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Résumé  
La vancomycine est l'un des antibiotiques les plus prescrits, principalement utilisé pour les infections 

suspectées et confirmées à Staphylococcus aureus résistant à la méthicilline (SARM). Les infections par 

des souches de SARM font peser une charge importante sur le système de santé, à laquelle s'ajoute 

l'incertitude qui demeure quant à la posologie optimale de la vancomycine. Les récentes lignes directrices 

révisées sur le suivi thérapeutique de la vancomycine, publiées en 2020, avalisent principalement 

l'estimation directe de l'aire sous la courbe de concentration en fonction du temps (AUC) par l'utilisation 

d'équations bayésiennes ou pharmacocinétiques (PK) de premier ordre pour le suivi thérapeutique.  

Pour mieux informer la posologie de la vancomycine, nous avons d'abord mis à jour une revue précédente 

des analyses pharmacocinétiques de population (PopPK) de la vancomycine publiées chez les adultes et 

les enfants.  Pour ce faire, nous avons déterminé les caractéristiques des modèles pharmacocinétiques 

rapportés et identifié les diverses sources potentielles de variabilité observées dans différentes sous-

populations particulières. Motivés par la controverse existante autour des nouvelles directives de 

surveillance thérapeutique de la vancomycine et par l'absence d'une étude approfondie des méthodes 

recommandées, nous avons recueilli des données hospitalières et construit un cadre de modélisation qui 

nous a permis d'évaluer les recommandations des directives sur les méthodes de surveillance, tout en 

considérant une variété de scénarios et d'hypothèses cliniques réalistes.   

Notre analyse a confirmé que la surveillance bayésienne est la méthode la plus rapide et la plus fiable, à 

condition qu'elle soit correctement mise en œuvre, la plus importante condition pour cela étant l'utilisation 

de modèles bayésiens a priori appropriés. De plus, nous avons montré que le suivi bayésien ne nécessite 

pas nécessairement des niveaux de concentration de types creux ou pic et peut en fait être réalisé en 

utilisant un niveau aléatoire. Aussi, nous avons démontré que l'utilisation correcte des équations 

pharmacocinétiques de premier ordre exigerait au moins deux mesures de concentration à l'état 
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d'équilibre. L’utilisation de la méthode creux-seulement  de la vancomycine à l'état d'équilibre peut être 

tout aussi efficace dans certaines situations que nous avons explorées ici.  

En considérant la larges étendue et la grande variabilité des populations traitées à la vancomycine en 

termes d'âge, de gravité de l'infection et de scénarios cliniques, cette thèse adopte un regard objectif pour 

évaluer quantitativement le gain potentiel de chaque méthode de surveillance de la vancomycine, en 

explorant leur adéquation en termes d'effort nécessaire, de disponibilité des ressources et de gain 

potentiel.  

Compte tenu des lignes directrices sur la vancomycine récemment publiées et de la controverse qui 

persiste, nous pensons que cette thèse a permis de démêler la variété et la complexité de l'utilisation de la 

vancomycine et a apporté un éclairage supplémentaire plus objectifvement informé vers un suivi 

thérapeutique optimal de la vancomycine.   

Mots-clés: Vancomycine, pharmacométrie, pharmacocinétique de population, effets mixtes non linéaires, 

suivi thérapeutique médicamenteux, simulation d'essais cliniques. 
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Abstract 

Vancomycin is among the most prescribed antibiotics, mainly used for suspected and confirmed 

methicillin-resistant Staphylococcus aureus (MRSA) infections. Infections by MRSA strains 

carry a substantial burden on the health care system, supplemented by the uncertainty that 

remains regarding vancomycin optimal dosing. The recent revised vancomycin therapeutic 

monitoring guidelines published in 2020, endorsed primarily the direct estimation of area under 

the concentration-time curve (AUC) through the use of Bayesian or first-order pharmacokinetic 

(PK) equations monitoring.  

To better inform vancomycin dosing, we first updated a previous review of published 

vancomycin population pharmacokinetic (PopPK) analysis in both adults and children. This was 

accomplished by determining the characteristics of the reported pharmacokinetic models and 

identifying the potential various sources of variability observed in different special 

subpopulations. Motivated by the existing controversy around the new vancomycin therapeutic 

monitoring guidelines and the lack of a thorough investigation of the recommended methods, we 

collected hospital data and built a modeling framework that allowed us to assess the guideline 

recommendations of monitoring methods while considering a variety of realistic clinical 

scenarios and assumptions.   

Our analysis affirmed that Bayesian monitoring is the fastest and most reliable method, 

conditional on its proper implementation, the most important being the use of proper Bayesian 

priors. Moreover, we showed that Bayesian monitoring does not necessarily require trough or 

peak concentration levels and can in fact be performed using a random level. Proper use of first-
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order PK equations required at least two steady-state concentration measurements. Alternatively, 

simpler trough-only vancomycin monitoring near steady-state can be as effective in certain cases 

that we explored here.  

By considering the wide ranges and the high variability in populations treated with vancomycin 

in terms of age, the severity of infection, and clinical scenarios, this thesis takes an objective 

look to quantitatively assess the potential gain of each vancomycin drug monitoring method, by 

investigating their suitability in terms of the effort needed, the availability of resources and the 

resulting gain.  

Considering the recently released vancomycin guidelines and the ensuing controversies between 

well-established clinical teams, we believe that this dissertation helped untangle the variety and 

complexity of vancomycin use and brought additional insights towards a more objective and 

optimal vancomycin therapeutic monitoring.   

Keywords: Vancomycin, pharmacometrics, population-pharmacokinetics, nonlinear mixed 

effects, therapeutic drug monitoring, clinical trail simulation 
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Preface  

This dissertation concerns the optimization of vancomycin therapeutic monitoring. It was 

prepared in article style and contains six chapters. In the first one, we provide key information 

relevant to understanding the clinical context of vancomycin use. In the second and third 

chapters, we revisited a highly referenced review, dating from 2011 in order to perform a 

thorough update of all vancomycin population pharmacokinetics models developed for adults 

and children separately. Both articles for the adult population and pediatrics were published in 

the journal of Clinical Pharmacokinetics. In the fourth and fifth chapters, we quantitatively 

evaluate vancomycin monitoring methods suggested by the revised vancomycin therapeutic 

monitoring guidelines, by considering various practical situations and available data and 

information. A general discussion provides an overall view of the subject considered in this 

thesis.    
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Chapter 1 

Introduction 

1.1 Staphylococcus Aureus  

Staphylococcus aureus (S. aureus) is a Gram-positive bacterium that can be part of the normal 

flora in healthy humans’ skin and upper respiratory tract. S. aureus is a commensal organism that 

can turn opportunistic as it is the most common cause of skin and soft tissue infections (1, 2). 

These infections can range from mild localized to systemic life-threatening severe infections, 

such as in the case of severe endocarditis or sepsis. Signs and symptoms of S. aureus infections 

range from inconsequential skin discomforts, manifests as localized warmth, redness, swelling, 

and tenderness, to serious infections such as toxic shock syndrome that manifest with a sunburn-

like rash, extreme fever, low blood pressure, reduced awareness, and multiple organ failure. S. 

aureus can also induce toxin-mediated poisoning. For example, eating contaminated food by S. 

aureus might cause abdominal pain, nausea, vomiting, or diarrhea due to the rapid action of 

staphylococcal toxins within 1–6 h (2-4). 

Not long after the introduction of the then-new and effective antibacterial drug penicillin in the 

1940s, S. aureus fast developed resistance mediated by the production of the enzyme β-

lactamase. This enzyme rendered certain β-lactams antibacterial in the penicillin family, such as 

ampicillin and amoxicillin, ineffective (5, 6). Other classes and generations of antibacterial were 

then developed, such as β-lactamase-resistant drugs (e.g., cloxacillin and methicillin) and β-
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lactamase inhibitors that can be used in combinations with other antibacterial drugs (e.g., 

clavulanic acid and sulbactam). However, during the 1960s, strains of S. aureus initially acquired 

a novel gene (mecA), which codes for a penicillin-binding protein, rendering penicillinase-

resistant drugs ineffective, as well. The term methicillin-resistant Staphylococcus aureus 

(MRSA) was given for these strains (6, 7).  

MRSA infections can be hospital-acquired, community-acquired, or community-onset (3, 8). The 

latter refers to MRSA originated in a hospital, circulated in the community, and had its onset in 

the community leading to hospital readmission. Infections by MRSA initially emerged in the 

healthcare setting, and strains associated with hospital-acquired infections are usually multi-

resistant strains that are difficult to treat (8, 9). While the prevalence of community-acquired 

MRSA infections has been increasing in many countries over the last decade, MRSA strains 

prevalent with community-acquired MRSA infections were reported to retain susceptibility to 

many non-β-lactam antimicrobials (8, 9). However, this might not be the case with healthcare-

associated MRSA infections. For these infections, pharmacotherapy includes glycopeptides such 

as vancomycin (since the 1950s) and teicoplanin, and other classes such as linezolid (since the 

1970s) and daptomycin (since the 1980s), all of which their administration might be associated 

with side effects (10, 11).  

In comparison to methicillin-susceptible S. aureus (MSSA), MRSA infections carry a significant 

burden on the healthcare system. Such complications, according to the World Health 

Organization survivance report, include a significant increase in the incidence of the progression 

to septic shock (relative-risk [RR] 1.52, 95% CI: 1.24 to 1.88, P < 0.0001), an increase in post-

infection length of hospital stay by 4.6 days, and the intensive care unit (ICU) length of stay by 

an average of 4 days, increase in all-cause mortality (RR 1.61, 95% CI: 1.43 to 1.82, P < 
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0.00001), higher bacterium-attributable mortality (RR 1.64, 95% CI: 1.43 to 1.87, P < 0.00001), 

higher ICU mortality (RR 1.46, 95% CI: 1.23 to 1.74, P < 0.0001), and more than twofold risk 

increase in discharge to long-term care or secondary care facilities (12).  

1.2 Vancomycin  

Vancomycin is an antibiotic that is extensively used for MRSA infections and enterococci (group 

D Streptococcus) infections (13). The microbial coverage of this important glycopeptide 

antibiotic is broad and includes all gram-positive cocci, such as S. aureus and Staphylococcus 

epidermidis, diphtheroid, anaerobes, and clostridium species including Clostridium difficile (14-

16). Vancomycin can be administered orally or intravenously for different indications. Oral 

vancomycin administration is used for the treatment of gastrointestinal tract (GIT) infections 

such as infections by C difficile (16). Vancomycin therapeutic drug monitoring (TDM) is not 

relevant to oral vancomycin administration due to poor vancomycin absorption through the GIT 

and its large molecular weight of roughly 1450 Dalton. On the other hand, vancomycin 

intravenous (IV) administration by either intermittent or continuous infusion, is used to treat 

systemic infections (17).  

1.2.1 Mechanism of Action 

Vancomycin exerts its bactericidal action through the inhibition of a structural polymer in the 

bacterial cell wall named peptidoglycan. Particularly, vancomycin binding to the C-terminal D-

Ala-D-Ala prevents successive cross-linking (transpeptidation) of this precursor to the nascent 
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peptidoglycan chain (7), as demonstrated in Figure 1.1.  

 

Figure 1. 1 Vancomycin molecular mechanism of interfering with the biosynthesis of peptidoglycan. The 

figure was adopted from (18) with permission.    
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Vancomycin intermittent IV administration is usually given based on the bodyweight over an 

infusion period of 1 to 2 h with a rate of 10 to 15 mg/min (≥1 h per 1 g) and at a solution 

concentration not exceeding 5 mg/mL, to prevent the development of infusion-related adverse 

reactions (17). An actual body weight-based loading dose of 20-35 mg/kg throughout 2-3 h 

followed by a maintenance dose can help minimize the risk of subtherapeutic concentrations and 

achieve the therapeutic range fast (19, 20). Achievement of therapeutic concentrations at the first 

days of therapy might be necessary for certain patient groups such as critically ill, dialysis, and 

renal replacement therapy patients. It should be noted that currently, no high-quality data from 

large randomized clinical trials support the administration of a loading dose despite its seeming 

importance (17).   

Vancomycin is an excessively used antibiotic (21). A report indicated that 10% of hospitalized 

patients received vancomycin and its use was reported to be steadily increasing in the United 

States from 2006 to 2012, particularly in the intensive care unit (22),(23). Further, a single-day 

analysis of antibiotic use in 106 hospitals (n > 10,000 patients) demonstrated that vancomycin 

was the most prescribed antibiotic standing at 22.5% of all prescribed antibiotic courses (24). 

Consumption analysis of antibiotic use reported 157 days of vancomycin use per 1000 days of 

hospitalizations, a rate that is 125% higher than the combined rates of all other antibiotics 

included in the study, which were piperacillin-tazobactam, amikacin, and daptomycin (21, 22).  

1.2.2 Vancomycin Monitoring Guidelines: A Historical Shift  

The release of the original vancomycin consensus guidelines entitled “Therapeutic Monitoring of 

Vancomycin in Adult Patients: A Consensus Review of the American Society of Health-System 

Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases 

Pharmacists” in 2009 introduced a shift in the practice of vancomycin therapeutic monitoring 
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(25).  This 2009 consensus guideline concluded that vancomycin efficacy is best predicted by the 

ratio of the total area under the drug concentration-time curve over the minimum inhibitory 

concentration (AUC/MIC), indicating that efficacy is not only concentration-dependent but also 

time-dependent, i.e., exposure-dependent. This original guideline, therefore, recommended 

eliminating older practices of serum peak and trough routine monitoring (25).  

However, at the time of the original guideline in 2009, the implementation of AUC/MIC faced a 

real practical challenge as AUC cannot be easily estimated in practice. Therefore, based on the 

assumed correlation between trough and AUC at the time the 2009 guidelines were published, 

trough samples were suggested as a surrogate for AUC. The recommended trough targets were 

based on the site of infection and the MIC of the pathogen. For complicated, serious, or deep-

seated infections (such as meningitis, pneumonia, and endocarditis), a trough target of 15-20 

mg/L if the MIC was ≤1 mg/L in patients with a normal renal function was recommended to 

ensure sufficient vancomycin concentrations and to minimize chances of the emerging resistance 

creep that was feared at the time of the original guidelines’ release (25). The association between 

trough levels and safety and efficacy (i.e., increased incidence of nephrotoxicity) did not seem to 

be a major concern at that time, which might be due to the lack of strong evidence that was only 

available following the release of the original guidelines (25).  

Many aspects of vancomycin administration were not addressed in the original guideline due to a 

lack of adequate data (19, 25). Dosing and monitoring recommendations were not made for 

morbidly obese, renal failure, and pediatric (other than neonates) patients. Other unaddressed 

aspects included specific recommendations for dialysis dosage adjustments, continuous infusion 

(CI) administration, and the safety profiles of > 3 g per day dosages (19, 25).  
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All of the aforementioned factors have led to the release of the revised guidelines in 2020 (19). 

These guidelines, while affirming the therapeutic target of AUC/MIC of 400 to 600, have 

abolished previously recommended trough-only monitoring, stating poor AUC-trough 

correlation and better monitoring approaches not available before. It is worth mentioning that 

this AUC/MIC of 400 to 600 is valid in the case MIC was determined using the broth 

microdilution [BMD] method. Direct AUC-guided monitoring approaches include the use of 

first-order PK equations and Bayesian-guided monitoring, as discussed in detail below. It also 

added many key points to vancomycin administration to special populations (19). These points 

will be discussed in detail below.  

1.2.3 Minimum Inhibitory Concentration (MIC) 

Determination of the MIC value is crucial to achieving the defined AUC/MIC target. However, 

the routine measurement of MIC values in many institutions is not common due to many factors, 

including that it is not practical, requires significant time and resources, varies per institution and 

method used, and is not very precise (19, 26). For example, variability in results within one level 

of dilution (i.e., ±1 log2 dilution error) is considered as acceptable variability according to the 

standards set by the Clinical Laboratory Standards Institute (CLSI). In other words, a MIC of 1 

mg/L might not be confidently differentiated between one level of dilution of 0.5 mg/L and 2 

mg/L (19). Additionally, using the disk diffusion method was reported to be insensitive for 

MRSA with reduced susceptibility to vancomycin as shown in Figure 1.2 (27). Another 

challenging variable is the system or method used to test MIC in many institutions. It is 

documented that different testing methodologies can produce varying MIC results despite the 

availability of advanced automation (26). For example, a study reported that using BMD, 92% of 

the strains had a MIC of 1 mg/L. However, when using MicroScan WalkAway (Beckman 
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Coulter, Brea, CA) and Etest (bioMérieux USA, Hazelwood, MO), a MIC of 1 mg/L was 

reported for only 70% of the strains. Further, only 41% of the strains had a MIC of 1 mg/L using 

Vitek 1 (bioMérieux) (28). Another study of the essential agreement (defined as the percent 

complete agreement + percent minor errors) using a reference commercial MRSA BMD test for 

161 isolates reported that Vitek 2 and MicroScan WalkAway had 96.3% essential agreement, 

while it was 88.8% for BD Phoenix (BD, Franklin Lakes, NJ) and 76.4% for the Etest method at 

that specific site (29).  

 

Figure 1. 2 Similar zone diameters but different vancomycin MICs using disk diffusion method for 

MRSA with reduced susceptibility for vancomycin. Adopted from (27) with authorization.   

1.2.4 Pharmacokinetic/Pharmacodynamics (PK/PD) index 

1.2.4.1 Efficacy  

The exact AUC/MIC target was originally derived from in vitro/in vivo models which found that 

bactericidal activity (defined as one to two log reduction in bacterial inoculum) and the potential 

emergence of resistance in MRSA and vancomycin-intermediate S. aureus strains was associated 

with a cutoff AUC/MIC value 400 (30-32). This AUC/MIC of 400 was, further, supported by a 

large body of clinical data, although they were mostly observational single-center retrospective 

studies for patients with MRSA bloodstream infections (33-37). A limitation to many clinical 

data was that the methods used to estimate AUC and MIC. Many studies implemented a formula-
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based approach to estimate vancomycin clearance (and consequently AUC) that was derived 

from the glomerular filtration rate. However, this approach is known to be imprecise (33-37). A 

single-center retrospective study of MRSA bacteremia patients, which estimated AUC using the 

Bayesian method and MIC using BMD, reported that outcomes were maximized when day 1 

AUC/MICBMD ratio exceeded 521 and day 2 exceeded 650 (36). Similarly, the risk of 

vancomycin treatment failure for MRSA endocarditis patients was greatest among those with an 

AUC/MICBMD ratio of ≤ 600 (AUC was estimated using a Bayesian approach, as well) (38). 

Many other small retrospective studies that used Etest reported lower AUC/MIC thresholds (35, 

39, 40). Additionally, a prospective multicenter observational study of MRSA bacteremia adult 

patients (n = 265) suggested that treatment failure was not significantly different between a 

prespecified day 2 of AUC/MICEtest ratio of ≥ 320 and AUC/MICBMD of  ≥ 650, although best 

outcomes were observed with AUC/MICBMD of ≤ 515 i.e., absence of treatment failure and acute 

kidney injury (AKI) (41). Few studies evaluated the efficacy of AUC/MIC ratio of < 400, MIC 

values of 2 mg/L, and no studies evaluated outcomes in osteomyelitis and meningitis infections 

(17). 

1.2.4.2 Toxicity: Acute Kidney Injury 

Acute Kidney Injury Network (AKIN) and the Kidney Disease: Improving Global Outcomes 

(KDIGO) derived definition of acute kidney injury (AKI) is an increase in serum creatinine 

(SCR) of  ≥ 0.3 mg/dL over 48 hours, although many studies usually defined AKI as 50% 

increase of serum creatinine (SCR) from baseline, ≥ 0.5 mg/dL increase in the SCR, or of 50% 

decrease in calculated creatinine clearance (CLcr) from baseline on 2 consecutive days without 

alternative explanations (42-44). Vancomycin-associated AKI usually develops 4 to 17 days after 

the initiation of therapy. AKI, even mild AKI, might have severe consequences, including a 

significant increase in morbidity, healthcare costs, and length of hospital stays, and a decrease in 
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long-term survival rates. Once AKI develops, it might lead to a permanent loss of full renal 

functions in many patients, especially in critically ill patients. Factors that might exacerbate the 

risk of nephrotoxicity might be the administration of concomitant nephrotoxins (e.g., 

piperacillin/tazobactam and flucloxacillin, loop diuretics, aminoglycosides, amphotericin B, and 

IV contrast dye), and other host-related factors such as being overweight, pre-existing renal 

dysfunction, and critical illness (17, 45, 46). 

The prevalence of vancomycin-associated AKI varied across studies from 5% to 43%, with a 

relative risk of 2.45 (95% CI, 1.69-3.55) and an attributable risk of 59%. A prospective study 

showed that median trough concentrations and AUC in patients with AKI were 15.7 mg/L and 

625, respectively, while patients without AKI had trough concentrations and AUC values of 8.7 

mg/L or 423, respectively (45). Another study reported that mean AUCs were 600-800 in 

patients with AKI compared to 400-600 in those without AKI (P = 0.014) (47). Further, the risk 

of AKI substantially increases (2.5-fold) at AUC levels >1300 compared to lower AUC values 

(47-49).  Another study reported a 3- to 4-fold increase in the risk of AKI incidence with AUC 

values of ≥ 677 on the first day, and AUC ≥ 683 or troughs of ≥18.2 mg/L on the second day of 

treatment (50). Based on available evidence, the AUC/MIC target that appears to be associated 

with best outcomes is between 400 and 600, which can minimize the likelihood of nephrotoxicity 

and maximize efficacy for suspected or confirmed serious invasive MRSA infections (17).  

1.3 Pharmacokinetic Models  

The primary goal of the application of clinical pharmacokinetics includes delivering an effective 

and safe individualized drug therapy, which can be allowed by understanding the relationship 

between drug concentrations and pharmacological responses. To achieve this, drug concentration 

can be monitored in clinics using assay procedures to determine whether a concentration is 
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therapeutic, subtherapeutic, or toxic, although no absolute boundaries in practice split these 

regions. Upon the administration of a given dose of the drug to a population, a variability in 

patients' responses can be expected due to variation in drug absorption, distribution, metabolism, 

elimination, disease state, and drug-drug interaction (51, 52). 

Using a pharmacokinetic model allows to describe the system's behavior and summarize a large 

volume of data. Multiple PK modeling approaches can be deployed to describe the 

concentration-time profiles of a drug and to estimate its PK parameters. Traditional PK analysis, 

such as non-compartmental analysis (NCA) or nonlinear regression, might require many blood 

samples per individual. NCA does not require an assumption about drug distribution and might 

be very useful to obtain PK parameters such as the maximum concentration (Cmax) or half-time 

(53). While conducting well-structured and rich PK studies might be feasible with healthy 

volunteers, collecting such rich data might not be feasible especially for the most vulnerable of 

patients. For example, critically ill neonates are likely to require optimizing doses due to the 

potential of PK parameters alterations but might not be available for intensive PK studies. 

Compartmental PK assumes hypothetical body compartments characterized with a homogenous 

distribution. The number of compartments varies according to the rates of distribution. A central 

compartment usually represents highly infused organs or tissues that are in equilibrium with the 

systemic circulation such as the liver and kidney. The peripheral compartment might represent 

lower rate blood-infused organs such as fat tissues (52, 53).  

Nonlinear mixed-effects models can make use of sparse data that is otherwise not beneficial to 

NCA or traditional PK analysis. In its essence, the nonlinear mixed-effects approach describes 

the PK profiles using mathematical and statistical models (54). It, therefore, can reduce the 

sample collection burden on a single subject and its associated cost by pooling sparse data from 
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many individuals without all of them necessarily contributing full-profile data (54, 55). With this 

enriched PK data from many subjects, models might gain strength as the population approach 

carries the ability to account for differences in PK between individuals (interindividual 

variability) and identify possible sources of variability, such as patients' specific characteristics 

or covariates that might correlate with PK parameters (56). A powerful tool in the realm of 

PopPK is the ability to generate a model-based simulation. These simulations allow us to 

understand the impact of certain simulation conditions and clinical scenarios on outcomes, which 

can, in turn, inform decision-making (55).  

1.4 Bayesian Approach  

Bayes’ Theorem was named after Reverend Thomas Bayes and was first published by Richard 

Price after Bayes’ death in 1761. It was independently rediscovered, used, and proved by Pierre-

Simon Laplace in 1774 (57). Following the invention of the Markov Chain Monte Carlo method 

and the availability of powerful computational power for the public, the application of Bayesian 

analyses gained popularity as it allowed it Bayesian approach to do more than its counterpart 

frequentist approach (58). The Bayesian approach is crucial to current population modeling 

practices. In its essence, the Bayesian approach consists of two components, a prior and a 

likelihood of new observations under competing hypotheses, which are both combined to 

produce the posterior parameter distribution (Eq. 1) (57). In other words, the Bayesian approach 

can make use of available prior knowledge such as a previously developed PopPK model 

structure and its parameters estimates. This assumed PopPK model in addition to the present data 

that contains drug concentration, dosing history, and covariates have the advantage of enriching 

our understanding of a problem and its associated parameters (55). This might be extremely 

helpful in cases such as in the case of sparse data. Bayesian analysis has many popular 
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utilizations in pharmacometrics and clinical practice, such as the estimation of individual 

parameters and the identification of potential covariates, and dose optimization in therapeutic 

drug monitoring (55, 56). The Bayes theorem is stated as follows: 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴)×𝑃(𝐴)

𝑃(𝐵)
      Eq. 1 

Where in our case here: 

A represents the PK model parameters.  

B represents observed measurements.  

𝑃(𝐴|𝐵) is the posterior distribution (the conditional probability of A given B). 

𝑃(𝐵|𝐴)  is the likelihood (conditional probability of B given A). 

𝑃(𝐴) represents the prior probability distribution of A. 

𝑃(𝐵) represents the prior probability distribution of B. 

1.5  Therapeutic Drug Monitoring  

Therapeutic drug monitoring (TDM) plays a crucial role in maintaining drug levels within the 

therapeutic target avoiding potential supratherapeutic and toxic range, and subtherapeutic and 

ineffective range. The use of TDM in clinical practice is more relevant for drugs with a narrow 

therapeutic range, especially when coupled with high inter-and intra-patient variability as well as 

an unpredictable dose-response relationship. Applications of TDM include dose individualizing, 

adherence to dosage, and drug-drug interactions (59). Ideally, proper clinical implementation of 

TDM might require a well-established relation between the PK and PD, such as AUC or 

concentrations with efficacy and toxicity. With the increasing amount of knowledge becoming 

available about the source of drug-response variability, one-size-fits all drug dosage does not 

seem to be a reasonable approach. Sources of drug-response variability can be classified as 

genetic and nongenetic as well as endogenous (e.g., physiological or pathological) or exogenous 
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(e.g. diet or other medicines). Variability in pharmacokinetics might arise from intrinsic 

differences in the rate and extent of drug absorption, distribution, and clearance (60). Factors 

contributing to drug absorption variability can include bile release and gastrointestinal motility, 

as well as the co-presence of conditions at drug administration, such as concomitant drugs or 

food (59). Variability in drug disposition might be sourced in drug metabolism, transporters, and 

organ function, such as renal function and single gene polymorphisms. 

Individually tailored dosage regimens can potentially yield the most desired outcomes balancing 

between benefit and harm. Model-informed precision dosing (MIPD) refers to predicting drug 

dosage regimens using modeling and simulation (59, 61). Integration of modeling and simulation 

in informing precision dosing is not a new idea. It might be traced back to 50 years ago to the 

works of Sheiner (62) and Jelliffe (63). Terms used in the literature for this approach include 

individualized, personalized, and precision in tandem with terms such as therapy and treatment 

(60). Historically, its application did not reach the bedside due to difficulties in results 

interpretations. The waiting time after sample collection due to the need for data manipulation, 

interpretation, and clear communication by a specialized clinical pharmacologist might as well 

have limited its widespread. Individualized dose therapy can be achieved either a priori (i.e., 

using patients' characteristics such as weight and creatinine clearance) or a posterior (i.e., using 

drug administration information, dosage, plasma levels) (60). 

With the progress achieved in modeling and simulation and its widespread in several milieu, 

including industrial, regulatory, and academic, its contribution in improving drug use has gained 

large recognition. In this thesis, backed by clinical data from McGill University Health Center 

(MUHC), we adopted a modeling and simulation approach that allowed an investigative look at 

the six decades-long controversial vancomycin dose optimization.  
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Chapter 2 

An Update on Population Pharmacokinetic Analyses of Vancomycin, 

Part I: in Adults 

 

 

This review is an update to a 2012 vancomycin review entitled “Vancomycin: A Review of 

Population Pharmacokinetic Analyses” by Amelie Marsot et al. An update was deemed 

necessary due to the large number of population pharmacokinetics analyses that were published 

following Marsot's original review. We split our update into two parts, adult and pediatrics.  This 

article concerning adults appeared in Clinical Pharmacokinetics “Aljutayli, Abdullah, Amélie 

Marsot, and Fahima Nekka. "An update on population pharmacokinetic analyses of vancomycin, 

part I: in adults." Clinical pharmacokinetics 59.6 (2020): 671-698”  
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Abstract 

Background: Despite the wide clinical use of vancomycin, controversy remains regarding its 

optimal dosage regimens. This can be attributed to the large between- and within-subject 

variability in the pharmacokinetics of vancomycin.     
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Aims: The review aimed at providing a synthesis of population pharmacokinetic (PopPK) 

models of vancomycin in adults, determining the most reported pharmacokinetic models, and 

identifying various sources of variability in different special subpopulations in order to better 

inform vancomycin dosing. 

Methods: We conducted a systematic search through PubMed and EMBASE for PopPK studies 

of vancomycin published from January 2011 to May 2019. Inspection of the relevant lists of 

references was conducted, as well.  

Results: A total of 30 studies were included. One- two-, three-compartments models were 

reported to best describe vancomycin PopPK in 13, 14, and 3 studies, respectively. Three 

compartment models were implemented in 3 studies to account for an additional cerebrospinal 

fluid (CSF) compartment. The most common predictors were creatinine clearance and 

bodyweight, in 20 and 13 studies, respectively. Estimated values of vancomycin clearance and 

total volume of distribution varied widely from 0.334 to 8.75 L/h (0.0054 to 0.1279 L/h/kg) and 

from 7.12 to 501.8 L (0.097-6.97 L/kg), respectively. Almost all studies implemented an 

exponential interindividual variability model, and the highest variability on CL was 99.2%.  

Conclusion: This review highlights the wide ranges and the high variability of estimated PopPK 

parameters. This information can help guide dosing in different subpopulations. Yet, additional 

analyses with pooled subpopulations might be needed to confirm the necessity of modified 

dosage regimens. 
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2.1 Introduction  

Vancomycin is a glycopeptide antibacterial that has been used, broadly, and for decades in 

eradicating serious gram-positive infections, such as methicillin-resistant Staphylococcus aureus 

(MRSA) strains (1, 2). In fact, vancomycin can be regarded as the drug of choice in the 

management of many types of infections caused by the prevalent (MRSA) strains (2-4). 

However, despite its intensive use and the large number of studies related to its 

pharmacokinetics, adjusting and monitoring blood concentrations of vancomycin in the clinical 

practice remains controversial (2). This lack of consensus can be attributed, in part, to the large 

between- and within-subject variability in the population pharmacokinetic (PopPK) models of 

vancomycin. For example, a previous review by Marsot et al. reported a wide range of variability 

in the clearance (CL) and volume of distribution (Vd) of vancomycin of up to 45% and 48%, 

respectively (1). As a result, safety and efficacy profiles of vancomycin, including exposure-

dependent nephrotoxicity and optimal therapeutic target, might be inherently affected by this 

variability. Due to these clinical challenges, vancomycin has been a focus of therapeutic drug 

monitoring (4).  

When vancomycin is monitored, compelling evidence demonstrated improved outcomes in 

association with the pharmacokinetic/pharmacodynamic (PK/PD) index of the ratio of area-

under-the-curve (AUC) over 24 hours to minimum inhibitory concentration (MIC) by broth 

microdilution (AUC/MICBMD) of ≥ 400 (2). On the other hand, the incidence of nephrotoxicity 

(i.e. acute kidney injury) was reported to be associated with elevated AUC/MIC values that 

surpass 700. While the odds of acute kidney injury (AKI) steadily increase with elevated 

AUC/MIC, the likelihood of AKI was reported to be 2.5 times more at an AUC/MIC of 1300 

compared to lower values (p = 0.02) (5, 6). In addition, the mean incidence of AKI was 
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significantly more among patients who had AUC values within a range of 600-800, compared to 

patients who maintained lower AUC values within 400-600 (p = 0.014) (6). When monitoring a 

trough concentration, existing evidence suggests an increased risk of vancomycin-associated 

AKI with trough levels of 15-20 mg/L and as a function of trough concentrations (7). Further, 

recent studies have demonstrated reduced AKIs using AUC-guided monitoring in comparison to 

trough monitoring (8-11). 

Since the previous review by Marsot et al. (1), a large number of PopPK studies have been 

published, with the aim of characterizing vancomycin PK in different subpopulations, 

determining possible PK alterations, and weighing the translation of their findings into informed 

dosing regimens. The goal of the current paper is to follow up on (1) to provide an update of 

vancomycin PopPK models, with the same vision of providing the reader with a systematic and 

comprehensive overview of all analyses made from January 2011 until May 2019. This includes 

a special emphasis on reporting the main features and differences in study populations, study 

designs, characteristics of the models, including significant covariates. However, this review is 

divided and presented into two separate parts based on age i.e. adults in this first part and 

pediatrics in the ensuing part, with the ultimate goal of contributing to the implementation of a 

well-informed therapeutic monitoring and dose optimization of vancomycin. 

2.2 Methods  

2.2.1 Search strategy  

An electronic literature search of PubMed and EMBASE databases was systematically 

performed for relevant studies of vancomycin population pharmacokinetics, using time 

confinement from January 2011 to May 2019. Search terms employed for the PubMed inquiry 

were the following: vancomycin[TI] AND (population-pharmacokinetic* OR nonlinear-mixed-
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effect* OR NONMEM OR PMETRICS) NOT (child*). Further, EMBASE was inquired for 

English and in-human studies using similar search terms. Moreover, a thorough inspection of all 

the pertinent lists of references was conducted to identify any additional relevant materials.  

2.2.2 Inclusion Criteria 

Studies were eligible for inclusion according to predefined criteria; (i) studied population: adult 

including geriatric patients; (ii) treatment: intravenous vancomycin administration; (iii) modeling 

approach: parametric nonlinear mixed-effects pharmacokinetic modeling; (iv) originality of data: 

original data and a non-recycled analysis; (v) language: published in English. 

2.2.3 Exclusion Criteria 

Excluded from this review were articles that (i) were in vitro or animal study, review, meta-

analysis, or methodology articles; (ii) recruited children; (iii) used non-compartmental or non-

parametric approaches; or (iv) missed the information required to classify according to these 

criteria. 

2.2.4 Data Extraction 

 Relevant information was extracted from every article into data collection sheets. The extracted 

information included the first authors, year of publication, characteristics of the population in 

every study (e.g. number of patients (male/female), type of the special population, age, 

bodyweight, body mass index [BMI], creatinine clearance (CLCR), and assessment of renal 

function), study clinical protocol (e.g. type of study i.e. retrospective or perspective, dosage 

regimen, administered doses, nature and frequency of sampling i.e. rich or sparse, number of 

samples), vancomycin quantification methods (assay, lower limit of quantification [LLQ], kit, 

and instrument), modeling approach (e.g. software used, model evaluation methods, methods of 
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covariate selection), formulae of PopPK structural and statistical models and the values of their 

parameters, and tested and retained covariates. 

2.3 Results  

2.3.1 Literature Screening and Characteristics of Investigated Populations 

PubMed and EMBASE database search yielded a total of 82 and 160 studies, respectively.  After 

applying the inclusion and exclusion criteria, twenty-nine publications were eligible for 

inclusion. One additional publication was identified based on our screening of references. Thus, 

in total, this update for adult patients includes thirty different population pharmacokinetic 

analyses conducted in fifteen countries, including 9 in China, 4 in the USA, 4 in South Korea, 2 

in Belgium, and 2 in Spain, as well as one study in each of Australia, Chile, France, Germany, 

Japan, the Netherlands, Saudi Arabia, Serbia, Taiwan, and Thailand. The characteristics of the 

populations of all studies are summarized in Table 2.1. The total number of patients recruited in 

every study varied widely, and ranged from 9 patients (such as in Escobar et al.) to 1812 patients 

(such as in Goti et al.), while the median number of patients of all included studies was 72 per 

study (12, 13). Furthermore, ten studies had 30 patients or less (12, 14-23). In general, patients 

included in these studies subscribed to different special clinical subpopulations, such as critically 

ill, obese, and trauma patients. However, no specific diagnosis was mentioned in seven studies 

(22, 24-29). Four studies included a control cohort (16, 17, 30, 31). 

2.3.2 Clinical Protocol and Study Designs 

As the design nature of most of the studies was retrospective therapeutic drug monitoring, 

vancomycin was administered, mostly, according to the respective hospital standard of care 

dosage regimen. The study design of the remaining articles (n=11) was a prospective 

observational pharmacokinetic study (Table 2.2) (12, 14, 15, 17-22, 26, 32). Vancomycin route 
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of administration was either through an intermittent or continuous intravenous (IV) infusion. 

While almost all studies reported intermittent IV administration, continuous infusion in four 

articles was used (20, 25, 33, 34). The only exception was by Li et al. who reported an additional 

intraventricular administration of 10 mg combined with the IV administration of 990 mg to yield 

a total vancomycin dose of 1000 mg (19). Further, all vancomycin samples were blood samples 

except for in three studies, in which additional CSF samples were withdrawn, as well (19-21). 

The number of samples per patient varied widely, even within the same study. For example, Goti 

et al. reported a range of 1 to 36 samples per patient (13). Overall, eight studies implemented a 

rich sampling scheme of more than six samples per patient (Table 2.2) (12, 15, 17-22). Sampling 

at a steady-state condition was reported in eleven studies (14, 17, 19, 20, 24, 26, 31-33, 35, 36). 

In contrast, three studies reported obtaining vancomycin samples before achieving steady-state 

conditions (15, 16, 18). The rest of the studies (n=16) did not report the steady-state status. To 

quantify these samples, most of the studies used a variety of immunoassay, while five quantified 

vancomycin levels using liquid chromatographic methods (Table 2.3) (12, 19-21, 28).   

2.3.3 Population Pharmacokinetic Analysis  

As shown in Table 2.4, the vast majority of the included studies used NONMEM to analyze their 

data and implement the PopPK models. Phoenix NLME and Monolix software packages were 

used in four and two studies, respectively (Table 2.4) (18-21, 23, 35). The bootstrap procedure, 

which is an internal evaluation method, was used in 22 studies. In addition, external evaluations 

were used in 10 studies. However, all studies performed other forms of model evaluations, 

goodness-of-fit plots, and model diagnostics plots. Vancomycin PK was best described by a two-

compartment model in fourteen analyses (12, 13, 15, 16, 18, 22, 23, 27, 31, 35, 37-40). 

Nevertheless, many studies opted for a one-compartment model (n=13), owing to its simplicity 
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and clinical practicality (14), the sparsity of data (24, 28, 29, 32-34), and the condensation of the 

samples around trough levels while at steady-state conditions (24, 28, 30, 32). Three-

compartment models were found more suitable to describe the additional CSF compartment in 

three papers (19-21). 

2.3.4 Estimated Clearance  

In general, these PopPK analyses estimated the typical CL of vancomycin widely, ranging from 

0.334 to 8.75 L/h (0.0054 to 0.1279 L/h/kg) and having a median of 3.22 L/h (interquartile range, 

2.32-4.9), which is equivalent to 0.0458 L/h/kg (interquartile range, 0.03-0.077) (Tables 2.5, 2.6, 

and 2.7). It should be noticed that these statistics excluded all vancomycin CL values from the 

CSF compartments (19-21). High estimated CL values (above the third interquartile of 4.9 L/h) 

were observed in the following cases: patients with or during postoperative neurosurgery, post-

craniotomy meningitis, early and late phase of neurosurgical treatment, obese, open-heart 

surgery, patients with CLCR < 80 mL/min, and in a Chinese population with CL estimated by 

cystatin C (14, 18-21, 26, 29, 30, 32). Estimated CL in the lower spectrum (below the first 

interquartile of 2.32 L/h) were observed in the following ten cases: in South Korean patients with 

continuous renal replacement therapy (CRRT) or hemodialysis, non-hemodialysis CL in 

Austrian patients during high-flux hemodialysis, Serbian patients with normal or impaired renal 

function, men and women with post-sternotomy mediastinitis, Thai patients, trauma patients 

when taking furosemide, and ICU patients with mechanical ventilation (23, 27, 31, 34, 38-40).   

2.3.5 Estimated Volume of Distribution  

A drastic variation in the estimated volumes of distribution was observed. For one-compartment 

models, the lowest estimated value was 7.12 L (0.088 L/kg), which was for patients with normal 

kidney function (31). On the contrary, the highest estimated V was 154 L (2.53 L/kg), which was 
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for geriatric patients (36). In the case of two-compartment models, estimates of both the central 

(V1) and peripheral (V2) volume compartments varied widely. However, when considering the 

total volume of distribution (i.e. Vtotal = V1+V2), the lowest was 29.2 L (0.417 L/kg), which was 

estimated for patients with high-volume hemofiltration (12). The two highest estimated Vtotal 

were 501.8 L (6.97 L/kg) and 478 L (6.64 L/kg) for geriatric and non-geriatric adult trauma 

patients, respectively (40). In addition, the overall median for all estimated Vtotal, including one-, 

two-, and three-compartment models, was 80.7 (range: 7.12-501.8; interquartile range: 47.8 - 

97.15) L, which is equivalent to 1.16 (range: 0.088-6.97; interquartile range: 0.72-1.465) L/kg 

(Tables 2.5, 2.6, and 2.7).  

2.3.6 Modeling of the Random Effects 

With the exception of a proportional random between-subject variability (BSV) model in 

Purwonugroho et al. (27), almost all studies used an exponential model (Tables 2.5, 2.6, and 2.7). 

However, we were not able to infer the type of random BSV model in one study (24). The 

highest BSV values were observed in a BSV estimation on V2 with a coefficient of variation 

(CV) of 101% (16), followed by an estimation of BSV on CL with a CV of 99.2% (39). Residual 

error models were expressed with the combined additive proportional, proportional, additive, and 

exponential models in 11, 9, 4, and 3 studies, respectively. Further, a power error model was 

used in one study (21). The type of residual error models used in the remaining two studies was 

not inferable (12, 41). 

2.3.7 Inclusion of Covariates  

Covariates tested and included in the models varied depending on the special subpopulation 

(Table 2.8). Methods of covariates selection include biological plausibility and stepwise 

covariate modeling (SCM). A consistent significant covariate is CLCR, which was incorporated 
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into twenty PopPK models (13-15, 17-19, 22, 25, 27-30, 32-36, 39, 40). One possible 

explanation for CLCR to have not emerged as a significant covariate in some of the remaining ten 

studies was the presence of renal deficiency. Bodyweight appeared frequently to describe Vd. 

Two studies reported a significant effect of concomitant drugs, including aminoglycosides and 

furosemide (30, 40). Other rarely reported significant covariates on CL include albumin, 

aspartate aminotransferase, fibrinogen (18, 31). In addition, rarely reported significant covariates 

on Vd include fat-free mass and age (37). 

2.4 Discussion  

Vancomycin is a vital antibiotic in the management of MRSA infections (1, 2). Evidenced by the 

large publications number, dose optimization of vancomycin has been an ongoing research 

interest given its wide between- and within-subject variability, emerging resistance, evolving 

therapeutic targets, and potential nephrotoxicity (4). In fact, more than seventy population 

pharmacokinetic analyses have been published since 2011 that aimed at describing vancomycin 

pharmacokinetics in adults and children. Thus, an update to our previous review was deemed 

necessary (1). 

 The present update includes thirty different population pharmacokinetics analyses conducted in 

fifteen countries. No systematic trends were observed in the PK estimates (i.e. CL and Vd) 

between different countries. The estimated CL and Vtotal varied widely between studies, ranging 

from 0.334 to 8.75 L/h (0.03-0.078 L/h/kg) and from 7.12 to 501.8 L (0.097- 6.97 L/kg), 

respectively. However, one limitation to this statistic is the lack of uniformity in the reported Vd 

units (i.e., seven articles reported a weight-adjusted volume of distribution, while others reported 

an absolute Vd), as well as weight adjustments method, as six studies reported the median weight 

while the rest reported the mean weight. Furthermore, interpretation of such ranges should be 
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viewed cautiously considering the overall PopPK settings, including differences in the sample 

sizes, study designs, intensities of sampling, methods of covariates modeling, and 

parametrization. Thus, these structural and statistical model differences might render 

generalizations between models inaccurate.  

Most of the studies aimed primarily at describing vancomycin pharmacokinetics in special 

subpopulations, including critically ill, obese, neutropenic, geriatric, trauma, and renal impaired 

patients, as well as the patients who underwent surgery, and mechanical support (e.g. 

hemodialysis, hemofiltration, renal replacement therapy, and extracorporeal membrane 

oxygenation [ECMO]) (12-21, 23, 30-35, 37, 38, 40, 42). Therefore, we will partition our 

discussion section accordingly although clinical groups might not be mutually exclusive. The 

primary objectives of the remaining studies were to describe vancomycin PopPK in Chinese or 

Thai populations, as well as to investigate the effect of age, MRSA, or serum cystatin C and 

other renal function descriptors on the PK of vancomycin. In addition, almost all studies 

conducted Monte Carlo simulations based on their developed PopPK models to optimize 

vancomycin dosage regimens in the respective subpopulation. However, a clinical discussion 

about vancomycin optimal dosage regimens in special subpopulations is beyond the scope of this 

review, considering the current shift in the therapeutic target from using trough levels as a 

surrogate marker to directly estimating AUC/MIC to guide vancomycin dosing (2, 4).   

This review includes all adults (i.e., young and elderly) as a single patient group. However, 

differences in vancomycin PK parameters between young and older patients (geriatrics) might be 

clinically anticipated. A study on Chinese geriatric patients (age ≥ 65) with pneumonia estimated 

vancomycin CL to be 2.45 L/h (36). Although values of vancomycin CL in geriatrics might seem 
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lower compared to younger patients, this is likely due to the natural decline of renal function 

(28).  

The predominant renal route of excretion for vancomycin instigated many researchers to study 

the influence of different descriptors of renal function on the predictability of PopPK models (14, 

19, 25-27, 31). While serum creatinine has been widely used as a marker for renal function, it 

has few pitfalls, including limited accuracy in elderlies, patients with low muscle mass, and in a 

case of myopathy. Cystatin C might serve as an alternative biomarker, owing to its stable 

production rate between different genders, patients with different muscle masses, and during 

different health conditions (e.g. acute inflammatory responses) (24, 26). This led some to believe 

that cystatin C is a better predictor of vancomycin clearance compared to CLCR (24, 26). Chung 

et al. concluded the existence of a better correlation between vancomycin CL and cystatin C 

compared to serum creatinine (24). In addition, Liu et al. reported that the estimation of the 

glomerular filtration rate (GFR) using cystatin C outperformed the estimation using serum 

creatinine in predicting vancomycin therapeutic targets (26). Other renal function descriptors, 

such as Modification of Diet in Renal Disease (MDRD) and its variations, were evaluated by Ji 

et al., who concluded no significant differences between these various descriptors compared to 

using Cockcroft–Gault equation (25). 

Many of the studies included in this review were designed as retrospective therapeutic drug 

monitoring studies (13, 16, 23-25, 27-31, 33-36, 38-40, 42). In addition, according to the clinical 

practice during the period these studies were being conducted, many aimed at achieving a 

predefined trough level around steady-state. A large enough sample size was a limitation for 

many studies (12, 14-23). Thus, parameter estimates and the power to detect significant 

covariates might have been slightly compromised. While the influence of more than 60 different 
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covariates was evaluated, the most identified significant covariate was CLCR. However, 10 of the 

studies (33%) did not report it as a significant covariate, but, rather, modeled using other renal 

function descriptors, such as GFR, serum creatinine (SCR), continuous renal replacement 

therapy (CRRT) status, hemodialysis, or none of the renal function descriptors (Tables 2.5, 2.6, 

and 2.7). Other covariates, such as bodyweight and age, were frequently included in the models. 

Stepwise covariates selection was the most commonly reported method.  

2.4.1 Critically Ill, Trauma, and Cardiac Surgery Patients   

Existing evidence substantiates the belief that critical illnesses, such as cardiogenic shock and 

organ transplantation, as well as clinical intervention and mechanical support during critical 

illness, can alter the pharmacokinetics of a drug (43-46). As a result of such alterations, many 

studies were conducted to warrant optimal therapeutic vancomycin levels (12, 15-17, 23, 34). 

Moreover, Vd might be a concern in critically ill septic patients. Roberts et al. estimate of Vd in 

critically ill septic patients was relatively high (i.e. 1.5 L/kg) (33). However, Medellín-Garibay et 

al. estimated Vd to be 1.03 L/kg in a critically ill population, many of whom (44%) were septic, 

and of which 50% suffered septic shock (34). Moreover, unique significant covariates in this 

subpopulation include mechanical ventilation, which was reported to decrease CL by 20% 

compared to the control group of the respective study (34). 

Medellin-Garibay et al. studied the influence of trauma on the PK parameters of vancomycin. 

The reported V2 value in this study was noticeably high (5.9 L/kg), while the reported 

intercompartmental clearance (Q) was noticeably low (0.81 L/h) (40). Multiple complications 

during invasive open-heart surgery can lead to an altered PK parameter of vancomycin. 

Alqahtani et al. studied patients who underwent open-heart surgery and reported a slightly 

elevated CL value of 6.13 L/h and a low V2 of 3.88 L (18). On the other hand, Mangin et al. 
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aimed at describing vancomycin PK in post-mediastinitis critically ill patients (23). The 

estimated PK parameters were relatively low, with values of 1.91 L/h, 1.25 L/h, and 21.9 L for 

CL in men, CL in women, V1, respectively. Noteworthy, CL was reported to increase 

proportionally with bodyweight, but inverse proportionally with serum creatinine, as well as the 

severity of disease at the time of ICU admission (SAPII). In addition, CLCR was not included in 

the model, probably since a proportion of the population suffered renal impairment. 

Interestingly, Q was influenced by diabetes mellites, which was attributed to the effect of 

microangiopathy defecting the permeability of tissues (23). 

2.4.2 Patients on Extracorporeal Membrane Oxygenation 

Numerous studies aimed at understating and quantifying the impact of ECMO on the PK 

parameters of vancomycin (16, 46). The use of ECMO provides support for life-threatening 

cardiac, cardiorespiratory, and respiratory failures (47). However, many details might vary 

between ECMO procedures. Overall, the procedure involves external blood oxygenation using 

an external circuit. However, there are three types of cannulation modes used to drain a patient’s 

blood, including a veno-venous (VV), veno-arterial (VA) or a hybrid (VVA) mode. Prevalence 

of infections, risk of nephrotoxicity, sequestration effect, and alterations to the renal and 

cardiovascular systems substantiated the clinical interest in ECMO subpopulation (15-17, 44-50). 

In this review, three studies aimed at describing the pharmacokinetics of vancomycin in adults 

during ECMO (15-17). It is to be noticed that the additional non-compartmental analyses 

conducted in Wu et al. and Donadello et al. did not meet the inclusion criteria and, thus, were 

excluded from this review (16, 17). Wu et al. reported a significant decrease in vancomycin CL 

compared to a matched cohort when a specific pump is used (i.e. roller pump) (17). However, a 

similar effect (i.e. decrease in CL) did not appear when using a centrifugal pump, which might 
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be attributed to the fact that those patients were less critically ill in comparison to the ECMO 

patients with a roller pump (17). Excluding the roller pump case, all three studies concluded no 

to minimal clinical significance regarding any differences in vancomycin PK parameters 

between ECMO and non-ECMO adult patients. This conclusion seems consistent regardless of 

study design (i.e. matched control cohort), sampling frequency (i.e. rich versus sparse), and the 

significant covariates affecting PK parameters. Nevertheless, PK parameter estimates varied 

widely between these studies (15-17). The wide variation in the estimated parameters might be 

attributed to the very small sample size recruited in every study, significant differences between 

study populations (e.g. inclusion of patients with end-organ dysfunction and renal replacement 

therapy), and other potential confounding factors, including priming fluids and the specifications 

of ECMO apparatus (48-50). Further, a relatively high BSV was estimated on CL (CV=77%) by 

Moore et al. (15), and on V2 (CV=101%) by Donadello et al.(16) Therefore, although a larger 

body of evidence favors no significant effect, the exact role of ECMO on the PK of vancomycin 

might remain undefined (47). 

2.4.3 Morbidly Obese Patients 

The standard practice of dosing vancomycin based on total body weight might pose additional 

risks of nephrotoxicity for obese patients (51, 52). Evidence shows that a bodyweight heavier 

than 101 kg might be associated with increased incidences of nephrotoxicity, which might be 

attributed to higher drug exposure or large daily doses of more than 4000 mg/day (51, 52). Our 

report included one study that aimed at describing vancomycin PK in morbidly obese patients 

(BMI ≥ 40 kg/m2) (14). This study estimated a Vd of 0.51 L/kg (14). Despite evaluating many 

covariates, V was best correlated with total bodyweight (14). Finally, it is worth mentioning that 
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Bury et al. reported that allometric scaling to fat-free mass in non-obese patients was associated 

with a significant improvement in model fit (37). 

2.4.4 Patients with Hematological and Oncological Disorders  

Previous evidence suggests increased CL in hematological diseases (53). While vancomycin is 

crucial in the management of febrile neutropenia, Bury et al. reported a significant association 

between neutropenia and an increase in vancomycin clearance by 27.7% (37). Noteworthy, the 

population in Bury et al. included patients with solid tumors and hematological malignancies 

(37). Moreover, during a hematopoietic stem cell transplant (allo-HSCT), Okada et al. suggested 

that the dilution effect of the breakdown of hematopoietic stem cells during allo-HSCT pre-

treatments might lead to an overestimation of creatinine clearance, which in turn can influence 

the estimation of vancomycin clearance (35). Additionally, Okada et al. reported a relatively 

normal total volume of distribution value of 95.3 (39.2 and 56.1 for V1 and V2, respectively) 

(35).  

2.4.5 Neurosurgical Patients  

Numerous studies reported decreased vancomycin serum levels and the need for higher doses of 

vancomycin in neurosurgical populations compared to other patients (54-56).  This can be 

attributed to the physiological changes associated with neurosurgery which can be manifested in 

a form of augmented renal clearance (42, 56). Kim et al. reported significantly higher values of 

CL in neurosurgical patients compared to the control group of the corresponding study of 0.10 ± 

0.13 versus 0.07 ± 0.025 L/h/kg for the neurosurgical and control group, respectively (30). 

However, the limitation of Kim et al. is that the design of the study was not control-matched, 

with the surgical group being significantly younger and having lower serum creatinine levels 

(30). 
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Additional three studies confirmed the trend of elevated CL, reporting 7.8, 8.7, and 11.87 L/h 

(19-21). These elevated values were attributed to hyperosmotic diuretics administered to 

decrease the intracranial pressure and the hypervolemia status of these patients (19-21). In 

addition, estimations of the V1 were consistently low in these studies (i.e. 15.16, 27.84, and 

11.87 L) (19-21). Another investigated neurosurgical condition was post-craniotomy meningitis, 

which is a life-threatening condition that might require admission to the intensive care unit (32). 

Lin et al. estimation of CL in patients with post-craniotomy meningitis was 7.56 L/h, which 

confirms the trend of elevated CL in neurosurgical patients (32). 

2.4.6 Kidney Disease, Renal Replacement Therapy, and Hemodialysis  

2.4.6.1 Chronic Kidney disease 

The objective of Zaric et al. study was to identify the determinants of vancomycin clearance in 

patients with mild or moderate chronic kidney disease (CKD), as well as patients with normal 

kidney function (31). The authors reported that the daily dose of vancomycin and serum levels of 

aspartate aminotransferase (AST) influence vancomycin clearance in CKD patients. Serum AST 

levels were shown to correlate with reductions in glomerular filtration rate in CKD patients (31, 

57, 58). The correlation between higher doses and higher clearance values was explained by the 

possible role of vancomycin tubular toxicity in reducing renal reabsorption, leading to higher CL 

values. In contrast, fibrinogen, an inflammation biomarker, emerged as a determinant of 

vancomycin CL in the control group (i.e. patients with normal kidney function). A noticeable 

observation from this article is that significant vancomycin levels were as high as 200 mg/L and 

100 mg/L for normal and CKD patients, respectively. Additionally, the study was limited to one 

measurement of vancomycin concentration per patient (31).  
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2.4.6.2 Hemodialysis, Hemofiltration, and Renal Replacement Therapy 

The estimated vancomycin CL and V1 in patients receiving hemodialysis were reported to differ 

significantly compared to non-hemodialytic patients (13, 39). For example, in the former group, 

Goti et al. reported reduced CL and V1 estimates by 35% (from 4.5 to 3.15 L/h) and 50% (from 

58.4 to 29.2 L), respectively (13). Furthermore, Bae et al. reported CL to be drastically different 

in patients receiving hemodialysis (CL = 0.334 L/h) compared to patients not receiving 

hemodialysis or renal replacement therapy (CL = 2.82 L/h) (39). Moreover, CL was associated 

with an elevated BSV, as high as 99.2% (39). During high-flux hemodialysis, Hui et al. used two 

CL parameters to express non-hemodialysis and hemodialysis vancomycin CL, reporting CL 

estimates of 0.443 and 3.86 L/h, respectively (38). Levels of BSV on Vd were relatively high for 

the hemodialysis subpopulation. For example, Hui et al. reported BSVs on V1 and V2 of 84.5% 

and 94.8%, respectively (38). Moreover, Goti et al. estimated the value of BSV on V1 to be 

81.6% (13). 

Renal replacement therapy (RRT) appeared to be associated with a drastic reduction in the 

estimated CL values (0.716 for patients receiving RRT compared to 2.82 L/h for patients not 

receiving RRT ) (39). However, Udy et al. estimated the median of CL in septic critically ill 

patients receiving RRT to be 2.9 L/h (41).  A similar CL value (i.e. 2.9 L/h) was reported by 

Escobar et al. although the study population was critically ill patients with refractory septic 

shock receiving continuous venous hemofiltration (12).   

2.5 Conclusion  

This review included thirty population pharmacokinetic analyses on vancomycin. Most of the 

studies aimed, initially, at developing a PopPK model in a special subpopulation in order to 

determine the PK profile and the corresponding PK parameters that are key for the optimization 
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of vancomycin dosage regimens. In addition, evaluation of the influence of more than 60 

covariates on the PK parameters revealed consistent significant covariates, including CLCR and 

bodyweight. Studies included in this review reported very wide ranges of estimated CL and 

Vtotal. Reported between-subject variability was as high as 99.2% on CL, and as high as 101% on 

V2. While this review was meant to lay out a comprehensive synthesis of reported PopPK 

observations in various patients’ subpopulations, additional research with pooled data from 

different subpopulations might be warranted to draw a solid conclusion about the need for and 

the way of adjusting vancomycin dosage regimens in a specific subpopulation.  
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Table 2. 1 Summary of patients’ demographics for all PopPK studies included in this review 

 Study Publication 

year 

Country  Population Assessment of renal function   

Patients group N 

(male/female) 

Age 

(y)a 

Bodyweight 

(kg)a 

BMI 

(kg/m2)a  

 CLCR
 

(mL/min/1.73 m2)a 

Adane et al. (1) 2015 USA Extremely obese 29 (19/10) 43.0 (38.5-53.0)b   147.6 (142.8-178.3)b 49.5 (44.3-54.8)b 124.8 (106-133.9)b Normal 

Alqahtani et al. 

(2) 

2018 Saudi Arabia Open-heart surgery 28 (17/11) 51.7 ± 15.9 [18-78] 79.6 ± 17 [52-111.8] 29.8 ± 5.6 [20.2-41.9] 83.5 ± 29.3 [33.4-125] NR 

Bae et al. (3) 2019 South Korea General 220 (139/81) 63 [21-98] 61.6 [30.0-126.7] NR 77.0 (4.57–279) Patients underwent CRRT (n=9) 
and HD (n=20) 

Bury et al. (4) 2019 Netherlands Neutropenia 116 (67/49) 61.4 ± 13.4 NR 25.5 (5.9)b  150 (140)b  NR 

Chung et al.(5) 2013 South Korea General 678 (400/278) 56 [18-96] 62.3 [27-140] NR NR Normal 

Deng et al. (6) 2013 China Chinese adults 72 (53/19) 54.07 ± 18.38 [18-99] 61.12 ± 10.70 [37-85] NR 82.09 ± 36.19 [10.56-175.1] NR 

Donadello et al. 
(7) 

2014 Belgium ECMO 11 (4/7) 43 [19-59] 70 [46-86] 26 [18-29] 64 [39-99] Patients received CRRT (n=7) 

Control 11 (5/6) 55 [24-64] 70 [47-95] 24 [18-29] 61 [46-109] 

Escobar et al. 

(8) 

2014 Chile High-volume 

hemofiltration 

9 (5/4) 57 ± 14 70 ± 18 27 ± 9 NR Patients underwent 

hemofiltration, with six anuric 

and three oliguric patients  before 
the beginning of the HVHF 

sessions 

Goti et al. (9) 2018 USA Hemodialysis 1812 (969/843) 57 [17-101]c 79 [33-255]c NR 62 [4–150]c Included many patients with end-
stage renal disease 

Hui et al. (10) 2019 Australia Hemodialysis 48 (38/10)d 61.5 [23-86]c 78 [40-226]c NR NR Patients underwent hemodialysis; 

likely end-stage renal disease 

Ji et al. (11) 2018 China Chinese 160 (106/54) 78 [42-95]c 65 [38-90]c 22.31 [12.85-36.89]c 58.02 (5.45–224.0)c NR 

Kim et al. (12) 2016 South Korea Neurosurgical  64 (30/34) 50.6 ± 15.0 63.2 ± 11.6 NR 113.6 ± 48.3 Included renally impaired 

patients Control 68 (37/31) 61.6 ± 15.7 61.0 ± 12.7 NR 79.0 ± 44.0 

Li et al. (13) 2015 China Postoperative 

neurosurgical  

16 (9/7) 46.8 ± 14.0 [25-67] 69.8 ± 9.9 [51-84] NR 116.2 ± 31.5 [71-182] Normal 

Li et al. (14) 2016 China Postoperative 
neurosurgical  

20 (10/10) 45.25 ± 15.96 [19-70] 68.90 ± 12.07 [46-87] NR NR Normal 

Li et al. (15) 2017 China Postoperative 

neurosurgical  

25 (18/7) 50.2 ± 17.0 (21-81) 69.4 ± 11.9 (46-93) NR 142.8 ± 51.7 [73.1-246.4] Normal 

Lim et al. (16) 2014 South Korea Infected with MRSA 20 (15/5) 59.3 ± 12.9 63.1 ± 15.7 NR 96.6 ± 31.1 Normal 

Lin et al. (17) 2016 China Post-craniotomy 

meningitis 

100 (66/34) 51.6 ± 16.9 [18-86] 59.1 ± 10.0 [38-85] NR 104.7 ± 43.9 [9.5-216.9] NR 

Liu et al. (18) 2019 China General  200 (128/72) 47.4 ± 15.42 61.3 ± 12.06 NR 123.75 ± 59.96 NR 

Mangin et al. 
(19) 

2014 France Post-Sternotomy 
Mediastinitis 

30 (26/4) 63 [35-81]c 82 [62-104]c 28 [22-36]c NR NR 

Medellín-

Garibay et al. 

(20) 

2015 Spain Trauma  118 (53/65) 74.3 ± 14 72 ± 15 27.5 ± 5 90.5 ± 52  NR 

Medellín-

Garibay et al. 

(21) 

2017 Spain Critically ill  54 (38/16) 65.0 ± 12.3 75.0 ± 20.1 28.5 ± 7.0 106.3 ± 64.5 [27.2-271.6] Included patients (n=15) with 

CLCR< 60 (ml/min/1.73 m2) 

Moore et al. 
(22) 

2016 USA ECMO 14 (11/3) 47 ± 16 [19-72] 95 ± 27 NR 84 ± 37 Included renally impaired 
patients (n=7) 
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 Study Publication 

year 

Country  Population Assessment of renal function   

Patients group N 

(male/female) 

Age 

(y)a 

Bodyweight 

(kg)a 

BMI 

(kg/m2)a  

 CLCR
 

(mL/min/1.73 m2)a 

Okada et al. (23) 2018 Japan Allogeneic 
hematopoietic stem-

cell transplantation 

75 (49/26) 49 [17-69] 59.4 [39.4-104.5] NR 113 [47-253] Included patients (n=6) with 
moderate renal impairment  

Purwonugroho  

et al. (24) 

2012 Thailand Thai  212 (112/100) 66.62 ± 18.38 57.64 ± 11.62 NR 35.07 ± 29.83 Included renally impaired 

patients 

Roberts et al. 

(25)  

2011 Belgium Critically ill (septic) 206 (127/79) 58.1 ± 14.8 74.8 ± 15.8 25.9 ± 5.4 90.7 ± 60.4 NR 

Udy et al. (26) 2013 Belgium Critically ill (septic 

patients undergoing 

CRRT) 

81 (53/28) 61.0 ± 15.6 83.4 ± 22.1 NR NR Patients underwent CRRT 

Usman et al. 

(27) 

2018 Germany General 144 (93/51) 62 [16-88]c 79.5 [40-177]c NR 89.8 (11.3–313.6)b NR 

Wu et al. (28) 2016 Taiwan ECMO 11 (6/5) 47.18 ± 16.85 66.57 ± 17.53 NR 74.1 ± 25.42 Included patients (n=3) with 
CLCR< 60 (ml/min/1.73 m2) 

Control 11 (6/5) 49.00 ± 17.16 64.07 ± 12.34 84.41 ± 34.47 Included patients (n=4) with 

CLCR< 60 (ml/min/1.73 m2) 

Zaric et al. (29) 2018 Serbia Impaired kidney 
function 

78 (46/32) 67.00 ± 10.74 [33-86] 78.52 ± 16.64 [60-180] NR 54.38 ± 17.70 [30-87] Patients with mild to moderate 
chronic kidney failure  

Normal kidney 

function 

32 (21/11) 59.15 ± 14.46 [27-86] 81.37 ± 10.11 [60-103] NR 112.90 ± 10.94 [90-120] Normal 

Zhou et al. (30) 2019 China Geriatric 70 (49/21) 78.3 ± 6.96 60.7 ± 10.2 NR 56.3 ± 22.1 NR 

CLCR: creatinine clearance, BMI: body mass index, NR: not reported, ECMO: extracorporeal membrane oxygenation, CRRT: continuous renal replacement therapy, HD: hemodialysis, HVHF: high-volume hemofiltration, 
MRSA: methicillin-resistant Staphylococcus aureus 
aValues are expressed as mean ± standard deviation [range] (interquartile range) 
bValues are expressed as median (interquartile range) 
cValues are expressed as median [range] 
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Table 2. 2 Summary of the clinical protocols for studies included in this review 

 Study Study type  Vancomycin administration Samples       

Dosage regimen Administered doses (mg)a samples per 

patient 

Total samples Sampling at 

steady state 

Sampling frequency  

Adane et al. (1) Prospective 
pharmacokinetic study  

Typically: 15 mg/kg 4000 [3625–4375]b mg/day 3.2c 93 Yes Peak, trough, and random  

Alqahtani et al. 

(2) 

Prospective 

pharmacokinetic study 
(rich sampling design) 

1000 mg two hours before skin incision, 

then q12h for two days 

Twelve patients received additional doses, 

as their surgeries lasted for more than 4 h   

6 168 No Six blood samples: before skin 

incision, at the beginning of the 
cardio-pulmonary bypass (CPB), 

1h after the beginning of the CPB, 

before skin closure, and 24 h and 

48 h after the first dose  

Bae et al. (3) Retrospective (TDM) NR NR 4.64c 1020 NR NR 

Bury et al. (4) NR NR NR 6.4c 742 NR Peak and trough 

Chung et al. (5) Retrospective NR  1922 [250-4500] mg/day   2.0c 1373 Yes Peak and trough 

Deng et al. (6) Retrospective (TDM) 500 or 1000 mg over 1 h NR 2.32c 167 NR Peak and trough  

Donadello et al. 

(7) 

Retrospective  LD: 35 mg/kg over 4 h; MD: the 

respective hospital standard of care     

ECMO, LD: 2500 [1610 to 2975]b; MD: 

1125 [750 to 3000]b mg/day 

ECMO: 3 ECMO: 33c sampled 

within first 24 

h  

4, 12, and 24 h 

Control, LD: 2450 [1645 to 3500]b; MD: 

1,200 [750 to 2500]b mg/day 

Control: 3 Control: 33 c 

Escobar et al. (8) Prospective 

pharmacokinetic study 

(rich sampling design) 

1 g q24h NR 8 68 NR 0, 0.5, 1, 2, 4, 6, 9 and 12 h  

Goti et al. (9) Retrospective (TDM) NR NR One sample 
per patient in 

1215 patients 

out of the total 
1812 patients 

2765 NR NR 

Hui et al. (10) Retrospective (TDM) hospital 1: 1000–1500 mg, as long as 

vancomycin concentrations of less than 
20 mg/L were achieved; hospital 2: (i) off 

HFHD: weight-based LD and MD of 25 

and 20mg/kg, respectively, (ii) on 
HFHD: weight-based LD and MD of 30 

and 25mg/kg, respectively, as long as 

vancomycin concentrations of less than 
25mg/L were achieved. 

 LD:  1500 [1000–4500]b mg ; MD: 1500 

[500–4500]b mg 

3 [1-22]b 180 NR NR 

Ji et al. (11) Retrospective 1000 mg q12h NR 2 [1-17]a NR NR Trough 

Kim et al. (12) Retrospective (TDM)  The respective hospital standard of care The initial dose for the neurosurgical group: 

1981 ± 219 mg/day 

Neurosurgical: 

3 [1-12]a 

Neurosurgical: 

181 

NR NR 

The initial dose for the control group: 1810 

± 387 mg/day 

Control: 2 [1-

21]a 

Control: 178 

Li et al. (13) Prospective 

pharmacokinetic study 
(rich sampling design) 

1000 mg IV over 1 h, then 9000 mg 

continuous IV infusion over the 
following three days at a rate of 125 

mg/h  

NR 17.75c  284 Yes 0, 1, 1.08, 1.25, 1.5, 2, 3, 5, 7, 9, 

13, 17, 21, 25, 33, 41, 49, 57, 65, 
and 73 h  

Li et al. (14) Prospective 
pharmacokinetic study 

Low dose group: total of 6.5 g (0.5 g over 
1 h, then 6 g continuous infusion over 3 

NR 19.5c  389 NR 0, 1, 1.08, 1.25, 1.5, 2, 3, 5, 7, 9, 
13, 17, 21, 25, 33, 41, 49, 57, 65, 
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 Study Study type  Vancomycin administration Samples       

Dosage regimen Administered doses (mg)a samples per 

patient 

Total samples Sampling at 

steady state 

Sampling frequency  

(rich sampling design) days (0.083 g/h)); high dose group: total 
dose of 10 g (1 g over 1 h, then 9.0 g 

continuous infusion over 3 days (0.125 

g/h)) 

and 73 h  

Li et al. (15) Prospective 
pharmacokinetic study 

(rich sampling design) 

1000 mg (10 mg intraventricular and 990 
mg IV) q12h  

NR 10.48c  262 Yes 72.25, 72.5, 73, 75, 77, 80 h 

Lim et al. (16) Prospective 
pharmacokinetic study 

(rich sampling design) 

1000 mg over 2 h q12h NR 5.6c 112 NR 0, 0.75, 1–3, 3–5, 5–8, 8–12, 72 
and 144 h  

Lin et al. (17) Prospective 

pharmacokinetic study 
(trough samples) 

 The respective hospital standard of care  1910.6 ± 314.2 [1000-3000] 1.71c 179 Yes Trough  

Liu et al. (18) Prospective 

pharmacokinetic study  

Doses of 250, 500, 750, 1000, 1250 or 

1500 mg over 1 h 

 916.60 ± 226.56  5c  514 Yes Trough and random levels at 1, 2, 

5, or 7 h 

Mangin et al. 
(19) 

Retrospective (TDM)  The respective hospital standard of care NR 14 [1-34]b 359 NR Trough and at the end of 
hemodialysis sessions 

Medellín-

Garibay et al. 
(20) 

Retrospective (TDM)  The respective hospital standard of care Initial dose: 25.3 ± 7.8 mg/kg/day [1-16]a 392 NR Peak and trough 

Medellín-

Garibay et al. 
(21) 

Retrospective (TDM)  The respective hospital standard of care 80% of the patients received LD: 12 ± 5 

mg/kg, and MD: 60 mg/h [14 to 180 mg/h] 

8 [1-36]a 874 NR NR 

Moore et al. (22) Prospective 

pharmacokinetic study 

(rich sampling design) 

 The respective hospital standard of care NR 4.6c  65 Sampled after 

first 

intermittent 
infusion  

Routine TDM trough levels, and at 

30, 60, 120, 240, and 360 min 

Okada et al. (23) Retrospective NR 2400 [1000-4500]b mg/day 2.8c  217 Yes Peak, trough, and as necessary 

Purwonugroho 

et al. (24) 

Retrospective (TDM)  The respective hospital standard of care NR 1.84 319 NR Peak, trough, and random  

Roberts et al. 

(25) 

Retrospective (TDM)  The respective hospital standard of care NR NR NR Yes (pseudo-

steady-state) 

Daily 

Udy et al. (26) Retrospective (TDM)  The respective hospital standard of care LD: 1640 ± 550 mg/kg; MD for day 1: 

Infusion dose 23.7±8.1 (mg/kg/24 h)  

[2 -3]a 199 NR  Daily at 8 a.m. and at 24, 48 and 

72 h  

Usman et al. 

(27) 

Retrospective (TDM)  The respective hospital standard of care    1000 [500-1500]b 1.8 [1-7]a 256 NR Trough 

Wu et al. (28) Prospective 

pharmacokinetic study 

(rich sampling design) 

LD: 15-25 mg/kg; MD:  According to K 

= CL/Vd, where Vd = 0.7 L/kg, and CL = 

0.695*CLcr, to achieve trough levels 

within 10-20 mg/L 

NR ECMO: 10c  ECMO: 110c  Yes 0.5, 1, 2, 3, 5, 7, 11, 23, 35, 47 h 

Control: 10c  Control: 100c  

Zaric et al. (29) Retrospective (TDM)  The respective hospital standard of care Impaired renal function: 1650 ± 540 [500-
3000] mg/day  

Impaired 
kidney 

function: 1c  

Impaired kidney 
function: 78 

Yes NR 

Normal renal function: 1930 ± 430 [1000-

3000] mg/day  

Normal 

kidney 
function: 1c  

Normal kidney 

function: 32 
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 Study Study type  Vancomycin administration Samples       

Dosage regimen Administered doses (mg)a samples per 

patient 

Total samples Sampling at 

steady state 

Sampling frequency  

Zhou et al. (30) Retrospective (TDM) Dose 1: 500 mg every 6, 8, 12, 24 or 48 
h; dose 2: 1000 mg every 8 or 12 h  

1550 ± 770 mg/day 1.79 [1-5]a 125 Yes Peak and trough 

LD: loading dose, MD: maintenance dose, TDM: therapeutic drug monitoring, IV: intravenous, CL: clearance, Vd: volume of distribution, HFHD: high-volume hemofiltration, NR: not reported 
aValues are expressed as mean ± standard deviation [range]  
bValues are expressed as median [range]  
cEstimated values  

 

 

 

Table 2. 3 Vancomycin quantification methods used by the studies included in the review 

Study Quantification method 

Assay LLQ (mg/L) Kit Instrument  

Adane et al. (1) Particle-enhanced turbidimetric inhibition immunoassay 0.8 VANC Flex Reagent Cartridge (Siemens Healthcare 
Diagnostics Ltd., Newark, DE) 

 Dimension clinical chemistry system analyzer (Siemens 
Healthcare Diagnostics Ltd.) 

Alqahtani et al. (2) Chemiluminescent microparticle immunoassay 0.5 ARCHITECT iVancomycin Assay Kit Architect I4000SR immunoassay analyzer 

Bae et al. (3) NR NR NR NR 

Bury et al. (4) Spectrophotometric homogeneous enzyme immunoassay NR† Emit 2000 Vancomycin Assay Viva-E system 

Chung et al. (5) Fluorescence polarization immunoassay NR NR Cobas Integra 800 Analyzer (Roche) 

Deng et al. (6) Fluorescence polarization immunoassay 2 NR TDx FLx assay system (Abbott Laboratories) 

Donadello et al. 

(7) 

Particle-enhanced turbidimetric inhibition immunoassay 0.8 Dimension® XPand® (Siemens Healthcare Diagnostics) NR 

Escobar et al. (8) LC-MS/MS 0.63 NR Acquity TMUPLC System (Waters Corp., Milford, MA) 

Goti et al. (9) ELISA method NR NR NR 

Hui et al. (10) Chemiluminescent immunoassay 2 ARCHITECT iVancomycin Assay Kit Architect iVancomycin (Abbott Laboratories, and Advia 

Centaur, Siemens Healthcare) 

Ji et al. (11) Fluorescence polarization immunoassay 2 Vancomycin protein assay kit (Abbott Laboratories, 

USA) 

 TDx-FLx assay system (Abbott Laboratories) 

Kim et al. (12) Chemiluminescent microparticle immunoassay NR ARCHITECT iVancomycin Assay Kit NR 

Li et al. (13) HPLC with UV detection NR NR NR 

Li et al. (14) HPLC with UV detection. NR NR NR 

Li et al. (15) HPLC with UV detection. NR NR NR 

Lim et al. (16) Fluorescence polarization  1.39 NR COBAS INTEGRA fluorescence polarization system 

Lin et al. (17) Enzyme multiplied immunoassay 2 SYVA Viva-E/V-Twin (Siemens Laboratoires) NR 

Liu et al. (18) Enzyme multiplied immunoassay technique (EMIT) 2 Vancomycin Assay Test Kit Siemens Viva-E Drug Testing System  

Mangin et al. (19) Particle-enhanced homogenous turbidimetric immunoassay 2 QMS Vancomycin (Thermo Scientific, Middletown, 

VA, USA) 

NR 

Medellín-Garibay 
et al. (20) 

Immunoassay 1.7 NR Roche/Hitachi Cobas c assay system 

Medellín-Garibay Immunoassay 1.7 NR Roche/Hitachi Cobas c assay system 
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Study Quantification method 

Assay LLQ (mg/L) Kit Instrument  

et al. (21) 

Moore et al. (22) Glucose-6-phosphate dehydrogenasebased  

enzyme immunoassay  

1.7 NR Roche Cobas C501 (Roche Diagnostics, Indianapolis, IN) 

Okada et al. (23) Glucose-6-phosphate dehydrogenasebased enzyme 

immunoassay  

2 Emit 2000 Vancomycin Assay NR 

Purwonugroho et 

al. (24) 

Fluorescence polarization immunoassay 2 NR Axsym system (Abbot Laboratories, Abbot Park, Ill, USA) 

Roberts et al. (25) Fluorescence polarization immunoassay 0.6 (mg/mL) TDx (Abbott Laboratories) NR 

Udy et al. (26) Particle-enhanced turbidimetric inhibition immunoassay 0.8 Dimension Xpand (Siemens Healthcare Diagnostics) NR 

Usman et al. (27) HPLC 0.25 NR NR 

Wu et al. (28) Fluorescence polarization immunoassay 2 AxSYM system (Abbott Laboratories) NR 

Zaric et al. (29) Immunoassay NR NR Cobas® e601 Analyzer (Roche Diagnostics, Mannheim, 
Germany) 

Zhou et al. (30) Chemiluminescent microparticle immunoassay 3 NR ARCHITECT i1000 system (Abbott Laboratories) 

LLQ: lower limit of quantification, HPLC: high-performance liquid chromatography, LC-MS/MS: liquid chromatography-tandem mass spectrometry, NR: not reported 

† refer to the article  

 

Table 2. 4 Population pharmacokinetic modeling methods and techniques used by the studies included in the review 

 Study Compartments  Modeling   

Software  Validation Covariate modeling   

Adane et al. (1) One-compartment NONMEM 7.3 Internal SCM 

Alqahtani et al. (2) Two-

compartment 

Monolix 4.4 Internal SCM (forward inclusion and backward elimination) 

Bae et al. (3) Two-
compartment 

NONMEM 7.4 Internal: bootstrap (n=1000) Visual screening, generalized additive model, SCM (forward inclusion (P < 0.05) and 
backward elimination (P < 0.01)) 

Bury et al. (4) Two-

compartment 

NONMEM 7.3 Internal SCM 

Chung et al. (5) One-compartment NONMEM 7.1 Internal: bootstrap (n=1000) Generalized additive model and SCM (forward inclusion and backward elimination) 

Deng et al. (6)  One-compartment NONMEM 7.2 Internal: bootstrap (n=2000) SCM (forward inclusion (P < 0.05) and backward elimination (P < 0.005)) 

Donadello et al. (7) Two-

compartment 

NONMEM 7.2 Internal: bootstrap (n=1000); external validation (n=5) SCM and biological plausibility 

Escobar et al. (8) Two-
compartment 

NONMEM 7.2 Internal: bootstrap (n=1000) NR 

Goti et al. (9) Two-

compartment 

NONMEM 7.3 Internal: bootstrap (n=1000) SCM (forward inclusion (P < 0.05) and backward elimination (P < 0.001))  

Hui et al. (10) Two-
compartment 

NONMEM 7.3 Internal: bootstrap (n=1000) and NPDE SCM 

Ji et al. (11) One-compartment NONMEM 7.2 Internal: bootstrap (n=1000) and NPDE; external validation 

(n=58)  

SCM (forward inclusion (P < 0.05) and backward elimination (P < 0.001)) 

Kim et al. (12) One-compartment NONMEM 7.2  Internal: bootstrap (n=2000); external validation: (i) 
neurosurgical (n=24), and (ii) control (n=26)  

SCM 

Li et al. (13) Three-

compartment 

Phoenix NLME 

1.2 

Internal (n=2000) SCM (forward inclusion (P < 0.01) and backward elimination (P < 0.001)) 
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 Study Compartments  Modeling   

Software  Validation Covariate modeling   

Li et al. (14) Three-

compartment 

Phoenix NLME 

1.2 

Internal: bootstrap (n=1000); external validation (n=16)  SCM (forward inclusion (P < 0.01) and backward elimination (P < 0.001)) 

Li et al. (15) Three-
compartment 

Phoenix NLME 
7.0 

Internal: bootstrap (n=1000) SCM (forward inclusion and backward elimination) 

Lim et al. (16) Two-

compartment 

NONMEM 

7.1.2 

Internal NR 

Lin et al. (17) One-compartment NONMEM 7.2 Internal: bootstrap (n=2000), and NPDE; external (n=20) SCM (forward inclusion (P < 0.05) and backward elimination (P < 0.01)) 

Liu et al. (18) One-compartment NONMEM 7.3 Internal: bootstrap (n=1000); external validation (n=74)  SCM (forward inclusion (P < 0.05) and stepwise elimination (P < 0.001))  

Mangin et al. (19) Two-

compartment 

Monolix 4.14s NR NR 

Medellín-Garibay et 
al. (20) 

Two-
compartment 

NONMEM 7.2 Internal: bootstrap (n=200); external validation (n=40)  Generalized additive model and SCM (forward inclusion (P < 0.05) and backward 
elimination (P < 0.001)) 

Medellín-Garibay et 

al. (21) 

One-compartment NONMEM 7.3 Internal: bootstrap (n=1000); external validation (n=18)  Generalized additive model and SCM (forward inclusion (P < 0.05) and backward 

elimination (P < 0.001)) 

Moore et al. (22) Two-
compartment 

NONMEM 7.3 Internal: bootstrap (n=1000) Full covariate model approach  

Okada et al. (23) Two-

compartment 

Phoenix NLME 

7.0 

Internal: bootstrap (n=1000); external validation (20 patients)  SCM (forward inclusion (P ≤ 0.05) and backward elimination (p≤0.01)) 

Purwonugroho et al. 
(24) 

Two-
compartment 

NONMEM VII External (n=34) SCM (forward inclusion and backward elimination) 

Roberts et al. (25) One-compartment NONMEM 6.1 Internal: bootstrap (n=1000) SCM and biological plausibility  

Udy et al. (26) One-compartment NONMEM 6.1 Internal NR 

Usman et al. (27) One-compartment NONMEM 7.2 Internal: bootstrap (n=1000) SCM (forward inclusion (P < 0.05) and backward elimination (P < 0.01))  

Wu et al. (28) One-compartment NONMEM VI Internal: bootstrap (n=200) SCM (forward inclusion and backward elimination) 

Zaric et al. (29) Two-

compartment 

NONMEM 7.3 Internal: bootstrap (n=200) SCM (forward inclusion (P < 0.05) and backward elimination (P < 0.01))  

Zhou et al. (30) One-compartment NONMEM 7.3 Internal: bootstrap (n=1000) and NPDE SCM (forward inclusion (P < 0.05) and backward elimination (P < 0.01)) 

SCM: Stepwise covariate modeling, NPDE: normalized prediction distribution error, NR: not reported 
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Table 2. 5 Characteristics of the population pharmacokinetic models developed by the studies included in this review (one-compartment) 

Study CL (L/h) Vd (L) BSV  RV  

Formula Parameter Value Formula Parameter Value CL Vd Exponential Proportional  Additive 

Adane et al. 

(1)   

θ2*(CLCR_TBW/125) θ2 6.54 Vd (L/kg) = θ1* TBW θ1 0.51 26.70% 23.90%   18.9%   

Chung et al. 

(2) 

CLPOP * (1+θCL_AGE*[AGE-57]) * (1 + θCL_TBW * 

[TBW-60.8]) * (1 + θCL_SCr * [SCr-0.8]) * 

(CYSTATIN C/0.91)θCL_CYSTATIN 

if female, apply 1 + θCL_SEX 

CLPOP 4.9 VPOP * (1 + θv_AGE*[AGE-57]) * 

(1 + θV_TBW * [TBW-60.8]) 

if female, apply 1 + θ_Vsex 

VPOP 46.2 24.70% 25.10%   6.39% 1.40 mg/L 

θCL_AGE -

0.00420 

θV_age 0.00580 

θCL_TBW 0.00997 θV_TBW 0.00661 

θCL_SCr -0.322 θV_sex -0.119 

θCL_CYSTATIN -0.780 

θCL_SEX -0.150 

Deng et al. (3)  If CLCR < 80 (mL/min): CL= θ1 *CLCR θ1  0.0654 
 

Vd  47.76 45.35% 39.25%   30.71% 1.21 mg/L 

If CLCR ≥ 80 (mL/min): CL= θ2 θ2 4.9 

Ji et al. (4) CL*(1+θCLCR*[CLCR-80])*(75/AGE)θAGE CL 2.829 Vd  = θVd θVd 52.14 32.42% 28.87%   26.79% 2.64 ng/mL 

θCLCR 0.00842 

θAGE 0.8143 

Kim et al. (5) Early phase: θ1 × (eCLCR/95.8) × θ3
TOXI × θ4

LC + 

θ5
NEUR 

Late phase: θ2 × (eCLCR/95.8) × θ3
TOXI × θ4

LC + 

θ5
NEUR 

Early phase in neurosurgical patients only, CL= 7.29 
× (eCLCR/113.6)0.563 × 0.881TOXI 

Late phase in neurosurgical patients only, CL= 6.80 

× (eCLCR/113.6)0.563 × 0.881TOXI 

θ1 4.39 Early phase: θ6 

Late phase: θ7 
Early phase in neurosurgical 

patients only 

Late phase in neurosurgical 
patients only 

θ6 83.7 ω2 = 

0.125 

    8.59% 1.92 mg/L 

θ2 3.69 θ7 107 

θ3 0.811 Vd  81.1 

θ4 0.511 116 

θ5 2.42 

Lin et al. (6) θTV * (CLCR/104.71)θCLCR θTV 7.56 
 

Vd  101 31%    ε = 20.2%     

θCLCr 0.89 

Liu et al. (7) θCL * (GFR/105.5)θGFR * (AGE/48.5)θAGE * 

(WT/60)θWT 

θCL 5.07 Vd = θV θV 46.3 20.80% 18.10%   15.90% 1.28 mg/L 

θGFR 0.524 

θAGE -0.309 

θWT 0.491 

Medellín-
Garibay et al. 

(8) 

Without mechanical ventilation: CL = θ1 * 
(CLCR/100)θ3 

With mechanical ventilation: CL = θ1 * (CLCR/100)θ3 

* θ4  

θ1 2.86 Vd (L/kg) = θ2 * WT θ2 1.03 28.40% 49.10%     4.3 mg/L 

θ3 0.75 

θ4 0.8 

Roberts et al. 

(9) 

θ2 * CLCR/100 θ2 4.58 TVV (L/kg) = (θ1 * WT) θ1 1.53 38.90% 37.40%   19.9% 2.4 mg/L 

Udy et al. (10) NR CL 
(median) 

2.9 
 

Vd 0.8 
(L/kg) 

34.70% 49.80%   †   

Usman et al. 

(11) 

θCL* (1+θCL_CLCR*[CLCR-CLCR_median]) θCL 2.32 θVd θVd 19.2 20.40%     38.50%   

θCL_CLCR 0.0018 

CLCR_median 89.8 

Wu et al. (12)  CL (mL/min/kg) = θ1 * CLCR θ1 0.0145 Vd (L/kg) = θ2 * 
(AGE(years)/47.9)θ3 

θ2  0.83 38.30% 21.20% 16.30%     

θ3 0.44 

Zhou et al. 

(13) 

θ1 * (CLCR/56.28)θ3_CLCR θ1 2.45 Vd = θ2 θ2 154 ωCL = 

0.174 

ωV = 

0.339 

  σ1 = 0.0657 σ2 = 0 FIX 

θ3_CLCR 0.542 

CL: clearance , Vd: volume of distribution , BSV: between-subject variability , RV: residual variability , CLCR_TBW: Creatinine clearance based on total body weight , TBW: total body weight, SCr: Serum creatine, CLCR: 
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Creatinine clearance (mL/min/1.73m²) , TOXI : co-administration of a nephrotoxic drug, eCLCR: estimated creatinine clearance , NEUR :  neurosurgical patient, GFR: glomerular filtration rate, NR: not reported, WT: 

bodyweight  
†: refer to the respective article for more details   

Table 2. 6 Characteristics of the population pharmacokinetic models developed by the studies included in this review (two-compartment) 

Study CL (L/h) V1 (L) V2 (L) BSV  RV  

Formula Parameter Value Formula Parameter Value Formula Parameter Value CL V1 V2 Exponential Proportional  Additive 

Alqahtani et al. 

(14) 

CL * (CLCR/83.5)0.514 * 

(albumin/35.5)0.854  

CL 6.13 θV1 * 

(WT/79.6)0.466 

θV1 40   V2 3.88 22.10% 6.34% 61.20%   15.20% 0.055 mg/L 

Bae et al. (15) CL for patients who did not 

receive CRRT or HD 

treatment: θ1 * (CLCR/72)θ2 

CLCRRT: CL for patients who 
received CRRT  

CLHD: CL for patients who 

received HD treatment  

θ1 2.82 
 

V1 31.8 θ3* (WT/60) θ3 75.4 99.20%   49.20%   σ = 0.253   

θ2 0.836 

CLCRRT 0.716 

CLHD 0.334 

Bury et al. (16) θ1 + (1+θ2*(CLCR-104)) 

*θ3
NEUTROPENIA  

θ1 3.22 θ5*(FFM/57.2) θ5 45.8 θ6*(FFM/57.2) θ6 51.7 31% 35.20% 97.80%   16.70% 2.07 mg/L 

θ2 0.00834 

θ3 1.277 

Donadello et al. 

(17) 

CL * CLCRRT * CLNOCRRT  CL 3.7 
 

V1 31.8 - V2 57.1 16.40% 57.10% 101% 8.50%     

CLCRRT 0.6 

CLnoCCRT 1 

Escobar et al. 

(18) 

TVCL = θ1/100  TVCL 2.7 
 

V1 11.9 - V2 17.3 NR NR NR †   † †  

Goti et al. (19) θ1 *(CLCR/120)θ2 * θ3
 DIAL θ1 4.5 θ4 *(WT/70) * θ5

 

DIAL 

θ4 58.4 - V2 38.4 39.80% 81.60% 57.10%   22.70% 3.4 mg/L 

θ2 0.8 θ5 
DIAL 0.5 

θ3 
DIAL 0.7 

Hui et al. (20) NR CLHD 3.86 NR V1 45.3 NR V2 45.6 ωCLNHD 

(CV%) = 

69.5%  

84.50% 94.80%   43.50%   

CLNHD 0.443 

Lim et al. (21) θ1 *CLCR/100 θ1 3.96 V1 = θ2 θ2 33.1 V2 = θ3 θ3 48.300 40.10% 35.70%     ε = 0.231    

Mangin et al. 

(22) 

θCL * θFEMALE * (BW/70)0.75 * 

(SAPSII/50)θSAPSII * 

(SCr/100)θSCr 

θCL 1.91 θVc * (WT/70)1 θVc 21.9 θVp * (WT/70)1 θVp 68 ωCL = 

0.29 

  ωV2 = 

0.153 

    7.32 mg/L 

θFEMALE 0.66 

θSAPSII -0.50 

θSCr -0.90 

Medellín-

Garibay et al. 

(23) 

θ1 * CLCR θ1 0.49  V1 (L/kg) = θ2 * 

TBW (Age > 65 

years) 

θ2 1.07 V2 = θ4 * TBW θ4 5.9 

(L/kg) 

37% 40%     19.2% 4.1 mg/L 

 θ5 * CLCR (If furosemide) θ5 0.34  V1 (L/kg) = θ6 * 

TBW (Age ≤ 65 

years) 

θ6 0.74 

Moore et al. (24) θ2 *(1+(θ5*CLCR-83)) CL 2.83 θ1 * (1+θ6*(WT-

94.5)) 

V1 24.2 θ4* (1+θ7*(WT-

94.5)) 

V2 32.3 77% 34%     σ2 = 0.0067    

Okada et al. (25) θ2*(CLCR/113)θ6 θ2 4.25 θ1* (WT/59.4)θ5 θ1  39.2 V2 = θ3 θ3 56.1 25.20% 14.20% 66.90%   17.20%   

θ6 0.78 θ5 0.78 

Purwonugroho et 

al. (26) 

θ1 *CLCR θ1 0.044  V1 (L/kg) = θ2* 

Age 

θ2 0.542 V2 (L/kg) = θ4 θ4 44.200 35.78% 20.93% 57.27%     4.51 mg/L 

Zaric et al. (27) Normal renal function:  

θ1+θ3*FIB   

θ1 0.0727 V = θ6  θ6  7.47   NR  NR NR ω2 = 0.059          σ2 = 0.05 

θ3 0.205 

Impaired renal function:  θ2 

+θ4*DD+θ5*AST 

θ2 0.284 V = θ7 θ7 29.9 ω2 =0.135 σ2 = 0.045 

θ4 0.000596 
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θ5 0.00194 

CL: clearance, V1: central volume of distribution, V2: peripheral volume of distribution, BSV: between-subject variability, RV: residual variability, WT: Bodyweight, CLCR: creatinine clearance (mL/min/1.73m²), HD: hemodialysis, NHD: 

non-hemodialysis, CRRT: continuous renal replacement therapy, NEUTROPENIA: 1 or 0 for the presence or absence of neutropenia, respectively, FFM: fat-free mass, CLCRRT: CL relative to population parameter estimate for CL for 

patients not receiving continuous renal replacement therapy, CLNOCRRT:  CL relative to population parameter estimate for CL for patients not receiving continuous renal replacement therapy, NR: not reported , DIAL:  hemodialysis status, 

SAPSII: the simplified acute physiology score, SCR: serum creatinine, TBW: total bodyweight, FIB: Fibrinogen (g/L), DD: Daily dose (mg/day), AST: AST (IU/L)  

† Refer to the respective article for more details  

 

Table 2. 7 Characteristics of the population pharmacokinetic models developed by the studies included in this review (three-compartment) 

Study CL (L/h) V1 (L) V2 (L) V3 (L) BSV  RV  

Formula CL CLCSF  Formula Parameter Value Formula Parameter Value Formula Parameter Value CL CLCSF  V1 V2 V3 Proportional  

Li et al. 

(28)  

NR 7.98 0.04   V1 15.16 NR V2 46.1 NR VCSF 0.14           σ1=45.4% 

σ2=58.24% 

Li et al. 
(29) 

NR 8.75 0.02 27.87 + 0.96 * 
(WT - 69) 

V1 27.84 NR V2 19.8 NR VCSF 0.12 28.63% 0.71% 21.58% 25.72% 91.18%  σ1:CL= 0.82‡, σ2:CLCSF = 
0.55‡ 

Li et al. 

(30) 

CL = 11.87 * [1 + 0.0043 

* (CLCR-143)] 
CLCSF = 0.21 * [1 + 0.0047 

* (DA - 178)] * [1 - 0.20 * 

(ET-6)] 

7.25† 0.21   V1 11.87† NR V2 21.53 NR VCSF 0.039 42.94% 1.23% 82.46% 39.93% 55.09% σ1:CL = 0.3†  

σ2CLCSF= 0.34† 

CL: clearance, CLCSF: clearance from CSF compartment, V1: central volume of distribution, V2: peripheral volume of distribution, VCSF: CSF volume of distribution, BSV: between-subject variability, RV: residual 

variability, WT: bodyweight, CLCR: creatinine clearance (mL/min/1.73m²), DA: Drainage amount, ET: elapsed time after administration, NR: not reported 

† Refer to the respective article for more details  
‡ Power model  
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Table 2. 8 Covariates that were included or evaluated for inclusion by the PopPK models included in this review    
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Adane et al. (1)  ⧫ ✓ ⧫ ⧫ ⧫ ⧫  ✓ 
                                                      

Alqahtani et al. 
(14) 

⧫ ✓ ⧫ ⧫ ⧫ 
 
⧫ ✓ 

  
⧫ 
      

✓ 
                                            

Bae et al. (15) ⧫ ✓ ⧫ ⧫ 
   

✓ 
        

✓ ⧫ 
       

⧫ 
       

⧫ 
                 

✓ 
          

Bury et al. (16) ⧫                                       
✓ 
                     

✓ 

Chung et al. (2) ✓ ✓ ✓ ⧫   
✓ 
                              

⧫ 
    

⧫ 
   

✓ 
               

Deng et al. (3) ⧫ 
     

⧫ ✓ 
                                                      

Donadello et al. 
(17) 

⧫ ⧫ ⧫ 
    

⧫ 
   

⧫ ⧫ 
 
⧫ ⧫ ✓ 

                                             

Escobar et al. 
(18) 

                                                            
✓ 
 

Goti et al. (19) ⧫ ⧫ ⧫ ⧫   
⧫ ✓ 

                         
⧫ 
        

⧫ 
        

✓ 
       

⧫ 
  

Hui et al. (20)          
✓ 
                                         

✓ 
 
✓ 
        

Ji et al. (4) ✓ ⧫ ⧫ 
   

⧫ ✓ ⧫
a
 
        

⧫ 
               

⧫ 
                            

Kim et al. (5) ⧫ ⧫ ⧫ 
   

⧫ ✓ 
         

⧫ 
                   

✓ 
   

✓ ⧫ ⧫ ✓ ⧫ 
    

✓ 
           

Li et al. (28) ⧫ ⧫ 
     

⧫ 
          

✓ 
                                           

Li et al. (29) ⧫ ✓ ⧫ 
    

⧫ 
          

✓ 
                                           

Li et al. (30) ⧫ ⧫ ⧫ 
    

✓ 
          

⧫ 
                            

✓ ✓ 
             

Lim et al. (21) ✓ ⧫ ⧫ ⧫ 
  

⧫ ✓ 
                                                      

Lin et al. (6) ⧫ ⧫ 
    

⧫ ✓ 
                         

⧫ 
   

⧫ 
                        

Liu et al. (7) ✓ ✓ 
      

✓
b
 
                            

⧫ 
           

⧫ 
            

Mangin et al. 
(22) 

⧫ ✓ ✓ 
   

✓ 
      

✓ 
                     

⧫ 
               

⧫ 
    

✓ 
     

Medellín-
Garibay et al. 
(23) 

✓ ✓ ⧫ ⧫ ⧫ ⧫ ⧫ ✓ 
                             

✓ 
                        

Medellín-
Garibay et al. 
(8) 

⧫ ✓ ⧫ ⧫ ⧫ ⧫ ⧫ ✓ 
                                               

✓ 
 
⧫ 
    

Moore et al. 
(24) 

⧫ ✓ ⧫ 
   

⧫ ✓ 
        

⧫ 
                                         

⧫ 
   

Okada et al. 
(25) 

⧫ ✓ ⧫ 
  

⧫ ⧫ ✓ 
         

⧫ 
          

⧫ ⧫ ⧫ ⧫ ⧫ ⧫ ⧫ 
  

⧫ ⧫ 
                       

Purwonugroho 
et al. (26) 

✓ ⧫ ⧫ 
   

⧫ ✓
a
 ⧫ 

        
⧫ 
 
⧫ 
 
⧫ ⧫ 

 
⧫ 
        

⧫ 
   

⧫ 
                        

Roberts et al. 
(9) 

⧫ ✓ ⧫ 
 
⧫ 
  

✓ 
   

⧫ 
                                                  

Udy (31) ⧫ ⧫ ⧫ 
        

⧫ ⧫ 
                                                 

Usman et al. 
(11) 

⧫ ⧫ ⧫ 
   

⧫ ✓ 
                                                      

Wu et al. (12) ✓ ⧫ ⧫ 
    

✓ 
         

⧫ 
        

⧫ 
             

⧫ 
                     

Zaric et al. (27) 
⧫ ⧫ ⧫ 

    
✓

d
 
         

⧫ 
 
⧫ 
 
✓

f ⧫ ⧫    
⧫ 
    

⧫ 
   

✓
f
 ✓

f
 
              ✓

e

  
✓

e
 ⧫ 

       



 

54 
 

Zhou et al. (13) ✓ ✓ ⧫    
⧫ ✓ 

         
⧫ 
 
⧫ ⧫ ⧫ ⧫ 

          
⧫ 
   

⧫ 
                        

BMI: body mass index, BSA: body surface area, SCr: serum creatinine, , GFR: glomerular filtration rate, SOFA score: the sequential organ failure assessment score , APACHE II SCORE: the acute physiology and chronic health evaluation, SAPSII: the simplified acute physiology score, ALT: alanine 
aminotransferase, AST: aspartate aminotransferase, CSF: cerebrospinal fluid, ECMO: extracorporeal membrane oxygenation, Hct: hematocrit , RBC: red blood cells, WBC: white blood cells, T-BIL: total bilirubin , CRP: C-reactive protein , BUN: blood urea nitrogen, proBNP: pro-brain natriuretic 
peptide, Allo-HSCT: allogeneic hematopoietic stem cell transplantation   
✓tested and significant  
⧫tested but not significant  
atested other renal function descriptors, including at least a variation of modification of diet in renal disease MDRD4 (modification of diet in renal disease) equation 
busing Hoek’s equation based on cystatin C 
cwithin 3 days of therapy initiation 
dCLCR was significant using MDRD4 and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations in normal renal function group  
eSignificant in the group with normal renal function 
fSignificant within the impaired renal function group; aminoglycoside antibiotics are the significant concomitant drugs 
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Chapter 3 

An Update on Population Pharmacokinetic Analyses of Vancomycin, 

Part II: in Pediatric Patients 

 

 

This review is an update to a 2012 vancomycin review entitled “Vancomycin: A Review of 

Population Pharmacokinetic Analyses” by Amelie Marsot et al. An update was deemed 

necessary due to the large number of population pharmacokinetics analyses that were published 

following Marsot's original review. We split our update into two parts, adult and pediatrics.  This 

article concerning pediatric was accepted at Clinical Pharmacokinetics “Aljutayli, Abdullah, 

Ibrahim El-Haffaf Amélie Marsot, and Fahima Nekka. "An update on population 

pharmacokinetic analyses of vancomycin, part II: in Pediatric Patients." Clinical 

pharmacokinetics  (2021)” 
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Abstract 

Vancomycin is widely used in pediatric patients. However, large inter- and intra-individual 

variability are observed in vancomycin pharmacokinetics, affecting proper therapeutic 

monitoring. This review aimed at providing a comprehensive synthesis of the population 

pharmacokinetic models of vancomycin in pediatric patients and identifying potential factors 

responsible for the variability observed in various subpopulations. We conducted a literature 

search on PubMed and EMBASE to obtain population pharmacokinetic studies for vancomycin 

published between January 2011 and January 2020. This search resulted in a total of 33 studies. 

Vancomycin pharmacokinetics was generally characterized using a one-compartment model 

(n=27), while a two-compartment model was used in six studies. The median (interquartile 

range) of the typical vancomycin clearance (CL) and the total volume of distribution adjusted to 

the median or mean body weight of the respective study was 0.103 (0.071-0.125) L/h/kg and 

0.64 (0.59-1.03) L/kg, respectively. Median weight-adjusted CL between different children age 

groups, such as between infants and adolescents, did not appear to vary significantly, although 

the sample size for many age groups was very small. Examples of the conditions with relatively 

abnormal vancomycin pharmacokinetic values include renal insufficiency, sepsis, hematological 

and solid malignancy, and hypothermia treatment. Factors influencing pediatrics vancomycin 

pharmacokinetic after adjusting to size and maturation include various renal function descriptors 

and some case-specific variables such as dialysate flow rate, ultrafiltrate output, and 

hypothermia. This review was able to document possible variables explaining the high variability 

observed in certain subpopulations and contrast vancomycin pharmacokinetics in different 

pediatric subpopulations. 
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3.1 Introduction  

Vancomycin is a large hydrophilic glycopeptide antibacterial effective against gram-positive 

organisms (1). Vancomycin clinical intravenous administration to pediatric patients was 

considered, previous to the recent advent of alternative antibiotics, as the drug of choice in the 

management of invasive methicillin-resistant Staphylococcus aureus (MRSA) infections (2, 3). 

The 2020 revised vancomycin guideline reported concerns about the limited availability of 

prospective comparative outcome data evaluating vancomycin clinical and microbiological 

success (3). According to the revised guidelines, careful vancomycin therapeutic monitoring in 

pediatric patients is prudent (3). Despite the inconclusive data on vancomycin pharmacodynamic 

target in pediatric patients and based on the best of available retrospective and adult evidence, 

vancomycin monitoring was recommended to achieve a pharmacokinetic/pharmacodynamic 

(PK/PD) index of the ratio of area-under-the-curve (AUC) over 24 hours to minimum inhibitory 

concentration (MIC) by broth microdilution (AUC/MICBMD) of 400 to 600, assuming MIC of 1 

mg/L. However, targeting an AUC/MIC of 400 might be preferable to reduce incidences of acute 

kidney injury (AKI), although an AUC value of 600 was considered tolerable. With such 

consideration, high or low therapeutic target within the 400-600 AUC/MIC range might be 

subject to clinical judgment (3). 

Whereas adults' glomerular filtration might be directly related to vancomycin clearance while 

bodyweight could be related to vancomycin distribution volumes to some extent, vancomycin 

PK parameters in pediatric patients are subject, additionally, to the continual size and organ 

maturation changes (3, 4). Population pharmacokinetics (PopPK) approach using nonlinear 

mixed-effects models can potentially prove useful in explaining the PK variability in terms of the 

patient-specific characteristics (i.e. covariates), such as size-, maturation- and disease-related 
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changes (3). Accounting for patient-specific covariates should reduce the unexplained variability 

and aid in individualized dosing (5). It is worth mentioning that the remaining vancomycin 

random interindividual (IIV) clearance variability was reported to reach as high as 99.2% (6).  

While we addressed adult vancomycin PopPK analyses in our first part (7), this second part 

concerns vancomycin therapeutic monitoring and optimal dosing in pediatric patients using a 

nonlinear mixed-effects approach. Driven by the updated 2020 vancomycin guidelines (3) and by 

the growing number of published population PK analyses, this part is an extension with the same 

objectives of providing a systematic and comprehensive overview of all pediatric analyses 

reported from January 1, 2011, to January 5, 2020, to improve vancomycin therapeutic 

monitoring and dose optimization. We also aimed to characterize vancomycin PK in different 

subpopulations and identify possible PK parameter alterations, accounting for varying study 

designs, model structures, and patient-specific characteristics. Therefore, a comprehensive 

review of such information might be warranted and might help its translation into a better-

informed monitoring. 

3.2 Data Source  

3.2.1 Search strategy  

We performed an electronic literature search of vancomycin population pharmacokinetics 

analyses using PubMed and EMBASE databases with time confinement from January 1, 2011, to 

January 5, 2020, using the same search term used in part 1 (7), and substituting adults with 

children, i.e. AND (child*). All relevant articles were retained, inspected, and evaluated for 

inclusion. We examined reference lists of the retrieved studies to identify any additional relevant 

materials. 
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3.2.2 Inclusion Criteria 

We evaluated the retained studies for their inclusion eligibility according to predefined criteria; 

(i) studied population: children who received (ii) an intravenous treatment of vancomycin, and 

(iii) their vancomycin concentration-time profiles were modeled using a nonlinear mixed-effects 

pharmacokinetic modeling approach. Only (iv) original data and analysis (v) published in 

English were considered. 

3.2.3 Exclusion Criteria 

A three-point criterion was applied to exclude (i) any in vitro or animal study, (ii) any other 

reviews, meta-analysis, or methodology articles, (iii) or any applied methodology other than a 

nonlinear mixed-effects pharmacokinetic modeling approach. 

3.2.4 Data Extraction 

After applying the inclusion and exclusion criteria, we extracted all relevant information into 

data collection sheets. The extracted relevant information was discussed in detail in part 1 (7) 

and was, in brief, the authors, publication date, population demographics, clinical diagnoses, 

study design, vancomycin sampling frequencies and quantification methods, modeling approach, 

PK structural and statistical models, including vancomycin clearance (CL) and distribution 

volumes formulae, parameter estimates, and covariates information. 

3.3 Results of Literature Search  

3.3.1 Demographics and Study Characteristics  

The conducted literature search, with the application of inclusion and exclusion criteria, resulted 

in 28 eligible studies. Reference screening added 5 more studies, summing to 33 different PopPK 

analyses. Patient demographics were summarized in Table 3.1. Vancomycin PK parameter 

estimates in certain ethnicities, races, and nationalities, relative to the others, were of interest in 
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five studies (8-12). In this review, we did not observe any systematic differences between 

different ethnicities, races, and nationalities. These analyses were conducted in the USA (n = 18), 

China (n = 6), and France (n = 3), while the remaining analyses (n=6) originated from five 

different other countries (Table 3.1). Three studies recruited less than 30 patients (13-15). The 

number of recruited patients per study spanned from 10 patients (i.e., Kato et al. and Ingrande et 

al.) to 702 patients (i.e., Le et al.) (13, 15, 16). It should be noted that while this review was 

dedicated to all pediatric patients, many analyses limited their patients to a specific children 

group, including preterm and term neonates in four studies (17-20), neonates in five studies (8, 

13, 14, 21, 22), infants in a study (15), both neonates and young infants in three studies (9-11), 

and adolescents in two studies (23, 24), while the others did not limit their populations to specific 

age pediatric group (12, 16, 25-40). Figures in Supplementary Material 3.6 represent simulations 

of the age distribution for every study. Further, as summarized in Table 3.1, recruited children 

subscribed to varying combinations of age and/or clinical groups, such as neonates with late-

onset sepsis (17). Other clinical diagnoses included renal disease, cancer, cardiac pathology, 

cystic fibrosis, obesity, critical illness, and extracorporeal membrane oxygenation (ECMO) 

administration (Table 3.1). Seven studies used control cohorts, including Le et al. (34) who used 

a matched case-control design  (30, 34, 36-40). 

3.3.2 Study Design and Protocol  

All analyses collected therapeutic drug monitoring (TDM) data retrospectively (n = 29) or 

prospectively (n = 3), except for Sheng et al. (15) who conducted a clinical trial (Table 3.2). The 

main type of vancomycin administration was through intermittent infusion (Table 3.2). A 

continuous infusion was used in Guilhaumou et al. and Zhao et al. (22, 39), while both 

administration techniques (i.e., intermittent and continuous) were used in Germovsek et al. (11). 
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Vancomycin sampling frequency was at the discretion of the clinical teams in the TDM studies, 

which resulted in a varying number of samples per patient (Table 3.2). For instance, Kloprogge 

et al. reported withdrawing from two and up to 50 samples per patient (27). Sampling at steady-

state conditions was reported in 18 studies (8, 10-12, 16, 17, 19, 25, 26, 28, 29, 34-37, 39, 40). In 

contrast, six studies stated the inclusion of pre-steady-state samples (9, 15, 21, 23, 24, 30), while 

the remaining analyses (n =9) did not report the steady-state status while sampling (13, 14, 18, 

20, 22, 27, 31-33) (Table 3.2). Vancomycin quantification methods included a variety of 

immunoassays (n=27) and high-performance liquid chromatography, which was used in Zhang et 

al (40). The remaining five analyses did not specify the quantification method used (Table 3.3). 

3.3.3 Population Pharmacokinetic Analysis 

Vancomycin PopPK was largely described using one-compartment model (n = 27) (8, 10-14, 16-

26, 28, 29, 33-40). A two-compartment model was used in the remaining analyses (n = 6) (9, 15, 

27, 30-32). All studies performed model evaluations, including goodness-of-fit plots. Further, 

only six analyses validated their model externally (Table 3.4) (9-11, 18, 26, 27). In contrast, 

internal validation, such as the bootstrap procedure, was performed in most of the analyses (n = 

27), as demonstrated in Table 3.4. In general, fitting vancomycin concentration-time profiles 

were carried using NONMEM software (Table 3.4). Other software packages, including Phoenix 

NLME, Monolix, and Pmetrics were used in three, one, and one analysis, respectively (Table3. 

4). 

3.3.4 Vancomycin Clearance  

One challenge in writing this section was the lack of uniformity in reporting vancomycin CL 

(Table 3.5 and Table 3.6). The median (interquartile (IQ) range, range) of the typical 

vancomycin CL was 1.612 (0.429-3.403, 0.054-7.797) L/h, while the median (interquartile (IQ) 
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range, range) weight-adjusted typical CL to the respective study mean or median bodyweight 

was 0.103 (0.071-0.125, 0.0155-0.255) L/h/kg. This range suggests a 16-fold difference between 

the maximum and minimum weight-adjusted typical vancomycin CL. However, typical CL 

estimates did not appear to vary widely between age groups. Median CL values stratified by age 

groups, as reported in section 3.1, were 0.109, 0.095, 0.105, 0.103, 0.084, and 0.118 L/h/kg (i.e. 

0.319, 0.276, 0.300,0.420, 6.323, 2.590 L/h) for preterm and term neonates (n=4), neonates 

(n=5), infants (n=1), both neonates and infants (n=3), adolescents (n=2), and all the others 

(n=18), respectively. Across all studies, estimated CL in the first quartile were reported for 

hematological malignancy children using cyclosporin, children with renal insufficiency, children 

administered ECMO therapy, very low birth weight neonates, preterm and term neonates, and 

infants undergoing open-heart surgery administered cardiopulmonary bypass (13, 15, 17, 18, 22, 

31, 32, 37, 39, 40). In contrast, estimated CL within the fourth quartile was observed in 

hematological and solid malignancy children, children with cystic fibrosis, hypothermic children 

resuscitated from cardiac arrest, infants, neonates administered ECMO therapy, and general 

children (12, 14, 19, 25-30, 34). 

Many maturation functions varying from a simple linear relation to a more complex sigmoidal 

function, were used to describe organ maturation in correlation with age in many studies (n=14), 

as shown in Table 3.5 and Table 3.6. Varying size scaling methods were used. These methods 

include allometric scaling using bodyweight or fat-free mass (FFM) to the theoretical power of 

0.75 (n=17), an estimated power (n=10), or a power of 1 (n=2) with either standardizing to a 

bodyweight of 70 kg (n=8), FFM of 70 kg (n=2), standardizing to the study mean or median 

bodyweight (n=12), or without standardizing (n=7), as in Table 3.5 and Table 3.6. Three studies 
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did not size scale CL (13-15), while one study did not report CL formula (27). Cies et al. used an 

allometry scaling of the estimated glomerular filtration rate (eGFR) on CL (14).          

3.3.5 Estimated Volume of Distribution 

Estimated total volume of distribution (Vd) varied with a median (IQ range, range) of 0.64 (0.59-

1.03, 0.32-5.89) L/kg. This Vd represents the volume of distribution for one-compartment models 

or the sum of the central and peripheral distribution volume for two-compartment models. Two 

studies reported a relatively elevated Vd, Zhao et al. for hematological malignancy and Moffett et 

al. for renal insufficient children, which brought the ratio between the highest and lowest Vd to 

18-fold (28, 32). Excluding these two studies, the ratio between highest to the lowest Vd 

estimates was 5-fold only. Median Vd values stratified by age groups, as reported in section 3.1 

were 0.778, 0.949, 0.47, 0.561, 0.681, and 0.663 L/kg for preterm and term neonates (n=4), 

neonates (n=5), infants (n=1), both neonates and infants (n=3), adolescents(n=2), and all the 

others (n=18), respectively. However, any conclusion about these values must be made with 

caution considering the limited sample size available for some groups. A relatively elevated Vd 

in the fourth quartile was observed in hematological and solid malignancy, PICU, very low birth 

weight neonates, renal insufficient children, and neonates undergoing ECMO, as well as infants 

and general children populations (8, 12-14, 19, 27, 28, 32, 39). In contrast, a relatively low Vd 

(within the first quartile) was reported in obese, renal insufficient children, infants undergoing 

open-heart surgery and cardiopulmonary bypass (CPB), and some neonates and general children 

(9-11, 15, 22, 23, 26, 34, 37). Size scaling methods varied, as well, on distribution volumes as six 

studies did not include weight in the Vd formula, two did not report the Vd formula, two included 

FFM, while the remaining introduced weight standardized to the study median (n=9), to 70 kg 

(n=6), or without standardization (n=8) (Table 3.5 and Table 3.6). 
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3.3.6 Modeling of the Random Effects  

Vancomycin PK parameters appeared to vary extensively within some studies. For example, the 

IIV coefficient of variation (CV%) on the central volume of the distribution compartment  (V1) 

was 136% and 232% in Zane et al. and Kloprogge et al., respectively (27, 30). Further, the 

highest reported CV% of IIV on CL was 50.4% (27). All analyses modeled IIV using 

exponential models, whereas unexplained residual error was modeled using additive, 

proportional, and combined additive proportional models, (Table 3.5 and Table 3.6). Only 

Alsultan et al. (26) characterized inter-occasional variability.  

3.3.7 Inclusion of Covariates 

Collectively, the potential influence of 56 variables on explaining vancomycin PK variability 

was examined. Inclusion techniques were according to biological plausibility, a priori inclusion, 

and stepwise covariate modeling (Table 3.7). As discussed earlier in this text, frequently reported 

significant covariates were a variety of body weight and age. Renal function descriptors 

including serum creatinine (Scr), creatinine clearance (CLcr), and GFR were significant in n=17, 

n=4, and n=3 studies, respectively (Tables 3.5, 3.6, and 3.7). All these studies size-adjusted the 

renal function, except (13) and (14), while nine adjusted to maturation (Tables 3.5 and 3.6). In 

contrast, these renal function descriptors (i.e. Scr, Clcr, and GFR) were reported not to be 

statistically significant covariates in (n=8) models, as shown in Table 3.7 (9, 11, 12, 19, 25, 26, 

29, 39). A study reported a significant effect of concomitant drug usage with cyclosporin (39). 

Other non-frequent but significant covariates included blood urea nitrogen (BUN), albumin, 

ultrafiltrate output, and the volume of infusion (13, 31, 32). Some variables did not appear to be 

influential despite frequent testing, such as body surface area (BSA), height (HT), body mass 

index (BMI), PICU stay, and gender (Table 3.7).   
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3.4 Discussion  

This review included 33 vancomycin PopPK analyses, published during the period from January 

1, 2011, to January 5, 2020, using the nonlinear mixed-effects pharmacokinetic approach to 

characterize vancomycin concentration-time profiles in pediatric patients. Analyses included in 

the current review represented diverse clinical and children age groups. This review was meant 

to supplement part 1 (7), as well as to update an earlier review by Marsot et al. (1) which 

included 16 pediatric publications from 1986 to 2010. This apparent 2-fold increase in the rate of 

publication might suggest a growing interest in optimizing vancomycin therapeutic monitoring 

following the original vancomycin guidelines (41) and highlight the increasing popularity of 

population PK approaches.  

Characterizing vancomycin concentration-time profiles in pediatric patients might be subject to 

increasing size and maturing organ functions (42). Size scaling using bodyweight, or other size 

predictors such as FFM, might be important for all children (42). Further, the maturation effect 

on CL can be accentuated in children younger than 2 y (4). In this review, maturation was always 

defined with age, except for Cies et al. (14) who used an allometric scaling of eGFR. 

One complexity in writing this review was the lack of uniformity between studies in using size 

scaling methods, which included different allometry powers and standardizations. Overall, the 

median (IQ range, range) of CL per kg was slightly higher compared to values reported earlier in 

adults. It should be noted that the phenomenon of inflated CL expressed per kg in children 

compared to adults might not reflect a true higher CL (4). Despite this, once compared to adult 

values, no apparent systematic trend of varying vancomycin PK parameters in any clinical 

population was observed. It is worth mentioning that while we included varying CL and Vd 

statistics in this review to provide relativity, we would like to reemphasize that such comparison 
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should be viewed with caution due to differences between the studies, such as varying study 

designs, covariates, and parametrizations (7). 

Vancomycin is cleared primarily through glomerular filtration, although tubular transport might 

play a role (1). This highlights the significance of quantifying renal function and its maturation in 

children. Kidney development (i.e. nephrogenesis) begins around 5-6 weeks into gestational age 

(GA) and continues until the 36-week GA (43). After birth, hemodynamic variations might result 

in faster GFR rates compared to the rate observed in adults, and GFR per surface area might take 

up to 6-12 months to reach adult levels (43). Quantifying GFR in clinical practice might be 

challenged by the impracticality of the gold standard inulin clearance, and the imprecision and 

variability of creatinine-based equations, especially for low mass patients and neonates younger 

than 72 hours, considering the confounding maternal Scr (10, 17). Despite this, the National 

Foundation of Kidney Function Disease Outcomes Quality Initiative recommends estimating 

GFR using creatinine-based equations in adults and children (17).   

In our review, the influence of varying renal function descriptors was evaluated in many 

analyses, as shown in Table 3.7. For example, Bhongsatiern et al. evaluated the influence of 

various renal function descriptors that were calculated by varying methods such as the modified 

Schwartz, Counahan-Barrartt, and Leger formulae. They selected the modified Schwartz because 

of its simple bedside methods despite being developed in >1 y children with chronic kidney 

disease (17). This study further reported that Scr and CLcr functioned similarly in explaining 

vancomycin CL variability (17). Mehrotra et al. reported that Scr accounted for 55% of 

vancomycin CL variability once weight in preterm and term neonates is taken into consideration 

(20). In contrast, in patients with renal insufficiency, Zhang et al. reported no correlation 

between vancomycin CL and CLcr (40). Finally, preterm and term neonate serum creatinine-
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based dosing might result in a higher number of patients achieving the therapeutic target 

compared to a fixed weight, postmenstrual age (PMA) and postnatal age (PNA) based dosing 

(20). 

Many maturation models, including a simple linear relation to a more complex sigmoidal 

function, were used to describe organ maturation using varying age descriptors, such as PMA, 

PNA, PCA, and GA, in many studies (n=16), as shown in Tables 3.5, 3.6, and 3.7. In general, 

PMA and PCA might be preferable for neonates as it describes GA and PNA and accounts for 

before birth kidney development (4, 17, 20). For example, Moffett et al. reported that PMA, but 

not PNA, was a significant covariate on CL (33).  Further, Mehrotra et al. reported that in 

preterm and term neonates, PMA accounted for 19% of IIV after accounting for weight (20). 

Finally, despite the potential capacity of such models to account for maturation, over 

parametrization and ill-conditioning were two factors that might have limited their 

implementations (17). 

3.4.1 Preterm Neonates  

Rapid physiological changes in the first weeks of life, including renal maturation and body water 

composition, coupled with the innate immunological immaturity, might predispose preterm 

neonates to further risks (13). For example, reports indicate that very low birth weight preterm 

neonates might have elevated sepsis-related mortality and morbidity rates (13, 44). Zhao et al 

observed larger variability in vancomycin concentrations in preterm compared to term neonates 

(22). Thus, various dosing regimens to optimize vancomycin administration were evaluated. 

Mehrotra et al. reported that a weight-based dose of 10 mg/kg every 8 hours resulted in the 

largest vancomycin concentration variations and the lowest percentage of patients in the 

therapeutic target range (it was identified as a trough of 5–15 mg/L) compared to PMA- or Scr-
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based dosing (20). In contrast, Song et al. did not include Scr in their model, citing its limited 

utility as a marker of the glomerular filtration rate (9). Instead, Song et al. recommend a dosing 

algorithm that is based on birth bodyweight and PNA, which influence kidney function and 

growth. It should be noted that a strong correlation between body weight and both PNA and 

PMA, as well as a negative correlation between Scr and PMA in preterm neonates was reported 

(12). Despite this, a continuous infusion and a loading dose might be needed for rapid target 

achievement (11, 22).  

3.4.2 Kidney Disease and Hemofiltration in Children  

Given that vancomycin is primarily cleared through glomerular filtration, Le et al. aimed at 

studying the impact of renal insufficiency using a matched case-control design (37). Renal 

insufficiency (acute mild or moderate insufficiency) was reported to reduce vancomycin CL by 

30% to 70% compared to the respective matched cohort having a normal renal function (37, 40). 

Another study estimated that impaired renal function could reduce vancomycin CL by up to 80% 

and 84% in normothermic and hypothermic patients resuscitated from cardiac arrest, respectively 

(30). This reduced vancomycin CL estimate in patients suffering mild and moderate renal 

insufficiency was reported to translate into an increased AUC by up to 2.8-fold, leading to a 

higher incidence of nephrotoxicity compared to normal patients (30, 40). In this review, renal 

insufficiency appears to result, generally, in a relatively lower vancomycin CL. 

The impact of continuous venous-venous hemofiltration (CVVH) and its components, including 

ultrafiltration and dialysate flow rates, on children vancomycin PK was evaluated in Moffett et 

al. (32).  This study incorporated dialysate flow rate, ultrafiltration rate, and BUN, as well as Scr 

due to their significant association with vancomycin CL (32). Although SCR and BUN are 

effectively cleared through CVVH, their levels might represent a residual renal function (32). 
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Estimated vancomycin CL in this study appeared to be relatively low compared to other studies 

(32).  On the other hand, reported Vd of this study was among the largest in this review, which 

was attributed to the potential poor characterization of Vd as a result of the sparse sampling 

nature of the study, large priming volume used for the CVVH circuit, and fluid overload in many 

patients  (32). This study reported that allometrically scaling the PK parameters using FFM 

resulted in a better model fit compared to using bodyweight, and no other covariates influenced 

the distribution volumes in this study (32).  

3.4.3 Children on Extracorporeal Membrane Oxygenation  

Several patient- and circuit-specific factors involved in ECMO administration might provoke the 

hypothesis that ECMO support can alter vancomycin PK (31). Additionally, evidence exists 

suggesting that the target vancomycin concentrations were not obtained in ECMO patients (45).  

However, consistent with our previous observations in adults, vancomycin PK parameters of 

patients undergoing ECMO therapy did not seem to be systematically different compared to 

other clinical populations, although vancomycin CL and Vd estimates in Cies et al. were 

relatively high compared to all other studies in this review (7, 14, 31). Further, ultrafiltrate 

volume and urine output were not reported to be strongly associated with vancomycin CL (31). 

Although Moffett et al. aimed at characterizing the variability in circuit priming, fluid balance, 

and pathophysiology changes, this was not achievable due to the sparse sampling nature of the 

study (31). The study of Moffett et al. used Quadrox oxygenators and Rotaflow centrifugal 

pumps (Maquet Holding B.V & Co, Rastatt, Germany) (31). On the other hand, the study by 

Cies et al. aimed at characterizing vancomycin PK during ECMO administration using the 

contemporary ¼-inch Quadrox-iD Pediatric oxygenator (Maquet Cardiovascular, LLC) (14). 
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Vancomycin CL reported by Cies et al. was extremely larger than the CL estimate reported by 

Moffett et al. (14, 31).  

3.4.4 Obese Children  

Weight-based dosing might raise concerns of AKI in obese patients (3). Two studies in this 

review aimed at characterizing vancomycin PK in obese children. Similar to the earlier report in 

adults, PK parameter estimates adjusted to the size did not appear very different compared to the 

non-obese patients (7, 24, 34). Using a matched case-control study, Le et al. reported a slightly 

lower vancomycin weight-adjusted CL and Vd by 10.8% and 2.2% compared to the non-obese 

cohort (34). Despite this, the study concluded that this difference was unlikely to translate into a 

clinical significance (34). The influence of varying body size descriptors on CL, such as actual 

weight, BMI, allometric weight, and BSA, were evaluated (24, 34). Le et al. used allometric 

weight scaling according to the allometric theory due to its practicality despite BSA slightly 

outperforming it, while Moffett et al used FFM (24, 34).  

3.4.5 Children with Cystic Fibrosis  

Vancomycin therapy in cystic fibrosis (CF) might be of great relevance considering that a 

reported 50% of CF patients were infected with S. aureus, while 23% were infected with MRSA 

(29). Further, MRSA might possess a tissue-damaging virulence factor, and MRSA patients 

might have an increased mortality rate and a higher airway obstruction, needing thus aggressive 

antibiotic treatments, and more frequent hospitalizations compared to patients infected with 

methicillin-sensitive S. aureus (MSSA) (46-48). Despite this, the influence of CF and its 

associated pathophysiological changes on vancomycin PK might be poorly understood (29). In 

this review, Stockman et al did not report a significant difference in PK estimates between CF 

and non-CF children (29). 
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3.4.6 Children with Critically Illness or Sepsis  

In this review, three studies evaluated vancomycin PK in critically ill children (8, 21, 38). In 

critically ill children, augmented renal clearance (ARC) can be suspected due to a hyperdynamic 

state that can lead to increased cardiac output and renal blood flow (38). Avedissian et al. 

reported an augmented vancomycin CL by 50 mL/min/1.73 m2 in patients with ARC compared 

to those without ARC, which was observed in one in every ten patients (38). Further, chances of 

augmented vancomycin CL were reported to be higher in children ≥ 7.9 y compared to younger 

kids (17% vs 4.6%) (38). However, Avedissian et al. reported no statistically significant 

difference in doses administered to the groups of patients with or without ARC, as well as in the 

estimated AUC (38). Admission to the neonatal intensive care unit (level III) was evaluated in 

Frymoyer et al. (21). Overall, typical vancomycin PK values of these three studies did not appear 

to differ significantly from other studies in this review (8, 21, 38). 

Late-onset neonatal sepsis can be defined as at least one positive culture ≥ 72 h after birth or 

after the first week of life (17). For low birth weight neonates (i.e. <1500 g), late-onset sepsis 

might warrant careful attention given the estimated 15% mortality rate that might be attributed to 

their compromised immunity and high risk of infection (e.g. use of catheters) (17, 49). Three 

studies evaluated vancomycin PK in late-onset septic pre-term and term neonate and sepsis in 

infants (11, 17, 22). It should be noted that 20% of (22) patient populations were diagnosed with 

sepsis. Overall, a trend of a relatively low estimated vancomycin CL and/or Vd was noticed in 

every study (11, 17, 22). In contrast, in our previous review concerning adults, this trend of low 

estimated CL and/or Vd was not observed (7). According to Monte Carlo simulations conducted 

by Bhongsatiern et al., 50% of their simulated neonates achieved an AUC ≥ 400 (17). Overall, 
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further investigation might be warranted and many suggested that continuous infusion might be 

needed (3, 11, 22).  

3.4.7 Therapeutic Hypothermia after Resuscitation from Cardiac Arrest and Cardiac Surgery   

Therapeutic Hypothermia (TH) and normothermia (NT) might be applied to improve long-time 

neurological outcomes following resuscitation from cardiac arrest and hypoxic-ischemic 

encephalopathy (30). Zane et al. aimed at elucidating the potential effect TH and NT on 

vancomycin PK, given the potential for many pathophysiological conditions, such as reduced 

organ perfusion, organ dysfunction, transient renal impairment, renal failure in 12-28% of the 

patients, and consequently altered GFR that might not accurately reflect vancomycin CL (30, 

50). Further, Zane et al developed a PopPK model with a body temperature variable that 

predicted that extreme hypothermia might result in a reduced vancomycin CL by 25% in patients 

with normal kidney function (30). Impaired renal function children might experience reduced 

vancomycin CL by 80% and 84% in NT and HT, respectively (30). 

Children undergoing cardiac surgery might experience an increased incidence of AKI due to low 

cardiac output syndrome, venous congestion, and reduced end-organ perfusion resulting from 

inflammations of the CPB (15). Also, it might be suspected that priming volumes involved in the 

CPB procedure in addition to the altered fluid status from diuretics administration might alter 

vancomycin PK (15). However, Ingrande et al. reported no significant effect of CPB on 

vancomycin PK, although estimated CL and Vd were within the first quartile relative to other 

studies in this review (15). This CL observation did not seem to be consistent with the previous 

observation in adults undergoing open-heart surgery (7).     
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3.4.8 Children with Hematological and Solid Malignancy  

Risk of life-threatening infection, bacterial resistance, compromised immunity, and concomitant 

nephrotoxins use might warrant optimal vancomycin dosing in children with hematological and 

solid malignancies  (25, 39). Further, MRSA isolates might be prevalent among malignancy 

patients (25). Guilhaumou et al. reported that vancomycin CL correlated with cyclosporin 

coadministration and tumor pathology (solid or hematological malignancy) (39). Further, a 

relatively lower estimated CL in hematological patients treated with cyclosporin for bone 

marrow transplantation of 3.49 L/h was observed compared to a CL value of 4.66 L/h in 

hematological malignancy patients not administered cyclosporin, and 4.97 L/h in solid 

malignancy patients (39). It is worth mentioning that Scr levels were significantly higher, yet 

stable, in patients who administered cyclosporin and were not retained as a significant variable in 

this PK model (39). Other nephrotoxins used for bone marrow transplant including amphotericin 

b, foscavir, and acyclovir were not identified as significant variables, as well  (39). Further, 

concomitant chemotherapeutic agents did not seem to affect PK (25).  Zhao et al. studied 

children with hematological malignancy and reported elevated PK parameters (i.e. CL and Vd) 

that were among the highest in this review (28). The estimation of vancomycin CL in Abdel 

Hadi et al. was relatively elevated as well (25). In contrast, while Guilhaumou et al. Vd estimate 

was relatively elevated, its vancomycin CL was relatively low (i.e. in the first quartile) compared 

to other studies in this review (39). It is worth mentioning that the median estimated creatinine 

clearance in Zhao et al. was 191 ml/min (28).  

3.5 Conclusion  

This review included 33 PopPK analyses on vancomycin in various children subpopulations. 

Despite the evaluation of the influence of 56 covariates, only a few were retained in the models 
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after adjusting for size and maturation. Estimation of vancomycin CL and Vd varied widely 

across the studies included in this review. The highest reported CV% of IIV on CL was 50.4%. 

The TDM nature of most studies might have attributed to a relatively elevated CV% of IIV on 

V1, as high as 232%. While we could identify some factors as those mentioned here that may 

alter vancomycin PK in this review, additional research might be required before advocating for 

vancomycin dosing regimen changes. 

 

Acknowledgment  

 We thank Aniss Mesli (a summer intern) for his help with literature search, articles screening, 

and table initial filling, and Dr. Frederique Fenneteau for her suggestions. This work was supported 

by the NSERC Industrial Research Chair in Pharmacometrics, jointly supported by Syneos Health and 

Pfizer, and NSERC Discovery Grant RGPIN-2020-05982, held by F. Nekka. 



 

76 
 

Table 3. 1 Demographic Summary 

 Study Publication 

year 

Country   

Patients  N 

(male/female) 

Age (y)a 

PNA                               PMA                              GA 

Body and birth 

weight 

(kg)a 

 Scr (mg/dL)a  

Abdel Hadi et al. (1) 2016 Jordan Cancer 49 (27/22) 6 ± 2.46 NR NR 19.6 ± 6.95 0.406 ± 0.118 

Alsultan et al. (2) 2018 Saudi Arabia General pediatric patients 76 (44/32) 5.8 ± 2.9 NR NR 18.1 ± 8.5 0.38 ± 0.12 

Avedissian et al. (3) 2019 USA Critically ill  221 (107/114) 9.0 (3.0-14.2)b NR NR 26.4 [14.6-50.0]b 0.40 [0.30–0.6]b  

Critically ill with 

augmented renal clearance 
29 (15/14) 11.3 (8.7-13.8)b  NR NR 

41.8 [25.8-53.9]b 0.33 [0.30–0.4]b  

Bhongsatiern et al. (4) 2015 USA Neonates with late-onset 
sepsis 

152 (88/64) 
PNA: 23 (15-41)b 
days 

33.0 (28.5-39.4)b 

weeks 
NR 

1.5 (0.88-2.7)b 0.44 (0.33-0.6) 
[0.1-3]b 

Chen et al. (5) 2018 China Neonates and 

young infants 

213* 26 [6-59]c days 39.8 [28-47.9]c 

weeks 

36.9 [25-42] 

weeksc 

Birth weight: 2.53 

[0.7-4.7]c 

Body weight: 2.73 

[0.88-5.1]c 

0.28 [0.11–

0.72]c 

Cies et al. (6) 2017 USA Neonates on ECMO 12 (7/5) 9.5 [0-28] daysc NR 39 [36-41] weeksc 3.1 [2.2-4.41]c NR 

Dao et al. (7) 2019 Switzerland Full term and preterm  
Neonates 

405 (231/174) 12.3 [0-146]c days 32 [24.6-61.0] 
weeksc 

29 [24-42.1] 
weeksc 

1.1 [0.462-5.660]c 54 (31-68)c, e 

Frymoyer et al. (8) 2014 USA Neonates 249 (128/121) 19 [0-173]c days 39 [24-54] weeks c 34 [22-42] weeks 

c 

Birth weight: 2.0 [0.4-

4.4] c  

Body weight: 2.9 [0.5-
6.3]c 

0.4 (0.3-0.6)b 

Germovsek et al. (9) 2019 England Neonates and infant 54* 30 [1-156]c days NR 29 [23.7-41.9] 

weeks c 

NR 31.0 [18-98]c, e 

Guilhaumou et al. (10) 2016 France Hematological 
malignancies 

61 (30/31) 9.1 ± 5.7 
NR NR 31.6 ± 18.6 32.8 ± 20.1e 

Solid malignancies 60 (24/36) 7.1 ± 5.4 NR NR 25.0 ± 16.4 28.3 ± 14.7e 

Ingrande et al. (11) 2019 USA Infants undergoing open-

heart surgery with CPB 

10 (4/6) 3.075 months NR NR 4.63 NR 

Kato et al. (12) 2017 Japan Low birth weight neonates 10 (7/3) 19.7 ± 6.7 [11-28] 

days 

NR 26.8 ± 3.0 [23.4-

31.6] weeks 

Birth weight: 0.78 ± 17 

[0.57-1.11] 

Body weight: 0.97 ± 
0.23 [0.69-1.43] 

0.62 ± 0.33 

[0.29-1.34] 

Kloprogge et al. (13) 2019 England General pediatrics (13.3 % 

experienced nephrotoxicity) 

616* 61 [0.03-255] 

months  

NR NR 19 [0.742-95] 39 [5-892]e 

Lanke et al. (14) 2017 USA Adolescent patients with 
suspected sepsis 

463 (266/197) 15.6 (14.0-17.5)b NR NR 58.9 (45.8-72.2)b 0.62 (0.50-
0.79)b 

Le et al.  (15) 2013 USA General pediatric patients 25 (18/7) 50.2 ± 17.0 (21-81) NR NR 22.8 (12.6-46.0)b 0.48 ± 0.33 (0.3-

0.6) 

Le et al. (16) 2014 USA Children with renal 
insufficiency 

63 (40/23) 13 ± 6 
NR NR 

52 ± 26 1.3 ± 0.5 

Control: general pediatric 

patients 
63 (31/32) 13 ± 6 

NR NR 
50 ± 25 0.6 ± 0.2 
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 Study Publication 

year 

Country   

Patients  N 

(male/female) 

Age (y)a 

PNA                               PMA                              GA 

Body and birth 

weight 

(kg)a 

 Scr (mg/dL)a  

Le et al. (17) 2014 USA General pediatric patients 138 (72/66) 6.1 (2.2-12.2)b NR NR 22.2 (13.2-37.9)b 0.37 (0.30-

0.50)b 

Le et al. (18) 2014 USA Control: general pediatric 

patients 

635 (341/294) 6.8 [2.4-13.6]b NR NR 23 [12.8-47.3]b 0.4 (0.3-0.5)b 

General pediatric patients 

who experienced 

nephrotoxicity 

45 (20/25) 5.1 [1.5-14.3]b NR NR 23.4 [12.9-42.4]b 0.3 (0.2-0.6)b 

Le et al. (19) 2015 USA Overweight and obese 87 (44/43)  10.0 (4.8-15.2)b NR NR  44.0 (23.4-78.1)b  0.51 ± 0.22 
(0.34-0.67) 

Control: normal weight 

children 

87 (42/45)  10.2 [4.5-14.8]c NR NR 31.3 (16.8-47.1)b 0.48 ± 0.20 

(0.30-0.60) 

Li et al. (20) 2018 China Critically ill Chinese 
neonates 

 80 (54/26) 32.3 ± 24.1 [4-126] 
days 

39.4 ± 3.60 [29-
47.1] weeks 

34.7 ± 4.31 [25.7-
41.1] weeks 

2.87 ± 0.89 [1.4-5.6] 23.2 ± 10.4 
[5.85-61.6]c, e 

Liu et al. (21) 2017 China General pediatric patients  54 (23/31) 124.30 [1.29 – 

541.4] weeks   

NR NR 
10.36 [1.4-33.5] 0.39 [0.15-1.32] 

Mehrotra et al. (22) 2012 USA Full term and preterm 
neonates 

134 (72/62) 26.8 ± 24.3 [1-121] 
days 

36.5 ± 5.2 [24.6–44] 
weeks 

32.7 ± 5.7 [23-41] 
days 

2.5 ± 1.1 [0.6-5.3] 0.6 ± 0.38 [0.2-
2.5] 

Moffett et al.  (23) 2018 USA ECMO 93 (48/45) 0.64 (0.07-6.7)b NR NR 7.6 (3.7-21.9) b 0.56 (0.32–

1.01)b 

Moffett et al.  (24) 2019 USA 
Cardiac surgical population 

261 (157/104) 0.31 (0.07-0.77)b NR NR 4.8 (3.4-7.4) b 0.32 (0.25-
0.41)b 

Moffett et al.  (25) 2019 USA 
CVVHDF 

138 (63/75) 4.9 [1.0, 14.5]c NR NR 31.0 ± 25.8 0.72 (0.41-

1.29)b 

Moffett et al.  (26) 2019 USA Large pediatric patients: 
obese (75%) and 

overweight (13.8%) 

196 (135/61) 15.9 [9.3-18.9]c NR NR 91.8 ± 20.6 0.90 ± 0.48 

Sheng et al. (27) 
2017 China 

Infants 61 (34/27) 0.08 [0.003-0.97]c 37.86 [26.00-41.43]c 
weeks 

NR 
3.15 [0.95-16.0]c 

32.3 [10.4 – 
109]e 

Song et al. (28)  2017 China Neonates and infants 316 (201/115) 24 [0-60]c days NA 37 [28-41]c weeks 3.95 [1.25-5.38]c 28.6 [12-151]c, e 

Stockman et al. (29)  2013 USA Children with Cystic 

fibrosis 

 67 (27/40) 13.9 (8-17)b NA NA 41.2(25.5-56.8)b 
NR 

 

 

         

       

Zane et al. (30) 2017 USA Hypothermic children 
resuscitated from cardiac 

arrest 

11* 43 [4-211]c months NR NR 16.4 [7-88.3]c 0.2 [0.1-2.0c 

Normothermic children 

resuscitated from cardiac 
arrest 

41* 23 [1.75-210]c 

months 

NR NR 12 [3.8-77.5]c 0.4 [0.1-3.9]c 

Zhang et al. (31) 2016 China Normal renal function 66 (43/23) 8.0 [1.1-23.9]c 

months 

NR NR 8.2 ± 2.4 0.3 ± 0.1 

Mild renal insufficiency 24 (17/7) 6.5 [1.0-24.0]c 
months 

NR NR 8.0 ± 3.3 0.5 ± 0.1 
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 Study Publication 

year 

Country   

Patients  N 

(male/female) 

Age (y)a 

PNA                               PMA                              GA 

Body and birth 

weight 

(kg)a 

 Scr (mg/dL)a  

Moderate renal 

insufficiency 

20 (14/6) 3.0 [1.1-24.0]c 

months 

NR NR 6.6 ± 3.0 0.7 ± 0.2 

Total 110 (74/36) 6.0 [1.0-24.0]c 

months  

NR NR 7.9 [5.0-11.2] NR 

Zhao et al.  (32) 2013 France Neonates 116 (59/57) 26 ± 25 [1-120] days 33.8 ± 5.3 [24.4-

49.4] weeks 

NR Birth weight: 1.331 ± 

0.839 [0.510-3.930]  
Body weight: 1.700 ± 

0.964 [0.460-5.680] 

48 ± 33 [5-228]e 

Zhao et al.  (33) 
 

2014 France Malignant hematological  
disease 

70 (41/29) 6.8 ± 4.8 [0.3-17.7] NR NR 25.7 ± 15.5 [5.6-71.0]  32 ± 17 [10-
141]e  

 
ARC augmented renal clearance, BMI body mass index, CPB cardiopulmonary bypass, CLCR creatinine clearance, CVVHD continuous venovenous hemodialysis, ECMO extracorporeal membrane 

oxygenation, GA gestational age, ICU intensive care unit, NR not reported, PCA postconceptual age, PMA postmenstrual age, PNA postnatal age, Scr serum creatinine, 

a Values are expressed as mean ± standard deviation [range] (interquartile range) 

b Values are expressed as median (interquartile range) 

c Values are expressed as median [range] 

d Values are expressed in mL/min 

e Values are expressed in μmol/L 

* Gender was not reported 

 

Table 3. 2 Summary of the clinical protocols for studies included in this review 

 Study Design   Vancomycin administration Samples       

Dosage  Samples per 

patient 

Total 

samples 

Sampling only at steady 

state 

Sampling scheme 

Abdel Hadi et al. (1) Retrospective  Initial: 205 [100–460]a mg/day 2.45* 120 At least 51.5% at steady-

state 

Peak and trough 

Alsultan et al. (2) Retrospective  Initial: 61.5 ± 9.5a mg/kg/d 2 122 Yes Peak and trough 

Avedissian et al. (3) Retrospective  45 (39.97-58.61)b mg/kg/d 

16.63 (12.81–16.16)b mg/kg/dose 

2.632* 658 Yes 94.4% were trough 

Bhongsatiern et 
al.(4) 

Retrospective  33.2 ± 17.6a mg/kg/d 3.5* 528 Yes Peak and trough 

Chen et al. (5) Retrospective Initial for bacteremia: 10 mg/kg q 8 or 12 h over 1 h IV 

infusion 
Initial for meningitis: 15 mg/kg q 

1.55* 330 Yes Peak (35%) and trough (65%) 
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 Study Design   Vancomycin administration Samples       

Dosage  Samples per 

patient 

Total 

samples 

Sampling only at steady 

state 

Sampling scheme 

 8 or 12 h over 1 h IV infusion 

Cies et al.(6) Retrospective Per standard of care at the respective hospital 7.7 [3-19]a 108 NR Trough 

Dao et al. (7) Retrospective 13.7 (10-16.1)b mg/kg 4.5b 1831 NR Peak, trough, and random  

Frymoyer et al. (8) Retrospective Initial:15 mg/kg q 12 6.84* 1702 No Peak and trough 

Germovsek et al. (9) Retrospective Initial: 15 mg/kg followed by IV infusion based on Scr levels Intermittent: 2.61* 

Continuous: 4.34* 

81 

 

102 

Yes Peak and trough 

  

Guilhaumou et al. 
(10) 

Prospective Initial: Loading dose of 10 mg/kg 
followed by 30 mg/kg continuous infusion  

2.5* 301 Yes NR 

Ingrande et al. (11) Prospective A single dose of 15 mg/kg [5-7]a 57 No Peak, trough, and random 

Kato et al. (12) Retrospective  26.2 ± 3.0a mg/kg/day 2.6* 26 NR NR 

Kloprogge et al. (13) Retrospective Per the standard of care at the respective hospital  7 [2-50]a 4137 NR NR 

Lanke et al. (14) Retrospective 48 (38-60)b mg/kg/day 2.4a 1107 No Peak, trough, random 

Le et al. (15) Retrospective 45 ± 12a mg/kg/day   2.36* 1660 Yes Peak, trough, random 

Le et al. (16) Retrospective Renal insufficiency group: 38 ± 14 a mg/kg/day 

Control: 42 ± 13a mg/kg/day  

2.53* 319 Yes Mostly trough concentrations 

Le et al. (17) Retrospective 44 (39-47)b mg/kg/day 5.2* 712 Yes Peak, trough, random 

Le et al. (18) Retrospective 46.7 ± 11.6a mg/kg/day 2.32* 1576 Yes Trough 

Le et al. (19) Retrospective Control: 47.4 ± 13.0 (39.9–53.3)a mg/kg/d 

Obese: 41.9 ± 12.0 (33.4–50.1)a mg/kg/d 

2.27* 389 Mostly at steady state Peak, trough, and random 

Li et al. (20) Retrospective 45 ± 16a mg 2.5* 165 Yes Peak (n = 90) and trough (n = 75) 

Liu et al. (21) Retrospective Per standard of care at the respective hospital  2.4* 128 Yes Peak and trough 

Mehrotra et al. (22) Retrospective Per standard of care at the respective hospital  2* 267 NR Peak and trough 

Moffett et al. (23) Retrospective  14.6 ± 1.9a mg/kg/dose 4 433 NR Time after dose: 13.2 ± 10.7 a h 

Moffett et al. (24) Retrospective  14.5 ± 1.7a mg/kg/dose 2.21* 578 NR Time after dose: 8.9 ± 3.8 a h 

Moffett et al. (25) Retrospective  14.3 ± 1.6a mg/kg/dose 6 (2-12)b 828* NR Time after dose: 13.6 ± 8.4 a h 

Moffett et al. (26) Retrospective  13.3 ± 2.2a mg/kg/dose 
1,192 ± 205a mg 

1 (1-3)b 555 No Time after dose: 7.9 h (0.0-112.4 h)b 

Sheng et al. (27) Retrospective 42.91 ± 13.74a mg/kg/d 1.18* 72 Yes Peak and trough 

Song et al. (28)  Retrospective 36.7 (13.7-73.5)c mg/kg/d 1.33* 421 No Peak, trough, and random 

Stockman et al. (29)  Retrospective 

17.4 ± 4.4a mg/kg over 1 h infusion 7.25* 486 Yes Peak and trough 

Zane et al. (30) Retrospective Hypothermic children: 10 [5-20]c mg/kg 

Normothermic children: 10 [10-20]c mg/kg 
2.96* 154 No Trough 

Zhang et al. (31)  Retrospective 39.6 [35.1-45.0]c mg/kg/d 2* 253 Yes Peak and trough 

Zhao et al. (32) Prospective Hospital 1: 

Initial: 10 or 15 mg/kg with a maintenance dose of 15 to 35 

mg/kg/day 

Hospital 2: 
Initial: 15 mg/kg with a maintenance dose of 30 mg/kg/day 

Hospital 3:  

20 or 30 mg/kg/day  

1.8* 207 NR Time after dose: 26.8 h [9.8–137.8 h]c  

Zhao et al. (33) Prospective 13.0 ± 3.4a mg/kg 

 

1.4* 98 Yes NR 
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NR not reported, PMA postmenstrual age, PNA postnatal age, Scr serum creatinine, TDM therapeutic drug monitoring 

*Estimated 

a Values are expressed as mean ± standard deviation [range] (interquartile range) 

b Values are expressed as median (interquartile range) 

c Values are expressed as median [range] 

 

 

 

 

 

Table 3. 3 Reported vancomycin quantification methods 

Study  
Assay LLQ -ULQ (mg/L) Instrument  

Abdel Hadi et al. (1) NR NR NR 

Alsultan et al. (2) Chemiluminescent microparticle 

immunoassay 

NR NR 

Avedissian et al. (3) Fluorescence polarization immunoassay 2.0-100 AxSYM (Abbott Laboratories, Abbott Park, 
IL) 

Bhongsatiern et al. (4) Fluorescence polarization immunoassay 2.0-100 AxSYM (Abbott Laboratories, Abbott Park, 

IL) 

Chen et al. (5) Enzyme multiplied immunoassay 2.0-50 Viva-E System  
(Siemens Healthcare 

Diagnostics, Eschborn, Germany) 
Siemens Healthcare 

Diagnostics 

Cies et al. Method 1: fluorescence polarization immunoassay 

 

NR Roche Integra 800 analyzer (Roche Diagnostics, Manheim, Germany) 

Method 2: chemiluminescent microparticle immunoassay NR ARCHITECT i System (Abbott Labs, Abbott Park, IL) 

Dao et al. (7) Fluorescence polarization immunoassay 0.74 Cobas Integra 400+, Roche Diagnostics) 

Frymoyer et al. (8) Particle-enhanced turbidimetric 

inhibition immunoassay 

0.8-50 Dimension clinical chemistry system 

(Siemens Healthcare Diagnostics) 

Germovsek et al. (9) Enzyme multiplied immunoassay 1.7-80.0 Cobas 702 platform 
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Study  
Assay LLQ -ULQ (mg/L) Instrument  

(Roche Diagnostics) 

Guilhaumou et al. (10) Fluorescence polarization immunoassay 2.00 Cobas Integra 400+ 

(Roche Diagnostics, Mannheim, Germany) 

Ingrande et al.(11) Particle-enhanced turbidimetric 
inhibition immunoassay 

0.8 Siemens RxL analyzer (Siemens Healthcare Diagnostic, Newark, DE) 

Kato et al. (12) Enzyme multiplied immunoassay 1.7 Roche Diagnostics K., K., Tokyo, Japan 

Kloprogge et al. (13) Quantitative microsphere system immunoassay 2.0-100 Indiko Plus 

Lanke et al. (14) Immunoassay 1.1-100 Abbott Architect 

System 

Le et al. (15) Method 1: direct chemiluminescence technology 0.67-90 Advia Centaur System (Siemens 

Medical Solution, Deerfield, IL) 

Method 2: fluorescence polarization immunoassay 2.0-100 AxSYM (Abbott Laboratories, Abbott Park, IL). 

Le et al. (16) Fluorescence polarization immunoassay 2.0-100 AxSYM (Abbott Laboratories, Abbott Park, IL). 

Le et al. (17) Method 1: direct chemiluminescence technology 0.67-90  Advia Centaur System (Siemens 

Medical Solution, Deerfield, IL) 

Method 2: fluorescence polarization immunoassay 2.0-100 AxSYM (Abbott Laboratories, Abbott Park, IL). 

Le et al. (18) Fluorescence polarization immunoassay 2.0-100 AxSYM (Abbott Laboratories, Abbott Park, IL). 

Le et al. (19) NR NR NR 

Li et al. (20) Fluorescence polarization immunoassay 3.0-50 ARCHITECT 

i2000SR (Abbott Laboratories, Chicago, IL, USA). 

Liu et al. (21) Fluorescence polarization immunoassay 7-75 TDx FLX assay system 

(Abbott Laboratories, Irving, TX, USA). 

Mehrotra et al. (22) NR NR NR 

Moffett et al. (23) Enzyme multiplied immunoassay 5.0-50  VITROS 5600 (Ortho Clinical Diagnostics, Raritan, NJ) Integrated System 

Moffett et al. (24) Enzyme multiplied immunoassay 5.0-50  VITROS 5600 (Ortho Clinical Diagnostics, Raritan, NJ) Integrated System 

Moffett et al. (25) Enzyme multiplied immunoassay 5.0-50  VITROS 5600 (Ortho Clinical Diagnostics, Raritan, NJ) Integrated System 

Moffett et al. (26) NR NR NR 

Sheng et al. (27) Chemiluminescence microparticle 
immunoassay 

3.0-NR ARCHITECT i1000 system (Abbott Laboratories, Abbott Laboratories, Chicago, IL, USA) 

Song et al. (28) 

 

Fluorescence polarization immunoassay 1.0-NR NR 

Stockman et al. (29) 
 

Fluorescence polarization immunoassay 2.0-100 AxSYM (Abbott Laboratories, Abbott Park, IL). 

Zane et al. (30) NR NR NR 

Zhang et al. (31) 

 

HPLC 0.9–117.3 Agilent HPLC 

Zhao et al. (32) Method 1: fluorescence polarization immunoassay 0.74-NR Cobas Integra system (Roche Diagnostics, Meylan, France) 

Method 2: immunoturbidimetric assay  2.0-NR 

Zhao et al. (33) Fluorescence polarization immunoassay 0.74-NR Cobas Integra 400 plus system (Roche 

Diagnostics, Meylan, France) 

CV coefficient of variation, HPLC high-performance liquid chromatography system, LLQ lower limit of quantification, NR not reported, RUV residual unexplained variability, ULQ upper limit of 

quantification 
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Table 3. 4 Population pharmacokinetic modeling methods and techniques used by the studies included in 

the review 

 Study Compartments  Modeling 

Software  Validation Covariate modeling   

Abdel Hadi et al. (1) One-compartment NONMEM 7.2 Internal: bootstrap (n=1000) SCM (forward inclusion (P ≤ 0.05) and 

backward elimination (P ≤ 0.005)) 

Alsultan et al. (2) One-compartment Monolix 4.3 External (n = 16) SCM    

Avedissian et al. (3) One-compartment NONMEM 7.2 Internal: bootstrap SCM (forward inclusion (P ≤ 0.05)) 

Bhongsatiern et al. (4) One-compartment NONMEM 7.2 Internal: bootstrap (n=1000) 

and NPDE 

SCM (forward inclusion (P < 0.05) and 

backward elimination (P < 0.001)) 

Chen et al. (5) One-compartment NONMEM VII Internal: bootstrap (n=1000); 

external (n=57) 

SCM (forward inclusion (P < 0.05) and 

backward elimination (P < 0.001)) 

Cies et al. (6) One-compartment Pmetrics NR  SCM 

Dao et al. (7) One-compartment NONMEM 7.3 Internal: bootstrap and NPDE; 

external (n=78) 

NR 

Frymoyer et al. (8) One-compartment NONMEM 7.2 Internal: bootstrap (n=2000) 
and NPDE 

SCM (forward inclusion (P < 0.05) and 
backward elimination (P < 0.001)) 

Germovsek et al. (9) One-compartment NONMEM 7.3 External (n=34) SCM (forward inclusion (P < 0.05) and 

backward elimination (P < 0.001)) 

Guilhaumou et al. 
(10) 

One-compartment NONMEM 7.2 Internal: bootstrap (n=1000) Biological plausibility and SCM   

Ingrande et al.(11) Two-compartment NONMEM 7.3 Internal: bootstrap (n=1000) General additive model  

Kato et al. (12) One-compartment Phoenix NLME Internal: bootstrap (n=200) 

and NPDE  

SCM (forward inclusion and backward 

elimination (P < 0.01)) 

Kloprogge et al. (13) Two-compartment NONMEM 7.3 Internal: bootstrap (n=1000) 

and NPDE; external (n=169) 

A priori selection and backward 

elimination 

Lanke et al. (14) One-compartment NONMEM 7.3 Internal: bootstrap (n=1000) SCM (forward inclusion (P < 0.05) and 

backward elimination (P < 0.001)) 

Le et al. (15) One-compartment NONMEM 7.2 Internal: bootstrap (n=1000) SCM (forward inclusion (P < 0.05) and 

backward elimination (P < 0.005)) 

Le et al. (16) One-compartment NONMEM 7.2 Internal: bootstrap (n=1000) SCM (forward inclusion (P < 0.05) and 

backward elimination (P < 0.005)) 

Le et al. (17) One-compartment NONMEM 7.2 NR SCM (forward inclusion (P < 0.05) and 

backward elimination (P < 0.005))  

Le et al. (18) One-compartment NONMEM 7.2 Internal: bootstrap SCM (P < 0.05) 

Le et al. (19) One-compartment NONMEM 7.2 Internal: bootstrap (n=1000) 

and NPDE 

A priori selection and SCM 

Li et al. (20) One-compartment NONMEM 7.4 Internal: bootstrap (n=2000) 

and NPDE 

SCM (forward inclusion (P < 0.05) and 

backward elimination (P < 0.005))  

Liu et al. (21) One-compartment NONMEM 7.2 Internal: bootstrap (n=2000) SCM (forward inclusion (P < 0.05) and 
backward elimination (P < 0.005))  

Mehrotra et al. (22) One-compartment NONMEM V NR SCM (forward inclusion (P < 0.001) and 

backward elimination (P < 0.001)) 

elimination 

Moffett et al. (23) Two-compartment NONMEM 7.3 Internal: bootstrap (n=1000) SCM (forward inclusion (P < 0.05) and 

backward elimination (P < 0.001)) 

Moffett et al. (24) One-compartment NONMEM 7.3 Internal: bootstrap (n=1000) SCM (forward inclusion (P < 0.05) and 

backward elimination (P < 0.001)) 

Moffett et al. (25) Two-compartment NONMEM 7.2 Internal: bootstrap (n=1000) SCM (forward inclusion (P < 0.05) and 

backward elimination (P < 0.001)) 

Moffett et al. (26) One-compartment NONMEM 7.3 Internal: bootstrap (n=1000) 
and NPDE 

SCM (forward inclusion (P < 0.05) and 
backward elimination (P < 0.001)) 

Sheng et al. (27) One-compartment NONMEM 7.3 Internal: bootstrap (n=500) SCM (forward inclusion (P < 0.005) and 

backward elimination (P < 0.001)) 

Song et al. (28) Two-compartment Phoenix NLME 
1.3 

Internal: bootstrap (n=2000); 
external (n=19) 

SCM (forward inclusion (P < 0.01) and 
backward elimination (P < 0.001)) 

Stockman et al. (29)  One-compartment NONMEM 7.2 Internal: bootstrap (n=1000) SCM (forward inclusion (P < 0.01) and 

backward elimination (P < 0.001)) 

Zane et al. (30) Two-compartment NONMEM 7.2 NR A priori selection and backward 
elimination 

Zhang et al. (31) 

 

One-compartment Phoenix NLME 

1.2 

Internal: bootstrap (n=1000) SCM (forward inclusion (P < 0.05) and 

backward elimination (P < 0.01)) 

Zhao et al.  (32) One-compartment NONMEM VI Internal: bootstrap (n=500) 
and NPDE 

SCM (forward inclusion (P < 0.05) and 
backward elimination (P < 0.005)) 

Zhao et al.  (33) One-compartment NONMEM 7.2 Internal: bootstrap (n=500) 

and NPDE 

SCM (forward inclusion (P < 0.05) and 

backward elimination (P < 0.005)) and 



 

84 
 

 Study Compartments  Modeling 

Software  Validation Covariate modeling   

biological plausibility 

SCM stepwise covariate modeling; NR not reported; NPDE prediction distribution error 
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Table 3. 5 Population pharmacokinetic models (one-compartment) 

Study CL (L/h) Vd (L) IIV  RUV  

Formula Param

eter 

Value Formula Parameter Value CL (%) Vd (%)  Proportiona

l (%) 

Additive  

(mg/L) 

Abdel Hadi 
et al. (1) 

θ2 × ALWT θ2 0.381 θ1 × WT θ1 0.663 44 Not characterized - CV = 33% 

Alsultan et 

al. (2)a 

θ × (WT/20)  θ 2.99 - θ 9.55 15a 11.6 11.90% - 

Avedissian 
et al. (3) 

θCLwt × WT × (e^(θCLwtSCr × (Scr - 
0.40)) 

θCLwt 0.118 θvwt × WT θvwt 0.624 38.7 34.9 21% 2.96 

θCLwtSCr -1.13 

Bhongsatiern 

et al. (4)  

θ1 × (WT/1.5)θ3 × (CLCR/36)θ4 × 

(PMA/33) 

θ1 0.095 θ2 × (WT/1.5) θ2 0.905 19.2 23.5 - 17.5 

θ3 0.585 

θ4 0.72 

Chen et al. 
(5)  

θ1 × (WT/70)0.75 × (PMAθ4/PMAθ4 + 
θ3

θ4) × (Scr/0.28)θ3 
θ1 4.87 θ2 × (WT/70) θ2 40.7 26.8 0 Fixed 23.9% 0.688 

θ3 34.5 

θ4 4.61 

θ5 -0.221 

Cies et al.(6) θ x ([eGFR/eGFRmedian])
0.75 Θ 3.48 NR Vd 1.2 L/kg NR NR NR NR 

Dao et al. (7) θ1 × (WT/WTmedian)
θ2 × 

(Scr/Scrmedian)
θ3 × MF  

MF = PMAHill/(PMAHill + T50Hill) 

θ1 0.268 θ4 × WT/WTmedian θ4 0.629 22.6 Not characterized CV = 

0.236% 

CV = 1.98% 

θ2 0.438 

θ3 0.483 

Hill 3.57 

T50 46 

Frymoyer et 

al. (8) 

θ1 × (WT/2.9 kg)0.75 × Fmat × 

(1/SCrmg/dl)
θ2 

Where Fmat = 1/(1+ [PMAwk/TM50])
-

Hill 

θ1 0.345 θ3 × (WT/2.9 kg) θ3 1.75 21.6 10.9 20.5% 1.3 

TM50 34.8 

Hill 4.53 

θ2 0.267 

Germovsek 
et al. (9) 

θ1 × MF × (WT/70)0.632 
Where MF = PMAHill/(PMAHill + 

T50Hill) 

θ1  5.7 θ2 × (WT/70) θ2  39.3 0.1 0.1 0.09 - 

Guilhaumou 

et al. (10) 

θCL × (WT/70)0.75 θCL:hemato 

without CsA 

4.66 θV θV 34.8 31.1 60.9 0.238  4.45 

θCL:hemato 

with CsA 

3.49 

θCL:solid 4.97 

Kato et al. 
(11) 

θ1 x (Scr/0.59)-0.80 × (Volume of 
infusion/159.3)0.98 

θ1 0.054 θ2 θ2 1.19 14.8  29.4 -  0.3 

Lanke et al.  θ1 × (WT/58.9)θ3 × (CLCR/108.1)θ4 θ1 4.85 θ2 × (WT/58.9)θ5 θ2 31.0 27.9 24.9 20.7%  CV = 37.1% 
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(12) θ3 0.84 θ5 0.52 

θ4 0.78 

Le et al. (13) θ2× WT0.75 × (0.48/Scr)θ3 × 

[ln(Age)/7.8]θ4 

θ2 0.248 θ1 × WT θ1 0.636 35 18 29% - 

θ3 0.361 

θ4 0.995 

Le et al. (14) θ2 × WT0.75 × (0.64/SCr)θ3 × 

[ln(DOL)/8.6]θ4 

θ2 0.235 θ1 × WT θ1 0.564 39 Not characterized 28% - 

θ3 0.407 

θ4 1.090 

Le et al. (15) θ1 × WT0.75 × (0.4/SCr)θ2 × 

[ln(Age)/7.7]θ3 

θ1 0.258 θ4 × WT θ4 0.644 41 12 32% - 

θ2 0.431 

θ3 0.808 

Le et al. (16) θCL × WT0.75 × (0.39/SCr)θCL_SCr × 

[ln(Age)/3.4]θCL_AGE 

θCL 0.105 θV × WT θV 0.628 34 22 26.40% 1.29 

θCL_SCr 0.457 

θCL_AGE 1.12 

Le et al. (17) θ2 × ALWT × (0.4/Scr)θ3 × 

(ln[Age]/8.3)θ4 

θ2 0.286 θ1 × WT θ1 0.574 30 29 24% - 

θ3 0.29 

θ4 0.755 

Li et al. (18) θ1 × (WT/2.9)θ2 × (23.3/SCr)θ3 θ1 0.309 θ4 × (WT/2.9)θ5 θ4 2.63 37.9 Not characterized 37.5% - 

θ2 1.55 θ5 1.05 

θ3 0.337   

Liu et al. 

(19) 

θ1  × [PNAθ2 /(PNAθ2 + 33.3θ2)] × 

(WT/70)0.75 

θ1  11.75 θ3 × WT/70 θ3 54.49 36.2 67.11 32.15% 0.62 

θ2 0.4672 

Mehrotra et 

al. (20) 

θ1 × (WT/2.5)0.75 × (0.42/Scr)θ2 × 

(PMA/37)θ3 
 

θ1 0.18 θ4 × (WT/2.5) θ4 1.7 25.3 21.8 16 1.5b  

θ2 0.7 

θ3 1.4 

Moffett et al.  

(21) 

θ1 × (WT/70)0.75 × (CLCR/84)θ2 × 

(1/[1 + (PMA/50)θ3]) 

θ1 7.86 θ4 × (WT/70) θ4 63.6 17.4 25.5 19.90% - 

θ2 0.9 

θ3 -0.285 

Moffett et al.  

(22) 

θ1 × (FFM/70)0.75 × θ2(Scr/0.67) θ1 18.6 θ3 × (FFM/70) θ3 102 32.6 40.5 21.70% - 

θ2 0.582 

Sheng et al. 
(23) 

θ1 × e0.0193 × (WT/3.22)θ3 × 
(PNA/0.1)θ4 

θ1 0.449 θ2 θ2 4.45 ω = 
0.0193 

0 fixed 0 Fixed 0.281 

θ3 0.643 

θ4 0.289 

Stockman et 

al.  (24) 

θCL x (WT/70)0.75 θCL    5.57  - Vd 44.1 7 16 CV=0.29% CV =351% 

Zhang et al. 
(25) 

θCL × (WT/7)θWT_CL × 
(GFR/108)θGFR  

 

θCL 0.83 θVd × (WT/7)θWT_Vd  
 

θVd 4.22 28.2 21.6 -  0.01  

θWT_CL 0.97 θWT_Vd 0.93 

θGFR 0.42   

Zhao et al. 

(26) 

θ3 × (WT/1416)θ4 × (birth 

weight/1010)θ5 × (1 + θ6 × 

(PNA/17)) × (1/(SCr/42)θ7) 

 

θ3 0.0571 θ1 × (WT/1416)θ2 

 

θ1 0.791 17.9 40.1 20.30% 2.28 

θ4 0.513  0.898 

θ5 0.599   

θ6 0.282   

θ7 0.525   

Zhao et al 

(27) 

θ3 x (WT/20.2)θ4  x RF θ3 4.37 θ1 x (WT/20.2)θ2  θ1 119 34.8 77 5.30% 1.17 

RF = (CLCR/191)θ5 θ4 0.677 θ2 0.838 

 θ5 1.03   

ALWT allometric body weight, CL clearance, CLCR creatinine clearance, FFM fat-free mass, GFR glomerular filtration rate, IIV interindividual variability, MF maturation function, PMA postmenstrual age, PNA 

postnatal age, RF renal function, RUV residual unexplained variability, SCr serum creatinine, Vd Volume of distribution, WT body weight   
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a Intercessional variability on CL of 9.40% 
b for data with LOQ of 5 mg/L, the additive error was 5 mg/L            

 

Table 3. 6 Population pharmacokinetic models (two-compartment) 

Study CL (L/h) V1 (L) V2 (L) IIV  RUV  

Formula Parameter Value Formula Parameter Value Formula Parameter Value CL (%) V1 (%) V2 (%) Proportional 

(%) 

Additive (mg/L) 

Ingrande et 

al.(28) 

θ3 θ3 0.03 θ1- θ5 x WT θ1 1.43 θ2 θ2 1.55 NR NR NR NR NR 
θ5 0.178 

Kloprogge 

et al. (29) 

NR CL 4.84 NR V1 39.9  NR V2 37.8 50.4 232 Not 

characterized 

-  0.243 

Moffett et 
al.  (30) 

θ1 x (WT/70)0.75 x (0.56/Scr)θ2 

x (1/[1 + (PMA/43)θ3] 
θ1 3.96 θ4 x (WT/70) 

x θ5
(AGE/0.64)  

θ4 25.2 θ6 x 
(WT/70) x 

θ7
(2.9/ALB) 

θ6 32.4 28.8 94.8 - 
 

19.40% - 

 θ2 0.809 θ5 0.932 

θ3 -0.949 
 

 

Moffett et 

al.  (31) 

θ1 x (FFM/70)0.75 x θ2
LN(SCr/0.56) 

x θ3
LN(BUN/30) x 

θ4
(CRRTUF/500*θ5^(DILYSTE/600)) 

θ1 2.24 θ6 x (FFM/70) θ6 81 θ7 x 

(FFM/70) 

θ7 550 32.30% 27.50% - 20.50%   - 

θ2 0.535 

θ3 0.92 

θ4 1.88 

θ5 1.12 

Song et al. 

(32) 
 

θ1 x (BWT/3.22)θ2 x 

(PNA/29)θ3  

θ1 0.42 -  θ4  1.27 Θ5 Θ5 2.2422 ω = 

0.317 

- - - 2.187 

θ2 0.888 

θ3 0.449 

Zane et al. 
(33) 

θ1 x (WT/70)0.75  x (GFR/90)θ2 
x (Temp/37)θ3 

θ1 4.48 θ4 x (WT/70) θ4 12.7 θ5 x 
(WT/70) 

θ5 35.5 49.70% 136% 32.60% 20.90% - 

θ2 1.01 

θ3 1.96 

ALB albumin, BWT birth body weight, BUN blood urea nitrogen, CL clearance, CRRTUF continuous renal replacement therapy ultrafiltrate flow, DILYSTE dialysate flow rate, FFM fat-free mass, GFR 

glomerular filtration rate, PMA postmenstrual age, PNA postnatal age, RUV residual unexplained variability, IIV interindividual variability, SCr serum creatinine, Temp temperature, V1  central  volume of 
distribution, V2  peripheral  volume of distribution, WT body weight          

 

Table 3. 7 Included or evaluated variables   

Study  Variables   
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Abdel Hadi et al. 

(1) 
u ü           u u                      u                     

Alsultan et al. (2) u ü        u   u u                                           

Avedissian et al. 

(3) 
u ü           u ü                      u                    u 

Bhongsatiern et al. 

(4) 
u ü  U      u   u u ü ü u                                u        

Chen et al. (5) u ü            ü  ü                                         

Cies et al. (6) u u   u                u u         u               ü u          

Dao et al. (7) u ü           u ü  ü u  u                  u             u       

Frymoyer et al. (8) u ü            ü  ü u                                        

Germovsek et al. 

(9) 
u ü            u  ü                    u                     

Guilhaumou et al. 

(10) 
u ü           u u                     ü ü                     

Ingrande et al. (28) u ü                                    u                   

Kato et al. (11) u u  U          ü   u u  u                           ü          

Kloprogge et al. 

(29) 
  ü            ü  ü                                         

Lanke et al. (12)   ü             ü                                          

Le et al.  (13) ü ü            ü                    u  u         u   u         

Le et al. (14) ü ü           u ü                      u                     

Le et al. (15) ü ü            ü                    u  u         u   u         

Le et al. (16) ü ü          u  ü            u        u  u            u         

Le et al. (17) ü ü u   u u u   u   ü                                           

Li et al. (18) u ü           u ü  u u            u u      u   u u                 

Liu et al. (19) ü ü           u u u                                          

Mehrotra et al. (20) ü  ü            ü  u u                                        

Moffett et al. (30) ü ü            ü  ü    u  u     u u ü u u                          

Moffett et al. (21) u ü            u ü ü    u            u u     u                   

Moffett et al. (31) u u            ü         ü   u          ü u u ü         ü                                                    

Moffett et al. (22) u u            ü u u   u ü u         u                                                                       

Sheng et al. (23) u u      u       u u     u       u                    u             u     u u     u   u                      

Song et al. (32)  

ü 

 

u   Ü 

 

u       u     u u   u u       

 

              u u                   u           u                   

 

Stockman et al. 

(24)  
u ü     

 
        u     u u             

 
                                                                    

 

Zane et al. (33)  

  

 

ü     

 

                              

 

                                            ü   ü                   

 

Zhang et al. (25) u ü      u       u     u u u                            u                 u u u u       ü                    
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Zhao et al.  (26)  

ü 

 

ü   Ü 

 

                ü   u         

 

                            u                             u u u u u 

 

Zhao et al. (27) u ü                      u ü                                      u                                          

Summary                                                          

ü
Frequency 8 27 0 2 0 0 0 0 2 0 0 0 0 17 4 8 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 3 1 0 0 0 0 0 0 0 0 0 

u
Frequency 20 6 1 2 1 4 1 1 0 7 3 1 13 12 3 5 7 2 1 4 1 2 1 1 0 1 1 1 3 4 2 1 1 3 1 10 1 2 3 4 1 1 1 0 3 1 1 3 1 1 1 1 1 1 1 1 

Sum 28 33 1 4 1 4 1 1 2 7 3 1 13 29 7 13 7 2 1 4 1 3 1 1 1 1 1 1 4 5 2 1 1 3 2 11 1 2 3 4 1 1 1 1 3 4 2 3 1 1 1 1 1 1 1 1 

BMI body mass index, BSA body surface area, BUN blood urea nitrogen, BWT birth bodyweight, CLCR creatinine clearance, CRRT continuous renal replacement therapy, eGFR estimated glomerular 

filtration, FFM fat-free mass, GA gestational age, GFR glomerular filtration rate, PCA postconceptional age, MIC minimum inhibitory concentration, PMA postmenstrual age, PNA postnatal age, SCr 

serum creatinine, SGA: small for gestational age status, VCM vancomycin 

Variable that significantly improved model fit 

Variable that did not result in a significantly improved model fit  

a Includes PNA 

b Includes a priori inclusion of allometric weight 

c Tested but not significant concurrent medications include aminoglycoside, amphotericin B, ceftriaxone, dexamethasone, furosemide, gentamicin, ibuprofen, inotrope, meropenem, sirolimus, and 

tacrolimus 
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3.6 Supplementary Material 3.1  
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Figure S3.1. Simulation of the age distribution for the studies reported age in years assuming a truncated normal distribution. Mean age was 

estimated based on this assumption. 
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Figure S3.2. Simulation of the age distribution for the studies reported age in days assuming a truncated normal distribution. *Mean ages were 

estimated based on this assumption.  

Table S3. 8 Representation of age groups per study.   

Study Age group  

Preterm   neonates (0-27 days) Infants (28 days to 23 months) Young Children (2-11 years) Adolescents (>11 years) 

Abdel Hadi et al. (1)      

Alsultan et al. (2)      

Avedissian et al. (3)      

Bhongsatiern et al. (4)      

Chen et al. (5)      

Cies et al. (6)      

Dao et al. (7)      

Frymoyer et al. (8)      

Germovsek et al. (9)      

Guilhaumou et al. (10)      

Ingrande et al.(28)      

Kato et al. (11)      

Kloprogge et al. (29)      

Lanke et al. (12)      

Le et al. (13)      

Le et al. (14)      

Le et al. (15)      

Le et al. (16)      

Le et al. (17)      

Li et al. (18)      

Liu et al. (19)      

Mehrotra et al. (20)      

Moffett et al. (30)      

Moffett et al. (21)      

Moffett et al. (31)      

Moffett et al. (22)      

Sheng et al. (23)      

Song et al. (32)      

Stockman et al. (24)       

Zane et al. (33)      

Zhang et al. (25) 
 

     

Zhao et al. (26)      

Zhao et al. (27)      

The shaded area represents the presence of this age group in the respective study population 
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Chapter 4 

Pharmacokinetics Equations Versus Bayesian Guided Vancomycin 

Monitoring: Pharmacokinetic Model and Model-Informed Precision 

Dosing Trial Simulations 

 

 

In light of the revised vancomycin monitoring guidelines, we aimed at exploring the predictive 

performance of the new monitoring methods in varying clinical scenarios.  This chapter might 

help clinicians optimize vancomycin therapeutic monitoring.  
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Abstract 

The recently released revised vancomycin consensus guideline endorsed area under the 

concentration-time curve (AUC) guided monitoring. Means to AUC-guided monitoring includes 

first-order analytic equations and Bayesian software programs, with the latter approach being 

preferable. We aimed to evaluate the predictive performance of these two methods when 

monitoring using a trough or a peak and a trough at varying single or mixed dosing intervals 

(DI), as well as evaluate the significance of satisfying underlying assumptions of steady-state and 

model transferability. Methods included developing a vancomycin population pharmacokinetic 

model and conducting model-informed precision dosing clinical trial simulations. A one-

compartment pharmacokinetic model with linear elimination, exponential between-subject 

variability, and mixed (additive and proportional) residual error model resulted in the best model 

fit. Conducted simulations demonstrated that Bayesian-guided AUC might, potentially, 

outperform that of equation-based AUC predictions. Our simulations might support rapid 

Bayesian monitoring using data as sparse and early as troughs at 1st DI. Depending on the quality 

of model transferability diagnostics and met assumptions, to a certain extent, Bayesian-guided 

AUC prediction performance using a trough from the 1st dosing interval was equivalent to the 

performance of PK equations using two measurements (peak and trough) from the 5th DI. 

However, a strong relation between model transferability diagnostics with predictive 

performance could not be established. Sampling from the 4th and/or 5th DI did not seem to have a 

significant effect. This study illustrates cases and conditions at which the most reliable AUC 

predictions can be obtained, which can help optimize vancomycin therapeutic monitoring.  
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4.1 Introduction  

Vancomycin is widely used for suspected and confirmed serious invasive methicillin-resistant 

Staphylococcus aureus (MRSA) infections (1). Recently, the revised consensus guideline 

abandoned the previously recommended use of vancomycin trough concentrations as surrogates 

to estimate the ratio of the area under the concentration-time curve over 24 hours to minimum 

inhibitory concentration (AUC/MIC) (1, 2). Instead, the revised guideline recommended 

therapeutic target attainment through the means of AUC-guided dosing (1). This AUC-guided 

dosing should be achieved by employing a) first-order analytic equations or b) Bayesian software 

programs, with the latter approach being preferable (1). This preference was attributed to reports 

suggesting that Bayesian approaches can provide rapid and reliable AUC estimations while 

requiring as few as one vancomycin measurement that is not necessarily obtained at steady-state 

(1, 3). Rapid achievement of the target AUC can be vital for effective therapy (1). In contrast, 

valid use of first-order analytic equations requires at least two post-distributional vancomycin 

measurements (preferably at the same dosing interval [DI]) obtained at or near steady-state (1). 

The revised guideline, however, acknowledges difficulties determining steady-state conditions in 

clinical practice, being subject to variables such as changing renal function and loading dose (1). 

Trough monitoring might be preferred in certain settings according to a Canadian perspective on 

the revised guideline (4). 

Utilizing pharmacokinetic and/or pharmacodynamic (PK/PD) models to optimize, guide, and 

individualize dosing using patients’ covariates and drug concentrations is referred to as model-

informed precision dosing (MIPD), Bayesian forecasting, or model-based precision dosing (5-7). 

Reports exist suggesting MIPD, for example, using Bayesian programs, might outperform 

clinician judgment in recommending vancomycin dosing regimens (3, 8). In principle, Bayesian 
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programs incorporate prior knowledge and experiments, such as a developed PK model and its 

parameter values. This prior component is combined with the patients’ observed vancomycin 

concentrations to yield Bayesian posterior parameter distribution (5, 6, 9).  

Despite the potentials of Bayesian-guided monitoring, equation-based AUC estimation was 

reported to result in an equivalent or better accuracy and bias compared to using five Bayesian 

programs (10). Further, recent reports indicated that few hospitals in the united states 

implemented AUC-guided dosing (11, 12). For example, a recent survey indicated that 70.3% (n 

= 202) of hospitals did not implement AUC-guided dosing with 43% of which had no plan to 

adopt it soon (12). Bayesian-guided monitoring was implemented in only 12% of hospitals 

surveyed (12). This low rate of implementation might be attributed, partly, to clinicians’ 

unfamiliarity with Bayesian monitoring (11-13) 

While both methods, i.e., equations and Bayesian, were suggested in the revised guideline, a 

comprehensive analysis of their performances in predicting AUC under different real-life 

scenarios yet seems to be lacking. Using population PK (PopPK) modeling approach and MIPD 

clinical trial simulations, the first of our three-fold objective is to compare the predictive 

performance of equation- and Bayesian-based AUC estimation under different conditions (e.g., 

variations of near and confirmed steady-state intervals using two vancomycin measurements per 

the guideline recommendations), as depicted in Figure 4.1. We also aim at evaluating Bayesian-

guided AUC prediction when using two compared to one measurement, since the latter was only 

moderately recommended (1). Additionally, to increase familiarity with Bayesian monitoring, we 

aim at discussing proper Bayesian priors’ selection including the influence of using sparsely 

sampled PK-fitted models as priors, and the relative significance of satisfying underlying 

assumptions.  
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Figure 4. 1 Schematic roadmap of our study illustrating predictive performance, based on accuracy and 

bias calculations of two cases of peak and trough or trough only, each at six varying dosing intervals 

using the two main methods of 1st order PK equations and Bayesian methods. This roadmap shows two 

parallel processes of selecting Bayesian priors, either obtained through the literature or the PopPK model 

developed here. 

  

4.2 Methods  

4.2.1 Study Design 

Adult patients admitted at the McGill University Health Center (MUHC)-Royal Victoria 

Hospital during 2016 and 2017 were screened for this single-center retrospective study. Included 

patients received at least four vancomycin Intravenous administrations and had at least one 

measured plasma concentration. Exclusion criteria were one or more of the following: acute 

kidney failure, renal replacement therapy, extracorporeal support membrane oxygenation 

(ECMO), end-stage renal disease, and intravenous fluids larger than 2 L within the last 4 

vancomycin doses. Variables collected include vancomycin dosage and administration records, 

patients’ demographics, the main indication for vancomycin, co-morbidities (e.g., obesity, 
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neutropenia, liver disease, renal insufficiency), admission to the intensive care unit (ICU), 

laboratory, biochemistry, and microbiology data. This study was approved by the MUHC 

Institutional Review Board. 

4.2.2 Vancomycin and Serum Creatinine Quantification     

Vancomycin and serum creatinine were quantified using Beckman Coulter AU5800 (Beckman 

Coulter Inc., Brea CA, USA) with a quantification range of 2.5 - 100.0 mg/L and 4.4 - 4420 

μmol/L for vancomycin and serum creatinine, respectively. We used QMS® Vancomycin 

(VANCO) assay (Thermo Fisher; Microgenics Corp., Fremont, CA, USA) and creatinine 

enzymatic assay (Olympus OSR61204). 

4.2.3 Population Pharmacokinetic  

Our first goal was to develop a local vancomycin PopPK model for the collected MUHC data. 

Vancomycin PopPK parameters were estimated using NONMEM (Version 7.4; GloboMax LLC, 

Hanover, MD, USA) within PsN toolkit (14). We used the first-order conditional estimation 

method with interaction (FOCE-I) to fit vancomycin concentration-versus-time profiles to a base 

one- and two-compartment model, while assuming log-normal between-subject variability (BSV) 

distribution on the typical parameter estimates. Multiple residual unexplained variability (RUV) 

models were tested, including additive, proportional, and mixed (additive and proportional) 

models. Allometric scaling of the effect of weight on vancomycin PK parameters was evaluated 

using the allometric theory (15).  

Biologically plausible variables, including the collected patients’ demographics (e.g. weight, 

body mass index, and serum creatinine) and co-morbidities (e.g. obesity, neutropenia, liver 

diseases, renal insufficiency, and admission to the intensive care unit (ICU)), were selected for 

multivariate analysis using stepwise covariate modeling (SCM) (16). We used ggplot2 in R 
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(www.r-project.org) to produce all the plots (17). Bootstrap analysis of 1000 replicates was 

conducted to evaluate uncertainty and 95% confidence intervals (CI) around model parameters. 

Further PopPK modeling details are presented in Supplementary Material, Section 4.5.1.      

4.2.4 Individual Reference AUC 

Based on the PopPK model developed in the previous section, we conducted Monte Carlo 

simulations of 1000 virtual patients to obtain individual steady-state AUC (AUCi) (18). This 

simulated dataset will be referred to here as the reference dataset. Conditions of this simulation 

are presented in Supplementary Material, Section 4.5.2. 

4.2.5 Prediction of Reference AUC  

In this section, our goal was to predict AUCi at steady-state from using concentrations from 

different DIs (i.e. not AUCtau of the respective interval) using methods suggested in the revised 

guideline and detailed below (1).  

4.2.5.1 First-Order Analytic Equations  

As suggested in the revised guidelines, this method should be used with at least two 

measurements (peak and trough), obtained near steady-state (1). The equations (given in 

Supplementary Material, Section 4.5.3) were coded in R and used in Section 4.2.6.  

4.2.5.2 Bayesian Estimation 

Bayesian estimation was performed using two approaches and algorithms: a conventional 

Bayesian using the FOCE algorithm and a full Bayesian using Markov chain Monte Carlo 

(MCMC) algorithm. These two approaches are fundamentally different and a discussion about 

Bayesian analysis can be found in (9, 19), as well as in Supplementary Material, Section 4.5.4. 

http://www.r-project.org/
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4.2.6 Selection of PopPK Models to Serve as Bayesian Priors   

The goal of this step was to identify and systematically evaluate well-established PopPK models 

from the literature having similar study design and patient characteristics as MUHC data, to 

serve as Bayesian prior components. This assumes both subpopulations, of MUHC and the 

literature model, were derived from one population with similar study designs (20, 21). Based on 

these assumptions, we conducted a literature survey to identify proper original or recycled 

models published from inception and up to January 2020 using the methodology detailed in (22). 

These models were coded in NONMEM and evaluated according to the quality criteria discussed 

in (20), including ranking by the objective function (OFV), Akaike Information Criterion (AIC),  

and the visual overlap between individual ƞi distribution densities with the theoretical ƞ-

distribution N(0, ω2), as well as simulation-based diagnostics, such as prediction-corrected visual 

predictive check (pcVPC) and normalized prediction distribution errors (NPDE). These models, 

in addition to our PopPK model developed above, will serve, each in turn, as Bayesian priors to 

drive AUC predictions in Section 4.2.6.  

4.2.7 MIPD Clinical Trial Simulations   

In this step, our goal was to estimate AUCi under multiple realistic clinical scenarios. Using the 

reference dataset simulated in Section 4.2.4, 14 subsets were created in R with each subset 

representing realistic clinical cases, Figure 4.1. These scenarios represent either couple of peaks 

and troughs or only troughs, obtained from single or mixed DIs, spanning from the first to the 

fifth DI, as well as at a steady-state (i.e. SS=1 in NONMEM). Using these scenarios and 

assuming a MIC value of 1 mg/L, three different clinical trials were conducted.  
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4.2.7.1 MIPD Clinical Trial A: Using Literature-Sourced Bayesian Priors 

The goal of this trial was to compare the predictive performance of simple PK equations to 

Bayesian methods using Bayesian priors obtained from the literature. This trial simulation aimed 

at mirroring the implementation of Bayesian programs in clinical practice.  

4.2.7.2 MIPD Clinical Trial B: Using Locally Constructed PK Model as Bayesian Prior 

In Trial B, we used our local model, i.e., MUHC PopPK model, as a Bayesian prior for 

subsequent analyses. This is to isolate the influence of Trial A model transferability assumptions, 

while examining and attributing results to the other remaining components, such as estimation 

methods and varying DIs. 

4.2.7.3 MIPD Clinical Trial C: Sampling from Different Dosing Intervals 

The goal of this trial was to study the effect of sampling from two different DIs. Using R, we 

randomly selected individual peaks and troughs from near steady-state intervals (i.e., the 4th 

and/or 5th DI). This trial investigates the guideline preference of using peaks and troughs from 

the same dosing interval versus different DI when the PK equations are applied (1). 

4.2.8 Performance Metrics  

The predictive performance was evaluated in terms of relative bias (rBias) using relative mean 

percentage prediction error (rMPE) and relative mean absolute percentage prediction error 

(rMAPE) to assess accuracy, and using relative root mean squared error (rRMSE) to assess 

precision. The equations are given in Supplementary Material, Section 4.5.5. Considering the 

narrow vancomycin AUC/MIC range for therapeutic effect, a very conservative range of rMPE 

to fall within ± 20% was considered tolerable bias. For example, for an AUCi value of 500, a 

prediction within 400-600 will result in a tolerable rMPE. Cases that result in smaller rRMSE 

values were considered more favorable if the rMPE 95% confidence interval includes zero.    



 

106 
 

4.2.9 Additional Verification of Results  

For additional verification of results, we repeated steps 2.4 to 2.7 but with simulation from Colin 

et al. (23), a well-established PopPK model containing 8300 vancomycin measurements from 

2554 patients across 14 centers. Trial simulations B and C and were not repeated and the MCMC 

algorithm was not used here due to its intensive computational demand.   

4.3 Results  

4.3.1 Patients  

We included 116 patients, who satisfied the study criteria, having 326 measurements. Table 4.1 

and Table S4.1 in Supplementary Material summarize the demographics and patient diagnosis of 

our MUHC data. 

Table 4. 1 Baseline demographics and clinical characteristics of MUHC participants.    

Variable Value  

Study size (n) 116  

Male/female (n) 83/33 

Vancomycin observations (n) 326 

Trough measurements (%) 88% 

Patients with one vancomycin observation (%)  40% 

Patients with one or two vancomycin observations (%)  60% 

Age* (years)  67.8 ± 11 

Weight* (kg) 72 ± 8.6 

Height* (cm) 167.9 ± 4.9 

BMI* (kg/m2)  24.2 ± 3.1 

Serum creatinine* (mg/dL)  1.0 ± 0.5 

Liver disease (n) 5 

Neutropenia (n) 6 

* Data presented as mean ± SD (SD: standard deviation). 

4.3.2 Population Pharmacokinetic Modeling  

A one-compartment model with linear elimination resulted in the best model fit, probably due to 

the sparse nature of our therapeutic drug monitoring (TDM) data (i.e., 88% troughs and 40% of 

patients had one measurement). Exponential and mixed (additive and proportional) models best 
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described BSV and RUV, respectively. Introducing CLCR on CL significantly reduced the 

objective function (i.e., ΔOFV −118.34 at p < 0.01), and therefore was included in the final 

model. Model and values of typical parameter estimates are shown in Table 4.2. The diagnostic 

plots for the final model are presented in Supplementary Material, Figures S4.3 to S4.6. The final 

model had successful minimization and covariance. 

Table 4. 2 MUHC vancomycin population PK model and the corresponding parameter estimates of the 

final model, as well as its bootstrap results. 

PK Parameter Final Model 

Estimates 

% 

RSEa 

Bootstrap Value (n=1000)b 

 

Mean  2.5th 

Percentile  

97.5th 

Percentile 

CL (L/h) = Θ1 * (CLcr/84)      

Θ1 4.16 4.1 4.16 3.84 4.53 

V (L) = Θ2 * (WT/70)  

Θ2 102.46 9.7 102.95 82.3  125.0 

Interindividual variability (IIV)      

ωCL
c (%) 34.12 11.2 34.0 26.68  42.07 

ωV
c (%) 51.83 16.8 51.48 30.51  66.56 

Residual unexplained variability 

(RUV) 

     

σProportional
 c

 (%) 13.95 29.9 13.59 4.41  21.6 

σAdditive (mg/L) 3.04 19.7 2.92 1.58  4.03 

aRelative standard error; b95% success; cExpressed as a coefficient of variation (CV); CL: Clearance; V: 

Volume of distribution; Θ: NONMEM fixed-effect PK parameter; ω: standard deviation of the 

interindividual variation (i.e., ηi); σ: proportional or additive residual variability; concentrations (ε); 

CLcr: Creatinine clearance.  

4.3.3 Literature-sourced Bayesian Priors  

Seven vancomycin PopPK models were retained from the literature as Bayesian priors for 

subsequent analyses (23-29). Due to their TDM nature, literature-sourced models bared varying 

degrees of resemblances in design and population to the MUHC data. Nevertheless, we assumed 

a negligible influence arising from these differences on vancomycin PK parameter estimates that 

were not accounted for using model transferability diagnostics (22). We produced diagnostic 
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plots including pcVPC and NPDE (Supplementary Material, Table S 4.2). Models were ranked 

according to OFV, AIC, and visual overlap between individual ƞi density distribution with the 

theoretical distribution (Supplementary Material, Table S4.3, and Figure S4.7). Results 

suggested that two models might be appropriate for MUHC data, namely Colin et al. and 

Yamamoto et al. (23, 27). Other models resulted in varying degrees of some systematic under- or 

over-prediction or misfit. It should be noted that Colin et al. model was slightly modified per 

MCMC run requirements (23, 30).  

4.3.4 Clinical Trial Simulation  

4.3.4.1 MIPD Clinical Trial A: Using Literature-Sourced Bayesian Priors  

Results of MIPD Trial A using literature-sourced Bayesian priors are presented in Figure 4.2 and 

Supplementary Material, Figures S4.8 to S4.10. Trial A might suggest varying degrees of 

improved predictive performance moving from the 1st DI to steady-state, as can be seen with the 

percentage of patients within ± 20% rMPE in Figure 4.2. The trend of improved predictive 

performance was not observed for two Bayesian priors (i.e., Usman et al. and Kim et al.) used 

with the conventional Bayesian method (25, 28). Two models (i.e., Zhou et al. and Staatz et al.) 

had a relatively long half-life, which might explain the drastic improvement in predictive 

performance at confirmed steady-state intervals (26, 29). The estimated half-life for other models 

ranged from 5.77 to 9 h (Supplementary Material, Table S 4.3). Considering rMPE 95% CI and 

rRMSE, this trend was observed, to a certain extent, for some Bayesian priors, although 95% CI 

for most cases did not include zero except for most of Colin et al. (23) using the conventional-

Bayesian approach and Adane et al. (24) using the full-Bayesian approach (Supplementary 

Material, Figure S4.14).  
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In Trial A, Bayesian prediction using two samples compared to one sample demonstrated a very 

comparable or slightly better overall predictive performance. Yet, this difference did not seem 

systematic or significant. Predictive performance of the Bayesian approach was better overall 

than the performance of PK equations in pre-steady-state DIs (i.e. 1 to 3), except for Yamamoto 

et al.(27) using the full-Bayesian and Kim et al.(28) using the conventional-Bayesian. Once near 

or at steady-state, no similar conclusion could be made. Results of Trial A did not support any 

generalized conclusion comparing the full- to conventional-Bayesian approach. For example, a 

higher percentage of patients within ± 20% rMPE, particularly at steady-state, was observed 

when using full-Bayesian compared to the respective conventional-Bayesian cases with Usman 

et al. (25) and Kim et al. (28). In contrast, Yamamoto et al. (27) showed better predictive 

performance and a significantly higher percentage of patients within ± 20% rMPE using the 

conventional Bayesian approach. In terms of rRMSE, Bayesian priors that consistently achieved 

a relatively low rRMSE were Colin et al. (23), and Adane et al. (24) in the cases of peaks and 

trough using full-Bayesian, and Zhou et al. (26) as well as Yamamoto et al. (27) in the cases of 

peaks and trough using conventional-Bayesian. Overall, peaks and troughs with conventional 

Bayesian resulted in a higher number of points with low rRMSE (defined as below 75 rRMSE).  

Conducted model transferability diagnostics (Section 4.3.3) might suggest an overall relation to 

the predictive performance that was not as strong as we expected. For example, despite 

Yamamoto et al. (27) model having better transferability diagnostic plots compared to other 

models, and similar clinical population and design as our MUHC study, only 2% of patients were 

within ± 20% rMPE in the case of full-Bayesian monitoring at the 1st DIs, being the lowest 

among all results in our study, Figure 4.2. In contrast, Adane et al. (24) transferability diagnostic 

plots suggested incompatibility while its population was limited to extremely obese, unlike most 
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of the MUHC population. Yet, the overall predictive performance was one of the best. It is worth 

mentioning that Adane et al. (24) was included as a prior as the MUHC population had obese 

patients and based on the premise that obese vancomycin CL might not be significantly different 

from non-obese (22). 

 

 

Figure 4. 2 Bar Plot of the percentage of patients within the tolerable rBias range of ± 20% rMPE from 

MIPD clinical trial simulation A. Each subplot represents a combination of using a peak and a trough or a 

trough only at varying dosing intervals (DI) (i.e., the 1st,2nd,3rd,4th,5th, and at steady state [SS]) with the 

full-Bayesian and the conventional Bayesian approach. For reference, results using the 1st order PK 

equations were plotted. Each color represents a case. *For reference as the 1st order PK equations should 

be used with near or at steady-state samples. **Colin et al. model was modified for MCMC runs. 

4.3.4.2 MIPD Clinical Trial B: Using Locally Constructed PK Model as Bayesian Prior  

Trial B results are shown in Figure 4.3 and Supplementary Material, Figures S4.11 to S4.13. 

Unlike some cases in Trial A, Trial B showed an overall systematic and incremental gain in 

predictive performance (increased accuracy and precision and reduced bias) progressing between 

intervals towards steady-state. In Trial B, Bayesian approaches with peaks and troughs 

consistently outperformed using only troughs, which translated into 2% to 15% more patients 
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achieving ± 20% rMPE when using peaks and troughs. Using local Bayesian priors resulted in, 

overall, a much better predictive performance compared to using literature-sourced priors (i.e., 

Trial A). 

The Bayesian approach used in Trial B consistently outperformed the respective cases using 

first-order PK equations, with 20-25% more patients within the desired ± 20% rMPE target at the 

third, fourth, or fifth DIs. Further, using the first-order PK equations performed very poorly at 

the first and second DIs, as expected, in which less than 13% were within ± 20% rMPE target, 

compared to 45% to 53% using Bayesian methods at the respective cases of Trial B. Bayesian 

methods used in Trial B appeared more precise and accurate compared to the first-order 

equations, as indicated clearly by rRMSE and rMAPE results. Further, first-order equations 

resulted in a systematic bias as indicated by the persistent underprediction in every non-steady-

state interval as explained in (31); a trend that was not observed for the respective cases using 

Bayesian methods. Finally, rMPE 95% CI favored Bayesian-guided AUC estimation over the 

corresponding cases using first-order PK equations. These observations extend as well to 

Bayesian approaches with a trough only, as Bayesian methods resulted in 15% to 35% more 

patients within the ± 20% rMPE target in every non-steady-state DI, compared to the respective 

cases using first-order PK equations.   
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Figure 4. 3 Bar Plot of the percentage of patients within the tolerable rBias range of ± 20% rMPE from 

MIPD clinical trial simulation B. Each subplot represents either the case of a peak and a trough or a 

trough only at varying dosing intervals (DI) (i.e., the 1st,2nd,3rd,4th,5th, and at steady state [SS]) with the 

full-Bayesian and the conventional Bayesian approach. For reference, results using the 1st order PK 

equations were plotted. Each color represents a case. *For reference as 1st order PK equations should be 

used with steady-state samples. 

4.3.4.3 MIPD Clinical Trial C: Sampling from Different Dosing Intervals  

Results of using the first-order PK equations with two levels from the 4th and/or 5th DIs were 

consistent with the trend of incremental gain in predictive performance progressing between 

intervals towards steady-state, as shown in Figure 4.4 and Supplementary Material, Figures 

S4.15 to S4.17. In contrast, using Bayesian approaches with two levels from the 4th and/or 5th 

DIs did not show a similar trend but rather showed comparable results to using only the 4th or the 

5th DI. 
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Figure 4. 4 Bar Plot of the percentage of patients within the tolerable rBias range of ± 20% rMPE from 

MIPD clinical trial simulation C, representing a peak and a trough obtained from varying dosing intervals 

(i.e., 4th, 5th, or both) with the full-Bayesian, the conventional Bayesian approaches, and 1st order PK 

equations. The revised guidelines recommendation of sampling within the same dosing interval was for 

the 1st order PK equation. 

 

4.3.5 Additional Verification of Results  

Predictive performance of simulations from Colin et al. (23), instead of the MUHC model, 

seemed to support general observations reported in section 3.4.1, comparing Bayesian to PK 

equations, Figure 4.5. This might suggest that our results extend beyond the quality of MUHC 

data and model structure (one- versus two-compartment). 
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Figure 4. 5 Bar Plot of the percentage of patients within the tolerable rBias range of ± 20% rMPE from 

MIPD clinical trial simulation A, but with data simulated from Colin et al. Each subplot represents using 

a peak and a trough or a trough only at varying dosing intervals (DI) (i.e., the 1st,2nd,3rd,4th,5th, and at 

steady state [SS]). For reference, results using the 1st order PK equations were plotted. Each color 

represents a case. *For reference as the 1st order PK equations should be used with near or at steady-state 

samples. 

4.4 Discussion  

In this study, the predictive performance of the two recommended AUC-guided monitoring 

methods (1) was compared in an array of realistic clinical cases, ranging from a practical early 

trough to late peaks and troughs sampling near or at steady-state. Results varied significantly 

depending on a combination of the estimation method, case, and the relative influence of not 

satisfying assumptions required for PK equations and PopPK model transferability. Further, we 

presented the possible negligible impact of sampling from mixed versus single near steady-state 

DIs. 

We aimed to assess Turner et al. conclusion that equation-based AUC predictions resulted in an 

equivalent or better accuracy and bias compared to using five Bayesian software programs (10). 
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Trial A (using MUHC and Colin et al. model-based simulations, one- and two-compartment 

models, respectively) did not seem to support a generalized conclusion, unlike Trial B that 

showed monitoring using Bayesian methods with troughs only as early as the 1st DI showed 

comparable results to near steady-state monitoring using PK equations (i.e., peak and trough at 

the 5th DI), which resulted in 43% of the patients within this study desired rMPE limits. These 

results as well as the desired rapid achievement of the therapeutic target and the ability to update 

current knowledge might favor Bayesian-guided monitoring (1, 6). A three-year clinical trial 

demonstrated that significant performance improvements can be made when new knowledge is 

progressively added (32).  

We included results that violated steady-state assumptions essential for PK equations in order to 

gain insights into the prospective impact of violating such assumptions and for relative 

comparison with Bayesian methods. The revised guidelines highlighted the difficulty in 

determining steady-state conditions in practice and stated the strong preference for the two 

measurements to be near steady-state (1).  

Part of our simulations might support rapid Bayesian vancomycin monitoring using sparse data, 

as sparse as only a trough that is obtained as early as at the 1st DI. MIPD Trial B showed that 

peaks and troughs compared to trough-only Bayesian monitoring were not very different. For 

example, the percentage of patients within ± 20% rMPE at the 1st DI was 46% and 44% for the 

peak and trough and trough only cases, respectively. Waiting to the 5th DI increased the 

percentage of patients within our desired ± 20% rMPE target to roughly 64%.  

Bayesian-guided AUC monitoring might be affected by the quality of data used to build the prior 

(6, 9). The revised guideline only recommended Bayesian programs that implemented richly 

sampled Bayesian priors, (1), yet, the availability of such models in the literature might be 
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limited for many patient populations (22, 33). This can be attributed to previous TDM practices 

comprised of trough-only monitoring that resulted in many PopPK-fitted models using sparse 

samples (22, 33). Most priors used in our study were fitted using sparsely sampled TDM data, 

including our MUHC model. This sparse nature and our conservative rBias limits, might explain 

the capping of the percentage of patients within ±20 rMPE at 65% and 90% for the 5th and 

confirmed steady-state DI, respectively. 

Implementing MIPD using literature-sourced Bayesian priors might require a systematic model 

evaluation and validation and expertise, as performed by some of the Bayesian TDM programs 

(6, 20, 34, 35). The results of conducted systematic model evaluation varied with DIs, the 

number of measurements, and the algorithm used and did not seem to suggest strong relation 

with predictive performance (Trial A). This assumes little influence of unsatisfied underlying 

assumptions (i.e., populations driven from one population and similar study design) (20, 21). 

One can argue, having collected local data, that developing local PopPK models for subsequent 

local studies can be more efficient and less assumption-demanding compared to adopting and 

validating varying vancomycin PopPK models, as demonstrated in Trial B (local prior) 

compared to Trial A (literature-sourced priors). Ideally, however, all previous experiments could 

be incorporated in the Bayesian prior components. Also, other approaches such as automated 

model selection or model averaging algorithms can be used (5, 20). 

Despite the simulation nature of AUC in this study (the gold standard real AUC was not 

available), key points seem relevant to clinical practice and can help optimize vancomycin TDM. 

Although the performance of some priors might be limited to MUHC and it might be expected 

that others report different or similar results (34, 36), the premise of this manuscript was not to 

advocate for a specific prior but to increase familiarity with important aspects of AUC-guided 
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monitoring, uncover its case-specific performance and limitations, such as when using sparse 

non-optimally sampled TDM data, and help transition into AUC-guided monitoring. The 

additional simulations from a well-established model did not seem to contradict our general 

observations despite that predictive performance can be expected to vary depending on many 

conditions, such as the relatively long average half-life of MUHC models that exceeded the DI 

length, the type and magnitude of the PopPK error model used, the narrow sampling window, the 

varying levels of biased parameter estimates. Finally, this work was based on the premise that 

improved AUC prediction might yield improved outcomes and focused only on evaluating 

methodology. Therefore, the gold standard PopPK modeling software NONMEM seemed more 

suitable to use rather than a commercially available TDM program with specific pre-built PopPK 

models. 

In conclusion, this study will likely contribute to better vancomycin clinical monitoring and 

precision dosing by understanding contexts that might impact AUC predictions in TDM settings. 

It shows that Bayesian-guided AUC monitoring has the potential to outperform equation-based 

AUC monitoring, although not necessarily in all conditions. This study also supports rapid 

vancomycin Bayesian AUC-guided monitoring using only a trough that was obtained as early as 

at the 1st dosing interval.  
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Study Highlights  

1. What is the current knowledge on the topic?  

AUC-guided vancomycin monitoring was, recently, recommended using first-order PK 

equations or Bayesian software programs. Additionally, vancomycin trough-only 

monitoring was abolished.   

2. What question did this study address?  

Are there any predictive performance differences between first-order PK and Bayesian 

software programs, between Bayesian-guided troughs versus Bayesian-guided troughs 

and peaks, and between monitoring at varying single or mixed pre- or at-steady-state 

dosing intervals?  

3. What does this study add to our knowledge? 

Bayesian-guided AUC estimation has the potential to outperform equation-based AUC 

estimation, although not necessarily in all conditions.  

Rapid vancomycin Bayesian AUC-guided monitoring using only a trough that was 

obtained as early as at the 1st dosing interval was quite supported by this study under 

certain conditions.  

Incremental improvements in AUC estimation accuracy and precision and reduction in 

bias were generally observed progressing between intervals from the 1st dosing interval 

towards steady-state.  

Sampling from different dosing intervals (i.e. the 4th and 5th) did not seem to have a 

detrimental impact on the AUC prediction. 

4. How might this change clinical pharmacology or translational science? 

This study will likely contribute to better vancomycin clinical monitoring and precision 

dosing by understanding contexts that might impact AUC estimation.  
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4.5.1 PopPK Modeling  

Accepted modification on the hierarchical models was defined by a 3.84 reduction in the 

objective function (p-value < 0.05 for 1 degree of freedom). All collected variables (i.e., gender, 

age, weight, high, bacteremia, cellulitis, endocarditis, meningitis, osteomyelitis, pneumonia, 

sepsis, wound infection, obesity, neutropenia, liver disease, renal insufficiency, admission to 

ICU, serum creatinine levels, and type of pathogen) were tested for their influence. Several renal 

function descriptors were evaluated, such as creatinine clearance (CLcr) eGFR (calculated using 

mailto:abdullah.aljutayli@umontreal.ca
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Cockcroft-gault), and GFR estimated by the Chronic Kidney Disease Epidemiology 

Collaboration creatinine equation (CKD-EPIcreatinine) or Modification of Diet in Renal Disease 

(MDRD) equation (37, 38). Further, the influence of renal function change from the start of 

therapy was evaluated. We used a stepwise covariate modeling (forward inclusion (p-value < 

0.05) and backward elimination (p-value < 0.005)). Introducing CLCR on CL significantly 

reduced the objective function (i.e., ΔOFV of −118.34 at p < 0.01), and therefore was included in 

the final model. No other covariates were significant. ƞCL-shrinkage (%) for our model was 

17.2%. The whole process of model selection was guided by model diagnostics, model selection 

criteria (such as objective function, Akaike information criterion [AIC], and Bayesian 

information criteria [BIC]), successful minimization, the precision of parameter estimates, the 

magnitude of between- and unexplained random variability, and graphical diagnostics.  

4.5.2 Simulation Conditions  

Simulation conditions were as follows. A standard dosage of 15 mg/kg every 12 h was given to 

all patients, as recommended in the revised guideline (1). Moreover, doses were rounded to the 

nearest multiple of 250 mg to mirror clinical practice. The administered course of therapy was up 

to six days. Dense vancomycin sampling was performed consisting of 15 samples per dosing 

interval. A peak was defined as a concentration level obtained within 2 h from the end of 

infusion, while a trough as a concentration level obtained within 3 h just at the end of the dosing 

interval (i.e., before the administration of the subsequent dose).  

Covariates were simulated having the same underlying distributions as those of MUHC data. 

Based on these simulations, individual reference AUC was approximated using the trapezoidal 

rule in R (i.e. trapz function) (39) and according to: 

𝐴𝑈𝐶𝑖 = 𝐷𝑜𝑠𝑒𝑖/𝐶𝐿𝑖 
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where i refers to a virtual individual, i=1,…, 1000. 

As vancomycin CL remains constant with increasing concentration, calculated AUCtau represents 

steady-state for a given interval at repeated dosing administrations. This calculated reference 

AUC was assumed to be ideal for subsequent analyses. In our simulations, we did not include 

cases of loading doses or irregular dosing intervals due to the limited space available in this 

article. We assumed a MIC of 1 mg/L across all simulations for simplicity.    

4.5.3 First-order Analytic PK Equations  

𝐾𝑒 =
ln (

𝐶1

𝐶2
)

𝑡2−𝑡1
   (1) 

𝑡1/2 =
0.693

𝑘𝑒
   (2) 

Cmax =
Cp0

e−𝑘(𝑡−𝑡𝑖𝑛𝑓)   (3) 

Cmin = Cmax ∗ e−𝑘(𝑡−𝑡𝑖𝑛𝑓)   (4) 

𝑉𝑑 =
Dose /𝑇𝑖𝑛𝑓∗(1−𝑒

−𝑘∗𝑇𝑖𝑛𝑓)

𝑘∗(𝐶𝑚𝑎𝑥−(𝐶𝑚𝑖𝑛∗𝑒
−𝑘∗𝑇𝑖𝑛𝑓))

   (5) 

𝐶𝑝𝑒𝑎𝑘 =
Dose∗(1−𝑒

−𝐾𝑒𝑙∗𝑇𝑖𝑛𝑓)

𝑇𝑖𝑛𝑓∗𝑉𝑑∗𝐾𝑒𝑙∗(1−𝑒−𝐾𝑒𝑙∗𝑇𝑎𝑢)
   (6) 

𝐶𝐿 = 𝑉𝑑 ∗ 𝐾el (7) 

𝐴𝑈𝐶𝑖 = 𝐷𝑜𝑠𝑒𝑖/𝐶𝐿𝑖  (8) 

4.5.4 Bayesian Methods  

In the “conventional” Bayesian approach, a previously developed PopPK model and its 

parameters are combined with the present dataset to produce individual conditional parameter 

estimates. The second approach (i.e., “full” Bayesian) incorporates, as well, a prior model and its 
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parameters which is combined with the present dataset to produce individual parameter posterior 

probability distribution. Full-Bayesian using MCMC algorithm seeks the entire posterior 

distribution rather than point estimates, as FOCE does (19, 30). Despite that we obtained the 

entire posterior distributions of the individual parameters, we used the maximum a posteriori (i.e. 

mode) of these distributions to simply compare this full Bayesian to the conventional Bayesian 

approach. The large load of information the MCMC algorithm produces deems it 

computationally expensive with less statistical power relative to FOCE (19). However, such 

information should be ideally well utilized, and Figure S4.1 provides an example of prior, 

likelihood, and posterior probability distributions.  

Informative prior values and variances, as well as their degrees of freedom, were supplied to the 

$Prior statement according to the NONMEM manual (19, 30). For every individual, we obtained 

the parameters posterior probability distribution using the required verbatim code (30). For the 

full-Bayesian approach, we used $EST BAYES and PRIOR statements in NONMEM along with 

the MCMC algorithm. The default NONMEM MCMC estimation settings were used (i.e., 

AUTO=1), which specify 4000 iterations for the burn-in phase. However, iterations of the 

stationary distribution phase were limited to 1000 iterations (instead of the default 10,000 

iterations) due to a large number of runs (i.e. 96 MCMC runs) and limited resources (i.e. 

available memory space and computational power), especially, when running on 3 independent 

Markov chains (30). While the predictive performances using either conventional or full-

Bayesian were very comparable, run times were very different. For example, the run time was 

17.3 seconds for the conventional approach with FOCE compared to 389 seconds using the fully 

Bayesian approach with the MCMC algorithm. 
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For efficient use of the MCMC algorithm, codes were re-written according to NONMEM 

requirements for MU referencing, which refers to a process in which fixed effects parameters are 

only involved in describing the mean (MU) obtained from the normal population distribution of 

individual parameters (19, 30). In addition, we assumed constant CLcr values for every individual 

across the study to satisfy the MCMC requirement (30). However, variable CLcr did not appear 

to have a noticeable impact on the results per small-scale analysis (results not presented).  

 

 

Figure S4.1. Informative prior, likelihood (i.e., data), and posterior AUC distributions for one 

virtual subject (ID=43), compared to reference AUC (dashed blue line) for MIPD Trial B at the 

5th dosing interval. Although in this article we calculated predictive performances in respect to 

the MAP, Bayesian must be thought of as a probability distribution rather than a point estimate 

(e.g., mode). For this individual, the probability of being 400-600 AUC over 24 h was very low. 

Conditioned on his medical diagnosis, a decrease in dosage might be warranted.  

 

4.5.5 Performance Metrics  

Formula 

𝑟𝑀𝑃𝐸(%) =
1

𝑁
⋅ ∑ (

𝐴𝑈𝐶𝑖_𝑠𝑢𝑏𝑠𝑒𝑡−𝐴𝑈𝐶 𝑖_𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐴𝑈𝐶𝑖_𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
) × 100

𝑁

𝑖=1

    (9) 
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rMAPE (%) =
1

𝑁
⋅ ∑ |

𝐴𝑈𝐶𝑖_𝑠𝑢𝑏𝑠𝑒𝑡−𝐴𝑈𝐶 𝑖_𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐴𝑈𝐶 𝑖_𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
| × 100

𝑁

𝑖=1

  (10) 

𝑟𝑅𝑀𝑆𝐸 = √
1

𝑁
⋅ ∑ (

𝐴𝑈𝐶𝑖_𝑠𝑢𝑏𝑠𝑒𝑡−𝐴𝑈𝐶 𝑖_𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐴𝑈𝐶 𝑖_𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
)

2
𝑁

𝑖=1

       (11) 

Percentage of Patients within ± 20% 

The additional presentation of our results in a form of the percentage of patients within a ± 20% 

rMPE was to provide relativity to clinical settings. In our study, we chose a relatively 

conservative ± 20% rMPE limits due to the 400 to 600 AUC/MIC therapeutic target. Yet, wider 

desirable limits (e.g., ± 30%) revealed a relatively proportional improvement in the number of 

patients within the desirable limits for almost all methods and cases, Figure S4.2 below. For 

example, for peak and trough at the 5th dosing interval using our MUHC model as a prior, 50%, 

65%, 74%, and 80% of patients were within the rMPE desirable limits of ± 15, 20, 25, and 30%, 

respectively. Although different desirable levels might influence the rationale for clinical 

decisions, general trends, described here, appeared to persist across different desirable limits. 
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Figure S4.2. Bar Plot of the percentage of patients within tolerable rMPE range of ± 30 MPE 

from MIPD clinical trial simulation B. Each subplot represents either the case of a peak and a 

trough or a trough only at varying dosing intervals with the fully Bayesian and the conventional 

Bayesian approaches. Also, rBias of estimating AUC using 1st order PK equations with a peak 

and a trough were plotted. Each color represents a case. Pre-steady state dosing interval violates 

PK equation underlying assumptions.  

Table S4.1. Diagnosis and indication for MUHC participants. Dosage and vancomycin 

concentration were ordered per the standards of clinical care at the MUHC.  

Diagnosis  Number of Patients   

Bacteremia  14 

Cellulitis  17 

Wound Infection  10 

Sepsis 7 

Pneumonia  4 

Osteomyelitis  6 

Meningitis 6 

Endocarditis 7 

Not reported  51 

Indication  

Empirical vancomycin /Confirmed MRSA  101/15 
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Figure S4.3. Graphical model diagnostic of MUHC final model, showing an adequate 

description of the observed data. Panels A and B show individual and population predictions 

versus observed concentrations, respectively. Panels C and D show conditional weighted 

residuals versus population predicted concentrations and time, respectively.  
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A                                                B 

 

Figure S4.4. Panels A and B show normalized prediction distribution errors (NPDE) versus 

observed and predicted concentrations (mg/L), respectively.  

 

 

Figure S4.5. Simulation-based model diagnostics of MUHC data which includes prediction 

corrected visual predictive check (pcVPC) for vancomycin concentration observations versus 

time (n = 1,000). The solid red line represents the 50th percentile, while the solid blue lines show 

the 10th and 90th percentile of the observed data. The corresponding shaded regions represent the 

90% CI around the 10th, 50th, and 90th percentiles of the simulated data. Observed concentrations 

are represented by black circles.  
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Figure S4.6.  Normalized prediction distribution errors (NPDE) density plot of predicted and 

observed concentrations.  
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4.5.6 Simulation-based Model Diagnostics 

Table S4.2. Simulation-based model diagnostics of literature-sourced Bayesian priors which include prediction corrected visual 

predictive check (pcVPC) for vancomycin concentration observations versus time (1,000 Monte Carlo simulations). The solid red line 

represents the 50th percentile, while the solid blue lines show the 10th and 90th percentile of the observed data. The corresponding 

shaded regions represent the 90% CI around the 10th, 50th, and 90th percentiles of the simulated data. Observed concentrations are 

represented by black circles. Table S 4.2 includes as well normalized prediction distribution errors (NPDE) density plots of predicted 

and observed concentrations. To test if the NPDE results followed a normal distribution, we used Wilcoxon signed-rank t-test (t-test), 

Fischer test for variance (F test), and Shapiro-Wilk test (S-W) at a 95% confidence level and a theoretical distribution N(0,1).* 

Indicates that the NPDE results are significantly different from the N(0,1) distribution.  

Model  pcVPC NPDE 
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Adane 

et al. 

(1) 

  

t-test: 0.0043* 

F test: < 0.0000* 

S-W: < 0.0000* 
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Colin 

et al. 

(2) 

  

t-test: 0.03571* 

F test: 0.4502 

S-W: 0.0008* 



 

134 
 

Usma

n et al. 

(3) 

   

t-test: 0.07805 

F test: < 0.0000* 

S-W: < 0.0000* 
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Kim et 

al. (4) 

  

t-test: < 0.0000* 

F test: < 0.0000* 

S-W: < 0.0000* 
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Staatz 

et al. 

(5) 

  

t-test: 0.0002* 

F test: < 0.0000* 

S-W: < 0.0000* 
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Yama

moto 

et al. 

(6) 

  

 

t-test: 0.2352 

F test: < 0.0000* 

S-W: 0.01273* 
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Zhou 

et al. 

(7) 

  

t-test: 0.0002* 

F test: < 0.0000* 

S-W: < 0.0000* 

 

 

Comment 

Prediction corrected VPC plots suggested that Yamamoto et al. (and to some extent Colin et al.) models might be suitable to predict 

MUHC vancomycin observed concentrations (2, 6). The pcVPC plots of the other models indicated varying degrees of model 
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misspecification, and ranking these models based on their pcVPC plots could not be established (1, 3-5, 7). Difficulties ranking some 

models based on their VPC plots were reported in (8). Means and variances of NPDE results were significantly different from the 

theoretical distribution N(0,1), except for the variance of Colin et al. and means of Yamamoto et al. and Usman et al. (2, 3, 6). The 

distributions of the NPDEs were significantly different from the normal distribution.  
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4.5.7 Model Diagnostics  

Table S4.3. Model diagnostics including objective function values (OVF), Akaike information 

criterion (AIC), and ƞCL-shrinkage with MAXEVAL = 0, and the percentage of patients within 

±20% rMPE target, as well as the half-time for the respective models. 

Model OVF AIC ƞCL-

shrinkage 

(%) 

5th DI 

(OVF) 

5th DI 

(AIC)  

Patients on 

Target at 5th DI 

Half-

time 

Colin et al. (1) 1487.6 1523.7 22.7 11033.0 11067.1 60 7 ha  

Adan et al. (2) 1806.0 1816.0 -14.0 12924.3 12934.5 58 8 hb 

Usman et al. 

(3) 

1985.9 1995.9 -48.9 13910.5 13920.5 30 5.77 ha 

Zhou et al. (4) 3698.2 3710.7 -81.9 21748.6 21760.6 43 43.3 hc 

Staatz et al. (5) 3695.4 3707.4 -81.5 21725.6 21737.7 42 19.5 hc 

Yamamoto et 

al. (6) 

1628.5 1650.4 24.9 13974.0 13996.7 48 9 ha 

Kim et al. (7) 1940.8 1960.7 73.8 19781.5 19801.5 20 8.8 ha 

a Calculated using 0.693/β  
b Reported  
c Calculated using 0.693/kel  

CL: clearance; DI: dosing interval  

 

Comment 

Model ranking based on the least OVF values suggested that Colin et al., Yamamoto et al., 

and Kim et al. were the most compatible prior models, Using AIC, the most compatible prior 

models were Colin et al., Yamamoto et al., and Adan et al. Both OVF and AIC suggested 
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potential poor compatibility of Staatz et al. and zhou et al. priors with our data (4, 5). ƞCL-

shrinkage values indicated potential compatibility of colin et al. and Yamamoto et al. (1, 6)  

Negative shrinkage values might indicate potential model misspecification and might be a 

result of a parameter variance smaller than the true value (8). In our study, using these 

metrics, collectively, was a predictor of the percentage of patients within ±20% rMPE 

although a strong relationship could not be established.  

4.5.8 Clearance formula for the Typical Patient  

Table S4.3. Clearance formula for the typical patient 

Model CL Formula for the Typical Patient   

Colin et al. (1) 𝐶𝐿 =  𝜃1  ×  (𝑉1/ 𝜃𝑣1)0.75  ×  𝐹𝑀𝑎𝑡  ×  𝐹𝐷𝑒𝑐𝑙𝑖𝑛𝑒  ×  𝐹𝑆𝐶𝑅  ×  (1 ×   𝜃𝐶𝑎𝑛𝑐𝑒𝑟)   

Adan et al. (2) 𝐶𝐿 =  𝛩 × (𝐶𝑙𝑐𝑟/125) 

Usman et al. (3) 𝐶𝐿 =  𝛩 ∗  ( 1 +  𝜃𝐶𝑙𝑐𝑟  ×  𝐶𝐿𝑐𝑟 − 𝐶𝐿𝑐𝑟𝑚𝑒𝑑𝑖𝑎𝑛) 

Zhou et al. (4) 𝐶𝐿 =  𝛩 ∗  ( 𝐶𝐿𝑐𝑟/56.28 )𝜃𝐶𝐿𝑐𝑟  

Staatz et al. (5) 𝐶𝐿 =  𝜃1  ∗  (1 + 𝜃2  ∗  𝐶𝐿𝑐𝑟 − 𝐶𝐿𝑐𝑟𝑚𝑒𝑑𝑖𝑎𝑛) 

Yamamoto et al. (6) 𝑆𝑊𝐼𝑇 =  0 

𝐶𝐿1 =  𝜃1  

𝐶𝐿2 =  𝜃2  ×  𝐶𝐿𝑐𝑟 + 𝜃3 

𝐶𝐿 =  𝐶𝐿1 ×  𝑆𝑊𝐼𝑇 + 𝐶𝐿2 ×  (1 − 𝑆𝑊𝐼𝑇) 

Kim et al. (7) 𝐶𝐿 =  𝜃1  ∗  (𝜃𝐵𝑎𝑠𝑒/𝑒𝐺𝐹𝑅𝑖𝐵𝐴𝑆𝐸)  +  (𝑒𝐺𝐹𝑅𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒 / 𝑒𝐺𝐹𝑅𝑚𝑒𝑑𝑖𝑎𝑛)   

CL: clearance; V1: central volume of distribution; FMat: maturation function; FDecline: Decline function; 

FSCR: serum creatinine function; CLcr: creatinine clearance; eGFR:   
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Figure S4.7. ETACL distribution of all literature-based models compared to our theoretical 

distribution of N (0, 0.116). Overlap with the theoretical distribution indicated proper Bayesian 

prior. 

 

  

 

Density  
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Figure S4.8. Box plot representing rMPE results of MIPD clinical trial simulation A. Each 

subplot represents a combination of using a peak and a trough or a trough only at varying dosing 

intervals (DI) with the fully Bayesian and the conventional Bayesian approaches. Also, rBias of 

estimating AUC using 1st order PK equations and a peak and a trough were plotted. Each color 

represents a case. The shaded area represents ± 20% rMPE, and the red dashed line is at y=0. 

*Pre-steady state dosing interval violates the underlying assumptions. **Model was modified for 

MCMC algorithm requirements. 

   

Figure S4.9. Box plot representing rMAPE results of MIPD clinical trial simulation A. Each 

subplot represents different cases representing a combination of a peak and a trough or a trough 

only at varying doing intervals with the full-Bayesian and the conventional Bayesian approaches. 

Also, rMAPE of estimating AUC using 1st order PK equations and a peak and a trough were 

plotted. *Pre-steady state dosing interval violates the underlying assumptions. **Model was 

modified for MCMC algorithm requirements. 
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Figure S4.10. Line plot of RMSE result of MIPD Trial A. Each subplot represents Full-Bayesian 

or the conventional Bayesian approach. Each color represents using a Bayesian prior model. 

*Pre-steady state dosing interval violates the underlying assumptions. **Model was modified for 

MCMC algorithm requirements.  
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Figure S4.11.  Box plot representing rMPE results of MIPD clinical trial simulation B. Each 

subplot represents either the case of a peak and a trough or a trough only at varying doing 

intervals with the full Bayesian and the conventional Bayesian approaches. Also, rBias of 

estimating AUC using 1st order PK equations and a peak and a trough were plotted. Each color 

represents a case. The shaded area represents ± 20% rMPE, and the red dashed line is at y = 0. 

Pre-steady state dosing interval violates PK equations underlying assumptions.  

 

 

Figure S4.12. Box plot representing rMAPE results of MIPD clinical trial simulation B. Each 

subplot represents cases of a peak and a trough or a trough only at varying doing intervals with 

the full-Bayesian and the conventional Bayesian approaches. Also, rMAPE of estimating AUC 

using 1st order PK equations and a peak and a trough were plotted. 
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Figure S4.13. Line plot of RMSE result of MIPD Trial B. Each subplot represents the case of a 

peak and a trough or a trough. Each color represents using the case of a peak and a trough or a 

trough. Each color represents using the full-Bayesian, the conventional Bayesian approach, or 

first-order PK equations. Pre-steady state dosing interval violates PK equation underlying 

assumptions.  
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Figure S4.14. A plot of rMPE 95% CIs from clinical trial simulation A and B. A 95% CI that 

included zero (plotted as a dashed line) was considered to be associated with an acceptable 

combination, i.e., model/case. The simulation model is our MUHC model. *Pre-steady state 

dosing interval violates its underlying assumptions. **Model was modified for MCMC algorithm 

requirements. 
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Figure S4.15. Box plot representing rMPE results of MIPD clinical trial simulation C. Using a 

peak and a trough with the full-Bayesian, the conventional Bayesian, and 1st order PK equations. 

Each color represents a single or combined 4th and 5th dosing intervals.  The shaded area 

represents ± 20% rMPE, and the red dashed line is at y=0. Pre-steady state dosing interval 

violates PK equation underlying assumptions.   

 

Figure S4.16. Box plot representing rMAPE results of MIPD clinical trial simulation C, 

representing cases of a peak and a trough or a trough only at varying doing intervals with the 
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full-Bayesian and the conventional Bayesian approaches. As well as estimating AUC using 1st 

order PK equations using a peak and a trough were plotted. Pre-steady state dosing interval 

violates PK equation underlying assumptions.   

 

 

Figure S4.17. A plot of rRMSE result of MIPD Trial C. Each color represents using the Full-

Bayesian, the conventional Bayesian approach, or 1st order PK equations. Pre-steady state dosing 

interval violates PK equation underlying assumptions.   
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Figure S4.18. A plot of rMPE 95% CIs from clinical trial simulation C. A 95% CI that included 

zero (plotted as a dashed line) was considered to be associated with an acceptable combination 

model/case. 
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Chapter 5. 

Critical Assessment of Vancomycin Monitoring Methods of the 

Revised Guidelines 

 

 

In light of the revised vancomycin monitoring guidelines, we aimed at exploring key concepts of 

vancomycin monitoring.  This chapter might help clinicians optimize vancomycin therapeutic 

monitoring.  
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Abstract  
Background  

The revised vancomycin guidelines recommend replacing trough-only with troughs or 

peak/trough Bayesian and peak/trough first-order equations monitoring, citing their better AUC 

predictions and poor AUC-trough correlation. Yet, evidence suggesting good AUC-trough 

correlations has been overlooked, and the optimality of peak/trough samples has been doubted. 

The guidelines recommend Bayesian programs implementing richly sampled PopPK priors 

despite their scarcity. Therefore, whether complex Bayesian and sample-demanding first-order 

equations can bring significant advantages to the practice over simple trough-only monitoring is 

worth weighing.  

Objectives 

The primary aim is to comprehensively re-evaluate AUC predictions methods. Then, the impact 

of nonadherence to peak/trough sampling is investigated. Moreover, we report the nature of 

PopPK priors used in Bayesian programs to assess the applicability of guideline 

recommendations.   
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Methods  

Using a well-established PopPK model combined with real data, we compared AUC monitoring 

methods. This also served to assess the impact of sampling protocol nonadherence. A thorough 

exploration of Bayesian programs in terms of their priors is performed.  

Results  

Bayesian, first-order, and trough-only AUC predictions resulted in 43% to 83%, 3% to 70%, and 

3 to 70% patients within acceptable accuracy, respectively. Random or trough samples with 

Bayesian monitoring resulted in similar performance. Contrary to the recommendation, very few 

programs implemented richly sampled priors.     

Conclusion  

Bayesian monitoring is fast and reliable, but its prerequisites are rarely met. First-order equations 

are reliable only near steady-state. Simple trough-only can, sometimes, be as effective. 

Constraints regarding peak/trough sampling times could be relaxed. The scarcity of richly 

sampled Bayesian priors questions the applicability of the revised guidelines recommendation.  

 

5.1 Introduction  

The published revised vancomycin therapeutic monitoring guidelines for the management of 

serious methicillin-resistant Staphylococcus aureus (MRSA) infections have recently introduced 

a major shift in vancomycin therapeutic monitoring (1). The revised guideline no longer 

advocates for the use of trough concentrations of 15-20 mg/L as surrogates of the therapeutic 

target area-under-the concentration-time-curve over minimum inhibitory concentrations 

(AUC/MIC) of ≥ 400 for serious MRSA infections, arguing that variations around the AUCs 

mean was reported to be poorly explained by a regression model (i.e. poor coefficient of 

determination R2) and the availability of better approaches (1). Alternatively, Bayesian-based 

AUC monitoring using two samples (i.e., troughs or peaks) or just one sample (i.e., trough) is 

recommended, as well as the option of using first-order pharmacokinetic (PK) analytic equations 

with peak and trough samples.  
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Advantages of Bayesian-based AUC monitoring include rapid and reliable AUC predictions 

leading to, potentially, shorter duration of therapy, lower nephrotoxicity, and fewer blood 

samples (1, 2). Yet,  Bayesian-based AUC monitoring might be complex to the average clinician, 

and its implementation requires specialized programs, expertise, and an additional sample 

compared to trough-only monitoring (3). It might seem intuitive to assume better AUC 

predictions using Bayesian methods compared to those based on trough-only or first-order PK 

equations. The Bayesian approach in its essence incorporates prior knowledge, patients’ specific 

characteristics, administered doses, and drug levels to produce the posterior parameter likelihood 

distribution (1, 4).  

Numerous studies reported moderate to strong AUC-trough R2 in both adult (5-8) and pediatric 

(9-11) populations, some of which used actual clinical data as reviewed in detail by Jorgensen et 

al. (12). These studies suggest that AUC can be reliably approximated by trough-only monitoring 

(3, 12), contrasting, overwhelmingly, the revised guideline argument of weak AUC to trough R2 

based on a single study (4).  Considering the potential variety of AUC-trough R2 strengths, a 

contextual comparison of Bayesian monitoring with the other monitoring methods is worth 

pursuing.  

Multiple variables and scenarios that can limit the proper implementation of the revised 

guideline recommendations and potentially affect optimal vancomycin therapeutic drug 

monitoring (TDM) are worth investigating. First, collecting a trough or, preferably, peak and 

trough samples to use with the Bayesian-based AUC monitoring was recommended as the 

preferred AUC monitoring method in adults(1) (primary recommendation number 8 with A-Ⅱ 

grade (1, 13)). However, evidence exists suggesting that peaks and/or troughs might not 

necessarily be associated with the optimal Bayesian-guided AUC predictions (2, 4, 14). Further, 
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Neely et al. in  (2) and (15) reported that sampling trough levels, recommended in the original 

vancomycin guideline, were poorly adhered to in practice. Second, the revised guidelines stated 

the monitoring preference for using Bayesian software programs, specifically, programs that 

incorporated a Bayesian population pharmacokinetic (PopPK) prior constructed with rich data 

(1). Therefore, the status of such programs that satisfy this rich data condition is worth 

investigating in order to evaluate the feasibility of this recommendation. Finally, another variable 

that might affect optimal vancomycin TDM is the wide variability reported in the higher range of 

AUC values corresponding to a single trough value (1, 4). Although this was mentioned in the 

revised guideline (1), its potential biological source or mathematical explanation, as well as its 

clinical relevance, seem to be lacking. 

In the quest for optimal vancomycin TDM, the main objective of the current study is to compare 

AUC prediction using Bayesian-, first-order equations-, and trough-only-guided AUC 

monitoring. We also aim to investigate the potential impact of the nonadherence to the 

recommended sampling protocol consisting of troughs or peaks and troughs. In order to assess 

the applicability of the new guideline recommendation, we report the current status of Bayesian 

programs in terms of the sampling density of their priors.  

5.2 Methods  

5.2.1 Virtual Population  

The goal of this step was to make a reference dataset with a known steady-state AUC (i.e., 

individual reference AUC) in order to use it as a benchmark value for method comparison. For 

this, we conducted a literature survey to identify a potential PopPK model candidate that is well-

established and relevant to large clinical populations. The identified PopPK model was then used 

to generate a virtual population of 1000 adult subjects. NONMEM (Version 7.4; GloboMax LLC, 
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Hanover, MD, USA) and PsN interface (16) were used for this simulation. For every individual, 

the reference individual AUC (AUCi) was calculated according to: 

AUCi = DOSEi/CLi 

To serve the objectives of this study, this reference dataset was split into three subsets 

containing: A) only trough vancomycin levels; B) random vancomycin levels (neither peak nor 

trough), and C) peak and trough vancomycin. These levels were simulated at the first, second, 

third, fourth, and fifth dosing interval, as well as at a confirmed steady-state (i.e., SS=1 in 

NONMEM).  

5.2.2 AUC Prediction 

The goal of this step was to calculate AUCi using different monitoring methods suggested by the 

original and the revised guidelines (1, 17). The old method was using trough-only samples as 

surrogates for AUC, while the new considered methods were the Bayesian approach and the 

first-order PK equations, as detailed below in every subsection. 

5.2.2.1 Trough-only AUC Prediction  

To quantitively evaluate the trough-only predictive performance, we used linear regression 

equations that described the relationship between AUC and trough. We screened the literature to 

identify linear regression equations that described the relation between vancomycin AUCs and 

troughs in adults. In case a study reported the AUC-trough plot only, without the linear 

regression model, we extracted the data using an open-source tool WebPlotDigitizer (18), and 

calculated the linear regression model in R (www.r-project.org). Further, we obtained and used 

the linear regression models for our McGill University Health Center (MUHC) data (described in 

section 5.2.2.2) as well as the reference model used in section 2.1 above to simulate the reference 

http://www.r-project.org/
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dataset. These linear regression formulae were coded in R and were used to estimate individual 

reference AUC in subset A.    

5.2.2.2 Bayesian-Based AUC Prediction  

We used here a Bayesian-based approach to predict the AUCi. The PopPK model that served as a 

Bayesian prior for this estimation was a model that we developed earlier for renal function stable 

patients (Chapter 4). These excluded patients with renal replacement therapy, extracorporeal 

support membrane oxygenation, acute kidney failure, or end-stage renal disease, admitted to 

MUHC who had at least four intravenous vancomycin administrations for suspected or 

confirmed MRSA infections. Concentration-time profiles were best described using a one-

compartment model with linear elimination, exponential interindividual variability (IIV), and 

combined proportional and additive error model. Creatinine clearance and weight were involved 

as covariates in the description of vancomycin clearance and volume of distribution, 

respectively. This PopPK model was evaluated for compatibility with the simulated dataset 

(Methods 2.1 and Results 3.1), based on model diagnostic criteria, namely the visual overlap 

between individual distribution densities ƞi with the theoretical ƞ-distribution N(0, ω2), the visual 

predictive check (VPC), and normalized prediction distribution errors (NPDE). Using the 

obtained model parameters, we estimated individual reference AUC for subsets A, B, and C 

described above. The estimation was conducted in NONMEM using the first-order conditional 

estimation (FOCE) algorithm with MAXEVAL=0.   

5.2.2.3 First-order PK Analytic Equations AUC Prediction  

First-order PK equations, suggested in the revised guideline (1), were coded in R and were used 

to estimate individual reference AUC of subset C (peak and trough samples), as this method 

requires at least two samples. 
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5.2.3 The Impact of Adherence to the Timing of Samples Collection   

The impact of non-adhering to the proper sampling time of trough with the Bayesian-based AUC 

predictions was evaluated using subsets A and B, and the Bayesian approach that was described 

in section 5.2.2.2. 

5.2.4 Review of PopPK Models Used as Priors in Bayesian Software Programs  

The use of Bayesian software programs, specifically programs using richly sampled PopPK 

model-fitted priors, is the preferred AUC monitoring approach (1). We searched the internet and 

the literature for all Bayesian programs that are used for vancomycin TDM. We identified the 

PopPK models included as the Bayesian prior in each software program through the program's 

official website, complemented by personal communications with their developers when needed, 

and information available from the literature. 

5.2.5 Predictive Performance  

We estimated the predictive performance of the new AUC estimation methods, i.e., Bayesian-

based and first-order PK equation, versus linear regression equations. As described in detail in 

Chapter 4, the respective method accuracy was evaluated using relative mean percentage 

prediction error (rMPE) and relative mean absolute percentage prediction error (rMAPE), while 

the relative root mean squared error (rRMSE) was used for precision evaluation.  The 

performance of each method was also evaluated using the percentage of patients who achieved 

rMPE within ± 20%.  

5.3 Results 

5.3.1 Virtual Populations  

The model developed by Colin et al. (19) was identified as the best PopPK candidate model for 

the generation of a virtual population. This model was built on data pooled from 14 studies 
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across different countries and composed of a large sample size of 8300 concentrations, collected 

from 2554 patients (19). It also includes diverse age and clinical subgroups, such as adults, 

elderly, trauma, and obese patients. Therefore, this model was used to generate the reference 

dataset, containing individual reference AUC (AUCi), which was further divided into subsets A, 

B, and C described in Section 5.2.1. Model diagnostics suggested proper compatibility between 

the Colin et al. and our prior, as depicted in VPC and NPDE plots in Supplementary Figures 5.S1 

and S5.2.    

5.3.2 Bayesian-, First-order order PK Equation-, or Linear Regression Equation-Based AUC 

Estimation 

Our results, shown in Figure 5.1 and Figures S5.3, S5.4, and S5.5, suggest that the Bayesian-

based AUC approach might perform better than the other methods. Indeed, as depicted in Figure 

5.1, using Bayesian-based AUC predictions resulted in 43% to 72% and 45% to 83% of patients 

falling within the desired rMPE ±20% range when trough-only, and peak and trough samples 

were used for monitoring, respectively. Also, using the first-order PK equations-based AUC 

prediction with 2 samples (peak and trough) gave rise to 3% to 70% of patients within the 

desired rMPE ±20% range. On the other hand, results of monitoring using regression model 

based on a single trough varied depending on the regression models used and dosing interval (4-

8, 19-22), as the percentage of patients within the rMPE ±20% range varied from 3% to 70 % 

(Figure 5.2). An incremental gain in predictive performance as we move towards steady-state 

was observed with the Bayesian approach, the first-order PK equations, and most of the 

regression models, except for Pai et al. and Smit et al (4, 22). It should be noted that first-order 

PK equations and the regression models (if the regression models were derived at steady-state) 

should only be clinically applicable with samples collected near a steady state. Further, the 



 

161 
 

reported R2 did not seem to be a strong generalizable indicator of predictive performance. For 

example, Bel Kamel et al. (20) had the second weakest reported  R2 of 0.51 but showed a better 

predictive performance than many other studies that reported a much stronger R2, such as 

Abulfathi et al., Turner et al., and Smit et al.(5, 8, 22). Six of the ten regression models achieved 

> 60% of the patients within the rMPE ±20% at a steady-state. Overall, the predictive 

performance of most of the regression equations was relatively similar to that of the first-order 

PK equations at steady-state but much better at pre-steady-state dosing intervals, despite 

requiring only one sample 

 

Figure 5. 1 The percentage of patients with acceptable perceived accuracy (i.e., within ± 20% rMPE) at 

varying dosing intervals (DI) from the 1st to the 5th DI, as well as at steady state (SS) with two samples 

(peak and trough) or one sample (trough). Two methods were used, first-order PK equations (left) and the 

Bayesian approach (right). Note that first-order PK equations can only be used with at least two samples 

obtained near steady-state. 
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Figure 5. 2 The percentage of patients with acceptable perceived accuracy (i.e., within ± 20% rMPE) at 

varying dosing intervals (DI) from the 1st to the 5th DI, as well as at steady state (SS), using one sample 

(trough). Each subplot represents a linear regression formula (4-8, 19-22). 

5.3.3 Trough-only Versus Random-only Bayesian-Based AUC Predictions  

Results depicted in Figure 5.3 and Figure S5.6, S5.7, S5.8 suggest that there could be a small 

difference between Bayesian-based AUC estimation using a single trough versus using a single 

random (not a peak or a trough level). Bayesian methods showed a good performance with either 

a single trough or a single random level. This suggests that nonadherence to time sampling 

(trough in general), reported to be frequent in clinical settings (2, 15), could not significantly 

alter the Bayesian-based prediction performance. 
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Figure 5. 3 The percentage of patients with acceptable perceived accuracy (i.e., within ± 20% rMPE) at 

varying dosing intervals (DI) from the 1st to the 5th DI, as well as at steady state (SS), using one random 

(R) or trough (T) level with Bayesian-based approach. 

 

 

5.3.4 Review of PopPK Models Used as the Priors by Bayesian Software Programs 

To assess the compliance with rich sampling conditions mandated by the revised guideline, we 

reported information, including population, study type, and the number of samples of PopPK 

models that were implemented as Bayesian prior in different Bayesian TDM software programs.  

Most reviewed models in Tables 5.1 and 5.2 were collected as part of TDM and were sparsely 

sampled, questioning the applicability of requiring the rich sampling condition when using 

Bayesian TDM software programs.    
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Table 5. 1 Reported PopPK models (or data) used as the Bayesian priors in varying Bayesian TDM 

software programs     

Bayesian TDM Program Reported Model (or data) Implemented as the PopPK Bayesian Prior 

(Note: models might have been or can be modified for specific sites) 

AutoKinetics (23, 24) Roberts et al. (25) 

AutoKinetics tested different priors including, Garcia et al. (26), Llopis-Salvia et al. (27), 

Mangin et al. (28), Medellin-Garibay et al. (29), Revilla et al. (30), Udy et al. (31) 

BestDose (formerly 

RightDose) 

Standalone windows version: Based on data from Hurst et al. (32) 

Web-version: The model/models are based on data from Neely et al. (including Hurst et 

al.) and unpublished 231 neonates and 62 pediatric TDM data with varying degrees of 

renal function. The mean (range) of samples per subject was 4.4 (1-30).  

DoseMeRx (33) Buelga et al. (34) 

Frymoyer et al.(35) 

Goti et al. (36) 

Lamarre et al. (37) 

Sabourenkov et al.(38) 

DosOpt (39) 

 

Allegaert et al. (40) 

Anderson et al. (41) 

Bhongsatiern et al. (42) 

De Cock et al. (43) 

Frymoyer et al. (35) 

Grimsley et al. (44) 

 Kimura et al. (45) 

                 Lo et al. (46) 

 Marques-Minana et al. (47)  

Oudin et al. (48) 

Seay et al. (49) 

Zhao et al. (50)  

ID-ODS (51) 

 

Goti et al. (36) 

Matzke et al. (52) 

InsightRx Adane et al. (53) 

Anderson et al. (41) 

Buelga et al. (34) 

Capparelli et al. (54) 

Carreno et al.(55) 

Colin et al. (19) 

Crass et al.(56)  

Dolton et al.(57) 

Frymoyer et al. (35) 

Germovsek et al. (58) 

Goti et al. (36) 

Kloprogge et al. (59) 

Lamarre et al. (37) 

Le et al. (60) 

Le et al.  (61) 

Revilla et al.(30) 

Rodvold et al.(62) 

Thomson et al.(63) 

Oda et al.(64) 

Zhao et al. (50) 
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MwPharm++ NA 

NextDose  Multicentre published and unpublished TDM data from premature neonates, neonates, 

infants, children, and adult patients 

PrecisePK (formerly 

T.D.M.S. 2000™ before 

2015)* 

Capparelli et al (54) 

Frymoyer et al. (35) 

Le et al. (60) 

Le et al.  (61) 

Tucuxi Colin et al. (19) 

Dao et al. (65) 

Goti et al. (36) 

Liu et al. (66) 

Llopis‐Salvia et al.(27) 

Staatz et al. (67) 

Thomson et al. (63) 

Yamamoto et al. (68) 

Rxkinetics APK© Derived from Winter et al. (69) 

Derived from Matzke et al. (52) 

TDM: therapeutic drug monitoring, NA: not available. 

*PopPK models mentioned here are based on another review. Many other children and adult PopPK 

models are potentially implemented (70).  
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Table 5. 2 Description of PopPK models used by the TDM Software programs reported in Table 5.1 

 

Study Population Study type No. of Individuals No. of reported 

samples 

Sampling 

frequency 

Per patient Total 

Adane et al. 

(1) 

Adults (obese) Prospective  29 NR 93 Peak, random, 

and trough 

Allegaert et 

al. (2) 

Preterm neonates Retrospective (TDM) 249 2 (1-9)b  

as reported 

by Colin et 

al. (3) 

648 Peak and trough 

Anderson et 

al. (4) 

Preterm neonates Retrospective (TDM) 214 NR 604 Peak and trough 

Bhongsatier

n et al. (5) 

Neonates (late-onset sepsis) Retrospective (TDM) 152 NR 528 Peak and trough 

Buegla et 

al.(6) 

Adults (hematological malignancies) Retrospective (TDM) Model:215 3.5 ± 1.9a 1004 Peak (34.3%), 

trough (48.4%), 

and other 

(17.3%) 

Validation:59 2 124 Peak (10.5%), 

trough (81.4%), 

and other (8.1%) 
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Capparelli et 

al (7). 

Neonates and infants  Multi-center retrospective 

(TDM)  

Model: 374 

 

At least one 

sample and 

Included 

intensive 

PK data of 

Kildoo et 

al.(8) from 

15 infants 

(mostly 5 

samples per 

patient) 

1103 Peak, random, 

and trough 

Validation:67 NR 160 

Carreno et 

al. (9) 

Adults (obese) Prospective  12 5 71 At 1, 2, 4, 6 h, 

and a trough  

Crass et al. 

(10) 

Adults (obese) Retrospective (TDM) 346 NR NR Peak and trough  

Colin et al. 

(3) 

Included: premature neonates, adults, burn-injured 

adults, obese, critically ill, trauma patients, and 

healthy volunteers. 

Excluded: CRRT, ECMO, hemodialysis, and 

hemodiafiltration patients 

Pooled from 14 previously 

published studies, including 9 

studies from this table (2, 6, 11-

17)  

2254 (1-32)a 8300 Varies per 

component 

study 

Dao et 

al.(18) 

Neonates Retrospective (TDM) Model: 405 4.5 (1-19)b 1821 Time after dose:  

8.8 h (0.02-64) b 

Validation: 78 1.4 (1-4)b 112 Time after dose: 

60 h (17.8-455) b 

De Cock et 

al.(19) 

Same data as Allegaert et al.(2) 

Dolton et al. 

(20) 

Adults (sever burn injuries) Retrospective (TDM) Model: 37 4 (1-32)a  NR Trough = 76 

samples  

Control: 33 2 (1-20)a Trough = 21 

samples 

Frymoyer et 

al. (21) 

Neonates (NICU level 3) Retrospective (TDM) 249 NR 1702 Peak and trough 
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Garcia et al. 

(22) 

Critically ill adult patients Retrospective (TDM) 46 ≥3 233 Trough (80%) 

Germovsek 

et al. (23) 

Neonates and infant (intermittent and continuous 

infusion) 

TDM Model: 54 NR Interm

ittent:8

1 

contin

uous:1

02  

Peak and trough 

Validation: 34 Interm

ittent:2

3 

contin

uous: 

84 

Goti et 

al.(24) 

Adults (18.5% Hemodialysis) Retrospective (TDM) 1812 NR 2765 Single level (in 

67% of patients) 

Grimsley et 

al.(25) 

Neonates (NICU) TDM 59 NR 347 Peak (44%), mid 

(3%), and trough 

(53%) 

Hurst et al. 

(26) 

Cardiac outpatients (endocarditis prophylaxis for 

dental procedure) 

Prospective Group A: 11 See the article for 

more details (26) 

0.5 h into and at 

the end of 

infusion, just 

before and after 

the dental 

procedure, and 

24 h after the 

start of infusion 

Acutely ill cardiac patients Prospective Group B:7 Just before and 

at the end of 

infusion, 1 h, 2 

h, at 2/3, and 

end of the 

dosing interval 

every 4 days 

Patients admitted to internal medicine wards Retrospective (TDM) Group C: 20 Peak and trough 
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Kimura et 

al. (27) 

Neonates (NICU) Prospective (TDM) 19 NR 88 Peak and trough 

(6 h after the 

end of infusion 

or just before the 

next dose) at 

days 1, 3, and 6 

Kloprogge 

et al. (28) 

Pediatrics Retrospective (TDM) 616 7 (2-50) 4137 NR 

Le et al.(29) 

 

 

 

 

 

 

  

Children Retrospective (TDM) from two 

centers 

138 NR 712 0-1 h (3%), 1.1-

2 h (29%), 2.1-3 

h (9%), 3.1-4 h 

(4%), 4.1-5 h 

(5%), and >5 h 

(49%) 

post infusion. 

Le et al.  

(30) 

Pediatric Retrospective (TDM) 702 454 patients 

with ≥ 2 

concentratio

ns  

1660 0-1 h (3%), 1.1–

2 h, (20%), 2.1–

5 h (32%), and 

>5 h (45%) post 

infusion. 

 

Lamarre et 

al. (31) 

Children Retrospective (TDM) Model: 78 NR 256 Peak and trough 

Prospective (TDM) Validation:19 NR 84 Two peaks and 

two troughs 

Liu et 

al.(32) 

Adults (note: vancomycin CL is a function of GFR 

calculated using Cystatin C according to Hoek's 

equation) 

Prospective Model: 200 NR 514 Trough then a 

non-trough level 

at 1, 2, 5, or 7 h 

on the following 

dosing interval 

Validation: 74 NR 216 

Llopis-

Salvia et al. 

(33) 

Critically ill adult patients Retrospective (TDM) Model: 30 7.8 ± 4.1a 234 At least one 

concentration 

Validation: 20 5.1 ± 3.2a 103 Peak and trough 

Lo et al. (15) Neonates Retrospective (TDM) 116 6 (2-27)b as 

reported in 

Colin et al. 

(3) 

835 At least two 
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Mangin et 

al. (34) 

Critically ill (post-sternotomy mediastinitis) Retrospective (TDM) 30 14 (1-34)b  359 Trough 

Matzke et al. 

(35) 

Various degrees of renal function 

Group 1: CLcr > 60 ml/min) 

Group 2 (CLcr 10-60 ml/min) 

Group 3 (Clcr< 10 ml/min) 

Retrospective (TDM) Group 1: 7 patients 3.4 ± 0.5a 37 Trough then 3, 

6, 9, 12, 24, 48, 

72, 96, 120, 144, 

and 168 h after 

infusion during 

the 24 h, 96 h, 

and 168 h after 

infusion for 

groups 1, 2, and 

3, respectively 

Group 2: 13 patients 3.9 ± 0.9a 66 

Group 3: 36 patients 4.87 ± 2.60a 204 

Marques-

Minana et 

al.(36) 

Neonates (NICU) TDM Model: 70 NR NR Peak and trough 

Validation:41 

Medellín-

Garibay et 

al. (16) 

Critically ill adult patients Retrospective (TDM) Model: 54 8 (1-36)a  874 At least one 

sample 

Validation: 18 NR 233 NR 

Neely et al. 

(37) 

Dataset A: 9 patients from group A and 6 from group B of Hurst et al.(26) 

Dataset B: Varying degrees of renal function from 

Rodvold et al.(38) 

Prospective (TDM) 22 of the 37 patients 

included in the original 

study 

NR NR Just before and 

after infusion, 

then at 0.25, 0.5, 

0.75, 1, 1.5, 3, 5, 

7, and 11 h ± 17 

and 23 h serum 

samples (in 

addition to 

vancomycin 

urine  

concentrations 

from two 0-12 h 

and 12-24 h 

urine 

collections) 

Dataset C: Healthy adult volunteers Prospective 10 7 NR NR 

Oda et al. 

(39) 

Adults (CRRT) Retrospective (TDM) Model: 17 NR 80 NR 

Control: 13 NR 

Validation: 23 NR 
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Oudin et al. 

(17) 

Neonates NICU Prospective (TDM) 68 2 (1-6)b 

as reported 

in Colin et 

al. (3) 

151 At least two 

samples 

Sample 1: at 

least once within 

24-28 h and 

Sample 2: after 

48 h of initiating 

the therapy   
Revilla et al. 

(14) 

Critically ill adult patients Retrospective (TDM) Model 191 3 ± 2.5 (1-

19)a 

569 Trough (79.8%) 

Validation 46 NR 73 NR 

Roberts 

2011 et al. 

(13) 

Critically ill adult patients Retrospective (TDM) 206 2 to 3 579 Daily 

Sabourenko

v et al. (40) 

Obese adults Multi-center retrospective 

(TDM) 

NR NR NR NR 

Seay et al. 

(41) 

Neonates Retrospective (TDM) 192 NR 520 Peak, random, 

and trough 
Prospective 30 NR NR 

Staatz et al. 

(42) 

Cardiothoracic surgery patients with unstable renal 

function 

Retrospective (TDM) Model: 102 3 (1-19)b 408 16 h (3-135) 

post-dose 

(Mostly random 

or trough with 

76% sampled at 

least 10 h post-

infusion)  

Validation:37 4 (1-13)b 151 14.5 h (2.7-

67.5)b post-dose 

Thomson et 

al. (11) 

Adults Retrospective (TDM) 398 (including 102 

patients from Staatz et 

al.(42)) 

3 (1-19)b  1557 11.9 h (1.1–

92.3)b  

(62% sampled at 

least 10 h after 

the start of 

infusion) 

Validation :100 2 (1-5)b 171 12.4 h (0.3–

57.3)b  

(62% sampled at 

least 10 h after 
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the start of 

infusion)   
Udy et al. 

(43) 

Adults (CRRT) Retrospective (TDM) 81 2 to 3 199 24, 48, 72 h and 

daily 

Yamamoto 

et al. (12) 

Adult patients Retrospective (TDM) 100 2.5 (1-16)b 

as reported 

in Colin et 

al.(3) 

311 Per standards of 

care at the study 

hospital 

Healthy volunteers Prospective 6 NR 45 0, 1, 1.5, 2, 3, 5, 

7, 12, 24 h 

Zhao et al. 

(44)  

Neonates (continues infusion) Multicentre TDM Model: 116 NR 207 26.8 h (9.8-

137.8 h)b from 

the start of 

treatments 
Validation: 58 NR NR Within 6–12 h from 

the start of treatments 

 

 

 

Study Population Study type No. of Individuals No. of reported samples Designed sampling 

frequency 

Per patient Total 

Allegaert et al. 

(2) 

Preterm neonates Retrospective (TDM) 249 2 (1-9)b  

as reported by 

Colin et al. (3) 

648 Peak and trough 

Anderson et al. 

(4) 

Preterm neonates Retrospective (TDM) 214 NR 604 Peak and trough 
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Bhongsatiern et 

al. (5) 

Neonates (late-onset sepsis) Retrospective TDM 152 NR 528 peak and trough 

Buegla et al.(6) Adults (hematological malignancies) Retrospective (TDM) Model:215 3.5 ± 1.9a 1004 Peak (34.3%), trough 

(48.4%), and other 

(17.3%) 

Validation:59 2 124 Peak (10.5%), trough 

(81.4%), and other 

(8.1%) 

Colin et al. (3) Included: premature neonates, adults, burn-injured adults, obese, 

critically ill, trauma patients, and healthy volunteers. 

Excluded: CRRT, ECMO, hemodialysis, and hemodiafiltration 

patients 

Pooled from 14 previously published 

studies, including 9 studies from this table 

(2, 6, 11-17)  

2254 (1-32)a 8300 Varies per 

component study 

Dao et al.(18) Neonates Retrospective (TDM) Model: 405 4.5 (1-19)b 1821 Time after dose:  8.8 

h (0.02-64) b 

Validation:78 1.4 (1-4) b 112 Time after dose: 60 h 

(17.8-455) b 

De Cock et 

al.(19) 

Same data as Allegaert et al.(2) 

Frymoyer et al. 

(21) 

Neonates (NICU level 3) Retrospective (TDM) 249 NR 1702 Peak and trough 

Garcia et al. 

(22) 

Critically ill adult patients Retrospective (TDM) 46 ≥3 233 Trough (80%) 

Goti et al.(24) Adults (18.5% Hemodialysis) Retrospective (TDM) 1812 NR 2765 Single level (in 67% 

of patients) 

Grimsley et 

al.(25) 

Neonates (NICU) TDM 59 NR 347 Peak (44%), mid 

(3%), and trough 

(53%) 

Hurst et al. (26) Cardiac outpatients (endocarditis prophylaxis for dental procedure) Prospective Group A: 11 See the article for more 

details (26) 

0.5 h into and at the 

end of infusion, just 

before and after the 



 

174 
 

dental procured, and 

24 h after the start of 

infusion 

Acutely ill cardiac patients Prospective Group B:7 Just before and at the 

end of infusion, 1 h, 

2 h, at 2/3, and end of 

the dosing interval 

every 4 days 

Patients admitted to internal medicine wards Retrospective (TDM) Group C: 20 Peak and trough 

Kimura et al. 

(27) 

Neonates (NICU) Prospective (TDM) 19 NR 88 Peak and trough (6 h 

after the end of 

infusion or just 

before the next dose) 

at days 1, 3, and 6 

Le et al.(29) 

 

 

 

 

 

 

  

Children Retrospective (TDM) from two-centers 138 NR 712 0-1 h (3%), 1-2 h 

(29%), 2-3 h (9%), 3-

4 h (4%), 4-5 h (5%), 

and >5 h (49%) 

Lamarre et al. 

(31) 

Children Retrospective (TDM) Model: 78 NR 256 Peak and trough 

Prospective (TDM) Validation:19 NR 84 Two peaks and two 

troughs 

Liu et al.(32) Adults (note: vancomycin CL is a function of GFR calculated using 

Cystatin C according to Hoek's equation) 

Prospective Model: 200 NR 514 Trough then a non-

trough level at 1, 2, 5, 

or 7 h on the 

following dosing 

interval 

Validation: 74 NR 216 

Llopis-Salvia et 

al. (33) 

Critically ill adult patients Retrospective (TDM) Model: 30 7.8 ± 4.1a 234 At least one 

concentration 

Validation: 20 5.1 ± 3.2a 103 Peak and trough 

Lo et al. (15) Neonates Retrospective (TDM) 116 6 (2-27)b as 

reported in 

Colin et al. (3) 

835 At least two 

Mangin et al. 

(34) 

Critically ill (post-sternotomy mediastinitis) Retrospective (TDM) 30 14 (1-34)b  359 Trough 

Matzke et al. 

(35) 

Various degrees of renal function 

Group 1: CLcr > 60 ml/min) 

Group 2 (CLcr 10-60 ml/min) 

Group 3 (Clcr< 10 ml/min) 

Retrospective (TDM) Group 1: 7 patients 3.4 ± 0.5a 37 Trough then 3, 6, 9, 

12, 24, 48, 72, 96, 

120, 144, and 168 h 

after infusion during 

the 24 h, 95 h, and 

168 post-infusion for 

Group 2: 13 patients 3.9 ± 0.9a 66 

Group 3: 36 patients 4.87 ± 2.60a 204 
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groups 1, 2, and 3, 

respectively 

Marques-

Minana et 

al.(36) 

Neonates (NICU) TDM Model: 70 NR NR Peak and trough 

Validation:41 

Medellín-

Garibay et al. 

(16) 

Critically ill adult patients Retrospective (TDM) Model: 54 8 (1-36)a  874 At least one sample 

Validation: 18 NR 233 NR 

Neely et al. (37) Dataset A: 9 patients from group A and 6 from group B of Hurst et al.(26) 

Dataset B: Varying degrees of renal function from Rodvold et al. Prospective (TDM) 22 of the 37 patients included 

in the original study 

NR NR Just before and after 

infusion, then at 0.25, 

0.5, 0.75, 1, 1.5, 3, 5, 

7, and 11 h ± 17 and 

23 h serum samples 

(in addition to 

vancomycin 

sampling from two 

12 h urine collection) 

Dataset C: Healthy adult volunteers Prospective 10 7 NR NR 

Oudin et al. (17) Neonates NICU Prospective (TDM) 68 2 (1-6)b 

as reported in 

Colin et al. (3) 

151 At least two samples 

sample1: at least 

once within 24-28 h 

and Sample 2: after 

48 h after initiating 

therapy   

Revilla et al. 

(14) 

Critically ill adult patients Retrospective (TDM) Model 191 3 ± 2.5 (1-19)a 569 Trough (79.8%) 

Validation 46 NR 73 NR 

Roberts 2011 et 

al. (13) 

Critically ill adult patients Retrospective (TDM) 206 2 to 3 579 Daily 

Sabourenkov et 

al. (40) 

Obese adults Multi-center retrospective (TDM) NR NR NR NR 

Seay et al. (41) Neonates Retrospective (TDM) 192 NR 520 Peak, random, and 

trough 
Prospective 30 NR NR 

Staatz et al. (42) Cardiothoracic surgery patients with unstable renal function Retrospective (TDM) Model: 102 3 (1-19)b 408 Mostly random or 

trough; 76% sampled 

at least 10 h post-

infusion  

16 h (3-135) post-

dose 
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Validation:37 4 (1-13)b 151 14.5 h meidan (2.7-

67.5) post-dose 

Thomson et al. 

(11) 

Adults Retrospective (TDM) 398 (including 102 patients 

from Staatz et al.) 

3 (1-19)b  1557 64% sampled at least 

10 h post-infusion 

11.9 h (1.1–92.3)b  

Validation :100 2 (1-5)b 171 62% sampled at least 

10 h after start of 

infusion  

12.4 h (0.3–57.3)b  

Udy et al. (43) CRRT Retrospective (TDM) 81 2 to 3 199 24, 48, 72 h. and 

daily 

Yamamoto et al. 

(12) 

Adult patients Retrospective (TDM) 100 2.5 (1-16)b as 

reported in 

Colin et al.(3) 

311 Per standards of care 

at the study hospital 

Healthy volunteers Prospective 6 NR 45 0, 1, 1.5, 2, 3, 5, 7, 

12, 24 h 

Zhao et al. (44)  Neonates (note: continues infusion) Multicentre TDM Model: 116 NR 207 26.8 h (9.8-137.8 h)b 

from the start of 

treatment 

Validation: 58 NR NR Within 6–12 h from 

the start of treatment 

CRRT: continuous renal replacement therapy, ECMO: extracorporeal membrane oxygenation, NICU: neonates intensive care unit, NR: not reported, TDM: therapeutic drug monitoring. 
a Mean ± SD (range) 
b Median (range) 
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5.4 Discussion  

In this study, we compared the AUC-guided monitoring methods recommended in the revised 

guideline (i.e., Bayesian and first-order PK equations) to trough-only monitoring using different 

regression models. Overall, Bayesian-based AUC monitoring might yield the best predictive 

performance compared to the other methods even with a single sample across any dosing 

interval. Bayesian monitoring allows for rapid and reliable therapeutic target achievement, which 

is crucial for certain patients. An example is vancomycin administration on a wide dosing 

interval (e.g., every 24 h) to renal unstable patients. Once the steady-state can be assumed and 

additional blood samples are not burdensome, first-order PK equations can be applied while 

expecting a relatively acceptable predictive performance. In practice, the administration of a 

loading dose might help achieve the therapeutic target fast, bringing concentrations to near 

steady-state concentrations. Finally, trough-only monitoring using regression models (i.e., not a 

trough range) seems to be the most practical method because of its simplicity, with no significant 

clinical difference between its predictive performance and that of the other methods. 

One reason for abandoning trough-only monitoring was the poor R2 reported for the AUC-trough 

relation (1, 2). We aimed to assess if trough measurement is, indeed, a poor predictor of AUC as 

well as whether the R2 is a generalizable metric to assess the predictive performance. Yet, there 

was a challenge as the original guidelines recommended a range of steady-state troughs (15-20 

mg/L) and not a specific model. Also, this range of troughs appears to have been derived from 

(3-5), and only received a level III and grade B recommendation (6). Thus, instead of using this 

assumed range, we used ten regression models to assess the predictive performance of the 

trough-only monitoring approach and its generalizability. Our analysis suggests that a trough 
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level is a reasonable predictor of AUC and that R2, although informative, has, non surprisingly, 

some limitations in describing the predictive performance (7). Another possible reason was that 

Bayesian-guided AUC monitoring could reduce vancomycin-induced nephrotoxicity compared 

to trough-only monitoring (8, 9). However, comparing a model-based approach (i.e., Bayesian 

models) to a non-model-based approach (15-20 mg/L generalized trough range) should be 

expected to intuitively favor the model-based approach. It is worth mentioning that just like with 

the Bayesian approach as discussed below, a regression model might be subject to transferability 

assessment and a trough can be subject to a limited sampling strategy. While there seems to be a 

common inaccurate belief that trough samples can carry the most information regarding 

clearance and consequently AUC, other sampling times can be as much, or, more informative.  

Concerning the variability observed only in the larger AUC values per trough value (10), it 

seems that this is specific to the simulation and plot generation conditions used in a particular 

study (1). Further, there is overwhelming evidence not supporting this observation in clinical 

settings (11-30). We conducted a series of simulation-based investigations of the potential source 

of this observation (results not presented here), which seems to suggest that this variability is 

multifactorial and depends on a combination of factors such as the type and size of inter-

individual variability, the error model used, and the distribution of covariates [e.g., normal, 

uniform, truncated normal for example for CLcr with lower and upper limits of 30 and 150 

mL/min, respectively]. While such discussion is beyond the scope of this article, the described 

variability does not seem to be a piece of substantial evidence against trough-only monitoring 

and it is clinical relevance and practical application seem limited.  

While the revised guideline no longer recommends trough-only monitoring citing that troughs 

are likely not an optimal surrogate for AUCs (10), it is unclear why it still advocates collecting 



 

179 
 

trough samples for the Bayesian approach despite evidence not supporting Bayesian trough 

sampling (9, 31). For example, using an optimal sampling times algorithm in a prospective trial 

determined 21.5% and 43.5% of the optimally timed samples as trough and random (not peak or 

trough) measurements, respectively (9).  

One advantage of the PopPK approach is its ability to handle sparse data. The revised guideline 

advocated the use of software programs that implemented richly sampled PopPK models (1). 

Yet, the existence of such programs (and models) seems to be scarce, as reviewed here (Table 

5.2) and as it can be seen in the literature (32, 33). The recommendation for the use of a richly 

sampled PopPK model as a Bayesian prior seems to have originated from (1, 34), which stated 

that non-richly sampled PopPK models, such as those built with peak and trough levels only, 

might be suboptimal in predicting the true AUC (1, 34). It was unclear however how these 

suboptimal predictions compare to those of other AUC prediction methods, especially in the case 

Bayesian prior models had a large sample size, intensive samples across a wide range of post-

infusion times, and were validated.  

In our analysis, it can be observed that the Bayesian-based approach, while much better than the 

other methods, resulted in a modest accuracy and precision in pre-steady state dosing intervals. 

This can be attributed to the TDM nature of data used to construct the Bayesian prior component 

and the high level of the random variability. The Bayesian approach has the capacity for a 

significant improvement in accuracy and precision given better conditions, such as more 

informative priors.  

The current study might be limited by the underlying simulation conditions described above; it 

rests also on the assumption that the generated AUCi reflects the true AUC value. Considering 

that no monitoring approach is currently supported by randomized clinical trials (35), our study 
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can help guide vancomycin monitoring. We aimed here at evaluating each method's predictive 

performance, assuming the difference can translate into significantly improved clinical 

outcomes. It is important to state that this manuscript does not attempt to identify another trough 

range as it is known to be a poor approach (34).  

In conclusion, motivated by the existing controversy around the new vancomycin therapeutic 

monitoring guidelines and the lack of a thorough investigation of the recommended methods, we 

collected hospital data and built a modeling framework that allowed us to assess the guideline 

recommendations of the monitoring methods. We showed that the Bayesian approach should not 

be taken for granted, and alternative methods can be equally viable. We showed that Bayesian 

monitoring does not necessarily require trough or peak concentration levels and can in fact be 

performed using a random level. Until randomized clinical trials are conducted, our study can 

help guide vancomycin TDM.  
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Figure S5.1. Prediction corrected visual predictive check (pcVPC) for vancomycin concentration 

observations generated from Colin et al. model versus time. This simulation-based model 

diagnostic plot might indicate a proper model fit as the 50th percentile (solid red line) and the 

10th and 90th percentile of the observed data (solid blue lines) of observations (black circles 

simulated from Colin et al. model) are contained within the corresponding shaded areas.  
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Figure S5.2. Normalized prediction distribution error density plot (NPDE) of predicted and 

observed concentrations simulated from Colin et al. model.  
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Figure S5.3. Box plot of rMPE (%) results at varying dosing intervals (DI) from the 1st to the 5th 

DI, as well as at steady state (SS) with two samples (peak and trough) or one sample (trough). 

Two methods were used, 1st first-order PK equations (left) and the Bayesian approach (right). 

Note that 1st first-order PK equations can only be used with at least two samples and using them 

pre-steady-state is improper. The red dashed line is at y=0.    

 

 

 

Figure S5.4. Box plot of rMAPE (%) results at varying dosing intervals (DI) from the 1st to the 

5th DI, as well as at steady state (SS) with two samples (peak and trough) or one sample (trough). 

Two methods were used, 1stfirst -order PK equations (left) and the Bayesian approach (right). 

Note that first-order 1st order PK equations can only be used with at least two samples and using 

them pre-steady-state is improper.  
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Figure S5.5. plot of rRMSE results at varying dosing intervals (DI) from the 1st to the 5th DI, as 

well as at steady state (SS) with two samples (peak and trough) or one sample (trough). Two 

methods were used, first-order 1st order PK equations (red line) and Bayesian approach (blue 

dashed line). Note that first-order 1st order PK equations can only be used with at least two 

samples and using them pre-steady-state is improper. 

 

 

 

  

 

 



 

189 
 

 

Figure S5.6.  Box plot of rMPE at varying dosing intervals (DI) from the 1st to the 5th DI, as well 

as at steady state (SS), using one random (R) or trough (T) level with Bayesian-based approach.  
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Figure S5.7.  Box plot of rMAPE at varying dosing intervals (DI) from the 1st to the 5th DI, as 

well as at steady state (SS), using one random (R) or trough (T) level with Bayesian-based 

approach.  

 

 

  

 

    

Figure S5.8. A plot of rRMSE at varying dosing intervals (DI) from the 1st to the 5th DI, as well 

as at steady state (SS), using one random (red) or trough (blue) level with a Bayesian-based 

approach.  
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Chapter 6. 

6 Discussion and Conclusion 

 

Vancomycin dose optimization is, still, a controversial topic despite six decades in use. The 

revisions to the original vancomycin therapeutic monitoring guidelines only 11 years following 

the release of the original guidelines, the controversy these guidelines generated (1-9), and the 

volume of publications between 2010 and 2020 approaching vancomycin PopPK (as reviewed in 

this dissertation), all indicate the volume of interest in vancomycin TDM. Factors that have 

contributed to such controversy include the large inter- and intra-subject variability, the lack of 

high-quality evidence or the evolving evidence regarding the therapeutic targets, the 

development of nephrotoxicity, and the emergence of resistance. It can be inferred, as well, that 

the population pharmacokinetic approach (nonlinear mixed-effects modeling) appeared to have 

spiked in its popularity being the crux of Bayesian-guided AUC monitoring and model-informed 

precision dosing. In fact, from 2010 to 2020, exclusive, the number of PopPK vancomycin 

analyses using the population approach was 63; a drastic increase during the period from 

inception to 2010 compared to the 25 publications before. This trend can be expected to continue 

growing, and older vancomycin dose optimization publications could be re-examined to reflect 

the shift in the therapeutic target. 

This dissertation reviewed sixty-three (63) vancomycin population pharmacokinetic analyses on 

adult and pediatric populations. Most of the included studies aimed at the optimization of 
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vancomycin dosage regimens by developing PopPK models and identifying potential sources of 

variability that can alter the PK in adults and pediatric subpopulations. These models, and their 

parameters' estimates, were, mostly, then used to conduct Monte Carlo simulations to determine 

optimal dosage regimens. The impact of more than 60 and 56 predictors on vancomycin PK 

parameters for adults and pediatric patients, respectively, were evaluated for their influence on 

many special subpopulations such as patients with critical illness, obesity, neutropenia, trauma, 

cystic fibrosis, renal impairment, hematological malignancy, solid malignancy, hemodialysis, 

hemofiltration, renal replacement therapy, and extracorporeal membrane oxygenation, as well as 

preterm neonates and patients who underwent surgery, therapeutic hypothermia or 

normothermia. While we reported important observations and tried to relatively compare various 

patients’ subpopulations to identify subpopulations at higher risks of potential PK alterations, 

such comparison might be limited by the variation in study settings, such as differences in the 

sample sizes (number of patients and sampling frequency), study design, covariate modeling 

approach, and different parametrization. 

While parts of this dissertation were being prepared, a major shift in vancomycin therapeutic 

monitoring was introduced. The use of trough measurements as a surrogate of AUC is no longer 

recommended. Instead, AUC should be directly estimated using Bayesian or first-order PK 

approaches. This shift, initially, was instigated by the release of reports showing weak AUC-

trough predictability as well as a better AUC prediction that can be achieved with a Bayesian 

software program, namely BestDose (10-12). It is worth mentioning that (11) showed no 

improvement in efficacy using Bayesian-guided AUC monitoring compared to trough-only 

monitoring. However, it showed a significant improvement in the nephrotoxicity profile when 

using BestDose compared to targeting a trough range of 10-20 mg/L. This might be the result of 
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an elevated trough range that overexpose patients to vancomycin, as evidenced by the fact that 

31% and 68% of AUCs above ≥400 mg in this study (11) were associated with a trough of <10 

and <15 mg/L, respectively (11). Considering such evidence, it might be reasonable to assume 

that improvements in the predictive performance would consequently yield improved outcomes, 

an assumption used throughout this work. 

  

There seems to be momentum in the literature advocating for the implementation of MIPD at the 

bedside (13, 14). The usefulness of MIPD can be immense, especially for drugs having wide 

variability extending beyond the desired therapeutic window. Despite many attempts to develop 

user-friendly software to facilitate implementations of MIPD and aid decision-making, MIPD 

potentials are yet to be fully exploited and adopted in clinics (15-18). In practice, however, such 

implementation still lacks high-quality clinical evidence (19). Additionally, technical concerns 

come with the implementation of MIPD. Many PopPK models that are available for vancomycin 

in the literature that can be adopted as Bayesian priors were built using TDM data (sparse and 

without optimal sampling times). Although some models used external or internal validation 

methods, it is not clear how such suboptimality in PopPK model priors can influence the AUC 

prediction, especially when the gold standard AUC is unknown. Population modeling inherently 

can indeed overcome such limitations, and some of the Bayesian software programs provide 

systematic model evaluation and validation (20, 21). Yet, it might not be well established how 

predictive performance be ranked based on systematic model evaluation, many of which are 

graphical. Model validation, such as external model validation, assesses how well model 

predictions compare to the observations. Considering the case that both model and observations 

are likely from TDM settings, and the true target (gold standard AUC) is unknown, it is unclear 
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if such result is a clear indication of model inappropriateness rather than a carryover of the 

inherited bias. Therefore, MIPD can be a useful complementary TDM tool in the management of 

vancomycin therapy, only in tandem with evidence-based clinical judgment.      

Model validation and evaluation require large data, high-quality priors, and expertise (21-23). In 

theory, multiple alternative approaches can be used. Using such data to construct a local PopPK 

model can be more efficient and less assumption-demanding in comparison to adopting and 

validating varying vancomycin PopPK models. Other potential approaches include meta-analysis 

combining all different models, automated model selection, or model averaging algorithms [4, 

17]. Such an automation process could help find the best model or models for each patient. In 

our work, we did not attempt to use such approaches, i.e., meta-analysis or model averaging 

considering that we implemented Colin et al. [19] model who pooled data from 14 studies 

design.  

Simulations conducted in this dissertation are valid within the simulation scenarios. Simulations 

can explore different scenarios and provide relevant insights into future research interests. 

Usually, simulations are performed in a large number of replicates. In our analyses, conducting 

such replicates for the size of our study is very computationally intensive, especially in the case 

of the MCMC algorithm. Our simulation-based analysis requires at least 100 MCMC runs of 

thousands of iterations on multiple independent Markov chains to predict individual parameters 

for a big dataset containing 1000 virtual subjects. This is not computationally feasible and 

probably does not provide a significant added value for the purpose of comparing a single point 

estimate (maximum a posteriori) between different methods. Despite this, the observations 

described in our simulation-based analysis appeared to be consistent regardless of methods, 

scenarios, or data sources. 
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The predictive performance of population PK modeling is correlated with levels of random 

effects (inter-individual variability and residual error). In the fourth and fifth chapters, the 

sparsity nature and the non-optimal sampling times can yield a relatively higher shrinkage (24), 

which explains the limited predictive performance of our model. While our decision to proceed 

with such TDM data did not result in the most desirable results, we believe that our approach is 

highly relevant as it is meant to resemble the status in literature and signify the paramount 

importance of the well-constructed study as well as the limitations that can arise from using 

TDM data. The guideline has specified the use of rich constructed PK models as priors. Such 

models are limited for most special populations in the literature (25, 26). 

We seem to be at a critical juncture following the release of the revised guidelines. As Keith 

Rodvold said in his editorial commentary ” 60 plus Years Later and We Are Still Trying to Learn 

How to Dose Vancomycin” (27). This dissertation attempted to clarify and explore key 

vancomycin monitoring concerns aiding the transition to a more optimized vancomycin 

monitoring. Many practitioners trying to transit to the revised guidelines monitoring approaches 

are likely to benefit from this dissertation.  

Future Perspectives  

Although the recommendations of the revised vancomycin therapeutic monitoring guidelines 

were based on the best available evidence, no level I (defined as evidence from at least one 

properly randomized controlled trial) recommendations were made. The revised guidelines 

underscored the need for prospective, multicenter, large, randomized, and dose-optimized 

clinical trials to evaluate outcomes in all patients populations such as renal insufficiency. 

Likewise, our conclusion was based on the best available evidence generated with the data in 

hand, yet it might require further intensive-sampled data to confirm the potential impact of the 
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vancomycin monitoring approaches on outcomes, and whether AUC or trough can be reasonably 

approximated by each other. 

The revised vancomycin monitoring recommendations demand intensive financial and personal 

resources, such as the use of proprietary Bayesian software programs, an additional serum 

sample, and expertise. This shifts the finite human and financial available resources on 

vancomycin monitoring approaches instead of dedicating resources to other, probably, valuable 

interventions and higher priority patient care. Thus, the adaptability of such recommendations, 

especially in developing countries, might warrant a careful cost-benefit analysis.   

We here adopted a pharmacometrics and statistical approach tackling the problem of vancomycin 

TDM. This was mainly to question the appropriateness of the proposed therapeutic surrogates, 

such as AUC/MIC or trough values. However, once the utility of these surrogates is well 

established, other approaches can be envisioned. One of the most promising ones is to recourse 

to optimal control theory, a purely mathematical approach, to optimize vancomycin use. For this, 

a PopPK model, with its associated parameters, as well as the therapeutic target must be defined. 

In this perspective, the optimal control of colistin, another antibiotic drug of 60 years old, 

resulted in relatively more optimized loading and maintenance doses, and consequently faster 

and safer target attainment (28).  
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