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Résumé
Les familles exponentielles sont une classe de modèles omniprésente en statistique.

D’une part, elle peut modéliser n’importe quel type de données. En fait la plupart
des distributions communes en font partie : Gaussiennes, variables catégoriques,
Poisson, Gamma, Wishart, Dirichlet. D’autre part elle est à la base des modèles
linéaires généralisés (GLM), une classe de modèles fondamentale en apprentissage
automatique. Enfin les mathématiques qui les sous-tendent sont souvent magnifiques,
grâce à leur lien avec la dualité convexe et la transformée de Laplace. L’auteur
de cette thèse a fréquemment été motivé par cette beauté. Dans cette thèse, nous
faisons trois contributions à l’intersection de l’optimisation et des statistiques, qui
tournent toutes autour de la famille exponentielle.

La première contribution adapte et améliore un algorithme d’optimisation à
variance réduite appelé ascension des coordonnées duales stochastique (SDCA), pour
entrâıner une classe particulière de GLM appelée champ aléatoire conditionnel (CRF).
Les CRF sont un des piliers de la prédiction structurée. Les CRF étaient connus
pour être difficiles à entrâıner jusqu’à la découverte des technique d’optimisation
à variance réduite. Notre version améliorée de SDCA obtient des performances
favorables comparées à l’état de l’art antérieur et actuel.

La deuxième contribution s’intéresse à la découverte causale. Les familles expo-
nentielles sont fréquemment utilisées dans les modèles graphiques, et en particulier
dans les modèles graphique causaux. Cette contribution mène l’enquête sur une
conjecture spécifique qui a attiré l’attention dans de précédents travaux : les modèles
causaux s’adaptent plus rapidement aux perturbations de l’environnement. Nos
résultats, obtenus à partir de théorèmes d’optimisation, soutiennent cette hypothèse
sous certaines conditions. Mais sous d’autre conditions, nos résultats contredis-
ent cette hypothèse. Cela appelle à une précision de cette hypothèse, ou à une
sophistication de notre notion de modèle causal.

La troisième contribution s’intéresse à une propriété fondamentale des familles
exponentielles. L’une des propriétés les plus séduisantes des familles exponentielles
est la forme close de l’estimateur du maximum de vraisemblance (MLE), ou max-
imum a posteriori (MAP) pour un choix naturel de prior conjugué. Ces deux
estimateurs sont utilisés presque partout, souvent sans même y penser. (Combien
de fois calcule-t-on une moyenne et une variance pour des données en cloche sans
penser au modèle Gaussien sous-jacent ?) Pourtant la littérature actuelle manque
de résultats sur la convergence de ces modèles pour des tailles d’échantillons finis,
lorsque l’on mesure la qualité de ces modèles avec la divergence de Kullback-Leibler
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(KL). Pourtant cette divergence est la mesure de différence standard en théorie de
l’information. En établissant un parallèle avec l’optimisation, nous faisons quelques
pas vers un tel résultat, et nous relevons quelques directions pouvant mener à des
progrès, tant en statistiques qu’en optimisation.

Ces trois contributions mettent des outil d’optimisation au service des statistiques
dans les familles exponentielles : améliorer la vitesse d’apprentissage de GLM de
prédiction structurée, caractériser la vitesse d’adaptation de modèles causaux,
estimer la vitesse d’apprentissage de modèles omniprésents. En traçant des ponts
entre statistiques et optimisation, cette thèse fait progresser notre mâıtrise de
méthodes fondamentales d’apprentissage automatique.

Mots-clés

Apprentissage automatique, famille exponentielle, divergence de Bregman, statis-
tiques non-asymptotiques, taux de convergence, dualité convexe, optimisation
stochastique, réduction de variance, prédiction structurée, causalité.
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Abstract
Exponential families are a ubiquitous class of models in statistics. On the one

hand, they can model any data type. Actually, the most common distributions
are exponential families: Gaussians, categorical, Poisson, Gamma, Wishart, or
Dirichlet. On the other hand, they sit at the core of generalized linear models
(GLM), a foundational class of models in machine learning. They are also supported
by beautiful mathematics thanks to their connection with convex duality and the
Laplace transform. This beauty is definitely responsible for the existence of this
thesis. In this manuscript, we make three contributions at the intersection of
optimization and statistics, all revolving around exponential families.

The first contribution adapts and improves a variance reduction optimization
algorithm called stochastic dual coordinate ascent (SDCA) to train a particular class
of GLM called conditional random fields (CRF). CRF are one of the cornerstones
of structured prediction. CRF were notoriously hard to train until the advent
of variance reduction techniques, and our improved version of SDCA performs
favorably compared to the previous state-of-the-art.

The second contribution focuses on causal discovery. Exponential families are
widely used in graphical models, and in particular in causal graphical models. This
contribution investigates a specific conjecture that gained some traction in previous
work: causal models adapt faster to perturbations of the environment. Using results
from optimization, we find strong support for this assumption when the perturbation
is coming from an intervention on a cause, and support against this assumption
when perturbation is coming from an intervention on an effect. These pieces of
evidence are calling for a refinement of the conjecture.

The third contribution addresses a fundamental property of exponential families.
One of the most appealing properties of exponential families is its closed-form
maximum likelihood estimate (MLE) and maximum a posteriori (MAP) for a
natural choice of conjugate prior. These two estimators are used almost everywhere,
often unknowingly – how often are mean and variance computed for bell-shaped data
without thinking about the Gaussian model they underly? Nevertheless, literature
to date lacks results on the finite sample convergence property of the information
(Kulback-Leibler) divergence between these estimators and the true distribution.
Drawing on a parallel with optimization, we take some steps towards such a result,
and we highlight directions for progress both in statistics and optimization.

These three contributions are all using tools from optimization at the service
of statistics in exponential families: improving upon an algorithm to learn GLM,
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characterizing the adaptation speed of causal models, and estimating the learning
speed of ubiquitous models. By tying together optimization and statistics, this thesis
is taking a step towards a better understanding of the fundamentals of machine
learning.

Keywords

Machine learning, exponential families, Bregman divergence, non-asymptotic
statistics, sample complexity, convex duality, stochastic optimization, variance
reduction, structured prediction, causality.
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Merci Yoshua d’avoir posé les pierres du Mila, et d’y défendre, une recherche
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1 Introduction
Statistics emerged more than a millennium ago, as frequency counting could

be used to decipher encrypted messages. Mathematical optimization started being
formalized a few centuries ago, as Newton and Gauss designed the first iterative
methods to find an optimum, followed by Cauchy et al. (1847) who invented gradient
descent.

Seventy years ago, scientists like Turing created digital computers and started
dreaming of artificial intelligence: creating machines that could act and learn as
humans do, or better. A step towards this goal is enabling computers to interact with
the world based on data: images, sound, text, or any arbitrary tabular data. The
most straightforward approach to give them this capability is to code explicit rules:
if you receive this input, then you should do this. Unfortunately, this approach,
known as expert systems or symbolic artificial intelligence, does not scale with
the complexity or the quantity of data: imagine coding rules to identify a dog in
an image given the raw string of one million pixels. Almost as early as the first
computer, Turing (1950) formulated the idea of a program learning new rules from
examples (Muggleton, 2014). Several years later, Rosenblatt (1957) introduced the
perceptron, an early form of support vector machines doing exactly that. This is
the realm of machine learning where our story takes place.

Modern machine learning fits models to data points. It is essentially a new field
at the intersection of statistics and optimization, but some of its core ideas are not
new. They even predate the emergence of computers. Legendre and Gauss already
applied linear regression to predict planetary movements around 1800. The long
history of maximum likelihood can be summarized by the name of Fisher, who
applied this principle to logistic regression in the 1930s (Stigler, 2007). Stochastic
gradient descent (Robbins and Monro, 1951), the workhorse of modern machine
learning, was introduced as a root-finding algorithm.

The long history of statistics and optimization have intertwined to form machine
learning as we know it today. This thesis covers some of the interactions between
these two fields. Abstracting away, our contributions are addressing three challenges

1. training models faster

2. learning causal features that generalize better

3. characterizing the learning speed for a wide variety of models.
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By tapping into the connection between statistics and optimization, this thesis
attempts to further progress on these three challenges.

Thesis Outline This thesis presents contributions spanning diverse parts of
machine learning. We provide Chapter 2 as a reference for readers that are unfamiliar
with any of these parts. In particular, we review the two learning setups that we
are using: supervised learning and density estimation via maximum likelihood. We
then cover some fundamentals of convex optimization: SGD, variance reduction,
and convex duality. Finally, we introduce exponential families, graphical models
and briefly introduce causal inference for the newcomers.

Chapter 3 is about training faster. The goal is to train conditional random fields
(CRF) as fast as possible. CRF are probabilistic models for structured prediction
that have long been notoriously hard to train. For this purpose, we adapt SDCA,
a well-known optimization algorithm. On the way, we introduce a new sampling
scheme for SDCA, and we prove an improved convergence rate. Empirically, SDCA
performs on par or better than other variance reduction algorithms.

Chapter 4 is about optimization and causality. It questions a specific assumption:
we expect causal models to adapt faster to perturbations of the world. Is this true?
We answer this question for bivariate categorical and multivariate normal data
by modeling perturbations as interventions in a ground truth causal model and
modeling adaptation as optimization.

Chapter 5 is about optimization and elementary statistics. While maximum
likelihood estimates are used everywhere, they are most commonly used with
exponential families where the solution has a closed-form. A typical frequentist
approach would estimate the average risk of this estimator, and a standard measure
of risk would be the KL divergence between this estimator and the ground truth.
Nevertheless, we are not aware of any general results upper bounding this expected
KL. Surprisingly, this statistical problem is connected with the optimization of
non-smooth losses. We review the importance of this problem and showcase recent
attempts at solving it.

Finally, the last chapter concludes the thesis by summarizing the contributions
and outlining some future research directions in the context of this thesis.
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2 Background
In this section, we will review elementary building blocks that are pre-requisites to

understand all three contributions. First, we are going to review some fundamental
principles of machine learning: empirical risk minimization and maximum likelihood
estimation, for supervised learning §2.1.1 or density estimation §2.1.2. Ultimately,
we want to answer the following question: How can one minimize the empirical risk?
To do so, we will cover some parts of the vast topic that is optimization: stochastic
gradient descent §2.2.1, variance reduction §2.2.2 and Fenchel duality §2.2.3. Finally,
we will describe some useful probabilistic models: exponential families §2.3.1 (which
are at the core of this thesis) probabilistic graphical models §2.3.2, and structural
causal models §2.3.3.

2.1 Learning from Data

2.1.1 Supervised Learning

Let us assume we have n data points D = (z1, . . . , zn), that decompose as
zi = (xi, yi) ∈ X × Y, where we call xi features, and yi labels. We want to learn
some rules to map newly observed features x to their unobserved labels y. The
most common approach as of today is to define:

1. a model fθ : X → Y parametrized by some vector θ ∈ Rd. This model will
implicitly contain all the rules that we are unable to explicitly write down.
For x and y real vectors, the simplest instance of functions are linear models:
fθ(x) = θTx.

2. a prediction loss function ` : Y × Y → R that will tell use how well or how
poorly we are doing. The simplest instance may be `(y1, y2) = ‖y1 − y2‖2.

Then we may learn the mapping by solving the following problem:

min
θ

n∑
i=1

`(yi, fθ(xi)) . (2.1)
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This problem simply minimizes the sum of the loss on all data points. This sum is
a proxy for the expectation of the loss on the ”true” distribution p from which we
sampled D

E(x,y)∼p [`(y, fθ(x))] . (2.2)

In learning theory, the expectation (2.2) is called either generalization error, either
risk function. That is why problem (2.1) bears the name empirical risk minimization,
or ERM to keep it short.

In this thesis, we are going to focus on a variant of ERM: maximum likelihood
estimation. This special case happens when we assume that all data points were
sampled independently and identically from some distribution p(x, y) defined on
X ×Y . Then fθ(xi) may return the log-probabilities (or the log-densities) of y given
xi, e.g.

fθ(x) = − logpθ(y = · |x) ∈ R|Y| , (2.3)

and the loss may return the log-likelihood of yi given xi, e.g.

`(yi, fθ(xi)) = − logpθ(yi |xi) . (2.4)

Then, if θ∗ solves the problem

θ∗ = argmax
θ

pθ(y1, . . . , yn |x1, . . . , xn) (2.5)

= argmin
θ

n∑
i=1

− logpθ(yi |xi) , (2.6)

we will call it maximum (conditional) likelihood estimate or MLE for short. Prior
to supervised learning, statisticians have also studied this framework for density
estimation.

2.1.2 Density Estimation

If we are not interested in a division of z between features x and labels y, we
may still want to learn the probability distribution p(z) = p(x, y). That is the
realm of density estimation. Now θ may parametrize a density model z 7→ pθ(z). To
solve this problem, maximizing the likelihood of the dataset is again an interesting
approach:

θ∗ = argmin
θ

n∑
i=1

− logpθ(xi) . (2.7)

In this case as well, θ∗ is the maximum likelihood estimate (MLE).
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Example 1: Isotropic Gaussian. If the data is made of real vectors z ∈ Rd,
then we may chose to fit an isotropic Gaussian pθ = N (µ, σ2I). In this case, MLE
has a closed form solution with the empirical mean and the empirical variance as
estimate for the mean µ and variance σ2 parameters

µ̂ = 1
n

n∑
i=1

xi and σ̂2 = 1
n

n∑
i=1

‖xi − µ‖2 . (2.8)

Example 2: Categorical. If the data is made of categories, e.g., z ∈ {1, . . . , K},
then the simplest model is the Categorical distribution pθ = (p1, . . . , pK) ∈ ∆K ,
which assigns a probability pk to each label k. We use ∆K to denote the K-simplex,
e.g., the set of real positive vectors of dimension K that sum to 1:

∆K =
{
p ∈ RK |∀k, pk ≥ 0;

K∑
k=1

pk = 1
}
. (2.9)

The maximum likelihood estimate of this model counts the occurrence of each label
in the data and takes the empirical frequency of each label

p̂k = 1
n

n∑
i=1

1{xi = k} (2.10)

where the indicator function 1{b} is 1 if b is true and 0 otherwise.

MAP. In some situations, we may take a Bayesian stance and assume the true
parameter θ is itself a random variable sampled from a known prior distribution
p(θ). Combining this prior with our model, we obtain a joint distribution on data
and parameters

p(z, θ) := p(z | θ)p(θ) := pθ(z)p(θ) . (2.11)

By Bayes rule, we also obtain a posterior distribution on parameters

p(θ | z) = p(z, θ)
p(z) ∝ pθ(z)p(θ) (2.12)

The maximum a posteriori or MAP estimate is then defined as the parameter with
maximal posterior density (or posterior mass for discrete parameters)

θ∗MAP := argmax p(θ | z) (2.13)

= argmin− logpθ(z)− logp(θ) (2.14)

Letting go of the Bayesian perspective, this last minimization problem may be
seen as an instance of regularized empirical risk minimization, where the negative
log-likelihood of the prior − logp(θ) plays the role of the regularizer.
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Conjugate Priors. Given some models such as exponential families, there exist
families of prior distributions F = {pη(θ) | η} such that the posterior distribution
also belongs to F , e.g. ∀η,∃η′,pη(θ | z) = pη′(θ). We refer to such families F as
conjugate priors. In our third contribution §5.2 we will cover in detail a generic
instance of conjugate priors for exponential families.

Other models. Both Gaussians and categorical models belong to the general
class of exponential families, which we will introduce in §2.3.1. These families have
a limited capacity: there are some set of distributions that cannot be fit by an
exponential family, such as mixture models. There exist much more powerful models
such as normalizing flows (Rezende and Mohamed, 2015) which are based on neural
networks. Normalizing flows also rely on maximizing the likelihood of a dataset.
They can model almost any smooth low dimensional density, but their capacity is
limited in higher dimensions (Kong and Chaudhuri, 2020).

Beyond MLE. To learn from unlabeled data, there exist many competing ap-
proaches to MLE. If we model the data with some unobserved variables, then we
enter the realm of variational inference, with powerful algorithms such as variational
auto-encoders (Kingma and Welling, 2013). If we are more interested in creating new
realistic samples from p(z), then adversarial training may be relevant (Goodfellow
et al., 2014). Finally, for training large models, self-supervised learning has recently
emerged as the leading set of techniques to learn powerful features, most notably
for natural languages (Peters et al., 2018; Devlin et al., 2018).

2.2 Convex Optimization

Convex optimization is the field of mathematics interested in solving problems
of the form

min
θ∈Θ

f(θ) (2.15)

where f is a convex real valued function f : Θ→ R called the loss or the objective
function, and Θ is a convex set called the constraint set. In this work, we always
assume that the problem is unconstrained, i.e., Θ = Rd, but with an objective
function taking possibly infinite values, i.e., f : Rd → R ∪ {+∞}. The objective is
thus implicitly defining a constraint set via its domain Dom f = {θ | f(θ) < +∞}.
For instance, we may encounter Dom f = S+

d , the set of symmetric positive definite
matrices of order d. Note that this set is open within the set of real square matrices
of order d Rd×d. Yet projection is only well-defined onto closed sets. Consequently,
one cannot project onto S+

d . We also assume that f is differentiable.
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Gradient Descent. When Θ = Rd, and if we can compute derivatives of f , the
most well-known algorithm to solve this problem is gradient descent. Starting from
a random point θ0, iteratively nudge the parameters in the direction opposite to
the gradient of the loss, i.e.,

θt+1 = θt − γt∇f(θt), (GD)

where the hyper-parameter γt is known as the step-size or the learning rate. The
step-size may be constant, follow a predefined schedule, be found via a line-search,
or be adaptive w.r.t. to the past trajectory.

Convergence Analysis. Gradient descent does not converge all the time. We
need assumptions on the objective function. Perhaps the most common assumption
is smoothness.

Proposition 2.2.1 (smoothness). A function f : Θ→ R is said to be L-smooth if
it is differentiable and its gradient is L-Lipschitz, i.e.,

∀θ, ν ∈ Θ, ‖∇f(θ)−∇f(ν)‖ ≤ L‖θ − ν‖ . (2.16)

If the loss f is convex and L-smooth then gradient descent with constant step-size
γt = 1

L
converges to a minimum θ∗ at a rate O(1

t
) (Nesterov, 2004a, corollary 2.1.2).

Smoothness has a sibling assumption: strong-convexity.

Definition 2.2.2 (strong-convexity). A function f : Θ→ R is said to be µ-strongly
convex if θ 7→ f(θ)− µ

2‖θ‖
2 is convex.

If f is both L-smooth and µ-strongly convex, then gradient descent with constant
step-size γt = 2

µ+L converges at a linear rate O(e− t
κ ) where κ = L

µ
≥ 1 is known as

the condition number of the problem (Nesterov, 2004a, theorem 2.1.15).

Self-concordance. In contributions 2 and 3, we will face the log-likelihood of
a multivariate normal variable. This objective includes a term g(Λ) = − log det Λ
where Λ ∈ S+

n is the positive definite precision matrix. The objective g shoots up
to +∞ when Λ gets eigenvalues close to zero. This means that its gradient is not a
Lipschitz function. In fact g is neither smooth nor strongly convex. This kind of log-
barrier objectives often comes up in interior point methods for solving constrained
convex problems. To analyze Newton’s method applied on these objectives, a new
assumption upper bounding the third derivative with the second derivative was
introduced (Nemirosky and Yudin, 1983).

Definition 2.2.3 (self-concordance). (Nesterov, 2004a, definition 4.1.1) A convex
function f : Θ→ R is said to be self-concordant if

∀θ ∈ Θ,∀u,∇3f(θ)[u, u, u] ≤ 2∇2f(θ)[u, u] 3
2 (2.17)

where we evaluated the third-order tensor ∇3f(θ)in u, u, u.
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Self-concordance was popularized by making the analysis of Newton’s method
affine invariant. Indeed Newton’s method is affine invariant, meaning that any
affine re-parametrization of the problem does not modify the algorithm. And yet
all analysis were stuck with Lispchitz constants which are not affine invariant.
Self-concordance overcame this fundamental limitation. It was then popularized in
machine learning by Bach (2010) who showed its usefulness on logistic regression.
He relied on a fundamental consequence of self-concordance: the objective can be
sandwiched between quadratics in a clear neighborhood around its optimum. In
this thesis, we are interested in self-concordance because many exponential families
have self-concordant log-likelihood. We explore this fact in our third contribution.

2.2.1 Stochastic Gradient Descent

When f has some structure, it is possible to design more efficient algorithms
than gradient descent. As seen in Eqs. (2.6) and (2.7), machine learning is generally
interested in minimizing an expected loss over a dataset, i.e.,

min
θ
F (θ) := 1

n

n∑
i=1

f(θ, xi) . (2.18)

For instance, this loss may be the negative log-likelihood f(θ, zi) = − logpθ(zi).
The gradient of this empirical loss is the sum of gradients on each data points as
follow,

∇F (θ) = 1
n

n∑
i=1

∇θf(θ, xi) . (2.19)

Modern datasets are huge. They often contain millions, if not billions, of high
dimensional data points such as images. As a consequence exact minimization is
no longer the bottleneck in learning (Bottou and Bousquet, 2008). Computing the
exact gradient, a sum with a billion terms, is no longer affordable. Instead, it is
much more efficient to compute gradients for a few data point at a time, and take a
step in their opposite direction in the hope of minimizing the loss

θt+1 = θt − γt∇θf(θ, xi) (SGD)

where i is sampled uniformly from {1, . . . , n}. This is stochastic gradient descent1

(SGD). It was first devised by Robbins and Monro (1951) to find the zeros of a
stochastic function.

1 Contrary to gradient descent, SGD is not guaranteed to decrease the objective value at every
step. As such, it is not a descent algorithm. We should rigorously call it the stochastic gradient
method, but SGD has become the standard acronym in the community; therefore, we will stick
with it.
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A special case happens when we sample each data point only once. Then SGD
minimizes the true population risk

min
θ

F (θ) := Ex∼p [f(θ, x)] . (2.20)

In our second contribution, we use this fact by interpreting convergence rates of
SGD as a bound on the sample complexity of the model.

Convergence Analysis. Let us review a simplification of the modern convergence
analysis from Gower et al. (2019). Assume that

• ∀x, f(·, x) is L-smooth,

• F is strongly convex, minimized by θ∗,

• the gradient noise at the optimum is finite, i.e.,

σ2 := Ex∼p
[
‖∇f(θ∗, x)‖2] <∞.

Then iterates of SGD with constant step-size step size γt = γ ∈ (0, 1
2L ] verify (Gower

et al., 2019, theorem 3.1)

E [F (θt)]− F (θ∗) ≤ L

2 (1− γµ)t‖θ0 − θ∗‖2 + γσ2L

µ
, (2.21)

where the expectation is taken over the stochastic procedure. In other words, SGD
with constant step-size converges at a linear rate to a variance ball around the
optimum, and the size of this variance ball is proportional to the step-size γ, the
gradient noise at the optimum σ2 and the condition number L

µ
. To overcome this

variance ball issue, we may progressively decrease the learning rate γt ∈ O(1
t
) to

obtain a convergence rate O(1
t
) (Gower et al., 2019, theorem 3.2).

SGD vs. GD. Recall that n is the size of the dataset. Each iteration of gradient
descent has a compute cost of O(n), whereas SGD has a constant cost of O(1).
We see that even though each iteration of SGD is n times more efficient than an
iteration of full batch gradient descent, its overall convergence rate is O(1

t
), far

worse than the linear rate of gradient descent O(e− t
κ ). Finding an algorithm with a

cheap O(1) iteration cost and a linear convergence rate seemed impossible until the
advent of SAG (Le Roux et al., 2012) and variance reduction techniques.
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2.2.2 Variance Reduction

Compared to the expected population risk in Eq. (2.20), the empirical risk
Eq. (2.18) has a particular finite sum structure that SGD does not exploit. This
fact is exploited – in the specific context of logistic regression – by the online
exponentiated gradient (OEG) algorithm (Collins et al., 2008). OEG treats one
sample at a time, so it has a constant iteration cost, independent of the dataset
size. And yet, it enjoys a linear convergence rate.

OEG enjoyed a significant success on many problems, but it is not until the
breakthrough work of Le Roux et al. (2012) that the true power of the finite sum
structure was revealed. Le Roux et al. (2012) designed and analyzed a generic
stochastic gradient-based algorithm with a cheap O(1) iteration cost and a linear
convergence rate. This algorithm is called stochastic averaged gradient or SAG.
Similar to SGD, at each step it sample a datapoint xi and computes its gradient
∇f(θt, xi). The difference is that it estimates the true gradient thanks to past
gradients of each individual data points ∇f(θti , xi) where ti is the last time that we
sampled xi. Finally the update of SAG writes

θt+1 = θt −
γt
n

∑
i

∇f(θti , xi) . (SAG)

Following this path, Defazio et al. (2014) introduced SAGA, a very similar algorithm
with an unbiased gradient estimate allowing for more straightforward analysis.
Concurrently Shalev-Shwartz and Zhang (2013b) analyzed SDCA, an algorithm
maximizing a dual formulation for convex regularized problems (see §2.2.3). SDCA
is a close cousin of OEG, and it enjoys the same constant iteration cost and linear
convergence rate. In our first contribution, we improve upon SDCA and apply it to
the challenging problem of conditional random fields (see §2.3.2).

Unfortunately, the memory footprint of SAG, SAGA or SDCA is O(nd) in
general (it can be reduced to O(n) in many scenarios), which can quickly become
prohibitive for large datasets or large models. Johnson and Zhang (2013) introduced
stochastic variance reduced gradient (SVRG) to alleviate this issue. Instead of
storing all past gradients, SVRG stores one past iterate θT along with its full batch
gradient ∇F (θT ), and it applies the update

θt+1 = θt − γt(∇f(θt)−∇f(θT ) +∇F (θT )) . (SVRG)

Thus SVRG only needs O(d) memory, but it needs twice more compute than plain
SGD. As such, the variance reduction technique is most amenable to optimizing
large models such as neural networks.
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2.2.3 Fenchel Duality

As previously mentioned, and fully explained in our first contribution, SDCA
operates on the dual formulation of

min
θ

1
n

∑
i

f(yi, θ>xi) + λ

2‖θ‖
2 . (2.22)

In the following, we introduce the fundamentals of convex duality that are necessary
to obtain this formulation.

Convex Conjugates. To explain Fenchel duality properly, we need to introduce
the convex conjugate of a function.

Definition 2.2.4 (convex conjugate). The convex conjugate of a function f : Rd →
R ∪+∞ is defined by the pointwise formula

f ∗(y) := max
x
〈y, x〉 − f(x) (2.23)

This transformation is a ubiquitous concept throughout Science. In thermody-
namics and classical mechanics, it appears as the Legendre transform (a special
case). In convex optimization and machine learning, we call it the Fenchel conju-
gate or the convex conjugate. At first sight, this definition seems arbitrary, but
it admits geometrical interpretations along with many properties that make it a
helpful tool. The author of this thesis produced several interactive tools to grasp a
better understanding of convex conjugates: DualityViz and Dual Snakes.

One of the most interesting properties of convex conjugation is that for convex
functions, the convex conjugate of the conjugate is equal to the function itself, i.e.,

f ∗∗ = f . (2.24)

Fenchel Dual. Assume we want to solve a composite minimization problem

min
x
f(x) + g(Ax) (2.25)

where f : X → R and g : Y → R are convex functions and A : X → Y is a linear
operator. Under mild assumptions, this problem can be equivalently expressed with
the convex conjugates of f and g

min
x
f(x) + g(Ax) = min

x
max
y

f(x) + 〈Ax, y〉 − g∗(y) (2.26)

≥ max
y

min
x
f(x) + 〈x,A>y〉 − g∗(y) (2.27)

= max
y
−f ∗(−A>y)− g∗(y) . (2.28)
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This last line is known as the Fenchel dual of problem (2.25). We inverted min and
max between the first and second line to reach it. Fenchel’s duality theorem states
sufficient conditions for this inequality to be an equality, in which case we say that
strong duality holds. Fenchel duality is equivalent to Lagrange duality (Magnanti,
1974), but Fenchel’s is more convenient for unconstrained problems or problems
where the constraints are implicitly defined in the objective, whereas Lagrange’s is
more convenient for explicitly defined constraint.

SDCA and many other optimization algorithms directly store and update the
dual variable y. It is well defined for generalized linear models, e.g., models defined
with the exponential family.

2.3 Probabilistic Models

2.3.1 Exponential Families

Exponential families are among the simplest parametric models of distributions.
To define an exponential family, take a variable x in X equipped with the base
measure ν. Then extract a sufficient statistic T (x) ∈ Rd. Then take the inner
product between some parameter θ and T (x). This inner product may be negative,
so to ensure it is positive, take its exponential e〈E[T (x)],θ〉. The mass (for discrete
random variables) or the density (for continuous random variables) with respect to
ν is then defined to be proportional to this exponential

pθ(x) ∝ e〈E[T (x)],θ〉ν(x) . (2.29)

The logarithm of the normalization constant is known as the log-partition function

A(θ) := log
∫
e〈θ,T (x)〉ν(dx) . (2.30)

The equation for the negative log-likelihood finally reads

f(θ) := E[− log pθ(X)] = A(θ)− 〈E[T (X)], θ〉 . (2.31)

Remark that f is convex, and it can be seen as a linear modification of the log-
partition function A, which contains all the complexity. We provide more properties
of these families in our third contribution.

We can always define z = T (x), with µ the proper push forward modification
of ν, in which case we say that Z belongs to the natural exponential family on µ
(Morris, 1982).

The most common parametric distributions are exponential families: Categorical,
Gaussians, Gamma, Wishart, Dirichlet, etc. A remarkable exception is the non-
central Laplace p(x) ∝ e|x−µ| which cannot be expressed in this form.
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GLM. Generalized linear models (GLM) are a powerful tool in supervised learning.
Taking features x and labels y, a GLM models the conditional distribution p(y |x)
with an exponential family whose parameter is a linear function of x. For simplicity,
we consider the natural exponential family T (y) = y. The model writes

pθ(y |x) = exp(y>θx− A(θx)) (2.32)

where θ is a matrix of size dim(y)× dim(x).
In our first contribution, we study an algorithm for training a GLM for categorical

distributions, e.g., logistic regression, with the number of categories growing expo-
nentially with the input size. For this purpose, we use independence assumptions
that are formalized by probabilistic graphical models.

2.3.2 Probabilistic Graphical Models

One of the most useful properties we can model about the natural distribution
p(x) is the notion of (conditional) independence between variables. For instance, in
a simple video game, two stacks of frames are often independent, given the stack of
frames in between them. This kind of independence statements can be specified with
graphs thanks to probabilistic graphical models – see Pearl (1988) for an historical
reference, or Wainwright and Jordan (2008) or Koller and Friedman (2009) for a
more recent review.

We start by presenting undirected graphical models. GLMs associated with
undirected graphical models are known as the conditional random field (CRF), and
they are at the core of our first contribution. Then we introduce directed graphical
models, which are necessary to understand structural causal models, and our second
contribution.

Undirected Graphical Models, a.k.a. Markov Random Fields

Let G be an undirected graph defined by its vertices V = {1, . . . , d} and its
edges (i, j) ∈ E .

Definition 2.3.1 (clique). The set C = {v1, . . . , vk} is said to be a clique of G if
and only if it forms a complete graph, e.g. ∀i 6= j, (vi, vj) ∈ E.

Definition 2.3.2 (maximal clique). A clique C is maximal if it is not contained in
any clique, e.g. ∀C ′, (C ⊂ C ′ =⇒ C ′ is not a clique).

We name C the set of maximal cliques of G. We are now ready to define the
independence statement.

Definition 2.3.3. A distribution p is said to factor along G if and only if its density
verifies

p(x) =
∏
C∈C

ψC(xC) (2.33)
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where xC is a vector containing the rows of x indexed by i ∈ C, and ψC : R|C| → R+
are positive real-valued functions taking |C| arguments. We refer to ψC as the
potential of the clique C.

Exponential Graphical Model. If pθ belongs to the exponential family, then a
sufficient condition for pθ to factor along G is for its sufficient statistic to decompose
along with the cliques of G, e.g.

T (x) =
∑
C∈C

TC(xC) (2.34)

=⇒ pθ(x) ∝
∏
C∈C

e〈TC(xC),θ〉 . (2.35)

We exploit this fact in our first contribution.

Directed Graphical Models, a.k.a. Bayesian Networks

Directed probabilistic graphical models are also known as Bayesian Networks
since Pearl (1985) coined this term. They are perhaps simpler to understand than
undirected graphical models, but they are not easier to deal with.

Suppose we observe a random variable X = (X1, . . . , Xd) ∈ Rd with probability
law p(X). We are also given a Directed Acyclic Graph (DAG) G with vertex
V = {1, . . . , d} and edges E . We denote Pa(i) the parents of node i. This is the
empty set if i has no parents.

Definition 2.3.4. We say that p factorizes along G iff

p(X) =
d∏
i=1

p(Xi|XPa(i)) . (2.36)

In other words, the only conditional dependencies of p are indicated by the
edges of the graph G. The fewer edges in G, the more we know about X. In fact, if
we know nothing about p, we still know that we can write it as

p(X) =
d∏
i=1

p(Xi|X<i) (2.37)

by definition of conditional probability – modulo some positivity constraints. Con-
sequently, a useful graph should have only a few edges, or equivalently a low
degree.
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Structure Learning. In unsupervised learning, either we posit that the data
factorizes along a graph and exploit this information to learn a density model pθ
with fewer data. Or we set the goal of discovering these conditional independence
structures. This goal is known as structure learning. Current solutions to this
problem fall into two categories

1. Explicitly find out conditional independences with statistical testing and build
the graph from there.

2. Use a scoring function to explore all possible graphs and keep the one with
the highest score. The scoring function is often designed as the posterior
probability of the structure given the data.

Directed graphical models have proven helpful in many modeling areas. However,
they alone cannot predict what will happen if one of the variables is affected by
some external stimuli. That is the topic of causal inference.

2.3.3 Causal Inference

Causal inference use directed graphical models to predict the effect of inter-
ventions in the world. We will now introduce two key elements of this theory:
do-calculus and structural causal models.

Do-calculus

Assume we have data for kidney stone treatments performed in one hospital.
For each patient, we know the treatment they received X, the outcome Y – did
they successfully heal? – and the size of the stones they found during the surgery Z.
A new patient arrives. We have to recommend the treatment that will maximize
their chance of recovery. How should we process the data to make this decision?

This classic story is an instance of Simpson’s paradox. The straightforward
solution would be to recommend the treatment with the highest success rate in this
example. However, it so happens that the treatment received by past patients was
picked based on their symptoms, which were themselves a function of the stone sizes.
In this example, the stone size is a confounder that affects both the treatment and
the outcome. First, one should partition based on Z the data before aggregating
the success rates. But why is that, and how to formalize that? The answer lies in
the work of Judea Pearl (Pearl, 2009) and other statisticians. It can be formalized
with the help of graphical models such as Figure 2.1.

The question we asked is an interventional question: what will happen if we
assign X = x? This action effectively removes the observed statistical dependency
between X and Z. The outcome distribution of this action should not be computed
as the simple conditional probability P (Y |X = x), but as another quantity that
we will denote P (Y | do(x)). The gold standard to estimate this quantity would
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Z

Figure 2.1 – The graph of causal relationships between treatments X, outcome Y and
stone size Z. Z is a cause of both X and Y , which makes it a confounder.

be to perform a randomized control trial, where we blindly and randomly assign
treatments to incoming patients, then observe and report success rate. However,
we want to exploit the observed data to estimate this quantity. That is where the
do-calculus comes into play. It is a set of rules based on graphs that transform
do-statements such as P (Y | do(x)) into an equation written in terms of observed
probabilities. In the kidney stone example, we can estimate P (Y | do(x)) from
observational data thanks to the backdoor adjustment formula

P (Y | do(x)) =
∑
z

P (Y |x, z)P (z) 6=
∑
z

P (Y |x, z)P (z|x) = P (Y |x) . (2.38)

What is critical here is that Z is a cause of X. If instead X caused Z then
causal effect and conditional would be equal P (Y | do(x)) = P (Y |x). Yet from a
Bayesian network perspective, both arrow directions make a complete graph, which
encodes the same absence of conditional independence. In other words, a causal
graphical model encodes strictly more information than a Bayesian network.

The backdoor adjustment formula is the most famous instance of do-calculus,
but more complex rules exist for complex graphs with both observed and unobserved
variables. Quite recently, Huang and Valtorta (2012) proved that these rules are
complete, meaning that if a do-statement can be expressed in terms of observed
probabilities, then one will be able to find the right formula by applying these rules.

Structural Causal Models

Thanks to the rules of do-calculus, knowing the causal graph can be handy. So
far, we have talked about this in a non-parametric setting, assuming we have direct
access to the observed conditional probabilities P (Y |X,Z). In reality, we need to
parametrize these mechanisms. This is what a Structural Causal Model (SCM) is
for. It describes a causal model by a set of unobserved independent exogenous noise
variables U1, . . . , Ud, and a set of functions f1, . . . , fd such that

Xi = fi(XPa(i), Ui),∀i . (2.39)
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Given a DAG G, these functions, and distributions for the exogenous noise, one
can sample a vector X by sampling the noises and applying these functions in a
topological order of G.

Among other things, SCMs are helpful to answer counterfactual questions:
what would have happened if I had given the other treatment to this patient?
Counterfactuals are a major topic in the causality community, but they are not
relevant to this thesis, so we will not cover this theory.

While the formalism of (2.39) may seem trivial at first, it becomes useful when
one starts thinking about causal structure discovery. If we assume a parametric form
for the functions, then the graphical structure can become identifiable, meaning
that only one graph could have generated the observed data. One such example is
if we assume fi are linear and noises are non-Gaussian. However, the interest of
these identifiability results is limited because, in general, we have no guarantee on
the shape of the function that generated the data.

The SCM formalism enables us to think about a much deeper hypothesis:
Independent Causal Mechanisms. This hypothesis postulates that knowing
something about one mechanism does not provide any information about the others.
That can be formalized by various means. One of them is Algorithmic Information
Theory: the Kolmogorov Complexity of the set {f1, . . . , fd} 2 is on the same order
of magnitude as the sum of the Kolmogorov Complexity of each function taken
independently. Using this independence insight, one can devise algorithms that aim
to find the data’s causal structure. See Peters et al. (2017) for a book on this topic.

Our second contribution addresses an idea to discover causal structure from
interventional data, e.g., data coming from (possibly unknown) interventions. We
have now provided all the key elements to understand this thesis. Let us emphasize
that causal inference and causal discovery are taking more and more space in
machine learning. We refer the reader to (Schölkopf, 2019) for a modern review of
the literature.

2We do not include the exogenous noise distributions for simplicity.
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Adaptive Stochastic Dual
Coordinate Ascent for
Conditional Random Fields

Prologue to the First Contribution

Article Details

Adaptive Stochastic Dual Coordinate Ascent for Conditional Random
Fields. Rémi Le Priol, Alexandre Piché and Simon Lacoste-Julien. Published at
UAI 2018 (Le Priol et al., 2018).

Motivation for this research.

Schmidt et al. (2015) is the conclusion of many years of research devoted to
the optimization of conditional random fields (CRF). These models resisted the
optimization community until the advent of variance reduction method combined
with adaptive sampling. Using the insight that SDCA is a variance reduction
method with an exact line search, Simon (rightfully) believed it could possibly
improve upon Schmidt et al. (2015). On the way, we also incidentally found another
sampling scheme (gap sampling) which greatly enhances SDCA.

Impact since its publication.

Let us showcase two articles building upon this contribution. Eboli et al. (2020)
applies gap sampling to enhance SDCA in the context of image reconstruction.
Yaakoubi et al. (2021) uses SDCA for CRF as a building block of a larger model
combining deep networks and graphical models.

Contributions of the Authors

Rémi Le Priol wrote most of the code (and most of the bugs) and ran most
experiments. He also found the proof for acceleration under adaptive sampling.
Alexandre Piché contributed to the code and ran experiments. Simon Lacoste-Julien
provided supervision. All authors contributed to the writing of the paper.
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Abstract

This work investigates the training of conditional random fields (CRFs) via the
stochastic dual coordinate ascent (SDCA) algorithm of Shalev-Shwartz and Zhang
(2016). SDCA enjoys a linear convergence rate and a strong empirical performance
for binary classification problems. However, it has never been used to train CRFs.
Yet it benefits from an “exact” line search with a single marginalization oracle call,
unlike previous approaches. In this paper, we adapt SDCA to train CRFs and
enhance it with an adaptive non-uniform sampling strategy based on block duality
gaps. We perform experiments on four standard sequence prediction tasks. SDCA
demonstrates performances on par with state of the art and improves over it on
three of the four datasets, which have in common the use of sparse features.

3.1 Introduction

The conditional random field (CRF) model (Lafferty et al., 2001) is a common
tool in natural language processing and computer vision for structured prediction.
The optimization of this model is notoriously challenging. Schmidt et al. (2015)
describes a practical implementation of the stochastic average gradient (SAG)
algorithm (Le Roux et al., 2012) for CRFs and proposes a non-uniform sampling
scheme that boosts performance. This algorithm (SAG-NUS) is currently state of
the art for CRFs optimization, and we refer to Schmidt et al. (2015) for a detailed
review of competing methods.

Deterministic (batch) methods such as L-BFGS (Sha and Pereira, 2003; Wallach,
2002) have a linear convergence rate, but the cost per iteration is high. On the
other hand, the online exponentiated gradient method (OEG) (Collins et al., 2008)
and SAG are both members of a family of algorithms with cheap stochastic updates
and linear convergence rates, and they have both been applied to the training of
CRFs. They are called variance-reduced algorithms because their common point is
to use memory to reduce the variance of the stochastic update direction as they
get closer to the optimum. Johnson and Zhang (2013) coined the name stochastic
variance reduced gradient (SVRG), and Defazio et al. (2014) unified the family.

The stochastic dual coordinate ascent (SDCA) algorithm proposed by Shalev-
Shwartz and Zhang (2013b, 2016) is a member of this family that has not yet been
applied to CRFs. It is closely related to OEG in that it also does block-coordinate
ascent on the dual objective. Yet an interesting advantage of SDCA over OEG (and
SAG) is that the form of its update makes it possible to perform an “exact” line
search with only one call to the marginalization oracle, i.e., the computation of the
marginal probabilities for the CRF. This contrasts with both SAG and OEG, where
each step size change requires a new call to the marginalization oracle. We thus
propose in this paper to investigate the performance of SDCA for training CRFs.
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Contributions. We adapt the multi-class variant of SDCA to the CRF setting
by considering the marginal probabilities over the cliques of the graphical model.
We provide a novel interpretation of SDCA as a relaxed fixed point update and
highlight the block separability of the duality gap. We propose to enhance SDCA
with an adaptive non-uniform sampling strategy based on the block gaps and analyze
its theoretical convergence improvement over uniform sampling. We compare the
state-of-the-art methods on four prediction tasks with a sequence structure. SDCA
with uniform sampling performs comparably with OEG and SAG. When SDCA is
enhanced with the adaptive sampling strategy, it outperforms its competitors in
terms of the number of parameters updates on three of the tasks. These three tasks
are all about natural language with sparse handcrafted features. We hypothesize
that the efficiency of the dual methods can be related to the sparsity of these
features.

Related work. Our proposed gap sampling strategy is similar to the one
from Osokin et al. (2016) in the context of SDCA applied to the structured
SVM objective, which reduces to the block-coordinate Frank-Wolfe (BCFW) al-
gorithm (Lacoste-Julien et al., 2013). Dünner et al. (2017) recently analyzed a
general adaptive sampling scheme for approximate block coordinate ascent that
generalizes SDCA. Their proposed sampling scheme (which chooses the biggest gap)
was motivated in the different contexts of mixed GPU and CPU computations,
which does not apply to our setting. Our proposed practical strategy considers the
gaps’ staleness and is more robust in our experimental setting. Csiba et al. (2015)
proposes an adaptive sampling scheme for SDCA for binary classification, which
unfortunately cannot be generalized to the CRF setting due to an intractable com-
putation. Closely related to our work is Perekrestenko et al. (2017), who analyzed
several adaptive sampling strategies for a generalization of the primal-dual SDCA
setup, including our proposed gap sampling scheme. However, their analysis was
focused on the single coordinate descent method (e.g., binary SDCA) and on sub-
linear convergence results obtained when strong convexity is not assumed. Instead,
we cover the block-coordinate approach relevant to CRFs, and one of our notable
results is to show that the linear convergence rate for gap sampling dominates
the one for uniform sampling, in contrast to what happens in the sublinear regime
studied by Perekrestenko et al. (2017).

Outline. We review the optimization problem for CRFs as well as provide
novel insights on the primal-dual optimization structure in Section 3.2. We present
SDCA for CRFs in Section 3.3 and discuss important implementation aspects in
Section 3.4. We present and analyze various adaptive sampling schemes for SDCA
in Section 3.5. We provide experiments in Section 3.6 and discuss the implications
in Section 3.7.
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Figure 3.1 – Example of graphical model for the optical character recognition (OCR)
task. We want to exploit the structure of the word to predict that yi,5 is an ”e” and not a
”c”. This can be done by working on the pairs yi,{t,t+1} = (yi,t, yi,t+1), the cliques of that
model.

3.2 Conditional Random Fields

This section reviews the CRF model and its associated primal and dual opti-
mization problems. We then derive some interesting properties which motivate
several optimization algorithms.

3.2.1 Definition

A CRF models the conditional probability of a structured output y ∈ Y (e.g. a
sequence) given an input x ∈ X with a Markov random field that uses an exponential
family parameterization with sufficient statistics F (x, y) ∈ Rd and parameters
w ∈ Rd : p(y|x;w) ∝ exp(w>F (x, y)). The feature vector F decomposes as a sum
over the cliques C ∈ C of the graphical model for y: F (x, y) =

∑
C FC(x, yC), where

yC denotes the subset of coordinates of y selected by the indices from the set C.
See Figure 3.1 for an illustration.

3.2.2 Primal Problem

We have a data set (xi, yi)i∈[1,n] of n i.i.d. input and structured output pairs.
The parameter is learned by minimizing the `2-regularized negative log-likelihood:

min
w∈Rd

λ

2‖w‖
2
2 + 1

n

n∑
i=1

− log (p(yi|xi;w)) . (3.1)

We now rewrite it using the notation for the SDCA setup for multi-class classification
from Shalev-Shwartz and Zhang (2016). Denote Mi = |Yi| the number of labelings
for sequence i. Denote Ai the d×Mi matrix whose columns are the corrected features
{ψi(y) := F (xi, yi) − F (xi, y)}y∈Yi . Denote also φi(s) := log

(∑
y∈Yi exp(sy)

)
the

log-partition function for the scores s ∈ RMi . The negative log-likelihood can be
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Figure 3.2 – Left: primal parameters w and w∗ are a convex combination of corrected
features ψi. In fact they are the average of n barycenters os smaller polygons with K
vertices as per (3.4). Right: dual parameters live in n K-simplex. SDCA updates one
simplex at a time with a relaxed fixed point iteration (3.16).

written − log(p(yi|xi;w)) = φi(−A>i w). The primal objective function to minimize
over w ∈ Rd thus becomes:

P(w) := λ

2‖w‖
2
2 + 1

n

n∑
i=1

φi(−A>i w) . (3.2)

3.2.3 Dual Formulation

The above minimization problem (3.2) has an equivalent Fenchel convex dual
problem (Lebanon and Lafferty, 2002). Denote ∆M the probability simplex over
M elements. Denote αi ∈ ∆Mi

the set of dual variables for a given xi. The dual
problem directly handles the probability of the labels for the training set. The dual
objective to maximize over the choice of α = (α1, . . . , αn) ∈ ∆|Y1| × . . .×∆|Yn| is:

D(α) := −λ2‖
1
nλ

∑
i

Aiαi‖2 + 1
n

n∑
i=1

H(αi) , (3.3)

where H(αi) := −
∑

y∈Yi αi(y) log(αi(y)) is the entropy of the probability distri-
bution αi. The negative entropy appears as the convex conjugate of the softmax:
−H = φ∗. An illustration of primal and dual parameters is provided in Figure 3.2
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3.2.4 Optimality Conditions

We define the conjugate weight function ŵ as follows:

ŵ(α) := 1
nλ

∑
i

Aiαi = 1
λn

n∑
i=1

Ey∼αi [ψi(y)] (3.4)

= 1
λ

(
1
n

n∑
i=1

F (xi, yi)−
1
n

n∑
i=1

Ey∼αi [F (xi, y)]
)
. (3.5)

It is the difference between the average of the ground truth features, and the average
of the expected features for the dual variable, up to a factor 1

λ
. One can show that

ŵ(α?) = w? where w? and α? are respectively the optimal primal parameters and
the optimal dual parameters.

We also define conjugate probabilities α̂i as follows:

∀i, α̂i(w) := ∇sφi(−A>i w) = p(.|xi;w). (3.6)

We get another optimality condition α̂(w?) = α?. These two optimality conditions
can be deduced directly from the structure of the duality gaps.

3.2.5 Duality Gaps

Note that P(w) ≥ D(α) is always true, with equality at the optimum. The
duality gap is defined by:

g(w,α) = P(w)−D(α) . (3.7)

Note that we can rewrite the primal gradient as following:

∇P(w) = λ(w − ŵ ◦ α̂(w)) . (3.8)

One can verify that:

g(w, α̂(w)) = λ

2‖w − ŵ(α̂(w))‖2 (3.9)

= 1
2λ‖∇P(w)‖2 . (3.10)

This structure of the gap for the primal weights and its dual conjugate probabilities
have an equivalent in the dual. Denote the Fenchel duality gap of φi for the scores
si = −ATi w and probabilities αi:

Fi(si, αi) := φi(si) + φ∗i (αi) + sTi αi ≥ 0. (3.11)

The positivity comes from the definition of convex conjugates. The gap is zero
when si and αi are conjugate variables for φi, e.g. αi = ∇φi(si). For any smooth
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loss φi, the duality gap between ŵ(α) and α decomposes as a sum of Fenchel gaps
(Shalev-Shwartz and Zhang, 2013a):

g(ŵ(α),α) = 1
n

∑
i

F (−ATi ŵ(α), αi). (3.12)

The log-sum-exp and the entropy are a special pair of conjugates. Their Fenchel
duality gap is also equal to the Bregman divergence generated by φ∗i = −H, the
Kullback-Leibler divergence: Fi(si, αi) = DKL(αi||∇φi(si)). Writing this for the
same pair of conjugate variables yields:

g(ŵ(α),α) = 1
n

∑
i

DKL(αi||α̂i(ŵ(α)). (3.13)

The duality gaps (3.9) and (3.13) are typically used to monitor the optimization.
In Appendix 3.D, we explain how one can transfer a convergence guarantee on
the primal or dual suboptimality to a convergence guarantee on the duality gap.1

Moreover, the block-separability of gaps from (3.13) can motivate an adaptive
sampling scheme, as we describe in Section 3.5.

3.2.6 Interpretation

The primal formulation chooses a w with a small norm to maximize the condi-
tional probability of observing the labels. Conversely, the dual formulation chooses
conditional probabilities of the labels so as to minimize the `2 distance between
the expected features and empirical expectation of the ground truth features. The
optimal distribution would be the empirical distribution, if not for the entropic
regularization that favors more uniform probabilities. This is the regularized version
of the classical duality between maximum-likelihood and maximum-entropy for
exponential families.

The optimality conditions show that the solution of the primal Problem (3.2) is
also a fixed point for the function ŵ ◦ α̂. Because of the gradient form (3.8), the
gradient descent update can also be written as a relaxed fixed point update:

w+ = w − γ∇P(w) (3.14)

= (1− γλ)w + γλ ŵ ◦ α̂(w) . (3.15)

The algorithm SDCA described in the next section also admits a relaxed fixed point
update on the block αi (see (3.16)). More generally, optimization algorithms for
Problem (3.2) can often be interpreted as a back and forth between the conjugate

1 This implies that convergence results on the dual problem directly translates to convergence
results on the primal and vice-versa; a fact apparently missed in the linear rate comparison
of Schmidt et al. (2015).

24



variables w and ŵ(α̂(w)) (primal methods) or α and α̂(ŵ(α)) (dual methods). For
instance, one could interpret OEG as a relaxed fixed point iteration over the score
variables si = −ATi w.

w
α̂ //

(
∇sφi(−ATi w)

)n
i=1

��1
nλ

∑
iAiαi

OO

α
ŵoo

Most of the results presented in this section and in Section 3.5 can be transposed
to other kinds of loss and regularization, under some regularity assumptions. Our
focus in this paper is the application of SDCA to CRF models, and thus we focused
the discussion on the log-likelihood setting and the `2 norm, which are widely used.

3.3 Stochastic Dual Coordinate Ascent

We first describe the SDCA in its general setting and then describe the necessary
modifications for training a CRF.

3.3.1 General Setting

The stochastic dual coordinate ascent algorithm (SDCA) updates one dual
coordinate at a time so as to maximize the dual objective. SDCA was originally
proposed for binary classification (Shalev-Shwartz and Zhang, 2013b) where each
dual variable αi lives in ∆2 = [0, 1]. In this case, it is possible to do exact coordinate
maximization of the dual objective over a single αi with standard one-dimensional
optimization.

However, there is no simple way to maximize the dual objective over the block
αi ∈ ∆K in the multi-class setting. The algorithm with the surprising name of
Proximal-SDCA2, option II (Shalev-Shwartz and Zhang, 2016) proposes a solution
to this problem. It updates αi in a clever direction derived from the primal-dual
relationship, which amounts to a relaxed fixed point update. See Figure 3.2 for an
intuition and Algorithm 1 for the details.

We now describe the idea. At all time, we maintain the pair of dual and primal
variables (α,w = ŵ(α)). At each step, we sample a training point i. We compute
βi = ∇sφi(−ATi w) = α̂i ◦ ŵ(α), the next fixed point iterate. We then define the
dual ascent direction by δi := βi − αi. Finally we update the block αi with the

2We call it SDCA in the rest of this paper
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Algorithm 1 Prox-SDCA (option II) called SDCA here

Initialize α
(0)
i ∈ ∆Mi

,∀i
Let w(0) = ŵ(α(0)) = 1

λn

∑
iAiαi

for t = 0, 1 . . . do
Sample i uniformly at random in {1, . . . , n}
Let βi := α̂i(w) = ∇sφ(−ATi w)
Let δi = βi − α(t)

i {dual ascent direction}
Let vi = 1

λn
Aiδi {primal direction}

Solve Equation (3.17) to get γ∗ {Line Search}
Update α

(t+1)
i := α

(t)
i + γ∗δi

Update w(t+1) := ŵ(α(t+1)) = w(t) + γ∗vi

right step size so as to increase the dual objective D(α) using a relaxed fixed point
update:

α+
i ← αi + γδi = (1− γ)αi + γα̂i ◦ ŵ(α) . (3.16)

The dual ascent direction is guaranteed to increase D(α), unless δi = 0 (this
actually means that the block is already optimal, see (3.13)). The primal weights
w = ŵ(α) are related to α by a linear transformation. Define the primal direction
vi = 1

λn
Aiδi ∈ Rd. One can update the weights directly: w+ ← w + γvi.

The step size γ ∈ [0, 1] is either fixed or found via line search. In practice, the
fixed step size for which convergence is guaranteed is really small. The line search
is relatively cheap as we are looking at only one block:

γ∗ := argmax
γ∈[0,1]

−φ∗i (αi + γδi)−
λn

2 ‖w + γvi‖2. (3.17)

Note that one can decompose the quadratic term and precompute 〈w,vi〉 and ‖vi‖2

to accelerate the optimization. The bottleneck remains the computation of φ∗i (and
its derivatives).

3.3.2 Adaptation to CRF

In the CRF setting, the dual variable αi is exponentially large in the input
size xi. For a sequence xi of length T where each node can take up to K values,
the number of possible labels is Mi = |Yi| = KT . It might not even fit in memory.
Instead, the standard approach used in OEG and SAG is to consider the marginal
probabilities (µC)C∈C on the cliques of the graphical model. Similarly, we replace
α by µ = (µ1, · · · , µn), where µi ∈

∏
C ∆C is the concatenation of all the clique

marginal vectors for the sample i. For the same sequence xi, this reduces the
memory cost to K2(T − 1) for the pair marginals. We denote mi =

∑
C |Yi,C |
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Algorithm 2 SDCA for CRF

Initialize µ
(0)
i ∈

∏
C ∆C consistently ∀i {use (3.23)}

Set w(0) := ŵ(µ(0)) = 1
λn

∑
iBiµ

(0)
i {See (3.18)}

(Optional) Let gi = 100,∀i
for t = 0, 1 . . . do

Sample i uniformly at random in {1, . . . , n}
(Alternatively) Sample i proportionally to gi
Let νi,C(yC) := p(yC |xi;w(t)),∀C ∈ C {oracle}
(Optional) Let gi = D̃(µi||νi) {duality gap (3.21)}
Let δi = νi − µ(t)

i {ascent direction}
Let vi = 1

λn
ŵ(δi) {primal direction}

Solve Equation (3.22) to get γ∗ {Line Search}
Update µ

(t+1)
i := µ

(t)
i + γ∗δi

Update w(t+1) := ŵ(µ(t+1)) = w(t) + γ∗vi

this new memory fingerprint. For a sequence long enough, we have mi � Mi.
The associated weight vector can still be expressed as function of µ thanks to the
separability of the features:

ŵ(µ) = 1
λn

∑
i

∑
C

Eµi,C [ψi,C ] = 1
λn

∑
i

Biµi, (3.18)

where Bi = (ψi,C(yC))C,yC ∈ Rd×mi is the horizontal concatenation of the cliques
feature vectors.

Now, assume that the graph has a junction tree structure T = (C,S) (Koller
and Friedman, 2009, Def. 10.3), where C is the set of maximal cliques and S the set
of separators. We can then run message passing on the junction tree to infer the
new marginals given weights w: µ̂i(w) = p(yC = .|xi;w). We can also now recover
the joint probability αi(y) as a function of its marginals µi,C (Koller and Friedman,
2009, Def. 10.6):

αi(y) =
∏

C∈C µi,C(yC)∏
S∈S µi,S(yS) . (3.19)

Equation (3.19) in turn allows us to compute the entropy and the divergences of
the joints, using only the marginals. Let µi and νi be the marginals of respectively
αi and βi, then the entropy and the Kullback-Leibler divergence are given by:

H̃(µi) := H(αi) =
∑
C

H(µi,C)−
∑
S

H(µi,S) (3.20)

and

D̃(µi||νi) := DKL(αi||βi) =
∑
C

DKL(µi,C ||νi,C)−
∑
S

DKL(µi,S||νi,S). (3.21)
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With this expression of the entropy (3.20), we can compute the dual objective,
and thus perform the line search:

γ∗ = argmax
γ∈[0,1]

H̃(µ(t)
i + γδi)−

λn

2 ‖w
(t) + γvi‖2. (3.22)

With the Kullback-Leibler divergence (3.21), we can efficiently compute the individ-
ual duality gaps from (3.13). Algorithm 2 describes this variation of SDCA, with
as an option a non-uniform sampling strategy defined in Section 3.5.3.

3.4 Implementation

We provide in Appendix 3.A a discussion of various important implementation
aspects summarized here.

1. The initialization of dual methods for CRFs can significantly influence their
performance. As explained in Appendix 3.A, we use:

α(0) := εu+ (1− ε)δ , (3.23)

where u is the uniform distribution on each block, δ is a unit mass on each
ground truth label, and ε is a small number.

2. Storing the dual variable may be expensive, and one should allocate a decent
amount of memory.

3. The line search requires computing the entropy of the marginals. This is
costly, and we used the Newton-Raphson algorithm to minimize the number
of iterations. This in turn requires storing the logarithm of the dual variable.

3.5 Adaptive Sampling for SDCA

Recently, there has been a lot of attention on non-uniform sampling for stochastic
methods. The general goal is to sample more frequently points that are harder to
classify and can bring more progress on the objective. These methods are said to
be adaptive when the sampling probability changes during the optimization. SDCA
itself has had several adaptive schemes proposed. In the following, we attempt to
explain and relate these methods and suggest new schemes that work well on our
problem.
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3.5.1 Ascent Lemma

We start by restating the ascent lemma from Equation (25) in Shalev-Shwartz
and Zhang (2013a). This lemma inspires and supports all the strategies.

Ascent after sampling i: At iteration t, if we sample i and take a step of size
γi ∈ [0, 1], we can lower bound the resulting dual improvement:

n(D(α+)−D(α))

≥ γi
[
φ(−ATi w) + φ∗(αi) +wTAiαi

]︸ ︷︷ ︸
Fenchel gap=:gi

+γi
(

(1− γi)
2 − γiRi

2λn

)
‖βi − αi‖2

1 (3.24)

where Ri := ‖Ai‖2
1→2 = maxy∈Yi ‖ψi(y)‖2

2 is the squared radius of the corrected
features for sample i.

Note that compared to the original text, we used the fact that the regularizer
is the `2 norm and the loss is 1-smooth with respect to the `∞ norm. We define
R := maxiRi, R̄ := 1

n

∑
iRi and ḡ := 1

n

∑
i gi the true duality gap (see (3.11)-(3.12)).

We also introduce Li := λ + Ri
n

an upper bound on the smoothness of loss i plus
regularizer for the `2 norm. We recall from Section 3.2.5 that gi = DKL(αi||βi) (3.13).
We give the name residual to di := ‖βi − αi‖2

1.
This lemma is derived with standard assumptions and inequalities on the smooth-

ness of the loss and the strong convexity of the regularizer. The first term of the
lower bound is the ascent guarantee, while the other term gives a condition on the
step size to ensure progress. We refer the reader to the original paper for more
details.

To get the expected progress (conditioned on the past) after sampling with prob-
ability p, we simply need to take the sum of the inequality above after multiplying
both sides by pi. Our goal is to maximize this lower bound by choosing the right
probability p and step size γ. To be able to conclude the proof with the original
method, we also want some constants time the duality gap ḡ to appear in the lower
bound – the gap is lower bounded by the dual suboptimality, and thus this constant
will give the linear rate of convergence. The lemma can then transpose this result
from the dual sub-optimality to the duality gap as described in Appendix 3.D. From
there on, there are two general approaches: importance sampling and duality gap
sampling.

3.5.2 Importance and Residual Sampling

With the importance sampling approach, the goal is to set the step size and the
probability so that they cancel each other out: γi = γ

pi
. One then gets an unbiased

estimate of the true duality gap from (3.13) as the first term of the upper bound.
What is left is maximizing the second term with respect to p. This is the approach
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proposed by Zhao and Zhang (2015) (Importance Sampling, left term below) and
generalized by Csiba et al. (2015) (Residual sampling, a.k.a. AdaSDCA for binary
classification, right term):

pi ∝ Li or pi ∝ di
√
Li. (3.25)

These sampling schemes somehow allow to maximize the second term of (3.24).
Intuitively, they replace a dependency on R in the convergence rate by a dependency
on R̄. They can give good results on binary and multi-class logistic regression.
There are a few issues though.
• One needs an accurate estimate of the Li.

• Importance sampling is not adaptive.

• In the CRF setting, the residual is di = ‖βi − αi‖2
1. It is the squared `1 norm

of a vector of exponential size. We are not aware of any trick to compute it
efficiently.

3.5.3 Gap Sampling

To make sure that the second term is positive, the original proof of uniform
SDCA sets γi = γ = (1 + R

λn
)−1 to obtain:

nEp[D(α+)−D(α)] ≥ γ
∑
i

pigi. (3.26)

Assuming a full knowledge of the duality gaps gi, the optimal decision is sampling
the point with the maximum duality gap. This was done by Dünner et al. (2017)
in the context of multi-class classification on a pair CPU-GPU. While the GPU
computes the update, the CPU updates as many duality gaps as possible. This
leads to impressive acceleration over massive datasets.

However, this is not our current setting. We know and update only one gap at
a time (for efficiency). Because of the staleness of the gaps, our experiments with
this method did not even converge for the most part (see Section 3.6.3). We need a
more robust method.

We take inspiration from what was done by Osokin et al. (2016) to improve the
Block-Coordinate Frank-Wolfe (BCFW) algorithm (Lacoste-Julien et al., 2013). We
propose to bias sampling towards examples whose duality gaps are large: pi ∝ gi. If
we know all the duality gaps, the expected improvement reads:

nEp[D(α+)−D(α)] ≥ χ(g)2 γ ḡ, (3.27)

where χ(g) =
√

1
n

∑
i g

2
i

ḡ2 ∈ [1,
√
n] is the non-uniformity of the duality gaps, as

defined in Osokin et al. (2016, Section 3.1). The value χ(g)2γ is the value that will
appear in the linear convergence rate of this method. It means that the convergence
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rate for gap sampling dominates the one for uniform sampling. This is different
from what was observed for BCFW, where they could not prove dominance in
general.

In practice, we use stale estimates of the gaps, and there are no convergence
guarantees. We discuss this issue more in section 3.6.3.

We also explored a combination of gap sampling and importance sampling. We
could get a similar convergence rate where a trade-off appeared between the mean
smoothness and the non-uniformity. We detail these considerations as a technical
report in Appendix 3.F for the interested reader.

3.6 Experiments

We conducted these experiments to answer three questions: (1) How does the
line search influence SDCA? (2) How do the non-uniform sampling schemes compare
with each other? and (3) How does SDCA compare with SAG and OEG on sequence
prediction?

3.6.1 Experimental Setting

We applied the experimental setup outlined by Schmidt et al. (2015). We
implemented SDCA to train a classifier on four CRF training tasks: (1) the optical
character recognition (OCR) dataset (Taskar et al., 2004), (2) the CoNLL-2000
shallow parse chunking dataset (CONLL), (3) the CoNLL-2002 Dutch named-entity
recognition dataset (NER), and (4) a part-of-speech (POS) tagging task using
the Penn Treebank Wall Street Journal data. Additional details regarding these
datasets are provided in Table 3.1. Note that tasks (2), (3), (4) are about language
understanding. They use sparse features (the ratio a/A from the table is small). The
sparsest data set is NER. Note that POS is considerably larger than other datasets.
All experiments are performed with a regularization factor λ = 1/n. We used our
own implementation3 of SDCA coded in plain Python and Numpy (Walt et al.,
2011). In most plots, we report the logarithm base 10 of the primal sub-optimality.
We got the optimum by running L-BFGS for a large number of iterations.

3.6.2 Influence of the Line Search

We implemented the safe bounded Newton-Raphson method from Press et al.
(1992, Section 9.4) on the derivative of the line search function. A natural question
to ask is: how precise should the line search be? The stopping criterion for this

3The code to reproduce our experiments is available at https://remilepriol.github.io/

research/sdca4crf.html.
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Table 3.1 – Dataset summary. d is the dimension of w. n is the number of data points
(sequences). N is the number of nodes (e.g. sum of sequences length). K is the number of
possible labels for each node. A is the number of attributes (see Appendix 3.B). a is the
maximum number of attributes extracted from one node. Mem. is the memory required by
the pairwise marginals stored as float 64. The pairwise marginals dominate the memory
cost.

Dataset OCR CONLL NER POS

d 4,082 1.6× 106 2.8× 106 8.6× 106

n 6,202 8,936 15,806 38,219
N 52,827 2.1× 105 2× 105 9.1× 105

K 26 22 9 45
A 128 74,658 3.1× 105 1.9× 105

a 128 19 20 13
Mem.(GiB) 0.2 0.7 0.1 13

algorithm is the size of the last step taken, so there is no proper precision parameter.
We refer to this stopping criterion for the line search as the sub-precision of SDCA.

We discovered experimentally that the convergence of SDCA is mostly inde-
pendent of the sub-precision. On all datasets, if we ask 0.01 sub-precision or less,
SDCA converges with the same rate. An explanation is that the accuracy of the
optimization arises from iterates α and α̂(ŵ(α)) getting closer to each other in the
simplex with each iteration.

Reaching 0.01 or 0.001 takes, on average, two iterations. Each iteration of
Newton’s method requires the computation of the first and second derivative of the
line search objective (3.22). In the following, we report results with sub-precision
0.001 to be on the safe side. These two iterations were taking about 30% of the
algorithms running time for each dataset.4

We also performed experiments with only one step of the Newton update. The
convergence was not affected on OCR, CONLL, and POS, but convergence failed
on NER (see Figure 3.9 of Appendix 3.E). This phenomenon could be related to
sparsity.

3.6.3 Comparison of Sampling Schemes

We compare the performance of four sampling strategies with 20% of uniform
sampling against the full Uniform approach, on the OCR dataset (see results in
Figure 3.3):

• Importance: sample proportionally to the smoothness constants Li = λ+ Ri
n

.
We report how we evaluated the radii Ri in Appendix 3.C.

4 We also tried initializing the line search with 0.5 or with the previous step size. There was
no significant difference.
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Figure 3.3 – Performance of competing sampling schemes on the OCR dataset with 80%
of non-uniformity. Sampling proportionally to the gap gives the best performance.

• Gap: sample proportionally to our current estimate of the duality gaps.5

• Gap × importance: sample proportionally to the product of the gap and
smoothness constants.

• Max: sample deterministically the variable with the largest recorded gap
(Dünner et al., 2017).

As discussed in Section 3.5.3, Max sampling is not robust enough to the staleness
of the gap estimates and fails to converge here. We also observe that Importance
performs worse than Uniform, and that Gap × Importance performs worse than Gap.
This indicates that the smoothness upper bounds we estimated are not informative
of the difficulty of optimizing a point for SDCA. Overall, Gap sampling gives the
best performance, and this is what we use in the following experiments.

The ratio of uniform sampling is here to mitigate the fact that we sample
proportionally to stale gaps. This is the strategy adopted by SAG-NUS (Schmidt
et al., 2015) which samples uniformly half of the time. Another strategy used
by Osokin et al. (2016) is to update all the duality gaps at once every ten epochs or
so. Our experiments indicate that these strategies are not needed for SDCA-GAP.
Increasing the ratio of non-uniformity up to 1 only improves the performance on
all datasets, though after 0.8, the improvements are marginal, as illustrated by
Figure 3.4 for the NER dataset.

In fact, the estimate of the total gap maintained by SDCA is somewhat accurate,
as illustrated for different datasets in Figure 3.10 of Appendix 3.E. Empirically, it
always remains within a factor 2 of the true duality gap. This accuracy is good
news because one can use this estimate of the duality gap as a stopping criterion
for the whole algorithm. Once it reaches a certain precision threshold, one just has

5 For the gap approaches, we initialize the gap estimates with large values (100) so as to perform
a pass over the whole dataset before starting to sample proportionally to the stale estimates.
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Figure 3.4 – SDCA with Gap sampling applied on NER with various fractions of non-
uniform sampling, as indicated by the number in the legend. Increasing the fraction only
improves the performance, up to a certain point.

to perform one last batch update to check the real value. This is similar in spirit
to SAG, which uses the norm of its estimate of the true gradient as a stopping
criterion. Both are duality gaps estimators (see Equation (3.9)).

3.6.4 Comparison against SAG and OEG

We downloaded the code for OEG and SAG-NUS as implemented by Schmidt
et al. (2015) from the SAG4CRF project page.6 We used our own implementation of
SDCA with a line search sub-precision of 0.001. We provide the comparison in Fig-
ure 3.5 according to two different measures of complexity which are implementation
independent.

Oracle calls. Schmidt et al. (2015) compared the algorithms on the basis of the
number of oracle calls. We report these on OCR and NER in Figures 3.5a and 3.5d.
Results on the other datasets are in Figure 3.7 in Appendix 3.E. This metric was
suitable for the methods they compared. Both OEG and SAG-NUS use a line search
where they call an oracle on each step. SDCA does not need the oracle to perform
its line search. However, the oracle is a message passing on a junction tree. It has
a cost proportional to the size of the marginals. Each iteration of the line search
requires computing the entropy of these marginals, or their derivatives. These costs
are roughly the same. Comparing the number of oracle calls for each method is
thus unfairly advantaging SDCA by hiding the cost of its line search. It becomes a
relevant comparison when a marginalization oracle becomes much more expensive
than approximating the entropy (see the discussion in Section 3.7). When this cost

6https://www.cs.ubc.ca/~schmidtm/Software/SAG4CRF.html
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(a) OCR (Oracle Calls) (b) OCR (c) CONLL

(d) NER (Oracle calls) (e) NER (f) POS

Figure 3.5 – Primal sub-optimality as a function of the number of oracle calls (left) or
parameters updates (center and right). SDCA refers to uniform sampling. SDCA-GAP
refers to sampling Gap sampling 80% of the time. SAG-NUS performs a line search at
every iteration. SAG-NUS* implements a line-search skipping strategy. It appears worse
than SAG-NUS when we look at the number of updates, which hides the cost of the line
search.

is hidden, SDCA-GAP is on par with SAG-NUS* on OCR, and it is much faster on
the sparse datasets.

Parameter updates. To give a different perspective, we report the log of the
sub-optimality against the number of parameter updates in Figures 3.5b, 3.5c, 3.5e
and 3.5f. This removes the additional cost of the line search for all methods.7

We observe that uniform SDCA and OEG need roughly the same number of
parameters update on all four datasets. When we add the adaptive gap sampling,
SDCA outperforms OEG by a margin. On OCR, SDCA and SDCA-GAP do not
perform as well as SAG-NUS. On the three other datasets, SDCA-GAP needs fewer
iterations. In fact, the more sparse the dataset, the fewer iterations are needed.

This is likely explained by SDCA’s ability to almost perfectly optimize each
block separately due to its line search method. More specifically, as the datasets
become sparser, the prediction between data points becomes less and less correlated
(i.e., the label distribution for two points that share no attributes will not influence
each other directly through their primal weights). In settings where no points share
any attributes (completely sparse), all methods optimize each point independently.

7 This is a penalty for SAG-NUS*, which enforces a line-search skipping strategy.
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SDCA may perform very well thanks to its precise line search.
In terms of test error, SDCA is on par with SAG, and a bit better than OEG.

All methods reach maximum accuracy after a few epochs. We report the evolution
of the test error in Figure 3.8 of Appendix 3.E.

Comparing the number of parameters updates also has a disadvantage. It
penalizes methods with line search skipping strategies likes OEG and SAG. The
running time is highly implementation dependent and providing a fair comparison
is non-trivial. We focused on implementation-independent comparisons. SCDA,
SAG, and OEG have many common operations: the oracle, the computation of the
scores, and the primal direction. The fact that the line search took only 30% of
SDCA’s runtime indicates that the conclusion drawn from the number of updates
may hold for other metrics.

3.7 Discussion

In this work, we investigated using SDCA for training CRFs for the first time.
The observed empirical convergence per parameter update was similar for standard
SDCA and OEG. However, SDCA can be enhanced with an adaptive sampling
scheme, consistently accelerating its convergence and also yielding faster convergence
than SAG with non-uniform sampling on datasets with sparse features. It would
be natural to also implement a gap sampling scheme for OEG, though several
quantities needed for the computation are not readily available in standard OEG
and would yield higher overhead in actual implementation. We leave finding a
more efficient implementation of a gap sampling scheme for OEG as an interesting
research direction.

A key feature of SDCA is to only require one marginalization oracle per line
search. This could become advantageous over SAG or OEG when the marginalization
oracle becomes much more expensive than evaluating the entropy function from
the marginals. Examples for this scenario include: when a parallel implementation
is used for the entropy computation; or when the marginalization oracle uses an
iterative approximate inference algorithm such as tree reweighted belief propagation
whereas an approximation of the entropy is direct from the marginals (Krishnan
et al., 2015). Investigating these scenarios with full timing comparison (which is
implementation dependent) is a further interesting direction of future work.

We also note that acceleration schemes have been proposed for both SAG and
SDCA (Lin et al., 2015; Shalev-Shwartz and Zhang, 2016), though they have not
been tested yet for training CRFs.
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3.A Implementation

We discuss some practical aspects of SDCA: initialization, memory requirement
and how to do the line search.

3.A.1 Initialization

As discussed in Schmidt et al. (2015), the initialization of dual methods for
CRFs can influence significantly their performance. We describe here a motivation
for a suggested good initialization for α. Suppose that we put all the mass for
αi on the ground truth label yi, i.e. αi = δyi where δy is the Kronecker delta
function on y – this represents the “empirical distribution” on one example. Let δ
be the concatenation (δyi)ni=1. Similarly, let u be the concatenation of the uniform
distribution on the labels for each training example. We have the following chain of
relationships:

δ
ŵ−−→ 0 α̂−−→ u

ŵ−→ . . .

D(δ) = 0 small P(0) D(u)

What is important here is that P(0) is small. If each node can take up to K
values, and there are n sequences for a total of N nodes, P(0) = N

n
log(K). On

all our datasets this is below 100. This means that using α(0) = δ gives an initial
duality gap equal to P(0) . 102. In contrast, using α(0) = u as used in the original
OEG code8 consistently gave extremely large ŵ(u) resulting in a large negative dual
score and large primal score, and raising numerical stability issues. Primal methods
usually initialize their weights to zero. The dual counter part is the empirical
distribution because it yields the same primal vector and score. For these reasons,
we ideally would like to use δ as the initialization.

There is catch though. On the borders of the simplex, the entropy has infinite
gradient and curvature. This is a bad behavior if we wish to use this information
for the line search. A natural strategy to mitigate this effect is to take a (small ε)
convex combination with the uniform:

α(0) := εu+ (1− ε)δ . (3.28)

This is what we use in our experiments. Graphically, the initial point will be
on a segment between a corner of the simplex and the center. This is the same
initialization that Schmidt et al. (2015, App. D of the Sup. Mat.) discovered
empirically. It was also used implicitly by Collins et al. (2008) when they took the
regularization path approach by starting the method with a very large regularization
parameter λ.

8egstra-0.2 available online at http://groups.csail.mit.edu/nlp/egstra/. This is also
the initialization used in the main text of Schmidt et al. (2015).
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3.A.2 Memory Requirement

Variance reduced methods use memory (except SVRG) to control the variance
of the update. This memory cost can be quite large as it grows linearly with the size
of the dataset. Schmidt et al. (2015) suggested a smart way to reduce this memory
cost for SAG : for a sequence with hand crafted features, one stores only the unary
marginals and the binary features. There is no such trick for dual methods, and
both OEG and SDCA have to store the full marginals. It turns out that if each
node can take K values, we have to allocate about K times more memory than for
SAG. This can become a problem: for our larger dataset, part of speech tagging on
Penn-Tree Bank Wall-Street Journal, we needed about 15GiB of RAM.

3.A.3 Line Search

The line search is an important part of the algorithm. Each evaluation of the
line search function or its derivatives is quite expensive. We need to aggregate
values from the whole marginal which has a size

∑
c |Yc| (though this can be done

in parallel). As a comparison, running the sum-product algorithm over the junction
tree has a cost 2

∑
c |Yc| (though this is a sequential algorithm). There are other

overhead in the algorithm such as computing the scores wTFc(x, yc) or estimating
the primal direction Aiδi, so this is not totally critical.

Yet we wish to reduce the number of function evaluation. A good way to do so is
to use the Newton-Raphson algorithm. But this uses the first and second derivatives
of the line search objective, and the entropy has infinite slope and curvature on the
borders of the simplex. To avoid numerical instability issues, we have to use and
store the logarithm of the marginals (as was done for OEG (Collins et al., 2008)).
We report an empirical study of the line search performance in section 3.6.2.

3.B Description of the Feature Map F

Figure 3.6 – Sketch of
the feature map. K is
the number of different
labels for one node. A is
the number of attributes.

The feature map has the same structure on all the data
sets (cf Figure 3.6). We first draw the distinction between
unary features (in red) and binary features (in yellow). The
features can be written as the sum of the unary and binary
features:

F (x, y) =
T∑
t=1

Ft(xt, yt) +
T−1∑
t=1

Ft,t+1(yt, yt+1).

Unary Features depend only on the label of one node yt
and the corresponding data point xt: Ft(xt, yt). Binary
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features depend only on the labels of two neighboring nodes
: Ft,t+1(yt, yt+1). It is a design choice not to directly model
the relationship between two neighboring data points, e.g.
F (xt, xt+1, yt, yt+1). In practice the binary features simply
count the number of transitions between yt and yt+1, hence
the yellow square.

For unary features, it is a bit more complex. For each
data sequence x, we extract an embedding for each position
t, ϕ(x, t). For OCR, it is simply the 128 pixels image itself
ϕ(x, t) = xt. For the language tasks, it is a count of the
appearance of certain attributes, e.g, what is the word xt, what are the words at
position t − 1, t + 1, and so on. A complete list of the attributes is available at
http://www.chokkan.org/software/crfsuite/tutorial.html. For each word
(=node), between 13 and 20 features are extracted depending on the dataset. In
total the number of different attributes extracted ranges from 73, 000 to 300, 000,
hence the sparsity of the features. We denote A the number of attributes, or
alternatively the size of the embedding. For each node with point xt and label yt,
Ft(xt, yt) puts the embedding ϕ(x, t) in the column indexed by yt of the red emission
matrix. In this same column, we add some bias. The bias part has 3 dimensions.
The first component counts the appearance of the label. The second component
counts the appearance of the label in first position of a sequence, (t = 0). The last
component counts the number of appearance in the last position of a sequence.

3.C How to Compute the Radius of the

Features

We drop the i index for now. We look at the pair (x, y). We want to evaluate
an upper bound on:

R = ‖A‖2
1→2 = max

y∈Y
‖ψ(y)‖2

2 = max
ỹ∈Y
‖F (x, y)− F (x, ỹ)‖2

2. (3.29)

We are using the special nature of the features to estimate this radius. Remark that
in the standard feature maps that we used (Appendix 3.B), there is one column per
label. If the label yt is assigned to the node t, then all the features extracted from
that node are inserted in the column associated to yt.

How to build a ỹ maximizing the distance between features? First we build
the ground truth features : F (x, y). Then we look at the labels included in the
sequence yt. In each data set, the K labels never appear together in one sequence.
We find a label z that does not appear in the original sequence. Then a sequence ỹ
maximizing the objective (3.29) is the sequence composed only with that label z.
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Why? There are two reasons. First, F (x, y) ≥ 0 ∀(x, y) thus we want F (x, y)
and F (x, ỹ) to have disjoint supports such that the radius can be written as:

R = ‖F (x, y)‖2 + ‖F (x, ỹ)‖2. (3.30)

Second, we want to maximize ‖F (x, ỹ)‖2. We need to put all the weights on few
coordinates, instead of dispersing it. This is because we look at the `2 norm. For
the `1 norm there would be no difference. By repeating only one label, we effectively
concentrate all the weights in one column.

Following the steps described above, we can evaluate the radii for the whole
data set.

3.D A Convergence Rate on the Duality Gap

It turns out that any algorithm with an upper bound on the primal or the dual
sub-optimality for problems (3.2) and (3.3), can get an upper bound on the duality
gap for the cost of a constant. To transpose a result of the primal sub-optimality
to the duality gap, one can go by the norm of the gradient using the smoothness
of P , that we denote L:

P(w)− P(w∗) ≥ 1
2L‖∇P(w)‖2 (3.10)= λ

L
g(w, α̂(w)). (3.31)

The first inequality above is a standard one from convex analysis for convex func-
tions with Lipschitz-continuous gradients (see e.g. (Nesterov, 2004b, eq. (2.1.6))).
Whatever bound we get on the primal sub-optimality, we can translate it to the
duality gap by losing a constant L/λ ≥ κ, where κ is the condition number.

To transpose a result from the dual sub-optimality to the duality gap, one can
use the uniform ascent lemma, Equation (3.74) from Appendix 3.F.4:

D(α∗)−D(α) ≥ E[D(α+)]−D(α) ≥ s

n
g(ŵ(α),α) (3.32)

where the expectation is taken over the stochasticity of the update. Let us look at
this new constant. We know that 1/s = 1 + R

nλµ
. We can relate it to the smoothness

L ≈ λ+ R
µ

. This time we lose a factor n/s ≈ n+ L
λ
≥ n+ κ. For a well-conditioned

problem (n� κ) this is much larger than the constant we lose from the primal to
the gap.
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3.E Additional Comparison Plots

We provide additional figures on the primal sub-optimality as a function of
oracle calls (Figure 3.7), the test error as a function of epochs (Figure 3.8), the
impact of reducing the precision of the Newton line-search (Figure 3.9) and the
ratio between the estimate of the duality gap and the ground truth (Figure 3.10).

(a) CONLL (b) POS

Figure 3.7 – Primal sub-optimality as a function of the number of oracle calls. SDCA-
GAP performs much better than the competing methods for this metric partly because its
line search does not require oracle calls.

(a) OCR (b) CONLL

(c) NER (d) POS

Figure 3.8 – Test error against number of epochs. Every methods reach the same test
error. SDCA and SAG have the same convergence speed.
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(a) NER (b) POS

Figure 3.9 – Performance of SDCA on NER and POS with a Newton line-search. The
number after the name of the dataset indicates the sub-precision we asked. A sub-precision
of 0.5 effectively means that Newton stops after 1 step. While there is no difference between
the curves for POS, 1 step of Newton update fails to converge on NER.

(a) CONLL (b) OCR

Figure 3.10 – The ratio between the estimate of the duality gap and the ground truth
as a function of the proportion of non uniform sampling. The gap sampling tends to
underestimate this value, whereas the uniform sampling tends to over-estimate it.

3.F A Technical Report on Non-uniform

Sampling for Stochastic Dual Coordinate

Ascent

In this section, we review the proofs of convergence of SDCA and its variants
with importance and residual sampling. Then we derive bounds on the convergence
rate of two new sampling scheme for SDCA. The first scheme samples proportionally
to the duality gaps of each individual variable. The second scheme is similar to the
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first one, but it corrects the duality gaps with the Lipschitz constant of the primal
problem.

3.F.1 Setting

We derive these bounds in a more general setting than the logistic regression,
and we have to introduce some new notation.

Let w denote the weights vector parameter, and Ai the i-th features matrix.
Let φ be the primal loss function. We suppose it is convex and 1/µ-smooth with
respect to ‖.‖P (dual norm ‖.‖D). The regularizer r is supposed 1-strongly convex
with respect to ‖.‖P ′ (dual norm ‖.‖D′). Because φ and r∗ are smooth, they are
also differentiable. Note that every starred variable represent its dual conjugate.

The empirical loss minimization problem is:

(P ) min
w∈Rd

λr(w) + 1
n

n∑
i=1

φi(−ATi w). (3.33)

Its Fenchel dual problem is:

(D) max
α|∀i,αi∈Domφ∗

−λr∗(v̂(α))− 1
n

n∑
i=1

φ∗i (αi), (3.34)

with

v̂(α) := 1
λn

∑
i

Aiαi and ŵ(α) ∈ ∇r∗(v̂(α)). (3.35)

We also note:
∀i, βi = α̂i(w) ∈ ∇φi(−ATi w). (3.36)

Minimization of the empirical risk can often be interpreted as going around the
diagram below.

w // ∇φi(−ATi w)

��
∇r∗

( 1
λn
Aα
)

OO

αoo

We define the squared radius of the features for a given sample i as the operator
norm of the matrix Ai:

Ri := ‖Ai‖2
D→D′ . (3.37)

We also define the maximum squared radius as R = maxiRi and the mean radius
R̄ = 1

n

∑
iRi.
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Log-likelihood special case. The loss φ(z) = log(
∑

y exp(zy)) is 1-smooth with
respect to the max-norm. Its convex conjugate is the negative entropy φ∗(α) =
−H(α) =

∑
y log(αy)αy which is in turn 1-strongly convex with respect to the

`1-norm, and whose domain is the simplex. We use the `2 regularization whose dual
function is itself. We thus have Ri = ‖Ai‖2

1→2 = maxy ‖ψi(y)‖2
2. We also have a

special expression for the primal to dual function βi = p(.|xi;w) ∝ exp(−wTψi(.)).
The dual variable is obtained as the conditional probability of the primal model.
Conversely, the primal weights are obtained as the expectation of the features ψi(y),
which are the columns of Ai.

3.F.2 Duality Gaps

We derive an interesting form on the duality gaps that support a new sampling
strategy. This is not needed to understand the convergence rates of SDCA and its
variants, and the reader may skip this section.

The duality gap is:

g(w,α) = P (w)−D(α) = λ

(
r(w) + r∗(Aα

λn
)
)

+ 1
n

n∑
i=1

φ(−ATi w)+φ∗(αi). (3.38)

Because of the two conjugate pairs (r, r∗) and (φ, φ∗) there are two apparent
ways to simplify it. One is to take the conjugate primal variable w := ŵ(α), another
is to take the conjugate dual variable α := α̂(w).

Conjugate primal variable. Under the hypothesis w = ŵ(α), we obtain:

r(w) + r∗(Aα
λn

) = wT Aα

λn
. (3.39)

The duality gap simplifies:

g(ŵ(α),α) = 1
n

n∑
i=1

φ(−ATi ŵ(α))+φ∗(αi)−αTi (−ATi ŵ(α)) = 1
n

n∑
i=1

Fφ(−ATi ŵ(α), αi),

(3.40)
where Fφ(s, α) is the Fenchel duality gap (3.11) between vectors s and α. When φ
is the log-sum-exp, these vectors are the score (or logit) s and the probability α.
We want to simplify this further to directly relate α and its next iterate α̂i ◦ ŵ(α).
To do so we need another condition:

〈∇φ∗ ◦ ∇φ(s)− s, β − α〉 = 0, (3.41)

for all s ∈ Domφ and α, β ∈ Domφ∗. Geometrically, the pairs (s,∇φ∗ ◦ ∇φ(s))
should always be aligned orthogonally to Domφ∗. This condition (3.41) is true
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whenever ∇φ∗ ◦ ∇φ = Id the identity function. It is also true when φ is the log-
sum-exp although ∇φ∗ ◦ ∇φ is not the identity. Then the Fenchel duality gap is
equal to the Bregman divergence generated by φ∗:

Fφ(s, α) = Dφ∗(α||∇φ(s)). (3.42)

Then the duality gap can be written as the average over data points of the φ∗-
Bregman divergence between αi and its next fixed point iterate: α̂i ◦ ŵ(α):

g(ŵ(α),α) = 1
n

n∑
i=1

Dφ∗(αi||α̂i ◦ ŵ(α)). (3.43)

Conjugate dual variable. The situation is quite symmetric. Under the assump-
tion that α := α̂(w), one gets:

g(w, α̂(w)) = λ

(
r(w) + r∗(Aα̂(w)

λn
))−wT Aα̂(w)

λn

)
= λFr(w,

Aα̂(w)
λn

), (3.44)

where Fr is the fenchel duality gap of the regularizer. We can transform it into the
Bregman divergence between w and its next iterate w′ := ∇r∗(Aα̂(w)

λn
)) = ŵ ◦ α̂(w)

at the condition that:

〈∇r ◦ ∇r∗(v)− v,w′ −w〉 = 0, (3.45)

for all vectors v in the domain of r∗ and all vectors w,w′ in the domain of r. Then
the duality gap is:

g(w, α̂(w)) = λDr(w||ŵ ◦ α̂(w)). (3.46)

Equations (3.43) and (3.46) show that the objective (3.33) is also a fixed point
problem for the conjugation operations. The suboptimality can be easily measured
as the divergence between a point, either primal or dual and its next iterate. The
divergence is given by the regularizer of the primal problem r or the dual problem
φ∗.

3.F.3 Theorems

We state the convergence rates for some variants of SDCA using non-uniform
sampling. The proofs follow in the next section.

Denote ht := D(α∗) − E[D(α(t)] the expectation of the dual sub-optimality
at step t. The expectation is over all the possible samplings (the stochastic
part of SDCA). We will bound this value. One can bound the duality gap
g(ŵ(α),α) := P (ŵ(α)) − D(α) at the cost of another constant outside of the
exponential (Appendix 3.D).
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Theorem 3.F.1 (Uniform sampling (Shalev-Shwartz and Zhang, 2013a)). At each
step, sample i with uniform probability in [1, n]. After t iterations, the dual sub-
optimality is bounded by:

ht ≤ (1− s

n
)th0, (3.47)

where s = (1 + R
nλµ

)−1 is the fixed step size used in the proof.

This theorem holds for SDCA with line search as well, since the line search can
only be faster than the fixed step size. None of the following algorithm take the line
search into account. The relative values of the bounds appearing in each theorems
may not always reflect the relative performance of each algorithms.

Intuitively, we want the linear coefficient, here s
n
, to be as large as possible. Here

R/µ is the max of the smoothness of the individual losses φi. If the regularizer is
smooth enough, then the linear coefficient is related to the condition number κ by:

n

s
= n+R/(λµ) ≈ n+ κ. (3.48)

The following theorem goes from the maximum radius R to the mean radius R̄.

Theorem 3.F.2 (Importance Sampling (Zhao and Zhang, 2015)). At each step,
sample i with probability pi proportional to the individual ”condition number”:

pi ∝ 1 +Ri/(nλµ). (3.49)

After t iterations, the dual sub-optimality is bounded by:

ht ≤ (1− s̄

n
)th0, (3.50)

where s̄ := (1 + R̄
nλµ

)−1 is the harmonic mean of the step sizes used in the proof.

The harmonic mean is always larger than the minimum step size, so the im-
portance sampling will converge faster than the uniform sampling at the condition
that we have an accurate estimate of the operator norms Ri. Indeed, if we get the
operator norms wrong, then we will sample more often points that are actually
easier to classify. Even if we estimate them right, empirical convergence may be
slower with this scheme because of the line search. This is what happened during
the experiments that we ran on CRFs.

Note the similarity with non-uniform sampling in primal methods. The conver-
gence is improved thanks to larger step sizes, that are proportional to the inverse of
some kind of Lipschitz constants. The convergence rate depends on the arithmetic
mean of these Lipschitz constants instead of the max.

We now introduce an adaptive scheme. We reformulate the theorem to make it
more compact and comparable with our theorems.
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Theorem 3.F.3 (AdaSDCA (Csiba et al., 2015) ). Suppose that the loss functions
are quadratic φ(z) := ‖z‖2

2. Denote dti = ‖βti −αti‖D′ At each step t, sample i with
probability pti defined by:

pti ∝ dti
√

1 +Ri/(nλµ), (3.51)

θ(d,p) =
∑

i d
2
i∑

i|pi>0
d2
i

pi
(1 + Ri

nλµ
)
, (3.52)

and

θ̃t = E[θ(dt,pt)(P (wt)−D(αt))]
E[P (wt)−D(αt)] (3.53)

where the expectation is taken over all the possible trajectories of the algorithm, e.g
the sampling of the points. Finally define θ̃ = mint θ̃t. After t iterations, the dual
sub-optimality is bounded by:

ht ≤ (1− θ̃)th0. (3.54)

In the theorem above, we have to take the expectation of some variable over all
the trajectories of the algorithm. This is not very clean, but this is unavoidable to
get a general convergence result with an adaptive scheme. Alternatively, one could
simply compare the improvement given by one step for each algorithm.

A major limitation of the theorem above is that the loss has to be quadratic. This
theoretical limitation is not a big problem empirically. It results from a symbolic
trick used in the proof : setting the step size to be proportional to the inverse of
the probability. This is reasonable for importance sampling, because the probability
is proportional to the smoothness constant. Setting the step size to the inverse of
the smoothness is optimal for gradient descent. This may be less reasonable for
other sampling schemes.

Another limitation is that we have to estimate the n distances dti at each step.
In practice we compute dti only for the sampled i, and use the latest estimate dt

′
j for

all the other samples j. Our estimates will become stale as the algorithm unfolds,
but there are heuristics to compensate for that phenomenon. One is to sample
from a mixture between a uniform and an adaptive distribution. Another is to do
a batch update of the di every once in a while. These heuristics are unavoidable
for adaptive schemes, as we do not want the cost of every update to be O(n). We
do not know how to analyze the impact of these heuristics. Empirically, adaptive
sampling with this heuristic still accelerates convergence.

Now we are going to introduce two new adaptive sampling scheme. Both of
them rely on the structure of the duality gap:

g(ŵ(α),α) := P (ŵ(α))−D(α) =
∑
i

φ(−ATi ŵ(α)) + φ∗(αi) + 〈ŵ(α), Aiαi〉.

(3.55)
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Each term of the sum above is a Fenchel duality gap between the loss and its convex
conjugate. They are all positive, and somehow represent the sub-optimality of the
current model for every training sample. Intuitively, sampling the most sub-optimal
point may yield the best improvement.

Theorem 3.F.4 (Gap sampling). At each step t, sample i with probability pti
proportional to the individual Fenchel duality gap:

pti ∝ gti := φ(−ATi wt) + φ∗(αti) + 〈wt, Aiα
t
i〉. (3.56)

Define the non-uniformity of the duality gaps as the ratio between their quadratic
mean and their arithmetic mean:

χ2(g) :=
1
n

∑
i g

2
i( 1

n

∑
i gi
)2 ∈ [1, n]. (3.57)

Take χ a lower bound on these non-uniformity over all trajectories, for all time
steps. After t iterations, the dual sub-optimality is bounded by:

ht ≤ (1− sχ
2

n
)th0. (3.58)

where s = (1 + R
nλµ

)−1 is the fixed step size used in the proof.

This theorem has the same limitations relative to adaptive scheme that we
mentioned for AdaSDCA.

This kind of sampling scheme was studied in the sublinear convergence regime
by Osokin et al. (2016) (Franke-Wolfe) and Perekrestenko et al. (2017) (Coordinate
Descent). They could not establish a domination of gap-sampling over uniform
sampling. This is what we prove in the linear regime for SDCA since the non-
uniformity χ belongs to [1,

√
n].

The non-uniformity χ2(g) (3.57) is worth 1 if the gaps are all the same, and√
n if only one gap is non-zero, hence the name. Gap-sampling will be n times

faster than uniform sampling if only one sample i is suboptimal gi > 0. This result
is sensible since we will sample only one point, while the uniform algorithm may
sample a large number first. Let us imagine another scenario where all points
are already optimal except k of them which have the same gap value. Then the
acceleration coefficient will be n

k
, which can be a significant acceleration when k

is much smaller than n. Finally, consider a scenario where the gaps are evenly
distributed {a, 2a, ..., na} for some value a > 0. Note that χ2(g) is scale-invariant
and does not depend on the specific value a. We can compute χ2(g) explicitly here
using Faulhaber’s formula for the sum of powers of integers:

χ2(g) =
1
n
n(n+1)(2n+1)

6(
1
n
n(n+1)

2

)2 = 2
3

2n+ 1
n+ 1 ≈ 4/3.
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The acceleration coefficient here is approximately 4/3 compared to uniform sampling.
The duality gaps are often computable, even in the Conditional Random Fields

context. On the other hand, we do not have direct access to the dual variable α
and we cannot compute the distance di = ‖βi−αi‖1, as it is the `1 norm of a vector
of exponential size.

Now we want to combine importance sampling with duality gap sampling. We
would like to benefit both from the dependency on R̄ and the acceleration by χ.

Theorem 3.F.5 (Lipschitz-gap sampling). At each step t, sample i with probability
pti defined by:

pti ∝ gti(1 +Ri/(nλµ)). (3.59)

Define χ as in (3.57) from Theorem 3.F.4. Define s̃ as the quadratic harmonic mean
of the step sizes si := 1/(1 +Ri/(nλµ)). After t iterations, the dual sub-optimality
is bounded by:

ht ≤ (1− s̃χ
n

)th0. (3.60)

This theorem makes apparent a trade-off between the advantage gained with the
smoothness, and the advantage gained with the individual gaps. We lose the square
factor on the non-uniformity compared to Theorem 3.F.4. We go from the harmonic
mean to the quadratic harmonic mean (generalized norm −2) of the step sizes,
which is basically the same as going from the arithmetic mean of the smoothness to
the quadratic mean of the smoothness. Recall that the quadratic mean always lies
in between the arithmetic mean and the max.

Our results holds for any smooth loss function, contrary to AdaSDCA. Our two
new strategies complement importance sampling as none of them dominates the
other. Which one is the best depends on the context. That is at the condition that
we have access to the Ri. Otherwise gap sampling remains available.

3.F.4 Proofs

Lemma 3.F.6 (General descent lemma). Apply the SDCA update on the dual
variable α to get the new point α+. The block i is sampled with probability pi and
updated with a step size si. The expected dual improvement verifies the lower bound:

nEp[D(α+)]−D(α) ≥
∑
i

pisigi︸ ︷︷ ︸
not the duality gap

+µ2
∑
i

pisi

(
1− si

(
1 + Ri

µλn

)
︸ ︷︷ ︸

:=ci

)
d2
i (3.61)

where Ep denotes the conditional expectation over the choice i ∼ p of block to update,
conditioned on the previous state α.

Proof of Lemma 3.F.6. This statement is similar to a weighted combination of
Equation (25) from Shalev-Shwartz and Zhang (2013a). We provide here the
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derivation to be self-contained. Suppose we sampled the point i and updated the
block αi with step size si:

α+
i := αi + siδi = (1− si)αi + siβi . (3.62)

The dual improvement is:

n(D(α+)−D(α)) = λn

(
r∗
(
Aα

λn

)
− r∗

(
Aα+

λn

))
︸ ︷︷ ︸

data fidelity

+φ∗(αi)− φ∗(α+
i )︸ ︷︷ ︸

regularization

. (3.63)

We first bound the data fidelity term. We use the the fact that r∗ is 1-smooth
with respect to ‖.‖D′ to upper-bound its variation:

r∗
(
Aα+

λn

)
= r∗

(
Aα

λn
+ si

Aiδi
λn

)
(3.64)

≤ r∗
(
Aα

λn

)
+ si

〈
∇r∗

(
Aα

λn

)
,
Aiδi
λn

〉
+ s2

i

2

∥∥∥∥Aiδiλn

∥∥∥∥2

D′
(3.65)

The linear coeficient of this lower boudn is ŵ(α) = ∇r∗
(
Aα
λn

)
. The quadratic term

can be further upper-bounded:∥∥∥∥Aiδiλn

∥∥∥∥2

D′
≤ 1

(λn)2‖Ai‖
2
D→D′‖δi‖

2
D = Rid

2
i

(λn)2 , (3.66)

by definition of the radius Ri and the residue di := ‖βi − αi‖D. So the loss variation
is lower bounded by:

λn

(
r∗
(
Aα

λn

)
− r∗

(
Aα+

λn

))
≥ si 〈ŵ(α), Ai(αi − βi)〉 −

s2
i

2
Rid

2
i

λn
. (3.67)

Now we bound the regularization term. Since φ∗ is µ-strongly convex with
respect to ‖.‖D,

φ∗(α+
i ) = φ∗((1− si)αi + siβi) ≤ (1− si)φ∗(αi) + siφ

∗(βi)− si(1− si)
µ

2d
2
i . (3.68)

The regularization variation can be lower bounded by:

φ∗(αi)− φ∗(α+
i ) ≥ si (φ∗(αi)− φ∗(βi)) + si(1− si)

µ

2d
2
i . (3.69)

Plugging the bounds (3.67) and (3.69) into Equation (3.63), we get:

n(D(α+)−D(α))

≥ si (φ∗(αi) + 〈ŵ(α), Ai(αi − βi)〉 − φ∗(βi)) + si
2

(
(1− si)µ− si

Ri

λn

)
d2
i . (3.70)
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Recall that βi := ∇φ(−ATi ŵ(α)). Thus,〈
−ATi ŵ(α), βi

〉
− φ∗(βi) = φ(−ATi ŵ(α)) (3.71)

by definition of the convex conjugate φ∗. To sum up, at iteration t, if we sample
the block i, and update it with step size si, we can lower bound the resulting dual
improvement with:

n(D(α+)−D(α))

≥ si
[
φ(−ATi ŵ(α)) + φ∗(αi) + ŵ(α)TAiαi

]︸ ︷︷ ︸
Fenchel gap=:gi

+siµ2

(
1− si

(
1 + Ri

µλn

))
d2
i .

(3.72)

To conclude the proof, take a weighted average of the inequalities (3.72) with the
weights pi.

In the following we note the duality gap:

ḡ := 1
n

∑
i

gi = P (ŵ(α))−D(α) . (3.73)

Proof of Theorem 3.F.1. In the original proof of Shalev-Shwartz and Zhang (2013a),
we set pi = 1/n and si = s = (1 + R

nλµ
)−1 ≤ 1/ci. This step size guarantees that the

right hand term is positive, leaving us with the inequality:

Ept [D(αt+1)−D(αt)] ≥ s

n
ḡt. (3.74)

Now observe that Ep[D(α+)−D(α)] = −Ep[ht+1]+ht and ḡt = (P (wt)−D(αt)) ≥
ht. Moving the sub-optimality at time t on the right gives:

Ep[ht+1] ≤ (1− s

n
)ht. (3.75)

This inequality is conditional on all the random sampling until time t. Let us take
the expectation of this inequality with respect to all this past randomness. We get
a recursive upper bound on the expected dual sub-optimality:

E[ht+1] ≤ (1− s

n
)E[ht] ≤ (1− s

n
)th0. (3.76)

This is the final convergence result with the linear constant s/n = (n+R/(λµ))−1.

In the proof above, we lower bound the dual improvement by the duality gap,
then we use this to get the linear convergence rate. All the proofs follow the same
reasoning, and the last few steps are always the same so we will skip them.
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Proof of Theorem 3.F.2. Inject pi = ci/
∑

j cj and si = 1/ci. The right hand term
is zero thanks to the step size, hence the lower bound:

Ep[D(α+)−D(α)] ≥ ḡ∑
i ci
. (3.77)

We get the linear rate 1∑
i ci

which is also the harmonic mean of the step sizes divided

by n.

Sketch of Proof of Theorem 3.F.3. To make the duality gap appear in this formula
for arbitrary probability p, Csiba et al. (2015) use pisi = θ constant, whenever
gi > 0. If the individual duality gap is null gi = 0, then they set pi = si = 0.

Ep[D(α+)−D(α)]− θḡ ≥ θ
µ

2n
∑
i

d2
i

(
1− θ

pi

(
1− R2

i

µλn

))
(3.78)

The negative consequence of that strategy is that they have to enforce si ∈ [0, 1]
by setting θ < mini pi where the minimum is taken over the sub-optimal i’s (i.e.
pi > 0). This a terrible constraint on the step size, as we cannot be too non-uniform
without taking very small steps. It effectively reduces the linear convergence constant
θ/n.

Finally, they want to maximize θ while keeping the right hand side positive.
This is a hard problem on θ and p. When the loss is the quadratic loss, they can
remove the condition that the step size should be smaller than 1. Then they solve
the optimization problem to get the sampling scheme pi ∝ di

√
ci.

Proof of Theorem 3.F.4. We use the same step size as in the original proof:

si = s = n

n+R/(λµ) . (3.79)

We have the guarantee that the right hand term is positive. The lemma simplifies
to:

nEp[D(α+)−D(α)] ≥ s

n

∑
i

pigi. (3.80)

We inject pi = gi
nḡ

into this lower bound:

Ep[D(α+)−D(α)] ≥ s

n

∑
i g

2
i∑

j gj
= s

n
χ2(g)ḡ , (3.81)

where we introduced the non-uniformity of the duality gaps vector defined in
Equation (3.57). To get a simpler expression for a global convergence bound, let us
define χ to be a lower bound on χ(g) over all the possible unfolding of SDCA and
for every steps. Now we can write the descent lemma in the same form as in the
original proof, but a with new constant:

Ep[D(α+)−D(α)] ≥ s

n
χ2ḡ . (3.82)
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Proof of Theorem 3.F.5. We set pi ∝ gici where ci = 1 +R/(nλµ).

nEp[D(α+)−D(α)] ≥
∑

i sig
2
i ci∑

i gici
+

µ
2
∑

i sigicid
2
i

(
1− sici

)∑
i gici

(3.83)

Similarly to the proof of importance sampling, we now set si = 1/ci ≤ 1 instead of
si = s = 1/maxi ci. This nullifies the right hand term. We can take longer steps if
the individual Lipschitz constants are high.

nEp[D(α+)−D(α)] ≥
∑

i g
2
i∑

i gici
= 〈g, g〉
〈c, g〉

(3.84)

We apply the Cauchy-Schwartz inequality : 〈c, g〉 ≤ ‖c‖2‖g‖2.

nEp[D(α+)−D(α)] ≥ ‖g‖2

‖c‖2
= χ(g)
QM(c) ḡ , (3.85)

where QM denotes the quadratic mean. Finally we divide both sides by n to
complete the proof:

Ep[D(α+)−D(α)] ≥ χ(g)
nQM(c) ḡ . (3.86)
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Abstract

Consider a collection of datasets generated by unknown interventions on an
unknown structural causal model G. Recently, Bengio et al. (2020) conjectured
that among all candidate models, G is the fastest to adapt from one dataset
to another, along with promising experiments. Indeed, intuitively G has less
mechanisms to adapt, but this justification is incomplete. Our contribution is a
more thorough analysis of this hypothesis. We investigate the adaptation speed
of cause-effect SCMs. Using convergence rates from stochastic optimization, we
justify that a relevant proxy for adaptation speed is distance in parameter space
after intervention. Applying this proxy to categorical and normal cause-effect
models, we show two results. When the intervention is on the cause variable, the
SCM with the correct causal direction is advantaged by a large factor. When
the intervention is on the effect variable, we characterize the relative adaptation
speed. Surprisingly, we find situations where the anticausal model is advantaged,
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falsifying the initial hypothesis. Source code for all experiments is hosted at
https://github.com/remilepriol/causal-adaptation-speed.

4.1 Introduction

A learning agent interacting with its environment should be able to answer
questions such as “what will happen to Y if I change X”. Structural Causal Models
(SCM) offer a formalism to answer this kind of questions (Pearl, 2009; Peters et al.,
2017). The simplest SCM is the model X → Y where X is the cause and Y the
effect. Modifying X will modify Y but modifying Y will not alter X. In general,
SCMs model the distribution of observations with a directed graph where edges
represent independent mechanisms (Janzing and Scholkopf, 2010).

Figure 4.1 – Two models for data (X,Y ) with
causal structure X → Y .

Modern machine learning methods
can fail surprisingly when the test distri-
bution differ from the training distribu-
tion (Rosenfeld et al., 2018). A recent
line of work describes these distribution
shifts as interventions in an underlying

causal model (Zhang et al., 2013; Magliacane et al., 2018). If this description is
accurate, then an agent endowed with this hypothetical causal model could handle
distribution shifts by updating the few mechanisms affected by the intervention.
On contrary, an agent endowed with an incorrect model, would have to update
many mechanisms. Bengio et al. (2020) infer that the causal agent will be the
fastest to adapt to distribution shifts. Conversely, they use the speed of adaptation
to unknown interventions as a criterion to learn the true causal model, showing
promising empirical results on cause-effect models. Yet they lack a theoretical
argument to connect interventions and fast adaptation. Thus we raise the question:

Do causal models adapt faster than non-causal models to distribution shifts
induced by interventions?

Contributions. We theoretically and empirically answer this question for cause-
effect SCMs with categorical variables, and partially for multivariate normal distri-
butions.

• For both settings, we use stochastic optimization convergence rates to show
that the adaptation speed mostly depends on the distance in parameter
space between the initialization (before intervention) and the optimum (after
intervention).
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Figure 4.2 – Intuition behind fast adaptation. An intervention on X turns the
reference distribution p(0) into a transfer distribution p∗. The causal model (blue) only has
to adapt θX , whereas the anticausal model (red) has to adapt both its mechanisms. After
adaptation, the causal model ends up the closest from the transfer in terms of KL, as visible
in the abstract distribution space. Blue and red balls represent the proximity prior induced
by taking a few steps of SGD from the reference in each parameter space. Convergence
rate analysis reveals that they are spherical functions of the parameter distance, but they
get mapped to non-trivial shapes in distribution space – ellipses in this sketch.

• For categorical variables, we fully characterize this distance. We show that
the causal model is faster by a large factor when the intervention is on the
cause.

• When the intervention is on the effect, we surprisingly find settings where the
anticausal model is systematically faster. As appealing as the fastest-to-adapt
hypothesis may sound, it does not hold in every situations.

4.2 Related Work

Causal relationships are asymmetric. These asymmetries are often visible in
observations, so that one can identify which is cause and which is effect under
relevant assumptions (Mooij et al., 2016). A common assumption is to constrain
the set of functional dependencies between cause and effect. By contrast, in our
work, we focus on two families of distributions which are notoriously unidentifiable
from observational data: categorical and linear normal variables (Peters et al., 2017,
Ch.4). With data coming from a generic directed acyclic graph (DAG), we can
only hope to discover the Markov equivalence class of this DAG (Verma and Pearl,
1991). Many methods seek to achieve this goal, whether constraint-based such as
the PC algorithm (Spirtes et al., 2000) or score-based methods using greedy search
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(Chickering, 2002) or more recently continuous optimization (Zheng et al., 2018;
Lachapelle et al., 2020). However to discover the exact graph, we need access to
interventional data.

Inferring causal links from interventions or experiments is the foundation of
science. Inferring causal links from unknown interventions is a much harder and less
principled problem. Tian and Pearl (2001) first studied this setting, proposing a
constraint based method to infer the interventional equivalence class from a sequence
of interventions. Then Eaton and Murphy (2007) proposed an exact Bayesian
approach. More recently, Squires et al. (2019); Ke et al. (2019) proposed score based
algorithms, improving in scalability and alleviating parametric assumptions. From
a machine learning perspective, we are concerned with the predictive power that
this structure will give us when faced with new data.

Distribution shifts are a common problem in machine learning, as well as in
causal statistics (Zhang et al., 2013; Pearl and Bareinboim, 2014). Schölkopf et al.
(2012) first brought up the idea of invariance to tackle this problem. Following up
on this idea, Peters et al. (2016) designed an algorithm able to identify robust causal
features from heterogeneous data. This work has set a fruitful line of research for
robust machine learning (Heinze-Deml et al., 2018b,a; Rothenhäusler et al., 2019;
Arjovsky et al., 2019). In a way, fast adaptation is the complementary idea of
invariance: if most mechanisms are kept invariant, then only a few have to adapt.
Schölkopf (2019) shed light on these approaches and the broader scope of causality
research for machine learning.

4.3 Background

In this section, we review the formalism of Bengio et al. (2020) on observations,
interventions, models and adaptation.

Reference and Transfer Distributions. We assume perfect knowledge of a
reference distribution p over the pair (X, Y ) sampled from an SCM X → Y . This
distribution is the object of interventions, which results in new transfer distributions
p∗. If the intervention is on the cause, X is sampled from a different marginal, then
Y is sampled from the reference conditional

p∗(x, y) = p∗(x)p(y|x) . (4.1)

If the intervention is on the effect, X is sampled from the reference marginal, then
Y is sampled from another marginal independently of X

p∗(x, y) = p(x)p∗(y) . (4.2)

For each transfer distribution, we observe a few samples.
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Models. We parametrize two generative models of (X, Y ) (Fig. 4.1):

pθ(x, y) = pθX (x)pθY |X (y|x) – causal (4.3)

pθ←(x, y) = pθY (y)pθX|Y (x|y) – anticausal . (4.4)

For each model, we call mechanisms the marginal and conditional models. Each
mechanisms has its own set of parameters, e.g. θX and θY |X . In the following we
will use θ to denote interchangeably θ→ and θ←.

Adaptation. Both models are initialized to fit perfectly the reference distribution
p
θ

(0)
→

= p
θ

(0)
←

= p. They observe fresh samples from p∗ one by one and update their
parameters θ→ and θ← to maximize the log-likelihood with a step of stochastic
gradient (SGD). Thanks to the separate parameters, the causal model log-likelihood
loss decomposes as

Lcausal(θ→) = E(X,Y )∼p∗ [− logpθ(X, Y )]

=Ep∗ [− logpθX (X)] + Ep∗
[
− logpθY |X (Y |X)

]
(4.5)

When p∗ comes from an intervention, Bengio et al. (2020) observe that the causal
model is often faster to adapt than the anticausal model. Intuitively, this is because
the causal model has to adapt only the mechanism which was modified by the
intervention. On the other hand, the anticausal model has to adapt both its
mechanisms. In Figure 4.2, we compare these different scenarios and the concept of
adaptation figuratively. While appealing, this reasoning is not rigorous, as sample
complexity bounds of SGD typically do not depend on the number of parameters
to update (Bubeck et al., 2015, Th. 6.2 & 6.3). In the next section, we formalize
and understand this phenomenon in the light of convergence rates of stochastic
optimization methods.

Distribution Families. We study two of the simplest sub-families of the ex-
ponential family (Wainwright and Jordan, 2008): categorical and linear normal
variables. Their negative log-likelihood is a convex function of their natural param-
eter. These families are interesting because the direction is not identifiable from
observational data (Peters et al., 2017, Ch.4) – e.g. pθ and pθ← can model the same
set of distributions – which makes them challenging for causal discovery.

4.4 An Optimization Perspective

One way to formalize adaptation speed is to characterize it via the convergence
speed of the stochastic optimization procedure. An appealing aspect of stochastic
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optimization algorithms such as SGD (when only using fresh samples and running it
on the true loss we care about) is that they come with convergence rate guarantees
on the population risk in machine learning, thus giving us direct sample complexity
results to obtain a specific generalization error. The convergence rate is an upper
bound on the expected suboptimality after a given number of iterations. While
these rates are about worst case performance and might also be loose, fortunately,
for convex optimization, they tend to correspond well to actual empirical perfor-
mance (Nesterov, 2004a). We can thus use the convergence bounds as theoretical
proxy for the convergence speed. In our experiments, we also verify empirically that
the bounds correlate well with the observed convergence speed.

Here we provide a classical convergence rate on the expected suboptimality with
Average Stochastic Gradient Descent (ASGD) under convexity and bounded gradient
assumptions. We re-derive this rate in Appendix 4.A.1 for completeness. This
rate applies to log-likelihood maximization for categorical random variables (details
in 4.A.2). Since the target distribution is part of the model family, the log-likelihood
suboptimality is equal to the KL-divergence – e.g. L(θ)− L(θ∗) = DKL(p∗||pθ).

ASGD. Assume ∀θ, x, ‖∇ logpθ(x)‖ ≤ B. After T iterations of SGD on (4.5),

θ(t+1) = θ(t) + γ∇ logpθ(t)(Xt, Yt) (4.6)

with learning rate γ := c√
T

, starting from θ(0), the average parameter’s θ̄(T ) =
1
T

∑T−1
t=0 θ

(t) suboptimality is upper bounded by

E [DKL(p∗||pθ̄(T ))] ≤
c−1‖θ(0) − θ∗‖2 + cB2

2
√
T

(4.7)

where the expectation is taken over the sampling of T − 1 training points Xt, Yt and
θ∗ is the closest solution to θ(0) in the solution set argminθ L(θ). For categorical
models, B = 2 (see 4.A.2). Consequently, for a fixed T and with small enough c,
the convergence upper bounds for causal and anticausal models differ mainly by
δ := ‖θ(0) − θ∗‖2.

The bounded gradient assumption of (4.7) does not apply to the log-likelihood of
normal variables. In Section 4.6.1, we provide an algorithm along with a convergence
rate (4.22) that do apply to this case. Overall both bounds (4.7) and (4.22) carry
the same message which can be summarized by:

The adaptation speed is dominated by
the initial distance

δcausal =
∥∥θ(0)
→ − θ∗→

∥∥2
(4.8)

δanticausal =
∥∥θ(0)
← − θ∗←

∥∥2
. (4.9)
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Other optimization methods. Yang et al. (2016, Theorem 1) provides a unified
convergence rate for stochastic heavy ball and Nesterov methods that is similar
to (4.7), where the initial distance is the main difference between causal and
anticausal models. Consequently, our theoretical analysis holds for a larger class of
algorithms than ASGD. More generally, it applies to any stochastic optimization
method whose sample complexity depends on parameter distance.

4.5 Categorical Variables

In this section, both cause and effect come from categorical distribution. We
provide theoretical bounds on δcausal and δanticausal. We consider different scenarios to
generate reference and transfer data and explain the consequences of each scenario.

4.5.1 Definitions

Figure 4.3 – Parametrization of causal (blue)
and anticausal (red) categorical models

Cause X and effect Y are now two
categorical variables taking values in
{1, . . . , K}. Categorical variables are an
exponential family with mean param-
eters p ∈ ∆K the probability vector,
and with natural parameter s ∈ RK

– the logits or score parameters such
that pz = esz∑

z′ e
sz′ . The causal model

has parameters sX := (sx)x=1...K and
sY |X := (sy|x)x,y=1...K . We gather the
causal parameters in the variable θ→ = (sX , sY |X) and the anticausal parameters in
θ← = (sY , sX|Y ) (Fig. 4.3). The loss (4.5) becomes

Lcausal(θ→) = E(X,Y )∼p∗ [− logpθ(X, Y )] (4.10)

= Ep∗
[
−sX + log

∑
x

esx − sY |X + log
∑
y

esy|X

]
.

Each mechanism’s stochastic loss is the sum of a linear function and a softmax
function. The softmax function is convex and 1-Lipschitz, so we can apply rate (4.7).
To be self-contained, we include details in Appendix 4.A.2.

4.5.2 Distance after Intervention

In this section, we prove that interventions on the cause advantage the causal
model by a factor K, and we describe when interventions on the effect will advantage
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Figure 4.4 – Illustration of Proposition 4.5.2. c is on the line joining sY and
m := 1

K

∑
x sY |x. When s∗Y is within the blue ball of radius R centered at c, ∆ ≤ 0 and

the causal model is advantaged, otherwise the anticausal model is advantaged (red area).
This is a surprising counter-example to the adaptation-speed hypothesis.

one model over another.

Intervention on cause X, sX← s∗X . The causal conditional sY |X is left un-
changed, but the effect marginal sY is modified in a non-trivial way. Consequently
the initial distances are

δcausal = ‖sX − s∗X‖2 (4.11)

δanticausal = ‖sY − s∗Y ‖2 +
∑
y

‖sX|y − s∗X|y‖2 . (4.12)

The causal model has to update K parameters, whereas the anticausal model has
to adapt K2 +K parameters. Therefore the causal model seems to be advantaged
by a factor K. The following proposition – proved in Appendix 4.B – shows that
this is reflected by `2 distances.

Proposition 4.5.1. When the intervention happens on the cause,

δanticausal ≥ Kδcausal . (4.13)

Intervention on effect Y , ∀x, sY |x← s∗Y . Cause and effect become independent.
The causal model is advantaged only if the intervention s∗Y is close enough from the
previous marginal, as formalized by the following proposition:

Proposition 4.5.2. When the intervention happens on the effect

∆ := δcausal − δanticausal
= (K − 1)

(
‖s∗Y − c‖

2 −R2) (4.14)

where R2 ≈ KV̂arX [log
∑

y e
sy|X ] and c = (∑x sY |x)−sY

K−1 .
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(a) Dense - cause. (b) Dense - cause. (c) Sparse - cause.

(d) Dense - effect.
(e) Dense - effect. (f) Sparse - effect.

Figure 4.5 – Experimental results on categorical data. Each plot is captioned
with the prior and the intervention considered. Scatter plots are showing the positive
correlation between the KL after 100 steps of SGD and the initial parameter distance. Each
point represent one of 100 synthetic pairs (p(0),p∗). Training curves show the average
KL (solid line) and the (5,95) percentiles (shaded) over 100 runs. Remark how all models
start from the same initial KL, but they converge at different speeds.

See Figure 4.4 for an illustration and Appendix 4.B.3 for the exact formula of R
and the proof. When the intervention s∗Y is close enough to c, which depends on
the reference, the causal model is advantaged. If s∗Y is far from c or if R is small
then the anticausal model is likely to be advantaged.

4.5.3 Simulating Reference Distributions

To evaluate the fast adaptation criterion, we are going to work on synthetic data,
which raises the question : from which distribution should we sample p = pθ(0)?
We call this distribution prior. Following the independent mechanism assumption,
the marginal on the cause pX and the conditional of effect given cause pY |X should
not contain any information about each other.

Dense Prior. To sample causal mechanisms, a natural choice is

pX ∼ Dir(1K) and ∀x,pY |x ∼ Dir(1K) (4.15)

where Dir is the Dirichlet distribution and 1K is the all-one vector of dimension K.
Dir(1K) the uniform law over the simplex ∆K . This prior leads to the K2 score
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from the Bayesian network literature (Cooper and Herskovits, 1991). We call this
choice the dense prior by opposition to the sparse prior introduced next. This is the
choice made in Bengio et al. (2020), as well as Chalupka et al. (2016). The latter
work reports that distributions sampled from this prior exhibit some asymmetry
between X and Y . In Appendix 4.C.1, we complement their work, explaining how
the effect marginal is likely to be closer from the uniform distribution than the
cause marginal. This asymmetry means that the causal direction is identifiable from
observational data.

Sparse Prior. To fix this issue, we study an alternative prior that is symmetric
and ensures that both cause and effect marginals are sampled from a uniform prior
over ∆K . We sample the causal mechanisms as follows

pX ∼ Dir(1K) and ∀x,pY |x ∼ Dir(1K /K) . (4.16)

The 1K /K parameter means that samples will be approximately sparse, hence the
name. We show in Appendix 4.C.2 that with this sampling scheme, the joint is
sampled from a sparse Dirichlet over ∆K2 : p(X,Y ) ∼ Dir(1K2 /K). This in turns
means that we can switch the roles of X and Y in (4.16). The effect marginal has
uniform density over the simplex. In general, the causal direction is not identifiable
from observational data. In Bayesian Networks literature, this is known as the
Bayesian Dirichlet equivalent uniform prior (Heckerman et al., 1995).

4.5.4 Categorical Variables Experiments

Goal. As discussed in Section 4.5.3, the prior over the joint distribution on (X, Y )
is going to influence the behavior of ASGD. We are seeking answers to two questions:

1. Is the adaptation speed positively correlated with the initial distance, as
suggested by the upper bound (4.7) on the convergence rate of ASGD?

2. Is there a clear difference in adaptation speed between causal and anticausal
models?

Data. We consider categorical variables with K = 20. For each initialization
method, we sample 100 different reference joint distributions. For each of these
distributions, we sample an intervention by sampling a probability vector q uniformly
from ∆K . If the intervention is on the cause, we plug q instead of pX . If the
intervention is on the effect, we redefine pY |x = q, ∀x.

Models. We are comparing causal and anticausal models adaptation speed. We
also report results for a model of the joint pX,Y = softargmax(sX,Y ) as a reference
model. We expect its results to be in between the performance of the causal and
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anticausal model as it expresses no prior over the direction. We optimize all models
with Averaged SGD. In each iteration of SGD we get one fresh sample from the
transfer distribution. For each model and each setting, we tune the (constant)
learning rate so as to optimize the likelihood after seeing K2

4 = 100 samples, to
explore the few samples regime. We present results in Figure 4.5

Dense prior. When the intervention is on the cause, the causal model is much
closer from its optimum: in Fig. 4.5a the blue cluster is on the left of the scatter
plots. This is well correlated with faster adaptation (Fig. 4.5b). On the contrary,
when the intervention is on the effect, the anticausal model starts closer from its
optimum and it converges faster (Fig. 4.5d, 4.5e). We can interpret this result in
light of Proposition 4.5.2. In Appendix 4.B.3, we explain why the radius R is small
under the dense prior. As a result, s∗Y is mostly sampled outside of the ball of radius
R, consequently the anticausal model is advantaged. Overall, there is a wider gap
between models in Fig. 4.5b than in Fig. 4.5e. Consequently, if we take a balanced
average of a few interventions on the cause and a few interventions on the effect,
the causal model remains faster (details in Appendix 4.B.4).

Sparse prior. When the intervention is on the cause, the causal model has a
slight advantage (Fig. 4.5c). When the intervention is on the effect, no model has
a set advantage (Fig. 4.5f), but the sparsity induces much higher KL values, as
explained in Appendix 4.C.3. This KL explosion drowns the signal coming from the
cause intervention, calling for further algorithmic developments – such as inferring
the intervention, as explored by Ke et al. (2019).

4.6 Multivariate Normal Variables

In this section, we analyze the case of two multivariate normal variables with a
linear relationship. Cause X and effect Y are sampled from the causal model

X ∼ N (µX ,ΣX) (4.17)

Y |X ∼ N (AX + a,ΣY |X) (4.18)

with mean parameters µX ,a ∈ RK and ΣX ,A,ΣY |X ∈ RK×K . This parametrization
is the most intuitive but it is unfortunately not appropriate to get convergence rates.
We are going to introduce another parametrization along with an algorithm and a
convergence rate (Sec. 4.6.1), before providing empirical results (Sec. 4.6.2).
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Natural
Distance

Cholesky
Distance

Speed vs
Cholesky
distance

Learning Curves

cause

effect

Figure 4.6 – Multivariate Normal Variables with dimension K = 10. Row 1 and
2 correspond to interventions on cause and effect respectively. Column 1 & 2: scatter
plot δanticausal vs δcausal respectively in natural and Cholesky parametrization. The grey
diagonal is the identity line. We observe a natural tendency for δanticausal > δcausal (points
above the grey diagonal), but this is systematically true only for the natural distance
when the intervention is on the cause. Column 3 & 4: same plot as in Figure 4.5. Once
again we observe a correlation between initial distance and optimization speed. When the
intervention is on the cause, the causal model is advantaged. When the intervention is on
the effect, both curves overlap.

4.6.1 Optimization Analysis

The negative log-likelihood of model (4.17) is notoriously non-convex. This is
problematic for convergence results. For simplicity, we focus in this section on the
simple marginal mechanism with mean parameters µ,Σ. We detail the full model in
Appendix 4.E. If we use the natural parameters η = Σ−1µ and Λ = Σ−1 (precision
matrix), the negative log-likelihood is convex

E
[
− logp(η,Λ)(X)

]
(4.19)

= 1
2

(
E
[
Tr(XX>Λ)− 2X>η

]
+ η>Λ−1η − log |Λ|

)
.

This objective is composed of a pleasant stochastic linear term, and a difficult
deterministic barrier objective which goes to infinity when Λ→ 0. This barrier is
composed of a matrix inverse and a log determinant. The assumptions of Lipschitz
or gradient-Lipschitz required to get SGD convergence do not hold for the barrier.
While the empirical version of (4.19) has a close formed formula for its global
minimum, quite surprisingly, gradient-based optimization of the normal likelihood is
difficult to analyze. Convex optimization typically deals with non-smooth terms by
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introducing proximal operators (Parikh et al., 2014). However this barrier term is
too complex to get an analytic formula for the proximal operator. We transform it
into a more convenient form by introducing L, the lower triangular Cholesky factor
of the precision matrix Λ = LLT , and ζ = L−1η = L>µ. Then (4.19) simplifies
into

E
[
− logp(ζ,L)(X)

]
(4.20)

= 1
2E
[∥∥L>X − ζ∥∥2

]
−
∑
i

logLi,i .

We will refer to (ζ,L) as Cholesky parameters. This objective is more suitable to
gradient based optimization with a simple proximal operator, as detailed in the
next section. We provide all details about the causal model in Appendix 4.E.

Stochastic Proximal Gradient Algorithm We want to minimize the sum of a

stochastic convex smooth function fX(θ) := 1
2

∥∥L>X − ζ∥∥2
and convex non-smooth

regularizer g(θ) = −
∑

i logLi,i. This is exactly the goal of the stochastic proximal
gradient (Duchi et al., 2010) update

θt+1 = argmin
θ

g(θ) + 1
2γt
‖θt − γt∇fXt(θt)− θ‖

2 (4.21)

where γt is the step-size and Xt is randomly sampled. For objective (4.20), the
proximal gradient update has a closed form solution that amounts to updating all
parameters with the stochastic gradient of the quadratic term, then updating the
diagonal elements of L with the mapping x 7→ 1

2(x+
√
x2 + 4γ), thus ensuring that

they remain strictly positive (details in Appendix 4.D.2).

Convergence Rate. We assume that stochastic gradients are almost-surely B-
Lipschitz. B is known as the smoothness constant. We show in Appendix 4.D.1
that running the stochastic proximal gradient algorithm with step size γt = γ

3B
√
T

where γ ≤ 1, for T iterations guarantees

E [DKL(p∗||pθ̄(T ))] ≤
3B‖θ(0) − θ∗‖2

γ
√
T

+ DKL(p∗||pθ(0))
T

. (4.22)

Analysis. The term KL(p∗||p
θ(0) )/T is equal for causal and anticausal models because

we assume p
(0)
θ = p

(0)
θ←

. For normal variables, B depends only on the data and is
a priori equal for both models (Appendix 4.D.3). Similarly to (4.7), both models’
rates differ mainly by δ = ‖θ(0) − θ∗‖2.

When the intervention is on the cause, we prove in Appendix 4.E.5 that the
anticausal model is farther away from its optimum in the natural parametrization

δnatural
anticausal ≥ δnatural

causal . (4.23)
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Unfortunately, in the Cholesky parametrization (Fig. 4.6, 2nd column), or when
the intervention is on the effect (Fig. 4.6, bottom row),we observe empirically that
there is no such hard guarantee, although the causal distance tends to be smaller
than the anticausal distance.

4.6.2 Experiments

Similarly to categorical variables, we need to decide on a prior over reference and
transfer distributions. This choice is informed by two criteria. First the independent
mechanism principle which states that we should sample θX independently of θY |X .
Second we want θY to have approximately the same distribution as θX – e.g. we
want the distribution to be approximately symmetric so that we cannot identify
the direction from observational data. These considerations lead us to a flavor of
normal-Wishart prior (Geiger et al., 2002) described in Appendix 4.F.

We sample 100 random joint distributions from this prior, and for each distribu-
tion we sample a random intervention on the cause, and a random intervention on
the effect. We then run the stochastic proximal gradient on objective (4.20). We
report results in Figure 4.6. Similarly to the categorical case, when the intervention
is on the cause, the causal model is advantaged by a slight margin (upper right
figure). When the intervention is on the effect both models are learning at the same
speed (bottom right figure).

Conclusion

We provided a first theoretical analysis of the adaptation speed in two-variables
cause-effect SCMs under localized interventions for categorical and normal data.
Convergence guarantees for stochastic optimization on the true population log-
likelihood indicates that the adaptation speed is related to the distance between
initial point and optimum in parameter space. We verified this correlation empirically.
We proved analytically that this distance is lower for the causal model than for the
anticausal model when the intervention is on the cause variable. This explains a
surprising phenomenon: while both models start with the same suboptimality, one
learns faster than the other. When the intervention is on the effect variable, we
highlighted examples showing that either model can be advantaged. This observation
challenges the intuition that the causal model should be the fastest to adapt, and it
raises new questions for the approach of Bengio et al. (2020), such as: are there
practical situations where the fastest-to-adapt heuristic is useful ? On a more
theoretical note, is it possible to characterize the adaptation speed behavior for
more general families of distributions?
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4.A Categorical Optimization

In this section we prove a convergence rate of ASGD that applies to the categorical
loss, and we show that the constants involved in this rate are the same for both
causal and anticausal models.

4.A.1 Convergence of ASGD with Fixed Step-Size

Here we derive a classical convergence rate of Average SGD. This result is
standard ; we include it to be self-contained. The objective is

min
θ
F (θ) = Ei [f(θ, i)] . (4.24)

Theorem 4.A.1. If each fi(θ) = f(θ, i) has bounded gradient B, then after T steps
of SGD with step-size γ = c√

T
, starting from θ0, the expected sub-optimality verifies

E
[
F (θ̄T )− F (θ∗)

]
≤ 1

2c
√
T
‖θ0 − θ∗‖2 + cB2

2
√
T

(4.25)

where θ̄T = 1
T

∑
t θt.

Proof. First we relate the `2 distance to optimum at step t+ 1 with the one at step
t :

‖θt+1 − θ∗‖2

= ‖θt − θ∗‖2 − 2γ 〈f ′i(θt), θt − θ∗〉+ γ2‖f ′i(θt)‖2

≤ ‖θt − θ∗‖2 − 2γ 〈f ′i(θt), θt − θ∗〉+ γ2B2 .

By convexity of fi and rearranging the terms we get

2γ(fi(θt)− fi(θ∗)) ≤ 2γ 〈f ′i(θt), θt − θ∗〉
≤ ‖θt − θ∗‖2 − ‖θt+1 − θ∗‖2 + γ2B2.

Now we take the expectation, sum up both sides for T iterations and divide by 2Tγ
to get

1
T

T∑
i=1

E [F (θt)− F (θ∗)]

≤ 1
2γT

(
E
[
‖θ0 − θ∗‖2]− E

[
‖θT+1 − θ∗‖2])+ γB2

2

≤ 1
2γT ‖θ0 − θ∗‖2 + γB2

2

Finally, we apply Jensen inequality to F in θ̄T = 1
T

∑
t θt to get the final result.
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4.A.2 Categorical Loss Properties

We are now going to verify that assumptions of the rate (4.7) apply to the
negative log-likelihood loss for the categorical distribution. This loss is standard
and it’s properties are well-known, but we review them here to be self-contained.

Each mechanism has the same form of negative log-likelihood, with the same
kind of stochastic gradients. The total loss is a sum over mechanisms, and the total
stochastic gradient is a concatenation of each mechanisms stochastic gradient. To
apply rate 4.7, we can either apply it separately on each mechanism, either apply to
the whole. Both path lead to the same result. In the end, we simply have to check
that this loss is convex, and has bounded gradients for all z. The random functions
coming from sampling Z are

fz(s) = −sz + log(
∑
z′

esz′ ) (4.26)

This function is the softmax – or logsumexp – function minus a stochastic linear
term.

Convexity We are going to show that it is convex but not strongly convex because
it becomes flat for large score values. Its derivative is

∇fz(s) = −ez + p . (4.27)

where ez is the z-th canonical basis element and p is the output of the softargmax
function taken on sZ . The Hessian is the same for every z.

∇2fz(s) = diag(p)− pp> . (4.28)

We observe that for any vector v,

v>∇2fz(s)v =
∑
z

pzv
2
z −

(∑
z

pzvz

)2

= VarZ∼p[vZ ] ≥ 0 (4.29)

which means that the logsumexp is convex. When s0 tends toward positive infinity
and the other components remain constant, p tends toward a Dirac on the 0-th
component. Then (4.29) is 0 for all v, so the logsumexp is not strongly convex.

Bounded Gradients. The gradient norm is

‖∇fz(s)‖ = ‖p− ez‖ (4.30)

. (4.31)
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This norm is maximized for p = ez′ ,∀z′ 6= z. The maximum is equal to
√

2. If
there are d independent mechanisms (for d variables in the graph), then the total
stochastic gradient which is a concatenation of all gradients has a norm bounded
by B =

√
2d. In our case of cause-effect models, d = 2 and and the gradients are

bounded by B = 2, or in other words, all the fz are 2-Lipschitz.
This bound is the same for causal and anticausal models. It depends on the

part of space where p is going to live. Assuming that it is going to live in most of
the space for both directed models, both loss will have the same Lipschitz constants
in practice.

Thanks to these properties, the sample complexity of pθ and pθ← are bounded
by (4.7). The difference in adaptation speed between causal and anticausal models
is characterized by the distance in parameter space.

4.B Categorical Analysis

In this section, we prove relationships between parameter distances induced by
interventions between the causal and anticausal models. First we prove two useful
lemmas. Then we establish that the causal model dominates the anticausal model
by a factor K when the intervention is on the cause. Finally we show that no model
has a set advantage when the intervention bears on the effect.

The logits or scores s live in RK . They have one additional degree of freedom
compared to the probability p. More specifically, the softargmax is invariant by
translations along the vector 1 = (1, . . . , 1). In other words, all scores {s+λ1 |∀λ ∈
R} are equivalent. Scores which move by following the gradient of this loss will
remain in the same affine hyperplane orthogonal to 1. To ensure that the distances
we measure are meaningful, we project all logits in the hyperplane such that∑

z sz = 0, by subtracting their mean.

Definition 4.B.1 (Mean-zero score). A score vector s is mean-zero iff
∑

z sz = 0.

4.B.1 Switching Direction

In this section we are going to prove a few useful results relating cause and
anticausal models. We know the causal parameters X → Y , and we want to find
the corresponding X ← Y model, e.g. express sY , sX|Y as a function of sX , sY |X .
This will help us to find a relationship between δcausal and δanticausal. We first need
to define a few useful variables

Definition 4.B.2 (Average conditional score vectors). For any x or y, define

m(y) := 1
K

∑
x

sy|x, n(x) := 1
K

∑
y

sx|y . (4.32)
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Definition 4.B.3 (Conditional log-partition function).

A(x) = log
∑
y

esy|x (4.33)

With these variables, we can express the reverse conditional score from the
causal parameters.

Lemma 4.B.4 (Anticausal conditional score). Let sy, sx be marginal scores, and
sy|x, sx|y be conditional scores. Then

sx|y = sx + (sy|x −m(y))− (A(x)− α) , (4.34)

where α = 1
K

∑
xA(x).

Proof. Let’s apply Bayes rule to find the conditional probability mass function

p(x|y) ∝ p(y|x)p(x)
∝ exp

(
sy|x − A(x) + sx

)
where A(x) is the log-partition function of p(y|x). Taking the logarithm,

sx|y = sx + sy|x − A(x) + C(y) (4.35)

where C(y) is a constant defined such that
∑

x sx|y = 0 (see Definition 4.B.1). We
take the sum of (4.35) over x to find∑

x

sx+
∑
x

sy|x−
∑
x

A(x)+ KC(y)

= 0+ Km(y)+ Kα+ KC(y)

which simplifies into

C(y) = −m(y)− α

We plug this in (4.35) to conclude the proof.

We conclude this section with an identity showing that conditional logits are
equally close from their averages in both directions.

Lemma 4.B.5. For any x and y we have

sx|y − n(x) = sy|x −m(y) . (4.36)

where n(x) := 1
K

∑
y sx|y and m(y) := 1

K

∑
x sy|x.
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Proof. We apply Lemma 4.B.4 with the roles of X and Y inverted to express sy|x
as a function of the anti causal parameters

sy|x = sy + (sx|y − n(x))− (B(y)− β) , (4.37)

where B(y) = log
∑

x e
sy|x and β = 1

K

∑
y B(y). We can add (4.34) and (4.37) to

get rid of the conditional scores

sx − n(x)− A(x) + α = −(sy −m(y)−B(y) + β),
for all x, y. The left hand side is constant in y whereas the right hand side is
constant in x. Thus both sides are constants with respect to both x and y. In
particular they are equal to their average

∀x, sx − n(x)− A(x) + α = 1
K

∑
x′

(sx′ − n(x′))

− 1
K

∑
x′

A(x′) + α

= 0− 0− α + α

= 0 .
We plug this equality into (4.34) to prove the lemma.

4.B.2 Intervention on Cause

In this section, we analyze the relationship between δcausal and δanticausal after an
intervention on the cause.

Proposition 4.5.1. If an intervention happens on the cause X then we have

δanticausal ≥ Kδcausal , (4.38)

where δcausal = ‖sX − s∗X‖2, and δanticausal = ‖sY − s∗Y ‖2 +
∑

y ‖sX|y − s∗X|y‖2

Proof. Given that s∗y|x = sy|x,m
∗ = m, A∗ = A and α∗ = α, Lemma 4.B.4 tells us

that the anticausal conditional s∗X|Y verifies

s∗x|y − s∗x = (sy|x −m(y))− (A(x)− α) = sx|y − sx
=⇒ sx|y − s∗x|y = sx − s∗x .

The distance between models before and after intervention are

δcausal = ‖sX − s∗X‖2

δanticausal = ‖sY − s∗Y ‖2 +
∑
y

‖sX|y − s∗X|y‖2

≥ 0 +
∑
y

∑
x

(sx − s∗x)2 = K‖sX − s∗X‖2 .
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In conclusion,
δanticausal ≥ Kδcausal . (4.39)

4.B.3 Intervention on Effect

The following proposition shows that when the intervention is on the effect, the
causal model is advantaged only when the new effect marginal s∗Y is close enough
from the previous marginal.

Proposition 4.5.2 When an intervention happens on the effect

∆ : = δcausal − δanticausal (4.40)

= (K − 1)
(
‖s∗Y − c‖

2 −R2) (4.41)

where the score vector c and the scalar R are defined as

c =Km− sY
K − 1 (4.42)

(K − 1)R2 =K‖n− sX‖2 + (K − 1)‖c‖2 (4.43)

+ ‖sY ‖2 −K‖m‖2

with m and n as in Definition 4.B.2.
We illustrate the relationship between m, c, sY and R in Figure 4.7a.

Proof. First we expand the causal distance with a bias variance decomposition

δcausal =
∑
x

‖sY |x − s∗Y ‖2

=
∑
x,y

(sy|x −m(y) +m(y)− s∗y)2

=
∑
x,y

(sy|x −m(y))2 +K
∑
y

(m(y)− s∗y)2

+ 2
∑
y

(m(y)− s∗y)
∑
x

(sy|x −m(y))︸ ︷︷ ︸
=0

. (4.44)
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(a) m is a convex combination of c and
sY . The blue bubble is the sub-level set
0 of ∆. It is a sphere of radius R cen-
tered at c. Within this sphere, δcausal ≤
δanticausal the causal model is advantaged.
Outside this sphere, δcausal ≥ δanticausal

the anticausal model is advantaged.

(b) Box plots for the radius R2 and
deviations ‖s∗Y − c‖2 for K = 20 with
the dense prior (left) and the sparse prior
(right). The y-axis is logarithmic. Red
lines show analytical estimates for the
expected radius.

Figure 4.7 – Schematic and numerical illustrations of Proposition 4.5.2.

Given that s∗X|y = sX , we can decompose the anticausal distance similarly

δanticausal = ‖sY − s∗Y ‖2 +
∑
y

‖sX|y − s∗X|y‖2

= ‖sY − s∗Y ‖2 +
∑
x,y

(sx|y − n(x) + n(x)− sx)2

= ‖sY − s∗Y ‖2 +
∑
x,y

(sx|y − n(x))2

+K
∑
x

(n(x)− sx)2 . (4.45)

Thanks to Lemma 4.B.5, the variance of conditional score vectors (in blue) in (4.44)
and (4.45) are equal ∑

x,y

(sx|y − n(x))2 =
∑
x,y

(sy|x −m(y))2 .

What remains in the difference is the quadratic form

∆ = δcausal − δanticausal

= K‖m− s∗Y ‖2 −K‖n− sX‖2 − ‖sY − s∗Y ‖2 ,
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which we can expand to highlight the role of s∗Y as

∆ =(K − 1)‖s∗Y ‖2 − 2〈s∗Y , Km− sY 〉
+K‖m‖2 − ‖sY ‖2 −K‖n− sX‖2‖2

=(K − 1)‖s∗Y − c‖2 − (K − 1)‖c‖2

+K‖m‖2 − ‖sY ‖2 −K‖n− sX‖2

where c appears as a non-convex interpolation of m and sY , c = Km−sY
K−1 . Define

R2 to conclude the proof.

Empirical estimates of the radius. We report values of R2 and ‖s∗Y − c‖
2

observed for the dense and sparse priors in Figure 4.7b. For dense prior radii
are much smaller than deviations, whereas for the sparse prior they have similar
magnitude. This explains why the anticausal model systematically adapts faster
when the intervention is on the effect and the prior is dense. We also observe that
radii (and deviations) are much greater for the sparse prior than for the dense prior.
In the following paragraph we provide some clues to explain this behaviour.

As illustrated by Figure 4.7a, m is a convex combination of c and sY : m =
(K−1)c+sY

K
so by convexity of ‖.‖2,

K − 1
K
‖c‖2 + 1

K
‖sY ‖2 ≥ ‖m‖2

=⇒ (K − 1)‖c‖2 + ‖sY ‖2 −K‖m‖2 ≥ 0
=⇒ R2 ≥ ‖n− sX‖2 .

As K grows larger, this inequality will get closer and closer to an equality. Indeed,
m will get closer and closer to c and we will end up with

K − 1
K
‖c‖2 + 1

K
‖sY ‖2 − ‖m‖2 � ‖n− sX‖2 ≈ R2 .

Before proceeding, let us prove a simple proposition that is a direct consequence of
Lemma 4.B.4.

Proposition 4.B.6. The squared distance between marginal score and reverse
average conditional is equal to the empirical variance of the conditional log-partition
function

‖sX − n‖2 = KV̂arX [A(X)] . (4.46)

Proof. Taking the average of Lemma 4.B.4 over y yields

1
K

∑
y

sx|y = sx − (A(x)− α) + 1
K

∑
y

(sy|x −m(y))

n(x) = sx − (A(x)− α) ,
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where we used the definition of n(x) and the mean-zero scores. Reordering terms
gives

sx − n(x) = A(x)− α (4.47)

Recall that α is the average of A(x) over x. Squaring this equation and summing
over x concludes the proof.

Using this proposition we get that

R2 ≈ ‖sX − n‖2

= KV̂arX [A(X)]
= KV̂arX [log

∑
y

esy|X ] .

Conditional scores sy|x are taking much greater values with much higher variance
under the sparse prior than under the dense prior. To be clear, we sample inde-
pendently pseudo-scores s̃y|x from exp-gamma laws, and we subtract their mean to
ensure that they sum to 0 (Definition 4.B.1). sy|x = s̃y|x − 1

K

∑
y′ s̃y′|x. This means

that

log
∑
y

esy|X = log
∑
y

es̃y|X − 1
K

∑
y

s̃y|x

If we make the approximation that the logsumexp term and the average term are
independent then

V̂arX [log
∑
y

esy|X ]

≈ Varsy|x [log
∑
y

esy|x ]

≈ Vars̃y|x [log
∑
y

es̃y|X ] + 1
K

Vars̃y|x [
∑
y

s̃y|x]

= ψ(1)(Kλ) + 1
K
ψ(1)(λ)

where this last step uses the formula for the variance of an exp-gamma variable
twice. The variance of an exponential gamma with shape parameter λ is ψ(1)(λ)
where ψ(1) is the trigamma function. The log-sum-exp of K independent exp-gamma
with scale and shape parameters (λ, ζ) is another exp-gamma with scale and shape
parameters (Kλ, ζ). Finally we get the following approximation for the squared
radius

R2 ≈ Kψ(1)(Kλ) + ψ(1)(λ) .
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The dense prior uses a shape parameter λ = 1 while the sparse prior uses a
shape parameter λ = 1

K
. We use two approximations of the trigamma function:

ψ(1)( 1
K

) ≈ K2 + π2/6 and ψ(1)(K) ≈ 1
K

when K ≥ 10.

R2
dense ≈ Kψ(1)(K) + ψ(1)(1)

≈ 1 + π2/6 = O(1)

R2
sparse ≈ Kψ(1)(1) + ψ(1)( 1

K
)

≈ K2 +Kπ2/6 + π2/6 = O(K2) .

In other words for dense prior the radius grows linearly with the dimension K. We
report these estimates along with real data in Figure 4.7b.

Independent Special Case. if X is independent of Y in the reference distribu-
tion – e.g. ∀x, y,p(x, y) = p(x)p(y) – then ∀x, y,

sx = sx|y = n(x)
sy = sy|x = m(y)

Plugging these equalities into Proposition 4.5.2 yields

c = m = sY and R = 0
=⇒ ∆ = (K − 1)‖s∗Y − sY ‖

2 ≥ 0

which means that the anticausal model is advantaged δcausal ≥ δanticausal. This
is actually predictable from a simple parameter counting argument. When the
reference distribution is made of independent distributions, the anticausal conditional
mechanism is already optimal sx = sx|y. The anticausal model only has to adapt
its marginal mechanism sY of size K. On contrary, the causal model only has to
adapt its conditional mechanism sy|x 6= sy of size K2. Overall the causal model has
to adapt K times more parameters than the anticausal model.

4.B.4 Other Empirical Results for Cause and Effect Inter-
ventions

In this section, we present additional results for categorical variables. In Fig-
ure 4.8, compared to the main text, we add what happens with the dense prior
when we average learning curves (pooled) from 5 interventions on the cause and
5 interventions on the effect : on average the causal model adapts the fastest. In
Figure 4.9, compared to the main text we show what happens with the sparse prior,
both in terms of distance (scatter plots) and in terms of pooled results. Because the
intervention on the effect creates huge values of the KL, there is no set advantage
for any of the models.
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Dense cause Dense effect Dense pooled

Figure 4.8 – Categorical dense prior with K=20. Row 1: training curves. Solid
lines are average KL over 100 runs. We tune hyper-parameters to minimize the average
KL of each model at the black vertical dashed bar (t=100). Shaded areas are between
(5,95) quantiles. Note that all models start from the same initial KL, but they converge at
different speeds. Row 2: scatter plot of the KL at t=100 vs. initial distance. Note that
the initial distance is well correlated with the KL after 100 steps of SGD. Columns: we
report results for interventions on the cause on column 1, the effect on column 2, and an
aggregation of both on column 3. We aggregate results by taking the average of 5 cause
interventions and 5 effect interventions as one new trajectory. In total we have 20 such
trajectories per model. We are reporting this result because the meta-learning criterion
suggested by Bengio et al. (2020) is akin to the average adaptation speed over a small set
of interventions.
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Sparse cause Sparse effect Sparse pooled

Figure 4.9 – Categorical sparse prior with K=20. Column 1: intervention on the
cause. The causal model starts closer from optimum and adapts slightly faster than others.
Column 2: intervention on the effect. All models have the same initial distance and the
same objective value. However the KL value is around 10. This is 10 times larger than
when the intervention is on the cause. Column 3: we take the average of 5 effect and 5
cause interventions. The effect dominates this average because it is much larger. As a
result there is no signal.

4.B.5 Single Mechanism Intervention

If only sY |x0 changes, for some x0, then from Lemma 4.B.4 we get the following
equality

δanticausal =K − 1
K

δcausal + ‖s∗Y − sY ‖
2

+ (K − 1)(A∗(x0)− A(x0))2 . (4.48)

The causal and anticausal distances seem to be on the same scale, with a multiplica-
tive factor K−1

K
/ 1 and a positive additive factor. This is interesting because the

sparsity argument holds: the causal model needs to change K parameters whereas
the anticausal model needs to change K2 +K parameters. That means we could
expect an advantage by a factor K for the causal model, similarly to when the
intervention is on the cause. However (4.48) tells another story: without further
assumptions, it seems like both distances will have the same scale.

Experiments. For this kind of intervention to be detectable, we need to intervene
on x0 such that p(x0) is quite large. To ensure this in our experiments, we pick
x0 = argmaxx p(x). We report results on dense and sparse priors in Figure 4.10.
We observe no significant advantage for the causal model, in spite of the parameter
counting prediction.
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dense dense

sparse sparse

Figure 4.10 – Single mechanism intervention with K=20. Two first rows: Dense
prior. The only model to be slightly advantaged is the joint model. Two last rows: Sparse
prior. This time there is a slight advantage for the causal model which performs comparably
to the joint model. Overall the optimization is hard in both settings, since we are observing
only K2 samples for models with O(K2) parameters. The KL barely decreases.
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K 2 3 4 5 6 7 8 9 10 11 12 13 14

error .4 .2 .1 .07 .03 .01 .005 .002 .0007 .0003 7e-5 3e-5 4e-6

Table 4.1 – Estimation of the Bayes error under the dense prior assumption for increasing
categorical variables dimension K. We estimated these numbers by sampling one million
joint distributions for each K. We report 1 significant figure.

4.C Categorical Priors

In this section we study the dense and sparse prior described in the main paper.

4.C.1 Causal Direction is Identifiable under the Dense
Prior

Chalupka et al. (2016) study the prediction of causal direction from observational
data under the dense prior assumption. The causal direction X → Y induces a
certain prior over joint distributions π(p| →). The anticausal direction X ← Y
induces another one π(p| ←). The Bayes classifier is predicting → if

log π(→ |p)− log π(← |p) > 0 , (4.49)

and ← otherwise. Under the dense prior assumption, this classifier makes an error
of approximately 0.4 for K = 2, which decreases exponentially to 0.001 for K = 10.
We reproduced their setting and report the error of the optimal classifier in Table 4.1
for varying K. In other words the dense prior induce very asymmetric distributions
which makes the causal direction identifiable.

Is this Bayes classifier easy to estimate ? It turns out that under the dense prior,
the criterion (4.49) can be simplified into the following criterion

DKL(u||pX)−DKL(u||pY ) > 0 (4.50)

where u := 1 /K is the uniform probability vector. The proof is left as an exercize
to the reader. If (4.50) is positive, Bayes predicts that the cause is X, otherwise Y is
the cause. In words, whichever variable has the most uniform marginal is the effect.
This simple rule is optimal given the prior assumption (and if both directions are
equally likely). We can understand it from a concentration of measure perspective.
The effect marginal is written as a sum of quasi independent uniform variables

p(y) =
∑
x

p(y|x)p(x) (4.51)

which ends up close from the uniform vector.
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4.C.2 Joint Distribution with Sparse Prior

The following theorem shows how a Dirichlet prior over joint distributions
cx,y = p(x, y) is equal to independent Dirichlet priors over marginal ax = p(x) and
conditional by|x = p(y|x) probability mass functions. By applying this theorem, we
find that the sparse prior is equivalent to Dir( 1

K
1K2).

Theorem 4.C.1 (Dirichlet and Factorization). Let c be a random square matrix of
dimension K. Let’s define a as the random vector obtained by summing columns of c,
and b as a copy of c with rows normalized so that they sum to 1. ∀(i, j) ∈ {1, . . . , K}2

ai =
∑
j

ci,j (4.52)

bj|i = ci,j
ai

. (4.53)

Let γ be a positive square matrix of parameters. The following equivalence holds

c ∼ Dir(γ) ⇐⇒


a ∼ Dir(

∑
i γi)

b:|i ∼ Dir(γi,:),∀i
a |= b:|i |= b:|i′ ,∀i 6= i′

. (4.54)

Proof. First let’s remark that the right side of (4.54) is entirely characterizing
the joint distribution on (a, b), and that the relationship between c and (a, b)
is a bijection with reverse ci,j = bj|iai. This means that the equivalence (4.54)
is an equality between distributions. This means that we can prove the forward
implication and the converse will hold automatically.

If c ∼ Dir(γ), then there exist K2 independent Gamma variables c̃i,j ∼
Γ(γi,j, 1),∀i, j such that

c = c̃

S
where S =

∑
i,j

c̃i,j . (4.55)

We know from properties of the Gamma distribution that c is independent of S.
Now let’s define ãi :=

∑
j c̃i,j. This definition has three consequences. First ãi is a

sum of independent gammas, so it is a gamma with parameters (αi :=
∑

j γi,j, 1).
Second S =

∑
i ãi. Third a = ã

S
is independent of S and is a Dirichlet with

parameter vector α =
∑

j γ:,j.
That was for the marginal. Now for the conditional,

bj|i = ci,j
ai

= c̃i,j/S

ãi/S
= c̃i,j

ãi
. (4.56)

Again from properties of the Gamma distribution, b:|i |= ãi,∀i, and b:|i ∼ Dir(γi,:).
Each of the conditional b:|i is defined with independent gammas, so we also have
the independence between conditionals. We verified all properties of the right side
of (4.54), which concludes the proof.
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4.C.3 Categorical Sparse Prior Explosion

In this section we explain why the KL takes large values with sparse prior and
effect intervention.

On one hand the sparse prior samples probability vectors which are close from
being Dirac. On the other hand the effect intervention creates an outer product
between two samples drawn uniformly from the simplex Dir(1).

For instance, for the uniform probability vector u = 1
K2 1 ∈∆K2 and an almost

Dirac p = (1− ε)e1 + εu

DKL(u||p) ∈ Θ(log(1
ε

))

where ε is a small value. As we increase K, the sparse prior Dir(1K2 /K) becomes
more sparse. Conceptually, the value of ε decreases, and the value of DKL(u||p)
explodes. This is why we observe high KL values for sparse prior and effect
intervention. Empirically, these values also increase with K.

4.D Normal Optimization

In this Section we adapt the stochastic composite mirror-prox algorithm to
our setting of unbounded multivariate normal optimization. First we describe the
algorithm and prove a novel convergence rate that applies to our setting. Then
we explicit the update formulas for the normal log-likelihood loss with Cholesky
parameters. Finally we prove that worst case constants appearing in the rate are
equal for both causal and anticausal models.

4.D.1 Stochastic Composite Mirror-Prox

We want to minimize the composite objective

F (θ) = Ei [f(θ, i)] + g(θ) .

For simplicity we denote f(θ, i) by fi(θ) and f(θ) = Ei [fi(θ)]. We assume that fi is
convex, ∇fi is L-Lipschitz and g is a convex function. The stochastic mirror-prox
algorithm update rule at time t is

νt = θt+1 − γtf ′i(θt) (4.57)

θt+1 = argmin
θ

{
g(θ) + 1

γt
Bh(θ, νt)

}
(4.58)

where fi is sampled randomly. Bh(x, y) = h(x)−h(y)− < h′(y), x−y > denotes the
Bregman divergence between x and y induced by the convex function h and we have
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‖Bh(x, y)‖ ≥ α
2 ‖x− y‖

2. When we set h(x) = 1/2‖x‖2, we recover something called
the proximal stochastic gradient method (Duchi and Singer, 2009), also known as
Perturbed proximal gradient algorithm (Atchadé et al., 2017). This last citation in
particular has hypothesis very close to ours.

Convergence Rate

The following Theorem is a mild modification of the Theorem 8 in (Duchi
et al., 2010). Our result is different in 2 ways. First, we remove the boundedness
assumption for the Bregman divergence throughout the trajectory i.e. Bh(θ∗, θt) ≤ D
for all t. Second, we replace the fi B-Lipschitz continuous assumption by ∇fi B-
Lipschitz continuous. We need this last modification for the result to hold on fi
quadratic.

First we prove the following lemma which is a modification of Lemma 1 in (Duchi
et al., 2010).

Lemma 4.D.1. With f convex and B-smooth, g convex, and γ ≤ α
3B , at iteration

t, if we sample i, we have:

γ {fi(θt) + g(θt+1)− F (θ∗)} ≤Bh(θ∗, θt)− Bh(θ∗, θt+1)
+ γ {fi(θt)− fi(θt+1)} .

Proof. We have the following sequence of inequality

γ
(
fi(θt) + g(θt+1)− F (θ∗)

)
≤ γ 〈θt − θ∗, f ′i(θt)〉+ γ 〈θt+1 − θ∗, ∂gt(θt)〉
≤ Bh(θ∗, θt)− Bh(θ∗, θt+1)
− Bh(θt+1, θt) + γ 〈θt − θt+1, f

′
i(θt)〉

≤ Bh(θ∗, θt)− Bh(θ∗, θt+1)

− Bh(θt+1, θt) + Bγ

2 ‖θt − θt+1‖2

+ γ
(
fi(θt)− fi(θt+1)

)
where the first inequality comes from convexity of fi and g,the second inequality
comes from Eq.(6) of lemma 1 in (Duchi et al., 2010), and the third inequality comes
from the smoothness of fi. By γ ≤ α

3L , the term −Bh(θt+1, θt) + Bγ
2 ‖θt − θt+1‖2 is

negative : we can drop this term and get the required result. Note that ∂g is a
subgradient of g.

Theorem 4.D.2. Given the above assumptions for fi and g, after T iterations of
the stochastic mirror prox algorithm with γ = c√

T
, (c ≤ α

3B ), we have

E
[
F (θ̄)− F (θ∗)

]
≤ Bh(θ

∗, θ0)
c
√
T

+ (F (θ0)− F (θ∗))
T

.
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Proof. The proof is similar to the proof of the Theorem 8 in (Duchi et al., 2010)
with some modifications. Take the expectation of lemma 4.D.1 with respect to the
samples (iu)u≤t

E
[
γ
(
f(θt) + g(θt+1)− F (θ∗)

)]
≤ E

[
Bh(θ∗, θt)− Bh(θ∗, θt+1) + γ

(
f(θt)− f(θt+1)

)]
where θt and θt+1 are random variable that depends on the samples. Sum up both
side for T iterations:

γ

T∑
t=0

E [f(θt) + g(θt+1)− F (θ∗)]

≤ Bh(θ∗, θ0)− E [Bh(θ∗, θT+1)]

+ γ
(
f(θ0)− E [f(θT+1)]

)
By adding γE [g(θ0)− g(θt+1)] to both sides of the above inequality we get:

γ
T∑
t=1

E [F (θt)− F (θ∗)]

≤ Bh(θ∗, θ0)− E [Bh(θ∗, θT+1)]

+ γ
(
F (θ0)− E [F (θT+1)]

)
≤ Bh(θ∗, θ0) + γ

(
F (θ0)− E [F (θ∗)]

)
where the last inequality is due to non-negativity of Bregman divergence and
optimality of θ∗. Divide both sides by γT = c

√
T and use Jensen inequality on F

to conclude the proof.

4.D.2 Normal Model Updates

The objective function at hand is:

F (L, ζ) = f(L, ζ) + g(L)

f(L, ζ) = 1
2n

n∑
i=1

‖LTxi − ζ‖2

g(L) = − ln(|L|).

Now the update rule for the ζ given that g is independent of ζ and we sample
mini-batch B of size m:

ζt+1 = (1− γ)ζt + γLTt

( 1
m

∑
i∈B

xi

)
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For the L the gradient update gives

Lt+ 1
2

= Lt − γ
1
m

∑
i∈B

(xixTi Lt − xiζTt ) .

Since L is lower triangular, g(L) = ln(|L|) =
∑d

i=1 logLi,i and the proximal operator
only applies to diagonal elements of L – e.g. when i 6= j [Lt+1](i,j) = [Lt+ 1

2
](i,j).

Otherwise we have to compute:

[Lt+1](i,i) = argmin
Lii

{
− ln(Lii) + 1

2γ ‖Lii − [Lt+ 1
2
](i,i)‖2

}
.

Therefore the update rule for the [Lt+1](i,i) is:

[Lt+1](i,i) = 1
2

{
[Lt+ 1

2
](i,i) +

√
[Lt+ 1

2
]2(i,i) + 4γ

}
.

Remark how this proximal operator behaves as a smooth projection on the set of
strictly positive numbers. If the diagonal is negative after the gradient update, it
brings it to a small positive value. If it was already positive, it slightly increases its
value.

4.D.3 Equality of Smoothness Constants

In this section, we show that the Lipschitz smoothness parameter B, which
appears in the convergence rate (4.22), is the same for both causal and anticausal
models. Similarly to the categorical case, we reason about marginals loss first
because they have a simpler form.

The loss of a marginal mechanism is fx(L, ζ) = 1
2
∑d

i=1(ζi − LTi x)2 where x is
a sample observation and the Li are the columns of L. We need to show that its
Hessian is upper-bounded ‖∇2fx(L, ζ)‖ ≤ B . Thanks to the objective fx being
quadratic, the Hessian is independent of the parameters (L, ζ). It depends only on
the data x. Since the data domain is a priori the same for causal and anticausal
models – e.g. X and Y can live in the same range – the upper bound for the Hessian
is the same. This holds true at least for marginal mechanisms, because their loss is
written exactly like above.

For conditional mechanisms, this is a bit more complicated but the reasoning
holds. The objective is similar, with extra parameters coming from the linear
relationship between X and Y . The Cholesky parametrization is described in
equation (4.68). The conditional model uses ζY |X = MX +m where M is a matrix,
m is a vector and X is a given sample. This means that the objective is still a
quadratic and that 2nd order derivatives w.r.t. LY |X are still independent of the
parameters M and m. They depend only on the observed values of X and Y . We
assume that these variables have the same domain a priori, therefore both models
have similar worst case smoothness constants.

86



4.E Normal Analysis

In this section we introduce three different parametrization of the multivariate
normal cause-effect model. The mean parametrization is the most common and intu-
itive, but it yields a non-convex optimization problem. The natural parametrization
yields a convex problem with convergence guarantees, but it has no closed update
formulas for our optimization algorithm of choice. The Cholesky parametrization
offers both a convex problem and simple updates.

Then we proceed to study how interventions induce distance in parameter space.
We prove that in the natural parameter space, an intervention on the cause will
create more distance in the anticausal model than in the causal model.

4.E.1 Mean Parameters

Cause X and effect Y are sampled from the causal model

X ∼ N (µX ,ΣX)
Y |X ∼ N (AX + a,ΣY |X)

with parameters (µX ,ΣX , A, a,ΣY |X). All along, we will assume that all normal
laws are non-degenerate – e.g. ΣX > 0,ΣY |X > 0. We compute the marginal mean
and covariance of Y as well as the covariance between X and Y

E [Y ] = AµX + a

Cov[Y ] = ΣY |X + AΣXA
>

Cov[X, Y ] = ΣXA
> .

From there we can derive the joint distribution as a function of the causal parameters(
X
Y

)
∼ N

((
µX

AµX + a

)
,

(
ΣX ΣXA

>

AΣX ΣY |X + AΣXA
>

))
. (4.59)

4.E.2 Natural Parameters

We want the negative log-likelihood objective to be convex, so we are going to
use the natural parameters instead of the mean parameters

N (µ,Σ) = Nnat(η = Σ−1µ,Λ = Σ−1) (4.60)

where we are using Nnat to explicit that this is taking the natural parameters as
arguments Our causal model using natural parameters is:

X ∼ Nnat(ηX ,ΛX) (4.61)

Y |X ∼ Nnat(BX + b,ΛY |X)
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where we get the natural parameters from the mean parameters with formulas

ΛX = Σ−1
X

ΛY |X = Σ−1
Y |X

ηX = ΛXµX

B = ΛY |XA

b = ΛY |Xa

Switching Direction

We want to get the natural parameters of the anticausal model as a function of
the causal parameters. To do so we are going to express the natural parameters of
the joint, and then we will simply have to swap rows and columns to invert the roles
of X and Y . To get the joint precision matrix, we need to invert the joint covariance.
We use the Schur complement and the blockwise matrix inversion formulas

M =
(
A B
C D

)
M/D := D − CA−1B

M−1 =(
A−1 + A−1B(M/D)−1CA−1 −A−1B(M/D)−1

(M/D)−1CA−1 (M/D)−1

)
In our case, the Schur complement of Σ with respect to its lower right block ΣY is
precisely

M/D = Σ/ΣY

= ΣY |X + AΣXA
> − AΣXΣ−1

X ΣXA
>

= ΣY |X .

By applying the formula and identifying the natural parameters, we get

Λ =
(

ΛX +B>Λ−1
Y |XB −B>

−B ΛY |X

)
To get the first natural parameter, all we have to do is to multiply the joint precision
and the joint mean

η = Λµ

=
(

ΛXµX +B>Λ−1
Y |XBµX −B>AµX −B>a

−BµX + ΛY |XAµX + ΛY |Xa

)
=
(
ηX −B>Λ−1

Y |Xb

b

)
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where B>Λ−1
Y |XBµX −B>AµX , and −BµX + ΛY |XAµX are zero and we express the

other terms with natural parameters. Overall, the joint natural parameters are

Nnat

((
ηX −B>Λ−1

Y |Xb

b

)
,

(
ΛX +B>Λ−1

Y |XB −B>
−B ΛY |X

))
.

From there we can use a symmetry argument to switch from causal X → Y to
anticausal X ← Y model.

Y ∼ Nnat(ηY ,ΛY )
X|Y ∼ Nnat(CY + c,ΛX|Y )

with the following formulas for the conditional mechanism

C = B> (4.62)

c = ηX −B>Λ−1
Y |Xb (4.63)

ΛX|Y = ΛX +B>Λ−1
Y |XB (4.64)

followed by these formulas for the marginal mechanisms

ΛY + C>Λ−1
X|YC = ΛY |X (4.65)

ηY − C>Λ−1
X|Y c = b . (4.66)

These formulas are going to be very useful to establish a relationship between
the distance to optimum of the causal and anticausal models in Appendix 4.E.5.

4.E.3 Cholesky Parameters

We call Cholesky parametrization of the normal law the parameters (L, ζ) such
that

Λ = LL> (L is lower triangular)
ζ = L−1η = L>µ

We use Ncho(ζ,L) to denote the normal law with Cholesky parameters ζ and L.
The full causal model (4.61) becomes

X ∼ Ncho(ζX ,LX)
Y |X ∼ Ncho(MX +m,LY |X) (4.67)

where the 5 parameters are defined from the natural model by the equations

LXL
>
X = ΛX

LY |XL
>
Y |X = ΛY |X

ζX = L−1
X ηX (4.68)

M = L−1
Y |XB

m = L−1
Y |Xb
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There is no closed formula to express the Cholesky decomposition of a sum of
matrix A + B with the Cholesky decomposition of A and B. As a consequence,
there is no simple formula to switch between causal and anticausal models with this
parametrization.

Joint Cholesky

We derive a formula for the joint Cholesky for future reference. To get a closed
form for the joint Cholesky parameters from the conditional parameters, we need
to switch the positions of X and Y in the joint vector – e.g. we are using (Y,X)
instead of (X, Y ). Indeed the Cholesky decomposition is very dependent on the
orders of the rows and columns. That’s also why we cannot simply switch the
column orders in the joint representation.(

Y
X

)
∼ Ncho

((
m
ζX

)
,

(
LY |X 0
−M> LX

))
.

This joint representation is simply taking the conditional parameters and putting
them in an array. It has the advantage that the distance is equal to the conditional
distance. It hints towards the idea that for multivariate normal variables, knowing
the right Cholesky decomposition is equivalent to knowing the right causal graph.

4.E.4 Kullback-Leibler Divergence

We express the KL divergence in all three parametrizations because we use them
in the code.

2DKL(N0||N1)
= (µ1 − µ0)>Σ−1

1 (µ1 − µ0)
+ Tr(Σ−1

1 Σ0)− k − log
∣∣Σ−1

1 Σ0
∣∣

= η>1 Λ−1
1 η1 − 2η>1 Λ−1

0 η0 + η>0 Λ−1
0 Λ1Λ−1

0 η0

+ Tr(Λ1Λ−1
0 )− k − log(

∣∣Λ1Λ−1
0
∣∣

=
∥∥V >ζ0 − ζ1

∥∥2 + ‖V ‖2
F − k − 2 log|V |

where V := L−1
0 L1 is a lower triangular matrix which plays a special role.

4.E.5 Distance after Intervention

In this section we evaluate the effect on interventions on the cause and effect for
both models. When the intervention happens on the cause, we replace µX ,ΣX by
µ̃X , Σ̃X , or equivalently we replace the natural parameters of the marginal on X.
The natural causal distance is simply

δcausal = ‖ηX − η̃X‖2 + ‖ΛX − Λ̃X‖2
F . (4.69)

90



Unless indicated otherwise, we will consider the Frobenius distance between matrices.
For the anticausal model, both marginal and conditional parameters need to change.
Here similar to categorical case, we have

δanticausal ≥ δcausal.

However when the intervention happens on the effect, there is no clear formal relation
between δcausal and δanticausal. More detail about the deriving the mathematical
formula for δcausal and δanticausal is presented in the following.

Intervention on Cause

When the intervention happens on the cause, the natural causal distance is

δcausal = ‖ηX − η̃X‖2 + ‖ΛX − Λ̃X‖2
F . (4.70)

How does this transformation affect the anticausal parameters? Both the marginal
and the conditional have to adapt. The anticausal conditional is elegantly expressed
with the causal natural parameters in (4.64), so we will start with the conditional

C − C̃ = B> − B̃> = 0 (4.71)

c− c̃ = ηX − η̃X (4.72)

ΛX|Y − Λ̃X|Y = ΛX − Λ̃X . (4.73)

In words, the linear transformation is invariant, the bias moves like the mean of X,
and the conditional precision moves like the precision of X. This means that we
can directly lower bound the anticausal distance with the causal distance

δanticausal =
∥∥C − C̃∥∥2 + ‖c− c̃‖2 +

∥∥ΛX|Y − Λ̃X|Y
∥∥2

+
∥∥ΛY − Λ̃Y

∥∥2 + ‖ηY − η̃Y ‖2

= δcausal +
∥∥ΛY − Λ̃Y

∥∥2 + ‖ηY − η̃Y ‖2

> δcausal . (4.74)

We could get a stronger bound by bounding the anticausal marginal parameters,
but any such bound would involve the value of the linearity B and make the result
needlessly more complicated.

Intervention on Effect

We perform an intervention on Y such that the causal model become independent

X ∼ N (µX ,ΣX)
Y ∼ N (µ̃Y , Σ̃Y ) .
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This independence means that the linear models have a slope 0

Ã = B̃ = C̃ = 0 . (4.75)

The bias then has to account for the mean parameter

ã = µ̃Y , b̃ = η̃Y , c̃ = ηX (4.76)

And the conditional precision have to match the marginal precision

Σ̃Y |X = Σ̃Y , Λ̃Y |X = Λ̃Y , Λ̃X|Y = ΛX (4.77)

So the distances are written

δcausal = ‖B‖2
F + ‖b− η̃Y ‖2 + ‖ΛY |X − Λ̃Y ‖2

F

δanticausal = ‖C‖2
F + ‖c− ηX‖2 + ‖ΛX|Y − ΛX‖2

F

+ ‖ηY − η̃Y ‖2 + ‖ΛY − Λ̃Y ‖2
F

= ‖B‖2
F + ‖B>Λ−1

Y |Xb‖
2 + ‖B>Λ−1

Y |XB‖
2
F

+ ‖ηY − η̃Y ‖2 + ‖ΛY − Λ̃Y ‖2
F

We did not find any meaningful simplification of these formulas.

4.F Normal Prior

Exactly like in the categorical setting, the distributions we sample are going
to impact the speed of adaptation and the distances we measure. Let K be the
dimension of X and Y , and n0 = 2K + 2 an arbitrary number of prior observations.
We define a pseudo-conjugate prior

ΛX ∼ W(n0,
IK
K

) (4.78)

ηX |ΛX ∼ N (0, ΛX

n0
) (4.79)

ΛY |X ∼ W(n0, 10IK
K

) (4.80)

b|ΛY |X ∼ N (0,
ΛY |X

n0
) (4.81)

B = ΛY |XA where A ∼ N (0, IK2√
K

) (4.82)

where W is the Wishart distribution with parameters: degrees of freedom and scale
matrix. We picked these parameters such that ηY ,ΛY follows approximately the
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same law as ηX ,ΛX . Two important factors to get a symmetric relationship between
X and Y are 10 and

√
K. First, we sample a larger conditional precision, so that

their relationship is quite deterministic. Second we sample the linear layer such
that it preserves the scale of X, so that X and Y have approximately the same
variance. We also use appropriate covariance matrices to sample other parameters
such that the prior is somewhat conjugate and gives proper variance formulas.

We sample interventions from the same distributions as the cause marginal in
(4.82). For an intervention on the cause

Λ̃X ∼ W(n0,
IK
K

)

η̃X |Λ̃X ∼ N (0, Λ̃X

n0
) .

For an intervention on the effect

B̃ = 0Λ̃Y |X = Λ̃Y ∼ W(n0,
IK
K

)

b̃ = η̃Y |Λ̃Y ∼ N (0, Λ̃Y

n0
) .
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5

Convergence Rates for the
MAP of an Exponential
Family and Stochastic
Mirror Descent – an Open
Problem

Prologue to the Third Contribution

Article Details

Convergence Rates for the MAP of an Exponential Family and
Stochastic Mirror Descent – an Open Problem. Rémi Le Priol, Frederik
Kunstner, Damien Scieur, and Simon Lacoste-Julien. This paper is under review
at AISTATS 2022 (Le Priol et al., 2021b).

Motivation for this Research

Rémi Le Priol and Simon Lacoste-Julien started looking for MAP convergence
rates while working on Le Priol et al. (2021a), as such rates may have been helpful to
characterize the speed of adaptation of categorical of multivariate normal models (see
the 2nd contribution). About the same time and independently, Frederik Kunstner
got interested in this problem while working on Kunstner et al. (2021), a beautiful
paper proving that expectation-maximization (EM) in exponential families is an
instance of mirror descent. This paper then leveraged recent results on relative
smoothness (Lu et al., 2018) to get the first global convergence rate applicable
to EM for Gaussian mixture models. This result naturally raised the question :
can we get similar results for stochastic EM via a convergence rate on stochastic
mirror descent ? Convergence rate for maximum a posteriori estimates seem to be
a prerequisite to answer this question.

Remi and Simon sent calls to the community, looking for answers to this
seemingly simple question. That is when the trajectories of Rémi and Frederik
collided, thanks to the mediation of Mark Schmidt. Damien finally hopped in on
the project, bringing his optimization expertise. Together, they created this article,
gathering all the takes they could find on this problem.

Contributions of the Authors

Rémi Le Priol came up with the equivalence between MAP and SMD, wrote most
of the paper, and made the figures. Frederik Kunstner contributed to the literature
review, and in particular the comparison between analysis of SMD. Damien Scieur

94



Figure 5.1 – KL divergence (5.4) for Gaussian variance (§5.4.1) MLE (blue) and MAP
(orange) against number of samples n. Solid curve are average over 105 trials. Dashed
curves are upper bounds (5.18) (blue) and (5.19) (orange, not tight by a factor 2). Shaded
areas are 90% confidence interval. The MLE expected KL is infinite for n = 1 and n = 2,
but for n ≥ 3 it quickly joins the upper bound (5.18) and the 1/2n asymptote (5.23).
MAP’s expected KL is always finite, and it has lower variance than MLE, but it is slower
to join the asymptote. We wish to find upper bounds similar to (5.19) characterizing the
relative importance of the prior and the few sample behavior of MAP for a variety of
exponential families.

contributed to the general writing and the results on self-concordance. Damien
Scieur and Simon Lacoste-Julien provided supervision.

Abstract

We consider the problem of upper bounding the expected log-likelihood sub-
optimality of the maximum likelihood estimate (MLE), or a conjugate maximum a
posteriori (MAP) for an exponential family, in a non-asymptotic way. Surprisingly,
we found no general solution to this problem in the literature. In particular, current
theories do not hold for a Gaussian or in the interesting few samples regime. After
exhibiting various facets of the problem, we show we can interpret the MAP as
running stochastic mirror descent (SMD) on the log-likelihood. However, modern
convergence results do not apply for standard examples of the exponential family,
highlighting holes in the convergence literature. We believe solving this very
fundamental problem may bring progress to both the statistics and optimization
communities.
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5.1 Introduction

Models Exponential families are among the most widely used simple parametric
models of data, yet, we will highlight some open problems about them in this paper.
Many standard random variables are exponential families: Gaussians, categorical,
gamma, or Dirichlet, for example. They are flexible enough to model a variety
of data sources X and easy to describe with some sufficient statistics T (X) ∈ Rd.
They are particularly appreciated for their convex log-likelihood

f(θ) := E[− log pθ(X)] = A(θ)− 〈E[T (X)], θ〉, (5.1)

where A is the convex log-partition function and θ ∈ Θ is the natural parameter.
This convexity lays the foundation for generalized linear models (McCullagh and
Nelder, 1989) or variants of principal component analysis (Collins et al., 2001),
among other applications.

Estimators In this paper, we consider the problem of estimating θ from a dataset
D = (X1, . . . , Xn) of iid observations from pθ in an exponential family. In this case,
not only is f convex, but it yields a simple condition for the maximum-likelihood
estimate (MLE)

µ̂MLE
n = ∇A(θ̂MLE

n ) =
∑n

i=1 T (xi)
n

. (5.2)

This rule is also known as moment matching. Given a specific conjugate prior, a
similar formula (5.11) holds for the maximum a posteriori (MAP). In this paper,
we will focus on analyzing MLE and MAP estimators.1

Statistical decision theory To assess the quality of an estimator θ̂ (and compare
them), we need to define some notion of closeness to the correct parameter θ∗.
We distinguish here two ways: distance in parameter space and “distance” between
distributions. 1) Distance in parameter space d(θ, θ∗). This is the focus of parameter
estimation, yielding results such as the asymptotic efficiency of the MLE via the
Cramer-Rao lower-bound (Aitken and Silverstone, 1942) and a wealth of asymptotic
results (Van der Vaart, 1998). In particular for sum of independent variables
such as (5.2), large deviations theory (Varadhan, 1984) characterizes concentration
phenomena. 2) Distance between distributions, as studied in density estimation.
For this purpose, the Kullback-Leibler (KL) divergence DKL(pθ∗||pθ) arises naturally
from information theory, but its lack of robustness to misspecification2 has led

1A related analysis is present in the online-learning literature, but for different online estimators,
which are less efficient than offline methods (Azoury and Warmuth, 2001; Dasgupta and Hsu,
2007).

2 For p and q continuous densities, DKL(p||q) = +∞ if ∃x, q(x) = 0 & p(x) > 0.
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statisticians to study better-behaved distances, such as the L2 norm (Tsybakov,
2009, §1.2), the L1 norm (Devroye and Lugosi, 2001), or more recently χ2 distance
(Kamath et al., 2015) or Hellinger distance (Baraud et al., 2017). With exponential
families, the KL divergence is also a Bregman divergence between parameters (see
§5.3), thus drawing a connection between these two lines of research, and raising
the fundamental problem:

Find an upper bound on the expected value of

DKL(pθ∗ ||pθ̂MLE/MAP
n

) . (?)

There are already general asymptotic results (§5.5.1 and Fig. 5.1), and a finite
n result when A is quadratic (e.g., X is Gaussian with known variance) or close to
quadratic (§5.5.2). However, a general solution for finite n remains elusive. In this
paper, we review partial solutions and give ideas on how to solve the problem.

Optimization Stochastic optimization offers an interesting perspective on (?).
Consider the problem

min
θ∈Θ

f(θ) , (5.3)

solved by θ∗ ∈ Θ. Setting f as the log-likelihood (5.1), the suboptimality is equal
to the KL:

f(θ)− f(θ∗) = DKL(pθ∗||pθ). (5.4)

Both MLE and MAP can be seen as stochastic algorithms solving (5.3). In particular,
with exponential families, MAP is equivalent to stochastic mirror descent (SMD)
(Nemirovski et al., 2009). Inspired by recent work (Le Priol et al., 2021a; Kunstner
et al., 2021), we consider using existing convergence rates for SMD to get the upper
bound we seek. Unfortunately, none of the current analyses apply, highlighting
open problems for the analysis of SMD.

Expected Outcomes A solution to (?) can clarify the importance of the prior
in MAP, in particular in the few sample regime. Also, it could enable stochastic
optimization to tackle a broad class of barrier objectives.3 A good example is the
generalized linear model based on Gaussians with unknown mean and variance, for
which there is currently no theory (Bach and Moulines, 2013). It could also help
assess the impact of alternative forms of regularization (prior) for these models.

3we call barrier an objective f that is infinite on the boundaries of its domain (assuming they
exist).
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Contributions After formalizing the problem (?) (§5.3), along with its asymptotic
properties (§5.5.1), we make the following contributions.

• We provide an upper bound on the KL in the particular case of a Gaussian
with known mean but unknown variance N (0, σ2) (§5.4.1), illustrating that
tight rates are possible even though the current theory does not cover them.

• We highlight sufficient conditions to characterize when a (local) quadratic
approximation of the KL is valid, offering a partial answer to (?) (§5.5.2-5.5.3).

• By linking MAP and SMD, we show that modern analysis of SMD is yet to
prove convergence on barrier objectives such as − log (§5.6).

Notation X and T = T (X) are random variables, x is a sample, n is the number
of samples and d = dim(T ). 〈·, ·〉 is the Euclidean scalar product in Rd.

5.2 Technical Background

This section reviews the formalism of exponential families, their duality, a con-
jugate prior, and the corresponding MAP. We point the reader towards Wainwright
and Jordan (2008, Chapter 3) for a more detailed introduction.

The density of an exponential family for a sample x is

pθ(x) = p(x|θ) = exp(〈θ, T (x)〉 − A(θ)) , (5.5)

where θ is called natural (or primal) parameter. It is fully specified by 1) T : X → Rd,
the sufficient statistic, and 2) a base measure ν on X . Since the exponential is
positive, p has the same support as ν. The log-partition function A acts as a
normalization term, since

A(θ) = log
∫
e〈θ,T (x)〉ν(dx) . (5.6)

This simple model encompasses both categorical distributions : X = {1, . . . , k},
ν uniform and T (X) the one-hot encoding and multivariate normal distributions
X = Rd, ν Lebesgue and T (X) = (X,XX>).

For convenience, we focus on steep, regular exponential families with minimal
statistic T (Barndorff-Nielsen, 1978). Then A is a strictly convex function of
Legendre type, and the set Θ = {θ |A(θ) <∞} is open and convex. When explicit,
we write the random variable T = T (X).

Duality. The log-partition function A verifies the two following identities:

∇A(θ) = Epθ [T (X)] =: µ, (5.7)

∇2A(θ) = Covpθ [T (X)] > 0, (5.8)
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where µ is called the mean (or dual) parameter, which lives in the open convex set
M equal to the relative interior of the convex hull of T (X ). Given that A is strictly
convex, its Hessian is positive definite, and its gradient ∇A is a bijection between
natural parameters θ and mean parameters µ. We will write µ or θ interchangeably
depending on the context, being aware that both are linked and represent the same
distribution.

We now introduce the convex conjugate (the Fenchel-Legendre transform) of
the log-partition function

A∗(µ) = 〈µ, θ〉 − A(θ) = max
θ′∈Θ
〈µ, θ′〉 − A(θ′) ,

which is the common notion of entropy in information theory. By Fenchel duality,
its gradient is the inverse of the gradient of A, ∇A∗ = ∇A−1, giving

∇A∗ ◦ ∇A(θ) = θ, ∇A ◦ ∇A∗(µ) = µ.

The Bregman Divergence induced by A measures the discrepancy between two
parameters θ and θ0,

BA(θ; θ0) = A(θ)− A(θ0)− 〈∇A(θ0), θ − θ0〉, (5.9)

with ∇A(θ0) = Eθ0 [T (X)] =: µ0 the mean parameter associated to θ0. In general,
Bregman divergences are not symmetric, i.e., BA(θ; θ0) 6= BA(θ0; θ).

A Conjugate Prior for p(X|θ) is

p(θ) ∝ exp(−n0BA(θ; θ0))
∝ exp(n0〈µ0, θ〉 − n0A(θ)), (5.10)

where n0 and θ0 are (hyper)parameters of the prior (Agarwal and Daumé, 2010). This
is an exponential family with sufficient statistics (θ, A(θ)) and natural parameter
(n0µ0,−n0). Intuitively, n0 is the number of fictive data points observed from a
distribution with natural parameter θ0.

Maximum A Posteriori (MAP). Given a dataset Dn = (X1, . . . , Xn), we
wish to estimate the maximum of the posterior distribution p(θ |Dn) ∝ p(Dn|θ)p(θ).
Plugging in (5.5), (5.9) and (5.10) yields

p(θ |Dn) ∝ exp(−(n0 + n)BA(θ; θ̂MAP
n ))

which reaches its maximum at θ̂MAP
n such that

∇A(θ̂MAP
n ) = µ̂MAP

n = n0µ0 +
∑n

i=1 Ti
n0 + n

, (5.11)

where Ti = T (Xi). When n0 = 0 (no samples from the prior), we recover the

MLE (5.2). We write θ̂n for the MAP and view the MLE as a particular case.
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5.3 Problems Formulation

We are now ready to formalize the main problem of this paper. Assume we
observe a dataset Dn drawn i.i.d. from p(· | θ∗), an exponential family distribution
with parameters θ∗. We wish to quantify how well the MLE or a MAP approximates
the true distribution.

A natural way to quantify this is the Kullback-Leibler divergence (KL)
DKL(pθ∗||pθ). In the well-specified setting, it corresponds to the log-likelihood
sub-optimality (5.4). With exponential families, the KL is also a Bregman diver-
gence:

DKL(pθ∗||pθ) = BA(θ; θ∗) = BA∗(µ∗;µ) . (5.12)

The second equality is a general property of Bregman divergences and convex
conjugates. How does this quantity behave when θ̂ is the MLE or MAP? Or in the
words of statistical decision theory, what is the frequentist risk of these estimators
when the loss is the KL divergence? This is our first problem.

Open Problem 1 (Upper-bounding MAP and MLE). Upper bound the following
quantities:

MLE: EDn
[
BA∗

(
Eθ∗ [T ]; 1

n

∑
i Ti

)]
, (5.13)

MAP: EDn
[
BA∗

(
Eθ∗ [T ]; n0µ0 +

∑
i Ti

n0 + n

)]
, (5.14)

where the expectation is on the data Dn = (T1, . . . , Tn).

More explicitly, we want an upper bound that does not involve this expectation
over the dataset. Surprisingly, we found no general solution to this seemingly simple
problem, whether in the literature or by our means. In §5.4, we provide results
for special cases such as N (0, σ2), while in §,5.5 we provide realistic conditions to
obtain valid bounds after seeing a large number of samples. However, we have yet
to find a solution encompassing both a broad range of exponential families and
applicable to small sample sizes n . d.

A Difficulty with the MLE. While (5.14) is always finite, (5.13) may be
infinite, for instance when estimating the covariance of a Gaussian when n ≤ d+ 1.
Even worse, there is a non-zero probability never to sample one of the categories
with categorical variables. In those cases the MLE gives zero weight to this category
and DKL(pθ∗ ‖ pMLE) = +∞. Therefore, the expected KL (5.13) is infinite for any
number of samples. Instead of taking the expectation, one might want to bound
the risk in high probability without resorting to Markov inequality, as achieved
by (Ostrovskii and Bach, 2021), but this is a difficult endeavor. These examples
make a case for regularized estimators such as MAP, for which we may find upper
bounds.
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Optimization. With exponential families, MAP can be linked to stochastic mirror
descent (SMD), see App. 5.F. More precisely, let us re-write (5.11) as

µn = µn−1 − γn(µn−1 − Tn) (5.15)

where γn := 1
n0+n . Now define stochastic functions fX(θ) = − log p(X | θ) such that

E[fX ] = f . If we further introduce stochastic gradients gn(θ) := ∇A(θ) − Tn =
∇fXn(θ), then (5.15) becomes

∇A∗(θ̂n) = ∇A∗(θ̂n−1)− γngn(θ̂n−1), (5.16)

which is the update formula for SMD on f with mirror map ∇A and step-size
schedule γn, initialized at θ0. In this view, MLE forgets its (arbitrary) initialization
after the first step with step size 1. The observation MAP ∈ SMD brings us to our
second problem.

Open Problem 2 (Convergence rate for SMD). Find a convergence rate for
stochastic mirror descent that applies to conjugate MAP of exponential families such
as Gaussians N (µ, σ2).

To address these problems, we start by investigating simple examples to provide
solutions to Problem 1, getting insights into what is achievable.

5.4 Illustrating Examples

5.4.1 Gaussian with Unknown Variance

A non-trivial yet straightforward example is the centered Gaussian distri-
bution with unknown variance N (0, σ2). Its log-likelihood reads log p(x) =
− x2

2σ2 − 1
2 log(2πσ2). Defining T (X) = X2 as the sufficient statistic, we get natural

parameter θ = − 1
2σ2 < 0, and mean parameter µ = E[T (X)] = σ2 > 0. Mean and

natural parameters are roughly inverse of each other, i.e., θ = − 1
2µ . Now we match

the log-likelihood with the exponential family template to get the log-partition
function, and take the conjugate to find the entropy

A(θ) = −1
2 log(−θ) and A∗(µ) = −1

2 log(µ) ,

up to constants. Both A and the entropy are roughly negative logarithm z 7→
− log(z). It means the conjugate prior is the exponential family with sufficient
statistic (θ, log(−θ)), e.g., a negative gamma distribution. It also means BA and
BA∗ have the same shape

BA∗(µ∗;µn) = 1
2

(
µ∗

µn
− 1− log µ

∗

µn

)
. (5.17)
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In Theorems 5.4.1 and 5.4.2, we report upper bounds on the expected value of this
divergence for the MLE and the MAP. All proofs for this section are in App. 5.A.

Theorem 5.4.1 (MLE Bound). The MLE of N (0, µ∗) is µ̂MLE
n = 1

n

∑
iX

2
i . Its

expected suboptimality is infinite when n ≤ 2, and otherwise upper-bounded as

E
[
BA∗(µ∗; µ̂MLE

n )
]
≤ 1

2n + 2
n(n− 2) . (5.18)

This upper bound matches the asymptotic result (5.23) that we derive in §5.5.1.
We illustrate its numerical behavior in Figure 5.1. With the same technique, we
obtain a similar bound for the multivariate generalization: the expected value is
infinite whenever n ≤ d+ 1 where d is the dimension, and is otherwise bounded by
O(d2

n
+ d3

n(n−d−1)).

Theorem 5.4.2 (MAP Bound). The expected suboptimality of the MAP of N (0, µ∗)
with prior hyper-parameters (n0, µ0) is

E
[
BA∗(µ∗; µ̂MAP

n )
]
≤

{ 1
2(n0+1) + b1 if n = 1,

1
n0

µ0
µ∗+n−2 + bn if n ≥ 2 (5.19)

where bn =
(1 + 1

n0
− µ0

µ∗
)2

2(µ0
µ∗

+ max(0,n−2)
n0

)(1 + n
n0

)
.

Anticipating on §5.5.4, this inequality highlights an explicit O( v
n

+ b
n2 ) variance-

bias decomposition. This inequality is derived with the symmetrized Bregman
B(a, b)+B(b, a) for which calculus is more tractable. This explains why the variance
term is twice larger than the asymptote (5.23). Regarding the bias, it vanishes
when µ0

µ∗
= 1 + 1

n0
, which happens when the prior is slightly larger than the ground

truth. This correlates well with our numerical observations (cf App. 5.A).
Note that if X ∼ N (0, σ2), then X2 ∼ Γ(1

2 ,
1

2σ2 ) in the shape-rate parametriza-
tion of Gamma distributions. In fact the bounds above can be generalized to any
distribution Γ(α, β) with known shape α. This generalization encompasses expo-
nential distribution when α = 1, as another important special case. We postpone
these rates to Section 5.A for the sake of clarity.

5.4.2 Full Gaussian (Non-Trivial)

Now that we have solved the case of N (0, σ2), consider the full Gaussian
N (m,σ2), which offers a highly non-trivial example for Problem 1. Their log-

likelihood reads p(x) = − (x−m)2

2σ2 − 1
2 log(2πσ2). With sufficient statistic T (x) =

(x, x2), the mean parameters are µ = E[T (X)] = (m,m2 + σ2) belonging to the
open setM = {(u, v) |u2 < v}, and the natural parameters are θ = (m

σ2 ,
−1
2σ2 ) ∈ Θ =
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Figure 5.2 – Primal and dual representations of a Gaussian N (m,σ2) MLE (blue) and
MAP (orange) (§5.4.2 with n = 3). In dual space, MAP is a scaled version of the MLE (5.11)
with expectation E[µ̂MAP

n ] =: µ̄n (light green), and MLE is unbiased E[µ̂MLE
n ] = µ∗, as

illustrated by the parallels in the grey triangle. In primal space, MAP has expectation
θ̃n (red), which intervenes in the bias-variance decomposition (5.30) from §5.5.4. The
hyperparameter of the prior θ0 controls the brown point’s location while varying n0 spans
the long edges of the triangle and the red curve. Large blurry circles in the background are
other instances of MAP and MLE revealing their distribution.

R × R−. Examples of MAP and MLE are represented in Fig. 5.2 within M and
Θ delimited in grey. Given these parameters, log-partition and entropy are, up to
constants,

A(θ) = θ2
1

−4θ2
− 1

2 log(−θ2) (5.20)

A∗(µ) = −1
2 log(µ2 − µ2

1) (5.21)

These functions are neither smooth, nor strongly convex, but they are self-
concordant, since A∗ is the logarithmic barrier of a quadratic domain (Nesterov,
2004c, p.177, example 4.1.1.4), and self-concordance is preserved by convex-
conjugacy (Nesterov and Nemirovskii, 1994) – see more details in App. 5.B. We
now discuss the general problem and some ways to solve it via direct expansions of
the Bregman divergence.

5.5 Partial Solutions

5.5.1 Asymptotic Rate

As a reference point for any finite convergence rate, it is interesting to briefly
review the classical asymptotic behavior of these quantities as n → +∞. Proofs
are in App. 5.C, and Ostrovskii and Bach (2021, §1.1) offers a more comprehensive
review.
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Statistics typically give results on θ, but the MAP (5.11) is more simply expressed
with µ, so let us focus on BA∗ . Bregman divergences are locally quadratic, as seen
via a second order Taylor expansion

BA∗(µ∗;µ) = 1
2‖µ

∗ − µ‖2
F +O(‖µ− µ∗‖3), (5.22)

where the Mahalanobis norm ‖x‖2
F = x>Fx is induced by F := ∇2A∗(µ∗), the

Hessian of the entropy at the optimum. It happens that F is also the inverse Fisher
information matrix at θ∗, since

F := ∇2A∗(µ∗) = ∇2A(θ∗)−1 = Covθ∗ [T (X)]−1 .

Plugging the MLE (5.2) or MAP (5.11) into (5.22), we get

EBA∗
(
E[T (X)]; µ̂MLE/MAP

n

)
= d

2n +O(n− 3
2 ) . (5.23)

Both MLE and MAP have the same asymptote, as the contribution of the prior
n0µ0 gets negligible for large n. This asymptote is independent of the optimum
µ∗ or F for well-specified models. Actually, d

2n is also the minimax of the KL
over all estimators, at least for categorical data (Braess and Sauer, 2004; Kamath
et al., 2015). Next, we focus on the quadratic example, whose finite sample rate
matches (5.23).

5.5.2 Quadratic Case

As another classical reference point, we consider the case A(θ) = 1
2‖θ‖

2
2. For

instance, this is the log-partition of a Gaussian with known variance I,

X = Rd, ν(dx) = exp(−‖x‖
2

2 )dx, T (x) = x.

In this case, A∗(µ) = 1
2‖µ‖

2
2 as well, and both Bregman divergences are squared `2

distances since

BA∗(µ∗;µ) = 1
2‖µ

∗ − µ‖2
2 . (5.24)

Thanks to the independence of samples, we can break down the MLE into individual
point’s contributions:

E

[
1
2

∥∥∥∥µ∗ − 1
n

∑
i Ti

∥∥∥∥2

2

]
= Var(T )

2n = d

2n. (5.25)

Adding a reference mean µ0 to get the MAP yields

E
[

1
2
∥∥µ∗ − µ̂MAP

n

∥∥2
2

]
= nVar(T ) + n2

0‖µ∗ − µ0‖2

2(n+ n0)2 . (5.26)
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We see here a variance term defining the d
2n asymptote and a bias term in O(n−2).

However, this result does not generalize well to other families unless we make
restrictive assumptions on A∗.

If A∗ is L-Lipschitz (e.g. A is defined within the `2-ball of radius L), then

BA∗(µ∗;µ) ≤ L‖µ∗ − µ‖+ ‖θ‖‖µ∗ − µ‖ (5.27)

≤ 2L‖µ∗ − µ‖ , (5.28)

so BA∗ is Lipschitz, and (5.26) yields a O( 1√
n
) rate, but no common exponential

families verify the assumption.
If A∗ is L-smooth4 (e.g. A is 1

L
-strongly convex (Kakade et al., 2009)), then

BA∗(µ∗;µ) ≤ L

2 ‖µ
∗ − µ‖2 , (5.29)

so BA∗ is upper bounded by a quadratic, and we get (5.26) as an upper bound.
It is also possible to get (more complex) upper bounds under restricted notions
of strong-convexity (Negahban et al., 2012). Besides the Gaussian with known
variance, the problem is that no standard exponential family has a globally strongly
convex log-partition function. The next section focuses on local quadratic behavior,
which is more realistic.

5.5.3 Locally Quadratic Case

From the Taylor expansion (5.22), we know that all Bregman divergences
are locally quadratic. Under some assumptions, such as self-concordance5 of A∗

(Nesterov, 2004c, Ch. 4.1), we can quantify when this quadratic behavior kicks in.
Proofs for this subsection are in App. 5.D.

Proposition 5.5.1. Let A∗ :M→ R be a self-concordant convex function, µ, µ∗ ∈
M and F = ∇A∗(µ∗). Then6

‖µ∗ − µ‖F < 0.21 =⇒ BA∗(µ∗;µ) ≤ ‖µ∗ − µ‖2
F .

To gain insights into how many samples are needed, we can estimate when
E[‖µ∗ − µ‖F ] < 0.21. For the MLE, the proof of (5.23) from (5.22) yields
E[‖µ∗ − µ̂n‖2

F ] = d
n

in general, so a sufficient condition is n ≥ 25d. For MAP,
transforming (5.26), we get the sufficient condition n ≥ 25d+5‖µ∗ − µ0‖−n0. This
means that on average, we need 25 times more samples than the dimension to reach
the quadratic regime and ensure an upper-bound like (5.26).

4A∗ is L-smooth iff ∇A∗ is L-Lipschitz.
5 In 1d, f is self-concordant iff ∀x, |f ′′′(x)| ≤ 2|f ′′(x)|

3
2 .

60.21 is a value of x such that x2 ≥ − x
1−x − log(1− x

1−x ).
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The entropy A∗ is self-concordant for several common families such as Gaussians
(§5.4.2), and all families with A ≈ − log such as exponential distributions, Laplace
with known mean, Pareto with known minimum value, or Weibull with known shape
k. The entropy is also self-concordant when T lives in a compact (Bubeck and
Eldan, 2015) – e.g., categorical and Dirichlet distributions. Precisely, categorical
variables illustrate that Proposition 5.5.1 does not imply directly a bound on the
expected Bregman. The expected KL of the categorical MLE is always infinite, as
previously mentioned in §5.3. However, Proposition 5.5.1 may be used to prove
high-probability, many samples, convergence rates for one dimensional (and possibly
multivariate) normal distributions.

This is the spirit of Ostrovskii and Bach (2021) which characterizes the number
of samples needed to be upper bounded by a quadratic with high-probability, for
any parametric models with a self-concordant log-likelihood f . Anastasiou and
Reinert (2017) obtains a similar flavor of result under other assumptions on the
third derivative of f . More closely, in the world of exponential families, Kakade
et al. (2010) prove a result similar to Proposition 5.5.1 from a local bound on
all higher-order moments of A in θ∗. However, these results are expressed with
quadratics in θ, not µ, and they do not directly translate to convergence rates for
the MAP, but they might with some more work.

More generally, the present proposition and these related works answer (?)
only partially, as they all give large sample results, that hold when n ≥ N for
some constant N . A full solution to (?) would apply to small n. Informed by the
properties that we have seen so far, we next investigate a general decomposition of
the Bregman that could guide us towards a solution.

5.5.4 Bias-Variance Decomposition

In both the quadratic (5.26) and the Gaussian variance examples (5.19), the
upper bound takes the form O( 1

n
) +O(bias

n2 ), giving us a flavor of what we would like
as a general result for exponential families: a finite sample convergence rate, with
variance and bias terms that reflect the important constants of the problem. Such
a decomposition exists for any Bregman divergence (Pfau, 2013, Theorem 0.1).

Theorem 5.5.2 (Bregman Bias-Variance Decomposition). Let θ̃n := E[θ̂n] be the
expectation of the MAP in primal space, and µ̃n = ∇A(θ̃n) be its dual representation.
The expected Bregman decomposes into

E [BA∗(µ∗; µ̂n)] = BA∗(µ∗; µ̃n) + E [BA∗(µ̃n; µ̂n)] (5.30)

We plot this decomposition for N (µ, σ2) in Fig. 5.3 , and we illustrate the primal
mean θ̃n in Fig. 5.2.

Remark: In this decomposition, the primal expectation E[θ̂n] is the reference
point. An estimator will be unbiased if θ̃n = θ∗. This is not true for the MLE,
which is unbiased w.r.t. the dual parameter E[µ̂n] = µ∗.
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Figure 5.3 – Bias-Variance Decomposition for a GaussianN (m,σ2) with µ∗ = (0, 1), µ0 =
(1, 2) and n0 = 1. The asymptote is 1

n .

We show in App. 5.E that the bias decreases like BA∗(µ∗; µ̃n) ≤ 2
n(n−2) for

Gaussian variance MLE, and BA∗(µ∗; µ̃n) ≤ ‖µ∗−µ0‖2

(1+ n
n0

)2 for a quadratic MAP. These

observations hint towards a general O(1/n2) upper bound for the bias, while the
variance may be less dependent on the initialization θ0.

In this section, we considered direct expansions of (5.14). None of them could
fully solve (?). Next, we investigate whether an optimization approach could solve
it.

5.6 An Optimization Problem

As we saw in §5.3, MAP can be interpreted as stochastic mirror descent (SMD).
This means that 1) we may obtain a convergence rate for MAP from an optimization
analysis, and 2) any insights gained from MAP may inform other designs and
analyses of SMD. In particular, we know that MAP converges asymptotically as
O(n−1), so we hope to find a convergence rate for SMD that could capture this
behavior. We first review the assumptions of relative smoothness, helpful to deal
with non-smooth functions, before investigating recent analyses of SMD with the
MAP.

5.6.1 Relative Smoothness

Mirror descent (MD) (Nemirosky and Yudin, 1983; Beck and Teboulle, 2003),
also known as Bregman (proximal) gradient, relative gradient descent or NoLips, and
SMD (Nemirovski et al., 2009; Ghadimi and Lan, 2012) are typically encountered in
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Table 5.1 – Summary of results for SMD under relative smoothness and relative strong
convexity assumptions. Each row correspond to one analysis, and each columns answers
one question. (− log) does the bound hold for the Gaussian variance example (§5.4.1)?
(γn ∼ 1

n ) does it converge with a O( 1
n ) step-size? (f) is the bound in function value, or in

reverse Bregman BA(θ∗; θ̂n)? (θ̂n) is it for the last iterate or an average ? None of these
analysis check all the boxes needed to address (?).

Boundedness − log γn ∼ 1
n

f θ̂n

Variance on Θ (5.31) 7 3 3 7

Variance at θ∗ (5.33) 7 3 7 3

Optimization gap (5.35) 3 7 7 3

non-smooth (online) optimization, under bounded (or Lipschitz) gradient assumption
on the objective f and strong convexity assumption on the potential A (Bubeck
et al., 2015, Th. 4.2(MD) & Th. 6.3(SMD)). In our case, these assumptions do not
hold. For instance A = − log is neither smooth nor strongly convex.

Recently, these assumptions have been relaxed to the α-strong convexity and
β-smoothness of f relative to a reference function A, defined as

αBA(x; y) ≤ Bf (x; y) ≤ βBA(x; y) .

When A = ‖·‖2, we recover the standard smoothness and gradient descent. These
conditions ensure the linear convergence of MD with mirror map ∇A (Birnbaum
et al., 2011; Bauschke et al., 2017; Lu et al., 2018), even when f is not smooth, and
A not strongly convex.

For exponential families, MAP perfectly fits into this framework, as

f(θ) = A(θ)− E [〈T (X), θ〉]

is 1-smooth and 1-strongly convex relative to A. Our goal is then to find an
applicable convergence rate for SMD under relative smoothness.

5.6.2 Bounding the Randomness

To analyze stochastic algorithms, one also needs to quantify the randomness
of stochastic gradients g(θ). While many assumptions exist for SGD (Khaled and
Richtárik, 2020, §3 for a modern review), only a few have been adapted to SMD with
relative smoothness (Hanzely and Richtárik, 2021; Dragomir et al., 2021; D’Orazio
et al., 2021), but they have so far been lacking concrete examples. We review these
analyses in the light of the MAP and provide a summary in Table 5.1.
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Analogs of the Variance

Let us introduce the symmetrized Bregman induced by A∗, written SA∗(µ1;µ2) =
BA∗(µ1;µ2)+BA∗(µ2;µ1). Hanzely and Richtárik (2021) assume that the expectation
of S between stochastic and deterministic updates verifies

Eg
[
SA∗(µ̂n − γg(θ̂n); µ̂n − γ∇f(θ̂n))

]
≤ γ2C (5.31)

for all possible iterates θ̂n, relevant step-sizes γ and for some constant C. When
A(θ) = 1

2‖θ‖
2, this definition recovers the variance of the stochastic gradient

Eg
[
‖∇f(θ)− g(θ)‖2] ≤ C . (5.32)

Under this assumption, Hanzely and Richtárik (2021, Lem.4.8) prove a O(1/n)
convergence rate on function values with O(1/n) step-sizes and tail averaging
(Lacoste-Julien et al., 2012) in primal space Θ.

Dragomir et al. (2021) define the assumption

Eg [BA∗(µ̂n − 2γg(θ∗), µ̂n)] ≤ 2γ2C . (5.33)

When A(θ) = 1
2‖θ‖

2, we recover the variance of the gradients at the optimum, which
is weaker than (5.32),

Eg
[
‖∇g(θ∗)‖2] ≤ C . (5.34)

Using their descent lemma (Dragomir et al., 2021, Eq. (12)) with the O(1/n) step-
size used by Gower et al. (2019, Th. 3.2) for SGD, we obtain a O(1/n) convergence

rate, on the Bregman with reversed arguments BA(θ∗; θ̂n).
These two analyses seem promising for (?), but none of these assumptions hold

in front of barrier objectives such as the − log from §5.4.1. Indeed, they both assume
their bound holds uniformly for every possible iterate θ̂n. Yet N (0, σ2) has a positive
mass around 0. This means that µ̂n can get arbitrarily close from 0, where the − log
is unbounded, along with the associated Bregman divergences (5.31) and (5.33). In
general, this uniform bound over µ̂n cannot hold for barrier objectives – functions
exploding to infinity in some finite point of space.

Both of their proofs hold if we add an expectation over µ̂n to their assumption.
However, this is not helpful, as verifying the assumption becomes as hard as the
initial problem. For instance, the expectation of (5.31) over µ̂n is an upper bound
on the variance term of (5.30) (cf App. 5.E). Confronted with this difficulty, we
investigate an alternative definition of variance.

Bounded Optimality Gap

Inspired by Loizou et al. (2021), D’Orazio et al. (2021) explore the hypothesis

min
θ
f(θ)− EX

[
min
θ
fX(θ)

]
≤ C , (5.35)
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where fX is a stochastic estimate of f = E[fX ]. In our case fX(θ) = − log p(X | θ).
In other words, this lower bounds the expectation of the minimum of the stochastic
estimates. For probabilistic models, such a bound is finite as soon as the model
cannot give infinite density to any data point x. This holds, for instance, for discrete
distributions because the probability mass is upper bounded by 1; however, it rules
out many families. In the case of normal distributions N (m,σ2), setting m = x
and σ2 → 0 gets pθ(x)→ +∞,. We have a similar behavior for gamma distribution
with α = βx and β → +∞, or with the beta distribution with α = β x

1−x and
β → +∞. Other counter-examples include inverse Gaussians, log-normal, gamma,
inverse gamma.

It is possible to overcome this limitation by treating batches of samples as
single samples by averaging sufficient statistics, e.g.,. Y = {X1, . . . , Xk} and
T (Y ) = 1

k

∑
i T (Xi). For instance, a multivariate normal of dimension d cannot

attribute infinite density to d+ 1 samples that are not in an affine subspace.
Overall, (5.35) can partially handle barrier objectives, but it fails to account

for the step-size γn = 1
n0+n , as D’Orazio et al. (2021, Thm.1) only proves linear

convergence to a variance ball of size C
α

under constant step-size. This is in contrast
with Dragomir et al. (2021) which can handle decreasing step-sizes but not barrier
objectives. Proving convergence of stochastic mirror descent on barrier loss remains
an open problem.

5.7 Conclusion

Despite the MLE and MAP estimators in the exponential family being classical
and known in statistics for decades, we highlighted in this paper open problems
to bound their frequentist risk (the expected KL) in a non-asymptotic way. We
reviewed some partial results, such as a large sample analysis that describes how
many samples are needed to ensure a locally quadratic regime (Kakade et al., 2010;
Ostrovskii and Bach, 2021) for which rates are known. We also related this problem
to the one of obtaining convergence rates in stochastic optimization, observing
that MAP fits the framework of stochastic mirror descent with relative smoothness
assumptions. Nevertheless, none of the current analyses of SMD hold for the MAP,
even on a simple family such as N (0, σ2), thus revealing an area for progress in
non-Euclidean optimization. In writing this paper, we hope to attract attention to
this fundamental problem, leading to progress in both optimization and statistics.
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5.A Proofs for Gaussian Variance

In this section, we prove the results mentioned in §5.4.1, and add some context
and experimental observations. As mentioned in the main text, the centered gaussian
N (0, σ2) has sufficient statistic T (X) = X2 which follows a gamma distribution
Γ(1

2 ,
1

2σ2 ).
In general, if X is part of the exponential family, then T (X) is part of the

natural exponential family with the appropriate support and base measure, with
the same log-partition function as X up to constants. MLE and MAP only depend
on T (X), not X, so their performance only depends on the distribution of T (X).

In this section we derive results for samples from a general gamma distribution
X ∼ Γ(α, β) with known shape parameter α, but unknown rate parameter β.
Results for the Gaussian follow by taking α = 1

2 , We also immediately get results
for exponential distributions by taking α = 1. For instance for the MLE we derive
the following theorem:

Theorem 5.A.1 (MLE Upper Bound). Consider an exponential family such that
T (X) is a gamma Γ(α, β) with known shape α. the expected KL between µ∗ and the
MLE µ̂n is infinite when αn ≤ 1 and otherwise upper bounded by

E [BA∗(µ∗; µ̂n)] ≤ 1
2n + 1

n(nα− 1) . (5.36)

To obtain the result for Gaussian variance (see Theorem 5.4.1), it suffices to set
α = 1

2 in Theorem 5.A.1.
In this section, we review useful properties of the gamma distribution and

associated Bregman divergence in §5.A.1. Then we prove theorem 5.A.1 in §5.A.2.
Then we prove an extension of theorem 5.4.1 in §5.A.3, and prove a useful lemma
about the expectation of the natural parameter of the MAP in §5.A.4, in order to
prove upper bounds for the MAP in §5.A.5. Finally we numerically investigate the
effect of prior hyper-parameters in §5.A.6.

5.A.1 Gamma Distribution

The density of Γ(α, β) reads

p(x) = βα

Γ(α)x
α−1e−βx . (5.37)

When α is known, it can be cast as an exponential family (5.5) with sufficient
statistic T (x) = x, domain X = R+ and base measure ν(x) ∝ xα−1. Then the
natural parameter is θ = −β < 0 and the log-partition function is

A(θ) = −α log(−θ) + log Γ(α) . (5.38)
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From there we find that the mean parameter is µ = α
−θ > 0 and the entropy has

the same form as the log-partition A∗(µ) = −α log(µ) + cst. This means that the
primal and dual Bregman divergences have the same form as well

BA∗(µ∗;µn) = α

(
µ∗
µn
− 1− log µ∗

µn

)
= αφ(µ∗

µn
), (5.39)

BA(θn; θ∗) = α

(
θn
θ∗
− 1− log θn

θ∗

)
= αφ(θn

θ∗
), (5.40)

Figure 5.4 – Illustration of
φ(z) (orange) and its upper
bound φ(z) + φ(z−1) (grey).
They both are barriers near
0.

where these 2 lines are equal, and φ measures the discrep-
ancy between the ratio θn

θ∗
= µ∗

µn
and 1 via the function

φ(z) := z − 1− log(z), (5.41)

illustrated in orange in Figure 5.4. To derive the upper
bound for the MAP, due to the difficulty of finding a
closed form for the expectation of the logarithm, we focus
on the symmetrized Bregman instead

SA∗(µ∗, µn) := BA∗(µ∗;µn) + BA∗(µn;µ∗) (5.42)

= αφ(µ∗
µn

) + αφ(µn
µ∗

) (5.43)

= α(µ∗
µn
− 1 + µn

µ∗
− 1) , (5.44)

which verifies BA∗(µ∗;µn) ≤ SA∗(µ∗, µn). Writing z = µ∗
µn

this is equivalent to

φ(z) ≤ φ(z) + φ(z−1) = z − 1 + 1
z
− 1 = (z − 1)2

z
,

which is illustrated by the grey upper bound in Figure 5.4.

5.A.2 Proof for the MLE

Proof. Since T (X) follows a gamma distribution Γ(α, β), the MLE is a scaled sum
of gammas µ̂n = 1

n

∑
i T (Xi). As such it is also a gamma with parameter Γ(nα, nβ)

and expectation nα
nβ

= α
β

= µ∗. If we consider the ratio µ̂n
µ∗

, it is also a gamma

with parameter Γ(nα, nα). Its inverse follows an inverse gamma distribution with
expectation

E
[
µ∗
µ̂n

]
=
{

nα
nα−1 if nα > 1,
+∞ otherwise.

(5.45)

which implies that for nα > 1,

E
[
µ∗
µ̂n

]
− 1 = nα

nα− 1 − 1 = 1
nα− 1 (5.46)
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There is also a closed form solution for the expected logarithm of a gamma. Indeed,
the sufficient statistic of a gamma is (X, log(X)), so one can apply formula (5.7) on
the log-partition of a gamma to get

E
[
log µ̂n

µ∗

]
= ψ(nα)− log(nα), (5.47)

where ψ is the digamma function. Consequently the suboptimality of the MLE has
a closed form solution

E [BA∗(µ∗; µ̂n)] = αE
[
µ∗
µ̂n
− 1 + log

(
µ̂n
µ∗

)]
, (5.48)

=
{
α( 1

nα−1 + ψ(nα)− log(nα)), if nα > 1,
+∞ otherwise.

(5.49)

Surprisingly, for a gaussian variance where α = 1
2 , we need 3 samples or more for

the expected loss to be bounded. When the expectation is finite, we can get a more
interpretable formula using known bounds on the digamma function,

−1
x
≤ ψ(x)− log(x) ≤ − 1

2x = −1
x

+ 1
2x , (5.50)

giving, for nα > 1,

α

nα− 1 −
α

nα
≤ E [BA∗(µ∗; µ̂n)] ≤ α

nα− 1 −
α

nα
+ α

2nα (5.51)

⇐⇒ 1
n(nα− 1) ≤ E [BA∗(µ∗; µ̂n)] ≤ 1

2n + 1
n(nα− 1) , (5.52)

so we get a Ω(n−2) lower bound and a O(n−1) +O(n−2) upper bound.

5.A.3 Multivariate MLE

For the sake of simplicity, in higher dimension we focus on Gaussian covariance
estimation and avoid the general Wishart discussion. In higher dimensions, X ∼
N (0, µ∗), X ∈ Rd, T (X) = XX>, and the mean parameter µ∗ is a d× d symmetric,

positive definite covariance matrix with p = d(d+1)
2 degrees of freedom. Note that

here d denotes the dimensionality of the data X, rather than the dimensionality of
the parameters µ∗.

Theorem 5.A.2 (Multivariate MLE Upper Bound). The MLE of the covariance

matrix of Xi ∼ N (0, µ∗) is µ̂n = 1
n

∑
iXiX

>
i ∈ Rd×d with p = d(d+1)

2 degrees of
freedom. The expected KL divergence between µ∗ and µ̂n is infinite when n ≤ d+ 1
and otherwise upper bounded by

E
[
BA∗(µ∗; µ̂MLE(d)

n )
]
≤ p

2n + p(d+ 2)
n(n− d− 1) ,∀n > d+ 1 . (5.53)
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We see from (5.23) that this bound is asymptotically tight.

Proof. The entropy of X is a negative log-determinant A∗(µ) = − log det(µ), whose
gradient is the negative matrix inverse ∇A∗(µ) = −µ−1. The associated Bregman
divergence is

BA∗(µ∗; µ̂n) = 1
2(Tr(µ∗µ̂−1

n )− d− log det(µ∗µ̂−1
n )) . (5.54)

Thanks to the linearity of the trace, the expectation becomes

E [BA∗(µ∗; µ̂n)] = 1
2(Tr(E

[
µ∗µ̂

−1
n

]
)− d+ E

[
log det(µ̂nµ−1

∗ ))
]
) . (5.55)

When the estimator is the MLE, µ̂n = 1
n

∑
iXiX

>
i , then we define the mean

parameter “ratio” as

V := nµ
− 1

2
∗ µ̂nµ

− 1
2
∗ =

∑
i

(µ−
1
2
∗ Xi)(µ

− 1
2
∗ Xi)>,

such that Tr(µ∗µ̂−1
n ) = nTr(V −1). But µ

− 1
2
∗ Xi ∼ N (0, I), so that V is sampled

from a Wishart W(I, n), where I stands for the identity matrix of order d. Recall
that E[V ] = nI. Thanks to log det being a sufficient statistic of the Wishart, and
the natural to mean parameter formula (5.7), we have a closed form for the expected
log-determinant of a Wishart

E[log detV ] = ψd(
n

2 ) + d log 2 ,

where ψd(n2 ) =
∑d−1

i=0 ψ(n−i2 ) is the multivariate digamma function. The expectation
of an inverse Wishart is straightforward to compute from the density and the
log-partition function

E[V −1] =
{

+∞ if n ≤ d+ 1
I

n−d−1 otherwise,
(5.56)

which proves the infinite part of the statement. Consider now the case n > d+ 1.
Using

Tr(E
[
µ∗µ̂

−1
n

]
)− d = nTr(E[V −1])− d = nd

n− d− 1 − d = d(d+ 1)
n− d− 1 = 2p

n− d− 1 ,
(5.57)

and putting it all together, we get the following closed form for the expectation of
the divergence

E
[
BA∗(µ∗; µ̂MLE(d)

n )
]

= p

n− d− 1 + 1
2

(
ψd(

n

2 )− d log(n2 )
)
. (5.58)
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To bound ψd, we can use the same bound as in the univariate case, ψ(x) ≤ log(x)− 1
2x ,

to get

ψd(
n

2 )− d log(n2 ) =
d−1∑
i=0

(ψ(n− i2 )− log(n2 )) (5.59)

≤
d−1∑
i=0

(log(n− i2 )− 1
n− i

− log(n2 )) (5.60)

=
d−1∑
i=0

(log(1− i

n
)− 1

n− i
) . (5.61)

We can bound sum of reciprocals
∑d−1

i=0
1
n−i by the typical bound on the harmonic

sum Hn =
∑n

k=1
1
k
,

1
2n+ 1 ≤ Hn − log(n)− γ ≤ 1

2n− 1 ,

where γ is the Euler constant. Then

−
d−1∑
i=0

1
n− i

= Hn−d −Hn ≤ log(n− d) + γ + 1
2(n− d)− 1 − log(n)− γ − 1

2n+ 1
(5.62)

= log(1− d

n
) + 2(d+ 1)

(2n+ 1)(2(n− d)− 1) (5.63)

< log(1− d

n
) + d+ 1

2n(n− d− 1) . (5.64)

Plugging this back into (5.61) yields

ψd(
n

2 )− d log(n2 ) ≤
d∑
i=0

log(1− i

n
) + d+ 1

2n(n− d− 1) , (5.65)

where the sum now goes up to d. To bound the remaining sum, we use log(1+x) ≤ x
(for x > −1) to get

d∑
i=0

log(1− i

n
) ≤

d∑
i=0

− i
n

= −d(d+ 1)
2n = −p

n
. (5.66)
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Putting those bounds together in Eq. (5.58) and reorganizing yields

E
[
BA∗(µ∗; µ̂MLE(d)

n )
]
< p( 1

n− d− 1 −
1

2n) + d+ 1
4n(n− d− 1) (5.67)

= p
n+ d+ 1

2n(n− d− 1) + d(d+ 1)/2
2dn(n− d− 1) (5.68)

= p
n− d− 1

2n(n− d− 1) + p
2(d+ 1)

2n(n− d− 1) + p

2dn(n− d− 1)
(5.69)

= p

2n +
p(d+ 1 + 1

2d)
n(n− d− 1) (5.70)

≤ p

2n + p(d+ 2)
n(n− d− 1) ,∀n > d+ 1 . (5.71)

where p = d(d+1)
2 and the last inequality used 1

2d ≤ 1.

5.A.4 Bounding the Expected Natural Parameter for the
MAP

Before proving a convergence rate for the MAP, we need to bound the expectation
of its inverse, hence the following lemma. We introduce the notation (z)+ =
max(0, z).

Lemma 5.A.3 (Expected MAP natural parameter). Define the variable a = n0
µ0
µ∗

,
which characterizes the importance of the prior relative to the true parameters. The
expectation of the natural parameter of a MAP of Γ(α, β) is bounded by

n0 + n

a+ n
= µ∗

µn
≤ E

[
µ∗

µ̂n

]
= E

[
θ̂n
θ∗

]
≤ n0 + n

a+ (n− 1
α

)+
, ∀n ≥ 0 . (5.72)

Proof. The lower bound can be readily obtained by applying Jensen’s inequality to
the convex function x 7→ 1

x
for x > 0. The upper bound requires more work. To

start, let us plug in the definition of µ̂n

E
[
µ∗

µ̂n

]
= E

[
θ̂n
θ∗

]
= E

[
(n0 + n)µ∗
n0µ0 +

∑
iXi

]
= E

[
n0 + n

n0
µ0
µ∗

+
∑

i
Xi
µ∗

]
= E

[
n0 + n

a+ Γ(nα, α)

]
,

(5.73)

where
∑

i
X2
i

µ∗
∼ Γ(nα, α) is a gamma random variable and a = n0

µ0
µ∗

. Further note
that

E
[

n0 + n

a+ Γ(nα, α)

]
= n0 + n

a
E
[

1
1 + Γ(nα, aα)

]
. (5.74)
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This kind of integrals can be expressed with generalized exponential integral functions

Ek(z) =
∫ ∞

1

e−zt

tk
dt , (5.75)

with the formula (Olver et al., 2021, Eq. 8.19.4)

E
[

1
1 + Γ(α, β)

]
= βα

Γ(α)

∫ ∞
0

xα−1e−βx

1 + x
dx = βeβEα(β) . (5.76)

Overall we get

E
[
µ∗

µ̂n

]
= (n0 + n)αeaαEnα(aα) (5.77)

Now our goal is to bound this generalized exponential integral with simpler functions.
Fortunately, mathematicians have been working on these integrals for decades. For
instance , we have the general bound (Olver et al., 2021, Eq. 8.19.21)

exEk(x) ≤ 1
x+ k − 1 , ∀k > 1 (5.78)

⇐⇒ E
[
µ∗

µ̂n

]
≤ (n0 + n)α
aα + nα− 1 = n0 + n

a+ n− 1
α

, ∀n > 1
α
. (5.79)

We are left with a special case when n ≤ α. Then we can use the trivial bound

E
[

1
a+X2

]
<

1
a
. (5.80)

to conclude the proof.

When n < 1
α

, it is possible to get a much tighter bound by exploiting the
recurrence relationship (Olver et al., 2021, Eq. 8.19.12)

αEα+1(β) + βEα(β) = e−β (5.81)

and combining it with the inequality (Olver et al., 2021, Eq. 8.19.21) to get

βeβEα(β) = 1− αeβEα+1(β) ≤ 1− α

α + 1 + β
= β + 1
α + β + 1 . (5.82)

Plugging this inequality back into (5.76), we get the following upper bound for the
MAP:

E
[
µ∗

µ̂n

]
≤ n0 + n

a

aα + 1
nα + aα + 1 = n0 + n

a+ n+ 1
α

(1 + 1
aα

) . (5.83)

Unfortunately, this formula does not yield an elegant convergence rate, so we keep
it out of the lemma.
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5.A.5 Proof of MAP Bound

We did not find a closed form or an upper bound for the expected logarithm

of the MAP E
[
log µ̂n

µ∗

]
. Consequently, we derived a bound for the symmetrized

Bregman (5.44) instead. This bound is asymptotically tight for the Bregman, up to
a factor 2.

There are several ways to write down the convergence rate. The Gaussian
variance example can be written in a particularly simple form, so we give it a special
treatment in §5.A.5, corresponding to the theorem displayed in the main text. We
make a more general statement about gamma distributions in §5.A.5.

Gaussian Variance

Theorem 5.A.4 (MAP Bound). The expected symmetrized Bregman (5.44) of the
MAP of N (0, µ∗) with prior hyper-parameters (n0, µ0) is upper bounded as

E
[
SA∗(µ∗; µ̂MAP

n )
]
≤


SA∗(µ∗;µ0) if n = 0,

1
2(n0+1) + b1 if n = 1,

1
n0

µ0
µ∗+n−2 + bn if n ≥ 2,

where bn =
(1 + 1

n0
− µ0

µ∗
)2

2(µ0
µ∗

+ (n−2)+
n0

)(1 + n
n0

)
∈ O(n

2
0
n2 ) .

(5.84)

Proof. When n = 0, the inequality is an equality. For n > 0, we expand the
symmetrized Bregman (5.44) with α = 1

2 to get

E [SA∗(µ∗; µ̂n)] ≤ 1
2(E

[
µ∗

µ̂n

]
− 1 + E

[
µ̂n
µ∗

]
− 1) . (5.85)

The expectation of µ̂n is straightforward

E
[
µ̂n
µ∗

]
− 1 = n0µ0 + nµ∗

(n0 + n)µ∗ − 1 = a+ n

n0 + n
− 1 = a− n0

n0 + n
where a := n0

µ0

µ∗
.

(5.86)

There remains the more problematic term with the expectation of the inverse mean
parameter, for which we use the bound derived in Lemma 5.A.3.

When n ≥ 2, we get

E
[
µ∗

µ̂n

]
− 1 ≤ n0 + n

a+ n− 2 − 1 = n0 − a+ 2
a+ n− 2 = 2

a+ n− 2 + n0 − a
a+ n− 2 (5.87)
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so putting it all together we get

E [BA∗(µ∗; µ̂n)] ≤ 1
a+ n− 2 + n0 − a

2

(
1

a+ n− 2 −
1

n0 + n

)
(5.88)

= 1
a+ n− 2 + (n0 − a+ 1)− 1

2
(n0 − a+ 1) + 1

(a+ n− 2)(n0 + n) (5.89)

= 1
a+ n− 2 + (n0 − a+ 1)2 − 1

2(a+ n− 2)(n0 + n) (5.90)

≤ 1
a+ n− 2 + (n0 − a+ 1)2

2(a+ n− 2)(n0 + n) (5.91)

= 1
a+ n− 2 +

(1 + 1
n0
− µ0

µ∗
)2

2(µ0
µ∗

+ n−2
n0

)(1 + n
n0

)
. (5.92)

When n = 1 the bound (5.72) on the expected natural parameter gives

E
[
µ∗

µ̂n

]
− 1 ≤ n0 + 1

a
− 1 = n0 + 1− a

a
(5.93)

so putting it all together we get

2E [BA∗(µ∗; µ̂1)] ≤ a− n0 ± 1
n0 + 1 + n0 + 1− a

a
(5.94)

= 1
n0 + 1 + (a− n0 − 1)( 1

n0 + 1 −
1
a

) (5.95)

= 1
n0 + 1 + (n0 + 1− a)2

a(n0 + 1) (5.96)

= 1
n0 + 1 +

(1 + 1
n0
− µ0

µ∗
)2

µ0
µ∗

(1 + 1
n0

)
(5.97)

so we recover the same bias term as when n ≥ 2.

Gamma with Known Shape

Theorem 5.A.5 (MAP Bound). Consider an exponential distribution with sufficient
statistics coming from a gamma distribution Γ(α, β∗) with mean parameter µ∗ = α

β∗
.

The expected symmetrized Bregman (5.44) of the MAP with prior hyper-parameters
(n0, µ0) is upper bounded as

∀n ≥ 1
α
, E [SA∗(µ∗, µ̂n)] ≤ 1

n0 + n
+

α(µ0
µ∗
− 1

αn0
− 1)2

(1 + n
n0

)(µ0
µ∗

+ n− 1
α

n0
)

(5.98)
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Note that the second term vanishes when µ0 = µ∗(1 + 1
αn0

). Expressions for
nα < 1 are less elegant as shown below:

E [SA∗(µ∗, µ̂n)] ≤ n0 + n

a+ n+ 1
α

(1 + 1
aα

)− 1 + a− n0

n0 + n
where a := n0

µ0

µ∗
. (5.99)

Proof. We expand the symmetrized Bregman (5.44) to get

E [SA∗(µ∗; µ̂n)] ≤ α(E
[
µ∗

µ̂n

]
− 1 + E

[
µ̂n
µ∗

]
− 1) . (5.100)

The expectation of µ̂n is straightforward

E
[
µ̂n
µ∗

]
− 1 = n0µ0 + nµ∗

(n0 + n)µ∗ − 1 = a+ n

n0 + n
− 1 = a− n0

n0 + n
where a := n0

µ0

µ∗
.

(5.101)

There remains the more problematic term with the expectation of the inverse mean
parameter, for which we use the bound derived in Lemma 5.A.3 when nα ≥ 1

E
[
µ∗

µ̂n

]
− 1 ≤ n0 + n

a+ n− 1
α

− 1 =
n0 − a+ 1

α

a+ n− 1
α

(5.102)

so putting it all together we get

E [BA∗(µ∗; µ̂n)] ≤ α(
n0 − a+ 1

α

a+ n− 1
α

+
a− n0 ± 1

α

n0 + n
) (5.103)

= α(n0 + 1
α
− a)

(
1

a+ n− 1
α

− 1
n0 + n

)
+ 1
n0 + n

(5.104)

= 1
n0 + n

+ α
(n0 + 1

α
− a)2

(n0 + n)(a+ n− 1
α

)
(5.105)

= 1
n0 + n

+ α
(1 + 1

αn0
− µ0

µ∗
)2

(1 + n
n0

)(µ0
µ∗
− 1

αn0
+ n

n0
)
. (5.106)

5.A.6 On the Choice of a Prior

The optimal µ0 is larger than µ∗ for small n0 and small n. Indeed, the upper
bound (5.19) has a bias term that is 0 when mu0

µ∗
= 1 + 1

n0
, e.g. for large values of

n0, it is µ0 = µ∗ is the best prior, but for small n0, one better sets larger values for
µ0. In Figure 5.5, we observe this behavior numerically.
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Figure 5.5 – On the optimal priors (n0, µ0). Contours of E
[
DKL(θ∗, θ̂n)

]
for the

Gaussian variance with n ∈ {1, 5, 10}, µ∗ = 1 and n0, µ0 spanning [10−2, 102]. The
expectation was estimated with 104 draws for each value of n0, µ0 We observe that the line
µ0
µ∗ = 1 + 1

n0
coincides with the bottom valley of this landscape.

5.B Complements on Gaussians

In this section, we prove that for a Gaussian, the entropy and log-partition
functions are self-concordant. We also provide complementary illustrations of these
functions in Fig. 5.6, their gradients (e.g. the mirror maps) in Fig. 5.7, and paths
taken by MLE and MAP in Fig. 5.8 .

The Gaussian log-partition function and entropy are, up to constants,

A(θ) = θ2
1

−4θ2
− 1

2 log(−θ2) (5.107)

A∗(µ) = −1
2 log(µ2 − µ2

1) , (5.108)

where θ1 ∈ R, θ2 < 0 and µ1 ∈ R, µ2 > µ2
1. We provide definitions of self-concordance

in Section 5.D.

Figure 5.6 – (left) Contours of the log-partition function (5.107). (right) Contours of
the entropy (5.108).
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Figure 5.7 – Visualizations of the Gaussian mirror-map. (top) Grid deformation
produce by ∇A(θ). (bottom) Grid deformation produced by ∇A∗(µ).

Entropy is Self-Concordant. Nesterov (2004c, Example 4.1.1.4, p.177) proves
that logarithmic barriers for second order regions are self-concordant, that is func-
tions of the form

f(θ) = − log(α + 〈a, θ〉 − 1
2〈Aθ, θ〉) on

{
θ ∈ Rn |α + 〈a, θ〉 − 1

2〈Aθ, θ〉 > 0
}
.

(5.109)

The entropy (5.108) fits into this definition with A =
(

2 0
0 0

)
and a = (0 1)>.

Log-partition is Self-Concordant. As proved in Nesterov and Nemirovskii
(1994), self-concordance is preserved by Fenchel conjugacy. Since A∗ is self-
concordant, A is as well. For a more accessible reference, see also Sun and Tran-Dinh
(2019, Prop. 6).
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Figure 5.8 – Paths taken by MLE (blue) and MAP (orange) on top of contours for
DKL(θ∗||θ). We set µ∗ = (0, 1), µ0 = (1, 2), and n0 = 4, and n varies from 1 to 20. In green,
red and purple, we represent the paths respectively taken by the MAP dual expectation
(θ̄n, µ̄n), MAP primal expectation (θ̃n, µ̃n), and MLE primal expectation. Recall that the
MLE dual expectation is µ∗ itself.

5.C Asymptotic Derivation

In this section we fill-in the lines of §5.5.1 to prove Equation (5.23). Approxi-
mating A∗ with a second order Taylor expansion yields

BA∗(µ∗;µ) = 1
2‖µ− µ

∗‖2
F +O(‖µ− µ∗‖3),

where the norm is induced by the matrix

F := ∇2A∗(µ∗) = ∇2A(θ∗)−1 = Covθ∗(T )−1,

where the second equality is a general property of convex conjugates. Plugging the
MLE (5.2) into this quadratic and expanding it yields

E
1
2

∥∥∥∥∥ 1
n

∑
i

Ti − µ∗
∥∥∥∥∥

2

F

= 1
2n2

∑
i

E‖Ti − µ∗‖2
F + 1

2n2

∑
i 6=j

E [Ti − µ∗]> F
0︷ ︸︸ ︷

E [Tj − µ∗]

= 1
2n E‖T1 − µ∗‖2

F

= 1
2n Tr(F E

[
(T1 − µ∗)(T1 − µ∗)>

]
)

= 1
2n Tr(F Covθ∗(T )) = d

2n,

where on the first line we used independence of samples, on the second line we used
the fact that samples are identically distributed, and on the third line we used the
trace trick along with the linearity of the trace Tr. On the way, this also proves
that for the MLE ‖µ− µ∗‖3 ∈ O(n− 3

2 ). This yield the final rate for the MLE

EBA∗(E[T (X)]; 1
n

∑
i

Ti) = d

2n +O(n− 3
2 ) . (5.110)
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For the MAP (5.11), the quadratic decomposes into bias and variance:

E
1
2

∥∥∥∥µ∗ − n0µ0 +
∑

i T (xi)
n0 + n

∥∥∥∥2

F

= nd

2(n+ n0)2 + n2
0

(n+ n0)2
1
2‖µ

∗ − µ0‖2
F (5.111)

= d

2n +O

(
1 + ‖µ∗ − µ0‖2

F

n2

)
. (5.112)

This O(n−2) term is dominated by the O(n− 3
2 ) term from the quadratic approxima-

tion of the Bregman, yielding the same first order rate as for the MLE

EBA∗(E[T (X)]; n0µ0 +
∑

i T (xi)
n0 + n

) = d

2n +O(n− 3
2 ) . (5.113)

5.D Self-Concordance

In this section, we define self-concordance and we prove Proposition 5.5.1.

Definition 5.D.1 (Self-concordance). A convex function is F : Rp → R is self-
concordant if it is differentiable 3 times and if for all w, v ∈ Rp the function
g(t) = F (w + tv) satisfies for all feasible t

|g′′′(t)| ≤ 2g′′(t) 3
2 . (5.114)

Clarification: In the main text in Section 5.5.3, we claimed that the Fenchel
conjugate of a 1-dimensional function is also self-concordant. Actually, this is also
true in higher dimensions, as proved by Nesterov and Nemirovskii (1994). See Sun
and Tran-Dinh (2019, Prop. 6) for a more accessible reference.

5.D.1 Properties of Self-concordant functions

We quickly review some important properties of self-concordant functions, in-
troduced in (Nesterov, 2004c). We start with a some notation. Let A∗ be a
self-concordant function. Then, we write

• the local norm ‖ · ‖x =
√
〈∇2A∗(x)·, ·〉

• the distance function ω(t) = t − ln(1 + t), t ≥ 0, and its dual ω∗(t) =
−t− ln(1− t) defined for t ∈ [0, 1].

Note that ω∗(t) is positive, convex and monotonically increasing for t ∈ [0, 1].
We now present two important results. The first one shows how to convert the

local norm ‖y − x‖y using ‖y − x‖x.
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Figure 5.9 – (left) Graph of the distance function ω and its dual ω∗. (right) Graph of
the dual of distance function ω∗ evaluated at t

1−t , compared with t2. The two curves cross
each other at t ≈ 0.21.

Proposition 5.D.2. (Conversion of norms, (Nesterov, 2004c, Theorem 4.1.5))
For any x, y ∈ DomA∗, if ‖y − x‖x < 1, then

‖y − x‖y ≤
‖y − x‖x

1− ‖y − x‖x
.

The next result shows that, if y is sufficiently close to x, then we can bound the
Bregman divergence of A∗ using the distance function ω∗ and local norms.

Proposition 5.D.3. (Upper bound of self-concordant functions (Nesterov, 2004c,
Theorem 4.1.8)) For any x, y ∈ DomA∗, if ‖y − x‖x < 1, then

BA∗(y, x) ≤ ω∗(‖y − x‖x).

We are now ready to prove Proposition 5.5.1.

5.D.2 Proof of Proposition 5.5.1.

We start with Proposition 5.D.3, evaluated at y = µ∗ and x = µ:

BA∗(µ∗, µ) ≤ ω∗(‖µ∗ − µ‖µ).

This hold if ‖µ∗ − µ‖µ < 1. Since ω∗ is monotonically increasing, we can replace
‖µ∗ − µ‖µ by its upper bound from Proposition 5.D.2,

ω∗(‖µ∗ − µ‖µ) ≤ ω∗
(
‖µ∗ − µ‖µ∗

1− ‖µ∗ − µ‖µ∗

)
,

under the conditions that ‖µ∗ − µ‖µ∗ < 1 (to satisfy the assumption of Proposi-

tion 5.D.2) and
‖µ∗−µ‖µ∗

1−‖µ∗−µ‖µ∗
< 1 (to ensure that ‖µ∗−µ‖µ < 1). Those two conditions

holds if ‖µ∗ − µ‖µ∗ < 0.5. Now, we use the bound (see figure 5.9)

ω∗
(

t

1− t

)
≤ t2, 0 ≤ t ≤ 0.21,
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and replace t by ‖µ∗ − µ‖µ∗ . This finally gives the sequence of inequalities

BA∗(µ∗, µ) ≤ ω∗(‖µ∗ − µ‖µ) ≤ ω∗
(
‖µ∗ − µ‖µ∗

1− ‖µ∗ − µ‖µ∗

)
≤ ‖µ∗ − µ‖2

µ∗ ,

that holds while ‖µ∗ − µ‖µ∗ < 0.21, which is the desired result.

5.E Bias-Variance

In this section, we start from the notions of bias and variance introduced in
Eq. (5.30). First, we prove that the bias of the MLE of a Gaussian variance
decreases in O( 1

n2 ). Then we prove that assuming (5.31) holds, whether uniformly
or in expectation, yields a convergence rate on the variance term.

5.E.1 Bias of a Gaussian Variance MLE

For a Gaussian variance model, the MLE follows a scaled χ2(n) distribution.
This means that

µ∗

µ̃n
= θ̃n
θ∗

= E

[
θ̂n
θ∗

]
= E

[
µ∗

µ̂n

]
= E

[
n

χ2(n)

]
= n

n− 2 . (5.115)

Consequently,

BA∗(µ∗, µ̃n) = 1
2( n

n− 2 − 1 + log n− 2
n

) (5.116)

= 1
n− 2 + 1

2 log(1− 2
n

) (5.117)

≤ 1
n− 2 −

1
n

= 2
n(n− 2) , (5.118)

so the bias of the MLE of a Gaussian Variance decreases like O( 1
n2 ).

5.E.2 Expectation of SMD’s Variance Assumption

The first step is to notice the symmetrized Bregman can be expressed as an
inner product between primal and dual parameters

SA∗(µ, µ̄) = 〈∇A∗(µ)−∇A∗(µ̄), µ− µ̄〉 = 〈θ − θ̄, µ− µ̄〉 . (5.119)

Now notice that (5.31) features µ := µ̂n+1 = µ̂n−γg(θ̂n) stochastic and µ̄ := µ̄n+1 =
µ̂n − γ∇f(θ̂n) deterministic such that Eg[µ] = µ̄. For such a pair of variables, the
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expectation of the symmetrized Bregman corresponds to a covariance between
primal and dual parameters

E [SA∗(µ,E[µ])] = E [〈θ, µ− E[µ]〉] = E [〈θ, µ〉]− 〈E [θ] ,E [µ]〉︸ ︷︷ ︸
Cov(θ,µ)

= E [〈θ − E[θ], µ〉] = E [SA(θ,E[θ])] .

(5.120)

The last equality holds by symmetry between the roles of A and A∗. Note that the
middle covariance formulation is actually the one used by Hanzely and Richtárik
(2021). Now, Eq. (5.30) defines the variance as

E1:n [BA∗(µ̃n, µ̂n)] = E1:n

[
BA(θ̂n,E1:n[θ̂n])

]
≤ E1:n

[
SA(θ̂n,E1:n[θ̂n])

]
= E1:n [SA∗(µ̂n,E1:n[µ̂n])] ,

(5.121)

where expectations E1:n are on all samples X1, . . . , Xn, whereas (5.31) is written
with

En [SA∗(µ̂n,En[µ̂n])] ≤ γ2C , (5.122)

where the expectation En is taken over only the last sample Xn, and the bound
should hold uniformly over all µ̂n−1. Taking the expectation over µ̂n−1 instead gives

E1:n [SA∗(µ̂n,En[µ̂n])] ≤ γ2C . (5.123)

The only difference with the right hand side of Eq. (5.121) is in the inner expectation.

To overcome this difference, we need to plug in the form of µ̂n = n0µ0+
∑
i Ti

n0+n . Notice
that

µ̂n − En[µ̂n] = Tn − µ∗

n0 + n
(5.124)

=⇒ E1:n [SA∗(µ̂n,En[µ̂n])] = 1
n0 + n

E1:n

[
〈θ̂n, T1 − µ∗〉

]
, (5.125)

while

µ̂n − E1:n[µ̂n] =
∑

i(Ti − µ∗)
n0 + n

(5.126)

=⇒ E1:n [SA∗(µ̂n,E1:n[µ̂n])] = n

n0 + n
E1:n

[
〈θ̂n, T1 − µ∗〉

]
. (5.127)

In the end, we get that the variance is dominated by n times the expectation of
Eq. (5.31):

E1:n [BA∗(µ̃n, µ̂n)] ≤ nE1:n [SA∗(µ̂n,En[µ̂n])] . (5.128)

If assumption (5.31) holds, then we have

E1:n [BA∗(µ̃n, µ̂n)] ≤ nγ2
nC ∈ O( 1

n
) , (5.129)

where we assumed γn ∈ O( 1
n
). In conclusion, assuming (5.31) holds uniformly or in

expectation immediately implies a O( 1
n
) convergence rate on the variance.
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5.F Review of SMD

We use this section to give more details on the (stochastic) mirror descent
algorithm. We start with gradient descent with step-sizes γ. the update θn+1 =
θn−γ∇f(θn) can be viewed as the minimization of the linear approximation of f at
θn f(θ) ≈ f(θn) + 〈∇f(θn), θ− θn〉, alongside with quadratic penalty scaled by 1/γ:

θn+1 = arg min
θ
f(θn) + 〈∇f(θn), θ − θn〉+ 1

γ

1
2‖θ − θn‖

2. (5.130)

Mirror descent generalizes the above, using the Bregman divergence induced by a
(Legendre) function A instead of the Euclidean norm as follow,

θn+1 = arg min
θ
f(θn) + 〈∇f(θn), θ − θn〉+ 1

γ
BA(θ, θn). (5.131)

Mirror descent coincides with gradient descent if A(θ) = 1
2‖θ‖

2. As Eq. (5.131) is
convex, the minimum is at a stationary point, found by taking the derivative and
setting to 0, leading to the update θn+1 satisfying

∇f(θn) + 1
γ

(∇A(θn+1)−∇A(θn)) = 0 =⇒ ∇A(θn+1) = ∇A(θn)− γ∇f(θn).

(5.132)

Expressed with the dual parameters, we obtain µn = ∇A(θn), µn+1 = µn−γ∇f(θn).
In our case, where the objective function is the (negative) log-likelihood of an

exponential family, we have

f(θ) = A(θ)− 〈 1
n

n∑
i=1

T (Xi), θ〉. (5.133)

Using Mirror descent with a step-size of 1 and the log-partition function A as the
reference function gives

µn+1 = µn −∇f(θn) = µn − (∇A(θn)− 1
n

n∑
i=1

T (xi)) = 1
n

n∑
i=1

T (xi). (5.134)

In a stochastic, online version where the linearization of the objective is obtained
from iid samples, a decreasing step-size of γn = 1/n recovers the “online” estimate of
the MLE. The case of µ1 = T (x1) follows from the above, and in general, assuming
it holds for µn,

µn+1 = µn − γng(θn) = µn − γn(µn − xn)

= (1− 1
n

)µn + 1
n
T (xn) = n− 1

n

1
n− 1

n−1∑
i=1

T (xi) = 1
n

n∑
i=1

T (xi) + 1
n
T (xn).

(5.135)
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The derivation in the main text gives the more general result, of using step-sizes
of the form 1/(n + n0) to recover online MAP estimation with a conjugate prior
depending on n0 and the initial estimate of the parameters θ0.
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6 Conclusion
The three contributions of this thesis deal with the interweaved topics of opti-

mization and statistics. These three contributions can be summarized as

1. Variance reduction allows fast training of CRF, a particular class of conditional
undirected graphical models that were previously hard to optimize. Thanks
to duality, non-uniform sampling can be elegantly formalized and improved
other strong methods.

2. For some simple classes of models, the causal model is faster to adapt to
interventions than the anticausal one only when the intervention bears on
the cause. However, our intuitions dictate that causal models should have
some real-world advantages compared to non-causal ones. That may be why
humans learn new rules so quickly. We may need more sophisticated models
to instantiate this intuition in machine learning.

3. The maximum likelihood estimate of an exponential family can also be seen
as the output of stochastic mirror descent. Furthermore, the KL divergence
between the true and learned models is simply a Bregman divergence. Nev-
ertheless, neither optimization nor statistics communities have found upper
bounds on this quantity that apply to any sample size and families such a
Gaussians. Finding such an upper bound may help non-Euclidean optimization
reach new grounds.

This last contribution reveals that while exponential families are at the core of most
machine learning techniques, some of their properties are yet to be understood.
Throughout this thesis, we alternated between optimization and statistics perspec-
tives, displaying the synergy between these two fields. Thanks to optimization tools,
statistical models are becoming more powerful. Thanks to statistical models, we
can probe into the abilities of optimization methods.

6.1 Future Work

Based on our last contribution, we identify two promising research directions.
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1. finding high probability bounds for exponential family MAP thanks to the
entropy being a self-concordant barrier, as proved by (Bubeck and Eldan,
2015). That would provide a general large sample result. A low sample result
remains to be found.

2. Analyzing the convergence properties of stochastic mirror descent on self-
concordant (barrier) losses. This might be possible thanks to the quadratic
sandwich property of such functions, and it might be possible to find a high
probability convergence rate.

These research directions may help us understand fundamentals statistical models
and design better stochastic optimization methods for objectives that are Legendre
functions.
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SGD: General analysis and improved rates. In ICML, 2019.
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A. Khaled and P. Richtárik. Better theory for SGD in the nonconvex world. arXiv
preprint arXiv:2002.03329, 2020.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

D. Koller and N. Friedman. Probabilistic Graphical Models. The MIT Press, 2009.

Z. Kong and K. Chaudhuri. The expressive power of a class of normalizing flow
models. In AISTATS. PMLR, 2020.

R. G. Krishnan, S. Lacoste-Julien, and D. Sontag. Barrier Frank-Wolfe for marginal
inference. In NIPS, 2015.

135

http://ttic.uchicago. edu/shai/papers/KakadeShalevTewari09.pdf
http://ttic.uchicago. edu/shai/papers/KakadeShalevTewari09.pdf


F. Kunstner, R. Kumar, and M. Schmidt. Homeomorphic-invariance of EM: Non-
asymptotic convergence in KL divergence for exponential families via mirror
descent. In AISTATS, 2021.

S. Lachapelle, P. Brouillard, T. Deleu, and S. Lacoste-Julien. Gradient-based neural
DAG learning. In ICLR, 2020.

S. Lacoste-Julien, M. Schmidt, and F. R. Bach. A simpler approach to obtaining
an o(1/t) convergence rate for the projected stochastic subgradient method, 2012.
Preprint. arXiv/1212.2002.

S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate Frank-
Wolfe optimization for structural SVMs. In ICML, 2013.

J. Lafferty, A. McCallum, and F. C. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In ICML, 2001.
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