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Résumé

Dans cette thèse, nous développons de nouveaux outils pour relier les dynamiques qualitatives des
systèmes hamiltoniens sur des surfaces aux propriétés algébriques de leurs complexes de Floer
- un objet algébrique qui encode l’information sur la façon dont les orbites 1-périodiques d’un
système sont reliées par des cylindres satisfaisant une équation différentielle partielle elliptique
appelée l’équation de Floer.

L’idée principale est de considérer — pour un hamiltonian H ∈ C∞(S1 × Σ) sur une surface
symplectique (Σ, ω) — les graphes des orbites contractiles 1-périodiques de l’isotopie (φHt )t∈[0,1]

comme définissant une tresse PH dans S1 × Σ. En choisissant des capuchons pour chacune de
ces orbites 1-périodiques, nous obtenons un objet que nous appelons une tresse encapuchonnée
P̂H , qui est muni d’une fonction d’indexation µCZ : P̂H → Z obtenue en assignant à chaque
brin (encapuchonné) l’indice de Conley-Zehnder de l’orbite encapuchonnée associée. L’idée est
alors de s’interroger sur la relation entre l’information topologique encodée dans la tresse enca-
puchonnée indexée (P̂H ,µCZ) et la structure du complexe de Floer CF∗(H,J) pour une structure
presque complexe générique J . À cette fin, nous aurons recours à : un nouvel invariant relatif pour
les paires de tresses encapuchonnées que nous appelons le nombre d’enlacement homologique,
un cercle d’idées concernant le comportement asymptotique des courbes pseudo-holomorphes
développé par Hofer-Wysocki-Zehnder dans leur série d’articles [8], [10], [12] et aussi [11] (ainsi
qu’un raffinement supplémentaire dans le cas relatif dû à Siefring dans [32]), et une nouvelle
technique en basses dimensions pour la construction de morphismes de continuation de Floer qui
ont un comportement prescrit.

En conséquence de ces techniques, nous établissons l’existence — pour des systèmes hamiltoniens
génériques sur une surface fermée arbitraire — de certaines feuilletages singulières spéciaux sur
S1×Σ dont le comportement est étroitement lié à la fois à la dynamique sous-jacente et à la struc-
ture du complexe de Floer du système. La construction de tels feuilletages dans le cas particulier
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des pseudo-rotations d’un disque, par des méthodes très différentes des nôtres, a été au cœur des
progrès significatifs récents de Bramham dans [3] sur une célèbre question de Katok concernant
les systèmes conservatifs de basse dimension et d’entropie nulle. Ces feuilletages fournissent
également, pour les systèmes hamiltoniens lisses génériques, une construction Floer-théorique
des feuilletages positivement transversaux sur Σ qui ont été construits originellement (pour les
homéomorphismes de surface généraux) par Le Calvez à travers d’une extension substantielle de
la théorie de Brouwer classique pour les homéomorphismes de surface dans [16].

En plus de fournir un pont géométrique entre la dynamique d’une isotopie hamiltonienne et
l’information algébrique contenue dans son complexe de Floer, les techniques développées dans
cette thèse permettent également de donner une caractérisation — purement en termes de la
dynamique de l’isotopie hamiltonienne sous-jacente — des cycles de Floer dans CF∗(H,J) qui
représentent la classe fondamentale de la surface et qui de plus se trouvent dans l’image d’un
morphisme de PSS au niveau des chaines.

Finalement, ces techniques permettent de définir une nouvelle famille d’invariants d’un système
hamiltonien (sur une variété symplectique arbitraire) qui se comporte formellement de manière
similaire à une famille bien étudiée de tels invariants connue comme les invariants spectraux de
Oh-Schwarz. L’avantage de nos nouveaux invariants est que nous sommes capable de calculer
explicitement les plus importants d’entre eux pour des systèmes hamiltoniens génériques sur des
surfaces arbitraires, ce uniquement en termes de topologie relative des orbites périodiques du
système (avec leurs indices de Conley-Zehnder). Ceci généralise un résultat de Humilière-Le
Roux-Seyfaddini dans [13] dans lequel ils ont donné une caractérisation dynamique du principal
invariant spectral de Oh-Schwarz dans le cas de systèmes hamiltoniens autonomes sur des surfaces
de genre positif.

Mots-clefs: Topologie symplectique, systèmes hamiltoniens, théorie de Floer hamiltonienne,
courbes pseudo-holomorphes, tresses, systèmes dynamiques de basse dimension, enlacement,
feuilletages positivement transverses, invariants spectraux.
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Abstract

In this thesis, we develop novel tools for relating the qualitative dynamics of Hamiltonian systems
on surfaces to the algebraic properties of their Floer complexes — an algebraic object which
encodes information about the ways in which a system’s 1-periodic orbits are connected by
cylinders satisfying an elliptic partial differential equation known as Floer’s equation.

The main idea is to consider — for a generic Hamiltonian H ∈ C∞(S1 × Σ) on a symplectic
surface (Σ,ω) — the graphs of the contractible time-1 periodic orbits of the isotopy (φHt )t∈[0,1] as
defining a braid PH in S1 ×Σ. Upon choosing cappings for each such 1-periodic orbit, we obtain
an object which we term a capped braid P̂H , which comes equipped with an indexing function
µCZ : P̂H → Z given by assigning to each (capped) strand of the braid the Conley-Zehnder index
of the associated capped orbit. The idea is then to enquire into the relation of the topological
information encoded in the indexed capped braid (P̂H ,µCZ) and the structure of the Floer complex
CF∗(H,J) for a generic J . The main tools employed to this end are: a novel relative invariant
for pairs of capped braids which we term the homological linking number, a circle of ideas about
the asymptotic behaviour of pseudo-holomorphic curves pioneered by Hofer-Wysocki-Zehnder
in their series of papers [8], [10], [12] as well as in [11] (along with a further refinement to the
relative case by Siefring in [32]), and a novel technique for the construction of regular Floer
continuation maps in low-dimensions having prescribed behaviour.

As a consequence of these techniques, we establish the existence — for generic Hamiltonian
systems on an arbitrary closed surface Σ — of certain special singular foliations on S1 × Σ

whose behaviour is tightly related to both the underlying dynamics, as well as the structure of
the system’s Floer complex. The construction of such foliations (by very different methods) in
the particular case of pseudo-rotations on a disk was the crux of Bramham’s recent significant
progress in [3] on a famous question due to Katok about low-dimensional conservative systems
with vanishing entropy. These foliations also provide, for generic smooth Hamiltonian systems,
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a Floer-theoretic construction of the positively transverse foliations on Σ which were originally
constructed (for general surface homeomorphisms) by Le Calvez through a significant extension
of classical Brouwer theory for surface homeomorphisms in [16].

In addition to providing a geometric bridge between the dynamics of a Hamiltonian isotopy and
the algebraic information contained in its associated Floer complex, the techniques developed in
this dissertation also permit a characterization — purely in terms of the dynamics of the underlying
Hamiltonian isotopy — of those Floer cycles in CF∗(H,J) which represent the fundamental class
of the surface, and which moreover lie in the image of some chain-level PSS map.

Finally, these techniques permit the definition of a new family of invariants of a Hamiltonian
system (on an arbitrary symplectic manifold) which behave formally similarly to a well-studied
family of such invariants known as ‘Oh-Schwarz spectral invariants’ (and which agree with
them in all known cases). The advantage of these novel spectral invariants is that we are able
to explicitly compute the most important of these spectral invariants for generic Hamiltonian
systems on arbitrary surfaces purely in terms of the relative topology of the system’s periodic
orbits (together with their Conley-Zehnder indices). This considerably generalizes a result by
Humilière-Le Roux-Seyfaddini in [13] in which they gave a dynamical characterization of the
main Oh-Schwarz spectral invariant in the case of time-independent Hamiltonian systems on
surfaces with positive genus.

Keywords: Symplectic topology, Hamiltonian systems, Hamiltonian Floer theory, Pseudo-
holomorphic curves, Braids, Low-dimensional dynamical systems, Linking, Positively transverse
foliations, Spectral invariants
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Introduction

The goal of this thesis is to develop a certain picture of Hamiltonian dynamics on surfaces via a
set of tools which are well-suited to the study of the relationship between their dynamics and the
structure of their Floer complexes. More precisely, recall that an isotopy

φH : [0,1]× Σ→ Σ

of a symplectic surface (Σ,ω) is called Hamiltonian if it is realized as the flow of the periodic
family of vector fields (XH

t )t∈S1 , where each vector field satisfies

ω(XH
t ,·) = −dHt(·)

for some smooth family of functions (Ht : Σ → R)t∈S1 . Modulo some genericity conditions, to
each such isotopy and any family (Jt)t∈S1 of ω-compatible almost complex structures, we may
associate a complex CF∗(H,J) which is generated by the set P̃ er0(H) of capped 1-periodic orbits
of φH . This complex has a Z-grading µCZ which counts the amount of ‘symplectic winding’ that
occurs locally about the orbit throughout the isotopy, and whose differential counts the number of
‘Floer cylinders’ u : S1×R→ Σ which connect these orbits. Together with µCZ , any collection of
capped orbits X̂ ⊂ P̃ er0(H) such that the underlying orbits x,y of any two elements x̂, ŷ ∈ X̂ are
distinct forms a geometric object which we call an indexed capped braid (X̂, µCZ). We can think
of the topology of the indexed capped braids which make up P̃ er0(H) as encoding the topological
structure of 1-periodic orbits of (φHt )t∈[0,1] along with the coarse local structure of the isotopy near
these orbits. The broad question broached by this work may be stated as follows

What relations does the topological structure of P̃ er0(H) impose on the (filtered) algebraic
structure of CF∗(H,J) and vice versa?

Clearly, this question is only particularly meaningful in low-dimensions where the orbits may twist
about one another in homotopically interesting ways, but in this situation it proves surprisingly



fruitful and sheds considerable light on the possible dynamics of generic Hamiltonian isotopies
on surfaces. To wit, we will say that a capped braid X̂ is unlinked if the capping disks of the
strands may be chosen such that their graphs in D2 × Σ are disjoint. An indexed capped braid
X̂ ⊂ P̃ er0(H) is maximally unlinked relative the Morse range if X̂ is unlinked, every (capped)
strand of X̂ has index lying in the set {−1, 0, 1} and X̂ is maximal among all collections of
capped orbits in P̃ er0(H) having these two properties. We write murm(H) to denote the set of
such capped braids. As a consequence of the theory developed herein, we obtain the following
structural result for generic Hamiltonians H on an arbitrary symplectic surface.

Theorem A. LetH ∈ C∞(S1×Σ) be a non-degenerate Hamiltonian, and let J ∈ C∞(S1;Jω(Σ))

be such that (H,J) is Floer regular. For any capped braid X̂ ∈ murm(H), we may construct an
oriented singular foliation F X̂ of S1 × Σ with the following properties

(1) The singular leaves of F X̂ are precisely the graphs of the orbits in X̂ .
(2) The regular leaves are annuli parametrized by maps

ǔ : R× S1 → S1 × Σ

(s,t) 7→ (t,u(s,t)).

for u ∈ M̃(x̂,ŷ;H,J), for x̂, ŷ ∈ X̂ .
(3) The vector field X̌H(t,z) = ∂t ⊕ XH

t (z) is positively transverse to every regular leaf of
F X̂ .

Similar foliations play a crucial role in Bramham’s recent celebrated construction of periodic
approximations for irrational pseudo-rotations of the disk in [3]. Our approach gives both the
existence of such foliations for generic Hamiltonians, and moreover ties their behaviour directly
to the structure of the Floer complex and the dynamics of the Hamiltonian isotopy.

The structure of the foliations F X̂ could be a priori rather complicated, however, with Theorem A
in hand, we can define the X̂-restricted action functional AX̂ ∈ C∞(S1 × Σ) by AX̂(t,u(s,t)) =

AH(ûs), for AH : L̃0(Σ) → R the Hamiltonian action functional on the space of capped loops
(the capping of us is naturally induced by the cappings of the limiting orbits). AX̂ turns out to be
a Morse-Bott function, and if we define AX̂t ∈ C∞(Σ), t ∈ S1, to be its restriction to the fiber
{t} × Σ, we obtain an S1-family of Morse functions, such that the negative gradient flow of AX̂t
provides a singular foliation which coincides with the foliation F X̂t given by intersecting F X̂ with
the fiber over t ∈ S1. Sliding the fiber {0} × Σ along the circles t 7→ (t,us(t)) provides a loop
(ψX̂t )t∈S1 , and we prove
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Theorem B. For every t ∈ S1, F X̂t is a singular foliation of Morse type. Moreover, the loop
(ψX̂t )t∈S1 is a contractible loop such that the orbits of (ψX̂)−1 ◦φH are positively transverse to the
foliation F X̂0 .

We thereby reduce the study of the qualitative dynamics of the isotopy φH to the much better
understood situation of dynamics which are positively transverse to a Morse-type foliation. Note
that similar foliations (with a weaker notion of positive transversality) have been constructed by
Le Calvez in [16] for Hamiltonian homeomorphisms, and play a central role in the forcing theory
developed in [18]. The above result can be viewed as giving a Floer-theoretic construction of
certain of Le Calvez’s foliations, along with additional insight into their structure in the smooth
case. We also obtain as a corollary the following somewhat surprising structural result about the
topology of the braid generated by the 1-periodic orbits of H (a capped braid is said to be linked if
it is not unlinked):

Theorem C. Let H be non-degenerate, X̂ = {[xi(t),wi(se2πit)]}ki=1 ∈ murm(H) and for any
m ∈ Z>0, denote by X̂]m = {[xi(mt), wi(se2mπit]}ki=1 ⊂ P̃ er0(H]m) its m-fold iterate. For any
ŷ ∈ P̃ er0(H]m) with y(t) 6= xi(mt) for all i = 1, . . . ,k and t ∈ S1, X̂]m∪ŷ is linked. In particular
every X̂ ∈ murm(H) is maximally unlinked as a subset of P̃ er0(H).

Remark that this is essentially the same relationship as exists between the periodic orbits of an
autonomous Morse Hamiltonian and its critical points. Taken together with the observations that
every capped orbit x̂ ∈ P̃ er0(H) with index in the Morse range lies in some X̂ ∈ murm(H)

and that any two orbits in the Morse range which are connected by a Floer cylinder are unlinked
(see Corollary 5.1.4 in Section 5.1), the above results imply that the problem of understanding the
structure of CF∗(H,J) in the Morse range may be decomposed into the problem of understanding
the finitely many Morse-type foliations {F X̂0 }X̂∈murm(H) on Σ which are associated to the Morse

functions {AX̂0 }X̂∈murm(H). Moreover, for each X̂ ∈ murm(H), the qualitative dynamics of the

isotopy (ψX̂)−1 ◦ φH relative to the foliation F X̂0 are similar in fundamental ways to the dynamics
of an autonomous Morse Hamiltonian relative to the foliations provided by its negative gradient
trajectories.

The techniques developed in this thesis also enable a second, logically distinct (though thematically
related), line of enquiry, examining the relationship between the qualitative dynamics of a Hamil-
tonian isotopy and those aspects of the filtered Floer complex which are ‘probeable’ by chain-level
PSS maps. To be more precise, recall that there is a natural way to identify the quantum homol-
ogy of a symplectic manifold with the Floer homology of a generic Floer pair (H,J) given by the
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PSS isomorphism originally introduced in [25] (see also [28]). This isomorphism is induced on
homology by choosing some ancillary data D— which includes a Morse-Smale pair (f,g) and so
provides a Morse-theoretic model for the quantum chain complex QC∗(f,g) = CMorse(f,g)⊗ Λω

whose homology computes the quantum homology of (M,ω) — and this data is then used to con-
struct a chain morphism

ΦPSS
D : QC∗(f,g) 7→ CF∗−n(H,J).

The induced map on homology is an isomorphism and is independent of the ancillary data D. Our
next result provides, in the case of surfaces, a purely topological characterization of those non-
trivial Floer cycles in CF∗(H,J) which lie in the image of some chain-level PSS map and which
represent the fundamental class. Note that for σ =

∑
ax̂x̂ ∈ CF∗(H,J), supp σ̂ := {x̂ : ax̂ 6= 0}

may be thought of as a capped braid.

Theorem D. Let σ ∈ CF1(H,J). σ is a non-trivial cycle such that σ ∈ im ΦPSS
D for some regular

PSS data D if and only if supp σ is a maximal positive capped braid relative index 1.

See Section 4.2 for the definition of a ‘maximal positive capped braid relative index 1’. The
salient point is that this condition is purely topological and depends only on the qualitative
dynamics of the underlying Hamiltonian system. This result is something of a novelty, since in
general, it is very difficult (unless we are in the case of a C2 small autonomous Hamiltonian)
to identify candidates for cycles which represent the fundamental class in Floer homology. The
above theorem provides us with a wealth of different such candidates having nice dynamical
properties. Our methods also permit a similar type of characterization to be given for cycles which
lie in the image of some chain-level PSS map and which represent the point class, although this
characterization is somewhat more involved and we do not present it here. Interestingly though,
there seem to be fundamental obstructions to using the same approach to characterize Floer cycles
of middle degree lying in the image of some chain-level PSS map.

Theorem D motivates us to examine, for general symplectic manifolds, the quantity cim(α;H)

obtained by examining the infimal action level required to represent some non-zero quantum ho-
mology class α in the filtered Floer complex of H via some chain-level PSS map. It turns out that
these quantities define spectral invariants which are intimately related to the geometry of Hamil-
tonian fibrations over disks and which we term the PSS-image spectral invariants. Theorem D
thereby provides us with a purely topological formula for cim([Σ];H) on arbitrary surfaces (here
X̂ ∈ mp(1)(H) if X̂ = {x̂1, . . . , x̂k} is a maximally positive capped braid relative index 1)
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Corollary. Let H be non-degenerate.

cim([Σ];H) = inf
X̂∈mp(1)(H)

sup
x̂∈X̂
AH(x̂).

The above result is quite similar in spirit to the characterization of the usual Oh-Schwarz spectral
invariant associated to the fundamental class (see Section 2.1.2 for the definition) established by
Humilière-Le Roux-Seyfaddini in [13] for autonomous Hamiltonians on aspherical surfaces, and,
in fact we will see in Section 4.4 that their work implies that the two quantities agree in this setting
(indeed, in many ways this work grows out of an attempt to understand what is going on in [13] in
more directly geometric terms). Intriguingly, the class of orbits over which the minimax procedure
is performed in the work of Humilière-Le Roux-Seyfaddini is quite different from the class of
orbits which we consider; it would be interesting to understand the geometry behind why this is so.

In virtue of their definition, the PSS-image spectral invariants share many of the desirable formal
properties of the usual Oh-Schwarz spectral invariants (see Section 2.1.2 for the definition), and
so one can perform many of the same arguments with them, with the added advantage that the
behaviour of the PSS-image spectral invariants are more tightly linked to the dynamical behaviour
of the system under study — at least on surfaces. For instance, we may use the PSS-image spectral
invariants to define a symplectically bi-invariant norm on Ham(M,ω) by

γim(φ) := inf cim([M ];H) + cim([M ]; H̄),

where the infimum is taken over Hamiltonians H such that φH1 = φ and which are normalized so
that

∫
M
Ht ω

n = 0 for all t ∈ S1. In the case of surfaces, the fact that the PSS-image spectral
invariants share enough of the formal properties satisfied by the Oh-Schwarz spectral invariants
allows Seyfaddini’s argument establishing the C0-continuity of the Oh-Schwarz spectral norm on
surfaces (see Theorem 3 in [31]) to carry through form γim. As a consequence, we obtain

Theorem E. On surfaces, the symplectically bi-invariant norm γim is both C0-continuous and
Hofer-continuous. Moreover, if φ is non-degenerate and Σ 6= S2, then

γim(φ) = inf
X̂∈mp(1)(H)

sup
x̂∈X̂
AH(x̂)− sup

X̂∈mn(−1)(H)

inf
x̂∈X̂
AH(x̂),

for H any normalized Hamiltonian such that φH1 = φ.1 (Here mn(−1)(H) denotes the set of all
capped braids X̂ ⊂ P̃ er0(H) which are ‘maximally negative relative index −1’. See Section 4.2
for the definition).
1There is of course a similar dynamical formula for γim on the sphere which is slightly more involved, taking into
account the non-triviality of π1(Ham(S2)). See Corollary 4.3.3
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The main interest in the above theorem, apart from the intrinsic interest of having a dynamically
defined symplectically bi-invariant norm on Hamiltonian diffeomorphisms, is that the structure of
the sets mp(1)(H) and mn(−1)(H) can change dramatically as one interpolates between Hamil-
tonians (in either the C0 or the Hofer topology), however, the above theorem guarantees that the
quantity obtained by the specified mini-max procedure over these collections remains continuous
regardless. Finally, as a last example of the sort of information that can be drawn from Theorem
D, we may exploit the computability of our newfound spectral invariants together with their close
relationship to the Oh-Schwarz spectral invariants, in order to extract the following dynamical con-
trols over the commutator lengths of homotopy classes φ̃ ∈ H̃am(S2,ω) from Entov’s work in [5].

Theorem F. Assume thatH ∈ C∞(S1×S2) is non-degenerate and normalized so that
∫
Htω = 0

for all t ∈ S1, then

min
{

min
X̂∈mp(1)(H)

max
x̂∈X̂
AH(x̂),− max

X̂∈mn(−1)(H)
min
x̂∈X̂
AH(x̂)

}
< −kArea(S2,ω)

only if the commutator length of φ̃H in H̃am(S2) is strictly greater than 2k + 1.

0.1. Structure of this thesis
Chapters 1, 2 and 3 develop the main conceptual and technical tools in this work, which we then
apply in Chapters 4 and 5 to deduce the results laid out in the previous section. These latter two
chapters are independent and may be read in any order, but both depend heavily on the first three
chapters.

Chapter 1 introduces the basic notion of capped braids and related basic language. The most
essential development in this chapter is the definition of a relative invariant for capped braids
which associates to any pair of capped k-braids (X̂,Ŷ ) an integer L0(X̂,Ŷ ) ∈ Z. We call this
quantity the homological linking number of X̂ and Ŷ . If we think of the (uncapped) braids X and
Y as being graphs (suggestively called ‘strands’) in S1 ×Σ of loops in Σ), then roughly speaking,
L0(X̂,Ŷ ) counts the number of signed intersections that occur between the strands if we start with
the braid X and attempt to continuously deform it to the braid Y , subject to a certain homotopy
condition coming from the cappings of X̂ and Ŷ .

Chapter 2 introduces the elements of Floer theory of which we will have need, and explains the
relevance of the homological linking number to the study of the Floer theory of low-dimensional
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systems. More precisely, one of the central geometric ideas in this work is that we may interpret
collections of Floer-type cylinders as providing such deformations between the capped braid X̂
formed by the capped orbits at their negative ends and the capped braid Ŷ formed by the capped
orbits at their positive ends. When we do this, the Gromov trick combined with positivity of
intersections in dimension 4 implies that the homological linking number L0(X̂,Ŷ ) must be
non-negative, which gives strong topological restrictions on the putative existence of collections
of Floer cylinders in terms of the relative topologies of the capped braids formed by their negative
and positive ends. There is a slight deficiency in this story however, in the sense that in general
one may have multiple Floer cylinders emerging from or converging to the same orbit.

In order to deal with cylinders which emerge from or converge to the same orbit, we make use
of the analysis of the relative asymptotic behaviour of pseudo-holomorphic curves developed
by Siefring in [32], which pairs with work of Hofer-Wysocki-Zehnder in [10] to connect the
Conley-Zehnder index of an orbit to bounds on the winding behaviour of pairs of cylinders
which emerge from or converge to that orbit. In the contact setting, these sorts of bounds (in
the non-relative case), along with the insight that under appropriate index conditions on the
asymptotic orbits families of pseudoholomorphic curves automatically form local foliations in the
symplectization of a contact manifold, go back to the pioneering work of Hofer-Wysocki-Zehnder
in [8], [10], [12] and [11]. Siefring has also more recently put this circle of ideas to use in
[33] to define an intersection number for arbitrary pseudoholomorphic curves in 4-dimensional
symplectic cobordisms which is invariant under homotopy. In any case, we may thereby split the
analysis of the behaviour of general collections of Floer cylinders into two portions: an asymptotic
portion on the ends where the linking behaviour of cylinders asymptotic to the same orbit is
controlled by the Conley-Zehnder index, and a compact portion which interpolates between two
capped braids such that their intersections are controlled by the homological linking number of
the capped braids at each end of this compact portion.

Chapter 3 is the last of the technical chapters, and introduces our technique for designing Floer
continuation maps such that certain moduli spaces are non-empty. The basic idea is to show
that, given any collection of smooth cylinders which topologically could be a collection of
(s-dependent) Floer-type cylinders (in the sense that their graphs intersect only positively and they
exhibit the appropriate asymptotic winding behaviour), we may — after a series of suitable small
perturbations — always find regular Floer homotopy data (H,J) such that the perturbed cylinders
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are all (H,J)-Floer.

In Chapter 4, we introduce the PSS-image spectral invariants and prove Theorem D and its various
consequences. The main line of the proof of Theorem D is as follows. The fact that the cycle
in question lies in the image of some chain-level PSS map implies the existence of various PSS
disks, which may be thought of as providing a deformation from a trivial capped braid to the
support of the cycle in question. The theory from Chapters 1 and 2 may then be used to force the
support of this cycle to be positive, and when combined with the cycle’s homological non-triviality
this theory forces the support to be maximally positive (relative index 1). Conversely, in order
to deduce that every such capped braid lies in the image of some chain level PSS map, it is
sufficient to construct an appropriate continuation map from a small Morse function which sends
the fundamental class of the Morse function to a cycle supported on the capped braid in question.
The technique for designing continuation maps with prescribed behaviour developed in Chapter 3
may be seen to provide precisely such a continuation map.

Chapter 5 proves Theorems A, B and C. Theorem A is the main theorem from which the others
follow as ready consequences. The rough structure of its proof is as follows. The theory developed
in Chapter 2 may be used to show that if two capped orbits x̂, ŷ have Conley-Zehnder indices
lying in the Morse range with M̃(x̂,ŷ;H,J), then maps of the form (s,t) 7→ (t,u(s,t)) for u ∈
M̃(x̂,ŷ;H,J) foliate some subset W (x̂,ŷ) ⊂ S1 × Σ. This fact was essentially discovered in the
contact setting in [12] (see also [11]). We then study conditions under which collections X̂ of
capped orbits having indices lying in the Morse range may be chosen so that these foliated subsets
piece together to form the desired foliation F X̂ . In order to do this, it turns out to be convenient
to associate a ‘restricted complex’ C∗(X̂) to a capped braid X̂ ⊂ P̃ er0(H) whose ‘differential’
counts the Floer cylinders running between capped orbits in X̂ of index difference 1. In general,
this is not actually a differential andC∗(X̂) is not actually a chain complex. However, we show that
when X̂ ∈ murm(H), CF∗(X̂;H,J) := C∗(X̂) is a chain complex (although it is not, in general
a subcomplex of CF∗(H,J)). In order to study CF∗(X̂;H,J), we introduce a useful class of
continuation maps which we call X̂-dominating continuation maps from (resp. to) X̂-dominating
Morse functions. Roughly speaking, these are continuation maps such that for each x̂ ∈ X̂ , we
can find some continuation moduli spaceM(p̂,x̂;H,J) (resp. M(x̂,p̂;H,J)) which is non-empty.
The techniques of Chapter 3 are used to establish their existence. The crucial point is that if hH,J
is a X̂-dominating continuation map from a X̂-dominating Morse function f , then the map

πX̂ ◦ hH,J : CF∗(f,J
−)→CF∗(H,J)→ CF (X̂;H,J),
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where πX̂ : CF∗(H,J) → CF (X̂;H,J) is the map which is the identity of Λω〈x̂〉X̂ and sends
everything else to 0, is a chain map which induces an injection on homology. Moreover, such
maps interact nicely with the cap action on the Floer chain complex in the sense that for a generic
smooth cycle α#,

(πX̂ ◦ hH,J)(α# ∩ ẑ) = α# ∩ (πX̂ ◦ hH,J)(ẑ)

at the chain level. Consequently, if α# is a generic point p ∈ Σ this implies that, when
∑
ẑ ∈

CF∗(f,J
−) represents the fundamental class

p ∩ (πX̂ ◦ hH,J)(
∑

ẑ) = (πX̂ ◦ hH,J)(p ∩
∑

ẑ).

Since [p∩
∑
ẑ] = [pt] ∈ QH0(Σ) ' HF−1(f) and πX̂◦hH,J is injective on homology, the left-hand

side of the above equation is non-zero. This implies that through any generic (t,p) ∈ S1×Σ, we can
find x̂,ŷ ∈ X̂ and a Floer cylinder u ∈ M̃(x̂,ŷ;H,J) such that (t,u(0,t)) = (t,p). Consequently,
when X̂ ∈ murm(H), the union of the subspaces W (x̂,ŷ) over all x̂,ŷ ∈ X̂ forms a foliated open,
dense set of S1 × Σ. We may then use an argument pioneered in [11] to establish that, in fact, all
of S1×Σ is foliated. The positive transversality property for F X̂ is a direct consequence of the ω-
compatibility of the almost complex structure and the fact that the regular leaves are parametrized
by Floer cylinders.
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Chapter 1

Capped braids and homological linking

In this chapter we introduce the basic notion of capped braids, their appropriate notion of
equivalence (0-homotopy), and an important relative invariant of a pair of capped braids with the
same number of strands which we call the homological linking number. These notions will later
serve to encode the topology of the capped 1-periodic orbits of a non-degenerate Hamiltonian
system, and give controls on the behaviour of Floer-type cylinders which may run between various
collections of such capped orbits.

The basic definitions required for our work with capped braids are presented in Section 1.1.
Section 1.2 explains a mild generalization of the classical winding number of loops in R2 to
capped loops whose underlying loops are close in the loop space. This generalization becomes
important later on in the work when we consider the asymptotics of Floer-type cylinders which
emerge or converge to the same orbit. Section 1.3 introduces the homological linking number and
establishes its basic properties including how it recovers the generalized winding number in the
setting of Section 1.3.

For the duration of this thesis, Σ will always denote a smooth symplectic surface (Σ,ω), L(M)

the (smooth) loop space of the manifold M , L0(M) its space of contractible loops and L̃0(M) its
Novikov covering space (see [19], Section 12.1).

Throughout this work, there is a certain amount of juggling of different perspectives on the same
objects that will be necessary. In particular, though our main objects of study are isotopies on
some surface Σ — and so the initial arena in which the action takes place is 2 dimensional — it



will frequently be useful to work on the 3-dimensional mapping torus

Σ̌ := S1 × Σ

as well as the 4-dimensional space

Σ̃ := R× S1 × Σ.

In order to have our notation be suggestive of these perspectival shifts, maps taking values in Σ̌ will
frequently be adorned with a ·̌, while maps taking values in Σ̃ will be adorned with a ·̃. The most
frequent use-cases for this notation will be the following. For x ∈ L(M), we write x̌(t) := (t,x(t))

for its graph in M̌ = S1 ×M . For u : I × S1 →M , where I ⊆ R, we write ũ(s,t) := (s,t,u(s,t))

for its graph in M̃ = I × S1×M and ǔ(s,t) := (t,u(s,t)) for the projection of this graph onto M̌ .

1.1. Capped Braids
Definition 1.1.1. For any k ∈ N, we define the k-configuration space

Ck(Σ) := {(z1, . . . , zk) ∈ Σk : (i 6= j)⇒ zi 6= zj}

Definition 1.1.2. An (ordered) k-braid is an element X = (x1, . . . ,xk) ∈ L(Ck(Σ)). Denote by
Bk(Σ) the space of ordered k-braids. The loop xi is called the i-th strand of X , for i = 1, . . . , k.

Definition 1.1.3. An unordered k-braid is an element [X] ∈ L(Ck(Σ))/Sk, where Sk acts by
permutation of coordinates. Such unordered braids may be identified with certain finite subsets of
L(Σ).

Remark. We raise the distinction between ordered and unordered braids here mainly to flag for
the reader that we will make no real effort outside of this section to separate these two concepts.
In particular, we will routinely treat ordered braids as finite subsets of L(Σ) and perform set-wise
operations on them, when properly speaking we should be speaking of the unordered braids which
they represent. We will moreover speak simply of ‘braids’ relying on the context to make clear
whether these braids are ordered or unordered. For the remainder of this section, we will make a
clear distinction between ordered and unordered braids, mainly to convince the suspicious reader
that nothing essential is lost in making this elision.

Definition 1.1.4. The graph X̌ of an (ordered) k-braid is the set-valued map X̌(t) = tki=1x̌(t) ⊆
S1×Σ, t ∈ S1. The graph of an unordered braid [X] is the graph of some (hence every) represen-
tative X of [X].
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Definition 1.1.5. An ordered k′-braid Y ∈ Bk′(Σ) is an ordered sub-braid of X ∈ Bk(Σ) if
Y ⊆ X , as an ordered set. An unordered braid [Y ] is a sub-braid of [X] if [Y ] ⊆ [X] as sets. There
is an obvious partial ordering on the collection of sub-braids of X (resp. of [X]).

Definition 1.1.6. X ∈ Bk(Σ) is contractible if each strand of X is a contractible loop. We write
Bk

0 (Σ) for the space of contractible ordered k-braids. [X] ∈ Bk(Σ)/Sk is contractible if some
(hence every) representative X of [X] is contractible.

Definition 1.1.7. A continuous map h : [0,1] → Bk(Σ) with h(0) = X , h(1) = Y is a braid
homotopy fromX to Y . When such a map exists, we shall say thatX and Y are braid homotopic,
denoted X ' Y . The map (s,t) 7→ hi(s,t) is called the i-th strand of h. To any braid homotopy,
we associate its graph h̃(s,t) = tki=1h̃i(s,t) ⊆ [0,1]× S1 × Σ, (s,t) ∈ [0,1]× S1.

Definition 1.1.8. An ordered braid X will be said to be trivial if all of its strands are constant
maps. We will sometimes write 0 ∈ Bk(Σ) to stand for some fixed but arbitrary trivial braid, when
the particular choices of the constant maps are unimportant. An unordered braid [X] is trivial if
some (hence every) ordered representative is trivial.

Definition 1.1.9. X ∈ Bk(Σ) is unlinked ifX ' 0. An ordered braid is linked if it is not unlinked.
An unordered braid is unlinked (resp. linked) if some, hence every, ordered representative is
unlinked (resp. linked).

Definition 1.1.10. A continuous map h : [0,1] → L(Σ)k with h(0) = X ∈ Bk(Σ), h(1) = Y ∈
Bk(Σ) will be called a braid cobordism if there exists some δ > 0 such that h(s) ∈ Bk(Σ), ∀s ∈
(0, δ) ∪ (1− δ,1).

Remark. We will frequently find ourselves concerned with maps h : I → L(Σ)k, where I = R
or I = [a,b] for some a,b ∈ R, and in the case that I = R, it will always be the case that h extends
continuously to a map R̄ → L(Σ)k such that on some neighbourhood of ±∞, the graphs of the
strands of h do not intersect. In such a case, we will speak freely of ‘the’ braid cobordism induced
by h, which is simply any braid cobordism h◦ϕ, where ϕ : Ī → [0,1] is any orientation-preserving
diffeomorphism.

Definition 1.1.11. An (ordered) capped k-braid X̂ is an equivalence class [X,~w] where X ∈
Bk

0 (Σ) and ~w = (w1, · · · , wk) with wi : D2 → Σ a capping disk for the i-the strand of X , subject
to the equivalence relation [X,~w] ∼ [X ′, ~w′] if and only if X = X ′ and [wi]#(−[w′i]) = 0 ∈ π2(Σ)

for each i = 1, · · · , k. The space of ordered capped k-braids is denoted by B̃k
0 (Σ). The capped

loop x̂i = [xi,wi] ∈ L̃0(Σ) is called the i-th strand of X̂ . The notion of capped sub-braids Ŷ ⊆ X̂

is defined in the obvious way.
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Remark. The distinction between ordered capped braids and unordered capped braids obtains
here as well, and we adopt parallel conventions as those discussed in the case of braids in Remark
1.1.

π2(Σ)k acts on B̃k
0 (Σ) by the obvious ‘gluing of spheres’:

(A1, . . . ,Ak) · ([x1,w1], . . . , [xk,wk]) = ([x1,A1#w1], . . . , [xk,Ak#wk]),

where here we abuse notation slightly by thinking of Ai ∈ π2(Σ, xi(0)) as being both a homotopy
class of maps, as well as a particular choice of a representative from that class. This action does
not descend to an action on B̃k

0 (Σ)/Sk. However, if we denote by FixSk(π2(Σ)k) ' π2(Σ) the set
of fixed points of the action of the symmetric group on π2(Σ)k by permutation of coordinates, we
obtain a well-defined induced action by FixSk(π2(Σ)k) on unordered braids given by (A, . . . ,A) ·
[X̂] = [(A, . . . ,A) · X̂], for A ∈ π2(Σ).

Definition 1.1.12. A trivial braid 0 ∈ Bk(Σ) has a naturally associated capping 0̂ ∈ B̃k
0 (Σ) given

by capping each strand of 0 with the constant capping. We call any such braid a trivial capped
braid. When the particular components of a trivial capped braid are unimportant, we denote some
fixed but arbitrary capped braid by the symbol 0̂. An unordered capped braid is said to be trivial
if some (hence every) ordered representative is trivial.

Definition 1.1.13. For A = (A1, · · · , Ak) ∈ π2(Σ)k, an ordered braid cobordism h from X to
Y will be called an A-cobordism from [X,~w] to [Y,~v] if [wi]#[hi]#(−[vi]) = Ai, for all i =

1, · · · , k. Whenever such a map exists, [X, ~w] and [Y,~v] will be said to be A-cobordant. This
notion descends to unordered capped braids provided that A ∈ FixSk(π2(Σ)k).

Definition 1.1.14. If u : [0,1]→ L0(Σ) is a homotopy from x to y, then for any choice of cappings
x̂ = [x,wx] and ŷ = [y,wy], u is anA-cobordism from x̂ to ŷ, forA = [wx]#[u]#(−[wy]) ∈ π2(Σ).
Moreover, for any s ∈ [0,1], there are two natural choices of cappings for the loop us ∈ L0(Σ).
Namely, if we write αs(τ) := u(s · τ,t) and β(τ) := u(1 − (1 − s) · τ,t) for s ∈ [0,1], then we
may associate to us either of the cappings [us,wx#α

s] or [us,wy#β
s], and these two cappings are

obviously related by A · [us,wy#βs] = [us,wx#α
s]. Consequently, if u is a 0-homotopy between

x̂ and ŷ, these two cappings agree and we may associate a unique capping

ûs := [us, wx#α
s] = [us, wy#β

s]

to each us in this case. We will call such a capping the natural capping of us whenever u is such
a 0-homotopy.
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Definition 1.1.15. An A-cobordism h from X̂ = [X,~w] to Ŷ = [Y,~v] is called an A-homotopy if
h is in addition a braid homotopy from X to Y . In such a situation, we will say that X̂ and Ŷ are
A-homotopic, and we will denote the relation by X̂ 'A Ŷ . This notion descends to unordered
capped braids, provided that A ∈ FixSk(π2(Σ)).

Definition 1.1.16. X̂ ∈ B̃k
0 (Σ) is unlinked if X̂ '0 0̂. An unordered capped braid [X̂] is unlinked

if some (hence every) ordered representative is unlinked. The notion of linkedness for a capped
braid or for a pair of capped braids is defined as in the case of braids.

1.2. Linking of capped loops with close strands
For use in the sequel, we explain here a minor adaptation of the classical linking number of

two loops in the plane x,y : S1 → R2 to two capped loops x̂ and ŷ such that the underlying loops
x and y lie sufficiently close to each other in an arbitrary symplectic surface (Σ,ω).

To any x ∈ L0(Σ), we may associate the set

Sx := {y ∈ L0(Σ) : ∃t ∈ S1 such that x(t) = y(t)},

with the property that L0(Σ) \ Sx consists of precisely those loops y such that (x,y) ∈ L0(Σ)2 is a
braid.

We fix some family J = (Jt)t∈S1 of ω-compatible almost complex structures, and let gJ =

(gJt)t∈S1 denote the associated family of compatible metrics. This data provides us with an ex-
ponential neighbourhood O ⊂ L0(M) of x, along with a diffeomorphism

Exp : U ⊂ Γ∞(x∗TΣ)→ O

ξ 7→ {t 7→ expJtx(t)(ξ(t))}

from a neighbourhood of the zero section onto O.

Remark that any choice of a lift x̂ = [x,α] ∈ L̃0(Σ) of x gives rise to a lift Õα ofO, and Tx̂L̃0(Σ) '
(x∗TΣ,J,ω) comes equipped with a homotopically unique unitary trivialization

Tx̂ : S1 × (R2, J0, ω0)→ (x∗TΣ,J,ω),

provided by any unitary trivialization which extends over the capping. For any y ∈ O \ Sx and
any capping x̂α := [x,α] of x, let ŷα denote the unique lift of y lying in Õα. We define the linking
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number of x̂α and ŷα as

`(x̂α,ŷα) := wind((T−1
x̂ ◦ Ẽxp

−1
)(ŷα)),

wherewind(ξ) denotes the classical winding number of a non-vanishing family of vectors t 7→ ξ(t)

for t ∈ S1 in R2. Note that for A ∈ π2(Σ), we clearly have

`(A · x̂α,A · ŷα) = `(x̂α,ŷα) + c1(A),

and it is moreover not hard to show that ` is symmetric in its arguments. In order to extend this
definition to arbitrary cappings of the loops x and y, let A,B ∈ π2(Σ) and define

`(A · x̂α, B · ŷα) := `(x̂α,ŷα) +
1

2
(c1(A) + c1(B)).

It is not hard to check that this definition does not depend on the choice of α, nor the choice of
compatible almost complex structure J = (Jt)t∈S1 , and agrees with the previous definition in the
case that x̂ and ŷ are close in L̃0(Σ). A more geometric view of this formula will be provided in
the following two sections.

1.3. The homological linking number for capped braids
Definition 1.3.1. Let X̂, Ŷ ∈ B̃k

0 (Σ) and A ∈ π2(Σ)k. We define the homological (A)-linking
number of Ŷ relative to X̂

LA(X̂; Ŷ ) :=
∑

1≤i<j≤k

#(h̃i t h̃j),

where h = (h1, · · · , hk) is any A-cobordism from X̂ to Ŷ such that the graphs of the strands of
h in [0,1] × S1 × Σ are all pairwise transverse, and #(h̃i t h̃j) denotes the signed count of the
intersections of the graphs h̃i and h̃j (recall that in our setting Σ carries the orientation induced by
ω).

Remark. The above definition may be generalized straightforwardly by replacing the cylinder
[0,1]×S1 with a surface Sg,k−,k+ of genus g, having k− negatively oriented boundary components
and k+ positively oriented boundary components. This provides a family of homotopy invariants
for collections of k− ‘input’ and k+ ‘output’ capped braids in the obvious way. Much of the theory
developed in this thesis can be adapted in a straightforward way to use such invariants to extract
information about the field-theoretic operations in Floer theory described in [25] at the chain level
for Hamiltonian isotopies on surfaces, but we will not pursue this extension in this thesis.
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The following proposition summarizes the main properties of the homological linking number
which we will need in our investigations.

Proposition 1.3.2. For any X̂, Ŷ , Ẑ ∈ B̃k
0 (Σ) and A,B ∈ π2(Σ)k we have that:

(1) LA(X̂,Ŷ ) is well-defined.
(2) For any σ ∈ Sk, Lσ·A(σ · X̂;σ · Ŷ ) = LA(X̂; Ŷ ).
(3) LA(X̂,Ŷ ) + LB(Ŷ , Ẑ) = LA+B(X̂,Ẑ).
(4) If X̂ and Ŷ are A-homotopic, then LA(X̂,Ŷ ) = 0.
(5) LA(X̂,Ŷ ) = −L−A(Ŷ ,X̂).
(6) LA(X̂,B · Ŷ ) = LA+B(X̂,Ŷ ).
(7) L0(X̂,A · X̂) = (k − 1)

∑k
i=1

c1(Ai)
2

.

PROOF. (1) That LA(X̂,Ŷ ) is well-defined follows from the standard transversality arguments
that are typical in differential topology. Alternately, one may simply note that for any braid
cobordism h = (h1, · · · , hk) and any i = 1, · · · , k, the graph of hi in [0,1]×S1×Σ defines
a compact surface with boundary Si ⊂ [0,1]×S1×Σ which induces a well-defined element
of

[Si] ∈ H2([0,1]× S1 × Σ; X̌ t Y̌ ),

where X̌ and Y̌ denote the graphs of the braids X and Y respectively, thought of as sub-
manifolds lying in {0}×S1×Σ and {1}×S1×Σ, respectively. The intersection product
of such classes is well-defined and

LA(X̂,Ŷ ) =
∑

1≤i<j≤k

[Si] ∪ [Sj],

which, since [0,1] × S1 × (Σ,ω) is canonically oriented by (ds ∧ dt) ∧ ω, is obviously
precisely what is computed by the sum of pairwise intersection numbers of the graphs
when these are transverse.

(2) This statement follows upon remarking that for any σ ∈ Sk and any A ∈ π2(Σ)k, h =

(h1, . . . ,hk) is an A-cobordism from X̂ to Ŷ if and only if σ · h := (hσ−1(1), . . . , hσ−1(k))

is a (σ · A)-cobordism from σ · X̂ to σ · Ŷ .
(3) This is straightforward and follows directly from concatenating an A-cobordism from X̂

to Ŷ with a B-cobordism from Ŷ to Ẑ.
(4) An A-cobordism h = (h1, · · · ,hk) is an A-homotopy precisely when the graphs of the hi,

i = 1, · · · , k are all disjoint. Clearly this implies LA(X̂,Ŷ ) = 0.
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(5) This follows immediately from noting that h is an A-cobordism from X̂ to Ŷ if and only if
h̄(s,t) := h(1− s,t) is a (−A)-cobordism from Ŷ to X̂ .

(6) This follows immediately from the equivalence of the homotopy conditions

αi#[hi]#− βi = Ai#Bi = Ai +Bi, and

αi#[hi]#− (Ai · βi) = Bi.

That is, h is an A+B-cobordism from X̂ to Ŷ if and only if h is also a B-cobordism from
X̂ to A · Ŷ .

(7) We note first that item (3) implies that

L0(0̂,X̂) + L0(X̂,A · X̂) + L0(A · X̂, A · 0̂) = L0(0̂,A · 0̂).

Next, items (5) and (6) imply that

L0(A · X̂, A · 0̂) = LA(A · X̂,0̂)

= −L−A(0̂, A · X̂)

= −L0(0̂,X̂),

whence we need only show that the desired formula holds when X̂ = 0̂. To reduce to an
even simpler case, let us write A as

(A1, · · · , Ak) = (A1,0, · · · ,0) + (0,A2,0, · · · ,0) + · · ·+ (0,0, · · · , Ak)

= A′1 + · · ·+ A′k.

By items (3) and (6), demonstrating the desired equality is therefore equivalent to showing
that

L0(0̂,A′i · 0̂) = (k − 1) · c1(Ai)

2

for any i = 1, · · · , k. In what follows, let (p̂1, · · · , p̂k) = 0̂ represent the trivial capped
braid. Since the statement is trivial when Σ 6= S2, as then π2(Σ) = 0 and every capped
braid is 0-homotopic to itself, we now suppose Σ = S2. Form ∈ Z, if ui : (S2,∗)→ (Σ,pi)

representsAi = m[S2] ∈ π2(Σ,pi), we may pull ui back along the quotient [0,1]×S1 → S2

(given by collapsing the boundary circles to points) to a map which we will denote

hi : [0,1]× S1 → Σ.

If we take h to be the 0-cobordism from 0̂ to A′i · 0̂ given by hi as the i-th strand and the
constant strand hj(s,t) ≡ pj for all other strands j 6= i, then the important point is that
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PD(c1) = 2[S2] and hence the intersection of the graph of hi with the constant cylinder
hj(s,t) ≡ pj for j 6= i contributes precisely

(ui∗[S
2]) ∩ [pj] = m[S2]

=
c1(Ai)

2

to the sum defining L0(0̂,A′i · 0̂), and such intersections are the only ones that occur, since
all other strands are constant and disjoint. The desired equality follows.

�

Proposition 1.3.3. For A ∈ π2(Σ)k, and [X̂], [Ŷ ] ∈ B̃k
0 (Σ)/Sk, the function LA([X̂]; [Ŷ ]) :=

LA(X̂; Ŷ ), is well-defined.

PROOF. The previous proposition implies that for any σ, τ ∈ Sk, we have

LA(σ · X̂; τ · Ŷ ) = LA(0̂; 0̂)− L0(0̂;σ · X̂) + L0(0̂; τ · Ŷ ),

so it suffices to show that the expression L0(0̂;σ · X̂) is independent of σ ∈ Sk. To see this, note
that item 2 of the previous proposition, together with the fact that 0 ∈ FixSk(π2(Σ)k) implies that
L0(0̂;σ · X̂) = L0(σ−1 · 0̂; X̂). Moreover, it is easy to see that 0̂ = (p̂1, . . . , p̂k) is 0-homotopic
to σ · 0̂ = (p̂σ−1(1), . . . ,pσ−1(k)) for any σ ∈ Sk (simply choose k paths s 7→ γi(s) ∈ Σ, s ∈ [0,1]

from pi to pσ−1(i) such that γi(s) = γj(s) implies i = j for all s ∈ [0,1] and define the i-th strand
of the 0-homotopy to be hi(s,t) = γi(s)) and consequently, L0(σ−1 · 0̂; X̂) = L0(0̂; X̂), which is
independent of σ ∈ Sk. �

Proposition 1.3.4. Let X̂ = (x̂1,x̂2) ∈ B̃2
0(Σ) with x2 lying in some exponential of neighbourhood

of x1 in L0(Σ) (as in Section 1.2), then L0(0̂; X̂) = `(x̂1,x̂2).

PROOF. As L0(0̂; X̂) depends on X̂ only up to a 0-homotopy, we may assume without loss of
generality that x1 is a constant loop. Moreover, noting that if A,B ∈ π2(Σ), then

L0(0̂; (A,B) · X̂)− L0(0̂; X̂) =
1

2
(c1(A) + c1(B))

= `(A · x̂1, B · x̂2)− `(x̂1,x̂2),

and so it suffices to prove the statement in the case in which x̂1 is a trivially capped constant loop
and x̂2 lies inside an exponential neighbourhood of x̃1 in L̃0(Σ).
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As discussed in Section 1.2, Tx̂L̃0(Σ) is naturally identified (up to a homotopy of trivializations)
with Γ∞(S1 × R2) and so (in the notation of that section) we may write x̃2 in local coordinates as

v(t) := (T−1
x̂1
◦ Ẽxp

−1
)(x̃2),

and we have that `(x̂1,x̂2) = wind(v) by definition. By the capped braid homotopy-invariance of
the homological linking number, and the homotopy invariance of the winding number in R2 \ {0},
we may assume that

v(t) = r0e
2πilt ∈ C, ∀t ∈ [0,1],

for some small r0 > 0 and l = `(x̂1; x̂2). Taking the homotopies h1(s,t) ≡ 0, h2(s,t) = (1 −
s)−r0

2
+ s r0

2
e2πilt, we see that their graphs h̃1 and h̃2 intersect only if l 6= 0, and in that case

intersections occur when s = 1
2

and t = 0, 1
l
, · · · , l−1

l
. Moreover, using polar coordinates (r, θ) on

D2, since

∂sh2 = ∂r

∂th2 = l∂θ,

each intersection is transverse and has orientation sign(l). Consequently

L0(0̂; X̂) = l = `(x̂1,x̂2),

proving the claim. �

The following proposition is not used anywhere in this thesis, but we include it because it provides
some intuitive justification for the relationship between the homological linking number of capped
braids and symplectic measurements on surfaces: the area functional on the space of capped loops
may be computed at a given capped loop x̂ as simply being the average linking number of x̂ with
a generic set of points in the surface (viewed as trivially capped loops).

Proposition 1.3.5. Suppose that γ̂ = [γ,w] is a capped loop such that γ is smooth, then∫
D2

w∗ω =

∫
Σ\im γ

`(γ̂,x̂)ω,

where for x ∈ Σ, x̂ = [x,x] denotes the trivially capped constant loop based at x.

PROOF. Suppose without loss of generality that w : D2 → Σ is a smooth map with w(0) = γ(0).
The main point is to notice that for any x ∈ Σ \ im γ such that w is transversal to x, we have that
`(γ̂,x̂) = deg(w)x, where deg(w)x denotes the local degree of w at x. Indeed, transversality of w
to x implies the transversality of the maps into [0,1]× S1 ×Σ defined by w̃(s,t) = (s,t,w(se2πit))
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and x̃(s,t) = (s,t,x), for (s,t) ∈ [0,1] × S1, and obviously the algebraic count of the intersection
number between these two graphs is identical with deg(w)x. One immediate consequence is that
`(γ̂,x̂) = 0 for all x 6∈ im w, so it suffices to show that∫

D2

w∗ω =

∫
im w\im γ

`(γ̂,x̂)ω.

To this end, denote by S(w) ⊆ D2 the set of points such that Dw is not of full rank and define
G(w) ⊆ D2 to be G(w) = w−1(im γ) \S(w). Note that G(w) is a set of measure 0, since we may
realize G(w) as the projection onto D2 \ S(w) of (w|D2\S(w) × γ)−1(4) which is a submanifold
of D2 \ S(w) of codimension 2. Next note that we must have

∫
S(w)

w∗ω = 0, since w∗ω vanishes
on S(w). Consequently, writing N := S(w) ∪G(w), we note that im γ ⊆ w(N) and so it suffices
to establish that ∫

D2\N
w∗ω =

∫
w(D2\N)

`(γ̂,x̂)ω =

∫
w(D2\N)

deg(w)xω.

The local degree is a locally constant function of x, and so we obtain∫
w(D2\N)

deg(w)xω =
∑

C∈π0(w(D2\N))

deg(w)|C
∫
C

ω =
∑

C∈π0(w(D2\N))

∫
w−1(C)

w∗ω =

∫
D2\N

w∗ω

as claimed. �
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Chapter 2

Elements of Floer theory and linking

This chapter serves to collect and review the necessary facts that we will need from Hamilton-
ian Floer theory, along with the analysis of the asymptotic behaviour of Floer-type cylinders that
proves crucial to our study. Section 2.1 collects the Floer-theoretic preliminaries. Section 2.2
explains how we may combine a result formulated by Siefring in [32], which relates the asymp-
totic behaviour or Floer-type cylinders tending to an orbit x to the eigenvectors of the so-called
asymptotic operator associated to x, with Hofer-Wysocki-Zehnder’s study in [10] of the winding
behaviour of such eigenvectors, in order to obtain information about the asymptotics of Floer-type
cylinders. We then explain how we may combine this information with the homological linking
number of Section 1.3 to obtain control over the relative topology of collections of capped braids
having Floer-type cylinders running between them. The results in this chapter form the technical
core of the rest of the work.

2.1. Floer theory
In this section, we give a rapid overview of the elements of Floer theory of which we will have

need, mainly to fix notation and conventions. For a more detailed treatment, see [1] or [27] for
standard accounts of Hamiltonian Floer theory (see also [9] for its adaptation to the semi-positive
case) and [28], [25], [30] or [14] for a more detailed treatment of how Floer theory fits into a field
theory over surfaces. Throughout, we assume that (M2n,ω) is a strongly semi-positive compact
symplectic manifold (ie. 2 − n ≤ c1(A) < 0 implies ω(A) ≤ 0 for all A ∈ π2(M)). J (M,ω)

denotes the space of all smooth ω-compatible almost complex structures. For convenience, we
work only with Z2-coefficients, but this restriction is inessential.



A smooth (not necessarily autonomous) Hamiltonian function

H : S1 ×M → R

(t,x) 7→ Ht(x)

induces a time-dependent vector field (X t
H)t∈[0,1] on M defined by the relation

ω(X t
H ,−) = −dHt.

The Hamiltonian isotopy obtained as the flow by this vector field is denoted φH := (φHt )t∈[0,1]. A
Hamiltonian H is said to be normalized if

∫
M
Htω

n = 0 for all t ∈ S1. There is a group structure
on the set of Hamiltonian functions C∞(S1 ×M) given by the operation

(H#K)(t,x) := H(t,x) +K(t,(φHt )−1(x)),

which is such that φH#K
t = φHt ◦ φKt . The inverse of H with respect to this relation is given by

H̄(t,x) = −H(t,φHt (x)),

which generates the isotopy t 7→ (φHt )−1.

Recall that L̃0(M) denotes the Novikov covering of the loop space. That is to say, elements
[γ, v] ∈ L̃0(M) are capped loops (γ,v) in M subject to the equivalence relation (γ1,v1) ∼ (γ2,v2)

precisely when γ1 = γ2 and [v1#v̄2] ∈ ker c1(M) ∩ ker[ω] ⊂ π2(M).

The Hamiltonian H defines a corresponding action functional on the Novikov covering of the
loop space

AH : L̃0(M)→ R

[γ,v] 7→
∫ 1

0

Ht(γ(t)) dt−
∫
D2

v∗ω.

We write

P̃ er0(H) := Crit AH , and

Per0(H) := π(P̃ er0(H)) ⊆ L0(M),

noting that the latter consists precisely of the contractible 1-periodic orbits of φH , while the former
consists of capped such periodic orbits.
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H is said to be non-degenerate if for all x ∈ Per0(H), (DφH1 )x(0) has no eigenvalues equal to 1.
When H is non-degenerate, there exists a well-defined Conley-Zehnder index

µ = µCZ : P̃ er0(H)→ Z.

See [26] for details on the definition of µ. We shall normalize the Conley-Zehnder index by
insisting that if H is a C2-small Morse function and x a critical point of H , then

µ(x̂) = µMorse(x)− n,

where µMorse is the Morse index of x, and x̂ denotes the trivial capping of the constant orbit x.
For k ∈ Z, and any P̂ ⊆ P̃ er0(H) we define P̂(k) to be the collection of capped orbits in P̂ with
Conley-Zehnder index k.

Given x̂± = [x±,w±] ∈ P̃ er0(H), we write C∞(R× S1;M)x̂−,x̂+ for the subspace of
C∞(R× S1;M) consisting of cylinders which induce a 0-homotopy from x̂− to x̂+. Letting

E → C∞(R× S1;M)x̂−,x̂+

be the infinite dimensional vector bundle with fiber Eu = Γ∞(u∗TM) at u, any smooth S1-family
J = (Jt)t∈S1 ⊆ J (M,ω), permits the definition of the Floer operator, which is the section

FH,J : C∞(R× S1;M)x̂−,x̂+ → E

u 7→ ∂su+ J(∂tu−XH).

After passing to appropriate Banach space completions (see Section 8.2 of [1] for instance), FH,J
defines a Fredholm operator with index µ(x̂−)−µ(x̂+). The intersection ofFH,J with the 0-section
gives rise to Floer’s equation

∂su+ Jt(∂tu−X t
H) = 0 (2.1.1)

for smooth maps u : R× S1 →M . If we define the energy of u ∈ C∞(R× S1;M) by

E(u) :=

∫
R×S1

‖∂su‖2
Jt dt ds,

then the finite energy solutions of Floer’s equation may be thought of as the projections to M

of negative gradient flow lines of AH with respect to the L2-metric on L̃0(M) induced by J . It
follows easily from this that if u ∈ C∞(R × S1;M)x̂−,x̂+ is such a finite energy solution, then
E(u) = AH(x̂−)−AH(x̂+).
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For any x̂± ∈ P̃ er0(H), we define M̃(x̂−,x̂+;H,J) to be the zero set of FH,J on
C∞(R× S1;M)x̂−,x̂+ . It carries an obvious R-action given by translation in the s-coordinate. The
reduced moduli space is defined by

M(x̂,ŷ;H,J) := M̃(x̂,ŷ;H,J)/R.

In order to define the appropriate genericity condition on pairs (H,J) such that we may define the
Floer complex unproblematically, we follow [30] in introducing the following sets. For k ∈ Z≥0,
let Vk be the set of pairs (t,p) ∈ S1×M such that p ∈ im v for v some non-constant Jt-holomorphic
sphere with c1(v) ≤ k.

Definition 2.1.1. A pair (H,J) with H and J as above, H non-degenerate, are said to be Floer
regular if

(1) for every x ∈ Per0(H), (t,x(t)) 6∈ V1(J) for all t ∈ S1;
(2) for all x̂± ∈ P̃ er0(H) with µ(x̂−) − µ(x̂+) ≤ 2, the linearization (DFH,J)u of the Floer

operator at u ∈ C∞(R× S1;M)x̂−,x̂+ is surjective for all u ∈ M̃(x̂−,x̂+;H,J);
(3) for all x̂± ∈ P̃ er0(H) with µ(x̂−)− µ(x̂+) ≤ 2 and all u ∈ M̃(x̂−,x̂+;H,J), (t,u(s,t)) 6∈

V0(J) for all (s,t) ∈ R× S1.

For H non-degenerate, let J nd(H) ⊆ C∞(S1;J (M,ω)) denote the space of S1-families of
complex structures such that (H,J) is Floer regular. J nd(H) is residual in C∞(S1;J (M,ω)).

If (H,J) is Floer regular, then M(x̂,ŷ;H,J) is a compact manifold of dimension 0 whenever
µ(x̂)− µ(ŷ) = 1, and in this case we may define the Floer chain complex CF (H,J) to be the set
of formal sums of the form ∑

x̂∈P̃ er0(H)

ax̂x̂,

where ax̂ ∈ Z2 for all x̂ ∈ P̃ er0(H) and which moreover verifies the Novikov condition: for all
c ∈ R,

#{ax̂ 6= 0 : AH(x̂) ≥ c} <∞.

CF (H,J) is then graded by µ and has a differential defined on generators by

∂H,J x̂ :=
∑

µ(x̂)−µ(ŷ)=1

n(x̂,ŷ)ŷ,
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with n(x̂,ŷ) being the mod 2 count of elements inM(x̂,ŷ;H,J). The homology of this complex
HF∗(H) is the Floer homology of H and is independent of the choice of J .

The Floer complex has the structure of a filtered complex, with the filtration coming from the action
functional. Explicitly, for σ =

∑
x̂∈P̃ er0(H) ax̂x̂ ∈ CF∗(H,J), we define

supp σ := {x̂ ∈ P̃ er0(H) : ax̂ 6= 0},

and we define the level of σ to be

λH(σ) := sup
x̂∈supp σ

AH(x̂).

Let HS
2 (M) denote the image in H2(M ;Z) of the Hurewicz morphism, and let

Γω := HS
2 (M)/ ker c1 ∩ ker[ω]. We define the Novikov ring

Λω := {
∑
A∈Γω

λAe
A : λA ∈ Z2,#{λA 6= 0, ω(A) ≤ c} <∞, for all c ∈ R}.

This is a graded commutative ring with grading given by declaring deg(eA) := 2c1(A). CF∗(H,J)

is a Λω-module where the action of Λω is defined on generators x̂ = [x,v] of CF∗(H,J) and eA of
Λω by eA · x̂ := [x,A#v], and extended linearly. Note that we have the relations

µ(eA · x̂) = µ(x̂)− 2c1(A),

AH(eA · x̂) = AH(x̂)− ω(A).

Remark that the Λω action needn’t preserve the filtration.

It is a standard fact in Floer theory that if f ∈ C∞(M) is a sufficiently C2-small Morse function
and J ∈ J (M,ω) is such that (f,gJ) is Morse-Smale, then the Floer chain complex of (f,J)

may be identified (after a grading shift) with the quantum chain complex of (f,gJ), which is by
definition the Morse complex of (f,gJ) with coefficients in the Novikov ring, ie.

CF∗(f,J) = QC∗+n(f,gJ) := (CMorse(f,gJ)⊗ Λω)∗+n.

Taking homology then gives a natural identification with the quantum homology of (M,ω):

HF∗(f) = H∗+n(M ; Λω) = QH∗+n(M,ω).
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2.1.1. Continuation maps

Definition 2.1.2. For X a smooth manifold, a function F ∈ C∞(R×X) is said to be T -adapted
for T ∈ (0,∞) if (∂sF )s0 ≡ 0 for all |s0| ≥ T . F is said to be adapted if it is T -adapted for some
T . For X = C∞(S1 ×M), and H± ∈ C∞(S1 ×M), we denote by H (H−,H+) the space of
adapted homotopiesH having lims→±∞H(s) ≡ H±. We make a similar definition for J (J−,J+)

in the case where X = C∞(S1;J (M,ω)).

Definition 2.1.3. A pair (H,J) is an adapted homotopy of Floer data from (H−,J−) to (H+,J+)

if H = (Hs
t ) ∈ H (H−,H+) and J = (Jst ) ∈ J (J−,J+). We will write HJ (H−,J−;H+,J+)

for the collection of all such adapted homotopies, often omitting the dependence on (H±,J±) if it
is clear from context.

Just as in the s-independent case, for any adapted homotopy of Floer data (H,J), we obtain a
corresponding Floer operator FH,J . For any pair x̂± ∈ P̃ er0(H±), consideration of the zeros of
FH,J along C∞(R× S1;M)x̂−,x̂+ gives rise to the s-dependent Floer equation

∂su+ Jst (∂tu−XHs
t
) = 0, (2.1.2)

and everything proceeds as before, with the proviso that now, if u ∈ C∞(R× S1;M)x̂−,x̂+ solves
Equation 2.1.2, then its energy is given by

E(u) = AH−(x̂−)−A+
H(x̂+) +

∫ ∞
−∞

∫ 1

0

(∂sH)(s,t,u(s,t)) dtds. (2.1.3)

The moduli spaceM(x̂−,x̂+;H,J) is defined to be the zero set of FH,J on C∞(R× S1;M)x̂−,x̂+ .
Remark. When (H−,J−) = (H+,J+), then the s-independent homotopy (H,J) = (H−,J−) =

(H+,J+) is a special case of an adapted homotopy. In this case,M(x̂,ŷ;H,J) = M̃(x̂,ŷ;H±,J±).
In the sequel, when we speak of adapted homotopies of Floer data, this case is included.

As in the s-independent case, in order to formulate the appropriate generic regularity criterion, we
introduce the following set: we define V0(J) to be the set of tuples (s,t,p) ∈ R×S1×M such that
p ∈ im v for v a non-constant Jst -holomorphic sphere with c1(v) ≤ 0.

Definition 2.1.4. Given (H±,J±) Floer regular, x̂± ∈ P̃ er0(H±), and (H,J) ∈HJ , we will say
that (H,J) is (x̂−,x̂+)-regular if

(1) the linearization (DFH,J)u of the Floer operator at u ∈ C∞(R× S1;M)x̂−,x̂+ is surjective
for all u ∈ M̃(x̂−,x̂+;H,J);

(2) if µ(x̂−) − µ(x̂+) ≤ 1, then (s,t,u(s,t)) 6∈ V0(J) for all (s,t) ∈ R × S1 and all u ∈
M(x̂−,x̂+;H,J).
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We denote the collection of all such adapted homotopies by HJ reg
x̂−,x̂+ . (H,J) will be said to be

Floer-regular if it is (x̂−,x̂+)-regular whenever µ(x̂−)−µ(x̂+) ≤ 1. We denote the space of Floer-
regular adapted homotopies from (H−,J−) to (H+,J+) by HJ reg(H−,J−;H+,J+), suppressing
the dependence on (H±,J±) when no confusion will arise.

For any fixed J ∈ J (J−,J+), the set H reg(J;H−,H+) ⊆ H (H−,H+) of adapted homotopies
H such that (H,J) is Floer regular is residual.

For (H,J) ∈HJ reg, the spacesM(x̂−,x̂+;H,J) are all compact manifolds of dimension 0 when-
ever µH−(x̂−) = µH

+
(x̂+), and so we may define the continuation morphism

hH,J : CF∗(H
−,J−)→ CF∗(H

+,J+)

on generators by setting

hH,J(x
−) :=

∑
µ(x̂−)−µ(x̂+)=0

n(x̂−,x̂+)x̂+,

where n(x̂−,x̂+) is the mod 2 count of elements in the moduli spaceM(x̂−,x̂+;H,J). The contin-
uation morphism is a morphism of complexes, which descends to an isomorphism at the level of
homology. Moreover any two continuation maps between (H−,J−) and (H+,J+) define the same
map at the level of homology, and further these isomorphisms satisfy the obvious composition law

h21 ◦ h10 = h20,

where hji : HF (Hi)→ HF (Hj).

2.1.2. The PSS isomorphism

There is another type of morphism of chain complexes, in some way related to the continuation
morphisms, which will concern us in this work. Introduced in [25] (see also [28]), PSS maps may
be viewed as a variant on Floer continuation maps, with the exception that they consider adapted
homotopies of Floer data from (0,J−) — for J− ∈ J (M,ω) an autonomous almost complex
structure —to the Floer pair (H,J) whose Floer complex we are studying. The fact that the 0

function is a heavily degenerate Hamiltonian forces some modifications to the definition of the
chain morphism. Explicitly, we write

HJ PSS(H,J) := {(J−;H,J) : J− ∈ J (M,ω), (H, J) ∈HJ (0,J−;H,J)}
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and the set of all PSS data for the pair (H,J) is

PSS(H,J) := {(f,g; J−;H,J) ∈ C∞(M)×Met(M)×HJ PSS(H,J) : (f,g) is Morse-Smale},

where Met(M) denotes the space of smooth Riemannian metrics on M . There is a residual set
PSSreg(H,J) ⊂ PSSreg(H,J) of regular PSS data such that for any D = (f,g; J−;H,J) ∈
PSSreg(H,J), we may define a morphism of chain complexes

ΦPSS
D : (CMorse(f,g)⊗ Λω)∗+n → CF∗(H,J)

p⊗ eA 7→
∑
A∈Γω

∑
x̂

n(p, (−A) · x̂)x̂,

where for q ∈ Crit(f)k−n, ŷ = [y,v] ∈ P̃ er0(H)k, n(q,ŷ) denotes the Z/2Z-count of elements in
the 0-dimensional moduli space

M(q,ŷ;D)

of finite energy maps u ∈ C∞(R× S1;M) which are (H,J)-Floer and which satisfy

lim
s→−∞

u(s,t) ∈ W u(q; f,g),

lim
s→∞

u(s,t) = y(t), and

[ū]#[v] = 0 ∈ Γω,

where W u(q; f,g) is the unstable manifold of q with respect to (f,g) and ū : D2 → M is the disc
map obtained by completing u to a continuous map ū : R̄× S1 → M (note that since u has finite
energy and is by hypothesis J−-holomorphic in some neighbourhood of {−∞} × S1 for some
fixed J− ∈ J (M,ω), removal of singularities for pseudo-holomorphic maps implies that there is
some m ∈ W u(q,f,g) such that lims→−∞ u(s,t) = m for all t ∈ S1). The map ΦPSS

D descends to
a map in homology

ΦPSS
∗ : QH∗+n(M,ω)→ HF∗(H)

which is independent of the regular PSS data. It turns out (see [25] for more discussion on this point
as well as the definitions of the relevant operations) that ΦPSS

∗ is an isomorphism which intertwines
the quantum product with the pair-of-pants product in Floer homology. This isomorphism permits
the definition of the Oh-Schwarz spectral invariants

cOS : QH∗(M,ω) \ {0} × C∞(S1 ×M)→ R

(α,H) 7→ cOS(α;H).
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Introduced by Schwarz in the symplectically aspherical case [29] and extended by Oh to more
general symplectic manifolds in [21], these invariants are defined by

cOS(α;H) := inf{λH(σ) : σ ∈ CF∗(H,J), [σ] = ΦPSS
∗ (α)}.

A cycle σ ∈ CF∗(H,J) such that [σ] = ΦPSS
∗ (α) and λH(σ) = cOS(H;α) is called tight (for

cOS(α;H)). It is a non-trivial fact that such cycles always exist (see [36] or [22]).

The Oh-Schwarz spectral invariants are C0-continuous in their Hamiltonian argument, take val-
ues in the spectrum of their Hamiltonian argument, and satisfy a bevy of formal properties (see
Theorem III in [21] for a representative list, for example) which make them useful in studying the
behaviour of Hamiltonian diffeomorphisms.

2.1.3. The Gromov trick

We conclude this by recalling the so-called ‘Gromov trick’, which forms the basis of much of
this thesis by establishing that we may use pseudo-holomorphic techniques to analyze the graphs
of Floer-type cylinders.

Theorem 2.1.5 (1.4.C’. in [7]). Let (H,J) be an adapted homotopy of Floer data, then there exists
a unique almost complex structure J̃ on R× S1 ×M with the property that a graph

ũ : R× S1 → R× S1 ×M

(s,t) 7→ (s,t,u(s,t))

is (j0, J̃)-holomorphic if and only if u satisfies Equation 2.1.2, where j0 denotes the standard
complex structure on the cylinder.

2.2. Asymptotic analysis for pseudoholomorphic cylinders
The main analytic fact that gives us control over the asymptotic winding behaviour of Floer

cylinders, as well as that of vector fields lying in the kernel of the Floer differential, is the follow-
ing theorem which describes the asymptotic behaviour of solutions to an appropriately perturbed
Cauchy-Riemann equation. This result is originally due to [20], although the version we reproduce
here for the convenience of the reader is from the appendix of [32]

Theorem 2.2.1. Let w : [0,∞)× S1 → R2n satisfy the equation

∂sw + J0∂tw + (S(t)−∆(s,t))w = 0, (2.2.1)
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where S : S1 → End(R2n) is a smooth family of symmetric matrices and

∆ : [0,∞)× S1 → End(R2n)

is smooth. Suppose that for β ∈ N2, there exist constants Mβ, d > 0 such that

|(∂β∆)(s,t)| ≤Mβe
−ds, and

|(∂βw)(s,t)| ≤Mβe
−ds.

Then either w ≡ 0 or w(s,t) = eλs(ξ(t) + r(s,t)), where λ is a negative eigenvalue of the self-
adjoint operator

A : H1(S1;R2n) ⊆ L2(S1;R2n)→ L2(S1;R2n)

h 7→ −J0(∂t − J0S)h,

ξ : S1 → R2n is an eigenvector of A with eigenvalue λ, and r satisfies the decay estimates

|(∂βr)(s,t)| ≤ e−d
′sM ′

β

for d′,M ′
β > 0, for all β ∈ N2.

This theorem is useful in the following setting. Let (H,J) be Floer regular. To any x ∈ Per0(H),
we may assign the asymptotic operator

Ax,J : Γ(x∗TM)→ Γ(x∗TM)

as follows. Viewing ξ ∈ Γ(x∗TM) as a section of the vertical tangent bundle V|x̌ ≤ T (S1×M)|x̌
along the graph x̌ of x, we let X̌H := ∂t ⊕ XH ∈ X (S1 ×M), and we view J = (Jt)t∈S1 as
an endomorphism of the vertical tangent bundle by setting J̌t,x := Jt(x). Ax,J is then defined
by setting Ax,J(ξ) := −J̌LX̌Hξ, where LXY denotes the Lie derivative of Y along X . Ax,J

extends to an unbounded self-adjoint operator with discrete spectrum (still denoted Ax,J ) from
W 1,2(x∗TM) to L2(x∗TM).

By taking an exponential chart as in Section 1.2 on a neighbourhood Õ of x̂ ∈ P̃ er0(H), Floer’s
equation may be written in the local coordinates provided by this chart in the form of Equation
2.2.1, with Ax,J being sent via these coordinates to A. Following [32], we define

Definition 2.2.2. Let x ∈ L0(M) and suppose that lims→∞ us ≡ x for a map u : R × S1 → M .
For any R > 0, a map

U+ : [R,∞)→ Γ(x∗TM)
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will be said to be a positive asymptotic representative of u if u(s,t) = Exp(U+(s))(t) for all
(s,t) ∈ [R,∞) × S1, where Exp is as in Section 1.2. The notion of a negative asymptotic
representative of u,

U− : (−∞,−R]→ Γ(x∗TM)

is defined in the obvious analogous manner.

Every Floer-type cylinder considered in this thesis admits, due to exponential convergence at
the ends, essentially unique positive and negative asymptotic representatives, determined up to a
restriction of the domains of U± to larger values of |R|.

The main result that we will need from [32] (paraphrased for our setting) is the following

Theorem 2.2.3. Let (H,J) be Floer regular, x ∈ Per0(H) and let u, v solve Equation 2.1.2 for
s >> 0 (resp. for s << 0), where the adapted homotopy used in defining Equation 2.1.2 satisfies
(H+,J+) = (H,J) (resp. (H−,J−) = (H,J)). Suppose moreover that us and vs both converge to
x as s→∞ (resp. s→ −∞). Let U and V be positive (resp. negative) asymptotic representatives
of u and v respectively. Then either U ≡ V or there exists a strictly negative (resp. strictly positive)
eigenvalue λ ∈ σ(Ax,J) and an eigenvector ξ with eigenvalue λ such that

(U − V )(s,t) = eλs(ξ(t) + r(s,t)),

where the remainder term satisfies the decay estimates |∇i
s∇i

tr(s,t)| ≤ Mije
−ds for all (i,j) ∈ N2

and some Mi,j,d > 0 (resp. d < 0).

Whenever u,v and x are as above, we will write ξ+
u,v (resp. ξ−u,v) for the eigenvectors of Ax,J whose

existence is guaranteed by the above theorem. We will call ξ±u,v the positive (resp. negative)
asymptotic eigenvector of v relative u. Note that the above result only requires that u and v solve
Equation 2.1.2 on some neighbourhood of s = ∞ (resp. s = −∞), and that, for (H, J) ∈ HJ ,
the trivial cylinder v(s,t) = x(t) is always a solution to Equation 2.1.2 outside some compact set.
We will write ξ±u := ξ±u,x and call these the (positive and negative) asymptotic eigenvectors of u.

This asymptotic information becomes especially useful when combined with the following fact
(see [10] p. 285 or [32] p.1637).

Proposition 2.2.4. If ξ ∈ Γ(x∗TM) is an eigenvector of Ax,J , then ξ(t) 6= 0 for all t ∈ S1.
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Corollary 2.2.5. Let u,v : R× S1 →M be distinct finite energy solutions of Equation 2.1.2, then
there is a compact subset K ⊆ R× S1 such that u(s,t) = v(s,t) only if (s,t) ∈ K.

These results become even stronger in the case when dimM = 2, as in this case Proposition 2.2.4
implies that eigenvectors of the asymptotic operator have a well-defined winding number, once
we fix a trivialization of x∗TM via a choice of capping disk. More precisely, when M = Σ, if
x̂ ∈ L̃0(Σ), and Tx̂ : S1 × (R2,ω0) → (x∗TΣ,ω) is a symplectic trivialization as in Section 1,
then for any eigenvector ξ of Ax,J , the map t 7→ Tx̂(t)

−1ξ(t) has a well-defined winding number
wind(ξ; x̂), by Proposition 2.2.4. Proposition 1.3.4 then implies

Corollary 2.2.6. Let u,v be distinct finite energy solutions of Equation 2.1.2 with

lim
s→−∞

us = lim
s→−∞

vs = x.

Then there exists R > 0 such that for all s < −R and any capping x̂ = [x,α], we have

`(v̂αs ,û
α
s ) = wind(ξ−u,v; x̂),

where ûαs (resp. v̂αs ) denotes the capping of us (resp. vs) such that [x,α] and ûs (resp. v̂s) are
0-homotopic. The analogous statement when lims→∞ us = lims→∞ vs = x also holds.

If we combine the positivity of intersection of holomorphic curves in dimension 4 with the forego-
ing discussion, we arrive at the principal point of this section

Lemma 2.2.7. Let (H±,J±) be Floer regular, (H,J) ∈ HJ and let u,v ∈ C∞(R × S1; Σ) be
distinct finite energy solutions to Equation 2.1.2 for (H,J). Then for any lifts û, v̂ of u,v : R →
L0(Σ), the function `û,v̂(s) := `(ûs,v̂s) is non-decreasing, locally constant, and well-defined for
all but finitely many values s ∈ R. Moreover, for s,s′ ∈ dom(`û,v̂), with s < s′, `û,v̂(s) 6= `û,v̂(s

′)

if and only if there exists s0 ∈ (s,s′) and some t0 ∈ S1 such that u(s0,t0) = v(s0,t0).

PROOF. That `û,v̂ has only finitely many points at which it is ill-defined follows the fact that, by
definition, `(ûs0 ,v̂s0) is undefined only when there exists t0 ∈ S1 such that u(s0,t0) = v(s0,t0).
By Corollary 2.2.5, the set of all such (s0,t0) ∈ R× S1 must lie inside some compact set, and we
may then apply Theorem 2.1.5 to choose an almost complex structure on R × S1 × Σ such that
the graphs ũ and ṽ are pseudoholomorphic, whence all such intersections must be isolated, and so
finite in number. That `û,v̂ is non-decreasing follows by applying the positivity of intersections for
holomorphic curves in dimension 4 at these intersections, which implies moreover that any such
intersection contributes strictly positively to the change in `û,v̂(s) as s increases and passes from
one connected component of dom(`û,v̂) to another. �
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Definition 2.2.8. For (H±,J±) Floer regular, (H,J) ∈ HJ and u,v ∈ M(x̂,ŷ;H,J), u 6= v, we
define

`±∞(u,v) := lim
s→±∞

`(ûs,v̂s),

where ûs and v̂s are the natural cappings of us and vs (cf. Definition 1.1.14).
Note that the previous lemma implies that these quantities exist and are finite. Indeed, if ûs and v̂s
tend to x̂ as s→ ±∞, then `±∞(u,v) = wind(ξ±u,v; x̂) by Corollary 2.2.6, while if lims→±∞ us = x̂

and lims→±∞ vs = ŷ with x 6= y, then `±∞(u,v) = `(x̂,ŷ).

2.2.1. Winding of eigenvectors of Ax,J

We summarize here some necessary facts from [10] on the winding numbers of eigenvectors
of Ax,J which appeared in the previous subsection (while [10] works in the aspherical case, our
previous discussion makes clear how this winding number depends on the choice of cappings of x
and y and this is all that is needed to extend the results to capped orbits). For a loop x ∈ L0(Σ),
let π2(Σ;x) denote the set of homotopy classes of capping disks for x.

Proposition 2.2.9. Let x ∈ Per0(H) with H non-degenerate and J : S1 → J (Σ,ω) arbitrary.
There is a well-defined function

W = Wx,J : π2(Σ;x)× σ(Ax,J)→ Z

(α,λ) 7→ wind(T−1
[x,α] ◦ ξ),

where ξ ∈ Γ(x∗TΣ) is any eigenvector with eigenvalue λ. Moreover, W satisfies the following
properties

(1) For any α ∈ π2(Σ;x), λ < λ′ ⇒ W (α,λ) ≤ W (α,λ′).
(2) For any α ∈ π2(Σ;x), and any k ∈ Z,

∑
λ∈W−1

α (k) dimEλ = 2,
where Wα(λ) = W (α,λ), and Eλ is the eigenspace associated to the eigenvalue λ.

(3) For any A ∈ π2(Σ), W (A · α, λ) = W (α, λ) + c1(A).

In view of the control over the sign of the eigenvalue provided by Theorem 2.2.3, combined with
the monotonicity of the winding number provided by item (1) of the above proposition, we make
the following
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Definition 2.2.10. For (H,J) and x̂ = [x,α] ∈ Per0(H) as above, define

a(x̂) = a(x̂;H) := sup
λ∈σ(Ax,J )∩(−∞,0)

W (α,λ)

b(x̂) = b(x̂;H) := inf
λ∈σ(Ax,J )∩(0,∞)

W (α,λ).

Remark that we have, by the monotonicity of W and by Theorem 2.2.3, that

Corollary 2.2.11. Let (H±,J±) be Floer regular, (H,J) ∈HJ , x±i ∈ P̃ er0(H±) for i = 0,1.
(1) If ui ∈M(x̂−0 ,x̂

+
i ;H,J), i = 0,1, then b(x̂−0 ) ≤ `−∞(u0,u1).

(2) If ui ∈M(x̂−i ,x̂
+
0 ;H,J), i = 0,1, then `∞(u0,u1) ≤ a(x̂+

0 ).

The result which relates this discussion to the behaviour of the Floer complex is the following

Theorem 2.2.12 ([10] Theorem 3.10).

−µ(x̂) = 2a(x̂) + p(x̂), (2.2.2)

where p([x,α]) = 0 if there exists λ ∈ σ(Ax,J)∩(0,∞) such thatW (α,λ) = a(x̂) and p([x,α]) = 1

otherwise.
Remark. Note that our sign convention for the Conley-Zehnder index is the negative of the

convention adopted in [10].

Corollary 2.2.13.

−µ(x̂) = a(x̂) + b(x̂)

PROOF. The point is that b(x̂) = a(x̂) + p(x̂). To see this write x̂ = [x,α], and let
λ = max{ν ∈ σ(Ax,J) : ν < 0} be such that W (α,λ) = a(x̂).

Suppose first that p(x̂) = 0, then by the definition of p(x̂), there exists λ′ ∈ σ(Ax,J) ∩ (0,∞)

such that W (α,λ′) = a(x̂). By item (2) of Proposition 2.2.9, it follows that Eλ and Eλ′ are 1-
dimensional and that W (α,ν) = a(x̂) for ν ∈ σ(Ax,J) if and only if ν ∈ {λ,λ′}. The monotonicity
of the winding number expressed in item (1) of Proposition 2.2.9 then implies that if ν ∈ σ(Ax,J)∩
(0,∞) is distinct from λ′, then W (α,λ′) < W (α,ν), and consequently we see that

W (α,λ′) = b(x̂).

Suppose next that p(x̂) = 1 so that, by the monotonicity of item (1) in Proposition 2.2.9, we have
that W (α,λ′) > a(x̂) for all λ′ ∈ σ(Ax,J) ∩ (0,∞). Item (2) of Proposition 2.2.9 implies that
there exists λ′ ∈ σ(Ax,J) such that W (α,λ′) = a(x̂) + 1 and the monotonicity of the winding
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number implies that such λ′ must satisfy λ′ > λ. Since λ is by definition the largest negative
eigenvalue of Ax,J , it follows from the non-degeneracy of Ax,J (which is equivalent to the non-
degeneracy of x ∈ Per0(H) as a 1-periodic orbit of H) that λ′ is positive, and so clearly we must
have b(x̂) = W (α,λ′) = a(x̂) + 1. �

Lemma 2.2.14. Let k ∈ Z.
(1) If µ(x̂;H) ∈ {2k − 1, 2k}, then a(x̂;H) = −k.
(2) If µ(x̂;H) ∈ {2k, 2k + 1}, then b(x̂;H) = −k.

PROOF. We prove (1) with the argument for (2) being entirely analogous (but additionally making
use of the fact that b(x̂) = a(x̂) + p(x̂) established in the proof of Corollary 2.2.13). Theorem
2.2.12 states that −µ(x̂) = 2a(x̂) + p(x̂), where p(x̂) ∈ {0,1} is the parity of µ(x̂). Consequently,
if µ(x̂) = 2k − 1, we see that

1− 2k = 2a(x̂) + 1

and therefore a(x̂) = −k. Similarly, if µ(x̂) = 2k, then

−2k = 2a(x̂)

and so a(x̂) = −k, as claimed. �

Corollary 2.2.15. Let (H±,J±) be Floer regular, (H,J) ∈ HJ (H−,J−;H+,J+) and suppose
that x̂± ∈ P̃ er0(H±) satisfy µ(x̂±) = 2k + 1 for some k ∈ Z. Then |M(x̂−,x̂+;H,J)| ∈ {0, 1}.

PROOF. Suppose for the sake of contradiction that there exist u,v ∈M(x̂−,x̂+;H,J), u 6= v. Then
we have by Lemma 2.2.7 and Lemma 2.2.14

−k = b(x̂−) ≤ `−∞(u,v) ≤ `∞(u,v) ≤ a(x̂+) = −k − 1,

which is a contradiction. The lemma follows. �

Recall from Section 2.1 that to any (H,J) ∈ HJ (H−,J−;H+,J+), we associate the operator
FH,J : C∞(R × S1; Σ) → E . Whenever FH,J(u) = 0, for u ∈ C∞(R × S1; Σ)x̂−,x̂+ , TuE splits
canonically as TuC∞(R×S1; Σ)x̂−,x̂+ ⊕Eu. In such a case, we denote by DFH,J the projection of
the differential of FH,J onto Eu, and we call DFH,J the linearized Floer operator. The transver-
sality of FH,J to the 0-section of E at u is equivalent to the surjectivity of (DFH,J)u, which is in
turn related to the behaviour of its kernel by the Fredholm property. The following result is essen-
tially proved in [10] as Proposition 5.6 and serves to give significant control over elements in the
kernel of the linearized Floer operator. We give a simple proof here in the Floer-theoretic setting
for the convenience of the reader.
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Proposition 2.2.16. Let (H±,J±) be Floer regular, let (H,J) ∈ HJ , u ∈ M(x̂−,x̂+;H,J), and
let ξ ∈ ker(DFH,J)u. Suppose that ξ 6≡ 0 and denote by Z(ξ) the algebraic count of the number
of zeros of ξ, then Z(ξ) is finite and satisfies the inequality 0 ≤ Z(ξ) ≤ a(x̂+)− b(x̂−).

PROOF. It is a standard result in Floer theory (see for instance [27], Section 2.2) that for any
u ∈M(x̂−,x̂+;H,J), any element ξ ∈ ker(DFH,J)u may be expressed (with respect to the unitary
trivialization Φ : R× S1 × (R2,J0)→ u∗(TΣ,J) along u induced by the cappings of x̂− and x̂+)
as solving an equation of the form

∂sξ + J0∂tξ + Sξ = 0,

where we may write S on the positive and negative ends as S±(s,t) = Φ−1Ax±,J −∆±(s,t), with
∆± satisfying the decay estimates of Theorem 2.2.1. Consequently, any ξ ∈ ker(DF)u must be
non-vanishing outside of some compact neighbourhood of R × S1, and the Carlemann similarity
principle, combined with positivity of intersections of holomorphic curves in dimension 4, implies
that Z(ξ) is finite and non-negative.

To see that Z(ξ) ≤ a(x̂+) − b(x̂−), we take R > 0 sufficiently large so that ξ is non-
vanishing outside of (−R,R) × S1 and consider the homotopy of 2-braids in R2 induced by
h(s) = (0,Φ−1ξs) ∈ L0(R2)2, s ∈ [−R,R]. Theorem 2.2.1 implies that for R > 0 sufficiently
large,

`(0,ξ−R) = wind(Φ−1ξ−R) ≥ b(x̂−), and

`(0,ξR) = wind(Φ−1ξR) ≤ a(x̂+),

(since R2 is aspherical, we omit any mention of cappings), and the algebraic count zeros of ξ
correspond to the algebraic count of the intersections of the graphs of the strands of h from which
the proposition follows. �

The following corollary is essentially the linear analogue of Corollary 2.2.15.

Corollary 2.2.17. Let (H±,J±) be Floer regular, let (H,J) ∈HJ , and let x̂± ∈ P̃ er0(H±) have
µ(x̂±) = 2k + 1 for some k ∈ Z. Then (H,J) is (x̂−,x̂+)-regular.

PROOF. If (H−,J−) = (H+,J+) and (H,J) is the constant homotopy of Floer data, then this is
automatic by Floer regularity of (H±,J±). The statement is also vacuously true ifM(x̂−,x̂+;H,J)

is empty. So we may suppose that (H,J) is not R-invariant and that there exists some u ∈
M(x̂−,x̂+;H,J). To see that u is regular, note that DFH,J has Fredholm index 0, and so to prove
that (DFH,J)u is surjective, it suffices to show that its kernel vanishes. Suppose to the contrary that
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ξ ∈ ker(DFH,J)u is a non-trivial vector field along u. By the previous proposition, we must have
that the algebraic count of its zeros Z(ξ) satisfies

0 ≤Z(ξ) ≤ a(x̂+)− b(x̂−) = −k − (k − 1) = −1,

where the second to last inequality follows from Lemma 2.2.14. Clearly this is a contradiction, so
we conclude that ker(DFH,J)u = 0 and so u is regular. �

In the case of even index orbits, we have a somewhat weaker conclusion that will still be of use to
us

Corollary 2.2.18. Let (H±,J±) be Floer regular, let (H,J) ∈HJ , and let x̂± ∈ P̃ er0(H±) have
µ(x̂±) = 2k for some k ∈ Z. Then for every u ∈M(x̂−,x̂+;H,J),

dim ker(DFH,J)u ≤ 1

PROOF. As in the proof of the previous corollary, it suffices to consider the case where (H,J) is
not R-invariant and M(x̂−,x̂+;H,J) is non-empty. Letting u ∈ M(x̂−,x̂+;H,J), consider the
behaviour of some η1, η2 ∈ ker(DFH,J)u. Let

Φ : R× S1 × C→ u∗TΣ

be a unitary trivialization of the tangent bundle along u which extends over the cappings of x̂±.
Since η1 and η2 satisfy an appropriate perturbed Cauchy-Riemann equation, Theorem 2.2.1 implies
that vi(s,t) := (Φ−1 ◦ ηi)(s,t), i = 1,2 satisfies

lim
s→−∞

vi(s,t) = Φ−1(−∞,t) ◦ ξi(t)

for ξi ∈ Γ∞((x−)∗TΣ) an eigenvector of the asymptotic operator Ax−,J− associated to x−, whose
associated eigenvalue is positive. Let λ0 be the smallest positive eigenvalue ofAx−,J− and note that
every eigenvector ξ′ ∈ Eλ0 is such that Φ−1(−∞,t) ◦ ξ′(t) has winding number −k by Corollary
2.2.13, and by the same reasoning as in the proof of that corollary, dimEλ0 = 1. We claim first
that ξi ∈ Eλ0 for i = 1,2. Indeed, suppose not, then without loss of generality we may suppose
that ξ1 ∈ Eλ for λ > λ0. This implies that wind(Φ−1(−∞,t) ◦ ξ1(t)) ≥ −k+ 1, by points (1) and
(2) of Proposition 2.2.9 combined with the fact that a(x̂−) = b(x̂−) (so the only other eigenspace
whose eigenvector have winding−k is the eigenspace associated to the largest negative eigenvalue
of Ax−,J−). Whence,

wind(Φ−1(−R,t) ◦ η1(−R,t)) ≥ −k + 1
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for R > 0 sufficiently large. As in the proof of Proposition 2.2.16, we have that

Z(η1) ≤ a(x̂+)− wind(Φ−1(−R,t) ◦ η1(−R,t))

for R > 0 sufficiently large, but this implies

Z(η1) ≤ −k − (−k + 1) = −1

which violates the positivity of Z(η1). So ξi ∈ Eλ0 for i = 1,2.

Now consider δ := η1−η2. δ once again satisfies a perturbed Cauchy-Riemann equation satisfying
the required asymptotic decay conditions, because η1 and η2 do. Let ξδ(t) = lims→−∞ δ(s,t) be
the associated negative asymptotic eigenvector. We claim that ξδ ∈ Eλ0 . Indeed, if not then we
may repeat the above argument with δ in the place of η1 and ξδ in the place of ξ1 to derive a
contradiction. It follows that the map which sends η ∈ ker(DFH,J)u to its negative asymptotic
eigenvector in Eλ0 is linear, and it is injective by Theorem 2.2.1 (since the negative asymptotic
eigenvector of η is zero if and only if η vanishes on the negative end, and thus by the Carlemann
similarity principle, η vanishes everywhere). Since dimEλ0 = 1, this proves the claim. �
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Chapter 3

Constructing chain-level continuation maps with
prescribed behaviour

In this chapter, we introduce a technique for designing chain-level continuation maps such that
certain 0-dimensional moduli spaces may be guaranteed to be non-empty. For the remainder of the
section, we fix Floer regular (H±,J±) ∈ C∞(S1 ×M)× C∞(S1;J (M,ω))

Definition 3.0.1. We will say that a finite collection of smooth maps {ui : R × S1 → Σ}, i =

1, . . . ,k is a model for a continuation cobordism (from (H−,J−) to (H+,J+)) if there exists
(H,J) ∈HJ (H−,J−;H+,J+) such that ui is an (H,J)-Floer cylinder with finite energy for each
i = 1, . . . ,k. Such a model for a continuation cobordism will be called an (H,J)-model.

If we are doing Floer theory on a surface, then the results of Section 2.2 tell us that the graphs
ũi, when restricted to a sufficiently large compact set [−K,K] × S1, define a braid cobordism
having only positive intersections (outside this compact set, the maps ui solve the s-independent
Floer equations on the ends, and their behaviour is controlled by the winding behaviour of the
eigenvectors of the asymptotic operator as discussed in the previous chapter). It will be convenient
to make the following

Definition 3.0.2. Let h : [0,1]→ L(Ck(Σ)) be a braid cobordism. We will say that h is a positive
(resp. negative) cobordism if for 1 ≤ i < j ≤ k, the graphs h̃i, h̃j : [0,1]× S1 → [0,1]× S1 × Σ

are transverse, and every intersection is positive (resp. negative).

The main result of this chapter is to show that this essentially topological condition, combined
with the obvious necessary condition on the asymptotic behaviour of the strands, is sufficient to
guarantee the existence of some regular homotopy of Floer data (H,J) such that each cylinder is
(H,J)-Floer.



Definition 3.0.3. We will say that a finite collection of smooth maps ui : R×S1 → Σ, i = 1, . . . ,k,
is a pre-model for a continuation cobordism (from (H−,J−) to (H+,J+)) if they satisfy the
following

(1) There exists K > 0 such that the maps ui|[−K,K] are the strands of a positive braid cobor-
dism such that the graphs of these strands intersect transversally.

(2) For the sameK as above, ui|(−∞,−K] has finite (H−,J−)-energy and satisfies the (H−,J−)-
Floer equation, while ui|[K,∞) has finite (H+,J+) energy and satisfies the (H+,J+)-Floer
equation, for each i = 1, . . . ,k.

And we aim to show

Theorem 3.0.4. If ui : R×S1 → Σ, i = 1, . . . ,k defines a pre-model for a continuation cobordism
from (H−,J−) to (H+,J+), then there exists u′i : R × S1 → Σ, i = 1, . . . ,k which is a model for
a continuation cobordism from (H−,J−) to (H+,J+) and such that each u′i differs from ui only by
a small homotopy inside a compact set of (−K,K)× S1 (where here K > 0 is as in the definition
of a pre-model for a continuation cobordism).

The principal virtue of this result is that the existence or non-existence of pre-models may largely
be reduced to the question of the relative topologies of the collections of capped orbits (qua
capped braids) being connected by these cylinders, along with asymptotic information provided
by the asymptotic operator.

The argument itself is straightforward and rather hands-on. Our goal is to show that given
a pre-model for a cobordism from (H−,J−) to (H+,J+), we may build a homotopy
of Floer data (H,J) ∈ HJ (H−,J−;H+,J+) such that each ui is (H,J)-Floer. When
(u1(s0,t0), . . . , uk(s0,t0)) ∈ Ck(Σ), it is not difficult to simply choose (Hs0

t0 ,J
s0
t0 ) such that each

ui satisfies the relevant Floer-equation at (s0,t0), and this assignment may be made smoothly in
(s,t) as long as ui(s,t) 6= uj(s,t) for i 6= j. The difficulty, therefore, arises when the graphs of
the cylinders intersect. To resolve this, in Section 3.1 we explain how to perturb the cylinders
in a neighbourhood V of an intersection point to another pre-model which satisfies the Floer
equations for a judiciously chosen pair (HV ,JV ) on V . In Section 3.2, we prove Theorem 3.0.4 by
performing this perturbation at every intersection point, and then arguing that we may extend the
locally judiciously chosen s-dependent Hamiltonian-almost complex structure pairs to an adapted
homotopy of Floer data (H,J) such that the resulting perturbed cylinders are all (H,J)-Floer.
Finally, in Section 3.3, we address the question of obtaining model cobordisms for regular
homotopies of Floer data from the existence of the model cobordisms constructed in Theorem
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3.0.4. This gives method for designing Floer continuation maps which have prescribed chain-level
behaviour.

3.1. Perturbing positively intersecting strands to solve Floer’s
equation near the intersection

For κ > 0, let D(κ) ⊂ C denote the closed disk of radius κ, centered at the origin. We write
D = D(1) for the closed unit disk.

Lemma 3.1.1. Let (M4,J) be a smooth almost complex 4-manifold, and letF be a smooth oriented
codimension 2 foliation of M such that TF is J-invariant. Suppose that u,v : D →M are smooth
embeddings which are positively transverse to the leaves of F and which intersect positively at
u(0) = v(0) = p ∈ M . Suppose moreover that v is J-holomorphic on some neighbourhood of p.
Then for any C0-neighbourhood U of u in C∞(D;M), there exists κ > 0, δ > 0 and u′ ∈ U such
that

(1) u′(0) = p,
(2) u′ is J-holomorphic on D(κ),
(3) u′ = u on D \D(κ+ δ),
(4) u′ is positively transverse to the leaves of F .

PROOF. By the local existence theorem for holomorphic curves (see theorem 3.1.1 in [34], for
instance), there exists a ρ > 0 and a J-holomorphic map f : D(ρ) → M such that f(0) = p and
(∂sf)p = (∂su)p. Up to taking ρ to be smaller and restricting the domain of f , we may assume that
f is an embedding. Note that, (∂su)p = (∂sf)p 6= 0 and hence (∂tf)p 6= 0, so f and v intersect
transversally and positively, since both are J-holomorphic. Note that similar reasoning shows that
f is positively transverse to the leaf of F passing through p, and so f is positively transverse to F
for all z ∈ D(ρ) sufficiently close to 0. We will construct u′ by interpolating between u and f .
In order to construct this interpolation, it will be useful to introduce a convenient local coordinate
system.

To this end, let us note that there is a neighbourhood U ⊂ M of p, an ε > 0, and an orientation-
preserving chart

φ : U → C× C,

such that for all z ∈ D(ε), (φ ◦ v)(z) = (z,0). Moreover, if the foliation F is as in the statement of
the lemma, then the fact that v intersects positively and transversally with the leaves of F implies
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that φ may be chosen such that for any leaf F ∈ F , φ(F ∩ U) ⊂ {z0} × C for some z0 ∈ C. That
is, φ locally diffeomorphically sends leaves of F into the fibers of the projection map onto the first
coordinate. Since u and f are both positively transverse to v, up to shrinking ε > 0, for z ∈ D(ε)

we may write

floc(z) := (φ ◦ f)(z) = (z,h0(z)),

uloc(z) := (φ ◦ u)(z) = (z,h1(z))

for h0, h1 : D(ε)→ C smooth functions such that h0(0) = h1(0) = 0, (∂sh0)0 = (∂sh1)0 6= 0, and
{(∂shi)0, (∂thi)0} is a positively-oriented basis for C for i = 0,1. Next, for τ ∈ [0,1], let us define
hτ : D(ε)→ C by

hτ (z) := (1− τ)h0(z) + τh1(z).

Note that (∂shτ )0 is constant in τ , and so it is easy to see that

{(∂shτ )0, (∂thτ )0} = {(∂sh0)0,(1− τ)(∂th0)0 + τ(∂th1)0}

is positively oriented, as the set of all vectors w ∈ C such that {(∂sh0)0, w} is positively oriented is
clearly a convex set and contains both (∂th0)0 and (∂th1)0 by hypothesis. Consequently, for each
τ ∈ [0,1] there exists ετ ∈ (0,ε), varying continuously with τ , such that hτ (z) = 0 if and only if
z = 0 for all z ∈ D(ετ ). Posing

ε′ := inf
τ∈[0,1]

ετ ,

we see that ε′ > 0 and the maps uτ (z) := (z,hτ (z)) intersect D(ε′) × {0} only in (0,0) for all
τ ∈ [0,1]. Fix κ ∈ (0,ε′) and some δ ∈ (0, ε′ − κ), and let β : D(ε′) → [0,1] be a smooth radially
non-decreasing function which is identically 0 on D(κ) and identically 1 outside of D(κ+ δ). For
z ∈ D(ε′), we define

u′loc(z) := uβ(z)(z) = (1− β(z))floc + β(z)uloc.

Note that φ−1◦u′loc then obviously satisfies the first three items listed in the lemma, by construction,
and is moreover transparently positively transverse to leaves of F by construction, since φ−1 sends
graphs of maps C → C to submanifolds transverse to leaves of F by our choice of φ. We then
obtain the claimed u′ : D →M by setting

u′(z) =

(φ−1 ◦ u′loc)(z) z ∈ D(ε′)

u(z) z ∈ D \D(ε′).
(3.1.1)
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It is then clear from construction that u′ satisfies the four properties listed in the lemma. Moreover,
because f(0) = u(0) = p and f and u are both locally Lipchitz (being smooth functions), u′ may
obviously be taken to be as C0-close to u as we wish, simply by taking κ and δ smaller in the
preceding argument if necessary. �

Corollary 3.1.2. Let u,v : R × S1 → Σ be smooth maps such that their graphs ũ, ṽ : R × S1 →
R × S1 × Σ intersect positively and transversally at (s0,t0,p) ∈ R × S1 × Σ. Then for any
neighbourhood V ⊂ R × S1 of (s0,t0), there exists an open set U ⊂ Ū ⊂ V containing (s0,t0),
smooth maps

HŪ : Ū → C∞(Σ),

JŪ : Ū → J (Σ,ω),

and a smooth map u′ : R×S1 → Σ agreeing with u outside of V , such that ũ′ intersects ṽ positively
and transversally at (s0,t0,p), and such that both u′ and v solve the (HŪ ,JŪ)-Floer equation for
(s,t) ∈ Ū .

PROOF. All that needs to be shown here is that for V a small enough neighbourhood of (s0,t0),
we may always choose HV : V → C∞(Σ) and JV : V → J (Σ,ω) such that v is (HV ,JV )-Floer
on V . Once this is established, we simply apply the above lemma to ũ and ṽ using Gromov’s trick
to construct an almost complex structure J̃H on V × Σ such that maps solve the (HV ,JV )-Floer
equations if and only if their graphs are J̃H holomorphic over V . The above lemma gives us an
open set U ⊂ Ū ⊂ V containing (s0,t0) and a map ũ′ : R × S1 → R × S1 × Σ which may be
taken to be transverse to the fibers of the projection map R× S1 × Σ→ R× S1 — and thus may
be taken to be the graph of some function u′ : R × S1 → Σ — which is J̃H holomorphic on Ū ,
and which agrees with ũ outside of V . We then simply takeHŪ := HV |Ū , JŪ := JV |Ū .

To see that HV : V → C∞(Σ) and JV : V → J (Σ,ω) may be chosen as claimed, let JV be
arbitrary, and define

X : V → v∗TΣ|V
(s,t) 7→ (∂tv − J∂sv)(s,t).

It’s straightforward to see that we may chooseHV to satisfy XHV (v(s,t)) = X(s,t) for all (s,t) ∈
V . Indeed, define

H(X) := {(s,t,H) ∈ V × C∞(Σ) : XH(v(s,t)) = X(s,t)}.
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It is not difficult to verify that π : H(X) → V is a locally trivial fibration (see Corollary 3.4.2 in
the appendix to this section), with π being the obvious projection map. The fiber over z ∈ V is
diffeomorphic to the subspace of functions on Σ having a critical point at v(z). This shows that
the fibers are contractible, and so there exists a section HV . By construction, v is (HV ,JV )-Floer
on V . �

3.2. Proof of Theorem 3.0.4
We note first that for any pre-model for a continuation cobordism, there are only ever finitely

many intersection points where the strands must be perturbed to make them locally satisfy Floer’s
equation for some choice of (H,J) ∈ HJ (H−,J−;H+,J+) in a neighbourhood of the intersec-
tion point.

Proposition 3.2.1. If ui : R× S1 → Σ, i = 1, . . . ,k is a pre-model for a continuation cobordism,
then

I := {(s,t) ∈ [−K,K]× S1 : ui(s,t) = uj(s,t), 1 ≤ i < j ≤ k},

where K is as in the definition of a pre-model for a continuation cobordism, contains only finitely
many points and lies in the interior of [−K,K]× S1.

PROOF. That I is disjoint from the boundary of [−K,K] × S1 follows directly from the fact that,
by hypothesis h(s) := (us1, . . . , u

s
k), s ∈ [−K,K] defines a braid cobordism (here usi denotes the

loop t 7→ ui(s,t)). As a consequence, (u±K1 , . . . , u±Kk ) are braids, and therefore their graphs do
not intersect. Consequently, I has no accumulation points on {−K,K} × S1, and therefore, there
exists some δ > 0 such that I ⊂ [−K + δ,K − δ] × S1. Since the intersections of the graphs of
the ui are assumed to be transverse, all points in I must be isolated, and consequently, I is a finite
collection of points. �

Let us now prove Theorem 3.0.4.

PROOF. By Lemma 3.2.1, I ⊂ [−K,K]× S1 consists of only finitely many points, and the graphs
of the ui do not intersect over {−K,K} × S1. By Corollary 3.1.2 for each z ∈ I , there exists an
arbitrarily small open set Uz containing z, local sections

Hz
loc : Ūz → C∞(Σ)

Jzloc : Ūz → J (Σ,ω),
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and small perturbations u′i of each ui, i = 1, . . . , k such that each u′i satisfies the (Hz
loc,J

z
loc)-Floer

equation on Ūz. Let us write

V := ([−K,K]× S1) \
⋃
z∈IK

Uz.

Our goal is to find smooth maps

HV : V → C∞(Σ)

JV : V → J (Σ,ω),

which agree withHz
loc and Jzloc respectively on ∂Ūz, which in addition agree with H± and with J±

respectively on {±K} × S1, and such that, moreover, each u′i is (HV ,JV )-Floer on V . Clearly, if
this can be done, these data will patch together to give a homotopy (H,J) of Floer data between
(H−,J−) and (H+,J+) such that each u′i is (H,J)-Floer on all of R× S1, and we will be done.

To see that (HV ,JV ) may be chosen as desired we argue essentially identically to the proof of
Corollary 3.1.2. First take JV to be any smooth map JV : V → J (Σ,ω) which restricts to
the desired almost complex structures on ∂V . Clearly, this can be done, since the space of ω-
compatible almost complex structures is contractible. Next, for each i = 1, . . . ,k, we define a
section of (u′i|V )∗TΣ by

Xi : V 7→ (u′i|V )∗TΣ

(s,t) 7→ (∂tu
′
i − JV ∂su′i)(s,t),

and we defineH( ~X)→ V to be the fiber bundle with fiber

H( ~X)s,t := {H ∈ C∞(Σ) : XH(u′i(s,t)) = Xi(s,t), ∀(s,t) ∈ V, ∀i = 1, . . . , k}.

It is not difficult to see that H( ~X) is a locally trivial fibration (apply Corollary 3.4.2 from the
appendix in the setting where the underlying symplectic manifold is the configuration spaceCk(Σ))
and that eachHz

loc|∂Ūz defines a section ofH( ~X) over ∂Ūz, in addition to (±K, t) 7→ H±t defining a
section over {±K}×S1. Moreover, each fiber ofH( ~X) is diffeomorphic to the space of functions
on Σ having critical points at k distinct points. In particular, H( ~X) has contractible fibers and
therefore admits a smooth section extending the given aforementioned data on ∂V , completing the
proof. �
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3.3. From models of cobordisms to regular models
Our ultimate goal is to use the topological construction of pre-models for cobordisms to guar-

antee the more rigid existence of Floer continuation maps with prescribed behaviour. As such, we
will need to consider issues of regularity.

Definition 3.3.1. Let (H±,J±) be Floer regular. A model for a continuation cobor-
dism from (H−,J−) to (H+,J+) will be called regular if it is an (H,J)-model for some
(H,J) ∈HJ reg(H

−,J−;H+,J+).

The following lemma follows essentially by combining Corollaries 2.2.17 and 2.2.18 with results
which are likely folkloric: that local transversality of the s-dependent Floer operator at some cylin-
der u only requires perturbations with support contained in an appropriately dense open neighbour-
hood of the graph of u, and the fact that near a minimally degenerate Floer cylinder of index 0 (ie.
when dim ker(DFH,J)u) = 1), the universal moduli space locally has the structure of a ‘fold’
singularity over the space of perturbation data. I am unaware of a place in the published litera-
ture where such results are stated, so for the convenience of the reader, a detailed proof sketch is
provided in the appendix to this chapter (see Section 3.4.2).

Lemma 3.3.2. Let (H±,J±) be Floer-regular, (H,J) ∈HJ (H−,J−;H+,J+), x̂± ∈ P̃ er0(H±),
and u ∈ C∞(R × S1; Σ)x̂−,x̂+ . Suppose that FH,J(u) = 0 and that ind (DFH,J)u = 0. Let
N ⊂ R × S1 × Σ denote a neighbourhood of im ũ and let U ⊂ N be an open dense subset of
N such that U ∩ im ũ is dense in im ũ. For any neighbourhood U ⊂ C∞(R × S1; Σ)x̂−,x̂+ , there
existsH′ ∈H (H−;H+) and u′ ∈ U such that suppH−H′ ⊂ U , FH′,J(u′) = 0, and (DFH′,J)u′

is surjective.

With this lemma in hand, we can readily prove

Theorem 3.3.3. Let (H±,J±) be Floer regular and let ui : R × S1 → Σ, i = 1, . . . ,k define
an (H,J)-model for a continuation cobordism for some (H,J) ∈ HJ (H−,J−;H+,J+). Suppose
that for each i = 1, . . . ,k, the index of the linearized Floer operator satisfies

ind (DFH,J)ui = 0,

then for any choice of neighbourhoods Ui of ui ∈ C∞(R× S1; Σ)x̂i,ŷi , i = 1, . . . , k, there exists a
regular model for a continuation cobordism {u′′i }ki=1 such that u′′i ∈ Ui for i = 1, . . . ,k.
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PROOF. For each i = 1, . . . ,k, let N (im ũi) be an open neighbourhood of im ũi and let

Ui := N (im ũi) \
⋃
j 6=i

im ũi.

Since graphs ũi, ũj have only finitely many intersections for i 6= j, Ui clearly satisfies the hypothe-
ses of Lemma 3.3.2 with u = ui and U = Ui for each i = 1, . . . ,k. It follows that there exists
hi ∈ C∞(R×S1×Σ) with compact support contained in Ui and u′i ∈ Ui such thatFH+hi,J(u′i) = 0,
and u′i is a regular point of FH+hi,J . Note that, because the support of hi is compactly contained
in Ui which is disjoint from im ũj for each j 6= i, there exists an open neighbourhood Vj of im ũj

such supp hi ∩ Vj = ∅. Consequently, since the local behaviour of the Floer operator near a map
depends only on the behaviour of the continuation data near the graph of that map, if we set

H′ = H +
k∑
i=1

hi

we have that FH′,J(u′i) = 0 for each i = 1, . . . , k, and each u′i is a regular point of FH′,J . Finally,
in light of the regularity of each u′i for FH′,J and the index condition on the Floer operator, we may
perturb H′ to some H′′ ∈ H (H−,H+) such that (H′′,J) ∈ HJ reg(H

−,J−;H+,J+), such that
there exist maps u′′i ∈ Ui with FH′′,J(u′′i ) = 0 for i = 1, . . . ,k. This completes the proof. �

As an easy consequence of the previous theorem, we obtain

Corollary 3.3.4. Let (H±,J±) be Floer regular, and let x̂±i ∈ P̃ er0(H±), i = 1, . . . ,k, be such
that µ(x̂−i ) = µ(x̂+

i ). If there exists a model for a continuation cobordism {ui}ki=1 with ui ∈
C∞
x̂−i ,x̂

+
i

(R× S1; Σ), then there exists (H,J) ∈HJ reg(H
−,J−;H+,J+) such that

M(x̂−i ,x̂
+
i ;H,J) 6= ∅

for all i = 1, . . . ,k.

3.4. Appendix
3.4.1. A short fibration argument

Proposition 3.4.1. Let (M,ω) be a symplectic manifold. The space

E := {(m,v;H) ∈ TM × C∞(M) : XH(m) = v}

equipped with the canonical projection π : E → TM is a locally trivial fibration.
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PROOF. Let (m,v) ∈ TM be arbitrary, and let φ : (U,ω) → (R2n,ω0) be a Darboux neighbour-
hood of m ∈ M with φ(m) = 0. Letting κ > 0 be such that φ(U) = B2n(κ) and fixing some
ε > 0, we will construct a local section for E over the set Tφ−1(B2n(κ − ε)) which implies the
claim.

Consider the map

SG0 : C∞(R2n)→ T0R2n = R2n

H 7→ XH(0).

SG0 is a linear surjection, and so we may select a right inverse

C : T0R2n → C∞(R2n).

We may suppose without loss of generality that in fact C takes values in the set C∞0 (B2n(ε)) of
functions with support compactly contained in B2n(ε). We may define

Cloc : B2n(κ− ε)× R2n → C∞0 (B2n(κ))

(x,v) 7→ Ax(C(v)),

where

Ax : C∞(R2n)→ C∞(R2n)

H(p) 7→ H(p− x)

is the pullback of affine translation by x ∈ R2n. It’s clear that Cloc is smooth by construction.
Writing V = φ−1(B2n(κ− ε)),

C := φ∗(Cloc ◦Dφ|TV ) : TV → C∞(M)

defines a smooth map such that if G = C(m′,v′) for (m′,v′) ∈ TV , then XG(m′) = v′. That is, C
is a smooth right inverse for π : E → TM on TV , as desired. �

Let N be a smooth (possibly open) manifold, f : N → M a smooth map and Y : N → f ∗TM a
vector field along f . We define

H(Y ) := {(n,H) ∈ N × C∞(M) : XH(f(n)) = Y (n)}.

Corollary 3.4.2. π : H(Y )→ N is a locally trivial fibration.

PROOF. It is straightforward to check that H(Y ) is nothing but the pullback bundle Y ∗E . Since
(E ,πTM) is a locally trivial fibration, so isH(Y ). �
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3.4.2. A proof of Lemma 3.3.2

Let (H±,J±) be Floer regular and x̂± ∈ P̃ er0(H±). We fix (H,J) ∈ HJ (H−,J−;H+,J+).
If FH,J(u) = 0, ind (DFH,J)u) = 0 then Lemma 3.3.2 is immediately true if ker(DFH,J)u = 0, by
taking u′ = u andH′ = H. By Corollaries 2.2.17 and 2.2.18, it suffices to consider the case where
u is such that

dim ker(DFH,J)u = corank (DFH,J)u = 1.

Let λ 7→ Hλ, λ ∈ [−1,1] be a smooth path in H(H−,H+) such that (Hλ,J) is a regular homotopy
of Floer data for λ = ±1 and such that H0 = H. Our goal is to show that if the path Hλ is
chosen appropriately generically, then, using only perturbations in a neighbourhood U of im ũ

which may be taken to avoid the graphs of finitely many other Floer-type cylinders, the space⋃
λ∈[−1,1]M(x̂−,x̂+;Hλ,J) may be taken to be a non-empty 1-manifold which contains u. This

clearly implies that for any neighbourhood O ⊂ C∞(R × S1;M)x̂−,x̂+ , there exists u′ ∈ O and
H′ ∈ H(H−,H+) such that (H′,J) ∈HJ reg, suppH′ −H ⊂ U and FH′,J(u′) = 0.

Fix a neighbourhood N ⊂ R× S1 ×M of im ũ, and let U ⊂ N be an open set which is dense in
N and such that U ∩ im ũ is dense in ũ.

Let us define C∞ε (U ; 0) to be the set of compactly supported smooth functions h ∈ C∞0 ((−1,1)×
U) such that h0 ≡ 0, hλ(s,t,x) = h(λ,s,t,x) for λ ∈ (−1,1) and which satisfy

‖h‖ε :=
∞∑
k=0

εk‖h‖Ck <∞,

where ε = (εk)
∞
k=0 is some sequence of positive numbers which decreases sufficiently quickly at

infinity so that (C∞ε (U ; 0), ‖ · ‖ε) is dense in the space of smooth functions on U which satisfy
h0 ≡ 0. For x̂± ∈ P̃ er0(H±) and p > 2, let W 1,p(x̂−,x̂+) be the usual Banach space completion
of C∞(R× S1;M)x̂−,x̂+ and consider the infinite-dimensional vector bundle
E → W 1,p(x̂−,x̂+)× C∞ε (U ; 0) where

E := {(u,h,Y ) : (u,h) ∈ W 1,p(x̂−,x̂+)× C∞ε (U ; 0), Y ∈ Lp(u∗TM)},

and consider the universal moduli space

Z(x̂−,x̂+) := {(λ, u, h) : λ ∈ (−1,1), h ∈ C∞ε (U ; 0), u ∈M(x̂−,x̂+;H + hλ, J)}
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which is cut out by the intersection of the map

σ : (−1,1)×W 1,p(x̂−,x̂+)× C∞ε (U ; 0)→ E

(λ,u,h) 7→ σλ(u,h) = ∂su+ J(∂tu−XH+hλ)

with the zero section. By our hypothesis on the corank ofDFH,J at u, and the density of compactly
supported smooth functions in Lp-space, there exists ξ ∈ Lp(u∗TM) ∩ C∞0 (u∗TM) such that

Lp(u∗TM) = im (DFH,J)u ⊕ 〈ξ〉. (3.4.1)

It is then easy to see that we may suppose without loss of generality (up to perturbing the path
λ 7→ Hλ near λ = 0) that

(
∂Hλ

∂λ
)λ=0(u) = Jξ.

Definition 3.4.3. If λ 7→ Hλ ∈ H(H−,H+) is such that (Hλ,J) is a regular homotopy of Floer
data for λ = ±1,H0 = H, and

Lp(u∗TM) = im (DFH,J)u ⊕ 〈−J(
∂Hλ

∂λ
)λ=0(u)〉,

then we will say that the path (Hλ)λ∈[−1,1] is transverse to u at 0.

The main point is the following

Proposition 3.4.4. If (Hλ)λ∈[−1,1] is transverse to u at 0, then there are neighbourhoods Λ ⊂
[−1,1] of 0, O ⊂W 1,p(x̂−,x̂+) of u and V ⊂ C∞ε (U ; 0) of 0 such that the restriction

σ|Λ×O×V : Λ×O × V → E

is transverse to the zero section of E .

PROOF. Since the set of surjective Fredholm maps is open and the Floer operator is contin-
uously differentiable, it will suffice to show that the vertical differential of σ is surjective at
(0,u,0) ∈ [−1,1] × W 1,p(x̂−,x̂+) × C∞0 (U ; 0). To see this, compute the vertical differential at
a point (λ0,v,h0) ∈ Z(x̂−,x̂+)

(Dσ)(λ0,v,h0)(a,Y,h) = D(FH+h0,J)v(Y )− J(aX∂λ(H+h0)λ0 +Xhλ0 ).

Note then that if λ0 = 0 we have that Xhλ0 = 0, since h ∈ C∞ε (U ; 0) and so h0 = 0 by hypothesis.
If we further impose that v = u and h = 0, we see that

(Dσ)(0,u,0)(a,Y,h) = D(FH,J)u(Y ) + aξ
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where

Lp(u∗TM) = im (DFH,J)u ⊕ 〈ξ〉,

since λ 7→ Hλ is transversal to u at 0 by hypothesis. This proves the claim. �

Finally, we claim
Proposition 3.4.5. If (Hλ)λ∈[−1,1] is transverse to u at 0, then there are neighbourhoods O ⊂
W 1,p(x̂−,x̂+) of u and V ⊂ C∞ε (U ; 0) of 0 such that the restriction

σ|(−1,1)×O×V : (−1,1)×O × V → E

is transverse to the zero section of E .

PROOF. This basically follows from the previous proposition in combination with the usual
arguments used to establish transversality in this setting, with the only caveat being that we must
show that away from λ = 0, transversality can be obtained via perturbations with support in
U . This is essentially a consequence of the usual proof in any case, but we will sketch out the
argument for the convenience of the reader.

The previous proposition gives us open neighbourhoods Λ ⊂ [−1,1] of 0, O ⊂ W 1,p(x̂−,x̂+) of
u and V ⊂ C∞ε (U ; 0) of 0 such that the restriction σ|Λ×O×V is transverse to the zero section of E .
Up to shrinking O, we may suppose that if v ∈ O, then im ṽ ⊂ int N . We will suppose that this
is the case from now on. In particular, any v ∈ O has the property that U ∩ im ṽ is dense in im ṽ.
Clearly, it will suffice to show that σ is transverse to the zero section of E at any point (λ0,v,h0)

with λ0 ∈ (−1,1) \ {0}. Indeed as the vertical differential of σ is

(Dσ)(λ0,v,h0)(a,Y,h) = D(FH+h0,J)v(Y )− J(aX∂λ(H+h0)λ0 +Xhλ0 ),

we may consider its restriction to the subspace W 1,p(v∗TM) × C∞ε (U ; 0), which is the tangent
space of the fiber of (−1,1)×W 1,p(x̂−,x̂+)× C∞ε (U ; 0) over λ0. We claim that the map

F : (Dσ)(λ0,v,h0)|W 1,p(v∗TM)×C∞ε (U ;0) : W 1,p(v∗TM)× C∞ε (U ; 0)→ Lp(v∗TM)

(Y,h) 7→ D(FH+h0,J)v(Y )− JXhλ0

is surjective. That this is so follows along standard lines. If we suppose that the above map is not
surjective, then for q Hölder conjugate to p, there will exist some non-zero Z ∈ Lq(v∗TM) which
annihilates the image of F under the usual duality pairing of Lq(v∗TM) with the dual space to
Lp(v∗TM). A standard argument implies that Z lies in the kernel of the adjoint of (DFH+h0,J)v,
and thus Z is smooth by elliptic regularity. Since Z is non-zero, we may view Z as a vector field
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along ṽ by setting

Z̃(s,t) = (0,0,Z(s,t)) ∈ Tṽ(s,t)R× S1 ×M.

If Z 6= 0, then there is some open set W ⊂ R × S1 on which Z is non-vanishing, and so Z̃ is
non-vanishing along ṽ(W ) ⊂ R × S1 ×M . But U ∩ im ṽ is open and dense in im ṽ and so we
may clearly take some h ∈ C∞ε (U ; 0) such that supp h ∩ im ṽ ⊂ ṽ(W ), which is not annihilated
by Z. This is a contradiction, so it follows that F is surjective. �

As a consequence of the above, the Sard-Smale theorem implies that there is set R ⊂ C∞ε (U ; 0)

which is open and dense in a neighbourhood of 0 such that⋃
λ∈[−1,1]

M(x̂−,x̂+;Hλ + hλ; J)

is a manifold in a neighbourhood of (0,u) ∈ M(x̂−,x̂+;H0; J), and the standard arguments in
Floer theory then show that the dimension of this manifold is 1.
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Chapter 4

Application: A new spectral invariant and its
computation on surfaces

In this chapter, we bring to bear the theory developed in the preceding chapters in order to give
an explicit dynamical characterization — for any non-degenerate Hamiltonian H on a symplectic
surface (Σ,ω) — of those Floer cycles which both represent a non-trivial homology class in
HF1(H) and which lie in the image of some PSS map at the chain level.

This dynamical characterization motivates us to study the quantity obtained by modifying the
definition of the Oh-Schwarz spectral invariants by looking at the minimal action required to
represent a given homology class by a cycle which lies in the image of some PSS map at the
chain level. It turns out that this defines a family of action selectors, which we call the PSS-image
spectral invariants. These novel spectral invariants share many of the same properties as the
Oh-Schwarz spectral invariants, including a triangle inequality for the fundamental class, and
bound the Oh-Schwarz spectral invariants from above.

The chapter begins with a general study of the PSS-image spectral invariants in Section 4.1, es-
tablishing their basic formal properties, whose proofs are largely analogous to the corresponding
proofs for the the Oh-Schwarz spectral invariants. In Section 4.2, we compute the PSS-image
spectral invariant of a non-degenerate Hamiltonian on a surface by deriving the aforementioned
dynamical characterization of Floer cycles which represent the fundamental class and which lie
in the image of some PSS map at the chain level. Section 4.3 presents two fairly immediate dy-
namical consequences of this characterization, and the chapter closes with a brief discussion of the



relationship between the Oh-Schwarz spectral invariants and the PSS-image spectral invariants in
Section 4.4.

4.1. A new spectral invariant: definitions and properties
Let (H,J) be Floer-regular. Recall that the set PSS(H,J) of PSS data for (H,J) is the collection
of tuples

D = (f,g;H,J) ∈ C∞(M)×Met(M)×H (0;H)× J PSS(J),

where (f,g) is a Morse-Smale pair. There is a residual set PSSreg(H,J) of regular PSS data such
that D ∈ DPSSreg (H,J), we may define a chain-level PSS map

ΦPSS
D : QC∗+n(f,g)→ CF∗(H,J)

which is Λω-linear and induces a canonical isomorphism at the level of homology.

Definition 4.1.1. Let (H,J) be Floer-regular. For α ∈ QH∗(M,ω), α 6= 0, we define the PSS-
image spectral invariant

cim(α;H,J) := inf{λH(σ) : ∃D ∈ PSSreg(H,J), ∃σ ∈ im ΦPSS
D , such that [σ] = (ΦPSS

D )∗α}

In general, it is not immediately obvious that cim(α;H) 6= −∞ for all α ∈ QH∗(M,ω) \ {0}.
To see that this is so, recall the definition of the Oh-Schwarz spectral invariant cOS(α;H) for
0 6= α ∈ QH∗(M) from Section 2.1.2. These spectral invariants are always finite (see theorem 5.3
in [21], for instance). Moreover, it is an obvious consequence of the definitions that we have

Proposition 4.1.2. For any α ∈ QH∗(M) \ {0} and any J ∈ Jω(M) such that (H,J) is Floer
regular

cOS(α;H) ≤ cim(α;H,J).

Consequently, we obtain the finiteness of cim(α;H,J) for all non-zero quantum homology classes
α.

4.1.1. Basic Properties of cim

Proposition 4.1.3. Let (H,J), (K,J ′) be Floer regular pairs. For any α ∈ QH∗(M,ω), α 6= 0, we
have ∫ 1

0

min
x∈M

(K −H)(t,x) dt ≤ cim(α;K,J ′)− cim(α;H,J) ≤
∫ 1

0

max
x∈M

(K −H)(t,x) dt
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PROOF. Let δ > 0 be arbitrary. By definition, there exists some σ ∈ CF∗(H,J), some D =

(f,g;H,J) ∈ PSSreg(H,J), and some σf ∈ QC∗(f,g) which represents α ∈ QH∗(M,ω) such that
(1) ΦPSS

D (σf ) = σ, and
(2) λH(σ) ≤ cim(α;H,J) + δ.

Let (H′,J′) ∈HJ (H,J ;K,J ′) be a regular homotopy such thatH′ is arbitrarily close to the linear
homotopy

Hlin
s,t = (1− β(s))Ht + β(s)Kt,

for β : R → [0,1] some smooth non-decreasing function which is 0 for s sufficiently small and 1

for s sufficiently large. Equation 2.1.3 for solutions of the s-dependent Floer equation combined
with the positivity of the energy functional implies that

λK(hH′(σ)) ≤ λH(σ) +

∫ 1

0

max
x∈M

(K −H)(t,x) dt+ ε,

where ε > 0 may be made arbitrarily small by choosing H′ sufficiently close to Hlin. The usual
gluing arguments of Floer theory (see Section 4.4 of [28]) imply that there exists D′ = H′#D ∈
PSSreg(K,J

′) such that

ΦPSS
D′ = hH′ ◦ ΦPSS

D ,

whence we see that

cim(α;K,J ′) ≤ cim(α;H,J) +

∫ 1

0

max
x∈M

(K −H)(t,x) dt+ ε+ δ

for arbitrary small ε,δ > 0 which implies the upper bound. The reverse inequality follows by
swapping the roles of H and K in the above. �

Corollary 4.1.4. cim(α;H) = cim(α;H,J) is well-defined and independent of the choice of regular
J .

Proposition 4.1.5. For any H,K ∈ C∞(S1 ×M) and any α ∈ QH∗(M,ω) \ {0}
(1) if r : [0,1]→ R is smooth, then

cim(α;H + r) = cim(α;H) +

∫ 1

0

r(t) dt.

(2) cim(ψ∗α;ψ∗H) = cim(α;H) for any symplectic diffeomorphism ψ.
(3) |cim(α;H)− cim(α;K)| ≤ ‖H −K‖L1,∞ .
(4) (Weak triangle inequality) cim(α;H#K) ≤ cim(α;H) + cim([M ];K).

71



PROOF. As one might expect, the proofs of these properties follow largely the same lines as the
proofs of the corresponding properties for the Oh-Schwarz spectral invariants with only very minor
modifications to the details in those places where we must establish the existence of a witnessing
PSS chain map to prove that the corresponding property holds for cim(α;−).

(1) H and H + r induce the same Hamiltonian vector fields, and (H,J) and (H + r,J) induce
the same Floer equations. Consequently, we have the canonical identification of Floer
complexes

CF∗(H,J) = CF∗(H + r,J). (4.1.1)

Moreover, if D = (f,g;H,J) ∈ PSSreg(H,J), then we may view H as a T -adapted
homotopy of Hamiltonians from 0 to H . Hence, if

β : R→ [0,1]

is a smooth non-decreasing function such that β(s) = 0 for s ∈ (−∞, − T − 1] and
β(s) = 1 for s ∈ [T,∞), then

Hβ(s,t,x) := H(s,t,x) + β(s)r(t)

is a (T + 1)-adapted homotopy from 0 to H + r such that the pair (Hβ,J) defines the same
Floer equation as (H,J), and therefore the map

ΦPSS
Dβ : QC∗+n(f,g)→ CF∗(H + r,J)

induced by Dβ := (f,g;H,J) ∈ PSSreg(H + r,J) agrees with ΦPSS
D under the canonical

identification of 4.1.1. The desired statement follows.
(2) If D = (f,g;H,J) and ψ ∈ Symp(M,ω), then by the naturality of the negative gradient

flow equation with respect to push-forwards by diffeomorphisms, and the naturality of
Floer’s equation with respect to symplectomorphisms, we have that D ∈ PSSreg(H,J)

if and only if ψ∗D = (ψ∗f,ψ∗g;ψ∗H,ψ∗J) ∈ PSSreg(ψ∗H,ψ∗J), and the relevant PSS
moduli spaces are identified via the map

M(p,[x,w];D)→M(ψ(p),[ψ ◦ x, ψ ◦ w];ψ∗D)

u 7→ ψ ◦ u.

Consequently, we see that for σf ∈ QC∗+n(f,g)

ΦPSS
D (σf ) = σ ∈ CF∗(H,J)
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if and only if

ΦPSS
ψ∗D (ψ∗σf ) = ψ∗σ ∈ CF∗(ψ∗H,ψ∗J),

where ψ∗(p⊗ eA) = ψ(p)⊗ eψ∗A defines the Λω-linear map

ψ∗ : CMorse(f,g)⊗ Λω → CMorse(ψ∗f,ψ∗g)⊗ Λω

on generators, and ψ∗([x,w]) = [ψ ◦ x, ψ ◦ w] defines the linear map

ψ∗ : CF∗(H,J)→ CF∗(ψ∗H,ψ∗J)

on generators. Finally, it’s clear that σf ∈ CMorse(f,g)⊗Λω represents α ∈ QH∗(M,ω) if
and only if ψ∗σf represents ψ∗α ∈ QH∗(M,ω).

(3) This is a direct consequence of Proposition 4.1.3.
(4) We fix Floer regular pairs (H,J1) and (K,J2). The fundamental point, established in Sec-

tion 4 of [29] (see also Section 6.2 of [21]) is that if (S2,1,j) denotes an model Riemannian
surface with two negative cylindrical ends

φ−i : ((−∞,0]× S1,j0)→ (Z−i ,j) ⊂ S2,1, i = 1,2,

and one positive cylindrical end

φ+ : ((−∞,0]× S1,j0)→ (Z+,j) ⊂ S2,1,

then for any δ > 0, there exist smooth maps

HS : S2,1 → C∞(M), and

JS : S2,1 → J (M,ω)

such that
(a) (HS ◦ φ−, JS ◦ φ−i )(s,t) equals (H,J1) for all s sufficiently small if i = 1 and equals

(K,J2) for all such s if i = 2

(b) (HS ◦ φ+, JS ◦ φ+)(s,t) equals (H#K, J3) for all s sufficiently large, where
J3 ∈ Jω(M) is such that (H#K, J3) is Floer regular.

(c) For [x1,w1] ∈ P̃ er0(H), [x2,w2] ∈ P̃ er0(K) and [x3,w3] ∈ P̃ er0(H#K), if
u : S2,1 → M is any smooth map with lims→−∞(u ◦ φ−i )(s,t) = xi, i = 1,2,
lims→∞(u ◦ φ+)(s,t) = x3(t) and the map S2 →M formed by gluing w1 to u along
Z−1 , w2 to u along Z−2 and w̄3 along Z+ is a torsion element of H2(M ;Z), then

AH#K([x3,w3]) ≤ AH([x1,w1]) +AK([x2,w2]) + δ.
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(d) If we denote by n(x̂1,x̂2; x̂3) the count of elements in the zero-dimensional moduli
spacesM(x̂1,x̂2; x̂3;HS,JS) which consist of smooth maps u : S2,1 →M satisfying
the conditions of the previous point and which, moreover satisfy, in any conformal
coordinates (s,t) on (S2,1,j), the (HS,JS)-Floer equations

∂su+ JS(∂tu−XH
S

) = 0, (4.1.2)

then the map

ΦS : CF∗(H,J1)⊗ CF∗(K,J2)→ CF∗(H#K,J3)

x̂⊗ ŷ 7→
∑

µ(ẑ)=µ(x̂)+µ(ŷ)

n(x̂,ŷ; ẑ)ẑ

defines a map which descends to the Pair-of-Pants product on Floer homology.
(e) If α# = ΦPSS(α) ∈ HF∗(H) and β# = ΦPSS(β) ∈ HF∗(K), then (ΦS)∗(α⊗β) =

ΦPSS(α ∗ β) ∈ HF∗(H#K).
The statement is then proven by letting σH ∈ CF∗(H,J1) be a witness for cim(α;H) and
σK ∈ CF∗(H,J2) a witness for cim([M ];K). The previous points imply that σH#K :=

ΨS(σH ⊗ σK) represents the class α under the natural isomorphism QM∗+n(M,ω) '
HF∗(H#K) and supp ΨS(σH ⊗ σK) is composed of capped orbits with action bounded
above by

λH(σH) + λK(σK) + δ = cim(α;H) + cim([M ];K) + δ.

If we were dealing with the Oh-Schwarz spectral invariants, then we would be done,
but to establish the statement for cim, we must exhibit some regular PSS data D ∈
PSSreg(H#K,J3) such that σH#K ∈ im ΨPSS

D . If we let DH = (f1,g1;H,J1) ∈
PSSreg(H,J1) and DK = (f2,g2;K,J2) ∈ PSSreg(K,J2) be PSS data such that σH ∈
im ΦPSS

DH and σK ∈ im ΦPSS
DK , then the standard gluing theorems from Floer theory imply

that we may glue the PSS data DH and DK along the negative cylindrical ends Z−1 and Z−2
respectively to obtain regular PSS data

DH#K := DH#Z−1
DK#Z−2

(HS,JS) ∈ PSSreg(H#K; J3)

having the property that we have the bijection of moduli spaces

M(p, x̂;DH)×M(q,ŷ;DK)×M(x̂,ŷ; ẑ;HS,JS)→M(p,ẑ;DH#K)

(u,v,w) 7→ ū#Z−1
v̄#Z−2

w.

74



Remark (4). It is precisely here that we use the fact that [σK ] = ΦPSS
∗ [M ]. In general (that

is, when [σK ] = ΦPSS
∗ β for β ∈ QH∗+n(M,ω) \ {0}), the three moduli spaces above glue

together to give

Mβ(p,ẑ;DH#K) ⊂M(p,ẑ;DH#K),

which is the subspace of maps u ∈ M(p,ẑ;DH#K) which additionally satisfy u(s0,t0) ∈
im β# for an appropriately chosen marked point (s0,t0) ∈ R×S1 and for β# : ∪∆k →M

a smooth cycle composed of unstable manifolds of the Morse-Smale pair (f2,g2) which
represent β in the quantum homology of M . When β = [M ], this condition is vacuous and
we generically obtain

M[M ](p,ẑ;DH#K) =M(p,ẑ;DH#K).

Returning to the proof, the above bijection of moduli spaces implies that

ΦPSS
H#K(σH) =ΦS(σH ⊗ σK) = σH#K ,

which proves the claim.
�

Remark. We note that it is precisely the point discussed in Remark 4 that keeps us from being
able to establish the full triangle inequality

cim(α ∗ β;H#K) ≤ cim(α;H) + cim(β;K)

for the PSS-image spectral invariant. Indeed, for any β 6= [M ], the maps (u,v,w) ∈M(p, x̂;DH)×
M(q,ŷ;DK)×M(x̂,ŷ; ẑ;HS,JS) will glue together to give a disk with origin lying in a cycle α#

representing α, an additional marked point lying in a cycle β# as before and with boundary on the
orbit z ∈ Per0(H#K). In general, when β 6= [M ], we will have deg(α) + n 6= µ(ẑ) and so the
maps in the moduli spaces ‘glued moduli spaces’

Mglued(p, x̂; q, ŷ; x̂,ŷ; ẑ) 'M(p, x̂;DH)×M(q,ŷ;DK)×M(x̂,ŷ; ẑ;HS,JS)

which contribute to σH#K cannot be identified with a subset of the maps in the moduli space

M(p,ẑ;DH#K)

which contribute to ΦPSS
DH#K

(α# ∗ β#), since the latter consist of maps u : R × S1 → M which,
roughly speaking, satisfy lims→−∞ u(s,t) ∈ im (α#β)#. It is, however, plausible that a judicious
choice of a different Morse-Smale pair for the PSS data DH#K (instead of the pair (f1,g1)) could
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be made so thatM(p,ẑ;DH#K) agrees withMglued(p, x̂; q, ŷ; x̂,ŷ; ẑ). Since the weaker form of
the triangle inequality suffices for our purposes, however, we do not pursue this matter further here.
The above proposition implies that cim(α;H) is C0-continuous in its Hamiltonian argument. By
the density on non-degenerate Hamiltonians in the space of all Hamiltonians, we may extend the
definition of c(α;H) to any H ∈ C∞(S1 ×M). The above properties then obviously still hold by
approximation even if the Hamiltonians in question are not presumed non-degenerate.

Moreover, if we define, for α =
∑
αAe

A ∈ QH∗(M) its valuation

ν(α) := max{−ω(A) : αA 6= 0},

then we see that the PSS-image spectral invariants satisfy the same normalization condition as the
Oh-Schwarz spectral invariants. Namely

Proposition 4.1.6. For α =
∑
αAe

A ∈ QH∗(M) \ {0}, we have

cim(α; 0) = ν(α).

PROOF. Let (εk)k∈N be a sequence of small positive real numbers tending to 0 as k → ∞. Let
f ∈ C∞(M) be a sufficiently small Morse function such that we may choose J ∈ Jω(M) so that
for all k ∈ N, (εkf,J) is Floer regular and we have the canonical identification CF∗(εkf,J) =

QC∗+n(εkf,gJ). It’s clear that if σA ∈ CMorse
∗+n+2c1(A)(εkf,gJ) represents αA in homology, then

λεkf (σA ⊗ eA) := λεkf (e
A · σA)

= max
[x,w]∈supp σA

Aεkf ([x,A#w])

= max
[x,w]∈supp σA

Aεkf ([x,A])− ω(A)

= λεkf (σA)− ω(A)

= εkf(x)− ω(A), for some x ∈ Crit(f).

Consequently, if we consider σ =
∑
σA ⊗ eA ∈ (CMorse(εkf,gJ) ⊗ Λω)∗+n representing α =∑

αAe
A in homology, we see that

λεkf (σ) = max
σA 6=0

λεkf (σA ⊗ eA)

= max
σA 6=0
{εk max

[x,x]∈supp σA
f(x)− ω(A)}.
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Of course, for each A such that σA 6= 0, we have

min
x∈M

f(x) ≤εk max
[x,x]∈supp σA

f(x) ≤ max
x∈M

f(x).

Whence, we see that

max
σA 6=0
{εk min

x∈M
f(x)− ω(A)} ≤λεkf (σ) ≤ max

σA 6=0
{εk max

x∈M
f(x)− ω(A)},

and so for all k ∈ N

εk min
x∈M

f(x) + max
σA 6=0
{−ω(A)} ≤cim(α; εkf) ≤ εk max

x∈M
f(x) + max

σA 6=0
{−ω(A)}.

Taking k →∞ proves the claim. �

Corollary 4.1.7. For any α ∈ QH∗(M,ω), α 6= 0, we have∫ 1

0

min
x∈M

H(t,x) dt+ ν(α) ≤ cim(α;H) ≤
∫ 1

0

max
x∈M

H(t,x) dt+ ν(α).

In particular, if α ∈ H∗(M), then∫ 1

0

min
x∈M

Ht dt ≤ cim(α;H) ≤
∫ 1

0

max
x∈M

Ht dt

PROOF. By continuity of the function H 7→ cim(α;H) and the density of non-degenerate Hamil-
tonians, the inequality stated in Proposition 4.1.3 holds for arbitrary Hamiltonians, regardless of
whether or not they are non-degenerate. Thus, we obtain the inequality∫ 1

0

min
x∈M

H(t,x) dt ≤ cim(α;H)− cim(α; 0) ≤
∫ 1

0

max
x∈M

H(t,x) dt.

This combines with the previous proposition to give∫ 1

0

min
x∈M

H(t,x) dt ≤ cim(α;H)− ν(α) ≤
∫ 1

0

max
x∈M

H(t,x) dt,

which readily rearranges to give the desired inequality. �

The PSS-image spectral invariant also shares the following properties of the Oh-Schwarz spectral
invariant

Proposition 4.1.8. If (M,ω) is rational in the sense that the subgroup ω(π2(M)) ⊂ R is discrete,
then

(1) cim(α;H) ∈ Spec(H) for all α ∈ QH∗(M,ω) \ {0}.
(2) If H ∈ C∞(S1 ×M) is assumed to be normalized so that

∫
Htω

n = 0 for all t ∈ S1, then
cim(α;H) depends only on the homotopy class of the isotopy (φHt )t∈[0,1] relative endpoints.
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PROOF. The proofs of (1) and (2) are identical to the proofs of the corresponding statements for
the Oh-Schwarz spectral invariants. We refer the interested reader to Theorem II and its proof in
[21].

�

4.1.2. A new spectral norm

The fact that the PSS-image spectral invariants satisfy the triangle inequality for the funda-
mental class allows us to define an associated bi-invariant pseudo-norm on H̃am(M,ω) which
descends to a non-degenerate bi-invariant norm on Ham(M,ω).

Definition 4.1.9. Let (M,ω) be a compact rational semi-positive symplectic manifold. We define
the function

ν̃im : C∞(S1 ×M)→ R

H 7→ cim([M ];H) + cim([M ]; H̄),

Which descends to the PSS-image pseudo-norm on H̃am(M,ω) by defining

ν̃im : H̃am(M,ω)→ R

φ̃H 7→ cim([M ];H) + cim([M ]; H̄),

where
∫
Htω

n = 0 for all t ∈ S1.

Proposition 4.1.10. Let H ∈ C∞(S1 ×M), then
(1) ν̃im(H) = ν̃im(H̄),
(2) ν̃im(H#F ) ≤ ν̃im(H) + ν̃im(F ), ∀H,F ∈ C∞(S1 ×M). In particular

0 ≤ ν̃im(H).

(3) ν̃im(H) ≤
∫ 1

0
maxx∈M Ht −minx∈M Ht dt

PROOF. (1) is obvious. (2) follows from the computation

ν̃im(H#F ) = cim([M ];H#F ) + cim([M ]; F̄#H̄)

≤ cim([M ];H) + cim([M ];F ) + cim([M ]; F̄ ) + cim([M ]; H̄)

= ν̃im(H) + ν̃im(F ),
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where the inequality in the penultimate line follows from the weak triangle-inequality for the PSS-
image spectral invariants. To establish property (3), note that Corollary 4.1.7 implies

c([M ];H) + c([M ]; H̄) ≤
∫ 1

0

max
x∈M

Ht dt+

∫ 1

0

max
x∈M

H̄t dt

=

∫ 1

0

max
x∈M

Ht dt−
∫ 1

0

min
x∈M

Ht dt,

which proves the claim. �

Definition 4.1.11. To obtain a norm on the group of Hamiltonian diffeomorphisms, we define the
PSS-image spectral norm

νim : Ham(M,ω)→ [0,∞)

φ 7→ inf
φ̃
ν̃im(φ̃),

where the infimum is taken over all φ̃ ∈ H̃am(M,ω) which project to φ ∈ Ham(M,ω) under the
natural projection H̃am(M,ω)→ Ham(M,ω).

Proposition 4.1.12. νim is a norm. Moreover, for all φ ∈ Ham(M,ω),

νOS(φ) ≤ νim(φ) ≤ ‖φ‖Hof ,

where νOS denotes the Oh-Schwarz spectral norm and ‖ · ‖Hof denotes the Hofer norm.

PROOF. That νim is a pseudonorm is an immediate consequence of Proposition 4.1.10. To establish
the stated inequality note that Proposition 4.1.10 along with the fact that the Oh-Schwarz spectral
invariants bound the PSS-image spectral invariants from below imply

cOS([M ];H) + cOS([M ]; H̄) ≤ν̃im(H) ≤
∫ 1

0

max
x∈M

Ht −min
x∈M

Ht dt

for all Hamiltonians H ∈ C∞(S1 ×M). Taking the infimum over all normalized Hamiltonians
which generate an isotopy with time-1 map equal to φ gives the claimed inequality. That νim is
non-degenerate and hence a norm then follows from the fact that νOS is a norm (and hence non-
degenerate). �

4.2. Computing cim([Σ];H) on surfaces
In this section, we restrict our attention to the case of M = Σ an arbitrary orientable sur-

face, and we use the theory developed in Chapters 1-3 to give a topological characterization of
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all homologically non-trivial Z/2Z-cycles in CF1(H,J) which lie in the image of some PSS-map.
Specifically, we prove

Theorem 4.2.1. Let σ ∈ CF1(H,J). σ is a non-trivial cycle with σ ∈ im ΦPSS
D for some D ∈

PSSreg(H,J) if and only if supp σ is a maximal positive capped braid relative index 1.

Let us spell out the topological condition that is used in the above characterization. Recall from
Definition 3.0.2 that a braid cobordism h : [0,1]→ L(Cn(Σ)) is said to be positive (resp. negative)
if whenever the graphs of the strands of h intersect, they do so positively (resp. negatively).

Definition 4.2.2. A capped k-braid X̂ is said to be positive (resp. negative) if there exists a
positive 0-cobordism from some, hence any, trivial capped braid 0̂ to X̂ .

Definition 4.2.3. For H ∈ C∞(S1 × Σ) non-degenerate, a collection of capped 1-periodic orbits
X̂ ⊂ P̃ er0(H) will be said to be maximally positive (resp. negative) relative index 1 (resp.
relative index −1) if

(1) X̂ ⊂ P̃ er0(H)(1) (resp. X̂ ⊂ P̃ er0(H)(−1)) ,
(2) X̂ is a positive (resp. negative) capped braid, and
(3) X̂ is maximal among all subsets of P̃ er0(H) satisfying the two previous items.

We denote by mp(1)(H) (resp. mn(−1)(H)) the set of all such capped braids.

This leads immediately to the following characterization of cim([Σ];−) in the non-degenerate case

Theorem 4.2.4. Let H be non-degenerate.

cim([Σ];H) = inf
X̂∈mp(1)(H)

sup
x̂∈X̂
AH(x̂)

We begin with the following lemma

Lemma 4.2.5. Let D ∈ PSS(H,J), and let ui : D2 → Σ, i = 1, . . . ,k, solve the PSS-equation
induced by D. Suppose that for some (s0,t0) ∈ D2 and some p ∈ Σ,

ui(s0,t0) = p, for all i = 1, . . . ,k.

Then there exists an open neighbourhood U ⊂ D2 of (s0,t0) and smooth maps vi : D2 → Σ,
i = 1, . . . ,k such that

(1) vi(s,t) = ui(s,t) for all (s,t) 6∈ U ,
(2) vi(s0,t0) 6= p for all i = 1, . . . ,k, and
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(3) any pairwise intersections of the graphs ṽi and ṽj , 1 ≤ i < j ≤ k, are both transverse and
positive.

PROOF. This is a straightforward consequence of the intersection theory for pseudoholomorphic
curves in 4-dimensional almost complex manifolds as worked out in Appendix E of [19]. In slightly
more detail, the proof of Proposition E.2.2 of [19] shows that if f : (Σ,j)→ (M,J) is any simple
pseudoholomorphic map with (Σ,j) any Riemannian surface and (M,J) any 4-dimensional almost
complex manifold, then for any self -intersection point (z0,z1) ∈ Σ × Σ \∆ with f(z0) = f(z1),
there exist (disjoint) neighbourhoods Ui ⊂ Σ of zi, i = 0,1, and a perturbation f ′ of f differing
from f only on U0

⋃
U1 such that f ′ has only positive and transverse self-intersections for (z′0,z

′
1) ∈

U0×U1. Noting that for each i = 1, . . . , k, the graph ũi is J̃D-holomorphic, where J̃D is the almost
complex structure on D2 × Σ associated to the PSS data D by the Gromov trick, we may apply
this proposition with f = tki=1ũi. The perturbation may be chosen small enough such that each
component of f ′ = tṽi is still graphical, and without loss of generality (up to another perturbation
of f ′), we may suppose that self-intersections of f ′ do not occur at (s0,t0,p) ∈ D2 × Σ. Setting
vi := πΣ ◦ ṽi provides the desired maps. �

Corollary 4.2.6. Let D = (f,g;H,J) ∈ PSSreg(H,J) and suppose that σ ∈ im ΦPSS
D ⊂

CF∗(H,J). Then supp σ is a positive capped braid.

PROOF. Write X̂ = {x̂1, . . . , x̂k} = supp σ. Because σ ∈ im ΦPSS
D for each x̂ ∈ X̂ , there exists

p ∈ Crit(f) such thatM(p,x̂;D) 6= ∅. For i = 1, . . . , k, we choose ui ∈ M(pi,x̂i;D). Owing to
the Gromov trick, and positivity of intersections in dimension 4, the algebraic intersection number
of the graphs ũi and ũj is positive for any 1 ≤ i < j ≤ k. Moreover, using Lemma 4.2.5,
we may suppose without loss of generality that none of the graphs intersect over 0 ∈ D2. As a
consequence, if we set vi(s,t) = u(se2πit), for i = 1, . . . , k, the map s 7→ (v1

s , . . . ,v
k
s ) ∈ L0(Σ)k

defines a positive 0-cobordism from the trivial capped braid (û1(0), . . . , ûk(0)) to the capped braid
X̂ . �

Proposition 4.2.7. Let D ∈ PSSreg(H,J) and suppose that σ ∈ CF1(H,J) is such that supp σ is
a positive capped braid. If σ is a cycle satisfying (ΦPSS

D )∗([Σ]) = [σ], then supp σ is maximally
positive relative index 1.

PROOF. Suppose that (ΦPSS
D )∗([Σ]) = [σ], but that X̂ = supp σ is not maximally positive relative

index 1. Then there must exist ŷ ∈ P̃ er0(H)(1) with `(x̂,ŷ) ≥ 0 for all x̂ ∈ X̂ , but ŷ 6∈ X̂ .
Choose f ∈ C∞(Σ) to be a small Morse function with a unique maximum M ∈ Σ, and let
J+ ∈ J (Σ,ω) be such that (f,J+) is Floer-regular. Let u : R × S1 → Σ be a smooth cylinder
such that u(s,t) = y(t) for all s ∈ R sufficiently small, and u(s,t) = M for all s ∈ R sufficiently
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large. u is obviously a pre-model for a continuation cobordism, and so by (the proof of) Theorem
3.0.4, there exists a homotopy of Floer data (H,J) ∈ HJ (H,J−; f,J+) such that u solves the
(H,J) Floer equation. By Corollary 2.2.17, u is regular, and so perturbing (H,J) to a regular pair
(H′,J ′), and perturbing u to u′, solving the (H′,J ′) Floer equation if necessary, we conclude that

M(ŷ,M̂ ;H′,J ′) 6= ∅.

Consequently, for all x̂ ∈ X̂ , we must have that

M(x̂,M̂ ;H′,J ′) = ∅,

for if v ∈M(x̂,M̂ ;H′,J ′), then we must have

0 ≤ `(x̂,ŷ) =`−∞(u′,v) ≤ `∞(u′,v) ≤ a(M̂) = −1,

which is a contradiction. Consequently, hH′(σ) = 0, but this is absurd, since σ represents a
non-trivial homology class in CF∗(H,J−), and so hH′(σ) 6= 0, since hH′ is an isomorphism on
homology. It follows that no ŷ as above may exist and hence X̂ ∈ mp(1)(H). �

PROOF OF THEOREM 4.2.1. Corollary 4.2.6 together with Proposition 4.2.7 immediately implies
that every cycle representing the fundamental class and lying in the image of some PSS map must
be a maximal positive braid relative index 1. Let us show the converse. Let X̂ = {x̂1, . . . , x̂k} ⊂
P̃ er0(H)(1) be maximally positive relative index 1, and fix some J ∈ C∞(S1;Jω(Σ)) such that
(H,J) is Floer regular. We will show that there exists D = (f,g;H,J) ∈ PSSreg(H,J) such that f
is a Morse function and

ΦPSS
D (

∑
M∈Crit(f)

µMorse(M)=2

M) =
∑
x̂∈X̂

x̂.

To do this, note first that it will suffice to show that there exists some Floer regular pair (f ′,J−)

with f ′ ∈ C∞(Σ) a C2-small Morse function and a regular homotopy of Floer data (H′,J′) ∈
HJ (f ′,J−;H,J) such that

hH′(
∑

p̂∈P̃ er0(f ′)(1)

p̂) =
∑
x̂∈X̂

x̂.
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Indeed, if (H′,J′) as above exists, then because
∑

p̂∈P̃ er0(f ′)(1)
p̂ represents the unique non-trivial

cycle in CF1(f ′,J−), any choice of D′ ∈ PSSreg(f ′,J−) will satisfy

ΦPSS
D′ (

∑
M∈Crit(f)

µMorse(M)=2

M) =
∑

p̂∈P̃ er0(f ′)(1)

p̂

at the chain level, and using the gluing results of [28], we may define D ∈ PSSreg(H,J) as an
appropriate gluing D := D′#(H′,J′) such that at the chain level, we have

PSSD = hH′ ◦ PSSD′ .

With the above understood, note next that since X̂ is a positive braid, there exists a positive 0-
cobordism s 7→ (v1

s , . . . ,v
k
s ) ∈ L0(Σ)k from some trivial braid (p̂1, . . . , p̂k) to X̂ , where p̂i denotes

the trivially capped constant loop based at pi. We choose f ′ ∈ C∞(Σ) to be any C2-small Morse
function having local maxima precisely at the points pi, i = 1, . . . ,k. Let J− ∈ Jω(Σ) be any
compatible almost complex structure such that (f ′,J−) is Floer regular. Next, we define a pre-
model for a continuation cobordism from (f ′,J−) to (H,J). Fix some K > 0 and for each i =

1, . . . , k, define

ui(s,t) :=


pi s ∈ (−∞,−K]

vis+K(t) s ∈ (−K,−K + 1)

xi(t) s ∈ [K + 1,∞).

It is not hard to verify that {ui}ki=1 defines a pre-model for a continuation cobordism from (f ′,J−)

to (H,J). Theorem 3.0.4 implies that we may perturb this to a continuation cobordism {u′i}ki=1 for
some (H′,J′) ∈ HJ (f ′,J−;H,J). Since each u′i is asymptotic at both ends to a non-degenerate
orbit of Conley-Zehnder index 1, Corollary 2.2.17 implies that without loss of generality, we may
take (H′,J′) to be regular. We claim that for each 1 ≤ i,j ≤ k,

|M(p̂i,x̂j;H′,J′)| =

0 if i 6= j

1 if i = j
.

The latter case is guaranteed by Corollary 2.2.15 together with the existence of
u′i ∈ M(p̂i,x̂i;H′,J′). To establish the former case, note that since {p̂1, . . . , p̂k} is a trivial
capped braid, we certainly have `(p̂i,p̂j) = 0 for all i 6= j. Suppose for the sake of contradiction
that there exists v ∈M(p̂i,x̂j;H′,J′). Then we must have

0 = `(p̂i,p̂j) = `−∞(v,u′j) ≤ `∞(v,u′j) ≤ a(x̂j) = −1,
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which is a contradiction. It follows that

X̂ ⊂ supp hH′(
k∑
i=1

p̂i).

To conclude that the above containment is in fact an equality, note that in combination with the glu-
ing trick outlined at the beginning of this proof, Proposition 4.2.7 implies that supp hH′(

∑k
i=1 p̂i) ∈

mp(1)(H), but X̂ ∈ mp(1)(H) by hypothesis, and so maximality of X̂ implies

X̂ = supp hH′(
k∑
i=1

p̂i)

as desired. �

4.3. Dynamical Consequences
Theorem 4.3.1. For any closed symplectic surface (Σ,ω), and any non-degenerate
φ ∈ Ham(Σ,ω),

νim(φ) = inf
X̂∈mp(1)(H)

sup
x̂∈X̂
AH(x̂)− sup

X̂∈mn(−1)(H)

inf
x̂∈X̂
AH(x̂)

for any Hamiltonian H with φH1 = φ.

PROOF. As the PSS-image spectral invariants are well-defined on H̃am(M,ω)

νim(φ) = inf
g̃∈π1(Ham(M,ω),idM )

ν̃im(g̃ · φ̃)

for φ̃ any lift of φ to H̃am(M,ω). The theorem follows directly from the fact that

ν̃im(φ̃H) = cim([Σ];H) + cim([Σ]; H̄)

= inf
X̂∈mp(1)(H)

sup
x̂∈X̂
AH(x̂)− sup

X̂∈mn(−1)(H)

inf
x̂∈X̂
AH(x̂),

where the identification of the second term in the last line with cim([Σ]; H̄) follows from the fact
that H̄ is homotopic relative endpoints to the Hamiltonian H̃(t,x) = −H(1− t,x) which generates
the isotopy φH1−t ◦ (φH1 )−1, whose time-1 flowlines are precisely the time reversal of the time-1
flowlines of the isotopy induced by H . Consequently, there is a natural bijection

P̃ er0(H) 7→ P̃ er0(H̃)

[x(t),w(se2πit)] 7→ [x(1− t),w(se−2πit)]
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which sends capped orbits with Conley-Zehnder index k to capped orbits with Conley-Zehnder
index−k. It is easy to see that positive braids are sent to negative braids under the above bijection,
which establishes the desired formula. �

Corollary 4.3.2. If π2(Σ) = 0, then for any non-degenerate φ ∈ Ham(Σ,ω),

νim(φ) = inf
X̂∈mp(1)(H)

sup
x̂∈X̂
AH(x̂)− sup

X̂∈mn(−1)(H)

inf
x̂∈X̂
AH(x̂)

for any normalized Hamiltonian H with φH1 = φ.
Corollary 4.3.3. If Σ = S2, then for any non-degenerate φ ∈ Ham(Σ,ω),

νim(φ) = min{ inf
X̂∈mp(1)(K)

sup
x̂∈X̂
AK(x̂)− sup

X̂∈mn(−1)(K)

inf
x̂∈X̂
AK(x̂) : K ∈ {H,G#H}},

where H is any normalized Hamiltonian H with φH1 = φ and G is any normalized Hamiltonian
such that (φGt )t∈[0,1] is a non-contractible loop in Ham(S2,ω).

Another interesting consequence of our dynamical characterization of the PSS-image spectral
invariants is that it permits us to use the work of Entov in [5] to obtain computable bounds on
the commutator length of the isotopy (φHt )t∈[0,1] in H̃am(S2,ω). Recall that for any group G, the
commutator length of g ∈ G is defined to be

cl(g) := inf{k : g = Πk
i=1[fi,hi], fi, hi ∈ G}.

It is a classical result due to Banyaga that for compact symplectic manifolds the group of Hamilton-
ian diffeomorphisms is perfect, and so every element φ̃H ∈ H̃am(S2,ω) has a finite commutator
length. We will show

Proposition 4.3.4. Assume that H ∈ C∞(S1 × S2) is non-degenerate and normalized, then

min
{

min
X̂∈mp(1)(H)

max
x̂∈X̂
AH(x̂),− max

X̂∈mn(−1)(H)
min
x̂∈X̂
AH(x̂)

}
< −kArea(S2,ω)

only if cl(φ̃H) > 2k + 1.

This result essentially says that if a Hamiltonian isotopy on a surface is to be ‘simple’ in the
sense that it has small commutator length in H̃am, then the actions of orbits forming maximally
positive (relative index 1) capped braids cannot be uniformly small, and nor can the actions of
orbits forming maximally negative (relative index −1) capped braids be uniformly large.

PROOF. Morally speaking, this is essentially a direct application of Theorem 2.5.1 in [5], com-
bined with our dynamical characterization of cim([S2];H), but since Entov uses the Oh-Schwarz
spectral invariants with rather different conventions than we do, and since we moreover do not
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know if cim = cOS , we will explain how to deduce this result from Entov’s arguments for the
reader unwilling to take such assurances on faith. Note that here we work with Floer and quantum
homologies with coefficients in the Novikov ring with rational coefficients, but all one needs to
note in order to work in this setting (beyond the usual tracking of orientations) is that Theorem
4.2.1 remains valid for Floer homology with Z-coefficients, and this is an immediate consequence
of Corollary 2.2.15.

We will summarize the three main points of relevance for us from [5]. Let (M,ω) be any semi-
positive symplectic manifold of dimension 2n, (H,J) be a Floer regular pair with H normalized as
in the statement of the proposition, and for any g ∈ Z≥0, let (Sg,1,j) denote a Riemannian surface
of genus g with 1 positive cylindrical end. Entov (following Schwarz in [28]) establishes that there
exist almost complex structures J̆ on Sg,1 ×M such that

(1) for x̂ = [x,wx] ∈ P̃ er0(H) with µ(x̂) = n(1− 2g) the moduli space

Mg(x̂; J̆)

consisting of J̆ pseudo-holomorphic sections u : Sg,1 → Sg,1 ×M such that πM ◦ u is
asymptotic to x along the positive end and [πM ◦ u]#(−[wx]) ∈ H2(M ;Z) is torsion, is
compact and 0-dimensional. (This simply follows from [28], see also [25]).

(2) IfMg(x̂; J̆) 6= ∅ for some x̂ ∈ P̃ er0(H)(n(1−2g) with AH(x̂) > 0, then

cl(φ̃H) > g.

(This is essentially a special case of the content of Proposition 6.3.1 in [5]. See also the
proof of Theorem 2.5.1 in [5]).

(3) The sum

θJ̆ =
∑

µ(x̂)=n(1−2g)

#Mg(x̂; J̆)x̂ ∈ CFn(1−2g)(H,J)

represents a non-trivial homology class. (See Propositions 7.0.3 and 7.0.4 is [5]. In fact,
Entov characterizes this homology class precisely as the homology class (ΦPSS

∗ ◦PD)(Eg),
where Eg is the g-th (quantum) power of the Euler class in the quantum cohomology with
rational Novikov coefficients QH∗(M,ω) and PD : QH∗(M,ω) → QH2n−∗(M,ω) is
isomorphism given by Poincaré duality. But we will not need the full force of this).

Specializing now to the case where M = S2, we see that for g = 2k + 1 and k ∈ Z≥0, then
the only nontrivial homology class (up to multiplication by a non-zero rational constant, which
doesn’t affect the value of the spectral invariants) in QH−4k(S

2,ω) is [pt] ⊗ ek[S2] (recall that the
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PSS isomorphism ΦPSS
∗ : QH∗+n(M,ω)→ HF∗(H) shifts the grading by n). Thus

[θJ̆ ] = λΦPSS
∗ ([pt]⊗ ek[S2])

for some λ ∈ Q, λ 6= 0. Now, Poincaré duality for Hamiltonian Floer homology (for rational
symplectic manifolds) arises from the isomorphism

CFm(H̃,J̃)→ Hom(CF−m(H,J);Q)

x̃ 7→ x̂∗,

where J̃(t) = J(1− t) and H̃(t,x) = −H(1− t,x) is the Hamiltonian discussed in the preceding
proof, with x̂ = [x(t),w(se2πit)] 7→ x̃ = (x(1 − t),w(se−2πit) the correspondence discussed also
in the previous proof. This isomorphism induces an isomorphism at the level of homology, giving

HF−m(H̃) ' HFm(H).

In particular, this implies that if

Θ ∈ CF4k+1(H̃,J̃)

is any chain such [Θ] ∈ HF4k+1(H̃,J̃) is non-trivial, then

〈Θ, θJ̆〉 6= 0.

In particular, there exists some x̃ ∈ supp Θ such that x̂ ∈ θJ̆ . This implies that

λH(θJ̆) ≥ min
x̃∈supp Θ

AH(x̂)

= − max
x̃∈supp Θ

AH̃(x̃)

= −λH̃(Θ).

If we take Θ to be a witness for cim((ΦPSS
∗ )−1([Θ]); H̃), then we obtain

λH(θJ̆) ≥ −cim((ΦPSS
∗ )−1([Θ]); H̃).

Next, note that there is really only one thing that (ΦPSS
∗ )−1([Θ]) ∈ QH4k+2(S2,ω) can be (up to a

non-zero rational multiple), namely

(ΦPSS
∗ )−1([Θ]) = λ[S2]⊗ e−k[S2], λ ∈ Q \ {0}.

Thus, we infer that if

c([S2]⊗ e−k[S2]; H̃) < 0,
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then λH(θJ̆) > 0 and so cl(φ̃H) > 2k + 1. We may then use Proposition 4.1.5 to compute

c([S2]⊗ e−k[S2]; H̃) = c([S2]; H̃) + kArea(S2,ω).

Whence we see that

−kArea(S2,ω) > c([S2]; H̃)

= − max
X̂∈mn(−1)(H)

min
x̂∈X̂
AH(x̂).

implies that cl(φ̃H) > 2k + 1. To see that

min
X̂∈mp(1)(H)

max
x̂∈X̂
AH(x̂) < −kArea(S2,ω)

also implies that cl(φ̃H) > 2k+1, simply note that cl(φ̃H̃) = cl(φ̃H) and apply the above argument
reversing the roles of H and H̃ . �

4.4. On the equivalence cOS = cim

Proposition 4.1.2 assures us that

cOS(α;H) ≤ cim(α;H),

and the PSS-image spectral invariants satisfy many of the same formal properties as the Oh-
Schwarz spectral invariants. One is naturally led to ask when these two invariants coincide,
and what to make of their difference. By the definition of the PSS-image spectral invariants,
cim(α;H)−cOS(α;H) represents the obstruction to our ability to find a tight cycle σ ∈ CF∗(H,J)

for cOS(α;H) which additionally lies in the image of some PSS map at the chain level. Note that,
on a surface, our knowledge that the image of a chain-level PSS map must be form a positive
capped braid, while in general, the support of Floer cycles need not be positive implies that, at least
in low dimensions, there are genuine obstructions to the equivalence of these two quantities. Thus,
in some sense, while the Oh-Schwarz spectral invariants arise from purely (filtered) homological
considerations, the PSS-image spectral invariants in principle encode some additional geometric
information about the degree to which this filtration information may be probed by PSS-type maps.
In fact, it turns out that one can also interpret the difference of the functions

cOS(α;−), cim(α;−) : C∞(S1 ×M)→ R

as measuring the failure of the PSS-image spectral invariants to satisfy the Poincaré duality relation
discovered by Entov-Poterovich for the Oh-Schwarz spectral invariants in [6].
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Proposition 4.4.1. Let α, β ∈ QH∗(M,ω) \ {0} be such that

cOS(α;H) = − inf
Π(α,β)6=0

cOS(β; H̄),

where Π is the bilinear pairing described in Section 2.3 of [6] (see also Section 20.4 of [23]), then
for all H ∈ C∞(S1 ×M),

cim(α;H)− cOS(α;H) = cim(β; H̄)− cOS(β; H̄) = 0

if and only if

cim(α;H) = −cim(β; H̄).

PROOF. The proof is a straight-forward consequence of Entov-Polterovich’s Poincaré duality rela-
tion for the Oh-Schwarz spectral invariants. Indeed, since the PSS-image spectral invariants always
bound the Oh-Schwarz spectral invariants from above, we have

−cim(β; H̄) ≤ −cOS(β; H̄) = cOS(α;H) ≤ cim(α;H),

thus it is clear that if cim(α;H) = −cim(β; H̄), we must have

cim(α;H)− cOS(α;H) = cim(β; H̄)− cOS(β; H̄) = 0.

The converse statement is immediate. �

One may also show that cOS([Σ];H) and cim([Σ];H) coincide for all autonomous H ∈ C∞(Σ)

when Σ 6= S2. Indeed, in [13], Humilière-Le Roux-Seyfaddini showed that when (Σ,ω) is a closed
aspherical symplectic surface, then any function c : C∞(S1 × Σ)→ R satisfying

(1) (Spectrality) c(H) ∈ Spec(H) for all H ∈ C∞(S1 × Σ)

(2) (Nontriviality) There exists a topological disk D and a Hamiltonian H supported in D
such that c(H) 6= 0

(3) (Continuity) c is continuous with respect to the C∞ topology on C∞(S1 × Σ)

(4) (Max formula) If Hi ∈ C∞(S1 ×Σ), i = 1, . . . ,k are supported in pairwise disjoint disks
then

c(H1 + . . .+Hk) = max{c(H1), . . . , c(Hk)}

agrees with cOS([Σ];−) on the space of autonomous Hamiltonians. By Proposition 4.1.5,
cim([Σ];−) satisfies the first and third properties, while the fact that cOS([Σ],−) satisfies the
non-triviality condition and bounds cim([Σ];−) from below implies that the non-triviality con-
dition holds for the PSS-image spectral invariant. The following proposition may be deduced
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from the proof given in Section 5.2.2 of [13] of the max formula for cOS([Σ];−) simply by
noting that the arguments provided therein apply equally well to cim([Σ];−), however, we also
supply an independent proof for the convenience of the reader (although the reader should note
that this proof is in some sense morally the same as what is done in [13], and we simply exploit
our dynamical characterization of cim([Σ];−) in order to clarify what is being measured by the
spectral invariant).
Proposition 4.4.2. Let (Σ,ω) be a closed aspherical symplectic surface and letHi ∈ C∞(S1×Σ),
i = 1, . . . ,k be supported in pairwise disjoint disks, then

cim([Σ];H1 + . . .+Hk) = max{cim([Σ];H1), . . . , cim([Σ];Hk)}

PROOF. Let D1, . . . , Dk be pairwise disjoint embedded disks in Σ with supp Hi ⊂ Di. Up to
enlarging each disk slightly while preserving pairwise disjointness, we may assume that Hi is
compactly supported on the interior of Di. Let Ui be a tubular neighbourhood of ∂Di which is
disjoint from supp Hj for every j = 1, . . . ,k and fix a diffeomorphism

φi : Ui → (−1,1)× S1,

with φi(0,t) ∈ ∂Di for all t ∈ S1 ' R/Z. Let h ∈ C∞(S1) be a perfect Morse function having
unique maximum h(0) = 1 at 0 and unique minimum at 1

2
, and let ρ : (−1,1)→ [0,1] be a smooth,

compactly supported function with a unique critical point at 0, and ρ(0) = 1. Set k(r,t) = ρ(r)h(t)

for (r,t) ∈ (−1,1). For any ε > 0 sufficiently small, we may choose a perturbation Hε
i of Hi with

‖Hε
i − Hi‖C2 < ε, such that there exists δi > 0 such that (Hε

i ◦ φ−1
i )(r,t) = ε

2‖k‖C2
k(r,t) for

all (r,t) ∈ (−δi,1) × S1 and such that Hε
i is non-degenerate on the interior of its support. We

will let Gε
i = Hε

i + fi be the non-degenerate Hamiltonian obtained by adding a small function
f ∈ C∞(Σ) which vanishes in a neighbourhood of Di, has only non-degenerate critical points
on the interior of its support and satisfies the smallness condition ‖fi‖C2 < ε

3‖k‖C2
. We define

also Gε
tot = Hε

1 + . . . + Hε
k + ftot where ftot ∈ C∞(Σ) satisfies ‖ftot‖C2 < ε

3‖k‖C2
, has only

non-degenerate critical points on the interior of its support and vanishes on a neighbourhood of⋃k
i=1Di. Clearly, it will suffice to show that

cim([Σ];Gε
tot) = max{cim([Σ];Gε

1), . . . , cim([Σ];Gε
k)}

for all sufficiently small ε > 0. Since all the Hamiltonians involved in the above expression are
non-degenerate, we may compute relevant spectral invariants through dynamical considerations by
Theorem 4.2.4. Let us consider first the structure of the set mp(1)(G

ε
i). Write pi = φ−1

i (0,0) and
remark that if x ∈ Per0(Gε

i)(1), then one of the following holds
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(1) x ∈ Per0(Hε
i )(1), and x lies inside of Vi = Di

⋃
φ−1
i ((−1,− δi]× S1),

(2) x = pi,
(3) x ∈ Crit(fi) and x ∈ intsupp fi.

We note that any orbit in one of the above classes is unlinked with any orbit in either of the other
two classes. For orbits in the last two classes, this is obvious, while if one of the orbits comes
from the first class, then this follows from the fact that such an orbit may be contracted to a point
entirely inside of Vi, which shows that it is unlinked with any orbit in one of the latter two classes.
Let us denote bymp(1)(H

ε
i ;Vi) the set of all braidsX ⊂ Per0(Hε

i )(1) which are maximally positive
relative having all strands of Conley-Zehnder index 1 and also such that all strands are contained
in Vi, and write Crit(fi; intsupp fi) for all critical points of fi contained in the interior of the
support of fi. Note also that if X ∈ mp(1)(H

ε
i ;Vi), then it is not hard to see that there exists a

positive cobordism from a trivial braid lying inside Vi to X such that each strand of the cobordism
is contained entirely in Vi. These considerations imply that the map

mp(1)(H
ε
i ;Vi)→ mp(1)(G

ε
i)

Xi 7→ Xi ∪ {pi} ∪ Crit(fi; int supp fi)

is a bijection. Let X = Xi∪{pi}∪Crit(fi; int supp fi) with Xi ∈ mp(1)(H
ε
i ;Vi), and note that by

construction all x ∈ Crit(fi; int supp fi) have action less than AGεi (pi) = ε
2‖k‖C2

. Consequently,
we see that

cim([Σ];Gε
i) = min

Xi∈mp(1)(Hε
i ;Vi)

max
x∈Xi

λHε
i
(x+ pi).

Next, let us consider the structure of the set mp(1)(G
ε
tot). In a manner entirely analogous to that

which preceded, we see that there is a bijection

Πk
i=1mp(1)(H

ε
i ;Vi)→ mp(1)(G

ε
tot)

(X1, . . . , Xk) 7→
k⋃
i=1

Xi ∪ {p1, . . . , pk} ∪ Crit(ftot; int supp ftot),

and if X =
⋃k
i=1Xi∪{p1, . . . , pk}∪Crit(ftot; int supp ftot) for Xi ∈ mp(1)(H

ε
i ;Vi), then the fact

that the critical points of ftot are taken to have small action implies similarly to before that we have

max
x∈X
AGεtot(x) = max

i=1,...,k
max
x∈Xi

λGεtot(x+ pi)

= max
i=1,...,k

max
x∈Xi

λHε
i
(x+ pi).
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Taking the minimum of this last expression over all tuples (X1, . . . , Xk) ∈ Πk
i=1mp(1)(H

ε
i ;Vi)

gives

min
X∈mp(1)(Gεtot)

max
x∈X
AGεtot(x) = max

i=1,...,k
min

Xi∈mp(1)(Hε
i ;Vi)

max
x∈Xi

λHε
i
(x+ pi)

= max{cim([Σ];Gε
1), . . . , cim([Σ];Gε

k)},

which proves the claim. �

Corollary 4.4.3. For Σ 6= S2 and any (time-independent) H ∈ C∞(Σ),

cim([Σ];H) = cOS([Σ];H).
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Chapter 5

Application: Positively transverse foliations from
Floer theory

In this chapter, we turn our attention to the structure of the moduli spaces of Floer cylinders for
a Floer regular pair (H,J), and their relation to the capped braid-theoretic topology of P̃ er0(H).
The main result in this chapter is that there is a certain topological condition that one may
place on capped braids formed by collections of elements of P̃ er0(H) — which we call being
maximally unlinked relative the Morse range — such that whenever X̂ ⊂ P̃ er0(H) satisfies this
property, we may construct a singular foliation F X̂of S1 × Σ having singular leaves precisely the
graphs of loops x such that x̂ ∈ X̂ and with regular leaves parametrized by annuli of the form
(s,t) 7→ (t,u(s,t)) for u ∈ M̃(x̂,ŷ;H,J) some Floer cylinder, with x̂, ŷ ∈ X̂ . Owing to the fact
that the regular leaves are parametrized by (projections of the graphs of) Floer cylinders, F X̂ is
positively transverse to the vector field ∂t ⊕ XH , and can be used to induce a singular foliation
F X̂0 on Σ itself, which is positively transverse in the sense of Le Calvez (see Le Calvez’s work in
[16] and [17]). Thus, the results in this chapter may be viewed as a way to construct foliations
of Le Calvez-type by purely Floer-theoretic considerations. Moreover, we show that F X̂0 is a
singular foliation of Morse type, and that F X̂ may be viewed as a Morse-Bott foliation associated
to a finite-dimensional reduction of the action functional AX̂ ∈ C∞(S1 × Σ). This provides
us with Morse-theoretic models for those parts of the Hamiltonian Floer complex lying in the
homologically non-trivial range.

Section 5.1 studies the relationship of M̃(x̂,ŷ;H,J) to the topology of the capped braid {x̂, ŷ} and
deduces conditions under which the maps (s,t) 7→ (t,u(s,t)) ∈ S1×Σ, u ∈ M̃(x̂,ŷ;H,J), provide
a smooth foliation of some subset W (x̂,ŷ) ⊂ S1×Σ. We call W (x̂,ŷ) a foliated sector. That such



moduli spaces can be used to construct such foliated sectors is essentially due to Hofer-Wysocki-
Zehnder in [12] (see also [11]). In an effort to understand how these foliated sectors may be glued
together to form a singular foliation of S1 × Σ, Section 5.2 introduces the notion of capped braids
X̂ ⊂ P̃ er0(H) which are maximally unlinked relative the Morse range, and associates to each
such capped braid a chain complex CF∗(X̂;H,J) which is not quite a subcomplex of CF∗(H,J),
but whose differential counts Floer cylinders which run between orbits in X̂ — equivalently, once
the existence of the singular foliation F X̂ is established, the differential counts the ‘rigid’ leaves
of F X̂ which run between the graphs of orbits of index difference 1. Section 5.3 establishes the
existence of the foliation F X̂ and some of its basic properties, which imply in particular that
CF∗(X̂;H,J) has a Morse-theoretic model, given by a finite-dimensional reduction of the action
functional. Section 5.4 concludes with some novel consequences for the structure of Hamiltonian
isotopies on surfaces, and a short discussion of the relationship between the singular foliations we
produce and those appearing in Le Calvez’s theory of transverse foliations.

5.1. Foliated sectors and Floer moduli spaces as leaf spaces
We begin with some observations on the relationship between the topology of the capped braid

(x̂,ŷ) for x̂,ŷ ∈ P̃ er0(H), and the existence of Floer cylinders running between them.

Lemma 5.1.1. Let (H,J) be an adapted homotopy of Floer data with (H±,J±)

Floer regular. Suppose that x̂± ∈ P̃ er0(H−) ∩ P̃ er0(H+), with x− 6= x+, and
that M(x̂−, x̂+;H,J),M(x̂−,x̂−;H,J), and M(x̂+,x̂+;H,J) are all non-empty, then
b(x̂−;H−) ≤ `(x̂−,x̂+) ≤ a(x̂+;H+).

PROOF. That b(x̂−;H−) ≤ `(x̂−,x̂+) follows from applying Corollary 2.2.11 with
u0 ∈ M(x̂−,x̂+;H,J) and u1 ∈ M(x̂−,x̂−;H,J). The second inequality uses
u1 ∈M(x̂+,x̂+;H,J) instead. �

Applying the preceding lemma in the case where (H,J) is s-independent yields

Corollary 5.1.2. Let (H,J) be Floer regular and suppose that M̃(x̂,ŷ;H,J) 6= ∅, x 6= y, then

b(x̂) ≤`(x̂,ŷ) ≤ a(ŷ).

Applying Lemma 2.2.7 to the constant cylinder u ∈ M̃(x̂′,x̂′;H,J) and v ∈ M̃(x̂,ŷ;H,J) shows

Proposition 5.1.3. Let (H,J) be Floer regular and let x̂, ŷ ∈ P̃ er0(H) with ŷ ∈ supp ∂H,J x̂, then
for all x̂′ ∈ P̃ er0(H), x′ 6∈ {x,y}, we have `(x̂,x̂′) ≤ `(ŷ,x̂′).
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Lemma 2.2.14 combines with Corollary 5.1.2 to give

Corollary 5.1.4. If µ(x̂), µ(ŷ) ∈ {2k−1, 2k, 2k+ 1} for some k ∈ Z and M̃(x̂,ŷ;H,J) 6= ∅, then
`(x̂,ŷ) = −k.

The main geometric input for this section is the following (cf. Theorem 5.6 in [12])

Proposition 5.1.5. Let (H,J) be Floer regular, and x̂,ŷ ∈ P̃ er0(H). If 2k − 1 ≤ µ(x̂),µ(ŷ) ≤
2k + 1, for some k ∈ Z, then the map Ẽv : R × S1 × M̃(x̂,ŷ;H,J) → R × S1 × Σ defined by
Ẽv(s,t,u) := ũ(s,t) = (s,t,u(s,t)) is a diffeomorphism onto its image.

PROOF. We may suppose that M̃(x̂,ŷ;H,J) 6= ∅, or else the proposition is vacuously true. More-
over, if x̂ = ŷ, then the statement is obvious. Thus, we may suppose that µ(x̂) − µ(ŷ) ∈ {1,2}.
We will show that Ẽv is a proper injective immersion. To see that Ẽv is one-to-one, note that
Ẽv(s,t,u) = Ẽv(s′,t′,v) if and only if u 6= v and the graphs of ũ and ṽ intersect over (s,t) = (s′,t′).
Thus, by Lemma 2.2.7 Ẽv fails to be injective only if there exist u,v ∈ M̃(x̂,ŷ;H,J), u 6= v such
that

b(x̂) ≤ `−∞(u,v) < `∞(u,v) ≤ a(ŷ),

The hypothesized constraints on the Conley-Zehnder indices of x̂ and ŷ imply that
µ(x̂) ∈ {2k + 1, 2k} and µ(ŷ) ∈ {2k,2k − 1}, and so by Lemma 2.2.14 we deduce that
b(x̂) = −k = a(ŷ), which contradicts the above inequality. Thus, Ẽv is injective.

That Ẽv is proper essentially follows from compactness results in Floer theory; if
{(sn,tn,un)}n∈N ⊆ R × S1 × M̃(x̂,ŷ;H,J) is some sequence which eventually leaves any
compact set, then either sn → ±∞ and (sn,tn,un) converges to a point on either the graph
x̃(s,t) = (s,t,x(t)) or on the graph ỹ(s,t) = (s,t,y(t)), or (sn)n∈N remains bounded, in which case
(sn,tn,un) must converge to a point on the graph of some broken Floer cylinder between x and y.
In either case, the sequence (sn,tn,un) eventually leaves every compact subset of im Ẽv.

It remains to show that Ẽv is an immersion when µ(x̂)− µ(ŷ) ∈ {1,2}. We note that

T (R× S1 × M̃(x̂,ŷ;H,J)) = T (R× S1)⊕ (ker(DF))|M̃(x̂,ŷ;H,J),

and since dẼv may be computed with respect to this splitting as

(dẼv)(s,t,u)(∂s,∂t,ξ) = (∂s,∂t,ξ(s,t)) ∈ Tũ(s,t)R× S1 × Σ,
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the problem reduces to showing that any ξ ∈ ker(DFH,J)u with ξ 6= 0 is a nowhere-vanishing
vector field along u, where DFH,J denotes the vertical part of the linearized Floer operator. This
follows by combining Proposition 2.2.16 with Corollary 5.1.4 to deduce that Z(ξ) = 0 whenever
ξ is not identically zero. �

Note that as a consequence of the previous lemma, whenever µ(x̂), µ(ŷ) ∈ {2k − 1, 2k, 2k + 1}
for k ∈ Z, then Ẽv(R × S1 × M̃(x̂,ŷ;H,J)) carries a smooth 2-dimensional foliation F̃ x̂,ŷ, the
leaves of which are nothing but the graphs ũ of u ∈ M̃(x̂,ŷ;H,J).

Definition 5.1.6. For x̂,ŷ ∈ P̃ er0(H), the connecting subspace of x̂ and ŷ will denote the sub-
space W (x̂,ŷ) := {(t,u(s,t)) ∈ S1 × Σ : s ∈ R, u ∈ M̃(x̂,ŷ;H,J)}.

Remark that if we write W̃ (x̂,ŷ) := Ẽv(R × S1 × M̃(x̂,ŷ;H,J)), then the map
π̌ : R × S1 × Σ → S1 × Σ restricts to a projection π̌ : W̃ (x̂,ŷ) → W (x̂,ŷ), with fiber
π̌−1(t,p) = {Ẽv(s,t,u) : u(s,t) = p}, which under the hypotheses of Proposition 5.1.5 may
be identified via Ẽv with the orbit of any (s0,t,u0) ∈ R × S1 × M̃(x̂,ŷ;H,J) such that
u0(s0,t) = p under the R-action τ · (s,t,u) = (s− τ,t,uτ ), for τ ∈ R, where uτ (s,t) = u(s+ τ,t).
Consequently, Ẽv descends to a well-defined map Ěv([s,t,u]) = (t,u(s,t)) ∈ W (x̂,ŷ),
[s,t,u] ∈ (R× S1 × M̃(x̂,ŷ;H,J))/R.

Hence, under the hypotheses of Proposition 5.1.5, π̌ restricts to a submersion on W̃ (x̂,ŷ) with fiber
diffeomorphic to R. Moreover, if we choose a section σ :M(x̂,ŷ;H,J)→ M̃(x̂,ŷ;H,J), then we
may thereby (non-canonically) identify

φσ : R× S1 ×M(x̂,ŷ;H,J)
'−→ (R× S1 × M̃(x̂,ŷ;H,J))/R

(s,t,[u]) 7→ [s,t,σ([u])].

Finally, to understand the behaviour of the foliation F̃ x̂,ŷ under this projection, note that ker dπ̌ =

〈∂s〉, and that since the tangent space of any leaf of F̃ is given by 〈∂s+ (∂su)u(s,t), ∂t+ (∂tu)u(s,t)〉,
where ∂su ∈ ker(dF)u, and is therefore nowhere-vanishing whenever u is not an orbit cylinder
by our index constraint. So the leaves of the foliation are nowhere tangent to the fibers of the
projection map whenever x̂ 6= ŷ. As a consequence, we deduce

Corollary 5.1.7. Let x̂,ŷ ∈ P̃ er0(H) satisfy µ(x̂),µ(ŷ) ∈ {2k − 1,2k,2k + 1}, for some k ∈ Z
then for any section σ :M(x̂,ŷ;H,J)→ M̃(x̂,ŷ;H,J), as above,

Ěv ◦ φσ : R× S1 ×M(x̂,ŷ;H,J) 7→ W (x̂,ŷ)

(s,t,[u]) 7→ (t,σ([u])(s,t))
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is a smooth embedding. Moreover, writing σ([u]) = uσ, the partitionF x̂,ŷ := {im ǔσ}[u]∈M(x̂,ŷ;H,J)

is a smooth 2-dimensional foliation of W (x̂,ŷ) whenever x̂ 6= ŷ.

5.2. The restricted complex associated to a capped braid
Let (H,J) be a non-degenerate Floer pair. To any capped braid X̂ ⊆ P̃ er0(H), we may

associate the submodule C∗(X̂) := Λω〈x̂〉x̂∈X̂ of CF∗(H,J), which comes with the projection
πX̂ : CF∗(H,J) → C∗(X̂) associated to any splitting CF∗(H,J) = C∗(X̂) ⊕ C∗(Ŷ ), for Ŷ ⊆
P̃ er0(H) any capped braid such that Per0(H) = X t Y . C∗(X̂) is not generally a subcomplex
of CF∗(H,J), since there is no reason that Floer cylinders should only run between strands of X̂ .
However, we will see that if we define the restricted differential ∂X̂ := πX̂ ◦ ∂H,J , then under
suitable conditions on X̂ ,

CF∗(X̂;H,J) := (C∗(X̂), ∂X̂)

is a chain complex.

5.2.1. Maximal unlinkedness relative the Morse range

Definition 5.2.1. For any capped braid X̂ ⊆ P̃ er0(H), we define

Pos(X̂) := {σ ∈ CF∗(H,J) : ∀γ̂ ∈ supp σ,∀x̂ ∈ X̂, `(x̂,γ̂) ≥ 0},

Pos∗(X̂) := {σ ∈ Pos(X̂) : ∀γ̂ ∈ supp σ,∃x̂ ∈ X̂, such that `(x̂, γ̂) > 0}.

We define Neg(X̂) and Neg∗(X̂) in the obvious manner simply by reversing the inequalities in
the above.

Definition 5.2.2. Let X̂ ⊆ P̃ er0(H) be a capped braid for some Hamiltonian H . X̂ will be said
to be maximally unlinked if it is unlinked and if for any ŷ ∈ P̃ er0(H) either ŷ ∈ X̂ or ŷ and X̂
are linked. We write mu(H) for the collection of all such capped braids.

Definition 5.2.3. Let X̂ ⊆ P̃ er0(H) be a capped braid for some Hamiltonian H . X̂ of X will be
said to be maximally unlinked relative the Morse range X̂ is unlinked, µ(x̂) ∈ {−1,0,1} for all
x̂ ∈ X̂ , and moreover if for any ŷ ∈ P̃ er0(H) such that µ(ŷ) ∈ {−1,0,1}, either ŷ ∈ X̂ or ŷ and
X̂ are linked. We write murm(H) for the collection of all capped braids X̂ ⊆ P̃ er0(H) which are
maximally unlinked relative the Morse range.

The next lemma is a direct consequence of the definitions.
Lemma 5.2.4. Let X̂ ⊆ P̃ er0(H) be an unlinked braid, then Pos∗(X̂), Neg∗(X̂) ⊆ kerπX̂ .
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The following situation will occur frequently enough that it will be useful to isolate it as a
Lemma 5.2.5. Let (H±,J±) be Floer regular, (H,J) ∈ HJ , and x̂i ∈ P̃ er0(H−) ∩ P̃ er0(H+),
i = 1, . . . k. Suppose that µ(x̂1) ∈ {0,1}, X̂ = (x̂1, . . . ,x̂k) is unlinked, and ui ∈ M(x̂i,x̂i;H,J)

for i = 1, . . . ,k. If there exists v ∈ M(x̂1,x̂
+;H,J), with x̂+ ∈ P̃ er0(H+) such that X̂ ∪ {x̂+} is

linked, then x̂+ ∈ Pos∗(X̂).

PROOF. Note that we have 0 = `(x̂1,x̂i) ≤ `(x̂+,x̂i) for i = 2, . . . , k by Lemma 2.2.7 and
0 = b(x̂1) ≤ `(x̂1,x̂

+) by Lemma 5.1.1, so we need only show that `(x̂+,x̂i) > 0 for some
i = 1, . . . , k. We write h(s) = (u1

s, . . . , u
k
s ,vs), s ∈ R. h does not induce a braid cobordism,

because u1 and v degenerate to the same orbit as s→ −∞, however Lemma 2.2.7 implies that for
R > 0 sufficiently large, h|(−R,∞) induces a braid cobordism from X̂ ∪ {v̂−R} to X̂ ∪ {ŷ}. Since
b(x̂1) ≥ 0, there are two possibilities: either 0 < `−∞(u1,v), or `−∞(u1,v) = 0. In the former
case, Lemma 2.2.7 immediately implies that 0 < `∞(u1,v) = `(x̂1,x̂

+), and we are done.

We may therefore assume that `−∞(u1,v) = 0. In this case, X̂ ∪ {v̂−R} is unlinked. Indeed by
Corollary 2.2.5, R > 0 may be chosen such that ṽ has no intersections with ũi, i = 1, . . . , k

for s < −R, and the property of being unlinked is invariant under 0-homotopies, so X̂ ∪ {v̂−R}
is unlinked only if {x̂1, v̂−R} is unlinked. But we may take R > 0 sufficiently large such
that v̂−R ∈ L̃0(Σ) lies in an exponential neighbourhood of x̂1, and in this neighbourhood the
homological linking number reduces to the classical winding number by Proposition 1.3.4, and
so that {x̂1, v̂−R} is unlinked follows directly from the fact that the winding number classifies
homotopy classes of loops into R2 \ 0.

Thus, X̂∪{v̂−R} is unlinked, while X̂∪{x̂+} is linked, whence the graphs of some of the strands of
h must intersect. Since `−∞(ui,uj) = `∞(ui,uj) = `(x̂i,x̂j) = 0 for i 6= j, it follows from Lemma
2.2.7 that the graphs of ui and uj are disjoint for i 6= j. Thus, there exists some i = 1, . . . , k such
that the graphs of ui and v intersect, so 0 < `∞(ui,v) = `(x̂i,x̂

+), as claimed. �

Lemma 5.2.6. Let X̂ ∈ murm(H), then for all x̂ ∈ X̂ , ∂H,J x̂ ∈ Z2〈x̂〉x̂∈X̂ ⊕ Pos∗(X̂).

PROOF. Let x̂ ∈ X̂ , and ŷ ∈ supp ∂H,J x̂. Either µ(x̂) = −1 or µ(x̂) ∈ {0,1}. If µ(x̂) = −1,
then b(x̂) = 1 and so Corollary 5.1.2 implies that 1 ≤ `(x̂,ŷ) while Proposition 5.1.3 implies that
0 ≤ `(x̂′,ŷ) for all x̂′ ∈ X̂ , x̂′ 6= x̂, and so ŷ ∈ Pos∗(X̂). If µ(x̂) ∈ {0,1}, then Corollary 5.1.2 and
Proposition 5.1.3 imply that 0 ≤ `(x̂′,ŷ) for all x̂′ ∈ X̂ . To see that ŷ ∈ X̂ ∪ Pos∗(X̂), note that
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either X̂ ∪ {ŷ} is unlinked, in which case ŷ ∈ X̂ by the maximality of X̂ , or X̂ ∪ {ŷ} is linked, in
which case Lemma 5.2.5 directly implies that ŷ ∈ Pos∗(X̂). �

Proposition 5.1.3 immediately implies

Lemma 5.2.7. Let X̂ ⊆ P̃ er0(H) be any capped braid, then ∂H,JPos∗(X̂) ⊆ Pos∗(X̂).

Theorem 5.2.8. Let X̂ ∈ murm(H), thenCF∗(X̂;H,J) is a chain complex. That is, ∂X̂ ◦∂X̂ = 0.

PROOF. First, consider that Σ is either an aspherical surface, in which case Λω = Z2, or else a
sphere, in which case Σ has minimal Chern number 2, and so in this case CF∗(X̂;H,J) vanishes
in any degree congruent to 2 mod 4. Thus, by the Λω-equivariance of the Floer boundary map, it
suffices in all cases to prove that (∂X̂)2 vanishes in the Morse range. To wit, by the previous two
lemmas, we see that for any x̂ ∈ X̂ ,

∂H,J x̂ = ∂X̂ x̂+ (πPos
∗(X̂) ◦ ∂H,J)(x̂),

where πPos∗(X̂) denotes projection onto Pos∗(X̂). Thus, since ∂2
H,J = 0, (∂X̂)2x̂ + σ = 0, where

σ ∈ Pos∗(X̂). It follows that (∂X̂)2x̂ = 0. �

We will write HF∗(X̂;H) for the homology of the complex CF∗(X̂;H,J) when X̂ ∈ murm(H).

5.2.2. Dominating Morse functions and dominating homotopies

Throughout this section, let (H,J) be a fixed Floer regular pair.

Definition 5.2.9. Let X̂ = {x̂1, . . . , x̂k} ⊆ P̃ er0(H). We will say that a C2-small Morse function
f ∈ C∞(Σ) is X̂-dominating if there exist cappings wi : D2 → Σ for xi, i = 1, . . . ,k such that

(1) wi(0) 6= wj(0) for i 6= j,
(2) wi(0) ∈ Crit(f), for each i = 1, . . . , k and
(3) µCZ(ŵi(0); f) = µCZ(x̂i;H) for i = 1, . . . , k, where ŵi(0) denotes the trivially capped

constant orbit of f based at wi(0).
The point pi := wi(0) ∈ Crit(f), will be called the corresponding critical point of x̂i ∈ X̂ for
i = 1, . . . ,k.

Remark. (1) Remark that the C2-smallness condition on f in the definition of of X̂-
dominating functions forces

µCZ(ŵi(0); f) = µCZ(x̂i;H) ∈ {−1, 0,1}

for i = 1, . . . ,k.
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(2) It is obvious that X̂-dominating Morse functions exist for any X̂ ⊂ P̃ er0(H) such that
µ(x̂) ∈ {−1,0,1} for all x̂ ∈ X̂ . Indeed, take any 0-cobordism from a trivial capped
k-braid to X̂ and use local models for Morse critical points to introduce critical points
with the desired index at the points which are the images of the constant orbits making up
the trivial k-braid in question. Of course, there is no reason that a X̂-dominating Morse
function should have all its critical points arising in such a way (although we shall see these
latter functions exist when X̂ ∈ murm(H)).

Definition 5.2.10. Let X̂ = {x̂1, . . . , x̂k} ⊂ P̃ er0(H). We will say that an adapted homotopy of
Floer data (H,J) is X̂-dominating (as a homotopy to (H,J)) if there exists a Floer regular pair
(f,J−) for f a X̂-dominating Morse function such that

(1) (H,J) ∈HJ reg(f,J
−;H,J), and

(2) M(p̂i,x̂i;H,J) 6= ∅ for each i = 1, . . . , k, where here p̂i is the trivially capped critical point
of f corresponding to x̂i.

Whenever f is a X̂-dominating Morse function, and (f,J−) is Floer regular, we will write
HJ X̂(f,J−;H,J) for the set of all X̂-dominating homotopies from (f,J−) to (H,J).

Similarly, we will say that (H,J) is X̂-dominating (as a homotopy from (H,J)) if there exists a
Floer regular pair (f,J+) for f a X̂-dominating Morse function such that

(1) (H,J) ∈HJ reg(H,J ; f,J+), and
(2) M(x̂i,p̂i;H,J) 6= ∅ for each i = 1, . . . , k.

Whenever f is a X̂-dominating Morse function, and (f,J+) is Floer regular, we will write
HJ X̂(H,J ; f,J+) for the set of all X̂-dominating homotopies from (H,J) to (f,J+).

Proposition 5.2.11. Let X̂ ⊂ P̃ er0(H).
(1) There exist X̂-dominating homotopies of Floer data to (H,J) if and only if X̂ is a positive

capped braid and µ(x̂) ∈ {−1,0,1} for all x̂ ∈ X̂ .
(2) There exist X̂-dominating homotopies of Floer data from (H,J) if and only if X̂ is a neg-

ative capped braid and µ(x̂) ∈ {−1,0,1} for all x̂ ∈ X̂ .

PROOF. It is obviously a necessary condition for the existence of a X̂-dominating homotopy of
Floer data that X̂ be a positive capped braid and have all strands lying in the Morse range. Let us
show that it is sufficient.
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Let X̂ ⊂ P̃ er0(H) be a positive capped braid and suppose that all strands lie in the Morse range.
Since all strands of X̂ lie in the Morse range, there exists a X̂-dominating Morse function. More-
over, since X̂ is a positive capped braid, we may assume that the capping disks wi appearing in the
definition of a X̂-dominating Morse function are such that for i = 1, . . . ,k, the maps

vi(s,t) := wi(se
2πit), (s,t) ∈ [0,1]× S1

define a positive 0-cobordism from {ŵ1(0), . . . , ŵk(0)} to X̂ and that for i = 1, . . . , k the maps

ui(s,t) :=


vi(0,t), (s,t) ∈ (−∞,0)× S1,

vi(s,t), (s,t) ∈ [0,1]× S1,

vi(1,t), (s,t) ∈ (1,∞)

define a pre-model for a continuation cobordism from (f,J−) to (H,J) for J− ∈ C∞(S1;J (Σ,ω))

such that (f,J−) is Floer regular. By Corollary 3.3.4, it follows that a X̂-dominating homotopy to
(H,J) exists. The proof of the second point is entirely dual to the preceding proof. �

Remark. Note that if X̂ ⊂ P̃ er0(H) is unlinked and has all strands in the Morse range, then
X̂-dominating homotopies exist both to and from (H,J).

Proposition 5.2.12. Let (H,J) be Floer regular and suppose that X̂ ∈ murm(H). If (H,J) ∈
HJ X̂(f,J−;H,J), then the continuation map

hH : CF ∗(f,J−)→ CF ∗(H,J)

satisfies the following.
(1) For all x̂i ∈ X̂(1) ∪ X̂(−1), hH(p̂i) = x̂i + σ, where supp σ ⊆ Pos∗(X̂).
(2) For all q̂ ∈ P̃ er0(f) \ {p̂1, . . . , p̂k} with µ(q̂) = 1, hH(q̂) ∈ Pos∗(X̂).
(3) For all q̂ ∈ P̃ er0(f) \ {p̂1, . . . , p̂k} with µ(q̂) = −1, hH(q̂) ∈ Z2〈x̂〉X̂(−1)

⊕ Pos∗(X̂).

(4) For all q̂ ∈ P̃ er0(f) with µ(q̂) ∈ {−1,0, 1}, hH(q̂) ∈ Z2〈x̂〉x̂∈X̂ ⊕ Pos∗(X̂).

PROOF. We write X̂ = {x̂1, . . . , x̂k}. To prove (1) note that since (H,J) is X̂-dominating, for
each x̂i ∈ X̂(1) ∪ X̂(−1) has

M(p̂i,x̂i;H,J) 6= ∅.

By Corollary 2.2.15, this implies that |M(p̂i,x̂i;H,J)| = 1.
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Next, consider x̂j ∈ X̂ , i 6= j having µ(x̂j) = µ(x̂i) and suppose that

M(p̂i,x̂j;H,J) 6= ∅.

If µ(x̂i) = µ(x̂j) = 1, then we consider u ∈M(p̂j,x̂j;H,J) and v ∈M(p̂i,x̂j;H,J). We note that

0 = `−∞(u,v) ≤`∞(u,v) ≤ b(x̂j) = −1,

which gives a contradiction. If µ(x̂i) = µ(x̂j) = −1, then we consider u ∈ M(p̂i,x̂i;H,J) and
v ∈M(p̂i,x̂j;H,J). We then obtain

1 = a(p̂i) ≤ `−∞(u,v) ≤ `∞(u,v) = `(x̂i,x̂j) = 0,

another contradiction. So all such moduli spaces are empty.

Finally, let ŷ ∈ P̃ er0(H) \ X̂ have µ(ŷ) = µ(x̂i) and suppose that

M(p̂i,x̂j;H,J) 6= ∅.

In this case, Lemma 5.2.5 implies that ŷ ∈ Pos∗(X̂). This proves (1).

To prove item (2),let x̂i ∈ X̂ have µ(x̂i) = µ(q̂) = 1 and suppose that

M(q̂,x̂i;H,J) 6= ∅.

Let u ∈ M(p̂i,x̂i;H,J) and v ∈ M(q̂,x̂i;H,J) arguing as we have above together with the facts
that `(q̂,p̂i) = 0 while b(x̂i) = −1 gives a contradiction, so all such moduli spaces are empty. If
M(q̂,ŷ;H,J) 6= ∅, then taking v ∈M(q̂,ŷ;H,J) and for each x̂i ∈ X̂ , letting ui ∈M(p̂i,x̂i;H,J),
we see that {ui}ki=1 ∪ {v} is a regular model for a cobordism from (f,J−) to (H,J), and so in
particular induces a positive cobordism. That `(x̂i,ŷ) > 0 for some i = 1, . . . ,k follows from the
fact that since X̂ ∈ murm(H) and µ(ŷ) = 1, X̂ ∪{ŷ} is linked, and so the above cobordism must
have some intersections.

The proof of (3) is word-for-word the same as the proof of the proof of (2), only in this case, it is
possible that moduli spaces of the formM(q̂,x̂i;H,J) are non-empty for x̂i ∈ X̂(−1).

To prove item (4), we note first that items (1) - (3) suffice to establish (4) in the event that
µ(q̂) = ±1, so we can, and do, assume that µ(q̂) = 0. Let γ̂ ∈ P̃ er0(H) \ X̂ and suppose
that M(q̂,γ̂;H,J) 6= ∅. We will show that γ̂ ∈ Pos∗(X̂). There are two cases: either q̂ = p̂i

for some x̂i ∈ X̂(0), or else q̂ 6= p̂i for any such x̂i. Let us first suppose that q̂ = p̂i for some
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x̂i ∈ X̂(0). In this case, Lemma 5.2.5 immediately gives that γ̂ ∈ Pos∗(X̂). If q̂ 6= p̂i for any
x̂i ∈ X̂(0) then consideration of the braid cobordism between the unlinked capped braid X̂ ∪ {q̂}
and the linked capped braid X̂ ∪{γ̂} given {ui}ki=1∪{v} for ui ∈M(p̂i,x̂i;H,J), i = 1, . . . ,k and
v ∈M(q̂,γ̂;H,J), yields (since X̂ is maximally unlinked relative the Morse range and so X̂ ∪{γ̂}
is linked) that the graph of v in R× S1 × Σ must intersect the graph of some ui at least once, and
any intersections may only contribute positively to the change in linking number as all the maps
solve Equation 2.1.2 for (H,J). Consequently, γ̂ ∈ Pos∗(X̂). �

Proposition 5.2.13. If (H′,J′) ∈ HJ X̂(H,J ; f,J−), then σ ∈ kerhH′ for all σ ∈ Pos∗(X̂) such
that

−N + 1 ≤ µ(γ̂) ≤ N − 1, ∀γ̂ ∈ supp σ.

(Here N denotes the minimal Chern number of the surface).

PROOF. Remark that if µ(γ̂) satisfies the stated bounds, then the only moduli spaces that may
contribute to hH′ are of the form M(γ̂,q̂;H′,J′) for q̂ a trivially capped critical point of f . We
claim that when γ̂ ∈ Pos∗(X̂), then M(γ̂,q̂;H′,J′) = ∅ for all such q ∈ Crit(f). Indeed,
suppose for a contradiction that there exists u ∈ M(γ̂,q̂;H′,J′) for some q ∈ Crit(f). Since
γ̂ ∈ Pos∗(X̂), there exists some x̂i ∈ X̂ such that `(x̂i, γ̂) > 0. Moreover, by hypothesis, (H′,J′)
is X̂-dominating, and so there exists v ∈M(x̂i,p̂i;H′,J′). Consequently

0 < `(x̂i,γ̂) = `−∞(v,u) ≤ `∞(v,u),

but either p̂i 6= q̂, in which case `∞(v,u) = `(p̂i,q̂) = 0, or else p̂i = q̂, in which case
`∞(v,u) ≤ a(p̂i) and a(p̂i) ≤ 0, since µ(p̂i) ∈ {−1,0,1}. In either case, `∞(v,u) ≤ 0, which
gives a contradiction. �

Proposition 5.2.14. (1) Let (H,J) ∈HJ X̂(f,J−;H,J), then the map πX̂ ◦hH is a morphism
of chain complexes.

(2) Let (H′,J′) ∈ HJ X̂(H,J ; f,J+), then the map hH′|CF∗(X̂;H,J) is a morphism of chain
complexes.

PROOF. As in the proof of Theorem 5.2.8, it suffices to prove that the maps are chain maps in
the Morse range. Attending first the map πX̂ ◦ hH, we therefore consider p̂ ∈ P̃ er0(f)(k) for k ∈
{−1, 0,1}. We note that hH(p̂) ∈ Z2〈x̂〉x̂∈X̂⊕Pos∗(X̂) by Proposition 5.2.12 and ∂H,JPos∗(X̂) ⊆

103



Pos∗(X̂) ⊆ kerπX̂ by Lemmas 5.2.4 and 5.2.7. Consequently, we see that

(∂X̂ ◦ hH)(p̂) = (∂X̂ ◦ πX̂ ◦ hH)(p̂) + (∂X̂ ◦ πPos∗(X̂) ◦ hH)(p̂)

= (∂X̂ ◦ πX̂ ◦ hH)(p̂) + (πX̂ ◦ ∂H,J+ ◦ πPos∗(X̂) ◦ hH)(p̂)

= (∂X̂ ◦ πX̂ ◦ hH)(p̂)

Thus, since hH is a chain map with respect to the full Floer differential, we compute

(πX̂ ◦ hH)(∂f,J− p̂) = (πX̂ ◦ ∂H,J+)(hH(p̂)) =(∂X̂ ◦ hH)(p̂) = ∂X̂((πX̂ ◦ hH)(p̂)),

which shows that πX̂ ◦ hH is a chain map.

To see that hH′|CF∗(X̂;H,J) is a chain map, consider x̂ ∈ X̂ . It will suffice by the Λω-equivariance
of Floer continuation maps to show that

hH′(∂
X̂ x̂) = (∂f,J− ◦ hH′)(x̂).

Using the fact that hH′ is a chain map with respect to the usual Floer differential and that

∂H,J x̂ = ∂X̂ x̂+ σ,

for σ ∈ Pos∗(X̂), we compute

(∂f,J− ◦ hH′)(x̂) = hH′(∂H,J x̂)

= hH′(∂
X̂ x̂) + hH′(σ).

Note that σ ∈ CFk(H,J) for k ∈ {0,− 1,− 2}. If k = −2, then hH′(σ) = 0, as CF−2(f,J−) = 0,
while if k ∈ {0, − 1}, then since σ ∈ Pos∗(X̂), Proposition 5.2.13 implies that hH′(σ) = 0. In
either case, we see that

(∂f,J− ◦ hH′)(x̂) = hH′(∂
X̂ x̂),

as desired. �

Lemma 5.2.15. For any (H,J) ∈ HJ X̂(f,J−;H,J) and any (H′,J′) ∈ HJ X̂(H,J ; f,J+), the
map hH′ ◦ (πX̂ ◦ hH) induces the identity map on homology.

PROOF. Once more, it suffices to show that hH′ ◦ (πX̂ ◦hH) induces an isomorphism on homology
in degrees lying in the Morse range. Since, for any p̂ ∈ CFk(f,J−), with k ∈ {−1,0,1}, we have
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that hH(p̂) ∈ Z2〈x̂〉x̂∈X̂ ⊕ Pos∗(X̂), and Pos∗(X̂) ⊆ kerπX̂ ∩ kerhH′ , so we compute

(hH′ ◦ hH)(p̂) = hH′((π
X̂ ◦ hH)(p̂) + (πPos

∗(X̂) ◦ hH)(p̂))

= (hH′ ◦ πX̂ ◦ hH)(p̂)

= hH′|CF∗(X̂;H,J+) ◦ (πX̂ ◦ hH)(p̂).

But it is a standard fact in Floer theory that hH′ ◦ hH induces the identity map on homology, and
so it must be that case that the composition

HFk(f)
(πX̂◦hH)∗−−−−−−→HFk(X̂;H)

(hH′ )∗−−−−→ HFk(f)

is the identity map for k ∈ {−1,0,1}. �

We will use the above fact to bootstrap ourselves into a much finer-grained understanding of the
structure of CF∗(X̂;H,J) in the coming section.

5.3. Construction and properties of F X̂

The purpose on this section is to prove the existence of the foliation in the following theorem.

Theorem 5.3.1. Let H ∈ C∞(S1 × Σ) be a non-degenerate Hamiltonian, and let
J ∈ C∞(S1;Jω(Σ)) be such that (H,J) is Floer regular. For any capped braid X̂ ∈ murm(H),
we may construct an oriented singular foliation F X̂ of S1 × Σ with the following properties

(1) The singular leaves of F X̂ are precisely the graphs of the orbits in X̂ .
(2) The regular leaves are annuli parametrized by maps

ǔ : R× S1 → S1 × Σ

(s,t) 7→ (t,u(s,t)).

for u ∈ M̃(x̂,ŷ;H,J), for x̂, ŷ ∈ X̂ .
(3) The vector field X̌H(t,z) = ∂t ⊕ XH

t (z) is positively transverse to every regular leaf of
F X̂ .

The positive transversality property will be established in Section 5.3.2. Our construction of the
singular foliation in Theorem 5.3.1 proceeds by establishing that a generic point in S1 × Σ lies
inside the foliated sector W (x̂,ŷ) for some x̂ ∈ X̂(1),ŷ ∈ X̂(−1). The remaining points lie in the
closure of these sectors, and so lie either on leaves parametrized by broken cylinders, or the graphs
of orbits in X . To establish existence of the requisite leaves, we make use of the cap action of a
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point on the Floer complex, first introduced in detail in [15] (see also [25]).

Given a singular homology class α ∈ Hk(M ;Z2), we represent α by a smooth cycle α# : ∪∆k →
M , and for any (H,J) and any t ∈ S1, we may consider, for any x̂, ŷ ∈ P̃ er0(H), the moduli
space

Mα#,t(x̂,ŷ;H,J) := {u ∈ M̃(x̂,ŷ;H,J) : u(0,t) ∈ im α#}.

For t ∈ S1, we will say that the smooth chain α# is (H,J ; t)-generic when the evaluation map
evt(u,q) := (u(0,t),α#(q)) ∈M×M , (u,q) ∈ M̃(x̂,ŷ;H,J)×∪∆k, is transversal to the diagonal
whenever µ(x̂) − µ(ŷ) ≤ (2n − k) + 1. Such chains form a residual set for fixed H if we permit
generic perturbations of J , and in such a case we define the cap product of α on HF∗(H) (at time
t) at the chain level by defining, for x̂ ∈ P̃ er0(H),

α# ∩t x̂ :=
∑

ŷ∈P̃ er0(H):
µ(x̂)−µ(ŷ)=2n−k

nα
#,t(x̂,ŷ)ŷ,

where nα#,t(x̂,ŷ) is the mod 2 count of the number of elements in Mα#,t(x̂,ŷ;H,J). The cap
action descends to homology, and is independent at the homology level of all choices. Moreover,
for generic adapted homotopies of Floer data, the cap action commutes with continuation maps at
the chain level. That is, for generic (H,J) we have

hH(α# ∩t x̂) = α# ∩t hH(x̂), (5.3.1)

whenever the Floer pairs (H±,J±) at the ends of the homotopy are such that the relevant moduli
spaces are transversal. It follows from the above that, under the identification of HF∗(H) with
QH∗+n(M), the cap action on HF∗(H) is identified with the standard cap action of the homology
of M on its quantum homology.
A rather important point for us will be that the cap action interacts nicely with respect to the chain
maps πX̂ ◦ hH and hH′ |CF∗(X̂;H,J) introduced in the previous section.

Proposition 5.3.2. Let X̂ ∈ murm(H), (H, J) ∈ HJ X̂(f,J−;H,J), (H′,J ∈
HJ X̂(H,J ; f,J+) and suppose that α# represents α as above and α# is both (H,J; t)-generic
and (H′,J′; t)-generic, then

(πX̂ ◦ hH)(α# ∩t p̂) = πX̂(α# ∩t (πX̂ ◦ hH)(p̂)), ∀p̂ ∈ P̃ er0(f) and (5.3.2)

(hH′ ◦ πX̂)(α# ∩t πX̂(ŷ)) = α# ∩t (hH′ ◦ πX̂)(ŷ), ∀ŷ ∈ P̃ er0(H) (5.3.3)
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PROOF. A straightforward computation shows that the map induced by capping with a smooth
cycle α# at time t is Λω-equivariant at the chain level, in the sense that for any A ∈ Γω

α# ∩t (eA · x̂) = eA · (α# ∩t x̂).

Since the maps πX̂ and hH are also Λω-equivariant and f is by hypothesis C2-small, so that

CF∗(f,J
−) = Crit(f)⊗ Λω,

as Λω-modules, we may reason similarly as in the proof of Theorem 5.2.8, and reduce to the
case where µ(p̂) ∈ {−1,0,1} (since any q̂ ∈ P̃ er0(f) may be written as eA · p̂ for some p̂ with
Conley-Zehnder index in the Morse range, and so if the desired relations hold in the Morse range,
then by Λω-equivariance of the involved maps, the desired relations hold for all q̂ ∈ P̃ er0(f)).
Thus, we may, and do, suppose going forward that µ(p̂) ∈ {−1, 0,1}.

Note that Proposition 5.2.12 implies that we may write hH(p̂) = σ + β for σ ∈ CF∗(X̂;H,J) and
β ∈ Pos∗(X̂), so that the right-hand side of (5.3.2) may be computed as

πX̂(α# ∩t (πX̂ ◦ hH)(p̂)) = πX̂(α# ∩t πX̂(σ + β))

= πX̂(α# ∩t σ).

In order to establish that this agrees with the quantity on the left-hand side of (5.3.2), the cen-
tral point is to remark that capping with α# preserves Pos∗(X̂), because linking in the Floer
complex is non-decreasing along Floer cylinders. Indeed, if ŷ ∈ Pos∗(X̂) and there exists
u ∈ Mα#,t(ŷ,ŷ′;H,J) for some ŷ′ ∈ P̃ er0(H), then for each x̂ ∈ X̂ , Lemma 2.2.7 with
v(s,t) = x(t) implies that `(ŷ,x̂) ≤ `(ŷ′,x̂). Thus α# ∩t β ∈ Pos∗(X̂) and the left-hand side
of (5.3.2) may be computed as

(πX̂ ◦ hH)(α# ∩t p̂) =πX̂(α# ∩t σ + α# ∩t β) = πX̂(α# ∩t σ),

where we use Lemma 5.2.4 in the last equality. This establishes Equation (5.3.2). Equation (5.3.3)

is proved similarly, needing only the additional remark that for x̂ ∈ X̂ , α# ∩t x̂ ∈ Z2〈x̂〉x̂∈X̂ ⊕
Pos∗(X̂), which follows by the same reasoning as above, using that b(x̂) ≥ 0 when µ(x̂) lies in
the Morse range. �

The following proposition is essentially tautological.

Proposition 5.3.3. Let (H,J) be Floer regular, t ∈ S1, and suppose that p ∈ Σ is (H,J ; t)-
generic (for the point class in homology). Then p ∈ W (x̂,ŷ) implies that µ(x̂) − µ(ŷ) ≥ 2, and
ŷ ∈ supp (p ∩t x̂) if and only if (t,p) ∈ W (x̂,ŷ).
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Combining the above with Corollary 5.1.7, allows us to conclude

Corollary 5.3.4. Suppose that µ(x̂) = 2k + 1 for k ∈ Z and p is (H,J ; t)-generic, then ŷ ∈
supp (p∩t x̂) if and only if there exists an open neighbourhood of (t,p) ∈ S1×Σ which is foliated
by leaves of F x̂,ŷ.

Recall from Section 5.1 that W (x̂,ŷ) = {(t,u(s,t)) ∈ S1 × Σ : u ∈ M̃(x̂,ŷ;H,J)}, and write
W(X̂) for the union of all W (x̂,ŷ) where x̂ ∈ X̂(1), ŷ ∈ X̂(−1).
Lemma 5.3.5. Let (H,J) be Floer regular and X̂ ∈ murm(H), thenW(X̂) is open and dense in
S1 × Σ.

PROOF. Let (H,J) ∈ HJ X̂(f,J−;H,J). We fix t ∈ S1 arbitrarily and let p ∈ Σ be (H,J; t)-
generic. We let σ ∈ CF1(f,J−) represent the fundamental class [Σ] ∈ QH2(Σ) ' HF1(f), and
we note that we must have [p ∩t σ] = [pt] ∈ QH0(Σ), which is in particular not 0. But Lemma
5.2.15 implies that (πX̂ ◦ hH)∗ is injective on homology, and so

0 6= (πX̂ ◦ hH)(p ∩t σ) = πX̂(p ∩t (πX̂ ◦ hH)(σ)),

and this implies that for every such generic p, there must exist some x̂ ∈ supp (πX̂ ◦hH)(σ) ⊆ X̂(1)

and some ŷ ∈ X̂(−1) such that ŷ ∈ supp p ∩t x̂. Hence for every t ∈ S1, there is a generic set of
p ∈ Σ such that p is (H,J; t)-generic and so (t,p) lies inside the open 3-dimensional connecting
submanifold W (x̂,ŷ) for some such x̂, ŷ ∈ X̂ , which proves the lemma. �

Lemma 5.3.6. Let (H,J) be Floer regular, and X̂ ⊆ P̃ er0(H) any unlinked capped braid. Then
for any γ̂ ∈ P̃ er0(H) such that M(x̂+,γ̂;H,J) × M(γ̂,x̂−;H,J) 6= ∅ for some x̂+ ∈ X̂(1),
x̂− ∈ X̂(−1), X̂ and γ̂ are unlinked.

PROOF. Suppose that X̂ ∪ {γ̂} is linked, then Lemma 5.2.5 implies that γ̂ ∈ Pos∗(X̂), and so
`(γ̂,x̂) > 0 for some x̂ ∈ X̂ , but then Proposition 5.1.3 implies that `(x̂−,x̂) > 0, which contradicts
the assumption that X̂ is unlinked. �

Inductively applying Lemma 5.3.6 yields

Corollary 5.3.7. Suppose that (H,J) is Floer regular, and let X̂ ⊆ P̃ er0(H) be such that X̂
is unlinked and X̂ = X̂(1) ∪ X̂(−1), then X̂ and Υ̂ are unlinked, where Υ̂ is the capped braid
consisting of all γ̂ ∈ P̃ er0(H) with µ(γ̂) = 0 such that M(x̂+,γ̂;H,J) ×M(γ̂,x̂−;H,J) 6= ∅,
x̂± ∈ X̂ .
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Finally, we are ready to prove the existence of the advertised foliation. We write

MH,J(X̂) :=
⋃

x̂,ŷ∈X̂

M(x̂,ŷ;H,J).

Note that we include the case where x̂ = ŷ in the above union. In such a case [u] ∈ M(x̂,x̂;H,J)

may simply be identified with the loop x.

Theorem 5.3.8 (Existence part of Theorem 5.3.1). Let (H,J) be a non-degenerate Floer pair,
and X̂ ∈ murm(H), then the collection of submanifolds F X̂ := ∪[u]∈MH,J (X̂){im ǔ} forms a
Stefan-Sussmann foliation of S1 × Σ.

PROOF. We adapt a strategy used in [11] that shows that the foliation F̃ X̂ with leaves given by the
graphs ũ of all the u ∈ M̃(x̂,ŷ;H,J), x̂,ŷ ∈ X̂ , is a smooth 2-dimensional foliation if R×S1×Σ,
from which it follows immediately that F X̂ is a Steffan-Sussmann foliation. Indeed, in this event,
F X̂ integrates the distribution DX̂ = π̌∗D̃X̂ , where D̃X̂ is the distribution integrated by F̃ X̂ , and
this realizes DX̂ in a way that is manifestly smooth in the sense of generalized distributions (see
Definition 5.5.2).

To see that F̃ X̂ is a smooth foliation, note that by Lemma 5.3.5, the setW(X̂) is open and dense
in S1 × Σ. This implies, by the R-invariance of solutions to Equation 2.1.1, that the set of points
W̃ (X̂) lying on the graph ũ of some u ∈ M̃(x̂,ŷ;H,J), x̂ ∈ X̂(1), ŷ ∈ X̂(−1) is open and dense in
R×S1×Σ. Consequently, the partition

⋃
F̃ x̂,ŷ, where the union runs over all x̂ ∈ X̂(1), ŷ ∈ X̂(−1),

gives a smooth foliation of an open, dense set of R×S1×Σ. Consequently we may argue just as in
[11] in the paragraphs following the proof of lemma 6.10 (p. 231-232); all of the remaining leaves
in F̃ X̂ are graphs of constant orbits or of cylinders uwhich connect orbits of index difference equal
to 1. In either case, by standard compactness theorems of Floer theory those graphs which form
the leaves of the foliation of W̃(X̂) converge modulo reparametrization in the C∞loc-topology either
to the graphs (s,t) 7→ (s,t,x(t)) of the orbits x for x̂ ∈ X̂ , or to graphs of cylinders connecting
orbits of index difference 1, which come in pairs (u,v) ∈ M̃(x̂,γ̂;H,J) × M̃(γ̂,ŷ;H,J), x̂ ∈
X̂(1), γ̂ ∈ X̂(0), ŷ ∈ X̂(−1). By Corollary 5.3.7 and Lemma 5.3.6, the capped braid formed by the
collection of all the γ̂ ∈ P̃ er0(H) on which such pairs break are unlinked with X̂ , and so lie in
X̂ by maximality. Consequently, the graphs of such broken trajectories cannot intersect, nor can
they intersect any leaf of F̃ X̂ in the dense set W̃(X̂). Since every point in R× S1 × Σ lies in the
closure of W̃(X̂), every such point much lie on the graph of an orbit in X or the graph of such a
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broken cylinder. It follows that the union of all the leaves in F̃ X̂ thus fits together into a smooth
foliation on all of R× S1 × Σ, and so the theorem follows. �

5.3.1. F X̂ as negative gradient flow-lines of the restricted action functional

For X̂ ∈ murm(H), denote

MX̂ = MX̂;H,J := {α̂ ∈ L̃0(Σ) : ∃x̂, ŷ ∈ X̂,∃u ∈ M̃(x̂,ŷ;H,J), such that ûs = α̂, for some s ∈ R}

Proposition 5.3.9. The map Ev : S1 × MX̂ → S1 × Σ, given by Ev(t,α̂) = (t,α(t)) is a
diffeomorphism.

PROOF. The generalized distributionDX̂(t,u(s,t)) = 〈∂su, ∂t⊕∂u〉which is integrated byF X̂ contains
the one-dimensional distributionDM

(t,u(s,t)) = 〈∂t⊕∂tu〉, which is easily seen to be smooth near the
singular fibers by employing the local model for leaves of a Stefan-Sussmann foliation of Section
5.5. Consequently, DM is a smooth foliation which integrates precisely to the graphs of the maps
α : S1 → Σ for α̂ ∈MX̂ . This is obviously equivalent to the proposition. �

Definition 5.3.10. For X̂ ∈ murm(H), define the (X̂-)restricted action functional AX̂ ∈
C∞(S1 × Σ) by AX̂ := AH ◦ Ev−1. Additionally, for each t ∈ S1, we define AX̂t := ι∗tA

X̂ ,
where ιt : Σ ↪→ S1 × Σ is the inclusion of the fiber over t ∈ S1.
Note that each AX̂t is automatically Morse, since the Hessian of AX̂t at x(t) for x̂ ∈ X̂ obviously
inherits the non-degeneracy of the Hessian of AH at x̂. In fact, our construction clearly identifies
Floer trajectories connecting orbits in X̂ with negative gradient flow lines of the AX̂t , giving us
Morse models for the foliation F X̂ .

Proposition 5.3.11. If (H,J) is Floer regular, X̂ ∈ murm(H) and ε > 0 is sufficiently small,
then for every t ∈ S1, and every x̂,ŷ ∈ X̂ , there is a natural identification M̃(x̂,ŷ;H,J) ∼=
M̃(x̂,ŷ; εAX̂t ,Jt) given by u(s,t) 7→ u(εs, t).

Corollary 5.3.12. Let (H,J) be Floer regular and X̂ ∈ murm(H). Then for every t ∈ S1, and
any ε > 0 sufficiently small, CF∗(X̂;H,J) ∼= (CMorse(AX̂t ,gJt)⊗ Λω)∗+1

∼= CF∗(εA
X̂ ,Jt).

5.3.2. F X̂ as a positively transverse foliation

Each regular leaf of the foliation F X̂ arises naturally as the image of an embedding û : R× S1 ↪→
S1 × Σ for u, the standard orientation on the cylinder induces the orientation ∂su ∧ ∂tu on each
regular leaf, so we may view F X̂ in a natural way as an oriented singular foliation.
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Definition 5.3.13. Let F be an oriented codimension 1 Steffan-Sussmann foliation of an oriented
d-dimensional manifold (Md,oM). We will say that a smooth path α : [0,1] → M is positively
transverse to F if the following dichotomy holds, either

(1) α is contained in a singular leaf of F , or
(2) for every t ∈ [0,1], {(∂tα)t,v1, . . . , vd−1} is an oriented basis for (Tα(t)M,oM), where
{v1, . . . , vd−1} is an oriented basis for the tangent space of the regular leaf of F passing
through α(t).

Definition 5.3.14. Let F be an oriented codimension 1 Steffan-Sussmann foliation on an oriented
d-dimensional manifold (Md,oM) and let X ∈ X (M) be a vector field generating an isotopy
(φXt )t∈R. We say that X (or (φXt )t∈R) is positively transverse to F if every integral curve of X is
positively transverse to F .
Proposition 5.3.15. Let (H,J) be Floer regular, X̂ ∈ murm(H), and X̌H := ∂t⊕XH ∈ X (S1×
Σ), then F X̂ is positively transverse to X̌H .

PROOF. As the singular leaves of F X̂ are orbits of X̌H , it suffices to consider points (t,p) ∈
S1 × Σ lying on regular leaves. In such a case, since u solves Equation 2.1.1, the basis formed by
{X̌H , ∂sǔ, ∂tǔ} is easily seen to be orientation-equivalent to the basis {∂t, ∂su, Jt∂su}, which is a
positively oriented basis, as Jt ∈ J (Σ,ω) for all t ∈ S1. �

The previous proposition tells us that to any non-degenerate Hamiltonian H and each X̂ ∈
murm(H), we may associate a foliation on S1×Σ with respect to which the graph of the isotopy is
well-behaved in a certain sense. However, if we’re willing to modify the isotopy by a contractible
loop, then we can in fact do better and obtain a positively transverse singular foliation on Σ itself.
To see this, consider the distribution DM

(t,u(s,t)) = 〈∂t ⊕ ∂tu〉 introduced in the proof of Proposition
5.3.9. As noted therein, DM integrates to a smooth 1-dimensional foliation by the graphs of the
loops t 7→ us(t) for ûs ∈ MX̂ . This induces a natural loop of diffeomorphisms (ψX̂t )t∈S1 given
by sliding the fiber {0} × Σ along the foliation which integrates DM. In other words, we have the
isotopy ψX̂t (p) = up(s,t), t ∈ S1, where up ∈ M̃(x̂,ŷ;H,J), x̂,ŷ ∈ X̂ , is any Floer cylinder such
that up(s,0) = p. It follows from Corollary 5.1.7 and the fact that if x̂ = ŷ then u(s,t) = x(t) that
ψX̂ is well-defined.

Proposition 5.3.16. ψ := (ψX̂t )t∈S1 is a contractible loop.

PROOF. ψ defines a loop of diffeomorphisms based at the identity by construction. If the genus of
Σ is strictly greater than 1, then the proposition follows from the fact thatDiff0(Σ) is contractible.
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If Σ = T2, Diff0(Σ) has as a strong deformation retract the group of diffeomorphisms given by
the action of the torus on itself. In particular, contractible loops in Diff0(T2) are precisely the
loops having contractible orbits. Note that for any x̂ = [x,w] ∈ X̂ , ψX̂t (x(0)) = x(t), and so ψX̂

has contractible periodic orbits, and hence is contractible if Σ = T2.

In the case that Σ = S2, it is an easy exercise to see that if (ft)t∈S1 is a loop based at the identity in
Diff(S2), then the homotopy class of (ft)t∈S1 in π1(Diff(S2)) is classified by the parity of the
winding number of the loop

v(t) := ((Φt
ẑ)
−1 ◦Dft ◦ Φt

ẑ)(v0), t ∈ S1

for any v0 ∈ R2 \ {0}, where ẑ ∈ L̃0(S2) is any capped 1-periodic orbit of (ft)t∈S1 and

Φẑ : S1 × R2 → z∗TS2

is any trivialization of the tangent bundle along z which extends over the chosen capping disk.
Since the capped loops x̂ ∈ X̂ are all capped 1-periodic orbits of ψX̂ by construction, it suffices
to fix some x̂ = [x,w] ∈ X̂ and to compute the winding number of some vector in Tx(0)S

2 under
the linearized flow of ψX̂ along x. Suppose without loss of generality that µ(x̂;H) = 1 and let
ξ1, ξ2 ∈ x∗0TΣ be a basis of eigenvectors of Ax,J with winding number 0 relative the capping w,
then by the construction of ψX̂ , (Dψt)(ξi(0)) = ξi(t) for t ∈ S1 by the asymptotic estimates of
Theorem 2.2.3. Consequently the linearized winding of ψX̂ along x relative the capping w is even,
and so ψX̂ is a contractible loop. �

Note that F X̂ is everywhere transverse to the fibers {t} × Σ of S1 × Σ, and so may be viewed
as an S1-family of (singular) foliations on Σ. Let us write F X̂t for the foliation obtained on Σ by
intersecting F X̂ with {t} × Σ.

Theorem 5.3.17. Let (H,J) be a Floer regular pair, X̂ ∈ murm(H), then the orbits of the isotopy
(ψX̂)−1 ◦ φH are positively transverse to the foliation F X̂0

PROOF. Writing ψ = ψX̂ , observe that the vector field (Zt)t∈[0,1] which generates the isotopy
ψ−1 ◦ φH is easily computed via the chain rule as (Zt)u(s,0) = (ψ−1

t )∗(X
H
t − ∂tu)u(s,t). Note

moreover that the definition of ψt implies that

(ψt)∗(∂su)u(s,0)) = (∂su)u(s,t)
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for all u ∈MX̂ and all (s,t) ∈ R× S1. Consequently, because for all t ∈ S1 ψt is an orientation-
preserving diffeomorphism, we see that

sgn ωu(s,0)(Zt,∂su) = sgn (ψ∗tω)(Zt,∂su) = sgn ωu(s,t)(X
H
t − ∂tu,∂su) = sgn ωu(s,t)(−Jt∂su,∂su)

from which the claim follows. �

Theorem B is an immediate consequence of Proposition 5.3.11 and the preceding Theorem.

5.4. Consequences for the structure of Hamiltonian isotopies
Definition 5.4.1. For (H,J) non-degenerate and X̂ ∈ murm(H), we define the Piexoto graph of
F X̂ to be the directed graph Γ(F X̂) whose vertex set is X̂ and such that there is a directed edge
from x̂ to ŷ only if µ(x̂)− µ(ŷ) = 1, and in this case there is an edge from x̂ to ŷ for each element
inM(x̂,ŷ;H,J).

Remark. Note that since F X̂t may be realized as the singular foliation obtained by the negative
gradient flow of (AX̂ ,gJt), Γ(F X̂) may be naturally identified with the Piexoto graph (see [24]) of
(AX̂t ,gJt)

Definition 5.4.2. Let (H,J) be non-degenerate and X̂ ∈ murm(H). To any capped loop γ̂ ∈
L̃0(Σ) such that (γ, x) is a braid for all x̂ ∈ X̂ , we may define the linking cochain `γ̂(x̂) :=

`(γ̂,x̂) ∈ Z for any x̂ ∈ V (Γ(F X̂)) = X̂ , as well as the intersection cochain Iγ : E(Γ(F X̂))→ Z,
where Iγ(u) counts the signed intersection number of (some transverse perturbation of) the maps
ǔ(s,t) = (t,u(s,t)) and γ̌(t) = (t,γ(t)).

The following relation between these two quantities is immediate from the definition of the homo-
logical linking number.

Proposition 5.4.3. Let (H,J) be non-degenerate and X̂ ∈ murm(H). For any capped loop
γ̂ ∈ L̃0(Σ) such that (γ, x) is a braid for all x̂ ∈ X̂ , we have Iγ = δ`γ (ie. Iγ(u) = `γ(ŷ)− `γ(x̂),
where u ∈ M̃(x̂,ŷ;H,J)).

For any Hamiltonian H , we write H\m := H# . . .#H for the m-fold concatenated Hamiltonian
which generates (φHt )]m. For x̂ = [x(t),w(se2πit)] ∈ L̃0(Σ), we write x̂]m := [x(mt),w(se2πimt)],
and for X̂ = {x̂i}ki=1 we write X̂]m := {x̂]mi }ki=1.

Note that the fact that the isotopy (ϕt)t∈[0,1] := ((ψX̂)−1
t ◦ φHt )t∈[0,1] is positively transverse to the

singular foliation F X̂0 on Σ implies that for all m ∈ Z>0, its m-fold concatenation (ϕ]mt )t∈[0,1] is
positively transverse to F X̂0 . As a consequence, if γ̂ ∈ L̃0(Σ) is such that (γ,x]m) is a braid for all
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x̂]m ∈ X̂]m, then we have that

Iγ(u) = `γ̂(ŷ
]m)− `γ̂(x̂]m),

where u ∈ M̃(x̂,ŷ;H,J). We obtain as an immediate corollary

Corollary 5.4.4. Let (H,J) be non-degenerate, X̂ ∈ murm(H) and let γ̂ ∈ P̃ er0(H\k) for
k ∈ Z>0, then Iγ̂ is non-negative on every edge of Γ(F X̂). Moreover, for every x̂, ẑ ∈ X̂ , `(x̂,γ̂) <

`(ẑ,γ̂) if and only if γ̌(t) ∈ W (x̂,ẑ) for some t ∈ S1.

Definition 5.4.5. For a Hamiltonian H , we will say that a capped braid X̂ ⊆ P̃ er0(H) is strongly
linking if for any γ̂ ∈ P̃ er0(H), `(γ̂,x̂) = 0 for all x̂ ∈ X̂ implies that γ̂ ∈ X̂ . Denote by usl(H)

the collection of all X̂ ⊆ P̃ er0(H) such that X̂ is both unlinked and strongly linking.

Clearly, usl(H) ⊆ mu(H).

Theorem G. Let H be non-degenerate. If X̂ ∈ murm(H), then X̂]m ∈ usl(H]m) for all m ∈
Zm>0. In particular, every X̂ ∈ murm(H) is maximally unlinked as a subset of P̃ er0(H).

PROOF. Let X̂ ∈ murm(H), fix some J such that (H,J) is Floer regular, and suppose for a
contradiction that γ̂ ∈ P̃ er0(H\k) \ X̂]m but `(x̂]m,γ̂) = 0 for all x̂]m ∈ X̂]m. We may in fact
suppose that γ̂ 6∈ π2(Σ) · X̂]m, since if γ̂ = A · x̂ for some A ∈ π2(Σ), then for any ŷ]m ∈ X̂]m,
x̂]m 6= ŷ]m, Proposition 1.3.2 implies `(γ̂,ŷ]m) = `(γ̂,ŷ]m) + c1(A)

2
= c1(A)

2
, since X̂ is unlinked,

which easily implies that X̂]m is unlinked as well.

So we may as well assume that γ 6= x for any x̂]m ∈ X̂]m. Since F X̂ foliates S1 × Σ, it is
necessary that γ̌(0) ∈ W (x̂,ŷ) for some x̂, ŷ ∈ X̂ and so by Corollary 5.4.4 implies that `(x̂]m,γ̂) <

`(ŷ]m, γ̂), a contradiction. �

5.4.1. Comparison to Le Calvez’s theory of transverse foliations

Definition 5.4.6. Let I = (φt)t∈[0,1] be an isotopy of homeomorphisms based at the identity. We
define

Fix(I) :=
⋂
t∈[0,1]

Fix(φt),

and we say that I is a maximal isotopy if for every x ∈ Fix(φ1), the loop t 7→ φt(x) is not
contractible in Σ \ Fix(I).
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Definition 5.4.7 (cf. [18]). Given a continuous oriented singular 1-dimensional foliation F of Σ,
a continuous path γ : [0,1] → Σ is said to be positively transverse to F if its image is disjoint
from Sing(F) and for each t0 ∈ [0,1], there exists an orientation preserving homeomorphism of
a neighbourhood of γ(t0) to a neighbourhood of 0 ∈ R2 which sends F to the standard vertical
foliation of R2, oriented downward, and sends γ to a map whose x-coordinate is increasing in a
neighbourhood of t0.

In [16], Le Calvez developed a theory which associates to any maximal isotopy I = (φt)t∈[0,1], an
oriented singular continuous 1-dimensional foliation GI on Σ having singular points on precisely
the points x ∈ Fix(I), and moreover having the property that the dynamics of I are homotopically
positively transverse to the leaves of GI , in the following sense

Definition 5.4.8. We say that an isotopy I homotopically positively transverse to an oriented
singular continuous foliation G if, for all x ∈ Σ\Fix(I), the path x 7→ φt(x) is homotopic relative
endpoints inside of Σ \ Fix(I) to a path which is positively transverse to G.

Remark. Le Calvez and those working with his theory use the term ‘positively transverse’
rather than ‘homotopically positively transverse’ as we have used here. We introduce this term here
merely to disambiguate between the other notion of positive transversality (for smooth isotopies)
which we have already employed in this thesis.

The reader will surely notice the similarity of Le Calvez’s result to the results expounded
in the previous section. Let us compare them more closely on the domain of overlap of these
two theories, namely, the case where φ1 is a smooth, non-degenerate Hamiltonian diffeomorphism.

As we have shown, to any non-degenerate pair (H,J) and any X̂ ∈ murm(H), we may associate
a new isotopy (ψX̂t )−1 ◦ φHt having

Fix((ψX̂t )−1 ◦ φHt ) =
⋃
x̂∈X̂

{x(0)}.

The fact that murm(H) ⊂ mu(H) (by Theorem G) implies that this isotopy is maximal,
we know that it is positively transverse (in our initial sense) to the foliation F X̂0 of Σ. This
implies positive transversality in the sense of Le Calvez, but is at least superficially a rather
stronger condition, in that positive transversality in Le Calvez’s sense allows us to homotope
the orbits of the maximal isotopy, individually, in order to achieve positive transversality in the
usual sense, whereas here, every orbit is already positively transverse in the usual sense. Said
another way, if X̂ is a trivial capped braid, so that the isotopy (φHt )t∈[0,1] is already a maximal
isotopy, then it is already positively transverse to F X̂0 in the sense of Le Calvez, and (ψX̂)−1
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provides us with a choice of homotopy for each orbit t 7→ φHt (x) in such a way that these ho-
motopies fit together in a coherent way so as to be induced by composition with a contractible loop.

In [16], Le Calvez also observed that in the case of Hamiltonian homeomorphisms satisfying
some minor niceness requirements of their fixed point sets which always applies in our setting (see
also the work of Béguin-Crovisier-Le Roux in [2] in which the authors remove the need for this
niceness condition), the foliations GI constructed by his methods are always gradient-like, in the
sense that they admit discrete Lyapunov functions which are decreasing along the leaves of the fo-
liation. These Lyapunov functions are, essentially, winding numbers with the maximally unlinked
set of orbits used to construct the foliation. Thus, we can see the results of our previous section as
recovering Le Calvez’s theory in the smooth case — with the restricted action functional AX̂0 play-
ing the role of the smooth analogue to the winding numbers with the unlinked set X̂ as a discrete
Lyapunov function — on the proviso that X̂ ∈ murm(H), and offering certain refinements on
the structure of these fixed points along with a certain strengthening of the transversality condition.

We should note, however, that in general murm(H) 6= mu(H), and so even in the smooth case,
Le Calvez’s method provides foliations which do not arise via our methods. It would be interesting
to understand the exact nature of the discrepancy between murm(H) and mu(H) in terms of
the differences in the topologies between the corresponding Le Calvez foliations GφH and those
foliations F X̂ that we have constructed here. It seems likely that the foliations F X̂ which arise by
our methods correspond to the Le Calvez foliations GφH which arise from the torsion-low maximal
isotopies introduced by Yan in [37] (I would like to thank Vincent Humilière for directing my
attention to this).

5.5. Appendix: Stefan-Sussmann Foliations
It will be convenient in what follows to have some explicit language with which to speak about
singular foliations. To that end, we will make use of some elementary notions from the theory
of Stefan-Sussmann foliations (cf. [4] and the references therein) which will be suitable to our
purposes.

As in the non-singular theory, one may think of (singular) foliations as being partitions of the
ambient space into integral submanifolds of some (generalized) distributions. To that end, let

Gk(M)→M
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denote the k-Grassmannian of M , having fiber Gr(k,TxM) over x ∈M , and let

G∗(M) := tnk=0Gk(M),

where n = dimM , denote the total Grassmannian of M .

Definition 5.5.1. A (generalized) distribution on a manifold M is a section

D : M → G∗(M).

A local section X : M → TM is said to belong to D if X(x) ∈ D(x) for all x ∈ dom(X). The
set of all smooth local sections X ∈ Xloc(M) belonging to D is denoted by ∆D.

Definition 5.5.2. A generalized distribution D is said to be smooth if for every x ∈M ,

D(x) = span 〈 X(x) 〉X∈∆D
.

Naturally, we will want to define objects which integrate these generalized smooth distributions.
To that end, following [35], we shall define

Definition 5.5.3. A (smooth) k-leaf of M is a subset L ⊂ M equipped with a differentiable
structure σ such that

(1) (L,σ) is a connected k-dimensional immersed submanifold of M and
(2) for any continuous map f : N → M such that f(N) ⊂ L and N a locally connected

topological space, we have that

f : N → (L, σ)

is continuous.

Definition 5.5.4. A (C∞)-singular (Stefan-Sussmann) foliation of M is a partition F of M into
smooth leaves of M such that for every x ∈M , there exists a local smooth chart

ϕ : U
∼=−→ O(x) ⊂M

from U ⊂ Rn an open neighbourhood of 0 ∈ Rn, such that
(1) U = V ×W for V an open neighbourhood of 0 in Rk and W an open neighbourhood of 0

in Rn−k, where k is the dimension of the smooth leaf Lx ∈ F containing x.
(2) ϕ(0,0) = x.
(3) For any leaf L ∈ F ,

L ∩ ϕ(U ×W ) = ϕ(U × l),
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where l := {w ∈ W : ϕ(0,w) ∈ L}.

Definition 5.5.5. A smooth generalized distribution D is said to be integrable if for every x ∈M
there exists an immersed submanifold L ⊂M , such that

(1) x ∈ L, and
(2) TyL ⊂ D(y) for all y ∈ L.

Such an immersed submanifold is called an integral submanifold of D.

The main point is the following (due to [35])

Theorem 5.5.6. If D is a smooth integrable generalized distribution and FD is the partition of
M formed by taking the collection maximal connected integral submanifolds of D, then FD is a
smooth singular Stefan-Sussmann foliation.

For a singular foliation F , we let

d(−,F) : M → Z≥0

x 7→ dimLx

denote the function which keeps track of the dimension of the leaf of F passing through x ∈ M .
It’s not hard to see that d(−,F) is lower semi-continuous.

Definition 5.5.7. A smooth singular foliation is said to have codimension k if

n− k = max
x∈M

d(x,F).

For a codimension k smooth singular foliation, we define the domain of F to be

dom(F) := {x ∈M : d(x,F) = n− k},

while we define the singular set of F to be

sing(F) := M \ dom(F).

A leaf of F is said to be regular if it is of maximal dimension, otherwise it is said to be singular.
F is said to be oriented if every regular leaf of F is in addition equipped with an orientation, and
the local charts about points on the regular leaves may be taken to be orientation-preserving.
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