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Abstract 

 

Since the start of the 21st century, few advances have had as far-reaching impact in science as the 

widespread adoption of artificial neural networks in fields as diverse as fundamental physics, 

clinical medicine, and psychology. In research methods, one promising area for the adoption of 

artificial neural networks involves the analysis of single-case experimental designs. Given that 

these types of networks are not generally part of training in the psychological sciences, the 

purpose of our paper is to provide a step-by-step introduction to using artificial neural networks 

to analyze single-case designs. To this end, we trained a new model using data from a Monte 

Carlo simulation to analyze multiple baseline graphs and compared its outcomes to traditional 

methods of analysis. In addition to showing that artificial neural networks may produce less error 

than other methods, this tutorial provides information to facilitate the replication and extension 

of this line of work to other designs and datasets.  

 Keywords: artificial intelligence, deep learning, error rate, machine learning, n-of-1 trial, 

single-case designs 
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Tutorial: Artificial Neural Networks to Analyze Single-Case Experimental Designs 

 In 2019, Yoshua Bengio, Geoffrey Hinton, and Yann LeCun received the A. M. Turing 

prize, often referred to as the Nobel Prize in computing, for revolutionizing artificial neural 

networks and deep learning (Association for Computing Machinery, 2019). The development of 

deep learning networks has ushered a new era in artificial intelligence research. Notably, these 

networks have led to far reaching developments in image classification (Rawat & Wang, 2017), 

video analysis (Wu et al., 2018), and natural language processing (Young et al., 2018), which 

have been widely adopted by large technology companies.  

In recent years, the application of artificial neural networks has moved into new fields 

such as healthcare, education, and psychology (Coelho & Silveira, 2017; Kaur & Sharma, 2019; 

Okubo et al., 2017; Miotto et al., 2018; Pham et al., 2017). The field of medicine has adopted 

neural networks for decisional support. For example, neural networks are commonly used in 

oncology for detecting various types of cancer, in orthopedics for diagnosis and prognosis related 

to skeletal conditions, and in cardiology for predicting risk of heart attack (Haglin et al., 2018). 

These tools allow clinicians to make decisions relying not only their own learning histories, or 

contact with the literature, but on demonstrably accurate models. In education, large datasets 

have allowed researchers to use neural networks to predict student academic performance. For 

instance, Amrieh et al. (2016) relied upon a large dataset that contained features consisting of 

student demographics, parent involvement, and in-class behavior to predict student achievement. 

The authors achieved these results with large amounts of data that could be collected from 

learning management systems.  

Artificial neural networks have also produced an impact on psychological research. In 

experimental examples of neural networks, some studies have examined the use of artificial 
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neural networks to develop and test models of behavior (Burgos 2003, 2007; Ninness & Ninness, 

2020). In applied research examples, Linstead et al. (2015, 2017) have used neural networks to 

solve predict which children with autism spectrum disorders benefit from early intensive 

behavioral intervention whereas other researchers have applied neural networks to the 

measurement of behavior (Dufour et al., 2020; Min & Fetzner, 2019; Rad & Furlanello, 2016). 

Another fruitful area of research has involved using neural networks to improve the diagnosis of 

psychological disorders (Kaur & Sharma, 2019). These previous examples show the diversity 

and potential applications of neural networks in psychological research.  

In research methods, one promising area for the adoption of artificial neural networks 

involves the analysis of single-case experimental designs (Lanovaz et al., 2020). Single-case 

experimental designs, often referred to as n-of-1 trials in the field of medicine, involve the 

repeated measurement of a dependent variable in the absence and presence of an independent 

variable (Smith, 2012). While repeatedly measuring the dependent variable, the experimenter 

manipulates the presentation of the independent variable in such a way to control for the 

potential effects of confounding variables (e.g., maturation, history; see Kratochwill et al., 2010 

for thorough review of the topic). In the psychological and educational sciences, researchers 

have widely adopted the use of single-case research in both basic and applied research (Kazdin, 

2019; Machalicek & Horner, 2018; Shadish & Sullivan, 2011; Soto, 2020). Moreover, 

practitioners in many subfields of psychology are strongly encouraged to use single-case designs 

to monitor and assess the effects of interventions in their practice (Cooper et al., 2019; Kazdin, 

2011; Page & Thelwell, 2013). In medicine, several researchers have also advocated for the 

adoption of single-case design to support the development of personalized and precision 

medicine (Davidson et al., 2018; Schork, 2015). As such, single-case experimental designs are 
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common research methods that have transformed, and may continue to transform, how we 

conduct research and practice in diverse fields.  

Despite their widespread adoption, one issue with single-case experimental designs is that 

visual analysis is often described as the gold standard for determining whether an observed 

change is significant (Manolov & Vannest, 2019). Using visual analysis as a gold standard is a 

controversial and questionable practice because researchers have found it to be unreliable (Ninci 

et al., 2015). This reliance on visual analysis may turn away researchers and practitioners who 

want to adopt a rigorous, empirically supported approach to data analysis.  

To address this issue, researchers have proposed using different methods to analyze 

single-case designs including randomization tests (e.g., Bouwmeester, & Jongerling, 2020; Levin 

et al., 2018), traditional statistics (e.g., Harrington & Velicer, 2015), and visual aids (e.g., Fisher 

et al., 2003; Manolov & Vannest, 2019), but none have become well-established and visual 

analysis remains the norm. Nonetheless, the most studied method is the dual-criteria method, a 

visual aid (Fisher et al., 2003). The dual-criteria method involves tracing a continuation of the 

mean and trend lines from baseline phase unto to the treatment phase and examining the number 

of points that fall above (or below) both lines. If the number of points is equal or higher than a 

certain threshold (derived from the binomial distribution), the experimenter may conclude that a 

significant changed has occurred. Although the most studied method, the dual-criteria method 

has limited power, which remains a serious concern for researchers (Fisher et al., 2003; Manolov 

& Vannest, 2019; Lanovaz & Turgeon, 2020). 

In a recent proof of concept, Lanovaz et al. (2020) found that artificial neural networks 

produced less decision-making errors and had more power than the dual-criteria method. 

However, the study limited its analysis to quasi-experimental single-case designs (i.e., AB 
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design). To make these models useful for researchers, developing models to analyze 

experimental single-case designs (e.g., multiple baseline, changing-criterion, alternating 

treatment) appears essential. Furthermore, researchers should conduct additional studies on 

integrating different feature sets as input, using datasets with other distributions, and tuning the 

hyperparameters during training. One challenge in extending and replicating this line of work is 

that many researchers and practitioners remain unfamiliar with artificial neural networks, their 

application to single-case designs, or both. Our tutorial aims to address this barrier by explaining 

how to develop, train, and test artificial neural networks for analyzing single-case experimental 

designs.  

Artificial Neural Networks  

Artificial neural networks consist of neurons and layers interconnected together 

(Goodfellow et al., 2016). Figure 1 presents the artificial neural network used as part of the 

current tutorial. As shown in Figure 1, neurons in one layer are generally connected to one or 

more neurons in another layer, which form a network (a type of directed, weighted graph). The 

connections involve algorithms (i.e., sets of computer instructions designed to solve problems) 

that transform the data from one layer to another. During this transformation, the network applies 

mathematical operations to the input neurons to produce a value for the output neuron.  

Artificial neural networks typically consist of three types of layers: an input layer, a 

hidden layer, and an output layer. The input layer contains the features of the data. The features 

are the measured characteristics of the data that are used by the network to produce a prediction 

(Pereira et al., 2009). In single-case designs, the mean of all points in a given phase could 

represent one continuous feature. Another feature could be categorical such as the data path trend 

(e.g., downward, upward, flat) for each phase. The network then transforms the data from the 
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input layer prior to passing it to the hidden layer using mathematical operations. This 

transformation includes an activation function, which allows the modeling of nonlinear patterns. 

The product of this transformation is a pre-determined number of neurons in the hidden layer. 

Many approaches exist for determining the number of hidden layers, but these simply serve as an 

initial architecture for approaching the problem (Panchal et al., 2011). For most simple datasets 

(as in single-case designs), having one or two hidden layers is generally sufficient to 

approximate most nonlinear functions (Heaton, 2015). If the artificial neural network contains a 

single hidden layer, the neurons from the hidden layer are once again transformed by an 

activation function to produce the output layer.  

If a neural network contains no hidden layer and the activation function is sigmoid (often 

used for binary classification), the network is roughly equivalent to a logistic regression (i.e., a 

statistical approach designed to predict the value of a categorical variable). If the network 

contains no hidden layers and has a linear activation function, it is nearly equivalent to linear 

regression (i.e., a statistical approach designed to predict a dependent variable using a straight 

line; Perez & Reyes, 2001). Therefore, the presence of a hidden layer or hidden layers makes a 

significant difference as does the activation function. A deep learning network refers to an 

artificial neural network that has more than one hidden layer (Deng, 2014). In this case, the 

algorithm passes the data from one hidden layer to another. 

When conducing classification tasks, the output layer contains the class label. A class 

label is the property that we are interested in predicting or classifying. The network uses the 

value of class labels to evaluate the degree of error that it produces (Pereira et al., 2009). In 

single-case analysis, this class label would typically involve whether the graph shows a 

significant change or not. When training a model, the network uses the input data to predict class 
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label values. The predicted class label values are then compared to the true class label values 

using a loss function. This computation provides the error for the predictions. Then, the 

algorithm backpropagates the derivative (i.e., the slope of the tangent) of this error to the 

previous layers by updating the model. The process then repeats itself, which makes the model 

more and more precise in estimating the true values of the class labels (Noriega, 2005), which is 

not unlike a shaping procedure used in learning theory. Each iteration of this process is referred 

to as an epoch.  

For efficiency, the implementation of neural artificial neural networks relies on linear 

algebra. That is, the computations for calculating the output involve conducting operations on 

vectors and matrices. Moreover, the backpropagation of the error necessitates calculus to 

uncover its derivative. Although not essential for developing novel networks, a comprehension 

of the mathematical foundations underlying them may prevent misapplications. To this end, we 

present the mathematical foundations of our artificial neural network in Appendix A.  

Preliminary Steps 

Artificial neural networks require intensive and complex computations that would be 

challenging for someone without training in mathematics or software engineering to implement. 

Therefore, software engineers have developed packages in common programming languages to 

facilitate implementation. Arguably, one of the most popular packages for artificial neural 

networks is tensorflow for Python, which we will use as part of the current tutorial. The first step 

is to install a Python environment as well as the necessary packages to run the code. For those 

unfamiliar with coding in Python, we recommend that you complete the steps described in 

Appendix B. For those who are familiar, the procedures in the current study were tested using 

version 3.7.9 of Python, version 1.2.1 of pandas, version 0.23.2 of scikit-learn and version 2.3.0 
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of tensorflow. Prior to beginning the procedures, you should also download the data and code 

available in our online repository at: https://osf.io/68kgy/ (Lanovaz, 2021). The lines of code 

described in the text are available in the “ANN_step-by-step.py” file to facilitate copying and 

pasting.  

Training Dataset 

 When developing new decision-making models, we need a dataset for which we already 

have the class labels to train the model. For example, Lanovaz et al. (2020) had two expert visual 

analysts categorize 1,070 graphs from theses and dissertations as showing a clear change or no 

clear change. The drawback with using nonsimulated data is that we have no way of knowing the 

true outcome displayed by the graph. Assume that a visual analyst concludes that a graph shows 

a clear change. How can one be sure that the graph represents a true change in behavior? Maybe 

the observed change was the result of some uncontrolled variable outside the measurement 

setting. Validating visual analysis with statistics or multiple raters may increase the believability 

of the visual analysis of single-case designs, but even then, we can never know with certainty 

whether the graph displays a true change or not as no method has an accuracy of 100%. The only 

conclusion that may be drawn is that the raters or the different methods agree or disagree with 

each other (commonly referred to as correspondence; see Ford et al., 2020; Wolfe et al., 2018).  

 An alternative to using real-life data is to simulate data using a Monte Carlo simulation. 

Monte Carlo simulation is a resampling method that involves using a computer to generate inputs 

from a known distribution (Kroese et al., 2014). In effect, researchers may apply this approach to 

create experimental data. For example, Fisher et al. (2003) used Monte Carlo simulation to 

evaluate the dual-criteria method, the visual aid that they designed to support practitioners and 

researchers in analyzing single-case graphs. The two advantages of Monte Carlo simulation are 

https://osf.io/68kgy/
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that (a) the experimenter knows the true values of the class labels in the generated dataset, and 

(b) it is possible to generate a lot more single-case graphs that could be realistically extracted 

elsewhere (e.g., 100,000), thus saving much time and effort while still obtaining valid results.  

As the most popular single-case design in research is the multiple baseline design (Coon 

& Rapp, 2018; Shadish & Sullivan, 2011; Smith, 2012), our tutorial will develop a model to 

analyze such designs. Figure 2 presents a multiple baseline graph. The multiple baseline design 

involves repeatedly measuring a dependent variable across behaviors, contexts or subjects (i.e., 

tiers) during a baseline condition (Phase A), and then sequentially introducing the independent 

variable in each tier (Phase B). More specifically, the experiment introduces the independent 

variable in a tier only when a change was observed in the prior tier. This manipulation allows for 

the control of maturational and historical variables. Finally, the analysis involves examining 

whether changes in the dependent variable coincide with the introduction of the dependent 

variable in each tier.  

Using procedures previously described by Lanovaz and Turgeon (2020), we generated 

100,000 multiple baseline graphs with three tiers. For each graph, the code produced three data 

series with 14 points generated from a normal distribution with a mean of 0 and standard 

deviation of 1. To remain consistent with Lanovaz and Turgeon, the first tier had 3 points in 

Phase A and 11 points in Phase B, the second tier had 6 points in Phase A and 8 points in Phase 

B, and the third tier had 9 points in Phase A and 5 points in Phase B. The algorithms added a 

constant of 10 to all values to prevent negative values. The final step involved adding a 

standardized mean difference (SMD) to half of the graphs (i.e., 50,000) to simulate an effect and 

test for power. Our program randomly selected the SMD value for each graph from a uniform 

distribution that ranged from 1 to 3. Then, this value was added to the Phase B points across all 
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tiers. This tutorial does not aim to teach how to conduct Monte Carlo simulations, but our code 

remains available for inspection and replication in the repository (see “generate_mb.py” file for 

code). 

Features 

As indicated previously, features function as the input data for the algorithm. Because the 

phase lengths and measurement scales may differ across multiple baseline designs, we did not 

use the actual data point values as features. Our code transformed each tier to a z-score. A z-

score is a dimensionless measure that represents the number of standard deviations that a point is 

above or below the mean. This transformation produced graphs that had similar properties: Each 

graph had mean of 0 and a standard deviation of 1. Computing a z-score involved subtracting the 

mean of all points in a graph from the value of a specific point and dividing this result by the 

standardized deviation of all points in the graph. Then, our program extracted eight continuous 

features for each tier of the multiple baseline graph: 1) the mean of points in Phase A, 2) the 

mean of points in Phase B, 3) the standard deviation of points in Phase A, 4) the standard 

deviation of points in Phase B, 5) the intercept of the least squares regression line (LSRL) for 

Phase A, 6) the slope of LSRL for Phase A, 7) the intercept of LSRL for Phase B, and 8) the 

slope of LSRL for Phase B. These features represent the level, variability, the immediacy, and 

trend for each phase.  

At this point, the reader should note that these features were selected rather arbitrarily to 

represent important dimensions of single-case graphs and to remain consistent with Lanovaz et 

al. (2020) who used the same features for the analysis of AB graphs. That said, researchers and 

practitioners extending this line of research should strongly consider testing other combinations 

of variables or selecting a systematic approach to identifying the relevant features (see Cai et al., 
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2018; Visalakshi & Radha, 2014). The file “TrainingFeatures.csv” shows how the data were 

organized for our study. You should download the previous file as well as all other .csv data files 

prior to starting the next steps. In .csv files, the data for each row are entered in different lines 

whereas commas in a row indicate a change in column. Note that you may open, write and read a 

.csv file with common spreadsheet programs such as Apple Numbers®, Microsoft Excel® and 

Google Sheets ®. To load the data, open your integrated development environment and set your 

working directory to the location of the downloaded files (see Appendix A for help). Run the 

following lines of code to import the features:  

1 #Load features 
2 import pandas as pd 
3 x_train = pd.read_csv("TrainingFeatures.csv", header = None) 
4 x_train = x_train.values 
5 

 

The second line imports a package (pandas) to read .csv files. The third line loads the features 

and the fourth line transforms the data frame to a matrix, which is necessary for training the 

artificial neural network. The variable x_train now contains the 24 features for each of the 

100,000 graphs. The data in this variable should appear in the Variable Explorer (if you are using 

an integrated development environment).  

Labels 

The class label involved a binary variable: change (value = 1) or no change (value = 0). 

In our example, the label was 0 for the 50,000 graphs showing no effect (i.e., no SMD added) 

whereas the label was 1 for the 50,000 graphs showing an effect (i.e., SMD added to points of 

Phase B). You must now load the labels to train the artificial neural network: 

6 #Load labels 
7 y_train = pd.read_csv("TrainingLabels.csv", header = None) 
8 y_train = (y_train.values).flatten() 
9 
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The previous code imported the labels (line 7) and transformed the structure of the data to a 

vector (line 8). The y_train variable represents the data labels for the 100,000 graphs in a vector 

format.  

Training the Model 

The next step involves building our artificial neural network. Figure 1 presents the 

artificial neural network tested as part of the current study. The network has 24 input features, 12 

hidden neurons and 1 class label. The 12 hidden neurons were fixed at a little less than half the 

sum of features and labels for each sample (Heaton, 2015). The hidden layer is dense because 

each neuron is connected with every other neuron in the prior and following layers. When each 

neuron is connected with all neurons in the previous and following layers, we can refer to the 

network as a fully-connected artificial neural network or as a dense neural network. To build the 

network, the first step is to import the necessary packages and methods:  

10 #Import packages and methods 
11 import numpy as np 
12 np.random.seed(48151) 
13 import tensorflow as tf 
14 from tensorflow.keras.layers import Dense 
15 from tensorflow.keras.models import Sequential 
16 tf.random.set_seed(48151) 
17 

 

We recommend that you set the random seeds at the same value as us to produce consistent 

results (see lines 12 and 16).  

Next, you create a model by running the following lines of code:  

18 #Create an artificial neural network 
19 ann = Sequential() 
20 #Add first hidden layer 
21 ann.add(Dense(12, input_shape=(24, ), activation = "relu")) 
22 #Output layer 
23 ann.add(Dense(1, activation='sigmoid'))   
24 #Loss function 
25 ann.compile(loss='binary_crossentropy') 
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26 

 

Line 19 informs Python to create a new neural network, named ann, to which we will add layers. 

Line 21 plays two roles: (a) it provides information on the number of features that the model 

should take as input and (b) it adds the hidden layer. In our case, the number 12 represents the 

number of neurons in the hidden layer, input_shape indicates that we have 24 features organized 

as a vector, and activation specifies that we are using the relu function. Line 23 provides details 

regarding the output layer: a single class label with the sigmoid activation function, which we 

used to remain consistent with Lanovaz et al. (2020). The last line compiles the model and tells it 

to use the binary cross-entropy function for computing the loss (deviation of the predictions from 

the true values).  

 The subsequent step is to train the model with the data by running the following line of 

code:  

27 #Train model 
28 ann.fit(x_train, y_train, epochs = 20, class_weight = {0:1, 1:0.25}) 
29        

 

These lines of code train the model to recognize the patterns in the data. The results are a model, 

ann in our example, which we will use to predict the labels on novel untrained features. The 

epoch parameter represents the number of times the model updated itself (i.e., computed the 

error and backpropagated the gradient to the previous layers). The class_weight parameter 

decreases the relative weight of false negatives when compared to the false positives in the 

computation of the overall error of the model. Manipulating this parameter appears important 

because researchers are typically more concerned with false positives. In our case, we chose a 

ration of 1:4 because acceptable values are typically .05 for Type I error rate and .20 for Type II 

error rate (i.e., power of .80).  
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Testing the Model 

Now that we have a trained model, the next step involves testing its appropriateness. 

When testing models, you should always use data that were not involved in training. In more 

psychological terms, testing models examines generalization to untrained exemplars. To test for 

generalization, we generated novel multiple-baseline graphs with different properties than those 

used during training.  

Test Dataset 

The test dataset involved a total of 2,000 graphs that were simulated in a manner similar 

to the training dataset, with the exception of autocorrelation1. Of those graphs, 1,000 showed an 

effect and the remaining 1,000 showed no effect. For each pair of graphs, the algorithm 

randomly selected an autocorrelation value from a normal distribution with a mean of .30 and a 

standard deviation of .15 and applied it to the error term, which is between the mean 

autocorrelations reported in the literature by two studies (Barnard‐Brak et al., 2021; Shadish & 

Sullivan, 2011).  This test dataset provides a unique opportunity to check for generalization as 

the data used for training in the current study had no autocorrelation programmed. To load the 

test data, you should write and run the following lines of code:  

30 #Import test data 
31 x_test = pd.read_csv("TestFeatures.csv", header = None) 
32 y_test = pd.read_csv("TestLabels.csv", header = None) 
33 x_test = x_test.values 
34 y_test = (y_test.values).flatten() 
35 

 

In the previous block of code, x_test represents a matrix of the test features whereas y_test 

represents a vector for the true labels (i.e., ground truth) of the test set.  

 
1 Autocorrelation represents the correlation between the value of a point and the value of the point (or points) that 

precedes it.  
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Predictions 

 The model may now make predictions by using the x_test matrix. To do so, you should 

run the following:  

36 #Get predictionss on test set 
37 predictions = np.round(ann.predict(x_test)) 
38 

 

The code ann.predict(x_test) predicts the class labels based on the features in x_test and the ann 

model that we had previously developed. The predictions need to be rounded to 0 or 1 as the 

network provides a continuous probability between 0 and 1. The result produces a vector named 

predictions, which shows the responses of the model to each of the 2,000 graphs.  

Outcome Measures  

 When examining the validity of different methods to analyze single-case graphs, the three 

main concerns are typically accuracy, Type I error rate, and power (Manolov & Vannest, 2019). 

Accuracy represents to what extent the predictions agree with the true values. To compute 

accuracy, you should divide the number of agreements by the number of graphs:  

39 #Accuracy measure 
40 accuracy = np.sum(predictions.flatten() == y_test)/2000 
41 print(accuracy) 
42 

 

The above code computes accuracy (line 40) and then prints it (line 41) in the console. Your 

console (bottom right panel of the spyder integrated development environment) should show that 

this accuracy is .9475.  

However, accuracy does not provide information on the type of error produced by the 

model. The next step is thus to calculate Type I error rate. A Type I error, sometimes referred to 

as a false positive, represents the probability of a model predicting a significant effect when the 
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graph shows no true effect. We can compute it by dividing the number of times that the model 

predicted an effect in graphs that show no true effect by the total number of graphs showing no 

true effect:  

43 #Type I error rate 
44 idx_noeffect, = np.where(y_test == 0) 
45 typeIerror = np.sum(predictions[idx_noeffect])/len(idx_noeffect) 
46 print(typeIerror) 
47 

 

The idx_noeffect variable identifies the graphs that show no true effect. The following line 

computes the proportion of graphs with no true effects for which the model erroneously 

identified an effect. The final line prints Type I error rate, which is .024. Finally, power 

represents the proportion of true positives that were correctly identified by the model. To 

compute power, the program must divide the number of times that the model detects an effect in 

graphs showing a true effect by the total number of graphs showing a true effect:  

48 #Power 
49 idx_effect, = np.where(y_test == 1) 
50 power = np.sum(predictions[idx_effect])/len(idx_effect) 
51 print(power) 
52 

 

First, the code identifies graphs that show true effects. Then, line 50 computes this power and the 

last line prints the power. The console should indicate a power of .919 for our model.  

Comparison Measures 

 Even though the previous values may seem adequate, the predictions of artificial neural 

networks should be compared to another methods of analysis. Arguably, the most popular 

method to analyze AB-type designs in the research literature is the dual-criteria method (Fisher 

et al., 2003). Implementing the dual-criteria method involves drawing a continuation of the mean 

and trend lines from baseline to treatment and comparing the number of points that fall above (if 
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an increase is expected) or below (if a decrease is expected) both lines with a preset threshold. 

Our analyses applied the dual-criteria method to each tier of the multiple baseline design 

individually.   

If the number of points falling above both lines met or exceeded the threshold, we categorized 

the tier as showing a clear change. If the value remained below the threshold, the tier was rated 

as showing no clear change. When two or more tiers showed a clear change, the whole multiple 

baseline graph was categorized as showing a significant change. Otherwise, the graph was 

categorized as nonsignificant. We set the criteria at two or more tiers as prior research has 

suggested that requiring all three tiers to show a clear change may be overly stringent and 

produce inadequate power (Lanovaz & Turgeon, 2020; Novotny et al., 2014; Wolfe et al., 2016).  

 Table 1 (upper section) compares the values obtained using our neural network with those 

obtained from the dual-criteria method on the simulated test dataset. Clearly, the artificial neural 

network improved accuracy over the dual-criteria method. The two methods produced similar 

results for Type I error rate. The main difference lied in power with the artificial neural network 

producing results with significantly less false negatives. To further test for generalization, we 

repeated the analysis with the 300 graphs reported in Experiment 2 of Turgeon and Lanovaz 

(2020). One advantage is that Turgeon and Lanovaz also presented visual analysis data, which is 

described as a gold standard in the analysis of single-case designs by some researchers (Manolov 

& Vannest, 2019). The lower half of Table 1 shows the results. Consistently with the initial 

comparison with simulated graphs, our neural network improved both overall accuracy and 

power. To replicate the procedures with the Turgeon and Lanovaz data, you may repeat the code 

described in the Testing the Model section while replacing the “TestFeatures.csv” and 
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“TestLabels.csv” files by “LanovazandTurgeon(2020)features.csv” and 

“LanovazandTurgeon(2020)labels.csv”, respectively.  

Hyperparameter tuning  

Our model produced high accuracy on its first run while using parameters similar to those 

reported by Lanovaz et al. (2020). Models may produce acceptable predictions with default 

parameters at times, but most cases require hyperparameter tuning in order to achieve desired 

levels of accuracy. Hyperparameter tuning involves directly manipulating parameters that change 

the model architecture or learning rate in some way (Yang & Shami, 2020). These 

hyperparameters are a separate type of parameter from those which are updated as part of the 

learning process. The idea is to tune these hyperparameters to maximize an accuracy measure or 

minimize an error measure on a validation set.  

Number of Neurons in the Hidden Layer 

 As part of the tutorial, we will present how to manipulate one common hyperparameter in 

artificial neural networks: the number of neurons. During hyperparameter tuning, we compare 

the accuracy (or alternatively the error) of models with different hyperparameter values and keep 

the model that produces the best outcome. Our network contained 12 neurons in our hidden 

layer, which represents half the number the number of input neurons. This value is only one of 

numerous approaches to initially set the number of neurons (Heaton, 2015). To find the optimal 

number of hidden neurons, the preferred approach involves conducting hyperparameter tuning.  

 Importantly, we cannot assess the accuracy of varying the number of hidden neurons 

directly on the training data as the model may produce overfitting (see below for discussion of 

overfitting). Similarly, it is also unadvisable to use the test data (in our case the Lanovaz and 

Turgeon dataset) because the model may fail to generalize to novel datasets. To address this 
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issue, experimenters may further subdivide their training data into two sets when conducting 

hyperparameter tuning: the training set and the validation set. The network uses the training set 

to train the model (as we have done previously) whereas the validation set is used to check 

accuracy only. The first step is thus to separate our training data into two sets using the following 

code:  

53 #Split training dataset for hyperparameter tuning  
54 from sklearn.model_selection import train_test_split 
55 x_train, x_valid, y_train, y_valid = train_test_split(x_train, y_train,  
56                                         test_size=0.5, random_state=48151) 
57 

 

Line 54 imports a method to split the dataset in two. The next line splits the original training 

dataset into two sets: a training set and a validation set. The test_size parameter indicates that 

50% of the data should be moved to the validation set and the remaining to the training set. This 

value was used to have the same amount of data in both sets. You should keep in mind that you 

can conduct hyperparameter tuning on the test_size parameter in the same manner in which we 

are currently doing for neurons. For the pedagogical purposes, we focus on a single 

hyperparameter at a time.  

Now that we have a training and a validation set, you should provide a list of the values 

to tune the models. In our initial example, we set the number of neurons at 12. We can assess 

whether more or less neurons may produce more accurate models. The following lines produce a 

list containing the values 3, 6, 9, 12, 15, 18, 21, 24 to test, which will be used to set the number 

of hidden neurons:  

58 #List of number of neurons 
59 nbneurons_list = range(3,25,3) 
60 
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Before assessing the model, we must also initialize the best value of accuracy and the optimal 

number of neurons associated with it:  

61 #Initialize best accuracy and the optimal number of neurons at 0 
62 best_accuracy = 0 
63 optimal_nbneurons = 0 
64 

 

The next step is to create a loop that will assess the accuracy of the models for each 

number of neurons:  

65 #Repeat for each number of neurons value 
66 for nbneurons_value in nbneurons_list: 
67   #Create model 
68   ann = Sequential() 
69   ann.add(Dense(nbneurons_value, input_shape=(24, ), activation = "relu")) 
70   ann.add(Dense(1, activation='sigmoid')) 
71   ann.compile(loss='binary_crossentropy') 
72   #Train model 
73   ann.fit(x_train, y_train, epochs = 20, class_weight = {0:1, 1:0.25}) 
74   #Predict result on validation set 
75   predictions = np.round(ann.predict(x_valid)) 
76   #Accuracy on validation set 
77   accuracy = np.sum(predictions.flatten() == y_valid)/len(y_valid) 
78   #If model improves accuracy, save model, accuracy, and number of neurons  
79   if accuracy > best_accuracy: 
80     ann.save('best_ann.h5') 
81     best_accuracy = accuracy 
82     optimal_nbneurons = nbneurons_value 
83 

 

The code repeats the initial analysis for each number of neurons value in our list using the loop 

that begins on line 66. You may recognize lines 67 to 77, which are nearly identical to our initial 

training. The only difference is that accuracy is computed on the validation data rather than the 

test data (to prevent overfitting). Line 79 compares the accuracy of the current model with the 

best model. If the new model is more accurate, the code saves the model, the new best_accuracy 

value and the optimal number of neurons. The model that produces the best accuracy should be 

saved as best_model.h5 in your working directory. In our example, we chose accuracy as our 
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criterion. Researchers may use other measures such as kappa, Type I error rate or even power to 

select the best model.  

 The final step involves examining the predictions produced by our best model using the 

following code:  

84 #Check predictions and outcomes on test data from Lanovaz & Turgeon(2020) 
85 best_ann = tf.keras.models.load_model('best_ann.h5') 
86 predictions = np.round(best_ann.predict(x_test)) 
87 accuracy = np.sum(predictions.flatten() == y_test)/2000  
88 print(accuracy) 
89 typeIerror = np.sum(predictions[idx_noeffect])/len(idx_noeffect) 
90 print(typeIerror) 
91 power = np.sum(predictions[idx_effect])/len(idx_effect) 
92 print(power) 
93 

 

Once again, these lines of code should seem familiar to you. The only differences are that we 

load the best model (line 85) and we replaced ann by best_ann. The variable optimal_neurons 

tells us that the best model had 6 neurons. At .947, the accuracy of this model is nearly identical 

to the one reported in our initial analysis. The Type I error rate and power are both marginally 

higher in the tuned neural network at .032 and .926, respectively. Thus, conducting 

hyperparameter tuning on the number of neurons did not improve our predictions. Two 

hypotheses may explain this observation. First, accuracy was already near its ceiling, so it was 

difficult to improve. Second, we based our starting hyperparameter values on prior research, 

which may explain why our values may have been near-optimal from the onset. When using 

artificial neural networks, this unusual result is an exception rather than the norm. Typically, 

hyperparameter tuning will improve models considerably, which is particularly true for real-life 

data with highly variable distributions that may not be as stable as simulated data.  

Other Hyperparameters 
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In the previous example, we tuned a single hyperparameter. With a neural network, other 

hyperparameters include the number of epochs, number of hidden layers, number of mini-

batches, activation function, loss function, learning rate, momentum, and regularization methods 

(Koutsoukas et al., 2017). You may also test different combinations of hyperparameters 

simultaneously by embedding multiple loops. Given that we have already coded an example to 

conduct tuning with one hyperparameter, the focus of the current section will be on describing 

the other important hyperparameters that experimenters are likely to manipulate and their 

potential impact on the predictions.  

The number of epochs is a central hyperparameter to tune for artificial neural networks. If 

you use too few epochs, the model may not produce optimal accuracy. Contrarily, having too 

many epochs will lead to overfitting. Despite being very accurate on the actual data, the models 

will struggle to generalize to untrained data. Hyperparameter tuning can thus support 

experimenters in identifying this optimal value2. A second hyperparameter to tune is the number 

of hidden layers. Our example contained a single hidden layer. Increasing the number of hidden 

layers may allow the model to learn more complex relationships in data (Goodfellow et al., 

2019). Adding a layer would simply involve repeating line 21 of our code while leaving out the 

input_shape parameter. As indicated earlier, deep learning networks have two or more hidden 

layers.  

To improve the computational efficiency of training, tensorflow uses mini batches to train 

models. During mini batch training, the network updates the model following a small number of 

 
2A more efficient way to tune the number of epochs in tensorflow than using a loop involves the ModelCheckpoint 

method (see https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ModelCheckpoint). When using 

ModelCheckpoint, the network will run through the epochs only once and keep the model with the highest accuracy 

or lowest error (depending on parameters set) without running a loop. 

 

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ModelCheckpoint
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samples instead of the entire sample (100,000 samples in our example). In the current tutorial, 

tensorflow used the default mini batch size of 32 samples. In addition to improving efficiency, 

using mini batches may facilitate convergence and reduce training time. Different sizes of mini 

batches may produce different results, which is why this hyperparameter is a common target for 

tuning. As noted earlier, the activation function is responsible for modeling more complex, 

nonlinear relationships in data. Figure 3 shows example of three popular activation functions that 

may be used with binary outcomes. To remain consistent with Lanovaz et al. (2020), we used the 

relu function (rectified linear unit) for the hidden layer and the sigmoid function for the output. 

Conducting hyperparameter tuning by testing different activation functions may have further 

improved the predictions.  

Another important hyperparameter for tuning models is the loss function. The loss 

function computes to what extent the predictions deviate from the true values. The network uses 

this loss to update the value during backpropagation of the gradient of the error. For training the 

model in the current tutorial, we used the binomial cross-entropy function, which is based on the 

logarithmic function. Other relevant options for binary classification that could be further tested 

during hyperparameter tuning include the hinge loss and squared-hinge loss functions. Finally, 

the experimenter may manipulate learning, momentum, and regularization. These 

hyperparameters influence how fast the model will converge (or learn) and promote 

generalization to untrained samples. Learning rate, momentum and some regularization 

parameters are regularly packaged into optimizers. The default optimizer to set these 

hyperparameters in tensorflow is called RMSprop. Alternatives include the adam, adagrad, and 

sgd optimizers. Reviewing the mathematical differences between these algorithms falls outside 
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the purpose of the current tutorial, but we recommend that you consult Luo et al. (2019) if you 

want more details about how each algorithm operates.  

Automated Tuning 

So far, we have focused on writing code manually to tune the hyperparameters. This step-

by-step approach was designed to facilitate the understanding of the logic underlying 

hyperparameter tuning. A second option for tuning hyperparameters that does not require as 

much in-depth knowledge is automated hyperparameter tuning. Researchers can tune 

hyperparameters automatically using a package known as AutoKeras. This approach may be 

especially helpful when researchers do not know which set of hyperparameters to start with. To 

use this package, we direct readers to use the same approach as in the current paper and then 

consult the documentation on how to use AutoKeras on tabular (structured) data at: 

https://autokeras.com.  

Application  

The ultimate purpose of developing novel neural networks is for researchers to apply 

them to empirical datasets. To explain how to apply a previously trained model, let’s assume that 

we want to assess whether the multiple-baseline graph depicted on Figure 2 displays an effect or 

not using our neural network. First, this procedure involves organizing the data in a spreadsheet 

(e.g., Google Sheets, Microsoft Excel, Apple Numbers). We recommend the spreadsheet format 

because spreadsheets are a common tool used by researchers to graph single-case data (Dixon et 

al., 2009; Lehardy et al., 2021). The spreadsheet should contain two columns with no header (see 

“application.xlsx” for an example). The first column includes the phase labels and the tier 

number in order. For example, “A1” represents a point associated with the first tier of Phase A 

whereas “B2” represents a point from Phase B in the second tier. The second column contains 

https://autokeras.com/
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the corresponding values for each point (i.e., the dependent variable). Note that we could also 

transpose the table so that the first row includes all the phase labels and the second row the point 

values.  

As indicated earlier, our model takes 8 features per tier as input (for a total of 24 

features): the mean of Phase A, the mean of Phase B, the standard deviation of Phase A, the 

standard deviation of Phase B, the intercept and slope of Phase A, and the intercept and slope of 

Phase B. To facilitate implementation, we wrote a function that extract these features 

automatically. You should download and save the “extract_features.py” and “application.xlsx” 

files in your working directory, and then run the following code:  

94 #Import data for a graph 
95 series = (pd.read_excel('application.xlsx', header = None)).values 
96 #Extract the features used by the program  
97 from extract_features import extractFeatures 
98 features = extractFeatures(series) 
99 

 

Line 95 imports the data from the .xlsx file and transforms it to matrix. If your data contains 

variables names, you should set the header parameter as True. The code then instructs Python to 

import the function extractFeatures (line 97) and then extracts the features (line 98). The result is 

a vector, named features, with 24 values.  

 The final step involves loading the model and applying it to the features extracted from 

our graph.  

100 #Import model 
101 best_ann = tf.keras.models.load_model('best_ann.h5') 
102 #Make prediction on graph 
103 prediction = np.round(best_ann.predict(features.reshape(1,-1))) 
104 print(prediction) 
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When conducting hyperparameter tuning, we saved our best neural network for future use (see 

line 80). Line 101 loads this model and labels it, best_ann. If you have been running the entire 

code from the beginning, the model should already be loaded (see line 85). Finally, line 103 

produces a prediction for this graph and line 104 prints the result. A value of 0 indicates no effect 

whereas a value 1 suggests an effect of the independent variable. In our example, the value is 1, 

indicating that the graphs show a clear change. This output value appears consistent with the 

patterns observed on Figure 2. For clarity, consistency and brevity, we presented the application 

of the neural network using a Python integrated development environment. Alternatively, 

researchers may develop user-friendly web or mobile apps with a Python framework (e.g., Kivy, 

Django, Flask) to share their artificial neural networks.  

Other Considerations 

Overfitting and Underfitting 

 When training novel models with artificial neural networks, experimenters should remain 

wary of two important phenomena: overfitting and underfitting. Overfitting relates to the concept 

of variance in machine learning, which represents the variability of the predictions when 

compared to the true values. Models with high variance may learn from irrelevant data (i.e., 

noise) within a training set. The model will then fail to generalize well to novel data (Mutasa et 

al., 2020). In contrast, underfitting occurs when the model fails to learn from important features. 

Underfitting relates to bias, which represents the difference between the predictions and the true 

values. A model that has a high degree of bias will be less complex and fit the training data less 

closely than a high-variance model (Hastie et al., 2016). A high bias model may fail to learn the 

relationship between important features (i.e., signal) and outputs within the dataset. Collectively 

bias and variance are two sources of error that scientists attempt to minimize during training and 
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validation. Minimizing both can be difficult which results in a trade-off between the two. 

Hyperparameter tuning also affects the degree to which a model may overfit or underfit the data, 

which is why a validation set is needed during training.  

Cross-Validation 

In the tutorial, we used a separate dataset from Lanovaz and Turgeon (2020) to examine 

the generalizability of our model. When researchers have insufficient data or access to a single 

dataset, an alternative is cross-validation. Cross-validation involves resampling a single dataset 

into two or more approximately equal-sized sets often referred to as folds and denoted by the 

letter k. At any one time, the algorithm should use a single fold to test or validate the model 

whereas the remaining folds train the model (Witten et al., 2017). When k is equal to two, one-

fold is used to train the model and the other is used to test for generalization. When k is greater 

than two, the algorithm should train the model on k-1 folds and test for generalization on the 

remaining fold (i.e., holdout fold).  

For example, a design with a k equal to three would involve using two folds to train the 

model and the third fold to test for generalization. Next, the cross-validation should repeat the 

procedures twice so that each fold is in the test fold exactly once. Importantly, the model is never 

tested on data on which it has been trained, meaning a new model is created each time a new fold 

is used for testing (Mahmood & Khan, 2009). Researchers commonly set the number of folds (k) 

at two, five, or ten (Rodriguez et al., 2010). Cross-validation returns an average score across the 

number of folds, which provides the user with an estimate of the generalizability of the model. In 

extreme cases, the number of folds can be equal to the number of samples in the set. This 

approach is known as leave-one-out cross-validation, and although quite computationally 

expensive, it is useful for small datasets because it provides a score with lower levels of errors 
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(i.e., difference between estimated and true accuracy) when compared with other values of k 

(Wong, 2015).  

Types of Networks 

 Researchers may explore other types of neural networks to train models to analyze single-

case graphs. A type of neural network known as a convolutional neural network (CNN) is 

especially effective at classification tasks involving images. For example, researchers have used 

CNNs in medicine to classify or detect anomalies in X-rays, MRIs, and other medical tests that 

produce an image of some kind (Anwar et al., 2018). Given the visual complexity of some of 

these images, using CNNs may accomplish similar gains in the analysis of single-case graphs. In 

other words, the CNN may use the image of a graph, rather than the dimensions of the data, as 

input features. Such an approach would allow practitioners to simply upload an image of their 

figure and receive the output.  

 Another type of network that may be of interest for the analysis of single-case graphs is 

the recurrent neural network (RNN). In RNN, the algorithm analyzes the series of features 

sequentially rather than concurrently. That is, the order in which features appears becomes 

important to the analysis. In experimental psychology, Donahoe and Palmer (2004) suggest using 

as similar methodology as an exercise in interpretation, as some complex behavior may be 

impossible or difficult to access experimentally. For the analysis of single case designs, RNNs 

could use the values of the actual points as features instead of using aggregated data (e.g., mean, 

standard deviation, slope). Using RNN would also have the advantage of dealing with the 

problem of autocorrelation effectively, which is commonly present in single-case graphs 

(Shadish and Sullivan, 2011).  
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A third type of network relevant for single-case designs is the generative adversarial 

network (GAN; Goodfellow et al., 2014). A GAN consists of two main components: the 

generator model and the discriminator model. The generator model produces novels samples 

based on prior data whereas the discriminator model attempts to determine whether these novel 

samples are real or fake. This competition between the generator and the discriminator allows for 

the development of realistic samples. Experimenters could thus use GANs to derive new samples 

of graphs from published data, which would facilitate replication of the current work with data 

that show more naturalistic patterns. In other words, GANs could replace or supplement Monte 

Carlo simulation to generate novel data series on which to train or test models derived from 

artificial neural networks.  

Conclusion 

Although we provided instructions for classifying the presence or absence of an effect 

using multiple baseline designs, researchers may use this tutorial to extend our work to ABAB, 

multielement, or changing-criterion designs. Each type of design would require its own model as 

patterns and methods of analysis differ across designs. For example, researchers do not deal with 

trends across conditions in multielement designs in the same manner as they do in ABAB design 

(Hains & Baer, 1989). Moreover, researchers should explore other combinations of features to 

improve upon the models proposed in this study and in Lanovaz et al. (2020). In addition to 

selecting different features, researchers should test the effects of other neural network 

architectures with varying combinations of hyperparameters to further improve the accuracy of 

the models. Generating the data with novel methods or including confounding effects in the 

simulated data would also extend this line of work. 
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The current tutorial clearly shows that artificial neural networks have the potential to 

outperform traditional methods of analysis for single-case experimental designs. That said, our 

model was not compared to other statistical procedures and is not ready to be used as a 

standalone method. For now, we recommend it as a complement to other methods, especially 

when patterns remain unclear. Our results show the potential utility of neural networks in the 

analysis of single-case graphs and aims to spur further research with this approach that has been 

revolutionizing other fields. Before widespread adoption of artificial neural networks to analyze 

single-case experimental designs may occur, more research by independent teams using novel 

datasets is paramount to examine the replicability of the results presented in this tutorial.   
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Table 1 

 

Accuracy, Type I Error Rate, and Power of Different Methods of Analysis  

 

  Measure 

  Accuracy Type I Error Rate Power 
     

Simulated Test Graphs (n = 2,000)    

 Artificial Neural Network  

 

.948 .024 .919 

 Dual-Criteria Method .819 .025 .663 

Lanovaz and Turgeon (2020) Graphs (n = 300)    

 Artificial Neural Network  

 

.977 .013 .967 

 Visual Analysts (Mean) .913 .007 .833 

 Dual-Criteria Method .900 .013 .813 
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Figure 1 

 

Visual Representation of the Design of the Artificial Neural Network in the Tutorial 

 
Note. The features represent the mean, standard deviation, intercept and slope of the standardized 

data for each tier in the multiple baseline graph (3 tiers x 8 features). The output is a whether the 

graph shows a clear change (value = 1) or not (value = 0).  
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Figure 2 

 

Example of a Multiple Baseline Design with Three Tiers (i.e., Conditions, Behaviors, or 

Participants) 
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Figure 3 

 

Graphs of Common Activation Functions for Binary Classification 
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Appendix A 

 

Mathematical Foundations of Artificial Neural Networks  

 

Example  

 

Let’s assume that we want to train a dense artificial neural network with 24 features as input, 12 

neurons in a single hidden layer, and one binary class label as output (as depicted in Figure 1).  

 

In our example, a vector, x, represents our 24 features and a scalar, y, represents the binary class 

label. To facilitate comprehension, we provide a Python implementation of the equations below 

in our online repository (see the “ANN_from_scratch.py” file in https://osf.io/68kgy)  

 

Step 1 – Initializing the Weight Matrices 

 

Between layers, the neural network multiplies the values by weights. The initial step involves 

initializing the weight matrices. For our example, we need two weight matrices: one matrix 

between the input layer and the hidden layer, and another matrix between the hidden layer and 

the output layer. To reduce the number of values from 24 features (i.e., input) to 12 neurons in 

the hidden layer, the size of the first weight matrix, W1, is 24 rows by 12 columns. In contrast, 

the final layer produces an output of one class label from 12 neurons, which requires a second 

weight matrix, W2, of 12 rows by 1 column. The initialization involves randomly populating the 

rows and columns with values from a normal distribution with a mean of 0 and a standard 

deviation of 0.01.   

 

Step 2 – Implementing Forward Propagation  

 

During forward propagation, the input values move through each layer by being multiplied by 

weights and transformed by activation functions (see Figure 3 for examples of activation 

functions). The activation functions introduce nonlinearity by determining whether each neuron 

should fire or not (i.e., be included in the model or not). In the example, we will use a sigmoid 

function between both our layers.  

 

Step 2.1. Computing the Hidden Activated Neurons 

 

In this step, we first multiply the input data, x, with the weight matrix, W1, and add a bias vector, 

b1, which is initialized with zeros (see Equation 1). This bias vector functions like an intercept in 

a regression.   

  

 𝐚𝟏 = 𝐱𝐖𝟏 + 𝐛𝟏 (1) 

 

The result vector, a1, contains 12 neurons. The next step involves applying the sigmoid 

activation function to these neurons (see Equation 2). 

 

 
𝐡𝟏 =  

1

1 + e−𝐚𝟏
 (2) 

https://osf.io/68kgy
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These computations lead to a vector, h1, that contains our activated neurons (12 activated 

neurons).   

 

Step 2.2. Computing the Output 

 

Based on our initial architecture, the neural network must produce a single output from 12 

neurons. To do so, it multiplies the activated neurons from the hidden layer, h1, by the second 

weight matrix, W2, and adds a bias term (see Equation 3).   

 

 a2 = 𝐡𝟏𝐖 𝟐 + b2 (3) 

 

 

The result is a scalar, a2. The final step involves applying our activation function to produce the 

output (see Equation 4). 

   

 
o =

1

1 + e−a2
 (4) 

 

The output, o, is a value between 0 and 1. 

 

Step 3 – Backpropagation of the Error 

 

Step 3.1. – Applying Loss Function 

 

The subsequent step involves computing the error, or loss, produced by the network and 

backpropagating its derivative to update the weights. A common loss function for binary outputs 

is the binary cross-entropy function (see Equation 5).  

 

 L =  −(ylog(o) + (1 − y) log(1 − o)) (5) 

 

The scalar, L, represents the loss of the network for our sample.  

 

Step 3.2. – Updating the Output Weight Matrix (W2) 

 

However, we do not want to loss, but the differentiation of the loss to update the weights. We 

need to calculate the derivatives to backpropagate the gradient of the loss. The most 

straightforward way to differentiate matrices and vectors is to use the chain rule and begin by 

updating the last weight matrix, W2 (see Equation 6 for chain rule). 

 

 ∂L

∂𝐖𝟐
=

∂a2

∂𝐖2

∂o

∂a2

∂L

∂o
 (6) 

 

Now, we can compute each partial derivative separately (see Equations 7 to 9).  
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 ∂a2

∂𝐖2
=

∂

∂𝐖2

[𝐡𝟏𝐖 𝟐 + b2] = 𝐡𝟏
𝐓 (7) 

 

 ∂o

∂a2
=

∂

∂a2
[

1

1 + e−a2
] =

e−a2

(1 + e−a2)2
=

1

1 + e−a2
∙ [1 −

1

1 + e−a2
] =  o(1 − o) (8) 

 

 ∂L

∂o
=

∂

∂o
[−(ylog(o) + (1 − y) log(1 − o))] =

o − y

o(1 − o)
 (9) 

 

If we put them in the same equation using our chain rule, it will produce the derivative of the loss 

function for the output weights (see Equation 10) 

 

 ∂L

∂𝐖𝟐
= 𝐡𝟏

𝐓 ∙ o(1 − o) ∙
o − y

o(1 − o)
=  𝐡𝟏

𝐓(o − y) (10) 

 

To update the weights, we multiply this derivative by the learning rate, α, and subtract the result 

from the original weights (see Equation 11).  

 

 𝐖𝟐 = 𝐖𝟐− ∝ 𝐡𝟏
𝐓(o − y)  (11) 

 

The learning rate indicates how fast the model learns, or updates itself, to fit the patterns. 

 

If we repeat the same exercise with the bias term, b2, we obtain Equation 12 to update it.  

 

 b2 = b2− ∝ (o − y)  (12) 

 

Step 3.2. – Backpropagate to the First Weight Matrix (W1) 

 

Once again, we use the chain rule to facilitate the differentiation, but we apply it to the first 

weight matrix (see Equation 13).  

  

 ∂L

∂𝐖𝟏
=

∂𝐚𝟏

∂𝐖1

∂𝐡𝟏

∂𝐚𝟏

∂L

∂𝐡𝟏
=   

∂𝐚𝟏

∂𝐖1

∂𝐡𝟏

∂𝐚𝟏

∂a2

∂𝐡𝟏

𝜕𝐿

𝜕a2
=

∂𝐚𝟏

∂𝐖1

∂𝐡𝟏

∂𝐚𝟏

∂a2

∂𝐡𝟏

𝜕𝑜

𝜕a2

∂L

∂o
  (13) 

 

In Equation 13, the chain rule is applied in a way to facilitate the calculation of our derivatives. 

That is, we can readily compute the partial derivatives for the first three terms (see Equations 14 

to 16) and already have the partial derivatives for the last two terms the from our prior 

computations (see Equations 8 and 9).  
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 ∂𝐚𝟏

∂𝐖1
=  

∂

∂𝐖1

[𝐱𝐖 𝟏 + 𝐛𝟏] = 𝐱𝐓 (14) 

 

 ∂𝐡𝟏

∂𝐚𝟏
=  

∂

∂𝐚𝟏
[

1

1 + e−𝐚𝟏
] =

e−𝐚𝟏

(1 + e−𝐚𝟏)2
=

1

1 + e−𝐚𝟏
∙ [1 −

1

1 + e−𝐚𝟏
] = 𝐡𝟏(1 − 𝐡𝟏) (15) 

 

 ∂a2

∂𝐡𝟏
=

∂

∂𝐡𝟏
 [𝐡𝟏𝐖 𝟐 + 𝐛𝟐] =  𝐖𝟐

𝐓 (16) 

 

To finalize our derivative, we combine all the terms together using the chain rule (see Equation 

17)  

 

 ∂L

∂𝐖𝟏
= 𝐱𝐓   ∙ 𝐡𝟏(1 − 𝐡𝟏) ∙ 𝐖𝟐

𝐓  ∙ (o − y)   (17) 

 

Updating the weights will thus involve Equation 18.  

 

 𝐖𝟏 = 𝐖 𝟏− ∝∙ 𝐱𝐓 ∙ 𝐡𝟏(1 − 𝐡𝟏)  ∙ 𝐖𝟐
𝐓 ∙ (o − y)   (18) 

 

As you can observe, this derivative contains the loss from the output layer as well its own loss, 

which is why it is referred to as backpropagation. 

 

If we apply the same logic to the first bias vector, we can also update its values (see Equation 

19). 

 

 𝐛𝟏 = 𝐛 𝟏− ∝∙ 𝐡𝟏(1 − 𝐡𝟏)  ∙ 𝐖𝟐
𝐓 ∙  (o − y)  (19) 

 

Step 4 – Repeating the process 

 

Step 4 involves repeating steps 2 and 3 (i.e., Equations 1 to 19) in a loop for a specific number of 

iterations. This number of iterations is called epochs. Running epochs will reduce the binary 

cross-entropy loss of the neural network.  

  

To show how the computations operate, our example contained a single sample. However, 

multiple samples will influence the weights during typical training.  

 
The primary reference for the development of this Appendix was Data mining: Practical machine learning tools 

and techniques (4th ed.) by I. H. Witten, E. Frank, M.A. Hall, & C. J. Pal (2017). For a more comprehensive review 

of the mathematical foundations of artificial neural networks, we recommend that you consult this source.   
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Appendix B 

Installing Python and Packages 

 

Step 1 – Installing a Python Distribution  

 

Download and install a Python distribution. We strongly recommend the free version (individual 

edition) of Anaconda available at www.anaconda.com. The steps below assume that you are 

using Anaconda.  

 

Step 2 – Creating a New Virtual Environment 

 

You need to create an environment that will have all the packages. To create the environment, 

write the following code Terminal (Apple or Linux) or Anaconda Prompt (Windows):  

 
conda create -n tfenv python=3.7 

conda activate tfenv 

 

From now on, you should write the following code when you open Terminal or Anaconda 

Prompt to ensure that you are working in the correct environment:  

 
conda activate tfenv 

 

The last line of your Anaconda Prompt or Terminal screen should begin with <tfenv>. If it 

begins with <base>, you have not activated your environment correctly. 

 

Step 3 – Installing Packages 

 

To install the necessary packages. Run the following code sequentially. Whenever you are 

prompted to Proceed, press on “y” followed by the enter key:  

 
conda install spyder 

conda install pandas 

conda install scikit-learn 

conda install tensorflow 

 

Step 4 – Opening the Integrated Developmental Environment 

 

To write and run your Python code, we suggest that you the Spyder integrated environment. To 

open spyder, write the following code 

spyder 

 

The following screen should appear:  

 

 

http://www.anaconda.com/
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You should first set the working the directory. The working directory is the folder in which you 

have downloaded or saved your data (.csv) files. To do so, you may click on the opened folder 

icon in the upper right corner and select the appropriate folder. 

 

Enter all the Python code in the left panel of the screen. To run your code, highlight it and click 

on the “Run selection or current line” button in the toolbar ( ). When you run code, any 

warnings, errors, or printed information will appear in the console (lower right panel). You may 

also explore the variables in the Variable Explorer in the upper right panel.  

 

Note that all code entered in Python is case sensitive.  

 

 

This appendix was adapted with permission from “Tutorial: Applying machine learning in 

behavioral research” by S. Turgeon and M. J. Lanovaz, 2020, Perspectives on Behavior Science 

(https://doi.org/10.1007/s10803-020-04735-6). © Association for Behavior Analysis 

International.  

 


