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Pleiotropy assessment is critical for the validity of Mendelian randomization (MR) analyses,
and its management remains a challenging task for researchers. This review examines how
the authors of MR studies address bias due to pleiotropy in practice. We reviewed
Pubmed, Medline, Embase and Web of Science for MR studies published before 21 May
2020 that used at least one single-nucleotide polymorphism (SNP) in the fat mass and
obesity-associated (FTO) gene as instrumental variable (IV) for body mass index,
irrespective of the outcome. We reviewed: 1) the approaches used to prevent
pleiotropy, 2) the methods cited to detect or control the independence or the
exclusion restriction assumption highlighting whether pleiotropy assessment was
explicitly stated to justify the use of these methods, and 3) the discussion of findings
related to pleiotropy. We included 128 studies, of which thirty-three reported one
approach to prevent pleiotropy, such as the use of multiple (independent) SNPs
combined in a genetic risk score as IVs. One hundred and twenty studies cited at
least one method to detect or account for pleiotropy, including robust and other IV
estimation methods (n = 70), methods for detection of heterogeneity between estimated
causal effects across IVs (n = 72), methods to detect or account associations between IV
and outcome outside thought the exposure (n = 85), and other methods (n = 5). Twenty-
one studies suspected IV invalidity, of which 16 explicitly referred to pleiotropy, and six
incriminating FTO SNPs. Most reviewed MR studies have cited methods to prevent or to
detect or control bias due to pleiotropy. These methods are heterogeneous, their
triangulation should increase the reliability of causal inference.
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INTRODUCTION

Mendelian randomization (MR) is an instrumental variables
(IVs) approach that exploits genetic variants (mostly single-
nucleotide polymorphisms (SNPs)) as IVs of a non-genetic
exposure to infer a causal relationship between this exposure
and an outcome in observational studies (Lawlor et al., 2008). The
validity of MR is based on three key assumptions: 1) the IV is
associated with the exposure, 2) the association between the IV
and the outcome is unconfounded, and 3) the IV only affects the
outcome via the exposure, known as the exclusion restriction
criterion (Labrecque and Swanson, 2018; Brumpton et al., 2020).
Horizontal pleiotropy, the phenomenon whereby a genetic
variant affects the exposure and the outcome through
independent pathways and without being mediated by another
(Davey Smith and Hemani, 2014; Hemani et al., 2018a; Jordan
et al., 2019), is a primary cause of violation of the exclusion
restriction criterion (Dixon et al., 2020). It may lead to biased
causal effect estimates, reduced statistical power, and/or increased
type I error (Bowden et al., 2016; Verbanck et al., 2018). We
thereafter refer to “horizontal pleiotropy” as “pleiotropy” for the
sake of brevity.

The increasing use of MR (Sekula et al., 2016) has prompted
both subject-specific (Pingault et al., 2016; Frayling and
Stoneman, 2018; Goodarzi, 2018; Lor et al., 2019; Meng et al.,
2019; Guo et al., 2021) and general reviews (Bochud and Rousson,
2010; Davies et al., 2013; Boef et al., 2015) of MR studies
summarizing the state of practice of MR in the last decade.
These suggest that the exclusion restriction criterion is not
systematically assessed or discussed. For example, in their
meta-epidemiological overview on the approaches used in MR,
Boef et al. (2015) noted that only 111 of 178 studies (62.4%)
reported on the plausibility of the exclusion restriction criterion.
However, no review thus far has focused on how authors prevent
or minimize bias related to pleiotropy in MR studies. Such
examination is important because while evidence suggests that
pleiotropy is ubiquitous in the human genome (Boyle et al., 2017;
Chesmore et al., 2018), the absence of pleiotropy in a MR study
cannot be empirically proven (Glymour et al., 2012). While
several approaches to detect pleiotropy and/or provide robust
MR estimates have been recently proposed and compared
(Bowden et al., 2015; Hartwig et al., 2017; Thompson et al.,
2017; Hemani et al., 2018a; Verbanck et al., 2018; Rees et al., 2019;
Burgess et al., 2020b; Zhao Q. et al., 2020; Minelli et al., 2021),
their use in practice, including in sensitivity analyses and
triangulation, has not been documented across studies. In light
of the recent MR guidelines (Davey Smith et al., 2019; Burgess
et al., 2020a) that recommend assessing the robustness of MR
results, we examine how potential bias due to pleiotropy is
considered in the literature. More specifically we summarize 1)
the approaches used to avoid selecting pleiotropic genetic
variants, 2) the methods used to detect and account for
pleiotropy in the estimation of the causal effect, and 3) how
researchers discuss the exclusion restriction criterion considering
their assessment of pleiotropy, including the impact on the results
when pleiotropy is suspected.

Reviewing the entire body of published MR studies would not
be practical. Instead, we limited our investigation to MR studies
that use SNPs in the fat mass and obesity-associated (FTO) gene
as IV to investigate the causal effect of adiposity on diverse
outcomes. We expected studies that used FTO as an IV to
provide a rich discussion of pleiotropy for several reasons.
First, several SNPs in FTO have large and robust associations
with body mass index (BMI) (Gill et al., 2019) and thus are
considered strong IVs for adiposity and commonly used in MR
studies. Second, unlike IVs such as variants on the C-reactive
protein gene which encodes C-reactive protein (Burgess et al.,
2017; Reactive Protein Coronary Heart Disease Genetics
Collaboration et al., 2011), the exact biological pathways
through which FTO affect adiposity are not fully understood,
which complexifies the assessment of pleiotropy. Third, some
FTO SNPs are suspected of pleiotropy with reported effects on a
wide array of health issues ranging from cardiometabolic
outcomes to cancer or mental health (Pausova et al., 2009;
Delahanty et al., 2011; Hertel et al., 2011; Kivimäki et al.,
2011; Li et al., 2012; Iles et al., 2013; Liu et al., 2013; Cronin
et al., 2014; Aijala et al., 2015).

METHODS

Search Strategy and Inclusion/Exclusion
Criteria
We searched Pubmed, Medline, Embase and Web of Science to
identify articles published before 21 May 2020 that met the
following three criteria: 1) the primary analysis was MR, 2)
the primary exposure was adiposity assessed by BMI, and 3)
the IV(s) included at least one SNP in the FTO gene. We excluded
studies in which MR was a secondary analysis to ensure that the
study provided a detailed assessment of MR assumptions. We
placed no restrictions on the outcome of interest. The search
strategy and the specific exclusion criteria are provided in
Supplementary Methods S1, S2, respectively.

Data Extraction and Analysis
For each study we recorded the use of a one-sample or two-
sample MR design. We considered as one-sample both 1) studies
that performed MR using individual level data on the SNPs,
exposure and outcome and 2) studies that used summary
statistics on SNP-exposure and SNP-outcome associations
from the same sample (Hemani et al., 2018a). Two-sample
data were defined as the use of summary statistics on SNP-
exposure and SNP-outcome associations both from two distinct
samples (Hemani et al., 2018a). We documented three types of
IVs including 1) single IV, 2) genetic risk scores (GRS) that
aggregate several SNPs into a single variable that corresponds to a
weighted or unweighted sum of risk alleles (Burgess and
Thompson, 2013; Burgess et al., 2016) and 3) multiple IVs.
We defined multiple IVs as the use of ≥2 SNPs as separate
IVs in a single model or to the combination of estimated effects
from ≥2 single SNPs into one summary causal effect using meta-
analytic techniques (Burgess et al., 2016). We recorded the

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8032382

Mbutiwi et al. Pleiotropy Assessment in Mendelian Randomization

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


specific FTO SNP(s) used in each of the types of IVs
described above.

We organized the data analysis around three themes that
described how pleiotropy was handled in the analytical process
including 1) the selection and combinations of IVs; 2) the
methods used to detect and account for pleiotropy in the
estimation of causal effects, and 3) the discussion of findings
considering the assessment of pleiotropy. We documented the
methods as they were explicitly stated in each article irrespective
of their applicability or relevance. A critical appraisal of the use of
some of the methods is provided in the Discussion.

Approaches to Prevent Pleiotropy (Selection and
Combination of IVs)
According to MR guidelines (Burgess et al., 2020a), SNPs can
either be selected from gene regions that specifically encodes the
exposure (biological approach) or on the basis of their statistical
association with the exposure of interest (statistical approach).
SNPs known or suspected of pleiotropy may be excluded from the
initial selection before performing the main analysis (Burgess
et al., 2020a). We reported the use of the biological and or
statistical approach to SNP selection. We also documented the
use of multiple independent SNPs as IVs as a method to attenuate
the effect of pleiotropy under the assumption that the pleiotropic
effects of SNPs would be balanced and thus cancel each other out
(Davey Smith, 2011). Finally, we recorded any other strategy
explicitly presented as pertaining to the selection of IVs to
minimize the presence of pleiotropy.

Approaches to Detect and/or Account for Pleiotropy in
the Estimation of the Causal Effect
MR guidelines require authors to report on the methods used to
evaluate MR assumptions, which includes investigating bias due
to pleiotropy (Davey Smith et al., 2019; Burgess et al., 2020a). We
recorded the methods used to evaluate the independence and the
exclusion restriction assumptions with the exception of those
used for population stratification, highlighting whether
pleiotropy assessment was explicitly stated to justify the use of
these methods. We organized methods into four categories
including 1) robust (e.g., MR-Egger) and other IV estimation
methods (e.g., multivariable MR), 2) methods to detect
heterogeneity of estimated causal effects across IVs (e.g.,
statistical tests of heterogeneity between the estimated SNP-
specific causal effects), 3) methods to detect or account for
associations between the IVs and the outcome that arise
through pathways outside of the exposure (e.g., mediation
analysis), and 4) other methods. Robust methods provide
causal effect estimates under a weaker set of assumptions than
conventional methods (Burgess and Thompson, 2017; Burgess
et al., 2020a). A summary description of the methods, including
their main assumptions and limitations is presented in
Supplementary Table S6.

Discussion of Findings Considering the Assessment of
Pleiotropy
We verified whether the authors discussed the independence and
the exclusion restriction assumptions, distinguishing studies that

explicitly referred to the term “pleiotropy” from those that did
not. When studies suspected IV invalidity, we further verified
whether the authors report the impact of IV invalidity on MR
results, and if any FTO SNPs were incriminated.

The data were tabulated using Microsoft Excel® 2016 and
described using Stata/IC version 14.2 software (StataCorp,
College Station, Texas, United States).

RESULTS

Study Selection and Characteristics of
Studies
Our search identified 2,985 publications, of which 128 articles
were included upon completion of the screening process
(Figure 1). The 128 articles are listed in Supplementary Table
S1. Included articles were published between June 2008 and May
2020, and mostly comprised one-sample MR analyses (n = 98,
76.6%; Table 1 and Supplementary Table S3). A total of 31 FTO
SNPs were selected as IVs with rs1558902 being the most
frequently used (n = 64, 50%; Supplementary Table S2).
While 74 studies (57.8%) used a GRS to represent the IVs
(Table 1 and Supplementary Table S3), Figure 2 suggests a
recent decline in the use of GRS in favor of multiple IVs.

Approaches to Prevent Pleiotropy
(Selection and Combination of IVs)
While all of the 128 studies selected IVs on the basis of statistical
association between SNPs and BMI in the literature, 33 studies
(25.8%) proceeded further in their attempt to prevent the effect of
pleiotropy in the selection of the IVs (Table 2 and Supplementary
Table S4). Of the 33 studies, 12 excluded previously selected SNPs
known or suspected of pleiotropy. Ten articles respectively cited the
use of a GRS and of multiple (independent) IVs (even if six of these
ten in fact used a GRS as IVs) to prevent the effect of pleiotropy, a
single study justified the use of a single SNP as IV as a method to
prevent pleiotropy, although these strategies do not guarantee that
bias due to pleiotropy is prevented or reduced (Burgess and
Thompson, 2013).

Approaches to Detect and Account for
Pleiotropy in the Estimation of the Causal
Effect
Overall, 120 of 128 included studies assessed the plausibility of the
independence and/or exclusion restriction assumptions (Table 3 and
Supplementary Table S5). Of the 120 studies, 78 reported using
more than one category of methods within our classification (robust
and other IV estimation methods (n = 70), heterogeneity (n = 72),
alternative pathways (n = 85) and others (n = 5, including the use of
positive or negative control outcomes, colocalization, and verifying
the concordance of MR results with those from other studies). A
total of 95 studies explicitly cited pleiotropy to justify the use of such
methods. MR-Egger was the most frequently reported method to
assess pleiotropy (n = 68). Of the 68 studies, 66 used the intercept
p-value as a test of the validity of IVs and 29 studies (Gao et al., 2016;
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Hartwig et al., 2016; Kemp et al., 2016; Mokry et al., 2016; Tyrrell
et al., 2016; Censin et al., 2017; Dale et al., 2017; Lindstrom et al.,
2017; Lyall et al., 2017; Noyce et al., 2017; Xu et al., 2017; Larsson
et al., 2018; van den Broek et al., 2018; Wang T. et al., 2018; Bae and
Lee, 2019; Brower et al., 2019; Censin et al., 2019; Gharahkhani et al.,
2019; Howe et al., 2019; Taylor et al., 2019; Tyrrell et al., 2019; Xu

et al., 2019; Dusingize et al., 2020; Kurz and Laxy, 2020; Larsson et al.,
2020; Liu et al., 2020; Winter-Jensen et al., 2020; Zhang et al., 2020;
Zhao Y. et al., 2020) further acknowledged that MR-Egger estimates
or tests may be underpowered. Two studies (Tyrrell et al., 2016; Fan
et al., 2018) compared theMR-Egger slope and the conventionalMR
causal effect estimate while the last study (Chen et al., 2019) did not

FIGURE 1 | Flowchart of selection of studies includes in the review. MR, Mendelian randomization; PheWAS, phenome-wide association study; FTO, fat mass and
obesity-associated; SNP, single-nucleotide polymorphism; BMI, body mass index.

TABLE 1 | Characteristics of included studies.

Characteristics of studies n %

Types of data used n = 128
One-sample only 82 64.1
Two-sample only 30 23.4
Both one and two samples 16 12.5
Types of instruments used in the main analysis n = 128
GRS only 63 49.2
Multiple IVs only 40 31.2
Single IVs only 13 10.2
Both GRS and multiple IVs 6 4.7
Both GRS and single IVs 5 3.9
Both single and multiple IVs 1 0.8
Types of GRS used among studies using GRS as IV in the main analysis n = 74
Weighted GRS only 48 64.9
Unweighted GRS only 19 25.7
Both weighted and unweighted GRS 7 9.4

Abbreviations: GRS, genetic risk score; IVs, instrumental variables; SNPs, single-nucleotide polymorphisms; FTO, fat mass and obesity-associated.
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specify how the MR-Egger results were used. Forty-six studies
assessed pleiotropy by evaluating the heterogeneity of estimated
causal effects across IVs, whether by graphical assessment (n= 20) or
statistical testing (n = 7), or by comparing estimated causal effects
from GRS or multiple IVs before vs. after exclusion of suspected
pleiotropic SNP(s) (n = 20). A total of 30 studies attempted to detect
pleiotropy by estimating pathways through which the IVs were
associated with the outcomes outside of that implicating the
exposure. Such studies mostly reported the estimation of
associations between the IVs and measured risk factors of the
outcome (n = 19), but also adjusted the IV-outcome or IV-
confounders associations for exposure (n = 7) or documented the
associations between the IV and risk factors for the outcome in the
literature (n = 5).

Discussion of Findings Considering the
Assessment of Pleiotropy
Of 128 included articles, 108 discussed the plausibility of the
independence and/or exclusion restriction assumptions of which
89 studies made an explicit reference to pleiotropy (Table 4 and

Supplementary Table S7). Invalid IVs were suspected in 21
studies (Supplementary Table S8), 16 of which cited
pleiotropy as a potential source of invalidity. Eight of the 21
studies concluded that the MR results were possibly invalid, while
nine studies reported that the results were robust. The remaining
four studies did not discuss the impact of IV invalidity on the
results. Six studies suggested that at least one FTO SNP
(rs1558902, rs1421085, and rs17817449) was suspected of
pleiotropy on the basis of sensitivity analyses (Table 4,
Supplementary Tables S7, S8).

DISCUSSION

Pleiotropy is considered widespread in humans (Boyle et al.,
2017) and thus presents a major challenge to the validity of
MR studies, especially considering the limited knowledge of
the biological function of many of the SNPs used as IVs
(Danchin and Fang, 2016; Swerdlow et al., 2016). We
reviewed studies that used SNP(s) in the FTO gene as IV(s)
in MR to examine the strategies employed by authors to
prevent, detect or control, and discuss biases due to the use
of pleiotropic IVs. Our review extends the overview of
statistical approaches used in MR published by Boef et al.
(2015) by focusing on pleiotropy and by including the recent
developments such as two-sample MR and the use of MR-
Egger. We observed that the vast majority of studies addressed
pleiotropy by using several methods that operate under
different assumptions (Lawlor et al., 2016; Hemani et al.,
2018b). While most authors invoked pleiotropy at the
analytical stage to justify the use of detection tools and
robust methods, explicit attention was also given to the
prevention of pleiotropy in the selection of IVs in a fourth

FIGURE 2 | Body mass index instrumental variables (IVs) used in the main analysis by article publication year.

TABLE 2 | Approaches cited for preventing pleiotropy in the selection of IVs.

Approaches n/33 %

Exclude selected SNPs known or suspected to be pleiotropic 12 36.4
Use of multiple (independent) SNPs combined in a GRS as IVs 10 30.3
Use of multiple (independent) SNPs as IVs 10a 30.3
Use a single SNP as IV 1 3.0

Abbreviations: GRS, genetic risk score; SNP, single-nucleotide polymorphisms; IV,
instrumental variable.
aThese 10 articles discussed the use of multiple independent SNPs without explicitly
mentioning GRS even if six of the 10 in fact used a GRS as IV in the main analysis.
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of the articles reviewed and pleiotropy was mentioned in the
discussion in 70% of articles.

Our review highlighted three observations that merit attention
for future MR studies. First, we documented an increasing use of
multiple IVs over time, in addition to the exclusive use of
statistical criteria to select IVs from the literature. This is

largely explained by our focus on BMI as the exposure, since
BMI is a polygenetic trait without a specific proximal coding gene
from which to select SNPs as it is common with protein-like
exposures (Swerdlow et al., 2016; Burgess and Thompson, 2017).
The increasing use of multiple SNPs is also motivated by attempts
to increase the strength of the instruments, the availability of

TABLE 3 | Methods cited for detection or accounting the violation of the independence and/or restriction exclusion assumptions.

Methodsa n/128 Studies specifically referred
to the method

for “pleiotropy” assessment/
control/robustness

(n = 95)

Studies not specifically
referred to the

method for “pleiotropy”
assessment/control/
robustness (n = 96)

Robust and other IV estimation methodsb 70 69 23
Robust methods 69 68 20
MR-Egger 69c 68 1
Median-based methods 44 26 18
Mode-based methods 9 5 4
MR-PRESSO 6 5 1
MR-RAPS 1 0 1

Other IV estimation methods 13 6 8
Multivariable MR 6 3 3
IVW methods 4 3 1
Likelihood-based methods 4 0 4

Methods to detect heterogeneity of estimated causal effects across IVs 72 46 46
Graphical assessment: scatter plots, forest plots, funnel plots, leave-one-out plots,
and histogram

34 20 19

Statistical criteria and tests: I2, r2, H statistic, Cochran’s Q, Rucker’s Q, over-
identification testsd

30 7 23

Comparisons of estimated MR causal effects across IVs (GRS or multiple IVs) 39 25 14
Before and after exclusion of SNPs suspected of pleiotropy 33 20 13
GRS or multiple IVs vs. single SNP(s) 5 5 0
Two subsets of SNPs grouping SNPs with the same biological pathway on the

exposure
1 0 1

Detection of outlier/influential SNP(s): Cook’s distance, Studentized residuals,
HEIDI-outlier, leave-one-out analyses

15 4 13

Methods to detect associations between IVs and the outcome outside of the
pathway through the exposure

85 30 61

Estimating the associations between the IVs and measured risk factors for the
outcome

75 19 56

Documenting the associations between the IV and risk factors for the outcome in
the literature

7 5 2

Adjusting IV-outcome or IV-confounders associations for exposure 18 7 11
Adjusting IV-outcome association or MR analyses for covariates potentially
involved in pleiotropic pathwayse

5 2 3

Comparison of the exposure-outcome conventional vs. IV estimated effects 4 1 3
Comparison of the IV-outcome vs. IV-exposure associations 2 2 0
Estimating the association between the IV and the outcome 2 1 1
Mediation analysis estimating the direct effect of the IV on the outcome 3 0 3
Other methods 5 0 5
The use of positive or negative control outcomes 3 0 3
Colocalization 1 0 1
Verifying the concordance of MR results with those from other studies (MR, clinical
trial)

1 0 1

No method reported for assessment of independence or exclusion restriction
assumptions

8

Abbreviations: IV, instrumental variable; MR, Mendelian randomization; PRESSO, pleiotropy residual sum and outlier; SNP, single-nucleotide polymorphism; RAPS, Robust Adjusted Prole
Score; IVW, inverse-variance weighted; FTO, fat mass and obesity-associated; GRS, genetic risk score; HEIDI, Heterogeneity in Dependent Instruments.
aMany studies cited more than one method and thus the number of methods reported in the Table exceed the total number of studies (n = 128).
bSee (Burgess et al., 2020a) and (Burgess et al., 2015) for a summary of the listed methods.
cOf the 69 studies that reported using MR-Egger, 66 used the intercept test p-value to infer whether or not pleiotropy was present, two studies (Tyrrell et al., 2016; Fan et al., 2018)
compared the MR-Egger slope and the conventional MR causal effect estimate, while the last study (Chen et al., 2019) did not specify how the MR-Egger results were used.
dOne study (Censin et al., 2017) did not specify the heterogeneity test used.
eThree articles (Guo et al., 2016; Censin et al., 2019; Sun et al., 2020) mentioned adjustment of MR analyses for covariates potentially involved in pleiotropic pathwayswithout specifying as
multivariable MR.
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large-scale genome-wide association studies to select instruments
from, and by the development of MR methods that require
multiple IVs to provide robust MR estimates under a less
stringent set of assumptions (Burgess and Thompson, 2017;
Burgess et al., 2020a). However, selecting SNPs exclusively by
statistical approach increases the likelihood of including
pleiotropic SNPs which may lead to biased MR results
(Hartwig et al., 2017; Bowden and Holmes, 2019). Advantages
of using multiple IVs independently in a MR study include the
use of robust methods, such as MR-Egger or median or mode-
based methods (Slob and Burgess, 2020). On the other hand, the
use of GRS, which was the most frequent method to combine
SNPs in the studies that we reviewed, is convenient because it
leads to a single IV (Burgess et al., 2016). Further, weighted GRS
with independently-derived weights lead to MR studies with
similar statistical power than those using multiple independent
IVs (Palmer et al., 2012). While several studies justified the use of
a GRS as IV as a method to prevent bias due to pleiotropy, they
have to rely on the restrictive assumption that the pleiotropic
effects of SNPs cancel each other (Davey Smith, 2011), which is
difficult to verify in practice. Using a GRS as IV further requires
ensuring that each SNP in the GRS is itself a valid IV (Burgess and
Thompson, 2013; Skaaby et al., 2018), which is limited by the low
statistical power available for each SNP. Simulation studies have
demonstrated that even including a small number of pleiotropic
SNPs into a GRS can lead to biased MR estimates (Burgess and
Thompson, 2013). We thus recommend that robust methods be
used on the SNPs that form the GRS.

Second, our review suggests that the MR-Egger intercept test
from is the most frequently reported method for pleiotropy
assessment. The validity of MR-Egger estimates and the
interpretation of the intercept as the average pleiotropic effect

of IVs require the InSIDE (Instrument Strength Independent of
Direct Effect) assumption to be satisfied (Burgess and Thompson,
2017). InSIDE is not required for the use of the p-value associated
with the intercept test of the validity of IVs (Burgess and
Thompson, 2017). InSIDE states that the effects of the IVs on
the exposure must be uncorrelated with the direct effects of the IVs
on the outcome (Bowden et al., 2015; Burgess et al., 2017), which is
likely to be violated in a one-sample setting (Slob et al., 2017;
Minelli et al., 2021) because parameters are estimated in the same
subjects. Violations of the InSIDE assumption results in increased
type I error rates (Hartwig and Davies, 2016; Burgess et al., 2017)
and biased estimates in the direction of the observational
associations (Minelli et al., 2021). Because testing the plausibility
of InSIDE assumption is still a challenge to date (Bowden, 2017),
researchers should restrict the interpretation of MR-Egger
estimates in two sample settings where the lack of correlation
between SNPs-exposure and SNPs-outcome associations is more
plausible. Thus, when using summarized data in a one-sample
setting, the MR-Egger intercept test can be used to assess the
invalidity of the IVs, but other robust methods such as the median
(the second robust method widely reported in this review)- and the
mode-based methods should be preferred when estimating the
robust causal estimates because they do not depend on the InSIDE
assumption (Bowden, 2017). Further, their causal estimates are
consistent in one-sample context, unlike Egger’s estimates which
are biased in the direction of the observational association, as
shown in simulations (Minelli et al., 2021). Burgess and Thompson
offer a careful discussion of the use of MR-Egger (Burgess and
Thompson, 2017), while Burgess et al. (2018) show that the
statistical power for the intercept test is low in most settings.

Third, using statistical approaches to detect pleiotropic IVs is
challenging because apparent manifestations of pleiotropy may

TABLE 4 | Discussion of the independence and/or exclusion restriction assumptions.

Discussion of the
independence and/or exclusion
restriction assumptions

n %

Plausibility of the independence and/or exclusion restriction assumptions n = 128
Discussed with specific reference to pleiotropy 89 69.5
Discussed without specific reference to pleiotropy 19 14.9
IV invaliditya n = 128
Suspected with specific reference to pleiotropy 16 12.5
Suspected without specific reference to pleiotropy 5 3.9
Impact of IV invalidity on the validity of MR results n = 21
May have affected validity of results 8 38.1
No or low impact on validity of results 9 42.9
Impact not (clearly) reported 4 19.0
Suspicion of invalidity/pleiotropy of FTO SNP(s) n = 128
Yes 6 4.7
FTO SNP(s) suspected to be invalid/pleiotropic n = 6
rs1558902b 3 50.0
rs1421085c 2 33.3
rs17817449d 1 16.7

Abbreviations: IV, instrumental variable; MR, Mendelian randomization; SNP, single-nucleotide polymorphism; FTO, fat mass and obesity-associated.
aRefers to the suspicion of invalidity of one or more body mass index IV(s) for any outcome of interest.
bThe outcomes of interest involved in the suspected invalidity of rs1558902 were multiple sclerosis susceptibility (Gianfrancesco et al., 2017), phobic anxiety symptoms (Walter et al.,
2015a), and depression (Walter et al., 2015b).
cThe outcomes of interest involved in the suspected pleiotropy of rs1421085 were commonmental disorders (Kivimäki et al., 2011), and subjective well-being (van den Broek et al., 2018).
dThe outcome of interest involved in the suspected pleiotropy of rs17817449 was lipid profiles (Wang N. et al., 2018).
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be confused with other phenomena, some of which not
invalidating MR or requiring different approaches than
pleiotropy. For example, the assessment of heterogeneity in
the estimated causal effects across different IVs is based on the
principle that if IVs are valid, the variation in their corresponding
MR estimates should be due to chance (Greco et al., 2015). Large
variations in MR IV-specific estimates are often considered as
indicative of pleiotropy, but can be due to other causes such as the
non-collapsibility of odds ratios in case of MR analysis with
binary outcome (Vansteelandt et al., 2011; Hemani et al., 2018a),
heterogeneity in the distribution of confounders of IV-exposure
or IV-outcome associations in two-sample settings (Hemani
et al., 2018a; Zhao Q. et al., 2020), or differential complier
causal effects, i.e., association between the IVs and the
exposure that vary importantly across individuals (Baiocchia
et al., 2014; Sainani, 2018). Similarly, reasons other than
pleiotropy may explain non-null associations between the IVs
and the outcome that may be considered indicative of pleiotropic
IVs. For example, population stratification which can be
addressed by restricting the sample to homogeneous ancestry
or by applying correction methods (e.g., adjustment of MR
models for principal components) (Davey Smith and Hemani,
2014). Additional causes of violation of the exclusion restriction
that can be confused with pleiotropy have been proposed,
including an exposure that varies over time, the presence of
gene-environment interactions implicating IVs, and linkage
disequilibrium between at least one of the IVs and a SNP that
also affects the outcome (VanderWeele et al., 2014).

Our review also allows a few observations pertaining to the
use of SNPs in the FTO gene as IVs for BMI. Four of the six
studies that suspected that FTO SNPs used as IVs might be
pleiotropic involved mental health phenotypes [e.g., subjective
well-being (van den Broek et al., 2018) or phobic anxiety
symptoms (Walter et al., 2015a), or common mental
disorders (Kivimäki et al., 2011), including depression
(Walter et al., 2015b)]. This suggests that FTO may be
associated with mental health through pathways that do not
involve BMI, a hypothesis that is supported by animal studies
(Hess et al., 2013; Sun et al., 2019). For example, FTO regulates
the activity of the dopaminergic signaling pathways related to
the regulation of learning, reward behavior, motor functions,
and feeding in mice (Hess et al., 2013). Furthermore, other
work on FTO-deficient mice suggested that FTO could
influence anxiety- and depression-like behaviours via
alterations in gut microbiota (Sun et al., 2019). Caution is
required regarding the use of FTO as an IV for BMI implicating
mental health phenotypes.

Two limitations of the current review should be noted. First,
we do not present an exhaustive list of the methods to prevent,
detect or control, and discuss biases due to the use of pleiotropic
IVs. Rather we focus on the methods reported in the 128 studies
that we review. While we captured most of the methods that are
currently available, newer methods such as the Causal Analysis
Using Summary Effect estimates (CAUSE) (Morrison et al., 2020)
and MR analysis using mixture-model (MRMix) (Qi and
Chatterjee, 2019) are not reported. Second, the methods
reported in this review include common and validated
methods, as well as methods or strategies that may be less
efficient/optimal for detecting or accounting bias due to
pleiotropy in MR studies. Users must exert caution in
selecting the best method(s) for the data at hand.

Pleiotropy is a ubiquitous phenomenon that poses a threat to
the validity of MR results and that is difficult to assess. MR-
related methodological development is thriving, and users are
encouraged to use more than one method to assess pleiotropy,
heeding the assumptions required for each.
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