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Résumé 

 
Cancer du poumon associé à l’exposition au nickel, au chrome VI et au cadmium dans le 

milieu de travail utilisant deux études populationnelles cas-témoins à Montréal 

Au début des années 1990, le nickel, le chrome VI et le cadmium ont été classés en tant 

qu’agents cancérigènes de classe 1 par le CIRC (Centre International de Recherche sur le 

Cancer).  Cependant, les résultats des études ayant permis la classification de ces métaux n’ont 

pas toujours été reproduits, et d’importantes questions demeurent quant aux effets de ces métaux 

à de faibles niveaux d’exposition.  Un plus grand nombre de recherches empiriques est donc 

nécessaire afin de réaffirmer la cancérogénicité de ces agents, et d’identifier les circonstances 

dans lesquelles ils peuvent être néfastes.  

L'objectif de cette étude était d'explorer la relation entre l’exposition à un des métaux (soit le 

nickel, le chrome VI, ou le cadmium) et les risques subséquents de développer un cancer du 

poumon chez des travailleurs provenant de différents milieux de travail qui sont exposés à ces 

métaux à de différents degrés.  Deux études cas-témoins de base populationnelle menées à 

Montréal ont fourni les données nécessaires pour examiner la cancérogénicité de ces métaux.  La 

première étude était menée entre 1979 et 1986 chez des hommes âgés de 35 à 70 ans ayant un 

cancer dans l’un de 19 sites anatomiques de cancer sélectionnés.  La seconde étude était menée 

entre 1996 et 2001 chez des hommes et des femmes âgés de 35 à 75 ans, avec un diagnostic de 

tumeur maligne au poumon.  Dans ces deux études, les cas ont été recensés dans tous les 

hôpitaux de l'île de Montréal, tandis que les contrôles populationnels appariés par âge et stratifiés 

par sexe, ont été sélectionnés des listes électorales.  Une entrevue avec chaque sujet a permis 

d'obtenir un historique d'emploi détaillé ainsi que des informations précises sur les facteurs de 

risques socio-économiques et personnels.  Les descriptions de poste ont été évaluées par une 

équipe d'experts chimistes et hygiénistes afin de déterminer si le sujet a été exposé à chaque 

agent, et pour mesurer à la fois la concentration et la durée de chaque exposition, ainsi que 

l’exposition cumulative tout au long de la vie de chaque participant. 
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Pour déterminer si une exposition à l’un des trois métaux en cause était associée à une 

augmentation de l'incidence du cancer du poumon, des données ont été analysées par régression 

logistique : des ajustements ont été effectués pour des facteurs de confusion pertinents incluant 

un historique détaillé du tabagisme.  Des mesures catégoriques d'exposition cumulée ont été 

également analysées, ainsi que la modification des effets par le tabagisme.  Les deux études ont 

été analysées séparément, puis par la suite combinées afin d'augmenter la puissance statistique. 

Les niveaux d'exposition mesurés dans cette population ne semblaient pas poser un excès de 

risque de cancer du poumon pour les travailleurs exposés au chrome VI.  Cependant, ceux qui 

ont été exposés au nickel ont subi une augmentation significative du risque, et ce, quel que soit 

leur niveau d'exposition.  Le risque de développer un  cancer du poumon suite à une exposition 

au cadmium était élevé, mais pas de manière significative. Pour chacun des trois métaux, le 

risque de cancer du poumon était très élevé parmi les non-fumeurs, mais pas parmi les fumeurs.  

L’effet combiné du tabagisme et de l’exposition aux métaux était compatible avec un excès de 

risque additif.  Cependant, les intervalles de confiance dans cette étude tendaient à être larges, et 

une faiblesse de puissance statistique peut limiter l’interprétation de certains résultats.  

Cette étude est unique dans la mesure où elle a fourni des preuves empiriques sur les risques de 

développer le cancer du poumon liés aux faibles niveaux d’exposition au nickel, au chrome VI, 

ou au cadmium provenant de divers contextes de travail.  Dans la plupart des autres études, la 

majorité des expositions pertinentes n’ont pas été bien contrôlées.  À l'inverse, cette étude a 

bénéficié de la collecte et de la disponibilité d'information détaillée concernant le tabagisme et 

d’autres facteurs de risque.

Les résultats de cette étude ont d'importantes conséquences pour la santé publique, tant au niveau 

de la détermination des risques pour les travailleurs actuellement exposés à ces métaux, qu'au 

niveau de l’évaluation des risques pour la population en général, elle-même exposée à ces 

métaux par le biais de la pollution et de la fumée de cigarette.  Cette analyse contribuera fort 

probablement à une réévaluation par le CIRC de la cancérogénicité de ces métaux. L'exploration 
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de la relation entre les risques de cancer du poumon et l'exposition au nickel, au chrome VI et au 

cadmium est donc opportune et pertinente.  

MOTS CLÉS: cancer, épidémiologie, cancer du poumon, santé du travail, expositions au milieu 

de travail, étude cas-témoin, métaux, cadmium, chrome, nickel. 
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Summary 

Nickel, chromium VI and cadmium were designated as IARC class 1 lung carcinogens in the 

early 1990s.  However, the study results informing this designation have not been consistently 

replicated in the past two decades, and there remain some important questions about these 

metals’ effects at low levels of exposure.  Further empiric research is therefore required to 

confidently reaffirm the carcinogenicity of these agents and to understand the circumstances in 

which they may be harmful.  

The objective of this study was to investigate the relationship between exposure to either nickel, 

chromium VI or cadmium and subsequent risk of lung cancer among workers exposed to these 

substances at a variety of levels and in a wide range of occupations.  Two large population-based 

case-control studies conducted in Montreal provided the data to investigate the carcinogenicity of 

these substances.  Study I was conducted from 1979 to 1986, and included males aged 35 to 70 

diagnosed with cancer at any of 19 selected cancer sites.  Study II was conducted from 1996 to 

2001 and included men and women aged 35 to 75 diagnosed with lung malignancies.  In both 

studies, cases were ascertained in all hospitals on the island of Montreal, while age- and sex-

stratified population controls were selected from electoral lists.  Detailed job histories, as well as 

lifestyle and socioeconomic measures, were elicited by interviewers with each subject. Job 

descriptions were then evaluated by an expert team of chemists and hygienists in order to 

determine whether the subject was exposed to each agent, and if so, to create measures of 

concentration, duration, and cumulative exposure over the course of each participant’s lifetime.   

In order to determine whether lifetime exposure to any of the metals of interest was associated 

with increased incidence of lung cancer, exposure data were analysed by logistic regression, 

adjusting for relevant confounders including detailed smoking history.  Categorical measures of 

cumulative exposure were analysed, and effect modification by smoking was also explored.  

Study I and II were first analysed separately, and then combined when appropriate to increase 

statistical power.
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At the exposure levels experienced by this population, subjects exposed to nickel incurred a 

small but significantly increased risk of cancer compared to those unexposed.  Meanwhile, there 

did not appear to be any excess risk of lung cancer among workers exposed to chromium VI.  

Lung cancer risk was somewhat elevated, albeit not significantly so, after cadmium exposure.  

For each of the three metals, lung cancer risk was significantly elevated among non smokers, but 

not among smokers.  The joint effect of smoking and exposure to each of the metals was 

compatible with an additive excess risk. However, confidence limits in this study tended to be 

wide, and lack of statistical power may limit interpretation of some of the results. 

This study is unique in providing empiric evidence on lung cancer risks associated with low 

levels of exposure to nickel, chromium VI, or cadmium originating from a variety of 

occupational contexts. While many studies have failed to control for important co-exposures, this 

study benefited from the collection and availability of detailed histories of exposure to tobacco 

and other potential confounders.  The results of this study have important public health 

implications, both in terms of determining ongoing risk experienced by exposed workers, and in 

terms of assessing risk to the general population exposed to these metals by means of pollution 

and cigarette smoke.  This analysis will likely contribute to an upcoming IARC re-evaluation of 

the carcinogenicity of these metals.  Examination of the relationship between exposure to 

cadmium, chromium VI and nickel and subsequent risk of lung cancer is therefore timely and 

pertinent.

KEYWORDS: cancer, epidemiology, lung neoplasms, occupational exposure, case-control 

study, metals, cadmium, chromium, nickel. 
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Note concernant la structure de ce mémoire 

Bien que j’ai obtenu permission de rédiger mon mémoire par article, le corps du mémoire et 

l’article son indépendants dans leur structure courante: les résultats sont présentés d’une façon 

plus élaboré dans le texte du mémoire mais sont répétés dans l’article, et le contenu de 

l’introduction et de la discussion sont similaires dans l’article et le corps du mémoire.  L’article 

est donc un complément au mémoire. 

Disclaimer regarding the structure of this thesis

Although I received permission to write my master’s thesis by article, this work is currently 

structured such that the thesis body and article are entirely independent : the results are presented 

in more detail in the thesis body but are repeated in the article, and the introduction and 

discussion sections share many elements.  The article at the end of this thesis should therefore be 

considered a complement to the main thesis body. 



 

INTRODUCTION 
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Lung cancer is the most common cause of cancer mortality, with 1.2 million deaths worldwide 

each year (1). Although smoking is the main cause of lung cancer in most industrialized 

countries, and increasingly in developing countries, most smokers do not get lung cancer and 

some non-smokers do.  It is therefore clear that multiple etiological factors affect lung cancer 

development, including occupational and environmental exposure to lung carcinogens other than 

tobacco (2).  Although the carcinogenicity of some substances has been clearly demonstrated, it 

is questionable or unknown for many others.  Identification and confirmation of modifiable risk 

factors, and estimation of the magnitude of their effect, is essential for lung cancer prevention.

In modern industrial societies, humans are exposed to thousands of products and chemicals.  

Exposure to metal compounds is common because of their wide use in industry and their 

environmental persistence.  Nickel, cadmium, and chromium VI are three metals that were 

categorised as Class 1 IARC carcinogens in the early 1990s, based on sufficient evidence from 

experimental and epidemiological studies (3, 4).  Notwithstanding these classifications, evidence 

of increased lung cancer risk after exposure to these three metals has been inconsistent in recent 

decades.  Epidemiological studies have been limited in their capacity to assess exposure and 

confounding; they  have often suffered from inadequate or incomplete exposure assessment and 

follow-up data, and have had inadequate statistical power to identify small levels of risk or risk 

at low exposure levels (5).  Many results and updates to early studies have been called into 

question because of methodological limitations (6, 7), as summarized in Box 1.

Although most metal exposures of high concentration occur in occupational settings, low level 

exposures in the workplace and in the general population are also common.  Nickel, chromium 
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VI and cadmium are also important constituents of tobacco, and may play a role in smoking-

associated carcinogenesis (8).  While health effects at low exposure levels may be difficult to 

detect, the attributable risk due to these widespread agents could be significant.  Further empiric 

research is therefore required to confirm their carcinogenic effects, particularly at low exposure 

levels.

In this study, lung cancer etiology was explored by way of two similarly-designed population-

based case-control studies of occupational exposures in Montreal.  Reliable estimates of a variety 

of occupational exposures, as well as socioeconomic and lifestyle factors and detailed smoking 

histories, were available for analysis.   Nickel, cadmium and chromium VI all had sufficiently 

high prevalences in our data set to allow analysis of their effect on lung cancer incidence.  The 

objective of this study was thus to examine the risk of lung cancer in people exposed to these 

purportedly carcinogenic metals in a variety of occupations and at a range of exposure levels.
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 Box 1.

Methodological considerations and limitations concerning 

the assessment of lung cancer risk after metal exposure 

 

 

� Exposure levels change over time 

� Some substances require a minimum latency period to exert their effects 

� Risk may decrease with time since last exposure 

� Important exposures may be neglected or misclassified 

� The importance of individual dimensions of exposure, such as duration 

or concentration, varies between agents 

� Risk estimates may be confounded 

o By other occupational agents 

o By smoking 
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SUBSTANTIVE  BACKGROUND
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In order to assess the carcinogenicity of metal compounds in humans, it is essential to consider 

information from a variety of fields and sources.  This requires careful consideration of 

epidemiological evidence as well as animal evidence and in vitro experiments on genotoxicity 

and mutagenicity. However, epidemiological and experimental results are sometime divergent.  

Exposure heterogeneity, concentration and intensity, vary greatly between human and 

experimental studies, as does the existence of defense or clearance mechanisms (9, 10).  Valid 

extrapolation of experimental models is therefore difficult to achieve, and does not necessarily 

offer a simple or congruent solution to discrepancies in epidemiological data.  Modeling and 

extrapolation may nonetheless help address the limitations of epidemiological studies at low 

exposure levels (11).

Risk assessments consider numerous factors in determining whether a substance is carcinogenic, 

and in setting permissible exposure levels.  In order to cause lung cancer, an agent has to enter 

the lung; cellular uptake of a hazardous substance then depends on its biological half-life and 

rate of clearance from the lung, where sustained presence may engender a higher risk (12-14).  

Uptake is also affected by deposition and absorption rates, which vary with particle size and 

chemical solubility, respectively (15, 16).  Small particles are more easily absorbed than larger 

particles because they have higher deposition rates, penetrate deeper into the lung, and are less 

easily eliminated.  Soluble particles are likely to be absorbed by biological mechanisms, while 

insoluble particles tend to produce oxidative irritation outside the cell, or to use active transport 

to enter the cell.  The presence of cancer promoters and factors that affect a cell’s ability to repair 

damage further affect the probability that an altered cell will transmit precancerous changes (17).     
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The following section presents a substantive overview of nickel, chromium VI, and cadmium, 

summarising the experimental and epidemiological evidence surrounding each metal’s status as a 

carcinogen.  Evidence regarding the association between respiratory exposure and lung cancer is 

emphasized.  However, some background is also provided regarding carcinogenic potential in 

other sites and by other routes of exposure.   In the review of epidemiological evidence of the 

carcinogenicity of these metals, only studies with metal exposure assessments are included, and 

leaving aside studies assessing occupational risk alone.
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NICKEL BACKGROUND 
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Nickel production and uses 

Nickel is the 24th most abundant element on earth, and over one million tonnes of nickel are 

produced annually worldwide.  Nickel mining, refining and smelting are an important primary 

industries in Canada, the fourth largest nickel producer in the world (13).   This metal is used in 

the production of stainless steel (60%) electroplating (11%), battery production (10%) and nickel 

alloy production (5%) (18).  Nickel imparts corrosion resistance and strength to alloys and plated 

materials, which are used to create products including catalytic converters for automobiles, 

electronic components, coins, and other metal items including armaments, tools and utensils (11, 

13, 19).

Human exposure to nickel 

Food and water are the sources of the majority of human environmental nickel exposure. Plants 

such as spinach, legumes, and nuts particularly concentrate nickel, which can also be leached by 

acidic materials from cooking ware, utensils and pipes.  Nickel is also an important constituent 

of industrial and urban air pollution.  The primary anthropogenic sources of nickel emissions are 

fossil fuel combustion and municipal incineration, primary nickel production, and stainless steel 

or alloy manufacturing (11).  Concentrations between 5 and 170 ng/m3 can be found in urban 

environments (20), leading to an average exposure of 0.25ng/kg/day (15).  On average, less than 

1% of nickel exposures occur by respiration, as compared to 90% by ingestion of food and water.

Exposure to nickel is augmented by approximately 10% by cigarette smoking (11, 15, 16, 21). 

Approximate doses due to ingestion, respiration, and occupational exposure are detailed in Table 

1.
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Occupational exposure to nickel 

Occupational exposures to nickel occur in the form of airborne dust and particles during mining, 

refining and smelting, as well as during work in factories and chemical plants (13).  Nickel 

fumes are also produced during stainless steel and alloy welding and soldering (22).  Miners 

have historically been exposed to concentrations of up to 5mg/m3, and refiners up to 1mg/m3,

leading to absorption of about 100ug per day.  However, changes in industrial processes and use 

of protective equipment have considerably reduced these exposures.  A recent evaluation of a 

Norweigian nickel refinery found average respirable concentrations of 0.7mg/m3, which is well 

below most occupational limits (23). 

 

Nickel speciation 

A variety of nickel species are found in the occupational and urban environment.  Nickel may 

occur as a soluble species, such as nickel sulphate and nickel chloride, or an insoluble species, 

such as nickel sulphide and nickel oxide.  The dominant nickel species in urban air pollution is 

nickel sulphate, followed by nickel oxide.  Some nickel species produced during refining and 

smelting, such as nickel subsulphide, are not usually found in the urban environment (11), but 

occupational exposures are composed of both soluble and insoluble components. 

Nickel metabolism and toxicity 

Although human nickel intake can amount to 1 mg per day, cellular absorption by the digestive 

system and skin is minimal.  Conversely, approximately 20% of inhaled nickel is absorbed by 

the respiratory tract, depending on the species involved.  Soluble nickel species have relatively 

low cellular uptake and are rapidly cleared from the lungs, while insoluble forms have a slower 



    

11

clearance from the lungs, and may be actively transported into nearby cells (11, 14).  Nickel 

subsulfide, generally believed to be the most hazardous of all nickel species, shares biophysical 

properties of both soluble and insoluble species (24).  Once absorbed, only a small amount of 

nickel is retained in the body, while the majority is efficiently excreted in days to weeks (13). 

Acute toxic effects of nickel exposure include vertigo, nausea, vomiting, and pulmonary fibrosis.  

Nickel carbonyl, produced during nickel purification, is extremely toxic and can lead to lethal 

systemic poisoning (13).  Generalised effects of chronic exposure have been observed in the 

respiratory tract, kidneys, immune system, reproductive system, endocrine regulation and skin 

(11).  Chronic effects of respiratory exposure among highly exposed workers rhinitis, sinusitis, 

septum perforation, and asthma, as well as a reduced sense of smell.  Sensitivity to skin contact 

can lead to dermatitis or allergy in up to 30% of the population (13).  Nickel is known to cause 

oxidative stress (25, 26) and is also hepatotoxic.  While nickel ingestion is not known to cause 

any form of cancer, nickel inhalation has been associated with lung, sino-nasal, and pharyngeal 

cancer (13).

Experimental Evidence

Animal study evidence 

In animal models, different forms of nickel invoke different degrees of carcinogenicity and 

toxicity.  Soluble nickel appears to be responsible for the acute toxic responses to nickel, but not 

for carcinogenic effects (27-29).  Meanwhile, insoluble nickel may be genotoxic without 

associated toxicity.  In a series of animal inhalation studies, U.S. NTP found clear evidence of 

carcinogenicity after exposure to insoluble nickel species (nickel subsulfide and high-
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temperature nickel oxide) but did not confirm carcinogenic activity by soluble nickel species 

(nickel sulfate) (14).  Although there were marked differences in effects between rodent species, 

the responses found in these inhalation studies generally mirrored early injection studies (3, 13, 

17).  However, some recent inhalation studies have found evidence of carcinogenicity for soluble 

nickel after inhalation (30).  Cytotoxic effects by soluble species in previous studies may have 

prevented administration of higher doses in animal experiments, thereby leading underestimation 

their carcinogenic potential (17).

In vitro evidence and potential mechanisms 

The molecular and genotoxic aspects of nickel carcinogenicity have recently been reviewed in 

detail (31-33), and as expected depend on the nickel species of interest.  In general, nickel has 

been found to be a weakly active mutagen in eukaryotic organisms, and an inactive mutagen in 

bacterial assays (13, 15).   In vitro evidence mirrors most in vivo studies indicating that insoluble 

nickel species are most likely to be genotoxic.  Insoluble nickel has been found to be 

phagocytosed into mammalian cells, where its ions may induce inflammation, apoptosis, 

morphological transformations, chromosomal instability and chromosomal deletions (13, 31-33).  

Genotoxic activity by insoluble nickel is likely mediated by oxidative stress and the production 

of reactive oxygen species (13, 25).  Conversely, evidence for soluble nickel’s genotoxicity is 

mixed; in vitro responses are usually weak and occur only at toxic doses (17).

Several reviews of possible mechanisms of nickel carcinogenesis have also recently been 

published (25, 33, 34).  Based on evidence from in vitro and in vivo experiments, a mechanistic 

theory of differential nickel carcinogenesis has been developed, proposing that soluble nickel is a 
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cancer promoter, and insoluble nickel a cancer initiator (11, 14, 17, 19, 35, 36).   It is suggested 

that soluble nickel species exert largely cytotoxic effects, while their physicochemical properties 

prevent them from direct access to the cell nucleus.  This would imply that soluble nickel is not a 

complete carcinogen, although inflammation caused by toxicity could foster a cancer-promoting 

environment, enhancing cell proliferation and creating reactive oxygen species (11, 19).  

Conversely, insoluble nickel species directly enter the cell by phagocytosis (37), which delivers 

them in higher concentrations to the cell nucleus.  Direct access to and interaction with the 

nucleus could greatly enhance insoluble nickel’s carcinogenic potential (17). 

The disparities in lung cancer risk between nickel types in experimental studies largely support 

this mechanistic theory (17, 24, 35).  However, recent experimental studies attempting to mimic 

environmentally relevant exposures to chronic, low doses of soluble nickel show that soluble 

nickel chloride may in fact be mutagenic and genotoxic, especially after long durations of 

exposure (38, 39).  Numerous mechanisms have been proposed to explain this activity (13, 17, 

40, 41).

Regardless of the mechanisms involved, the particular properties and biological effects of 

different nickel species indicate that separate risk assessments should be conducted for each (24).

Epidemiological studies should therefore take these differences into account. 
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Epidemiological Evidence

Excess risk of lung cancer in nickel-exposed workers was first observed in a Welsh nickel 

refinery in the 1930s.  Since then, a number of occupational cohort studies have confirmed 

excess risk in workers compared to local or national reference populations (35, 42).  However, 

the exact form of nickel that produces increased risk of lung cancer remains contested.   

In 1990, both IARC and the ICNCM published complete reviews of available information from 

cohorts with a total of over 80,000 workers (3, 43).  Both reviews concluded that several forms 

of nickel give rise to lung cancer.  Increased respiratory cancer risk was observed among workers 

exposed to a mixture of oxidic and sulfidic nickel at high concentrations, as well as to high 

concentrations of oxidic nickel and soluble nickel species alone.  No evidence of carcinogenicity 

was found outside of the respiratory system.   

Updates to several of the cohorts examined by IARC and ICNCM have since been published, 

extending follow-up and improving methodology and exposure assessment.  In particular, 

cohorts from the Clydach refinery in South Wales (44, 45), the Falconbridge refinery in Norway 

(10, 46-48), and a large smelter and refinery in Finland (49) calculated semi-quantitative 

estimates of exposure not available in previous studies.  Risk of lung cancer after having ever 

been exposed to any level of nickel continued to be elevated but insignificant (42, 50), with most 

recent risk estimates consistently hovering between 130 and 150 (10, 44, 49).   

Many recent studies included risk estimates for both high and low concentrations of exposure.  

High-concentration exposures to nickel were consistently associated with elevated lung cancer 
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risk (11, 19, 43, 47, 49, 50).  People hired before process and employment standard changes in 

the mid-1900s were subjected to very high concentrations of nickel, and suffered from higher 

rates of lung cancer than those employed after process changes (10, 45, 46).  Although 

reductions in risk have largely been attributed to decreased levels of nickel exposure, some have 

suggested that they may have also resulted from concurrent cessation of certain high-risk co-

exposures such as arsenic (51).

Many groups exposed at relatively low concentrations have also continued to demonstrate 

increased risk of lung cancer (43-45, 52).  Significantly elevated risks were reported in the Finish 

cohort after exposure to concentrations lower than the ICNCM estimates of risk cutoff (49).  

Conversely, in a recent study examining respiratory cancer risk after exposure to low 

concentrations of nickel, Sorahan and Williams (2005) found that lung cancer risk was barely 

elevated.  However, workers employed for at least five years in environments with the highest 

concentration of nickel dust had significantly increased risk (SMR=231) (44).  A subsequent 

analysis of workers employed for at least 5 years showed that risk of respiratory cancer persisted 

despite exposure reductions (SMR=133; 95%CI=103–172). As such, although current exposures 

are likely substantially lower than those in most historical cohort studies, there is evidence that 

lower exposure levels continue to be an occupational hazard  (52). 

Risk of lung cancer has also tended to increase with duration of exposure; risk estimates are 

consistently significant after exposure durations of at least 15 years (46), particularly in high-

concentration environments (11, 19, 44).  Similarly, a minimum of ten to twenty years’ elapsed 

time since exposure tends to increase risk estimates (10, 43, 44, 49).   Sorahan and Williams 
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(2005) observed an SMR of 165 (108-243) for those employed over 20 years previously (44),  

while Grimsrud et al (2002) found their data was best fit with a 10-year lag after adjustment for 

smoking (OR=2.2; 95%CI=1.0-4.6) (10).  Similarly, Anttila et al. found that exposure to either 

sulfides (smelter workers) or sulfates (refinery workers) significantly increased incidence of lung 

cancer after 20 years’ latency (49).

Species-specific risk 

Metallic nickel

Experimental and epidemiological evidence indicate that exposure to metallic nickel does not 

increase lung cancer risk (3, 53).  Many occupational cohort studies have found no increased risk 

of lung cancer after exposure to metallic nickel (10, 43, 45, 54-56), and its presence does not 

seem to alter risk estimates for other species or exposures.  Although some activity has been 

observed in animals, no specific action has been consistently observed in vivo or in vitro (53).  

As such, the majority of regulatory bodies have excluded metallic nickel as a potential 

carcinogen (3). 

Soluble and insoluble nickel

There is a perplexing contradiction between epidemiological and experimental evidence with 

regards to the carcinogenicity of soluble and insoluble nickel species: while evidence from recent 

epidemiological studies supports a leading role for soluble nickel species such as nickel sulfate, 

evidence from animal studies is strongest where exposure to insoluble nickel species, such as 

nickel oxide and nickel subsulphite, are concerned.  Increased incidence of lung cancer was first 

found in workers exposed primarily to insoluble nickel species (57, 58), which were assumed to 
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be responsible for its effect.  However, early evidence of elevated lung cancer risk was also 

found in workers exposed to soluble nickel (59). 

Recent epidemiology studies confirm the likelihood that more than one form of nickel increases 

lung cancer risk, but evidence has increasingly been shifting away from insoluble nickel 

compounds in favour of soluble nickel.  Most occupational cohorts with quantitative exposure 

estimates indicate that soluble nickel is the most important risk factor for lung cancer (10, 47, 

49).  In a detailed quantitative re-assessment of exposure estimates, a highly consistent exposure-

dependent risk was reported for exposure to soluble nickel species (23, 46), with significantly 

elevated risk estimates at higher doses (OR=3.8, 95%CI=1.6-9.0).  After adjustment for soluble 

nickel exposure and smoking, the effects of insoluble (sulfidic and oxidic) forms of nickel were 

elevated (between 0.9 and 2.2, depending on exposure level) but always insignificant and 

without any dose-related trends.  Similarly, exposure-dependent risk was found in Norwegian 

workers exposed to soluble nickel alone or in combination with other species (47).  Strong 

evidence of the effects of soluble nickel species were also found in the Finnish cohort, where 

workers were exposed to either primarily soluble or insoluble nickel species.  While both forms 

of nickel imposed a significantly increased risk after 20 years’ latency, soluble nickel was 

consistently associated with a higher incidence of lung cancer among exposed  workers (49).

A number of cohort studies have refuted any association of lung cancer with soluble forms of 

nickel (60, 61).  Electrolysis workers in a refinery at Port Colborne (Canada) exposed primarily 

to soluble nickel showed no increased lung cancer risk (43), nor did  a small cohort of British 

electroplaters exposed only to soluble nickel (60). Although informative in that they constituted 
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workers exposed mainly to soluble nickel, these studies may have suffered from methodological 

limitations such as small sample size, low exposure concentrations, and underestimation of 

mortality (46).

Confounding

Occupational co-exposures

Inadequate control for potentially important occupational confounders such as arsenic and 

sulfuric acid mists has been cited as weakening epidemiologic evidence for the association of 

nickel and lung cancer (11, 14, 17, 19).  However, the majority of studies that have investigated 

the effect of confounding have found that risk estimates for nickel are not highly confounded by 

occupational agents (46, 62).  In a nested case-control study, Grimsrud et al (2005) developed 

time- and department-specific exposure estimates for a number of common carcinogenic co-

exposures including arsenic, sulfuric acid mists, and cobalt.  After adjusting for smoking and 

relevant occupational confounders, they found that exposure to soluble nickel remained the most 

likely explanation for increased risk among nickel refiners, while the other agents had relatively 

weaker effects (46). Several others investigating the role of occupational exposures in other 

lifetime occupations have observed negligible effects on the final risk estimates for nickel (46, 

63, 64).  However, in a case-control study Moulin et al (2000) found that adjustment for PAHs 

and silica decreased point estimates by up to 30% (62).   

Smoking

Confounding by smoking has been investigated in several cohort studies (44, 62, 65), and data 

from the Norwegian nickel refinery have included information on smoking status (ever/never) 

for over two decades (10, 47, 48, 66).  Inclusion of continuous variables for total amount 
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smoked, duration, and time since quit did not significantly affect risk estimates in one case-

control study (46). Other studies have similarly found that smoking is only a weak confounder, 

producing less than 20% changes in risk estimates (10, 62).  However, smoking data are rarely 

available for the whole cohort (44) and some analyses suggest that they have not always been 

reliable (52).  Risk estimates in some studies have been neutralized by controlling for smoking 

by using local population references (65) or alternative methods to re-estimate confounding (11), 

indicating that smoking remain a confounder in certain contexts.

Conclusion

Although recent epidemiological evidence most strongly implicates soluble nickel as an 

important risk factor for lung cancer development (10, 47, 49), its independent role as a cancer 

initiator or promoter has not been determined (11, 17, 19, 46).  Epidemiologic studies have been 

unable to determine whether co-exposure to other carcinogens such as tobacco smoke or other 

occupational exposures are necessary for soluble nickel’s effect (46).  Furthermore, exposure to 

soluble nickel is almost always accompanied by insoluble nickel, which is more likely to be a 

strong carcinogen according to experimental evidence.  If exposure to insoluble nickel is 

necessary for the effects of soluble nickel (17), current mechanistic theories based mainly in 

animal and in vitro models would be supported (11, 17, 19, 24).  However, given recent evidence 

regarding the genotoxic effects of soluble nickel, it is also possible that soluble species have 

played a role in the effects previously ascribed to insoluble forms (10, 46, 49).   

Assessment of the effects of different forms of nickel is such a challenge that conclusions remain 

highly contentious.  Even designations by regulators lack coherence; while IARC classified all 
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nickel compounds but metallic nickel as Group 1 carcinogens in 1990 (3), a decade later the U.S. 

TERA (Toxicology Excellence for Risk Assessment) group concluded that the carcinogenicity of 

soluble nickel compounds could not be determined because of the persistence of conflicting data 

(17, 36).   One aspect of this challenge is to reconcile differences in exposure conditions between 

epidemiological and animal studies: while the results from occupational studies come from 

workers exposed to a mixture of nickel species, animal studies involve largely homogenous 

exposures (10, 17).  As such, confirmation of nickel’s carcinogenicity is required. 
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CHROMIUM  VI  BACKGROUND 
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Production and uses of chromium VI 

Chromium is an essential transition element that naturally occurs in two stable oxidation states: 

chromium III (trivalent) and chromium VI (hexavalent).  Hexavalent chromium exists as a strong 

anion at physiological pHs, and may form soluble compounds such as chromium oxide, or 

insoluble compounds, such as calcium or lead chromate (12).   It is widely used in the 

metallurgical and chemical industries.  Chromium VI was once widely used in the leather 

tanning industry, but its most frequent use is currently in the production of metal alloys, 

particularly stainless steel, to which it imparts heat and corrosion, as well as in chrome plating.  

It is also used in pigment production for the chemical, ceramics, and automobile industries (3). 

Human exposure to chromium VI 

In non-occupational contexts, diet is the primary source of human exposure to chromium VI, 

while only small quantities are taken in by drinking and respiration (12) (see Table 1).  

Concentrations of chromium in air, soil and water depend on the degree of local and global 

industrial activity, but tend to be minimal (3).   

Occupational exposure 

Chromium exposure occurs in multiple occupational environments, and several million workers 

worldwide are exposed to chromium or its compounds each year (3).  Leather tanning was once 

an important source of chromium exposure but now, the most frequent exposures occur during 

chrome plating and welding. Welders of stainless and mild steel covered with chromium-

containing paints breathe in dusts from the materials being welded and as well as chromium 

fumes from the welding electrodes.  Workers are similarly exposed during chromate and pigment 

production, spray painting, and during use of chromates in the chemical industry (3, 67).   
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Metabolism and toxicity of chromium VI 

Chromium VI exists as a negative ion similar to sulfate and phosphate ions at physiological pHs, 

and is therefore actively transported into human cell by an anionic transport system, facilitating 

its accumulation.  Once inside the cell, hexavalent chromium is usually reduced to chromium III, 

often by ascorbic acid (12).  Absorbed chromium is transported throughout the body and may be 

concentrated in numerous tissues and organs, including the lung, liver, and kidneys, but is 

predominantly excreted through urine (67).  The most common toxic effect of chromium 

exposure is allergic reaction and ulceration of exposed skin.  Inhalation of chromium-containing 

dust can also cause asthma and erosion of the nasal septum. Exposure to high doses of chromate 

may also have nephrotoxic effects and induce liver necrosis (67). 

Experimental evidence 

Animal study evidence 

A variety of chromium VI compounds have produced tumours in laboratory animals under 

different experimental conditions and administration routes.  Most positive results with regards 

to carcinogenesis have been obtained from implantation and injection experiments that bypass 

normal physiological defense mechanisms (68).  For example, injection studies produce tumours 

in a variety of sites and organs (67), and evidence suggests that hexavalent chromium exposure 

can have systemic effects that are distant from the site of exposure (12).  However, relatively few 

inhalation studies in animals have demonstrated a link between respiratory chromium VI 

exposure and lung cancer (67). 
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In vitro evidence and potential mechanisms 

Experimental evidence of the mutagenic, genotoxic and cell-transforming activity of chromium 

VI have been mixed.  Some claim that estimates based on in vitro assays may have been 

underestimated, because the levels of ascorbic acid, the main reducer of chromium VI, have been 

substantially lower in vitro than in vivo.  Others have proposed that the lung’s ability to reduce 

chromium VI to chromium III could function as a physicochemical defense system against 

carcinogenic effects at chronic low doses (12).  Effects should then occur only at very high 

exposure levels, which could overload the lung’s natural defences, allowing chromium VI to 

enter the cell and produce cancer (68-70).  In this case, many in vitro studies may have failed to 

take into account the physiological environment of the human lung.  Hexavalent chromium and 

its reduced forms have been shown to interact with cellular molecules and DNA, causing 

cytotoxic effects, chromosomal aberrations, and DNA damage.  Induction of oxidative stress 

may also activate signaling pathways that inhibit apoptosis (12, 67, 71).

Epidemiological Evidence

A possible association between exposure to hexavalent chromium and lung cancer has been 

recognised since the 19th century, and the carcinogenic effects of respiratory exposure to 

chromium VI have been extensively established and reviewed (12, 72, 73).   An early study of 

U.S. chromate plants suggested that exposed workers were up to twenty times more likely to 

have lung cancer than unexposed workers (74).  Following this report, a large number of studies 

have investigated the association of chromium exposure and respiratory cancer and found 

increased risk of lung cancer in electroplaters (75, 76), ferrochromium manufacturers (77-79), 

and pigment manufacturers (80-82), especially after long-term employment (67, 71).  A recent 
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study estimated exposure at current occupational standards could result in an excess lifetime risk 

as high as 1 in 10 (63).  However, evidence in many occupational contexts has been inconsistent, 

and studies producing both positive and negative results have been methodologically limited and 

potentially confounded.  For example, although stainless steel welding has consistently been 

associated with increased risk of lung cancer, welders are also exposed to oxides of other metals, 

particularly nickel (3, 83-85).  The attribution of increased risk to chromium in particular is 

difficult in this context. 

Chromate manufacturers 

The majority of recent epidemiological studies with quantitative measures of exposure to 

chromium VI come from cohort studies of chromate manufacturers.  Epidemiological reports of 

excess lung cancer cases in these manufacturers began in the 1940s (74, 86-88) and strong 

evidence of excess lung cancer in chromate manufacturers exposed to hexavalent chromium in 

particular was first suggested in the 1960s (89, 90).  A twofold lung cancer risk at high levels of 

exposure was well-established (91-93), and was particularly attributed to workers’ exposure to 

insoluble calcium chromate, largely considered to be the most hazardous of the chromium 

species (92).   

Early studies of chromate manufacturers measured the risks associated with exposure before the 

1960s, when chromate production involved a high-lime process.  This process produced high 

concentrations of respirable chromium VI by increasing the amount of dusts and insoluble 

calcium chromate species in the air (67, 94).  Consequently, there was a strong association 

between chromium exposure and lung cancer in workers exposed before the 1960s.  Subsequent 
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production method changes and industrial hygiene improvements reduced these exposures 

considerably, and studies spanning process changes consistently demonstrate that workers 

employed after the 1960s have less risk of lung cancer risk than earlier workers (91, 93, 95-98).  

However, one study examined workers exposed after exposure reduction measures and found an 

SMR of 180 (95% CI= 110-279) despite a relatively small sample size (95).  Lung cancer risks 

have persisted to variable degree after process changes, and risk at lower levels remains highly 

contentious.  Most cohort studies published before the IARC review (1990) were impaired by 

common methodological limitations: small cohort size, absence of smoking data, and absence of 

quantitative exposure estimates.  Further, post-process change risk estimates have not allow 

sufficient latency periods, as it is generally accepted that 20 years is required between exposure 

and effect (94).

Four recent cohort studies calculated quantitative measures of hexavalent chromium exposure 

and introduced other methodological improvements, making them amendable to quantitative risk 

assessment and dose-response modeling.  One set of studies on chromate production workers in 

Germany and Painesville, Ohio was conducted by a common private company commissioned by 

an industrial sponsor (92, 94), while another set of studies was associated with the U.S. EPA 

(72).  These quantitative studies showed that lung cancer risks were lower after industrial process 

changes.  However, although their results were relatively similar, their conclusions regarding 

low-level exposure and interpretation have been the subject of some controversy.  A fourth 

cohort in North Carolina found no significant association between chromium exposure and lung 

cancer (98).  The findings of the first three studies are summarized here.  
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Chromium producers in Baltimore, MD

In an update of a previously studied cohort (95), Gibb et al (2000) found that lung cancer risk in 

chromate producers persisted after process changes in the 1950s (SMR=180, 95%CI=149-214), 

particularly in those with high cumulative exposure levels.  Strong cumulative exposure-response 

trends were observed between hexavalent chromium and lung cancer.  While those exposed at 

levels under 5 ug/m3 did not show excess risk, a ten-fold increase in cumulative exposure was 

associated with a 1.38 increase in hazard (95%CI=1.20-1.63).  In the highest category of 

cumulative exposure, hazard ratios of 3.32 were found compared to the lowest category (72).  

However, most of the lung cancer cases occurred among smokers, which may have resulted in an 

overestimation of risk. 

Chromate producers in Germany 

In a study of two small cohorts of chromate producers in Germany (n = 593 and 308), Birk et al 

(2006) used urinary chromium levels collected from workers on a regular basis over decades to 

create a job exposure matrix and estimate cumulative exposure for all workers.  Although this 

measure could not distinguish between chromium VI and III, it had advantages in the precision 

with which it was able to measure exposure.  This study demonstrated that a reduction in 

exposure levels after process changes have reduced the risk of lung cancer associated with 

chromium VI.  Urinary chromium concentrations greater than 200 ug/L, indicating very high 

exposure, continued to be associated with increased risk of lung cancer, even after control for 

smoking (SMR=209, 95%CI=108–365).  In the three categories of exposure below 200ug/L, 

there was no evidence of increased lung cancer risk regardless of lagtime or exposure duration 

(94).
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Chromate producers in Painesville, OH

The original chromium VI risk assessments conducted by U.S. EPA and Health Canada  were 

largely based on the first quantitative estimates of soluble chromium exposure (72) in studies by 

Mancuso et al, conducted in 1975 (99), and updated in 1997 (100).  Standardised mortality rates 

in this cohort ranged from 80.2 to 998.7 depending on the level of exposure.  However, these 

preliminary studies had many limitations: risk estimates differentiated between soluble and 

insoluble exposures but not between chromium VI and III; smoking data were unavailable; 

exposure estimates were based on one survey conducted 10 yrs after exposure began; and 

mortality rates were based on estimated reference rates and not a standard population (70, 72). 

This cohort was recently extended and limited to those with over 12 months of employment after 

1940 (92).  Using a more robust exposure assessment, Luippold et al (2003) found that 

standardized lung cancer mortality rates for the entire cohort were elevated and highly significant 

(SMR=241; 95%CI =180-317).  Mortality rates were above 250 for workers with high levels of 

cumulative exposure, over 20 years of exposure or over 20 years since first exposure.  However, 

excess lung cancer found to be limited to workers employed before 1960, when the plant was 

still using high-lime processing.  Workers exposed only to low-lime processes between 1960 and 

1971 did not demonstrate any increased risk (SMR =92; 95%CI =34-201).  A further update 

focused on employees hired only after process change also claimed to reflect a favorable 

environment post-process change (SMR = 84; 95% CI = 17 – 244) (101).  Limitations of 

Luippold et al’s analysis of the post-process change workers included small sample size and 

limited follow-up and latency periods; few workers were followed for the 20 years required for 
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an increased risk to be detected (6, 92). Some also argue that there is evidence of bias from the 

healthy worker effect (6), although this type generally has little impact on cancer mortality data 

(102).

Controversy regarding low exposure level effects

The German and Ohio-based studies reviewed here were originally commissioned by industry 

sponsors to be analysed together, but were later divided because of the differences in their 

exposure assessment methods. Critics of the industry-sponsored studies suggest that a private 

report on the original higher-powered, combined results showed evidence of increased risks at 

intermediate exposure levels, and that this effect was later purposefully minimised by 

underpowered sample size and combination of low and intermediate exposure groups in the 

published studies. In particular, the German study had a sample size far too small to detect the 

minimal increases in risk that would be expected from low exposure levels (103-105).   

The authors of the industry-affiliated Germany- and Ohio-based studies have defended the 

integrity of their studies, and several other epidemiological and methodological studies appear to 

support their conclusions, suggesting a weakened association between low-level chromium 

exposure and lung cancer (68, 70, 106).  They suggest that the risks observed by Gibb et al at 

low cumulative exposure levels were confounded by largely acknowledged factors (107) 

associated with the inclusion of short-term workers (92).  Indeed, a large proportion of the Gibb 

cohort were short-term workers, with 40% of the cohort employed for less than 90 days, such 

that the cumulative exposure levels at which effects were observed among the Baltimore cohort 

(72) were lower than those in the Painesville cohort (92), which excluded workers employed for 
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less than a year.  Up to 60% of workers in the Baltimore cohort experienced signs of chromium 

irritation within the first months of employment, and may have left for health reasons, such that 

the effects at low exposure levels may be unpredictable in this cohort (108).  However, this study 

is nonetheless highly respected and credible according to US regulators. 

Confounding

Occupational co-exposure

Occupational confounding remains a significant and as yet weakly addressed factor in the 

examination of the relationship between chromium VI and lung cancer (92).  Confounding by 

exposure to asbestos was considered plausible in several studies (63, 72, 100) but was not 

considered to be significant.  Meanwhile, exposure to other potentially carcinogenic agents such 

as nickel has complicated analysis of the specific effects of chromium VI in several occupational 

contexts.  It is also possible that there is a potential synergism between chromium compounds 

and other carcinogens such as benz-a-pyrene and constituents of cigarette smoke (12, 72).    

Most evidence indicates that trivalent chromium is not carcinogenic (68, 73); indeed, it is used as 

a nutritional supplement and is believed to play a role in the metabolism of glucose (67, 109).  

However, because chromium III and VI are strongly collinear in most occupational contexts, the 

role of chromium III in carcinogenesis cannot be ruled out (7, 72).   

Smoking

Most recent studies with information on smoking the habits of some or all of their subjects found 

that the relationship between quantitative measures of cumulative chromium VI exposure and 

lung cancer not confounded by smoking status (72, 94, 110).  However, in most occupational 
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studies, the majority of cancer cases occurred in smokers, and control for confounding was 

therefore limited (92).  Further, in a recent meta-analysis of epidemiologic studies, mortality 

rates were 141 (95%CI=112-279) for all chromium studies, but only 118 among the better-

quality, smoking-controlled studies. The authors concluded that three quarters of the excess lung 

cancer in previously uncontrolled studies may have been due to confounding by smoking, and 

that the association between chromium and lung cancer is weaker than generally accepted (106).

Carcinogenicity at other sites and by other routes of exposure 

In addition to being associated with lung cancer, inhalation of hexavalent chromium is suspected 

by some to cause other cancers including kidney, prostate, bladder cancers and brain cancers 

(12).  In particular, some concern has been raised that it may be associated with stomach cancer 

if inhaled particles are swallowed (12, 111).  Evidence of stomach cancer after exposure to high 

concentrations of chromium VI in drinking water is also accumulating (12, 111-113), but 

remains controversial (67, 114).  Concern about such effects was widely popularized in the 

Hollywood movie Erin Brockovitch, where hexavalent chromium in one California town’s 

drinking water led to a $333 million lawsuit (109).  Historically, there has been little evidence 

suggesting that ingestion of chromium VI causes cancer (67, 109, 115, 116).  While chromium 

VI may be easily absorbed, it is quickly reduced to trivalent chromium by digestive mucosa, 

which is much less easily assimilated (68, 117).  As a whole, reports of cancers at sites other than 

the lung, and by routes other than respiration, have been statistically insignificant and 

inconsistent compared to studies on respiratory exposure and lung cancer (92).  This study 

focuses on respiratory exposure to chromium VI because it has been most consistently associated 

with increased risk of lung cancer.
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Conclusion

There appears to be little doubt of chromium VI’s carcinogenicity at high exposure levels.  What 

remains to be determined is whether the exposure-response relationship between chromium VI 

exposure and lung cancer is linear, as observed (63) or speculated (72) in some studies, or 

whether there is an exposure threshold under which there is no increased risk  (92, 101).  

Industry-associated groups have suggested that the absence of effect at low exposure levels may 

be attributable to an exposure threshold effect (92, 94).  Recent mechanistic studies are also 

compatible with a threshold response for chromium VI, based on the lung’s capacity to reduce 

chromium VI  into chromium III (68).  Although the existence of an exposure threshold is good 

news for chromium-exposed workers and regulators alike, premature conclusions about risk at 

low exposure levels could result in optimistic exposure regulations.  The effect of chromium VI 

at low doses therefore has important implications for risk assessments and for the determination 

of regulatory limits (108).
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CADMIUM BACKGROUND 
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Production and uses of cadmium 

Cadmium is a ubiquitous but sparsely distributed element in the natural environment whose 

presence is concentrated during non-ferrous metal mining, smelting, and refining.  It is used 

primarily in the production of nickel- or silver-cadmium batteries and red or yellow pigments.  It 

is also used to electroplate iron, steel and alloy products to protect against corrosion and as a 

stabilizer in paints and plastics (5, 118).  Among the most common cadmium compounds are 

cadmium oxide (used in batteries, catalysts, and electroplating), cadmium sulphide (a pigment) 

cadmium sulphate (used as a chemical intermediate and in electroplating) and cadmium stearate 

(a plastics stabiliser) (4).  

Canada is the fourth largest global producer of cadmium, producing over 17 000 tonnes of 

cadmium a year. Consumption of cadmium metals dropped 14% between 2002 and 2006 due to 

environmental concerns, and North American cadmium production has subsequently decreased 

in recent years (5).

 

Human exposure to cadmium 

The average person is exposed to small quantities of cadmium in their food, water, and air (15).   

Most cadmium exposures originate from the industries that produce cadmium or cadmium-

containing products, although fossil fuel combustion is also an important source of cadmium 

exposure.  Small amounts of cadmium exist in particulate form in the air we breathe, in 

concentrations that depend on degree of pollution and proximity to industrial sources, but 

respiratory exposure constitutes a very small proportion of daily exposure.  Ingestion of food and 

water is cadmium’s main route of entry into the human body (119), as plants and animals, and 
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particularly seafood, tend to bioaccumulate cadmium pollution (5).  However, only 5 to 10% of 

ingested cadmium is absorbed by the digestive tract (120, 121).  Approximate absorbed doses 

that result from ingestion, respiration, and occupational exposure are detailed in Table 1.

It is important to note that cigarette smoking can double an individual’s daily dose of cadmium 

(15).  Smokers have four to five times higher blood cadmium concentrations than non-smokers 

and large amounts of accumulated cadmium in their lungs (122-124).  There have been two 

different estimates of the possible impact of cadmium in cigarettes: Hertz-Picciotto and Hu 

(1994) estimated that that 0.2% to 1.6% of lung cancer deaths may be attributable to cadmium 

from cigarettes (125), while Cox (2006) estimated that approximately 10% of lung cancer among 

smokers is attributable to cadmium content (124). 

Occupational exposure 

Certain work environments are a significant and important source of cadmium exposure, and 

approximately 500,000 workers in the USA are exposed to cadmium each year.  Workers are 

exposed to cadmium oxide fumes generated while heating or welding of materials containing 

cadmium, or by inhaling dust and particles of cadmium metal, oxides, hydroxides, sulphides, or 

sulphates.  Before the potential hazard of cadmium was recognised, workers in mining and 

refining industries were exposed to aerosol cadmium concentrations of up to 5 mg/m3.  Current 

occupational standards are a great deal more stringent than a generation ago, and most 

occupational cohorts with exposures dating from the 1970s to the 1990s report exposure 

concentrations between 0.005 mg/m3 (126) to 0.2 mg/m3 (127, 128).

 



    

36

Metabolism and toxicity of cadmium 

Cadmium is a non-essential trace element that has a tendency to mimic other more essential 

elements when introduced into biological systems.  Acute oral intoxication leads to vomiting, 

nausea, and headache, while acute respiratory cadmium toxicity is very rare, requiring 

concentrations higher than any occupational exposure (15).  Chronic respiratory exposure to high 

levels of cadmium has been associated with obstructive airway disease, emphysema, renal 

failure, bone disorders and immunosuppression, particularly in highly exposed workers (129).  A 

rare and extreme example of chronic cadmium poisoning was the epidemic of itai-itai (ouch-

ouch) disease in the Toyama prefecture of Japan in the 1950s, so called because ingested 

cadmium competitively replaced bone calcium, resulting in bone fragility, painful deformation 

and fracture (chronic osteomalacia).  This outbreak was a consequence of pollution of the 

community’s water source by a nearby mine (5).   

Between 10 and 90% of inhaled cadmium is absorbed by the lung, depending on the form of 

cadmium involved.  Cadmium chlorides, nitrates, and sulfates tend to exist in the form of soluble 

dusts, which easily passes through cellular membranes.  Conversely, insoluble cadmium 

hydroxide and cadmium sulfide dusts are poorly absorbed, and are largely cleared by ingestion 

by alveolar macrophages before entering the cell (16).  When heated, cadmium also forms oxide 

fumes (5) which undergo a chemical transformation in the lung and are easily absorbed.

 

Cadmium is very slowly eliminated from the body; it has a half-life of 5 to 10 yrs in the liver, 20 

years in the lung, and a lifetime in the kidney.  Once absorbed into the bloodstream, cadmium is 

transported to the liver, where it is bound to metallotheionein, which acts to protect the body 
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from its immediate toxicity.  It then is transported in its bound state to the kidney, where it is 

filtered but minimally eliminated.  Its presence can induce renal damage if sufficient 

metallotheionein cannot be produced to re-bind it.  As such, urinary cadmium is a good measure 

of cumulative exposure in a person with healthy kidneys, while blood cadmium is a better 

measure of current exposure (15).  Susceptibility to the toxic effects of cadmium therefore 

depends partly on the availability of metallothionein, which may genetically influenced (130).

Experimental evidence

Animal study evidence  

The first evidence of the toxicity of cadmium arose from injection experiments conducted in the 

early 1960s which found that cadmium salts induced cancer at the site of injection.  Experimental 

animal studies have since demonstrated that exposure to cadmium causes benign and malignant 

tumour formation in several organ sites and by several routes of exposure (131).   The respiratory 

system is the primary target site for carcinogenesis after cadmium inhalation.  While injection 

and ingestion studies in rodents have produced mixed results (132, 133), inhalation studies show 

consistently positive associations between cadmium exposure and lung cancer.  An influential 

study by Takenaka et al in 1983 revealed an unequivocal dose-dependent increase in pulmonary 

cancer incidence in rats continuously exposed to cadmium chloride aerosol (134).  Since that 

time, positive associations between cadmium exposure and lung cancer have been found by 

several other inhalation studies (131, 135, 136).  However, in extrapolating these results to 

humans, it is important to acknowledge that animal experiments were conducted at much higher 

doses than most human exposures. 
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In vitro evidence and potential mechanisms 

Mechanistic and genotoxic aspects of cadmium carcinogenesis have been reviewed extensively 

over the past several years (129, 131, 136, 137).  Most reviews conclude that cadmium is only 

weakly genotoxic  (131, 136, 137), and corroborate conclusions from animals studies that 

cadmium’s mechanisms of carcinogenesis or co-carcinogenesis are likely multiple (131).  In

vitro models suggest several plausible mechanisms by which cadmium could exert its effects, 

from initiation to apoptosis.  The carcinogenic effects of cadmium likely stem from its mimicry 

of other essential nutrient metals, as it competes for binding at sites involved in gene regulation, 

enzyme activity, and other means of maintenance of genomic stability (5, 137).  Cadmium may 

weakly bind to DNA and act through an epigenetic mechanism (131), or may mediate 

carcinogenesis by production of oxidative stress (131, 137), modification of transcription factors 

(138), or reduction of antioxidant defenses (41, 137, 139).  There is particularly strong evidence 

that cadmium inhibits the mismatch repair mechanism of DNA repair (140, 141) by 

preferentially binding zinc-finger motif sites (131).  Indeed, the presence of zinc has been 

observed to reduce the carcinogenic effect of cadmium in the lung.  In vitro evidence and 

genotoxicity studies also that indicate that cadmium may be a co-carcinogen when combined 

with other genotoxic agents (41, 131). 

Possible mechanisms of cadmium carcinogenesis have also been studied in humans, by 

correlating environmental exposure with genetic damage. However, most such studies have 

suffered from methodological limitations such as small sample size, selection bias, insufficient 

characterization of exposure, and confounding.  Additionally, because of a lack of consensus 

about the mechanisms being explored, cytogenetic endpoints have been inconsistent between 
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studies.  Although some studies have found a positive correlation between cadmium exposure 

and cytogenetic endpoints (142), the findings with regard to cadmium’s mechanism of action in 

humans remain conflicting and no definite conclusions can be drawn (143, 144). 

Epidemiological Evidence 

Increased incidence of cancer after cadmium exposure was first observed in nickel-cadmium 

battery workers in the 1960s (145), and was subsequently studied in numerous occupational 

cohorts.  In 1993, evaluations by IARC concluded that the evidence presented by these initial 

studies, in combination with animal and experimental studies, provided sufficient proof that 

cadmium is a human carcinogen.  Their evaluations were largely based on increased risk of lung 

cancer observed in occupational cohort studies of nickel-cadmium battery manufacturers (146-

148), cadmium processing workers (149-153), and smelter or recovery plant workers (154-156).  

In the majority of these studies, risk was increased by 10 to 50%, but in some highly exposed 

groups, standardised mortality rates were as high as 200. 

The preliminary occupational cohort studies that formed the basis of IARC’s evaluation had 

important and widely acknowledged limitations, such that the carcinogenicity of cadmium alone 

continued to be questioned.  The cohorts studied tended to have small numbers of long-term, 

highly-exposed workers and only rough exposure assessment data.  They were also subject to 

potential confounding by cigarette smoking and other occupational carcinogens, particularly 

arsenic (in smelting crude ore) and nickel (in nickel-cadmium battery workers) (5, 119, 157).  

These limitations have since been addressed in updates to several of the cohorts, which include 
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improved assessment and quantification of exposure data, extended cohorts, updated mortality 

statistics (9) and better control of confounding variables.

Results from the most significant cohorts that contributed to the IARC decision, as well as 

conclusions from subsequent updates, are briefly presented here. 

Nickel-cadmium battery cohorts 

Reports on occupational health in the first nickel-cadmium battery cohort in the UK began as 

early as the mid-1960s (145, 158).  Early evaluations of cumulative exposure to cadmium 

hydroxide dust revealed positive associations between exposure and respiratory cancer in small 

subgroups of moderate- to highly-exposed workers in the UK (SMR=130; 95%CI=107-157) 

(146, 147).  A nickel-cadmium battery factory in Sweden equally found that exposure to long-

term, high level exposure to cadmium was associated with increased risk of cancer (SMR=133, 

95%CI=60-260), particularly after a latency period of over 20 years (159).  However, the roles of 

nickel and other confounders were not sufficiently addressed in either of these cohorts.  

Subsequent methodological improvements and updates to the UK cohort reduced the observed 

association between cumulative cadmium hydroxide exposure and lung cancer (SMR = 111, 

95%CI = 81-148) (9).  Conversely, after extension of the Swedish cohort and quantification of 

cumulative cadmium oxide and nickel exposure, risk of cadmium-associated lung cancer 

remained elevated but barely significant as compared to regional death rates (SMR = 176 

95%CI=101-287) after controlling for arsenic and smoking (123).  Despite improvements in 

methodology and measurement, there was no evidence of dose-response relationship in either of 

these cohorts.
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Cadmium recovery workers cohort 

The NIOSH-associated GLOBE study involved a cohort of US cadmium recovery workers 

exposed to several species of cadmium including cadmium oxide, sulphide, sulphate, and metals.  

Studies conducted in the 70s and 80s consistently found a positive relationship between 

cadmium exposure and risk of lung cancer (154, 156).  Neither confounding by arsenic, an 

impurity in the feedstock and a previous product of the same plant, nor smoking was considered 

to account for the excess mortality.  Dose-dependent associations were retained in an update to 

the study cohort using more accurate, quantitative estimates of cumulative exposure (156).  

However, a matched case-control conducted using the same dataset firmly contradicted these 

results and found that the effect of cadmium was greatly reduced after careful consideration of 

the effects of arsenic and smoking (160). Nonetheless, the GLOBE study was the only study with 

quantitative measures before 1993, and therefore likely played an influential role in the 1993 

IARC evaluation of cadmium’s carcinogenicity (119).

After the contradictory results regarding confounding by arsenic were reported for the GLOBE 

cohort, a portion of the exposure estimates were re-evaluated using more specific job 

environments, which highlighted important misclassification errors in the exposure estimations 

for this cohort (127).  A subsequent update of the cohort found a positive relationship between 

quantitative measures of cumulative cadmium exposure and lung cancer.  However, the observed 

dose-dependent relationship was not confirmed in the absence of arsenic, which was highly 

correlated with cadmium exposure (161).   
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Cadmium processing plant cohorts 

Beginning in the 1980s, a series of studies by Kazantzis and colleagues examined the association 

between exposure to a variety of cadmium products, including stabilizers and pigments, in 

cadmium processing plants in the UK.  Arsenic was present in some factories, while nickel and 

chromium were present in others.  Increased mortality of only borderline significance was 

observed after low, medium and high intensity cadmium exposures at various durations.  No 

clear dose-dependent relationships were observed, and if those unexposed to arsenic were 

analysed separately, no association was found (149-153).  

Potential confounding by arsenic was further demonstrated in a cohort of copper-cadmium alloy 

workers, where no association was found between cumulative exposure to cadmium oxide fumes 

and lung cancer, despite consideration of time since exposure. An updated analysis of this cohort 

using and quantitative measure of cumulative exposure to cadmium oxide fumes also failed to 

find increased risk in exposed workers as compared to the national population.  However, a third 

category of workers also employed in the vicinity showed increased cadmium-associated risk; 

these workers were particularly likely to have been co-exposed to arsenic while working in 

nearby shipyards (128). Another investigation of workers in a large zinc-lead-cadmium smelter 

did not produce a positive association between lung cancer and cumulative cadmium exposure.  

When co-exposure to asbestos and arsenic were controlled, there was no association between 

cadmium exposure and lung cancer (149).  Similarly, a new cohort of tin smelter workers with 

quantitative measures of both arsenic and cadmium exposure found little evidence of an effect of 

cadmium in the absence of arsenic.  However, the two substances were highly correlated (126).
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Confounding

Occupational co-exposures

Although recent updates to a number of occupational cohorts have attempted to address 

occupational confounding, it is widely acknowledged that the observed inconsistencies between 

studies may well be due to the presence of other occupational carcinogens such as arsenic and 

nickel (9, 119).  Arsenic is the main occupational co-exposure that has interfered with 

interpretation of cohort study results and prevented definitive conclusions regarding the 

carcinogenicity of cadmium.  In cohorts where co-exposure exists, cadmium and arsenic are so 

closely correlated that removing or controlling for arsenic negates any potential for observation 

of an effect of cadmium (126, 152, 161), while cohorts relatively free of arsenic exposure tend to 

have equivocal or negative results.  Similarly, most studies of nickel-cadmium battery plants 

have not been successful in distinguishing between the effect of nickel and cadmium (9, 123).  

These observations suggest that cadmium may simply me a marker for stronger carcinogenic 

agents such as arsenic (119).  It is also possible that cadmium is a cancer promoter that requires 

the presence of an initiator to exert its effects. 

While much attention in the literature has been given to arsenic and nickel, other more prevalent 

and powerful occupational confounders such as asbestos insulation, silica from refractory brick, 

and PAHs have been entirely neglected in most analyses.   

Smoking

Lifestyle factors such as diet and smoking may be at once sources of unmeasured cadmium 

exposure and a potential independent risk factor for lung cancer (162).  Due to the design of 

occupational cohort studies, control of smoking has been poor or non-existent in the majority of 
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the studies conducted to date.  Many authors have surmised that smoking history is unlikely to 

vary between exposed and unexposed individuals (9), while studies adjusting for confounding by 

smoking for those with available histories have found that it has changed risk estimates only 

marginally (123).   

Carcinogenicity at other sites and by other routes of exposure 

Ingestion of high levels of cadmium has been associated with several types of cancer in animal 

studies, including the testicles and prostate as well as the liver, pancreas, adrenal, pituitary, and 

hematopoeitic systems (131).  In humans, cadmium has also been associated with several cancer 

sites, including kidney, pancreas, breast, and prostate (5, 119).  However, there is mixed 

evidence that exposure to ingested or environmental cadmium is a lung carcinogen in particular.  

Ecological studies provide an interesting alternative to the use of occupational cohorts in the 

examination of the relationship between cadmium exposure and lung cancer.  They necessarily 

(but inaccurately) take into account all potential lifelong sources of cadmium exposure, including 

those in water, food and air, and therefore automatically control for diet and smoking.  While 

many studies of environmental exposure have not found dose-dependent relationships between 

cadmium ingestion and lung cancer (119, 122, 163, 164), recent studies using sensitive 

biological indicators of cumulative exposure observed an increased risk of lung cancer at high 

cadmium exposure levels after adjustment for age, sex, and smoking (165-167).  One prospective 

population-based study recorded a hazard ratio of 1.7 (95%CI=1.01-2.45), an association that 

remained after adjustment for arsenic exposure for the 26% of the population for whom data 

were available (HR = 1.60; 95%CI 1.04 – 2.45) (165).  Another environmental study similarly 

found that overall lung cancer risk was elevated in those highly exposed to environmental 

cadmium (166).  
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Conclusion

In recent years, improved study design has not strengthened the evidence of an effect of 

cadmium on lung cancer. Associations observed in early occupational cohorts have not been 

consistently replicated in later investigations and updates.  Although elevated mortality rates in 

cadmium-exposed cohorts have been maintained in several settings, they have always been under 

200 and of borderline significance (119).  Few consistent or specific dose-dependent 

relationships have been observed, and consideration of exposure to confounders, particularly 

arsenic, has tended to weaken observed associations.  Indeed, when both dose-response 

relationship and arsenic exposure are taken into account, none of the studies support the 

hypothesis of a carcinogenic effect of cadmium (9, 119).  However, experimental evidence 

suggests that at the very least, cadmium could be an important cancer promoter or co-carcinogen, 

likely operating through non-genotoxic mechanisms.  Thus, while cadmium may remain an 

important factor in the development of lung cancer, it seems that a definitive, independent 

association between cadmium and lung cancer is far from being proven from an occupational 

epidemiology perspective.   
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STUDY METHODOLOGY
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This study was conducted using data from two population-based case-control studies of 

occupational exposures and lung cancer.  Both studies were conducted in greater Montreal, the 

population of which was 2.7 and 3.1 in 1979 and 1996 respectively (168).  The first study, 

labeled here as Study I was conducted from 1979 to 1986, and included males aged 35 to 70 

diagnosed with cancer at any of 19 sites (169)(170, 171). The second study, labeled here as 

Study II, was conducted from 1996 to 2001 and included men and women aged 35 to 75 

diagnosed with a lung malignancy.  In both studies, cases and controls were restricted to 

Canadian citizens.  Because of the very small numbers of women professionally exposed to 

chromium, cadmium, and nickel, the present analyses were restricted to male subjects. 

Case ascertainment 

Both studies included patients with incident, histologically confirmed cancers identified across 

all major Montreal-area hospitals, and living in the Montreal area, assuring a virtually complete 

population-based ascertainment of cancer cases.  Details of subject ascertainment and data 

collection have been presented in detail previously (169, 172, 173).

Selection of controls 

Both studies included a series of population controls randomly selected from electoral lists.  In 

Quebec, electoral lists were maintained by means of active enumeration of households until 

1994; they have since been continually updated and are thought to represent nearly complete 

listings of Canadian citizens residing in the province.   In Study I, population controls were 

frequency matched to all cancer cases by age, and area of residence, based on electoral districts 

of about 40,000 individuals.  In Study II, controls were similarly recruited according to the 
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distributions of age, sex, and area of residence of lung cancer cases.  In Study I, a second group 

of controls comprising 1,349 patients with cancer at 18 other sites was ascertained in the same 

years and hospitals as the lung cancer cases.  A cancer control set was then created so that none 

of the individual cancer sites represented more than 20 percent of the overall pool of cancer 

controls.

Response rates 

In Study I, 1,082 lung cancer cases and 740 population controls were approached. Of these, 857 

(79 percent) cases and 533 (72 percent) population controls completed the interview.  In Study 

II, 858 eligible male cases and 1,024 eligible male controls were approached, and 86 percent and 

70 percent of these, respectively, agreed to participate and completed the interview.   In Study I 

and Study II, interviews were completed by the targeted subjects in over 82 percent and 76 

percent of individuals, respectively, whereas surrogate respondents (proxies) provided 

information for the other participants. 

Data Collection 

After giving informed consent, each study subject or proxy was individually interviewed by a 

trained interviewer at the time and place of the subject’s choice.  Interviews were divided into 

two sections: a structured section requested information on socio-demographic and lifestyle 

characteristics, and a semi-structured section elicited a detailed description of each job held by 

the subject in his working lifetime. Occupations were coded according to the CCDO 

classification system (174).   For each job held, the subject was asked about the nature of the 

work environment, the subject’s main and subsidiary tasks, and any additional information that 
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could provide clues about work exposures and their intensity (e.g., equipment maintenance, use 

of protective equipment, activities of coworkers).  For some occupations, supplementary 

questionnaires were used to assist interviewers with detailed technical probing (175). 

Exposure assessment 

The methodology for exposure assessment has previously been presented in detail (169, 173).  A 

team of chemists and industrial hygienists examined each completed questionnaire and translated 

each job into a list of potential exposures using a checklist of 294 common occupational agents.  

Non-exposure was interpreted as exposure up to the level found in the general environment and 

population.  For each substance considered present in each job, the duration of exposure was 

considered to be the duration of the job.  The coders also noted information on three dimensions 

of exposure: their degree of confidence (reliability) that the exposure had actually occurred 

(possible, probable, definite), the relative concentration level of the agent (low, medium, high), 

and the frequency of exposure in a normal work week.  In Study I, frequency was estimated as a 

percent of a 40-hour work week spent exposed to the substance (<5 percent, 5–30 percent, >30 

percent); in Study II an estimation of the approximate number of hours/week was recorded.  The 

exposure assessments were based not only on the worker’s occupation, industry, and job title but 

also on individual characteristics of the workplace and tasks reported by the subject; there were 

many examples of subjects with the same job title having different exposure profiles, and 

conversely, similar exposures were attributed to many subjects with different job titles. An 

illustrative example can be found in the Appendix of Parent et al. (176). 
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For each of the metals considered in this paper, coders established reference benchmark 

occupations to guide their assignment of concentration levels.  Similar benchmarks were used for 

both studies.  Low- to medium-concentration exposures for nickel included benchmark 

occupations such as electroplating, and MIG or TIG welding on stainless steel.  For chromium 

VI, it was understood that low to medium concentrations occurred during welding, tanning, 

pigment production, spray painting, and electroplating.  Cadmium exposures were attributed to 

electroplaters, PVC producers, ceramists, artists, and painters. 

A team of coders spent about 40 person-years on this project, which included methodology 

development, interview quality monitoring, background research on exposures in different 

occupations, coding the individual participants’ files, and recoding after the initial complete 

round of coding was finished.  The final exposure codings attributed to each participant were 

based on consensus among the coders, who were blind to the subject’s disease status.

Data were also collected on a large number of other variables including ethnicity, family income, 

selected dietary items, and alcoholic beverage consumption.  A detailed smoking history was 

also collected, including estimates of cumulative tobacco exposure in cigarette-years, pauses in 

cigarette consumption, quitting behaviour, and second-hand smoke exposure.  For inclusion in 

the present analyses, subjects were required to have completed both the socio-demographic and 

the job history interviews. 
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Data analysis 

For each study, unconditional logistic regression (177) was used to estimate odds ratios (ORs) of 

lung cancer and 95 percent confidence intervals (95% CIs) after exposure to nickel, chromium 

VI, or cadmium.  Subjects were categorized as unexposed or ever exposed.  Because of a 

necessary minimum latency period, those exposed only in the 5 years prior to interview were 

considered unexposed.  Individuals classified as having had only possible likelihood of exposure 

(low reliability) were excluded from most analyses.  Ever exposed individuals were further 

classified into two exposure subcategories: non-substantial and substantial exposure.  Subjects 

with substantial exposure had been exposed to medium or high concentrations of cadmium for 

more than five percent of their work week, and for five years or more.  It may be seen as being 

analogous to a cumulative exposure measure. 

In addition to analyzing a single categorical measure of cumulative exposure, we had the 

opportunity to explore the effect of several other dimensions of exposure: duration, 

concentration, frequency, and intensity (concentration x frequency).  The impact of each of these 

dimensions on lung cancer risk was examined individually, both as continuous variables and 

after categorization with a variety of cutpoints.  Cross-tabulations were also performed to 

examine risk as a function of different combinations of these dimensions; for example, risk with 

low, medium or high exposure duration at low, medium or high concentrations was explored.   

A variety of potential confounders were routinely included in analysis, including socioeconomic 

status measured by family income, schooling level, ethno-cultural background, and respondent 

status (self, proxy).  In order to control for smoking, we used an optimized approach to 
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parameterization of smoking based on a risk model derived from our study subjects (178, 179), 

which consisted of a three-variable model that provided the best fit for analysis of the effect of 

smoking: ever smoking, the natural logarithm of the number of pack-years, and number of years 

since quitting smoking.  Potential effect modification by smoking was also explored, where non-

smokers were defined as having smoked fewer than 100 cigarettes in their lifetimes or having 

quit over 20 years previously.

The effect of co-exposure to other common and a priori occupational confounders was also 

considered using a change-in-estimate criterion (180).  Those that changed the estimate of 

association by over 5% were retained.  Occupational co-exposures retained in the complete 

model for nickel and chromium VI were asbestos, silica, benz-a-pyrene, and nickel or chromium 

VI.  The final model for cadmium included asbestos, silica, benz-a-pyrene, lead, and nickel.  

Other potentially important confounders, such as cadmium in the case of nickel, and arsenic in 

the case of cadmium, were not present in sufficient quantities to affect point estimates and were 

not retained in the final model. 

Pooling control groups and studies

In Study I, population and cancer control groups were first analysed individually, and then 

pooled together if individual results were of the same magnitude and direction.  Given that it was 

difficult to ascertain which group gave more accurate results in this context, cancer controls were 

weighted such that population and cancer controls contributed equally to the combined control 

set.  Similarly, when the results from Study I and Study II showed parallel trends and largely 

overlapping confidence intervals, a pooled analysis was also conducted.  Cases and controls from 
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each study were simply added together, and a binary study adjustment term was added to logistic 

regression models.

Ethics approval was obtained for both studies from each participating hospital and university. All 

participating subjects provided informed consent. 
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RESULTS 
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Study Population Characteristics 

The distribution of subjects according to selected socio-demographic characteristics is shown in 

Table 2.  As expected, cases were more likely to be current smokers and had smoked more than 

controls.  Interviews were more likely to have been conducted with a proxy for cases than 

controls.  Cases had a lower median family income and fewer years of education than controls.

Exposure and co-exposure prevalence

Table 3 shows the lifetime prevalence of occupational exposure to nickel, chromium VI, or 

cadmium in each study.  Prevalence of any exposure to nickel or chromium VI in this sample of 

Montreal men was between 6 and 11%; cadmium exposure was somewhat lower.  There was 

substantial exposure to each metal in between 1 to 2% of the population, except for cadmium in 

Study I, where substantial exposure was less than 0.5%.  There was little difference in exposure 

prevalence between cases and controls, though cases were more likely have been substantially 

exposed than controls in Study II.

The degree of co-occurrence between the three metals is illustrated in Figure 1.  Overall, nickel 

and chromium VI co-occurred in about 50% of subjects, more frequently in controls than cases, 

and were often associated with similar occupations (results not shown).  As expected, each was 

found to moderately affect risk estimates for the other.  However, investigation of their combined 

effects revealed no interaction between their effects (results not shown).  Co-exposure to 

chromium VI was also common among those exposed to cadmium, but analyses of the effects of 

co-exposure were not conducted due to small sample size.  
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For each metal in question, co-exposure to other common occupational agents was explored.  In 

the pooled dataset, exposure to all three metals heavily coincided with PAHs, particularly benz-

a-pyrene. Occupational co-exposure to strong lung carcinogens such as asbestos and silica was 

also common in those exposed to nickel and chromium VI.  Arsenic, a common confounder of 

cadmium risk estimates in many occupational cohorts, did not co-occur with cadmium in this 

dataset; as such cadmium risk estimates may be considered unconfounded by arsenic.

Occupational profiles 

Table 4 shows the occupations in which these metals were attributed in our study subjects.  For 

the most part, occupational profiles within metals were consistent between Study I and Study II; 

given the small number of jobs in each study, some variation was expected.  The majority of 

nickel exposures occurred in sheet metal workers, metal machinists, and metal product 

fabricators; chromium VI exposures occurred in construction painters, sheet meal workers, and 

mechanics; and cadmium exposures occurred in metal machinists, sheet metal workers, metal 

product fabricators, and graphic artists.  Overall, metal exposures occurred in similar occupations 

but in different proportions. Those exposed to nickel were more likely to have held jobs related 

to metal work, while those exposed to chromium VI were more likely to have held jobs in 

plastics processing, painting, printing, and vehicle maintenance.  Because many subjects were 

exposed to several agents at some point in their lives, these exposures may have occurred in the 

same jobs; however, this is certainly not necessarily the case.     
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Risk estimates

Study I: population and cancer controls

Table 5 shows odds ratios derived from separate use of population and cancer controls in Study 

I, and compares them to results pooling both control sets.  Similar trends were observed in 

population and cancer controls, and results for each metal were of the same magnitude and 

direction.  Risk estimates using cancer controls were consistently higher than those using 

population controls, but were well within the bounds of their common confidence intervals.  As 

such, pooling of population and cancer controls was deemed justified; pooled results provided a 

good summary of the results obtained using separate controls, and slightly decreased confidence 

intervals. 

Study I and II: pooled results

Table 6 details the average concentrations of exposure to nickel, chromium VI, and cadmium 

attributed to the participants of Study II.  The majority of exposures were categorized as being of 

low to medium concentration, while very few participants were exposed to these metals at 

concentrations over 2.  Measures of intensity for Study I were similarly low (data not shown).   

Table 7 presents a summary of the odds of being diagnosed with lung cancer after exposure to 

nickel, chromium VI, or cadmium, adjusted for age, respondent status, years of education, and 

smoking.  Risk estimates for ever having been exposed to nickel or chromium VI were higher in 

Study I than Study II, but overall, similar trends were observed in both studies.  As such, pooled 

results are mainly summarised here.  The pooled data indicated that a small but significant 
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increase in lung cancer risk was observed in subjects exposed to nickel (OR = 1.27; 95% CI = 

1.1 – 1.7).  At the exposure levels experienced by this population, there was no increased risk of 

lung cancer after exposure to any level of chromium VI (OR=1.12, 95%CI = 0.9-1.5).  The risk 

estimate for cadmium was elevated but of borderline significance, with large confidence 

intervals (OR = 1.54 95% CI = 0.9 – 2.7).

Exposure dimension estimates

Odds ratios were computed separately for each available dimension of exposure, including 

duration, intensity, frequency, and concentration.  None of these showed clear trends for any of 

the agents (data not shown), except possibly the analyses of duration.  Table 8 shows the ORs by 

duration in the pooled study analysis.   Odds of lung cancer tended to increase with duration of 

nickel exposure in both Study I and Study II, with a significantly elevated risk observed with 

over 20 years of exposure at any level of exposure (pooled OR=1.56 95%CI = 1.1-2.3). Greater 

risk was also observed in those exposed to cadmium for over 20 years, while no duration-

dependent effect was observed after chromium VI exposure.    

Cumulative exposure estimates

Risk estimates for two levels of cumulative exposure, categorised as substantial and non-

substantial, are also presented in Table 7. Very few subjects were exposed at the substantial 

level, and as such risk estimates for this category were somewhat unstable.  For all three metals, 

substantial exposure increased risk in Study II, but not in Study I. Overall, those with substantial 

exposure to nickel or cadmium had increased risk of lung cancer, while those exposed to 

chromium VI were not at increased risk regardless of exposure level. Most exposures in this 
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study were categorized as non-substantial, because the number of jobs with high estimated 

concentrations was low.

Adjustment for confounding by smoking and occupational co-exposures 

Smoking did not appear to be a strong confounder of the relationship between metal exposure 

and lung cancer in this study. After adjusting for age, respondent status, and SEP, the marginal 

effect of adding smoking as a covariate reduced the ORs for each metal by less than 7%.  

Adjusting for occupational confounders also tended to slightly weaken observed associations, but 

did not affect conclusions.

Effect modification by smoking

The effects of exposure to nickel, chromium VI, and cadmium were also explored separately in 

smokers and non-smokers.  752 men in this study were non-smokers, of 90 whom were cases.  

Table 9 shows the odds ratios for exposure to each agent, stratified by smoking history.  For all 

three metal compounds, significantly increased risk of lung cancer was found among those 

exposed in non-smokers but not in smokers.  This trend was observed in both studies 

independently, with particularly strong (but imprecise) effects observed in Study I.  Pooled data 

showed that exposed non-smokers had approximately 2.5 the odds of having lung cancer 

compared to unexposed non-smokers in those exposed to nickel or chromium VI, and over four 

times the odds in those exposed to cadmium.  Meanwhile, odds ratios among smokers hovered 

around 1.1 for nickel and cadmium, and 1.0 for chromium VI.  Interaction terms between 

smoking status and each metal entered into the logistic regression function were significant for 

each metal, indicating a departure from a multiplicative joint effect.  Figure 2 presents odds 
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ratios and confidence limits for each metal, stratified by smoking history. It illustrates that ORs 

were consistently higher among non-smokers than among smokers, and that confidence intervals 

barely overlapped for nickel and chromium VI.   

Figure 3 presents the additional risk incurred by those exposed to each metal, stratified by 

smoking history. [The additional risk associated with exposure to each metal was calculated 

based on 2x2 OR tables for subjects exposed to a metal only, tobacco only, or both.] The 

additional absolute risk attributable to exposure to cadmium and nickel was almost identical in 

smokers and non-smokers. Exposure to nickel and cadmium therefore appeared to have an 

approximately additive effect on lung cancer risk.  Such a distinct trend was less clear in those 

exposed to chromium, as no excess risk was detected among smokers.   

Non-smokers did not appear to have different co-exposures than smokers, and did not have a 

greater tendency to be proxy responders. Adjustment for occupational confounders further 

increased the distinction between smoking categories, but decreased estimate precision. 

Because of the small number of non-smokers in the study population, there was a relatively small 

difference between risk estimates for the metals among smokers and in the entire study 

population.  We therefore chose to retain adjusted, unstratified results in Table 5, as it would 

allow more easy comparison with previous works.   
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Factors affecting data quality 

Exposure reliability 

For each substance considered present in each job for each subject, coders estimated their degree 

of confidence that the exposure had actually occurred as being possible, probable, or definite, 

which may be translated into low or uncertain, medium, and high estimate reliabilities.  The 

effects of exclusion of low reliability estimates were different for each substance, as detailed in 

Table 10.  Results are presented from the pooled dataset, but represent trends observed in both 

independent studies.  Only 29 nickel-exposed individuals were attributed exposures at low 

reliability, but those with low reliability exposures had an OR of 3.1.  The 95% confidence 

interval for this estimate (1.1 to 9.1) was much higher than that obtained for the majority of risk 

estimates with medium to high reliability (OR = 1.28, 95% CI = 1.0 – 1.7).  However, because so 

few individuals were concerned, exclusion of low reliability estimates did not affect the point 

estimate or confidence intervals for nickel-associated risk.  In subjects exposed to chromium VI, 

very little difference was observed between high and low reliability exposure estimates; no effect 

was observed regardless of reliability.   For subjects exposed to cadmium, a much larger 

proportion of exposures were estimated at low reliability.  In this case, their removal served to 

increase the point estimate of the association between cadmium and lung cancer.  While by 

definition more reliable, the estimate excluding low reliability estimates was less precise, due to 

the absolute decrease in the remaining number of exposed individuals. 

 

Because their exclusion had little effect on point estimates for nickel and chromium, and 

increased point estimates for cadmium, low reliability estimates were excluded from the final 

analyses of all three metals. 
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Non-response bias

The characteristics of non-respondents were not collected in either Study I or Study II, so it is 

difficult to quantify the extent or direction of non-response bias.  There is no reason to believe 

that occupational exposure among cases would have varied between respondents and non-

respondents, particularly given that proxy interviews were conducted for deceased or extremely 

ill cases.  Conversely, a number of factors conceivably associated with metals exposure, 

including education and socio-economic status, may have affected response rates among 

controls.  For example, given that controls tended to be more educated and richer than cases, 

they may have been less likely to occupy blue-collar positions where metals exposures occurred.  

If this was the case, odds ratios may have been slightly underestimated in our analysis. 

Proxy response

Interviews were completed by proxy respondents for 18 percent of subjects in Study I and 24 

percent of subjects in Study II.  Interviews were more likely to have been conducted with a proxy 

for cases than controls, and metal exposures were more likely to have been attributed in 

interviews with self than proxy responders (data not shown). Table 11 separately details the odds 

ratios obtained through interviews with proxy and self respondents.  For nickel and chromium 

VI, odds ratios for proxy respondents were lower than those for self respondents, indicating that 

data quality may have been compromised for proxy respondents.  For cadmium, no exposures 

were assigned to proxy controls, precluding interpretation.  In order to evaluate whether the 

inclusion of proxy respondents may have biased the findings, we conducted a sensitivity analysis 

excluding proxy response.  There was very little difference in risk estimates between odds ratios 

obtained with and without proxy respondents (data not shown).  As such, we included proxy 

respondents in our analysis. 
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DISCUSSION 
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Substantive findings

Most epidemiological studies on heavy metals have been conducted in cohorts of highly exposed 

workers, but workers across the entire occupational spectrum are exposed to these agents at 

much lower levels.  While it is initially useful to focus the search for potential carcinogens on 

high exposure conditions, which are more likely to produce detectable effects, it is just as 

important to evaluate them in conditions that are more widely experienced by workers.

Indeed, the effects of nickel, chromium VI, and cadmium at lower exposure levels are the subject 

of ongoing debate.  Some argue that mechanistic evidence points to the existence of a threshold 

effect for nickel and chromium VI (19, 24, 68, 92), but this is not universally accepted (52, 108).  

The determination of low exposure effects has important regulatory implications: for example, 

the existence of thresholds could be used to justify the maintenance of current occupational 

exposure limits, while linear exposure-relations would indicate their reduction. 

In this study, the potential effect of exposure to nickel, chromium VI, or cadmium was examined 

in a variety of occupations and industries and in a range of intensities and durations of exposure.   

Although the nature of our exposure estimates did not allow us to make direct comparison with 

the quantitative exposure levels of other studies, it is likely that even those with the greatest 

exposure concentrations in this study fell into the lower exposure categories in most high-risk 

occupational cohorts of metal refiners, miners, processors and recovery workers.  Thus, this 

study represents an evaluation of risks among workers in conditions that have not previously 

been evaluated. 
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Nickel

This study’s results were compatible with previous findings that small increases in lung cancer 

risk may exist even at low levels of nickel exposure (43-45, 49, 52).  The odds ratio estimate for 

lifetime nickel exposure in this study (1.27) was compatible with most other recent risk 

estimates, which have consistently hovered between 1.3 and 1.5 (10, 44, 47, 49).  Consistent 

trends for cumulative exposure and exposure duration were also observed, which should further 

increase confidence in these results.  This implies that men employed in occupations such as 

sheet metal work, metal machining, and metal product fabrication may continue to experience a 

small but elevated risk of lung cancer as a result of moderate levels of nickel exposure.    

The observed overall risk related to exposure to nickel compounds was particularly evident in the 

stratum of non-smokers, where a significantly elevated odds ratio was observed. The combined 

effect of nickel and smoking was compatible with an additive joint effect. Only a few studies 

have examined the joint effects of nickel and smoking.  Andersen et al (1996) reported that while 

risk among smokers almost doubled after exposure to nickel, exposure to nickel had little effect 

in non-smokers (47).  This was based on very few cases in categories other than exposed 

smokers, such that risk estimates in the other categories may have been unreliable.  Examination 

of an interaction between smoking and soluble nickel in two other investigations similarly 

suggested a sub-multiplicative interaction, although the interaction terms were not always 

significant.  However, there were no cases among never-smokers, so a completely unexposed 

reference group was not available for analysis. (10, 44, 181). 
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Chromium VI 

Workers exposed to chromium VI in this study included construction painters, sheet metal 

workers, and mechanics.  Lung cancer risk was not elevated in this study’s workers, regardless of 

exposure level, concentration, or duration of exposure.  Given that increased risk has only 

previously been observed at high levels of chromium VI exposure (70, 72, 92, 182), it is likely 

that the exposure levels experienced by these workers were insufficient to produce observable 

effects.  It is difficult to determine whether this lack of effect was due to exposure below a 

threshold concentration, or whether this study was simply too underpowered to detect a small but 

existent effect.   While no overall risk related to exposure to chromium VI compounds was 

observed, there was significantly elevated risk in the stratum of non-smokers. The joint effect of 

chromium VI and smoking was compatible with an additive joint effect, though it was also 

compatible with the somewhat implausible hypothesis that there only is a chromium risk in non-

smokers. There has been no previous evidence on joint effects between chromium and smoking.   

Cadmium

Increased risk of lung cancer was consistently observed among workers with “substantial” 

exposure to cadmium in this study.  Definitive interpretation of these results is difficult; the 

number of substantially exposed subjects was small and resulting confidence intervals were 

wide.  Recent updates of several previously studied cadmium cohorts, often incorporating 

methodological improvements and quantification of exposure, have been similarly equivocal (9, 

123, 126, 161, 183).  As such, the weight of evidence for a carcinogenic role of cadmium in 

occupational cohorts is largely seen to be less compelling than it was 20 years ago (9, 119).  

However, risk associated with exposure to cadmium compounds was again observed in the 
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stratum of non-smokers, where a significant odds ratio was observed. The combined effect of 

cadmium and smoking was compatible with an additive joint effect.  There has been no previous 

evidence on the joint effects of cadmium and smoking. 

Effect modification by smoking 

Perhaps the most compelling evidence of carcinogenic effects of all three metals in this study 

came from the analysis of metal-cancer associations in the stratum of non-smokers. Whereas 

there was little evidence of increases in risk due to these metals in the stratum of smokers, there 

were clear statistically significant increases in the stratum of non-smokers for all three metals. 

This phenomenon was independently observed in both studies, and was assessed using reliable 

estimates of lifetime smoking history.   

These results could be due to chance fluctuations, to unidentified systematic bias, or to a real 

effect.  However, it is unlikely that these results were due to chance, and there were no obvious 

differences in occupational profiles or co-exposures between non-smokers and smokers.  If these 

agents indeed exert a real effect on lung cancer, then the observed pattern of results could reflect 

the greater ease in detecting risk among non-smokers.  This hypothesis is supported by the 

observation that the absolute excess of risk associated with nickel and cadmium was similar in 

smokers and non-smokers. Such a trend was less clear in those exposed to chromium VI, as only 

non-smoking chromium-exposed workers were observed to experience any increased risk.

These findings appear to indicate that all three metals increase lung cancer risk, even at low 

levels of exposure, and have additive effect when combined with exposure to tobacco.  This
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implies that risk at low levels of exposure may have been previously underestimated or even 

undetected in cohorts composed mainly of smokers.  It could also provide part of an explanation 

for apparently conflicting results between cohorts, which may have different proportions of non-

smokers. 

Methodological considerations      

The results of this study – both the positive ones and the negative or null ones – must be 

interpreted in light of methodological strengths, weaknesses and characteristics of this study.  

The following study characteristics are briefly addressed below: exposure assessment, exposure 

parameterisation and categorisation, statistical power, confounding, and effect modification by 

smoking.   

Control groups 

Thoughtful choice of control group is essential to any case-control study.  In Study I, data were 

analysed using two types of controls: cancer controls and population controls.  It is difficult to 

ascertain which control group gave more valid results; each type of control has its own 

advantages and disadvantages in terms of selection, response, and information bias introduced 

(184), and may be more or less effective depending on context.  While population controls may 

more accurately represent the state of the population as a whole, cancer controls are less prone to 

differential information and recall bias.  In Study I, odds ratios obtained using separate cancer 

and population controls tended to be of the same magnitude and direction.  By pooling equally 

weighted cancer and population controls in Study I, any control-specific bias was partly 

neutralized, while sample size and power were increased. 
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Pooling studies 

The similarities in study design and crude results between Study I and Study II also justified their 

pooling.  Final results using data pooled from Study I and Study II, adjusted for study, represent 

a weighted average of the two studies’ results with improved statistical power.   

Exposure assessment 

The exposure assessment method employed in this study is widely considered to be the reference 

method for community-based case-control studies (185, 186).  Similar methods have also been 

used by other research teams exploring occupational exposures and lung cancer (187, 188).  

There are advantages and disadvantages to this exposure assessment approach compared to 

cohort study methods.  Most cohort studies have “more reliable” exposure assessment measures, 

as it is much easier to quantify exposure within one industry than across many work 

environments.  However, workers in a particular cohort share many co-exposures, such that it 

may be difficult to ascribe possible effects to one particular agent.  The assessment method used 

in this study addresses some weaknesses of the traditional cohort-study approach by including 

information on non-occupational confounders and exposures to a wide range of substances based 

on complete lifetime job histories for each subject.  This approach has the advantage of reducing 

confounding by occupation-specific co-exposures, and is likely to more accurately represent 

lifetime exposure.  As compared with most other community-based case-control studies, this 

exposure assessment procedure has the advantage that it does not rely solely on workers’ job or 

industry codes, which can lead to misclassification.  Previous analysis of data from this study has 

revealed that subjects with the same job title have been assigned different exposure profiles; an 

illustrative example can be found in the Appendix of Parent et al (176).  Previous investigations 
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have also shown that the interview-based job histories used in this study were valid (189) and 

that the exposure coding was reliable (190, 191). 

Notwithstanding the considerable resources devoted to exposure assessment in this study, this 

expert-based approach was not based on direct measurements in the workplaces under 

consideration, which undoubtedly led to error and misclassification.  Many factors may have 

influenced the accuracy of exposure assessment, such as the type of occupation, the era of 

exposure, and the quality of the job description elicited from the respondent.  Further, exposure 

identification was limited to broad classes of metal compounds, which were not specific in terms 

of speciation or solubility.  Some of the determinants of the validity of this exposure assessment 

are summarised below. 

Proxy response

Interview and data quality may have varied between self and proxy respondents in this study.  

Indeed, metal exposures were somewhat less likely to be attributed in interviews with proxy 

respondents.  However, given that analyses using only self-respondents produced virtually the 

same risk estimates as those using all respondents, this information bias was likely to have been 

minimal. 

Era of exposure

Even in the best circumstances, it is difficult to take timing of exposure into account.  In this 

study, our exposure assessment experts used all available information to consider variations in 

exposure over time.  However, it is certain that their estimates were imperfect, and that such 

fluctuations caused a certain degree of exposure imprecision or misclassification. 
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Speciation

Metals exist in several different forms or species, and the chemical nature and solubility of each 

species may greatly affect its initial absorption and subsequent behaviour.  Therefore, it cannot 

be assumed that all metal species have the same carcinogenic potential (17, 19, 35).  

Unfortunately, speciation and solubility could not be estimated in either Study I or Study II.  

Given the range of occupational contexts at play, it would have been difficult to accurately 

identify or distinguish them.  Grouping all nickel, cadmium or chromium VI species together 

may therefore have masked the species-specific effects that have been observed in other studies 

(3, 10, 23, 46, 47, 49, 70). 

Impact of exposure misclassification

In the absence of objective measures of exposure, it is certain that a degree of measurement 

imprecision due to exposure misclassification was present in this study.  However, given that 

coders were blind to subject status, it is likely that misclassification was non-differential, and 

therefore more likely to lead to attenuation rather than exaggeration of risk estimates. 

Parameterisation of exposure dimensions 

For each putative carcinogen, risk may be associated to different degrees with different 

dimensions of exposure; the effects of average intensity or duration of exposure, peak exposure, 

age at exposure, or time since exposure may vary between agents depending on their deposition, 

clearance, metabolism, and mechanisms of action. There are therefore as many ideal 

parameterisations of exposure as there are compounds and mechanisms of action.  Without a

priori knowledge of a particular agent’s characteristics, it is impossible to develop the perfect 
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agent-specific combination of different exposure dimensions. Most epidemiologic studies of 

environmental or lifestyle factors, when confronted with analogous dilemmas, have chosen to 

use a cumulative exposure variable as the prime exposure index.  While it may not be optimal in 

every context, it is generally robust enough to detect important effects (192).  In order to estimate 

cumulative exposure, this study used a combination of concentration and duration variables, 

dichotomised into substantial and non-substantial levels.  The cutpoints used in this 

categorisation were chosen after detailed examination of multiple possible combinations of 

exposure dimensions. 

Statistical power 

Statistical power is a function of several parameters, including the numbers of cases and controls, 

the prevalence of the exposure, and the relative risk induced by the exposure (193).  In this study, 

there were a relatively large number of cases and controls, but low metal exposure prevalence.  

In order to maximise the power to detect effects, the number of subject subgroups and exposure 

sub-categories was therefore limited.  Subdividing the study sample into yet smaller subgroups 

would have had the effect of further reducing power.  Our capacity to detect effect may also have 

been limited by a lack of contrast between categories.  Given that the majority of the exposures 

in this population were of low to medium concentration, the contrast between substantial and 

non-substantial exposures was mostly influenced by exposure duration, which may or may not 

have been an important determinant of risk.  While statistical power was a genuine limitation in 

this study, it is one that could not generate false positive associations. However, a lack of power 

might explain why some associations were not detected, and certainly explains the width of 

confidence intervals for most OR estimates. 
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Confounding

It is possible that observed risk estimates were affected by other unmeasured carcinogenic 

exposures related to occupation or lifestyle.  Those associated with the exposure of interest may 

have artificially elevated risk estimates.  Confounding by smoking and occupational co-

exposures has been insufficiently addressed in the epidemiological literature on metal 

carcinogenesis, mainly because complete and reliable data are rarely available in the context of 

most retrospective cohort studies.  In this study, there was unlikely to have been significant 

confounding by smoking or by occupational co-exposures.  With regard to smoking, information 

on lifetime smoking histories were collected and modeled in study analyses.  The fact that this 

study included subjects exposed in a variety of occupations meant that it was unlikely that there 

would be a standard set of co-exposures associated with the three metals, and thus less likelihood 

of confounding by occupational exposures.  Further, detailed information was collected on co-

exposures, and important co-exposures were adjusted for. 

Although an effect stratified by smoking history was found in this population, unstratified results 

adjusted for smoking were retained in the original regression model for ease of comparison with 

other studies, and to demonstrate the overall impact of adjustment with multiple smoking 

parameters.  In this study, as for others, the smoking-adjusted odds ratios constituted weighted 

averages of potentially differential risk in smokers and non-smokers.   
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Exclusion of women 

An important limitation of this study is the exclusion of women.  In Study I, women were 

excluded by design, while in Study II, very few women were exposed to any of the metals of 

interest.  Few other studies have investigated the risk of lung cancer after metal exposure in 

women; those that have tended to find relatively low exposure levels, and consequently, low 

mortality rates (123, 194). Although it has been suggested that there may be sex differences in 

susceptibility to metals (195) mirroring suggestions regarding tobacco smoke, such differences 

are widely contested (196, 197).   Nonetheless, specific proof of equivalent effects in women 

should be obtained before definitive generalisations of these results can be made. 
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Summary

This study measured the risk of lung cancer in men having ever been exposed to nickel, 

chromium VI, or cadmium at levels higher than those expected in the general population, but 

lower than those experienced in most cohort studies of workers with these exposures.  Study 

subjects showed increased incidence of lung cancer after exposure to any level of nickel, while 

exposure to chromium VI did not appear to significantly increase risk.  Data suggested an 

association between lung cancer risk and cadmium, but estimates tended to be unstable and 

lacked precision.  Risk estimates were minimally confounded, and based on reliable exposure 

assessments.  Most importantly, significantly increased risks of lung cancer were observed in 

small subgroups of non-smokers exposed to any of the three metals.  If these findings are a true 

reflection of these metals’ effect in non-smokers, they demonstrate that in the absence of other 

major lung cancer determinants, low levels of exposure to nickel, cadmium, or chromium VI 

remain weak but significant risk factors for lung cancer.   
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PUBLIC HEALTH IMPLICATIONS 
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Millions of workers worldwide are regularly exposed to compounds of nickel, chromium VI and 

cadmium.  In North America and Europe, the number of workers exposed and their exposure 

levels have decreased in recent years, but cancer cases continue to be concentrated in those with 

particularly hazardous jobs (198).  Further, lung cancer is on the rise in the developing world 

(199), and although this rise has primarily been attributed to an increase in cigarette consumption 

(200), it may also be due to the fact that the hazards of production in North America and Europe 

have also largely been exported to countries where occupational environments are less regulated.  

In fact, on a global scale, the risk of cancer associated with producing a given raw material or 

product may not have changed a great deal since the 1960s (201).  Therefore, continued research 

into the long-term consequences of occupational exposure to these metals remains important. 

Further, many more people are exposed to these compounds at much lower levels than 

occupational exposure, from sources such as cigarette smoke, urban pollution, food and water.  

Indeed, it has been proposed that accumulation of cadmium, nickel, and chromium VI from 

tobacco smoke could play a key role in smoking-related carcinogenesis (8, 202).  Thus, 

clarification and characterization of the cancer risks associated with these compounds are of 

major public health concern (103, 105, 108) as well as being pertinent to our understanding of 

lung cancer development and etiology. 

While it has long been suspected or recognized that nickel, chromium VI, and cadmium are 

human lung carcinogens, there remain some major questions about the bodies of evidence on 

which these inferences have been made, particularly at low levels of exposure.  In the past two 

decades, many published studies have failed to replicate the results of earlier studies.  There are 
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many possible reasons for such apparent inconsistencies; subjects were exposed over different 

time periods, and varied in their exposure levels, in the types of metal species to which they were 

exposed, and in the presence of other occupational co-exposures.  Further empiric research is 

required to confidently reaffirm the carcinogenicity of these agents, and to understand the 

conditions in which they are carcinogenic.

Almost all previous research has been based in industries where workers have been exposed to 

these agents at high concentrations, and in a narrow range of conditions.  The majority of 

workers are exposed to these agents across all occupational and industrial sectors at relatively 

lower concentrations and in more heterogeneous conditions. Our study is unique in providing 

empirical evidence on risks related to such conditions.  While many studies have failed to control 

for important co-exposures, our study also had the benefit of being able to collect and control for 

smoking and other potential confounders.  As such, the findings of this study stand to contribute 

to the evidence base concerning these important potential carcinogens. 
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Table 1.  Approximate daily absorbed doses of nickel, chromium VI, and cadmium 

 by different exposure routes and environments # 

Daily exposure per kilogram (ng/kg/d)  

Element Level Food + Water Air 20 Cigarettes Occupation* 

L 125  0.17 8.3  167

M 375  0.83  33  1670Nickel

H 1500  2.5  100  16 700 

L 25 1.7 NA 83 000 

M 230 4.8 3.9 166 700 
Chromium 

VI * 
H 1000 8.3 NA 1 700 000 

L 4.2 0.08 8.3 8 300 

M 8.5 0.25 25 83 000 Cadmium 

H 50 2.5 42 166 700 

# Adapted from a European Commission Report [1]; averages assume a 60kg individual with a 

respiratory volume of 20 m3 / day.  Absorption rates for respiratory exposure were assumed to be 

50%, for oral exposure were 5%. 

*  Rough estimates from our study benchmarks, calculated using the same assumptions 



    

102

Table 2. Selected socio-demographic characteristics  

of male subjects in Montreal in two population-based case-control studies 

        

Study I 

(1979-1986) 

Study II 

(1996-2001) 

Pop' 
Controls

Cancer
Controls Cases Pop' 

Controls Cases 

       
 Variable Categories N=533 N=1349 N=857 N=899 N=741 
       
 Age (%) <= 55 28.0 32.5 27.4 11.9 13.7 
  56-65 45.2 43.7 50.8 28.5 32.8 
  66-75 26.8 23.7 21.8 59.6 53.5 
       
 Ethnicity (%) French Canadian 64.2 58.0 69.1 64.4 77.5 
  English Canadian 14.1 16.1 13.5 6.3 4.6 
  Other 21.8 25.9 17.4 29.3 17.9 
       
 Schooling (%) < 7 years 20.3 22.3 30.3 24.6 27.3 
  7-12 years 56.1 55.2 57.1 47.2 51.8 
  13+ years 23.6 22.5 12.6 27.3 15.8 
       
 Median Family Income * 26627 24761 22386 35250 32951 
       
 Smoking status Never 19.7 17.3 1.5 18.1 3.2 
 (%) Quit 2-5 yrs ago 8.8 6.7 7.6 2.9 5.8 
  Quit 6-10 yrs ago 7.9 6.2 6.0 6.6 7.6 
  Quit > 10 yrs ago 16.7 11.8 5.0 44.6 26.3 
  Current† 46.9 58.0 79.9 27.9 57.1 
        
 Mean pack-years‡ 50.6 53.1 75.9 41.5 75.1 
       
 Respondent (%) Self 87.4 80.8 70.6 90.1 60.0 
  Proxy 12.6 19.2 29.4 9.9 40.0 
       

*Median family income for census tract, in Canadian $ 
 †Current smokers and subjects who quit less than two years before recruitment 
‡Among ever smokers, based on 20 cigarettes per packet. 
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Table 3. Distribution of male subjects according to lifetime occupational exposure 

to nickel, cadmium or chromium VI compounds in two Montreal-based studies 

              

    Study I (1979-1986) Study II (1996-2001) 

              

    Pop. Controls
Cancer

Controls
Cases Pop. Controls Cases 

              

Occupational Agent  N % N % N % N % N % 

              

Nickel compounds            

 Non-exposed  487 91.4 1243 92.1 770 89.8 804 89.4 654 88.6 

 Non-substantial level  39 7.3 86 6.4 70 8.2 83 9.2 64 8.7 

 Substantial level  7 1.3 13 1.0 9 1.1 4 0.4 10 1.4 

             

Chromium VI compounds            

 Non-exposed  472 88.6 1210 89.7 758 88.4 820 91.2 681 92.3 

 Non-substantial level  44 8.3 101 7.5 79 9.2 55 6.1 34 4.6 

 Substantial level  11 2.1 16 1.2 11 1.3 9 1.0 12 1.6 

             

Cadmium compounds            

 Unexposed  526 98.7 1334 98.9 845 98.6 848 94.3 694 94.0 

 Non-substantial level  6 1.1 11 0.8 9 1.0 37 4.1 28 3.8 

 Substantial level  1 0.2 4 0.3 3 0.4 14 1.6 16 2.2 
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Table 4.  Percentage distribution of occupations held by male subjects  

exposed to nickel, chromium VI, or cadmium compounds in two Montreal-based studies 

 Nickel Chromium VI Cadmium 

Occupation category Study I Study II Study I Study II  Study I Study II 

# jobs with exposure to each compound* 333 246 406 164  39 68 

Sheet metal workers 25% 21% 17% 14%  11% 8% 

Metal machinists and metal product 

fabricators
27% 24% 4% 8%  20% 19% 

Metal processors 8% 9% 8% 5%  13% 4% 

Mechanics 9% 4% 15% 14%  5% 19% 

Construction and other related painters  0% 0% 19% 18%  0% 12% 

Construction workers 5% 7% 5% 8%  8% 2% 

General machinists 5% 5% 1% 1%  8% 2% 

Electrical and electronic workers 0% 0% 0% 0%  8% 10% 

Graphic artists 0% 0% 0% 0%  13% 6% 

Printers 0% 0% 5% 5%  0% 0% 

Chemical processing, rubber, and plastic 

workers
0% 0% 5% 6%  0% 10% 

Materials handlers 2% 6% 1% 2%  0% 0% 

Administrators, scientists, teachers, clerks, 

and salesmen 
9% 14% 10% 11%  13% 7% 

Other occupations NEC 10% 9% 10% 8%  0% 1% 

* Each subject may have been exposed in one or more jobs 
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Table 8.  Odds ratios between lung cancer  and occupational exposure to nickel, 

chromium VI, or cadmium by duration of exposure in a pooled analysis of two 

Montreal-based studies 

Exposure duration (years) 
Controls/

Cases
OR*  95% CI 

Nickel       

  0  1782 1424      

  < 5 45 29 0.92  0.5  1.6

5 - 20 54 45 1.24  0.8  2.0

> 20 74 79 1.56  1.1  2.3

Chromium VI      

0  1770 1439      

< 5 34 32 1.28  0.7  2.2

5 - 20 59 48 1.06  0.7  1.7

> 20 72 56 1.11  0.7  1.6

Cadmium      

0  1901 1539      

< 5 17 15 0.96  0.4  2.1

5 - 20 21 16 0.77  0.4  1.7

> 20 26 25 1.44  0.7  2.8

* Adjusted for age, proxy, respondent status, socio-economic position 
(years of education), smoking, and study. Pooled results are presented, 
and reflect trends from both individual studies.   



 
 

  

10
9

Ta
bl

e9
. O

dd
s r

at
io

s b
et

w
ee

n 
lu

ng
 c

an
ce

r a
nd

 e
xp

os
ur

e 
to

 n
ic

ke
l, 

ca
dm

iu
m

, o
r c

hr
om

iu
m

 V
I, 

st
ra

tif
ie

d 
by

 sm
ok

in
g 

hi
st

or
y 

† 

 
 

 
N

on
-s

m
ok

er
s *

* 
Sm

ok
er

s 

 
 

 
C

tls
 / 

C
as

es
 

O
R

* 
95

%
C

I 
 

C
tls

 / 
C

as
es

 
O

R
* 

95
%

C
I 

P 
(in

te
ra

ct
io

n)

N
ic

ke
l

 
 

 
 

 
U

ne
xp

os
ed

 
 

60
5 

/ 7
4 

 
 

 
11

72
 / 

13
48

 
 

 
 

Ex
po

se
d 

 
51

 / 
15

 
2.

49
 

1.
3 

– 
4.

7 
 

12
1 

/ 1
38

 
1.

11
 

0.
9 

– 
1.

4 
0.

01
7 

 
 

 
 

 
 

 
 

C
hr

om
iu

m
 V

I 
 

 
 

 
 

 
 

 
U

ne
xp

os
ed

 
60

6 
/ 7

4 
 

 
 

11
59

 / 
13

63
 

 
 

Ex
po

se
d

 
46

 / 
12

 
2.

39
 

1.
2 

– 
4.

8 
 

11
9 

/ 1
24

 
0.

97
 

0.
7 

– 
1.

3 
0.

02
9 

 
 

 
 

 
 

 
C

ad
m

iu
m

 
 

 
 

 
 

 
U

ne
xp

os
ed

 
82

 / 
64

7 
 

 
 

14
55

 / 
12

50
 

 
 

Ex
po

se
d

 
5 

/ 9
4.

67
 

1.
5 

– 
14

.3
 

 
29

 / 
21

 
1.

36
 

0.
8 

– 
2.

4 
0.

04
6 

 
 

 
 

 
 

 

† 
 R

es
ul

ts
 a

re
 p

re
se

nt
ed

 fo
r p

oo
le

d 
da

ta
, a

nd
 re

fle
ct

 tr
en

ds
 o

bs
er

ve
d 

in
 b

ot
h 

in
di

vi
du

al
 st

ud
ie

s. 

**
 N

on
-s

m
ok

er
s a

re
 th

os
e 

w
ho

 h
av

e 
ne

ve
r s

m
ok

ed
 o

r q
ui

t o
ve

r 2
0 

ye
ar

s p
rio

r t
o 

st
ud

y 
pa

rti
ci

pa
tio

n.
  

* 
 A

dj
us

te
d 

fo
r a

ge
, r

es
po

nd
en

t s
ta

tu
s, 

an
d 

so
ci

oe
co

no
m

ic
 p

os
iti

on
 (y

ea
rs

 o
f e

du
ca

tio
n)

 a
s w

el
l a

s s
tu

dy
 fo

r p
oo

le
d 

re
su

lts
. 

 



    

110

Table 10.  Effect of exposure reliabilities on odds ratios between lung 
cancer and exposure to nickel, chromium VI, or cadmium 

for Montreal men pooled from Study I and II. 

   Pooled Studies 

   
Controls/

Cases 
OR
* 95% CI 

Chromium VI compounds  
 Unexposed 1770 1439  
 Any reliability 195 156 1.10 0.9  1.4 

Low reliabilty (uncertain) 30 20 0.95 0.5  1.8 
 High reliability 165 136 1.12 0.9  1.5 

  
Nickel compounds  
 Unexposed  
 Any reliability 183 171 1.35 1.0  1.7 

Low reliabilty (uncertain) 11 18 3.13 1.1  9.1 
 High reliability 172 153 1.28 1.0  1.7 

 
Cadmium compounds      
 Unexposed 1901 1539      
 Any reliability 64 56 1.11  0.7  1.7 

Low reliabilty (uncertain) 26 17 0.75 0.4  1.5 
 High reliability 38 39 1.29  0.8  2.2 

     

*Adjusted for age, respondent status, years of education, and smoking 
(ever smoked, time since quitting, ln (cigarette years) ).  
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Figure 1. 
Number of subjects exposed to nickel (Ni), chromium VI (CrVI), and cadmium (Cd),    in Study I 
and Study II, and degree of overlap between each.  

 
Study I: Total number of subjects = 2739.   

   Total number of subjects exposed to nickel, chromium VI, or cadmium = 401. 

 
Study II: Total number of subjects = 1640.   

    Total number of subjects exposed to nickel, chromium VI, or cadmium = 278. 
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Figure 2:  
Risk of lung cancer after occupational exposure  

to cadmium, nickel, and chromium VI in smokers and non-smokers  
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Figure 3.   
Excess risk of lung cancer resulting from exposure to 3 metal compounds  

and tobacco in smokers and non-smokers.   
 

1. European Commission, Ambient air pollution by AS, CD, and NI compounds. 

Position Paper. Final Version. 2000. 

3,1 3,4
1,6 1,5

0,2
1,4

8,3

0

9,2

0

9,4

0

0

2

4

6

8

10

12

Smokers Non-smokers Smokers Non-smokers Smokers Non-smokers

Cd Ni CrVI

Ex
ce

ss
 R

is
k

Metal Compound Tobacco Smoking



 

 

 

ARTICLE 



   

    

117

ABSTRACT 

Lung cancer risk associated with occupational exposure to nickel, chromium VI, and 

cadmium in two population-based case-control studies in Montreal. 

Rachelle Beveridge1, Javier Pintos 1,2, Marie-Élise Parent 1,2, Jérome Asselin1, Jack Siemiatycki 1

1 Médecine sociale et préventive, Université de Montréal, QC.  2 INRS-Institut Armand-Frappier, Université du Québec, QC. 

Objective: To investigate the risk of lung cancer associated with occupational exposure to nickel, 

chromium VI, or cadmium, among workers exposed to these agents at a variety of levels and in a 

wide range of occupations.

Methods: Two population-based case-control studies were conducted in Montreal (1979-1981 

and 1996-2001). In both studies, cases were ascertained in all hospitals on the island of Montreal, 

while age-matched and sex-stratified population controls were selected from electoral lists.   

Detailed job histories were obtained by interview, and evaluated by an expert team of chemist-

hygienists in order to estimate intensity, duration, and cumulative exposure to multiple 

substances over the course of each participant’s lifetime. Odds ratios (ORs) and 95% confidence 

intervals (CIs) for lung cancer were estimated using logistic regression, adjusting for 

confounders including detailed smoking history, education, and respondent status.

Results:  At the exposure levels experienced by this population, no increase in risk of lung cancer 

was associated with exposure to chromium VI (OR=1.12, 95% CI = 0.9-1.5).  A small but 

significant increase in lung cancer risk was observed in subjects exposed to nickel (OR = 1.27; 

95% CI = 1.1 – 1.7), while among subjects exposed to cadmium, risk was elevated but of 

borderline significance, with large confidence intervals (OR = 1.54 95% CI = 0.9 – 2.7).   

Neither smoking nor occupational co-exposures were found to be strong confounders of the 

relationship between metals exposure and lung cancer.  Further, lung cancer risk was 

significantly elevated after exposure to any of the metals of interest in non-smokers.   
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Discussion:  This study is unique in providing empiric evidence on lung cancer risks associated 

with low levels of exposure to nickel, chromium VI, or cadmium originating from a variety of 

occupational contexts.  The results of this study have important public health implications, both 

in terms of determining ongoing risk to exposed workers, and in terms of assessing risk to the 

general population exposed to these metals through pollution and cigarette smoke.  This analysis 

will likely contribute to an upcoming IARC evaluation of the carcinogenicity of these metals.  

Examination of the relationship between exposure to cadmium, chromium VI and nickel and 

subsequent risk of lung cancer is therefore timely and pertinent.   
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INTRODUCTION             

Lung cancer is the most common cause of cancer mortality, responsible for over 1 million deaths 

worldwide each year.  Although tobacco smoking is its most important determinant, several 

lesser factors are recognised or suspected to contribute to development of lung cancer.  These are 

important because in aggregate they account for large numbers of lung cancers, and because lung 

cancer is a multi-factorial disease which can be prevented by eliminating one or other of the 

contributing factors.

Nickel, chromium VI, and cadmium have long been recognised as lung carcinogens (1, 2).  

Human exposure to these metals is common because of their industrial concentration and 

environmental persistence. Although the highest levels of exposure occur in certain workplaces, 

lesser levels of exposure are also common in the general population.  All three metals are also 

constituents of tobacco smoke, and have been implicated in tobacco-induced carcinogenesis (3, 

4).  However, while it seems that the book has been closed on lung carcinogenicity related to 

these agents, there remain some lingering doubts about the respective bodies of evidence that 

have accumulated, and there remain open questions about the nature of the relations between 

each of these agents and lung cancer.

Most of the evidence regarding cancer risks due to these agents comes from cohort studies in a 

narrow range of industries in which exposures have been relatively high and in which it has been 

difficult to rule out confounding by smoking or other exposures as a possible explanation for the 

associations.  The present study stems from a unique opportunity to provide additional evidence 

on the effect of exposure to occupational nickel, chromium VI, and cadmium, at levels of 
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exposure found in the entire range of industries in which these exposures occur.  In the early 

1980s, we carried out a population-based case-control study in Montreal, Canada, exploring 

possible associations between hundreds of occupational substances and multiple cancer sites, 

including lung cancer.  In the late 1990s we carried out a similar study in the same region, this 

time focusing on respiratory cancers. These two investigations offer the potential to examine the 

effect of occupational exposure from a variety of sources, in a wide range of occupations, and at 

exposure levels lower than those found in historical cohorts.  Further, because detailed lifetime 

smoking histories were collected, it is possible to adjust for possible confounding by smoking 

and to examine effect modification in relation to smoking.  The objective of the present study 

was therefore to examine the link between occupational exposure to nickel, chromium VI or 

cadmium and lung cancer in these conditions. 

METHODOLOGY          

Two large population-based case-control studies of occupational exposures and lung cancer have 

been conducted in Montreal, Canada since the 1980s.  In brief, the first study, labeled here as 

Study I, was conducted from 1979 to 1986, and included men aged 35 to 70 diagnosed with 

cancer at any of 19 sites (5, 6).  The second study, labeled here as Study II, was conducted from 

1996 to 2001 and included men and women aged 35 to 75 diagnosed with a lung malignancy.  

Both studies included patients with incident, histologically confirmed cancers identified across 

all major Montreal-area hospitals, and living in the Montreal area, assuring a virtually complete 

population-based ascertainment of cancer cases.  Both studies included a series of population 

controls randomly selected from electoral lists.  In Quebec, electoral lists were maintained by 

means of active enumeration of households until 1994; they have since been continually updated 
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and are thought to represent nearly complete listings of Canadian citizens residing in the 

province.  In Study I, population controls were frequency matched by age and area of residence 

(electoral district of about 40,000 individuals) to all cancer cases.  In Study II, controls were 

recruited according to the distributions of age, sex, and area of residence of lung cancer cases.  

Details of subject ascertainment and data collection have been presented in detail previously (7-

10).

In study I, 1,082 lung cancer cases and 740 population controls were approached. Of these, 857 

(79 percent) cases and 533 (72 percent) controls completed the interview.  In addition to 

population controls, a second set of controls was used, comprising 1,349 cancer patients who had 

been ascertained in the same years and hospitals as the lung cancer cases, and selected so that 

none of the 19 individual cancer sites represented more than 20 percent of the overall pool of 

cancer controls.  In Study II, 858 eligible male cases and 1,024 eligible male controls were 

approached, and 86 percent and 70 percent of these, respectively, agreed to participate and 

completed the interview.  Since the prevalence of occupational exposure to all three metals 

among females was very low (1%) in Study II, and unavailable for Study I, results are presented 

for males only.   

DATA COLLECTION AND EXPOSURE ASSESSMENT 

In Study I and Study II, interviews were completed by the targeted subjects in over 82 percent 

and 76 percent of eligible individuals, respectively.  Most interviews were completed with self-

respondents, while surrogate respondents (proxies) provided information for 29% of cases in 

Study I and 40% of cases in Study II.  For controls, the fraction of interviews conducted with 
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surrogates was under 20%.  The methodology for exposure assessment has been presented 

previously (5, 9, 11, 12).  Briefly, interviews were divided into two sections: a structured section 

requested information on socio-demographic and lifestyle characteristics, and a semi-structured 

section elicited detailed descriptions of each job held by the subject in his working lifetime. 

Occupations were coded according to the CCDO classification system (13).  For each job held, a 

trained interviewer asked the subject about the nature of the work environment, the subject’s 

main and subsidiary tasks, and any additional information (e.g., equipment maintenance, use of 

protective equipment, activities of coworkers) that could provide clues about work exposures and 

their intensities.  For certain occupations, supplementary questionnaires were used to assist 

interviewers with detailed technical probing (14).

A team of chemists and industrial hygienists examined each completed questionnaire and 

translated each job into a list of potential exposures using a checklist of 294 agents.  In both 

studies, exposures assessed included nickel, chromium VI, and cadmium compounds as well as 

many common occupational co-exposures.  The coders spent about 40 person-years on this 

project, which included developing methodology, monitoring interview quality, conducting 

background research on exposures in different occupations, coding and recoding the individual 

participants’ files. The final exposure codes attributed to each participant were based on 

consensus among the coders, who were blind to the subject’s disease status. For each substance 

considered present in each job, the coders noted three dimensions of information: their degree of 

confidence (reliability) that the exposure had actually occurred (possible, probable, definite), the 

frequency of exposure in a normal work week (<5 percent, 5–30 percent, >30 percent of the time 

in Study I; an estimation of the number of hours/week exposed in Study II), and the relative level 
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of concentration of the agent (low, medium, high).  Non-exposure was interpreted as exposure up 

to the level found in the general environment. Exposure assessment was based not only on the 

worker’s occupation, industry, and job title but also on individual characteristics of the 

workplace and tasks reported by the subject.   Data were also collected regarding a large number 

of other variables including ethnicity, family income, detailed smoking history, dietary intake, 

and alcoholic beverage consumption. For inclusion in the present analyses, subjects were 

required to have completed both the socio-demographic and the job history interviews. 

DATA ANALYSIS 

Unconditional logistic regression (15) was used to estimate odds ratios (ORs) of disease and 95 

percent confidence intervals (95% CIs) of lung cancer associated with exposure to nickel, 

chromium VI, or cadmium for each study. 

Subjects were categorized as unexposed or ever exposed to each metal of interest, where those 

exposed only in the 5 years prior to interview were considered unexposed.  Individuals classified 

as having had only possible likelihood of exposure were excluded from most analyses.  Ever-

exposed individuals were further classified into non-substantial and substantial exposure 

subcategories.  Subjects with substantial exposure had been exposed to medium or high metal 

concentrations for more than five percent of their work week, for five years or more. This 

delineation was based on best goodness of fit results of a set of analyses using different 

combinations of weights given to various dimensions of exposure (frequency, concentration, and 

duration) for Study I, and replicated in Study II (data not shown).  In addition to analyzing this 

categorical approximation of cumulative exposure, we also examined the effects of several 
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related dimensions of exposure, including duration, intensity, concentration, and frequency. For 

individuals exposed in more than one job, duration-weighted averages were calculated. 

A variety of potential confounders were explored for inclusion in analysis, including ethno-

cultural background, and respondent status (self, proxy).  Investigated socio-economic indicators 

included median household income, years and level of education, and family class.  Both median 

household income and years of education had noticeable impacts on the point estimates.  

However, they were highly correlated.  Years of education was therefore chosen to be included 

as a proxy for socioeconomic position it was less likely to have been inflated between studies.

In order to evaluate the extent of confounding by other common occupational exposures, the 

effects of a priori occupational confounders on the crude risk estimate were assessed using a 

change-in-estimate approach (6, 16).  Those whose inclusion changed the estimate of association 

by over 5% were retained.  Occupational co-exposures retained in the complete model for 

chromium VI and nickel were asbestos, silica, benz(a)pyrene, and nickel or chromium VI.  The 

final model for cadmium included asbestos, silica, benz(a)pyrene, lead, and nickel.  Other 

potentially important confounders, such as cadmium in the case of nickel, and arsenic in the case 

of cadmium, were not present in sufficient quantities to affect point estimates or had a neutral 

effect, and were not retained in the final model.  

Smoking was modeled as a combination of three variables (cigarette years, time since quitting, 

and ever smoker status) based on a risk model derived from our study subjects proven to most 

accurately fit this data set (17, 18).  Potential effect modification by smoking was also explored, 
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where non-smokers were defined as having smoked fewer than 100 cigarettes in their lifetimes or 

having quit over 20 years previously.

In Study I, analyses using population and cancer controls were initially conducted separately.  

When the point estimates were consistent and of the same magnitude and direction, controls 

were then pooled and weighted such that population and cancer controls contributed equally to a 

combined data set. Results are presented from this pooled analysis, and summarise results from 

both separate control groups.  Similarly, if results from Study I and Study II showed parallel 

trends and largely overlapping confidence intervals, pooled study analyses were conducted.  

Cases and controls from each study were simply added together, and a binary study adjustment 

term was added to logistic regression models.   

Ethics approval was obtained for both studies from each participating hospital and university. All 

participating subjects provided informed consent. 

 

RESULTS           

Study Population Characteristics 

Table 1 shows the distribution of subjects according to selected socio-demographic 

characteristics.  As expected, cases were more likely to be current smokers and had smoked more 

than controls.  Cases had a lower median family income and fewer years of education than 

controls, and interviews were more likely to have been conducted with a proxy for cases than 

controls.
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Table 2 shows the lifetime prevalence of occupational exposure to nickel, cadmium, or 

chromium VI in each study.  Prevalence of any exposure to nickel or chromium VI in this sample 

of Montreal men was between 6 and 11%; cadmium exposure was somewhat lower.  There was 

substantial exposure to each metal in between 1 to 2% of the population, except for cadmium in 

Study I, where substantial exposure was less than 0.5%.  There was little difference in exposure 

prevalence between cases and controls, though cases were more likely have been substantially 

exposed than controls in Study II.

Overall, lifetime exposure to nickel and chromium VI co-occurred in about 50% of exposed 

subjects, more frequently in controls than cases.  Co-exposure to chromium VI was also common 

among those exposed to cadmium.  

Occupational profiles

Table 3 shows the occupations in which these metals were attributed in our study subjects.  For 

the most part, occupational profiles within metals were consistent between Study I and Study II.  

The majority of nickel exposures in our study population occurred in sheet metal workers, metal 

machinists, and metal product fabricators; chromium VI exposures occurred in construction 

painters, sheet meal workers, and mechanics; and cadmium exposures occurred in metal 

machinists, sheet metal workers, metal product fabricators, and graphic artists.

Overall, exposures to the three metals occurred in similar occupations but in different 

proportions. Those exposed to nickel were more likely to have held jobs related to metal work, 

while those exposed to chromium VI were more likely to have held jobs in plastics processing, 
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painting, printing, and vehicle maintenance. Because many subjects were exposed to several 

agents at some point in their lives, exposures may have occurred in the same jobs; however, this 

is not necessarily the case.

Lung cancer risk estimates

Table 4 presents a summary of the odds ratios of lung cancer diagnosis associated with exposure 

to nickel, chromium VI, or cadmium, adjusted for age, respondent status, years of education, and 

smoking history.  Risk estimates for ever having been exposed to nickel or chromium VI were 

higher in Study I than Study II, but overall, similar trends were observed in both studies.  The 

pooled data indicated that at the exposure levels experienced by this population, there was no 

increased risk of lung cancer after exposure to any level of chromium VI (OR=1.12; 95%CI = 

0.9-1.5).  A small but significant increase in lung cancer risk was observed in subjects exposed to 

nickel (OR=1.27; 95%CI=1.1–1.7). The risk estimate for cadmium was elevated but of 

borderline significance, with large confidence intervals (OR = 1.54; 95%CI = 0.9 – 2.7).   

Investigation of the independent and combined effects of nickel and chromium VI revealed that 

risk estimates were similar regardless of co-exposure (results not shown). Analyses of the effects 

of co-exposure to cadmium were not conducted due to low co-exposure prevalence.   

Risk estimates at two cumulative exposure levels, categorised as substantial and non-substantial, 

are also presented in Table 4. Very few subjects were exposed at the substantial level, and as 

such risk estimates for this category were somewhat unstable.  Overall, those with substantial 

exposure to nickel or cadmium had increased risk of lung cancer compared to those with only 
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non-substantial exposure, while those exposed to chromium VI were not at increased risk 

regardless of exposure level.

Odds ratios were also computed separately for each available dimension of exposure, including 

duration, intensity, frequency, and concentration.  None of these showed clear trends for any of 

the agents (data not shown), with the possible exception of duration.  Table 5 details the ORs by 

duration in the pooled study analysis.   Odds of lung cancer tended to increase with duration of 

nickel exposure in both Study I and Study II, with a significantly elevated risk observed with 

over 20 years of exposure at any level (pooled OR=1.56 95%CI = 1.1-2.3). Greater risk was also 

observed in those exposed to cadmium for over 20 years, while no duration-dependent effect was 

observed after chromium VI exposure.    

Control for confounding by smoking and occupational co-exposures

Smoking did not appear to be a strong confounder of the relationship between metal exposure 

and lung cancer in this study.  After adjusting for age, respondent status, and socio-economic 

position, the marginal effect of adding smoking as a covariate reduced the ORs by less than 7%.  

Adjusting for occupational confounders tended to slightly weaken observed associations, but did 

not affect conclusions.

Effect modification by smoking

The effects of metals exposure were also explored separately in smokers and non-smokers. 752 

men in this study were non-smokers.  Table 6 shows the odds ratios for exposure to each agent, 

stratified by smoking history.  For all three metal compounds, significantly increased risk of lung 
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cancer was found among exposed non-smokers but not among smokers.  This trend was 

observed in both studies independently, with particularly strong (but imprecise) effects observed 

in Study I.  Pooled data showed that non-smokers exposed to nickel or chromium VI had 

approximately 2.5 the odds of being diagnosed with lung cancer compared to unexposed non-

smokers, while non-smokers exposed to cadmium had over four times the odds of lung cancer 

compared to unexposed non-smokers.  Meanwhile, odds ratios among smokers hovered around 

1.1 for nickel and cadmium, and 1.0 for chromium VI.  The confidence intervals of the estimates 

for smokers and non-smokers barely overlapped and interaction terms between smoking status 

and each metal entered into the logistic regression function were significant for each compound, 

indicating a departure from a multiplicative joint effect.   

The additional absolute risk attributable to cadmium or nickel exposure was almost identical 

among smokers and non-smokers (data not shown).  Exposure to nickel and cadmium therefore 

appeared to have an approximately additive effect on lung cancer risk.  Such a distinct trend was 

less clear in those exposed to chromium, as no excess risk was detected in smokers.  Non-

smokers did not appear to have different co-exposures than smokers, and did not tend to be 

proxy responders. Adjustment for occupational confounders further increased the distinction 

between smoking categories, but decreased estimate precision.  

Because of the small number of non-smokers in the study population, there was a relatively small 

difference between risk estimates for the metals among smokers and in entire study population.  

We therefore chose to retain adjusted, unstratified results in Table 4, as it would allow more easy 

comparison with previous works.   
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Proxy response  

Interview quality may have varied between self and proxy respondents.  For example, proxy 

respondents may have been less likely to provide detailed job history information, causing 

underestimation of certain exposures.  Indeed, metal exposures were somewhat less likely to be 

attributed to proxy respondents (data not shown).  Thus, we conducted an analysis restricted to 

self-respondents only.  These results (also not shown) were virtually identical to the risk analyses 

shown in Tables 4 to 6.

 

DISCUSSION             

ADDED VALUE OF THIS RESEARCH

While it has long been suspected or recognized that nickel, chromium VI, and cadmium are 

human lung carcinogens, there remain some major questions about the bodies of evidence on 

which these inferences have been made.  First, in the past two decades some published studies 

have failed to replicate results of earlier studies.  There are many possible reasons for such 

apparent inconsistencies, but they indicate that further empiric research is required to reaffirm 

the carcinogenicity of these agents.  Second, almost all previous research has been based within 

industries with workers exposed to these agents at relatively high concentrations, and in a narrow 

range of conditions.  The majority of workers in most occupations are exposed to these agents at 

much lower concentrations and in more heterogeneous conditions. Our study is unique in 

providing empirical evidence on risks related to such conditions.  Third, our study had the 

benefit of having collected and controlled for detailed smoking history and other potential 

confounders.
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SUBSTANTIVE FINDINGS

Nickel

Our risk estimate for the association between any nickel exposure and lung cancer (OR=1.27) 

was compatible with most other recent estimates, which have consistently hovered between 1.3 

and 1.5 (19-22).  However, no strong exposure-dependent trend was observed.  Given that the 

majority of our subjects were exposed at relatively low levels, our results support previous 

findings that small increases in lung cancer risk may be detected even at low levels of nickel 

exposure (19, 22-25). Our study is also consistent with previous observations of elevated risk 

after over 20 years of nickel exposure (22, 26, 27).

Chromium VI 

Overall, we found no increased risk of lung cancer at the levels of chromium VI exposure 

experienced by this population, and no cumulative exposure- or duration-dependent trends were 

observed.  Given that increased risks have almost exclusively been observed at high levels of 

exposure to chromium VI (28-31), it is likely that the exposure levels of the workers in this 

population were insufficient to produce observable effects.  It is difficult to tell whether this was 

due to exposure below a threshold level, or whether the effect at these exposure levels were 

simply too small to detect.  

Cadmium

Increased risk of lung cancer was consistently observed among workers with “substantial” 

exposure to cadmium in this study.  However, definitive interpretation of these results is 
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difficult; the number of substantially exposed subjects was small and resulting confidence 

intervals were wide.  Recent updates of several previously studied cadmium cohorts, often 

incorporating methodological improvements and quantification of exposure, have been similarly 

equivocal (32-36).  As such, the weight of evidence for a carcinogenic role of cadmium in 

occupational cohorts appears to be less compelling than it was 20 years ago (33, 37).   

Effect modification by smoking 

We found that exposure to either nickel, cadmium, or chromium VI significantly increased the 

risk of lung cancer in a subgroup of non-smokers, while it had virtually no effect among 

smokers.  This phenomenon was independently observed in both studies, and was based on 

reliable estimates of lifetime smoking histories.   

There are several potential interpretations of the strong metal-associated risk observed in non-

smokers: it could be due to chance fluctuations, to unidentified systematic bias, or to a real 

effect.  However, it is unlikely that these results were due to chance, and there were no obvious 

differences in occupational profiles or co-exposures between non-smokers and smokers.  This 

pattern could also result from a greater ability to detect risk in non-smokers; the observed effect 

could be a cleaner, albeit imprecise, indication of these metals’ actual effects.  This hypothesis is 

supported by the observation that the absolute increase in risk associated with these metals was 

similar in smokers and non-smokers exposed to nickel or cadmium. This trend was less clear in 

those exposed to chromium VI, as only non-smokers were observed to experience increased risk.

This possibility is particularly important in that it suggests that risk at low levels of exposure 

may have been previously undetected in cohorts composed mainly of smokers.  The observed 
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phenomenon of increased risk among non-smokers could therefore provide part of an 

explanation for apparently conflicting results in different cohorts, which may have different 

proportions of non-smokers.     

If these results reflect a true association, they suggest that nickel, cadmium, and potentially 

chromium VI had independent, additive effects with respects to smoking.  Our data demonstrate 

that in specific circumstances, even low exposures to all three metals can increase risk of lung 

cancer.

METHODOLOGICAL CONSIDERATIONS

The results of this must be interpreted in light of methodological strengths, weaknesses and 

characteristics of this study.  Some of the methodological considerations that may have 

influenced our estimates are discussed below, including choice of controls, exposure assessment, 

exposure parameterisation, statistical power, and confounding.

Choice of controls and pooling

Thoughtful choice of control group is essential to any case-control study.  In Study I, we began 

by analysing data using two types of controls: cancer controls and population controls.  Each 

type of control has its own advantages and disadvantages in terms of selection, response, and 

information bias introduced (10, 38), and it is difficult to ascertain which control group gave 

more valid results.  By pooling equally weighted cancer and population controls in Study I, we 

partly neutralized control-specific bias while increasing our sample size and power. 
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The similarities in study design and crude results for Study I and Study II also justified their 

pooling.  Final results using data pooled from Study I and Study II, adjusted for study, represent 

a weighted average of the two studies’ results with improved statistical power.  We have 

presented results for each study individually in order to illustrate where parallel trends were 

observed, which should enable other reviewers or investigators to conduct different types of 

meta-analyses and assessments.   

Exposure assessment 

The present study estimates the risk of lung cancer associated with exposure to nickel, chromium 

VI, and cadmium from a wide range of occupations and exposure levels.  The exposure 

assessment method we employed is widely considered to be the reference method for this type of 

study design (39, 40), and similar methods have been used by other research teams exploring 

occupational exposures and lung cancer (41, 42). There are tradeoff advantages and 

disadvantages to our approach compared to cohort study methods.  Most cohort studies have 

“more reliable” exposure assessment measures than our study, as it is much easier to quantify 

exposure within one industry than across many work environments.   However, cohort-based 

exposure assessments also have limitations (43); exposures from jobs held outside the company 

under study are unaccounted for, and exposures are often misclassified (37, 44, 45). Our 

exposure assessment method addresses some weaknesses of the traditional cohort-study 

approach to identification of occupational carcinogens by including information on non-

occupational confounders and exposures to a wide range of substances in different jobs.  In our 

study, complete lifetime job histories and associated exposure estimates were available for each 

subject.  Compared with cohort studies based on a single employer or industry, this approach has 
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the advantage of reducing confounding by occupation-specific co-exposures, and is likely to 

more accurately represent lifetime exposures.  Previous investigations have shown that the 

interview-based job histories used in this study were valid (46) and that the exposure coding was 

reliable (47, 48).

Misclassification 

In the absence of objective measures of exposure, it is certain that a degree of exposure 

misclassification was present.  Many factors may have influenced the accuracy of exposure 

assessment, including the type of occupation, the era of exposure, and the quality of the job 

description elicited from the respondent.  However, given that coders were blind to subject 

status, it is probable that misclassification was non-differential.  Further, exposure identification 

was limited to broad classes of metal compounds, which were not specific in terms of speciation 

or solubility.  Given that different metal species may have different degrees of carcinogenicity, 

grouping all nickel, chromium VI, or cadmium species together may have masked species-

specific effects observed in other studies (1, 19-21, 27, 29, 49).

 

Exposure levels

Although the nature of our exposure estimates does not allow us direct comparison to the 

quantitative exposure levels of other studies, we expect that metal exposure in our study was low 

compared to most high-risk historical occupational cohorts. While it is initially useful to limit the 

analysis of potential carcinogens to high exposure conditions, which are more likely to produce 

detectable effects, we believe it is just as important to evaluate them in conditions that are more 

widely experienced by workers.  This study allows us to examine the potential effects of long-
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term, sporadic, and chronic low-concentration exposures from a range of sources and levels.  The 

accumulation of such exposures may have been overlooked in occupational cohort studies, which 

have by definition been limited to one place of work.   

Parameterisation of exposure dimensions 

For each putative carcinogen, risk may be associated to different degrees with different 

dimensions of exposure; the effects of average intensity or duration of exposure, peak exposure, 

age at exposure, or time since exposure may vary between agents depending on their deposition, 

clearance, metabolism, and mechanisms of action. There are therefore as many ideal 

parameterisations of exposure as there are compounds and mechanisms of action.  Without a

priori knowledge of a particular agent’s characteristics, it is impossible to develop the perfect 

agent-specific combination of different exposure dimensions.  Most epidemiologic studies of 

environmental or lifestyle factors, when confronted with analogous dilemmas, have chosen to 

use a cumulative exposure variable as the prime exposure index. While it may not be optimal in 

every context, it is generally robust enough to detect important effects (50).  In order to estimate 

cumulative exposure, this study used a combination of concentration and duration variables, 

dichotomised into substantial and non-substantial levels. The cutpoints used in this categorisation 

were chosen after detailed examination of multiple possible combinations of exposure 

dimensions. 

Statistical power 

Statistical power is a function of several parameters, including numbers of cases and controls, 

prevalence of the exposure, and relative risk induced by the exposure (51).  In this study, there 
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were large numbers of cases and controls, but relatively low metal exposure prevalence.  In order 

to maximise the power to detect effects, the number of subject subgroups and exposure sub-

categories was therefore limited.  Subdividing the study sample into yet smaller subgroups in 

order to investigate more specific features of exposure or study population would have had the 

effect of further reducing power.  Our capacity to detect effect may also have been limited by a 

lack of contrast between categories.  Given that the majority of the exposures in this population 

were of low to medium concentration, the contrast between substantial and non-substantial 

exposures was mostly influenced by exposure duration.  While statistical power was a genuine 

limitation in this study, it is one that could not have generated false positive associations. 

However, a lack of power might explain failure to detect some associations, and certainly 

explains the width of confidence intervals for most OR estimates. 

Confounding

It is possible that observed risk estimates were affected by other unmeasured carcinogenic 

exposures related to occupation or lifestyle, where those associated with the exposure of interest 

may have artificially elevated risk estimates. Confounding by smoking and occupational co-

exposures has been insufficiently addressed in the epidemiological literature on metal 

carcinogenesis, mainly because complete and reliable data are rarely available in the context of 

most retrospective cohort studies.  In this study, there was unlikely to have been significant 

confounding by smoking or by occupational co-exposures.  With regard to smoking, information 

on lifetime smoking histories were collected and modeled in study analyses.  With regard to 

other occupational exposures, the fact that this study included subjects exposed in a variety of 

occupations meant that it was unlikely that there would be a standard set of co-exposures 
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associated with the three metals, and thus less likelihood of confounding.  Further, detailed 

information was collected on co-exposures, and important co-exposures were adjusted for. 

 

Although an effect stratified by smoking history was found in this population, unstratified results 

adjusted for smoking were retained in the original regression model for ease of comparison with 

other studies, and to demonstrate the overall impact of adjustment with multiple smoking 

parameters.  In this study, as for others, the smoking-adjusted odds rations constitute weighted 

averages of potentially differential risk in smokers and non-smokers.   

 

CONCLUSION           

Increased risk after any nickel exposure was small but significant, and slightly elevated after 

substantial exposure.  For cadmium, risk estimates after substantial exposure were non-

significantly but consistently elevated compared to non-substantial exposure. Meanwhile, the 

levels of occupational chromium VI exposure in this study did not lead to an observable elevated 

risk of lung cancer. None of the metals were confounded by smoking or other occupational 

carcinogens.  However, for all three metals, a significant association between exposure and lung 

cancer was observed in small subgroups of non-smokers.  If these findings are a true reflection of 

these metals’ effect in non-smokers, they demonstrate that in the absence of other major lung 

cancer determinants, low levels of exposure to nickel, chromium VI, and cadmium remain weak 

but significant risk factors for lung cancer.

It is in the areas of low exposure, where evidence is least clear, that the majority of decisions 

regarding occupational and population-level health limits and regulations are made / required.  
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While they may be difficult to detect, the minor contribution of individual agents have important 

repercussions at the population level.  It is therefore essential not to prematurely discount the 

hazard of potentially carcinogenic compounds. As such, our study has important implications, 

both in terms of cancer risk assessment and elucidation of carcinogenesis mechanisms.   
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Table 1. Selected socio-demographic characteristics  

of male subjects in Montreal in two population-based case-control studies 

        
Study I 

(1979-1986) 
Study II 

(1996-2001) 
Pop' 

Controls
Cancer

Controls Cases Pop' 
Controls Cases 

       
 Variable Categories N=533 N=1349 N=857 N=899 N=741 
       
 Age (%) <= 55 28.0 32.5 27.4 11.9 13.7 
  56-65 45.2 43.7 50.8 28.5 32.8 
  66-75 26.8 23.7 21.8 59.6 53.5 
       
 Ethnicity (%) French Canadian 64.2 58.0 69.1 64.4 77.5 
  English Canadian 14.1 16.1 13.5 6.3 4.6 
  Other 21.8 25.9 17.4 29.3 17.9 
       
 Schooling (%) < 7 years 20.3 22.3 30.3 24.6 27.3 
  7-12 years 56.1 55.2 57.1 47.2 51.8 
  13+ years 23.6 22.5 12.6 27.3 15.8 
       
 Median Family Income * 26627 24761 22386 35250 32951 
       
 Smoking status Never 19.7 17.3 1.5 18.1 3.2 
 (%) Quit 2-5 yrs ago 8.8 6.7 7.6 2.9 5.8 
  Quit 6-10 yrs ago 7.9 6.2 6.0 6.6 7.6 
  Quit > 10 yrs ago 16.7 11.8 5.0 44.6 26.3 
  Current† 46.9 58.0 79.9 27.9 57.1 
        
 Mean pack-years‡ 50.6 53.1 75.9 41.5 75.1 
       
 Respondent (%) Self 87.4 80.8 70.6 90.1 60.0 
  Proxy 12.6 19.2 29.4 9.9 40.0 
       

*Median family income for census tract, in Canadian $ 
 †Current smokers and subjects who quit less than two years before recruitment 
‡Among ever smokers, based on 20 cigarettes per packet. 
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Table 2. Distribution of male subjects with lifetime occupational exposure 

to nickel, cadmium or chromium VI compounds in two Montreal-based studies 

               

    Study I (1979-1986) Study II (1996-2001) 

               

    Pop. Controls Cancer
Controls Cases Pop. Controls Cases 

               

Occupational Agent  N % N % N % N %  N % 

               

Nickel compounds             

 Non-exposed  487 91.4 1243 92.1 770 89.8 804 89.4  654 88.6 

 Non substantial exposure  39 7.3 86 6.4 70 8.2 83 9.2  64 8.7 

 Substantial exposure  7 1.3 13 1.0 9 1.1 4 0.4  10 1.4 

              

Chromium VI compounds             

 Non-exposed  472 88.6 1210 89.7 758 88.4 820 91.2  681 92.3 

 Non substantial  exposure  44 8.3 101 7.5 79 9.2 55 6.1  34 4.6 

 Substantial exposure  11 2.1 16 1.2 11 1.3 9 1.0  12 1.6 

              

Cadmium compounds             

 Unexposed  526 98.7 1334 98.9 845 98.6 848 94.3  694 94.0 

 Non-substantial  exposure  6 1.1 11 0.8 9 1.0 37 4.1  28 3.8 

 Substantial exposure  1 0.2 4 0.3 3 0.4 14 1.6  16 2.2 
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Table 3.  Percentage distribution of occupations held by male subjects 

exposed to nickel, chromium VI, or cadmium compounds in two Montreal-based studies 

 Nickel Chromium VI Cadmium 

Occupation category Study I Study II Study I Study II  Study I Study II

Number of jobs with exposure to each compound* 333 246 406 164  39 68 

Sheet metal workers 25% 21% 17% 14%  11% 8% 

Metal machinists and metal product fabricators 27% 24% 4% 8%  20% 19% 

Metal processors 8% 9% 8% 5%  13% 4% 

Mechanics 9% 4% 15% 14%  5% 19% 

Construction and other related painters  0% 0% 19% 18%  0% 12% 

Construction workers 5% 7% 5% 8%  8% 2% 

General machinists 5% 5% 1% 1%  8% 2% 

Electrical and electronic workers 0% 0% 0% 0%  8% 10% 

Graphic artists 0% 0% 0% 0%  13% 6% 

Printers 0% 0% 5% 5%  0% 0% 

Chemical processing, rubber, and plastic workers 0% 0% 5% 6%  0% 10% 

Materials handlers 2% 6% 1% 2%  0% 0% 

Administrators, scientists, teachers, clerks, and 

salesmen 
9% 14% 10% 11%  13% 7% 

Other occupations NEC 10% 9% 10% 8%  0% 1% 

*Each subject may have been exposed in one or more jobs. 



 
 

 

 
 

  

14
3

Ta
bl

e 
4.

 O
dd

s r
at

io
s b

et
w

ee
n 

lu
ng

 c
an

ce
r a

nd
 o

cc
up

at
io

na
l e

xp
os

ur
e 

to
 n

ic
ke

l, 
ch

ro
m

iu
m

 V
I, 

or
 c

ad
m

iu
m

 
 a

m
on

g 
M

on
tre

al
 m

al
es

 in
 tw

o 
st

ud
ie

s a
nd

 in
 a

 p
oo

le
d 

an
al

ys
is

 

 
 

 
 

 
 

St
ud

y 
I (

19
79

-1
98

6)
 

St
ud

y 
II

 (1
99

6-
20

01
) 

Po
ol

ed
 S

tu
di

es
 

 
 

 
 

 
 

C
on

tro
ls

/
C

as
es

 
O

R * 
 

95
%

 C
I 

C
on

tro
ls

/
C

as
es

 
O

R * 
 

95
%

 C
I 

C
on

tro
ls

/
C

as
es

 
O

R * 
 

95
%

 C
I 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

N
ic

ke
l c

om
po

un
ds

 
 

 
 

 
 

 
 

 
 

 
 

 
 

U
ne

xp
os

ed
 

97
8 

77
0 

 
 

 
 

80
4 

65
4 

 
 

 
17

82
14

24
 

 
A

ny
 le

ve
l o

f e
xp

os
ur

e 
85

 
79

 
1.

35
 

1.
0

 
1.

9
87

 
74

 
1.

18
 

 
0.

8
1.

7
17

2 
15

3 
1.

27
 

1.
1

1.
7

 
 

N
on

-s
ub

st
an

tia
l l

ev
el

 
73

 
70

 
1.

48
 

1.
0

 
2.

2
83

 
64

 
1.

03
 

 
0.

7
1.

6
15

6 
13

4 
1.

25
 

0.
9

1.
6

 
 

Su
bs

ta
nt

ia
l l

ev
el

 
12

 
9 

0.
80

 
0.

3
 

2.
0

4 
10

 
4.

96
 

 
1.

3
19

.
16

 
19

 
1.

46
 

0.
7

3.
1

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
C

hr
om

iu
m

 V
I c

om
po

un
ds

 
 

 
 

 
 

 
 

 
 

 
 

 
U

ne
xp

os
ed

 
95

0 
75

8 
 

 
 

 
82

0 
68

1 
 

17
70

14
39

 
 

A
ny

 le
ve

l o
f e

xp
os

ur
e 

10
1 

90
 

1.
22

 
0.

9
 

1.
7

64
 

46
 

0.
93

 
 

0.
6

1.
5

16
5 

13
6 

1.
12

 
0.

9
1.

5
 

 
N

on
-s

ub
st

an
tia

l l
ev

el
 

84
 

79
 

1.
33

 
0.

9
 

1.
9

55
 

34
 

0.
81

 
 

0.
5

1.
4

13
9 

11
3 

1.
11

 
0.

8
1.

5
 

 
Su

bs
ta

nt
ia

l l
ev

el
 

17
 

11
 

0.
75

 
0.

3
 

1.
8

9 
12

 
1.

74
 

 
0.

6
5.

2
26

 
24

 
1.

06
 

0.
5

2.
0

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
C

ad
m

iu
m

 c
om

po
un

ds
 

 
 

 
 

 
 

 
 

 
 

 
 

U
ne

xp
os

ed
 

10
53

84
5

 
 

 
 

84
8 

69
4 

 
 

 
 

19
01

15
39

 
 

A
ny

 le
ve

l o
f e

xp
os

ur
e 

10
 

11
 

1.
54

 
0.

6
 

3.
9

20
 

23
 

1.
56

 
 

0.
7

3.
3

37
 

34
 

1.
54

 
0.

9
2.

7
 

 
N

on
-s

ub
st

an
tia

l l
ev

el
 

7 
8 

1.
53

 
0.

5
 

4.
5

25
 

22
 

0.
98

 
 

0.
5

1.
9

32
 

30
 

1.
09

 
0.

6
1.

9
 

 
Su

bs
ta

nt
ia

l l
ev

el
 

3 
3 

1.
57

 
0.

3
 

9.
7

3 
6 

5.
67

 
 

0.
7

17
.

6 
9 

2.
87

 
0.

7
11

.
 

 
 

 
 

 
 

 
 

 
 

*A
dj

us
te

d 
fo

r a
ge

, r
es

po
nd

en
t s

ta
tu

s, 
ye

ar
s 

of
 e

du
ca

tio
n,

 a
nd

 s
m

ok
in

g 
(ti

m
e 

si
nc

e 
qu

itt
in

g,
 e

ve
r s

m
ok

ed
, l

n(
ci

ga
re

tte
-y

ea
rs

) )
, a

s 
w

el
l a

s 
st

ud
y 

fo
r 

po
ol

ed
 re

su
lts

.  
Lo

w
 re

lia
bi

lit
y 

es
tim

at
es

 a
re

 e
xc

lu
de

d.
 



   

    

144

* Adjusted for age, proxy, respondent status, years of education, smoking, 

and study.  Pooled results presented reflect trends for both individual studies. 

___________________________________________________________________ 

Table 5.  Odds ratios between lung cancer  and occupational exposure to nickel, 

chromium VI, or cadmium by duration of exposure in a pooled analysis of two 

Montreal-based studies 

Exposure duration (years) 
Controls/ 

Cases
OR* 95% CI 

Nickel       

  0  1782 1424      

  < 5 45 29 0.92  0.5  1.6 

5 - 20 54 45 1.24  0.8  2.0 

> 20 74 79 1.56  1.1  2.3 

Chromium VI      

0  1770 1439      

< 5 34 32 1.28  0.7  2.2 

5 - 20 59 48 1.06  0.7  1.7 

> 20 72 56 1.11  0.7  1.6 

Cadmium      

0  1901 1539      

< 5 17 15 0.96  0.4  2.1 

5 - 20 21 16 0.77  0.4  1.7 

> 20 26 25 1.44  0.7  2.8 
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