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Résumé

Le langage de programmation Python est aujourd’hui parmi les plus populaires au monde
grâce à son accessibilité ainsi que l’existence d’un grand nombre de librairies standards.
Paradoxalement, Python est également reconnu pour ses performances médiocres lors de
l’exécution de nombreuses tâches. Ainsi, l’écriture d’implémentations efficaces du langage est
nécessaire. Elle est toutefois freinée par la sémantique complexe de Python, ainsi que par
l’absence de sémantique formelle officielle.

Pour régler ce problème, nous présentons une sémantique formelle pour Python axée sur
l’implémentation de compilateurs optimisants. Cette sémantique est écrite de manière à
pouvoir être intégrée et analysée aisément par des compilateurs déjà existants.

Nous introduisons également semPy, un évaluateur partiel de notre sémantique formelle.
Celui-ci permet d’identifier et de retirer automatiquement certaines opérations redondantes
dans la sémantique de Python. Ce faisant, semPy génère une sémantique naturellement plus
performante lorsqu’exécutée.

Nous terminons en présentant Zipi, un compilateur optimisant pour le langage Python
développé avec l’assistance de semPy. Sur certaines tâches, Zipi offre des performances compé-
titionnant avec celle de PyPy, un compilateur Python reconnu pour ses bonnes performances.
Ces résultats ouvrent la porte à des optimisations basées sur une évaluation partielle générant
une implémentation spécialisée pour les cas d’usage fréquent du langage.

Mots clés: Python, langage de programmation dynamique, sémantique formelle, évaluation
partielle, compilateur, optimisation
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Abstract

Python is among the most popular programming language in the world due to its accessibility
and extensive standard library. Paradoxically, Python is also known for its poor performance
on many tasks. Hence, more efficient implementations of the language are required. The
development of such optimized implementations is nevertheless hampered by the complex
semantics of Python and the lack of an official formal semantics.

We address this issue by presenting a formal semantics for Python focussed on the
development of optimizing compilers. This semantics is written as to be easily reusable by
existing compilers.

We also introduce semPy, a partial evaluator of our formal semantics. This tool allows to
automatically target and remove redundant operations from the semantics of Python. As
such, semPy generates a semantics which naturally executes more efficiently.

Finally, we present Zipi, a Python optimizing compiler developped with the aid of semPy.
On some tasks, Zipi displays performance competing with those of PyPy, a Python compiler
known for its good performance. These results open the door to optimizations based on a
partial evaluation technique which generates specialized implementations for frequent use
cases.

Keywords: Python, dynamic programming language, formal semantics, partial evaluation,
compiler, optimization
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Introduction

Programming languages are oftentimes categorized as either static or dynamic. This commonly
refers to the type system of the language. Statically typed languages apply type checking
during the compilation of a program, either by requesting that the programmer declares
variables’ types or through type inference. On the other hand, dynamically typed languages
assign types to values at run time and apply type checking during a program execution.

However, the dynamicity of a language refers to more than its type system. More broadly,
dynamic languages are those which defer operations otherwise done at compile time to the
program execution. Beyond type checking, such operations can include late binding, dynamic
code loading and garbage collection [1].

Unsurprisingly, defering operations to run time makes dynamic languages generally slower
than static languages [2, 1]. Nonetheless, dynamic languages have seen a steady rise in
popularity in the last decades. Programmers seem to favor shallower learning curves [1],
shorter development time [2] and extensive built-in librairies [3] over performance alone.
Following this trend, highly dynamic languages such as JavaScript and Python have rised
among the most popular languages in the world [4, 5].

This inevitably raises the issue of optimizing such highly dynamic languages. In particular,
we turn our focus onto Python whose dynamic features extend well beyond the aformentionned
run time operations. Along with dynamic type checking, late binding, dynamic code loading
and garbage collection, Python also offers a deep level of introspection which renders static
analysis of a Python program especially hard.

In some sense, Python is more dynamic than other languages. Hence, we expect opti-
mization techniques applicable to the Python language to be portable to other dynamic
languages.

When the Python language was released, its author, Guido Van Rossum, intended a
language focussed on readability and offering powerful data types out of the box [6]. Today,
Python is indeed praised as being both powerful and (superficially) simple [3]. Yet, while it is
true that Python’s extensive standard libraries and built-in functions offer high expressiveness,
the Python language also has a standard implementation which yields poor performance



[7]. Moreover, a complex semantics without any formal specification [8] makes it difficult to
reason about Python [9].

In our experience, both of these challenges which Python faces are related. Its complex
semantics and absence of formal specification complicate the development of a Python
compiler compatible with the standard implementation. This in turn leaves less time for
optimization.

When initially developping the Python compiler presented in Chapter 4, a large part of
our time was simply devoted to getting the semantics right. Furthermore, realizing that a
specific optimization contradicts part of the semantics midway through development has not
been uncommon either. With this came the desire to automate part of the implementation
of the semantics in a way which still yields good performance.

Similar concerns have been reported with the JavaScript language [10, 11] whose spec-
ifications counts no less than 875 pages [12]. We suggest the development of executable
semantics aimed at automating the development of optimizing compilers as a solution to this
recurring issue.

Contributions
This thesis makes three main contributions.

• The development of a formal semantics for Python which can be easily integrated to
an existing Python compiler (Chapter 2).
• A tool to automatically generate fast paths for executing Python arithmetic operations
using the formal semantics (Chapter 3).
• A technique to automate parts of the implementation of a Python optimizing compiler
using this tool (Chapter 4).
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Chapter 1

Background

In this chapter, we discuss useful background to understand the contributions of this thesis.
We assume basic knowledge about Python’s syntax and provide an overview of relevant parts
of the language’s semantics. We then discuss Python’s dynamic features and their impact on
the implementation of optimizing compilers.

1.1. The Python language
Python is a high-level, general-purpose, multi-paradigm programming language [13]. It

is most well known for its extended standard library [14], object-oriented approach and
admittedly poor performance [7].

There exists two distinct versions of the Python language, Python2 and Python3. Both
are dissimilar enough that they can effectively be treated as different languages [15]. In this
thesis, all mentions to Python refer to the Python3 language.

The specifications of the Python language are described in The Python Language Reference
[16]. We will refer to this document when describing and implementing Python’s semantics.
Yet, the language reference does not provide a formal specification, except for syntax and
lexical analysis, which leaves room for ambiguities. When such ambiguities arise, we refer to
the behavior of cPython [13], the reference implementation.

def adder(x):
def add_x(y):

return y + x # y: local scope , x: enclosing non - global scope
return add_x

add_2 = adder (2) # add_2: global scope

print (add_2 (3)) # print: builtin scope

Fig. 1.1. A sample Python program



In Figure 1.1, we display a small Python program. Note how Python uses indentation
levels to delimit nested code blocks and variables do not have a static type.

1.1.1. Scoping rules

When encountering a reference to a variable, Python resolves it as either part of the local,
enclosing, global or builtins scope.

The local scope is delimited by a function’s body. When an assignment to a name exists
within the body, any reference to this name within the body is labelled as local. In the event
a local variable is referenced before assignment, Python throws a run time exception.

The enclosing scope exists when defining a nested function. In that case, free variables for
which an assignment exists only in the body of an enclosing function are part of the enclosing
scope. Similarly to the local scope, a reference to an unbound variable labelled as part of the
enclosing scope results in a run time exception being thrown.

Importantly, Python rules for local and enclosing scopes depend solely on the closest
lexical assignment to a variable and are independent of whether the variable will be defined
at run time. Thus, both the local and enclosing scopes can be resolved statically.

When a variable is neither local, nor part of an enclosing scope, Python looks up its
name in the global scope. The global scope contains all definitions executed at the top-level
of a script. If the lookup of a global name fails, Python then searches the builtins scope.
The builtins scope contains functions and objects provided by the builtins module such as
print, range and len. Finally, if the variable is not found within the builtin scope, Python
raises a run time exception. Figure 1.1 shows a program making use of all four scopes.

As we shall explain in Section 1.2, determining whether a variable is global or builtin can
only be achieved at run time due to the ability to delete global variables at run time.

1.1.2. Data model

Python’s abstraction for data are objects [17], which are entirely defined by their identity,
type and value. The identity is a unique integer which never changes across the life of the
object and is available by calling id(obj). The value is the data represented by the object, for
example it can be an integer, a floating point number or a pointer to another data structure.
An object is sometimes mutable such as with lists and dictionaries whose content can change.
In other cases, it is immutable such as with integers and floats whose value cannot be updated.
Finally, the type determines the operations allowed on that object, it is obtainable with
type(obj). Under certain conditions, the type of an object can be modified. However, this
is not possible for objects whose type is a built-in type [17].

All values in a Python program are objects. This is by opposition to other object-oriented
languages such as Java where primitive data types such as byte, char or boolean exist [18].
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For example, Python boolean values are represented by the singleton objects True and False
which belong to the bool type. Likewise, Python offers a None value which fulfills a similar
role to that of the JavaScript null [19]. However, None is not a primitive value but rather a
singleton object which belongs to the class NoneType.

In the absence of primitive values, the operations allowed on an object are defined entirely
by its type. The Python language features basic types such as bool (boolean), int (unlimited
integers), float, complex and str (strings). It also offers container types such as tuple
(fixed size array), list (dynamic array), dict (hash-table) and set. Custom types can also
be defined using the class keyword.

py_add (x, y):
""" Semantics of the Python + operator """
if type(x) has a method __add__ :

result = type(x). __add__ (x, y)

if result is NotImplemented :
return py_radd (y, x)

else:
return result

else:
return py_radd (y, x)

py_radd (y, x):
"""
Reflected fallback for the Python addition operator
"""
if type(y) has a method __radd__ :

fallback_result = type(y). __radd__ (y, x)

if fallback_result is NotImplemented :
raise TypeError

else:
return fallback_result

else:
raise TypeError

Fig. 1.2. Pseudocode of the semantics of the + operator

The type of an object is itself an object which defines a set of methods. Whether an
object supports a given operation depends on the methods available on its type. For example,
the addition operation (x + y) is defined if the type of x possesses a method named __add__.
If this method exists, it is invoked with x and y as arguments which yields a result for the
operation x + y. In the event where the __add__ method is not found on the type of x,
Python will fall back on the __radd__ method of the type of y (note that the r in the name
stands for reflected). There is also the possibility that the __add__ method exists, but does
not know how to handle the object y. In that case, the method will return the singleton object
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NotImplemented. This indicates to Python that despite the method’s existence, its result
should not be used in that case and the __radd__ method should be called as a fallback [20].
Figure 1.2 expresses semantics of addition in a pseudocode style similar to the Python syntax,
the reason for that choice will become apparent in Chapter 2. The result of py_add(x, y) is
the same as x + y.

Python implements semantics of other arithmetic operations in a similar fashion, where
only the name of the required methods change. For example, the subtraction semantics is
identical to the addition semantics, but with the required methods being named __sub__
and __rsub__. The methods required by the semantics are called special methods or magic
methods.

class Cons:
"""
Implementation of Lisp -like pair
A sequence of Cons must end with None which acts as the empty list
"""
def __init__ (self , car , cdr ):

self.car = car
self.cdr = cdr

def __iter__ (self ):
yield self.car
if self.cdr is not None:

yield from self.cdr

def __add__ (self , other ):
if self.cdr is None:

return Cons(self.car , other)
else:

return Cons(self.car , self.cdr + other)

def __str__ (self ):
return "(" + " ".join(map(str , self )) + ")"

l1 = Cons (1, Cons (2, None ))
l2 = Cons (3, Cons (4, Cons (5, None )))

print (l1 + l2) # (1 2 3 4 5)

Fig. 1.3. Python implementation of Lisp-like pairs

Magic methods play a role beyond arithmetic. For almost all operations in Python, there
exists a set of special methods which dictates the semantics of the operation. For example,
iteration in a for-loop relies on the __iter__ method to return an iterator. The type of this
iterator must implement the __next__ method which yields the element on which to iterate.
The syntactical form obj.attr for attribute access relies on the __getattribute__ method
and falls back on the __getattr__ method if no attribute is found. The same applies for
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function invocation, truthiness of objects used as conditions, type casting and so on. Figure
1.3 shows an example of a user-defined data structure Cons which mimics Lisp’s cons to
implement linked lists. The __init__ magic method defines the behavior of an object when
initialized. Implementing __iter__ defines what it means to iterate over a Cons. Namely,
it allows to use map to map a function onto a Cons. Defining __add__ adds supports for
addition, which implements list concatenation. Finally, __str__ defines how instances should
be printed.

1.1.3. Inheritance

Inheritance is a feature through which a type inherits properties from a parent type. In
the context of Python, the inherited properties are methods, including magic methods. In
particular, inheritance allows to override the behavior of a type by redefining magic methods.
In Figure 1.4, we provide an example where we use inheritance to extend the Cons class
shown in Figure 1.3 to support concatenation with lists. We achieve this by defining a new
__add__ method on the subclass MyNewCons.

class MyNewCons (Cons ):
"""A subclass of Cons supporting concatenation with ’list ’ objects """
def __add__ (self , other ):

if self.cdr is None:
return Cons(self.car , other)

elif isinstance (other , list ):
return list(self) + other

else:
return Cons(self.car , self.cdr + other)

l1 = MyNewCons (1, MyNewCons (2, None ))
l2 = [3, 4, 5]

print (l1 + l2) # [1, 2, 3, 4, 5]

Fig. 1.4. Implementation of Lisp-like pairs with inheritance

When recovering a method from a type, Python executes an ordered search across the
type and its parents. For example, when iterating over an object of type MyNewCons (Figure
1.4), the method __iter__ is looked up on the MyNewCons where it is not found. Python
then looks up the method on the parent type Cons where it finds the method, thus allowing
for iteration over a MyNewCons object.

The Python language also supports multiple inheritance. This allows a type to inherit
from more than one parent. In such cases, more than one way to traverse the tree of parents of
a type exists. To avoid inconsistencies, searching for a magic method (or any class attribute)
thus requires an order in which the parents are traversed. This order is called the method
resolution order (MRO). The MRO is a property of a type which is computed during the
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creation of the type object and cannot be altered afterward. The MRO is computed using
the C3 superclass linearization algorithm. This algorithm has the advantage of preserving
monotonicity: it prevents inherited attributes from skipping over all direct parent classes
[21, 22].

1.1.4. Magic method driven semantics

It should now be apparent that a significant part of Python’s semantics is driven by its
so-called magic methods. However, this does not apply to the whole semantics, which leads
us to differentiate between parts of the semantics which are magic method driven and which
are not. We say a part of the semantics is magic method driven if it can be overloaded by
defining the relevant magic method of a class as in Figure 1.4.

As previously mentioned in Section 1.1.2, the semantics of binary arithmetic operators (+,
-, *, /, //, %, ** and @), bit-wise operators (<<, >>, |, & and ˆ), unary operators (+, - and ~)
and comparison operators (<, <=, > and >=, ==, != and in) are all magic method driven.

The same applies for the following syntactic forms.

• if while statements and which use __bool__ or __len__
• for-loops (__iter__ and __next__)
• function invocation (__call__)
• instance creation (__init__ and __new__)
• with-statements (__enter__ and __exit__)
• attribute access (__getattribute__, __getattr__ and __setattr__)
• subscription (__getitem__ and __setitem__)
• the del-statement (__del__)
• class declaration (__prepare__ and __new__)

The semantics of the following built-in functions is also magic method driven.

• abs (__abs__)
• dir (__dir__)
• divmod (__divmod__)
• format (__format__)
• hash (__hash__)
• isinstance (__instancecheck__)
• len (__len__)
• repr (__repr__)
• reversed (__reversed__)
• round (__round__) __new__)
• subclass (__subclasscheck__)
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Similarly, the semantics of type casts (explicit or implicit) is driven by magic methods.
For example, when a cast to an int is required, the __int__ magic method is invoked. The
same takes place for casts to a float (__float__), a str (__str__), a bool (__bool__) and
so on.

There also exists a few features whose semantics is not magic method driven, namely
control-flow keywords (break, continue, raise, return and yield), scoping rules, function
declaration and the try-except statement.

Through this thesis, we will focus on the magic method driven parts of the semantics.
This choice is motivated by the fact those constitute a substantial part of the semantics. In
particular, this is a part of the semantics of Python that is highly dynamic (Section 1.2.3)
and thus has a significant impact on performance (Section 1.3). It is also the most atypical
part of the semantics, since the lexical scoping and control flow of Python are similar to those
of other languages and are straightforward to understand and implement. In general, we
will thus use the term semantics to refer to magic method driven semantics unless stated
otherwise. In particular, we will often use the term semantics of a specific feature, by which
we mean the way relevant magic methods are composed to implement the feature (we already
provided an example of the semantics of addition in Figure 1.2).

1.1.5. Decorators

Python’s decorators are a syntactic sugar used throughout this thesis. A decorator is an
expression prefixed with the @ character which precedes a function definition. The result of
the expression must be a callable which is invoked at run time with the function or class it
decorates. The value returned by the invocation is then bound to the function or class name
instead of the initial object itself [23].

Decorators are typically used to either create a wrapper function (Figure 1.5) or register
functions with some properties (Figure 1.6).

In Chapter 2, decorators will be used as a way to label certain functions for the compiler.
This usage is similar to that of Figure 1.6 which registers specific functions. However, it will
take place at compile time.

1.2. Dynamic features
Similarly to other dynamic programming languages, Python incorporates features such

as dynamic typing, dynamic binding and dynamic code evaluation. Python also offers a
deep level of introspection which allows altering the behavior of a program in ways which a
compiler can hardly predict. Introspection is the ability to manipulate reified objects such
as lexical environments, stack frames or the garbage collector. While The Python Language
Reference presents some introspection capabilities as implementation details of cPython, it
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def trace(f):
def wrapper (x):

print (f.__name__ , " called with argument ", x)
return f(x)

return wrapper

@trace
def fib(n):

if n <= 1:
return n

else:
return fib(n - 1) + fib(n - 2)

# The function ’fib ’ prints a trace before each call
fib (5)

Fig. 1.5. A Python decorator use to wrap a function

function_register = []

def register (f):
function_register . append (f)
return f

# The ’fact ’ function is added to the ’function_register ’ list
@register
def fact(n):

result = 1
for x in range (1, n + 1):

result *= x
return result

Fig. 1.6. A Python decorator used to register a function

also defines others as features in their own right. In this section, we cover such features
with the goal of demonstrating some of the obstacles encountered when implementing a
Python optimizing compiler. All code examples within this section are reproducible using
the cPython interpreter.

1.2.1. Modules

Python implements modular programming through module objects. When Python exe-
cutes a script, it creates an object of type module. All global assignments executed in the
script are stored as attributes of the module. Conversely, all modifications applied to a
module attributes are reflected on its global environment. Other Python programs can then
import this module to access its functions and other attributes.
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As such, there exist no notion of private or read-only module property. All modules
can access and update all attributes from other modules. In particular, since Python loads
modules dynamically one can never have the certainty that a global variable is defined within
a module as a process external to the module may have updated it. This process of updating
other modules global variables is called monkey patching.

# === my_module .py =======================================================

message = "I was defined in my_module .py"

def print_message ():
print ( message )

# === monkey_patcher .py ==================================================

import my_module

my_module . message = "I was monkey patched !"

# === main.py ============================================================

import my_module
import monkey_patcher

my_module . print_message () # prints "I was monkey patched !"

Fig. 1.7. Monkey patching

In Figure 1.7, we show an example of monkey patching. Three modules are defined:
main.py is the entry point of our program while my_module.py and monkey_patcher.py are
external modules imported by our main script. The main script first imports my_module.py
which Python executes to return a module object. When the module monkey_patcher is
imported, its script makes an update to the message variable within the global scope of
my_module.py. This change later shows through the call to the print_message function of
my_module which now prints the monkey patched value from monkey_patcher.py.

Aside from assignments and modules attributes, there exist yet another way to update
the global environment of a module. Python offers the possibility to reify the global scopes
of its modules by invoking the globals() built-in function. This function returns a Python
dictionary which allows to read and write the global environment. Since the returned object
is a dictionary, any program can keep a reference to it and update it at any point of the
execution.

In Figure 1.8, we show a Python module which uses the globals() function to assign
values within its global environment. Furthermore, the global dictionary is bound to the
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environment variable in that example. Doing so exports its global environment and allows
other modules to manipulate it.

"""A Python module which reifies its global environment """

environment = globals ()

environment [" var_name "] = "foo"
environment [ var_name ] = 42

print (foo) # prints 42

Fig. 1.8. A program using the globals() function

This peculiar behavior of Python environments makes static analysis of global variables
impracticable. While a compiler can hypothesize about a variable’s existence and value
at a given point of the execution, the prospect of dynamically loaded code updating the
environment remains.

1.2.2. Builtin functions

As mentionned in Section 1.1.1, references to a name which is neither found in the local
scope, nor in the global scope are looked up in the builtin scope. The builtin scope is
itself a module part of the Python standard library. One can import this module with the
import builtins statement and update its attributes.

As explained in Section 1.2.1, updating a module’s attributes is equivalent to update its
global environment. The same holds for the builtins modules. Thus, any update to this
module affects the builtins available throughout a Python program.

In Figure 1.9 we show an example where we use monkey patching to update the built-
in print function. The script first imports the builtins module and updates its print
attribute. When we later call the print function, we observe that Python calls our updated
version of print.

In this last example, the same module updates the builtins module and then calls the
print function. However, the result would be the same if an external, dynamically loaded,
module updated the builtins module.

Thus, any appearance of a global reference to a built-in name could point to a different
object than the original built-in function. Not only can dynamically executed code overshadow
the name within the module’s global scope, but the builtin scope itself can be updated.

1.2.3. Magic methods

Now that we studied how dynamically loaded code can affect modules’ scopes, we shift
our focus toward how it has similar impacts on various Python operators.
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import builtins

# Keep a reference to the original ’print ’ to allow printing
old_print = builtins . print

def patched_print ( message ):
old_print ("’print ’ was monkey patched !")

builtins . print = patched_print

print (42) # prints "’print ’ was monkey patched !"

Fig. 1.9. Monkey patching of a built-in function

As a reminder from Section 1.1.2, the behavior of most Python operations depends
on which magic methods the arguments’ types implement. Yet, since magic methods are
attributes on Python types, we can update them, as we would with any attribute, at any point
during a program execution. This implies the behavior of an operator on a given set of types
may change during the program execution. In Figure 1.10, we show a rather extreme example
where we update the __next__ method of an iterator during iteration. Thus, the MyCounter
object which we initially defined to count from zero upward starts counting downward during
its iteration. Moreover, this affects all objects of type MyCounter across our program.

class MyCounter :
def __init__ (self ):

self.next = 0

def __iter__ (self ):
return self

def __next__ (self ):
next = self.next
self.next = next + 1
return next

def __next__2 (self ):
next = self.next
self.next = next - 1
return next

for x in MyCounter ():
print (x)
if x == 3:

# Updating the __next__ method of MyCounter changes its
# behavior on subsequent iterations
MyCounter . __next__ = __next__2

Fig. 1.10. Updating the __next__ method during a loop
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In general, we cannot assume that the same operation applied to the same object will
return the same result. A change to any type within the object’s MRO may result in a
different magic method being called and thus a different result. Similarly, a change to the
global scope in which any of the types in the MRO was defined may also change the behavior
of a magic method and thus change the result of the operation.

An important exception is that of Python built-in types: attributes of all built-in types
are read-only. For example, if one attempts to redefine the __add__ magic method of the
int type, the cPyton implementation raises a TypeError. The behavior is similar for other
built-in types such as bool, float, str and so on. PyPy, another popular implementation
of the language, exhibits a similar behavior [24]. Immutability of built-in types is part of
Python’s semantics.

This exception to the rule will play an important role in the upcoming chapters as it
allows to bypass the search and invocation of magic methods when the operands’ types are
built-in ones.

1.3. Performance
Fundamentally, dynamic languages such as Python trade run time performance for

developer productivity [7, 25, 2]. This choice appears to be paying off with Python standing
as the second most used general-purpose language after JavaScript [4, 5]. Nonetheless,
implementations such as PyPy (Section 1.3.2) demonstrated that one can obtain good
performance [24]. In this section we cover the performance of both cPython and PyPy. We
chose those implementations as reference points for the prominent place they occupy within
the Python ecosystem.

1.3.1. cPython

The cPython interpreter is Python’s standard implementation [13]. It performs poorly
on many tasks even compared to other dynamic languages [7, 26]. Nonetheless, it is still
widely used by developers.

The cPython interpreter is a stack-based bytecode interpreter. It compiles the user’s source
code to bytecodes which the cPython virtual machine executes. In a sense, cPython constitutes
a straightforward implementation of the Python language with minimal optimizations. This
permits profiling its interpreter to acquire insights about the overhead of various dynamic
features [7, 27].

Among such features, boxing and unboxing of numerical values (int and float objects)
accounts for a significant share by occupying up to a third of a program’s execution time
on some benchmarks. To a lesser extent, the same holds for boxing of containers (list and
tuple objects). Dynamic type checking can account for up to 15% of a program’s execution
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time and late binding of method calls for up to 30% [7, 27]. Name resolution also has a
significant impact on execution time [27].

When implementing an optimizing compiler, cPython thus acts as a guideline regarding
potentially high-reward optimizations. Furthermore, as the reference implementation, it
serves as a suitable baseline for performance comparisons.

1.3.2. PyPy

The PyPy project is a Just-In-Time (JIT) bytecode compiler often viewed as the state of
the art among Python implementations [24]. It imposes itself as the main alternative to the
standard implementation.

PyPy uses a tracing JIT compiler. Tracing JIT compilers rely on profiling to identify
hot code paths within a program. After identifying such a path, the tracing JIT generates
highly optimized machine code for its next executions. PyPy differs from other tracing JIT
by applying tracing to the interpreter’s code instead of the user’s program [28]. This allows
to unroll the bytecode dispatch loop itself to generate optimized machine code for the user’s
code hot paths.

On average a Python program executes 4.5 times faster when using PyPy over cPython.
Although in some specific cases, performance improvements reach one or two orders of
magnitude [29]. Furthermore, PyPy is among the most popular optimizing implementations
of the Python language. This makes it an excellent reference point when implementing a
Python optimizing compiler.

1.4. Formal and executable semantics
While the syntax of a language describes the textual form that a valid program can take,

its semantics describes the expected behavior of such a program. The description of the
behavior of the syntactic elements of a language can take various degrees of formality. This
degree of formality refers to how precise and unambiguous the semantics of the language is.
Various frameworks exist to provide formal semantics. Although these frameworks typically
involve a mathematical description of a language’s semantics, a formal semantics can take
other forms, such as diagrammatic notation [30].

Mathematical frameworks such as operational semantics and denotational semantics [31]
have been used to implement formal semantics of modern programming languages such as
JavaScript [32], PHP [33], Python [9], and LUA [34] to name only a few.

Although the aforementioned techniques for describing semantics provide formal specifica-
tions, they do not provide an implementation of the language in general. They still require
a programmer to implement the semantic rules within a compiler or an interpreter [35]. A
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formal semantics from which we can automatically derive an implementation is called an
executable semantics [36].

This thesis presents an executable semantics of the Python language which has some
vague similarities with denotational semantics: it maps syntactic elements of the Python
language to composable functions which describe their output and side effects. However,
our formal semantics focusses on describing how those features should be computed, which
denotational semantics typically do not [31].

1.5. Python executable semantics
As of today, Python does not have an official formal semantics. The reference manual uses

prose instead of a formal specification which explicitly leaves room for ambiguities [16]. The
absence of a formal semantics complicates the process of reasoning about Python. As a result,
many third-party tools, such as static analyzers or interactive development environments are
unsound [9].

Over the last decades, multiple attempts at defining a formal semantics for Python took
place with increasing success [37, 38, 9]. Such formal semantics allow to use automatic
theorem provers to demonstrate properties of the language [37, 9]. Executable formal
semantics also permit feeding the semantics to specialized tools to yield an implementation
of the language [9].

Despite recent progress, all existing formal semantics we encountered describe only a
subset of the Python languages. The approach which allowed to define the widest subset
relies on semantic desugaring [9, 39]. Desugaring consists in defining a core language with a
small number of primitive constructs. In the context of Python, primitives represent low-level
operations such as manipulation of an object’s value or method lookup. A desugaring function
then takes Python programs and expresses them into that core language [9]. Desugaring
allowed to successfully define executable semantics of both (a subset of) Python [9] and
JavaScript [39]. However, executable semantics yield implementations which are significantly
slower than cPython [9].

To the best of our knowledge, there exist no executable semantics which yields an efficient
implementation of the Python language. There remains to define such a formal semantics
usable by optimizing compilers.
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Chapter 2

A Python reusable semantics

In this chapter, our main goal will be to present a formal semantics aimed at developing
optimizing Python compilers. We want such a formalization to:

• Automate part of the implementation of a Python compiler
• Be easily usable by multiple Python compilers
• Yield performant implementations

As seen in Section 1.1.2, Python’s semantics highly depends on magic methods. Writing
the numerous methods of Python’s built-in types by hand is tedious and error-prone. We
ought to automate this process to accelerate development. This automation process should
also be reusable by other compilers. Integration to an existing compiler must be possible
independently of the language and tools chosen for its implementation. We will achieve this
by writing this semantics in a syntax similar to that of Python. Hence, interfacing with the
semantics will only require updating the existing compiler’s parsing infrastructure.

The semantics should yield a performant implementation. This requirement is trickier as
it depends on the code the compiler generates from the semantics. Our approach will be to
clearly identify part of the semantics which cause likely overhead in the implementation such
as boxing and unboxing of primitive values and type checking [7]. In chapters 3 and 4, we
will cover how an optimizing compiler can then reduce such overheads using the semantics.

2.1. The compiler intrinsics directive
To express the semantics, we extend Python with a statement which we call the compiler

intrinsics statement. The syntax of this statement is the same as that of an import statement,
except that the module name must be __compiler_intrinsics__ which must be followed
by a sequence of intrinsic functions or values. This is similar to Python’s future statement
which uses an import of the module __future__ to enable features introduced in future
releases [40]. Note that the parser does not need to be extended to include the compiler



intrinsics statement. The intrinsics imported with the compiler intrinsics statement resemble
the primitive constructs used for semantics desugaring [9] presented in Section 1.5: they
implement low-level building blocks used for describing Python semantics.

Figure 2.1 shows the compiler intrinsics statement used to define the addition semantics
[20] which has been covered in Section 1.1.2. The statement prompts the compiler to make
use of three intrinsics: define_semantics, class_getattr and absent.

from __compiler_intrinsics__ import define_semantics ,
class_getattr , absent

@define_semantics
def add(x, y):

def normal ():
magic_method = class_getattr (x, " __add__ ")
if magic_method is absent :

return reflected ()
else:

result = magic_method (x, y)
if result is NotImplemented :

return reflected ()
else:

return result

def reflected ():
magic_method = class_getattr (y, " __radd__ ")
if magic_method is absent :

return raise_binary_TypeError ("+", x, y)
else:

result = magic_method (y, x)
if result is NotImplemented :

return raise_binary_TypeError ("+", x, y)
else:

return result

return normal ()

Fig. 2.1. Reusable semantics of the + operator

The define_semantics intrinsic is intended to be used as a function decorator. It
indicates to the compiler that a given function is not a Python function, but rather the
definition of a semantics. Thus, the compiler does not need to allocate a Python function
object and is free to store the semantics in its preferred format (such as a function in the
target language). The targeted semantics is defined by the name of the function, in Figure
2.1 it is the add semantics. Labelling a function with define_semantics declares to the
compiler that, with the code of the semantics, the compiler must assume that:

(1) Builtin names such as int and isinstance have their standard binding
(2) The builtin functions globals(), locals(), vars() and super() are never called
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(3) No global variable is used except to refer to other semantics

This precludes the use of problematic Python features which in turn allows the compiler
to apply some optimization such as replacing built-in name lookups by static references and
inlining built-in function calls. Preventing the usage of global variables allows the compiler
to skip the creation of a module altogether as it removes the need for a dynamic global
environment. The behavior of define_semantics is undefined if used as something else than
a function decorator.

The class_getattr intrinsic function takes a Python object and a string literal as
arguments. It traverses the MRO of the object’s type to recover the attribute specified by the
string literal. If the attribute exists, it is returned. Otherwise, the value absent is returned
to indicate that the attribute does not exist. Figure 2.2 shows a pseudocode implementation
of class_getattr. In most cases, the result of a call to class_getattr is a magic method
(see Section 2.4). However, due to Python’s dynamic nature, any object could be returned in
which case calling the returned value may raise an exception. The behavior of class_getattr
is undefined if it is called with anything but the aforementioned arguments.

class_getattr (object , "name "):
""" Resolution of an attribute in an object ’s class mro """

class = type( object ) # The object ’s class

for each parent in class mro: # as computed by the C3 linearization
if parent has an attribute "name ":

return parent .name

return absent # the instrinsic value ’absent ’

Fig. 2.2. Pseudocode of the class_getattr intrinsic

The absent intrinsic is a primitive value similar to the JavaScript undefined. It has an
identity and can be compared with the is operator. It is not a Python object and so any
other operation on it is undefined.

Note that the raise_binary_TypeError function is not an intrinsic, but rather a seman-
tics whose role is to raise a TypeError (see Figure A.1).

2.2. Semantics’ nested functions
The semantics shown in Figure 2.1 is composed of the nested function definitions normal

and reflected. Since those are in the scope of a define_semantics, the compiler can avoid
the allocation of function objects and define low-level procedures instead. In particular,
it is possible to apply lambda-lifting to prevent the creation of closures capturing the x
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and y variables [41]. This process can be made to yield the functions add_normal and
add_reflected which each corresponds to a specific point of execution in the semantics.

This allows an optimizing compiler to select which part of the semantics must be executed.
If x + y is evaluated in a context where it is known that type(x) does not have a __add__
method or that this method will return NotImplemented, the compiler can short-circuit part
of the semantics by directly invoking add_reflected(x, y).

2.3. Examples
We now demonstrate how the intrinsics presented in Section 2.1 are able and sufficient to

define most Python semantics through some examples.

2.3.1. Arithmetic

We first provide examples for the semantics of arithmetic operations. These include the
common operators: +, -, *, /, // (floor division), % (remainder) and ** (exponentiation).
Python has the following bitwise operators: << (shift left), >> (shift right), & (bitwise and), |
(bitwise or) and ˆ (bitwise xor). Python also has the following comparison operators: <, >,
<=, >=, == and !=. Finally, Python offers three unary operators: +, - and ~ (bitwise inverse).
Binary operators support mixed types. For example 1 + 2 naturally returns 3, but 1 + 2.0
is also valid and returns 3.0. When an operator does not support a specific combination of
types, it raises a Python exception.

The semantics of all binary operators are similar to that of the add semantics described in
the previous section. For example, while the addition uses the __add__ and __radd__ magic
methods, the semantics of multiplication requires __mul__ and __rmul__. It is thus possible
to generate semantics of all binary operators from a unique template where only the names
of the semantics, the magic method and the reflected method vary (see Figure A.2).

Unary operations such as the unary + and - operators or the bitwise inverse operator
~ can be defined in a similar way. These cases are in fact simpler as they do not possess
a reflected magic method, having no second argument, and instead rely on the __pos__,
__neg__ and __invert__ magic methods respectively. Figure 2.3 shows the semantics of
pos.

Python implements the comparison operators in an identical fashion as binary operators.
For example, the < operator uses the __lt__ magic methods and __gt__ as its reflected
magic methods. Equality operators == and != somewhat stand out as they never raise an
exception, but rather fall back to comparing objects by identity with the is operator if no
suitable magic method is found (Figure 2.4).

Each Python operator also has an inplace variant. The += operator implements in-place
addition, while *= implements in-place multiplication and so on. Inplace operators have their
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@define_semantics
def pos(x):

def normal ():
magic_method = class_getattr (x, " __pos__ ")
if magic_method is absent :

return raise_unary_TypeError ("+", x)
else:

return magic_method (x)

return normal ()

Fig. 2.3. Reusable semantics of the unary + operator

@define_semantics
def eq(x, y):

def normal ():
magic_method = class_getattr (x, " __eq__ ")
if magic_method is absent :

return reflected ()
else:

result = magic_method (x, y)
if result is NotImplemented :

return reflected ()
else:

return result

def reflected ():
magic_method = class_getattr (y, " __eq__ ")
if magic_method is absent :

return default ()
else:

result = magic_method (y, x)
if result is NotImplemented :

return default ()
else:

return result

def default ():
return x is y

return normal ()

Fig. 2.4. Reusable semantics of the == operator

own semantics, that is to say the statement x = x + y is not always semantically equivalent
to x += y. The canonical example is that of lists for which + implements concatenation while
+= extends a list, mutating the left operand instead of creating a new instance. We provide
an example of this behavior in Figure 2.5.

Inplace operators rely on in-place magic methods such as __iadd__, __isub__ and so
on. For example, the semantics of x += y first determines the result of the inplace addition
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by calling the __iadd__ method of type(x). If such a method does not exist or returns
NotImplemented, Python calls the __add__ method of type(x). If that still fails, the
__radd__ method of type(y) is called as a last resort (see Figure 2.6). The result is then
assigned to the left-hand side of the operator (see Section 2.3.3).

x = [1, 2]; y = x
y = y + [3]
# Result : x ← [1, 2]; y ← [1, 2, 3]

x = [1, 2]; y = x
y += [3]
# Result : x ← [1, 2, 3]; y ← [1, 2, 3]

Fig. 2.5. Example of usage of the += operator on lists

2.3.2. Attribute access

The getattribute semantics (Figure 2.8) corresponds to the behavior of the syntactic
form obj.attr. It allows accessing the attribute with name attr from the object obj. The
attribute attr is treated as a string literal. Similarly to other semantics, getattribute relies
on magic methods: __getattribute__ and __getattr__. It is not possible for an object not
to implement attribute access, as the __getattribute__ is defined on the object type which
all Python objects inherit from. However, an object can, of course, lack an attribute, in which
case the __getattribute__ method will raise an AttributeError. Python’s semantics then
falls back on the __getattr__ method if it exists, otherwise the AttributeError bubbles
up. In Figure 2.7, we define a custom class to demonstrate the usage of the __getattr__
method.

Since the semantics requires handling a potential AttributeError, we express
getattribute using a try-except block. If an AttributeError was raised and no
__getattr__ method is found, we use a raise statement to express that the expression
should be reraised.

It is worth mentioning that the class_getattr intrinsic is independent from the
getattribute semantics. The __getattribute__ and __getattr__ are bypassed when
looking for a magic method as the result of implicit invocation via language syntax. Magic
method must thus be set on the class to be invoked by the semantics, it cannot be returned
by either the __getattribute__ or __getattr__ method [42]. This design choice exists to
provide scope for speed optimizations [43]. It also solves the inherent circular dependency
between class_getattr and getattribute which would arise otherwise.
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@define_semantics
def iadd(x, y):

def inplace ():
magic_method = class_getattr (x, " __iadd__ ")
if magic_method is absent :

return normal ()
else:

result = magic_method (x, y)
if result is NotImplemented :

return normal ()
else:

return result

def normal ():
magic_method = class_getattr (x, " __add__ ")
if magic_method is absent :

return reflected ()
else:

result = magic_method (x, y)
if result is NotImplemented :

return reflected ()
else:

return result

def reflected ():
magic_method = class_getattr (y, " __radd__ ")
if magic_method is absent :

return raise_binary_TypeError ("+=", x, y)
else:

result = magic_method (y, x)
if result is NotImplemented :

return raise_binary_TypeError ("+=", x, y)
else:

return result

return inplace ()

Fig. 2.6. Reusable semantics of the += inplace operator

2.3.3. Assignment

A Python assignment can have four kinds of targets [44]:

(1) Identifiers: x = expr
(2) Attribute references: x.attr = expr
(3) Subscriptions: x[item] = expr
(4) Slices: x[s] = expr, where s is a slice object (start:stop:step)

Identifier assignment (x = expr) is the only kind of assignment whose semantics is not
related to a magic method. It assigns a value to the identifier’s name in the environment.
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class MyObject :
def __getattr__ (self , attr ):

# If an attribute does not exist , we return None
return None

obj = MyObject ()
obj.x = 42

print (obj.x) # prints ’42’
print (obj.y) # prints ’None ’

Fig. 2.7. Example of usage of the __getattr__ method

@define_semantics
def getattribute (o, attr ):

__getattribute__ = class_getattr (o, " __getattribute__ ") # cannot fail
try:

return __getattribute__ (o, attr)
except AttributeError as e:

__getattr__ = class_getattr (o, " __getattr__ ")
if __getattr__ is absent :

raise e
else:

return __getattr__ (o, attr)

Fig. 2.8. Reusable semantics of the attribute access obj.attr

Note that Python does not have variable declarations, when looked up a variable may be
undefined, which raises an exception at run time.

Attribute reference assignment (x.attr = expr) is implemented by the setattribute
semantics (Figure 2.9) which calls the __setattr__ magic method with the target object, the
attribute name as a Python string, and the assigned value. Similarly to the __getattribute__
method, it is sound not to check whether __setattr__ is absent as it is defined for the
object type and thus all objects.

@define_semantics
def setattribute (o, attr , val ):

__setattr__ = class_getattr (o, " __setattr__ ") # cannot fail
return __setattr__ (o, attr , val)

Fig. 2.9. Reusable semantics of attribute assignment

Subscription assignment (x[item] = expr) is used to assign to a specific list or tuple
index (in which cases the item is an integer index), and dictionaries (in which case the item
is a hashable object, often a string). The semantics of subscription assignment (Figure 2.10)
is similar to that of setattribute, except for the fact the magic method __setitem__ may
be absent.
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@define_semantics
def setitem (o, index , value ):

__setitem__ = class_getattr (o, " __setitem__ ")
if __setitem__ is absent :

raise TypeError (" object does not support item assignment ")
else:

return __setitem__ (o, index , value)

Fig. 2.10. Reusable semantics of subscription assignment

Slice assignment (x[start:stop:step] = expr) is in fact syntactic sugar. It relies on the
same semantics as subscription assignments. The form x[start:stop:step] = expr is
equivalent to invoking the setitem semantics with a slice object as second argument.

2.3.4. Truthiness and length

Finally, we provide an example where multiple semantics are at play: truthiness. An
object truthiness has to be determined whenever it is used as the condition of an if-statement
or while-statement, or if directly converted to a boolean using the bool builtin. Objects
considered to be falsy include False, None, zeros of numeric types (e.g., 0 and 0.0). A
somewhat peculiar characteristic of Python is that empty sequences are also considered falsy
(e.g., an empty list, tuple or dictionary).

This truthiness property of an object is determined by the __bool__ magic method.
Should this method not exist, Python will fall back to checking whether the object is an
empty container. An empty container would be such that its length is 0.

The length of an object is generally tested with the len builtin which relies on the __len__
magic method. Since it depends on a magic method, we treat recovering the length of an
object as a semantics in its own right. The Python language reference mentions that the
__len__ method should return a positive integer. However, the cPython implementation
allows any numerical value which can be treated as an index. The notion of index refers to
small positive integers. While small is implementation dependent, it should be understood
as a 32-bit integer (on a 32-bit machine) or 64-bit integer (on a 64-bit machine).1

To express this segment of the semantics, we introduce two new intrisics which abstract
the notion of small integers: sint and bint, which respectively stand for small and big
integer. In the context of reusable semantics those are to be treated as subtypes of the
int type which differentiate between small and big integers using the isinstance built-in
function, while leaving room for implementation dependent details.

1The exact threshold for small integers usually depends on the target language used by a Python compiler.
For example, cPython indeed uses 32-bit or 64-bit integers depending on the architecture. However, the
compiler we will present in Chapter 4 does not compile directly to C, but rather to Scheme. The Scheme
compilers we use actually implement small integers as 30-bit or 62-bit respectively.
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This notion of conversion to a small integer is recurring in Python’s semantics. Since
there exists a magic method, __index__, which determines whether an object can be treated
as an index, we also treat this as a semantics in its own right (see Figure 2.11).

@define_semantics
def index(obj ):

__index__ = class_getattr (obj , " __index__ ")
if __index__ is absent :

raise TypeError ("’" + class_getattr (obj , " __name__ ")
+ "’ object cannot be interpreted as an integer ")

else:
result = __index__ (obj)

if isinstance (result , sint ):
return result

elif isinstance (result , bint ):
raise OverflowError (" cannot fit into an index -sized integer ")

else:
raise TypeError (" __index__ returned non -int type: ’"

+ class_getattr (obj , " __name__ ") + "’")

Fig. 2.11. Reusable semantics of conversion to index

Our next concern is to avoid redundancy when expressing semantics. The length
semantics raises a TypeError if the object has no __len__ method in the context of the len
builtin. Yet, in the context of the truthiness semantics, Python raises no exception if the
method does not exist, but returns True which is the default if truthiness methods are not
specified. We solve this issue by defining an intermediate semantics called maybe_length
which never raises an exception, but allows expressing both the length and truth semantics
(Figure 2.12).

2.4. Magic methods
The reusable semantics presented in the previous sections only partially describe Python’s

semantics. Since an object’s type determines the operations supported for that object, we
cannot fully describe Python’s semantics without describing its built-in types, namely the
magic methods they possess. For instance, while the add semantics from Figure 2.1 describes
the general behavior of Python’s + operator, it fails to predict the result of the expression
42 + 42.0. In this section we introduce additional intrinsics methods which allow us to
describe magic methods as well.

2.4.1. Operations on host values

All Python objects are defined by their identity, type and value (see Section 1.1.2).
Applying an operation to an object requires extracting its value, computing a new value
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@define_semantics
def maybe_length (obj ):

__len__ = class_getattr (obj , " __len__ ")
if __len__ is absent :

return absent
else:

len_result = __len__ (obj)
index_result = index( len_result )
if index_result < 0:

raise ValueError (" __len__ () should return >= 0")
else:

return index_result

@define_semantics
def length (obj ):

result = maybe_length (obj)
if result is absent :

raise TypeError (" object of type"
+ class_getattr (obj , " __name__ ") + "has no len ()")

else:
return result

@define_semantics
def truth(obj ):

__bool__ = class_getattr (obj , " __bool__ ")
if __bool__ is not absent :

result = __bool__ (obj)
if type( result ) is bool:

return result
else:

raise TypeError (" __bool__ should return bool , returned ’"
+ class_getattr (obj , " __name__ ") + "’")

else:
len_result = maybe_length (obj)
if len_result is not absent :

return len_result != 0
else:

return True

Fig. 2.12. Reusable semantics of length

from the former and encapsulating the result within a new object which is returned. This
process of extracting and encapsulating a value is called boxing and unboxing among dynamic
languages. An unboxed value is not a Python object. Its exact format depends on the target
language used by a compiler, which we call the host language. We thus differentiate between
Python objects and host values. The former are the objects within a Python program while
the latter are the values encapsulated by objects.

To write down magic methods, we need to express this process of boxing and unboxing val-
ues. Therefore, we introduce a family of intrinsic functions which are named py_X_from_host
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and py_X_to_host. While X could be any built-in Python type which encapsulates a value,
we will limit ourselves to numerical types such as int and float for now.

The intrinsic function py_X_from_host takes a single argument which must be of
type X and returns the host value of that argument. For example, the expression
py_int_from_host(42) should return a value which represents the numerical value 42
in the host language. If the argument is not an instance of X, then the behavior of the
function is undefined.

The intrinsic function py_X_to_host acts as the inverse of py_X_from_host. It takes
a single argument which is a host value and encapsulates it in an object of type X. Thus,
the expression py_float_from_host(py_float_to_host(42.0)) should give back a Python
object of type float with value 42.0.

In Figure 2.13 we show how these newly introduced intrinsic functions allow expressing
the behavior of the __add__ magic method of the int type. It only remains to define what we
mean by py_int_to_host(self) + py_int_to_host(other) in which none of the operands
of + are Python objects. The + operator does not implement the usual addition semantics
in that context, but rather the host addition with respect to integral numbers. It would be
possible to use another symbol than + to express that difference, although we will always
write such magic methods in a context where Python dynamic features are known to be left
aside. Thus, a compiler (or reader) can easily infer that the host version of an operator is to
be used here.

def __add__ (self , other ):
if isinstance (self , int ):

if isinstance (other , int ):
return py_int_from_host ( py_int_to_host (self)

+ py_int_to_host (other ))
else:

return NotImplemented
else:

raise TypeError ("’__add__ ’ requires a ’int ’ but received ’"
+ class_getattr (self , " __name__ ") + "’")

Fig. 2.13. Reusable semantics of the int.__add__ method

An important aspect of the py_int_to_host intrinsic is that it will extract the value
of an object even if its type is a subtype of int (such as bool). On the other hand,
py_int_from_host will always return an object of type int. This conforms with the cPython
behavior in which a built-in magic method must be overloaded for its return type to change.
For example, given a user-defined type MyInteger which inherits from int, the addition
of objects of type MyInteger would still return an object of type int unless the __add__
method was overloaded to do otherwise.
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Another concern one may have is what would happen if an object was both a subtype
of int and float. It may then become ambiguous how a compiler would implement the
py_X_from_host form. However, if we attempt to create such a subtype under the cPython
implementation, a TypeError is raised with the message "multiple bases have instance layout
conflict". It is thus reasonable to assume that such subtypes are forbidden by Python’s
semantics.

The int.__add__ method from Figure 2.13 is sufficient to determine the result of the
expression 42 + 42. However, the method returns NotImplemented whenever the right
operand is not an int, indicating it is the responsibility of the float.__radd__ method to
determine the result of the 42 + 42.0 (Figure 2.14). This method indeed has a branch for
floating point addition and one for mixed-type addition. The former contains the expression
py_int_to_host(other) + py_float_to_host(self), it should be understood as a floating
point addition where the left-hand side is converted to a floating point number, again this
can be inferred statically by a compiler (or the reader).

def __radd__ (self , other ):
if isinstance (self , float ):

if isinstance (other , float ):
return py_float_from_host ( py_float_to_host (other)

+ py_float_to_host (self ))
elif isinstance (other , int ):

return py_float_from_host ( py_int_to_host (other)
+ py_float_to_host (self ))

else:
return NotImplemented

else:
raise TypeError ("’__radd__ ’ requires a ’float ’ but received a ’"

+ class_getattr (self , " __name__ ") + "’")

Fig. 2.14. Reusable semantics of the float.__radd__ method

Now that we defined relevant magic methods for addition, we can determine the
result of the expression 42 + 42.0. The left operand being an integer, the int.__add__
method is called with 42 and 42.0 and returns NotImplemented. The float.__radd__
method is then called with 42.0 and 42 and returns the result of the expression
py_float_from_host(py_int_to_host(42) + py_float_to_host(42.0)) which is a
float object with value 84.0.

2.4.2. Builtin classes

For the magic method defined in the previous section to be reusable by a compiler, we intro-
duce the builtin intrinsic. This intrinsic decorator behaves similarly to define_semantics,
but is used to indicate a built-in class to the compiler. Labelling a class with builtin assures
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the compiler that the body of the class and the methods that it contains do not make use of
Python’s dynamic features. In Figure 2.15, we demonstrate how this can be used to define
the built-in int type. Although we restrict ourselves to the addition-related magic methods
of int in this example, all its magic methods can be represented in a similar fashion.

@builtin
class int:

def __add__ (self , other ):
if isinstance (self , int ):

if isinstance (other , int ):
return py_int_from_host ( py_int_to_host (self)

+ py_int_to_host (other ))
else:

return NotImplemented
else:

raise TypeError ("’__add__ ’ requires ’int ’ but received a ’"
+ class_getattr (self , " __name__ ") + "’")

def __radd__ (self , other ):
if isinstance (self , int ):

if isinstance (other , int ):
return py_int_from_host ( py_int_to_host (other)

+ py_int_to_host (self ))
else:

return NotImplemented
else:

raise TypeError ("’__radd__ ’ requires ’int ’ but received a ’"
+ class_getattr (self , " __name__ ") + "’")

def __iadd__ (self , other ):
if isinstance (self , int ):

if isinstance (other , int ):
return py_int_from_host ( py_int_to_host (other)

+ py_int_to_host (self ))
else:

return NotImplemented
else:

raise TypeError ("’__iadd__ ’ requires ’int ’ but received a ’" \
+ class_getattr (self , " __name__ ") + "’")

Fig. 2.15. Definition of the addition-related magic methods of the int type

Similarly to semantics, magic methods defining the behavior of arithmetic operators
can be generated from templates. While semantics of arithmetic operators were generated
from two templates (binary and unary operators), arithmetic magic methods can be broken
down into five families, each requiring a different template. The basic template (Figure
A.3) generates methods such as __add__ and __mul__. The division template (Figure A.4)
generates division and modulo methods such as __floordiv__ and __mod__. The shift
template (Figure A.5) generates bitwise-shift methods __lshift__ and __rshift__. The
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comparison template (Figure A.6) generates comparison magic methods such as __eq__ and
__lt__. The unary template (Figure A.7) generates the unary operator methods __pos__,
__neg__ and __invert__.

The requirement for multiple templates comes from the fact that most of the logic
for Python operators appears in magic methods. For example, the semantics of the /
division operator defers the check for division by zero to magic methods. Thus, magic
methods generated by the division template will check for divisions by zero and raise a
ZeroDivisionError accordingly.

Magic methods are also responsible for the return type of an operation. The compar-
ison template provides an example of that; while other magic methods return integer or
floating-point numbers, methods such as __eq__ return a boolean object. To express this,
we introduce yet another intrinsic function: py_bool_from_host_bool. This intrinsic con-
verts a host boolean to a Python boolean (True or False). Thus an expression such as
py_bool_from_host_bool(py_int_to_host(x) == py_int_to_host(y)) would compare
the host value of x and y and convert the result to a Python boolean.

Templates for the magic methods of the type float are similar to those of int, but admit
a branch to treat mixed-type operations.

2.5. Summary
In this chapter, we provided a way to express part of Python’s semantics in a syntax

compatible with that of Python using the compiler intrinsics directive. We focussed on the
semantics of arithmetic operators and described templates which allow us to generate the
semantics of arithmetic operators as well as all magic methods required by those semantics
of operations on int and float objects. All templates for semantics generation can be found
in Appendix A. The technique described in this section to generate semantics and magic
method can be extended in a fairly obvious way to other numeric types such as bool and
complex. The ability to generate semantics which can be evaluated by the compiler alleviates
the burden of implementing semantics and magic methods manually, which is both time
consuming (altogether numeric types possess more than a hundred methods) and error-prone
(magic methods all possess a similar structure). In the next chapters, we explore how reusable
semantics can assist in the implementation of a Python optimizing compiler.
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Chapter 3

Partial evaluation of semantics

A compiler can be made to evaluate the semantics as defined in the previous chapter to
implement arithmetic operators. Yet, by doing so in a naive way, that is calling each magic
method in order, the implementation would offer poor performance. For example, the
evaluation of the expression 42 + 42.0 would require first calling int.__add__(42, 42.0)
which returns NotImplemented, then calling float.__add_(42.0, 42) which finally re-
turns the result 2.0. Fundamentally, the result is just the output of the expression
py_float_from_host(py_int_to_host(42) + py_float_to_host(42.0)). Furthermore,
throughout the calls to the magic methods __add__ and __radd__ redundant type-checking
takes place. An optimizing compiler should check the types of the left and right operands
once and by doing so avoid redundant type-checking and skip the calls to the magic meth-
ods altogether by predicting the outcome of the type checks and method resolution by
class_getattr.

In this chapter we present a technique for partial evaluation of our reusable semantics
which generates procedures to quickly evaluate the result of an arithmetic operation for a
given combination of built-in types. This technique focusses on removing redundant type
checks, boxing and unboxing, and method calls whenever possible. Our goal is to then reuse
those specialized procedures in an optimizing compiler. This will reduce the overhead caused
by dynamic type-checking, boxing, unboxing and method calls which are known to slow down
the cPython interpreter [7, 27].

3.1. Behaviors
In Section 1.2, we explained that a program can update most magic methods dynamically

at run time. However, this is not possible for built-in types which are immutable. Thus,
during the execution of arithmetic semantics (or any semantics relying on magic methods),
calling methods of built-in types is superfluous as their behavior is known at compile time.
We will exploit that fact to write down optimized versions of Python semantics.



We define behaviors as procedures which describe how to compute the result of Python
semantics or operators for a given combination of built-in types. In particular, a behavior
does not refer to magic methods. In Figure 3.1, we show the behavior for addition when
the left operand is an int and the right operand is a float (how exactly behaviors can
be generated will be discussed in Section 3.2). Behaviors are written in a similar fashion
to semantics, using the define_behavior intrinsic decorator. That intrinsic behaves iden-
tically to define_semantics by preventing the use of Python’s dynamic features. Thus
define_semantics and define_behavior are semantically equivalent, but they label proce-
dures differently. For example, in Figure 3.1, the define_behavior decorator indicates that
py_add_intX_floatY is a specific case of the add semantics and not a general semantics for
addition.

The nomenclature for behaviors goes as follows: py_operation_ltypeX_rtypeY where op-
eration is the short-circuited semantics, ltype is the required type of the left operand and
rtype is the required type of the right operand. Note that we also include the left and right
required types in the annotation of the behavior (the annotation involves the types written
after each argument). This kind of annotation is part of Python’s syntax [45]. We chose this
redundant annotation as it is more convenient for a Python compiler to read required types
from the annotation than from parsing the function name. Unary behaviors can be written
by omitting the right operand, for example py_neg_floatX.

@define_behavior
def py_add_intX_floatY (x: int , y: float ):

return py_float_from_host ( py_int_to_host (x) + py_float_to_host (y))

Fig. 3.1. Behavior of the + operator for an int and a float

We can use partial evaluation to generate all behaviors for arithmetic operations on
numeric types. Given a semantics, we can identify which magic method returns a result. This
is made possible by the fact a built-in magic method returns NotImplemented for a value of
a given type if and only if it returns NotImplemented for all instances sharing the same type.
In the event both magic methods return NotImplemented, the correct behavior is to raise a
TypeError (Figure 3.2).

@define_behavior
def py_lshift_intX_floatY (x: int , y: float ):

raise TypeError (" unsupported operand types for <<: ’int ’ and ’float ’")

Fig. 3.2. Behavior of the << operator for an int and a float

Within a given magic method, most if-statements’ conditions are calls to the isinstance
built-in function and can be resolved from the behavior’s type context. The only exceptional
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cases are those of division and bitwise-shift which respectively have to check for zero division
and negative shift count. These conditions cannot be resolved at compile time, the behaviors
are thus left to evaluate them at run time (Figure 3.3).

@define_behavior
def py_floordiv_floatX_floatY (x: float , y: float ):

if py_float_to_host (y) != py_float_to_host (0.0):
return py_float_from_host ( py_float_to_host (x)

// py_float_to_host (y))
else:

raise ZeroDivisionError (’float division by zero ’)

@define_behavior
def py_lshift_intX_intY (x: int , y: int ):

if py_int_to_host (y) >= py_int_to_host (0):
return py_int_from_host ( py_int_to_host (x) << py_int_to_host (y))

else:
raise ValueError (’negative shift count ’)

Fig. 3.3. Behaviors requiring a run time conditional

This process alone suffices to generate all behaviors of binary and unary arithmetic
operations for numeric types.

3.2. A partial evaluator to generate behaviors
We now present semPy, a Python implementation of the technique defined above for

generating behaviors in a reusable syntax.
semPy is a Python partial evaluator written in Python and specialized for the syntax

presented in Chapter 2. It takes as inputs a function written in that syntax and a context
which consists of types for each of the arguments. It outputs a specialization of the function
given that context (a behavior). To generate a specialization, semPy interprets the function’s
body by traversing its abstract syntax tree (AST). As the body is interpreted, semPy keeps
track of the control flow in the given context to generate the new, optimized AST which is
converted back to source code.

semPy manipulates the AST with the ast Python module. This module is part of
Python’s standard library and offers functions to convert source code to an AST, traverse
and manipulate this AST, and convert it back to source code.

The functions provided to semPy are generated from the templates from Appendix A.
For example, the behavior presented in Figure 3.1 was generated by semPy using the add
semantics from Figure 2.1 and the magic method __add__ from Figure 2.15.

In this section we present the implementation details of semPy. We first describe the semPy
run time environment, then the main strategies used by semPy to generate specializations:
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function inlining, branch resolution and removal of unnecessary boxing and unboxing. We
conclude by presenting the semPy command line usage.

3.2.1. Runtime environment

The main challenge with the implementation of the semPy run time environment (RTE)
was to allow the environment to contain partial data. While it is generally possible to infer
the type of an object, its exact value if often unknown or only partially known. To address
this, every object in the RTE is defined by three properties: its type, its origin, the context in
which it was computed.

The type of an object is another semPy object which describes its class. This class models
a Python class; it defines magic methods and possesses a MRO for resolving attributes. Thus,
even though a value may be unknown, information about its type allows to recover the magic
methods or to determine whether it is an instance of a given type with the isinstance
built-in function.

The origin of an object is the expression which returned it. It takes the form of a node
in the AST. The origin is accompanied by a context which is a snapshot of the RTE at the
moment the value was computed. At any moment during the partial evaluation, semPy can
use the origin to infer something about the value. For example, if the value originates from
the length of a string, it is known to be positive. Keeping the origin of an object instead
of the set of values it could take allows to gather information about a value lazily. Most of
the time, semPy only requires information about an object’s type (most expressions in the
semantics are calls to class_getattr or isinstance) and pre-computing a set of possible
values would be superfluous.

Additionally, an object’s value can be conditional to the result of some expression, for
example if it was computed within an if-statement whose condition could not be resolved
to either True or False. In that case, we attach the condition to the object (a node in the
AST) as well as the origin of the object given the condition is true and its origin given the
condition is false.

Aside from partial values, the semPy RTE behaves similarly to that of Python. The
environment mimics Python’s scoping rules according to which variables are looked up
sequentially in the local scope, enclosing scope (if a closure was created), global scope and
built-in scope. The RTE supports the creation of closures, which are common in our reusable
semantics (for example in the case of the add semantics from Figure 2.1). Many features are
missing such as most built-in functions. Unsupported features will generally make semPy exit
gracefully by raising a NotImplementedError exception. This is acceptable because the goal
of semPy is to partially evaluate Python code whose structure we known and control.
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3.2.2. Function inlining

When a function, semantics or magic method is invoked, semPy copies the callee’s body
at the call site. semPy then specializes the callee’s body as if it were part of the caller’s body.
Variables are properly renamed in the callee’s body to avoid name collisions.

Function inlining allows us to remove the magic method calls from semantics specializations.
Magic methods appear in semantics as output of invocations of the class_getattr intrinsic
function. Since this function is always called on the arguments of a semantics, whose type is
provided to the specialisation, it is always possible to resolve which magic method is to be
called (or if that method is absent). This is a consequence of the fact that builtin types have
read-only attributes.

Most of the time, this process results in a single expression being inlined. Although in
some cases, the magic method body cannot be specialised into a single expression, this is
the case of division semantics where the partial evaluation process lacks information about
the value of the dividend to remove tests for zero division. Due to Python’s syntax this
sometimes leads semPy to generate an AST which cannot be converted back to source code.
For example if a call is resolved to a sequence of statement, inlining these statements within
an assignment would yield an invalid AST. semPy solves this issue by inlining such statements
nonetheless. A post-processing phase later resolves such issues by transforming the AST to
an equivalent, but valid format.

3.2.3. Branch resolution

Branch resolution occurs when semPy succeeds in computing the condition of an if-
statement, or at least its truthiness. In this case, we can get rid of the branch which is not
executed.

semPy uses the fact the evaluated function is a semantics written without using Python
dynamic features. This allows resolving the value or type of expressions which would normally
be hard to evaluate statically. In particular, it allows resolving conditions of the form
isinstance(X, Y) which determines whether X is an object of type Y when the type of X is
known and Y is the name of a built-in type. In most cases, conditions can thus be resolved
to True or False. Alternatively, the form type(X) which returns the type of X can also be
resolved. This is useful when one needs to test whether an object has an exact type with the
form type(X) is Y.

Comparisons can sometimes be resolved. The most frequent case is that of the is operator
which tests whether two values have the same identity. Within the semantics, the is operator
generally compares a value to the singleton NotImplemented or to the intrinsic value absent.
These comparisons can always be resolved as they depend on the type of the arguments alone,
never on their values.

57



Resolving the aforementioned conditions alone is sufficient to remove most if-statements.
The exception being conditions depending on the value of the semantics’ arguments such
as those in the division and bitwise-shift magic methods (Figure 3.3). There exists some
specific cases where these can be resolved, for example when the origin of a value provides us
information about its sign.

3.2.4. Unnecessary boxing and unboxing

There exists cases where the naive expression of Python’s semantics causes unnecessary
boxing and unboxing of values. For example, the pos semantics which corresponds to unary
+ is equivalent to the identity operation when applied to an integer. Yet, the magic method
__pos__ as we wrote it applies boxing and unboxing to account for the possibility the
argument is of a strict subtype of int (Figure 3.4) in which case the result should be cast to
an int. The simplest example is that of the expression +True which should return 1.

def __pos__ (self ):
if isinstance (self , int ):

return py_int_from_host ( py_int_to_host (self ))
else:

raise TypeError ("’__pos__ ’ requires a ’int ’ but received a ’" \
+ class_getattr (self , " __name__ ") + "’")

Fig. 3.4. The int.__pos__ magic method

In the context of behaviors where we know the argument to be of type int, this type
conversion is unnecessary and semPy removes it. When type conversion must occur, for
example in the case of unary + on a bool, then semPy knows to preserve it (Figure 3.5).

@define_behavior
def py_pos_sintX (x: sint ):

return x

@define_behavior
def py_pos_boolX (x: bool ):

return py_int_from_host ( py_int_to_host (x))

Fig. 3.5. Removal of unboxing in the behavior of unary + of int by semPy

This simplification occurs after inlining and branch resolution where unnecessary boxing
becomes apparent when chains of procedures which are one another inverses appear in
behaviors. We provided an example with py_int_from_host and py_int_to_host, the same
happens with py_float_from_host and py_float_to_host.
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3.2.5. The test semantics optimisation

In this section we present another example where semPy allows removing unnecessary
boxing. Consider the semantics of the Python if-statement where Python evaluates the
truthiness of a value and branches accordingly. This truthiness is determined by the truth
semantics (Figure 2.12) which returns either True or False. This determines which branch
should be executed. semPy can correctly generate behaviors for the truth semantics. We
show the behavior for truthiness of an integer in Figure 3.6.

@define_behavior
def py_truth_intX (obj: int ):

return py_bool_from_host_bool ( py_int_to_host (0) != py_int_to_host (obj ))

Fig. 3.6. Behavior for truthiness of int

In the context of an if-statement, this behavior will take the boolean host result
py_int_to_host(0) != py_int_to_host(obj) and convert it to a Python bool which the
if-statement will immediately need to compare against True to obtain a host boolean. Thus,
the call to the intrinsic py_bool_from_host_bool is a form of unnecessary boxing. In Figure
3.7, we show two examples where conditions are evaluated but conversions to a bool are
unnecessary. We also show a condition which must be converted to a bool as it can be
referenced later in the program.

# The expression X does not need to be converted to a Python bool
if X:

print ("X is truthy ")
else:

print ("X is falsy")

# The same if true when evaluating the condition of a while -loop
while Y:

print (" looping because Y is truthy ")

# Here the result of "x == y" needs to be converted to a bool because
# it is bound to the global name " condition " and can be referenced
condition = x == y
if condition :

print ("x equals y")
else:

print ("x does not equal y")

Fig. 3.7. Examples of unnecessary boxing of the result of a condition

We solve this issue by introducing a new semantics which we call test (Figure 3.8)
and a new intrinsic py_bool_to_host_bool which converts Python bool to a boolean in
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the host language. In particular this intrinsic is known to semPy as being the inverse of
py_bool_from_host_bool. The purpose of that semantics is solely to express a variant of
the truth semantics where we prefer the output to be a host boolean rather than a Python
object. In general, we can achieve this by invoking the truth semantics and converting the
result to a host boolean.

@define_semantics
def test(obj ):

return py_bool_to_host_bool (truth(obj ))

Fig. 3.8. The test semantics

This semantics can be fed to semPy for generating behaviors. It will return behaviors for
test which is exempt of the unnecessary boxing as shown in 3.9.

@define_behavior
def py_test_intX (obj: int ):

return py_sint_to_host (0) != py_int_to_host (obj)

Fig. 3.9. Behavior test for int

This strategy is expendable to other cases where a condition is tested but a Python
bool is not required. For example, when the condition of an if-statement is the result of a
comparison. This would generally invoke one of the comparison semantics (eq, ne, lt, le, gt
or ge), then check the truthiness of the result (Python comparison operators can return a
value other than True or False). The naive approach without behaviors offers a convoluted
sequence of invocations where a comparison semantics is invoked followed by the truth
semantics, causing numerous boxing and unboxing. semPy can instead generate behaviors
for those specific cases by applying partial evaluation to a chain of semantics invocations.
To those behaviors we assign the names py_test_comp_ltypeX_rtypeY where comp is the
comparison semantics being partially evaluated.

In Figure 3.10, we show the result of semPy partial evaluation for the invocation chain
test(le(x, y)) where x and y are respectively an int and a float.

@define_behavior
def py_test_le_intX_floatY (x: int , y: float ):

return py_float_to_host (y) >= py_int_to_host (x)

Fig. 3.10. The test_le behavior for int and float
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3.2.6. Command line usage

semPy requires Python 3.9 or higher and has no external dependencies. It can be down-
loaded from https://github.com/omelancon/semPy and used with no further configuration.

semPy is a Python standalone module which can be invoked with the python3 -m sempy
command. As command line arguments, it minimally requires the paths to the semantics.py
and builtins.py files written in the syntax from Chapter 2. Additional modules containing
functions to be partially evaluated can be provided with the -modules option. Here is the
command to execute semPy on the semantics.py and builtins.py modules as well as a
custom math.py module.

python3 -m semPy path/semantics.py path/builtins.py -modules path/math.py

This command alone is not sufficient to generate behaviors, as it contains no informa-
tion regarding which function or semantics should be specialized. For each module, a file
with the extension .sempy must be present in the same directory to specify which special-
izations are required. A .sempy file is a Python script which has access to the function
add_specializations. Such a file is executed by semPy with the exec built-in function.

The add_specializations function takes a function name and a list of types as arguments.
For example, suppose one was to provide the following semantics.sempy file within the same
directory as the semantics.py module.

add_specializations("add", types=[("int", "bool"), "int"])
add_specializations("iadd", types=["float", "float"])
add_specializations("pos", types=["int"])

semPy would then output the following behaviors: py_add_intX_intY,
py_add_boolX_intY, py_iadd_floatX_floatY and py_pos_intX.

The .sempy used to generate all behaviors presented in this thesis can be found at
https://github.com/omelancon/semPy/blob/0e39fb6419/out/semantics.sempy.

3.3. Summary
In the chapter, we defined behaviors which are functions specialized for computing

semantics for a given type or combination of types. We can compute behaviors for built-in
types statically as the magic methods of built-in types are immutable.

We described a technique to generate behaviors by partial evaluation of the semantics
presented in Chapter 2. This technique succesfully removes redundant type checks, boxing
and unboxing from the semantics. It also entirely removes calls to magic methods. Thus,
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behaviors will reduce the overhead of such redundant computations [7, 27] when implementing
an optimizing compiler.

We finally presented semPy, an implementation of such a partial evaluator. Writing
behaviors by hand would be tedious and error-prone due to the large number of Python
semantics and built-in types. Thus, semPy automates the generation of behaviors from our
reusable semantics.
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Chapter 4

The Zipi compiler

In this chapter we present the Zipi compiler, an ahead-of-time (AOT) compiler from Python
to Scheme written in Scheme and Python which implements arithmetic operations using
behaviors generated with semPy and extends this strategy to some other semantics. Our goal
is to show that the tools described in previous chapters are well suited for the implementation
of an optimizing compiler for Python.

In the following sections we give an overview of the Scheme language as well as the
architecture of the Zipi compiler. We describe how semPy-generated behaviors are used to
implement the semantics of the Python language. We conclude by discussing the performance
of the Zipi compiler by presenting some benchmarks.

4.1. The Scheme language
The Scheme language [46] is a dialect of Lisp whose standards are defined by Revised

nth report on the Algorithmic Language or RnRS. We focus on the Bigloo [47] and Gambit
[48] optimizing Scheme compilers the Zipi compiler relies on. Both of these implementations
mostly follow the R5RS standard [49].

Scheme, like Python, is a dynamically typed language. However, both Bigloo and Gambit
have strategies to mitigate the performance cost of run time type-checking. Bigloo can use
type information provided at compile time by the user to partially apply type checking
at compile time. Directives can be given to the Gambit compiler to skip type-checking
altogether on certain operators. While this prevents gracefully exiting in case of a type error,
it significantly improves the performance of a sound program.

All implementations of Scheme are properly tail-recursive. A procedure call which takes
place at the tail of a procedure’s body will not require to allocate a new stack frame due to
its return site being the same as that of the active procedure. Thus, no space is required for
tail calls, allowing for an unbounded number of tail calls. As a consequence, Scheme has no
while-loop or for-loop statements. Loops are instead implemented by recursive tail calls. In



Figure 4.1, we show an implementation of the factorial function relying on such recursion.
In that case, not only is proper tail-call ensured by the language standard, but compilers
such as Bigloo and Gambit will implement the tail call to loop by using a goto instead of
allocating a new stack frame. As a side effect of Scheme’s proper tail recursion, the Zipi
compiler inherits this property from its host language, making for a properly tail-recursive
Python implementation.

( define ( factorial n accumulator )
(if (= n 0)

accumulator
( factorial (- n 1) (* accumulator n))))

( println ( factorial 42 1))

Fig. 4.1. A Scheme program computing the factorial of 42

As a dialect of Lisp, Scheme employs the parenthesized prefix notation (e.g., Figure
4.1). Likewise, a Scheme program represents data using the parenthesized notation. For
example, while (+ 1 2) expresses the addition of two integers, the quoted expression ’(+ 1 2)
represents a list composed of the symbol + and two integers. This uniformity between
programs and data representation allows for Scheme programs to seamlessly manipulate
Scheme expressions as if they were data. This makes for straightforward metaprogramming
through the use of macros which can manipulate Scheme expressions to implement new
syntactical forms. In figure 4.2 we used the define-macro syntax to define a new syntactical
form which iterates over a list using a syntax similar to that of Python’s for statement. As
we will see, the Zipi compiler uses macros extensively to inline Python operations.

(define -macro (for x lst . body)
‘(let loop (( lst ,lst ))

(if (pair? lst)
(let ((,x (car lst )))

,@body
(loop (cdr lst ))))))

(for x ’(1 2 3)
( println x))

Fig. 4.2. A macro defining a for-loop syntax similar to that of Python

4.2. Zipi architecture
The Zipi compiler includes two main modules: the pyc compiler which compiles Python

code to Scheme and the Zipi runtime system which implements Python’s data model and

64



operators. The generated code is then compiled to an executable using either the Bigloo or
Gambit compiler.

4.2.1. The pyc compiler

pyc compiles Python source code to a Scheme module. The compilation to Scheme is
mostly straightforward as the main optimizations are applied at the level of the runtime
system.

In Figure 4.3, we present a snippet of the code generated by pyc on a small Python
program. The compiler maps most operations directly to a procedure or macro provided by
the runtime system. For example, the forms py-for-each, py-make-list and py-iadd are
all macros whose expansions implement the semantics of the Python for-loop, list allocation
and in-place addition, respectively. In all examples we present in this chapter, only relevant
parts of the generated code are shown and variable names have been demangled for readability.

# A Python program which sums a list of integers
s = 0

for x in [1, 2, 3, 4]:
s += x

# =========================================================================

;; The main body of the code generated by pyc from the above program
( define x #f)
( define s #f)

(global - register ! global (& "x") ( lambda () x) ( lambda (v) (set! x v)))
(global - register ! global (& "s") ( lambda () sum) ( lambda (v)

(set! s v)))
(set! s (py -int -from - scheme 0))
(py -for -each

target
(py -make -list

(py -int -from - scheme 1)
(py -int -from - scheme 2)
(py -int -from - scheme 3)
(py -int -from - scheme 4))

(begin
(set! x target )
(set! s

(py -iadd (or s
(global -get global (& "s") (vector -ref caches 2)))

(or x
(global -get global (& "x") (vector -ref caches 3)))))))

Fig. 4.3. An example of Scheme code generated by pyc
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pyc uses Scheme variables to implement Python’s variables. Thus, a Python assignment
to a variable is mapped directly to a Scheme set! expression. This turns out to be especially
efficient in the case of global variables for which the Bigloo and Gambit compilers allocate
static memory. However, the Python global environment is both accessible through the
globals() function as a dictionary and as a module whenever imported by another module.
Thus, implementing global variables with Scheme global variables only works when those
features are not used and requires a fallback otherwise. For this reason, the global-register!
macro used at the beginning of the compiled code ensures global variables can be accessed by
name through a closure in those cases.

The pyc compiler also supports the __compiler_intrinsics__ directive from Chapter
2. This allows reuse of the semantics generated from templates in Appendix A as well as the
behaviors generated by semPy to generate efficient Scheme code. In Figure 4.4 we show the
Scheme version of the add semantics from Figure 2.1. Note that pyc compiles the semantics
to the py-add-fallback macro. This name reveals that the full semantics is used only as a
last resort, that is when no specialized behavior exists for the combination of operands’ types
(more on this in Section 4.3).

(define -macro (py -add - fallback x y)
‘(let ((x ,x) (y ,y)) (py -add - fallback : normal x y)))

( define (py -add - fallback : normal x y)
(let (( magic_method ( getattribute -from -obj -mro x (&& " __add__ "))))

(if (py -test (py -is magic_method py - absent ))
(py -add - fallback : reflected x y)
(let (( result (py -call magic_method x y)))

(if (py -test (py -is result py - NotImplemented ))
(py -add - fallback : reflected x y)
result )))))

( define (py -add - fallback : reflected x y)
(let (( magic_method ( getattribute -from -obj -mro y (&& " __radd__ "))))

(if (py -test (py -is magic_method py - absent ))
(py -raise -binary -TypeError - fallback (&& "+") x y)
(let (( result (py -call magic_method y x)))

(if (py -test (py -is result py - NotImplemented ))
(py -raise -binary -TypeError - fallback (&& "+") x y)
result )))))

Fig. 4.4. Scheme version of the add semantics as generated by pyc

Similarly, behaviors such as those introduced in Chapter 3 can be compiled by pyc. When
using semPy for generating behaviors for the Zipi compiler, we distinguish between small
integers (sint) and big integers (bint). This both allows semPy to generate slightly more
specialized behaviors and the Zipi runtime system to further optimize small integer arithmetic
(see Section 4.2.2). In Figure 4.3, we show the add behaviors for small integers as compiled by
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pyc. The py-int-from-scheme and py-sint-to-scheme are the Scheme equivalent of the
py_int_from_host and py_int_to_host intrinsics, respectively. The py+ is a special form
recognized by the py-int-to-scheme macro and translated to the correct Scheme operator,
in that case the fx+? small integer addition with overflow check operator which both Bigloo
and Gambit compile to a single machine addition instruction followed by a check of the
overflow flag. In case of overflow, fx+? returns #f (Scheme’s false value) and Zipi falls back
on the pyadd-UintX-UintY-fallback procedure which executes big integer addition out of
line.

# Python add behavior for small integers
@define_behavior
def py_add_sintX_sintY (x: sint , y: sint ):

return py_int_from_host ( py_int_to_host (x) + py_int_to_host (y))

# =========================================================================

;; add behavior compiled by pyc
(define -macro (py -add -sintX -sintY - inline x y)

‘(let ((x ,x) (y ,y))
(py -int -from - scheme

(py+ (py -sint -to - scheme x) (py -sint -to - scheme y)))))

( define (py -add -sintX -sintY - fallback x y)
(py -int -from - scheme (py+ (py -sint -to - scheme x) (py -sint -to - scheme y))))

# =========================================================================

;; full expansion of the expression
;; (py -int -from - scheme (py+ (py -sint -to - scheme 1) (py -sint -to - scheme 2)))
(let ((X 1))

(let ((Y 2))
(or (fx+? X Y) (pyadd -UintX -UintY - fallback X Y))))

Fig. 4.5. The py_add_sintX_sintY behavior as compiled to Scheme by pyc

4.2.2. The Zipi runtime system

Executing Scheme code generated by pyc requires importing the Zipi runtime system. The
runtime system defines all procedures and macros implementing Python semantics, operators
and data model. It both includes code generated by pyc from the semantics, behaviors and
the builtins Python modules (itself generated from the magic methods templates from
Appendix A), and hand-written code implementing the rest of Python’s data model.

The builtin types int, float, str, range, classmethod and staticmethod as
well as the BaseException class and all its subtypes are written in Python using the
__compiler_intrinsics__ directive and compiled to Scheme by pyc. The same is true for
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the sorted built-in function as well as the modules itertools, math, random, sys and time
which are partially written in Python. Building the runtime system thus requires compiling
the aforementioned modules, semantics and behaviors. Those are merged with the rest of the
runtime system which is handwritten in Scheme and defines the rest of the data model.

Objects are represented by records which contain their type (a type Python object),
value, attributes (a vector) and a hidden class. A hidden class is an object which contains
information about the object’s layout [50]. Objects which have the same type and are created
in the same way share the same hidden class. Among other things, the hidden class contains
the name of each attribute in an object’s attribute vector. Thus while the first access to an
attribute requires a linear search through the hidden class, we can use inline caches to read or
write the attribute on a subsequent access [51]. On the first access, the attribute is recovered
by a linear search of the hidden class. If an attribute is found, the hidden class is stored in a
cache along with the index of the attribute. On subsequent accesses, we can compare the
object’s hidden class to the cached hidden class: whenever they are the same, we can skip the
hidden class linear search and use the stored index. The intent behind the usage of hidden
classes is to speed up attribute access. Although the language allows polymorphism, Python
programs are predominantly monomorphic [52]. Hence, we expect a specific attribute access
within the code to mostly apply to objects of the same type and thus have the same layout.
This in turn allows the application of inline caches for attribute access.

Some objects also contain extra fields. For example, function objects have fields for their
arity, signature and code. However, we can conceptually treat those extra fields as part of the
value of the object despite requiring multiple slots in the record.

An exception to that object representation is the implementation of small integers (objects
of type int with a small integer value) and floating point numbers (objects of type float).
These are represented as unboxed Scheme fixnum and flonum objects. As an example, the
py-sint-to-scheme macro from Figure 4.4 is simply the identity macro as no unboxing is
necessary. The behavior for small integer addition corresponds to a Scheme small integer
addition which result is boxed only if the result overflows the small integer range (see Figure
4.5). This results in significantly faster arithmetic operations on small integers and floating
point numbers. However, whenever the runtime system attempts to recover the type or hidden
class of an object, it must first check that the object is not a Scheme fixnum or flonum.
As we will see in Section 4.5, this tradeoff almost always offers a net gain in performance
as it entirely removes the need for boxing and unboxing values when executing arithmetic
operations.
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4.3. Behaviors in Zipi
We have described how semPy generates behaviors and how pyc compiles those behaviors

and includes them into the runtime system. We now explain how Zipi dispatches an operation
to a specific behavior at runtime. The general idea is to store each behavior procedure within
a vector at a known index. Once the type of each operand is known, it is then possible to
recover the corresponding behavior from that vector and invoke it.

4.3.1. Behavior dispatch

To properly recover behaviors from the behavior vector, we assign a unique identifier to
each type. We call this identifier the class index of a type. These class indices take values
starting from 1 up to the number of types which possess a behavior. Since we generated
separate behaviors for small integers and big integers, we treat those as having separate class
indices, despite having the same Python type. For example, small integers may have the
class index 1, big integers the index 2, bool the index 3 and so on. We reserve the index 0 to
be the class index of all types which have no specialized behavior, for example user-defined
types.

When a Python arithmetic operator is applied, we recover the class index of the types
of each operand. In the case of unary operators, the recovered index is the position of
the corresponding behavior in the behavior vector for that operator. In the case of binary
behaviors we recover the index by applying the formula right + N * left where right and
left are the class indices of both operands and N is the number of existing class indices (Zipi
currently has 17). The procedure recovered at that index can be safely called by Zipi with
both operands without further type-checking.

In some cases, the procedure stored at the computed index will not be a compiled behavior.
This happens whenever either of the operands’ class indices is 0. The recovered index then
contains a procedure calling the full semantics with no specialization. For example, if we add
two objects whose type is user-defined, the resulting index will be 0. The add behavior vector
contains the py-add-fallback:normal procedure (see Figure 4.4) at that index.

An exception to the dispatch of a behavior is the case where both operands are either
small integers or float objects. As mentioned in section 4.2.2, these objects are represented
by Scheme fixnum and flonum values respectively. Whenever recovering a class index, we
must check that operands are proper Python objects first. We use this to our advantage
by inlining the corresponding semantics in the case where operands are fixnum or flonum
objects.

Figure 4.5 shows that pyc generates two versions of each behavior. The inline version
is a macro allowing to invoke a behavior inline while the fallback version is a first-class
procedure which we store in a behavior table.
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In Figure 4.6 we demonstrate the process described above by showing an uncluttered
version of the py-pos macro, which implements the unary + operation. The original version
of py-pos found in the Zipi runtime system contains code related to debugging, we removed
such code for the purpose of readability. Whenever the operand x is either a fixnum or
flonum, we execute the inline behaviors py-pos-sintX-inline and py-pos-floatX-inline
respectively. Otherwise, we use py-obj-class-index-general which is a macro specialized
for recovering the class index of an object which is known not to be a fixnum or a flonum.
Finally, we use the recovered index to extract and invoke the corresponding behavior from
the behavior vector py-pos-behaviors-table.

(define -macro (py -pos x)
‘(let ((x ,x))

(cond
(( fixnum ? x) (py -pos -sintX - inline x))
(( flonum ? x) (py -pox -floatX - inline x))
(else

(let (( class -index (py -obj -class -index - general x)))
(( vector -ref py -pos -behaviors -table class -index) x ))))))

Fig. 4.6. Dispatch of the behavior for unary +

The process of dispatching behaviors presented in Figure 4.6 is similar in the case of
binary arithmetic. Behaviors are inlined when both operands are either fixnums or flonums,
otherwise the behavior is recovered from the corresponding behavior vector. The same
happens for comparisons operators and the truth and test semantics.

4.3.2. Behaviors code size

The behaviors presented until now were all generated by semPy and compiled to Scheme
using pyc. With 38 binary semantics (including in-place and comparison semantics), this
generates over six hundred behaviors for the numerical types alone (sint, bint, bool and
float). This number grows when including behaviors for str (+, * and % are valid operators
on str objects) and unary semantics. semPy thus prevents the time-expensive and error-prone
process of specializing semantics for each behavior by hand and ensures a single source of
truth between behaviors and magic methods. Nonetheless, this raises a concern regarding
the size of the generated code since the number of behaviors grows with the square of the
number of specialized types (in the case of binary semantics).

To alleviate this issue, we can use different set of optimized types for different semantics.
For example, for the family of arithmetic semantics Zipi uses behaviors for all combinations
of two types from sint, bint, bool, float and str. If one wishes to generate behaviors
for the subscript operator (obj[item]) denoting the getitem semantics, they should choose
different combinations of types. This choice depends on usage across Python programs. Since
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numbers are not subscriptable, we should not expect one to be the left argument of the
getitem semantics. Thus, a sound choice of types for getitem would be to generate all
behaviors whose left operand’s type is a container (tuple, list, str and dict for example)
and right operand is a valid subscript (sint, bool and str). This would lead to generate
behaviors such as py-getitem-listX-sintY, but not py-getitem-sintX-listY. Whenever
a specialization is not generated, the corresponding slot in the behavior vector can be filled
with the procedure executing the full semantics.

The proposed solution still generates behavior vectors growing quadratically with the
number of specialized types for a given operator. While this has not yet caused problems in
Zipi, we will likely have to explore alternatives in the future. The usage of sparse tables is
considered, but would require an analysis of the impact it would have on performance.

4.4. Other optimizations
Aside from behaviors generated by semPy, Zipi implements some other optimization

techniques which we mention here. These techniques generally involve a clever Scheme macro
which attempts to guess the type of its arguments at compile time and inlines efficient code
for the most likely case. The list of optimizations presented is not exhaustive, it aims at
proving that behaviors can cohabit with other optimization techniques.

4.4.1. for-loops

Python generally requires calling the __iter__ method of the iterable before the loop to
obtain an iterator, then the __next__ method on every iteration. As one may guess by now,
these method calls have a high cost and are superfluous when the iterable is a built-in type.
However, in the case of for-loops, we cannot check the type of the iterable and branch to
an optimized loop as this would duplicate the loop’s body. The solution we found involves
representing iterators with Scheme values. Indeed, the iterator of a loop is unattainable
by the programmer, it is thus sound for it not to be a Python object. For example, when
iterating over a range, the internal iterator is not a range_iterator object but rather a
Scheme pair with an integer as the first element. At every iteration, Zipi checks the type of
the iterator and computes the next element in the loop accordingly. This proved significantly
more efficient than calling the __next__ method at every iteration.

4.4.2. Function calls

Zipi’s function objects are records containing a Scheme procedure (the function’s code)
and a signature. In general, every call requires comparing the provided argument to the
function’s signature. This process has a high cost, but a necessary one for when functions
have default arguments. However, functions often have a fixed arity. We thus store the arity
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of each function in its record if it is indeed fixed. Whenever a call contains only positional
arguments, this allows Zipi to directly compare the number of arguments to the function’s
arity. Whenever both match, the function’s procedure is extracted and called inline without
having to parse the function’s signature.

4.4.3. Scheme compiler optimizations

Aside from high-level optimizations applied by pyc and Zipi’s runtime system, we build
and compile Zipi with Gambit or Bigloo which are Scheme optimizing compilers. Many
optimizations thus take place at a lower-level. Hence, performance is highly dependent on
the choice of the underlying Scheme compiler.

4.5. Performance
In this section, we present Zipi’s performance in comparison to cPython, the standard

implementation of the language, and PyPy, the current state of the art implementation
performance-wise.

We measured performance by the usual approach of executing benchmarks. Benchmarks
are separated into two categories: microbenchmarks aimed at measuring the performance of
a specific operation and regular benchmarks measuring the performance on implementations
of well-known algorithms.

Due to being an AOT compiler, Zipi has a significant overhead caused by compilation
of the Python scripts. Zipi also has a slower initialization speed when loading its runtime
system. Our benchmarks are written in such a way that the timer starts after compilation
and initialization, as to measure only the runtime performance of the program. Similarly,
it is recommended to allow PyPy’s JIT to warm up when executing benchmarks [53]. We
do so by executing a dry run of benchmarks which does not count toward execution time.
Execution time is measured using the Python time module which all implementations provide.
Benchmarks output their own execution time after execution.

All results presented here were generated with the tool Forensics (available at https:
//zipi-forensics.gambitscheme.org). Forensics is a tool used to follow performance
change of different implementations of a language across versions. It was initially developed
for measuring performance of the Gambit Scheme compiler and adapted for Python during
the development of Zipi.

For benchmarking, we used cPython version 3.9.0. As for PyPy, we used the version 7.3.5.
Each PyPy release implements more than one version of Python, we used the newest version
available which is Python 3.7. Finally, the results we present were obtained with the Gambit
version of the Zipi compiler.
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4.5.1. Microbenchmarks

We now discuss the results from our microbenchmarks suite. A microbenchmark is a
benchmark aimed at testing the performance of a single, isolated operation. For example,
it may test the performance of the + operator when both operands are int objects. Mi-
crobenchmarks are useful to determine whether a targeted optimization (such as behaviors
for arithmetic operators) is effective. However, we cannot use microbenchmarks to assert
that Zipi is faster than other Python implementations overall. First, they cannot be used as
an indicator of how well Zipi would perform on real-life programs. Second, they are biased
toward features which have been optimized in Zipi. Furthermore, our microbenchmarks
proved to be ineffective at comparing Zipi to PyPy. In most cases, a microbenchmark executes
calculations and immediately discard the result. This allows PyPy to treat most benchmarks
as dead code and skip their execution altogether. We compare Zipi to PyPy with benchmarks
in Section 4.5.2. Zipi and cPython do not apply dead code elimination in most cases. Hence,
the measured operation has generally been genuinely executed.

In this section we discuss the results obtained from our microbenchmarks. A description
of the complete microbenchmark suite and how it is executed is available in Appendix B.

Microbenchmarks indicate that behaviors optimizations provide a significant performance
boost. We observe a speed up which ranges from 15x to 30x for binary operations on small
integers. We can say the same of binary operations on floats with a speed up between 3.0x
and 3.5x.

Evaluating the truthiness of the condition of an if-statement is also significantly faster
when the condition is a bool (between 8.7x and 14x), an int (20x), a str (between 4.2x and
6.7x) or a comparison between ints (18x) or floats (7.2x)

We also observe some corner cases where behaviors could not improve performance over
cPython. For example, unary operators on booleans are slightly slower (0.7x in the case
of unary -). This is a considerable setback in comparison to the same operation on small
integers (7.2x). We explain this difference by the fact Zipi inlines unary operations only
when the operand is either a small int or a float. We chose not to inline unary operations
on bool objects to avoid code bloat which may affect performance [54] and compilation
time. This is a reasonnable tradeoff since unary operations arithmetic operators are not as
frequently used on bool when compared to int and float objects. A solution for the future
would be to implement type inference to identify cases where the operand is likely a bool
object and apply speculative inlining in those cases [55, 56].

Performance improvements from other optimizations also show up in the microbenchmarks.
Writing a global variable is approximately 38x faster than cPython, while reading is 28x
faster. Function calls are between 9.2x and 16x faster when the function has a fixed arity (no
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keyword arguments or default arguments). Iteration is also faster on range objects (2.1x to
9.5x depending on the size of the range), tuples (4.0x), lists (4.9x) and generators (3.4x).

Finally, our microbenchmarks show some features which Zipi does not optimize yet and are
significantly slower than cPython. For example, calling a function with keyword arguments is
about ten times slower than with cPython.

4.5.2. Benchmarks

We compared Zipi to cPython and PyPy using both custom benchmarks and benchmarks
extracted from the PyPerformance benchmark suite [57]. Due to Zipi still being at an early
development stage, only four benchmarks from the PyPerformance test suite are supported
at the moment, hence the need for custom benchmarks.

Our custom benchmarks suite includes the following programs: ack, fib, queens, bague,
sieve. The code for all custom benchmarks is available in Appendix C. Benchmarks from the
PyPerformance suite include deltablue, fannkuck, richards and float and are available
online at https://github.com/python/pyperformance. Figure 4.7 compares the execution
time of Zipi and PyPy when compared to cPython on all benchmarks.

Fig. 4.7. Benchmarks results
The execution time of Zipi (green) and PyPy (yellow) on each benchmark is compared to
that of cPython v3.9. A ratio higher than 1 indicates an execution faster than cPython. A

ratio lower than 1 indicates a slower execution.
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In comparison to cPython alone, Zipi fares especially well in the ack (38x faster), fib
(24x) and queens (14x) benchmarks. We explain these results by the high reliance of these
benchmarks on small integer arithmetic which have been optimized with behaviors. The
bague (3.9x) and sieve (1.2x) are also slightly faster with Zipi. Finally, fannkuck (0.8x),
richards (0.7x), deltablue (0.5x) and float (0.3x) execute slower than with cPython.
We explain these last results by the fact PyPerformance benchmarks make extensive use of
user-defined types. We invested little time in optimizing operations on user-defined types.

When compared to PyPy, the ack benchmarks (10x) shines by executing significantly
faster with Zipi. In particular, the condition (m > 0 and n == 0) (see benchmark C.1)
seems to execute significantly faster with Zipi. When used as a condition, the Zipi compiler
recognizes that no bool object needs to be returned by either of the comparisons and thus
uses test behaviors (see Section 3.2.5).

The benchmarks queens (1.5x) and fib (1.3x) execute slightly faster with Zipi, arguably
due to behaviors. On the other hand, deltablue (1.0x), richards (0.7x), sieve (0.3x),
bague (0.4x), fannkuch (0.2x) and float (0.06x) all execute slower with Zipi than PyPy.
Interestingly, the deltablue benchmark executes faster with cPython than PyPy.

4.6. Summary
In this chapter we presented some implementation details of the Zipi compiler.

We focussed on Zipi’s capability to compile semantics and behaviors written with the
__compiler_intrinsics__ directive and reuse them in its runtime system. We then
presented how this optimization fares in comparison to cPython and PyPy. Microbenchmarks
seem to indicate that arithmetic and comparison operations on small integers are significantly
faster with this optimization. The same operations also show a decent speed up for floating
point and mixed-type operators. Benchmarks also confirm this observation as programs which
make intensive usage of small integer arithmetic are faster with Zipi in comparison to both
cPython and PyPy. However, Zipi is still in development and thus shows poor performance
in other aspects such as user-defined types and functions with keyword arguments.

With these results we hope to convince the reader that the __compiler_intrinsics__
directive allows to ease the development of an optimizing Python compiler. It does so by
automating the writing of magic methods and semantics and by allowing optimizations which
yield performance significantly superior to those of cPython and in some cases even to those
of PyPy.
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Chapter 5

Conclusion

In this thesis, we presented a semantics of both arithmetic and some non-arithmetic Python
operations with a focus on reusability by optimizing compilers. We expressed this semantics
using a syntax similar to that of Python, enhanced with primitive constructs which we named
compiler intrinsics. These intrinsics allow low-level operations such as manipulating an
object’s value and resolving attributes within a type’s MRO. They also serve as an annotation
for compilers to apply optimizations which would be unsound in a generic Python program.

We explained how the semantics of most operations have a similar control flow, but call
different magic methods. This allows to generate the semantics of all arithmetic operators
and some non-arithmetic operators from a few templates where only magic method names
change. Moreover, we explained how an operator’s semantics is incomplete without also
describing magic methods of built-in types. Fortunately, most magic methods have a similar
control flow as well which permits generating them from a few templates using compiler
intrinsics.

We proceeded by noting that magic methods of Python built-in types are conveniently
immutable. Thus, the same operator applied to the same built-in types always calls the same
magic method. This allows to define the notion of behavior, a specialization of a semantics for
a given combination of built-in types. In particular, we showed how behaviors allow writing a
specialization of the semantics of an operator without redundant type-checking and unboxing
of an object’s primitive value.

The existence of hundreds of behaviors for arithmetic operations on Python numeric types
alone makes writing such specialized behaviors by hand impractical. We thus introduced
semPy, a tool capable of partial evaluation of our semantics and magic methods. Using
function inlining and branch resolution, it generates behaviors with all type checks and
unnecessary unboxing of objects’ values removed. The semPy source code is available at
https://github.com/omelancon/semPy.

https://github.com/omelancon/semPy


Finally, we integrated our semantics and behaviors in Zipi, an AOT optimizing Python
compiler. Zipi recognizes our compiler intrinsics which allows to compile behaviors to
specialized functions. When executing an optimized operation, Zipi’s runtime system checks
operands’ types to dispatch the operation to the corresponding behavior.

We applied this method to arithmetic operators and operations which need to compute
the truthiness of an object. In almost all microbenchmarks measuring those operations, this
led to an increase in execution speed, oftentimes by a factor of more than 10 in comparison
to cPython. We observed similar results on benchmarks making intensive use of arithmetic
operators. In those cases, Zipi offered performance which rivals that of PyPy (faster by an
order of magnitude in one case).

We conclude that our formal semantics is suited for the implementation of optimizing
compilers. Being written in a syntax similar to that of Python, it can be integrated seamlessly
to an existing compiler as it requires no change to the parser. Furthermore, the ability to
generate the semantics from templates makes it straightforward to extend to operations and
types which we did not yet cover. Finally, with the aid of semPy, this formal semantics yields
an implementation of arithmetic operations which is faster than that of PyPy.

5.1. Future Work
We conclude this thesis with insights on what we think should be the next steps in

developing our reusable semantics.
While most semantics can be expressed by calling the proper magic methods, some

others display more complex behaviors. For example, Python has a rich semantics for calling
functions with positional arguments, keyword arguments, default values and starred arguments.
We should explore how to expand the semantics to implement all Python operations.

It would be interesting to explore how our reusable semantics can be extended to describe
control flow and Python scoping rules. For example, one could provide control flow semantics
of statements such as for, with, assignments and so on. Additionally, built-in libraries form
a significant part of the Python language. We should explore how efficient it would be to use
compiler intrinsics to write built-in modules, as well as additional built-in types.

The semPy tool we developed focuses on generating specializations of semantics for a
given combination of types. Although this proved sufficient for arithmetic operators, we
expect that we would gain from being able to generate specializations for specific values when
writing additional semantics.

Finally, the Zipi compiler shows promising results performance-wise. However, some
features were implemented in a naive way and display poor performance. We wish to continue
developing Zipi to make it a fully compatible Python compiler with performance competitive
with those of PyPy on all aspects.
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Appendix A

Templates for semantics generation

In this appendix, we list all the templates for generating semantics and magic methods.
Parameters of a template are highlighted as such within the template: {parameter}. Below
each template, we also list parameters used to generate our semantics.

@define_semantics
def raise_binary_TypeError (op , x, y):

raise TypeError ("’"
+ op
+ "’ not supported between instances of ’"
+ class_getattr (x, " __name__ ")
+ "’ and ’"
+ class_getattr (y, " __name__ ")
+ "’")

@define_semantics
def raise_unary_TypeError (op , x):

raise TypeError ("bad operand type for unary"
+ op
+ ":’ "
+ class_getattr (x, " __name__ ")
+ "’")

Fig. A.1. Formatting of error messages expressed as semantics



@define_semantics
def {operation}(x, y):

def normal ():
magic_method = class_getattr (x, "{method}")
if magic_method is absent :

return reflected ()
else:

result = magic_method (x, y)
if result is NotImplemented :

return reflected ()
else:

return result

def reflected ():
magic_method = class_getattr (y, "{rmethod}")
if magic_method is absent :

return err ()
else:

result = magic_method (y, x)
if result is NotImplemented :

return err ()
else:

return result

def err ():
raise TypeError (" unsupported operand type(s) for {operator}: ’"

+ class_getattr (x, " __name__ ") + "’ and ’"
+ class_getattr (y, " __name__ ") + "’")

return normal ()

Template parameters
{operation} {method} {rmethod} {operator}

add __add__ __radd__ +
bitand __and__ __rand__ &
bitor __or__ __ror__ |
floordiv __floordiv__ __rfloordiv__ //
lshift __lshift__ __rlshift__ <<
matmul __matmul__ __rmatmul__ @
mul __mul__ __rmul__ *
pow __pow__ __rpow__ **
rshift __rshift__ __rrshift__ >>
sub __sub__ __rsub__ -
truediv __truediv__ __rtruediv__ /
xor __xor__ __rxor__ ˆ

Fig. A.2. Template for semantics of binary operators
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def {magic_method}(self , other ):
if isinstance (self , int ):

if isinstance (other , int ):
return py_int_from_host ( py_int_to_host (self)

{operator} py_int_to_host (other ))
else:

return NotImplemented
else:

raise TypeError (" requires a ’int ’ but received a ’"
+ class_getattr (self , " __name__ ") + "’")

Template parameters
{magic_method} {operator}

__add__ +
__and__ &
__or__ |
__mul__ *
__pow__ **
__sub__ -
__xor__ ˆ

Fig. A.3. Template of non-division arithmetic magic methods of int
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def {magic_method}(self , other ):
if isinstance (self , int ):

if isinstance (other , int ):
if py_int_to_host (other) != py_int_to_host (0):

return py_int_from_host ( py_int_to_host (self)
{operator} py_int_to_host (other ))

else:
raise ZeroDivisionError (" integer division by zero")

else:
return NotImplemented

else:
raise TypeError (" requires a ’int ’ but received a ’"

+ class_getattr (self , " __name__ ") + "’")

Template parameters
{magic_method} {operator}

__floordiv__ //
__mod__ %
__truediv__ /

Fig. A.4. Template of division magic methods of int

def {magic_method}(self , other ):
if isinstance (self , int ):

if isinstance (other , int ):
if py_int_to_host (other) >= py_int_to_host (0):

return py_int_from_host ( py_int_to_host (self)
{operator} py_int_to_host (other ))

else:
raise ValueError (" negative shift count")

else:
return NotImplemented

else:
raise TypeError (" requires a ’int ’ but received a ’"

+ class_getattr (self , " __name__ ") + "’")

Template parameters
{magic_method} {operator}

__lshift__ <<
__rshift__ >>

Fig. A.5. Template of bitwise-shift magic methods of int
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def {magic_method}(self , other ):
if isinstance (self , int ):

if isinstance (other , int ):
return py_bool_from_host_bool ( py_int_to_host (self)

{operator} py_int_to_host (other ))
else:

return NotImplemented
else:

raise TypeError (" requires a ’int ’ but received a ’"
+ class_getattr (self , " __name__ ") + "’")

Template parameters
{magic_method} {operator}

__eq__ ==
__ne__ !=
__ge__ >=
__gt__ >
__le__ <=
__lt__ <

Fig. A.6. Template of comparison magic methods of int

def {magic_method}(self ):
if isinstance (self , int ):

return py_int_from_host ({unary_operator} py_int_to_host (self ))
else:

raise TypeError (" requires a ’int ’ but received a ’"
+ class_getattr (self , " __name__ ") + "’")

Template parameters
{magic_method} {operator}

__pos__ no operator
__neg__ -
__invert__ ~

Fig. A.7. Template of unary magic methods of int
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Appendix B

Microbenchmarks

We generate microbenchmarks for Zipi from a unique template shown in Figure B.1. Five
parameters define each microbenchmark. We highlight those parameters in the template. The
number of iterations defines how many iterations are executed. The number of repetitions
by iteration defines how many times the benchmark’s operation is duplicated inside the
while-loop body. For each benchmark, we choose a high enough number of repetitions to
minimize the overhead from the execution of the while-loop condition. We choose a number
of iterations and number of repetitions which together give an execution time of around one
second with the cPython interpreter. The initialization is an optional statement or sequence
of statements required before the benchmark. For example, it may define a variable used
in the microbenchmark’s operation. The loop initialization is similar to the initialization
parameter, but it is executed at the beginning of each iteration. For example, it may reset
an accumulator. Finally, the operation is the expression or statement we wish to test with
the microbenchmark.

In Table B.1, we provide the operation, initialization and loop initialization parameters
used to generate each benchmark. Additionally, we provide the acceleration factor as a
ratio between the execution time with cPython and Zipi. A ratio over 1 signifies the
microbenchmarks executes faster with Zipi.

In general, Zipi and cPython do not apply dead code elimination in which case the
operation is genuinely executed. Microbenchmarks which are known to undergo dead code
elimination were excluded from Table B.1. Nonetheless, microbenchmarks greatly differ
from real-life code. Thus, one implementation can have an advantage over the other on a
microbenchmark without that advantage transpiring in real-life code or vice versa.



import time

bench_iterations = {number of iterations}
bench_duplications = {number of repetitions by iteration}

def bench_exec ():
{initialization}
bench_counter = bench_iterations
while bench_counter > 0:

bench_counter -= 1

{loop initialization}

{operation} # repeated ’number of iterations’ times
{operation}
{operation}
...

bench_time = time.time ()
bench_exec ()
bench_time = time.time () - bench_time
print (str( bench_time ) + ’ seconds for ’ \

+ str( bench_iterations * bench_duplications ) + ’ executions ’)

Fig. B.1. Template for microbenchmarks

Parameters of microbenchmarks
operation initialization loop initialization Ratio

g1=x
g2=x
g3=x
g4=x

global g1,g2,g3,g4
x=0

g1=0
g2=0
g3=0
g4=0

39x

g=x global g
x=0 g=0 38x

g1=x
g2=x

global g1,g2
x=0

g1=0
g2=0 38x

g+=1 global g g=0 32x
x=x*2 - x=1 30x

x=g global g
x=0 g=0 28x

if zero:
x=0 zero=0 - 22x

if non_zero:
x=0 non_zero=1 - 21x

if x<y:
x=0

x=1
y=2 - 18x
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Parameters of microbenchmarks
operation initialization loop initialization Ratio

f(1) def f(x):
pass - 18x

x=x*y y=2 x=1 17x
x+=1 x=1 - 16x
x=x-1 x=1 - 16x
x-=1 x=1 - 16x
x=x+1 x=1 - 16x

x=x-y x=1
y=1 - 16x

x=x+y x=1
y=1 - 15x

f() def f():
pass - 15x

if true:
x=0 true=True - 14x

z=(x<y) x=1
y=2 - 13x

while x>0:
x-=1 - x=250 11x

x=lst[0] lst=[0] - 9.7x
for x in range(1000):
pass - - 9.5x

x=tup[0] tup=(0,) - 8.9x
if false:
x=0 false=False - 8.7x

x=~x x=1 - 8.0x
x=-x x=1 - 7.2x
if x<y:
x=0.0

x=1.0
y=2.0 - 7.2x

if x<y:
x=0.0

x=True
y=2.0 - 7.2x

if not_empty:
x=0 not_empty="foo" - 6.7x

x=lst[y] lst=[0]
y=0 - 6.3x

for x in range(100):
pass - - 4.9x

for x in lst:
pass lst=list(range(1000)) - 4.9x
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Parameters of microbenchmarks
operation initialization loop initialization Ratio

x=tup[y] tup=(0,)
y=0 - 4.7x

a.x
class A:
x=1
a=A()

- 4.5x

if empty:
x=0 empty="" - 4.2x

for x in tpl:
pass tpl=tuple(range(1000)) - 4.0x

x=x+y x=1.5
y=2.6 - 3.5x

for x in gen(100):
pass

def gen(i):
while i > 0:
yield i
i -= 1

- 3.4x

x=x-y x=1.5
y=2.6 - 3.3x

x=x*y x=1.5
y=2.6 - 3.0x

x=-x x=1.0 - 2.6x
for x in range(3):
pass - - 2.1x

x=s.__add__ s="a" - 1.9x
while x>0:
x-=1
s2=s2+s1

s1="a" s2="b"
x=100 1.6x

while x>0:
x-=1
s2+=s1

s1="a" s2="b"
x=100 1.5x

while x>0:
x-=1
s2=s1+s2

s1="a" s2="b"
x=100 1.5x

z=(x==y) x=1.5
y="foo" - 1.0x

x=x+y x=1.5
y=True - 0.9x

x=m.__name__ m=int - 0.8x
y=-x x=True - 0.7x
ord(s) s="x" - 0.7x
x=itertools.count import itertools - 0.5x
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Parameters of microbenchmarks
operation initialization loop initialization Ratio

x=m.__getattribute__ m=bool - 0.3x
x=m.append m=list - 0.28x

x=s1+s2 s1="a"
s2="b" - 0.27x

f(x=1, y=2) def f(x, y):
pass - 0.13x

f(x=1) def f(x):
pass - 0.11x

f(x=3) def f(x=1):
pass - 0.1x

f(x=4, y=5) def f(x=1, y=2):
pass - 0.09x

Table B.1. Parameters and acceleration factor of microbenchmarks
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Appendix C

Benchmarks

import time

# Required by cPython to avoid a RecursionError
__import__ (’sys ’). setrecursionlimit (5000)

m = 3
n = 9

def ack(m, n):
if m == 0:

return n+1
elif m > 0 and n == 0:

return ack(m-1, 1)
else:

return ack(m-1, ack(m, n -1))

result = ack (3, 7) - 1021 # dry run

bench_time = time.time ()
result = result + ack(m, n)
bench_time = time.time () - bench_time
print (str( bench_time ) + ’ seconds : ack(’ + str(m) + ’, ’ + str(n) \

+ ’) = ’ + str( result ))

Fig. C.1. ack benchmark
Computes the Ackermann function using recursion



import time

n = 12

def q(i, diag1 , diag2 , cols ):
if i == 0:

return 1
else:

free = diag1 & diag2 & cols
col = 1
nsols = 0
while col <= free:

if col & free:
nsols += q(i-1,

(( diag1 -col )<<1)+1,
(diag2 -col)>>1,
cols -col)

col <<= 1
return nsols

def queens (n):
return q(n, -1, -1, (1<<n)-1)

result = queens (8) - 92 # dry run

bench_time = time.time ()
result = result + queens (n)
bench_time = time.time () - bench_time
print (str( bench_time ) + ’ seconds : queens (’ + str(n) + ’) = ’ + str( result ))

Fig. C.2. queens benchmark
Solves the n-queens problem using bit sets and recursion

import time

n = 33

def fib(n):
if n <2:

return n
else:

return fib(n -1) + fib(n -2)

result = fib (30) - 832040 # dry run

bench_time = time.time ()
result = result + fib(n)
bench_time = time.time () - bench_time
print (str( bench_time ) + ’ seconds : fib(’ + str(n) + ’) = ’ + str( result ))

Fig. C.3. fib benchmark
Computes the nth fibonacci number using double recursion
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import time

nombre_de_coups = 0
jeu = []

une_pierre , une_case_vide = 1, 0

def init_jeu ( nombre_de_pierres ):
global nombre_de_coups
global jeu
nombre_de_coups = 0
jeu = [ 0 ] * nombre_de_pierres

for i in range( nombre_de_pierres ):
jeu[ i ] = une_pierre

def la_case ( n ):
return n - 1;

def enleve_la_pierre ( n ):
if jeu[ la_case ( n ) ] == une_pierre :

jeu[ la_case ( n ) ] = une_case_vide

def pose_la_pierre ( n ):
if jeu[ la_case ( n ) ] == une_case_vide :

jeu[ la_case ( n ) ] = une_pierre

def autorise_mouvement ( n ):
if n == 1:

return True
elif n == 2:

return jeu[ la_case ( 1 ) ] == une_pierre
else:

if jeu[ la_case ( n - 1 ) ] != une_pierre :
return False

b = True
for i in range( la_case ( n - 2 ) + 1 ):

b = b and (jeu[ i ] == une_case_vide )
return b

def enleve_pierre ( n ):
global nombre_de_coups
nombre_de_coups = nombre_de_coups + 1

if autorise_mouvement ( n ):
enleve_la_pierre ( n )

def pose_pierre ( n ):
global nombre_de_coups
nombre_de_coups = nombre_de_coups + 1

if autorise_mouvement ( n ):
pose_la_pierre ( n )
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def run( nombre_de_pierres ):
def bague( n ):

if n == 1:
enleve_pierre ( 1 )
return

elif n == 2:
enleve_pierre ( 2 )
enleve_pierre ( 1 )
return

else:
bague( n - 2 )
enleve_pierre ( n )
repose ( n - 2 )
bague( n - 1 )

def repose ( n ):
if n == 1:

pose_pierre ( 1 )
return

elif n == 2:
pose_pierre ( 1 )
pose_pierre ( 2 )
return

else:
repose ( n - 1 )
bague( n - 2 )
pose_pierre ( n )
repose ( n - 2 )

init_jeu ( nombre_de_pierres )
bague( nombre_de_pierres )
res = 0;

if nombre_de_pierres == 1:
res = 1

elif nombre_de_pierres == 2:
res = 2

elif nombre_de_pierres == 10:
res = 682

elif nombre_de_pierres == 14:
res = 10922

elif nombre_de_pierres == 20:
res = 699050

elif nombre_de_pierres == 24:
res = 11184810

elif nombre_de_pierres == 25:
res = 22369621

elif nombre_de_pierres == 26:
res = 44739242

elif nombre_de_pierres == 27:
res = 89478485

elif nombre_de_pierres == 28:
res = 178956970

return "res =" + str( res ) + " nb -coups =" + str( nombre_de_coups )
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def main( bench , n, arg ):
res = 0
k = (n+9) // 10
i = 1

print( bench , "(", n, ")..." )

for n in range( n ):
if (n % k) == 0:

print( i )
i = i + 1

run( arg )

def bench_exec ( name , N, arg ):
bench_time = time.time ()
main( name , N, arg )
bench_time = time.time () - bench_time
print(str( bench_time ) + ’ seconds for ’ + str(N) \

+ ’ executions of: ’ + name)

bench_exec ( "bague", 2, 20 )

Fig. C.2. bague benchmark
Solves the Baguenaudier puzzle recursively
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import time
import sys

class Cons( object ):
def __init__ (self , a, d):

self.car = a;
self.cdr = d;

def interval ( min , max ):
if min > max:

return []
else:

return Cons( min , interval ( min + 1, max ) )

def sfilter ( p, l ):
if l == []:

return l
else:

a = l.car
r = l.cdr

if p( a ):
return Cons( a, sfilter ( p, r ) )

else:
return sfilter ( p, r )

def remove_multiples_of ( n, l ):
return sfilter ( lambda m: m % n != 0, l )

def sieve( max ):
def filter_again ( l ):

if l == []:
return l

else:
n = l.car
r = l.cdr

if n * n > max:
return l

else:
return Cons(n,

filter_again ( remove_multiples_of ( n, r ) ) )
return filter_again ( interval ( 2, max ) )

def length ( lst ):
res = 0

while lst != []:
res = res + 1
lst = lst.cdr

return res
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def list2array ( lst ):
len = length ( lst )
res = []

for i in range( len ):
res[ i ] = lst.car
lst = lst.cdr

return res

expected_result = [
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97 ];

def main( bench , n, arg ):
s100 = sieve( 100 )
res = 0
k = (n+9) // 10
i = 1

print( bench , "(", n, ")..." )

for n in range( n ):
if (n % k) == 0:

print( i )
i = i + 1

res = sieve( arg )

return res

def bench_exec ( name , N, arg ):
bench_time = time.time ()
main( name , N, arg )
bench_time = time.time () - bench_time
print(str( bench_time ) + ’ seconds for ’ + str(N) \

+ ’ executions of: ’ + name)

sys. setrecursionlimit ( 3100 )
bench_exec ( "sieve", 100, 3000 )

Fig. C.2. sieve benchmark
Finds prime numbers using a sieve
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