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Abstract

Objective: Body mass index (BMI) is used to identify trajectories of adiposity in

youth, but it does not distinguish fat‐ from fat‐free‐mass. There are other inex-
pensive measures of adiposity which might better capture fat‐mass in youth The
objective of this study is to examine differences between sex‐specific trajectories of
BMI and other adiposity indicators (subscapular and triceps skinfold thickness, waist

circumference, waist‐to‐height ratio) which may better capture fat‐mass in youth.
Methods: Data come from four cycles of a longitudinal cohort of 1293 students in

Montréal, Canada at ages 12, 15, 17 and 24. Group‐based trajectory models iden-
tified sex‐specific adiposity trajectories among participants with data in ≥3 cycles

(n = 417 males; n = 445 females).

Results: There were six trajectory groups in males and females for all five indicators,

except for waist circumference (seven) in both sexes and triceps skinfold thickness

(four) and waist‐to‐height ratio (five) in females. Most trajectories indicated linear
increases; only the skinfold thickness indicators identified a decreasing trajectory.

While all indicators identified a trajectory with high levels of adiposity, they differed

in the number and relative size of trajectories pertaining to individuals in lower half

of the adiposity distribution.

Conclusion: BMI is a satisfactory indicator of adiposity in youth if the aim of the

trajectory analysis is to identify youth with excess adiposity, a known risk factor for

cardiometabolic outcomes in adulthood.

K E Y W O R D S

adiposity, adolescence, BMI, group‐based trajectories, young adulthood

1 | INTRODUCTION

Excess adiposity and fat mass distribution in youth are associated with

cardiometabolic risk factors including lipid abnormalities, glucose

metabolism disorders, and elevated blood pressure.1–3 Because it is

relatively easy to measure and inexpensive, body mass index (BMI) is

widely used in studies that aim to identify adiposity trajectories during

childhood and adolescence.4,5 BMI trajectories in youth do predict

adverse cardiometabolic outcomes in adulthood.6–9 However, BMI

does not differentiate fat and fat‐free (e.g., muscle) mass or

Abbreviations: BMI, Body Mass Index; NDIT, Nicotine Dependence In Teens.
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subcutaneous and visceral adiposity, and can therefore fail to capture

critical changes in fat mass distribution which occur in youth.5

Furthermore, there is evidence that BMI is a poor indicator of fat mass

in normal‐weight children and adolescents.10,11 Several studies using
gold‐standard measures such as DEXA, suggest that inexpensive al-
ternatives to BMI such as skinfold thickness, waist circumference, and

waist‐to‐height ratio are better measures of fat mass in youth than
BMI.12–17 However, only one study to date reports trajectories based

on these alternative indicators.7

Specifically, in a study of youth age 13–21 years, Araújo et al.7

identified three sets of trajectories for both BMI and waist circum-

ference. The three sets had similar shapes and percentages of youth

in each trajectory, and Kappa coefficients suggested satisfactory

agreement between classification in BMI and waist circumference

trajectories (i.e., κ̂ ¼ 0.66 in females and 0.75 in males).18 However,
the authors did not investigate why agreement was lower in females

or explore sources of disagreement between classification by BMI

and waist circumference. Identifying sources of disagreement be-

tween classification in trajectories of different adiposity indicators is

important since there is evidence that correlations between adiposity

measures vary across age and adiposity levels.19–22 For example,

there may be a low correlation between BMI and waist circumfer-

ence for individuals with high BMI if BMI reflects higher muscle

rather than fat mass. Moreover, studies suggest that correlations

between BMI and indicators of fat mass decrease with age,21 which

could translate into discordance between classification in trajectories

of BMI and other adiposity indicators in youth.

Given these concerns about measurement of fat mass and

burgeoning BMI trajectory studies in youth, the objective of this

study was to assess agreement between sex‐specific BMI trajectories
and those of indicators which better capture fat mass, including

subscapular and triceps skinfold thickness, waist circumference, and

waist‐to‐height ratio. To limit use of subjective criteria in model

selection, recommended statistical criteria to select the number and

shapes of trajectories were used.23,24

2 | METHODS

This study adhered to the Strengthening the Reporting of Observa-

tional Studies in Epidemiology (STROBE) guidelines for standard

reporting in cohort studies (Table S1 in the Supplementary Online

Content).25

Data were drawn from the Nicotine Dependence in Teens

(NDIT) study, a longitudinal investigation of 1293 grade 7 students

age 12–13 years at inception recruited in 1999–2000 in 10 high

schools in Montréal (Canada) and followed post‐high school to age
32.26 High schools in or near Montréal were selected toinclude a

mix of French‐ and English‐language schools; urban, suburban, and
rural schools; and schools serving populations of high, moderate,

and low socioeconomic status.26

Self‐report questionnaires were administered at school every 3
months during the 10‐months school year in grades 7–11 (i.e., 20 data

collectioncyclesduringhighschool)andin2007–08(cycle21;20years),

2010–12(cycle22;24years),2017–20(cycle23;30years),2020–21(cycle

24;34years).Parents/guardiansprovided informedconsentatbaseline

andparticipantsprovidedconsentpost‐highschool.

2.1 | Adiposity indicators

Anthropometric data were collected when participants were age 12,

15, 17, and 24 years. Height and weight (Seca Portable Stadiometer –

Model 214 and Seca Scale – Model 761, Seca Corporation), sub-

scapular and triceps skinfold thickness (Lange Skinfold Caliper, Beta

Technology Inc.), and waist circumference were measured by trained

technicians using a standardized protocol.27 Two measures of

height and waist circumference to the nearest 0.1 cm, weight to the

nearest 0.2 kg, and subscapular and triceps skinfold thickness to the

nearest 0.5 mm were obtained for each participant. If discrepancies

greater than 0.5 cm for height and waist circumference, 0.2 kg for

weight, or 1.0 mm for subscapular and triceps skinfold thickness were

observed between the two measures, a third was obtained. The

average of the two closest measures was recorded. To assess inter‐
rater reliability, we obtained repeat measures for a one in 10 sub-

sample of students. Inter‐rater reliabilities (split‐half coefficients) of
0.99, 0.99, 0.98, 0.97, and 0.97 were observed for height, weight,

waist circumference, and subscapular and triceps skinfold thickness,

respectively.26 BMI was computed as weight (kg) divided by height

squared (m2). waist‐to‐height ratio was computed as waist circum-
ference (cm) divided by height (cm).

2.2 | Statistical analyses

2.2.1 | Relative distributions of adiposity indicators

The assessment of whether differences in trajectories were due to

systematic differences in the distribution of the different adiposity

indicators was conducted in three steps:

(i) Age‐specific correlations between adiposity indicators were

computed.

(ii) Each adiposity indicator was standardized by subtracting its

cycle‐specific mean and dividing by its cycle‐specific standard
deviation. Standardized indicators are unitless and thus their

distributions can be compared. Although not a gold standard

adiposity measure,21 BMI was used as the reference because it is

widely used in trajectory modeling.8 Linear mixed effect models

with random intercepts were used to check whether standard-

ized BMI values differed systematically from standardized

values of the other indicators at specific ages. Figure S1 suggests

no systematic age‐related differences between standardized

adiposity indicators in males or females.

(iii) Assessment of whether other standardized adiposity measures

over‐ or under‐estimate adiposity compared to standardized
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BMI – irrespective of age – was conducted using generalized

additive models with penalized regression splines28 to estimate

standardized BMI as a smooth function of each standardized

indicator, with 95% confidence intervals. Each estimated func-

tion was compared to a diagonal straight line representing per-

fect agreement between the standardized distributions of BMI

and each of the other indicators.

Descriptive analyses were performed in R 3.6.129 with package

nlme30 for linear mixed models and mgcv31 for generalized additive

models.

2.2.2 | Trajectory modeling

Grouped‐based trajectory models were used to estimate sex‐specific
trajectories of each indicator.32,33 Censored‐normal distribution
models of two to 10 trajectories, fitting quadratic polynomial orders,

were used to identify the optimal individual models. If a group did

not attain statistical significance on a higher‐order term (e.g.,

quadratic), specifications were changed to a lower‐order term (e.g.,

linear, then zero order) until all trajectories in the model showed

statistical significance on their given polynomial order. This was

done in accordance with recent guidelines which recommend

selecting models based on a variety of fit indices.24 The model which

minimized the Bayes factor (as approximated by the Bayesian In-

formation Criterion), had satisfactory average posterior probabilities

(i.e., ≥0.7),33 and had high (i.e., closer to 1) relative entropy was

selected. Trajectories were estimated using the PROC TRAJ com-

mand in SAS.32

The study was approved by the ethics committees of Montréal's

Department of Public Health, McGill University's Faculty of Medicine,

and the Centre de Recherche du Centre Hospitalier de l'Université de

Montréal (2007‐2384, 2017‐6895, ND06.087).

3 | RESULTS

Of 1293 participants, 862 (417 males and 445 females) with

anthropometric data in ≥3 data collection cycles to estimate trajec-
tories reliably were included in this study.34 Summary statistics by

sex and cycle are shown in Table 1. Table S2 compares baseline

characteristics of the analytic and excluded samples. Excluded par-

ticipants were older and had higher BMIs and larger waist circum-

ferences than participants in the analytic sample. Also, higher

proportions of the excluded sample lived in single‐parent families and
had mothers who had not completed university.

3.1 | Descriptive analyses

The correlation between BMI and all adiposity indicators at each age

of assessment varied between r̂ = 0.73 and 0.85 for subscapular

skinfold thickness, 0.65 and 0.81 for triceps skinfold thickness, 0.88

and 0.94 for waist circumference, and 0.88 and 0.93 for waist‐to‐
height ratio (see Figures S2 and S3 for correlation heatmaps). The

correlations were mostly constant over age. Figure S1 shows the

differences between standardized BMI and each of the other stan-

dardized adiposity indicators at each age, by sex. Most differences

between standardized values of BMI and other adiposity indicators

were close to zero with relatively narrow confidence intervals (most

were within 0.1 SD of the mean). The skewness and kurtosis of

adiposity indicators at each age are shown in Table S3.

Figure S4 shows sex‐specific plots of standardized BMI as a

smooth function of each of the standardized adiposity indicators. In

males and females, BMI aligned almost perfectly with waist circum-

ference and waist‐to‐height ratio. However, standardized sub-

scapular skinfold thickness values exceeded standardized BMI values

when standardized BMI values were above two SD, suggesting that

the right tail of the distribution of standardized subscapular skinfold

thickness values was more skewed towards extreme values than that

of BMI. In other words, compared to BMI, subscapular skinfold

thickness overestimated adiposity for individuals with large BMI. A

similar phenomenon was observed with triceps skinfold thickness but

at both tails of the distribution, suggesting that triceps skinfold

thickness had a broader distribution than BMI.

3.2 | Trajectories of BMI and other adiposity
indicators

The optimal models (i.e., based on the Bayes factor, average posterior

probabilities, and relative entropy) for BMI, subscapular skinfold

thickness, triceps skinfold thickness, and waist‐to‐height ratio in

males had six trajectory groups (Figure 1). There were seven trajec-

tory groups in the model for waist circumference. Across all adiposity

indicators: (i) most trajectories increased with age; (ii) there was a

group with a flat or decreasing trajectory including ≤10% of males;

and (iii) there was a group with a trajectory well above the others

throughout follow‐up with ≤5% of males. All trajectories, except the

highest trajectory of each indicator and the second‐highest trajec-
tories of skinfold thicknesses, were linear. The percentage of partic-

ipants in trajectory groups with lower adiposity levels differed across

indicators. For example, the lowest BMI trajectory group included

13.7% of males while the lowest trajectory groups for waist‐to‐height
ratio and subscapular skinfold thickness included 48.0% and 67.9% of

males, respectively.

In females, the optimal models for BMI and subscapular skinfold

thickness had six trajectory groups, triceps skinfold thickness had

four, waist‐to‐height ratio had five, and waist circumference had

seven (Figure 2). Trajectories for BMI, triceps skinfold thickness, and

waist‐to‐height ratio increased slightly in a parallel fashion. Trajec-
tories for waist circumference were similar to those of BMI, except

for an additional trajectory with a sharper increase. The shape of

trajectories for subscapular skinfold thickness showed steeper in-

creases from age 12 to 17 before most trajectories plateaued or

decreased. All trajectories, except the highest trajectory of each in-

dicator and the second‐highest trajectories of skinfold thicknesses,

SYLVESTRE ET AL. - 713
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were linear. Regardless of indicator, at least one trajectory

comprising <2% of females included participants with the largest

values of a given adiposity indicator. Unlike males, the relative

sample size of the trajectory corresponding to the lowest values was

more consistent across indicators comprising 41.3% to 52.6% of fe-

males. The Supplementary Online Content presents fit statistics for

all models in males (Table S4) and females (Table S5).

4 | DISCUSSION

This is one of the first studies to estimate sex‐specific adiposity tra-
jectories from adolescence to early adulthood, comparing BMI with

four other adiposity indicators which have been found to measure fat

mass more accurately.12–17 Aligned with Araújo et al.7 who reported

good agreement between trajectories of BMI and waist circumference

T A B L E 1 Participant characteristics by cycle and sex, Nicotine Dependence in Teens 1999–2013

Males, n = 417 Females, n = 445

Cycle Cycle

1 12 19 22 1 12 19 22

Socio‐demographic characteristics

Age [y, mean (SD)] 12.7 (0.4) 15.2 (0.4) 17.0 (0.4) 24.0 (0.6) 12.6 (0.4) 15.1 (0.4) 16.9 (0.4) 23.9 (0.6)

Mother university‐educated, % 50.8 50.8 50.8 50.8 42.8 42.8 42.8 42.8

Father university‐educated, % 50.0 50.0 50.0 50.0 43.2 43.2 43.2 43.2

Caucasian, % 79.8 79.8 79.8 79.8 79.1 79.1 79.1 79.1

Single‐parent family, % 6.0 12.6 12.9 ‐ 9.2 12.9 18.3 ‐

Adiposity indicators

BMI [kg/m2, mean (SD)] 19.9 (3.6) 21.6 (3.6) 22.7 (3.7) 25.1 (4.5) 19.8 (3.9) 21.5 (3.6) 22.2 (3.8) 23.9 (4.6)

Waist circumference [cm, mean (SD)] 72.0 (10.2) 77.0 (9.5) 79.9 (9.4) 86.1 (11.3) 69.4 (9.7) 74.1 (9.0) 76.0 (9.3) 78.0 (11.3)

Waist‐to‐height ratio [wc/height, mean (SD)] 0.5 (0.1) 0.5 (0.1) 0.5 (0.1) 0.5 (0.1) 0.5 (0.1) 0.5 (0.1) 0.5 (0.1) 0.5 (0.1)

Subscapular skinfold thickness [cm, mean (SD)] 9.4 (6.0) 10.4 (4.8) 13.5 (6.9) 15.4 (6.7) 10.5 (5.2) 13.9 (5.6) 16.9 (6.7) 16.6 (6.2)

Triceps skinfold thickness [cm, median (IQR)] 13.5 (6.5) 12.9 (6.1) 14.3 (7.3) 15.0 (6.6) 14.7 (5.5) 19.4 (6.1) 22.5 (7.2) 21.8 (5.7)

F I G U R E 1 Group‐based trajectories of BMI, subscapular skinfold thickness, triceps skinfold thickness, waist circumference, and waist‐to‐
height ratio in males

714 - SYLVESTRE ET AL.
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in youth, BMI trajectories in this studywere similar in shape to those of

waist circumference and waist‐to‐height ratio, although there was
some discrepancy between skinfold thickness and BMI trajectories.

Compared to other studies of same‐age youth, a larger number
of BMI trajectories (6 vs. 2–4) were identified in this study.6,7 Such

heterogeneity aligns with that reported in a recent systematic review

of BMI trajectories in youth aged 0–158 and is likely due to both

sample and methodological differences across studies. More BMI

trajectory groups may have been identified in this study because, as

suggested in the Guidelines for Reporting on Latent Trajectory

Studies,23 models were estimated with up to 10 trajectories whereas

other studies estimated models with 4–6 groups. Differences across

studies also relate to documented differences in the distribution of

excess adiposity across countries,35 which may affect the likelihood

of identifying certain trajectories. Because they are empirically

derived, trajectories may be sample‐specific and thus not generaliz-
able across populations.

Before estimating trajectories, descriptive analyses searched for,

but found no age‐specific systematic differences in how adiposity in-

dicators situated participants with respect to the mean of the distri-

bution. Rather, aligned with extant literature,19,20 the correlations

betweenadipositymeasures variedacross adiposity levels. Specifically,

differences in the distribution of BMI and skinfold thickness were

larger for males and females with very small and large skinfold thick-

ness.Highervariability in skinfold thicknessmeasures than inmeasures

of waist circumference and waist‐to‐height ratio were also observed.

The descriptive analysis suggests that the number and shape of

BMI trajectories are more similar to those of waist circumference and

waist‐to‐height ratio than to those of skinfold thickness. In males,
although the number of trajectories was similar across indicators,

only the skinfold thickness models yielded decreasing trajectories. In

females, both the number and shape of BMI trajectories were

different from those of skinfold thickness which again, were the only

models that yielded decreasing trajectories.

Measurement issues could explain the differences between BMI

and skinfold thickness trajectories. For example, it may be more

challenging to obtain accurate skinfold thickness readings in partici-

pants with overweight and large skinfold thicknesses, a known limi-

tation of these measures,5 which could have resulted in these

participants being classified differently according to skinfold thick-

ness versus BMI. Alternatively, larger BMI values may have been

indicative of muscle than fat mass. Differences between trajectories

may also relate to the data‐driven nature of trajectory modeling.

Trajectory modeling is notoriously sensitive to distributional as-

sumptions and outliers,36,37 and the variability in skinfold thickness

indicators may have led to different numbers and shapes of trajec-

tories compared to BMI. Further, most of the estimated trajectories

were parallel, suggestive that individual trajectories were distributed

on a continuum rather than reflective of distinct patterns. In such

cases, trajectory modeling produces a large number of trajectories,38

a phenomenon related to variability in the data which may explain

some of the variation in the number of trajectories across indicators.

F I G U R E 2 Group‐based trajectories of BMI, subscapular skinfold thickness, triceps skinfold thickness, waist circumference, and waist‐to‐
height ratio in females

SYLVESTRE ET AL. - 715
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The data‐driven nature of trajectory modeling makes it chal-

lenging to adequately measure agreement between estimated tra-

jectories. Araújo et al.7 was the only study to compare BMI

trajectories with waist circumference trajectories. Kappa coefficients

were computed in that study because both indicators yielded the

same number and shape of trajectories and thus could be labeled

similarly (e.g., “normal” “high declining,” “high increasing”). Although

similar numbers of trajectories across adiposity indicators – espe-

cially in males – were found in this study, it was not possible to

calculate Kappa coefficients due to differences in the number and

shapes of trajectories and the lack of a clear rank‐order of trajec-
tories across indicators. Because Araújo et al.7 used ‘interpretability’

to select the number of trajectories, it is possible that the Kappa

coefficients were artificially increased by selecting models with

identical number of trajectories. As recommended in recent trajec-

tory modeling guidelines,23,24 the same number of trajectories across

indicators was not forced in this study because it may lead to ill‐fitted
models that do not adequately represent the data.39

Implications of this study's findings relate to the aim of the

trajectory analysis. When the objective is to predict cardiometabolic

outcomes in adulthood (e.g., incident hypertension),3 then the tra-

jectory of greatest interest is likely the highest one because adiposity

often tracks from childhood to late adulthood40 and is associated

with higher cardiometabolic risk.3 In this case, the five adiposity in-

dicators likely perform similarly because they all identified a top

similarly‐sized trajectory that was distinct from the other trajec-

tories. Further, the ability of the adiposity indicator to identify tra-

jectories of persons with low to normal adiposity is of less

importance because the difference in future cardiovascular risk is

likely small in size and health impact.

If the aim however is to accurately describe patterns of changes in

fat mass during adolescence or to understand the distribution of fat

mass in individuals with excess weight or obesity, then caution is

needed since different indicators yielded different trajectories. In this

analysis, the only adiposity indicator that suggested decreases in fat

masswith agewere the skinfold thicknessmeasures. Further, although

all indicators identified a small group of individuals with higher

adiposity, they differed in how they categorized the 40%–60% of in-

dividuals with the lowest adiposity levels. For example, the two tra-

jectories with the lowest values of BMI comprised 51% of males while

the same trajectories in subscapular skinfold thickness consisted of

77% of males. Alternative metrics such as differences in adiposity as a

function of age (e.g., velocity) or adiposity peaks may provide more

accurate descriptions of evolution in fat mass than trajectories.41,42

Furthermore, if the aim of trajectory modeling is to develop screening

tools for cardiometabolic risk in youth, then single point measures of

BMI and waist‐to‐height ratio in youth may be sufficient and more
cost‐effective since they preclude collection of repeated measures.43

Strengths of this study include use of several adiposity indicators

over 12 years and that recent guidelines in selecting optimal trajec-

tory models were followed to minimize the possibility of producing

spurious trajectories and to ensure that trajectories reflected pat-

terns in the data. Limitations include lack of more accurate measures

of percent body fat (e.g., DEXA) and lack of ethnic diversity in the

cohort. While lack of data on pubertal stage is a limitation, age is

more strongly associated with changes in fat mass than pubertal

stage.44,45 Because participants lost‐to‐follow‐up weighed more and
had higher BMI and larger waist circumferences, differences across

adiposity indicators may have been underestimated since measure-

ment errors are more likely in individuals with obesity.5

5 | CONCLUSION

Sex‐specific BMI trajectories were similar to those of waist circum-
ference and waist‐to‐height ratio. However, standardized BMI and
skinfold thickness values differed at the low and high ends of the

distribution. Explanations for these differences include the data‐
driven nature of trajectory modeling and that BMI and skinfold

thickness do not capture fat mass equivalently across levels of

adiposity. Implications of this non‐equivalence are more important
for studies that aim to describe changes in fat mass in youth than for

studies aiming to predict future health outcomes of excess adiposity.
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