plus 0.4408 0.3256 0.2641 0.2773 0.1926 0.3002 0.3204 0.2602
Glove_300d_train 0.4387 0.3252 0.2627 0.2761 0.1919 0.2991 0.3210 0.2594
BERT_768d_cat 0.4357 0.3242 0.2638 0.2772 0.1916 0.3003 0.3181 0.2595
BERT_768d_plus 0.4351 0.3250 0.2611 0.2733 0.1916 0.2974 0.3186 0.2567

First of all, we can observe that the BERT embedding employed for our dataset does
not show superior performance to the 300-dimension GloVe embedding. One possible reason
could be that BERT is better at capturing the semantics of long text since it is a pre-trained
language model, whereas the item names in our dataset are usually constituted of one to
three words, which may not exploit the capacity of BERT to aggregate context information.
Therefore, the simpler word embeddings such as GloVe can work equallt well.

Second, we compare the results of two health factor embedding approaches, Look-up
Embedding and MAT, which are given Section 5.2.1.2. We can see the ‘Glove_300d_cat’
model outperforms the ‘Glove_300d_train’ model, implying that Multi-dimensional
Adaptation Transformation outperforms Look-up Embedding for health factors in our
dataset.

Then in terms of incorporation type, we discovered that concatenation of item and health
factor embeddings is superior to dimension-wise addition regardless of the item and health
factore embedding approaches.

Furthermore, among all the preliminary models, the ‘Glove_300d_cat’ model achieves
the best experimental results. As a result, the following further tests are based on the
‘Glove_300d_cat’ model.

5.2.2. Model Architecture of Basic Next-Basket Recommendation

In this chapter, we propose a Health-factor-aware Hierarchical Food Recommender
(HHFR) architecture to incorporate health-related information, which is illustrated in Fig-
ure 5.5. This architecture is an adaptation of those proposed for next-basket recommendation
to our problem. HHFR utilizes a hierarchical RNN to model the user’s sequential behavior
over time, and incorporates health information (calorie) of each item into a basket.

In the following, we first model the information of a basket: encoding information of items
and health factors (calorie) in each basket; and learning the intra-basket representation.
Then we model user’s sequential inter-basket behavior by the basket-level RNN.
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Fig. 5.5. Next-basket Recommendation Model Architecture

5.2.2.1. Item and Health Factor Encoding.
The input instances of HHFR model are the representations of a sequence of baskets
{B1, B2, · · · BT } where T denotes the total number of basket. Every basket representa-
tion is of the form Bt = {Ct

j|j = 1, 2, · · · , N}, where N is the number of items in basket Bt.
Each Ct

j is a concatenated representation of a food item and its amount of calories.
For item representation, our model adpot the commonly used pre-trained GloVe word

vectors [50] to map each food item I to a da-dimension embedding EI = {eI
1, · · · , eI

da
}.

We design Multi-dimensional Adaptation Transformation (MAT) method for mapping
each float health factor value to a db-dimension embedding EH = {eH

1 , · · · , eH
db

} as health
factor embedding. The detail of MAT method is represented in Section 5.2.1.2.

Then the joint item representation is created by concatenating the item and health factor
representations, i.e. for j-th item:

Cj = CONCAT(EI
j , EH

j ), (5.2.2)

where Cj ∈ R
|da+db|×1. The representation of the t-th basket Bt with N item is Bt ∈

R
|da+db|×N .

5.2.2.2. Intra-basket Representation Modeling.
Given a sequence of items in a basket Bu

t = {Ct
j|j = 1, 2, · · · , N} of user u, we first apply

an item-level bi-directional Long Short-Term Memories (BiLSTM) [27] to capture the inter-
actions between the items within the basket. Then the resulting representation of the last
item in the basket is used as the representation V u

t of the whole basket Bu
t .
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5.2.2.3. Inter-basket Sequential Modeling.
In order to model a user’s sequential inter-basket behavior, another basket-level LSTM is
applied to the basket representations. Given a sequence of baskets {V u

1 , V u
2 , · · · , V u

T } for user
u, this LSTM will generate another representation for each basket. We take the represen-
tation of the last basket as the representation Ru

T for the whole sequence of baskets of user
u.

The output scores Su can be calculated through multiplication of item matrix M and
the whole basket sequence representation Ru

T , which is formulated as follows:

Su = MRu
T + b. (5.2.3)

We have Su
i ∈ R

|I|×1, i.e., an element of Su
i represents the interaction score between an

item i and a user u. A higher score indicates that the user is more likely to consume the
corresponding item.

5.2.2.4. The Loss Function for Optimization.
For a user u and his/her previous baskets Bu

1,t, we define the probability of an item i being
taken in the next basket Bu

t+1 by sigmoid function:

p(i ∈ Bu
t+1|u,Bu

1,t) = 1
1 + e−Su

i
, (5.2.4)

where Su
i represents the interaction score between user u and item i in Section 5.2.2.3.

To effectively learn from the training data, we adopt a weighted cross-entropy as the
optimization objective at each step of LSTM, which is defined as:

L =
∑
u∈U

∑
Bu

t ∈Bu

∑
I∈It

(−m · yi log pi − n · (1 − yi) log(1 − pi)), (5.2.5)

where pi is the probability of an item i being consumed in the next basket in our model.
If item i is consumed in the the next basket, yi = 1, otherwise, yi = 0. m and n are the
weights of positive and negative instances (consumed or not in the next basket). The reason
of using different weights is to cope with the fact that there are usually much more negative
instances than positive instances in our dataset. After training, given a user’s historical
records, we can obtain the probability of each item i being taken in the next basket according
to Equation 5.2.4. We then rank the items according to their probability, and select top K

results as the final recommended items to the user.

5.3. Model Combination
The data we collected suggest that the food choices made by users are not always con-

sistent with their global intent. Imposing food selections according to the global intent
would make the food choices very different from users’ eating habits, thereby jeopardizing
their adoption by the users. On the other hand, the real weight changes during a period
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of time may better reflect the true impact of food choices during the period, i.e. the food
choices truly led to the weight outcome. Therefore, we can consider such a period as a good
example that accomplishes an implicit goal corresponding to the weight outcome. Yet the
foods chosen by the user during the period can be considered as an acceptable food pattern
by the user. An intent model trained on such examples may be a smoother adaptation of
the user’s normal eating pattern toward the implicit goal, than the traditional food rec-
ommendation approaches based on dietary guidelines [1]. Based on the above observation,
we propose an approach to model intents based on behavior data of the periods (i.e. good
examples) that produced the intended weight change. The philosophy of our approach to
food recommendation can be stated as “following good examples”.

Therefore, we train different models to capture the eating patterns of different groups of
users, including:

• a general/full model for all the users (General/Full-model): the model is trained
with all the training data mixed together, which can capture general eat patterns of
all the users in all period.

• models for each BMI group (BMI/Middle-models): A BMI model is trained
with data from each BMI group (‘Underweight’, ‘Normal Weight’, ‘Overweight’ or
‘Obese’).

• models for each intent (Int): These models are trained on data from periods corre-
sponding to the intent (‘Increase’, ‘Decrease’, or, ‘Maintenance’). We expect these
models capture some common eating patterns of users with the same intent.

• models for different intent/outcome groups within each BMI group (BMI+Int/Sub-
models): Each model is trained with the specific intent sub-group (e.g. No_In)
within a BMI group.

The middle and sub models are trained on the “good example” periods, the combination of
these models with full-model could enhance guide model smoothly toward the goal. Fur-
thermore, combine fuse full-model and sub-models by recalculating the ranking score of each
item according to the scores of the corresponding models, and testing it on the sub-data.

There are two ensemble methods are adopted in our experiments, which are two models
ensemble (Section 5.3.1) and three models ensemble (Section 5.3.2). In the next chapter, we
will test different combination of models to test its effectiveness on our data.

5.3.1. Two Models Ensemble

We introduce a parameter α to control the proportion of full-model and sub-model. The
recalculation equation is given in Equation 5.3.1:

Snew = (1 − α) · Sfull + α · Ssub, α ∈ [0, 1], (5.3.1)
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where α is the sub-model ratio, when α equals 0, it means we apply the completely full model
score as the new score. Similarly, it means we only utilize the sub-model to predict when α

equals 1. Besides, we also combine the full-model and sub-models by taking α values in the
range of [0,1] with a 0.1 increment.

5.3.2. Three Models Ensemble

In this scenario, the proportions of full-model, middle-model, and sub-model are con-
trolled by two parameters: α and β. The re-calculation details are given by Equation 5.3.2:

Snew =(1 − α − β) · Sfull + α · Smiddle + β · Ssub,

α, β ∈ [0, 1], α + β ≤ 1,
(5.3.2)

where α and β are two ratios that represent the proportions of the middle-model and sub-
model, respectively. Besides, the value ranges of α and β are identical to the parameter α

in Equation 5.3.1, which is in the range of [0,1] with increment of 0.1. When α = β = 0,
which means we only use full-model to predict; When α = 1 and β = 0, it means new score
only based on the middle-model. Similarly, the sub-model score is considered as the final
new score when α = 0 and β = 1.
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Chapter 6

Experimental Results

Extensive fine-grained experiments have been conducted to validate the models’ perfor-
mances and the impacts of the health-factors, which are represented in Chapter 3. In this
Chapter, we first introduce two model ensemble methods in Section 5.3; then the exper-
imental results of two modeling approaches, Next-item Recommendation and Next-basket
Recommendation are described in Section 6.2 and Section 6.3, respectively. For Next-item
Recommendation, the present sequences are Intent and sub BMI groups. Whereas, we dis-
cuss the results for Next-basket Recommendation by the effects of BMI, Intent and Variety.

6.1. Experimental Settings
In the evaluation process, the week that achieves the user’s goal (e.g. losing weight) is

treated as the ground truth. The proposed recommendation system is asked to recommend
the foods for each day of the week. If the performance of our model is more successful than
the general model, we consider it more effective than the latter. For example, there is an
obese user consumes many “pizza, hamburger, French fries" during his/her weight increase
period. Whereas, he/her consumes more “vegetable, fruit" in his/her losing weight period.
The general model is treated as the baseline model, which is trained based on the whole
mixed weight change periods. The expected model is to capture the eating patterns of the
period with the given goal rather than the other or whole periods.

Following the previous work [6], we take the last basket of each user as the testing data,
the penultimate basket as the validation set to optimize parameters, and the remaining
baskets as the training data. Therefore, the statistic of these three sets among all the sub-
datasets is shown in Table 6.1.



Table 6.1. Statistics of the dataset. No/Ov/Ob means the BMI groups: Nor-
mal weight/Overweight/Obese, while In/De/Ma means weight outcome/intent: in-
crease/decrease/maintenance.

# Records

Datasets # User # Baskets Train Validation Test

General 7,496 1,300,177 15,257,122 77,462 74,135
Underweight 39 7,926 113,329 512 475
Normal Weight 2,286 424,814 5,340,033 25,441 24,037
Overweight 2,576 459,566 5,330,912 26,542 25,110
Obese 2,595 407,871 4,472,848 24,967 24,513
Increase 6,335 281,751 3,261,940 70,376 70,457
Decrease 7,245 465,270 5,464,203 81,800 79,666
Maintenance 6,656 553,156 6,242,724 69,235 68,318
Un_In 35 1,897 30,934 519 526
Un_De 36 2,147 34,936 523 467
Un_Ma 34 3,882 45,565 418 428
No_In 2,079 105,271 1,301,246 24,823 24,685
No_De 2,191 129,999 1,622,665 26,719 25,898
No_Ma 2,098 189,544 2,316,590 23,745 23,140
Ov_In 2,251 102,778 1,165,460 24,603 24,774
Ov_De 2,504 158,977 1,855,092 28,178 27,401
Ov_Ma 2,310 197,811 2,209,588 23,996 23,472
Ob_In 1,970 71,805 764,300 20,431 20,472
Ob_De 2,514 174,147 1,951,510 26,380 25,900
Ob_Ma 2,214 161,919 1,670,981 21,076 21,278

6.2. Next-item Recommendation
The first modeling approach for our task is the next-item recommendation, which is

described in Section 5.1. In this section, we will introduce and analyze the results based on
different sub-groups relating to intents and BMI.

6.2.1. Intent Groups

We first test the combination of a model trained for each intent group and the general
model. There are three intent groups in our experiments, which are segmented by user’s un-
derlying short-term intents (Section 3.3). Therefore, we conduct experiments on ensembling
two models based on ‘Increase’, ‘Maintenance’, and ‘Decrease’ intents groups. The results is
shown in Figure 6.1.
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Fig. 6.1. Ensemble Two Models for Next-item Recommendation Based on Intent Groups
by Varying α.

(1) Increase Group: It contains the weeks which the end weight is higher than the
start weight of every user. We visualize the result in Figure 6.1.
We can observe that the performance curve of our ensemble model is convex, which
means total full-model (α = 0) or total sub-model (α = 1.0) does not show the better
results than the fusion model. Besides, the full-model’s performance is not superior
than sub-model’s performance, even the training data amount of full-model is far
more than it of sub-model. It indicates that intent health factor is an important
factor we could consider, and it shows a positive impact to our food recommendation
system.
In addition, We can see that the best performance occurs when α = 0.4 , which
means the proportions of full-model and sub-model are 0.6 and 0.4, respectively.

(2) Decrease Groups: Decrease group is opposite of the increase group, and is consti-
tuted by the weeks which the end weight is lower than the start weight. The ensemble
experiment results can be found in the Figure 6.1.
The results are shown the same pattern with the results of the increase group. For
example, the best ensemble performance is also shown when α = 0.4, which is as
same as the best α in the increase group. Furthermore, total sub-model also has a
superior result than the total full-model.

(3) Maintenance Group: As for the maintenance group, it formed by the weeks which
the end weight is as same as the start weight of each user.
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We can discover the same tendency with the increase group in, while the best perfor-
mance occurs when α = 0.1 (sub-model proportion = 0.1 and full-model proportion
= 0.9). Moreover, the model performances show the fluctuation when ensemble spe-
cific sub-model based on the maintenance group. Specifically, the specific sub-model,
which based on the maintenance group, cannot better capture users’ preferences and
trend features than the general full-model. It means the result of total full-model
(α = 0) is higher than it of the total sub-model (α = 1) in the Figure 6.1. However,
it also shows that the ensemble model is better than the individual models.

According to the experiments which are conducted on different intent groups, the ensem-
ble models’ performances are greater than the individual full- and sub-models. Besides, the
total full-models are not better than total sub-models based on increase and decrease groups,
which indicate the user’s underlying short-term intent is a positive health factor for weight
management. Furthermore, the way we consider the intent factor (segment data based on
the week underlying intents) is successful. Therefore, ensemble models based on full-model
and different intent groups sub-models can better capture users’ eating patterns and improve
the performance.

6.2.2. Underweight Group

User’s start weight is also an important health factor. In this section, model ensemble
experiments are conducted based on the underweight group, which user’s start BMI is less
than 18.5. We test the combination of the Underweight model (the model trained on all the
data of underweight users) and the general model. The result is visualized in Figure 6.2.

The data amount of underweight group is way more less than other groups (around 39
vs 2500 users). Thus, the performances are not stable on the underweight group. However,
the similar trends can also be observed from underweight groups. The best result appears
when α = 0.8 (full-model proportion = 0.2 and sub-model proportion = 0.8).

In order to further analyze the effect of users’ intent within this underweight group, we
further conduct fine-grained experiments on weeks with intents of increasing, decreasing and
maintaining weights in this underweight group, and the results are presented as follows:

(1) Results on underweight Group with Weight Increase Intent:
We can observe that when α = 0.2, the ensemble model has the best result based on
‘Un_In’ data. And the total full-model shows the superiors performance than total
sub-model, which means it is hard to capture the specific users eating habits based
on a small data set for sub-model. While when we incorporate a small portion of
sub-model (0.2), it achieves the best performance, which indicate that considering
the intent factor inside the underweight group is helpful.

(2) Results on underweight Group with Weight Decrease Intent:
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Fig. 6.2. Ensemble Two Models for Next-item Recommendation Based on underweight
Groups

As for the weight decrease intent group, which is presented by the green lines in
Figure 6.2, total sub-model shows a better result than total full-model. Besides,
when sub-model proportion is 0.8 and full-model proportion is 0.2 (α = 0.8), it
achieves the best performance.

(3) Results on underweight Group with Weight Maintenance Intent:
In Figure 6.2, the best result based on maintenance groups occurs when α = 0.3,
which the sub-model portion is lower than the best α in decrease intent group. It
could be caused by the less amount data (59 average records per user VS 3,424 records
per user). Furthermore, the performance of α = 0 (total full-model) is worse than it
of α = 1 (total sub-model).

Although the data amount of underweight group is not as rich as other groups, the
results are affected. We can also figure out that consider underweight groups separately
could help us to better capture these specific users’ eating habits, with the total sub-model
has a superior result than the total full-model. Furthermore, model ensemble is necessary on
the all underweight groups, as the best performance is always shown on the fusion models
with different ensemble proportion among these groups.
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Fig. 6.3. Ensemble Two Models for Next-item Recommendation Based on Normal Weight
Groups

6.2.3. Normal Weight Groups

The normal weight group is formed by the users whose start BMI is from 18.5 through
24.9, so there are total 2,286 users in this group (See Table 4.1). The similar ensemble
experiments are also conducted based on ‘No’, ‘No_in’, ‘No_de’, and ‘No_ma’ groups. The
result figure can be found in Figure 6.3.

The result of normal weight groups seems more stable than the underweight groups in
Section 6.2.2. Besides, the red lines in Figure 6.3 show that the best α of underweight group
is 0.5, which means half full-model and half sub-model combination.

The more detailed experiment results of users’ intents within this normal weight group
are described in the following:

(1) Results on Normal Weight Group with Weight Increase Intent:
The light blue lines in Figure 6.3 denote the increase intent group of normal weight
group. When α = 0.3, the ensemble model has the best results.

(2) Results on Normal Weight Group with Weight Decrease Intent:
As for the decrease intent group, we can observe the same trend with increase group,
and the best performance also appears when α = 0.3. It means a small portion of sub-
model can already improve the model’s ability and achieve a reasonable performance.

(3) Results on Normal Weight Group with Weight Maintenance Intent:
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Fig. 6.4. Ensemble Two Models for Next-item Recommendation Based on Overweight
Groups

In maintenance group, more incorporation of sub-model is better for the fusion model
compare to the increase and decrease groups. So the best performance occurs when
sub-model portion is 0.6.

For normal weight groups, the ensemble models also show the superiors results than the
results of total full-model and total sub-model. Therefore, it is important to consider users’
start BMI into our food recommendation. It would help us to better capture specific weight
group users’ features, and recommend more precise food to them.

6.2.4. Overweight Groups

Overweight group refers to the users whose BMI is in the range of [25.0,29.9] (See Ta-
ble 3.2). So as Table 4.1 shows, there are 2,503 users in this group, and the average records
number for each user is around 2,085. Then Figure 6.4 gives us the experiments results based
on these overweight groups (‘Ov’, ‘Ov_In’, ‘Ov_De’, and ‘Ov_Ma’).

In Overweight Group, it has the same trends with the previous BMI groups, which the
model performances curve shows a convex trend with the increase of α. And when α = 0.6,
which means the portion of full-model is 0.4 and it for sub-model is 0.6, the ensemble model
achieves the best performances among these evaluation metrics.

(1) Results on Overweight Group with Weight Increase Intent:
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The blue lines in Figure 6.4 show that when α = 0.3, the ensemble model can best
capture the habits of the users with increase intent. However, the total full-model’s
performance is better than total sub-model, which NDCG@10 are 0.2648 and 0.2467,
respectively.

(2) Results on Overweight Group with Weight Decrease Intent:
As for the decrease intent group, the total full-model also shows the better perfor-
mance than the total sub-model. And when sub-model portion is 0.1 and full-model
is 0.9, the evaluation metrics show the highest values.

(3) Results on Overweight Group with Weight Maintenance Intent:
The experiment results of the users with maintenance intent, which are drawn in
dark blues in Figure 6.4, illustrate that the total full-model is better than the total
sub-model. Moreover, we could achieve the best fusion model when α = 0.1.

Therefore, we can observe that except ‘Ov’ group, the rest three sub-groups’ (Ov_In,
Ov_De, and Ov_Ma) total full-models are more advanced than total sub-models, and the
best α are smaller than other sub-groups. However, the ensemble models are still superior
to the individual models, even the sub-model proportion is not large. Therefore, we can
also say that consider users different underlying intents in the overweight group has the
positive impact for our model performances. Besides, the results on ‘Ov’ group indicates
it is necessary to consider overweight users’ eating habits separately and incorporate to the
general model. Thus, we can better fit the recommendation situation.

6.2.5. Obese Groups

The last BMI group is obese group, which contains the users whose start BMI is great
and equal than 30. In this group, users are more need to lose weight due to the health
consideration. Besides, the weight changes also have the same embodiment with the consid-
eration, as the user numbers of increase, decrease, and maintenance intents sub-groups are
538, 1,977 and 40, respectively. The experiment results for each sub-groups is visualized in
Figure 6.5.

The best ensemble model based on the obese group occurs when α = 0.3.
(1) Results on Obese Weight Group with Weight Increase Intent:

When sub-model portion is equal to 0.4 and full-model portion is 0.6, the fusion
model based on ‘Ob_In’ reaches the best performance among the evaluation metrics,
which are 0.3269 for Hit@5, 0.2673 for NDCG@10, etc.

(2) Results on Obese Weight Group with Weight Decrease Intent:
0.4 is also the best sub-model fusion ratio for the users who have the decrease intent
in the obese group.

(3) Results on Obese Weight Group with Weight Maintenance Intent:
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Fig. 6.5. Ensemble Two Models for Next-item Recommendation Based on Obese Groups

As for the users with maintenance intents in the obese weight group, the best fusion
model is achieved when α = 0.4, which is as same as the previous sub-groups (‘Ob_In’
and ‘Ob_De’).

From the above experiments based on obese groups, it is critical to integrate the sub-
models which trained based on each obese sub-groups into full-model with the specific fusion
ratios. It not only works on the entire obese group, ‘Ov’, but also works on the sub-groups
in the obese group (‘Ov_In’, ‘Ov_De’, and ‘Ov_Ma’).

Therefore, BMI and intent are the useful health factors, which could help recommendation
model better capture users’ eating patterns, recommend appropriate food based on their
intents, and help the users achieve their health goals more smoothly.

6.3. Next-basket Recommendation
Next-basket recommendation is the second modeling method for our task, which recom-

mend a entire set of one-day’s meal at each timestep and is evaluated based on the whole set
(as shown in Section 5.2). Therefore, we adopt several different evaluation metrics for the
next-basket modeling method, which can better consider the format of the recommended
list (a whole day food set). Specifically, we use Precision@1, Precision@5, Precision@10,
R-Precision, Recall@5, Recall@10, NDCG@5, and NDCG@10.

In order to analyze the impacts of BMI and Intent health factors on our recommendation
system. We compare the performances of our system on various Intent groups (‘Increase’,
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Table 6.2. Performance comparison of different models based on NDCG@10. The best
performance based on each sub-dataset is boldfaced. Improvement of baselines (i.e., General)
are statistically significant with p < 0.01.

Datasets Un_In Un_De Un_Ma No_In No_De No_Ma Ov_In Ov_De Ov_Ma Ob_In Ob_De Ob_Ma Full
General 0.2144 0.2701 0.2134 0.2412 0.2470 0.2399 0.2251 0.2243 0.2294 0.2133 0.2257 0.2201 0.2308
Intent 0.2554 0.2843 0.2489 0.2625 0.2494 0.2486 0.2402 0.2347 0.2305 0.2199 0.2326 0.2222 0.2386
BMI 0.2907 0.3009 0.2614 0.255 0.2758 0.266 0.2403 0.2494 0.2495 0.2206 0.2503 0.2455 0.2532
Intent+BMI 0.2755 0.3014 0.2708 0.2694 0.2736 0.2609 0.2449 0.2578 0.2464 0.2435 0.2433 0.2354 0.2535

BR(I+IB) 0.2952 0.3071 0.2732 0.2764 0.2778 0.2664 0.2526 0.2603 0.2506 0.2515 0.2488 0.2382 0.2584
Improvement 37.7% 13.7% 28.0% 14.6% 12.5% 11.0% 12.2% 16.0% 9.2% 17.9% 10.2% 8.2% 12.0%

BR(B+IB) 0.3028 0.3067 0.2843 0.2779 0.2843 0.2730 0.2517 0.2601 0.2518 0.2508 0.2574 0.2476 0.2626
Improvement 41.2% 13.6% 33.2% 15.2% 15.1% 13.8% 11.8% 16.0% 9.8% 17.6% 14.0% 12.5% 13.8%

BR(G+B+IB) 0.3028 0.3236 0.2871 0.2793 0.2851 0.2731 0.2541 0.2609 0.2546 0.2529 0.2574 0.2476 0.2635
Improvement 41.2% 19.8% 34.5% 15.8% 15.4% 13.8% 12.9% 16.3% 11.0% 18.6% 14.0% 17.0% 12.5%

Table 6.3. Performance comparison of different models based on R-Precision. The best
performance based on each sub-dataset is boldfaced. Improvement of baselines (i.e., General)
are statistically significant with p < 0.01.

Datasets Un_In Un_De Un_Ma No_In No_De No_Ma Ov_In Ov_De Ov_Ma Ob_In Ob_De Ob_Ma Full
General 0.2354 0.2316 0.2185 0.2399 0.2412 0.2419 0.2298 0.2310 0.2327 0.2141 0.2314 0.2208 0.2328
Intent 0.2562 0.2380 0.2718 0.2624 0.2450 0.2423 0.2434 0.2444 0.2351 0.2274 0.2395 0.2296 0.2412
BMI 0.2898 0.2966 0.2970 0.2586 0.2738 0.2691 0.2472 0.2593 0.2620 0.2278 0.2570 0.2591 0.2602
Intent+BMI 0.2910 0.2748 0.2771 0.2636 0.2691 0.2625 0.2505 0.2680 0.2541 0.2484 0.2566 0.2508 0.2592

BR(I+IB) 0.2931 0.3008 0.2907 0.2733 0.2752 0.2648 0.2592 0.2694 0.2597 0.2530 0.2585 0.2522 0.2635
Improvement 24.5% 29.9% 33.0% 13.9% 14.1% 9.5% 12.8% 16.6% 11.6% 18.2% 11.7% 14.2% 13.2%

BR(B+IB) 0.2939 0.3073 0.3040 0.2775 0.2809 0.2740 0.2578 0.2695 0.2643 0.2542 0.2643 0.2639 0.2687
Improvement 24.9% 32.7% 39.1% 15.7% 16.5% 13.3% 12.2% 16.7% 13.6% 18.7% 14.2% 19.5% 15.4%

BR(G+B+IB) 0.2939 0.3100 0.3098 0.2787 0.2809 0.2742 0.2588 0.2698 0.2650 0.2542 0.2646 0.2639 0.2691
Improvement 24.9% 33.9% 41.8% 16.2% 16.5% 13.4% 12.6% 16.8% 13.9% 18.7% 14.3% 19.5% 15.6%

‘Decrease’ and ‘Maintenance’) and BMI groups (‘Underweight’, ‘Normal Weight’, ‘Over-
weight’ and ’Obese’), see Section 3.3 and Section 3.2, respectively. First, we incorporate
BMI factor into three different intent groups (Section 6.3.1) to discover the impact of it.
Then, intent factor also be merged into four BMI groups (Section 6.3.2) to evaluate its
effect.

The performances of NDCG@10 and R-Precision of all the data groups for ensemble
models are presented in Table 6.2 and Table 6.3, respectively. ‘General’ row reflect the per-
formance of the general full-model, ‘Intent’ presents the ‘In’, ‘De’, ‘Ma’ models’ results. ‘BMI’
shows the ‘Un’, ‘No’, ‘Ov’ ‘Ob’ models’ results. ‘Intent+BMI’ is the specific sub-models’ per-
formances, such as ‘Un_In’, ‘No_In’, etc. ‘BR(I+IB)’, ‘BR(B+IB)’ and ‘BR(G+B+IB)’ are
the three ensemble models with best fusion ratios, which G, B, I, and IB denotes ‘General’
model, ‘BMI’ model, ‘Intent’ model, and ‘Intent+BMI’ model, respectively.

6.3.1. Effect of BMI

The rows ‘BMI’ in Table 6.2 and Table 6.3 reflect the BMI-specific models performances,
which are average 0.2532 for NDCG@10 and average 0.2602 for R-Precision. The average
performances of general full-model are 0.2308 and 0.2328. BMI-specific model outperforms
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Fig. 6.6. Ensemble different BMI groups’ mdoels (‘Un’, ‘No’, ‘Ov’, ‘Ob’) to ‘Increase’ model
for next-baskets recommendation

Fig. 6.7. Ensemble different BMI groups’ mdoels (‘Un’, ‘No’, ‘Ov’, ‘Ob’) to ‘Decrease’
model for next-baskets recommendation

than the geberal full-model and the same phenomenon can be observed among all the sub-
datasets. Therefore, BMI shows the positive impact for health food recommendation systems,
and can help models to better capture the eating patterns of specific sub-groups.
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Fig. 6.8. Ensemble different BMI groups’ mdoels (‘Un’, ‘No’, ‘Ov’, ‘Ob’) to ‘Maintenance’
model for next-baskets recommendation

Table 6.4. Best proportion by incorporating BMI into Intent groups

Underweight Normal Weight Overweight Obese

Increase 0.9 0.6 0.6 0.7
Decrease 0.9 0.7 0.7 0.7
Maintenance 0.4 0.6 0.6 0.8

Moreover, we would like to incorporate BMI into intent groups to evaluate if BMI have the
positive impacts. The performance of ‘BR(I+IB)’ model are higher than it of ‘Intent’ (0.2584
vs 0.2386 in NDCG@10). Then, we visualize the performances curves of incorporating BMI
factor on three different intent groups: ‘Increase’, ‘Decrease’ an ‘Maintenance’, which are
given in Figure 6.6, Figure 6.7, and Figure 6.8, respectively. The x-axis denotes the ratios α

of incorporating BMI factor into final scores, it gradually increases along left to right from
0 to 1.0. When ratio equals 0, which means the final results only predict by ‘Intent’ groups,
whereas the final ranking score of each item is only comes from the corresponding sub-model
(i.e., ‘Un_In’, ‘No_In’, etc.) when the ratio equals 1.0. Besides, the red line called ‘Average’
is the weighted average based on the data amount of these plotted sub-datasets.

For all the ‘Intent’ groups, we can observe that the performance curves of our ensemble
model are convex, which means total intent model (α = 0) or total sub-model (α = 1.0) does
not show the better results than the fusion model.
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Fig. 6.9. Ensemble different Intent groups’ mdoels (‘In’, ‘De’, ‘Ma’) to ‘Underweight’ model
for next-baskets recommendation

Table 6.5. Best proportion by incorporating Intent into BMI groups

Increase Decrease Maintenance

Underweight 0.2 0.3 0.2
Normal Weight 0.6 0.5 0.3
Overweight 0.6 0.7 0.3
Obese 0.6 0.5 0.4

Furthermore, the best incorporation portions differ among all these four BMI groups,
which are given in Table 6.4. We can observe that for the ‘Increase’ group, the best ratios
are 0.9, 0.6, 0.6 and 0.7 for ‘Underweight’, ‘Normal Weight’, ‘Overweight’ and ‘Obese’,
respectively.

6.3.2. Effect of Intent

Intent (Section 3.3) is also an another important health factor, which is evaluated on this
section. First of all, we can observe that the performance of Intent-specific model is higher
than general full-model on both NDCG@10 (average 0.2386 vs 0.2308) and R-Precision
(average 0.2412 vs 0.2328).

Then, the experiments are conducted by incorporating three Intent groups models (‘In-
crease’, ‘Decrease’ and ‘Maintenance’) into BMI groups (‘Underweight’, ‘Normal Weight’,
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Fig. 6.10. Ensemble different Intent groups’ models (‘In’, ‘De’, ‘Ma’) to ‘Normal Weight’
model for next-baskets recommendation

Fig. 6.11. Ensemble different Intent groups’ models (‘In’, ‘De’, ‘Ma’) to ‘Overweight’ model
for next-baskets recommendation

‘Overweight’ and ‘Obese’) on the country of Section 6.3.1. Table 6.2 and Table 6.3 present
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Fig. 6.12. Ensemble different Intent groups’ models (‘In’, ‘De’, ‘Ma’) to ‘Obese’ model for
next-baskets recommendation

the final results, which ‘BMI’ row lists the results of the models do not consider Intent factor;
row ‘Intent+BMI’ denotes the results trained on sub-datasets only; then the best two and 3
models ensemble results are shown in rows ‘BR(B+IB)’ and ‘BR(G+B+IB)’, respectively.

It also shows the same phenomenon as Section 6.3.1 that the the ‘BR(B+IB)’ row’s
performances are superior than the ‘BMI’ and ‘BMI+Intent’ columns. And three ensemble
models achieves the best performances among all the models. The improvements are also
given in the result table. Therefore, Incorporating Intent factor into food recommendation
can indeed achieve better performances than the results without Intent factor.

As in Section 6.3.1, the incorporation curves of Intent factor based on four BMI groups
are visualized in Figure 6.9, Figure 6.10, Figure 6.11 and Figure 6.12, respectively. From left
to right of x-axis, the incorporation ratio α of intent is more and more higher until α = 1.0,
which means the the prediction are made by the sub-model only. The performance curves
are also as convex as the curves of BMI incorporation (Section 6.3.1). Besides, Table 6.5
presents the the best fusion ratios of each sub-datasets.

In addition, we can see that the results of incorporating intents based on ‘Underweight’
data are not as stable as other groups. The reason could be the data amount of ‘Underweight’
group is way more less than the other groups (39 users VS around 2,500 users). Thus,
it is difficult for our model to capture the users’ diet patterns and habits. However, the
ensemble model with the specific fusion ratio is also better-performed than the separate
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Fig. 6.13. R-Precision of Variety

Intent and sub-set models. It indicates that incorporating the Intent health factor into our
food recommendation system can help the systems achieve greater performances based on the
corresponding sub-groups. Furthermore, it can help the users achieve their intent gradually
and smoothly.

6.3.3. Effect of Variety

We adopt greedy search algorithm to select food items into basket according to the
Equation 6.3.1 at each step. A greedy search algorithm makes the optimal choice that seems
to be the best at that moment at each step. This means that it makes a locally-optimal
choice in the hope that this choice will lead to a globally-optimal solution.

Max(si − α · HHI), i ∈ [1,N ], (6.3.1)

where α ∈ {0,0.5,1,10,100,1000}, and the calculation of HHI is given in Equation 3.6.1. si is
the ranking scores of item i which is generated by the best 3 ensemble model, α is a parameter
to adjusted the impact extent of HHI (variety), bigger α represents higher impact of variety.
It means variety (HHI) does not have any impact for generating recommend basket when
α = 0.

The R-Rrecision and NDCG@10 performances of different α based on 12 sub-groups are
presented in Figure 6.13 and Figure 6.14. We can observe that when α = 0, 0.5, 1 and 10,
the performances are similar, smaller impact of variety does not improve or reduce the
performances. However, higher impact of variety (α = 100, 1000), the performances dropped
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Fig. 6.14. NDCG@10 of Variety

significantly. Therefore, the variety does not have the positive impact for our health food
recommendation system.

6.3.4. Summary

The above sections examined both user’s BMI and underlying Intent. They show positive
impacts for health food recommendation. Comparing the improvements of BMI and Intent
incorporation (Table 6.3 and Table 6.2), BMI shows the larger improvement than Intent
among all the sub-groups, which indicates that BMI has a bigger role than Intent. Table 6.4
and Table 6.5 also shows the same findings, as the incorporation ratios of BMI for best
ensemble models are much higher than Intent, with average 0.68 and 0.43, respectively.

Moreover, ensemble three models (general full-model, BMI-specific, and Intent-specific
model) achieves the best performances among all the models based on all sub-groups. It
indicates that considering both BMI and Intent into general models could not only cater
users’ general and specific diet patterns, but also gradually guide users towards to their
goals. The visualizations of ensemble these three model based on ‘Ov_In’ and ‘Ov_De’
sub-groups are presented in Figure 6.16 and Figure 6.16, respectively. Besides, the fusion
figures based on other sub-datasets are attached in the Appendix A.2.

In addition, variety is proved it does not have positive impact of our recommender system.
The variety measurement metrics (HHI) and incorporation method (greedy search) could be
further validation in the future.
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Fig. 6.15. Ensemble Three Models (BR(G+B+IB)) for Next-basket Recommendation
Based on Ov_In Group
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Fig. 6.16. Ensemble Three Models (BR(G+B+IB)) for Next-basket Recommendation
Based on Ov_De Group
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Chapter 7

Conclusion

This thesis presents the novel health and nutrient-based food recommendation with two
modeling approaches: Next-item recommendation and Next-basket recommendation. These
models incorporate nutrition information (calories) as the enhanced input of each food item,
the intent and BMI of each user as the sub-group classification criteria, variety of each basket
as part of the objective for the greedy search algorithm.

Then the combined models show the effective capabilities to capture users’ eating habits
with different BMI groups, and also consider users’ goals. Experimental results on the real-
world mobile health (mHealth) dataset demonstrated the effectiveness of our combined model
for guiding users to achieve their goals as well as considering their eating habits. Besides, the
combined ratio regulates the intensity of the user’s goal achievement (i.e., a higher combine
ratio means higher intensity), which could be adjusted by the user.

BMI and Intent have positive impacts on our health food recommendation and BMI
shows the superior effect than Intent. On the other hand, Variety does not show the positive
impact as we expected before. This series of experiments confirm the previous results that the
nutrition health factors about food items and users provide some useful information for food
recommendation. Besides, the superior performance of our ensemble model demonstrates
that food recommendations should consider multi-faceted information.

As for future work, it would be interesting to investigate more nutrient health factors
(e.g., food calorie density), and explore the different ensemble approaches. Besides, we
would also test other variety measurement metric than HHI and their incorporation into the
recommendation model. Other base recommendation models can also be used instead of
GRU4Rec. When more detailed description of foods is available, it would be interesting to
explore the utilization of BERT to create contextualized representations.
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Appendix A

Food List and Additional Results

A.1. Food Item List

Table A.1. Top 80 Most Popular Consumed Food Item List in the Dataset

No.1-20 No.21-40 No.41-60 No.61-80

cheese tomato coca cola hamburger
milk cracker carrot mayonnaise
coffee sandwich strawberry cake
chicken soup snack alcohol
egg fish ice cream tea
salad sauce sausage pretzel
yogurt candy white bread sour cream
cereal cereal bar blueberry bagel
oil pasta tortilla pickle
banana almond corn roll
toast turkey orange vegetable
apple bar avocado grapes
cookie milkshake broccoli seed
butter pizza tortilla chip deli meat
water pork grain peanut
chocolate beer french fries jam
rice potato chip sugar white honey
beef bacon onion wine white
potato juice biscuit oatmeal
peanut butter spinach wine red mushroom

A.2. Three Models Ensemble Figures



Fig. A.1. Ensemble Three Models (BR(G+B+IB)) for Next-basket Recommendation Based
on Un_In Group

Fig. A.2. Ensemble Three Models (BR(G+B+IB)) for Next-basket Recommendation Based
on Un_De Group
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Fig. A.3. Ensemble Three Models (BR(G+B+IB)) for Next-basket Recommendation Based
on Un_Ma Group

Fig. A.4. Ensemble Three Models (BR(G+B+IB)) for Next-basket Recommendation Based
on No_In Group
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Fig. A.5. Ensemble Three Models (BR(G+B+IB)) for Next-basket Recommendation Based
on No_De Group

Fig. A.6. Ensemble Three Models (BR(G+B+IB)) for Next-basket Recommendation Based
on No_Ma Group
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Fig. A.7. Ensemble Three Models (BR(G+B+IB)) for Next-basket Recommendation Based
on Ov_Ma Group

Fig. A.8. Ensemble Three Models (BR(G+B+IB)) for Next-basket Recommendation Based
on Ob_In Group
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Fig. A.9. Ensemble Three Models (BR(G+B+IB)) for Next-basket Recommendation Based
on Ob_De Group

Fig. A.10. Ensemble Three Models (BR(G+B+IB)) for Next-basket Recommendation
Based on Ob_Ma Group
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