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Résumé

On est habitué à penser comme suit à un programme qui exécute: une donnée entre (un
input), un moment passe, et un résultat ressort. On assume tacitement de l’information
complète sur le input, le résultat, et n’importe quels résultats intermédiaires.

Dans ce travail-ci, on demande ce que ça voudrait dire d’exécuter un programme sur de
l’information partielle. Comme réponse possible, on introduit l’interprétation partielle, notre
contribution principale. Au lieu de considérer un seul input, on considère un ensemble de
inputs possibles. Au lieu de calculer un seul résultat, on calcule un ensemble de résultats
possibles, et des ensembles de résultats intermédiaires possibles.

On approche l’interprétation partielle à partir du problème de la spécialisation de pro-
gramme: l’optimisation d’un programme pour certains inputs. Faire ça automatiquement
porte historiquement le nom d’évaluation partielle. Ç’a été appliqué avec succès à plusieurs
problèmes spécifiques. On croit que ça devrait être un outil de programmation commun,
pour spécialiser des librairies générales pour usage spécifique - mais ce n’est pas le cas.

Souvent, une implantation donnée de l’évaluation partielle ne fonctionne pas uniformé-
ment bien sur tous les programmes. Ça se prête mal à un usage commun. On voit ce
manque de régularité comme un problème de précision: si l’évaluateur partiel était très
précis, il trouverait la bonne spécialisation, indépendamment de notre style de programme.

On propose donc une approche de principe à l’évaluation partielle, visant la précision
complète, retirée d’exemples particuliers. On reformule l’évaluation partielle pour la baser
sur l’interprétation partielle: le calcul sur de l’information partielle. Si on peut déterminer ce
qu’on sait sur chaque donnée dans le programme, on peut décider quelles opérations peuvent
être éliminées pour spécialiser le programme: les opérations dont le résultat est unique.

On définit une représentation d’ensembles qui ressemble à la définition en compréhension,
en mathématiques. On modifie un interpréteur pour des programmes fonctionnels, pour
qu’il calcule sur ces ensembles. On utilise un solver SMT pour réaliser les opérations sur
les ensembles. Pour assurer la terminaison de l’interpréteur modifié, on applique des idées
de l’interprétation abstraite: le calcul de point fixe, et le widening. Notre implantation
initiale produit de bons résultats, mais elle est lente pour de plus gros exemples. On montre
comment l’accélérer mille fois, en dépendant moins de SMT.
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Abstract

We are used to the following picture of an executing program: an input is provided, the
program runs for a while, and a result comes out. We tacitly assume complete information
about the input, the result, and any intermediate results in between.

In this work, we ask what it would mean to execute a program over partial information.
As a possible answer, we introduce partial interpretation, our main contribution. Instead
of considering a unique input, we consider a set of possible inputs. Instead of computing a
unique result, we compute a set of possible results, and sets of possible intermediate results.

We approach partial interpretation from the problem of program specialization: the op-
timization of a program’s execution time for certain inputs. Doing this automatically is
historically known as partial evaluation. Partial evaluation has been applied successfully
to many specific problems. We believe it should be a mainstream programming tool, to
specialize general libraries for specific use - but such a tool has not been delivered.

One common problem is that a given implementation of partial evaluation is inconsistent:
it does not work uniformly well on all input programs. This inconsistency makes it unsuited
for mainstream use. We view this inconsistency as an accuracy problem: if the partial
evaluator was very accurate, it would find the correct specialization, no matter how we
present the input program.

We therefore propose a principled approach to partial evaluation, aimed at complete
accuracy, removed from any particular example program. We reformulate partial evaluation
to root it in partial interpretation: computation over partial information. If we can determine
what we know about every piece of data in the program, we can decide which operations can
be removed to specialize the program: those operations whose result is uniquely known.

We represent sets with a kind of mathematical set comprehension. We modify an inter-
preter for functional programs, to compute over these sets. We use an SMT solver (Satisfi-
ability Modulo Theories) to perform set operations. To ensure termination of the modified
interpreter, we apply ideas from abstract interpretation: fixed point computation, and widen-
ing. Our initial implementation produces good results, but it is slow for larger examples.
We show how to speed it up a thousandfold, by relying less on SMT.
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Preface to the edited version

I have made changes throughout this text, to address the comments of the evaluation com-
mittee. This preface gives insight into how this work took place, to hopefully address the
main criticisms: a lack of formality overall, and a lack of direction in some parts. I agree
that more formality is good, and wherever it is lacking, that is because I didn’t have it.

This work started as an exploration: I wanted to see how good partial evaluation can
be, and I soon had the idea that it comes down to what we know about every piece of data.
I wanted to root this reasoning in modern automatic deduction. SMT seemed like a good
candidate since it was getting results in many fields. I wanted to “start from scratch”, to
not get trapped in the premises of previous work. These premises are often not explained,
and sometimes not even mentioned. By building everything myself, I would understand the
premises, i.e. I would have some constraints on what a solution “must” be.

One of the first questions was: what does this mean, “what we know about data”? In
other words, what is partial information? I tried many formulations of this, throwing one out
every couple of weeks. Eventually I realized that one formulation was a set of possible values.
It became a de facto working assumption that partial information is a set. Now, although
I was seeking a principled formulation, I also wanted to implement this. So this set notion
was not just something on paper; it had to be a data structure in a real program, and SMT
had to understand it. I came up with a syntactic representation of sets in comprehension.
Extended comprehension reduced the size of the data structures, compared to introducing an
explicitly quantified variable for every intermediate result. Basic comprehension simplified
set complement and variable naming across calls. This seemed like a good principled start.

I knew more was needed for a full solution: dealing with termination. The purpose of
the termination argument is to show us where we need to intervene to get termination. I
did not (and still do not) have principled solutions for these interventions. My interest was
twofold: first, to outline the design space for these interventions, so that future work (mine
or otherwise) can seek principled solutions within that design space; second, to come up
with simple unprincipled solutions (many adapted from past work), so that I could have a
working implementation, i.e. one point in the design space.
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The implementation eventually worked, after a big false start: SMT gave poor results
for dynamically typed object programs. I started over with static types. This piece of
experience is reduced to a one-liner in the main text, for brevity, even though it cost me
over a month of work. Nevertheless, throughout the text I hope to convey (some of) what
failed as well as what worked, so that whoever reads this does understand the reasons for
my choices/premises, and does not need to repeat such failures to find out.

Anyway, I had achieved my basic goal: integrating partial evaluation and modern au-
tomatic deduction. To my knowledge, this is the first work to do so. It was time to write
this up. Very late in this writing (late June 2021), I and Stefan started realizing that sets
were not all we were using. There was another notion in play, which somehow carried more
information than sets, and captured relational information (entanglement?) between mul-
tiple data. At first it was difficult to even point at this notion, because of a pun in the
implementation: the same data structure for comprehensions expressed both sets and ???.
The implementation was subtly converting from ??? to a set in the conversion from extended
to basic comprehension. I proposed to think of ??? as a computational history. Surprisingly,
the conversion seemed intuitively fine to us, even though viewing a history as a set loses
accuracy in general. I started looking into why this would be justified here, and I came up
with the side path condition on pgraphs. The fact that it is justified was left as an informal
conjecture in this text. I scrambled as I could to adjust the rest of the exposition, to account
for the two notions of partial information.

After initially turning in this memoir, I worked on an article that I presented at IFL
2021. I felt a conjecture was not good enough for that venue. To prove the conjecture, I first
had to state it precisely, and I did not even have a suitable language to do so. I came up
with a relational semantics for partial interpretation, definitions of discarding history and
losslessness, and a proof - the conjecture became a theorem. The relational semantics also
cleaned up the termination argument. I refer the interested reader to the article [SMF21].

This work started as an exploration, with a goal of a principled understanding and a
working implementation, and eventual formality. Some formality was achieved in the end,
and reported in the article cited above. But in my view, formality cannot be the starting
point of an exploration; formality must come later, so that it makes precise the right things.

If I were to rewrite this memoir, I might choose a different presentation, more in line
with the article. But then, the memoir would lose the genuine quality of reflecting the work
as it happened: a journey from exploration to formality.

Ian Sabourin (September 2021)
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Chapter 1

Introduction

We are used to the following picture of an executing program: an input is provided, the
program runs for a while, and a result comes out. We tacitly assume complete information
about the input, the result, and any intermediate results in between.

In this work, we ask what it would mean to execute a program over partial information.
As a possible answer, we introduce partial interpretation, our main contribution. Instead
of considering a unique input, we consider a set of possible inputs. Instead of computing a
unique result, we compute a set of possible results, and sets of possible intermediate results.

We approach partial interpretation from the problem historically known as partial evalu-
ation: automatic program specialization. We introduce program specialization next. Then,
we progressively introduce our approach to program specialization, with partial interpreta-
tion as its main sub-problem: computation over partial information.

1.1. Program specialization
We start from a simple example. Suppose we want to compute xn, where n is a positive

integer. A standard, efficient algorithm for this is so-called fast exponentiation, where we
recursively examine the parity of n:

• if n = 0, xn = 1

• if n is odd, xn = x ∗ xn−1

• if n is even, xn = (xn/2)2.
For general x and n, this is as good as it gets: we compute xn with between log2(n) and
2 ∗ log2(n) multiplications, and as many parity checks.

Now suppose that in a particular application, we know we will only use this for n = 8.
Then we would not write the algorithm as above. We can do better: square x three times,
without making any parity checks. In some sense, this is still an exponentiation algorithm.
It’s just (much) less general than before. It is now wrong for any n other than 8. In return,
it is more optimized for n = 8. In other words, it is specialized for n = 8.



Partial evaluation is the historical name for automatic specialization. Given the general
exponentiation algorithm, and the information that n = 8, can we mechanically produce the
specialized (optimized) algorithm which squares x three times? And of course, can we do
this in general: for any program, and any information about its inputs.

In the case of exponentiation, this is definitely possible - it is a standard first example
of partial evaluation. In general, the answer is less clear. We examine the track record of
partial evaluation, and it informs our approach.

1.2. The appeal of partial evaluation
Partial evaluation has been applied successfully to many specific problems. For example,

in ray tracing [And96], we can suppose the contents of a scene are known, but the position
of the view point is unknown. Once the ray tracer is specialized for the known scene, it can
render that scene more efficiently from any number of view points.

In parsing [Mos93], we start from a general parser which takes two inputs: a grammar
for a language, and a string to be parsed. We then suppose the grammar is known, but the
string is unknown. Once the general parser is specialized for the known grammar, it can
parse any number of strings more efficiently.

This pattern of known vs unknown data is surprisingly common, and more applications
are mentioned in e.g. [JGS93] (their section 1.2.3).

These specific successes are great, but we think the real win should be elsewhere. Rou-
tinely, ordinary programmers find that a general library is not sufficiently optimized for their
specific use case. They then face a decision: accept the performance penalty; or specialize
the library by hand, which takes a lot of time and effort. And this tension between generality
and performance is usually accepted as natural: we evaluate the need for performance, and
if the need is sufficient, we hand-code a specialized version.

This tension could conceivably be removed by partial evaluation. Consider the implica-
tions of having partial evaluation readily available, as part of a compiler. Libraries would
get specialized automatically, saving programmers time and effort, not to mention errors.
Flipping this around, we could write more general programs in the first place, because we
would not be so concerned about losing performance to generality. Partial evaluation should
be a mainstream programming tool.

1.3. A difficulty with partial evaluation
Unfortunately, the specific successes of partial evaluation have not carried over to a

mainstream programming tool. There is no standard explanation for this, despite partial
evaluation dating back to the 1970s, with a peak in the 1990s - see [Ruf93] and [JGS93]
for a balanced view of some important developments.
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One common problem is that a given implementation of partial evaluation does not
work uniformly well on all input programs. Traditionally, this problem is transferred to
the user. The user is expected to learn which kinds of programs are handled well by the
partial evaluator. Then, the user is encouraged to manually adjust the input program, to
(sometimes radically) improve the results of partial evaluation. This is usually phrased as
“improving” the input program, but we see it as completely breaking the promise of partial
evaluation: automatic program specialization.

This has been tolerated for specific uses of partial evaluation, in what has been essentially
a laboratory setting. Indeed, the last section cited two cases (ray tracing and parsing), and
in each case the researchers manually adjusted the input program to improve the results.

For general use as a programming tool, we need to handle all kinds of libraries and
programs, written by all kinds of programmers, in all kinds of settings. They cannot be
expected to conform to the additional needs of a partial evaluator. Partial evaluation is a
good thing if it removes the tension between generality and performance; not if it adds a new
tension, between the program you wanted to write, and the program the partial evaluator
wants. Programming is difficult enough as it is.

Instead, we believe the inconsistency problem of partial evaluation should be addressed
directly. We argue that this inconsistency is an accuracy problem. Conceptually, if the
partial evaluator was very accurate, it would find the correct specialization, no matter how
we present the input program.

Work has been done on improving the accuracy of partial evaluation, but usually reac-
tively, targeting certain classes of example programs. This has not delivered the general,
uniform accuracy needed for mainstream programming.

1.4. Our approach to partial evaluation
We propose a principled approach, aimed at complete accuracy, removed from any par-

ticular example program. As such, our strategy is not to build incrementally on past work.
Nevertheless, we re-use useful ideas, and we highlight them in Chapter 5.

We begin by re-examining the problem statement. Informally, there are two inputs to
partial evaluation: a program, and information about its inputs. We need to clarify what
this means. Chapter 2 discusses our representation of programs. For now, we discuss the
notion of information about the inputs.

In the traditional presentation of partial evaluation, we consider a program of several
inputs - most simply, of two inputs x and y. We then suppose that the value of x is known,
whereas the value of y is unknown. The question is then: how can the program be specialized
(optimized), knowing the value of x?
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We generalize this dichotomy of known vs unknown inputs and allow arbitrary speci-
fication of the inputs. For example, we may wish to specify that x > 0, or that x < y.
Most generally, we allow specifying the set of possible inputs (x, y). Chapter 3 discusses
how to express such a set. The basic question remains the same: how can the program be
specialized, knowing the input specification?

Conceptually, the bulk of specialization comes down to one question: which operations
can we remove? Removing an operation is good, because that makes the program more
efficient. And it’s possible to remove an operation, if we know its result.

To decide which results we know, we forget (for now) the goal of specializing a program,
and focus on the set of possible inputs. Such a set constitutes partial information about
the inputs. During ordinary execution, we have complete information: an input has a single
value taken from a data domain, for example the integers Z. In contrast, partial information
about an input is a set of possible values, over the same domain.

We can extend this notion, to partially known results from every operation in the pro-
gram. That is, we can consider a set of possible values, for each result from every operation.
In doing this, we are effectively introducing a new domain: the power set of the original
domain. During ordinary execution, each (completely known) value is taken from (e.g.) Z;
in this new setting, each (partially known) value is taken from the power set of Z - each value
is a subset of Z. We refer to this domain of sets as the partial information domain. Com-
plete information becomes a special case in this partial information domain: a singleton set
indicates a single possible value. In other words, the original domain is naturally embedded
in the partial information domain.

We can then ask what it would mean to execute the program over this partial information
domain. And here we are, at partial interpretation: computation over partial information.
Supposing we can do this, we can return to our original goal of program specialization. We
can decide which operations can be removed from the specialized program: those whose
result is uniquely known - a singleton set.

Our approach to partial interpretation is detailed in the next several chapters. If we
can compute accurately over partial information (in theory), we have the best chance of
delivering generally applicable partial evaluation (in practice). Our theoretical and practical
goals are therefore aligned, and this is the driving force throughout this text.

Before we move on to this, we give an informal preview of the most accessible parts
of our approach. We will represent a set of possible values as a set comprehension, from
mathematics. This looks like {x | P (x)}: the set of objects x that satisfy a predicate P . We
will compute one of these sets for each piece of data in a program.

One simple and illustrative case is arithmetic addition. Suppose we have two sets of
integers: {x | P (x)} and {y | Q(y)}. Then their sum is {x+ y | P (x) ∧Q(y)}.
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In other cases, computing over these sets will be more like logical reasoning. We will
check if a set contains a unique member, or if a set is equal to another set, etc. It’s easy
to understand one reason to check that a set contains a unique member: these are the sets
whose producing operations we want to remove from the program, to specialize it.

To reason about sets, we will use modern automatic deduction, specifically an SMT solver
(Satisfiability Modulo Theories - [DMB08], [BCD+11]). SMT solvers are the result of a
long line of work going back to the boolean sat(isfiability) problem. They have recently
enjoyed success in many practical applications. We plan to benefit from this state of the art.

We show a brief example, to give a sense of what SMT can do. Suppose we have a set
of pairs of integers (x, y), with x2 − 2x + 1 < y < −x2 + 2x + 1. Is this inhabited? Does it
have a unique member? We issue the following commands to the SMT solver:

(declare -const x Int)

(declare -const y Int)

(assert (and (< (+ (* x x) (* -2 x) 1) y) (< y (+ (* (- x) x) (* 2 x) 1))))

(check -sat)

The SMT solver reports that the constraints are sat(isfiable), so the set is inhabited.

(get -model)

The SMT solver exhibits a point in the set: (1, 1).

(assert (or (distinct x 1) (distinct y 1))

(check -sat)

The SMT solver reports unsat, and we know the original set has the unique member (1, 1).
These are routine queries for an SMT solver. We will use all this and more, to compute over
partial information. Then, we will use the results to perform automatic specialization.

1.5. Our contribution
To our knowledge, this work is the first to integrate partial evaluation with modern

automatic deduction. We make the following specific contributions:
• we clearly separate partial evaluation into specialization and partial interpretation
(computation over partial information)
• we walk through how to do both, in theory and in practice
• we give an informal termination argument for partial interpretation
• we formulate partial information to ground it in modern automatic deduction (specif-
ically, an SMT solver)
• we show how to reduce reliance on the SMT solver, to improve performance by three
orders of magnitude.
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1.6. Organization of this document
First, we need a system of programs over which to develop partial interpretation. Chapter

2 describes a graph representation of programs. We discuss our design decisions for this
representation, and we describe an ordinary interpreter for it.

Chapter 3 develops partial interpretation in theory. We anticipate its implementation,
but we do not show much concern for practical considerations, especially performance. We
treat the SMT solver as an oracle for our queries, within reason.

• Section 3.1 begins to move from complete information to partial information. We
describe two representations for sets which resemble mathematical set comprehension.
We show how to perform many operations on these sets.
• Section 3.2 shows how a program can be executed over partial information. This
is straightforward (but elaborate) for straight-line code and conditionals. It is not
straightforward for recursive calls, and we explain why not.
• Section 3.3 shows how we handle recursive calls, using a combination of techniques.
• Section 3.4 discusses the termination of partial interpretation, and the modifications
this requires.

Chapter 4 follows through with our original plan: use the results of partial interpretation
to perform specialization.

• Section 4.1 describes a specializer which is a client to partial interpretation. As
expected, the specializer itself is relatively simple.
• Section 4.2 reports our experiments with our implementation. We reproduce basic
results from partial evaluation, without manual adjustments to the input programs.
We show improved accuracy over previous partial evaluators. However, the larger
examples highlight the performance challenge with our “theoretical” implementation.
• Section 4.3 analyzes the performance of our implementation. We discuss several
possible modifications to improve performance. One important theme is less reliance
on the SMT solver. We achieve a speedup of approximately three orders of magnitude,
compared to our “theoretical” implementation.

Chapter 5 concludes.
• Section 5.1 situates our work with respect to existing work. In particular, we highlight
the ideas we have re-used from past work.
• Section 5.2 discusses what we have achieved in relation to our original goals.
• Section 5.3 reviews the limitations of our work, and discusses future work.

Throughout this text, we omit many implementation details as unessential. Our reference
implementation can be consulted - see Appendix C for more information.

28



Chapter 2

Programs

We first introduce the program representation we will use as the object of our algorithms:
ordinary interpretation, partial interpretation, and specialization. We choose to create a
program representation rather than use an existing one. This allows us to adjust the program
representation to the needs of partial interpretation; not the other way around. This is a
deliberate decision, and this entire work can be seen as a feasability experiment for partial
interpretation: let’s see if it’s possible, under the best conditions we can put together.

We design our representation according to the following ideals:
• express clean, well-understood programming constructs
• be well-suited for analysis by partial interpretation - in particular, be “close to SMT”
whenever possible
• contain no superfluous information.

In addition to these ideals, sometimes we cut corners and come up short of a legitimate
programming system. We do this in the practical interest of finishing the project, and seeing
if partial interpretation can work. We will point out when we do this.

Our program representation expresses pure functional programs: in a call-return disci-
pline, with no mutation or external effects. We feel that pure functional programs are a
mature and well-understood subset of programming; whereas other features (non-local exits,
mutation, and external effects) are less mature. We therefore leave these other features to
future work.

We choose a graph representation of programs, that we refer to as a pgraph. Intuitively,
nodes in a pgraph represent data and operations, and edges represent data dependencies.
An operation → data edge indicates that the operation reads that data - this is in effect
a “variable reference”, abstracted from any naming problems. A data → operation edge
indicates that the operation produces that data. Mnemonically, data nodes are red (boxes),
and operation nodes are blue (ovals). This is illustrated in Figure 2.1. We clarify that this
is an internal representation; not something a programmer would write directly.



o u t

o p

in_0 in_1

Fig. 2.1. A fragment of a pgraph: a non-descript operation, with two inputs and one output.

2.1. Node types
We introduce several node types that refine the intuitive “data and operation” nodes

above. We introduce these in small, logically related groups.

2.1.1. Basic nodes: result, entry, exit

First, we introduce the node types result, entry, and exit.
A pgraph can have any number of result nodes, which are data nodes (red). A result has

a single outgoing edge, to its producing operation. Operations can have several results, so
the edge from a result to an operation is labelled with a result index.

Each pgraph has a single entry node, which is an operation node (blue). The entry has
no outgoing edges, and represents the earliest moment in time in the execution of the pgraph.
The results of entry are the formal parameters to the program.

Each pgraph has a single exit node, which is an operation node (blue). The exit has no
incoming edges, and represents the latest moment in time in the execution of the pgraph.
The data nodes exit depends on are the results returned by the program.

In our implementation, when an operation (such as exit) has several data dependencies,
the edges representing them are ordered in an adjacency list. Mathematically, this ordering
implicitly labels the edges outgoing from the operation.

With these node types, we can already assemble well-formed pgraphs: those that directly
return some or all of their arguments. Figure 2.2 shows such a program, with the result label
omitted.

2.1.2. Sub-programs: prog, call

Next, we introduce the node types prog and call, which are operation nodes (blue).
A prog node wraps a pgraph, and produces a single data value representing that pgraph.

Complementarily, a call node represents the execution of a sub-program: the first outgoing
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Fig. 2.2. A program which returns its single argument - i.e. the identity function.

p r o g

0

e n t r y

0

call

0 1

0

e x i t

0

Fig. 2.3. A network containing a single pgraph, expressing the program p(x) = p(x).

edge from call must be to a data value representing a pgraph; the other outgoing edges are
the arguments to the sub-program.

In many ways, prog is similar to common programming notations whose names derive
from mathematical functions: func, fun, fn, λ. Traditionally, these come with a notion of
closure, whereas our prog node does not. We justify this limitation in two ways:

• partial interpretation is simplified by this limitation, and this is our main objective
• since we will have data structures (see 2.5), we can often recover the effect of closures,
with a standard closure conversion or defunctionalization.1

A recursive program can be expressed as a network of pgraphs, connected through prog
nodes, as in Figure 2.3. Visually, an arrow “connects” the prog node to the pgraph it wraps.
However, this is not an edge to a node, and an individual pgraph contains no cycles.

1We make no precise claim here; we merely suggest that pgraphs are usable.
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Primitive Type
false Bool
true Bool
not Bool → Bool
and Bool * Bool → Bool
or Bool * Bool → Bool
+ Int * Int → Int
- Int * Int → Int
* Int * Int → Int

div Int * Int → Int * Int
< Int * Int → Bool
<= Int * Int → Bool
> Int * Int → Bool
>= Int * Int → Bool

Table 2.1. Boolean and integer primitives, and their types.

2.1.3. Primitive data and operations: const, prim

Next, we introduce the node types const and prim. The purpose of these is to inject
primitive data and operations, into our programming system. Many choices could be made
here, but we select a small set of primitives which maps well to SMT: boolean values, and
the mathematical integers Z. SMT solvers also have direct support for other primitive data
types, including bit vectors (which can model machine words) and Unicode strings. These
could be legitimate additions, but we do not explore them, in the interest of brevity.

A const node is a data node (red) which is annotated with a constant value, e.g. true
or 3.

A prim node is an operation node (blue) which is annotated with a primitive operation
symbol, e.g. and or +.

We use these to introduce the boolean and integer primitives shown in Table 2.1. Our
division primitive produces both a quotient and a remainder. We will supplement these
primitives with equality and data structures, in 2.5.

2.1.4. Conditional expression: if

Last, we introduce the node type if, which is an operation node (blue). An if node
represents a conditional expression. Its first outgoing edge must be to a boolean value c.
Two additional outgoing edges (the consequent and alternate branches) indicate which values
are to be selected between, based on the value of c.
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Our if node selects not only between values, but between execution paths. This is sig-
nificant: though our representation is pure, there are inevitably operations that can produce
errors (e.g. division by zero, or taking the head of an empty list). Additionally, recursion can
be non-terminating. Our if node serves to guard the execution of such program elements.

We complete the definition of pgraphs by stating, in technical terms, that if is non-
strict in its consequent and alternate branches; and that other pgraph elements are strict.
Informally, this means that (except at if ) every input to an operation is computed, before
that operation begins executing. This is familiar from most programming languages.2 At if,
the condition is first computed; then, only one of the other branches (consequent or alternate)
is computed.

2.2. Defining algorithms over pgraphs
We will define many algorithms over pgraphs: an ordinary interpreter, a partial in-

terpreter, and a specializer. We start right away in the next section, with the ordinary
interpreter.

We make a clarification here. When we say “an algorithm over a pgraph”, we mean that
a pgraph is the input to the algorithm; not that the algorithm is written as a pgraph. The
algorithm is written in an existing implementation language, and the algorithm manipu-
lates the input pgraph as data. No particular implementation language is essential to our
presentation, but our implementation is written in Scheme.

There is a natural way to define an algorithm over a pgraph, and we will apply it re-
peatedly. The basic maneuver is to map each node n to an image f(n). The nature of f(n)

depends on the particular algorithm. To compute f(n), we allow ourselves to suppose that
for all successors s of n (all s such that n → s), f(s) is available. In other words, we are
defining the mapping f by structural induction. This induction is well-founded, since it is
over an individual pgraph, which contains no cycles. Any circularity is between pgraphs,
through prog nodes, and the induction never extends beyond a prog node.

Given the images of the immediate successors of n, and the local node and edge labels at n,
we usually have enough to compute f(n). Intuitively, this is because pgraph edges represent
data dependencies in a program. This enables us to define algorithms over pgraphs, by
specifying only their local behavior at each node type.

In our implementation, the mapping f is memoized: any image f(n) is computed only
once, and stored for later. In this text, we will rarely mention this memoization. Whenever a
local function (at a node) accesses a successor image, this should be understood as memoized.

Overall, this maneuver amounts to a memoized depth-first traversal of a pgraph.

2Except notably Haskell, which is based on lazy evaluation.
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2.3. Ordinary interpreter
We immediately apply the maneuver from 2.2, to define an ordinary interpreter for

pgraphs. There is nothing complicated here, but we go through the motions for two reasons:
• to practice applying the maneuver, because we will later apply it to more complicated
algorithms
• to see the ordinary interpreter, because our partial interpreter will derive from it.

We omit data structures, which will be introduced in 2.5 - handling them would add no
value to this exercise. We therefore compute over the following data domain:

IVAL :=
| false | true
| INTEGER
| PGRAPH

We map each data node to an IVAL; and each operation node to a list of IVALs, repre-
senting the (possibly multiple) results of that operation. We specify this mapping by giving
its local behavior at each node type, as interp-node.

We define our interpreter as two mutually recursive functions:
• interp-pgraph(pgraph, args)
• interp-node(node).

interp-pgraph(pgraph, args) simply invokes interp-node on the exit node of the
given pgraph. It also makes args available to interp-node. This is a common pattern
in our algorithms: the local function (here, interp-node) supposes access to certain free
variables (here, args). We always explain where these free variables come from conceptually,
but we omit the implementation details.

interp-node(node) examines the label of the node, and proceeds as follows.
• At result, fetch the list of IVALs at our single successor, and select one from it. The
index of the one we want is the label on our single outgoing edge.
• At entry, return the args provided by interp-pgraph.
• At exit, fetch all the successor images, and package them into a list.
• At prog, package the wrapped pgraph into a singleton list.
• At call, fetch all the successor images. Then invoke interp-pgraph: the first succes-
sor image is the pgraph; the remaining images are the args.
• At const, the node annotation says which value to return.
• At prim, the node annotation says which primitive to apply. Fetch all the successor
images, apply the primitive to them, and package the result(s) into a list.
• At if, first fetch the image of the condition. If it is true, package the consequent
image into a list; if it is false, package the alternate image into a list.
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2.4. Textual representation
The visual representation of pgraphs quickly becomes cumbersome, as programs grow.

Later, we will want to discuss more substantial object programs. We therefore introduce a
more compact textual representation, based on programming languages. Specifically, we use
a surface syntax resembling a functional subset of Scheme [AIBB+98]. Here is our recurring
example of a factorial program, with the corresponding pgraph shown in Figure 2.4:

(define (fact n)

(let ((t (fact (- n 1))))

(if (<= n 1)

1

(* n t))))

The first line gives the name fact to the pgraph being defined. Beyond that, an expres-
sion in this syntax corresponds to a data node in the pgraph. The name n is given to the
data node for the formal parameter. The let construct gives names to other data nodes.
Here, the name t is given to the result of fact(n-1).

This is mostly familiar, but there is one catch. A casual reading of the code above
suggests that it does not terminate, because fact(n-1) is calculated before checking the
condition. However, any intuition from programming languages should remain secondary to
the primary purpose of this language: constructing pgraphs. The calculation fact(n-1) is
written before the condition, but it is not performed before the condition.

The second line merely gives the name t to the data node for the result of fact(n-1).
That result is only used in the alternate branch of the conditional below. In the pgraph,
this corresponds to the fact that the calculation fact(n-1) is guarded by the if node, and
fact(n-1) will only be calculated when the condition is false. In other words, the following
textual representation corresponds to the same pgraph:

(define (fact n)

(if (<= n 1)

1

(let ((t (fact (- n 1))))

(* n t))))

This factorial program terminates for all inputs, in all three forms. Note that our factorial
is defined over all integers, with fact(n) = 1 for negative n.
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Fig. 2.4. A factorial program, exhibiting all major program elements.
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Primitive Type
= α * α→ Bool

mkPair α * β → Pair α β
fst Pair α β → α
snd Pair α β → β
nil List α
cons α * (List α)→ List α
head List α→ α
tail List α→ List α

Table 2.2. Polymorphic equality and data structure primitives, and their types.

2.5. Data structures and static types
Before we move on from programs, we want to add data structures as simply as possible.

This is slightly complicated by our eventual use of an SMT solver, which requires that types
be supplied for all symbolic values. In our experience, this is best achieved by having a static
type system for our programs.

We introduce a standard system of static types, with parametric polymorphism, in the
style of Hindley-Milner [Mil78]. This is the standard type system underlying statically typed
functional programming languages, such as Haskell and OCaml. To simplify its treatment,
we require that input and output types be supplied for each pgraph, by the programmer. We
then perform a standard type verification3, which ensures that the program is “well-typed”.
More importantly for us, as a byproduct we infer a type for each data node in the pgraph.
These inferred types will be used during partial interpretation.

Under this kind of type system, there is a standard way to present general data structures:
algebraic data types4 (ADTs). In the interest of brevity, we do not provide full algebraic data
types, which should include a mechanism for programmers to define their own data types.
Instead, we provide built-in typed pairs and (homogeneously) typed lists, as a proof of
concept. We leave a full implementation of ADTs to future work.

We introduce the polymorphic equality and data structure primitives shown in Table 2.2.
These apply to data of any types α and β. mkPair creates a pair, whose components can
then be accessed with fst and snd. cons creates a list, which can then be de-constructed
as a head and a tail. nil expresses the empty list.

3We actually use an SMT solver to perform type verification, as an experiment. This works, but the only
thing we appear to “gain” is a dependency on the SMT solver.
4For our purposes, algebraic data types are covered by [Mil78], though Milner does not use that name.
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Chapter 3

Partial interpretation

3.1. Partial information
We now have programs (pgraphs, from Chapter 2), which are half of what we need before

we present partial interpretation. We now discuss the other half: our partial information
domain (sets of possible values). We plan to assign a set to each data node in a pgraph,
during partial interpretation.

We build up to two set representations, and operations on them. We introduce several
prerequisite ideas along the way, and we mention reasons for our choices. We clarify that our
sets are not merely a notation on paper; they must become data structures in our algorithms.

3.1.1. Basic comprehension

Mathematical set notation is the starting point for our set representations. There are
two broad approaches to writing a set in mathematics: in extension, where we enumerate the
elements of the set; and in comprehension, where we write the properties of the elements of
the set. Comprehension is the clear choice for us, because it includes the sets expressible in
extension, and can additionally express infinite sets. We illustrate these observations shortly,
as we examine set comprehension further.

The most basic form of mathematical set comprehension looks like this: {x | P (x)}. This
notation designates the set of all objects x that satisfy a predicate P . Conceptually, there
are two components to this notation: a name, and a proposition which may refer to that
name. We examine these two components further.

First, in mathematics it is common to introduce the name x without specifying a type
for x. In contrast, our set comprehensions will always come with a type for the elements of
the set. We already know all these types. Recall that our plan is to assign a set to each data
node in a program. But during type verification (see 2.5), we already inferred a type for each
data node. Therefore it is easy to enhance our set comprehensions to introduce a declaration



rather than just a name, in the following form: {x : T | P (x)}. Here x is declared to have
type T.

Second, in mathematics the proposition in set comprehension is written in (usually in-
formal) “mathematical logic”, and several logical constructs are accepted. For example, with
equality and disjunction, we can embed extension in comprehension:

{1, 2, 3} (in extension) becomes {x : Z | x = 1 ∨ x = 2 ∨ x = 3} (in comprehension).

With existential quantification and multiplication, we can express the even integers:

{x : Z | ∃k : Z . x = 2k}.

The language used to write these propositions affects which sets are expressible in com-
prehension. Conceptually, we would like to remain as close as possible to mathematical logic,
which expresses mathematical sets. However, for the purpose of partial interpretation, we
need some form of automatic deduction over these propositions. Practically, we use an SMT
solver to provide this automatic deduction. Therefore, we conform ourselves to the language
of propositions accepted by SMT solvers. Current SMT solvers give poor results when faced
with recursive functions. Therefore, we do not use recursion in the propositions within our
set comprehensions.

Note that we are not just trying to express sets, in a vacuum. We are trying to ex-
press those sets that will arise, when we propagate partial information through a program.
Consider two sets which are the inputs to an addition operation. When we write the result
of this operation, which is also a set, somewhere in the set comprehension we will need to
write a + operator. This + operator will have SMT semantics, and it is simplest if those
semantics match those of the + operator in our programs. This is why we have designed the
basic elements of our programs to match SMT semantics.

This combined conformity to SMT limits the expressivity of our set representation, com-
pared to mathematical logic. For example, without recursion or a primitive exponentiation
operation, we cannot express the set of powers of two.

There is one more notion to introduce, before we arrive at our first major set representa-
tion. Our programs can receive several arguments (and return several results). We want to
express relational information about these - for example, that one argument is greater than
another. It is therefore not enough to describe a set, at each data node separately.

We introduce a notion of arity for our sets: we consider sets of possible values, not for a
single data node, but for several at once. In other words, we consider sets of tuples of values;
but these tuples are distinct from anything expressible as a data structure, in a pgraph. We
make this choice so that the handling of relational information is dissociated from a particular
system of data structures. An alternative could be to have a well-developed notion of tuple,
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in the system of data structures. A tuple could then package “multiple” arguments or results,
as a single argument or result.

Consolidating all this, we come to our first major set representation, which we call basic
comprehension. In our implementation, we dispense with the surface mathematical notation
and store a pair (decls, prop). Each declaration introduces a name with an explicitly
given type. The number of declarations corresponds to the arity of the set - “how many”
arguments or results it carries. The single proposition determines which combinations of
values are members of the set. The declarations bind all the free variables in the proposition.

3.1.2. Extended comprehension

We could use basic comprehension as our sole representation for sets. In practice however,
it is convenient to have two representations which are tuned to different situations. We re-
iterate that these set representations correspond to concrete data structures, whose details
we omit here; our written notations merely suggest the contents of these data structures.
Consider again the example of an addition operation with our first set representation, this
time in more detail. Suppose we want to add {x : Int | P (x)} and {y : Int | Q(y)}. Clearly
the result “is”:

{x+ y | ∃x : Int, y : Int . P (x) ∧Q(y)},

but we would have no way of writing this directly. In basic comprehension, the left-hand
side must be a declaration - not an expression.

We therefore introduce a second set representation which we call extended comprehen-
sion, and which corresponds to standard set builder notation. The representation becomes
(exprs, decls, props) - note the plural props. Each expression may refer to the declared
names. The number of expressions corresponds to the arity of the set. The declarations are
implicitly existentially quantified, and the propositions are implicitly conjoined. Again, the
declarations bind all the free variables in the propositions (and in the expressions).

With this second representation, operations on values are easily lifted to operations on
sets of values. Suppose we want to perform a binary operation (such as addition) on two
sets of arity 1, represented as (e1, ds1, ps1) and (e2, ds2, ps2):

(e1, ds1, ps1) + (e2, ds2, ps2) = (e1 + e2, ds1 ∪ ds2, ps1 ∪ ps2)

Here we extend the notation to let e1 and e2 refer to individual expressions. In 3.2,
we will discuss how to handle the (here informal) unions - of the declarations, and of the
propositions.
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We will use extended comprehension extensively during partial interpretation, within a
given pgraph, where primitive operations are pervasive. We will also use the first represen-
tation (basic comprehension: (decls, prop)) because it is preferable when defining several
set operations. We will see why we need these set operations, in the next sections.

3.1.3. Conversion between the two representations

Recall:
• basic comprehension: (decls, prop)
• extended comprehension: (exprs, decls, props)

These two representations are mathematically equivalent: we can convert between them, and
they can express the same sets.

Given a set in basic comprehension (decls, prop), it is trivial to construct an extended
comprehension, as follows. To construct exprs, reference each name in decls. The new
decls are the same as the decls in basic comprehension. Finally, the props contain the
single prop from basic comprehension. For example:

(x:Int, x > 0) becomes (x, x:Int, x > 0).

Given a set in extended comprehension (exprs, decls, props), with a little work we
can construct a basic comprehension, as follows. Conceptually, we introduce a fresh dec-
laration for each expression, and these fresh declarations become the decls of the basic
comprehension. The types for these declarations are once again available to us, because they
correspond to data nodes in a pgraph.

It remains to construct the proposition for basic comprehension, and it involves three
pieces. First, we explicitly conjoin the propositions from extended comprehension. Second,
we additionally conjoin the assertions that the new names are equal to the expressions from
extended comprehension. Third, we explicitly quantify the old declarations - this makes
them “disappear” into the proposition.

We summarize this symbolically. Given an extended comprehension (exprs, ds, ps),
we construct the basic comprehension (decls, prop) as follows:

• decls = a sequence of fresh names xs, with the same types as the exprs
• prop = ∃ds . ((xs = exprs) ∧ ps)

We omit the details of quantifying over several declarations ds, the fact that xs = exprs is
really a sequence of equalities, and the explicit conjoining of the original propositions ps.

For example:

(x-1, x:Int, x > 0) becomes (x:Int, ∃k:Int . x = k-1 ∧ k > 0).

Renaming the explicitly quantified variable (here, to k) preserves a clean naming scheme for
free variables, and facilitates substitution in the implementation.
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3.1.4. Set operations

We end this section with a discussion of set operations. We will use these set operations
in the formulation of partial interpretation, in the next sections. We discuss the following set
operations: complement, intersection, union, emptiness, uniqueness, inclusion, and equality.
We define these on basic comprehension.

The first three operations can be implemented by syntactic manipulation alone. Set
complement keeps the same declarations, and takes the negation of the proposition.

Set intersection is defined on two sets (ds1, p1) and (ds2, p2), only when the types of ds1
and ds2 match. The result is (ds1, p1 ∧ q), where q is obtained by substituting from (the
names in) ds2 to ds1, in p2. This assumes that there are no name clashes in this substitution.

Set union is the same as intersection, except that the proposition is p1 ∨ q instead of
p1 ∧ q. For example, {x : Int | x < 0} ∪ {y : Int | y > 0} = {x : Int | x < 0 ∨ x > 0}.

The remaining operations make use of an SMT solver. In our implementation, we use
the textual language SMT-LIB [BST+10] to interact with the CVC4 solver [BCD+11].

The emptiness check is a key operation. We first declare all the decls into a fresh SMT
context. Then, the prop is asserted. Finally, a check-sat command is issued, and the SMT
solver reports either sat(isfiable), unsat(isfiable), or unknown. If the result is:

• sat, then the set is inhabited
• unsat, then the set is empty
• unknown, then it is not known whether the set is inhabited or empty.

We give a brief example. Consider the set

{(x : Int, y : Int) | x < y}.

To check its emptiness, we issue the following SMT commands:

(declare -const x Int)

(declare -const y Int)

(assert (< x y))

(check -sat)

The SMT solver reports sat, and we know this set is inhabited. This interaction (and
others) can be enclosed between push and pop commands, to keep the SMT context clean
for further queries.
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The uniqueness check begins like an emptiness check: we declare the names, assert the
proposition, and check for satisfiability. At this point, it makes sense to continue only if the
set is inhabited. We then use another SMT solver feature: whenever the SMT solver reports
sat, we can further ask it to exhibit a model. This is an assignment of values to all the
variables, which satisfies all the constraints. We now assert that at least one of the variables
is distinct from this model, and we check for satisfiability again. If the result is:

• sat, then we have exhibited two points within the set - they are therefore not unique;
• unsat, then the original model was the only point within the set - it is unique;
• unknown, then it is not known whether the set contains a second point.

We give a brief example. Consider the set

{x : Int | 0 < x < 4 ∧ ∃k : Int . x = k2}.

This is the set of squares, constrained to lie between 0 and 4 (exclusively).

(declare -const x Int)

(assert (and (< 0 x) (< x 4) (exists ((k Int)) (= x (* k k)))))

(check -sat)

(get -model)

The solver reports sat, then produces the model x = 1. We now continue.

(assert (distinct x 1))

(check -sat)

The solver reports unsat, and we know the original set has the unique member 1.

Set inclusion can be formulated in terms of the operations above:

S ⊆ T ⇐⇒ (S ∩ ¬T ) is empty

Set inclusion can report unknown, since it relies on an emptiness check.
Set equality can be formulated as double inclusion:

S = T ⇐⇒ S ⊆ T ∧ T ⊆ S

The conjunction used in set equality must account for the inclusions reporting unknown.
For this purpose, we define a ternary conjunction, as follows:

a ∧ b =

| if either input is definitely false, then the result is definitely false
| otherwise, if either input is unknown, then the result is unknown
| otherwise, both inputs must be definitely true, and the result is definitely true.
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3.2. Basic partial interpretation
We now have programs (pgraphs, from Chapter 2), and a notion of partial information as a

set of possible values (from 3.1). We are ready to present partial interpretation: computation
over partial information.

Our presentation conceptually starts from our ordinary interpreter (from 2.3). We then
modify the interpreter progressively, to handle partial information at the eight pgraph node
types (from 2.1): result, entry, exit; prog, call; const, prim; if.

In our development of partial interpretation, sometimes we cut corners in the interest of
brevity - as with programs in Chapter 2. We will point out when we do this.

3.2.1. Extended comprehensions: result

In the ordinary interpreter, given a pgraph and some arguments, we assigned an ordinary
value to each data node.1 In the partial interpreter, we now assign an extended comprehen-
sion (of arity 1) to each data node.2 This looks like (expr, decls, props).

In the ordinary interpreter, we also assigned a list of values to each operation node - these
were the (possibly multiple) results of the operation. By analogy, we should now assign a
list of extended comprehensions (each of arity 1) to each operation node.

However, with partial information there can be relational information between multiple
results. To express this relational information, we make the results share a single group of
decls and props. We then consolidate all the results as a single extended comprehension
(of arity equal to the number of results). This looks like (exprs, decls, props).

From this correspondence between data nodes and operation nodes, we directly get the
behavior of the result node during partial interpretation. All we need to do is select one of
the expressions from our producing operation, and reproduce the decls and props.

3.2.2. Straight-line code: const, entry, prim

We now discuss basic pgraph elements: constants, formal parameters, and primitive
calculations over these.

At const, it suffices to construct the SMT expression representing the wrapped value.
Since that value is a constant, the expression does not refer to any variables, and no decls
or props are needed to “support” the expression. We postpone the discussion of expressions
until we interact with an SMT solver (in 3.2.7).

1Because if is non-strict, we didn’t necessarily assign a value to every node. We ignore this detail here.
2In the context of program analysis and optimization, it is somewhat unusual that we assign anew to each
node, given a pgraph and some arguments. In technical terms, partial interpretation is (highly) polyvariant.
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At entry, we suppose that our formals are given to us in extended comprehension. They
originate from our caller, and they specify the set of possible inputs we are to compute with.
In general, they come with decls and props.

At prim, we use our idea from 3.1.2: we can lift an operation on values, to an operation
on extended comprehensions. Recall the formula for lifting a binary operation:

(e1, ds1, ps1) op (e2, ds2, ps2) = (e1 op e2, ds1 ∪ ds2, ps1 ∪ ps2)

Here e1 and e2 are single expressions, which is what a binary primitive operation will
find at the data nodes it depends on - in addition to the declarations ds1 and ds2, and the
propositions ps1 and ps2. We can suppose that these results are available at our successor
nodes, by structural induction - just as in the ordinary interpreter.

This lifting formula applies similarly to primitives of different arities - in particular to
unary operations, and to division (which produces two results). The point is that the result
expression(s) are constructed by syntactic manipulation of the input expression(s). The
decls and props (from all the inputs) are combined. Combining the decls and props
raises some subtle points, which we discuss next.

3.2.3. Set vs computational history

Suppose we are given a completely unknown integer x, and we compute both 2x+ 1 and
2x− 1. We get two extended comprehensions: (2x+1, x:Int, ∅) and (2x-1, x:Int, ∅).
Now suppose we subtract them. Mechanically, there is a question of how to combine their
decls, because each input declares x:Int.

Intuitively, we know that the two declarations should be merged into a single declaration,
and that the difference is 2. But if we view 2x + 1 and 2x − 1 as sets, then they should be
self-contained. A set should declare its own variables, and we should rename one x before
combining the decls. If we do this, we get e.g. (2x+1 - (2y-1), x:Int y:Int, ∅). And
if we view this as a set, it is not {2}; it is the set of even integers.

This is not a mere mechanical question; it is a conceptual problem, and we approach it
as such.

Clearly we have lost something by viewing 2x+ 1 and 2x− 1 as sets. Intuitively, we have
lost the knowledge that they were computed from the same x. Another intuition is that we
know 2x + 1 and 2x − 1 are distinct, partially known values. But if we view them as sets,
they are equal : the sets {2x + 1 | x : Int} and {2x − 1 | x : Int} have the same members -
the odd integers.

This shows that sets are not the only notion of partial information. We are dealing with
a second, distinct notion, which we have left intuitive so far. We propose to think of this
second notion as a computational history : a “log” of how a piece of data has been produced.
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When computing over complete information, we are not used to caring much about
computational history. If we are computing the result of 2 + 3, we report 5. It is almost
considered a mistake to report 2 + 3 instead. But reporting 5 discards information: the
historical knowledge that 5 was produced as 2 + 3, as opposed to e.g. 1 + 4.

In some sense, we lose nothing when we discard this information, because it is never
relevant in the future: anything true about 2 + 3 is also true about 5, and vice-versa.
Furthermore, we save resources by storing 5 rather than 2 + 3.3 This justifies the intuition
that we should report 5 rather than 2 + 3.4

When computing over partial information, history can matter. We have seen this in
the example of 2x + 1 and 2x − 1. In general, the most assuredly accurate form of partial
information must be complete computational history. Still, we have already seen one case
when discarding history does not lose accuracy: complete information. We will discuss other
such cases later, in 3.3.

For now, we note that since we are aiming for complete accuracy, in general we should be
computing histories rather than sets. We first need to represent histories somehow, and we
can use essentially the same representation as for sets: extended comprehension. The only
difference is the scoping of the declarations and propositions.

When we viewed 2x+ 1 and 2x− 1 as sets, they each declared a distinct x. To represent
their histories properly, we need to declare x once for both. To achieve this, we introduce
a provenance for decls and props: the node where they were introduced, in the pgraph.
Right now they are only introduced at entry. This will remain their main provenance, but
later we will see that some other nodes can also introduce decls and props.

The scope of a node n (which introduces decls or props) is the set of nodes which have
a path to n. In the other direction, each node uses the decls and props introduced at its
(transitive) dependencies. This settles the question of how to combine decls and props
(such as at a binary prim node): merge them if they have the same provenance; otherwise
keep them distinct.

Although we are now using computational history as our main notion of partial informa-
tion, sets remain relevant for us. One reason is that eventually we will want to check whether
the result of an operation is unique - to remove that operation from the specialized program.
To check this, we will convert that result to a set, then check uniqueness as in 3.1.4.

To convert from a history to a set, conceptually we forget the history, and we keep only the
possible end results that can come out of that history. Concretely, we forget the provenances
of the decls and props. The resulting history becomes self-contained: it declares its own
variables. In other words, it has no common past with any other history.

3Assuming the same resources are needed to store 2, 3, or 5; not to mention the +.
4We note that debugging could be greatly facilitated by knowing that something is 2 + 3 rather than 5.
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We emphasize a distinction here, between the notion of set and our implementation of
it. Conceptually, a set does not have a history. Concretely however, we represent a set as a
select history, which could have produced the set’s members (e.g. 2x+1 rather than 2x−1).
Therefore forgetting provenance is not enough to turn a history into a set. We must also
treat it as a set in subsequent operations (e.g. checking set equality).

3.2.4. prog, exit

We have seen the basic behavior of partial interpretation: values are histories represented
as extended comprehensions. We combine their expressions syntactically, and we combine
their decls and props by tracking their provenance. This corresponds to result, const, entry,
and prim. We now briefly discuss prog and exit, before moving on to if and call.

prog is similar to const: it produces an expression (representing the wrapped pgraph),
without needing any decls or props in support. Each source pgraph is identified by an
integer. This identification is established before beginning partial interpretation, and stored
in a table. During partial interpretation, the correct SMT expression is constructed by
looking up this integer, and wrapping it in a mkProg constructor. Again, we postpone the
discussion of expressions until we interact with an SMT solver (in 3.2.7).

At exit, we report the history we have computed for the results. This history can depend
on our formal parameters, and it is important that we report these dependencies to our
caller. Concretely, at entry our formals contained decls. We can use the same names in the
results, to indicate dependencies on the inputs.

To see the significance of this, consider a small program p(x) = x - id(x), where id
is the identity function, and x is a completely unknown integer. Disregarding the details of
making a call for now, p calls id with a completely unknown integer argument. If we are
not careful, id then returns “a completely unknown integer”.

It is true that the result of id is a completely unknown integer; but this is not the whole
truth. It is more accurate to say that the result is the same completely unknown integer as
the input to id. This enables p to reason that the final result is 0.

3.2.5. Simple but non-terminating if and call

Summarizing so far, we have examined six node types: result, const, entry, prim, prog,
and exit. Handling these has made the partial interpreter more complex than the ordinary
interpreter. Nevertheless, we have made no real concessions : over these node types, we have
not sacrificed any accuracy in the partial information computed.

We are about to examine the remaining node types: if and call. When we do this, we will
inevitably encounter the main difficulty with partial interpretation: termination of the partial
interpreter over recursive object programs. We first describe simple (but non-terminating)
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behaviors for if and call. We use these simple behaviors to illustrate the termination problems
that arise in partial interpretation. We remedy part of the problem by modifying the handling
of if. This adds more complexity to the partial interpreter: interaction with an SMT solver.
Despite this, some termination problems remain. We devote 3.3 and 3.4 to addressing these
problems, by modifying the handling of call. We will see that achieving complete accuracy
there is a substantial problem, with many opportunities for future work.

To handle the if node, one simple idea is to handle it like a primitive operation. To
re-iterate, this idea fails, but we describe it to illustrate the problems we run into. The
language of SMT expressions includes a conditional expression, written ite - as in if-then-
else. It is therefore possible to write an expression representing the result of the if node.
First compute all the data dependencies: the condition c, the consequent value a, and the
alternate value b. The result expression is then (ite c a b). Intuitively, this is equivalent to:

y such that (c ∧ y = a) ∨ (¬c ∧ y = b).

Here we are making no attempt to select between the two branches; we are merely encoding
the selection into a logical proposition.

To handle the call node, the simplest idea is to handle it as in the ordinary interpreter:
a call in the object program is mirrored by a (recursive) call to the interpreter. The ac-
tual arguments directly become the formal parameters for the called program - full history
included. We have not implemented this, and we omit most of the details.

We detail one point, which remains relevant in a terminating implementation of call: we
need to determine which program to call. What we are given is a set of possible programs
to call. We resolve this in a simple way, in this work. We check if this set has a unique
member (see 3.1.4). If it does, we know which program to call. If not, we report a completely
unknown result from the call. Such an example - a call to a non-unique program - might
arise in a root call to map, where the function argument is unknown.

There is an opportunity for additional accuracy here, but we do not pursue it, in the
interest of brevity. When the set of possible programs is not a singleton, we could attempt
to enumerate its members. We could then execute each possible program, and combine
the results - either in a union, or in a conditional expression which records which program
produced which results. Enumerating members is possible if the set is known to be finite.
This guarantee depends on the details of handling cross-module calls, which we do not
investigate.

The enumeration itself is an extension of the uniqueness check (see 3.1.4). Recall that
the uniqueness check starts by obtaining one possible value; then, we reject this value and
check for satisfiability again; if the value is not unique, we get sat. To enumerate the set’s
members, we can continue by obtaining a second possible value. Then, we reject this value
and check for satisfiability again - etc.
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Combined with the previous node types, these simple behaviors for if and call ensure that
partial interpretation terminates on object programs without recursion. We are effectively
encoding every possible computational path, into a large set comprehension. However, this
does not terminate on object programs with recursion.

3.2.6. Non-termination of recursion

Consider the partial interpretation of a factorial program, on completely known input
1. The if node makes no attempt to decide the branch: we have stipulated that it should
merely construct a conditional expression. Accordingly, the if node recursively requests the
condition, and the consequent and alternate branches, intending to package these into a
conditional expression. The alternate branch is a call of fact(0), which is handled by a
recursive call to the partial interpreter. In the partial interpretation of fact(0), the same
thing happens, and we have an infinite loop in the partial interpreter.

This is the same problem as in the ordinary interpreter: the if node should select not
only between values, but between execution paths. The solution is also the same: we should
attempt to decide the condition. When we succeed, we should request only one of the
consequent or alternate branches.

Therefore, we want to decide branches whenever possible. This is not quite as critical as
the above example suggests: the simple handling of call amplifies the problem, and that is
not the handling of call we will use ultimately. However, the principle remains: even with
our handling of call in 3.3, it will be good to decide branches whenever possible.

3.2.7. Handling if with an SMT solver

The plan is to use an SMT solver to decide branches. We will carry an SMT process
through partial interpretation. We first describe the initialization of this SMT process. We
then discuss how to modify the behavior of the previous node types, to interact with the
SMT solver. Then, we give the modified behavior of the if node.

The partial interpretation of each pgraph begins with a fresh SMT process. We first issue
the following datatype declarations:

(declare -datatype Prog (( mkProg (progId Int ))))

(declare -datatype Pair (par (T U) (( mkPair (fst T) (snd U)))))

(declare -datatype List (par (T) ((nil) (cons (head T) (tail (List T))))))

These declarations augment the language of expressions accepted by the SMT solver,
beyond those natively supported by the SMT-LIB language. Since we selected our primitive
data and operations to closely match SMT semantics, the basic SMT-LIB language already
provides everything else that we need: booleans, integers, and operations over these.
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The Prog type enables us to write the SMT expression (mkProg _), which expresses the
output of a prog node: a pgraph represented by an integer.

The parametric type families Pair and List enable us to write the SMT expressions
(mkPair _ _), nil, and (cons _ _), which express pairs and lists.

We could leave the behavior of previous node types unchanged. This would mean that
any time we wish to make an SMT query (such as at an if node), we would pipe all the
decls and props reaching that node, into the SMT solver. After making our query, we could
reset the SMT solver.

Instead of doing this, as we traverse the pgraph during partial interpretation, we in-
crementally update a single SMT context. Whenever decls and props are introduced, we
immediately pipe them to the SMT solver, in addition to writing them as the result of partial
interpretation at that node. Our memoized traversal of the pgraph ensures that this is done
only once at each node, which avoids duplicate declarations to the SMT solver.

We now describe the modified behavior of the if node. We first obtain the result of
the condition. This contains an expression, and we query the SMT solver to check if this
expression has a unique value. The uniqueness check is described in 3.1.4, but here it is
simpler: the names are already declared, and the propositions are already asserted. We
introduce a temporary name c for the condition, to ease the interaction:

(push)

(declare -const c Bool)

(assert (= c ...))

(check -sat) ;; we know this is ’sat ’

(get -model)

The SMT solver reports a possible value for the condition c, which is a boolean. We
now assert that the condition c is distinct from this possible value, and check-sat again.
We enclose this entire interaction in a push-pop pair, to restore our SMT context after
this query. We do not wish to definitively assert that the condition has a certain value.
Intuitively, pop returns the SMT solver to its state before the last push, undoing everything
in between.

(assert (distinct c ...))

(check -sat)

(pop)
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The SMT solver reports one of three things:
• sat, in which case the condition of the if is unknown - it has two possible values,
which is all the possible values for a boolean
• unsat, in which case the condition of the if is known, and equal to the first possible
value reported by SMT
• unknown, in which case we must be conservative and suppose that both boolean val-
ues are possible - throughout our algorithms, it is straightforward to be conservative
in handling unknown.

When the condition is uniquely known, we obtain the result of the corresponding branch
(consequent or alternate), and we report it directly as the result of the if node. When the
condition is unknown, we fall back on our earlier implementation of if : we obtain the result of
both branches (consequent and alternate), and combine them into a conditional expression.

There is an additional opportunity for accuracy here, but we do not pursue it, in the
interest of brevity. When the condition is unknown, we could compute the result of the
consequent branch under the assumption that the condition is true - and conversely in the
alternate branch. This is sometimes referred to as tracking a path condition, in the literature
on symbolic execution. This would complicate our algorithm, because a node’s value could
depend on which path we came from.

Note that other than the limitation we just described, this handling of if makes no
sacrifice in accuracy, so long as the SMT solver does not report unknown.

Giving an example of SMT reporting unknown is tricky for two reasons. First, SMT
solvers are the subject of active research, and they are constantly improving their methods.
Second, when unknown arises in our usage, it is typically for a very large query. Note
that when unknown arises in our usage, we have observed empirically that specialization
accuracy is not negatively affected. In other words, when SMT couldn’t find an answer,
there was no useful answer to be found (in terms of further specializing our programs).

We give a small synthetic example of unknown which we encountered early on: is it true
that for all lists of integers x, there exists a list y such that x is the tail of y? Intuitively
we know this is true, because we can exhibit y by consing absolutely anything in front of
x. CVC4 reported unknown on this query. We reported this to the CVC4 mailing list, it
was fixed, and our example was added to the CVC4 test suite. However, if x is a list of lists
of integers, CVC4 still reports unknown. We reported this as well, but we have not heard
back. To be fair, we did not attempt to learn and fix their code ourselves either.

This example reflects the fact that SMT solvers traditionally excel at proving existentials
(i.e. finding a concrete model), but not universals (i.e. finding a symbolic proof). Note that
universals occur naturally as negated existentials. The weakness with universals is being
mitigated by recent work, e.g. counterexample-guided quantifier instantiation [RKK17].
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3.2.8. Remaining non-termination

Despite the modified implementation of if, there are still termination problems. Consider
the partial interpretation of fact(x) - factorial of a completely unknown input x. The
details of this example depend on whether or not we track path conditions (see 3.2.7), but
the end result is the same regardless. We examine both cases, to see that the result is the
same.

Suppose first that we do not track path conditions - we do not track them, in this work.
The if node requests the condition and attempts to decide the branch, but is unable to.
Therefore, it requests both the consequent and alternate branches - intending to package
them into a conditional expression. The alternate branch is a call of fact(x-1), which is
still a completely unknown integer, and we have an infinite loop in the partial interpreter.

Suppose next that we do track path conditions. Again, the if node fails to decide the
branch. Then, when requesting the alternate branch fact(x-1), it does so under the as-
sumption that x ≥ 2. Therefore the first recursive call has argument:

{x− 1 | x : Int . x ≥ 2}.

The second recursive call will have argument:

{x− 2 | x : Int . x ≥ 3}.

And again we have an infinite loop in the partial interpreter.
This illustrates a fundamental problem: it is possible for a program that terminates

on all (completely known) inputs, to not terminate on partially known inputs.
One intuition is that during ordinary execution, every branch is successfully decided, and we
go into a single path of execution. During partial interpretation, whenever a branch is not
successfully decided, we go into two paths of execution. Therefore we are executing more
code than during ordinary execution. Another intuition is that termination depends on going
into a “base case”, which eventually happens for all completely known inputs.5 However as
we see here, under partial information it is possible to never definitively go into the base
case.

To address this, we must abandon the simple implementation of call, which mirrors a call
in the object program by a recursive call to the interpreter.

5For an ordinarily terminating program (such as factorial).
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3.3. Handling recursion
We have just seen how to perform partial interpretation, at every node type except call.

We have also seen that partial interpretation of fact(x) - factorial of a completely unknown
integer x - does not terminate, under the simple handling of call described in 3.2.5.

In this section, we show how to modify partial interpretation so that it terminates in the
presence of recursive calls. We introduce many modifications: not only do we modify the
handling of call nodes; we also modify the overall structure of partial interpretation.

We begin by making a key observation about the example of fact(x). This time we omit
discussing the nuances of path conditions (see 3.2.7 and 3.2.8); as in 3.2.8, the end result
is the same regardless. We already hinted at this key observation, in 3.2.8. We justified
our statement that partial interpretation of fact(x) does not terminate, as follows: x is
completely unknown, and in the recursive call, x-1 is still completely unknown. In some
sense, there is repetition from one call to the next.

Taken as values, the arguments to two successive calls are obviously distinct: the second
is one less than the first. But taken as sets, they are equal. The sets {x | x : Int} and
{x− 1 | x : Int} contain the same members - each set is included in the other.6

We can leverage this repetition to achieve termination of partial interpretation. Our
central point is that if the arguments are equal (as sets), then the results are equal (in some
sense which we will clarify). In other words, we are suggesting that we can discard all history
from the arguments to calls, to turn them into sets - at no loss in accuracy. We first explain
why we consider this justified. The rest of this chapter shows how it gets us termination.

6Recall that our definition of factorial (see 2.4) is over all integers, with fact(x) = 1 for negative x.
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Fig. 3.1. Diamond-shaped pgraph fragment, illustrating the example from 3.2.3.

3.3.1. Arguments as sets

We have seen that in general, discarding history can lose accuracy. But we have also seen
that the history of a completely known value can be discarded, without losing accuracy. We
now elicit other conditions under which history can be safely discarded.

Consider Figure 3.1, which illustrates our example of 2x+ 1 and 2x− 1, from 3.2.3:

A: 2x B: 2x+ 1 C: 2x− 1 D: 2x+1−(2x−1)

We saw that in this example, history mattered. Specifically, it was necessary to store the
histories of B and C - up to A, at least. This enabled us to accurately compute D as 2.

Abstractly, the first feature of this example is that B and C share a common past at A.
If they do not share a common past anywhere, knowing their history gains us nothing.

The second feature is that (the producing operation of) D later rejoins B and C. This is
when their shared history actually matters. Before this, the shared history is being passively
preserved. If B and C are never rejoined, the shared history is preserved for nothing.

The third feature is that there is no path between B and C. This is true in both directions,
and this symmetry is complicating our analysis. We focus our attention on B. We conjecture
the following necessary condition for the relevance of the history of B up to A:

There exists D with D→∗ B→∗ A, and D also has a side path to A, not through B.

This condition is depicted in Figure 3.2.
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Fig. 3.2. Conjectured necessary condition for the relevance of the history of B up to A.

We do not know how to prove this, or how to define the (ir)relevance of a history.
Intuitively though, suppose D (transitively) depends on A only through B. Then in any
expression for D, we can eliminate A by rewriting in terms of B. It seems then that any
relational information about A is captured in the relational information about B.

In the concrete example, 2x+ 1 and 2x− 1 depended on x, but only through 2x. We can
therefore set u = 2x, and reason about the final result as u+ 1− (u− 1). We get the same
conclusion, regardless of the history of u in terms of x - only the history up to u matters.

Supposing this conjecture is correct, we can justify discarding all history in the arguments
to any call. In Figure 3.2, suppose B represents the arguments to a call. A is any piece of the
history of the arguments, in the caller. D is anything computed within the call. D cannot
have a side path to A, because a pgraph can only receive information through its arguments:
there are no closures or global variables. It would also make no sense to access data directly
in the caller’s scope, because in principle we don’t even know what program made the call.

Once the history of the arguments is discarded, we view them as a set (of tuples), which
must determine the result of the called program. As discussed in 3.2.4, the result is a history
which depends on the formal parameters. In other words, the result (as an input-output
relation) is completely determined by the arguments (as a set). The caller can then replace
the formals with the arguments (in the result), to recover the history in the caller’s scope.

We give a brief example: p(x) = succ(x) - succ(x-1), with succ(y) = y+1, and x
completely unknown. Here the arguments to succ are x and x-1, which are equal as sets.
We can execute succ a single time, with a formal parameter of y, and the result y+1. Then
for the first call, p substitutes y → x in the result; for the second call, y → x-1.
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3.3.2. Caching results

These observations justify our first modification to the handling of call. We introduce a
global cache that maps a pair (pgraph, args) to a result. The args are treated as a set,
and the result as an input-output relation. The idea is that when we reach a call node, we
attempt to avoid re-executing the sub-program. We first look up the relevant pair (pgraph,
args), and attempt to re-use a stored result.

Note that the possibility of such a cache depends critically on two aspects of our develop-
ment. First, we need something to store in the cache. This is where a call-return discipline is
especially beneficial: when we go into a call, there is a well-defined future point when we will
return. The cache stores the results at that point. Everything that would have happened -
between the call and the return - can be discarded if we have the results. Intuitively, a cache
hit then allows us to “fast forward” through the execution of the call.

Second, we need a notion of equivalence of arguments, to decide what constitutes a cache
hit. In this work, we use set equality as the notion of equivalence. We implement this by
converting the arguments to basic comprehension (see 3.1.3) at the beginning of a call. Then
they are compared for equality (see 3.1.4), to the arguments in existing cache entries. If
there is no cache hit, we actually execute the call. At this point, the fresh variables of basic
comprehension neatly separate the actual arguments from the formal parameters. All entry
has to do is convert back to extended comprehension.

With polymorphic types, there is a complication when comparing arguments. Consider
the arguments [x y 3] and [x y true], to a polymorphic list length program. Ideally, we
would want these to fall into the same cache entry. However, we have no clear formulation
of this. We avoid the problem and require equal monomorphic types for argument equality.

3.3.3. Finding a fixed point

By itself, the addition of this cache does not solve the termination problem. Consider
again the partial interpretation of fact(x), as it stands. We make a root call, planning to
later save the result in the cache. When we reach the first recursive sub-call, we consult the
cache but find nothing. We therefore recursively execute the sub-call, planning to later save
the result in the cache - etc. We never get a result, we never store anything in the cache,
and we never terminate.

The problem is a circular dependency: we need the result of fact(x) to compute the
result of fact(x). We can express this with a recursive equation:

R = F (R)

Here R denotes the result of fact(x), and F represents part of the pgraph of fact: the
data path from the return point of the inner fact, to the return point of the outer fact.
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Restating this equation in words, R is a fixed point of F . We can therefore hope to
solve for R with an iterative fixed point computation. That is our plan, and the rest of this
chapter discusses the implications of this plan.

Intuitively, we will compute a sequence of tentative results R0, R1, ..., with Ri = F (Ri−1).
Ultimately we want this sequence to reach R, which is the case once Rj = Rj−1 = R. Many
questions appear immediately, and we address them next:

• what should be the initial tentative result R0?
• how does this generalize to more complicated object programs?
• how do we know this terminates?

3.3.4. Initializing results

We first discuss how to initialize the result of our fixed point computation. Let’s not lose
sight of what we’re trying to do: computing the set of possible results from a call. Note
that we are speaking of a set of results, for simplicity, even though technically results are
input-output relations. A relation is also a set (of pairs), and we ignore the distinction here.

The desired set is subject to a tension between two goals: correctness and accuracy. A
set is correct if it includes all the values that may occur there during ordinary execution. In
this sense, a full set (completely unconstrained) - is always trivially correct. In the opposite
direction, a smaller set is more accurate: it carries more (partial) information about what
the results can be. Therefore, we are after the smallest correct set. Conceptually this set
certainly exists, because it contains the results that are actually possible during ordinary
execution. The only question is how close we can get to that conceptual set.

Now observe that when traversing a pgraph node, partial interpretation proves that
certain results are possible, based on the inputs that are possible. In other words, intuitively
the logic of the object program adds possible values to sets. It therefore makes sense to start
tentatively from a small set, and let it grow until we reach a fixed point.

We use the empty set as the initial tentative result from a call. We interpret the empty
set as “the result of” non-termination. We justify this as follows. The result set indicates
the possible values that the call may return (during ordinary execution). If the set is empty,
then the call may not return any value at all. This is only possible if the call does not return.

Since the empty set can now appear as the result of a call, all pgraph node types need
to handle the empty set as an input, as well. Continuing with the non-termination interpre-
tation, most node types simply produce the empty set, if any of their inputs are the empty
set. Only if deviates from this principle, because it is non-strict.

At an if node, if the condition is the empty set, then the net result is also the empty
set. Otherwise, we attempt to follow the steps from 3.2.7. First, we attempt to decide the
condition. If we succeed, we directly report the result from the correct branch. If we cannot
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decide the condition, our plan is to construct a conditional expression. This is not a problem
if both branches (consequent and alternate) report a non-empty set. However, in the case
when at least one branch reports the empty set, we must do some additional work.

If both branches (consequent and alternate) report the empty set, then the net result of
the if node is also the empty set.

If only one branch reports the empty set, there is a complication. Recall the propositional
reformulation of the conditional expression:

if c then a else b

= y such that (c ∧ y = a) ∨ (¬c ∧ y = b)

This makes sense as long as we have expressions a and b, from the two branches. However,
if a branch reports the empty set, we do not have an expression for the possible values from
that branch. Suppose for the sake of exposition that the alternate branch reports the empty
set. Then whenever ¬c, y can take no values at all. We can write this symbolically as follows:

y such that (c ∧ y = a) ∨ (¬c ∧ false)

= y such that (c ∧ y = a) ∨ false

= y such that (c ∧ y = a)

This algebraic manipulation shows that when the alternate branch is the empty set, we
should report the result from the consequent branch, and assert the condition to be true.
This assertion may appear strange, given the non-termination interpretation of the empty
set: how can we assert that the condition is true, “on the grounds” that the alternate branch
does not terminate? However, this intuitive objection misses a subtle point. The result set of
the if node describes the possible values coming out of the if node, if the if node terminates
- as all our result sets do. If the if node terminates, but the alternate branch would not
terminate (i.e. it reports the empty set), then we do know that the condition was true. This
justifies the assertion of the condition in the result - intuitively, as well as algebraically.

We clarify that in this section, we are not deciding termination. When a ⊥ result arises
(i.e. the empty set), it is often transient in the early stages of the fixed point computation. If
a result does converge to ⊥ (e.g. p(x) = p(x+1) for a completely unknown x), then we have
indeed proven non-termination. However, if a result converges to a non-empty set, we have
not proven termination; we have merely shown that if the operation terminates, its actual
result (during ordinary execution, later) is constrained to be a member of the result set. And
that is exactly the point we are making in the previous paragraph: because the result set
has this meaning, it is correct to assert the condition one way when a branch reports ⊥.
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3.3.5. Generalizing to more complicated object programs

Summarizing, we compute a sequence of tentative results from a call. This sequence
begins with the empty set, and progressively grows larger.

In the example of fact(x), we are computing a single sequence of tentative results: those
from the call to fact(x) - this is the only call that occurs in the example.

In general, we need to compute several sequences of tentative results - one for each pair
(pgraph, args) corresponding to a call that occurs during partial interpretation.

We store these tentative results in our cache entries, indexed by (pgraph, args). How-
ever, we do not store an entire sequence of tentative results, in a given cache entry; instead,
we store only the most recently computed result. Intuitively, this most recently computed
result “contains” all the information from the previous results. Literally also, the most re-
cently computed set contains all previously computed sets, in the sense of set inclusion. This
fact will be highlighted (and proven informally) in our termination argument.

Again in the example of fact(x), we mentioned only loosely how to perform re-computation
of the result. We pointed to part of the pgraph of fact: the data path from the inner re-
turn, to the outer return - we referred to this data path symbolically as F . This data path
depended on a single result: the previous result from fact(x).

In general, re-computation of a result can involve an arbitrarily complex data path
through a pgraph. This data path can depend on any number of results, stored across
as many cache entries.

To avoid this complexity, we perform re-computation by performing partial interpretation
of the entire pgraph. This is done as described in 3.2, with one important modification. When
we come to a sub-call, we read the result currently stored in the cache for that call; we no
longer recursively invoke the interpreter at sub-calls. In effect, this amounts to computing a
result which is up to date with respect to all the results currently in the cache.

We complete this with an outside “driver loop”, which repeatedly re-computes the results
of calls, until we reach a fixed point over all the results in the cache. This marks a substantial
change in the structure of partial interpretation. Previously in 3.2, we described partial
interpretation as the mapping from each data node in a pgraph, to a computational history.
This is no longer the whole of partial interpretation - if we need to make the distinction, we
will refer to this previous process as pgraph partial interpretation. It remains a core piece
of partial interpretation: it re-computes the result from a call, thereby advancing one step
towards a fixed point.

We could traverse the entire cache, re-compute every result, and repeat until none of
the results change. Instead, to avoid needless re-computation, we track the dependencies
between cache entries - more precisely, between the results they contain.
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In each cache entry e, we additionally store a list of cache entries whose analysis consumed
the result of e. Whenever pgraph partial interpretation reads a result of a cache entry e,
the current execution is registered as a consumer of e. We also introduce a global worklist,
which is a list of cache entries, each of whose result needs re-computation - because there
has been a change in some of the results they consumed. Whenever we complete partial
interpretation of a pgraph, if the result has changed, we put its consumers on the worklist.
Also, whenever we encounter a call for which there exists no cache entry, we create a fresh
cache entry, initialize its result to the empty set, and put this cache entry on the worklist.

The top-level partial interpretation algorithm is then as follows. To perform partial
interpretation of a root call, we first create a cache entry for this call. We initialize this cache
entry’s result to the empty set, and put it on the worklist. Then, we flush the worklist: until
the worklist is empty, we pull a cache entry from it, and run pgraph partial interpretation
to re-compute its result. Once the worklist is empty, we have reached a fixed point. We can
now read the result from the cache entry we created for the root call.

3.4. Termination
We now have the right overall structure for our partial interpreter, but we are not done.

It is time to discuss the termination of partial interpretation. Our plan now is to walk
through an informal termination argument. Along the way, we encounter three parts where
the argument fails, as it stands. We label these three parts P1 through P3, and address them
in separate subsections (3.4.4 to 3.4.6). In these subsections, we describe the modifications
we make to partial interpretation, to satisfy the requirements of the termination argument.
The purpose here is first to identify where such modifications are needed, and to outline the
design space for such modifications, i.e. the exact requirements of the termination argument.
We do not have principled solutions for these modifications, so we then select unprincipled
solutions which we use in our implementation.

This contrasts slightly with our presentation so far. We have been motivating modifica-
tions to the partial interpreter, with examples of failure to terminate. These examples (of
object programs) were simple and illustrative. From this point forward, we find it is better
to focus on the generality of a termination argument, rather than the specifics of examples.
The examples would be more complicated, and detract from the important ideas.7

3.4.1. Overall argument

We begin our termination argument. We visualize an execution of partial interpretation,
on a two-dimensional grid. Horizontally along the bottom, we place all the cache entries that
arise during partial interpretation. Vertically over each cache entry, we place the sequence of

7Also, in some cases we do not know what the examples would look like.
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results computed for that cache entry. Intuitively, this is delimited by a rectangle, whose area
corresponds to the total number of re-computations made during partial interpretation. Our
overall argument is that the area is finite, therefore partial interpretation terminates. The
area is the product of the lengths of the sides (horizontal and vertical), and we argue their
finiteness separately. These sub-arguments are substantial, but the overall argument should
be intuitively clear: if we create finitely many cache entries (horizontally), and re-compute
their results a finite number of times (vertically), then we terminate in finite time.

Before we go into the sub-arguments (horizontal and vertical), we comment on the intu-
ition of the rectangle. For a given object program, the shape on the two-dimensional grid
might not be an exact rectangle: some results might get re-computed more than others.
However, consider the worst case: every result depends on every result. Therefore any time
one result changes, all the results must be re-computed. Continue to consider the worst case:
when we re-compute all the results, only one result changes. In the absolute worst case, we
re-compute this result last, such that all the others were re-computed “for nothing”.

This worst case behavior justifies the intuition of the rectangle. On each row, we re-
compute all the results, and a single one changes. If no result changes, we get two successive
rows which are identical, and we have reached a fixed point. We can fit any more optimistic
execution within this rectangle. If there are less dependencies between the results (than in
the worst case), we can conceptually leave some entries blank in a row - or copy them from
the row below, without actual re-computation. If more than one result changes on a row,
we need less rows to reach a fixed point.

We first argue vertical finiteness. We start by reducing vertical finiteness to something
simpler. If we know that each individual result can only change a finite number of times,
then the total number of rows must be finite. This is because one result changes on each row.
So the result of the first cache entry can only change so many times, then the result of the
second, and eventually we run out - assuming horizontal finiteness also, which we will argue
in 3.4.6. Specifically, suppose we have m cache entries, and the result of each can change at
most n times. Then the number of rows is at most mn: each result changes n times. The
total number of re-computations is at most m2n: m re-computations take place on each row.

We argue that a given result can only change a finite number of times, in three parts:
• a directionality in the changes: when a result changes, the new result strictly contains
the old, in the sense of set inclusion - in technical terms, the result is monotonically
increasing under set inclusion
• the existence of an endpoint in that direction: the full set
• finitely many steps before we reach this endpoint.

Before we argue directionality and finitely many steps, we comment on the endpoint.
The endpoint exists trivially (the full set), but it is significant. Once we’ve reached the full
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set for a given result, directionality ensures that the result can no longer change. In other
words, this particular result has reached its fixed point.

3.4.2. Result directionality

Here we are explicit that a result is an input-output relation. We show that when we
(re-)compute a result, it either remains the same or grows larger. We first introduce a
strong induction on the global (chronological) order of (re-)computations. In other words, to
prove that result directionality is respected by a re-computation, we assume that it has been
respected by all previous (re-)computations, of any cache entries. We will use this assumption
in one specific place, with the phrasing “we appeal to our strong induction hypothesis”.

In the case of the first computation for a cache entry, directionality is trivial because the
previous result was empty. In the case of a re-computation, we examine the pgraph whose
result is being re-computed. We show that directionality is respected at every node. Once
we have shown this, we observe that in particular it is respected at the exit node.

The formalism we use here may not be the clearest, but our goal is to identify where
the argument fails, and the corresponding modifications to our algorithms; not the formality
of the argument. We refer the reader to our article [SMF21] for a clearer formalism and
proof, based on a relational semantics. The relations there are more like the ones found in
databases and formalized in [BCD14]. Each element of a relation is a possible concrete
execution. Composition becomes relational join. The same proof steps shown here are used
in the new formalism.
Lemma 3.4.1. (Node directionality) Suppose that in a (re-)computation for a cache entry,
a pgraph node n got mapped to a result R (a relation from the formals to n). Then in a
subsequent re-computation for the same cache entry, n gets mapped to R’, with R ⊆ R’.

Proof. (sketch) For a few node types, R = R′ is fixed: at entry, R is the identity
relation; at const and prog, R is a constant relation. For the other node types, we proceed
by structural induction on the pgraph. We suppose a previous relation S from the formals
to the successors of n, and a current relation S ′, with S ⊆ S ′.

We now write R as a composition of relations S;L (S followed by L), where L is a local
input-output relation at n. For any relations S and L, we state without proof that:

S ⊆ S ′ ∧ L ⊆ L′ → S;L ⊆ S ′;L′.

We already know S ⊆ S ′ (by structural induction), so it suffices to prove L ⊆ L′.
For many node types, the local relation L = L′ is fixed:
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• prim: for example, the relation for + is {(a, b, a+ b) | for any a, b}
• if : {(true, a, b, a) | for any a, b} ∪ {(false, a, b, b) | for any a, b}
• exit and result: all these do is pack and unpack data component-wise. Their local
relations are therefore fixed. For example, the relation for an exit of three inputs is
{(a, b, c, (a, b, c)) | for any a, b, c}.

Only call remains, and here L can differ from L′, since these are results which we read
from the cache. Conceptually, we first compute the argument set A, to see which cache entry
we read from. A is the image of the set of formals, under S. There are two main cases. First,
if A = A′ (the arguments have not changed), we read L′ from the same cache entry e as
before. Either e has been re-computed since we read L, or it hasn’t:

• if e has not been re-computed, L = L′

• if e has been re-computed, we appeal to our strong induction hypothesis: L ⊆ L′.
If A 6= A′, we encounter a problem. We are reading a result from a new cache entry e′. Even
though we know A ⊂ A′ (since S ⊆ S ′), we have no guarantee that the L′ we read from e′

includes the L we read from e. In the extreme case, e′ might be freshly created, in which
case its result is the empty relation. If this happens, node directionality is broken, result
directionality can be broken, and so can termination. We label this problem P1, and address
it in 3.4.4. Assuming suitable handling of P1, call respects directionality. �

3.4.3. Finitely many steps in the result

We want to argue that a result can only grow a finite number of times, before reaching
the full set. As it stands, this is not true. We examine an example briefly. Consider once
again the partial interpretation of fact(x) - factorial of a completely unknown integer x.
Initially the result is the empty set. During the first computation, in the alternate branch
we read the empty set at the sub-call. We therefore get the following result, schematically:

if x ≤ 1 then 1 else ⊥

⊥ stands for the empty set, and we allow ourselves to write ⊥ in a branch of a conditional
expression. The next result is:

if x ≤ 1 then 1 else

if x = 2 then 2 else ⊥

Then:

if x ≤ 1 then 1 else

if x = 2 then 2 else

if x = 3 then 6 else ⊥
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etc. We are progressively unrolling the execution of factorial into conditional expressions,
and this never reaches the full set. We label this problem P2, and address it in 3.4.5. With
suitable handling of P2, there are finitely many steps from any result to the full set.

Summarizing, in the big picture of our termination argument, we have just argued vertical
finiteness: results are re-computed (or, they grow) finitely many times. The next piece is
horizontal finiteness: finitely many cache entries are created. We label the entire question of
horizontal finiteness P3, and address it in 3.4.6. Combining horizontal and vertical finiteness,
we have argued that partial interpretation terminates. Next, we address the three missing
pieces of the argument, which we have labelled P1 through P3.

3.4.4. Handling reading from a new cache entry [P1]

Recall that this problem arises in the argument for directionality of the call node - within
the argument for result directionality. Specifically, the problem arises when the arguments
to the call node have changed. The problem is that we read from a different cache entry
than before. As it stands, we have no guarantee that the result there is larger than the last
result we read (from the old cache entry).

We take some time to discuss this problem, but we do not know the final conclusion.
Although there are various ways to ensure that this problem does not break termination,
we do not know all their implications, especially on what we are computing. We first offer
some insight into the problem. We briefly dismiss three approaches as unsuitable. We then
discuss two approaches to addressing the problem. Finally, we explain why we ignore the
problem in our implementation.

In some sense, the problem is that we are attempting to re-use a standard template for
an algorithm and a termination argument, even though our setting does not quite fit. In a
traditional fixed point computation, a fixed re-computation function is applied repeatedly to
some value, and it is the fixed point of this function that we are computing. In our setting,
the “value” is the tuple of all the results stored in the cache, and this is fine. Each component
in the tuple depends on any number of components, which corresponds to a re-computation
equation for each component. This implies a re-computation function for the whole cache,
given the dependency relations between the components.

What does not quite fit is that in our setting, this re-computation function is not fixed.
As the components of the tuple grow, so can the arguments to sub-calls, which can change the
dependencies between the cache entries. However, there is some structure to this evolution
of the dependencies: always towards cache entries whose arguments are larger.

If the arguments are larger, intuitively the results must be larger. We can formulate
this as a kind of congruence over cache entries. First notice that there is a partial order
on cache entries (whose pgraphs are equal), under argument inclusion. Then, given two
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cache entries (with arguments) A and B, and their results RA and RB, the congruence is:
A ⊆ B → RA ⊆ RB. Notice that this congruence generalizes our caching principle, which
was: A = B → RA = RB.

So far, our algorithm and termination argument have been framed as though the re-
computation equations are the only constraints over the final results, and the only means of
advancing towards those results. However, we see that this is not enough to complete the
termination argument. In some sense and to some degree, we must also include congruence
of results as a constraint over the final results, and as a means of advancing towards those
results. This idea is at the heart of the two approaches we propose to handle the problem.

We dismiss the idea of ordering re-computations so that the problem does not arise,
since this idea appears to fail for suitably circular object programs. We dismiss the idea of
intervening to enforce result directionality at the end of a re-computation, since it would
no longer be clear what we are computing. We dismiss the idea of intervening to enforce
node directionality based on results previously read at that node, since two executions could
report a different result when reading from the same cache entry.

A first approach is to propagate selected congruence information, between cache entries.
Suppose (the analysis for cache entry) C previously read from (cache entry) A, and now
reads from B, with RA * RB. We can intervene, compute the union RA ∪RB, store it in B,
and report this as the result of the call. Roughly speaking, we are using RA to “initialize” RB.
In other words, we are accepting that re-computation is not the only means by which cache
results change; we are accepting result congruence as another such means. Specifically, we
are propagating exactly enough congruence information to ensure node directionality. Note
that result directionality is respected when we write the union into the cache. Therefore we
maintain the validity of our overall termination argument.

A second approach takes our first approach to its logical conclusion. In the first approach,
we have already accepted that results can change by virtue of congruence; not just by virtue
of re-computation. At this point, it seems plausible to propagate all congruence information
between cache entries. We can achieve this by making two modifications to our algorithms.
First, when a cache entry E is created, we can find every cache entry whose arguments
are included in E, and initialize RE to the union of these results. Second, when we finish
a re-computation for a cache entry E, we can find every cache entry E ′ whose arguments
include E, and set R′E to RE ∪R′E.

This second approach seems natural. Further, it can be seen not just as addressing an
undesirable phenomenon at a call node. Looking at it differently, it can be seen as taking
advantage of an opportunity : we are leveraging congruence to speed our way to an eventual
fixed point. There is no question that computing a union is faster than re-executing an
entire pgraph. However, here again it is not clear to us what final result we are computing.
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In particular, we do not know if the same final result is achieved by propagating selected
congruence information (first approach), or all of it (second approach).

These questions require further investigation, but we do not conduct it in this work. In
practice, we have not encountered a program where all this is a real termination problem.
[Ruf93]’s section 4.4.2 describes features of programs where arguments grow at a call, break-
ing (what we call) node directionality. It is not clear to us what is additionally needed to
break result directionality; and even less clear, what is needed to break termination. For
these reasons, our implementation currently ignores this problem.

3.4.5. Finitely many steps in the result, revisited [P2]

Recall that this problem arises in the argument for vertical finiteness: it is complementary
to result directionality. The problem is that although results can be changing directionally
towards an endpoint (the full set), they can change infinitely many times without reaching
the full set. We briefly examined the example of fact(x), in 3.4.3.

A first observation is that our language of set comprehension does not admit a finite
expression of the exact result from fact(x). Therefore the problem is not merely one of
“converging to the answer too slowly”; there is no answer to converge to. This is not the end
of the world. For the purposes of termination, we can tolerate convergence to an approximate
result: a set larger than the exact result - even the full set. Therefore this observation is not
the crux of the problem.

The key feature of the problem is that we can grow a set indefinitely, without reaching the
full set. In technical terms, in the lattice of all the sets expressible with our comprehensions,
there are infinite ascending chains8: infinite sequences of progressively larger sets, which
never reach the full set - such as the sequence of results from fact(x).

In our assessment, the choice of solution to this problem is a critical aspect of partial
interpretation. We have not explored the possibilities very much, and it’s not even clear
to us what the range of possibilities is. Nevertheless, we discuss three points. First, we
describe some general features that any solution must exhibit. Second, we mention one class
of solutions which exhibit these features. Third, we present a simple solution which we use
in our implementation.

Any solution must eliminate infinite ascending chains. This is enough to fit within our
termination argument. This elimination can only be achieved by performing some sort of
adjustment of a result, after that result has grown. If there is no adjustment, we’ll get the
original (infinite) sequence. To maintain correctness, any adjustment must be towards a
larger set. In other words, it is necessary to make a conservative approximation of the result
- information must be discarded.
8This terminology refers to the common visualization of a lattice as a Hasse diagram, with the empty set ⊥
at the bottom, and the full set > at the top.
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One disciplined way to discard information is to introduce a new lattice, which we refer
to as an approximation lattice. This lattice contains sets which approximate the sets in
our original lattice. Additionally, the approximation lattice is constructed to have no infinite
ascending chains. We can then modify our algorithms: any time a result grows, we can “round
it up” to a set in the approximation lattice. In technical terms, this “rounding” corresponds
to a notion of widening, from abstract interpretation - we adopt this terminology.

There are many possible approximation lattices. The choice of approximation lattice
determines which information is kept and lost, upon widening. In principle, we could choose
a different approximation lattice at each call. We could then tailor these choices to adapt to
the information needs of the caller. In particular, conceptually we could preserve any finite
combination of boolean conditions.

In this work, we do not explore this idea of “adaptive widening”. Instead, we present a
simple mechanism for widening (i.e. adjusting) results. We stress that this particular choice
is not very important, in the big picture of partial interpretation. It mostly illustrates that
it is possible to instantiate the description above, and it allows us to experiment with partial
interpretation in practice.

We widen results as follows. First, we do not widen at all if the previous result was
the empty set. This is a practical choice which leaves unwidened the result of any first
computation. This accounts for many results, in practice. When we do widen, we begin by
discarding all relational information between formals and results. We do this by explicitly
quantifying over the formals, which turns the result into a set. Then, we widen component-
wise: one result at a time (among possibly multiple results), and one item at a time in data
structures. This effectively discards all relational information between components.

We widen a component based on the following three ideas:
• preserve information about uniquely known “scalars” (booleans, integers, programs)
• discard all information about non-uniquely known scalars
• preserve information about the known shape of data structures - in our case, of lists.

We guide this widening with the known types of set elements. To widen a scalar, we
test it for uniqueness. We then leave it unwidened if it is uniquely known; otherwise, we
replace it with a completely unknown scalar. To widen a pair, we recursively widen its two
components. To widen a list, we first check if the empty list is a possible value. If it is, we
further check if it is the only possible value. If so, we leave it unwidened. If the list can
be both empty or not, we replace it with a completely unknown list. If the list cannot be
empty, intuitively we have some information about the shape of the list, and we preserve
that information. We do so by recursively widening the head and tail of the list.

Under this widening of results, a result cannot grow forever without reaching the full set.
We first give an intuition for this argument; then, we make it more precise as a structural
induction on types.
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Intuitively, notice that any widened result can be seen as a data structure of known
shape, containing some number of “slots” for scalars. A scalar is in some sense a trivial data
structure, with a single slot. There are two ways for the result to grow (from a widened
result to another widened result). First, we can pick a scalar slot which was uniquely known,
and make it completely unknown. Since there are finitely many slots in a data structure
of known shape, we can only do this finitely many times. Second, we can throw out some
information about the shape. In our programs, only lists can have unknown shape, given
their type. When we lose information about the shape of a list, this happens at the tail.
The known segment shrinks to a shorter list, and we can only do this finitely many times.

More precisely, we show that a given value can only grow a finite number of times, by
structural induction on the type of this value. A scalar (boolean, integer, or program) can
grow 0 or 1 times - if it is unknown or known, respectively. In a pair, each of the two
components can grow finitely many times (by induction), and we sum the two numbers. In
a list, there are three cases. First, if the list is known to be empty, it can grow a single time -
to the completely unknown list. Second, if the list is completely unknown, it cannot grow at
all. Third, if the list is (locally) known to be a cons cell, then each of its head and tail can
grow finitely many times (by induction), and we sum the two numbers. This induction on
the tail is well-founded, because we cannot have a list of known, infinite length. This would
require an infinitely large set comprehension, or recursion in our language of propositions.

Widening results can introduce new variables which express the components which have
been made “completely unknown”. In other words, now results may not depend exclusively
on inputs. When a caller consumes such a result, it must keep those variables distinct from
other variables in the caller’s scope. Practically, we do this by renaming those variables to
unique names in the caller’s scope.

3.4.6. Finitely many cache entries [P3]

Recall that this problem corresponds to the second half of our termination argument:
horizontal finiteness. We must ensure that finitely many cache entries are created.

Cache entries are (only) created when a call occurs, if there is no cache hit for that call.
We must therefore ensure that finitely many pairs (pgraph, args) occur, at call nodes.

Calls - and their corresponding pairs (pgraph, args) - do not occur out of thin air. The
key idea here is to consider the static call graph of the object program. Each call exists at
an endpoint of a path through the static call graph. Each such path begins with the root
call. Then either the path stops, or it continues into a sub-call from the root call, and so on.

If the object program does not contain any cycles, then all these paths must be finite
(in length), because the object program is finite. However, if there are cycles (i.e. the
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object program contains recursion, or mutual recursion), then a path can loop around a
cycle indefinitely, creating cache entries along the way.

This suggests the following two-fold plan, to ensure that finitely many cache entries are
created.

First, we ensure that any sufficiently long path will always produce a cache hit. To
ensure this, we make additional modifications to our data and algorithms. This ensures
that there can only be finitely many paths which do not “reach” a cache hit: those that
are not sufficiently long. Cache entries are only created at an endpoint of these paths. We
therefore ensure that there are finitely many execution points where cache entries are created.
Intuitively, we bound the unrolling of the call graph during partial interpretation.

Second, in general, several cache entries can be created at each execution point (in the
unrolled call graph). This is because arguments can grow over the course of partial interpre-
tation, as we have seen when arguing the directionality of call (in 3.4.2). We additionally
ensure that arguments can grow finitely many times, by applying an argument widening
when they grow. We therefore ensure that finitely many cache entries are created.

We present a general framework for ensuring that sufficiently long paths produce a cache
hit. Simultaneously, we describe a concrete instance of this framework, which we use in this
work and which is due to [WCRS91]. Here again, we stress that this particular concrete
choice is not very important, in the big picture of partial interpretation.

Our general framework is in three pieces: a termination goal, a mechanism for termination
assessment, and a mechanism for termination resolution. Selecting a termination goal is
done once and for all, when implementing partial interpretation. Then, the two mechanisms
- termination assessment and termination resolution - are applied each time a call occurs, if
there is no cache hit.

First, we select a termination goal for partial interpretation. Ideally, we would like partial
interpretation to terminate on all object programs and all inputs. In this work, we relax
this goal: we aim for termination when the object program would terminate, at run-time. In
other words, we tolerate non-termination of the partial interpreter - if the object program
might not terminate during ordinary execution.

We are about to discuss termination assessment, so we make a clarification about the
decidability of halting. The theoretical limits on deciding halting do not quite reflect practical
reality. There are many ways to mechanically assess termination, usually falling back on
reporting “don’t know” in some cases. See size-change graphs [BAL07], especially as used
in [Ngu19]; linear algebra methods [Tiw04]; and the work from Microsoft Research on the
Dafny system for verified programming [Lei10]. For some terminating programs, Dafny
infers termination metrics (decreasing quantities in a well-founded domain), expanding on
classic (manual) termination proof methods going back at least as far as [Flo67]. Besides,
in our setting the object program cannot invoke the termination checker, which voids the
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traditional argument for the undecidability of halting. In any case, our goal is to decide
termination as often as possible.

Second, we select a mechanism for termination assessment. When a call site is reached
during partial interpretation (and there is no cache hit), we decide if we need to intervene
to achieve our termination goal. In this work, we use a simple criterion based on two ideas.

The first idea is that there is no risk of non-termination until we have actually looped
in the static call graph. This is true regardless of our termination goal. We therefore keep
track of a call stack during partial interpretation: a stack of (pgraph, args) pairs which
document the calls we have made on the way to the current execution point. The stack is
stored when creating a cache entry. It is restored when we begin pgraph partial interpretation
for that cache entry. At call, we push the details of the call on the stack. In effect, the stack
records the path we have taken through the call graph. This lets us identify when we have
looped in the call graph: when the stack contains two calls to the same pgraph.

The second idea is that because of our specific termination goal, we can further refine
the conditions under which we judge that there is a risk of non-termination. Not only must
we have called the same pgraph twice, but additionally we must have crossed an undecided
branch in between. If all branches have been decided, then we are executing a single code
path: the same that would be executed at run-time. We will therefore terminate, if we would
terminate at run-time. To identify this situation, we keep track of each undecided branch
we encounter, by pushing an if marker on the call stack.

This (non-)termination criterion is referred to as guarded recursion: the recursion is
guarded by an undecided branch. It allows unrolling all loops which are “controlled” by
known data. This is critical for partial evaluation, which is why we are willing to tolerate
non-termination of partial interpretation, when ordinary execution might not terminate.
Tolerating non-termination is not the only option, and we discuss this again in Chapter 5.

Third, we select a mechanism for termination resolution. When we assess that our
termination goal will not (or might not) be achieved, we intervene in some way. In this
work, we intervene by adjusting the arguments to the current call. Before we describe this
adjustment, we outline our plan for the argument.

We plan to argue that a path can only return to a given point p in the static call graph
(crossing an undecided branch along that path), finitely many times before we get a cache
hit. To argue this, we consider the sequence of arguments at each successive visit to p along
a path. We then re-apply an argument template we used for vertical finiteness (in 3.4.2).
We argue that the sequence of arguments exhibits directionality, that this directionality has
an endpoint, and that there are finitely many steps to that endpoint.

We ensure directionality as follows. We know the stack contains a previous call to the
same pgraph being called now. We adjust the current arguments to be the union of the
previous arguments and the current arguments. This union grows the arguments, because
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the previous and current arguments are not equal - if they were, we would have had a cache
hit without any intervention.

The existence of the endpoint is once again trivial: the full set. Eventually we must reach
it, and the next argument in the sequence must be the full set again. We then have a cache
hit, and we are done.

We ensure that arguments can only grow finitely many times, on the way to the full
set, as follows. After taking the union (to ensure directionality), we widen. We do this
similarly to how we widen results (in 3.4.5). Widening is simpler here, since we do not need
to eliminate a relation between formals and results - the arguments are already a set.

This union and widening together ensure that paths have finite length, and that the
unrolled call graph is bounded.

It remains to ensure that at each call site (at the endpoint of each of these paths whose
number we just bounded), finitely many cache entries are created. A cache entry can be
created each time the arguments grow. Once again, we ensure this happens finitely many
times, by widening arguments when they grow. As in result widening, we can skip widening
when growing for the first time - from the empty set to a non-empty set.

To identify when arguments have grown, we store additional information in our cache
entries. In each cache entry, at each call site, we track which cache entry was read there
previously. We initialize these “prior cache entries” to a null value. Thus in the first com-
putation for the result of a cache entry, we know that no widening is needed. In subsequent
re-computations, we can compare the new arguments to the arguments in the old cache entry,
and widen if the new arguments exceed the old.

This ensures finitely many growths in the arguments. Note that these “prior cache entries”
also lay a foundation for our “first approach” to resolving P1 (see 3.4.2 and 3.4.4): propagating
selected congruence information, from the old cache entry to the new. We will also use them
during specialization (in 4.1).

This completes our argument for horizontal finiteness: finitely many cache entries are
created. This in turn fills the last blank from our overall termination argument, from 3.4.1.

3.4.7. Consolidated algorithm

Appendix A shows a consolidated view of our partial interpretation algorithm. There,
we show which sections discuss each part of the algorithm. We also show which parts of the
algorithm were introduced to satisfy our termination argument.
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Chapter 4

Application to partial evaluation

We emerge from Chapter 3 with a theoretical view of partial interpretation. The details
are complicated, but the overall view should not be: to perform partial interpretation of a
program, we expand it into a network of cache entries whose results depend on one another;
then, we find a fixed point over all these results.

Our initial implementation of partial interpretation directly reflects this theoretical view.
In this chapter, we follow through with our original plan: to implement a specializer which
consumes the results of partial interpretation. When we apply this specializer to larger
examples, we will see that our primary concern will shift to the performance (execution
time) of our algorithms, and away from the theoretical concerns of Chapter 3. Nevertheless,
the theoretical view - and in particular the termination argument - will frame any ideas we
have for modifying our algorithms to improve their performance.

4.1. Specialization from partial interpretation
The specializer needs to check the uniqueness of many values. We first explain how the

specializer interacts with partial interpretation, to make these uniqueness checks. Then, we
explain how the specializer uses this information to specialize the original program.

4.1.1. Performing uniqueness checks

Before specialization begins, partial interpretation has been completed: we have reached
a fixed point over all the results in the cache. Each cache entry contains the results returned
from a call, corresponding to a pair (pgraph, args). This is a good start, but it’s not all
the specializer needs. To specialize a given call (pgraph, args), the specializer additionally
needs information about all the intermediate results computed therein.

To get this information, we run pgraph partial interpretation one more time - as described
in Chapter 3. This time there are no complications with termination, as there were in Chapter
3. Each call site (out of each cache entry) already stores a connection to the correct cache



entry (our “prior cache entries” from 3.4.6), at the partial interpretation fixed point. We
handle a call by following that connection, and reading the result stored there.

We therefore introduce a second mode of operation for pgraph partial interpretation,
which we refer to as passive mode. In passive mode, because the handling of call is trivial,
we omit the following aspects of partial interpretation:

• we do not perform cache lookup (we have the connection to the correct cache entry)
• we do not perform adjustment of arguments: termination assessment, termination
resolution, and argument widening
• we do not place if markers on the call stack, to check for guarded recursion
• in fact, we do not keep track of a call stack at all
• we do not write results into cache entries.

As in 3.2, pgraph partial interpretation (in passive mode) produces two items: a mapping
from nodes to extended comprehensions, and an SMT process which is incrementally updated
with the declarations and propositions from those extended comprehensions. The specializer
accesses these two items directly. It can then check for uniqueness at a given node, as follows:

• get the extended comprehension associated with this node
• extract the expression from the extended comprehension
• query the SMT process for the uniqueness of that expression.

4.1.2. Using uniqueness information

We approach the specialization of a pgraph as the construction of a new pgraph, whose
nodes are written as we traverse the original pgraph. We refer to this general construction
process as transcription.1 Transcription is an instance of our general maneuver for defining
algorithms over pgraphs (see 2.2): a node n in the original pgraph maps (possibly) to a node
f(n) in the new pgraph. It remains to specify the local handling for each node. Then, we
apply f to the exit node, and we get a transcribed pgraph.

We find it useful to first consider the simplest possible local handling: write the same
node label, and edges to the (transcribed) images of our successor nodes. This performs
no specialization; it constructs an isomorphic copy of the original pgraph - with possibly
re-arranged node indices. Next we describe how specialization deviates from this, to avoid
transcribing some nodes from the original pgraph. The simple “copy” behavior remains
relevant, even during specialization: sometimes we can do no better than to reproduce a
node from the original pgraph.

The specializer uses uniqueness information in three ways, to do better than just repro-
duce the original pgraph.

1We also like “rewriting”, but the technical phrasing “graph rewriting” already refers to making local trans-
formations to part of a graph.
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• If a result node has a unique value, then we replace it with a const (or prog) node
containing that unique value. As an immediate consequence, the producing operation
for this result is not needed, so we do not request its transcription. Therefore we also
avoid the transcription of its (transitive) dependencies. Because transcription starts
at the exit node, we are thus avoiding the transcription of an entire subgraph.

If a result is not unique, we apply the “copy” behavior. Even when a result is not unique,
we can make two further improvements.

• We extend the idea of avoiding the transcription of a subgraph, to the if node. If the
condition is uniquely known, we transcribe only one of the two branches (consequent
or alternate). If the condition is unknown, we apply the “copy” behavior.
• If we have a call to a unique pgraph, we can specialize that pgraph, and write a call to
the specialized program. There is a complication here: if we blindly “specialize recur-
sively”, specialization might not terminate. For example, specialization of fact(x) -
factorial of an unknown integer - would not terminate. We resolve this shortly.

Other node types apply the “copy” behavior.
To resolve the termination of specialization, we cache specializations: we map a pair

(pgraph, args) to a specialized program. We achieve this by adding a field to our cache
entries. This field holds a reference to the (eventually) specialized program, for that pair
(pgraph, args). This works because we only ever specialize (pgraph, args) pairs for
which we already have cache entries from partial interpretation.

4.1.3. Discussion

We have just described a direct interaction between specialization and pgraph partial
interpretation: specialization runs pgraph partial interpretation (in passive mode), to check
the uniqueness of values. Both of these algorithms are pgraph traversals, and we discuss how
they relate.

Specialization begins “from the end” (at the exit node), and almost immediately it checks
if result nodes have a unique value: those which exit depends on. If some of these have unique
values, the specializer will avoid transcribing the subgraph(s) rooted there. However, these
subgraphs are examined : not by the specializer, but by pgraph partial interpretation. The
specializer checks uniqueness by invoking the memoized pgraph partial interpretation func-
tion. To produce a result, pgraph partial interpretation must traverse the entire subgraph,
memoizing all the results on the way. Consequently, no cost will be incurred when the
specializer subsequently queries pgraph partial interpretation.

This highlights the distinct nature of specialization and partial interpretation. Special-
ization fundamentally works backwards from the end of a program, attempting to avoid
as much transcription as possible. In other words, specialization is a memoized depth-first
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traversal which may be truncated depending on the results of partial interpretation. Partial
interpretation fundamentally works forward from the beginning of the program, propagating
partial information through the logic of the program. To make a decision near the end of
the program, specialization needs the result of partial interpretation, so it “pulls” partial
interpretation all the way there.

This distinction is at the heart of the accuracy gains we get over previous partial eval-
uators. Our specializer cares only about the uniqueness of a given result; not about the
uniqueness of any intermediate results used to compute it. This enables a phenomenon we
call uniqueness at a distance. We will illustrate this phenomenon in 4.2.4.

Specialization and partial interpretation are further distinguished by the part of the cache
they interact with. Although both specializations and returned results are stored in the same
cache, and indexed by pairs (pgraph, args), some cache entries might not get specialized.
We have mentioned that when partial interpretation is complete, each call site (out of each
cache entry) is connected to the correct cache entry. However, there may additionally be
disconnected entries in the cache, which were relevant on the way to the fixed point, but are
no longer relevant. Such disconnected entries are never visited by specialization. The only
relevant entries are those connected from the root call, at the fixed point.

Of these relevant entries, only some will get specialized: sub-calls whose result is not
uniquely known. When the result of a call is uniquely known, the specialization rule for the
result node (given earlier) implies that we do not write a call at all. It is only when the
result of the call is not uniquely known that we write a call, in which case we specialize the
pgraph to be called.

Once we have computed all the necessary specializations, we perform a straightforward
inlining to consolidate them. Our inlining is another instance of transcription, whose details
we omit. We can then observe a result, in the textual format from 2.4.

4.2. Examples
We apply our system to three kinds of examples.
• First, we go over three classic, simple examples of partial evaluation. These confirm
that we reproduce basic results.
• Then, we show a small synthetic example which illustrates the accuracy we gain, over
previous partial evaluators.
• Last, we examine another classic, but larger example of partial evaluation. This
shows that our system produces good specialized programs. However, it also shows
that our system is slow.

We then begin to address the performance of our system, in 4.3.
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4.2.1. Integer power

Integer power is the problem from our introduction (1.1): computing xn by recursively
examining the parity of n. We express this computation as a program:

(define (power x n)

(let* (((q r) (div n 2))

(sqr -root (power x q)))

(if (= n 0)

1

(if (= r 0)

(* sqr -root sqr -root)

(* x (power x (- n 1)))))))

And here is the output of our system, for n = 8:

(define (p0 x0 x1)

(let* ((v0 (* x0 1))

(v1 (* v0 v0))

(v2 (* v1 v1)))

(* v2 v2)))

Two things stand out. First, all the explicit logic involving n has disappeared; it is now
“baked into” the program, which squares the first input three times, without looking at the
second input. This is possible because the choices in the original program depended only
on the second argument, which was known. These choices have all been made once and for
all, and what remains (the residual program) contains only multiplications. This is typical
of the results of partial evaluation.

Second, an unnecessary multiplication by one is performed. This illustrates that “checking
for uniqueness” does not account for all of program optimization: x0 * 1 does not have a
unique value, so our system does not simplify it. We could add some special handling for
multiplying by one, then for adding zero, etc. However, this would deviate from our original
strategy of grounding our methods in modern automatic deduction. Instead, we hope to
complement our methods with principled program optimization, in future work.

4.2.2. Lookup in an association list

Here we lookup x in a list of pairs ((l0 . r0), (l1 . r1), ...). We return the first sub-list whose
head matches x on the left. If there is no match, we return the empty list. This definition
avoids the need for programmer-defined types, which pgraphs lack.
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(define (assoc x lst)

(if (= lst nil)

nil

(if (= x (fst (head lst )))

lst

(assoc x (tail lst )))))

We suppose that x is known, as well as all the left-hand sides in the list; but none of the
right-hand sides. This example is significant, because some earlier partial evaluators have
experienced difficulties with such “partially known structures”.

Here is the output of our system, for x = 2 and the list ((0 . r0), (1 . r1), (2 . r2)). The
right-hand sides are completely unknown.

(define (p0 x0 x1)

(tail (tail x1)))

The specialized program goes straight for the correct sub-list. The first argument is no
longer referenced. No checks are made on the shape of the list, or on its left-hand sides.

4.2.3. Map over a list

Here we map a squaring function over a list of integers. This illustrates the specialization
of higher-order programs.

(define (map f lst)

(if (= lst nil)

nil

(cons (f (head lst)) (map f (tail lst )))))

(define (sqr x)

(* x x))

Here is the output of our system when specializing map, given that f is known to be sqr,
and the list is completely unknown:

(define (p0 x0 x1)

(let* ((v0 (head x1))

(t0 (cons (* v0 v0) (p0 p1 (tail x1 )))))

(if (= x1 nil) nil t0)))

(define (p1 x0)

(* x0 x0))
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The squaring function has effectively been inlined into the recursion. Note that p0 never
references its first argument x0 (the higher-order argument, formerly f); in the recursive call,
the known program p1 (formerly sqr) is passed - but it is never used.

None of the previous examples are novel results, but we confirm that we correctly repro-
duce them. These examples are processed in negligible time.

4.2.4. Uniqueness at a distance

We now examine a synthetic example which illustrates the increased accuracy of our
methods. Previous partial evaluators focused on the uniqueness of values, locally. For
example, if the inputs to + are unique, then their sum is unique - but their sum was considered
unique only then. This is sufficient accuracy in some examples, but not all.

Instead, our system propagates the partial information about values, “far” across the
program. This allows our system to find that values are unique remotely, as we illustrate
with the following example.

It is a mathematical identity that (x+1)2 = x2+2x+1. Therefore, even for a completely
unknown integer x, the expression (x+ 1)2−x2− 2x has the unique value 1; despite its sub-
expressions not having a unique value. Our system determines this. Here is that computation
expressed as a program:

(define (mathident x)

(let ((a (+ x 1)))

(- (- (* a a) (* x x)) (* 2 x))))

And here is the output of our system, when specializing that program for completely
unknown x:

(define (p0 x0) 1)

The reader may object that this example is not convincing, because the programmer
knows this, and would not write the program like this. This is a fair objection. However, to
begin with, the programmer might not notice the opportunity for simplification.

More importantly, in principle the same phenomenon can occur across a call boundary:
imagine that one sub-program (say, A) computes (x + 1)2, x2, and 2x, and passes these as
three arguments to another sub-program (say, B). Then imagine that B performs the same
subtraction as above. We believe that conceptually, such a situation is a credible opportunity
for specialization.

Unfortunately, for reasons that will be made clear in 4.2.7, our system cannot perform
this “cross-call” specialization; we would need an improved notion of widening (discarding
information) at call boundaries. However, we do perform this specialization “intra-call”, and
we can talk about the distinction.
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4.2.5. First Futamura projection

We now turn our attention to a much larger example, to further validate our system’s
results and to evaluate its performance - the execution time of partial interpretation and
specialization. We select another classic example from the partial evaluation literature: the
“Futamura projections”2 are the historical name given to a family of interactions between a
specializer and an interpreter.

To re-iterate, our main objective is to stress test our system; for us, performing a Fu-
tamura projection is a means to that end. However, the maneuver is interesting in its own
right, so we take a moment to discuss it. In particular, the maneuver illustrates the extent
to which specialization can transform a program.

The setting for a Futamura projection begins with two program representations (i.e.
programming languages), which we refer to as P and Q. We then suppose the existence of:

• an interpreter for Q, written in P ;
• a specializer for P , written in any language.

Consider first the Q-interpreter (written in P ), alone. Its inputs are a program in Q (a
“Q-program”), as well as the inputs to that Q-program (some “Q-data”, perhaps packaged
as a list). The output of the Q-interpreter should be the output of the Q-program for those
inputs - more Q-data. The Q-interpreter’s signature therefore looks like this:

Q-program * Q-data→ Q-data

Now consider what happens if we specialize the Q-interpreter (written in P ), for a known
Q-program, but for unknown inputs to that Q-program. The result is an interpreter special-
ized for that particular Q-program. In other words, the result is a P -program which exactly
mirrors the execution of the Q-program. In yet other words, the result is a translation of
the Q-program, from Q to P . This is the key feature of a Futamura projection: translation
by specialization of an interpreter.

To better understand how and why this works, consider the implementation of any in-
terpreter. Any interpreter (written in P , say) fundamentally contains two parts:

• pre-existing code in P which implements each possible operation in the language to
be interpreted
• further code in P which repeatedly examines the program to be interpreted, and
selects which pre-existing code to execute.

If the program to be interpreted is known (the Q-program), then conceptually all these
selections can be made once and for all. This is what the specializer does - just as in
the integer power example from 4.2.1. What then remains of the interpreter (the residual

2The original reference is [Fut71], but our presentation is intended to be self-contained.
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interpreter) is the correct code in P , to execute the Q-program. We have therefore removed
exactly one layer of interpretation - we have translated from Q to P .

What we have just described is the so-called “first Futamura projection”. It is by nature
inefficient. In some sense, we are performing translation by applying two layers of interpre-
tation: the interpretation of Q in P , and the specialization of the interpreter, whose key
step is another interpretation - partial interpretation. This inefficiency is not a problem for
us, because our objective is to stress test our system; not to translate between languages.

4.2.6. Our P and Q languages

We now adapt the theoretical exposition from the previous section, to our setting. We
have a specializer for pgraphs, written in Scheme. Therefore pgraphs are our P language. To
perform a Futamura projection, we must select a language Q, and implement an interpreter
for it, written as a pgraph.

Because pgraphs are limited, we introduce a very limited language Q of arithmetic cal-
culations. The only data in Q are integers, which are directly represented by integers in P .
Programs in Q receive arguments and return results. Constant values are supported. There
is no recursion, and no conditionals.

In effect, the Q language we have just described is a restriction of pgraphs: with only the
node types entry, exit, result, const, and prim. We can express such a restriction of pgraphs
as pgraph data: with just (statically typed) integers, pairs, and lists. We consider this a
testament to the simplicity of graphs as a program representation.

Next, we define an interpreter for Q, written as a pgraph. The interpreter spans about
200 lines of code3 (in the textual format from 2.4), including many comments. We attempt
to remain faithful to the structure of our interpreter (from 2.3). We do not wish to adopt an
“artificial” coding style, to manipulate the results of the specializer. We use a polymorphic
map function, we memoize the result at each node, etc.

Once we have our Q-interpreter, all we need is a way of creating Q-programs, in the
correct data format - as P -data. We can already create pgraphs from our textual format, so
we complement this with a small translator from P to Q (written in Scheme).

4.2.7. Result of the Futamura projection

We can now perform the first Futamura projection, and we first do this on a program
containing a single arithmetic operation:

(define (arith x y)

(+ x y))

3Our Q-interpreter is available as interp.pgraph in our reference implementation - see Appendix C.
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When we run our system on this example, within seconds the SMT process occupies all
available system memory, we start paging to disk, and we never get anywhere. A single set
of symbolic arguments can occupy several megabytes. Presumably, this is because our set
comprehensions contain the entire computational history of all values, from the start of the
program’s execution.

We discuss and improve performance in more depth in 4.3, but an immediate adjustment
is needed to observe a result for even this small example. We address this by applying our
widening to all arguments, at all calls. This greatly simplifies the symbolic arguments to
calls, and we are able to get a result. However, this means we are sacrificing accuracy: we
are giving up relational information between arguments, across call boundaries. This is why
we cannot perform the “cross-call” specialization mentioned in 4.2.4.

We view this as illustrating something important: discarding information (widening) is
not just a theoretical consideration, for termination; it is also a practical consideration, for
performance. This reinforces our impression from 3.4.5: choosing which information is kept
and lost is a critical aspect of partial interpretation. Ideally, we would want a principled way
to do this, which loses no accuracy, terminates theoretically, and performs well practically.
It remains to be seen how well these ideals can be reconciled; we do not investigate different
widenings, in this work.

Although we have just sacrificed accuracy in principle, the result we get here is excellent.
Here is the output of our system, when specializing the Q-interpreter on the small arithmetic
program:

(define (p0 x0 x1)

(let ((t0 (+ (head x1) (head (tail x1 )))))

(cons t0 nil)))

This is all that remains of the interpreter : the two inputs are unpacked from the list of
arguments (x1), added, and the sum is packed into a singleton list of results. The Q-program
(x0) is no longer referenced, and all the internal logic and data structures of the interpreter
have disappeared. In short, we have achieved a perfect first Futamura projection.

This confirms two things. First, our system is producing good results, even on a larger
object program. Second, it does not require the object program (here, the interpreter) to be
manually adjusted, in order for the specializer to produce good results.

This experiment takes 15s to execute; for a two-operation program, 45s; for a three-
operation program, 1m40s. We consider this unacceptably slow, though we stress that it is
not the specialization of a two-operation program, which takes 45s; it is the specialization of
a relatively large interpreter, given a two-operation program to be interpreted.
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In the next section, we analyze the performance of our system, and we show how its
performance can be improved about a thousandfold. Conveniently, we can scale up the size
of the Q-program as desired, to benchmark our increasingly efficient system.

4.3. Performance
In the last section, we saw that our system produces good results, but that it is slow. We

now turn all our attention to the performance of partial interpretation and specialization.
Our goal is to improve performance, but also to understand the design space for these
improvements, and where they are most needed.

In 4.2.7, we already made a first modification to our algorithms, to improve their perfor-
mance: we widen all arguments, at all calls. We will retain this modification, and in fact we
will build on it to improve performance further.

Before we make more improvements however, we analyze the performance of our system.
Any comments about experimental measurements refer to our running example of the first
Futamura projection, as described in 4.2.

4.3.1. A starting point: three important quantities

We start from the theoretical picture put forth in 3.4. There, we showed that the com-
plexity of partial interpretation depends on the number of cache entries, and the number of
times their results are re-computed.

We also look at the practical picture: some straightforward measurements show that
almost all our execution time is spent waiting for answers from the SMT solver.

Our first order of business is to reconcile these two apparently disconnected pictures.
Instrumenting our code reveals that almost all our time is spent doing partial interpretation;
not specialization. Specifically, almost all our time is spent checking set equality, as part of
cache lookup, at call nodes.

In our theoretical analysis, execution time was formulated as the number of re-computations
of the results of cache entries. We did not consider how long it takes to perform each such
re-computation, because it was clear that it would terminate. However, we now see that
handling a call node incurs a real practical cost - the bulk of pgraph partial interpretation.

This reconciles the theoretical and practical pictures: some number of cache entries are
created; some number of re-computation jobs are run to compute results for those cache
entries; and during these jobs, call nodes are encountered, where we perform cache lookup
and query the SMT solver. We consolidate this into the following formula:

execution time = total cache entries ∗ jobs run for each ∗ time to handle calls therein
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Next, we discuss what determines these three quantities, whether it’s possible to decrease
them, and how.

Cache entries are created for (pgraph, args) pairs. In a sense, the trace of (pgraph,
args) pairs is a reflection of the program’s execution path - a longer execution path means
more (pgraph, args) pairs. This is not the static size of the program; rather, it is its
“dynamic” size, when unrolled during execution. Intuitively, it is related to the program’s
run-time during ordinary execution.

In principle, cache entries are not necessarily created for all (pgraph, args) pairs: for
given notions of widening and of argument equivalence, some (pgraph, args) pairs can get
consolidated into the same cache entry. This is what happens when we have a cache hit.

Therefore the cache entries created are determined by the execution length of the pro-
gram, and our choices of widening and argument equivalence in the cache. We have no
control over the execution length of the program, and in this work we do not explore differ-
ent widenings, or notions of argument equivalence. As such, in this work the number of cache
entries is effectively something we observe, and have no control over. Experimentally, the
number of cache entries is linear in the number of (arithmetic) operations in the Q-program,
when performing a first Futamura projection.

The number of jobs run per cache entry depends on two things: avoiding re-computation
altogether, and good worklist prioritization. We examine these two items.

In principle, it should be possible to avoid some re-computation by propagating congru-
ence information between cache entries (see 3.4.4). Recall that this applies when two cache
entries have arguments A and B, and results RA and RB, with A ⊆ B. We can then reason
that RA ⊆ RB, also, and propagate RA to RB (i.e. set RB to RA ∪ RB). There is just one
problem: experimentally, in all the cache entries created in these examples, we observe no
pairs A and B with A ⊆ B. Therefore this idea won’t help us here.

So far, we have not discussed the order of items in our global worklist. This is because
the worklist order does not affect the correctness, termination, or worst-case complexity of
our algorithms. However, the worklist order can affect the practical efficiency of partial
interpretation. We have therefore made a small, intelligent effort in this direction, in our
initial implementation.

We prioritize the re-computation of cache entries that have not been re-computed in a
long time. To do so, in each cache entry, we store a timestamp indicating when the cache
entry was last re-computed. Then, we order the worklist by prioritizing a smaller timestamp.
When a cache entry is freshly created, its timestamp is initialized to zero - it is therefore
prioritized in the worklist. When a re-computation finishes, we increment a global counter,
and write the value of the counter as the result’s timestamp. Intuitively, we are measuring
time in terms of how many total re-computations have been performed, over the course of
partial interpretation. This worklist priority scheme is due to [KW94].
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In our experiments, under this worklist priority scheme, we are performing two com-
putation jobs per cache entry. Intuitively, this is optimal: one job to create cache entries
for the sub-calls whose results we need; and one more job to compute our own result, once
the sub-results are available. Therefore there is nothing to gain by using a more elaborate
worklist priority scheme - in these examples, at least.

We turn to the time it takes to handle calls. We first make a comment about the number
of call nodes encountered. The object program dictates these, and with the way we are
re-computing results (running the entire pgraph again), we need to handle all the call nodes
during each re-computation. However, in principle it should be possible to track more precise
dependencies between cache entries, and re-compute only part of the pgraph for a given re-
computation job. For example, suppose A calls B, performs some post-processing on the
results from B, and then returns something. If the result from B changes, clearly we need to
re-compute the result of A. However, there should be no need to re-compute the arguments
to B. We could therefore avoid the call node to B, if we re-computed only the data path
from the result of B, to the result of A. We do not attempt this, in this work.

We focus instead on the time it takes to handle a given call node. We begin by reviewing
what happens there. In the relevant situation, we have a unique pgraph being called. For
that pgraph, we need to determine if there is an existing cache entry whose arguments are
equal to the arguments we have now. We do this by traversing a list of cache entries, and
checking set equality for each of them, using the SMT solver.

There are two issues with this. One issue is the order in which we perform these com-
parisons - the order in the list of existing cache entries. This determines how long it takes
to get a cache hit. But the more serious issue is that when there is no suitable cache entry,
we need to compare to all the existing entries, to rule them out. Then, we can create a new
cache entry. This means that if we eventually have n cache entries for a given pgraph, it is
inevitable that we have performed O(n2) comparisons to create them - the sum from 1 to
n− 1.

Note that there is no direct way to organize the cache entries, for example placing them
in a binary search tree, or hashing their keys. As it stands, we have no notion of order on
keys, and no way of constructing a hashing function; equality is only defined logically, via
decision by the SMT solver. This reflects our theoretical development: we are completely
reliant on the SMT solver.

Our most significant performance improvements will greatly reduce this reliance on the
SMT solver. Before we discuss this however, we describe a simpler improvement. We omit
minor improvements which will be made obsolete by our major improvements.
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4.3.2. Ordinary execution

We refer to our first improvement as ordinary execution. When we encounter a call
whose arguments are unique, we break out of the main partial interpretation logic. Instead,
we invoke our ordinary interpreter with those unique arguments. When this completes,
we write the (necessarily unique) results in a dummy cache entry, to later accomodate the
passive mode used during specialization (see 4.1.1). This entry is not indexed in the cache;
it is only saved at this call site (see 3.4.6). We then resume partial interpretation.

Ordinary execution achieves several things. To begin with, it avoids an immediate cache
lookup, which would be costly. Beyond this, it avoids the subsequent partial interpretation of
all sub-calls therein, and transitively so. Even better, it avoids the creation of cache entries
for all these sub-calls, which keeps the cache smaller. This speeds up the handling of call in
other partial interpretation jobs, which must handle calls by traversing the list of existing
cache entries, performing costly SMT queries.

In our experiments, without ordinary execution, about half of all cache entries have
unique arguments. With ordinary execution, we get a roughly twofold speedup.

4.3.3. Syntactically representing widened sets

Ordinary execution is a good thing, but it avoids the main problem: complete reliance
on the SMT solver to perform cache lookup. We have not designed our set comprehensions
to be analyzed by our own algorithms; they are essentially black boxes which we feed to the
SMT solver, whose operation is also a black box.

It is time to change this. Our first step in this direction is the observation that all
our arguments are now widened sets. Our plan is to exploit this structure, to improve the
performance of cache comparisons.

As it stands, at the beginning of a call, we widen the current arguments. The widened
arguments are then compared to the arguments in the existing cache entries, one by one. The
key point here is that we are using the same representation (set comprehension), for both
widened and unwidened sets. However, the class of widened sets is smaller, and a simpler
representation is possible.

We start by defining a language of completely known values (VAL), in Figure 4.1 - this
is nothing new.4 We then define a language of widened sets (WIDEVAL), in Figure 4.2.
WIDEVAL differs from VAL only by the added clause, any. any indicates a completely
unknown fragment of a value, and can occur in the place of any WIDEVAL. Note that any
expression in VAL is also an expression in WIDEVAL. This corresponds to the embedding
of completely known values as singleton sets, in the partial information domain.

4Our type system still applies - see 2.1.3 and 2.5. For example, cons : α * (List α)→ List α.

86



VAL ::=
| INT
| false | true
| mkProg INT
| mkPair VAL VAL
| nil
| cons VAL VAL

Fig. 4.1. VAL: our language of completely known values.

WIDEVAL ::=
| INT
| false | true
| mkProg INT
| mkPair WIDEVAL WIDEVAL
| nil
| cons WIDEVAL WIDEVAL
| any

Fig. 4.2. WIDEVAL: our language of widened sets.

To ensure that WIDEVAL expressions are canonical, we introduce a single reduction rule:

mkPair any any⇒ any

We can therefore decide the equality of any two widened sets, as the syntactic equality of
their WIDEVAL representations. Note that this generalizes to algebraic data types, with a
similar reduction rule for any type which has a single constructor.

We modify our widening algorithm to target this WIDEVAL representation. The widen-
ing algorithm remains the same: using the SMT solver, we deconstruct a set comprehension
into its known and unknown parts (see 3.4.5). The only difference is that we now construct a
WIDEVAL, instead of a set comprehension. Where we would have represented an unknown
fragment as an existentially quantified variable, we now write any instead.

We modify our cache entries so that their key is a WIDEVAL (along with a pgraph). A
corresponding set comprehension is also needed during pgraph partial interpretation, to han-
dle the entry node. This is easily constructed from the WIDEVAL: for each any, instantiate
an existentially quantified variable.

Cache lookup can then be performed as follows. As before, we widen the current ar-
guments, which is a costly SMT operation. However, once that is done, we have gained
something substantial: we have a WIDEVAL, which can be compared syntactically to other
WIDEVALs in existing cache entries. This is much more efficient than deciding set equality
with the SMT solver.
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This is a significant first step towards less reliance on the SMT solver, and it gets us
another roughly twofold speedup. The bottleneck then becomes widening itself, at the
beginning of a call. We next improve the performance of widening itself.

4.3.4. Disciplined set comprehensions

We want to improve the performance of widening, but it’s not immediately clear how.
Our widening algorithm itself seems fine: in general, we see no alternative to deconstructing
the value by querying the SMT solver.

Instead of directly seeking to improve the widening algorithm, we can change our premises
about its inputs. To choose good premises, we consider what we want to achieve in the
output. The objective of widening is to identify all known “heads”. A head is the part of a
clause in VAL (see 4.3.3) which precedes any recursive occurrence of VAL. In other words,
a head is the root of an expression. When we widen, we save the (uniquely) known heads,
and we replace each non-uniquely known head by any.

It would be a good thing then, if known heads were readily available in our set compre-
hensions (the inputs to widening). We can achieve this by instituting a discipline (invariant)
in how we use our set comprehensions: as much as possible, known heads will be written
syntactically in the expressions of our set comprehensions. There will be no such thing any-
more as “x such that x = 1”; write 1 then, and dispense with a variable and a proposition.
Equivalently, the use of a variable will imply a non-unique head.

We explain our plan further, before we discuss how to implement it. This new discipline
gains us several things. To begin, when we have a syntactically known head, we can trivially
perform that step of a widening, without querying the SMT solver. Just as importantly, we
now have a negative inference about variable occurrences. If we have x : List Int, in the
absence of propositions we know this widens to any. This is because a variable implies a
non-unique head, therefore it can be either nil or cons, which widens to any. And we will
often be in the absence of propositions, because we have made an effort to move everything
into expressions.

In other words, we are rebalancing our use of our set comprehensions - between ex-
pressions, declarations, and propositions. Previously, we prescribed no particular balance
because our plan was to deliver all this to the SMT solver. For the SMT solver, it makes no
difference whether something is 1, or x such that x = 1. Now, we aim for more expressions,
and less declarations and propositions. We can still deliver this to the SMT solver, when we
need to; but we will see that in many cases, we will not need to - at no loss in accuracy, and
with a great gain in performance.
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To maintain this new discipline (invariant), we must make three changes to how we per-
form pgraph partial interpretation: handling primitives, handling conditionals, and passing
data between calls. We examine each.

First, we must change our handling of primitives (prim nodes): we will now perform
computation over known heads. Previously, we handled a + operation by constructing a
symbolic expression headed by +. Now, we first examine the operands to see if we can
compute the sum ourselves (if they are both integer literals). When we cannot, we construct
a symbolic expression, as we did previously. We handle (head (cons _ _)) similarly - etc.
This change is in line with our general plan: keep known heads readily available. Later we
will want to widen, and if we see (+ ...), we don’t want to start wondering what we know
about that expression. If we see an expression headed by +, it must contain a variable
(whose head is not uniquely known).

The equality checking primitive gets a special mention. Previously, as with all primitives,
we handled = by constructing a symbolic expression (headed by =). Now, since known heads
are readily available, we can perform some of the work of = ourselves, in two ways. On one
hand, if we see two known and different heads, we can report false. On the other hand, if
we see two known and identical heads, we can construct a conjunction of the equalities of
the sub-expressions. For example, (cons x nil) and (cons y nil) are equal exactly when
x = y. In the extreme case, we can report true (a vacuous conjunction) when both sides
are syntactically equal.

Second, we must change our handling of conditionals (if nodes): we will now pull out
common heads. The handling of if is already somewhat complex, but this change concerns
the “main case”, where none of the inputs are ⊥ (the empty set), and the condition is
undecided. In that case, previously we constructed an (ite c a b) expression. Now, we
first examine the consequent and alternate branches, to see if they share a common head. If
that is the case, we “pull out” the common head and push the conditional deeper inside.

This is best illustrated with an example. Suppose the consequent and alternate branches
are (cons 1 nil) and (cons 2 nil), respectively. These branches share a common cons
head. We pull it out, and apply the same process recursively to the sub-expressions. With-
out this change, the end result would be (ite c (cons 1 nil) (cons 2 nil)); with this
change, the end result is (cons (ite c 1 2) nil). Note that in this example, this process
arguably simplifies the expression. This is not always true: if many sub-expressions differ,
the duplication of ites (and of the condition) can outweigh writing the common head only
once. This is fine with us, because our objective is to make known heads readily available;
not to simplify or complexify expressions.

Third, we must change how we pass arguments to calls. This involves the entry and
call nodes. Previously, when we passed arguments to a call, we converted them to basic
comprehension. The main feature of this conversion was that it introduced fresh variables
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for each argument or result. This policy would conflict with the discipline we are now
introducing: if an argument has a known head, the new discipline forbids binding a variable
to this argument.

We will therefore no longer convert arguments to basic comprehension. We can make this
change, because the objective of this conversion has been subtly achieved in another way.
The objective was to treat the arguments as a set, so that we could perform comparisons
(set equality) with the SMT solver, as part of cache lookup. We have just replaced this
with the conversion to the WIDEVAL representation (which expresses a set), followed by
the syntactic comparison of WIDEVALs (in 4.3.3).

Note that this changes how we separate the caller’s scope from the callee’s scope. Pre-
viously, a “line” of fresh formals enacted this separation in a familiar way. Now, widening
achieves a similar (but not identical) result: the separation becomes between known and
unknown, instead of between caller and callee.

To understand the difference, suppose A calls B. Disregarding the details of naming,
suppose A receives a completely unknown integer argument x. Suppose A now computes
(cons (+ x 1) nil), and passes this as an argument to B. Previously, we would have
introduced a fresh variable, and propositionally asserted it equal to the entire argument:
(cons (+ x 1) nil). Now, we instead introduce a fresh variable for (+ x 1) only. This
is where any gets written during widening, and any is then instantiated to a fresh variable.
We therefore essentially pass (cons y nil).

It may seem arbitrary that we are introducing variables for some parts of the arguments,
but not others. We understand this “favoritism” as follows. We are preserving exactly the
heads in the VAL language, which preserves our new discipline (invariant), allowing efficient
widening. This is pragmatically a good thing, but we believe there is also something to
be understood here. Notice that the only “operations” we are preserving are the algebraic
constructors (here: mkPair, nil, and cons). We would argue that these are fundamentally
different from the other, “actually computational” operations: +, -, etc. We explain why.

An arithmetic operation produces something new. This is tricky to state, for many
reasons. Information theoretically, going from 2+3 to 5 loses information. This is confirmed
thermodynamically, because heat is dissipated when the sum is computed. Logically also, we
“gain nothing” from having 5 rather than 2 + 3, because 5 was already latent in the original
information of 2 + 3. Nevertheless, at the time when we have 2 + 3, we don’t have 5 yet. We
need to perform some physical process to get from 2 + 3 to 5. In this sense, an arithmetic
calculation “does work”.
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In contrast, in some sense constructing (and accessing into) a data structure does not do
work. It merely re-organizes what already exists.5 We are used to thinking of (e.g.) cons
as doing work, because its usual implementation places two things contiguously in memory.
However, consider what happens if we dismiss this as an implementation detail. Algebraic
construction (of data structures) then becomes “free” - it takes no “time”. Therefore algebraic
construction is not quite a computational history ; it is a passive, “spatial” arrangement of
data. And preserving this spatial arrangement coincides exactly with our needs for efficient
widening. Even though our widening is chosen somewhat arbitrarily, this aspect of it - the
special status of algebraic data structures - appears fundamental.

To some degree, the distinction we are making is not new. In the technical terms of λ-
calculus, there is a distinction between introduction forms (constructors - here: mkPair, nil,
and cons) and elimination forms (e.g. + and -, but also any accessor into a data structure,
such as our fst and snd). We are suggesting a further distinction, between the “actually
computational” eliminators (e.g. + and -) and the accessors (e.g. fst and snd). We leverage
this further distinction in our widening, in the next section.

We end this subsection with a discussion of the modified behavior of entry and call. At
entry, we instantiate the anys from our widened arguments, as fresh variables. We will give
the consolidated behavior of call later, when we consolidate our entire algorithm. For now,
we focus on how to consume the result from a cache entry.

Conceptually, we want to substitute “from the formals back to the actual arguments”.
However, now the variables in the formals do not correspond directly to the arguments; they
correspond to the parts of the arguments which were not uniquely known. We therefore unify
the formal parameters with the actual arguments. This gives us the correct substitution:
from the variables in the formals, to the corresponding parts of the arguments.

This completes the changes needed to ensure our new discipline (invariant).

4.3.5. Improved widening

The discipline we have just instituted enables a much more efficient widening algo-
rithm. We first explicitly define the language of expressions used in our set comprehensions
(SYMVAL), in Figure 4.3. This will be the input to widening.

SYMVAL is the language we have already been using in our set comprehensions - essen-
tially, the language of the SMT solver. Previously, we did not discuss this language much,
because we did not manipulate its expressions much; we delivered them to the SMT solver.
Now however, we will manipulate them more, and some comments are in order. Perhaps

5This is also tricky to state, because data can be encoded in the shape of a data structure. For example, a
natural number can be encoded as the length of a list, as in Peano arithmetic. Nonetheless, we believe we
are making a legitimate distinction.
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SYMVAL ::=
| INT
| false | true
| mkProg INT
| mkPair SYMVAL SYMVAL
| nil
| cons SYMVAL SYMVAL
| VAR
| ACCESSOR SYMVAL
| PRIM SYMVAL ...
| ite SYMVAL SYMVAL SYMVAL

ACCESSOR ::= fst | snd | head | tail

PRIM ::= + | - | * | div | = | < | <= | > | >= | and | or | not

Fig. 4.3. SYMVAL: our language of expressions in set comprehension.

the most important is that although this is starting to look strangely like a programming
language, we stress that this is a language for symbolic expressions. We clarify the distinction.

As in a programming language, there are reduction rules over this language. These corre-
spond to computation over known heads, as introduced in 4.3.4. However, unlike evaluation
in a programming language, it is likely that reduction will “block”, for example at VAR +
INT. Here variables are not simply “bound to a value”, as in programming; they are more
like mathematical variables (unknowns). Another distinction is that there is no CALL here.
So we can only express intra-call computation, which is exactly what we need. We already
have other machinery to handle calls.

The other important point is that we continue to distinguish accessors from “computa-
tional” primitives - as we have started to in 4.3.4. These two cases are handled separately
in our improved widening algorithm below.

Note that any expression in WIDEVAL (see 4.3.3) is naturally included in SYMVAL,
by instantiating the anys as VARs. This corresponds to the inclusion of our approximation
lattice (of widened sets), in our larger lattice of set comprehensions.

We now describe our improved widening algorithm. Previously, widening was type-
directed; now, it is syntax-directed. We explain how to handle each clause in SYMVAL.

• Known integers, booleans, and programs widen to themselves.
• Known algebraic constructors (here: mkPair, nil, and cons) are applied to their
(recursively) widened sub-expressions. After we widen the sub-expressions of mkPair,
if possible we apply the reduction rule: mkPair any any ⇒ any.
• In the VAR case, we check if there are any propositions in scope - there are often
none. Without propositions, any VAR widens immediately to any. This is justi-
fied by our discipline (invariant): any variable reference implies a non-unique head.
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In the presence of propositions, we fall back to our old widening algorithm, which
deconstructs this variable by querying the SMT solver.
• In the ACCESSOR case, it is remarkable that we can apply the same logic as for VAR:
in the absence of propositions, widen to any. This is justified by a combination of the
changes we have introduced. We cannot have a constructor beyond an ACCESSOR,
or we would have already reduced this syntactically. The only thing we can have is
VAR or ite - possibly preceded by a chain of accessors. As any VAR has an unknown
head, we can’t possibly have information about one of its components. Similarly, an
ite conceptually has an unknown head, because we have already pulled common
heads out of ite (see 4.3.4).
• In the PRIM case, we always check for uniqueness with the SMT solver. We do this
to avoid a loss of accuracy: an arithmetic expression can have a unique value by
mathematical identity, even if it contains a completely unknown variable.
• In the ite case, we proceed as for VAR: in the absence of propositions, widen to any ;
otherwise deconstruct with SMT.

To maximize the value of this effort, we memoize the results of widening. We do this by
hashing the symbolic expressions (SYMVALs) that we widen, within each pgraph partial in-
terpretation. We preserve these memoized widening results for the later specialization phase:
uniqueness is easy to decide given a widened value. We then memoize further uniqueness
results during specialization itself. Applying all this gets us an overall hundredfold speedup,
on top of previous gains. We then introduce two minor improvements: we reset a single
SMT process for every job, and we hash WIDEVALs for cache lookup.

Appendix B shows a final consolidated view of partial interpretation, including all the
changes made in this chapter.

4.3.6. Final picture of performance

With the performance improvements we have made, the system runs about a thousand
times faster than it did originally. Taking the Futamura projection of the three operation
program took 1m40s (100s); now, it takes 0.15s. This gap grows for larger examples; it
is slightly smaller for the smaller examples. About 80% of total time is spent on partial
interpretation; the rest, on specialization.

It is now possible to perform the Futamura projection of a 120 operation program, in
about two minutes. We stress again that this is not the specialization of a 120 operation pro-
gram (this would be instantaneous); this is the specialization of a relatively large interpreter,
which is running a 120 operation program.
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Fig. 4.4. Time spent performing the first Futamura projection, for a growing input program.

Figure 4.4 shows the growth of execution time, for a growing interpreted program, in
increments of 10 operations. Measurements were made on an Intel i5-6600, running Linux
5.12. Our code was compiled with version 4.9.3 of Gambit Scheme [Fee19]. The Q-programs
to be interpreted were generated algorithmically, using a combination of additions and mul-
tiplications. The SMT solver was CVC4 1.8, set to timeout with unknown after 20ms for
each query. See Appendix C for information on reproducing our results.

The growth is quadratic in what we could call the problem size: the execution length of
the object program. Partial interpretation gets results by running a program, from start to
finish. Here, the object program is the interpreter, and this interpreter runs longer if it must
interpret a larger program (from 10 to 120 operations).

Originally (in 4.3.1), we stated that almost all the execution time was spent waiting for
answers from the SMT solver. Our considerable improvements have changed this perfor-
mance profile. Figure 4.5 shows where time is spent now.
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Fig. 4.5. Breakdown of time spent performing the first Futamura projection.

About half the time is still spent waiting for the SMT solver: checking uniqueness,
during widening or during specialization. Aside from that, we see two new significant items.
First, garbage collection takes up about a quarter of our execution time. Second, our own
algorithms (“non-GC CPU”) also take up about a quarter. Of this quarter, about 80% is
spent doing widening; about 20%, performing syntactic cache comparisons. Each of these
three items appears quadratic in the problem size - measured experimentally. And as far as
we can tell, they are the only quadratic items. In other words, we have done enough initial
optimization to identify significant bottlenecks.

It would take further work to understand exactly why these growths are quadratic. In
our experience, truly figuring that out is done by trying to find a better way. Nevertheless,
we offer some insight.

Fundamentally, these three growths appear connected: the number of widening steps is
quadratic. Some of these steps are performed “in-house” (by our algorithms); some of these
steps are performed by the SMT solver. And as we do all this, we allocate a lot of memory,
which is likely why the garbage collector is doing so much. Memory usage is also growing
quadratically: a peak of about 1.2 gigabyte, in our larger examples - measured experimentally
with Unix system tools.

We make the obvious comment that in an implementation language with manual memory
management (such as C or C++), the garbage collector would not be a problem like this. Most
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of our allocations have a clear and limited lifetime, and we could leverage this to optimize
memory management.

Nevertheless, it seems that the key parameter is the number of widening steps. Intuitively,
it appears to be quadratic because:

• as the problem grows, we have more cache entries, more jobs to compute their results,
and more calls therein;
• as the problem grows, additionally the arguments to calls themselves grow, so it takes
longer to widen them at each call.

This might be a feature of Futamura projections, or it might be a general fact about our
partial interpretation algorithms. Further investigation is needed, but we leave it to future
work.

4.3.7. Possible further performance improvement

We mention one idea beyond using manual memory management. One important source
of SMT uniqueness queries comes up as follows.

In our widening algorithm (in 4.3.5), we defer to the SMT solver to establish the unique-
ness of arithmetic expressions. This is because in the broadest sense, “anything could be
unique, by mathematical identity” - we can’t tell... or can we?

Suppose we have a large arithmetic expression which depends only on two variables - this
is what happens in our examples. Conceptually, it seems possible to efficiently decide the
uniqueness of all sub-expressions, as follows.

First, obtain two models just for the two variables : two pairs of values that satisfy
whatever constraints are in scope. In general, this can be done by querying the SMT solver.
In the absence of propositions, we can even select two models ourselves, because there are
no constraints on the variables.

Next, begin ordinary evaluation of the large arithmetic expression, over the two models
at once. For each sub-expression, compute two values (one for each of the two models). Now
compare the two values:

• if they are different, we have determined that this sub-expression does not have a
unique value
• if they are the same, we can expend an SMT query to verify whether they are always
the same (over all possible models).

We speculate that refining this idea would further improve performance, substantially.
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Chapter 5

Conclusion

5.1. Related work

5.1.1. Berlin, Weise, Ruf, Katz, and fuse

Our work is perhaps most influenced by a particular line of work on partial evaluation.
This line of work was mostly carried out in the early 1990s, at Stanford and MIT, under the
broad name fuse. We review it chronologically.

In 1989 at MIT, Andrew Berlin completes his masters project [Ber89], advised by Suss-
man. Berlin performs the partial evaluation of a functional subset of Scheme. He specializes
straight-line code and conditionals, but not recursive calls, which are handled separately.
Correspondingly, he applies this to scientific (numerical) computations, which involve a lot
of straight-line code. This is reported as very successful, especially targeting supercomputers.

Berlin’s system performs a kind of symbolic execution of the program, and is therefore a
precursor to our work. In particular, one of the most important aspects of the Berlin partial
evaluator is the construction of (and access into) symbolic data structures of known shape.
Berlin also uses graphs to represent specialized programs; but not source programs.

At the time, Daniel Weise is a professor at Stanford, and a recent PhD graduate from
MIT, also advised by Sussman. He begins expanding on Berlin’s work, under the working
name fuse. An important milestone is [WCRS91], which shows for the first time how to
specialize recursive calls automatically.1

[WCRS91] introduces the idea of tolerating non-termination of the partial evaluator,
when the object program would not terminate at run-time; the guarded recursion condition;
and the union with previous arguments. We use these as our particular termination goal,
assessment, and resolution, in 3.4.6.

1For an online partial evaluator - see 5.1.3 for a brief discussion of what that means.



At the time, Erik Ruf is a PhD student at Stanford, advised by Weise. Ruf also begins
expanding on the work above. He makes several contributions relevant to our work. These
(and others, less relevant to us) are consolidated in his PhD dissertation: [Ruf93].

Ruf introduces the general architecture we use, with a cache, a worklist, and a fixed point
computation. He does this to compute more accurate results from sub-calls; previous work
considered the results of sub-calls to be completely unknown, simply. We consider this a
first trace of what we call partial interpretation.

Unlike us, Ruf does not separate specialization and partial interpretation, algorithmically
or conceptually. They are performed simultaneously: in a single phase, a fixed point is found,
not only over the results of calls, but also over specializations. The results of calls are viewed
as secondary, serving to improve the (primary) accuracy of specialization.

Ruf’s efforts are greatly complicated by the perceived necessity of handling closures.
This reflects the lineage of his work, back to Berlin: the partial evaluation of Scheme.
In contrast, we do not require our work to apply to an existing programming language.
We allow programming language design to proceed cooperatively with the design of partial
intepretation, and specialization. We avoid closures and their complications, entirely.

Ruf also introduces some of the pieces of our termination argument. In particular, he
identifies the technical problem we study in 3.4.4. He suggests a solution which we believe
is mathematically equivalent to our “second approach”: propagating all congruence informa-
tion. However, he applies his solution only during cache lookup, and he does not leverage
congruence to write into the cache. He does not appear to recognize congruence as an
opportunity to reach a fixed point faster.

Ruf also introduces a notion of argument equivalence which is broader than exact equality.
He does this by tracking the information used by specialization. This allows more calls to
fall into the same cache entry, which improves the performance of his algorithms. It should
be possible to adapt this to our methods, and we discuss it again in 5.3.

At the time, Morry Katz is another graduate student at Stanford, and he also begins
expanding on the work above. In [KW92], Katz and Weise clearly define a lattice which
we adapt as our particular approximation lattice (see 3.4.5). The previous works use a
similar lattice implicitly. Note that in all these works, there is no notion of widening to
that lattice: that lattice exists alone, without being included in a larger lattice (such as our
partial information domain).

Then, Katz’s PhD dissertation [Kat98] proposes several new ideas. We find these inter-
esting, but we are not sure what their proper place is. We do not mirror Katz’s presentation,
but we identify three main ideas.
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First, Katz suggests that we can expand on Ruf’s tracking of information use. In addition
to tracking the information used by specialization, Katz essentially suggests that we can
track the information used by (what we call) partial interpretation. These two aspects of
information use are never disentangled, in his treatment.

In the context of partial interpretation, in order to compute what information is used in
the arguments, we must have a notion of what information is needed in the results. This
is Katz’s second idea: calls can be indexed not just by a (program, args) pair; there can
additionally be a third piece which indicates what information is needed in the result.

Katz suggests that this gives us a way of determining what information is relevant, at all
call and return boundaries. We think this is a powerful idea, because that is exactly what
we would need to do “adaptive widening”, as suggested in 3.4.5.

However, Katz then suggests (this is his third, and arguably main idea) that we can use
this to assess the termination of partial interpretation/evaluation. He abandons guarded
recursion (see 3.4.6), and suggests that we can let the cache get populated without interven-
tion. He argues that tracking information use induces equivalence classes of arguments, and
that termination will be ensured naturally by cache hits over these equivalence classes.

Katz shows that this works, but that it is not satisfactory. It is too conservative: it ter-
minates too soon. He introduces a heuristic (base case analysis) to make it less conservative.
Then, once again his algorithms do not terminate, in certain cases.

Our assessment of this is that information use is not necessarily the right idea to assess
termination. Intuitively, it seems that we only know what information is used, after we have
taken a stand on termination (and possibly intervened to ensure it). However, we do think
that information use has a place in future work on partial interpretation.

From our perspective, this line of work was almost exactly in the right direction (of more
accurate partial evaluation). Despite this, to the best of our knowledge this line of work
remains uncontinued - until now, in some sense. Weise and Ruf went to Microsoft Research.
There, Weise jointly contributed (among other things) the worklist priority scheme [KW94]
that we use (see 4.3.1). We do not know what happened to Berlin or Katz.

5.1.2. Symbolic execution and abstract interpretation

We do not have the expertise to give a deep comparison to symbolic execution (e.g.
[CGP+08]) or abstract interpretation (the original reference is [CC77]). Nevertheless, our
work combines ideas from each.

As in symbolic execution, we use symbolic formulas to represent data values. However,
symbolic execution traditionally executes only a fraction of the program, to avoid termina-
tion problems. Instead, we execute the program completely, and we directly address the
termination problems that arise.
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To address these termination problems, a key piece in our work is the conjectured lossless
abstraction at a call, from a computational history to a set (see 3.3.1). This lets us apply
ideas from abstract interpretation: fixed point computation with a cache and a worklist. We
complete this with widening (also an idea from abstract interpretation), and termination
assessment/resolution. We adapt our choice of these from the work reviewed in 5.1.1, and
this gives good results for partial evaluation. However, this choice is not principled.

We believe a principled choice could be possible. We have mentioned the idea of “adaptive
widening” (see 3.4.5), which would widen differently at different execution points, keeping
only relevant information. This possibility appears related to some recent developments in
abstract interpretation, under the name a posteriori soundness [MM09].

As for termination assessment, Nguyen [Ngu19] has recently used an SMT solver for
symbolic execution, especially applied to gradual typing [MNTHVH21]. Significantly for
us, Nguyen uses size-change graphs (e.g. [BAL07]) to assess the termination of execu-
tion paths. This strikes us as a potential enhancement to our methods, replacing guarded
recursion as the termination assessment in our general termination framework (see 3.4.6).

5.1.3. Other work on partial evaluation

The fuse line of work (see 5.1.1), and our own work, stand apart from most work on
partial evaluation. We discuss the differences briefly.

Historically, partial evaluators have fallen into two camps: online and offline. fuse and
our work are online partial evaluators: they decide how to specialize the program using
all available information about data values. In contrast, most other partial evaluators are
offline: they decide how to specialize the program in advance, based only on an estimate
of which values will be known vs unknown. [JGS93] covers many topics in offline partial
evaluation.

Offline methods make a sacrifice in accuracy.2 In return, they achieve faster specializa-
tion, and maneuvers such as self-specialization and higher Futamura projections (see e.g.
[Glü09]).

We view offline methods as complementary to our work. We focus on accuracy, and this
is a challenging problem in itself. However, in principle there is nothing preventing a hybrid
approach: decide all you can in advance, but not when this might sacrifice accuracy. We
speculate that this could reconcile the benefits of the online and offline approaches.

We note [Sah91] and [BLR09] as other examples of online partial evaluation, for the
Prolog language. We have only passing familiarity with these works.

2Chapter 2 of [Ruf93] argues this convincingly.
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5.1.4. Program representation

Our pgraph representation has the flavor of a compiler IR (intermediate representation).
We compare it to other such representations:

• SSA: static single assignment [RWZ88]
• VDGs: value dependence graphs [WCES94]
• PEGs: program expression graphs3 [TSTL09].

Though our if node is a simple conditional expression, we also view it as the logical
conclusion of a path started upon by SSA representations. A pgraph is factually “static
single assignment”, since it is pure. But we believe this is not the crux of the matter in SSA.

The notion of SSA begins with a CFG (control flow graph), which totally orders execution.
Then, an SSA transformation is performed, which renders explicit the connections between
uses and definitions. These use-def connections are effectively data dependencies, and this
is in our view the central feature of SSA: a data dependency graph superposed over a CFG.

The data dependencies alone are enough to characterize many data values. However, some
values are selected based on control flow, which is an issue in the pure data-dependency view.
These cases are expressed in SSA with the Φ node, which records two values to be selected
between, and implicit information about which to select depending on which control path
was taken. Therefore Φ is in a sense a bridge between the two aspects in SSA: it indicates
a data dependency, conditioned on some information coming from the CFG.

In contrast, our if node records the explicit boolean condition under which to select
the values. This is simpler to analyze, which is our primary goal; but this is not the only
consequence. Since the conditionality no longer depends on control information, the control
aspect of SSA becomes superfluous and can be removed. To be more precise, the control
aspect is minimized ; we can never eliminate control, which is order of execution. In the
original CFG there is a total ordering on execution, and some of it remains relevant in SSA;
in a pgraph, execution is partially (and minimally) ordered - by the data dependencies.

pgraphs are similar to VDGs (value dependence graphs). The two representations are
distinct primarily because we have no built-in notion of closure, and because we inject
different primitive data and operations.

pgraphs are also similar to PEGs (program expression graphs), in that our if node
records an explicit boolean condition. However, PEGs include imperative looping constructs,
whereas we rely on recursion to express repetition.

3Not to be confused with parsing expression grammars.
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5.1.5. Pypy and Truffle/Graal

Pypy [RP06] and Truffle/Graal [WWH+17] are recent implementations of highly dy-
namic languages (such as JavaScript, Python, and Ruby). Although the aim of these works
is very different from ours, they use some related techniques. To understand these works,
we must briefly examine the history of compilers, programming languages, and personal
computers.

In the early days of compilers (roughly 1960-1990), the main concerns were performance
of the compiled program, and ensuring that compilation itself was tractable. These concerns
reflected the limited computational resources that were available (hardware). As a result,
programming languages were designed for the compiler ; not for the programmer. The disci-
pline of e.g. C and FORTRAN makes the compiler’s job easier.

Between about 1990 and 2005, hardware leapt forward by several orders of magnitude.
Suddenly there was a world of possible, useful programs, which could run without hitting
the wall of hardware performance. All we needed was... the programs. As a result, there
emerged programming languages aimed at rapid development: offering great flexibility to the
programmer, and intending to be interpreted, not compiled. JavaScript, Python, and Ruby
are such languages which became popular, and large code bases exist in these languages.

After about 2005, the increase in hardware computing power slowed radically. It became
increasingly relevant for programs to perform better, in particular in highly dynamic lan-
guages. In other words, it became relevant to compile highly dynamic languages to efficient
machine code, even though these languages were not designed for such compilation. Pypy
and Truffle/Graal aim to fulfill this need. This is completely opposed to our aim, which
is to design the programming language cooperatively with the needs of automation in the
compiler: partial interpretation and specialization.

Pypy focuses on Python. Conceptually, Pypy first takes a stand that a certain subset of
Python both includes the most important features of Python, and is sufficiently disciplined
to be successfully compiled. This subset is called RPython, and it embodies object-oriented
programming with statically inferred types. RPython effectively becomes a compiler IR,
and the plan is then in two parts: first, transform a Python program into RPython (in a
frontend); then, compile RPython to efficient machine code (in a backend).4

Translating Python to RPython is not easy, because by premise full Python contains
undisciplined features which do not map directly to RPython. Pypy specifies this transla-
tion by providing an interpreter for full Python, written in RPython. We have seen that
defining an interpreter induces a translation, via the Futamura projection. Pypy leverages
the fact that a translation is induced, but not using the Futamura projection. We have

4Object-oriented runtimes are also discussed as backend targets: .NET and Smalltalk.
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also seen that an interpreter is conceptually split in two parts: “decoding” the source pro-
gram, and “performing” corresponding actions in the host environment. Pypy manifests this
separation architecturally in the interpreter: the interpreter does not perform any actions
directly; instead, the interpreter invokes a separate black box module when it wishes to
perform actions. Instantiating this black box to actually perform actions yields an ordinary
interpreter. Alternatively, instantiating this black box to construct RPython IR yields a
translator.

To translate from RPython to C (and then machine code), Pypy first performs abstract
interpretation5 with a value domain designed for the specific needs of Python. The ob-
jective of this abstract interpretation is to limit the possibilities for dynamic dispatch at
run-time. Any remaining possibilities are monomorphized into regular C code, and some
form of garbage collection is introduced.

Truffle/Graal has the same overall architecture as Pypy:
• an IR which captures the most important features of dynamic languages, but is
sufficiently disciplined to be compiled
• a frontend from dynamic languages to this IR
• a backend from this IR to efficient machine code.

The IR used here is Java byte code, as used in the Java Virtual Machine, with a few
modifications. This choice reflects the origin of the work on Truffle/Graal: Oracle Corpora-
tion, which previously acquired Sun Microsystems, which in turn had developed Java. The
name of the frontend is Truffle; the name of the backend is Graal.

Like Pypy, Truffle specifies the frontend translation as an interpreter written in their
IR (modified Java). Unlike Pypy, Truffle explicitly intends to support several dynamic
languages, and interpreters are provided for (at least) JavaScript, Ruby, and R. Also unlike
Pypy, Truffle performs the first Futamura projection: translation by specialization of the
interpreter. Their partial evaluation is online and reminiscent of pre-Weise work: explicit
annotations are given in the interpreter to limit the unrolling of loops and calls during partial
evaluation. These annotations account for the modifications made to Java byte code.

Graal uses a lower-level internal representation of programs as graphs. These graphs
are of the SSA kind described in the last section: they combine data dependencies and
control flow. Specifically, Graal’s graphs descend from the work by Cliff Click [CP95] at
Sun Microsystems, originally used in the HotSpotVM Java implementation.

Both Pypy and Truffle/Graal face additional difficulties because they are just-in-time
(JIT) compilers. These additional difficulties are not directly relevant to this work.

5The literature on Pypy often refers to this step as “type inference”.
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5.1.6. Formal systems

It is interesting to briefly compare the language of propositions used in our set com-
prehensions, to the languages used in formal systems with dependent types, such as Coq
[HKPM97] or Agda [BDN09]. We do not have recursion in our propositions, while these
formal systems do. But the distinction is deeper than that: we can express sets which in
these systems would only be expressible with dependent types (e.g. pairs of integers, the
second of which is twice the first).

In these formal systems, proofs and propositions are first-class objects: they have a type,
within the formal system. This is usually achieved through a Curry-Howard embedding of
logic, where propositions become types. In our (SMT) setting, neither proofs nor propositions
are first-class objects (they do not have an SMT type), and propositions are not types.
Therefore our propositions can be expressive without dependent types. This is similar in
spirit to refinement types [FP91], but we do not claim a comparison.

In some sense, our setting is based on a different “correspondence” than the Curry-Howard
correspondence used in (e.g.) Coq or Agda. Under the Curry-Howard correspondence,
propositions correspond to types. For us (and for SMT solvers), the correspondence is
between propositions and boolean expressions.

5.1.7. Automatic deduction

We have focused on SMT solvers as an example of modern automatic deduction, but
automated theorem provers (e.g. [KV13]) are an alternative. We also mention the variants
of natural deduction discussed in [HR04].

By extension, we can also view as automatic deduction anything which automatically:
• simplifies symbolic expressions
• demonstrates their equivalence
• manipulates them in any way towards a useful goal.

We therefore mention modern program optimization (e.g. equality saturation [TSTL09]),
and the subject of computer algebra.

We mention these alternatives because our choice of an SMT solver imposes constraints
on our system. In particular, we have no recursion in our propositions, we inherit SMT’s
traditional weakness with universal quantifiers, and we face a substantial performance chal-
lenge when we query the SMT solver. By replacing or augmenting the SMT solver with an
alternative form of automatic deduction, it may be possible to alleviate these difficulties. We
revisit this idea in 5.3.
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5.2. Discussion
At the beginning of this text, we set out to develop a principled approach to accurate

partial evaluation. We believe we have taken a step towards this. Specifically, we have:
• clearly separated partial evaluation into specialization and partial interpretation
(computation over partial information)
• walked through how to do both, in theory and in practice
• formulated partial information to ground it in modern automatic deduction (specifi-
cally, an SMT solver)
• shown how to reduce reliance on the SMT solver, to improve performance by three
orders of magnitude.

Our implementation has reproduced basic results in partial evaluation, without requiring
manual adjustments to input programs. Additionally, we have achieved a gain in intra-call
accuracy, over previous partial evaluators. And this is all despite the numerous limitations
in our implementation.

We inventory these limitations in the next section, but we view them as opportunities.
They can conceivably be addressed, and our system can then handle more difficult problems
than the rudimentary examples we have experimented on.

This suggests the following plan. First, address the most pressing limitations on object
programs. Then, start experimenting on more serious object programs and libraries. Every
time the results are good, we are one step closer to mainstream partial evaluation.

Every time the results are poor, we have an example failure. The next step is key:
diagnose the failure in terms of the limitations in the next section. This directs our work
to address those limitations first. More importantly, our approach remains principled, even
though it is guided by practical needs.

It seems inevitable to eventually achieve one or both of the following:
• sufficient accuracy for mainstream partial evaluation
• a theoretical understanding of what about this is difficult, or impossible.
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5.3. Limitations and future work
These limitations are of two kinds. In some cases, the right solution seems clear, but we

just haven’t delivered it. In other cases, we don’t know what the right solution is; we have
then delivered arbitrary solutions, usually adapted from past work.

5.3.1. Object programs

Our object programs (pgraphs) lack full algebraic data types (see 2.5), and some primitive
data (see 2.1.3): machine words, and strings. These are important practical additions, and
we anticipate no difficulty with this.

Our object programs also lack many features, such as: external effects, mutation, con-
venient looping, non-local exits (e.g. continuations). These require fundamental changes to
pgraphs. Several existing programming languages offer such constructs. However, it might
be a mistake to rush to adapt existing treatments to our work. The challenge is to handle
these constructs in a way which best integrates with partial interpretation.

5.3.2. Theoretical considerations

In 3.4.4, we studied the question of congruence of cache entries, but we did not settle on
a solution. Many questions remain:

• exhibiting a real program on which partial interpretation fails to terminate, due to
the problem discussed in 3.4.46

• determining whether our two suggested approaches produce the same end result.
If our first and second approaches produce the same end result, then we believe either
approach is right theoretically. The choice would then depend on performance considerations.

Also, in 3.3.1 we left a conjecture informal and unproven, about the irrelevance of histo-
ries.

5.3.3. Accuracy of partial interpretation

We have limited the accuracy of partial interpretation in many ways. First, we are
discarding information (widening - see 3.4.5 and 4.2.7) at all call and return boundaries.
We have seen that this is theoretically necessary in some places, for termination; but also
practically desirable everywhere, for performance. However, currently this is done arbitrarily.

Instead, we believe there should be a principled way of determining which information is
relevant or not, at each boundary. This would possibly expand on ideas from [Kat98]. We
believe this is a critical aspect of future work on partial interpretation.

6[Ruf93]’s section 4.4.2 should be consulted before undertaking this, because Ruf gets part of the way there.

106



Second, we have seen (in 3.4.6) that we need to limit the number of cache entries, to ensure
termination. Currently this is done by assessing termination arbitrarily. Additionally, we
tolerate non-termination of partial interpretation, when the object program might also not
terminate (at run-time).

Instead, we believe there should be a (more) principled way of assessing termination,
such as size-change graphs (e.g. [BAL07]) as used by [Ngu19]. We also mention techniques
based on linear algebra: [Tiw04].

Third, in the language of propositions for our set comprehensions (see 3.1.1), recursion is
excluded. This is done to match the perceived requirement of current automatic deduction.
We do not have the expertise to assess how flexible this requirement is.

Fourth, we do not track path conditions (see 3.2.7). We anticipate no theoretical difficulty
with this, but it may require some re-architecture of our implementation.

Fifth, we make no effort to analyze calls when the called program is not uniquely known
(see 3.2.5). We anticipate no serious difficulty with this.

5.3.4. Performance of partial interpretation

There are many opportunities to improve the performance of our methods. First, we re-
turn to our notion of argument equality from 3.3.2. We said that we require equal monomor-
phic types for argument equality in the cache.

However, consider a polymorphic list length program, applied to two inputs:
• [x, y, z], where each entry is a completely unknown integer
• [x, y, z], where each entry is a completely unknown boolean.

Ideally, we would like both of these calls to fall in the same cache entry. As a slightly
less obvious example, [x, 2, 3] “should” also fall in the same cache entry.

Clearly there is an opportunity here for a broader notion of argument equivalence, and
polymorphism would play a role in this broader notion. The result of a program cannot
depend on either the type or the specific value of a polymorphic argument - this is what it
means for a program to be (parametrically) polymorphic.

We do not know how to formulate this broader notion of equivalence. However, this
appears related to Ruf’s work on broader equivalence of arguments, in [Ruf93]. All this
is especially significant, since the number of cache entries is a primary parameter in the
performance of our algorithms.

Second, in 4.3 we introduced some optimizations which reduce our reliance on the SMT
solver. In 4.3.7, we suggested a further improvement in that direction. But if the path to
performance is reduced reliance on the SMT solver, at some point we have to ask whether
the SMT solver is the right tool for us.
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In hindsight, this question is not so surprising, because the SMT solver is designed for
a slightly different problem than ours: deciding satisfiability, and constructing a model. In
contrast, we usually already know that our queries are satisfiable, because they constrain
data which is the result of executing a program. And we often don’t care to have a particular
model, if there exist two or more models - then the data is non-unique.

We still think it’s right to ground our work in modern automatic deduction; just perhaps
not an SMT solver. We have mentioned some alternatives, in 5.1.7. It’s also possible that
partial interpretation requires a new variant of automatic deduction. In that case, our work
in 4.3 can be seen as its starting point - especially 4.3.3 to 4.3.5.

Third, in 4.3.1 we mentioned the possibility of not re-computing an entire pgraph, for
each re-computation job. We anticipate this to be a technical challenge, but no more.

Fourth, we mention the opportunity for parallelism in our methods. Parallelism appears
naturally at the level of re-computation jobs, but also at the level of queries to SMT (or
another form of automatic deduction).

In our examples, we have not observed a real opportunity for job-level parallelism, during
partial interpretation: the worklist is very short at any given time. However, we have
observed long worklists during specialization.

5.3.5. Accuracy of specialization

We have seen (in 4.2.1) that “checking for uniqueness” does not account for all of program
specialization/optimization. This should be supplemented with (ideally) principled program
optimization. Equality saturation [TSTL09] seems especially relevant.

5.3.6. Formulation as inference rules

The committee has suggested that we formulate our methods as logical inference rules.
We think this idea is potentially very strong, but we are unable to deliver on it at this time.
We take a moment to give our interpretation of this idea, and to comment on its difficulty.

Our methods combine many pieces: automatic deduction as a black box, our partial
interpretation algorithms, our formulation of specialization, and we’re talking about supple-
menting all this with principled program optimization. By formulating all these pieces in a
common language of logical inference rules, we could hope to find a unified and simplified
view of our methods, removed from implementation details. Any overlap between the pieces
is an opportunity for unification and simplification. For example, equality saturation is used
in program optimization, but also to implement congruence closure within modern tools for
automatic deduction.

Such a unified formulation is a kind of formalization, and as such could facilitate proofs.
But in our view, the real win would be to study the core so formulated, and to match it to
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the strengths and weaknesses of different approaches to automatic deduction - either existing
or our own. We could then select the automatic deduction best suited to the needs of partial
interpretation and specialization. Intuitively, instead of trying to fix many comparatively
minor problems in our system, we would change the core of the system itself (deduction);
then we would see what minor problems remain.

We believe such a unified formulation is difficult, and we do not know how to do it.7

Before inference rules, it’s not even clear to us what the judgments should be in the logical
formulation. However, the task does appear to have a vague precedent: Jensen [Jen92]
expresses some forms of abstract interpretation in logical form, and Schmidt [Sch12] explores
abstract interpretation from the perspectives of topology and denotational semantics. These
works may be reasonable starting points.

We have only passing familiarity with the works of Jensen and Schmidt, and we do not
know if their approaches can be adapted to our needs. To begin, we would need to study
their approaches. We would have to identify the distinctions between our methods and their
kinds of abstract interpretation (those kinds which they are reformulating). We would need
to understand how these distinctions imply differences in the resulting logical formulation -
if their approaches even apply in our case. Assuming we get this far, we would then need to
study multiple forms of automatic deduction, to understand their strengths and weaknesses
and how these fit with our logical formulation.

We think these questions are substantial and complex, and we leave them to future work.

5.3.7. Program verification

Throughout this work, we have focused on partial interpretation, as applied to partial
evaluation. We end with a brief mention of a potential second application: automatic pro-
gram verification.

Program verification deals in assertions, pre-conditions, post-conditions, and invariants.
All of these can be seen as sets of values, within which actual values must stay confined.
Conceptually, partial interpretation computes a set of possible values for any piece of data
in a program. If the set of possible values is included in the asserted set, then that assertion
has been verified.

Therefore, partial interpretation should have at least two customers: partial evaluation
(for performance and generality), and program verification (for correctness). This makes its
investigation doubly significant.

7We dismiss a mechanical translation of our algorithms to Prolog, which would factually reformulate our
methods as inference rules, but achieve none of the benefits we just discussed.
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Appendix A

Consolidated algorithm from 3.3

We introduce the labels A1 to A4, for modifications made to satisfy our termination argu-
ment. Three parts of the argument led to modifications: P1 to P3 (see 3.4.4 to 3.4.6). The
connections are as follows - as mentioned in 3.4.4, we ignore P1 in our implementation:

P2 ←→ A1 P3 ←→ A2, A3, A4

Partial interpretation (top-level):
• get a cache entry for the root call, putting it on the worklist if it is fresh (3.3.2)
• flush the worklist, performing the worklist action (below) for each worklist item (3.3.5)
• read the result from the original cache entry

Worklist action:
• perform pgraph partial interpretation (below); if the result has changed:

– if necessary, apply result widening (3.4.5) [→ P2][A1]
– write to cache
– put all our consumers on the worklist, and clear our consumer list (3.3.5)

pgraph partial interpretation – handle all node types:
• result: select an expression, reproducing decls and props (3.2.1)
• const: construct the right SMT expression (3.2.2)
• entry (3.3.2):

– convert to extended comprehension (3.1.3)
– mark the decls and props as originating from this node (3.2.3)
– pipe to SMT (3.2.7)

• prim: combine the expressions, merging decls and props (3.2.2, 3.2.3)
• prog (3.2.4): lookup the program’s index, and wrap it in a mkProg
• exit:

– merge all the decls and props (3.2.3)
– return the computed history for the results (3.2.4)



• if (3.2.7):
– if the condition is ⊥ (the empty set), then return ⊥, with no decls or props
– otherwise try to decide the condition
∗ known true → return the result from the consequent branch
∗ known false → return the result from the alternate branch

– push if marker on the stack; get both branch results; pop if marker (3.4.6)
[→ P3][A2]

– then proceed as in (3.3.4):
∗ both branches are ⊥ → return ⊥
∗ consequent branch is ⊥ → return the result from the alternate branch, and
assert the negated condition
∗ alternate branch is ⊥ → return the result from the consequent branch, and
assert the condition
∗ neither branch is ⊥ → return a conditional expression, merging decls and
props (3.2.3)

• call (3.3 and 3.4):
– check if any input is ⊥ → return ⊥ (3.3.4)
– ensure the called program is unique, otherwise return > (3.2.5)
– merge all the decls and props (3.2.3)
– convert to basic comprehension (3.1.3)
– get a result from the cache:
∗ lookup (pgraph, args) in the cache directly - upon a cache hit, select that
result (3.3.2)
∗ perform termination assessment, and possibly termination resolution (3.4.6)
[→ P3][A3]
∗ widen arguments if they have grown, and if they haven’t been already by
termination resolution (3.4.6) [→ P3][A4]
∗ second lookup, creating a fresh cache entry if necessary
∗ in any case, register the current analysis as a consumer of the cache entry we
consume (3.3.5)

– substitute from the formals to the arguments, in the result (3.3.1)
– rename variables created by widening, to unique names in the caller’s scope (3.4.5)
– mark any new decls and props as originating from this node (3.2.3)
– pipe to SMT (3.2.7)
– additionally merge the decls and props, from the result and from the arguments

(3.2.3)
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Appendix B

Consolidated algorithm from 4.3

Modifications relative to Appendix A are shown in bold. We omit the connections with the
termination argument. The only change relevant to termination is that we are now widening
all arguments. In particular then, we are widening them when necessary for termination.

Partial interpretation (top-level):
• get a cache entry for the root call, putting it on the worklist if it is fresh (3.3.2)
• flush the worklist, performing the worklist action (below) for each worklist item (3.3.5)
• read the result from the original cache entry

Worklist action:
• perform pgraph partial interpretation (below)
• if the result has changed:

– if necessary, apply result widening (3.4.5, 4.3.5)
– write to cache
– put all our consumers on the worklist, and clear our consumer list (3.3.5)

pgraph partial interpretation – handle all node types:
• result: select an expression, reproducing decls and props (3.2.1)
• const: construct the right SMT expression (3.2.2)
• entry :

– instantiate anys to fresh variables (4.3.4)
– mark the decls and props as originating from this node (3.2.3)

• prim:
– attempt to reduce syntactically known heads (4.3.4)
– otherwise, combine the expressions, merging decls and props (3.2.2, 3.2.3)

• prog (3.2.4): lookup the program’s index, and wrap it in a mkProg
• exit:

– merge all the decls and props (3.2.3)
– return the computed history for the results (3.2.4)



• if (3.2.7):
– if the condition is ⊥ (the empty set), then return ⊥, with no decls or props
– otherwise try to decide the condition
∗ known true → return the result from the consequent branch
∗ known false → return the result from the alternate branch

– push if marker on the stack; get both branch results; pop if marker (3.4.6)
– then proceed as in (3.3.4):
∗ both branches are ⊥ → return ⊥
∗ consequent branch is ⊥ → return the result from the alternate branch, and
assert the negated condition
∗ alternate branch is ⊥ → return the result from the consequent branch, and
assert the condition
∗ neither branch is⊥ → return a conditional expression, pulling out common
heads (4.3.4), and merging decls and props (3.2.3)

• call (3.3):
– check if any input is ⊥ → return ⊥ (3.3.4)
– in passive mode, check for an existing cache entry for this call (4.1.1)
∗ if one exists, consume it as described below for active mode
∗ otherwise, return >

– in active mode, ensure the called program is unique, otherwise return > (3.2.5)
– merge all the decls and props (3.2.3)
– widen the arguments (4.3.5)
– if the arguments are unique, perform ordinary execution (4.3.2)
– get a result from the cache:
∗ lookup (pgraph, args) in the cache directly - upon a cache hit, select that
result (3.3.2)
∗ perform termination assessment, and possibly termination resolution (3.4.6)
∗ second lookup, creating a fresh cache entry if necessary
∗ in any case, register the current analysis as a consumer of the cache entry we
consume (3.3.5)

– once we have a result from the cache, consume it:
∗ substitute from the unknown parts of the formals, to the corre-
sponding parts of the arguments, in the result (4.3.4)
∗ rename variables created by widening, to unique names in the caller’s scope
(3.4.5)
∗ mark any new decls and props as originating from this node (3.2.3)
∗ additionally merge the decls and props, from the result and from the argu-
ments (3.2.3)
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Appendix C

Reference implementation

This PDF document is intended to be accompanied by our reference implementation. If you
are missing our reference implementation, it should be available through the University of
Montreal’s archival service, Papyrus:

• go to papyrus.bib.umontreal.ca
• search for e.g. “Ian Sabourin computation over partial information”
• once you have found the right page, look for Sabourin_Ian_2021_impl.zip

It is not possible for us to provide a direct URL link there, from this PDF document. This
is because the final PDF must be submitted, before that URL is created.

We provide our reference implementation for two purposes:
• so that our code may be examined
• so that the main experimental results we report may be reproduced.

Further instructions can be found with our reference implementation, in the text file README.

For any other purpose, we give no assurances.

papyrus.bib.umontreal.ca
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