
Université de Montréal

Measuring RocksDB Performance and Adaptive
Sampling for Model Estimation

par

Jean Laprés-Chartrand

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Recherche Opérationnelle

January 24, 2022

© Jean Laprés-Chartrand, 2021





Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

Measuring RocksDB Performance and
Adaptive Sampling for Model Estimation

présenté par

Jean Laprés-Chartrand

a été évalué par un jury composé des personnes suivantes :

Jean-Yves Potvin
(président-rapporteur)

Fabian Bastin
(directeur de recherche)

Abdelhakim Hafid
(membre du jury)





Abstract

This thesis focuses on two topics, namely statistical learning and the prediction of key
performance indicators in the performance evaluation of a storage engine.

The part on statistical learning presents a novel algorithm adjusting the sampling size
for the Monte Carlo approximation of the function to be minimized, allowing a reduction of
the true function at a given probability and this, at a lower numerical cost. The sampling
strategy is embedded in a trust-region algorithm, using the Fisher Information matrix, also
called BHHH approximation, to approximate the Hessian matrix. The sampling strategy is
tested on a logit model generated from synthetic data. Numerical results exhibit a significant
reduction in the time required to optimize the model when an adequate smoothing is applied
to the function.

The key performance indicator prediction part describes a novel strategy to select better
settings for RocksDB that optimize its throughput, using the log files to analyze and identify
suboptimal parameters, opening the possibility to greatly accelerate modern storage engine
tuning.

Mots-Clés

optimization, statistical learning, RocksDB, LevelDB, Fisher information

5





Résumé

Ce mémoire s’intéresse à deux sujets, un relié à l’apprentisage statistique et le second à la
prédiction d’indicateurs de performance dans un système de stockage de type clé-valeur.

La partie sur l’apprentissage statistique développe un algorithme ajustant la taille
d’échantillonnage pour l’approximation Monte Carlo de la fonction à minimiser, permet-
tant une réduction de la véritable fonction avec une probabilité donnée, et ce à un coût
numérique moindre. La stratégie d’échantillonnage est développée dans un contexte de ré-
gion de confiance en utilisant la matrice d’information de Fisher, aussi appelée approximation
BHHH de la matrice hessienne. La stratégie d’échantillonnage est testée sur un modèle logit
généré à partir de données synthétiques suivant le même modèle. Les résultats numériques
montrent une réduction siginificative du temps requis pour optimiser le modèle lorsqu’un
lissage adéquat est appliqué.

La partie de prédiction d’indicateurs de performance décrit une nouvelle approche pour
optimiser la vitesse maximale d’insertion de paire clé-valeur dans le système de stockage
RocksDB. Les fichiers journaux sont utilisés pour identifier les paramètres sous-optimaux du
système et accélérer la recherche de paramètres optimaux.

Mots-Clés

optimisation, apprentissage statistique, RocksDB, LevelDB, Information de Fisher

7





Table des matières

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Mots-Clés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Liste des tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Liste des figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Liste des sigles et des abréviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Remerciements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
RocksDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Statistical Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapitre 1. RocksDB Performance Tuning Based on Log Files. . . . . . . . . . . . 21

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2. RocksDB description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.1. RocksDB Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.2. Configuration Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.3. Existing performance models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2.4. Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3. Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4.1. Flush Thread Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4.2. Compaction Thread Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4.3. Level 1 Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4.4. Parameter Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

9



1.5. Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapitre 2. Statistical Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2. Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.1. Notations and Basic Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.3. Basic Trust-Region model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.4. Trust-region subproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.5. Approximation of the Hessian matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3. Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.1. Sample size strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.2. Relation to other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.3. Novelty of our method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4. Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.4.1. Multinomial Logit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.4.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.4.3. Hessian Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Appendix A. Multinomial logit derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

10



Liste des tableaux

2.1 Sampling strategies nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2 Smoothing nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3 BHHH approximation benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4 Optimization time, BHHH approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5 True Hessian matrix benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.6 Times and results for BTR algorithm with the true Hessian matrix. . . . . . . . . . . . . . 60

11





Liste des figures

1.1 RocksDB schematic representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2 A small extract of the log file from which required metrics were measured. . . . . . . 28
1.3 Algorithmic complexity of merging sorted lists is O(n) with respect to the total

size of the list to be merged. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4 The distribution of the time between the creation and the deletion of a memtable

is asymmetric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5 Graphical representation of the behavior of the files in a level during a cycle. . . . . 32
1.6 Graphical representation of a cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1 Unconstrained sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.2 Distance to solution and sample size for BHHH approximation . . . . . . . . . . . . . . . . . . 58

13





Liste des sigles et des abréviations

BTR Basic Trust Region

KOPS Kilo Operations Per Seconds

KPI Key Performance Indicator

KV Key-Value

LSM-tree Log-Structured Merge-Tree

MLE Maximum Likelihood Estimation

SSD Solid State Drive

SAA Sample Average Approximation

TCG Truncated Conjugate Gradient

15





Remerciements

I would like to thank Doctor Fabian Bastin and Doctor Étienne Elie for their help and
guidance in the domains of statistical learning and settings optimization, respectively, as
well as for sharing their expertise for the realization of this thesis.

I would like to thank as well for their help Morgan Githinji, Jeremy Rieussec, Elizabeth
Michel, and notably François Corneau-Tremblay for his help with git and Julien Codsi for
leading by example with his suboptimal Julia code.

This work would not have been possible without the generous support of Intel Corpora-
tion, where the data and ideas for the first chapter of this thesis have been collected during a
nine months internship. I am very thankful for the generous support and opportunity Intel
has provided.

17





Introduction

In this fast and competitive world, optimization is taking an ever-growing place in most
fields related to computer science and operations research. Such fields include but are not
restricted to key-value pair (KV-pair) storage and statistical learning, two topics covered in
this thesis.

RocksDB

RocksDB is key-value storage engine based on a log-structured merge-tree (LSM-tree)
structure that reaches a high insertion throughput by using an in-memory write buffer called
memtable to avoid small random write requests to storage and only write long sequential
write requests to storage, taking full advantage of modern storage systems. RocksDB is
however difficult to tune as it is characterized by more than 50 different configurable settings,
each one being capable to impact various key performance indicators (KPIs). We propose a
novel approach based on RocksDB traces files to measure the storage system internal metrics.
This allows a better understanding of its behavior and pinpoints non-optimal settings, thus
guiding the search for more efficient configurations.

Statistical Learning

Modern statistical learning problems are now, more then ever, complex. The calibra-
tion, sometime called training, of such models, for instance neural networks composed of
many layers, leads to a high dimensional optimization problem, relying on datasets of ever
increasing size. Stochastic first-order optimization algorithms are usually used to solve such
high-dimensional problems. In such methods, the gradient of the function can be easily ap-
proximated by means of Monte Carlo sampling, decreasing the time required per iteration.
Use of second-order optimization algorithms is less common as the storage of the Hessian
matrix, or some approximation of it, is usually impractical or even impossible.

Multiple techniques have been developed to use second-order optimization algorithms
without the costly storage of the Hessian matrix. In this thesis, we explore such techniques
and develop a sampling strategy based on a second-order approximation of the function,



reducing the sample size while guaranteeing a reduction in the function to minimize with a
significant probability.

Thesis structure

This thesis is partitioned into two parts. The first chapter covers the write throughput
optimization for RocksDB. It is divided into three sections: a description of RocksDB, a
review of analytical models describing RocksDB performance, and finally a presentation of
the proposed new methodology using RocksDB log files to optimize its settings. The second
chapter covers the statistical learning part of this thesis. It is divided into three sections: a
mathematical formulationof the problem under consideration, a description of the proposed
algorithm, and finally some numerical experiments. A general conclusion follows.

20



Chapitre 1

RocksDB Performance Tuning Based on Log
Files

1.1. Introduction
A log-structured merge-tree (LSM-tree) is a data structure that stores data in the form

of key-value (KV) pairs [? ? ]. It has two main components. The first component, named
“the write buffer”, resides in memory and serves to buffer and alleviate costly random write
operations to the storage device. The second component hosts most of the KV and resides
in storage. When the write buffer exceeds a specified size, it is merged with the second
component.

In many LSM-tree based architectures, the storage component is divided into multiple
layers, called levels, with higher levels containing older KV pairs and lower levels storing the
most recently written KV pairs. Levels are composed of multiple files containing KV pairs
in a sorted fashion. Due to the architecture of the system, the same key can be associated to
multiple values placed in different levels. A KV pair has at most, a single value at any level
greater than or equal to one but can be associated to multiple values at level 0. If a key is
associated to multiple values, the most recent version of the KV-pair is either the version in
the write buffer or the version that was in the lowest level.

RocksDB [? ] is a LSM-tree based storage engine created by Facebook, available at the
address http://rocksdb.org/. It is used in a variety of applications : database storage
engines, stream processing, logging services [? ], index services, caching on solid state drives
(SSDs) [? ], . . . It is an evolution of LevelDB [? ], another storage engine based on LSM-tree,
but takes better advantage of parallelism to get better throughput at the cost of marginal
worst read latency [? ]. RocksDB is highly customizable to accommodate users requirements
and systems, and meets various types of use. The set of possible settings is therefore very
large, and testing all parameters combinations is often too time consuming to be considered.
Furthermore, testing a wide spectrum of settings requires to write large amount of data

http://rocksdb.org/


to the storage device, which will inevitably reduce its life expectancy through write/erase
cycles. Thus, the optimal combination of setting parameters is difficult to obtain.

Interesting work has been done to automatically optimize RocksDB settings [? ] and de-
velop an analytical model of its behavior. Such models include RocksDBs slowdown through-
put [? ] and space amplification [? ]. In this chapter, we further investigate the possibilities
to improve RocksDB operations, more specifically to optimize RocksDB write throughput.
To the best of our knowledge, our approach is novel as it relies on a newly established set of
equations linking the write throughput of RocksDB to several of its settings. Furthermore,
we used and analyzed a single run of RocksDB to generate a log file in order to measure
RocksDB internal thread usage and get a better perspective and accurate prediction of its
behavior.

The rest of the chapter is organized as follows. We present the architecture of RocksDB,
along with the main adjustable parameters, in the second section, followed by usual Key
Performance Indicators (KPIs) of interest and their existing mathematical models. In the
third section, we describe how a single run can be used to measure different metrics required
for the optimization of write throughput. In the fourth section, we build a simple set of
equations that describe the insertion rate by means of the measures previously obtained. We
then suggest how to use these expressions to make suggestion on better settings for RocksDB,
and we conclude.

1.2. RocksDB description
In this section, we describre the architecture of RockDB and its configuration space. We

then review the main performance models in the litterature, and discuss the objective to
consider when optimizing RocksDB.

1.2.1. RocksDB Architecture

As illustrated in Figure 1.1, RocksDB’s main components are the memtables (mutable
and immutable) denoted as MM, the levels (subdivided into SSTables), and the write-ahead
log (WAL). The File (SST i j) is the j-th file of level i. In the example, there are three levels
but the number of levels is usually larger.

RocksDB stores KV in ordered levels, numbered from 0. levels contain older KV, while
lower levels store the most recently written KV pairs. The number of levels can dynamically
changes with the data size. The KV pairs are pushed into deeper levels through an operation
called leveled compaction. Each level is composed of Sorted Static Tables (SST) files. As
their names indicate, SST files are composed of a sorted set of KV pairs. In levels greater
than 0, the key range is partitioned and each SST file contains a non-overlapping range of
keys. Due to the nature of the flush operations, SST files at level 0 have a key range possibly

22



MM WAL

SST 0 0 SST 0 1 SST 0 2

SST 1 0 SST 1 1 SST 1 2 SST 1 3 SST 1 4

SST 2 0 SST 2 1 SST 2 2 SST 2 3 SST 2 4 SST 2 4 SST 2 4

Fig. 1.1. RocksDB schematic representation

covering the whole key space, sometimes called key range, which is the set of keys that can
be accessed by the user. Each level has a target size, set to x times the previous level size.
x is often chosen to be equal to 10 but other techniques can be used [? ]. The SSTs are
composed of blocks, blocks are chunks of memories in which KV pairs can be accessed. To
access the value associated to a key, the block must first be located in storage, loaded in
memory from the storage and then searched. The blocks can contain many KV pairs.

The insertion of new KV pairs is done by means of the memtables, that are in-memory
structures used as write buffers. They are implemented as a skip list, a structure that allows
both insertion and extraction at a low computational cost [? ]. Once a memtable is filled, it
is set to immutable and a new empty mutable memtabe is created. Immutable memtables
are eventually flushed to Level 0.

The manifest contains the information about all the files in RocksDB, the key range of
all SST files, and the locations of the blocks. The WAL is used to recover unsynchronized
data in the event of a failure. Every time a new KV pair is written, it is written into the
memtable (in memory) and the WAL (also in memory). The WAL content is transfered to
storage more frequently to ensure that recently written KV pairs are not lost in case of a
system malfunction.

For each level k, we compute a score sk, defined as the ratio between the level size, defined
as the number of bits of the KV pairs stored in it, and the level target size:

sk = size of level k
target size of level k .

The level k with the highest score is chosen for compaction. Then, the oldest available SST
files are chosen to be merged into the next level, k + 1. A file is available if it is not already
in a compaction process. All SST files at level k + 1 that contain KV pairs that overlap
with the key range of the selected file at level k are also chosen. Once all the files that will
be involved in the compaction are selected, they are locked, meaning that they cannot be
involved in other compaction. The compacting process is simply the merging of the selected

23



files and the creation of new files. The files that were selected are used to create new files
that contain their KV pairs and are then deleted. This process allows duplicated keys that
possibly coexisted at levels k and k+1 to be merged, leaving the most recent KV pairs in the
new file. Once the files have been merged, the manifest is updated, the newly generated SST
files are written into storage, and all the files that were used are discarded as the KV pairs
they were containing now exist in the new SST files. Compactions can occur simultaneously
as long as they involve different files and multiple compactions can occur at the same level.

The Flush operation simply moves the KV pairs from immutable memtables into a new
SST file at level 0. The key range of the newly created SST file can possibly cover the whole
key range of the data set as the keys contained in this new file are only related by their ages
while the keys of deeper files are related by their age and key names.

The location of a KV pair is not known, and we have to search for it when a reading
request is made. The search stops when the KV pair has been found or when the last level
has been explored. Structures are searched first in the mutable memtable, next in immutable
memtables, and finally in the levels starting from 0 to the last level. Each file at level 0 must
be searched as the key range of those files can include the key requested. For all levels greater
than 0, a single file has to be searched as it is possible to find the only file that can possibly
contain the key searched since the key range of those files are disjoint.

Hash tables can guarantee that a KV pair is not present in a given level, that can be
skipped. Mutable and immutable memtables, and SST files at level 0 are usually cached
in memory while higher levels are stored on the storage device. If the key was stored in a
memtable, RocksDB can directly return the KV pair to the user. In the case where the key is
on the storage device, it is costly to search for. The location of the block possibly containing
the KV pair is found using the manifest; if the block is already present in memory, it is
directly searched. If it wasn’t already in memory, it is searched in the storage device. In
the worst case, the read request targets an old KV pair that is stored in the deepest level.
In such a case, if none of the blocks possibly containing the KV pair is in memory, and the
hash tables are not used or do not indicate that the KV pair is not present at any level, then
RocksDB must generate a costly random read request to storage per level.

1.2.2. Configuration Space

RocksDB has more than 50 tunable integer parameters. Thus, the number of possible
configurations is very large, and changing one parameter can have a positive effect on a
particular KPI, while reducing the performance with respect to other KPIs. Adjusting
RocksDB settings to better suit encountered workload is thus difficult. We describe below
the most commonly used parameters, their effect on some common KPIs, and their usual
values.

24



SB: the size of the write Buffer, a multiple of 32MB varying between 1 and 16. A
bigger write buffer can lead to better throughput but might also increase tail latency
[? ] and memory usage.

TF : the maximum number of background flush operations and TC maximum
number of compaction threads are parallelism-related configurations. For a write
heavy workload, they can drastically increase throughput but will also increase CPU
usage and so increase latency and tail latency [? ]. Flushes and compactions are
background operations of low priority, but are also time expensive compared to read
requests. This means that if many of those background operations are occurring
simultaneously, the application level request latency can increase. Increasing the
maximum number of background compactions has been observed to shorten com-
paction cycles and improve performance [? ]. Increasing the number of flushing
threads is often reported to have no or negligible effect on KPIs [? ]

SC: the read cache size, affecting the read throughput. When the read cache size
is increased, the probability of a block to be already cached after a get request is
increased and the latency and tail latency are reduced at the cost of more memory
usage.

Bb: the bloom filter bit size (bloom filter is disabled by default). Bb impacts the get
latency and get tail latency by reducing the number of disk IO access. For random
read heavy workload, [? ] found that 12 bit bloom filter outperformed 1 bit bloom
filter by up to 213 % and that the bloom filter function consumed only 0.9% of the
CPU resources. The impacts of the bloom filter are larger on the memory utilization
observing 344.1 MB memory footprint with 12 bit keys.

Bs: the block size (1 to 16KB and 4KB by default), hardware dependent. As the
block size gets bigger, less memory is used in the manifest to keep the location of
each block. Since an entire block must be read from storage if the KV pair requested
is not in memory, more bandwidth might be used with bigger block size but this
could be balanced by key request time locality as loaded blocks will reside in memory
for a period of time after their request. [? ] observed that increasing the block size
decreased the database duplication but had a negative impact on read performance
so they ended up not including this configuration to their final configuration.

w: boolean parameter allowing to disable the WAL. It is a common and easy op-
timization when data durability is not required, for instance when using Redis On
Flash (ROF), a in-memory KV-Storage engine that uses SSD as memory extension
[? ].

ts: slowdown trigger, allowing the activation of a mechanism in RocksDB that slows
down the rate of KV pair insertion when there are too many files (12 files for slowdown
trigger by default) in level 0. This feature is required to limit the size of level 0 and

25



give the system a chance to gain back its optimal level of size amplification, where the
latter is the size of the of the RocksDB instance divided by the size of all the KVs it
contains. As described in [? ], if the limit is too low, the system will often slowdown
causing long tail latencies as a write request occurring during the slowdown takes
a longer time to perform. In contrast, a slowdown trigger which is too high might
cause a compaction depth that can stop all traffic for even longer periods of time.

tt: the stop trigger, similar to the slowdown trigger but completely stopping the
system when it is reached (20 files for the stop trigger by default), causing even
harsher penalty to the measured KPIs. [? ] observed increased performance of 10 %
by selecting higher values for the slowdown and stop triggers.

1.2.3. Existing performance models

To the best of our knowledge, a limited number of metrics have been proposed in the
literature to quantity the performance of RocksDB. We found two analytical models de-
scribing the behavior of LSM-tree based algorithms. The first one is computing the write
throughput when a slowdown trigger has been reached for RocksDB [? ], and the second
one is computing RocksDB space amplification based on key distributions [? ].

? ] describe the throughput of RocksDB once the slowdown trigger has been reached.
Let λa be the application level throughput and λs be the system level throughput. These
quantities respond to the equality

λa = t

τ + t
· λs,

where τ is the delay period time. The delay period time is a period of time during which the
put rate will be slowed down. t is the median latency, i.e. the median time to complete a
write operation. They consider as a use case RocksDB for a 3D XPoint SSD, the background
processing capacity when compaction happens is 190 thousand operations per second (kops),
t = 15ms, and τ = 1024ms. This results to an application level throughput of 15/(1024 +
15) · 190kops = 2.74kops. This value is coherent with the throughput they observed with
90% write workload.

? ] describe the space amplification of RocksDB based on basic key distribution assump-
tions. When running benchmarks to evaluate the performance of a KV storage engine like
RocksDB or LevelDB, two key distributions are often used: the uniform distribution and
the Zipf distribution. Both assume that the key set can be mapped to the set of integers
K = [1, N ], where N is the total number of keys. Both distributions assume that the key
requests are independent and identically distributed (i.i.d). The probability-mass functions
are fX(k) = 1/N , k ∈ K and fX(k) = (1/ks)/(∑n∈K 1/ns) for the uniform and Zipf distri-
butions, respectively. Only cases with 0 < fX(k) < 1 are of interest since if fX(k) = 0, then

26



the key k as a null probability of being requested and if fX(k) = 1, then the workload is
composed of a single key.

Let us now define Unique(p), the expected number of unique keys appearing when p

requests are made, and Unique−1(u), the expected number of requests with u different keys.
It is easy to see that Unique is a bijection, Unique−1 exists for all 0 ≤ u < N and is the
inverse of Unique. Mathematically speaking,

Unique(p) = N −
∑
k∈K

(1− fX(k))p,

while Unique−1(u) can be numerically computed by solving Unique(p) = u for the unknown
p. Finally, Merge(u, v) is the expected size of a merged SST file created by merging two
tables of sizes u and v respectively.

Merge(u, v) = Unique(Unique−1(u) + Unique−1(v)).

Using the previously defined distributions, they ran simulations of LevelDB behavior,
and only tracked the simulated files. This resulted in a much faster simulation while giving
an accurate approximation of space amplification. They used their model to optimize their
use of LevelDB with respect to write amplification, varying the target size of each level.
Using their approaches, they were able to reduce write amplification up to 9.4%. The
use of a simulation instead of direct calls to LevelDB allow to speed up the optimization
process. For instance, for 100 millions unique keys, the optimisation took 2.63 seconds in
their experiments, evaluating 17,391 different parameter sets. On the opposite, running a
single set of parameters on a real instance require 45 minutes to measure write amplification.

1.2.4. Objective

Finding the optimal configuration for RocksDB is a long and arduous task that depends
on hardware, workload, Key Performance Indicator (KPI) and basic performance require-
ments. The usual KPIs of interest are amplification factors (read, write and space amplifica-
tion). Read amplification is the average number of disks read per query, write amplification
is the ratio of data written to storage to data sent to RocksDB, and space amplification is the
sum of bytes written to storage to number of bytes sent to RocksDB. Other KPI’s can be of
interest, such as throughput (read, write or a combination of both) latency and tail latency,
latency being the response time of the system and tail latency is usually the 90th quantile
or 99th quantile longest response times. Furthermore, system utilization (CPU, bandwidth
and memory utilization) can be used as KPI as users might be running other resource heavy
workload on the same system and minimizing the resources used by an instance of RocksDB
can free resources for other applications.

27



1.3. Observations

Fig. 1.2. A small extract of the log file from which required metrics were measured.

For our experiments, our goal was to optimize the write throughput of RocksDB with
no constraints on other KPIs, amplification factors or system utilization. We extracted
information from the log file generated by RocksDB to analyze the internal behavior of
RocksDB. The log file contains information about compactions (which files were used, which
files were created, the time the compaction started, the time it finished, sizes of each file, etc),
similarly for the flush operation (which memtables were used and their sizes, which SSTables
were created, time it started and finished, etc). Also, the log file contains information about
which threads were involved in each operation, slowdown and shutdown trigger information,
see Figure 1.2 for an extract.

The compaction times were highly correlated to the input size with a correlation coeffi-
cient of 0.999, as shown in Figure 1.3. The Compaction time was 5.54 MB per milliseconds.

Due to the fixed size of the memtables and fixed number of immutable memtable required
to be flushed, all flushes involved a similar number of keys and the relation between the flush
time and size, both in terms of bytes and number of keys, was not found to be linear. The
average time for a flush was 0.27 seconds and the distribution of the time was asymmetric,
see Figure 1.4.

1.4. Model
Three parts of RocksDB algorithm were thought to possibly be limiting the put rate

during the benchmark, the flushing threads utilization, the compaction threads utilization
and the level 1 utilization.

28



Fig. 1.3. Algorithmic complexity of merging sorted lists is O(n) with respect to the total
size of the list to be merged.

Fig. 1.4. The distribution of the time between the creation and the deletion of a memtable
is asymmetric.

29



1.4.1. Flush Thread Utilization

The first possible bottleneck studied was the flush threads utilization. This possible
bottleneck would appear in the cases where the put rates would exceed the rate at which the
flushing thread can flush KV pairs to the level 1 through the flushes of immutable memtables.

The maximum rate at which one flushing thread can flush keys from the memtable into
level 0 files is given by

λ1
F = NM ·KM

tF
,

where NM , is the average number of keys in the memtables, KM , the average number of
memtables per flushes and tF , the average time to execute a flush operation. This maximum
rate must be multiplied by the number of flushing threads TF in use, leading to a maximum
flush rate of

λF = TFλ
1
F = TF ·NM ·KM

tF
.

In our run of RocksDB with seven flushing threads, we observed the transfer to storage of
one memtable in average per flush, an average of 127098 keys per memtable, an average
flushing time of 0.27 seconds, and a put rate of 71,682 keys per second while the upper
bound delimited by the flushing threads was

λF = 7 · 1 · 127098
0.27 = 3,295,133.

This means that the observed put rate of the system was well under the maximum flushing
rate of the flushing threads and an optimal configuration of RocksDB would have a smaller
number of flushing threads.

1.4.2. Compaction Thread Utilization

The second possible bottleneck in the RocksDB architecture is the compaction thread
that is either not fast enough or not numerous enough to move keys from level 0 to deeper
levels, causing the system to hit a slowdown trigger.

We assume that Ri→j, the ratio of compaction that occurs between levels i and j is known
and fixed for all levels i, j. The maximum rate at which one thread can execute compaction
λ1
C has a similar form as the maximum flushing rate and is given by

λ1
C = 1

tC
,

where tC is the average time for a compaction. Note that λ1
C is a measure in compaction per

second while λ1
F and λF were measures in key per second. The maximum rate of compaction

of TC compaction threads is then
λC = TC · λ1

C .

30



From the maximum rate of compaction, we can extract the maximum rate of compaction
between level 0 and level 1 as

λ0→1 = R0→1λC ,

since a proportion R0→1 of compaction must occur between level 0 and level 1. Due to
overlapping key ranges of files in level 0, all files of level 0 are involved during level 0-1
compactions. The maximum rate at which keys are passed from level 0 to level 1 will be
called dispersion rate λ0 and is given by

λ0 = λ0→1 ·N0 ·K0,

where N0 is the average number of files at level 0 when compaction 0-1 occurs and K0 is the
average number of keys per file in level 0.

Putting all the equations together, we have

R0→1 ·
TC
tC
·N0 ·K0,

where λ0 is the maximum rate at which the level 0 moves keys in level 1. In our experiment,
we have observed

λ0 = 0.08728 · 16
7.25 · 4.54320 · 178584 = 156,279.

While this upper bound is much lower than the flushing rate upper bound, it is still
more than twice the observed put rate. Furthermore, we argue that reducing the number of
flushing threads might have a detrimental effect on the performance of RocksDB by putting
too much pressure on the utilization of the compaction threads.

1.4.3. Level 1 Utilization

The last possible bottleneck that we see in the architecture of RocksDB is in the level 1
utilization. This bottleneck comes from the fact that for a compaction to occur, RocksDB
must find free files (files that are not already involved in a compaction) in oversized levels.
While for most levels this is perfectly fine as multiple compactions can occur simultaneously
on non overlapping key regions of a level, compactions from level 0 to level 1 involve all, or
almost all the files. If at a given time, RocksDB is ready to do a compaction between level
0 and level 1 and some files in level 1 are already used in a compaction to level 2, RocksDB
will have to delay the level 0-1 compaction causing the system to accumulate more files at
level 0 during this delay and hitting a slowdown trigger. More generally, it appears that
RocksDB utilization will consist of cycles. During the first part of the cycle, a compaction
between level 0 and level 1 will occur, raising the size of level 1 and will follow compactions
between levels 1 and 2, see Figure 1.5 and 1.6. For this reason, it seems reasonable that the
level 1 utilization could be the bottleneck in RocksDB architecture.

31



Fig. 1.5. Graphical representation of the behavior of the files in a level during a cycle

t0→1 α β γ

χ

T

Fig. 1.6. Graphical representation of a cycle

This bottleneck assumes that the cycles are too long and limit the rate at which the level
1 can absorb KV pairs from level 0. The time required to cycle is composed of four parts:
the time to execute a compaction from level 0 to level 1 t0→1, the time α required to acquire
the required resources for a compaction from level 1 to level 2, the time β to execute all the
compactions between level 1 and level 2 and finally, the time γ to acquire the resources for a
compaction between levels 0 and 1. The cycle ends when the next compaction between level
0 and level 1 starts, see Figure 1.6. To simplify the notation, we will call χ the total time
between the end of a compaction from level 0 to level 1 and T the total time for a cycle. χ
and T satisfy the relations

χ = α + β + γ,

T = t0→1 + α + β + γ.

The number of keys absorbed by level 1 during a cycle is simply the number of keys inserted
to RocksDB during the previous period. Assuming that each cycle takes the same time and

32



that the number of keys in level 0 during compaction n0 is constant, the maximum rate at
which keys can be moved to level 1 is

λ1 = n0

T
.

During our test of RocksDB, we have observed α = 1.563, β = 3.574, γ = 1.269, and
χ = 6.407 , giving us a period of T = 12.81 seconds during which the average number of
keys in a file in level 0 is 237490 and the average number of files from level 0 in a compaction
0-1 is 4.543, meaning that the average number of keys being moved to level 1 per cycle is
4.543 · 237490 = 1.078 · 106. Thus, level 1 can absorb 84224 keys per second which is only
about 17% higher than the observed throughput.

1.4.4. Parameter Selection

For the current system, running the same workload, we argue that many of the observed
measurements will not change significantly when changing most of RocksDB’s settings. For
instance, the speed of compaction (in MB per seconds) is hardware dependent and should
not change when changing most settings. However, the average flush time will change when
modifying the write buffer size. While there is a linear relation between the compaction time
and its input size, the same is not known to be true yet for the flushing time and further
investigation will be required to find such a relation. The flushing time should however
be independent of most other settings. The distribution of α and γ are synchronization
dependent, they depend on the time required for the system to acquire needed resources
to execute a compaction and should slightly vary with changes in settings. For simplicity
purpose, we will assume that they stay constant when varying other settings. Considering
all those parameters as constants can help us suggest better settings to optimize the put
throughput for this workload on this architecture.

Since we observed such a low utilization of the flushing threads, we argue that reducing
the number of flushing thread will not decrease the throughput while decreasing the CPU
utilization. Based on our equations, a single flushing thread might be enough to keep up with
the current write throughput. Reduction of the number of flushing threads is coherent with
the literature [? ]. Furthermore, the maximum rate of at which a single flushing thread can
disperse the keys in level 0 is 470 thousand KV pairs per second which is much higher than
the current insertion rate. We then argue that a single flushing thread would be sufficient
with this insertion rate.

While slightly under utilized, the compaction threads were utilized too much for their
number to be reduced and that reducing their number might impact the write throughput
of the system. We then propose to leave the number of compaction threads at their
current number.

33



It is more difficult to alleviate the level 1 utilization bottleneck from the system. For
this reason, if we allowed the level 1 to be bigger, the distribution of α and γ would stay the
same but compactions involving the level 1, both t0→1 and β would be longer resulting in a
better utilization of the level 1 and a better write throughput.

1.5. Exploration
Tuning involves many KPIs, either as a form of multi-objective optimization, or imple-

menting requirement constraints such as keeping a KPI under a given limit while maximizing
one or more other KPIs. Multi-objective optimization can be complex because the change
in a parameter can have beneficial effects on a given KPI while deteriorating others. For
example, enabling hashing can significantly reduce latency, tail latency and bandwidth usage
but will increase CPU and memory utilization. This means that for most use cases, no trivial
solution to maximize all KPIs exists. The case where KPIs are used as constraints is not
trivial either. In this case, KPI constraints can generate problems were no solution exists or
the available set of settings is small, garnering poor solutions.

Furthermore, this works opens the door for many other projects. First of all, we believe
that the problem can be extended into two-steps. During the first step, the user optimizes
his architecture on which the LSM-tree based algorithm will run. In the second step, the user
optimizes his LSM-tree based storage engine settings. We argue that such a methodology
can not only help the user make better choices when determining which hardware to buy, but
it also predicts the performance it will be able to achieve. To achieve such results, further
works must be done, exploring the optimization of other KPIs, and the exact impact of other
settings on the system performance.

This work can also be extended to in-storage optimization. Modern SSDs use complex
algorithms to take advantage of their parallel architecture. SSDs and their Flash Translation
Layer (FTL) specifically, behave in a lot of ways similar to KV storage engines. That is,
logical block addresses behave as a key and physical block addresses behave as values. Non-
optimal FTL management has created the need for open channel SSDs. We argue that the
FTL management problem is not so far of the optimization of a regular LSM-tree based
tuning algorithm and can give boosts in performance if further studied.

1.6. Conclusion
We argue that our method to optimize the settings of RocksDB using the log files is

new and has the potential to help many accelerate their search for better settings. It also
achieves gains in performance without having to run many different parameter configurations,
thus reducing the number of runs required to find a suitable solution. Our analysis of the
log file allowed us to find and measure the linear correlation between the time of a single

34



compaction process and its input size. From our measurements, we were able to build three
sets of equations linking the maximum write throughput to many RocksDB settings which
allowed us to propose better settings for RocksDB that fit our workload on our architecture
without the need to run all the possible combinations of settings, a technique often used to
optimize RocksDB performance.

35





Chapitre 2

Statistical Learning

2.1. Introduction
We consider unconstrained optimization problems of the form

min
x∈Rp

f(x) = Eξ [F (x, ξ)] (2.1.1)

where the expectation is taken with respect to the distribution of ξ. To distinguish between
random data and their numerical values we will use the bold script like ξ for the random
vector, and ξ for a particular realization ξ. The functions F (·, ξ) : Rp → R, for almost every
ξ ∈ Rm, are deterministic, differentiable, relatively cheap to compute and can be nonconvex.

We will focus on statistical learning problems which involve smooth sample average prob-
lems where gradients are computed relatively easily. Such examples arise in estimation of
mixed-logit models (MLM) [? ], maximum likelihood estimation (MLE), data-fitting problems
with least-squares regression, or in Machine Learning (ML) with the training of deep Neural
Networks (NN) for multiclass classification problems in the presence of very large data sets
(see [? ] for a survey on ML problems).

However, the analytical expression for the mathematical expectation (2.1.1) is rarely
available, or even unknown, for various reasons. In the stochastic optimization literature, the
distribution of ξ is typically known, but (2.1.1) requires the computation of multidimensional
integrals in the continuous case, which is numerically impracticable, and, in the discrete case,
the number of realizations (also callled scenarios) of ξ can be very large or even infinite.
In machine learning problems, the distribution is usually unknown and (2.1.1) is replaced
by the empirical risk on the available observations. One possibility for dealing with this
issue is to approximate the original objective function using a sample {ξ1, . . . , ξN} of N
independently and identically distributed (i.i.d.) realizations of ξ. We then form the sample



average approximation (SAA) problem

min
x∈Rp

f̃N(x,ξ1, . . . ,ξN) = 1
N

N∑
i=1

F (x, ξi). (2.1.2)

As underlined in (2.1.2), f̃N(x,ξ1, . . . ,ξN) is a realization of the random variable
f̃N(x, ξ1, . . . ,ξN ). For simplicity, we will omit from now the dependence on the ran-
dom variables, which should be understood from the context, leading to the problem

min
x∈Rp

f̃N(x) = 1
N

N∑
i=1

F (x, ξi). (2.1.3)

Since each ξi follows the same probability distribution than ξ, we have that for any x ∈ Rp,
Eξ[F (x, ξi)] = f(x) and hence E[f̃N(x)] = f(x), ensuring f̃N(x) to be an unbiased estimator
of f(x). Moreover, the application of the pointwise Law of Large Numbers (LLN) implies
that f̃N(x) converges with probability one (w.p.1) to f(x) as N →∞. In that case, f̃N(x) is
said to be a strongly consistent estimator of f(x).

Problem (2.1.3) can be solved with standard optimization methods since it is determinis-
tic. The approach is referred to as SAA or sample-path optimization. Classical assumptions to
ensure that SAA optimization exhibits good asymptotic behavior are the uniform law of large
numbers on the approximate function and its gradient, implying that Eξ[∇F (x, ξ)] = ∇f(x),
and under additional conditions, Eξ[∇2F (x, ξ)] = ∇2f(x). By optimizing the SAA prob-
lem, one can hope to obtain an approximate solution that is close to a solution of the true
stochastic problem when N is large enough.

For instance, in maximum likelihood estimation with discrete variables, we aim to max-
imize, or equivalently minimize the opposite of, the probability that a set of i.i.d. random
variables Xi, i = 1, . . . ,N have taken the values xi, i = 1, . . . ,N . Assuming that the i-th
observation Xi has taken the value xi with the probability F(x, xi) for an unknown and
searched parameter vector θ, the joint probability to observe the realizations x1, x2, . . . , xn

is given by
N∏
i=1
F(θ,Xi).

The logarithmic operator allows to transform this product into a sum, facilitating the
computation of the gradients while improving the numerical stability and preserving the
argument of the maximum. Dividing by N , we form the average log-likelihood function

`(θ) = 1
N

N∑
i=1

logF(θ,Xi),

which has the form required by (2.1.3) by taking F (θ, ξi) := − logF(θ, ξi).
Another family of algorithms to consider are stochastic approximation (SA) methods.

They are iterative procedures which sample small independent data sets at every iteration

38



to efficiently approximate properties of f such as zeros or extrema. These methods have been
widely studied in the last decades, and have become very popular within the ML community.
In particular, we can mention first-order methods like stochastic gradient descent, whose
convergence properties were analyzed in depth by ? ], its variants that use averaging of
gradients [? ], averaging of iterates [? ], momentum and acceleration [? ? ? ] or adaptive
learning rates [? ? ]. We refer the reader to ? ? ] and references therein for examples and
theoretical details. These methods only require moderate computational cost per iteration
allowing for scalable training on large datasets.

The choice between these two extremes, SAA and SA, outlines the well-known tradeoff
between inexpensive noisy steps and expensive but more reliable steps. The availability
of parallel computing environments, however, has developed a fairly different tradeoff. It
has become more reasonable to consider large samples as the Monte Carlo estimates of the
function and gradients are sums for which each term can be computed in parallel.

The need to make SAA implementable, computationally efficient and competitive with
SA methods have led to various refinements such as Retrospective Approximation (RA) or
variable sample methods. The idea is to use relatively rough approximations at early stages
of the optimization procedure and gradually increase the accuracy at the late stages to reach
high accuracy. This way one hopes to save computational effort and yet solve the original
problem eventually by benefiting from the convergence theory from SAA.

Homem-de-Mello [? ] provides general results on the scheduling problem, under which
variable-sample methods yield consistent estimators as well as bounds on the estimation
error. Other authors [? ? ? ] increase the sample that approximates the objective function
by a certain percentage in each iteration. In particular, ? ] provide guidance on how much
sampling should be undertaken under various contexts in order to ensure that the resulting
iterates are provably efficient, where “efficient” implies convergence at the fastest possible
theoretical rate. Another approach [? ? ? ? ] consists to propose dynamic sample sizes
in a linesearch framework to ensure that the sampled gradient is close enough to the true
gradient to have a decrease in the true objective function sufficiently often. In [? ? ? ? ? ?
], the authors adjust the sample size to make sure that the progress is statistically significant
and not only due to noisy estimates. Roughly speaking, the function value of the next
iterate should be outside the confidence interval of the current function value. Finally, some
authors provide more elaborate schemes. For example, ? ] design a variable-number sample-
path scheme which integrates Bayesian techniques to determine a satisfactory non-decreasing
sequence {Nk} to ensure the accuracy of the approximation, while ? ] develops a discrete-time
optimal-control problem to adaptively select sample sizes. We position our work in between
SA and SAA with a variable sample-path method, where the Monte Carlo sample size is
dynamically updated at every iteration to ensure a decrease in the true objective function
with high probability. In the following, the relation of our method to works mentioned above

39



is clearly stated. Note that the sample size update can be non-monotone. For instance, when
leaving a critical point neighborhood, like a saddle point, the sample can be decreased.

After discussing solutions for approximating the objective function, a reasonable question
is: which algorithm should be considered? Facing the computational challenges brought by
the large scale nature of modern big-data problems [? ], many of the recent research efforts
have been centered around designing variants of classical algorithms which improve upon the
cost per iteration, while maintaining the original iteration complexity. First-order methods
have been very popular for the interesting trade-off they offer between their relatively simple
implementation and their good convergence properties. For example, Keskar and Socher [?
] highlight that state-of-the-art optimizers, like Adam, Adagrad or RMSprop, have been
found to generalize poorly compared to SGD at later stages of training in ML problems.
Moreover, they suffer from several issues. They are sensitive to poor initialization [? ], and
their performance highly depends on hyperparameters values, which can be cumbersome to
tune [? ]. Also, they can be blind to pathological curvature, showing slow progress in regions
where the Hessian matrix is ill-conditioned like flat regions. Therefore, second-order stochas-
tic methods have also been proposed, because using knowledge of the curvature allows to
both escape more easily from such regions, and provide adaptive learning rates by re-scaling
the gradient. They also need far fewer iterations as they benefit from better rates of con-
vergence. Nevertheless, their main drawback is that, due to the huge number of parameters
in the model, it is practically impossible to compute, store or worse, solve a linear system
involving the Hessian matrix. Within this context, the central question is how to select a
useful training sample for computing Hessian estimates or Hessian-vector products that is
significantly smaller than the sample used for function and gradient computations, but still
keeps the good convergence properties from second-order methods. A good analysis is pro-
posed by Bellavia and al. [? ] in a context of optimizing large sums of convex functions with
linesearch procedures. A more general framework for Hessian subsampling considerations
can be found in [? ? ]. Also, trust-region methods have been shown in the last decades to
be very efficient, and exhibit good convergence properties [? ]. These algorithms progress
by minimizing a model of the objective function in a region around the current iterate where
the model is deemed of good quality, and the region can be adaptively expanded or shrinked
accordingly. Finding the solution to the constrained model minimization is referred to as
solving the trust-region subproblem. A popular approximation used is the truncated second-
order Taylor expansion of the objective. The goal of trust region is to extend convergence
properties of Newton methods. At each iteration, when using a quadratic model, the step can
be efficiently obtained using the truncated conjugate gradient method, which only requires
Hessian-vector products, and does not require the computation of the Hessian matrix.

Recent works study subsampled Newton-type methods in trust region and cubic reg-
ularization, showing great theoretical and empirical potential [? ? ? ]. ? ] stress the

40



importance of adaptive methods in stochastic optimization to overcome the constraint of
hyperparameters which are hugely time demanding to fine tune and provide general analysis
frameworks for stochastic trust region and linesearch. ? ] extend the work of ? ] and ? ],
and provide convergence rates of stochastic trust-region algorithms, where random models of
the objective function are used at each iteration to compute the next potential iterate. Bor-
rowing ideas from derivative-free optimization, the approximating models are only assumed
to be sufficiently accurate with high probability, and no considerations are made on their
construction process. The study shows that convergence properties of standard optimization
methods, like trust-region algorithms, can be transferred to their stochastic counterparts un-
der mild assumptions. We have therefore decided to integrate our variable-sample strategy
in a subsampled Hessian-free trust-region method. Outer-product (OP) approximations will
be used to efficiently compute Hessian-vector products, and an estimate of the solution of
the trust-region subproblem will be obtained by means of the truncated conjugate gradient
technique [? ? ].

2.2. Mathematical Formulation
2.2.1. Notations and Basic Assumptions

We denote by k the iteration index, and xk the current iterate. ‖ · ‖ will denote the
L2-norm, specifically ‖x‖ =

√∑p
j=1 x

2
(j), where x(j) is the jth Cartesian coordinate, and ‖ · ‖1

the L1-norm defined by ‖x‖1 = ∑p
j=1 |x(j)|. fk, gk and Hk refer to f(xk), the gradient ∇f(xk)

and the Hessian matrix ∇2f(xk), respectively. The stochastic nature of the problem allows
us to consider SA or SAA estimates, so we will use the notation ·̃ to denote Monte Carlo
approximations and the distinction will be made by the index. Formally, when considering
SA estimates, we will have Sk = {1, 2, . . . , Nk} such that f̃k = 1

Nk

∑
i∈Sk

F (xk , ξi) where
{ξi}i=1,...,Nk

are i.i.d replicates of the random variable ξ, and g̃k = ∇f̃k. In a SAA situation,
we will draw a sample Sk ⊂ {1, . . . , N} of size |Sk| = Nk to compute the function estimate
f̃k = 1

Nk

∑
i∈Sk

Fi(xk) where Fi(xk) = F (xk, ξi) and the gradient approximation g̃k
def= ∇f̃k =

1
Nk

∑
i∈Sk
∇Fi(xk). To simplify notations we will usually write f̃k or g̃k for both situations,

and will specify when necessary. The sample used to compute f̃k and g̃k will be the same,
except stated otherwise. Similarly, a sample Hk, which can be a subset of Sk or not, will be
drawn to calculate a subsampled version of the Hessian or its approximation.

When considering a sequence (Yn) of random variables, we will write Yn d−→ Y whenever
(Yn) converges in distribution to a random variable Y , Yn

p−→ Y when the convergence is
in probability, and Yn a.s.−→ Y when the convergence holds almost surely (or with probability
one).

41



2.2.2. Assumptions

Some assumptions must be made to ensure the good behavior of the optimization algo-
rithm.

(1) f is bounded from below on Rp.
(2) The iterates xk for k ∈ N stay in a compact set Θ ⊂ Rp.
(3) For P-almost every ξ, the function F (· , ξ) is continuously differentiable on Θ, and

for every x ∈ Rp, F (x , ·) is P-mesurable.
(4) The family F (x, ξ), x ∈ Rp, is dominated by a P-integrable function K(ξ), i.e. ER[K]

is finite and |G(x, ξ)| ≤ K(ξ) for all x ∈ Rp and P-almost every ξ.
(5) The Hessian of f(·) is uniformly bounded on Rp, i.e. there exists a constant κbhm > 0

such that
∀x ∈ Rp, ‖∇2f(x)‖ ≤ κbhm

Consequently, ∇f is Lipschitz-continuous with constant L.
(6) There exists a constant κbhhh > 0 such that

∀x ∈ Rp, for P-almost all ξ ∈ Rm, ‖∇F (x, ξ)∇F (x, ξ)T‖ ≤ κbhhh.

It is important to note that assumptions 2, 3 and 4 together imply that there exists a
uniform law of large numbers (ULLN) on Θ for the approximation f̃N(x) of f(x) (see [? ]),
meaning that

sup
x∈Θ

∣∣∣f̃N(x)− f(x)
∣∣∣ a.s.−→ 0.

Assumption 3 obviously implies that F (· , ξ) is continuous P-almost surely. This and as-
sumption 4 are typical assumptions of stochastic programming theory (see for instance [? ]).
The stronger form of 3 is justified by our interest in first-order optimality conditions, which
requires the objective function gradient.

2.2.3. Basic Trust-Region model

Our optimization scheme is based on the basic trust-region algorithm (see ? , Chapter 6]
for more details) and its main components are presented in Algorithm 1. At each iteration k,
a model mk(s) is built around the current iterate xk, which serves as a local approximation
of f in a ball Bk

def= {xk + s | ‖s‖ ≤ ∆k}. A popular choice is the quadratic approximation:

mk(s) = fk + gTk s+ 1
2s

TBks (2.2.1)

where Bk is a symmetric approximation of the Hessian matrix ∇2f(xk).
The model mk(s) is (approximately) minimized in Bk to produce a step sk computed

by the truncated conjugate gradient. The ratio ρk defined in (2.2.2) aims to measure the

42



adequacy between the objective function decrease and the model decrease. If the model fits
the function well (ρk ≥ η2), the trust region can be expanded. On the other hand, if the
model differs greatly from the function, that means that the trust region was too large and
hence should be reduced. If ρk is very small (ρk < η1), the step is rejected and the radius
is decreased. Trust-region algorithms aim to extend Newton method properties with global
convergence guarantees. Notably, far from the solution, if the model is not very accurate,
the trust-region step will have performance similar to gradient descent. But, close to a local
minimum, if the model Hessian approximates the true Hessian with increasing precision as
the iterates get closer to the critical point, the trust-region boundaries will become inactive
and the steps will become similar to Newton step, allowing for local superlinear convergence
rates.

Algorithm 1 Basic Trust-Region Algorithm (BTR)
Step 0: Initialization: An initial point x0 and an initial trust-region radius ∆0 are

given. The constants η1, η2, γ1, and γ2 are also given and satisfy
0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1 and γ3 ≥ 1.

Compute f(x0) and set k = 0.
Step 1: Model definition: Define a model mk in Bk.
Step 2: Step calculation: Compute a step sk that “sufficiently reduces the model”
mk and such that xk + sk ∈ Bk.

Step 3: Acceptance of the trial point: Compute f(xk + sk) and define

ρk = f(xk)− f(xk + sk)
mk(xk)−mk(xk + sk)

. (2.2.2)

If ρk ≥ η1, then define xk+1 = xk + sk ; otherwise define xk+1 = xk.
Step 4: Trust-region radius update: Set

∆k+1 ∈


[γ3∆k,∞] if ρk ≥ η2;
[γ2∆k,∆k] if ρk ∈ [η1, η2);
[γ1∆k,γ2∆k] if ρk < η1.

Increment k by 1 and repeat Steps 1 to 4 until a stopping criterion is met.

2.2.4. Trust-region subproblem

The main computational bottleneck in BTR is the calculation of sk in step 2, because,
when considering unconstrained optimization, solving a quadratic model is equivalent to
finding the solution of a linear system if the model is strictly convex. One popular method
is the classical CG method as it only involves matrix-vector products and if the system is
well conditioned, a point close to the solution can be found in a few iterations, at a much
lower computational cost. However, if we do not know if our quadratic model is strictly
convex, we must take precautions to deal with nonconvexity if it arises. To tackle all these

43



issues, the Steihaug-Toint Truncated Conjugate Gradient (TCG) [? ? ]. In this technique a
sequence of iterates is produced. If the model minimizer lies within the trust region and the
matrix is well conditioned, an approximation is obtained after a few iterations. Otherwise,
when the minimizer lies outside the trust region or if a negative curvature is encountered,
the solution is a well chosen point on the boundary and the procedure stops. The last iterate
computed will be the trial step sk considered in step 3 (see ? , Chapter 5] for more details).
The first iterate generated is the Cauchy point, which is the model minimizer along the
steepest descent direction, and subsequent iterates give lower values of the model. Thus, for
k > 0, each solution sk satisfies the required condition of “sufficient decrease” in the model
guaranteeing the global convergence to a first-order critical point in a deterministic setting.

2.2.5. Approximation of the Hessian matrix

In some statistical learning situations, like maximum likelihood estimation or least-
squares regression, it is possible to consider an approximation of the Hessian, called outer-
product (OP) due to its particular structure

B̃k
def= 1
|Hk|

∑
i∈Hk

∇Fi(xk)∇Fi(xk)T ,

where B̃k is the approximation of the Hessian matrix. The terms ∇Fi(xk) will generally
be already computed as they are required for the sampled gradient, and we will assume
throughout the paper that Hk ⊂ Sk. The outer-product special structure enables to cheaply
compute its product with any vector v, without storing the matrix, by using the following
trick,

B̃kv = 1
|Hk|

∑
i∈Hk

(
∇Fi(xk)Tv

)
∇Fi(xk).

When considering maximum likelihood estimation (MLE), the loss-function can be in-
terpreted as log-probabilities, i.e Fi(x) = − log

(
p(ξi|x)

)
where (ξi)i∈{1,...,n} represents the

observed data and p(·|x) the probability distribution function (PDF) of the data parameter-
ized by x. The problem can be expressed as a stochastic problem of the form Eξ∼π[F (x, ξ)]
where π is the true population distribution. An alternative interpretation of the problem is
to identify the right probability amongst a family of distributions F =

{
px = p(· |x) s.t. x ∈

Ξ ⊂ Rp
}
.

In a MLE context, an OP approximation of the Hessian, called BHHH, can be considered
near the solution. This technique was reported in [? ], and later used by [? ] for the
estimation of mixed-logit model parameters. Formally, if x̂N is the maximum likelihood
estimator of the true parameters x∗ then

√
N
(
x̂N −x∗

)
d−→ N

(
0, J(x∗)−1

)
, where J(x∗) is

44



the Fisher information matrix defined as

J(x∗) = Eξ
[
∇x log p(ξ|x∗)∇x log p(ξ|x∗)T

]
= Eξ

[
∇xF (x∗, ξ)∇xF (x∗, ξ)T

]
,

where ∇x log p(ξ|x) is called the score. If the problem is well specified, meaning that there
exists x∗ such that π = p(·|x∗) and the assumptions to interchange expectation and deriva-
tives are satisfied, the information identity property states that Eξ[∇x log p(ξ|x∗)] = 0, and
that the Fisher information matrix represents the variance of the score, and is equal to the
expected Hessian matrix at the true parameters

J(x∗) = −Eξ
[
∇2
x log p(ξ|x∗)

]
= Eξ

[
∇2
xF (x∗, ξ)

]
. (2.2.3)

See [? ] for details. Therefore, we can see from equation (2.2.3) that J(x∗) = H(x∗). It then
feels reasonable to consider an approximation of the Hessian of the form,

B(x) def= Eξ
[
∇xF (x, ξ)∇xF (x, ξ)T

]
.

The BHHH approximation has several advantages over the true Hessian matrix of the
function.

∗ B̃kv is cheap to compute because all ∇Fi(xk) are already calculated for the gradient
estimation g̃k.
∗ If the number of observation used to build the BHHH approximation is small com-
pared to the dimension of the problem, there is a significant gain in storage compared
to the Hessian.
∗ B(x) is positive semidefinite. Therefore, if B(x) is invertible, it is positive definite
and B(x)−1gk will be a direction of descent. Even if it is not invertible, it is can be
used in a conjugate gradient strategy, and combined with the use of a trust-region
approach, it can present the following advantages:
– if OP is a poor approximation, the trust-region radius will shrink, ensuring
the step to be close to a steepest descent. However, the computed step will be
better, as the Hessian approximation is cheap to obtain, but still better than the
identity matrix for which the model minimum is the Cauchy step. Therefore, the
update will generally be better than gradient descent.

– if OP is a good approximation, the method will be close to Newton method,
potentially achieving a near-quadratic convergence.

∗ Stalls in the algorithm’s progress could indicate that conditions to ensure some sta-
tistical properties of OP approximation are not verified. So, a more complex model
or of another type should be considered.
∗ As investigated by [? ] for the nonlinear least-square situation, secant methods could
be used to cheaply estimate the error between the OP approximation and the Hessian
matrix.

45



∗ Since we use the information matrix as an approximation of the Hessian matrix, it is
reasonable to use the Hessian matrix or some approximation of it as an estimate of
the information matrix.

2.3. Algorithms
At the beginning of the trust-region algorithm, the iterates may be far from an optimum.

Instead of directly using the full dataset, the use of a small initial sample allows rapid
progress in the early stages with low computational costs. While a larger sample yields high
accuracy near the solution, such accuracy is not required at the beginning of the optimization.
Changing the sample size can save computational effort and accelerate the optimization. Two
different schemes are proposed to implement this strategy.

2.3.1. Sample size strategy

At iteration k, we compute the next point by xk+1 = xk+sk, where sk is the step obtained
with Steihaug-Toint truncated CG. The sampling strategy aims at deriving a sample size that
ensures a decrease in the true objective function with high probability, from the knowledge
of the Monte Carlo estimation f̃k(xk+1)− f̃k(xk). Formally, it can be stated as follows:

P(µk ≤ 0) ≥ 1− αk where µk = f(xk+1)− f(xk) and αk ∈ (0 ; 1).

If we assume Nk is large enough, the Central Limit Theorem (CLT) implies that:

µ̃k − µk ∼ N
(

0 , σ
2
k

Nk

)
(2.3.1)

where, µ̃k(ξ1, . . . , ξNk
) = f̃k(xk+1, ξ1, . . . , ξNk

)− f̃k(xk, ξ1, . . . , ξNk
) is the difference between

the Monte Carlo estimation of the function between iterates k and k+ 1 and so, an unbiased
estimator of the difference of the function at the two points. σ2

k = Varξ
(
F (xk+1, ξ) −

F (xk, ξ)
)
is the variance of the difference of the function estimated at the two points. (2.3.1)

implies that: √
Nk

σk

(
µk − µ̃k

)
d→ N (0 ; 1) as Nk → +∞. (2.3.2)

Therefore, we can use the one-sided 100(1−αk)% asymptotic confidence interval to compute
the required sample size that generates a decrease in f with at least probability 1 − αk

asymptotically, where αk ∈
[
0; 1

2

)
, namely,

P [µk ≤ 0] ≥ 1− αk ⇔ P
[√

Nk

σk

(
µk − µ̃k

)
≤ −
√
Nk

σk
µ̃k

]
≥ 1− αk (2.3.3)

Let us denote Φ and Φ−1 the cumulative function for the standard Normal distribution and
its inverse, respectively, and z1−αk

will refer to the (1−αk)-quantile Φ−1(1−αk). Therefore,

46



the approximation (2.3.2) gives us,

P
[√

Nk

σk

(
µk − µ̃k

)
≤ −
√
Nk

σk
µ̃k

]
≈ P

[
Y ≤ −

√
Nk

σk
µ̃k

]
where Y ∼ N (0 ; 1),

and,

P
(
Y < −

√
Nk

σNk

µ̃k

)
≥ 1− αk ⇔ −

√
Nk

σNk

µ̃k ≥ z1−αk︸ ︷︷ ︸
>0

(2.3.4)

⇔ Nk ≥
σ2
k (z1−αk

)2

µ̃2
k

(2.3.5)

The equivalence from (2.3.4) to (2.3.5) is justified because, −µ̃k > 0 and αk ∈
[
0; 1

2

)
, so

(z1−αk
) > 0. The next sample size is then

Nk+1 =
⌈
σ2
k (z1−αk

)2

µ̃2
k

⌉
We now discuss the intuition behind this method and interpret each term in the sample

size computation. The variance σ2
k of the individual decrease F (xk+1, ξ) − F (xk, ξ) is in

the numerator. When the individual decreases agree, the variance will be small and so will
the required sample size. Otherwise, a larger sample is needed to avoid collecting "bad"
information when there is high variance. Φ−1(1 − αk)2 = (z1−αk

)2 in the numerator is also
explainable. When αk is close to 1/2, z1−αk

is close to zero, and the samples gets smaller,
allowing more deviation for the sampled decrease around its mean. But, when αk is close
to 0, (z1−αk

)2 gets bigger and µ̃k is constrained to be close to a true decrease µk, therefore
demanding a bigger sample. Finally, µ̃2

k is in the denominator so that when the iterates get
closer to a solution, µ̃2

k will converge to 0 and the sample size will increase to get better
accuracy near the optimum.
In a more global consideration, the next sample size Nk+1 is derived to balance the squared
standard deviation of the individual decrease and the squared sampled decrease. This means
that, when a step produces a high decrease in the SAA function approximation, it will likely
dominate the noise induced by the Monte Carlo estimates, so we can allow ourselves higher
variability in the sample estimate with a smaller sample. However, when the estimated
decrease is small, there is more sensitivity to noisy estimates, so a bigger sample is required.
Furthermore, by examining the formula’s structure, one can expect the sample size scheme
to exhibit some desirable properties. When iterates get closer to a first-order critical point,
the decrease in the SAA estimates gets smaller because the region is locally flat around the
critical point. Consequently, the sample size will increase to ∞. This is essential to have
better precision near an optimum to ensure convergence to a solution of the true problem.

47



Unfortunately, the true variance σ2
k is unknown. It is possible to use the empirical

estimate σ̂2
Nk

computed with the following formula,

σ̂2
Nk

= 1
Nk − 1

∑
i∈Sk

((
Fi(xk+1)− Fi(xk)

)
− µ̃k

)2
(2.3.6)

When the sample size is large, it can imply high computational costs, but also expensive
memory costs as it requires to store all {Fi(xk)}i∈Sk

.
We propose an approximation that is algorithmically efficient since it only involves quan-

tities already computed and stored. The value of σk is obtained by using a first-order Taylor
approximation of F (xk, ξ) around xk, for ξ ∈ Rp,

F (xk + sk, ξ) ≈ F (xk, ξ) +∇F (xk, ξ)T sk

and by computing f̃k(xk+1) accordingly. We obtain a closed expression containing the Fisher
information matrix outer-product approximate,

Var [F (xk + sk, ξ)− F (xk, ξ)] ≈ Var
[
sTk∇F (xk, ξ)

]
≈ sTk Var [∇F (xk, ξ)] sk (2.3.7)

And,

Var [∇F (xk, ξ)] = E
[(
∇F (xk, ξ)−∇f(xk)

)(
∇F (xk, ξ)−∇f(xk)

)T ]
= E

[
∇F (xk, ξ)∇F (xk, ξ)T

]
−∇f(xk)∇f(xk)T

≈ B̃k(xk)−∇f̃k(xk)∇f̃k(xk)T

Therefore, we will approximate sTk Var [∇F (xk, ξ)] sk by,

sTk

(
B̃k(xk)−∇f̃k(xk)∇f̃k(xk)T

)
sk = sTk B̃k(xk)sk −

(
∇f̃k(xk)T sk

)2
(2.3.8)

So,
σ̂2
Nk
≈ sTk B̃k(xk)sk −

(
∇f̃k(xk)T sk

)2
(2.3.9)

From this, we can find a first update rule for the sample size

Nk+1 =

(
sTk B̃k(xk)sk −

(
∇f̃k(xk)T sk

)2
)

(z1−αk
)2

µ̃2
k

≈

(
sTk B̃k(xk)sk − µ̃2

k

)
(z1−αk

)2

µ̃2
k

≈
sTk B̃k(xk)skz2

1−αk

µ̃2
k

48



Thus,

Nk+1 =
⌈
sTk B̃k(xk)sk(z1−αk

)2

µ̃2
k

⌉
(2.3.10)

The constant z2
1−αk

does not impact much the quantity Nk+1 and is only simpler to code.
When examining this expression closely, we can observe that all these quantities are com-
puted at the kth iteration of the algorithm. Indeed, sTk B̃k(xk)sk needs to be computed for
the evaluation of ρk, and ∇f̃k(xk) is already stored in memory to construct the trust-region
model.

This approximation of the variance has little inconvenient over the true variance (2.3.6).
While the approximation is less precise when the length of the step sk is big, long steps should
occur only when we are far from the solution where there is a lot of potential to reduce the
true function and it is possible to have significant reduction with small, or minimal sample
size. On the other hand, when the step is small and close to the solution, the approximation
of the variance gets better and allow an accurate sample size.

If we assume that the BTR sub-problem is solved using the quasi-Newton step, each step
sk is taken in the direction

sk ≈ −B̃k(xk)−1∇f̃k(xk)

Let us consider again the first-order Taylor expansion, but this time for f̃k around xk,

µ̃k = f̃k(xk + sk)− f̃k(xk) ≈ ∇f̃k(xk)T sk = g̃Tk sk

To simplifiy the notation, we will omit the k index in the following calculation.(
sT B̃s−

(
g̃T s

)2
)

(z1−α)2

µ̃2 =

(
(−B̃−1g̃)T B̃(−B̃−1g̃)−

(
− g̃T B̃−1g̃

)2
)

(z1−α)2(
g̃T s

)2

=

(
g̃T (B̃−1)T B̃B̃−1g̃ −

(
g̃T B̃−1g̃

)2
)

(z1−α)2(
− g̃T B̃−1g̃

)2

=

(
g̃T B̃−1g̃

)(
1−

(
g̃T B̃−1g̃

))
(z1−α)2(

g̃T B̃−1g̃
)2

=

(
1−

(
g̃T s

))
(z1−α)2

(−g̃T s)

= −(z1−α)2

g̃T s
+ (z1−α)2

Once again, the second term of the last equation is disregarded since the value of (z1−α)2

is insignificant in comparison to (z1−α)2

g̃T s
. For instance choosing α = 0.001 (an extreme value

for α as it forces the probability of reducing the true function to be far too high) we have

49



(z1−α)2 = 9.55 < 10 while the first term will be in the order of thousands or hundreds of
thousands near the solution. This leads to the next update rule

Nk+1 =
⌈

(z1−αk
)2

g̃Tk sk

⌉
(2.3.11)

From (2.3.11) some remarks must be made. In the BTR algorithm, if there is long
series of bad iterations where the quadratic model is a bad approximation of the function to
optimize, the trust region will shrink until the quadratic approximation is reasonably good.
For demonstration purpose, we assume that at a given iteration following a series of bad
steps, the region size is ∆̂ such that ∆̂ < 1 and that the step computed is much smaller than
the step found by solving the unconstrained minimization of the quadratic approximation of
the function. For this example, we will use the solution ŝ given by

ŝ = ∆̇
‖B̃−1g̃k‖

B̃−1g̃k (2.3.12)

where ∆̇ is found by a line search in the Newton direction constrained by the trust-region
size.

∆̇ = min
∆∈[0,∆̂]

fk

(
xk + ∆ B̃−1g̃k

‖B̃−1g̃k‖

)
.

Using (2.3.12) as the solution of the trust-region sub-problem, and considering the sample
size as a function of the region size ∆̂, the sample size can be arbitrarily large in function of
the basic trust region. Using µ̂k = B̃−1g̃k

‖B̃−1g̃k‖
, we have

Nk+1(∆̂) = (z1−αk
)2

∆̂ · µ̂k
≤ (z1−αk

)2

∆̇ · µ̂k

As ∆̂→ 0, we have
lim
∆̂→0

Nk+1(∆̂) =∞

From this example, we see that the sample size can increase drastically in a case where the
region size is too small to generate a step long enough to create a significant reduction in
the function. While a special case of the last version of the sampling strategy, the behavior
of exploding sample size has been observed in numerical experiments with all sampling
strategies developed here and with other solutions of the basic trust sub-problem such has
truncated conjugate gradient. This issue forces us to add more restrictions on the sample size
algorithm. Namely, we add bounds on the sample size b1Nk ≤ Nk+1 ≤ b2Nk with 0 ≤ b1 ≤ 1
and 1 ≤ b2. The case where b1 = 1 is simply a non-decreasing sampling and the case with
b2 =∞ is an unbounded dynamic sampling. We suggest b1 = 0.75 and b2 = 2 as bounds for
the dynamic sampling algorithm. Other restrictions have been explored such as letting the
sample size be changed only if the step sk is strictly inside the trust region, ‖sk‖ < ∆k, but
it did not lead to interesting results.

50



Due to the large number of sampling strategies and types of restrictions on the sample
size, the following nomenclatures will be used in the remaining of this chapter. We first
describe the sampling strategies in Table 2.1, then restrictions on the growth and decrease
of the sample size in Table 2.2.

Name Equation Acronym
Dynamic sampling (2.3.10) DS

Newton Based Dynamic Sampling (2.3.11) NDS
Table 2.1. Sampling strategies nomenclature

Name b1 b2
Naive 0.75 2

No Smoothing 0 ∞
Monotonous 1 2

Table 2.2. Smoothing nomenclature

2.3.2. Relation to other methods

Several works propose dynamic sampling size strategies with similar structures. First, we
will present the methods derived in linesearch frameworks. They aim at ensuring a decrease
in the true objective function with high probability by finding a sufficiently large sample to
guarantee the sampled gradient to be "close" enough to the true gradient. Then, the step
taken will be a descent direction sufficiently often to obtain good convergence properties.
The methods diverge in the interpretation of "close". The main three interpretations found
in the literature are the norm test, the inner-product test and the acute-angle test. Our
method relates to these methods because our goal is also to ensure a decrease in the true
objective function, but, in a trust-region framework, the step taken is not necessarily in the
steepest descent direction. However, the truncated-CG algorithm ensures a decrease in the
Monte Carlo function f̃k, meaning that, f̃k(xk + sk) − f̃k(xk) < 0. The question is then,
what sample size will guarantee a decrease in the true objective function? Secondly, we will
discuss the relation to methods based on construction of confidence intervals.

The norm test proposed by ? ] is designed to control the deviation in norm of the
sampled gradient to the true gradient. Formally, they want δSk

def= ‖∇f̃k(xk) − ∇f(xk)‖ 6
θ‖∇f̃k(xk)‖, where θ ∈ [0; 1) is a user-specified parameter. When θ is close to 0, the sampled
gradient is highly constrained to be in a small ball around the true gradient, but when
θ is near to 1, noisier estimates are allowed. To deal with the stochastic nature of the
problem, they intend to control the quantity E[δ2

Sk
] = ‖Var

(
∇f̃k(xk)

)
‖1 where the variance

51



is computed component-wise, therefore leading to the following update formula,

|Sk+1| =
‖Vari∈Sk

(
∇Fi(xk)

)
‖1

θ2‖∇f̃k(xk)‖2

where ‖Vari∈Sk

(
∇Fi(xk)

)
‖1 = 1

m− 1
(
∇Fi(xk) − ∇f(xk)

)T(
∇Fi(xk) − ∇f(xk)

)
. ? ] de-

signed an inner product test by building up on the work from ? ]. Instead of imposing
a condition on the deviation in norm, they design a sample size strategy to ensure that
∇f̃k(xk) is a descent direction for f by requiring that ∇f̃k(xk)T∇f(xk) > 0. To do so, they
work on the stochastic condition,

E
[(
∇f̃k(xk)T∇f(xk)− ‖∇f(xk)‖2

)2
]
≤ θ2‖∇f(xk)‖4 , for some θ > 0

allowing them to derive the following formula,

Nk+1 =

Vari∈Sk

(
∇Fi(xk)T∇f̃k(xk)

)
θ2‖∇f̃k(xk)‖4

 . (2.3.13)

The idea can be summed up by building the one-sided 100(1 − αk)% confidence interval
for ∇f̃Sk

(xk)T∇f(xk), and finding the adequate sample size Sk for the lower bound to be
positive. They also add more conditions to ensure that the sampled gradient is not too
orthogonal to the true gradient. Some issues can also occur when starting with very small
samples, and the sample size can stay constant across iterations. To tackle this issue they
put a condition to ensure an increase in the sample size when it stays constant too long, e.g.
for r iterations.

The same formula is also derived by ? ] in a linesearch framework by invoking, under
suitable assumptions, the CLT for the sampled gradient, showing a more direct connection
to the Fisher information matrix,

∇f̃k(xk)−∇f(xk) ∼ N
0 ,

Varξ
(
∇F (x, ξ)

)
N

 .
? ] proposed an acute-angle test where they choose to control the quantity

E

∥∥∥∥∥ g̃k
‖g̃k‖

− g̃Tk∇f
‖g̃k‖‖∇f‖

∇f
‖∇f‖

∥∥∥∥∥
2
 to keep the sampled gradient at a small angle from

the true one.
Our method can be seen as an extension to the trust-region framework of the technique

designed by ? ] and ? ]. Indeed, in the following calculations, we show how our formula
includes the linesearch case, for which the step taken at every iteration is of the form sk =
−νk∇f̃Sk

(xk), where νk > 0 is the steplength. The numerator in (2.3.13) can be rewritten

52



as follows,

Vari∈Sk

(
∇Fi(xk)T∇f̃k(xk)

)
= 1
Nk − 1

∑
i∈Sk

(
∇Fi(xk)T∇f̃k(xk)−∇f̃k(xk)T∇f̃k(xk)

)2

= 1
Nk − 1

∑
i∈Sk

∇f̃k(xk)T
(
∇Fi(xk)−∇f̃k(xk)

)(
∇Fi(xk)−∇f̃k(xk)

)T
∇f̃k(xk)

= ∇f̃k(xk)T Vari∈Sk

(
∇Fi(xk)

)
∇f̃k(xk)

= 1
ν2
k

sTk Vari∈Sk

(
∇Fi(xk)

)
sk,

and

µ̃k = f̃k(xk + sk)− f̃k(xk) ≈ ∇f̃k(xk)T sk = −νk∇f̃k(xk)T∇f̃k(xk) = −νk‖∇f̃k(xk)‖2(
µ̃k
)2

= ν2
k‖∇f̃k(xk)‖4.

Therefore,

Nk+1 =

Vari∈Sk

(
∇Fi(xk)T∇f̃k(xk)

)
θ2‖∇f̃k(xk)‖4

 =


sTk Vari∈Sk

(
∇Fi(xk)

)
sk

θ2(νk)2‖∇f̃k(xk)‖4


=


sTk Vari∈Sk

(
∇Fi(xk)

)
sk

θ2
(
µ̃k
)2

 .
We recover the same formula as ? ] but for a trust-region framework, considering that 1/θ
plays an equivalent role to z(1−α).

We now discuss the relations to works based on construction of confidence intervals and
measures of the sample variability around the current function value. ? ] developed a
dynamic sample size scheme in a trust-region framework. ? ] then transposed this method
to linesearch algorithms and later extended it to nonmonotone linesearch methods by adding
some safeguards [? ]. A confidence interval is built around the current function value,

Ik = [f̃k − εα,Nk
; f̃k + εα,Nk

] with εα,Nk
= (z1−α) σ̂

F (xk, Nk)√
Nk

,

where σ̂F (xk, Nk)2 = (Nk − 1)−1∑Nk
i=1

(
∇F (xk , ξi)−∇f̃k(xk)

)T(
∇F (xk , ξi)−∇f̃k(xk)

)
is

the centered sample variance estimator of the the standard deviation of the random variable
F (xk, ξ). That is, the goal is then to find an optimal sample size to balance the model
decrease and the width of the confidence interval. Roughly speaking, if the decrease in the
function value is large compared to the width of the confidence interval then the sample size

53



is decreased at the next iteration. In the opposite case, when the decrease is relatively small
in comparison with the precision, the sample size is increased.

? ] propose a method for stochastic root-finding problems (SRFP) where the goal is to find
a zero of a vector-valued function h : D ⊂ Rq → Rq, i.e to find x∗ ∈ D such that h(x∗) = γ,
assuming one exists, where γ ∈ Rq is the target value. Transposed to our context, where
the vector-valued function under scrutiny will be the gradient function ∇f and γ is the null
vector, the formula can be stated as follows,

Nk = inf
{
m ∈ N+ |

∥∥∥∥∥m−1
m∑
i=1
∇F (xk , ξi)− γ

∥∥∥∥∥ > c
σ̂F (xk,m)√

m

}
, (2.3.14)

with 0 < c < 1. The underlying idea behind strategy (2.3.14) is to continue the sampling at
xk until the algorithm is reasonably certain that the deviation of ∇f̃Nk

(xk) from the target is
mainly due to the bias ‖∇f̃Nk

(xk)−γ‖ rather than a consequence of the sampling variability.
? ] propose two simple adaptive sampling rules similar to (2.3.14). We will only present the
first as it is more related to our method. They replace the ‖∇f̃Nk

(xk)‖ on the left-hand side
with a geometrically decreasing deterministic sequence γ−k, for some γ ∈ (1, γ), where γ is
defined based on some prior curvature information. They realize the convergence analysis in
a convex a strongly convex setting.

? ] extend the idea in a derivative-free optimization context where at every iteration
a quadratic trust-region model is constructed by interpolation. Omitting details for clarity
(see the full paper for deeper insights), the sample size is updated according to a formula of
the form,

Nk = max
{
λk , inf

{
m ∈ N+

∣∣∣∣∣ σ̂F (xk,m)√
m

≤ κas∆2
k√

λk

}}
.

where {λk} is a sample size lower bound sequence such that k1+ε = O(λk) and κas is a
constant. The main idea is to sample until the estimated standard error drops below a
slightly deflated square of the trust-region radius.

2.3.3. Novelty of our method

The originality of our work from the literature is manifold. The information geometry is
used in an algorithmically efficient manner by using a Monte Carlo estimate of the Fisher
information matrix to approximate the Hessian, but also to compute the sample size, and
therefore, no extra computation is needed because the quantity sTk Vari∈Sk

(
∇Fi(xk)

)
sk is

already computed to evaluate the model accuracy ρk. ? ], ? ], and Metel [? ] work in
linesearch framework, so the step taken is proportional to the sampled gradient. They only
need to control this quantity for it to be a descent direction with high probability to ensure
a decrease in the objective function sufficiently often. Their work only differ in the way
they do so. However, in a trust-region algorithm, the step taken can be very different to the

54



steepest descent. Therefore, it feels natural to use that step in the sample size calculation.
Lastly, the works mentioned above build a confidence interval around the current function
value f̃Sk

(xk) in order to gauge if the progress is statistically significant and not just an
effect of the noisy estimates. We instead build a confidence interval for the true decrease
in the objective function, which requires evaluating a difference of function values and the
variance considered in the calculations is different, which enables a connection to the Fisher
information matrix. Also, studying differences allows us to consider variable strategies for
variance reduction.

2.4. Numerical Experiments
2.4.1. Multinomial Logit Model

To ease the development of the sampling method, a simple log-likelihood maximization
was used to test and give a first insight into the performance and possible flaws in our
sampling algorithm. The numerical experiments were conducted using a synthetic dataset.
Such datasets have many advantages over real world datasets as they can be designed to
satisfy all the assumptions, with a known true optimal solution. Moreover, there is no limit
on the size of the population (the population is not even required to fit into storage) and the
dimension of the problem can be set arbitrary. The synthetic model has been chosen to be
a logit model with linear utility function. The logit model with linear utility is known to be
convex, simplifying the optimization process.

In discrete choice theory [? ], each individual i ∈ X, X being the total population, is
assumed to be facing a set of alternatives a(i). Random utility maximization models [? ]
assume that each individual chooses the alternative yi that maximizes its utility function.

yi = max
j∈a(i)

vi,j(β∗),

where β∗ is the true optimal parameters and vi,j is assumed to be partially random. The
utility can be decomposed into two parts, an observed utility ui,j(β) and a random part εi,j

vi,j(β) = ui,j(β) + εi,j.

If we assume that the εi,j are i.i.d. and follow a Gumbel distribution of scale parameter equal
to one, for a given β, the probability that individual i chooses alternative j is then given by

Pij(β) = P [vi,j(β) ≥ vi,k(β) ∀k ∈ {a(i)\{j}}] = exp (ui,j(β))∑
k∈a(i) exp (ui,k(β)) . (2.4.1)

(2.4.1) is also known as the softmax function in machine learning. For simplicity reason, we
will drop the index j and use the Pi to define Pi,yi

the probability that individual i has chosen
the alternative yi. We can obtain an estimator of β∗ by maximizing the log-likelihood that

55



the population made the choices they made. Introducing the notation `i(β) := logPi(β), the
function to maximize is the average log-likelihood

f(β) = 1
|X|

∑
i∈X

logPi(β) = 1
|X|

∑
i∈X

`i(β)

The gradient and Hessian matrix of both the softmax function and its logarithm are
developed in Appendix A. In statistics, the maximization of the log-likelihood function f(β)
is called multinomial logistic regression, or in short, multinomial logit.

Linear utilities are the most popular utility formulations for multinomial logit models.
Therefore, in our experiments, we consider a linear utility, defined by

v1
i,j(β) = 〈β, xi,j〉,

where xi,j are the explanatory variables of the individual i faced to the alternative j. The
number of alternatives was set to 5 and the dimension of the problem was set to 10. The
optimal solution β∗ was set to one in every dimension. The explanatory variables were simply
independent U(0,1) random variables and a random variable following a Gumbel distribution
with scale factor equal to one was added to each alternative in order to create a “perfect”
dataset. One hundred thousand observations were generated.

2.4.2. Results

All tests were run using an Intel i5-5400U CPU running at 2.900GHz with 8 Gigs of
RAM. The first serie of tests was done using the BHHH Hessian approximation. Three
versions of the BHHH approximation implementation were tested. The first implementation
simply stores the BHHH matrix, the second implementation stores each individual gradients
and uses them to compute the product of the BHHH matrix with a given vector and the
last implementation does not store any gradient and compute the gradients of each obser-
vation every time there is a matrix-vector product involving the BHHH matrix. The three
versions have their own benefits and limitations. To determine which implementation was
the best for the current problem, a population of 10 thousands observations was used and
the time required to generate the matrix and the time to execute the matrix-vector product
was computed. We can see from Table 2.3 the benefits of each implementation. The imple-
mentation storing the BHHH matrix and then computing the matrix-vector product is by
far the fastest. It can almost be considered free but it is the implementation that requires
the most time to generate the structure. The implementation with recomputed gradients
and no storage has by far the cheapest cost to generate the structure but also has the most
expensive matrix-vector product. Finally, the implementation where the gradients are stored
is a good compromise between both metrics. During the TCG algorithm, the matrix-vector
product can be required between one and ten times and, close to the solution, all iterations

56



might be required meaning that the last implementation is by far the worst for the current
problem. Finally, even if the matrix-vector product is extremely cheap when the matrix is
stored, the cost of generating the matrix is too high and the overall best implementation in
both dimensions is the implementation storing all the gradients.

Implementation Structure generation (ms) Matrix-vector product (ms)
Gradients stored 32.023 0.089
Matrix stored 41.25 0.00015
No storage 0.0094 33.649

Table 2.3. BHHH approximation benchmark

In the second serie of tests, we compared the time and number of iterations required
for both sampling strategies DS and NDS (see Table 2.1) crossed with all three smoothing
strategies in Table 2.2 (naive, no smoothing and monotonous), as well as full batch (by using
all the available observations). For all the tests, the stopping criterion was a robust first-order
criterion, that is the optimization stopped only if for all the dimensions i, gi ≤ εmax(xi, 1),
with ε set to 10−4. It is a very harsh stopping criterion as it forces the solution to be
extremely precise but allowed us to study the behavior of the sampling strategy close to the
solution. Finally, during the optimization, three metrics were recorded at every iteration of
the optimization algorithm: the distance to the solution, the Monte Carlo estimation of the
function, and the sample size. The distance to the solution can be computed since we have
fixed it ourself.

The first test using the BHHH approximation and the sampling strategy DS with no
smoothing shows the unstable behavior of the sampling strategy when no smoothing strategy
is used. We report in Figure 2.1 a portion of the optimization iterations. The graph clearly
shows the sample size increasing massively and then reducing down to the minimal sampling
authorized. For instance, at iteration 171, the sample size is 4686 and is then reduced down
to 100 at iteration 172.

From Table 2.4, we can observe the behavior of the sampling size strategy when properly
constrained. The monotonous smoothing was the smoothing that worked the best for both
sampling strategies. This is not surprising since the function to optimize is convex and the
algorithm has barely any advantage to reduce the sample size. It is interesting to observe
what happened just before the iteration 175 with the sampling strategy DS and the naive
smoothing, the optimization routine maintaining a small sample size while getting farther
from the solution, as illustrated in Figure 2.2(a). Such a behavior is ruled out when using
the monotonous sampling as the sample size would not have been allowed to decrease past
iteration 144.

This test shows that the sampling strategy requires a smoothing strategy. The optimiza-
tion routine with no smoothing for the sampling strategy took more time than using no

57



Fig. 2.1. Unconstrained sampling

(a) Sample size

(b) Distance to Solution

Fig. 2.2. Distance to solution and sample size for BHHH approximation

58



Sampling strategy Smoothing strategy Time (s)
Full batch No smoothing 9.86

DS No smoothing 769.22
DS Naive 14.74
DS Monotonous 1.46
NDS No smoothing 16.87
NDS Naive 5.55
NDS Monotonous 3.28

Table 2.4. Optimization time, BHHH approximation

strategy and using the full population with times of 769.22 seconds, 16.87 seconds, and 9.86
seconds, respectively. The monotonous smoothing performed extremely well with 1.46 sec-
ond and 3.28 seconds, being 3 times faster than the optimization routine without smoothing.
While this exhibits the potential of the sampling strategy, it does not show which sampling
strategy is the best. Depending on the smoothing technique, the best sampling strategy
changes.

2.4.3. Hessian Approximation

As discussed in Section 2.2.5, there are multiple reasons to use the Hessian matrix and
its approximation as an estimation of the covariance matrix of the score. In this section, we
will test the sampling method with the BTR algorithm using the the Hessian matrix and the
BFGS approximation of the the Hessian matrix. Similarly to the BHHH implementation, the
Hessian matrix is only used in a matrix-vector product context, and two implementations
can be used. The first one is to compute the Hessian and simply do a matrix vector product
and the second one is to compute the gradient of the function F(x) = ∇F (x) · v every time
a matrix-vector product is required.

Similarly to the BHHH approximation, both implementations have benefits, as reported
in Table 2.5. Once the matrix has been computed, the matrix-vector product is almost
free when the Hessian matrix is stored. On the other hand, if the TCG stops after a
single iteration, computing the gradient of F(x) is much cheaper then computing the full
Hessian matrix. The implementation chosen was to store the full Hessian matrix since the
TCG algorithm take multiple iterations (multiple iterations require multiple matrix-vector
products) to solve the quadratic problem near the solution. Furthermore, since the sample
size is at its biggest near the solution, the last iterations are the most expensive and the
implementation when computing the full matrix is the best for this particular model.

Both sampling strategies were tested and compared when the full batch is used. For the
sampling strategies, both naive and monotonous smoothing were tested. From Table 2.6,
we can observe that monotonous sampling outperformed the optimization time for the naive
sampling by more that 50% with both forms of the sampling equations (DS and NDS).

59



Implementation Structure generation (ms) Matrix-vector product (ms)
Matrix stored 114.8 0.00016

Gradient of F(x) 0.00019 53.76
Table 2.5. True Hessian matrix benchmark

Most importantly, DS works even when using the true Hessian as an approximation of the
information matrix.

Sampling strategy Smoothing strategy Time (s)
Full batch No smoothing 6.16

DS Naive 1.99
DS Monotonous 1.05
NDS Naive 1.71
NDS Monotonous 1.11

Table 2.6. Times and results for BTR algorithm with the true Hessian matrix

2.5. Conclusion
Both sampling strategies, while new in the literature, are simple generalizations of existing

sampling strategies. It is unclear which sampling strategy is the best since some problems are
solved faster with DS when compared to NDS, while better results are achieved with NDS
over DS, depending on the Hessian matrix approximation used and the smoothing strategies.
For instance, DS achieves better results than NDS when using monotonous sampling and
true Hessian matrix is slightly slower when using the naive smoothing. Since both algorithms
converge in similar times, the key to accelerate the optimization time seems to be hidden in
the smoothing strategy used. The best performing smoothing strategy was the monotonous
smoothing but its good performance could be explained by the fact that the current problem
is strictly convex.

60



Conclusion

In this thesis, we have explored two interesting but distinct and unrelated optimization
problems.

The first one concerns the optimization settings for RocksDB, a log-structured merge-
tree based key-value storage engine. A literature review and a list of the most commonly
used settings are presented in the first chapter followed by the description of our approach.
To the best of our knowledge, our method is new in the literature, and presents a log-file
based technique to identify non-optimal settings. Using this methodology, we were able to
pin-point settings requiring changes in order to improve the write throughput of the system.
This approach only requires a single run and thus has the potential to greatly accelerate the
search for optimal settings for such a problem. A test was made using RocksDB but other
popular LSM-tree based storage engines have similar log-files, meaning that our approach
can be extended to other systems. Future work would require more experiments to validate
the proposed methodology on RocksDB and other LSM-tree storage engines.

The second optimization problem is related to statistical learning. The goal is to find a
sampling strategy that finds an adequate sample size at a given iteration on which to build
the Monte Carlo estimation of the true function. The Monte Carlo estimation of the func-
tion is required to be sufficiently close to the true function to guarantee a reduction of the
true function with sufficient probability. To do so, a first-order Taylor approximation of the
function for each observation in the current sampling set is constructed. From this approxi-
mation and using the central limit theorem, the distribution of the decrease of the function
is computed and approximated by a Normal distribution. Finally, the estimated parame-
ters of the Normal distributions are used to approximate a sampling size that would have
allowed a decrease of the function to minimize with sufficient probability. More work must
be done to rigorously justify the assumptions and approximations required by the proposed
sampling strategy, which was tested on a statistical learning problem with synthetic data.
The sampling strategy has been found to be efficient, the optimization being significantly
faster than a full batch method. The optimization time is nevertheless highly dependent on
the smoothing technique used. This issue should be investigated in more details.





Appendix A

Multinomial logit derivatives

The multinomial logistic regression is typically performed by maximazing the log-likehood
of the observed choices. It is thereful useful to be able to compute the gradient and the
Hessian matrix of the log-likelihood function. The gradient of the softmax function (2.4.1)
with respect to β is given by

∇Pi,j(β) = Pi,j(β) ·
∑
k∈a(i)

Pi,k(β) · (∇ui,j(β)−∇ui,k(β)),

and the gradient of its logarithm `i,j(β) = logPi,j(β) is

∇`i,j(β) = ∇ui,j(β)−
∑
k∈a(i)

Pi,k(β)∇ui,k(β).

The Hessian matrix of `i,j(β) is given by

∇2`i,j(β) = ∇2ui,j(β)−
∑
k∈a(i)

(
∇Pi,k(β)∇uTi,k(β) + Pi,k(β)∇2ui,k(β)

)
.

Obviously, in the case of linear utilities, the Hessian matrix log-likelihood function simply
becomes

∇2`i,j(β) = −
∑
k∈a(i)

∇Pi,k(β)∇uTi,k(β).

It is also easy to derive the expression of the product between ∇2`i,j(β) and a direction v as

∇2`i,j(β) · v = ∇2ui,j(β) · v −
∑
k∈a(i)

(
∇Pi,k(β)∇uTi,k(β) + Pi,k(β)∇2ui,k(β)

)
· v,

and, for linear utilities,

∇2`i,j(β) · v = −
∑
k∈a(i)

∇Pi,k(β)∇uTi,k(β) · v.


	Abstract
	Mots-Clés

	Résumé
	Mots-Clés

	Table des matières
	Liste des tableaux
	Liste des figures
	Liste des sigles et des abréviations
	Remerciements
	Introduction
	RocksDB
	Statistical Learning
	Thesis structure

	Chapitre 1. RocksDB Performance Tuning Based on Log Files
	1.1. Introduction
	1.2. RocksDB description
	1.2.1. RocksDB Architecture
	1.2.2. Configuration Space
	1.2.3. Existing performance models
	1.2.4. Objective

	1.3. Observations
	1.4. Model
	1.4.1. Flush Thread Utilization
	1.4.2. Compaction Thread Utilization
	1.4.3. Level 1 Utilization
	1.4.4. Parameter Selection

	1.5. Exploration
	1.6. Conclusion

	Chapitre 2. Statistical Learning
	2.1. Introduction
	2.2. Mathematical Formulation
	2.2.1. Notations and Basic Assumptions
	2.2.2. Assumptions
	2.2.3. Basic Trust-Region model
	2.2.4. Trust-region subproblem
	2.2.5. Approximation of the Hessian matrix

	2.3. Algorithms
	2.3.1. Sample size strategy
	2.3.2. Relation to other methods
	2.3.3. Novelty of our method

	2.4. Numerical Experiments
	2.4.1. Multinomial Logit Model
	2.4.2. Results
	2.4.3. Hessian Approximation

	2.5. Conclusion

	Conclusion
	Appendix A. Multinomial logit derivatives

