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Résumé

Dans cette thèse, nous discutons de la dégénérescence et de la construction d’états cohérents
généralisés dans les systèmes quantiques en deux dimensions d’espace. Nous développons un
schéma pour obtenir des spectres non dégénérés et des combinaisons linéaires appropriées des
états propres d’énergie correspondants. Lorsque la dégénérescence dans le spectre d’énergie
est linéaire dans les nombres quantiques, nous définissons des opérateurs d’échelle général-
isés qui conduisent à une chaîne d’états avec un ensemble naturel de coefficients. De plus,
nous récupérons des relations de complétude pour les états généralisés. Lorsque le spectre
d’énergie est quadratique dans les nombres quantiques, nous utilisons certains résultats de la
théorie des nombres pour catégoriser la dégénérescence et, par conséquent, les combinaisons
linéaires appropriées des états propres d’énergie associés. En particulier, nous étudions des
oscillateurs harmoniques bidimensionnels isotropes et anisotropes ainsi que le potentiel Morse
bidimensionnel et son partenaire supersymétrique non séparable. Dans tous les cas, nous
construisons des états cohérents et discutons certains aspects de leur caractère non classique.
On retrouve une certaine compression dans les quadratures conjuguées, une dépendance non
triviale des variances des quadratures vis-à-vis des paramètres introduits lors de la définition
des spectres non dégénérés, et un problème de localisation pour les fonctions d’onde. Comme
application, nous étudions le problème de la quantification et de l’analyse semi-classique de
l’espace des phases en deux dimensions en exploitant la complétude des familles généralisées
d’états cohérents comprimés en deux dimensions.

Mots clés: Mécanique quantique bidimensionnelle; États cohérents; États comprimés;
Dégénérescence; Oscillateurs isotropes; Oscillateurs anisotropes; Opérateurs d’échelles; Po-
tentiel de Morse; Quantification.
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Abstract

In this thesis we discuss degeneracy and the construction of generalised coherent states in
two-dimensional quantum systems. We develop a scheme for defining non-degenerate spectra
and the corresponding averaged energy eigenstates. When the degeneracy in the spectrum
is linear in the quantum numbers, we are able to define generalised ladder operators which
lead to a chain of states with a natural set of coefficients. Additionally, we are able to recover
completeness relations for the generalised states. On the other hand, when the spectrum
is quadratic in the quantum numbers, we utilise some results from number theory to cate-
gorise the degeneracy and correspondingly the averaged energy eigenstates. In particular we
study the two-dimensional isotropic and anisotropic oscillators as well the two-dimensional
Morse potential and its non-separable supersymmetric partner. In all cases, we compute
the coherent states and discuss certain aspects of their non-classicality. We find squeezing
between conjugate quadratures, non-trivial dependence of the quadrature variances on the
parameters introduced when defining the non-degenerate spectra, and non-localisation of
wavefunctions. As an application, we study the problem of quantisation and semiclassical
phase space analysis in two dimensions by exploiting the completeness of generalised families
of two-dimensional squeezed coherent states.

Keywords: Two-dimensional quantum mechanics; Coherent states; Squeezed states; Degen-
eracy; Isotropic oscillator; Anisotropic oscillator; Ladder operators; Morse potential; Quan-
tisation.
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Introduction

Since the beginnings of quantum theory there has been great interest in the boundary be-
tween a classical and quantum system. In their first incarnation, Schrödinger’s minimal
uncertainty wavepackets [1] proved to be as classical as a quantum state could be. These
wavepackets minimise the Heisenberg uncertainty relation and maintain a localised Gauss-
ian wavefunction under unitary time evolution. Moreover, the expectation values of the
wavepackets mimic the classical equations of motion for the harmonic oscillator. The min-
imal uncertainty wavepackets later became known as coherent states and found a renewed
meaning in the context of quantum optics. In the sixties, Glauber [2] and Sudarshan [3]
formalised what we describe today as coherent states. This formalisation generalised their
definition as minimal uncertainty wavepackets to include equivalent definitions as eigenstates
of the annihilation operator, and the unitary displacement by an exponential of a linear an-
tihermitian combination of the creation and annihilation operators, of the ground state. A
further generalisation of the coherent states is generated by the action of a unitary squeezing
operator which is quadratic in the ladder operators. The squeezing refers to the reduction in
one quadrature variance at the expense of the increase in the conjugate quadrature variance.

Coherent states have been applied in many contexts throughout physics. Coherent states
underpin the mathematical description of laser light [4], their completeness as a basis for the
Hilbert space give rise to applications in path integral techniques for condensed matter and
many-body systems [5]. Furthermore, as will be explored in this thesis, their completeness
facilitates their use in general quantisation problems [6, 7, 8].

In a more recent newsworthy application, squeezed states were used in the LIGO detection
of gravitational waves [9]. The experiment is highly sensitive to quantum fluctuations in the
measurement, and employing squeezed states allowed reliable measurement by mitigating the
uncertainty introduced by the quantum-ness of nature. Elsewhere, squeezed states are used
in continuous variable quantum information. The use of an optical device like a beam splitter
requires non-classical input in order to generate a non-classical output [10], this non-classical
output is entangled and is an essential resource in continuous variable quantum information
processing, just as entanglement is integral to discrete variable quantum information.



The three definitions of coherent state have spawned swathes of coherent state analysis
in mathematical physics for many different systems. Nowadays coherent states defined as
generalised eigenstates of generalised annihilation operators are called Barut-Girardello co-
herent states [11], while the notion of unitary displacement operators has been generalised
to include arbitrary Lie group elements as unitary exponential operators. Such coherent
states are called group-theoretic coherent states [12]. When neither definition is applicable,
coherent states may be constructed as a particular superposition of energy eigenstates with
a view to defining a well localised state, in this case the coherent states are aptly named
generalised coherent states [13, 14]. These definitions are the modern day departing for
defining new coherent states for new systems.

For multidimensional systems the problem of coherent state analysis opens up further.
While it is always possible to take products of many one-dimensional coherent states to define
a multidimensional coherent state, we do not learn anything new about the generalities that
come with multidimensional systems. Perhaps the best known example is the two-mode
squeezed state [15], the resulting state is entangled and therefore not separable as a product
of two states. Definitions of generalised coherent states as superpositions of eigenstates
become obscure in the presence of degeneracy [16]. Degeneracy does not typically occur in
one-dimensional systems by the non-degeneracy theorem [17].

Two-dimensional quantum systems are an interesting subset of multidimensional sys-
tems. Examples of physically important two-dimensional systems include: quasiparticles
known as anyons with neither Fermi-Dirac or Bose-Einstein statistics that can only exist in
two-dimensional systems [18]; the nanomaterial graphene which is a one atom thick layer
of graphite with applications throughout electronics [19, 20]; polarisation states of gravita-
tional waves in an inflationary universe [21]. When dealing with two-dimensional quantum
systems we typically begin with its Hamiltonian and the first system we study is the harmonic
oscillator. The harmonic oscillator is ubiquitous in all domains of physics, and the Morse
potential, describing anharmonic interactions, appears in a variety of problems in quantum
physics: in molecular dynamics, the Morse potential more accurately describes the phe-
nomenology of bond breaking with a finite bound state spectrum [22]; the two-dimensional
Morse potential is used as a perturbation expansion basis for studying triatomic molecular
dynamics [23]. Morse oscillators also appear in problems in quantum gravity [24].

In this thesis we approach the problem of defining generalised coherent states for two-
dimensional systems from the viewpoint of studying the degeneracy of the system. We define
a non-degenerate spectrum as an average of its degenerate contributions and where possible,
generalised ladder operators to act on the non-degenerate spectrum. In this way we are able
to remove the ambiguity that the degeneracy introduces, leading to well-defined classes of
coherent states rich in the non-trivial features that two-dimensional systems present. The
procedure we describe is generalisable to any system with any degeneracy structure.
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This thesis is organised as follows. In chapter 1 we review some of the essential features
of the canonical coherent states of the harmonic oscillator including their mathematical
formulation, uncertainty relations and aspects of non-classicality. Following this, in chapter
2 we turn our attention to the two-dimensional harmonic oscillator. We construct a non-
degenerate spectrum and the su(2) coherent states by defining generalised ladder operators
connecting these states. Equipped with the non-degenerate basis we define Schrödinger-type
coherent states by direct analogy with the one-dimensional definitions and we find that they
factorise as the product of two one-dimensional coherent states. We extend some of the
ideas to the anisotropic harmonic oscillator following Chen’s definitions [25], and compute
their Schrödinger-type coherent states. We then formally define generalised squeezed states
by defining a unitary operator quadratic in the generalised ladder operators. We find that
under this construction a two-mode mixing occurs and the resulting states are non-separable.
Chapter 3 is devoted to the specific example of the 2 : 1 anisotropic oscillator to account for
some of the missing coherent state features in Chen’s definition, namely, completeness and
ladder operators. In order to address the modified degeneracy structure, we must include
non-linearities in the definition of the generalised ladder operators, and we find that the
resulting su(2)-like coherent states satisfy a resolution of the identity, thereby leading to a
set of generalised coherent states with all their mathematical features recovered.

To generalise the discussion further, in chapter 4 we turn our attention to the two-
dimensional Morse potential whose spectrum is quadratic. The two-dimensional quadratic
spectrum presents an interesting challenge because we find accidental degeneracies. Acci-
dental degeneracies are best understood in the context of number theory. We determine
that for irrational values of the system’s principle parameter, p, the degeneracies are at most
twofold and thus accidental degeneracies will not appear. Proceeding with this we define a
non-degenerate spectrum and set of basis states, then we discuss the construction of gener-
alised coherent states and their properties. Continuing in the same fashion, in chapter 5, we
discuss the non-separable, singular, supersymmetric partner of the two-dimensional Morse
potential [26]. We are able to utilise the non-degenerate states constructed in the preceding
chapter to develop a non-degenerate set of states for the partner potential. Once again we
construct the generalised coherent states and we find that the wavefunction is unable to
localise and there is significant squeezing between the position and momentum quadratures.

Lastly, in chapter 6, as an application, we study quantisation and semiclassical phase
space analysis in two dimensions using two families of squeezed states: separable and non-
separable. The completeness of the generalised families of two-dimensional squeezed states
allows us to quantise any classical phase space function in the basis of squeezed states, and
moreover, allows us to study their semiclassical portraits by averaging against the same
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states. When non-separable squeezed states are used to quantise classical phase space func-
tions, a mixing between the resulting quantum operators in the two modes occurs. This is a
non-trivial feature that does not exist in one-dimensional quantisation problems.
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Chapter 1

Mathematical preliminaries

1.1. The quantum harmonic oscillator
The one-dimensional quantum harmonic oscillator is defined by the following Hamiltonian

[1]

H = P̂ 2

2m + 1
2mω

2X̂2. (1.1.1)

The Hamiltonian (1.1.1) is related to its corresponding classical Hamiltonian through canon-
ical quantisation, where have promoted the initial phase space variables (x,p) →

(
X̂, P̂

)
to

quantum operators. In the position basis P̂ = −iℏ ∂
∂x

is the quantum momentum operator
and X̂ = x is the quantum position operator. These are non-commuting operators which
satisfy the Weyl-Heisenberg algebra [X̂,P̂ ] = iℏ1. The solutions to the time independent
Schrödinger equation Hψ = Eψ in the Fock, or, number basis are given by H |n⟩ = En |n⟩.
The position representation of these solutions is obtained by computing ⟨x|n⟩ ≡ ψn(x), where
|x⟩ is the eigenstate of the position operator with eigenvalue x,

ψn(x) = 1√
2nn!

(
mω

πℏ

) 1
4
e− mωx2

2ℏ Hn

(√
mω

ℏ
x
)
, (1.1.2)

and the associated energy spectra En = ωℏ(n+ 1
2).

A motivation for the study of coherent states is to find solutions which are ‘more’ classical,
that is, they more closely resemble the solutions to the classical harmonic oscillator. When
we compute the dispersions ∆X̂ =

√
⟨X̂2⟩ − ⟨X̂⟩2 and ∆P̂ =

√
⟨P̂ 2⟩ − ⟨P̂ ⟩2 for a number

state |n⟩ we find the following Heisenberg uncertainty relation

∆X̂∆P̂ = ℏ
2(2n+ 1) ≥ ℏ

2 , (1.1.3)

which grows with n. Note that there is no such restriction on the dispersions in classical
physics, it is a remnant of the fact that X̂ and P̂ are non-commuting observables and as
such it is impossible to specify the associated eigenvalues simultaneously.



It is necessary to understand the algebraic solutions to the harmonic oscillator in order to
define the coherent states. For brevity we will use units with m,ω = 1 and ℏ = 1, the units
can always be reintroduced through dimensional analysis. Defining the following creation
and annihilation operators respectively [2]

X̂ = 1√
2

(a− + a+), (1.1.4)

P̂ = 1√
2i

(a− − a+) (1.1.5)

and consequently their inverse relations,

a+ = 1√
2
(
X̂ − iP̂

)
, (1.1.6)

a− = 1√
2
(
X̂ + iP̂

)
, (1.1.7)

which obey the following algebra
[a−,a+] = 1. (1.1.8)

We can use these new definitions to rewrite (1.1.1) as

H = a+a− + 1
2 , (1.1.9)

and we find the following action of the operators on the Fock states as

a− |n⟩ =
√
n |n− 1⟩ , a+ |n⟩ =

√
n+ 1 |n+ 1⟩ , (1.1.10)

therefore the Fock space is generated by

|n⟩ = (a+)n

√
n!

|0⟩ . (1.1.11)

We also obtain the orthogonality and completeness relations

⟨m|n⟩ = δnm, (1.1.12)

and ∞∑
n=0

|n⟩ ⟨n| = 1, (1.1.13)

respectively.
This justifies the nomenclature, a− annihilates an excitation (or particle, up to a nor-

malisation) in |n⟩ and a+ creates one. It is important to note that the annihilation operator
destroys the vacuum such that a− |0⟩ = 0, this is necessary for consistency. These were
originally introduced by Dirac [2] as a way to calculate eigenvalues of (1.1.1) without solving
the complete differential equation.
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1.2. Coherent states of the harmonic oscillator
Coherent states of the harmonic oscillator have been defined in several equivalent ways.

The first definition of the coherent states we will introduce are as eigenstates of the annihi-
lation operator with complex eigenvalue z [3],

a− |z⟩ = z |z⟩ . (1.2.1)

If we expand |z⟩ in a Fock basis as |z⟩ = ∑∞
n=0 |n⟩ ⟨n|z⟩ and using (1.1.11) we find the

normalised Fock expansion,
|z⟩ = e− |z|2

2

∞∑
n=0

zn

√
n!

|n⟩ . (1.2.2)

Such series converge ∀z ∈ C, so the coherent states represent a continuously parametrised
set of states.

The second equivalent definition of the coherent states is by the action of the unitary
displacement operator, D(z), on the oscillator ground state,

D(z) |0⟩ = |z⟩ . (1.2.3)

We may reverse-engineer (1.2.2) to find the form of the displacement operator

|z⟩ = e− |z|2
2

∞∑
n=0

(za+)n

n! |0⟩

= e− |z|2
2 +za+ |0⟩ ,

(1.2.4)

We make use of the annihilation of the vacuum, a− |0⟩ = 0, and the Baker-Campbell-
Haussdorf identity [1],

eAeB = eA+B+ [A,B]
2 +..., (1.2.5)

to write (1.2.4) as

|z⟩ = e− |z|2
2 +za+

e−z̄a− |0⟩

= e− |z|2
2 +za+−z̄a−+ |z|2

2 |0⟩ ,
(1.2.6)

establishing the form of D(z) [3]

|z⟩ = e(za+−z̄a−) |0⟩ ≡ D(z) |0⟩ . (1.2.7)

This allows us to interpret |z⟩ as the vacuum state displaced by some complex parameter z
from the origin. The displacement operator is unitary, D(z)D†(z) = 1, and it follows that

D(z) = D†(−z). (1.2.8)
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The third definition of the coherent states is as the minimal uncertainty states ∀z with
equal variance in X̂ and P̂ [3],{

states |z⟩ s.t. ∆X̂∆P̂ = 1
2 ,∆X̂ = ∆P̂

}
. (1.2.9)

This can be interpreted as a consequence of the second definition of the coherent states;
the ground state is a minimal uncertainty state and the coherent states are a displacement
of the ground state by the parameter z. The equations (1.2.1), (1.2.2) and (1.2.9) are the
defining equations for the coherent states of the quantum harmonic oscillator and they are
all equivalent.

Furthermore we have the property of overcompleteness of the family of coherent states,
that is, they form a complete basis for the Hilbert space but the coherent states are not
mutually orthogonal, ⟨z′|z⟩ ̸= 0. We introduce the notation on the complex plane

∫
C d2z =∫

R d Im(z)
∫
R d Re(z) =

∫ 2π
0 dθ

∫∞
0 |z|d|z| for z = |z|eiθ, then the completeness relation is

given by [3]∫
d2z |z⟩ ⟨z| =

∫
d2z e−|z|2 ∑

n,m

zn

√
n!

z̄m

√
m!

|n⟩ ⟨m|

= 1
2

∫
d(r2)

∫
dθ e−r2 ∑

n,m

rn+m

√
n!

√
m!
ei(n−m)θ |n⟩ ⟨m|

= π
∫

d(r2) e−r2 ∑
n

r2n

n! |n⟩ ⟨n|

= π
∑

n

∫
d(r2) (r2)ne−(r2)︸ ︷︷ ︸

n!

1
n! |n⟩ ⟨n|

= π1.

(1.2.10)

The completeness of the Fock space is used in the last line, so the coherent states form
a complete basis for the Hilbert space. This property is also called the resolution of the
identity, it means that the sum (in our case the integral) of the projectors form the identity
operator in the Hilbert space.

Resolution of the identity has far reaching consequences, for example we can construct a
quantisation map using the coherent states to associate a quantum operator Â with a classical
phase space observable A(z,z̄) (where z is to be associated with phase space variables (x,p)
in the next section) in the following way

Â = 1
π

∫
d2z A(z,z̄) |z⟩ ⟨z| , (1.2.11)

this is known as Klauder-Berezin quantisation [3].
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The coherent states are overcomplete as they have a nonzero inner product between two
different coherent states

⟨z1|z2⟩ = e− |z1|2
2 − |z2|2

2
∑
n,m

z̄1
n

√
n!

zm
2√
m!

⟨n|m⟩

= e− |z1|2
2 − |z2|2

2 +z̄1z2 ̸= 0,
(1.2.12)

using the orthogonality of Fock states ⟨n|m⟩ = δnm. It means that no two coherent states
are orthogonal.

Moreover, we may compute the position space wavefunction of the coherent states,

⟨x|z⟩ = e− |z|2
2

∞∑
n=0

zn

√
n!

⟨x|n⟩

= e− |z|2
2
e− x2

2

4
√
π

∞∑
n=0

1
n!

(
z√
2

)n

Hn(x),
(1.2.13)

where we recognise the summation as the generating function for the Hermite polynomials
[4],

∞∑
n=0

yn

n!Hn(x) = e2xy− y2
2 . (1.2.14)

After discarding non-x-dependent phases we find

ψz(x) = ⟨x|z⟩ =
( 1
π

) 1
4
e− 1

2(x−
√

2 Re(z))2

ei
√

2 Im(z)x. (1.2.15)

The preceding definitions allow us to verify the Heisenberg uncertainty relations. Con-
sidering the canonical position operator (1.1.4) and making use of [a−,a+] = 1, the position
dispersion in the coherent state basis is given by

(∆X̂)2 = ⟨z|
(
X̂2 −

〈
X̂
〉2
)

|z⟩

= 1
2(z + z̄)2 − 1

2(z + z̄)2 + 1
2

= 1
2 .

(1.2.16)

Similarly for the canonical momentum operator (1.1.5) we find (∆P )2 = 1
2 , thus ∆X∆P = 1

2 ,
minimising the Heisenberg uncertainty relation.

The coherent states remain coherent states under time evolution, that is,

|z⟩ → e−iĤt |z⟩ = e
−iωt

2
∣∣∣ze−iωt

〉
, (1.2.17)

where the external phase is unphysical. This leads us to the time-dependent expectation
value of the position and momentum operators with z = |z|eiθ, as [3]

⟨X̂(t)⟩ =
√

2ℏ
mω

Re(z(t)) =
√

2ℏ
mω

|z| cos(ωt− θ) (1.2.18)
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and
⟨P̂ (t)⟩ =

√
2ℏmω Im(z(t)) = −

√
2ℏmω|z| sin(ωt− θ) = m

d⟨X̂(t)⟩
dt

(1.2.19)

respectively, where we have reintroduced dimensionful units for clarity. Suppressing the di-
mensional units once again, we can then write z(t) = 1√

2(x(t) + ip(t)) with ⟨X̂(t)⟩ = x(t)
and ⟨P̂ (t)⟩ = p(t) satisfying the classical equations of motion for the harmonic oscillator. Of
course these states are still technically quantum because there is an implicit ℏ dependence
throughout, but this analysis gives us a useful, classical interpretation of the coherent pa-
rameter z. In the literature of quantum optics the coherent states are referred to as ‘classical’
for these reasons.

1.2.1. Application to the electromagnetic field

The electromagnetic field may be thought of as an infinite assembly of harmonic oscilla-
tors, with an infinite number of degrees of freedom. In order to describe the electromagnetic
field in terms of the coherent states we introduce the following multimode notation,

|{zk}⟩ = |z1⟩ ⊗ |z2⟩ ⊗ . . . , k = 1,2, . . . . (1.2.20)

In this notation, the multimode generalisations of the preceding results is clear, each coherent
state |zk⟩ in the ensemble independently satisfies the basic coherent state properties with its
ladder operators a±

k . The quantum Hamiltonian of the system is given by

H = 1
2
∑

k

(2a+
k a

−
k + 1). (1.2.21)

Considering a free field confined to a periodic cubic box of side length L and in the Coulomb
gauge (∇.A⃗(t,x⃗) = 0), the quantised vector potential is found to be [5]

A⃗(t,x⃗) = 1
L

3
2

∑
λ

∑
k

√
ℏ

2ωk

(
aλ

k(t)ei⃗k.x⃗ + (aλ
k)†(t)e−i⃗k.x⃗

)
ε̂λ(k⃗), (1.2.22)

where aλ
k(t) = aλ

ke
−iωkt is the time-dependent annihilation operator that annihilates a photon

of momentum k at time t, and ε̂λ(k⃗) is the polarization vector with λ labelling the polarization
modes. The coherent states are eigenstates of the following expression∑

λ

aλ
k(t)ε̂λ(k⃗) |{zk}⟩ =

∑
λ

zk(t)ε̂λ(k⃗) |{zk}⟩ , (1.2.23)

which was generalized to include arbitrary polarization, it does not affect the analysis. The
vector potential is related to the physical electric field through Maxwell’s equations [6],
specifically, E⃗(t,x) = −∂A⃗(t,x)

∂t
, yielding

E⃗(t,x) = i

L
3
2

∑
λ

∑
k

√
ℏωk

2
(
aλ

k(t)ei⃗k.x⃗ − (aλ
k)†(t)e−i⃗k.x⃗

)
ε̂λ(k⃗). (1.2.24)
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By writing the electric field as a sum of positive and negative frequency parts, E⃗(t,x) =
E⃗+(t,x) + E⃗−(t,x), we see by (1.2.23) that the following holds

E⃗+(t,x) |{zk}⟩ = E⃗+
cl (t,x) |{zk}⟩ , (1.2.25)

where E⃗+
cl (t,x) solves the classical Maxwell equations.

The description of the electromagnetic field in terms of coherent states |{zk}⟩ is considered
to be an ideal laser in optics, it describes a perfect monochromatic emission. In practice a
real-world laser would be described as a statistical mixture of coherent states with random
phases [7].

1.3. Squeezed coherent states of the harmonic oscillator
Beginning with a physical motivation, the next class of states we wish to study, the

squeezed coherent states (or squeezed states for short), emerge from second-order interac-
tions. Second-order non-linear optical media were first observed by P.A. Franken et. al. by
firing a maser at a quartz crystal [8] this is a parametric process as shown in the diagram
below.

E/2
Non-linear medium

E

E/2

Fig. 1.1. Photon of energy E enters the crystal and two photons of energy E
2 leave the

crystal, this is an example of degenerate parametric down conversion. It is degenerate
because two identical photons are produced.

This process yields an interaction Hamiltonian with input field b and output fields a

HI = iχ(2)
(
b−(a+)2 − b+(a−)2

)
, (1.3.1)

where χ(2) is a coupling associated with this second-order process, and the factor of i ensures
that the operator is hermitian. If we approximate the input field as a coherent state (laser,
maser), |z⟩, and assume it is classical, so that we may replace the quantum operator by the
associated complex number, (1.3.1) simplifies to

HI = iχ(2)
(
z(a+)2 − z̄(a−)2

)
. (1.3.2)

The time evolution operator associated with this interaction is given by

e−iHI t = etχ(2)(z(a+)2−z̄(a−)2) = e
1
2 (ξa+2−ξ̄a−2) ≡ S(ξ), (1.3.3)
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where ξ = 2χ(2)zt. This naturally defines the squeezing operator S(ξ) which will be the
mathematical object of interest in this section, and counterpart of the displacement operator
D(z).

Squeezed states have similar properties to coherent states only they are more general.
The defining feature is that, while the Heisenberg uncertainty relation is still satisfied (under
the condition that ξ ∈ R, which will be shown in due course), there is no longer equal
dispersion between position and momentum. This is encoded by a squeezing parameter ξ
and the origin of the ‘squeezing’. The squeezed states can be defined as a displacement of
the squeezed vacuum in the following way [7]

|α,ξ⟩ = D(α)S(ξ) |0⟩ , (1.3.4)

where D(α) is the same displacement operator (1.2.7), and the squeezing operator S(ξ)
(1.3.3).

1.3.1. Transformation properties of D(α) and S(ξ)

We need to show how the creation and annihilation operators transform under the ac-
tion of D(α) and S(ξ) before computing uncertainty relations. Using the Baker-Campbell-
Haussdorf formula eABe−A = B+ [A,B] + 1

2 [A,[A,B]] + . . . [1], considering the displacement
operator,

D†(α)a−D(α) = a− + α1, (1.3.5)

similarly we find
D†(α)a+D(α) = a+ + ᾱ1. (1.3.6)

Looking now at the squeezing operator, by writing the complex squeezing parameter ξ in
polar form ξ = reiθ we use the same Baker-Campbell-Haussdorf formula to find

S†(ξ)a−S(ξ) = a− cosh r + a+eiθ sinh r, (1.3.7)

this is the Bogoliubov transformation [9]. We get the transformation for a+ by taking the
hermitian conjugate,

S†(ξ)a+S(ξ) = a+ cosh r + a−e−iθ sinh r. (1.3.8)

For the derivations that follow it is useful to write down the transformations of bilinears
of a−,a+,

S†(ξ)a−2S(ξ) = a−2 cosh2 r + (2a+a− + 1)eiθ cosh r sinh r + a+2e2iθ sinh2 r

S†(ξ)a+2S(ξ) = a+2 cosh2 r + (2a+a− + 1)e−iθ cosh r sinh r + a−2e−2iθ sinh2 r

S†(ξ)a+a−S(ξ) = a+a− cosh2 r + a+2eiθ sinh r cosh r + a−2e−iθ sinh r cosh r + sinh2 r(a+a− + 1).
(1.3.9)
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The definition of squeezed states by acting first with the squeezing operator and then with
the displacement operator is somewhat arbitrary. While the two operators do not commute,
they are equivalent up to a relabelling of parameters with the following braiding relations

D(α)S(ξ) |0⟩ = S(ξ)S†(ξ)D(α)S(ξ) |0⟩ , (1.3.10)

now we compute the term S†(ξ)D(α)S(ξ) extending the results from (1.3.7, 1.3.8),

S†(ξ)D(α)S(ξ) = exp
(
βa+ − β̄a−

)
= D(β), (1.3.11)

for β = α cosh r − ᾱeiθ sinh r, thus

D(α)S(ξ) = S(ξ)D(β). (1.3.12)

We see that we can use the definitions almost interchangeably, if we take note of the simple
change of parameters, this however does not affect the physics because it just amounts to a
rescaling of the coordinate system.

1.3.2. Uncertainty relations

We can demonstrate that the squeezed states almost saturate the Heisenberg inequality
but no longer with equal dispersion in position and momentum, but they always saturate
the more general Schrödinger-Robertson uncertainty relation [10]. By considering the states
defined as |α,ξ⟩ = D(α)S(ξ) |0⟩ with ξ = reiθ, we make use of the transformations found in
(1.3.1) and compute the expectation value of the position operator between two squeezed
states

⟨α,ξ| X̂ |α,ξ⟩ = 1√
2

⟨α,ξ|
(
a− + a+

)
|α,ξ⟩ = 1√

2
(α + ᾱ), (1.3.13)

with normally ordered terms vanishing. Now we need to compute the average of X̂2 which
is given by

⟨α,ξ| X̂2 |α,ξ⟩ = 1
2
(
2 cos θ cosh r sinh r + 2 sinh2 r + (α + ᾱ)2 + 1

)
, (1.3.14)

where we used the relations in (1.3.5) and (1.3.9). From this we calculate the following
dispersion

(∆X̂)2 = ⟨β,ξ|
(
X̂2 −

〈
X̂
〉2
)

|β,ξ⟩ = 1
2 + cosh r sinh r cos θ + sinh2 r. (1.3.15)

Similarly for the dispersion in momentum

(∆P̂ )2 = ⟨β,ξ|
(
P̂ 2 −

〈
P̂
〉2
)

|β,ξ⟩ = 1
2 − cosh r sinh r cos θ + sinh2 r, (1.3.16)

then we find the uncertainty relation

(∆X̂)2(∆P̂ )2 = 1
4 + sinh2 r cosh2 r sin2 θ. (1.3.17)
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From this we deduce that the Heisenberg uncertainty relation is saturated in the case that we
have a real squeezing parameter ξ ∈ R. In the θ = 0 case we see that we get (∆X)2 = 1

2e
2r

and (∆P )2 = 1
2e

−2r. This is as we expect, we have squeezed the variance in one quadrature at
the expense of increasing the uncertainty in the conjugate quadrature in such a way that the
Heisenberg inequality is still saturated. Similarly, taking θ = π reverses the squeezing in the
quadratures. It is well known that squeezed states in general do not saturate the Heisenberg
uncertainty relation for ξ ∈ C [7], but it is often of interest to study real squeezing.

For the more general case ξ ∈ C, the extra terms that arise in the Heisenberg uncer-
tainty relation are a result of the covariance between X̂, P̂ . In such a case the Schrödinger-
Robertson uncertainty relation is always minimised. To see this we begin by defining the
covariance matrix [10]

Γ[X̂, P̂ ] =
 (∆X̂)2 ∆(X̂P̂ )

∆(P̂ X̂) (∆P̂ )2

 , (1.3.18)

where the covariance for non-commuting observables is defined as

∆(X̂P̂ ) = ⟨X̂P̂ + P̂ X̂⟩
2 − ⟨X̂⟩⟨P̂ ⟩ =︸︷︷︸

[X̂,P̂ ]=i

⟨2X̂P̂ − i⟩
2 − ⟨X̂⟩⟨P̂ ⟩ = ∆(P̂ X̂), (1.3.19)

and the uncertainty constraint is encoded in the determinant of (1.3.18)

det Γ[X̂, P̂ ] ≥ 1
4
∣∣∣⟨[X̂, P̂ ]⟩

∣∣∣2 = 1
4 , (1.3.20)

and computing in the same fashion the covariance ∆(X̂P̂ ) = −i sin θ cosh r sinh r, we see
that (1.3.20) is minimised for all squeezed states

det Γ[X̂, P̂ ] = 1
4 , (1.3.21)

thus the squeezed states are always minimal uncertainty states of the Schrödinger-Robertson
uncertainty relation.

In quantum optics it is useful to work in generalised quadratures. These quadratures
generalise the phase space we have been considering so far, the two quadrature components
(in our case (X̂, P̂ )) satisfy the canonical commutation relation. Considering the case where
we are dealing with an arbitrary squeezing angle, it is useful to work with rotated quadratures
using the following transformation [7]

X̂ + iP̂ → Ŷ1 + iŶ2 = (X̂ + iP̂ )e−i θ
2 , (1.3.22)

for squeezing angle θ. In the phase space picture, the squeezed states have the interpreta-
tion of being displaced, rotated error ellipses of the squeezed vacuum (see figure 1.2). The
uncertainties in the new quadratures now saturate their respective Heisenberg uncertainty
relation, (∆Ŷ1)2(∆Ŷ2)2 = 1

4 . In almost all examples other than the harmonic oscillator, it
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is convenient to work with generalised quadratures which need not necessarily refer to the
physical position and momentum of the system, see, for example [11].

X

P

Y1

Y2

Fig. 1.2. Original quadrature variables on the left and rotated quadrature variables on the
right. Notice how the rotated quadratures are aligned with the semi-major and semi-minor
axes of the error ellipse.

1.3.3. Squeezed coherent state eigenequation

In order to establish an eigenequation for the squeezed coherent states, consider the
following,

a− |0⟩ = D(α)S(ξ)a−S†(ξ)D†(α) |α, ξ⟩ . (1.3.23)

The transformations here appear in the form S(ξ)a−S†(ξ) (as opposed to S†(ξ)a−S(ξ)) but
this just amounts to the transformation r → −r in the Bogoliubov transformations (1.3.7)
and (1.3.8). Using the transformation properties we obtain [12]

D(α)S(ξ)a−S†(ξ)D†(α) |α, ξ⟩ = ((a− − α) cosh r − (a+ − ᾱ)eiθ sinh r) |α, ξ⟩ = 0, (1.3.24)

so
(a− − a+eiθ tanh r) |α, ξ⟩ = (α− ᾱeiθ tanh r) |α, ξ⟩ . (1.3.25)

We see that it is possible to write this in a simplified form [13]

(a− + γa+) |z,γ⟩ = z |z,γ⟩ , (1.3.26)

if we make the following identifications

z = α− ᾱeiθ tanh r,

γ = −eiθ tanh r.
(1.3.27)
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Note that it is possible to invert these formulae

ξ = eiθ tanh−1(−e−iθγ),

α = 1
1 − tanh2 r

(z + z̄eiθ tanh r),
(1.3.28)

where taking r → 0 reproduces the results derived for coherent states. We also see that
when taking the eigenequation definition of squeezed states, the squeezing parameter |γ| < 1,
because |tanh r| < 1.

As we did with the coherent states, we can derive the Fock space expansion for the
squeezed states by using the eigenvalue equation (1.3.26). We look for an expansion of the
form [13]

|z,γ⟩ = 1√
N (z,γ)

∞∑
n=0

Z(z,γ,n)√
n!

|n⟩ , (1.3.29)

substituting into (1.3.26) we obtain the following recursions,Z(z,γ,0) = 1 for n = 0,
Z(z,γ,n+ 1) + γnZ(z,γ,n− 1) = zZ(z,γ,n) for n > 0.

(1.3.30)

We see that in the limit of no squeezing, γ = 0, we recover the coherent states Z(z,0,n) =
zn. At this point we notice that the recursion is of a similar form to that of the Hermite
polynomials, Hn+1(x) = 2xHn(x) − 2nHn−1(x) [14]. With the argument of the polynomials
being complex the recursion is still valid. Indeed if we make the following transformation
[13]

Z(z,γ,n) →
(
γ

2

)n
2
H

(
z√
2γ ,n

)
, (1.3.31)

we find the Fock space expansion

|z, γ⟩ = 1√
N (z,γ)

∞∑
n=0

1√
n!

(
γ

2

)n
2

Hn

(
z√
2γ

)
|n⟩ . (1.3.32)

To determine the normalisation function N (z,γ) we require ⟨z,γ|z,γ⟩ = 1. Computing
the inner product,

⟨z,γ|z,γ⟩ = 1
N (z,γ)

∞∑
n=0

1
n!

(
|γ|
2

)n

Hn

(
z√
2γ

)
Hn

(
z̄√
2γ̄

)
, (1.3.33)

we make use of Mehler’s identity [4],
∞∑

n=0

1
n!

(
ρ

2

)n

Hn(x)Hn(y) = 1√
1 − ρ2 exp

(
−ρ2(x2 + y2) − 2ρxy

1 − ρ2

)
, (1.3.34)

to find
N (z,γ) = 1√

1 − |γ|2
exp

(
1

1 − |γ|2

(
|z|2 − |γ|2 Re

(
z2

γ

)))
. (1.3.35)
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It is worth noting that in many places in the literature the normalisation function is written
in terms of the variables α, r, θ in which case (1.3.35) may be expressed as

N (α,r,θ) = cosh r exp
(
|α|2 − tanh rRe

(
α2e−iθ

))
. (1.3.36)

Using Mehler’s identity once again we can find the explicit position representation of the
wavefunction

⟨x|z,γ⟩ =
( 1
π

) 1
4 1√

(1 − γ)N (z,γ)
exp

−

(
γ + 1

2

)
x2

1 − γ

 exp
(

− z2

2(1 − γ)

)
exp

(√
2xz

)
,

(1.3.37)
which satisfies the coherent state limit (1.2.15), up to a constant phase, when γ → 0.

1.3.4. Completeness relation and time evolution for the squeezed
states

For the coherent states we found the resolution of the identity with respect to a uniform
measure of 1

π
. If we were to naively substitute the Fock space expanded squeezed states into∫

C

d2α

π
µ(α) |α,ξ⟩ ⟨α,ξ| , (1.3.38)

and attempt to determine the measure µ(α), the problem can become tricky and requires
results on the holomorphic Hermite polynomials and their orthogonality relations [15]. For-
tunately there is a simpler way to construct the measure, because we need only integrate
over one of the parameters α,ξ, we can exploit the completeness of the coherent states and
the unitarity of the squeezing operator to observe that∫

C

d2α

π
|α,ξ⟩ ⟨α,ξ| = S(ξ)

(∫
C

d2α

π
|α⟩ ⟨α|

)
S†(ξ) = S(ξ)1S†(ξ) = 1. (1.3.39)

Thus the squeezed coherent states are also an overcomplete family of states. In other forms
we may integrate over the squeezing parameter γ in (1.3.27) defined on the complex disk
|γ| < 1 in which case we can use measures for SU(1,1) coherent states, see for example [16].

Just as the coherent states remain coherent states under unitary time evolution (1.2.17),
the squeezed states also remain squeezed states under time evolution. Explicitly the time
dependence affects the parameters in the following way:

|z,γ; t⟩ = e−iHt |z,γ⟩ = e
−iωt

2
∣∣∣e−iωtz,e−2iωtγ

〉
. (1.3.40)

1.4. Quasiprobability distributions
It is valuable to study quantum mechanics in phase space. Due to the uncertainty of

quantum mechanics and the non-commutativity of its phase space variables, distributions
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constructed on the phase space will not always have a proper probabilistic interpretation,
for this reason they are known as quasiprobability distributions.

The Weyl Transform of an operator Â was originally defined as [17]

Ã(x,p) =
∫
R

dy e−ipy
〈
x+ y

2

∣∣∣∣ Â ∣∣∣∣x− y

2

〉
, (1.4.1)

with the operator expressed in the x basis as ⟨x′| Â |x⟩. The critical feature being that this
transform converts an operator into a function on phase space.

In the density operator formalism, the principle quantum object is defined by

ρ̂ =

|ψ⟩ ⟨ψ| , pure,∑
i pi |ψi⟩ ⟨ψi| ,

∑
i pi = 1, mixed.

(1.4.2)

A state may be pure, in which case the density operator is given by the outerproduct of
the known wavefunction with itself, otherwise the state is mixed and is given by a statis-
tical ensemble of pure states with probablilities pi. We calculate the expectation values of
observables by taking the trace with the density matrix of the system we are interested in as

⟨Â⟩ = ⟨ψ| Â |ψ⟩ = tr[ρ̂Â] = 1
2π

∫
dx dp ρ̃Ã, (1.4.3)

leading to the standard definition of the Wigner function

W (x,p) = ρ̃

2π = 1
2π

∫
dy e−ipy

〈
x+ y

2

∣∣∣∣ ρ̂ ∣∣∣∣x− y

2

〉
, (1.4.4)

as being the Weyl transformation of the density operator. Because the state of the quantum
system encodes its probabilistic content, the square absolute value of the wavefunction or
the density operator, we interpret the Wigner function as a quasiprobability function on the
quantum phase space. Indeed for a pure state ρ̂ = |ψ⟩ ⟨ψ| the marginals of (1.4.4) read∫

R
dpW (x,p) = |ψ(x)|2, (1.4.5)∫

R
dxW (x,p) = |ψ(p)|2. (1.4.6)

It is possible to obtain a more general construction of quantum phase space, in work
pioneered by Cahill and Glauber [18], the Cahill-Glauber phase space was introduced in
the coherent state basis as a symplectic Fourier transform of the characteristic function
χs = exp

(
s |β|2

2

)
tr (ρ̂D(β)) [19] [20],

Ws(α) = 1
π2

∫
d2β exp

(
s

|β|2

2

)
tr (ρ̂D(β)) exp

(
β̄α − βᾱ

)
. (1.4.7)

Here s refers to the operator ordering, s = 1 corresponds to normal ordering and yields
the P distribution [22, 22] s = 0 corresponds to symmetric (Weyl) ordering and gives the
Wigner function [23] and finally s = −1 corresponds to anti-normal ordering and gives the
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Q function [24]. The average of products of the ladder operators in ordering s is then given
by 〈[

(a+)n(a−)m
]

s

〉
= 1
π

∫
d2α ᾱnαnWs(α). (1.4.8)

1.4.1. Wigner and P distributions in the coherent state basis

Focusing on the Wigner function and P distribution, we wish to obtain forms which are
more suitable for practical calculation. The P distribution is defined to be diagonal in the
coherent states

ρ̂ =
∫ d2α

π
P (α) |α⟩ ⟨α| , (1.4.9)

this can be inverted to yield [25]

P (α) = e|α|2
∫ d2β

π
⟨−β| ρ̂ |β⟩ e|β|2e−ᾱβ+αβ̄. (1.4.10)

The P distribution for coherent states is a well defined Dirac delta function, for non-classical
states it may be more singular than a delta function [18]. Similarly we can obtain the Wigner
function from (1.4.7) [26],

W (α) = e2|α|2
∫ d2β

π
⟨−β| ρ̂ |β⟩ e2(αβ̄−ᾱβ), (1.4.11)

or equivalently
W (α) = 2

∫ d2β

π
P (β) exp

{
−2|β − α|2

}
. (1.4.12)

Expressed as a convolution of the P distribution, this particular form is only useful when
we have access to the P distribution (which may not exist). An advantage that the Wigner
function has over the P distribution is that it is always well defined even if it can become
negative for certain states.

1.4.2. Wigner functions for coherent, squeezed and cat states

We can read off the P distribution immediately for a pure coherent state z, its density
operator is described by ρ̂ = 1

π
|z⟩ ⟨z|. Note that we include a factor of π in the definition of

this density operator to ensure tr ρ̂ = 1, it arises due to the overcompleteness of the states
established in (1.2.10). The P function is defined to be diagonal in the coherent state basis
[22], it is therefore, by construction,

P|z⟩(α) = δ2(α− z). (1.4.13)

Now we can establish the Wigner function for these states using (1.4.12)

W|z⟩(α) = 2
π

exp
{
−2|α− z|2

}
. (1.4.14)
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Heuristically this result makes sense. Coherent states were introduced in such a way that
their wavefunction kept a gaussian localisation. The Wigner function is related to the square
of the wavefunction and so we see that the Wigner function behaves as a Gaussian centred
at z. The P distribution is naturally constructed in terms of the coherent states of the
harmonic oscillator and thus simplifies the computation.

Fig. 1.3. The Wigner function for a coherent state of the harmonic oscillator centred at
fixed z = 1 + 2i. We see that it is a two-dimensional Gaussian and is always positive.

The Wigner function is well behaved for all coherent states. When looking for non-
classicality we look for negative values of the Wigner function. It is well known that the
coherent states of the harmonic oscillator exhibit no non-classicality. The positivity of the
Wigner function is evidence of this [27].

Consider now a pure squeezed state ρ̂ = 1
π

|z,ξ⟩ ⟨z,ξ|. In calculating its Wigner function
it is useful to write down a couple of definitions regarding the displacement and squeezing
operators first, namely

D(α)D(β) = e
αβ̄−ᾱβ

2 D(α + β) (1.4.15)

and we may write S(ξ) as

exp
(
eiθ

2 tanh r a+2
)

exp
(

− log cosh r
(
a+a− + 1

2

))
exp

(
−e−iθ

2 tanh r a−2
)
, (1.4.16)

which comes from a su(1,1) decomposition of the squeezing operator [28]. We also make use
of (1.2.8). Using this decomposition and computing (1.4.11) we obtain

W (α)|z,ξ⟩ = 2
π

e2|α|2

cosh re
−|z|2 exp

(
tanh rRe

[
eiθz̄2

])
exp

−|σ|2 + tanh rRe
[
eiθσ̄2

]
1 − tanh2 r

 , (1.4.17)

where σ = z − 2α− eiθz̄ tanh r.
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Fig. 1.4. Wigner functions for squeezed states with z = 1 + 0i, r = 0.5 and θ = π
2 (left),

and z = 1 + 0i, r = 0.5 and θ = 0 (right). For the case of real squeezing notice that the
squeezing is entirely in the Im(α) (or p) direction, resulting in larger spread in the Re(α) (or
x) direction.

We see in figure 1.4 that the Wigner function for the squeezed states does resemble that
of the coherent states only squeezed according to ξ. We observe further that taking the limit
r → 0 in (1.4.17), we obtain the result previously derived for the coherent states (1.4.14).

Lastly, consider a cat state given by |cat⟩ ∝ |z⟩ + |−z⟩ [7]. Up to a normalisation,
these states describes a quantum superposition of two macroscopically distinct states. The
coherent states are a useful way to describe cat states as the coherent states themselves are
the most classical states we can construct in quantum mechanics. The etymology of “cat
state” is related to Schrödinger’s cat, and the macroscopic superpostions can be interpreted
as alive (|z⟩) and dead (|−z⟩). The normalised state is given by

|cat⟩ =
√√√√ 1

2(1 + e−2|z|2)
(|z⟩ + |−z⟩), (1.4.18)

and the density operator of the system is given by

ρ̂ = 1
π

|cat⟩ ⟨cat| = 1
π

1
2(1 + e−2|z|2)

(|z⟩ ⟨z| + |−z⟩ ⟨−z| + |−z⟩ ⟨z| + |z⟩ ⟨−z|) . (1.4.19)

We use this to compute the following Wigner function,

W|cat⟩(α) = 1
2(1 + e−2|z|2)

( 2
π
e−2|α−z|2 + 2

π
e−2|α+z|2 + 4

π
e−2|α|2 cosh(2αz̄ − 2ᾱz)

)
. (1.4.20)

23



Fig. 1.5. The Wigner function for a cat state with z = 1 + 3i.

We see in figure 1.5 that the Wigner function has two emergent peaks corresponding
to |z⟩ and |−z⟩ and it becomes negative around the origin. This is due to the interference
term Wc(α). Even though the coherent states themselves are classical, the violation of
classical probabilistic interpretation arises due to the superposition of quantum states, while
the states |z⟩ and |−z⟩ might be classical (in the greatest possible sense in quantum theory)
their superposition most certainly is not - superposition states do not exist in classical physics
and so we should expect odd behaviour.

1.5. Non-classicality
Non-classicality is a term used to distinguish features of a quantum system that do not

occur in its classical analogue. Non-classicality can manifest itself through several phenom-
ena such as photon anti-bunching [29] and entanglement [30]. It is however not always
straightforward to determine whether a system is non-classical or not. We have seen the
negativity of the Wigner function of the cat state which clearly has no classical analogue
(negative probability is forbidden classically), but the Wigner function of the squeezed states
remained always positive. An alternative route to studying non-classicality is by analysing
number statistics of the state of interest, in some cases we are able to detect emergent non-
classicality not detected by the Wigner function. Another indication of non-classicality can
be inferred from how far the uncertainty relations deviate from their minimum, but again,
the squeezed states minimise this yet are still non-classical.

We will introduce the Mandel Q parameter as well as the notion of entanglement in
the next sections. Tests of non-classicality are not limited to these however, there exist
very recent techniques such as operator ordering sensitivity [31], where the fluctuations in
operator ordering parameter s, introduced with the quasiprobability distributions, serve to
classify non-classicality. In order to obtain a complete description of non-classicality in a
system, one must analyse several measures of non-classicality.
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1.5.1. Entanglement

Of central importance to quantum physics is the emergence of entanglement, a phenom-
enon that does not exist in the classical realm. In heuristic terms it is an instantaneous
connection between space-like separated quanta. In terms of the wavefunction, the total
wavefunction of the multimode system does not factorise into the product of wavefunctions
on each mode. In quantum information theory it is often useful to create entanglement for
the purposes of cryptography and teleportation of information [32]. In its most primitive
mathematical sense, a system is entangled if it can’t be written as a tensor product of its
composite states acting on their respective Hilbert spaces. Using two qubit Hilbert spaces
as an example, Ha = {|0⟩a , |1⟩a} and Hb = {|0⟩b , |1⟩b} and their composition Ha ⊗ Hb, the
following Bell state is entangled∣∣∣Ψ+

〉
= 1√

2
(|0⟩a ⊗ |1⟩b + |1⟩a ⊗ |0⟩b) ̸= |ψ⟩a ⊗ |ϕ⟩b , ∀ |ψ⟩a ∈ Ha, |ϕ⟩b ∈ Hb, (1.5.1)

while the following product state is not entangled

|Φ⟩ = 1
2 (|0⟩a ⊗ |1⟩b + |1⟩a ⊗ |0⟩b + |0⟩a ⊗ |0⟩b + |1⟩a ⊗ |1⟩b)

= 1√
2

(|0⟩a + |1⟩a) ⊗ 1√
2

(|0⟩b + |1⟩b)

= |ψ⟩a ⊗ |ϕ⟩b .

(1.5.2)

A useful tool in quantum optics and quantum information processing is the beam splitter
which is described mathematically by the following operator [33],

B(θ, φ) = exp
(
θ

2
[
a+b−eiφ − a−b+e−iφ

])
(1.5.3)

with a+ and a− referring to the creation and annihilation operators of one input field, and
b+, b− referring to the operators on the other input field. The beam splitter acts in the
following way

a− → Ba−B† = a− cos θ2 − b−eiφ sin θ2 = c−

b− → Bb−B† = b− cos θ2 + a−e−iφ sin θ2 = d−.

(1.5.4)
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Fig. 1.6. A schematic of a 50/50 beam splitter with input fields a,b and output fields c,d.

When two pure input coherent states are used we obtain the following [34]

B(θ, φ) (|α⟩a ⊗ |β⟩b) =
∣∣∣∣∣α cos θ2 + βeiφ sin θ2

〉
a

⊗
∣∣∣∣∣−αe−iφ sin θ2 + β cos θ2

〉
b

, (1.5.5)

using B(|0⟩a ⊗ |0⟩b) = |0⟩a ⊗ |0⟩b we see that the action of the beam splitter on two input
coherent states does not generate any entanglement. In fact, this can be seen as a manifes-
tation of a larger result: non-classicality is a prerequisite for the generation of entanglement
by a beam splitter [33].

Because the displacement operator does not generate any entanglement, we consider the
action of the beam splitter on the product of two squeezed vacuum states,

B(θ, φ) (|ξ⟩a ⊗ |γ⟩b) = BSa(ξ)Sb(γ) (|0⟩a ⊗ |0⟩b) . (1.5.6)

We need to calculate the action of the beam splitter on the squeezing operator BSa(ξ)B†.
The caclulation may be simplified by using the Euler angle representation of the SU(2)
decomposition of the beam splitter operator [35]

B(θ, φ) = e−iφL3e−iθL2e−iφL3 = exp
(
θ

2
[
a+b−eiφ − a−b+e−iφ

])
, (1.5.7)

where Li satisfy the su(2) algebra [Li,Lj] = iϵijkLk and are given explicitly by the following
representation

L1 = 1
2(a+b− + a−b+), L2 = 1

2i(a
+b− − a−b+), L3 = 1

2(a+a− − b+b−). (1.5.8)

We simplify further by considering a 50/50 (θ = π
2 ) beam splitter with a relative phase φ = lπ

2
for l ∈ N and real squeezing so that we restrict ourselves to the case where the squeezing is
in either quadrature but not an arbitrary combination of both. In this case we compute the
following expression [33]

B
(
π

2 , φ
)

(||ξ|⟩a ⊗ ||γ|⟩b) = BSa(|ξ|)Sb(|γ|) (|0⟩a ⊗ |0⟩b) , (1.5.9)
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which yields

Sa

(
−1

2(|ξ| + e2iφ|γ|)
)
Sb

(
−1

2(e−2iφ|ξ| + |γ|)
)
Sab

(
−1

2(eiφ|ξ| + e−iφ|γ|)
)

(|0⟩a ⊗ |0⟩b) .
(1.5.10)

This introduces the two-mode squeezing operator Sab(η) = exp(ηa+b+ − η̄a−b−) [36]. The
two-mode squeezing operator represents the entanglement generated by the action of the
beam splitter on squeezed state inputs.

1.5.2. Mandel Q parameter

Entanglement can only occur in systems of dimension higher than two, so for systems of
dimension one it is not a meaningful measure of non-classicality. When we are dealing with
just one Hilbert space we require different notions of non-classical behaviour. This leads us
to assess the number statistics of the system. The coherent states are the reference point for
classicality in a quantum system. A useful measure of non-classicality is then the Mandel Q
parameter [37], it is defined in the following way

Q = ⟨N̂2⟩ − ⟨N̂⟩2

⟨N̂⟩
− 1, (1.5.11)

it is bounded from below by −1 (corresponding to a number state |n⟩) and it measures
the deviation of the photon number statistics from a Poisson distribution, i.e. those of the
coherent states. The canonical coherent states satisfy Q = 0, thus defining our criteria: for
Q < 0 we have sub-poissonian statistics and for Q > 0 we have super-poissonian statistics.
The case when Q > 0 (photon bunching) we cannot determine whether the state is non-
classical, but for −1 < Q < 0 the statistics are sub-poissonian and this corresponds to the
classically forbidden phenomenon of photon anti-bunching [38].

For squeezed states we obtain a slightly more general expression, we reuse the result
⟨N̂⟩ = ⟨α,ξ| a†a |α,ξ⟩ = |α|2 + sinh2 r and the transformations in (1.3.9) to compute the
second moment of N̂ ,

Q|α,ξ⟩(α,ξ) = −
sinh r

[
eiθᾱ2 cosh r + sinh r

(
2|α|2 + cosh(2r)

)
+ α2e−iθ cosh r

]
|α|2 + sinh2 r

. (1.5.12)
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Fig. 1.7. Two plots of Q|α,ξ⟩, on the left r = −0.8,θ = 0, and on the right r = 0.5,θ = 0.
We take α to be real without loss of generality.

We see that for certain values of the squeezing it is possible to obtain a negative Mandel
parameter (or sub-poissonian statistics), this is indicative of the purely quantum phenomenon
of photon antibunching. Photon antibunching refers to the way in which photons group when
received at a detector, they are more equally spaced than coherent states of light (which are
totally randomly distributed). In constrast to bunching of thermal light, antibunching cannot
be described by a classical wave electromagnetism and requires a quantum particle theory of
light [39]. We also verify that in the limiting case of the squeezing r → 0 we recover Q = 0
as with the coherent states.
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2.1. Introduction
In this chapter we extend the formalism of the canonical coherent and squeezed states

to the two-dimensional harmonic oscillator. Degeneracy in the spectrum of the Hamiltonian
is one of the first problems we encounter when trying to define a new type of coherent
states for the two-dimensional oscillator. Klauder described coherent states of the hydrogen
atom [1] which preserved many of the usual properties required by coherent state analysis
[2]. Fox and Choi proposed the Gaussian Klauder states [3], an alternative method for
producing coherent states for more general systems with degenerate spectra. An analysis of
the connection between the two definitions was studied in [4].

When labelling energy eigenstates of a two-dimensional system, |n,m⟩, there exist several
representations of the state space, in this chapter we present a motivation for an SU(2)
representation of the state space. Discussions of alternate state space representations as well
as the application to two-dimensional magnetism may be found in [5], [6]. When generalising
beyond two dimensions, there exist many more state space representations leading many
definitions of coherent states in higher dimensions.

In this chapter we develop a natural approach for constructing coherent states for two-
dimensional oscillators in both the isotropic and commensurate anisotropic settings. We aim
to minimally extend the standard definitions of the canonical coherent an squeezed states in
one dimension, in order to construct a set of coherent and squeezed states that maintain the
simplicity of the one-dimensional definitions, but capture the richness afforded to us in two
dimensions.

We begin by recounting the energy eigenstates of the two-dimensional isotropic oscilla-
tor in section 2.2. Following this, in section 2.3 we address the degeneracy in the energy
spectrum by constructing a single-indexed non-degenerate spectrum of the two-dimensional
system labelled by ν. We define a pair of generalised ladder operator formed from a linear
combination of the one-dimensional ladder operators with complex coefficients which preserve
the canonical commutation relations, from which the su(2) coherent states follow naturally.
After establishing the su(2) coherent states as a Fock basis for the two-dimensional system,
in section 2.4 we extend the definitions of the canonical coherent states by replacing the
one-dimensional Fock basis with the two-dimensional su(2) coherent states to define what
we refer to as Schrödinger-type coherent states. All definitions of the canonical coherent
states are systematically recovered for the two-dimensional states in this scheme, including
the resolution of the identity in section 2.5.

We turn our attention to the anisotropic oscillator, in section 2.6 we modify the su(2)
coherent states according to Chen’s hypothesis [7] to produce coherent states for the commen-
surate anisotropic oscillator, and we discuss the emergent properties and the correspondence
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of their wavefunctions to Lissajous figures in configuration space. We complete this analysis
by discussing the associated Schrödinger-type coherent states in section 2.7.

Lastly, in section 2.8 we develop squeezed states for the two-dimensional system by
replacing the definitions from the one-dimensional squeezed states with definitions involving
the generalised ladder operators. We find that a non-trivial coupling is induced between the
two modes and the resulting wavefunction represents the most general permissible Gaussian
wavefunction. All the while the definitions from the one-dimensional case are preserved.

2.1.1. Definitions from one dimension

In order to keep this chapter self contained, we recapitulate the essential forms of the
canonical coherent and squeezed states in one dimension discussed in the previous chapter.
For complex parameters z, ξ, the displacement and squeezing operators are

D(z) = eza+−z̄a− (2.1.1)

and
S(ξ) = e

1
2 (ξa+2−ξ̄a−2) (2.1.2)

respectively. The canonical coherent states satisfy the following essential relations:

a− |z⟩ = z |z⟩ ; (2.1.3)

|z⟩ = D(z) |0⟩ ; (2.1.4)

|z⟩ = e− |z|2
2

∞∑
n=0

zn

√
n!

|n⟩ ; (2.1.5)

∆Q̂∆P̂ = 1
2 , ∀ |z⟩ , with ∆Q̂ = ∆P̂ ; (2.1.6)∫

C

d2z

π
|z⟩ ⟨z| =

∞∑
n=0

|n⟩ ⟨n| = IH, d2z = d Re(z) d Im(z). (2.1.7)

The squeezed coherent states satisfy the following essential relations:

|α,ξ⟩ = D(α)S(ξ) |0⟩ = S(ξ)D(β) |0⟩ = |β,ξ⟩ ; (2.1.8)

(a− + γa+) |z,γ⟩ = z |z,γ⟩ , (2.1.9)

|z, γ⟩ = 1√
N (z,γ)

∞∑
n=0

1√
n!

(
γ

2

)n
2

Hn

(
z√
2γ

)
|n⟩ ; (2.1.10)

∫
C

d2β

π
|β,ξ⟩ ⟨β,ξ| =

∞∑
n=0

|n⟩ ⟨n| = IH, d2β = d Re(β) d Im(β); (2.1.11)
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the relationships between the parameters are given by:

ξ = reiθ,

β = α cosh r − ᾱeiθ sinh r,

z = α− ᾱeiθ tanh r,

γ = −eiθ tanh r.

(2.1.12)

2.2. The two-dimensional harmonic oscillator
For a two-dimensional isotropic oscillator we have the quantum Hamiltonian

Ĥ = P̂ 2
a

2 + P̂ 2
b

2 + Q̂2
a

2 + Q̂2
b

2 = Ĥa + Ĥb (2.2.1)

where we have once again set ℏ = 1, the mass m = 1, and the frequency ω = 1. The
Hamiltonian (2.2.1) is the sum of two one-dimensional oscillator Hamiltonians labelled by a
and b respectively.

We solve the time independent Schrödinger equation Ĥ |Ψ⟩ = E |Ψ⟩ and obtain the
usual energy eigenstates (or Fock states), this time labelled by two numbers, n,m, such that
|Ψ⟩ = |n⟩ ⊗ |m⟩ ≡ |n,m⟩ with eigenvalue

En,m = n+m+ 1, n,m ∈ Z≥0. (2.2.2)

These states may be generated by the action of two sets of raising and lowering operators in
the following way [8]

a− |n,m⟩ =
√
n |n− 1,m⟩ , a+ |n,m⟩ =

√
n+ 1 |n+ 1,m⟩ ;

b− |n,m⟩ =
√
m |n,m− 1⟩ , b+ |n,m⟩ =

√
m+ 1 |n,m+ 1⟩ .

(2.2.3)

The states |n,m⟩ in configuration space have the following wavefunction

⟨x,y|n,m⟩ = ψn(x)ψm(y) = 1√
2n+mn!m!

√
1
π
e− x2

2 − y2
2 Hn (x)Hm (y) , (2.2.4)

where ψn(x) = 1√
2nn!

(
1
π

) 1
4 e− x2

2 Hn (x) is the wavefunction of the one-dimensional oscillator
and Hn(x) are the Hermite polynomials.

Because the problem is two-dimensional, we have two sets of position and momentum
quadratures. For the physical position and momentum operators, Q̂s = 1√

2(s+ + s−), P̂s =
1√
2i

(s− − s+), respectively in the s mode, the states |n,m⟩ satisfy the following

(∆Q̂a)2
|n,m⟩ = (∆P̂a)2

|n,m⟩ = 1
2 + n, (2.2.5)

(∆Q̂b)2
|n,m⟩ = (∆P̂b)2

|n,m⟩ = 1
2 +m. (2.2.6)
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Because the Hamiltonian is coordinate separable, the energy eigenstates are therefore product
separable and as a result we see no influence of the a mode on the b mode quadratures and
vice versa. The a(b) mode satisfies the Heisenberg uncertainty relation which grows linearly
in n(m).

In what follows we will construct two new ladder operators as linear combinations of the
operators in (2.2.3) and proceed to define a single indexed Fock state for the two-dimensional
system which yields the su(2) coherent states, as well as extending the definitions in section
2.1.1 to obtain Schrödinger-type coherent states for the two-dimensional system.

2.3. su(2) coherent states
We extend the definitions of the ladder operators presented in section 2.2 to apply to the

2D oscillator. Introducing a set of states {|ν⟩}, and defining a new set of ladder operators
through their action on the set,

A− |ν⟩ =
√
ν |ν − 1⟩ , A+ |ν⟩ =

√
ν + 1 |ν + 1⟩ , ⟨ν|ν⟩ = 1, ν = 0,1,2, . . . .

(2.3.1)
The states |ν⟩ are constructed in such a way as to preserve all the features of the one
dimensional Fock states. These states have a linear increasing spectrum Eν = ν + 1 to be
compared with (2.2.2).

We may build the states by hand starting with the only non-degenerate state, the ground
state, |0⟩ ≡ |0,0⟩ and we take simple linear combinations of the 1D ladder operators

A+
α,β = αa+ ⊗ Ib + Ia ⊗ βb+,

A−
α,β = ᾱa− ⊗ Ib + Ia ⊗ β̄b−,

[A−
α,β,A+

α,β] = (|α|2 + |β|2)Ia ⊗ Ib ≡ I,

(2.3.2)

for α,β ∈ C and Ia ⊗Ib = Ib ⊗Ia ≡ I. We find that the normalisation condition |α|2 +|β|2 = 1
in (2.3.2) allows us to preserve the canonical commutation relation of the one dimensional
system. Constructing the states {|ν⟩} explicitly, starting with the ground state, gives us the
following table:

|ν⟩ |n,m⟩
|0⟩ |0,0⟩
|1⟩ α |1,0⟩ + β |0,1⟩
|2⟩ α2 |2,0⟩ +

√
2αβ |1,1⟩ + β2 |0,2⟩

... ...
|ν⟩ ∑n+m=ν

n,m αnβm

√(
ν
n

)
|n,m⟩

Table 2.1. Construction of the states |ν⟩ using the relation A+ |ν⟩ =
√
ν + 1 |ν + 1⟩.
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The states |ν⟩ depend on α, β and may be expressed as

|ν⟩α,β =
ν∑

n=0
αnβν−n

√√√√(ν
n

)
|n,ν − n⟩ . (2.3.3)

For clarity we introduce a subscript label to the states, |ν⟩α,β, and find that they are precisely
the su(2) coherent states in the Schwinger boson representation [2]. This makes sense from
our construction, the degeneracy present in the spectrum En,m is an SU(2) degeneracy, and
so we created states which averaged out the degenerate contributions to a given energy Eν .

The states |ν⟩α,β have the following orthogonality relations

⟨µ|γ,δ |ν⟩α,β = (γ̄α + δ̄β)νδµ,ν , (2.3.4)

which reduces to a more familiar relation, by construction, when γ = α and δ = β,

⟨µ|α,β |ν⟩α,β = δµ,ν , (2.3.5)

using the normalisation condition |α|2 + |β|2 = 1.
In order to develop the exact position representation of the wavefunction, ⟨x,y|ν⟩α,β, we

make use of the following identity for a finite sum of Hermite polynomials,

(1 + γ2) ν
2Hν

(
γx+ y√
1 + γ2

)
=

ν∑
n=0

(
ν

n

)
γnHn(x)Hν−n(y), (2.3.6)

after which we find,

⟨x,y|ν⟩α,β = 1√
π2νν!

e− x2
2 − y2

2 (α2 + β2) ν
2Hν

(
αx+ βy√
α2 + β2

)
. (2.3.7)

The wavefunction of the su(2) coherent states is expressible in terms of a single Hermite
polynomial multiplied by a two dimensional Gaussian. Additionally, when α, β are com-
pletely out of phase and their magnitudes are equal such that α = i 1√

2 and β = 1√
2 , all but

the highest power term vanish in the Hermite polynomials,

⟨x,y|ν⟩i 1√
2

, 1√
2

=
√

2ν

√
πν!

e− x2
2 − y2

2 iν
(

1√
2
x− i 1√

2
y

)ν

. (2.3.8)

36



Fig. 2.1. Density plots of
∣∣∣⟨x,y|40⟩α,β

∣∣∣2 for α =
√

3
2 e

i π
2 , β = 1

2 (left) and α =
√

3
2 , β = 1

2
(right).

In figure 2.1 there are two plots of the probability density functions
∣∣∣⟨x,y|ν⟩α,β

∣∣∣2. In the
picture on the left there is an imaginary component to the relative phase between α and
β, this causes the emergence of an elliptical shape to the density. Conversely, on the right,
when α and β are exactly in phase (or out of phase) the probability density is concentrated
on a line, the angle of the line to the x axis is determined by tan θ = |β|

|α| . The probability
densities of the quantum su(2) coherent states mimic the spatial distribution of a classical
2D isotropic oscillator, that is, ellipses in the (x,y) plane. Coherent states may be defined by
their correspondence to classical physics, so in this sense the states |ν⟩α,β exist in the spirit
of coherent states and their generalisations.

The states |ν⟩α,β have the following variances for the physical position and momentum
operators:

(∆Q̂a)2
|ν⟩α,β

= (∆P̂a)2
|ν⟩α,β

= 1
2 + |α|2ν, (2.3.9)

(∆Q̂b)2
|ν⟩α,β

= (∆P̂b)2
|ν⟩α,β

= 1
2 + |β|2ν. (2.3.10)

The results are essentially the same as those in (2.2.5) and (2.2.6), but they are tuned by the
continuous parameters α, β introduced in (2.3.2) allowing additional freedom in increasing
uncertainty in one set of quadrature operators at the expense of reducing it in the other set.

2.4. Schrödinger-type two-dimensional coherent states
Though the basis states, |ν⟩α,β, developed thus far are themselves coherent states, we

can go further and define what we will refer to as Schrödinger-type coherent states. Just
as the states |ν⟩α,β were defined to preserve the properties of the one dimensional energy
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eigenstates, the Schrödinger-type coherent states are defined so as to preserve the form of
the one dimensional canonical coherent states.

Beginning with the Fock expansion, the Schrödinger-type coherent states, |Ψ⟩α,β are:

|Ψ⟩α,β = e− |Ψ|2
2

∞∑
ν=0

Ψν

√
ν!

|ν⟩α,β . (2.4.1)

These states have the following inner product relation

⟨Ψ′|γ,δ |Ψ⟩α,β = e− |Ψ′|2+|Ψ|2

2 eΨ̄′Ψ(γ̄α+δ̄β). (2.4.2)

Because these states are constructed in direct analogy with the one dimensional definitions,
we also find that they are eigenstates of the generalised lowering operator A−

α,β,

A−
α,β |Ψ⟩α,β = Ψ |Ψ⟩α,β . (2.4.3)

The expansion in (2.4.1) also implies the existence of a displacement operator as in the
one dimensional case

|Ψ⟩α,β = e− |Ψ|2
2

∞∑
ν=0

Ψν

√
ν!

|ν⟩α,β

= e− |Ψ|2
2

∞∑
ν=0

Ψν

√
ν!

A+
α,β

ν

√
ν!

|0⟩α,β

= e− |Ψ|2
2 +ΨA+

α,β |0⟩α,β ,

(2.4.4)

from which we may reconstruct a unitary operator

D(Ψ) = exp
(
ΨA+

α,β − Ψ̄A−
α,β

)
(2.4.5)

and thus recover our last definition of the canonical coherent states

|Ψ⟩α,β = D(Ψ) |0⟩α,β . (2.4.6)

A Baker-Campbell-Haussdorf identity along with the annihilation of the two dimensional
vacuum, A−

α,β |0⟩α,β = 0 allow us to rewrite D(Ψ) in the following way

D(Ψ) = eΨA+
α,β

−Ψ̄A−
α,β

= e(αΨa+−ᾱΨ̄a−)+(βΨb+−β̄Ψ̄b−)

= Da(αΨ)Db(βΨ),

(2.4.7)

thus splitting D(Ψ) into the product of two one dimensional displacement operators acting
on a and b independently. Consequently, the Schrödinger-type coherent states then factorise
into two uncoupled one dimensional canonical coherent states

|Ψ⟩α,β = |αΨ⟩a ⊗ |βΨ⟩b . (2.4.8)
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In the position representation, we find that the wavefunction factorises into the product
of two equal width one dimensional Gaussians. Explicitly, using the position representa-
tion in one dimension (1.2.15), we get the position representation of the two-dimensional
Schrödinger-type coherent states

⟨x,y|Ψ⟩α,β = 1√
π

exp
(

−1
2[(x−

√
2 Re(αΨ))2 + (y −

√
2 Re(βΨ))2]

)
e(i

√
2[x Im(αΨ)+y Im(βΨ)]).

(2.4.9)

Fig. 2.2. Density plots of
∣∣∣⟨x,y|Ψ⟩α,β

∣∣∣2 for Ψ = 8, α =
√

3
2 e

i π
2 , β = 1

2 (left) and Ψ = 8ei π
4 , α =

√
3

2 e
i π

2 , β = 1
2 (right).

In figure 2.2 we see the probability densities
∣∣∣⟨x,y|Ψ⟩α,β

∣∣∣2 are Gaussian in the
(x,y) plane. The peak of the probability density is located at the coordinates
(x,y) = (

√
2 Re(αΨ),

√
2 Re(βΨ)).

The Schrödinger-type coherent states represent an infinite sum of the elliptical, or su(2)
coherent states established previously, with a Poissonian probability of being in a state |µ⟩α,β

given by ∣∣∣⟨µ|α,β |Ψ⟩α,β

∣∣∣2 = e−|Ψ|2 |Ψ|2µ

µ! , (2.4.10)

analogously to the one dimensional canonical coherent states, |⟨n|z⟩|2 = e−|z|2 |z|2n

n! . More-
over, we recover the saturation of the Heisenberg uncertainty relation in the a and b modes
indepdently, this follows from the factorisation of the states,

(∆Q̂a)|Ψ⟩α,β
(∆P̂a)|Ψ⟩α,β

= 1
2 , (∆Q̂a)|Ψ⟩α,β

= (∆P̂a)|Ψ⟩α,β
, (2.4.11)

(∆Q̂b)|Ψ⟩α,β
(∆P̂b)|Ψ⟩α,β

= 1
2 , (∆Q̂b)|Ψ⟩α,β

= (∆P̂b)|Ψ⟩α,β
. (2.4.12)
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2.5. Resolution of the identity
The su(2) coherent states resolve the identity in the following way

ν + 1
π2

∫
S3

d2α d2β δ(|α|2 + |β|2 − 1) |ν⟩α,β ⟨ν|α,β = Iν , (2.5.1)

where S3 refers to integration over the 3-sphere parametrised by |α|2+|β|2 = 1. The operator
Iν is the identity operator for the states {|ν⟩α,β}, in other words, the sum of projectors onto
states with total occupation number n + m = ν, for example I2 = |2,0⟩ ⟨2,0| + |1,1⟩ ⟨1,1| +
|0,2⟩ ⟨0,2|.

We retrieve the identity operator for the entire Hilbert space by summing over ν
∞∑

ν=0

(
ν + 1
π2

∫
S3

d2α d2β δ(|α|2 + |β|2 − 1) |ν⟩α,β ⟨ν|α,β

)
=

∞∑
n=0

∞∑
m=0

|n,m⟩ ⟨n,m| = IH. (2.5.2)

The resolution of the identity allows us to express any other state in the Hilbert space in
terms of the states {|ν⟩α,β}. The energy eigenstates are then given by

|n,m⟩ =
∞∑

ν=0

ν + 1
π2

∫
S3

d2α d2β δ(|α|2 + |β|2 − 1)

√√√√(ν
n

)
ᾱnβ̄m |ν⟩α,β

 . (2.5.3)

The Schrödinger-type two dimensional coherent states resolve the identity with a slightly
modified measure. It is insufficient to combine the measures used for the one dimensional
coherent states and su(2) coherent states in equations (2.1.11) and (2.5.1), doing so we would
obtain
1
π2

∫
S3

d2α d2β δ(|α|2+|β|2−1)
∫
C

d2Ψ
π

|Ψ⟩α,β ⟨Ψ|α,β =
∞∑

ν=0

Iν

ν + 1 =
∞∑

n=0

∞∑
m=0

|n,m⟩ ⟨n,m|
n+m+ 1 ̸∝ IH.

(2.5.4)
However, the identity operator for the full Hilbert space can be retrieved by the inclusion of
the positive term, |Ψ|2, into the measure as follows

1
π2

∫
S3

d2α d2β δ(|α|2 + |β|2 − 1)
∫
C

d2Ψ
π

|Ψ|2 |Ψ⟩α,β ⟨Ψ|α,β = IH, (2.5.5)

thus the Schrödinger-type coherent states for the two dimensional oscillator represent an
overcomplete basis for the full Hilbert space of the two dimensional oscillator. The resolution
of the identity means the states could have some application in coherent state quantisation
in two dimensions [2].

2.6. Commensurate anisotropic su(2) coherent states
In order to generalise coherent states to the commensurable frequency anisotropic oscil-

lator, we introduce two integers p,q in the Hamiltonian as
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Ĥ = P̂ 2
a

2 + P̂ 2
b

2 + ω2
a

Q̂2
a

2 + ω2
b

Q̂2
b

2

= P̂ 2
a

2 + P̂ 2
b

2 + p2ω2 Q̂
2
a

2 + q2ω2 Q̂
2
b

2 ,

(2.6.1)

where the frequencies are related by ωa = pω and ωb = qω, and the ratio, p
q
, represents the

ratio of the two frequencies ωa

ωb
. Without loss of generality, we will set the common frequency

ω = 1 in what follows and choose p,q such that they are relative prime integers. In terms of
ladder operators we may represent the Hamiltonian (2.6.1) as

Ĥ = pa+a− + qb+b− + p+ q

2 I, (2.6.2)

where

a− =
√
p

2

(
Q̂a + i

p
P̂a

)
,

b− =
√
q

2

(
Q̂b + i

q
P̂b

)
,

a+ =
√
p

2

(
Q̂a − i

p
P̂a

)
,

b+ =
√
q

2

(
Q̂b − i

q
P̂b

)
,

(2.6.3)

and
[a−,a+] = 1,

[Ĥ,a±] = ±pa±,

[b−,b+] = 1,

[Ĥ,b±] = ±qb±.
(2.6.4)

A hypothesis made by Chen [9] says that the integers p,q enter the quantum su(2)
coherent states in the following way,

|ν⟩p,q
α,β =

ν∑
n=0

αnβν−n

√√√√(ν
n

)
|pn,q(ν − n)⟩ , (2.6.5)

where the states are normalised in the usual way ⟨ν|p,q
α,β |ν⟩p,q

α,β = 1 with the condition |α|2 +
|β|2 = 1.

Chen’s states (2.6.5) suitably address the extension of our construction to the commen-
surate anisotropic oscillator, the states themselves resemble the su(2) coherent states but
the anisotropy is accounted for in the Fock expansion. Energy eigenstates of (2.6.1) have
eigenvalues En,m = p

(
n+ 1

2

)
+ q

(
m+ 1

2

)
which do not have the same degenerate structure

as in the isotropic case where p = q = 1, instead we are considering a superposition of states
|pn,qm⟩ such that n+m = ν for given p,q.

There are however some immediate limitations. Firstly, because the states (2.6.5) do not
include all states in the full Hilbert space of the two dimensional oscillator, they will not
permit a meaningful resolution of the identity. Secondly, the states are not presented with
a generalised ladder operator to act on the two dimensional basis. Ladder operators may
be retroactively fit to generate the states (2.6.5), but it requires the use of inverse square
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roots of number operators and as such the algebra is poorly defined outside of the specific
representation.

Proceeding with some analysis, the energy eigenvalues of the states |ν⟩p,q
α,β may be calcu-

lated from

⟨ν|p,q
α,β pa

+a− + qb+b− + p+ q

2 I |ν⟩p,q
α,β = (p2 − q2)

(
ν∑

n=0
|α|2n|β|2(ν−n)

(
ν

n

)
n

)
+ q2ν + p+ q

2

= (p2 − q2)|α|2ν + q2ν + p+ q

2
= p2|α|2ν + q2|β|2ν + p+ q

2
≡ Ep,q

ν ,

(2.6.6)

which was computed by observing that
∂

∂|α|2
ν∑

n=0
|α|2n|β|2(ν−n)

(
ν

n

)
= ∂

∂|α|2
(|α|2 + |β|2)ν , (2.6.7)

yielding
ν∑

n=0
|α|2(n−1)|β|2(ν−n)

(
ν

n

)
n = ν(|α|2 + |β|2)ν−1 = ν. (2.6.8)

The states |ν⟩p,q
α,β correspond to Lissajous-type probability densities in configuration space, a

feature present in the classical spatial distribution of an anisotropic oscillator with commen-
surate frequencies [7] [10].

Fig. 2.3. Density plots of
∣∣∣⟨x,y|40⟩2,1

α,β

∣∣∣2 for α =
√

3
2 e

i π
2 , β = 1

2 (left) and α =
√

3
2 , β = 1

2
(right).

In figure 2.3 we have two types of Lissajous figure associated with the 2:1 oscillator. On
the left is a closed figure-of-eight, and on the right an open figure. The frequency ratio p

q

determines the type of Lissajous figure, and the relative phase between α and β deforms
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the figures such that when they are completely in (or out) of phase, the figure is open, and
when there is an imaginary component to the relative phase, the figure is closed. Tables
of Lissajous figures corresponding to different choices of p and q can be found in [11]. The
correspondence of the quantum probability densities to the classical spatial distribution of a
two-dimensional commensurate anisotropic oscillator confirms Chen’s definition as a suitable
description of coherent states.

The commensurate anisotropic su(2) coherent states have slightly modified variances
compared with the isotropic case. Inverting the relations in (2.6.3) we obtain

(∆Q̂a)2
|ν⟩p,q

α,β
= 1
p

(1
2 + |α|2pν

)
, (∆P̂a)2

|ν⟩p,q
α,β

= p
(1

2 + |α|2pν
)
, (2.6.9)

(∆Q̂b)2
|ν⟩p,q

α,β
= 1
q

(1
2 + |β|2qν

)
, (∆P̂b)2

|ν⟩p,q
α,β

= q
(1

2 + |β|2qν
)
, (2.6.10)

thus we find the the parameter p serves to squeeze the uncertainty in the position quadrature,
Q̂a, while increasing the uncertainty in the momentum quadrature, P̂a. The same is true in
the b mode except the scaling is governed by q.

2.7. Commensurate anisotropic two-dimensional
Schrödinger-type coherent states

As with the isotropic case, we can build two dimensional Schrödinger-type coherent states
using the commensurate anisotropic su(2) coherent states as an expansion basis. Defining
the states |Ψ⟩p,q

α,β

|Ψ⟩p,q
α,β = e− |Ψ|2

2

∞∑
ν=0

Ψν

√
ν!

|ν⟩p,q
α,β . (2.7.1)

These Schrödinger-type coherent states are normalised ⟨Ψ|p,q
α,β |Ψ⟩p,q

α,β = 1 with inner product

⟨Ψ′|p,q
α,β |Ψ⟩p,q

α,β = e− |Ψ′|2+|Ψ|2

2 eΨ̄′Ψ. (2.7.2)

Similarly to the isotropic case, (2.7.1) may be interpreted as the infinite sum of commensurate
anisotropic su(2) coherent states, determined by p,q, with probability of being in a given
coherent state (or Lissajous figure), |µ⟩p,q

α,β, given by
∣∣∣⟨µ|p,q

α,β |Ψ⟩p,q
α,β

∣∣∣2 = e−|Ψ|2 |Ψ|2µ

µ! . (2.7.3)
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Fig. 2.4. Density plots of
∣∣∣⟨x,y|Ψ⟩p,q

α,β

∣∣∣2 for Ψ = 8, α =
√

3
2 e

i π
2 , β = 1

2 (left) and Ψ = 8ei π
2 , α =

√
3

2 e
i π

2 , β = 1
2 (right), with p = 2, q = 1 in both instances. 30 terms are kept in the expansion

of |Ψ⟩p,q
α,β. We see the emergence of localisation onto parts of the su(2) coherent state used

in the expansion.

Fig. 2.5. Density plots of
∣∣∣⟨x,y|Ψ⟩p,q

α,β

∣∣∣2 for Ψ = 4, α =
√

3
2 e

i π
2 , β = 1

2 (left) and Ψ = 4ei π
2 , α =

√
3

2 e
i π

2 , β = 1
2 (right), with p = 2, q = 1 in both instances. 30 terms are kept in the expansion

of |Ψ⟩p,q
α,β.

Figures 2.4 and 2.5 show four density plots for the probability density of the commen-
surate anisotropic two dimensional Schrödinger-type coherent states. We have used finitely
many terms in the expansion of |Ψ⟩p,q

α,β and so we can see the emergence of localisation, but
the pictured graphs are not properly normalised as a result. An interesting difference be-
tween the isotropic and commensurate anisotropic Schrödinger-type coherent states is that
for certain values of (α, β,Ψ, p, q) the probability density can localise onto two or more sepa-
rate points in space. This can be seen clearly in the left-most image in figure 2.5, unlike the
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isotropic Schrödinger-type states which were seen to have Gaussian probability distributions
in configuration space with a single maximum.

In the right-most density plot in figure 2.5 there is good localisation, but the probability
distribution is fringed around the origin, this behaviour differs from the isotropic counter-
parts. The graphs in figure 2.4 are clearly far from normalisation (because larger Ψ was
used) but they demonstrate how the first few terms in the expansion of |Ψ⟩p,q

α,β begin to
localise onto the Lissajous figure. The parameters (α, β, p, q) determine the topology of the
Lissajous figure, as described in section 2.6, while arg Ψ controls the points on the Lissajous
figure where the probability density will concentrate.

2.8. Two-dimensional squeezed states
Returning to the isotropic oscillator, we found the su(2) coherent states play the role of a

single indexed Fock number basis for the two dimensional system. We were able to construct
Schrödinger-type coherent states and found that they separated into the product of two one
dimensional canonical coherent states.

An interesting proposition now is to address the construction of squeezed states by the
same analogy to the one dimensional problem. Defining the generalised squeezing operator,

S(Ξ) = exp
(1

2[ΞA+
α,β

2 − Ξ̄A−
α,β

2]
)
, (2.8.1)

the generalized squeezed state is obtained through the action of generalised displacement
and squeezing operators on the two dimensional vacuum as

|Ψ,Ξ⟩α,β = D(Ψ)S(Ξ) |0⟩α,β , (2.8.2)

where the displacement operator, D(Ψ), is defined in (2.4.5).
Because we preserve the canonical commutation relations with the operators A+

α,β,A−
α,β

we also get the expansion of the squeezed states by replacing the basis |n⟩ → |ν⟩α,β in the
one dimensional problem. Doing so leads to

|Z,Γ⟩α,β = 1√
N (Z,Γ)

∞∑
ν=0

1√
ν!

(
Γ
2

) ν
2

Hν

(
Z√
2Γ

)
|ν⟩α,β , (2.8.3)

recalling the following relationships between the parameters

Z = Ψ − Ψ̄eiΘ tanhR, (2.8.4)

Γ = −eiΘ tanhR, (2.8.5)

for
Ξ = ReiΘ. (2.8.6)
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The use of capital letter parameters is to indicate that we are referring to the two dimensional
states. The normalisation function is also determined by direct analogy

N (Z,Γ) = 1√
1 − |Γ|2

exp
(

1
1 − |Γ|2

(
|Z|2 − |Γ|2 Re

(
Z2

Γ

)))
. (2.8.7)

Using our previously obtained results for the wavefunction of the states ⟨x,y|ν⟩α,β in
(2.3.7) and Mehler’s identity [12] we can derive the exact wavefunction of the two dimensional
squeezed states,

⟨x,y|Z,Γ⟩α,β = 1√
πN (Z,Γ)

e− x2
2 − y2

2√
1 − (α2 + β2)Γ

× exp
(

−Γ(α2x2 + β2y2 + 2αβxy)
1 − (α2 + β2)Γ +

√
2Z(αx+ βy)

1 − (α2 + β2)Γ − (α2 + β2)Z2

2(1 − (α2 + β2)Γ)

)
.

(2.8.8)

Studying the exact form of the wavefunction we see that an immediate non-triviality arises:
the states are not separable, that is, |Z,Γ⟩α,β ̸= |ξa⟩a ⊗ |ξb⟩b. While the generalised displace-
ment operator did not generate any entanglement the squeezing operator has. By taking the
square of the generalised ladder operators we generate terms proportional to a+b+ and a−b−

in the exponentials which are mixing the modes. These coupling terms are related to the
two-mode squeezing operator [13]. In our method of generating these states, we preserve
the ladder operator algebra and form of the one dimensional problem but produce the most
general type of two dimensional Gaussian wavefunction including the mixing terms.

Restricting to the case of the squeezed vacuum, Z = Ψ = 0, the squeezing operator
admits an su(1,1) decomposition [14] yielding

|Ξ⟩α,β = 1√
coshR

exp
{
eiΘ

2 tanhR(α2a+2 + β2b+2 + αβa+b+)
}

|0⟩α,β , (2.8.9)

in terms of the one-dimensional ladder operators. Equation (2.8.9) show that the generalised
squeezed states do not factorise; the bilinear one-dimensional terms in the expansion of A+

α,β
2

have induced a coupling between the a and b modes of the oscillator. This represents a non-
trivial generalisation of the squeezed states to two dimensions, a two-mode-like squeezing
was generated as a result of the construction in addition to the two single mode squeezings,
but the two-dimensional squeezed states themselves retain most of the definitions from their
one-dimensional counterparts.

Another consequence of our construction is that our two-dimensional squeezed states
must resolve the identity by unitarity of the squeezing operator S(Ξ). We know from (2.5.5)
that the two-dimensional coherent states |Ψ⟩α,β resolve the identity. To see this explicitly,
notice that we proved in chapter 1 in equation (1.3.12) that there exists a braiding relation
between the one-dimensional operators D(α) and S(ξ) such that D(α)S(ξ) = S(ξ)D(β).
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Because our two-dimensional operators satisfy the same algebra there exists an equivalent
braiding relation, thus we find that for a two-dimensional squeezed state

|Φ,Ξ⟩α,β = S(Ξ)D(Φ) |0⟩α,β , (2.8.10)

we resolve the identity with respect to the following measure

S(Ξ)
{ 1
π2

∫
S3

d2α d2β δ(|α|2 + |β|2 − 1)
∫
C

d2Φ
π

|Φ|2 |Φ⟩α,β ⟨Φ|α,β

}
S†(Ξ)

= S(Ξ)IHS†(Ξ)

= IH.

(2.8.11)

Fig. 2.6. Density plots of
∣∣∣⟨x,y|Z,Γ⟩α,β

∣∣∣2 for α =
√

3
2 e

i π
2 , β = 1

2 , Z = 0.5,Γ = − tanh(2) (left)
and α =

√
3

2 e
i π

2 , β = 1
2 , Z = 0.5,Γ = −ei π

2 tanh(2) (right).

Fig. 2.7. Density plots of
∣∣∣⟨x,y|Z,Γ⟩α,β

∣∣∣2 for α =
√

3
2 e

i π
2 , β = 1

2 , Z = 0.5,Γ = tanh(2) (left)
and α =

√
3

2 , β = 1
2 , Z = 0.5,Γ = tanh(2) (right).
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In figure 2.6 we see two plots of the probability density functions of the squeezed states
for fixed α,β,Z and we vary the phase of Γ. On the left there is no phase associated with Γ
and we find that there is greater squeezing in the Q̂a quadrature than in the Q̂b quadrature.
Once we add a phase to Γ the density function rotates in the (x,y) plane and the squeezing is
now more equally split between the Q̂a and Q̂b quadratures. We also find that the probability
density function’s peak does soften as some of the squeezing is pushed into the momentum
quadratures.

Another interesting case occurs when we vary the phase of α or β and fix all other
parameters. In figure 2.7 we vary the phase of α between the left an right images. For a
purely imaginary value of α the probability density function is not particularly well localised
but is squeezed more significantly in the Q̂b direction than in the Q̂a direction. If however we
consider a purely real value of α we see significant squeezing in the Q̂a quadrature, while the
Q̂b quadrature maintains the same width. In this situation, the momentum quadratures have
acquired a larger variance while the position wavefunction has become very well localised.
With the three complex parameters Γ, α, β (subject to the normalisation constraint |α|2 +
|β|2 = 1) we have a great deal of control over the squeezings in the four canonical quadratures.

In order to understand exactly how the squeezings occur in each quadrature we have
to calculate the dispersions in each mode. We use the Baker-Campbell-Haussdorf identity
eABe−A = B + [A,B] + 1

2 [A,[A,B]] + . . . [15] to compute Bogoliubov transformations on the
individual mode creation and annihilation operators. In the a mode the ladder operators are
transformed as

S†(Ξ)a−S(Ξ) = (|β|2 + |α|2 coshR)a− + αβ̄(coshR − 1)b−

+ eiΘ sinhR(α2a+ + αβb+),
(2.8.12)

S†(Ξ)a+S(Ξ) = (|β|2 + |α|2 coshR)a+ + ᾱβ(coshR − 1)b+

+ e−iΘ sinhR(ᾱ2a− + ᾱβ̄b−).
(2.8.13)

Similarly for the b mode ladder operators we find

S†(Ξ)b−S(Ξ) = (|α|2 + |β|2 coshR)b− + ᾱβ(coshR − 1)a−

+ eiΘ sinhR(β2b+ + αβa+),
(2.8.14)

S†(Ξ)b−S(Ξ) = (|α|2 + |β|2 coshR)b+ + αβ̄(coshR − 1)a+

+ e−iΘ sinhR(β̄2b− + ᾱβ̄a−).
(2.8.15)

The transformations (2.8.12) and (2.8.13) are symmetric with (2.8.14) and (2.8.15) when one
makes the replacements: α → β and a± → b±. Using these transformations we can compute
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the dispersions in the position and momentum quadratures:

(∆Q̂a)2
|Ξ⟩α,β

= 1
2 + |α|2 sinh2 R + Re(eiΘα2) sinhR coshR;

(∆P̂a)2
|Ξ⟩α,β

= 1
2 + |α|2 sinh2 R − Re(eiΘα2) sinhR coshR,

(2.8.16)

and similarly in the b mode

(∆Q̂b)2
|Ξ⟩α,β

= 1
2 + |β|2 sinh2 R + Re(eiΘβ2) sinhR coshR;

(∆P̂b)2
|Ξ⟩α,β

= 1
2 + |β|2 sinh2 R − Re(eiΘβ2) sinhR coshR.

(2.8.17)

These results also hold for the generalized squeezed states |Ψ,Ξ⟩α,β because the action of
the displacement operator has no effect on the on the variances. The results resemble those
in equations (1.3.15) and (1.3.16) but are modified by α, β. We see in the limit R → 0
we saturate the Heisenberg uncertainty relation in both modes. We also see clearly how the
phase of α, β dictate the overall squeezing between the position and momentum quadratures,
it is due to the terms ± Re(eiΘα2) sinhR coshR. For the a mode, the reality (or lack thereof)
of α for fixed Γ is critical in determining whether the squeezing occurs in its position or
momentum quadrature.

2.9. Conclusion
In this chapter we have described a method for constructing coherent states for the two-

dimensional oscillator which relies on using the minimal set of definitions used to describe
the coherent states of the one dimensional oscillator. We found that most of the properties
of the one dimensional coherent states were also present in their two-dimensional isotropic
Schrödinger-type counterparts: minimisation of the uncertainty principle, existence of a
displacement operator, eigenstates of an annihilation operator, and correspondence to the
classical system. As well, a suitable measure was found for the resolution of the identity.

Using the hypothesis of Chen, we generalised these results to the commensurate
anisotropic two dimensional harmonic oscillator and found that their probability densities
corresponded to Lissajous orbits. At present it is not clear how to extend these results
to the non-commensurate case. The relative prime integers p,q enter the su(2) coherent
states in a very natural way, but it seems that a different formalism altogether would be
required when dealing with non-commensurable ωa, ωb, classically this would correspond to
quasi-periodicity [16].

Lastly we presented a construction of generalised squeezed states for the two-dimensional
oscillator in the same vain. Unlike the Schrödinger-type coherent states, the generalised
squeezed states were found not to be separable into a product of two wavefunctions, one
for each mode independently. Instead we obtained the most general type of squeezed state
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(the most general Gaussian wavefunction in two dimensions), which includes a coupling
between the (x,y) coordinates. The states have all the features of two-dimensional squeezed
states, but we maintained the simplicity and analysis from the one-dimensional system. The
preservation of the canonical commutation relation for our generalised ladder operators was
key to simplifying our analysis.

To conclude this chapter, we remark that it is clear that some analysis in the anisotropic
setting is lacking. We do not have the formal set of ladder operators nor do we have a
resolution of the identity. The goal of the following chapter is to reintroduce these features
into a description of su(2)-like coherent states for the 2:1 anisotropic oscillator, based on
the same principle of addressing the degeneracy and constructing operators acting on a
non-degenerate spectrum for the two-dimensional system.
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Abstract. The 2:1 two-dimensional anisotropic quantum harmonic oscillator is consid-
ered and new sets of states are defined by means of normal-ordering non-linear operators
through the use of non-commutative binomial theorems as well as solving recurrence rela-
tions. The states generated are good candidates for the natural generalisation of the su(2)
coherent states of the two-dimensional isotropic oscillator. The two-dimensional non-linear
generalised ladder operators lead to several chains of states which are connected in a non
trivial way. The uncertainty relations of the defining chain of states are calculated and
it is found that they admit a resolution of the identity and the spatial distribution of the
wavefunction produces Lissajous figures in correspondence with the classical 2:1 oscillator.
Keywords: Ladder operators, Coherent states, Anisotropic oscillator, Two-dimensional
quantum systems.

3.1. Introduction
The problem of quantum mechanical degeneracy in the 2:1 anisotropic oscillator with

commensurable frequencies has been studied in great mathematical detail [1, 2, 3, 4, 5],
and more recently a complete algebraic description of the symmetry generators of the quan-
tum anisotropic oscillator with commensurable frequencies has been completed [6]. The 2:1
oscillator in particular has been studied in other branches of mathematical physics. It is, for
example, the only case of the two-dimensional quantum simple harmonic oscillator (other
than the isotropic case) where the system is second order super integrable [7]. It is separable
in both Cartesian and parabolic coordinates and its eigenfunctions in parabolic coordinates
are related to the confluent Heun equation [8]. Dunkl operator generalisations of the problem
have also been considered [9].

In experimental settings, the understanding of multidimensional quantum anisotropic
oscillators has been important in describing the states of deformed nuclei [10, 11], and
the two-dimensional model has been suggested to be of use in semiconductor physics [12]
by modelling electrons moving on an anisotropic lattice [13]. In mesoscopic physics it has
been experimentally verified that mode locking of three-dimensional coherent waves of the
anisotropic oscillator on parametric Lissajous surfaces form a nearly complete devil’s staircase
[14].

Multidimensional coherent states have also attracted some interest in the development
of their general formalism [15] and in studying their classical limits [16, 17]. Work on
coherent states for the anisotropic oscillator is limited, though some have been written down
by ansatz [18], they are not presented with ladder operators or a resolution of the identity.
Coherent states have many desirable properties in both the mathematical and physical sense.
A particular curiosity is their closeness to their classical counterparts be it through minimised
uncertainty relations (a canonical coherent state limit) or as we shall find in the example of
the anisotropic oscillator, this closeness may be quantified by the reproduction of Lissajous
figures in the probability distribution of purely quantum states.
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In this paper we develop a scheme for constructing su(2)-like coherent states for the 2:1
two-dimensional anisotropic harmonic oscillator. The principle idea is to extend the con-
struction from the isotropic setting presented in [19], where ladder operators were defined
to organise the degenerate spectrum into a non-degenerate increasing spectrum, to the more
general case where the frequencies between the two modes are different, but still commen-
surable. In doing so we need to introduce non-linear modifications to the ladder operators
intended to remove the degeneracy, these operators also mix the two modes. We define a
particular natural choice for these ladder operators which properly select all contributing
states to the organised spectrum of the 2:1 oscillator.

Degeneracy in quantum systems must be addressed in order to properly define their
corresponding coherent states [20]. This is because generalised definitions of coherent states
rely on having a properly ordered spectrum. Suppose we have a non-degenerate discrete
spectrum ordered in the following way

E0 < E1 < E2 < . . . < Ek, (3.1.1)

where k may be finite or infinite, and their associated eigenstates {|n⟩} form an orthonormal
basis

k∑
n=0

|n⟩ ⟨n| = 1. (3.1.2)

Klauder showed that generalized coherent states may be expressed as [21]

|ξ, γ⟩ = M(ξ2)
k∑

n=0

ξn

√
ρn

e−iγEn |n⟩ , (3.1.3)

where 0 ≤ ξ < ∞ and −∞ < γ < ∞. The normalisation M(ξ2) is chosen such that
⟨ξ, γ|ξ, γ⟩ = 1, and the parameters ρn are solutions to a moment equation with a positive
weight function k(u),

ρn =
∫ ∞

0
duunM2(u)k(u). (3.1.4)

Furthermore we have the completeness relation∫
dµ(ξ,γ) |ξ, γ⟩ ⟨ξ, γ| = 1, (3.1.5)

where integration on the measure dµ(ξ,γ) is defined as∫
dµ(ξ,γ) = lim

Γ→∞

1
2Γ

∫ ∞

0
dξ2 k(ξ2)

∫ Γ

−Γ
dγ. (3.1.6)

The key property here is the resolution of the identity in equation (3.1.5). A resolution
of the identity means we have a complete family of continuously parametrised states and
therefore may represent any other state in the system in terms of the family of coherent
states. This is often considered a defining property of generalised coherent states and it
fundamentally holds under this construction due to the organisation of the spectrum.
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If on the other hand the spectrum is degenerate we lose the property of the resolution of
the identity because the phase factor e−iγEn is degenerate. Performing the phase integrations
integrations in (3.1.6) will lead to terms of the form

lim
Γ→∞

1
2Γ

∫ Γ

−Γ
dγ eiγ(En−Em) (3.1.7)

which should yield a term proportional to δnm for non-degenerate energies, but in the event of
degeneracy there exists n ̸= m such that En = Em and thus we lose proper interpretation of
the integral. Work on addressing coherent states for degenerate spectra under this formalism
has been completed by Crawford [22] where a factor of the degree of degeneracy is included
in (3.1.3), as well as Fox and Choi [20] in which they add complex phases to the degenerate
contributions in order to recover a well defined identity operator. More recently sets of ladder
operators were defined in the example of the two-dimensional particle in a box [23] which
describes a framework whereby the ladder operators act on the basis states and properly
account for the degeneracy.

An ansatz for the form of the coherent states of the anisotropic quantum oscillator has
been made [18], for the example of the 2:1 oscillator they would read

|φν⟩ =
ν∑

k=0
αkβν−k

√√√√(ν
k

)
|k,2(ν − k)⟩ , (3.1.8)

which generalises the form of the su(2) coherent states of the isotropic oscillator. The states
(3.1.8) produce Lissajous figures in their spatial distribution. It is clear however that these
states cannot resolve the identity on the full Hilbert space of states because they miss out
states with an odd number in the second mode, |k,2(ν − k) + 1⟩, in their construction. And
while it is possible to retroactively fit ladder operators to generate these states, they often
include terms such as inverse square roots of the number operator and as such are only well
defined on particular representations.

This paper will be organised as follows. In Section 3.2 we will introduce the 2:1 two-
dimensional anisotropic harmonic oscillator and describe the set up of the problem including
the degeneracy in the spectrum and how we wish to organise it to remove the degeneracy.
We define sets of states on the non-degenerate spectrum as linear superpositions of states
with equal total energy. In section 4.3 we introduce some general definitions that we require
the generalised ladder operators to satisfy. We explicitly define a set of non-linear ladder
operators A+,A−, compute all zero modes associated with the operator A− and define chains
of states associated to each zero mode by the action of A+. Section 3.4 is devoted to the
principle chain of states generated from the lowest energy zero mode, which corresponds to
the ground state |0,0⟩. We show that they modify the form of the binomial coefficient of the
su(2) coherent states, and we find that they admit a resolution of the identity. Following this
in section 3.5 we discuss the uncertainty relations for the principle chain of states and find
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that the uncertainties in each mode are intrinsically connected due to the parameters intro-
duced in their construction. Finally, we conclude in section 3.6 by discussing the possibility
of generalising the techniques developed in this paper to other systems.

3.2. Bosonic states and degenerate spectra
The quantum hamiltonian for the 2:1 oscillator whose frequency in its a mode is twice

that of its frequency in its b mode is given in terms of the canonical position and momentum
operators Q̂i, P̂i respectively by

Ĥ = 1
2 P̂

2
a + 1

2 P̂
2
b + 2Q̂2

a + 1
2Q̂

2
b , (3.2.1)

where we have set the dimensionful quantities ℏ,ω,m = 1, Planck’s constant, the common
frequency and the geometric mean mass respectively. The position and momentum operators
satisfy the canonical commutation relations

[Qa,Pb] = iδab1, [Qa,Qb] = 0, [Pa,Pb] = 0, (3.2.2)

where 1 is the identity operator. For our purposes we are interested in the corresponding
ladder operator formalism, achieved by defining the operators

a− =
(
Q̂a + i

2 P̂a

)
,

b− = 1√
2
(
Q̂b + iP̂b

)
,

a+ =
(
Q̂a − i

2 P̂a

)
,

b+ = 1√
2
(
Q̂b − iP̂b

)
,

(3.2.3)

which can be used to rewrite the hamiltonian (3.2.1) as

Ĥ = 2a+a− + b+b− + 3
21. (3.2.4)

The operators (3.2.3) and (3.2.4) satisfy the canonical commutation relations in the a and b
modes separately,

[a−,a+] = 1,

[Ĥ,a±] = ±2a±,

[b−,b+] = 1,

[Ĥ,b±] = ±b±,
(3.2.5)

with other commutators vanishing. Notice that in our definitions we have absorbed the differ-
ence in frequencies into the definition of the ladder operators and not into their commutation
relations, so we preserve [a−,a+] = [b−,b+] = 1.

The energy eigenstates are solutions to the time-independent Schrödinger equation

Ĥ |n,m⟩ = En,m |n,m⟩ , (3.2.6)
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where n,m ∈ Z≥0. The ladder operators (3.2.3) have the following actions on the energy
eigenstates

a− |n,m⟩ =
√
n |n− 1,m⟩ ,

b− |n,m⟩ =
√
m |n,m− 1⟩ ,

a+ |n,m⟩ =
√
n+ 1 |n+ 1,m⟩ ,

b+ |n,m⟩ =
√
m+ 1 |n,m+ 1⟩ ,

(3.2.7)

and the eigenvalues En,m are given by

En,m = 2n+m+ 3
2 . (3.2.8)

Equation (3.2.8) is our first descriptor of the degeneracy present in the 2:1 oscillator, it is
equivalent to a simple problem in number theory, namely, for ν, n,m ∈ Z≥0, what values can
n and m take satisfying the following equation

ν = 2n+m. (3.2.9)

In terms of ν the spectrum En,m = Eν = ν + 3
2 is well organised

E0 < E1 < E2 < . . . , (3.2.10)

and the states with energy Eν will be expressed as linear superpositions of all states with
energy En,m = Eν as

|φν⟩ =
⌊ ν

2 ⌋∑
k=0

Λk(ν, {αi}) |k,ν − 2k⟩ . (3.2.11)

|φν⟩ contributing states
|φ0⟩ |0,0⟩
|φ1⟩ |0,1⟩
|φ2⟩ |1,0⟩ , |0,2⟩
|φ3⟩ |1,1⟩ , |0,3⟩

... ...
|φν⟩

{
|k,ν − 2k⟩ | k = 0,1,2, . . . ,⌊ν

2 ⌋
}

Table 3.1. States |n,m⟩ contributing to a state |φν⟩ with energy Eν .

Here Λk(ν, {αi}) are the complex expansion coefficients, with complex conjugate
Λ̄k(ν, {αi}), and they may depend on additional variables {αi}, i ∈ {1,2, . . . ,m}. The
coefficients represent the weights we attribute to each Fock basis state, after which we sum
over the number k to produce an averaged contribution to a state |φν⟩.

We require that the states (3.2.11) satisfy the following properties: normalisation
⌊ ν

2 ⌋∑
k=0

Λ̄k(ν, {αi})Λk(ν, {αi}) = 1, (3.2.12)
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and the completeness relation∫
Cm

dµ({αi}) Λ̄k′(ν, {αi})Λk(ν, {αi}) = δk′k, (3.2.13)

for some measure dµ({αi}) such that they resolve the identity on the subspace indexed by ν∫
Cm

dµ({αi}) |φν⟩ ⟨φν | = 1ν , (3.2.14)

and over the total Hilbert space via
∞∑

ν=0
1ν = 1H. (3.2.15)

Here 1H = ∑∞
n,m |n,m⟩ ⟨n,m| refers to the identity operator on the full Hilbert space of states.

This choice of partitioning the space of states {|n,m⟩} is the most natural when considering
the 2:1 oscillator.

There is some freedom in defining the set of states {|φν⟩} as the contributing states
can be weighted in any way such that (3.2.13) and (3.2.14) are satisfied, these represent a
proper probabilistic interpretation and completeness, respectively. By defining sets of ladder
operators which correctly pick out the states in table 3.1, the set of coefficients defining the
states {|φν⟩} are predetermined. These can always be normalised, the pertinent calculation
is to check that a measure can be found for (3.2.14).

3.3. Ladder operators and chains of states
Now we turn our attention to the ladder operators which will generate the states (3.2.11).

A defining feature of the generalised ladder operators of our system will be

[Ĥ,A+] = A+, [Ĥ,A−] = −A−, (3.3.1)

this ensures that if |ψν⟩ is an eigenstate of Ĥ then so are A− |ψν⟩ and A+ |ψν⟩. Operators
in more than one variable allow for infinitely many zero modes, to this end, the generalised
annihilation operator, A−, admits the following zero modes

A−
∣∣∣φ(n)

0

〉
= 0, (3.3.2)

where the index (n) enumerates zero modes and we define the principle zero mode
∣∣∣φ(0)

0

〉
=

|0,0⟩ to be the ground state of (3.2.4). The Fock spaces (chains of states) associated to each
zero mode

∣∣∣φ(n)
0

〉
are generated by∣∣∣φ(n)

ν

〉
= 1√

[f(ν)]!
(A+)ν

∣∣∣φ(n)
0

〉
, (3.3.3)

where ν describes the ν-th state in the chain and the states generated from the principle
zero mode,

∣∣∣φ(0)
ν

〉
, define the principle chain of states. The function f(ν) is chosen such that

59



the states are normalised
〈
φ(n)

ν

∣∣∣φ(n)
ν

〉
= 1, and the action on an intermediate state is given

by
A+

∣∣∣φ(n)
ν

〉
=
√
f(ν + 1)

∣∣∣φ(n)
ν+1

〉
. (3.3.4)

Because we are interested in the constructive generation of states we do not define the action
of A− on an intermediate state because we will choose A− = (A+)† and in general its action
will lead to a superposition of states from different chains. Much of the framework described
follows from the defining features of the ladder operators for the one-dimensional harmonic
oscillator, but we relax the canonical commutation relation such that

[A−,A+] ̸= 1, (3.3.5)

the commutation relation will not be canonical, this allows us to define generalised ladder
operators as non-linear combinations in a−, a+, b−, and b+.

With the framework described we find that a suitable pair of ladder operators are

A+ = αb+ + βa+b−, A− = ᾱb− + β̄a−b+. (3.3.6)

Their commutator yields

[A−,A+] = |α|21+ |β|2(b+b− − a+a−), (3.3.7)

and it can be verified that these operators obey (3.3.1) with hamiltonian (3.2.4). Firstly we
categorise all of the zero modes of the operator A− by solving (3.3.2) in the basis (3.2.11)

∣∣∣ψ(n)
0

〉
=

⌊ n
2 ⌋∑

j=0
γ

(n)
j (α,β) |j,n− 2j⟩ , n ∈ Z≥0, (3.3.8)

assuming γ(n)
j (α,β) ̸= 0. Considering n → 2n′ even, equation (3.3.2) is explicitly

n′∑
j=0

(
γ

(2n′)
j (α,β)ᾱ

√
2(n′ − j) |j,2n′ − 2j − 1⟩

+ γ
(2n′)
j (α,β)β̄

√
j − 1

√
2(n′ − j) + 1 |j − 1,2n′ − 2j + 1⟩

)
= 0.

(3.3.9)

After relabelling the second summation index j → j+1 in (3.3.9) we find that the coefficients
γ

(2n′)
j (α,β) satisfy the following recursion relation on the index j,

γ
(2n′)
j+1 (α,β) = − ᾱ

β̄

√
2(n′ − j)

√
j + 1

√
2(n′ − j) − 1

γ
(2n′)
j (α,β). (3.3.10)
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This can be solved straightforwardly with the definition γ(2n′)
0 (α,β) = 1 (this is just an overall

multiplicative constant) to give

γ
(2n′)
j (α,β) =

(
− ᾱ

β̄

)j j−1∏
k=0

√
2(n′ − j + k + 1)

√
j − k

√
2(n′ − j + k) + 1

,

=
(

−2 ᾱ
β̄

)j (
n′!

(n′ − j)!

)√√√√(2(n′ − j))!
j!(2n′)! , j ∈ {0, 1, . . . , n′}.

(3.3.11)

Repeating the procedure for n → 2n′ + 1 odd,
∣∣∣ψ(2n′+1)

0

〉
=

n′∑
j=0

γ
(2n′+1)
j (α,β) |j,2(n′ − j) + 1⟩ , (3.3.12)

solving equation (3.3.2) we find a similar recursion relation to the case where n is even, but
with an added constraint,

γ
(2n′+1)
j (α,β)ᾱ

√
2(n′ − j) + 1 + γ

(2n′+1)
j+1 (α,β)β̄

√
j + 1

√
2(n′ − j) = 0,

γ(2n′+1)
n (α,β) = 0.

(3.3.13)

The last constraint γ(2n′+1)
n (α,β) = 0 implies that all terms in the recursion vanish and as

a result we have no zero modes associated with odd values of n, that is there are no zero
modes of A− associated to odd values of ν. Thus, all normalised zero modes are given by∣∣∣φ(2n)

0

〉
= 1√

N (2n)
0 (α,β)

n∑
j=0

γ
(2n)
j (α,β) |j,2(n− j)⟩ , n ∈ Z≥0, (3.3.14)

with coefficients

γ
(2n)
j (α,β) =

(
−2 ᾱ

β̄

)j (
n!

(n− j)!

)√√√√(2(n− j))!
j!(2n)! , j ∈ {0,1, . . . , n} . (3.3.15)

We have introduced the normalisation function N (2n)
0 (α,β) which ensures that

〈
φ

(2n)
0

∣∣∣φ(2n)
0

〉
=

1, ∀n ∈ Z≥0. It is given in terms of the coefficients γ(2n)
j (α,β) by

N (2n)
0 (α,β) =

n∑
j=0

∣∣∣γ(2n)
j (α,β)

∣∣∣2. (3.3.16)
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A−

A+

...

... ...

...

ν = 0

ν = 1

ν = 2

ν = 3

ν = 4

ν = 5

ν = 6

∣∣∣φ(0)
0

〉

∣∣∣φ(2)
0

〉

∣∣∣φ(4)
0

〉

∣∣∣φ(6)
0

〉
∣∣∣φ(0)

ν

〉 ∣∣∣φ(2)
ν−2

〉

∣∣∣φ(0)
0

〉

∣∣∣φ(2)
0

〉

∣∣∣φ(4)
0

〉

∣∣∣φ(6)
0

〉

Fig. 3.1. The chains of normalised states
∣∣∣φ(2n)

ν

〉
. The figure shows the action of A+,A−

on the first two chains of states. A+ takes a state vertically up in any given column, while
A− takes a given state to a superposition of states in the row below, the weighting of the
superposition of states is different in both examples.

We can represent the space of states defined by A+,A− diagrammatically, in figure 3.1
each point in the diagram corresponds to a state

∣∣∣φ(2n)
ν

〉
where n indexes the column and

2n + ν indexes the row, with the lowest row and column being defined as the zeroth, i.e.∣∣∣φ(0)
0

〉
. The lowest state in each column corresponds to a zero mode (3.3.14) and they occur

only at even values of the quantum number ν. By defining the chains of states corresponding
to each zero mode by successive action of A+ in lieu of defining that A− takes us vertically
down a given chain, we find that the action of A− takes us to a superposition of states in
the row below. This should be read as follows, taking the examples of

∣∣∣φ(0)
3

〉
and

∣∣∣φ(2)
1

〉
we

get
A−

∣∣∣φ(0)
3

〉
= δ1

∣∣∣φ(0)
2

〉
+ δ2

∣∣∣φ(2)
0

〉
(3.3.17)

and
A−

∣∣∣φ(2)
1

〉
= δ3

∣∣∣φ(2)
0

〉
+ δ4

∣∣∣φ(0)
2

〉
, (3.3.18)

respectively. This is in contrast to the isotropic oscillator where it was found that the
generalised ladder operators acted on the same chain analogously to the one-dimensional
oscillator [19]. We use this basis so we can describe the entire space of states in terms of the
generalised ladder operators.
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To compute all states in the diagram we make use of a non-commutative binomial theorem
[24] to obtain the normal ordered expansion of (A+)ν

(αb+ + βa+b−)ν =
⌊ ν

2 ⌋∑
k=0

ν−2k∑
j=0

αj+kβν−k−j ν!
(ν − 2k − j)!k!j!2k

× (b+)j(a+)ν−k−j(b−)ν−2k−j,

(3.3.19)

and we define the ν-th unnormalised state in the n-th chain by∣∣∣ψ(2n)
ν

〉
= (A+)ν

∣∣∣φ(2n)
0

〉
. (3.3.20)

Using (3.3.19) this yields

∣∣∣ψ(2n)
ν

〉
= 1√

N (2n)
0 (α,β)

n∑
m=0

⌊ ν
2 ⌋∑

k=0

ν−2k∑
j=ν−2(k+n−m)

Γ(2n),(ν)
m,k,j (α, β) |m+ ν − k − j,2(n−m) − ν + 2k + 2j⟩ ,

(3.3.21)

where the coefficients are given by

Γ(2n),(ν)
m,k,j (α, β) =αj+kβν−k−jγ(2n)

m (α,β) ν!
(ν − 2k − j)!k!j!2k

×
√

(m+ 1)ν−k−j

√
(2(n−m) − ν + 2k + j + 1)j

×
√

(2(n−m) − ν + 2k + j + 1)ν−2k−j.

(3.3.22)

Here (x)n = x(x+ 1) . . . (x+ n− 1) is the Pochhammer symbol and the functions γ(2n)
m (α,β)

are defined in (3.3.15). We mention that the lower limit on the j summation is achieved by
excluding states annihilated by (b−)ν−2k−j. Again it is convenient to normalise the states so
we scale (3.3.21) by ∣∣∣φ(2n)

ν

〉
= 1√

N (2n)
ν (α, β)

∣∣∣ψ(2n)
ν

〉
, (3.3.23)

where N (2n)
ν (α, β) =

〈
ψ(2n)

ν

∣∣∣ψ(2n)
ν

〉
. The function (3.3.4) is also defined

f(ν) = N (2n)
ν (α, β)

N (2n)
ν−1 (α, β)

. (3.3.24)

With every state now defined we are in a position to compute the action of A− on an
arbitrary state, the states in a given row ν provide a non-orthogonal basis for the ν-th
subspace. Using this basis we can compute

A−
∣∣∣φ(2n)

ν

〉
=

⌊ ν−1
2 ⌋∑

k=0
Γ(2n)

k

∣∣∣φ(2k)
ν−1−2k

〉
(3.3.25)
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by means of inverting the Gram matrix [25]

G =


1

〈
φ

(0)
ν−1

∣∣∣φ(2)
ν−3

〉
. . .

... . . .〈
φ

(2⌊ ν−1
2 ⌋)

ν−1−2⌊ ν−1
2 ⌋

∣∣∣∣φ(0)
ν−1

〉
. . . 1

 , (3.3.26)

whose matrix elements are Gkj =
〈
φ

(2(k−1))
ν+1−2k

∣∣∣φ(2(j−1))
ν+1−2j

〉
and the diagonal entries Gkk = 1

because the states are normalised. The coefficients (3.3.25) are then determined by the
inversion formula

Γ(2n)
k =

⌊ ν−1
2 ⌋∑

j=0
G−1

kj

〈
φ

(2j)
ν−1−2j

∣∣∣A−
∣∣∣φ(2n)

ν

〉
. (3.3.27)

In general, for arbitrary α, β the off diagonal elements of (3.3.26) are non-zero but curiously
it may be shown that all the zero modes are orthogonal to their corresponding state in the
first chain, 〈

φ
(2ν)
0

∣∣∣φ(0)
2ν

〉
= α2ν√

N (2ν)
0 (α, β)N (0)

2ν (α, β)

ν∑
k=0

(−1)k

(
ν

k

)
= 0. (3.3.28)

3.4. Principle states
Focusing on the principle set of states generated from the principle zero mode (the ground

state)
∣∣∣φ(0)

0

〉
= |0,0⟩, we find the n = 0 limit of (3.3.21) leads to the unnormalised states

∣∣∣ψ(0)
ν

〉
=

⌊ ν
2 ⌋∑

k=0
αν−kβk ν!√

(ν − 2k)!
√
k!2k

|k,ν − 2k⟩ . (3.4.1)

Normalising the states and absorbing a factor of
√
ν! into the definition of the action of A+

we write the normalised chain as
∣∣∣φ(0)

ν

〉
= 1√

N (0)
ν (α, β)

⌊ ν
2 ⌋∑

k=0
αν−kβk

√√√√(ν
k

)
2

|k,ν − 2k⟩ . (3.4.2)

Here we have introduced a modified binomial coefficient(
n

k

)
t

= n!
k!(n− tk)!t2k

, t ∈ Z≥0, (3.4.3)

to elucidate the similarity of the states to the two-mode su(2) coherent states. Just as the
su(2) coherent states may be built from generalised ladder operators picking out degenerate
states of the isotropic oscillator [19], it is in this sense that we say the states (3.4.2) generalise
the su(2) coherent states to the 2:1 oscillator.

The function f(ν) (with the additional factor of ν) in (3.3.4) is defined as

f(ν) = ν
N (0)

ν (α, β)
N (0)

ν−1(α, β)
, (3.4.4)
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and we observe that the normalisation function may be expressed as

N (0)
ν (α, β) =

(
|α||β|

2

)ν

Hν

(
|α|
|β|

)
, (3.4.5)

where Hν(x) = ∑⌊ ν
2 ⌋

k=0
ν!

(ν−2k)!k! (2x)ν−2k are the pseudohermite polynomials [26]. This yields
the desired normalisation condition 〈

φ(0)
µ

∣∣∣φ(0)
ν

〉
= δµν . (3.4.6)

Although we have insisted on taking A− = (A+)† and as such A−
∣∣∣φ(0)

ν

〉
̸∝
∣∣∣φ(0)

ν−1

〉
, we can

still connect the states exclusively in the n = 0 chain by using the operator b−, such that

b−
∣∣∣φ(0)

ν

〉
= α

√
ν

√√√√N (0)
ν−1(α, β)

N (0)
ν (α, β)

∣∣∣φ(0)
ν−1

〉
. (3.4.7)

A key advantage of these states, because they are built out of the whole space of states of
the two-dimensional oscillator, is that we can resolve the identity both in the ν-th subspace
and over the full Hilbert space by

1
8π2ν!

∫
C2

d2α d2βNν(α, β)e
−|α|− |β|2

4

|α|ν+1

∣∣∣φ(0)
ν

〉 〈
φ(0)

ν

∣∣∣ = Iν , (3.4.8)

and
∞∑

ν=0

 1
8π2ν!

∫
C2

d2α d2βNν(α, β)e
−|α|− |β|2

4

|α|ν+1

∣∣∣φ(0)
ν

〉 〈
φ(0)

ν

∣∣∣
 = IH, (3.4.9)

respectively. For details on the derivation of these results see appendix 3.A.
Thus the states

{∣∣∣φ(0)
ν

〉}
form a complete family of states for the Hilbert space of the

two-dimensional oscillator, they are equipped with ladder operators and they reproduce the
Lissajous figures in their spatial distribution, mimicking the behaviour of the classical 2:1
oscillator [18]. In this sense they are a good candidate for the generalisation of the su(2)
coherent states of the two-dimensional isotropic oscillator.
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Fig. 3.2.
∣∣∣〈x,y∣∣∣φ(0)

100

〉∣∣∣2 with α = 3,β = ei π
2√
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2 (right).

Coherent states for harmonic oscillators in their typical presentation follow from three
equivalent definitions: eigenstates of the annihilation operator, the action of a unitary dis-
placement operator on the vacuum state, and by a particular infinite superposition of eigen-
states [27]. In principle one could construct such displacement operators and eigenstates for
the operators presented in (3.3.6), however, because their commutation relation is no longer
canonical and A− does not act correctly as a lowering operator on the same chain of states
generated by (A+)ν

∣∣∣φ(0)
0

〉
, their generalisation is not straightforward. Additionally because

the term βa+b− in A+ intrinsically couples the two modes, states generated by the exponen-
tial of these operators will not factorise into the product of two one-dimensional harmonic
oscillator coherent states.

We stress that the comparison to be made with the states (3.4.2) is with the two-mode
or Schwinger boson realisation of the su(2) coherent states.

3.5. Uncertainty relations
We can calculate the position and momentum uncertainties in the state

∣∣∣φ(0)
ν

〉
. In the a

mode we get the following product uncertainty relation

(
(∆Q̂a)2(∆P̂a)2

)∣∣∣φ(0)
ν

〉 = 1
4

1 + 1
2 |α|2|β|2ν(ν − 1)N (0)

ν−2(α, β)
N (0)

ν (α, β)

2

≥ 1
4 . (3.5.1)

Similarly for the b mode we find

(
(∆Q̂b)2(∆P̂b)2

)∣∣∣φ(0)
ν

〉 =
1

2 + |α|2νN (0)
ν−1(α, β)

N (0)
ν (α, β)

2

. (3.5.2)
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In order to prove these we write (∆Q̂s)2(∆P̂s)2 for s = a,b in terms of their ladder oper-
ator representations (3.2.3) and find that the only non-zero contributions are of the form〈
φ(0)

ν

∣∣∣ s+s−
∣∣∣φ(0)

ν

〉
. For

〈
φ(0)

ν

∣∣∣ a+a−
∣∣∣φ(0)

ν

〉
we find

〈
φ(0)

ν

∣∣∣ a+a−
∣∣∣φ(0)

ν

〉
= 1

N (0)
ν (α, β)

⌊ ν
2 ⌋∑

k=0
|α|2(ν−k)|β|2k k

(ν − 2k)!k!22k

= 1
N (0)

ν (α, β)

⌊ ν
2 ⌋−1∑
k=0

|α|2(ν−1−k)|β|2(k+1) 1
(ν − 2 − 2k)!k!22(k+1)

= 1
4 |α|2|β|2ν(ν − 1)N (0)

ν−2(α, β)
N (0)

ν (α, β)
,

(3.5.3)

where in the second line of (3.5.3) we changed the summation index k → k + 1 and in the
third line we used the fact that

⌊
ν
2

⌋
− 1 =

⌊
ν−2

2

⌋
to rewrite the summation in terms of the

normalisation function with index ν−2. The same principle is used to compute terms of the
form

〈
φ(0)

ν

∣∣∣ b+b−
∣∣∣φ(0)

ν

〉
allowing us to recover the uncertainty relations in (3.5.1) and (3.5.2).
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Fig. 3.3.
(
(∆Q̂a)2(∆P̂a)2

)∣∣∣φ(0)
ν

〉 as a function of ν. (a) α = 100,β = 1, (b) α = 1,β = 100,

(c) α = 1,β = 1.
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〉 as a function of ν. (a) α = 100,β = 1, (b) α = 1,β = 100,

(c) α = 1,β = 1.

The states satisfy the physical condition on the position-momentum uncertainty relation
in both the a and b modes, (∆Q̂i)2(∆P̂i)2 ≥ 1

4 . In (a) of figure 3.3 we have approximated
the limit |α| ≫ |β|, so the b mode is the dominant mode. In this limit the mixing of the
modes is such that the effects of the a mode are diluted by that of the b mode and as a
result we see that the product of uncertainties in the a mode increase relatively slowly when
compared with (a) of figure 3.4, where the uncertainty relation increases much more rapidly
as a function of ν.

In (b) of figures 3.3 and 3.4 we approximate the limit |β| ≫ |α|, in this case the mixing
term in A+ is dominant and as such we see a staggering pattern in the uncertainties of
the a mode, for an even value of ν = 2n, we observe that the uncertainty in the state
2n + 1 is approximately equal. Meanwhile in the b mode the effect is such that for odd
values of ν the product of uncertainties

(
(∆Q̂b)2(∆P̂b)2

)∣∣∣φ(0)
2ν+1

〉 ∼ 2.25 while for even values(
(∆Q̂b)2(∆P̂b)2

)∣∣∣φ(0)
2ν

〉 ∼ 0.25, this is due to the the fact that the state
∣∣∣φ(0)

2ν+1

〉
contains

the same number of basis states |k,ν − 2k⟩ as the state
∣∣∣φ(0)

2ν

〉
but with a larger number in

the b mode and therefore there is a larger uncertainty associated to odd values of ν. The
staggering in the a mode is a result of the anisotropy of the system, because a+ is worth two
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quanta (relative to b+ being worth one quantum), we only see a measurable increase in its
uncertainty when ν increases by two.

In (c) of figures 3.3 and 3.4 we choose α = β, so that the mixing term has the same weight
as the term adding only b modes, we find that the uncertainty in the a mode is parabolic in
ν while the uncertainty in b is linear.

3.6. Conclusion
In this article we have presented a new set of states for the 2:1 quantum anisotropic

oscillator. They admit a ladder operator construction and a resolution of the identity, more-
over, they reproduce the Lissajous figures of [18] and generalise the su(2) coherent states of
the two dimensional isotropic oscillator. Furthermore we find that the mixing of the modes
means that the uncertainty relations for each mode are codependent, and, for certain choices
of parameters there are interesting staggering patterns on the respective uncertainties.

We also found in the general construction that we can build chains of states from higher
energy zero modes defined by the operator A−, and as such building states by defining ladder
operators rather than defining expansion coefficients leads to a rich structure in the space of
states. We focused on the principle chain of states in this paper, but similar analyses may
be completed for the other chains of states.

It would be interesting to consider other types of ladder operators, it is clear that A+ is not
a unique choice which picks out the appropriate energy eigenstates, though it appears to be
the simplest one. Other choices of ladder operator will be, in general, harder to analytically
normal order, though the solution to this may lie in extending some results in [28] to the
ordering of multidimensional operators. As well, the inclusion of accidentally degenerate
states into this formalism will require additional caution because they cannot be predicted
by symmetry arguments and therefore the process of defining ladder operators to capture
this may need some modification. Finally, applying these techniques to multidimensional
systems other than the harmonic oscillator would be interesting, a system such as the 2D
Morse potential which is a more realistic modelling of the vibrations of molecules [29], or
the Pais-Uhlenbeck oscillator [30] which has been studied as one possible path to a theory
of quantum gravity. The techniques presented in this paper may lead to interesting classes
of states for these systems.
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3.A Resolution of the identity
To compute the resolution of the identity we write the parameters α = |α|eiθ, β = |β|eiϕ,

in polar form and considering for some measure µν (|α|, |β|),∫ ∞

0
d|α| |α|

∫ ∞

0
d|β| |β|

∫ 2π

0
dθ
∫ 2π

0
dϕµν (|α|, |β|) Nν(α, β)

∣∣∣φ(0)
ν

〉 〈
φ(0)

ν

∣∣∣ . (3.A.1)

The angular integrations over θ, ϕ, yield a factor of 4π2 multiplied by a Kronecker delta
matching the summation indices of

∣∣∣φ(0)
ν

〉 〈
φ(0)

ν

∣∣∣. To address the radial integrations

4π2ν!
∫ ∞

0
d|α|

∫ ∞

0
d|β|µν (|α|, |β|)

×
⌊ ν

2 ⌋∑
k=0

|α|2(ν−k)+1|β|2k+1 1
(ν − 2k)!k!22k

|k,ν − 2k⟩ ⟨k,ν − 2k| ,
(3.A.2)

we make use of the following identities∫ ∞

0
dx x2k+1e−cx2 = k!

2(ck+1) , k ∈ Z, c > 0, (3.A.3)

and ∫ ∞

0
dx xne−dx = n!

dn+1 , n ∈ Z≥0,Re(d) > 0, (3.A.4)

after which we observe that choosing the measure

µν (|α|, |β|) = 1
8π2ν!

e−|α|− |β|2
4

|α|ν+1 , (3.A.5)

produces the correct factorial terms to cancel the denominator of (3.A.2) and we obtain
⌊ ν

2 ⌋∑
k=0

|k,ν − 2k⟩ ⟨k,ν − 2k| ≡ Iν , (3.A.6)

in agreement with (3.4.8).
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To obtain the identity operator on the full Hilbert space we sum over each partition ν

using the reverse of the Cauchy product formula( ∞∑
n=0

xn

)( ∞∑
m=0

ym

)
=

∞∑
k=0

k∑
l=0

xlyk−l. (3.A.7)

We consider ν even and odd separately in (3.A.6). For ν → 2ν ′ even
∞∑

ν′=0

ν′∑
k=0

|k,2ν ′ − 2k⟩ ⟨k,2ν ′ − 2k| =
∞∑

n=0

∞∑
m=0

|n,2m⟩ , ⟨n,2m| , (3.A.8)

and for ν → 2ν ′ + 1 odd
∞∑

ν′=0

ν′∑
k=0

|k,2ν ′ − 2k + 1⟩ ⟨k,2ν ′ − 2k + 1| =
∞∑

n=0

∞∑
m=0

|n,2m+ 1⟩ ⟨n,2m+ 1| . (3.A.9)

The combination of (3.A.8) and (3.A.9) gives the desired result (3.4.9)
∞∑

ν=0
Iν =

∞∑
n=0

∞∑
m=0

|n,m⟩ ⟨n,m| = IH. (3.A.10)
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Abstract. In this paper we construct coherent states for the two-dimensional Morse
potential. We find the dependence of the spectrum on the physical parameters and use this
to understand the emergence of accidental degeneracies. It is observed that, under certain
conditions pertaining to the irrationality of the parameters, accidental degeneracies do not
appear and as such energy levels are at most two-fold degenerate. After defining a non-
degenerate spectrum and set of states for the 2D Morse potential, we construct generalised
coherent states and discuss the spatial distribution of their probability densities and their
uncertainty relations.
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4.1. Introduction
The Morse potential was originally introduced as a means to model interactions in di-

atomic molecules [1], it is an exactly solvable model with eigenfunctions expressible in terms
of Laguerre polynomials. In physical contexts the two-dimensional Morse product eigen-
functions have been used as a basis for perturbative solutions to a triatomic molecular
Hamiltonian [2, 3, 4, 5, 6] and interacting Morse oscillators [7, 8]. Throughout physics the
Morse potential is used in a variety of applications including the study of graphene [9, 10],
spectroscopy [11, 12], Bose-Einstein condensation [13], theories of interacting electrons [14],
nuclear physics [15], supersymmetric quantum mechanics [16], and molecular dynamics [17].
Coherent states for the 1D Morse potential have been studied [18], and while there is lit-
erature on defining coherent states for systems with degenerate spectra [19], and coherent
states for the 2D square well have been analysed [20], so far coherent states for the 2D Morse
potential have not been explicitly defined.

The 2D Morse potential, and more specifically, its supersymmetric generalisations have
been studied in detail [21, 22, 23, 24, 25]. Because the supersymmetric partners of the
2D Morse share the same spectrum, they also give rise to accidentally degenerate states, the
existence of which may be explained in terms of an operator constructed from supercharges
[25]. For our purposes we do not need to invoke the framework of supersymmetry, instead
we can study the degeneracy in terms of the rationality of the physical constants appearing
in the definition of the potential.

Degeneracy arises in practically all multidimensional quantum systems and in the Morse
potential the degeneracy is found to be quadratic in the principle quantum number. Cate-
gorising degeneracies in 2D systems with quadratic spectra has solutions found in number
theory. This is distinct from the case where, for example, the spectrum is linear in the
quantum number, we can associate a known symmetry group to the spectrum such as U(n)
for the n-dimensional isotropic oscillator [26].

There are several quantum systems with quadratic spectra, including the Morse potential,
Pöschl-Teller [27] and the particle in an infinite square box [28]. The prototypical 2D
quadratic spectrum is that of the particle in a square box. Finding the degenerate energies
is equivalent to finding numbers which are the sum of the squares of two integers [29].
Because the square box only admits bound states, in principle we need to find solutions to
the sum of the squares of two integers to infinity.

The 2D Morse spectrum is different in a few key ways. Firstly, if we are just interested
in the bound states of the system, we need only to find energies up to a certain finite value.
Secondly, the behaviour of the degeneracies changes when the defining parameter in the
Morse potential changes. As we will show, accidentally degenerate solutions do not exist
when this parameter is irrational.
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The understanding of the degeneracy of multidimensional quantum systems is important
in the construction of generalised coherent states [19]. Indeed, the usual definitions require
a spectrum to be ordered as

E0 < E1 < E2 < . . . < EM , (4.1.1)

in order to fulfil the resolution of the identity [30]. For most systems it is important to
work with complete sets of states, in the Morse potential however, we will only be studying
the finite dimensional bound state spectrum and as a result do not require a resolution of
the identity on the entire Hilbert space, though one in principle may be constructed on the
finite dimensional bound state sector. This being said, the ordering of the spectrum is still
required so that we can extend the formalism of generalised coherent states to the 2D Morse
potential without modifying the existing definitions.

The paper is organised as follows. Firstly, in section 4.2 we define the energy eigenstates
and eigenvalues of the 2D Morse potential as well its principle parameter, p. Following this
in section 4.3 we discuss the nature of the degeneracies that may arise depending on the
rationality of the principle parameter. Focussing on the case of irrational p, in section 4.4 we
introduce two parameters, γ1, γ2 which control the mixing of the degenerate contributions and
define the cumulative wavefunctions. Lastly, in sections 4.5 and 4.6 we assess the behaviour
of the generalised coherent states and their probability distributions as well as computing
their uncertainty relations, we conclude by discussing future work that could be made on
the subject.

4.2. The 2D Morse potential and the parameter p
The 2D isotropic Morse Hamiltonian is defined by

Ĥ = 1
2m

(
P̂ 2

x + P̂ 2
y

)
+ V0

(
e−2βQ̂x + e−2βQ̂y − 2

(
e−βQ̂x + e−βQ̂y

))
, (4.2.1)

where P̂x, P̂y are the momentum operators and Q̂x, Q̂y are the corresponding position opera-
tors. The Hamiltonian (4.2.1) is isotropic in the sense that the parameters in the x mode are
equal to those in the y mode. The entire Hilbert space decomposes into the sum of a finite
dimensional bound state part with discrete spectrum and an infinite dimensional unbound
state part with continuous spectrum. In the present work we are concerned with only the
bound states of the Morse oscillator.

The bound quantum states are found by solving the stationary Schrödinger equation

Ĥ |n,m⟩ = En,m |n,m⟩ , (4.2.2)

to obtain energy eigenvalues

En,m = −ℏ2β2

2m
(
(p− n)2 + (p−m)2

)
(4.2.3)
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where the parameters

ν =
√

8mV0

β2ℏ2 , p = ν − 1
2 , (4.2.4)

have been defined. The parameter p (or equivalently ν) we refer to as the principle parameter
of the Morse potential, as it is this combination of the physical constants that determine the
behaviour of the degeneracy in the spectrum. The eigenvectors of (4.2.2) in their position
representation are given by

ψn,m (x,y) = ⟨x,y|n,m⟩

= Nn,me
− x̃

2 − ỹ
2 x̃p−nỹp−mL2(p−n)

n (x̃)L2(p−m)
m (ỹ) ,

(4.2.5)

where the tilde variables are related to the canonical position variables by

x̃ = νe−βx, ỹ = νe−βy, (4.2.6)

Lα
n (z) are the Laguerre polynomials and the normalisation factor Nn,m is given explicitly by

Nn,m = β

√√√√(ν − 2n− 1)(ν − 2m− 1)Γ(n+ 1)Γ(m+ 1)
Γ(ν − n)Γ(ν −m) . (4.2.7)

Additionally we have the completeness relation on the bound states
⌊p⌋∑
n=0

⌊p⌋∑
m=0

|n,m⟩ ⟨n,m| = 1BS. (4.2.8)

For p not integer, the 1D Morse potential admits only a finite number, ⌊p⌋ + 1, of bound
states where ⌊r⌋ is the integer part of r. As such the two-dimensional Morse system admits
(⌊p⌋ + 1) × (⌊p⌋ + 1) bound states. The quantum numbers n,m take on the finite number of
values

n,m ∈ {0,1, . . . ,⌊p⌋} . (4.2.9)

If p is integer, the zero energy state is not normalisable, this can be seen in the normalisation
factor (4.2.7) which vanishes at p = n.

4.2.1. Ladder operators for the 1D Morse oscillator

Ladder operators for the 1D Morse potential have been explicitly realised as differential
operators. Due to the bounded spectrum, a ladder operator construction built out of the
compact SU(2) generators appears naturally [31]. Additionally, constructions based on the
two-dimensional parameter space the of confluent hypergeometric functions are presented in
[32, 33, 34, 35] where the eigenstates of the 1D Morse oscillator are connected by ladder
operators not only in the quantum number n but also in terms of the parameter ν.

In this paper we are considering the uncoupled two-dimensional Morse oscillator and in
principle we may define sets of ladder operators for the x and y modes separately. However,
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we are interested in the problem of the degeneracy in the quantum numbers, n,m, and this
degeneracy is categorised by number theoretical means. A proper treatment of the explicit
realisation of ladder operators for the spectrum defined in the following sections is relevant
and deserves its own paper.

4.3. Analysis of the degeneracies of the energy spectrum
In this section we will focus on equation (4.2.3) and the role of the principle parameter

p in determining the nature of the degeneracy in the spectrum. Assuming the principle
parameter p to be a real number, the structure of the degeneracy depends on the rationality
of p. It is not possible to say whether p is rational or not, it is built out of experimentally
determined numbers m,V0, β, ℏ which themselves may be rational (or the number determined
by experiment is a rational approximation), but the square root of the ratio (4.2.4) may not
be rational. We will demonstrate that accidental degeneracies are an inevitability when p is
taken to be rational, but they can be eliminated by choosing p to be irrational.

Consider then the scaled bound state energy spectrum with parameter p defined in (4.2.3)

εn,m = −
[
(p− n)2 + (p−m)2

]
, n,m ∈ {0,1, . . . ,⌊p⌋}. (4.3.1)

Writing the parameter p as the sum of its closest integer and a remainder

p = k + ϵ, k = ⌊p⌋, ϵ ∈ [0,1), (4.3.2)

we may rewrite (4.3.1) as

εn,m(k,ϵ) = −
[
(k − n)2 + (k −m)2 + 2ϵ(2k − n−m) + 2ϵ2

]
. (4.3.3)

The three distinct cases in (4.3.3) we can discuss here are p integer, p rational and p irrational.
In the notation we have introduced these are:

Case I εn,m (k,0) p integer (4.3.4)

Case II εn,m

(
k,
r

q

)
p rational (4.3.5)

Case III εn,m(k,ϵ) p irrational, (4.3.6)

for r
q

∈ [0,1) ⊂ Q and ϵ ∈ (0,1) ⊂ R \Q.

4.3.1. Case I

When the remainder term ϵ = 0 we find

εn,m(k,0) = −
[
(k − n)2 + (k −m)2

]
, (4.3.7)
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where n,m ∈ {0,1, . . . ,k − 1}. Solutions to this problem are well understood through Gauss-
ian prime decomposition [29]. As an example, if we take k = 9

εn,m(9,0) = −
[
(9 − n)2 + (9 −m)2

]
, (4.3.8)

we find that
ε2,8(9,0) = ε8,2(9,0) = ε4,4(9,0). (4.3.9)

In (4.3.9) the first two solutions are related by permuting the indices n,m, but neither
are related to the third solution by any known symmetry. This problem is similar to that of
the particle in a square box, though, because the quantum numbers n,m take on only finitely
many values, some solutions may be discarded. For instance 12 + 82 = 82 + 12 = 42 + 72 =
72 + 42, but if k = 7 then the solutions (1,8), (8,1) lie outside of the bound state parameter
range and as such should not be included as degenerate contributions.

To give a sense of scale to the problem of accidentally degenerate states, if we take the
large example of k = 29 then we have 841 different bound states. After removing the doubly
degenerate states (states symmetric under interchange of indices) we have 435 states. Upon
analysing the remaining states we find 361 distinct values for the energy. This implies that
there are 74 accidentally degenerate (not counting the interchanging of their indices) states.
The degrees of degeneracy also vary. Clearly this problem proliferates for larger p.

4.3.2. Case II

The next distinct case is for rational p, we may take the remainder term to be a rational
number on the interval [0,1)

p ∈ Q, ϵ = r

q
∈ [0,1). (4.3.10)

The spectral problem then takes the form

εn,m

(
k,
r

q

)
= −

[
(k − n)2 + (k −m)2 + 2r

q
(2k − n−m) + 2r

2

q2

]
. (4.3.11)

The rational p case includes as a limiting case (ϵ = 0) the integer p degeneracy problem but
also a more general class of accidental degeneracies. Consider the following example of a
rational p degeneracy,

εn,m

(
7,12

)
= −

[
(7 − n)2 + (7 −m)2 + (14 − n−m) + 1

2

]
. (4.3.12)

we find
ε2,6

(
7,12

)
= ε6,2

(
7,12

)
= ε3,4

(
7,12

)
= ε4,3

(
7,12

)
. (4.3.13)

Clearly the first two solutions are related by a permutation of indices, as are the last two, but
these two sets of solutions do not have a known symmetry connecting them. This generalises
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the previous problem where we found solutions represented as sum of two squares, this
problem is the sum of two squares plus a fraction of the sum of the respective linear terms.

There is a subtle point to be made here, while accidental degeneracies can occur for
rational p, it does not mean they will with certainty. If we want no accidental degeneracies
to occur to simplify calculations, in order to implement the following results in a computer
algebra system, it is necessary to find a rational value of p close enough to our initial p which
does not produce accidental degeneracies. This usually means keeping more terms in the
decimal expansion. For small enough values of p it is straight forward to determine how
many accidental degeneracies occur with a computer and thus it is easy to verify whether a
certain choice of rational p works well, though it is hard to make more general comments for
arbitrarily large values of rational p.

4.3.3. Case III

Lastly, the case in which we will focus our attention from here on out is when p is
irrational. For ϵ some irrational number on [0,1) the spectrum (4.3.3) is

εn,m(k, ϵ) = −
[
(k − n)2 + (k −m)2 + 2ϵ(2k − n−m) + 2ϵ2

]
. (4.3.14)

This equation has no accidentally degenerate solutions, only degenerate solutions obtained
from the permutation of the indices n,m.

Indeed, for accidentally degenerate solutions to (4.3.14), (n,m) and (n′,m′), we must
satisfy the rational and irrational parts of the equation separately because an irrational
multiple of a rational number cannot coincide with a rational number, that is to say

(k − n)2 + (k −m)2 = (k − n′)2 + (k −m′)2
, (4.3.15)

and
(k − n) + (k −m) = (k − n′) + (k −m′) , (4.3.16)

must be satisfied. These equations may be thought of in terms of two triangles with the same
length hypotenuse and perimeters. In order for (4.3.15) and (4.3.16) to be simultaneously
satisfied we square (4.3.16) and substitute in (4.3.15), in doing so imply the area equation
for the triangles

(k − n) (k −m) = (k − n′) (k −m′) . (4.3.17)

Using the fact that (k − n) = (k − n′) + (k −m′) − (k −m), substitution into (4.3.17) gives
a quadratic equation in (k −m)

(k −m)2 − [(k − n′) + (k −m′)] (k −m)

+ (k − n′) (k −m′) = 0
(4.3.18)
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which admits the solutions m = n′ or m = m′, after which n is uniquely determined by
(4.3.16). Thus we have at most doubly degenerate eigenvalues in the spectrum and these are
precisely the degeneracies found by permuting the indices n,m. This makes the degeneracy
problem more tractable. Irrationality of the principle parameter p is the key to breaking the
degeneracy symmetry.

4.4. Ordering of the 2D non-degenerate spectrum
After discussing the degeneracies we are in a position to be able to organise the spectrum

of the full 2D system in terms of a single index. If we consider the principle parameter p
to be irrational, we found that states are at most doubly degenerate. To this end whenever
we encounter a doubly-degenerate eigenvalue we define the cumulative wavefunction with a
pair of complex coefficients, γ1, γ2, such that

|µi⟩p = γ1 |n,m⟩ + γ2 |m,n⟩ , n > m, γ1,γ2 ∈ C. (4.4.1)

Note that n > m ensures that we uniformly introduce the coefficients throughout the spec-
trum. The complex coefficients (4.4.1) are subject to

|γ1|2 + |γ2|2 = 1, (4.4.2)

to preserve normalisation. Otherwise, for non degenerate states (states of the form |n,n⟩)
we simply take the definition

|µj⟩p = |n,n⟩ . (4.4.3)

Implicitly, each state comes with a degeneracy index di which is equal to either 1 or 2
corresponding to non-degenerate and doubly degenerate contributions respectively. The
states form a complete set with the following resolution of the identity

di

π2

∫
S3

d2γ1d2γ2 δ
(
|γ1|2 + |γ2|2 − 1

)
|µi⟩p ⟨µi|p = 1i, (4.4.4)

where the bound state identity operator is then recovered by
ξ∑

i=0
1i = 1BS. (4.4.5)

Considering the spectrum (4.3.14), where for convenience we remove the constant term, ϵ2,
to define a shifted energy

ε̃n,m(k, ϵ) = −
[
(k − n)2 + (k −m)2 + 2ϵ(2k − n−m)

]
, (4.4.6)

which has maximum, max ε̃n,m(k,ϵ) = 0. We table values and order the energies as follows

ε̃0,0(k, ϵ) < ε̃1,0(k, ϵ) = ε̃0,1(k, ϵ) < . . . < ε̃k,k(k, ϵ) = 0 (4.4.7)
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once we remove duplicated energies, this inequality is in one to one correspondence with the
single indexed spectrum

εµ0(k, ϵ) < εµ1(k, ϵ) < . . . < εµξ
(k, ϵ). (4.4.8)

The number ξ can be computed for any value of k, it is just the total number of unique
elements in the (k+1)× (k+1) symmetric matrix with matrix elements ε̃n,m(k,ϵ) minus one
(because we count the first state with index zero), it is given as

ξ = (k + 1)(k + 2)
2 − 1. (4.4.9)

The final consideration we have is the dependence of the ordering on the parameter ϵ. Take
the example k = 3 and the energies

ε̃3,0(3, ϵ) = 9 + 6ϵ, ε̃1,1(3,ϵ) = 8 + 8ϵ, (4.4.10)

for ϵ < 0.5 we find ε̃3,0(3, ϵ) > ε̃1,1(3, ϵ), while for ϵ > 0.5 we find ε̃3,0(3, ϵ) < ε̃1,1(3, ϵ). This
does prevent us for obtaining more general solutions for any irrational ϵ. However, once ϵ is
fixed, the ordering is uniquely determined.

4.4.1. Non-degenerate states for p = 3π

To illustrate the points made so far, we take the example of p = 3π ≈ 9.42478, the
bound state space is spanned by 100 different eigenfunctions and there are 55 distinct energy
eigenvalues. This is our departing point, we will construct the set of states (4.4.1) which are
associated to the distinct eigenvalues. In cases where doubly degenerate states appear we
will introduce the parameters γ1,γ2 that will control the mixing between the x and y modes
to give one averaged contribution to the degenerate energy level.

The set
S = {|µ0⟩3π , |µ1⟩3π , . . . , |µ54⟩3π} , |S| = 55, (4.4.11)

provides all bound states of the problem under consideration. The states |µi⟩ themselves are
given in terms of the original eigenfunctions by

|µi⟩3π =

γ1 |n,m⟩ + γ2 |m,n⟩ , for n > m

|n,n⟩ , otherwise.
(4.4.12)
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Explicitly, the first few and last states are

|µi⟩3π =



|0,0⟩ , i = 0
γ1 |1,0⟩ + γ2 |0,1⟩ , i = 1
γ1 |2,0⟩ + γ2 |0,2⟩ , i = 2
|1,1⟩ , i = 3
...
|9,9⟩ , i = 54.

(4.4.13)

The states |µi⟩ have energies which correspond to arranging the following energy function in
increasing order

εµi
(9, 0.42478) = −

[
(9 − n)2 + (9 −m)2 + 2(0.42478) (18 − n−m)

]
, (4.4.14)

-150

-100

-50

0

μi

ε μ
i

Fig. 4.1. Energies εµ0 , . . . ,εµ54 arranged in increasing order.
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Fig. 4.2. |⟨x,y|µ18⟩3π|2, p = 3π with γ1 = 1√
2 ,γ2 = 1√

2 (left) and γ1 = 1√
2e

i π
2 ,γ2 = 1√

2 (right).

Fig. 4.3. |⟨x,y|µ18⟩3π|2, p = 3π with γ1 =
√

3
2 ,γ2 = 1

2 (left) and γ1 = 1
2 ,γ2 =

√
3

2 (right).

The graph in figure 4.1 shows the possible values that the energy function (4.4.14) can
take. These values are arranged in increasing order of magnitude. The states (4.4.12) or
(4.4.13) are in one to one correspondence with the spectrum (4.4.14) and together they define
a non-degenerate basis for the bound state sector of the 2D Morse potential at p = 3π. In
figure 4.2 we see the effect of adding complex phase to a doubly degenerate state, |µ18⟩3π,
the phase alters the positioning of some of the ‘islands’ of non-zero probability near to the
origin due to the modes being in or out of phase, but it preserves the overall structure of the
probability density. If on the other hand we change the magnitudes of γ1, γ2 so that they are
not equal we find that this corresponds to a larger change in the probability density function
as seen in figure 4.3. For γ1 > γ2 the higher energy x mode is mixed with greater probability,
and as a result most of the probability density occupies the islands which extend along the x
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axis. Similarly, for γ2 > γ1, the most of the probability densities occupies the islands which
extend along the y axis.

4.5. Ladder operators and coherent states
Coherent states for the harmonic oscillator were first studied by Schrödinger as minimal

uncertainty wavepackets [36]. They may be defined through several equivalent means: as
eigenstates of the annihilation operator, the action of the unitary displacement operator on
the vacuum, or by their Fock space expansion. The three equivalent harmonic oscillator
coherent state definitions read

a− |α⟩ = α |α⟩ , Barut-Girardello (4.5.1)

exp
(
αa+ − ᾱa−

)
|0⟩ = |α⟩ , Displacement operator (4.5.2)

|α⟩ = e− |α|2
2

∞∑
n=0

αn

√
n!

|n⟩ , Fock expansion. (4.5.3)

Typically, for systems other than the harmonic oscillator, the three definitions do not co-
incide. Another consequences of these definitions is that the coherent states are minimal
uncertainty with respect to the Heisenberg uncertainty relation with equal uncertainty in
the position and momentum quadratures. In units of ℏ = 1 this is(

∆Q̂
)2

|α⟩

(
∆P̂

)2

|α⟩
= 1

4 , ∆Q̂ = ∆P̂ . (4.5.4)

For some more general classes of coherent states, such as the squeezed states, the condition
that the uncertainty in the position and momentum quadratures be equal is relaxed but their
product still minimises the uncertainty relation.

When defining generalised coherent states for systems other than the harmonic oscillator,
if we are not using any definitions regarding ladder operators or displacement operators, we
use extensions of the form of (4.5.3). The extensions are formed by replacing the Fourier
coefficients with some set of coefficients which satisfy completeness relations and produce
good localisation of the coherent state wavefunction. As well, we replace the Fock basis
vectors with the Fock states of the system under consideration. These definitions exist
typically for 1D systems with non-degenerate spectra. In our case we used the preceding
section to define a non-degenerate spectrum for the 2D Morse oscillator and as such allow
ourselves to use these definitions.

Using the set of non-degenerate states

S =
{
|µ0⟩p , |µ1⟩p , . . . , |µξ⟩p

}
, |S| = ξ + 1, (4.5.5)
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and defining the set of ladder operators, B+,B−, such that

B+ |µi⟩p =
√
f(i+ 1) |µi+1⟩p ,

B− |µi⟩p =
√
f(i) |µi−1⟩p ,

(4.5.6)

subject to boundary conditions on the finite set of states, i.e. f(0) = f(ξ + 1) = 0. We
can define a generalised coherent state from a Barut-Girardello type coherent state as an
approximate eigenstate of B− with complex eigenvalue Ψ,

B− |Ψ⟩p ≈ Ψ |Ψ⟩p . (4.5.7)

Expanding |Ψ⟩p in the basis |µi⟩p we retrieve the well known generalised coherent states [37]

|Ψ⟩p = 1√
N (Ψ)

ξ∑
n=0

Ψn√
[f(n)]!

|µn⟩p ,

[f(n)]! =
n∏

m=0
f(m),

(4.5.8)

where the generalised factorial takes the usual definition [f(0)]! = 1 and the normalisation
function

N (Ψ) =
ξ∑

n=0

|Ψ|2n

[f(n)]! , (4.5.9)

ensures
p
⟨Ψ|Ψ⟩p = 1. The reason this is an approximate eigenstate is because of the finite

spectrum, the last term in the expansion (4.5.8), Ψξ√
[f(ξ)]!

|µξ⟩, does not appear when comput-
ing (4.5.7). Nevertheless this term is typically very small and therefore does not contribute
much, but by including it we can recover the finite spectrum version of the generalised
coherent states defined in [30].

There is some freedom in the choice of function f(i), but a natural choice in analogy to
the harmonic oscillator is to use the difference in energies with respect to the ground states,
that is

f(i) =

εµi
(k, ϵ) − εµ0(k, ϵ), for i ∈ {0,1, . . . ,ξ}

0, otherwise.
(4.5.10)

This function by definition satisfies the boundary conditions on the set, it appropriately
annihilates the highest and lowest weight states. We will use this definition of coherent
states from here on out.

4.5.1. Application to p = 3π

We now apply the formalism to our working example of p = 3π. Using the set of 55
states defined in (4.4.11) along with spectrum (4.4.14) we write the generalised coherent
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state (4.5.8) as

|Ψ⟩3π = 1√
N (Ψ)

54∑
n=0

Ψn√
[εµn − εµ0 ]!

|µn⟩ (4.5.11)

Fig. 4.4. Spatial probability densities for the generalised coherent states, |⟨x,y|Ψ⟩|2, at
Ψ = 0.1 (left) and Ψ = 5 (right). Both with γ1 = 1√

2 ,γ2 = 1√
2 .

Fig. 4.5. Spatial probability densities for the generalised coherent states, |⟨x,y|Ψ⟩|2, at
Ψ = 0.1 (left) and Ψ = 5 (right). Both with γ1 =

√
3

2 ,γ2 = 1
2 .

When we consider Ψ ∈ R+ we find that the wavefunction has better localisation for
smaller Ψ. This is expected, because the generalised coherent states are formed by a power
series in Ψ, when Ψ is small, higher powers in the series contribute little to the wavefunction
and the dominant contribution is the ground state.

The effect of the parameters γ1, γ2 is minimal when the coherent state parameter, Ψ, is
suitably chosen. If we set γ1 ̸= γ2 we do induce some asymmetry about the line y = x in the
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probability distribution as seen in figure 4.5. This effect is more apparent for larger values
of Ψ and almost indistinguishable from the γ1 = γ2 case for small values of Ψ. The coherent
states are most sensitive to changes in Ψ, but we have additional control over their behaviour
by adjusting γ1, γ2.

For the generalised coherent states (4.5.11) we find that the Heisenberg uncertainty re-
lation is satisfied, moreover, it is closer to its minimum for smaller values of Ψ as expected.(

∆Q̂s

)2

|Ψ⟩

(
∆P̂s

)2

|Ψ⟩
≥ 1

4 , s = x,y. (4.5.12)

1 2 3 4
Ψ

0.26

0.27

0.28

0.29

0.30

0.31

0.32

(ΔQs ΔPs)
2

ΔQs ΔPs 2, γ δ 1

2

ΔQx ΔPx 2, γ
3

2
, δ 1

2

ΔQy ΔPy 2, γ
3

2
, δ 1

2

Fig. 4.6. Uncertainty relations in the x and y modes for the generalised coherent states in
the symmetric, γ1 = γ2 = 1√

2 , and asymmetric, γ1 =
√

3
2 ,γ2 = 1

2 , regimes. Here s = x,y.

In figure 4.6 we plot the product uncertainty relations in the x and y modes with equal
and unequal values of γ1, γ2 for the generalised coherent states as a function of Ψ. We see
that for the generalised coherent states the product of the uncertainties remains close to
the minimum for values Ψ < 1, and the effect of asymmetry between γ1, γ2 is minimal. For
larger Ψ however, the wavefunctions begin to delocalise and we also observe a growth in the
product of uncertainties. This is also reflected in the spatial distribution in figures 4.4 and
4.5. In the case where the parameters γ1, γ2 are equal we do not introduce any asymmetry
between the two modes and thus the uncertainty relations look identical for both the x and
y modes.

When we include some asymmetry by setting the parameters γ1 > γ2, we find that the
product of the uncertainties for the generalised coherent states in the x mode are smaller
than those of the y mode when Ψ is large enough. This effect is most noticeable for Ψ > 1.4.
Again the parameters γ1,γ2 offer additional control over the behaviour of the generalised
coherent states. We can, in effect, reduce the product uncertainties in one mode at the
expense of increasing the product uncertainties in the other mode. The global behaviour is
still determined by the coherence parameter Ψ.
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4.6. Conclusion and outlook
We found a scheme for constructing a singled indexed set of non-degenerate states for the

2D Morse potential. We assessed three distinct forms the spectrum can take corresponding
to the rationality of the principle parameter p and discussed their degeneracies. The critical
observation is that the irrationality of the principle parameter p implies that the degeneracy
in the 2D Morse potential is at most two-fold. This follows from a straightforward analysis
of the spectrum. In restricting to irrational choices of p we make the problem of handling
degeneracy in the system much more tractable, and correspondingly we only need to intro-
duce two meaningful complex parameters, γ1, γ2, subject to a normalisation constraint in
order to define a degeneracy free spectrum for the 2D system. The solution we have used
is algorithmic in approach and the techniques discussed here should be applicable to any
two-dimensional system with quadratically degenerate spectra.

We saw that the introduction of the parameters γ1, γ2 serve to tune the concentration of
the probability densities of the non-degenerate states in configuration space by controlling the
weight of the contributing x and y modes. Furthermore, we introduced Barut-Girardello type
generalised coherent states from a set of ladder operators acting on the non-degenerate set of
states and found that they are well localised in their spatial distribution and approximately
minimise the Heisenberg uncertainty relation for small values of the coherence parameter Ψ.
Additionally, we found the effect of γ1, γ2 to be more significant in the coherent states for
larger values of Ψ.

We relied on an algorithmic method to deal with the degeneracy problem, but algebraic
and symmetry approaches may offer further insight into the structure of the degeneracies
and allow for a more detailed discussion of ladder operators on the states presented in this
paper. Algebraic approaches may also be of interest in studying classical models [38, 39],
and in the study of the scattering (unbound) states [40].

Finally, it would also be interesting to study the sets of basis and coherent states we
could generate using the supersymmetry formalism [41, 42]. In particular, supersymmetric
partners of the 2D Morse system have potential functions which are non-separable in con-
figuration space [24, 21, 22, 23, 25], the study of such states will be saved for a separate
work.
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Abstract. Supersymmetry is a fundamental feature of a quantum theory described by a
supersymmetric Hamiltonian comprised of several quantum mechanical Hamiltonians with
different potentials that allows us to relate information about the states and spectra of the
constituent Hamiltonians. In this paper we reconstruct Ioffe’s set of states for the singular
non-separable two-dimensional Morse potential using supersymmetry from a non-degenerate
set of states constructed for the initial separable Morse Hamiltonian. We define generalised
coherent states, compute their uncertainty relations, and we find that the singularity in the
partner Hamiltonian significantly affects the localisation of the coherent state wavefunction.
Keywords: Degeneracy, Coherent states, Supersymmetry, Two-dimensional quantum sys-
tems

5.1. Introduction
Supersymmetric quantum mechanics is a powerful tool in solving new quantum problems

by their mathematical relationship to known solved problems [1, 2]. When two systems
are related through supersymmetry they share nearly identical spectra and states from one
system may be transformed into states of the other system by the action of differential
operators known as supercharges. In one-dimensional quantum mechanics, supersymmetry
has been used to study a plethora of new potentials including partners of: the Rosen-Morse
potentials [3, 4], the truncated oscillator [5, 6, 7], and the singular oscillator [8]. In higher
dimensional quantum systems, supersymmetry is less explored, though coherent states for
the two-dimensional infinite well and its coordinate separable supersymmetric partners have
been discussed [9]. There is considerably more freedom when defining the supercharges for
higher dimensional systems [10], and features which are exclusive to systems of dimension
larger than one, such as non-coordinate separability of the Hamiltonian, can appear. In the
present work we deal with precisely such a case where the initial Hamiltonian is coordinate
separable, while its partner Hamiltonian is not [11].

The Morse potential was originally introduced to model anharmonic interactions in di-
atomic molecules which allow the possibility of the bond between the molecules breaking
at sufficiently high energy [12]. The uncoupled two-dimensional Morse potential has been
used in the expansion of triatomic molecular interactions [13, 14, 15, 16]. More recently
the Morse potential has been studied in the context of graphene [17, 18], spectroscopy [19],
and supersymmetry [11, 20].

Describing coherent states for generalised quantum systems has been of interest since the
canonical coherent states of the harmonic oscillator were formalised by Glauber and Sudar-
shan in their seminal works [21, 22]. For the canonical coherent states there exist three
equivalent definitions: as eigenstates of the annihilation operator; the orbit of the displace-
ment operator acting on the vacuum; a particular superposition of Fock basis states [23].
For systems beyond the harmonic oscillator the three definitions typically do not coincide
and one must choose the most applicable definition. Coherent states for two-dimensional
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harmonic oscillator systems with linear spectra have been discussed in [24, 25, 26] but in
the present case we are dealing with a quadratically degenerate spectrum and must forego
some of the nicer algebraic structures.

Generalised coherent states for the one-dimensional and two-dimensional Morse potentials
have been studied in [27] and [28] respectively. For multidimensional quantum systems
there exists a greater class of states when one departs from taking the tensor product of
one-dimensional coherent states: the Hamiltonian may not be coordinate separable and
thus its eigenstates may be entangled between its respective modes; the Hamiltonian may
be coordinate separable but when defining a non-degenerate spectrum in order to define
generalised coherent states [29] the new basis states become entangled.

The paper is structured as follows: In section 5.2 we review the supersymmetry formalism
in two dimensions using second-order supercharges, after which we follow the work of Ioffe
[11] and compare the two partner Hamiltonians in section 5.3. In section 5.4 we develop set
of non-degenerate states for the initial Hamiltonian which depend on two mixing parameters
γ1, γ2, and transform allowed antisymmetric combinations of these states into a reduced set of
non-degenerate states for the partner Hamiltonian. Following this in section 5.5 we construct
an explicit example of these energy eigenstates for a value of the principle parameter p = 3π,
and then we develop coherent states for the partner Hamiltonian and discuss their properties
in section 5.5.2. Lastly we conclude with some open questions and remarks about the work.

5.2. Second-order two-dimensional supersymmetry
Work on developing the supersymmetry formalism in two dimensions has been done by

Ioffe and others [30, 31, 32]. In this context, the second-order supercharges are given by

Q+ = (Q−)† = gkl(x,y)ℏ2∂k∂l + ck(x,y)ℏ∂k + b(x,y), k,l ∈ {x,y} , (5.2.1)

where repeated indices are summed over and gkl(x,y), ck(x,y) and b(x,y) are real-valued
functions. Two partner Hamiltonians, H, H̃, are intertwined via

H̃Q+ = Q+H, HQ− = Q−H̃. (5.2.2)

Supposing we have the set of states of the initial Hamiltonian

ψnm(x,y) ≡ ⟨x,y|n,m⟩ , (5.2.3)

the implication of the intertwining relations (5.2.2) is that for a given eigenstate ψnm(x,y)
of H, Q+ψnm(x,y) is an eigenstate of H̃ with the same eigenvalue through

H |n,m⟩ = En,m |n,m⟩ =⇒ Q+H |n,m⟩ = En,m

[
Q+ |n,m⟩

]
= H̃

[
Q+ |n,m⟩

]
, (5.2.4)

where we have suppressed the dependence on x,y for brevity. In general (and in our example)
there is not a one-to-one correspondence between states belonging to both Hamiltonians,
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certain eigenstates are not permissible because they become non-normalisable in the partner
Hamiltonian [30, 31, 32]. That is to say while the intertwining relations (5.2.2) always
imply mathematically the eigenvalue equations (5.2.4) we may encounter a situation where
the transformed eigenfunction, Q+ |n,m⟩, is not physical.

In some cases additional normalisable eigenfunctions may be obtained for the partner
Hamiltonian by transforming non-normalisable solutions of the initial Hamiltonian by the
supercharge Q+ [33, 34]. In the present case, all normalisable solutions of the partner
Hamiltonian were obtained by Ioffe [11].

General schemes for finding solutions for second-order supercharges defined in (5.2.1) do
not exist. For the particular case of a metric, gkl(x,y), with Lorentz signature (1, − 1) the
intertwining relations can be simplified and the coefficient appearing in (5.2.1) can be found
through a system of differential equations [30].

Introducing the generators

Q+ =
0 Q+

0 0

 , Q− =
 0 0
Q− 0

 , H =
H̃ 0

0 H

 , (5.2.5)

we obtain the superalgebra defined by

[H,Q±] = 0, {Q+,Q−} = R, (5.2.6)

where [·,·] and {·,·} are the commutator and anticommutator, respectively. The existence
of the fourth order operator R is a consequence of defining second order supercharges [35].
Comparing this with the implementation of supersymmetry using first order supercharges
where the anticommutator of the supercharges is just the superHamiltonian.

5.3. Initial and partner Morse Hamiltonians
The separable two-dimensional Morse Hamiltonian in coordinate representation is given

by

H = − ℏ2

2m
(
∂2

x + ∂2
y

)
+ V0

(
e−2βx + e−2βy − 2

(
e−βx + e−βy

))
= Hx +Hy. (5.3.1)

Hamiltonian (5.3.1) permits a finite number of bound states which are solutions to the time
independent Schrödinger equation H |n,m⟩ = En,m |n,m⟩,

ψn,m (x,y) = ⟨x,y|n,m⟩ = Nn,me
− x̃

2 − ỹ
2 x̃p−nỹp−mL2(p−n)

n (x̃)L2(p−m)
m (ỹ) . (5.3.2)

Here Lα
n(z) are the generalised Laguerre polynomials, the normalisation factor Nn,m is given

by

Nn,m = β

√√√√(ν − 2n− 1)(ν − 2m− 1)Γ(n+ 1)Γ(m+ 1)
Γ(ν − n)Γ(ν −m) , (5.3.3)
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and the tilde variables are defined as

x̃ = νe−βx, ỹ = νe−βy. (5.3.4)

The parameter ν and an additional parameter p are written in terms of the initial parameters
by

ν =
√

8mV0

β2ℏ2 , p = ν − 1
2 . (5.3.5)

The bound state spectrum is given by

En,m = −ℏ2β2

2m
(
(p− n)2 + (p−m)2

)
. (5.3.6)

The spectrum is defined in such a way that states with negative energy are bound and
states with zero or positive energy are unbound. For a discussion on the unbound states
and spectrum, see, for example [36, 37, 38]. The bound state conditions imply that the
quantum numbers n,m may take the following values [39]

n,m ∈ {0,1, . . . ,⌊p⌋} . (5.3.7)

To facilitate counting arguments later, it is convenient to rewrite the parameter p in terms
of its integer part plus a remainder,

p = k + ϵ, k = ⌊p⌋, ϵ ∈ [0,1), (5.3.8)

where we further restrict to the case where ϵ is irrational to ensure that states are at most
doubly degenerate [28].

The partner Hamiltonian we are interested in studying is given by [11]

H̃ = H + ℏ2β2

2m sinh2
(

β
2 (x− y)

) . (5.3.9)

The two Hamiltonians (5.3.1) and (5.3.9) are related by (5.2.2) through the supercharges

Q± = −Hx +Hy +D± (5.3.10)

where D± is given by

D± = ℏ2β2

2m coth
(
x− y

2

)
∓ ℏ2β

2m

(
(∂x − ∂y) + coth

(
x− y

2

)
(∂x + ∂y)

)
. (5.3.11)

The supercharges Q± are related to a particular choice of (5.2.1) where the metric gkl(x,y)
has a Lorentz signature on the indices, (1, − 1), thus the second order derivative terms are
not mixed between the two modes and there is a relative minus sign between ∂2

x and ∂2
y .

So far we have kept factors of ℏ to show exactly how the terms appear in the Hamiltonians
and supercharges, but from here on we set the dimensionful quantities ℏ = β = m = 1. The
most striking features of the partner Hamiltonian (5.3.9) are its non-separability, and that
the non-separable term is singular for y = x.
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5.4. States of the initial and partner Morse Hamiltoni-
ans

Because the initial Hamiltonian is amenable to separation of variables its eigenstates are
products of wavefunctions in each direction. In general, multidimensional quantum systems
are degenerate in their energy spectrum, and in the view of addressing the construction of
generalised coherent states it is important to have a non-degenerate increasing spectrum
[40, 29]. For the finite quadratic spectrum (5.3.6) the degeneracies are obtained via number
theoretic means and, moreover, they are found to be at most doubly degenerate for irrational
values of the parameter p. In [28] general such degenerate combinations are constructed

|µi⟩p =

γ1 |n,m⟩ + γ2 |m,n⟩ , for |n−m| > 0,
|n,n⟩ , otherwise,

(5.4.1)

for complex coefficients γ1, γ2, satisfying the normalisability condition |γ1|2 + |γ2|2 = 1. For
the states |µi⟩p, the index i organises them in increasing energy order, and the subscript p
indicates the value of the parameter p introduced in (5.3.5).

Due to the singular nature of the partner Hamiltonian along the line y = x we cannot
construct states in the partner Hamiltonian with arbitrary coefficients. A detailed analy-
sis provided in [11] proves that the only way to compensate for this singularity to obtain
normalisable states in the partner Hamiltonian is to transform perfectly antisymmetric com-
binations of the initial eigenfunctions in which case we obtain symmetric (about the line
y = x) eigenfunctions in the partner Hamiltonian. In the notation we are using this corre-
sponds to the choice of parameters γ1 = −γ2 = 1√

2 .
Additionally, Ioffe’s analysis shows that the states admissible by the partner Hamiltonian

require that |n−m| > 1 [11]. This follows from the superalgebra (5.2) and specifically the
existence of the fourth order operator R = Q−Q+. The operator R commutes with the initial
Hamiltonian, [R,H] = 0 and we have that R |µi⟩p = rn,m |µi⟩p where

rn,m = 1
2
(
(m− n)2 − 1

) (
(2p−m− n)2 − 1

)
, (5.4.2)

meanwhile the states in the partner system obtained by transforming the states of the initial
system have norm given by (5.2.4)

⟨µi|p Q
−Q+ |µi⟩p . (5.4.3)

We see immediately that the case where n = m + 1 and vice versa lead to states in the
partner Hamiltonian which are not normalisable because (5.4.2) vanishes. The case where
n = m is excluded by definition when taking perfectly antisymmetric combinations of the
eigenstates.
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We take the convention that the positive coefficient appears in front of the term with
n > m, thus we can exactly solve the partner Hamiltonian (5.3.9) to obtain the set of
normalised states

|νj⟩p = 1√
Nj

Q+ |µi⟩p =


Q+√
2Nj

(|n,m⟩ − |m,n⟩) , for |n−m| > 1

∅, otherwise,
(5.4.4)

where Nj =
∣∣∣Q+ |µi⟩p

∣∣∣2 are normalisation constants, Q+ is defined in (5.3.10), and ∅ means
that nothing is to be done, i.e. do not generate an element for the set

{
|νj⟩p

}
. The matching

of the indices i,j in (5.4.4) is unique, but because the set
{
|µi⟩p

}
is larger than

{
|νj⟩p

}
, the

correspondence is not i = j. Due to the isospectrality given to us by the supersymmetry
formalism [41], the states |νj⟩p are automatically arranged in increasing energy order because
the initial states |µj⟩p were prepared in this way.

The Morse potential admits only a finite number of bound states, as such it is instructive
to count the number of bound states in the initial and partner Hamiltonians. We know that
the number of states in the set

∣∣∣{|µi⟩p

}∣∣∣ is [28]
∣∣∣{|µi⟩p

}∣∣∣ = (k + 1)(k + 2)
2 , (5.4.5)

recalling that k = ⌊p⌋. From (5.4.4) it is clear that the size of the set
∣∣∣{|νi⟩p

}∣∣∣ must be
smaller than (5.4.5). Imposing the condition |n−m| > 1, we count all pairs (n,m). Adding

m n
0 2, . . . , k
1 3, . . . , k
... ...

k − 2 k

Table 5.1. Allowed combinations of quantum numbers (n,m) leading to normalisable states
in the partner Hamiltonian.

up the possibilities across each row of table 5.1, we arrive at the following formula∣∣∣{|νi⟩p

}∣∣∣ =
k−1∑
j=1

(k − j) = k

2(k − 1), (5.4.6)

thus the number of ‘missing’ states between the two sets scales linearly in k:∣∣∣{|µi⟩p

}∣∣∣− ∣∣∣{|νi⟩p

}∣∣∣ = 1 + 2k. (5.4.7)

A key observation to be made is that bound states only exist in the partner Hamiltonian for
k ≥ 2 or equivalently, p > 2.
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Considering a scaled version of the spectrum (5.3.6)

εn,m(p) = εn,m(k,ϵ) = −
[
(p− n)2 + (p−m)2

]
, n,m ∈ {0,1, . . . ,⌊p⌋} . (5.4.8)

We recall that in (5.3.8) we write p as the sum of its integer part plus an irrational remain-
der term, ϵ, in which case the states of the initial Hamiltonian have a spectrum found by
arranging the solutions of (5.4.8) in increasing order

ε0,0(k,ϵ) < ε1,0(k,ϵ) = ε0,1(k,ϵ) < . . . < εk,k(k,ϵ), (5.4.9)

such that the spectrum for the states (5.4.1) can be written as

εµ0(k,ϵ) < εµ1(k,ϵ) < . . . < εµmax(k,ϵ). (5.4.10)

Then by the isospectrality afforded to us by supersymmetry, we have the spectrum for the
states (5.4.4)

εν0(k,ϵ) < εν1(k,ϵ) < . . . < ενmax(k,ϵ). (5.4.11)

We remark that µmax and νmax are determined by (5.4.5) and (5.4.6) respectively.

5.5. Application to p = 3π
We will now apply the formalism set up in the preceding sections to the example of

p = 3π. It is worth mentioning that while the analysis of the degeneracies relies on the
irrationality of the principle parameter, p, in order to implement calculations on a computer
algebra system we do need to approximate p by a rational number. That being said, as long
as states are at most double degenerate (which is easily verified on a computer), the analysis
still holds.

5.5.1. Energy eigenstates

We begin by recounting the non-degenerate energy eigenstates for the initial system for
p = 3π. The example used in [28] gives us the following 55 state set, S, for the initial
Hamiltonian

S = {|µ0⟩3π , |µ1⟩3π , . . . , |µ54⟩3π} , |S| = 55, (5.5.1)
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where

|µi⟩3π =



|0,0⟩ , i = 0
γ1 |1,0⟩ + γ2 |0,1⟩ , i = 1
γ1 |2,0⟩ + γ2 |0,2⟩ , i = 2
|1,1⟩ , i = 3
...
|9,9⟩ , i = 54.

(5.5.2)

Following this, we set γ2 = −γ1 = − 1√
2 and determine the 36 state set for the partner

Hamiltonian, S̃, using (5.4.4),

S̃ = {|ν0⟩3π , |ν1⟩3π , . . . , |ν35⟩3π} ,
∣∣∣S̃∣∣∣ = 36. (5.5.3)

States in the set S̃ preserve orthonormality by construction. Explicitly the first few and last
states are

|νi⟩3π =



1√
N0
Q+

[
1√
2 (|2,0⟩ − |0,2⟩)

]
, i = 0

1√
N1
Q+

[
1√
2 (|3,0⟩ − |0,3⟩)

]
, i = 1

1√
N2
Q+

[
1√
2 (|4,0⟩ − |0,4⟩)

]
, i = 2

1√
N3
Q+

[
1√
2 (|3,1⟩ − |1,3⟩)

]
, i = 3

...
1√
N35

Q+
[

1√
2 (|9,7⟩ − |7,9⟩)

]
, i = 35,

(5.5.4)

where the normalisation constants Ni = |Q+ |µk⟩|2 where the index i in the set S̃ is to be
identified with the state with index k in the set S from which it is generated. In addition
we verify that the difference in size of the two sets of states satisfies (5.4.7) for k = 9.

As with the initial separable two-dimensional Hamiltonian, the organisation of the spec-
trum and states of the partner Hamiltonian is algorithmic, so there is no obvious pattern to
be seen. This follows from the ordering of numbers as the sum of two squares. And since the
partner Hamiltonian is isospectral to the initial Hamiltonian, the partner Hamiltonian also
inherits this problem with the additional complication related to the restriction |n−m| > 1
discussed in the previous section. Nevertheless, organising the states in this way can be done
quite easily with most computer algebra systems.

Consider a scaled version of the spectrum (5.4.11) where the constant term −2ϵ2 has
been removed,

ε̃νi
(9, 0.42478) = −

[
(9 − n)2 + (9 −m)2 + 2(0.42478) (18 − n−m)

]
, (5.5.5)

arranged in increasing order such that |n−m| > 1.
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Fig. 5.1. Energies ε̃ν0 , . . . ,ε̃ν35 for p = 3π arranged in increasing order.

In figure 5.1 we see the spectrum of the partner Hamiltonian arranged in increasing
order. Notice that there does not appear to be a nice functional form to the spectrum, this
is because the techniques required to understand the degeneracy of an arbitrary energy level
are number theoretical and in general must be computed on a case by case basis.

Fig. 5.2. Probability densities of |⟨x,y|ν15⟩3π|2 (left) and |⟨x,y|ν25⟩3π|2 (right).

We see in figure 5.2 that the configuration space wavefunctions ⟨x,y|νi⟩3π (and their
probability densities) are symmetric and non-singular about the line y = x. The eigenstates
|νi⟩ have similar patterns in their wavefunctions to those of the original Hamiltonian |µj⟩ [28],
the key differences being that the wavefunction ⟨x,y|νi⟩3π is always identically zero on the
line y = x, and it is always symmetric about the line too. In contrast, the parameters γ1,γ2 in
⟨x,y|µi⟩3π are free up to a normalisation and allow us to adjust the symmetry or antisymmetry
of the wavefunctions. Additionally we find that for larger values of i, |⟨x,y|νi⟩3π|2 contain
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more detailed structure in their probability densities and have more ‘islands’ of non-zero
probability density, while for smaller i there is less detail to the structure and fewer ‘islands’
of probability.

5.5.2. Coherent states

Let us suppose the existence of some ladder operator on the set S̃,

B+ |νi⟩p =
√
f(i+ 1) |νi+1⟩p ,

B− |νi⟩p =
√
f(i) |νi−1⟩p ,

(5.5.6)

where the functions f(i) must be positive and satisfy suitable boundary conditions. In
practice the f(i) are often taken to be the relative difference of the energy to the ground
state energy.

We can construct generalised coherent states as approximate eigenstates of B−,

B− |Φ⟩p ≈ Φ |Φ⟩p . (5.5.7)

Expanding the generalised coherent states |Φ⟩p for p = 3π in the basis (5.5.3) we find the
following

|Φ⟩3π = 1√
N (Φ)

35∑
n=0

Φn√
[ε̃νn − ε̃ν0 ]!

|νn⟩ . (5.5.8)

We remark that the state |Φ⟩p is only an approximate eigenstate of B− because the term
proportional to |νmax⟩ does not appear in the expansion (5.5.8), we add it in by hand. This
is a general feature of ladder operator eigenstate definitions of coherent states with finite
spectra.

Fig. 5.3. |⟨x,y|Φ⟩3π|2, with Φ = 0.001 (left) and Φ = 5 (right).
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The behaviour of the generalised coherent states is qualitatively very different to the
original 2D Morse problem [28]. A result of the non separability of the potential means that
the probability density concentrates on two symmetric peaks around the line y = x. Even if
we let Φ become smaller, this separation remains (figure 5.3).

Moreover we can also analyse the the uncertainty relations for the coherent states. The
variance of an operator, Ô, is defined by(

∆Ô
)2

= ⟨Ô2 − ⟨Ô⟩2⟩, (5.5.9)

and since we are working in the position representation, the momentum and position oper-
ators (in the x direction), as well as the Heisenberg uncertainty relation take the form

P̂x = −i d
dx, Q̂x = x,

(
∆Q̂

)2 (
∆P̂

)2
≥ 1

4 . (5.5.10)

For canonical coherent states of the harmonic oscillator the variance in the position and
momentum quadratures is equal,

(
∆Q̂

)2
=
(
∆P̂

)2
= 1

2 . Whenever
(
∆Q̂

)2
̸=
(
∆P̂

)2
we

have squeezing between the quadrature operators, furthermore when either quadrature has
variance smaller than 1

2 we have sub-shot-noise squeezing.

1 2 3 4 5
Φ

1

2

3

4

5

6

7

ΔQxΔPx)2

(ΔQx)2

(ΔPx)2

Fig. 5.4. Uncertainty in the position and momentum quadratures and their product.

No matter the value of Φ, the generalised coherent states |Φ⟩p never minimise the Heisen-
berg uncertainty relation. This is due to the existence of the singularity on the line y = x.
In quantum physics the notion of non-classicality is used to explain purely quantum phe-
nomena (see, for example, [42, 43, 44]). In the present case we have a few markers of
non-classicality: we have eigenstates of a non-separable Hamiltonian which are themselves
non-separable, they cannot be written as the tensor product of two one-dimensional states
|Φ⟩p ̸= |ϕx⟩ ⊗ |ϕy⟩; the states are never minimal uncertainty; there is significant squeezing
between the position and momentum quadratures.
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In figure 5.4 we see that the squeezing in the position quadrature is below that of the
canonical coherent states, that is

(
∆Q̂x

)2
< 1

2 . In the language of quantum optics this refers
to sub-shot-noise squeezing, these techniques allow one to obtain higher resolution imaging
by reducing the uncertainty in quadrature at the expense of increasing it in the conjugate
quadrature [45, 46, 47, 48]. This indicates that despite the fact that the coherent states
|Φ⟩p are unable to localise onto a single point in space, there is little statistical variance
in the accuracy of its position. Other examples of states which appear to localise at two
spatially separated points include the well studied non-classical cat states [49].

5.6. Conclusion
In this paper, following the work of Ioffe [11], we constructed an explicit set of eigenstates

for the non-separable singular two-dimensional Morse potential. We were able to connect
these states with a set of non-degenerate states for the initial separable Morse potential
[28]. We constructed coherent states for the non-separable Morse Hamiltonian and found
that the configuration space wavefunction is unable to localise at the origin due to the
singularity present in the potential. This extends work previously done in the domain of
multidimensional coherent states. Not only are the states entangled, but they arise from
a non-coordinate separable Hamiltonian which is singular along the line y = x resulting in
strongly non-classical behaviour. The procedure we developed in this paper is algorithmic
and in principle can be used to describe coherent states for any two-dimensional system with
quadratically degenerate spectrum and its supersymmetric partners (if they exist).

Continuing the analysis we computed the uncertainty relation for the coherent states
and while the states themselves were not minimal uncertainty, significant squeezing was
found between the position and momentum quadratures with sub-shot-noise squeezing in
the position quadrature. This indicates strong quantum behaviour similar to that of the
highly non-classical cat states. The statistical variance in the position quadrature is smaller
than that of the canonical coherent states, yet the wavefunction appears to localise onto two
space-like separated regions. For systems of dimension larger than two, one should expect
richer structure still, and the emergence of multipartite entangled systems.

Lastly, we remark that a more detailed study of the coherent states for interacting mul-
tidimensional quantum systems, such as the triatomic molecular Hamiltonian [13] and the
Pais-Uhlenbeck oscillator [50], would be of interest going forward. It is clear that we can
expect novel behaviour that might not be found from non-interacting multidimensional gen-
eralisations, though in practice their solution is much more difficult to obtain.

103



Acknowledgements
J. Moran acknowledges the support of the Département de physique at the Université de

Montréal. V. Hussin acknowledges the support of research grants from NSERC of Canada.
Both authors would like to thank I. Marquette for his help in the preparation of this paper.

References
[1] E. Witten, Nucl. Phys. B 188, 513 (1981).

[2] E. Witten, J. Differ. Geom. 17, 661 (1982).

[3] C. B. Compean and M. Kirchbach, J. Phys. A: Math. Gen. 39, 547 (2005).

[4] S. Domínguez-Hernández and D. J. Fernández C., Int. J. Theor. 50, 1993 (2011).

[5] D. J. Fernández C. and V. S. Morales-Salgado, J. Phys. Conf. Ser. 512, 12 (2014).

[6] D. J. Fernández C. and V. S. Morales-Salgado, Ann. Phys. 388, 122 (2018).

[7] D. J. Fernández C., V. Hussin, and V. S. Morales-Salgado, Eur. Phys. J. Plus 134, 18 (2019).

[8] I. Marquette, SIGMA 8, 063 (2012).

[9] M.-A. Fiset and V. Hussin, J. Phys. Conf. Ser. 624, 012016 (2015).

[10] A. Das, S. Okubo, and S. A. Pernice, Mod. Phys. Lett. A 12, 581 (1997).

[11] M. V. Ioffe and D. N. Nishnianidze, Phys. Rev. A 76, 052114 (2007).

[12] P. M. Morse, Phys. Rev. 34, 57 (1929).

[13] W. E. Smyser and D. J. Wilson, J. Chem. Phys. 50, 182 (1969).

[14] J. P. Chesick, J. Chem. Phys. 49, 3772 (1968).

[15] P. F. Endres, J. Chem. Phys. 47, 798 (1967).

[16] A. Bordoni and N. Manini, Int. J. Quantum Chem. 107, 782 (2007).

[17] J. C. Rode et al., 2d Mater. 6, 015021 (2018).

[18] Z. Zali, A. Amani, J. Sadeghi, and B. Pourhassan, Physica B Condens. Matter 614, 413045 (2021).

[19] T. Begušić and J. Vaníček, J. Chem. Phys. 153, 024105 (2020).

[20] C. Quesne, Int. J. Mod. Phys. B 27, 1250073 (2012).

104



[21] R. J. Glauber, Phys. Rev. 131, 2766 (1963).

[22] E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).

[23] J. P. Gazeau, Coherent states in quantum physics, John Wiley & Sons, Ltd, 2009.

[24] J. Moran and V. Hussin, Quantum rep. 1, 260 (2019).

[25] J. Moran and V. Hussin, Quantum Theory and Symmetries: Proceedings of the 11th International
Symposium 1, 255 (2021).

[26] J. Moran, V. Hussin, and I. Marquette, J. Phys. A: Math. Theor. 54, 275301 (2021).

[27] M. Angelova and V. Hussin, J. Phys. A: Math. Theor. 41, 304016 (2008).

[28] J. Moran, Eur. Phys. J. Plus 136, 716 (2021).

[29] R. F. Fox and M. H. Choi, Phys. Rev. A 64, 042104 (2001).

[30] M. Ioffe, J. M. Guilarte, and P. Valinevich, Ann. Phys. 321, 2552 (2006).

[31] M. V. Ioffe, J. Phys. A: Math. Gen. 37, 10363 (2004).

[32] M. V. Ioffe and P. A. Valinevich, J. Phys. A: Math. Gen. 38, 2497 (2005).

[33] A. Das and S. A. Pernice, Nucl. Phys. B 561, 357 (1999).

[34] P. Panigrahi and U. P. Sukhatme, Phys. Lett. A 178, 251 (1993).

[35] V. Hussin and I. Marquette, SIGMA 7, 024 (2011).

[36] E. F. de Lima and J. E. M. Hornos, J. Chem. Phys. 125, 164110 (2006).

[37] W. Gao-Feng and C. Wen-Li, Chin. Phys. B 19, 6 (2010).

[38] P. Zhang, arXiv:1010.3820 (2010).

[39] S.-H. Dong, Factorization Method in Quantum Mechanics, volume 150 of Fundamental Theories of
Physics, Springer, Dordrecht, 2007.

[40] J. R. Klauder, J. Phys. A: Math. Gen. 29, L293 (1996).

[41] F. Cooper, A. Khare, and U. Sukhatme, Phys. Rep. 251, 267 (1995).

[42] H. Kwon, K. C. Tan, T. Volkoff, and H. Jeong, Phys. Rev. Lett. 122, 040503 (2019).

[43] K. Zelaya, O. Rosas-Ortiz, Z. Blanco-Garcia, and S. Cruz y Cruz, Adv. Math. Phys. 2017, 7168592
(2017).

105



[44] A. Hertz, N. J. Cerf, and S. De Bièvre, Phys. Rev. A 102, 032413 (2020).

[45] C. M. Caves, Phys. Rev. D 23, 1693 (1981).

[46] J. Abadie et al., Nat. Phys. 7, 962 (2011).

[47] Y.-q. Li, P. Lynam, M. Xiao, and P. J. Edwards, Phys. Rev. Lett. 78, 3105 (1997).

[48] D. Li and Y. Yao, Sci. Rep. 11, 7785 (2021).

[49] L. Duan, Nat. Photonics 13, 73 (2019).

[50] M. Pavšič, Int. J. Geom. Methods Mod. Phys. 13, 1630015 (2016).

106



Chapter 6

Two-mode squeezed state quantisation and
semiclassical portraits

by

Jean-Pierre Gazeau1, Véronique Hussin2, James Moran3, and Kevin Zelaya4

(1) Université de Paris, CNRS, Astroparticule et Cosmologie, F-75031, Paris, France
(2) Département de mathématiques et de statistique & Centre de recherches mathé-

matiques, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
(3) Département de physique & Centre de recherches mathématiques, Université de

Montréal, Montréal, Québec, H3C 3J7, Canada
(4) Nuclear Physics Institute, The Czech Academy of Science, 250 68 Řež, Czech Re-

public

This article is in preparation.

The main contributions of James Moran for this article are:
• Performed some calculations
• Produced figures
• Co-wrote and edited the paper

Jean-Pierre Gazeau suggested the topics; assisted with proofreading and editing.
Véronique Hussin helped develop the scope of the paper; assisted with proofreading and editing.
Kevin Zelaya performed calculations; produced figures; co-wrote and edited the paper.



Abstract. Quantisation with Gaussian type states offers certain advantages over other
quantisation schemes, in particular, they can serve to regularise formally discontinuous
classical functions leading to well defined quantum operators. In this work we define a
squeezed state quantisation in two dimensions using several families of squeezed states. The
completeness relations of the squeezed states are exploited in order to tackle the quantisation
and semiclassical analysis of a constrained position dependent mass model with harmonic
potential. The effects of the squeezing parameters on the resulting operators and phase
space functions are studied, and configuration space trajectories are compared between the
classical and semiclassical models.
Keywords: Quantisation, Semiclassical phase space analysis, Position dependent mass
systems, Two-dimensional quantum systems.

6.1. Introduction
Coherent states and their generalisation, squeezed states, are ubiquitous in the study

of quantum optics. They describe a set of minimal uncertainty states with respect to their
generalised quadratures (in typical quantum systems these may refer to position and momen-
tum), and the ‘squeezing’ refers to the reduction in one quadrature variance at the expense
of an increase in the conjugate quadrature variance [1]. In multimode systems there exists
an even greater variety of squeezed states because the squeezing can occur between four or
more quadratures and their combinations. Multimode squeezed states are the most general
type of Gaussian state permissible and have found use outside of optics as a resource in con-
tinuous variable quantum information processing for generating multipartite entanglement
[2, 3]. Beyond Gaussian states, non-Gaussian states represent a further generalisation [4].
Schumaker investigated the most general two-mode Gaussian pure states [5], schemes de-
signed to generalise this construction to the N -mode case were studied in [6], and a general
presentation of a coupled three-mode squeezed vacuum was presented in [7].

Outside of optics and information theory, squeezed states have attractive mathematical
properties, in particular they form an overcomplete basis in the Hilbert space of quantum
states [8, 9]. Equipped with this property one may expand any state of a given system in
the basis of squeezed states. Moreover, one may quantise a classical function in the squeezed
state basis yielding an associated quantum operator as well as define an averaged value of the
initial function with respect to the squeezed states yielding a semiclassical portrait. This is
the precisely the purpose of this work, to extend the ideas of Klauder-Berezin coherent state
quantisation [10] by defining a two-mode squeezed state quantisation in which we use several
families of two-mode squeezed states and study the effect of their squeezing parameters on
the resulting quantum operators and semiclassical phase space functions.
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Let A and B be two observables,1 so that [A,B] ≡ AB−BA = iC and C† = C, together
with the corresponding Schrödinger-Robertson inequality

(∆A)2(∆B)2 ≥ |14 |⟨C⟩|2 + σ(A,B), σ(A,B) = ⟨AB +BA⟩
2 − ⟨A⟩⟨B⟩, (6.1.1)

with mean ⟨F ⟩ = ⟨Ψ|F |Ψ⟩, variance (∆F )2 = ⟨F 2⟩ − ⟨F ⟩2, and σ(A,B), the correlation
function [11]. Then, we say that |Ψ⟩, with ∥|Ψ⟩∥ < ∞, is a squeezed state if one of the
variances associated to the observables A and B takes values below the uncertainty mini-
mum

√
1
4 |⟨C⟩|2 + σ(A,B) while the second variance compensates by increasing such that the

inequality (6.1.1) is always saturated. Note that the definition of squeezing is in reference to
the observable whose variance is being ‘squeezed’.

Interestingly, if an underlying algebra can be identified with the observables A and B,the
squeezed states can be constructed by the sequential action of unitary operators on a fiducial
state. Such unitary operators are usually constructed as the exponential representation of
the algebra elements. To this end, there exist a great deal of examples of squeezed states in
the literature such as the coherent squeezed states, coherent and squeezed number states [12],
second-order squeezed states [13], and Susskind-Glogower coherent states [14, 15] (also know
as London coherent states [16]) to mention some. On the other hand, if a closed algebra is not
available, one may proceed by solving an eigenvalue equation of the form (A+iλB)|ψ⟩ = z|ψ⟩,
which minimises (6.1.1). See for instance [17, 18, 19]. The latter constructions have been
extended to quantised electromagnetic fields composed of several modes. Some examples
include two-mode [20, 21, 22, 23] and higher-mode in [7] constructions.

In this work, we exploit the overcompleteness of certain families squeezed states as a
means of quantisation in two dimensions. The paper is structured as follows. In section 6.2 we
review the basics of quantisation with one-mode squeezed states and define their semiclassical
portraits. Following this, in section 6.3 we generalise the notions of the preceding section to
the two-mode case. We first define the most natural extension, the separable squeezed states,
as the tensor product of two one-mode squeezed states acting on each mode independently,
and then we define the non-separable squeezed states which cannot be factorised by a tensor
product. We compare the quantisation of some classical functions in both cases and find
that non-separability leads to mixing between quadrature operators between both modes.
In section 6.4 we study the semiclassical portraits of a position dependent mass system in
constrained geometry as an application, before concluding in section 6.5 with some remarks
about extensions of the ideas presented in this paper to different problems.

1In this work, we focus on the common definition of observables as defined by self-adjoint operators, A† = A.
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6.2. One-mode squeezed state quantisation
Before proceeding to the two-mode quantisation, let us recapitulate some results in one-

dimensional squeezed state quantisation. Firstly, the unitary displacement and squeezing
operators are defined as follows

D(α) = eαa†−α∗a, S(ξ) = e− 1
2 ξa†2+ 1

2 ξ∗a2
, α,ξ ∈ C, (6.2.1)

in terms of the boson operators a and a†, whose action on the elements of the elements of
the Fock basis {|n⟩}∞

n=0 is given by

a|n+ 1⟩ =
√
n+ 1|n⟩ , a†|n⟩ =

√
n+ 1|n+ 1⟩ n = 0,1 . . . , (6.2.2)

along with the annihilation of the vacuum state, a|0⟩ = 0. The squeezed coherent states,
|α; ξ⟩, are then constructed through the action of the unitary operators (6.2.1) on the corre-
sponding fiducial state |0⟩,

|α; ξ⟩ = S(ξ)D(α)|0⟩. (6.2.3)

Note that the alternative definition of squeezed states, |ξ; β⟩ = D(β)S(ξ)|0⟩, is equivalent
to (6.2.3) through a braiding relation and this amounts to a relabelling of the parameters.
Following the customary procedure, one can disentangle the unitary operators in the product
of exponential functions in terms of a and a† separately. Alternatively, we can determine the
eigenvalue equation related to |α,ξ⟩. This is achieved by computing the unitary transforma-
tions on the boson ladder operators

S†(ξ)aS(ξ) = a cosh |ξ| − a† ξ

|ξ|
sinh |ξ|, D†(α)aD(α) = a+ α, (6.2.4)

where a Baker–Campbell–Hausdorff identity [24] has been used. Thus, from the unitary
transformation D†S†aSD, and after several calculations, we get the eigenvalue equation

(a+ τa†)|α,ξ⟩ = α
√

1 − |τ |2|α,ξ⟩, τ = ξ

|ξ|
tanh |ξ|. (6.2.5)

The latter is solved by expanding |α,ξ⟩ in the Fock basis and solving the resulting second-
order finite-difference equation [25]. This yields the normalised states [26]

|α; ξ⟩ = (1 − |τ |2)1/4e− |α|2
2 + α2τ∗+α∗2τ

4

∞∑
n=0

τn/2

(2nn!)1/2Hn

α
√

1 − |τ |2

2τ

 |n⟩, (6.2.6)

for α ∈ C and |τ | < 1 (ξ ∈ C).
In general, the squeezed states do not form an orthogonal set of states as they have a

non-zero overlap, ⟨α′,ξ|α,ξ⟩ ≠ 0. Nevertheless they form an overcomplete set of states on
the Hilbert space as they fulfil the resolution of the identity∫

α∈C

d2α

π
|α,ξ⟩⟨α,ξ| = I, (6.2.7)
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with I the identity operator in the Fock space H = span{|n⟩}∞
n=0, and µ(α) the corresponding

measure function. The factor π−1 has been introduced for convenience, and it does not modify
the final result as it can be absorbed in the measure.

From the very definition of the squeezed states, |α,ξ⟩ = S(ξ)D(α)|0⟩, we obtain a more
simple form for the resolution of the identity, which reads

S(ξ)
(∫

α∈C

d2α

π
|α⟩⟨α|

)
S†(ξ) = I, |α⟩ = D(α)|0⟩, (6.2.8)

with |α⟩ the conventional Glauber-Sudarshan coherent states. By defining the squeezed
coherent states using the convention in (6.2.3), the measure function is constant. In this form,
we have shown that squeezed states form an overcomplete set {|α,ξ⟩}α∈C with a uniform
measure. The identity operator can be alternatively achieved through the orthogonality
property related to the holomorphic Hermite polynomial [27, 28]. See appendix 6.A for a
detailed proof.

The resolution of the identity ensures that every element |ϕ⟩ ∈ H can be expanded in
the non-orthogonal basis {|ψ(α)⟩}α∈C through

|ϕ⟩ =
∫

α∈C

d2α

π
Fϕ(α)|α,ξ⟩, Fϕ(α,ξ) = ⟨α,ξ|ϕ⟩, (6.2.9)

where Fϕ(α) is uniquely defined for each vector |ϕ⟩.
Throughout this manuscript, we will use an alternative representation for the resolution of

the identity (6.2.7) that encodes information about the position and momentum observables.
To this end, let us recall the following relationships:

x̂ = λ
â+ â†

√
2
, p̂ = ℏ

λ

â− â†

i
√

2
, (6.2.10)

where λ > 0 is a free parameter with units of length. From the latter, a relationship between
the coherence parameter α = Re(α) + i Im(α) and the expectation values q ≡ ⟨x̂⟩ and
p ≡ ⟨p̂⟩ associated to the canonical position and momentum operators, respectively, with
⟨·⟩ ≡ ⟨α,ξ| · |α,ξ⟩. By combining (6.2.4) with (6.2.10), and averaging in the squeezed state
basis we obtain the symplectic transform

Re(α)

Im(α)

 =


1 + Re(τ)√

1 − |τ |2
Im(τ)√
1 − |τ |2

Im(τ)√
1 − |τ |2

1 − Re(τ)√
1 − |τ |2




q

λ
√

2
λp

ℏ
√

2

 . (6.2.11)

Note that, for τ = 0, we recover the well-known relationships Re(α) = q

λ
√

2 and Im(α) = λp

ℏ
√

2
for coherent states.

From (6.2.11), one may notice that α is linear in the expectation values q = ⟨x̂⟩ and
p = ⟨p̂⟩. Thus, the complex-plane α can be understood as an analogue of the classical phase
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space manifold as every point (q,p) ∈ R2 is in unique correspondence with α ∈ C. Moreover,
the transformation from the point (q,p) to α given in (6.2.11) is determined by a unimodular
matrix, and thus the existence of the respective inverse transformation is guaranteed. The
differential element in both frames is preserved, that is, d2α → (2ℏ)−1dqdp. With this
identification, we can alternatively rewrite the resolution of the identity in terms of q and p

as
I =

∫
R2

dqdp
2πℏ |q,p; ξ⟩⟨q,p; ξ|, |q,p; ξ⟩ ≡ |α(q,p); ξ⟩, (6.2.12)

with α(q,p) given in (6.2.11).
It is useful to determine the position representation for the squeezed states, ψ{q,p;ξ}(x) =

⟨x|q,p; ξ⟩, as it facilitates the determination of some observables. From (6.2.6), together with
⟨x|n⟩ = (2nn!

√
π)− 1

2 e− x2
2λ2Hn(x

λ
), and using the summation identities for Hermite polynomi-

als [29] we obtain the normalised wavefunction

ψ(α; ξ;x)(x) = ⟨x|α; ξ⟩ = (1 − |τ |2)1/4

π1/4
√

1 − τ
e− |α|2

2 e
α2τ∗+α∗2τ

4 e− α2(1−|τ |2)
2(1−τ) e− 1

2( 1+τ
1−τ ) x2

λ2 e

√
2(1−|τ |2)α

1−τ
x
λ .

(6.2.13)
Alternatively, we can rewrite (6.2.13) in terms of the expectation values q and p by using
the relationships (6.2.11) to get, up to a complex-phase,

ψ(q,p; ξ,x) = 1
π1/4

√
λ

(1 − |τ |2)1/4

|1 − τ |1/2 exp
−

σ2
q

2λ2 (q − x)2 + iIm(τ)
4λ2

(
q − λ2

ℏ
p

)2

+ ip
ℏ

(
x− q

2

) ,
(6.2.14)

with σ2
q a complex parameter given by

σ2
q = (1 − |τ |2) + 2i Im(τ)

|1 − τ |2
. (6.2.15)

6.2.1. Quantisation

We now proceed to discuss one of the main results of this manuscript, the quantisation
map using squeezed states. Although we summarise the results from the one-dimensional
case, the results developed here extend to higher dimensions with relative ease. To this end,
let us introduce an operation that maps a classical observable f(α) ≡ f(q,p), defined in the
classical phase space manifold, into a linear operator Âf , defined to act on elements of the
vector space H. This a procedure is known as a quantisation map, which requires a complete
family of states, such as the squeezed states, such that to every classical observable we can
associate a unique quantum observable. The map is defined by

f(q,p) 7→ Âf =
∫
R2

dqdp
2πℏ f(q,p)|q,p; ξ⟩⟨q,p; ξ|. (6.2.16)

Although this definition is quite general, in some cases it can be computationally infeasible.
To overcome this issue, we take advantage of the coordinate representation in order to

112



compute the action of the observable Af on a test function, Ψ(x), which is an arbitrary
element |Ψ⟩ ∈ H. This corresponds to the operation(

A
(op)
f

)
Ψ(x) ≡ ⟨x|Âf |Ψ⟩ =

∫
R

dx′ Kf (ξ;x,x′)Ψ(x′), (6.2.17)

where A(op)
f is the coordinate representation of Âf , together with Kf (ξ;x,x′), a kernel operator

containing information about the action of Âf on the test function Ψ(x), determined through

Kf (ξ;x,x′) =
∫
R2

dqdp
2πℏ f(q,p)ψ∗(q,p; ξ;x′)ψ(q,p; ξ;x), (6.2.18)

with ψ(q,p; ξ;x) the wavefunction given in (6.2.14).
To illustrate the use of the kernel representation (6.2.17), we consider two examples.
• First, let f(q,p) = q such that the kernel becomes Kq(ξ;x,x′) = δ(x′ −x), where we have

used some elementary properties of the Fourier transform while integrating with respect to
p. In this form, we get A(op)

q Ψ(x) ≡ xΨ(x), which means that q 7→ Âq = x̂ ≡ x, as expected.
• Similarly, for f(q,p) = p, and using some properties involving derivatives of the Fourier

transform, we obtain the kernel Kq(ξ;x,x′) = −iℏδx′(x′−x), with the subscript index denoting
the partial derivative with respect to x′. Such a kernel leads to A(op)

p Ψ(x) ≡ ℏ
i

∂
∂x

Ψ(x). That
is, the quantisation of p becomes, in the x-representation, proportional to the derivative with
respect to x, p 7→ Âp = p̂ ≡ h

i
∂

∂x
.

• The quantisation of f(q,p) = qp, the dilation operator, follows by analogy with the
previous two cases, leading to Âq,p = x̂p̂+p̂q̂

2 − Im(σ2
q )

2 Re(σ2
q ) . The latter corresponds to the sym-

metrisation of the resulting quantum operator plus a constant term that depends explicitly
on the squeezing parameter. We observe that for τ ∈ R or τ = 0, we recover the conventional
symmetrisation rule.

Before proceeding, it is worth mentioning that the definition (6.2.16) fulfills two funda-
mental properties required by any quantisation mechanism [30, 31]. Firstly, the quan-
tisation map (6.2.16) must promote the classical function f(q,p) = 1 into the identity
operator I. This is already guaranteed from the completeness relationship (6.2.12). Sec-
ondly, Dirac’s correspondence rule should be recovered, {q,p}P B = 1 → [x̂,p̂] = iℏ, with
{f(q,p),h(q,p)}P B the Poisson brackets [32]. From the previous two examples, it follows
directly that [A(op)

q ,A(op)
p ]Ψ(x) = iℏΨ(x), which fulfils the correspondence rule.

6.2.2. Semiclassical portraits

Interestingly, as with the conventional coherent states, we can define a set of quantities
that behave analogously to their classical counterparts. These quantities are known as semi-
classical portraits [33, 34], which are defined as the expectation values of the corresponding
quantum observables Âf in the squeezed states basis. We thus introduce the lower symbol,
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or semiclassical portrait, as

f(q,p) 7→ Ǎf =⟨q,p; ξ|Âf |q,p; ξ⟩ =
∫
R2

dqdp
2πℏ f(q′,p′)|⟨q′,p′; ξ|q,p; ξ⟩|2. (6.2.19)

where the absolute value square overlap between squeezed states is given by

|⟨q′,p′; ξ|q,p; ξ⟩|2 = e−
∆2

q

2λ2 (q−q′)2− λ2
2ℏ2 ∆2

p(p−p′)2−2 γ
ℏ (q−q′)(p−p′), (6.2.20)

with the Gaussian widths ∆q and ∆p, together with the coupling parameter γ, given in terms
of the original parameters by

∆2
q = |σq|2 = 1 − |τ |2

|1 − τ |2
+ 4 Im(τ)2

|1 − τ |2(1 − |τ |2)
, ∆2

p = |1 − τ |2

1 − |τ |2
, γ = Im(τ)

1 − |τ |2
. (6.2.21)

A handy formula can be derived for classical functions that depend only on position, f(q,p) =
h(q), in which case the integral (6.2.19) becomes

Ǎh(q) = 1√
2πλ∆p

∫
R

dq′h(q′)e
− (q−q′)2

2λ2∆2
p . (6.2.22)

This may be thought of as a Gaussian regularisation of the classical function h(q). This is
particularly useful when dealing with discontinuous functions h(q). Further examples will
be discussed once we introduce the two-mode extension in the upcoming sections.

6.3. Families of two-mode squeezed states
We now turn our attention to the main purpose of the paper: quantisation for two-

dimensional systems. As we discussed in section 6.2, the quantisation map depends on
the choice of the family of overcomplete states used, and thus the quantisation for two-
dimensional systems can be constructed in a similar vein to the one-dimensional case by
implementing families of multimode states, such as multimode coherent states, such that they
fulfil the resolution of the identity. Here, we define the larger Hilbert space H = span{|n1⟩⊗
|n2⟩}∞

n1,n2=0, with |nj⟩ elements of the Fock basis on the j mode, and the corresponding
identity operator in such a vector space reads as I = ∑∞

n1,n2=0 |n1, n2⟩⟨n1,n2|, with |n1,n2⟩ ≡
|n1⟩ ⊗ |n2⟩. In this form, we introduce the set of multimode bosonic operators {a1, a

†
1,a2,a

†
2},

which fulfil the commutation relationships [aj,a
†
k] = δj,k, for j,k = 1,2. Moreover, the action

of such multimode operators on the extended vector space H is defined as

a1|n1,n2⟩ = √
n1|n1 − 1,n2⟩, a2|n1,n2⟩ = √

n2|n1,n2 − 1⟩,

a†
1|n1,n2⟩ =

√
n1 + 1|n1 + 1,n2⟩, a†

2|n1,n2⟩ =
√
n2 + 1|n1,n2 + 1⟩.

(6.3.1)
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The canonical canonical position and momentum quadratures x̂j and p̂j, respectively, for the
j mode are related to the multimode boson operators as

x̂j = λj

aj + a†
j√

2
, p̂j = ℏ

λj

aj − a†
j

i
√

2
, j = 1,2, (6.3.2)

where [x̂j,p̂k] = iℏδj,k and [x̂j,x̂k] = [p̂j,p̂k] = 0, for j,k = 1,2.
Throughout this section we focus on two particularly interesting cases. The first one

being the most immediate extension by taking the tensor product of two independent one-
mode squeezed states. In the second case, we consider a family of two-mode states that do
not factorise as the tensor product of two one-mode squeezed states.

6.3.1. Separable two-dimensional squeezed states

Let us consider the conventional one-mode squeezed states introduced in section 6.2, and
extend them into the extended vector space H through the direct product of two squeezed,
one in each mode, with the coherence and squeezing parameters in general being different
in each mode. Henceforth, we refer to this specific construction as separable squeezed states,
which are explicitly defined as

|α⃗; ξ⃗⟩ = |α1,ξ1⟩ ⊗ |α2; ξ2⟩ = S2(ξ2)S2(ξ1)D2(α2)D1(α1)|0,0⟩ , αj,ξj ∈ C , j = 1,2 , (6.3.3)

with Dj(αj) and Sj(ξj) denoting the displacement and squeezing operators, respectively,
defined on the j mode, and |0,0⟩ the two-mode vacuum.

From the separable squeezed states (6.3.3), we can find a relationship between the co-
herent parameter and the expectation value of the canonical coordinates. This is done
analgously to the one-mode case, and we findr⃗α1

r⃗α2

 =
 M1 O2×2

O2×2 M2

r⃗1

r⃗2

 , Mj =


1+Re(τj)√

1−|τj |2
Im(τj)√
1−|τj |2

Im(τj)√
1−|τj |2

1−Re(τj)√
1−|τj |2

 , τj = ξj

|ξj|
tanh |ξj|,

(6.3.4)
with j = 1,2, O2×2 the null 2 × 2 matrix, and

r⃗αj
=
Re(αj)

Im(αj)

 , r⃗j =
 qj

λj

√
2

λjpj

ℏ
√

2

 , qj = ⟨x̂j⟩, pj = ⟨p̂j⟩. (6.3.5)

We remark that the limit τj → ∞ refers to infinite squeezing in the j mode. The
separable squeezed states minimise the Schrödinger-Robertson uncertainty relation for the
physical position and momentum quadratures in each mode independently. That is,

(∆x̂j)2(∆p̂j)2 = ℏ2

4 + σ̃(x̂j,p̂j), j = 1,2. (6.3.6)

115



Additionally, the separable squeezed states admit a coordinate representation defined
in terms of the eigenstates of the quadratures x̂1 and x̂2 in a similar manner to their one-
dimensional counterparts. By considering the linear transformation (6.3.4), we rewrite the
squeezed states in terms of qj and pj so that the normalised wavefunction ψ(q⃗,p⃗; ξ⃗,x⃗) =
⟨x⃗|q⃗,p⃗; ξ⃗⟩, with |x⃗⟩ = |x1⟩ ⊗ |x2⟩, takes the form

ψ(q⃗,p⃗; ξ⃗; x⃗) =
exp

(
−1

2
∑2

j=1

[
σ2

qj

λ2
j

(qj − xj)2 − i Im(τj)
2λ2

j

(
qj − λ2

j

ℏ pj

)2
]

+ i p⃗
ℏ ·
(
x⃗− q⃗

2

))
√
λ1λ2∆p1∆p2π

1/4
, (6.3.7)

where
σ2

qj
= (1 − |τj|2) + 2i Im(τj)

|1 − τj|2
, ∆2

pj
= |1 − τj|2

1 − |τj|2
, j = 1,2. (6.3.8)

6.3.2. Quantisation map and semiclassical portraits

In section 6.2, we showed that the one-mode squeezed states form an overcomplete family
of states. This property is inherited by the two-dimensional case in the extended vector space
H through

I =
∫
R4

d2q⃗ d2p⃗

(2πℏ)2 |q⃗,p⃗; ξ⃗⟩⟨q⃗,p⃗; ξ⃗|, d2q⃗ = dq1dq2, d2p⃗ = dp1dp2. (6.3.9)

The latter can be easily shown by factorising the separable squeezed states into its indepen-
dent modes and then using the corresponding one-mode results.

In this form, the quantisation map is implemented straightforwardly through the integral
transform

f(q⃗,p⃗) 7→ Âf =
∫
R4

dq⃗ dp⃗
(2πℏ)2f(q⃗,p⃗)|q⃗,p⃗; ξ⃗⟩⟨q⃗,p⃗; ξ⃗|, (6.3.10)

which can be conveniently rewritten in terms of the coordinate representation as

A
(op)
f Ψ(x⃗) =

∫
R2

dx⃗ ′Kf (ξ⃗; x⃗,x⃗ ′)Ψ(x⃗ ′), (6.3.11)

where the integral kernel is given by

Kf (ξ; x⃗,x⃗ ′) =
∫
R2

dq⃗dp⃗
2πℏ f(q⃗,p⃗)ψ∗(q⃗,p⃗; ξ⃗; x⃗ ′)ψ(q⃗,p⃗; ξ⃗; x⃗). (6.3.12)

Since the squeezed states are the tensor product of two one-dimensional states, the quan-
tisation of a classical function of the form f(q⃗,p⃗) = f1(q1,p1)f2(q2,p2) produces an operator
factorisable as f(q,p) 7→ Âf1 ⊗Âf2 . In particular, for a classical function f(q⃗,p⃗) = h1(q1)h2(q2)
we obtain a simplified kernel of the form

Kh1h2(ξ⃗; x⃗,x⃗ ′) = Kh1(ξ1;x1,x
′
1)Kh2(ξ2;x2,x

′
2), (6.3.13)
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with

Khj
(ξj;xj,x

′
j) = δ(xj − x′

j)
(1 − |τj|2)

1
2

π
1
2λj|1 − τj|

∫
R

dqj hj(qj)e
−

Re[σ2
qj

]

λj
(qj−xj)2

, j = 1,2. (6.3.14)

In a similar vein, the construction of the corresponding semiclassical portraits follows
straightforwardly from the one-dimensional case. That is, by averaging the quantised oper-
ators Âf over the two-mode separable squeezed state basis we get

Ǎf(q⃗,p⃗) =
∫
R4

dq⃗ ′dp⃗ ′

(2πℏ)2 f(q⃗ ′,p⃗ ′)|⟨q⃗ ′,p⃗ ′; ξ⃗|q⃗,p⃗; ξ⃗⟩|2, (6.3.15)

where the squeezed state overlap is defined as the product of two one-dimensional squeezed
state overlaps given in (6.2.20). In this form, we may distinguish the following cases:

• The semiclassical portrait of f(q⃗,p⃗) = h(q⃗) leads to

Ǎh(q⃗) = 1
2πλ1λ2∆p1∆p2

∫
R2

dq′
1dq′

2h(q⃗ ′) exp
(
v⃗′ · Sv⃗′

)
, (6.3.16)

where the vector v⃗′ =
q1 − q′

1

q2 − q′
2

 and scaling matrix S =
 −1

2λ2
1[∆p1 ]2 0

0 −1
2λ2

2[∆p2 ]2

. This is a

Gaussian regularisation of the classical observables, analagously to the kernel regularisation
obtained in (6.3.14). • A general expression can be found if we consider a classical function
that mixes one of the momenta with an arbitrary function of both positions, f(q⃗,p⃗) = pjh(q⃗).
In this setup we get

Ǎpjh(q⃗) = pjǍh(q⃗) + 2ℏγj

∆2
pj
λ2

j

(
qjǍh(q⃗) − Ǎqjh(q⃗)

)
, j = 1,2. (6.3.17)

Clearly, for h(q⃗) = 1, we recover the expected result Ǎpj
= pj.

• From the previous two examples, we may compute the semiclassical portrait related
to a kinetic energy of the form f(q⃗,p⃗) = p2

jh(q⃗), with h(q⃗) = (m(q⃗))−1 playing the role of a
position-dependent mass term. We obtain

Ǎp2
j h(q⃗) =

(
p2

j + ℏ2

∆2
pj
λ2

j

)
Ǎh(q⃗) +

4ℏ2γ2
j

∆4
pj
λ4

j

(
q2

j Ǎh(q⃗) − 2qjǍqjh(q⃗) + Ǎq2
j h(q⃗)

)
+

4ℏγj

∆2
pj
λ2

j

pj

(
qjǍh(q⃗) − Ǎqjh(q⃗)

)
, (6.3.18)

for j = 1,2. Contrary to the previous case, for h(q⃗) = 1, we obtain p2
j + ℏ2

∆2
pj

λ2
j
, which contains

an additive purely quantum term proportional to ℏ2.
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6.3.3. Non-separable two-mode squeezed states

The two-dimensional construction of squeezed states discussed in section (6.3.1) is the
most immediate generalisation of the one-dimensional squeezed states. However, those states
are a particular extension, and in multidimensional systems more general states can be
constructed which cannot be decomposed into the tensor product of one-dimensional states.
Such classes of states have been discussed in the literature for the two-dimensional case by
using two-mode ladder operators so that the information of both modes is mixed [20, 23].

In this section we follow the construction introduced in [20], where a family of two-mode
squeezed states are constructed with the aid of the mixing operator

UBS(ϕ) = eϕ(a†
1a2−a1a†

2), ϕ ∈ [0,2π), (6.3.19)

which is equivalent to the quantum representation of the beam-splitter. In this form, we may
combine the beam-splitter with the one-mode displacement and squeezing operators D(αj)
and S(ξj), respectively, in order to construct the non-separable squeezed states [20]

|α⃗; ξ⃗, ϕ⟩ = G|0, 0⟩, α⃗ = (α1,α2), ξ⃗ = (ξ1,ξ2). (6.3.20)

with G the unitary operator

G = D1(α1)D2(α2)UBS(ϕ)S1(ξ1)S2(ξ2), αj,ξj ∈ C, j = 1,2. (6.3.21)

The order of the displacement and squeezing operators has been deliberately chosen so that
the squeezing operators act first on the two-mode vacuum state |0,0⟩. This is due the fact
that the beam-splitter operator acting on a nonclassical state, such as the two-mode squeezed
vacuum, produces a non-separable state at the output. Therefore, if we were to act with the
displacement operator first, we would get a separable state at the output, as the coherent
states are classical in this respect. See [35] for details. In this form, the non-separability of
the two-mode intertwined squeezed states is determined by the parameter ϕ. For ϕ = 0, we
recover the separable states of section 6.2.

Now, from (6.3.21), we can find the unitary transformation of the boson ladder operators
for both the modes, a1 and a2, respectively. We make use of the well-known Bogoliubov
transformations [36] to obtain

G†a1G = α1 + cosϕ
(
a1 cosh |ξ1| − a†

1
ξ1

|ξ1|
sinh |ξ1|

)
+ sinϕ

(
a2 cosh |ξ2| − a†

2
ξ2

|ξ2|
sinh |ξ2|

)
,

G†a2G = α2 + cosϕ
(
a2 cosh |ξ2| − a†

2
ξ2

|ξ2|
sinh |ξ2|

)
− sinϕ

(
a1 cosh |ξ1| − a†

1
ξ1

|ξ1|
sinh |ξ1|

)
.

(6.3.22)
From the latter it is evident that G indeed mixes the modes a1 and a2, where , for ϕ = 0, the
transformation decouples a1 from a2. The unitary transformation (6.3.22), combined with
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the definition of the physical canonical quadratures (6.3.2), allows us to recover the same
relationships between the canonical coordinates and complex parameters αi as in (6.3.5).

The unitary transformations (6.3.22) lead to a set of two eigenvalue equations whose
eigenfunctions are the two-dimensional squeezed states |α⃗; ξ⃗,ϕ⟩, see appendix 6.B for details.
In this form, we obtain the corresponding wavefunction as

ψ(q⃗,p⃗; ξ⃗,ϕ; x⃗) = N (q⃗,p⃗; ξ⃗,ϕ)e
− ∆1

λ2
1

x2
1− ∆2

λ2
2

x2
2− ℓ

λ1λ2
x1x2+ ℓ1

λ1
x1+ ℓ2

λ2
x2
, (6.3.23)

where N (q⃗,p⃗; ξ⃗,ϕ) is a normalisation factor, and the coefficients proportional to the bilinear
terms in x1, x2 are

∆1 = 1 − τ1τ2 − cos(2ϕ)(τ2 − τ1)
2(1 − τ1)(1 − τ2)

, ∆2 = 1 − τ1τ2 + cos(2ϕ)(τ2 − τ1)
2(1 − τ1)(1 − τ2)

,

ℓ = sin(2ϕ)(τ2 − τ1)
(1 − τ1)(1 − τ2)

, τj = ξj

|ξj|
tanh |ξj|, j ∈ {1,2}.

(6.3.24)

These depend only on the squeezing and mixing parameters ξj and ϕ, respectively. On the
other hand, the coefficients proportional to the linear terms in x1, x2 are given by

ℓ1 = −2∆1
q1

λ1
− ℓ

q2

λ2
− iλ1

ℏ
p1, ℓ2 = ℓ

q1

λ1
+ 2∆2

q2

λ2
+ iλ2

ℏ
p2, (6.3.25)

which have an explicit dependence on the phase-space variables q1, q2, p1, and p2.
After some calculations involving elementary integrals with Gaussian functions, we ex-

plicitly determine the normalisation factor as

N (q⃗,p⃗; ξ⃗,ϕ) =
(

∆
4π2λ2

1λ
2
2

) 1
4

e
4
∆(Re(ℓ) Re(ℓ1) Re(ℓ2)−Re(ℓ2)2 Re(∆1)−Re(ℓ1)2 Re(∆2)), (6.3.26)

with

∆ = 16 Re(∆1) Re(∆2) − 4 Re(ℓ)2) =

(1 − |τ1|2)(1 − |τ2|2)(1 + |τ1|2 − 2 Re(τ1))(1 + |τ2|2 − 2 Re(τ2))
|1 − τ1|2|1 − τ2|2

. (6.3.27)

For brevity we omit the Fock expansion as it cannot be conveniently simplified. Instead,
we can use the wavefunction representation to prove that the resolution of the identity is
satisfied with a uniform measure µ(q⃗,p⃗; ξ⃗,ϕ) = 1. See appendix 6.C for details. We thus have

⟨Ψ̃|I|Ψ⟩ =
∫
R4

dx⃗dx⃗′[Ψ̃(x⃗′)]∗Ψ(x⃗)
∫
R4

d2α⃗

(2πℏ)2ψ(α⃗; ξ⃗,ϕ; x⃗′)ψ(α⃗; ξ⃗,ϕ; x⃗) =∫
R4

dx⃗′dx⃗ [Ψ̃(x⃗′)]∗Ψ(x⃗)δ(x⃗− x⃗′) = ⟨Ψ′|Ψ⟩. (6.3.28)

In this form, the quantisation and semiclassical picture of any function f(α⃗) ≡ f(q⃗,p⃗) can
be determined in the same way as the separable case because the measure in both instances
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Classical Separable SS Non-separable SS
f(q⃗,p⃗) Âf Âf

1 I I
q1 x̂1

(
1 + 8Re(ℓ)2

∆

)
x̂1 + 16λ1

λ2

Re(ℓ) Re(∆2)
∆ x̂2

q2 x̂2
(
1 + 8Re(ℓ)2

∆

)
x̂2 + 16λ2

λ1

Re(ℓ) Re(∆1)
∆ x̂1

q1q2 x̂1x̂2
(
1 + 29 Re(∆1) Re(∆2) Re(ℓ)2

∆3

)
x̂1x̂2 + 42 Re(∆1) Re(ℓ)

∆

(
1 + 8Re(ℓ)2

∆

)
λ2
λ1
x̂2

1+
42 Re(∆2) Re(ℓ)

∆

(
1 + 8Re(ℓ)2

∆

)
λ1
λ2
x̂2

2 + 8λ1λ2 Re(ℓ)
∆2

(
3 + 16Re(ℓ)2

∆

)
Table 6.1. Two-mode quantisation associated with separable and non-separable squeezed
states for different classical functions f(q⃗,p⃗).

is the same. That is, we have the quantisation map

f(q⃗,p⃗) 7→ Âf =
∫
R4

dq⃗dp⃗
(2πℏ)2f(q⃗,p⃗)|q⃗,p⃗; ξ⃗,ϕ⟩⟨q⃗,p⃗; ξ⃗,ϕ|, (6.3.29)

and its alternative form through the kernel representation

A
(op)
f Ψ(x⃗) =

∫
R2

dx⃗ ′Kf (ξ⃗,ϕ; x⃗,x⃗ ′)Ψ(x⃗ ′), (6.3.30)

where
Kf (ξ; x⃗,x⃗ ′) =

∫
R2

dq⃗dp⃗
2πℏ f(q⃗,p⃗)ψ∗(q⃗,p⃗; ξ⃗,ϕ; x⃗ ′)ψ(q⃗,p⃗; ξ⃗,ϕ; x⃗). (6.3.31)

In order to expose the differences between quantisations using the separable and non-
separable squeezed states we consider a few examples. In Table. 6.1 we consider linear func-
tions on the classical position q1 and q2, where we observe that the separable case produces a
factorisable quantisation, that is, for a classical function f(q⃗,p⃗) = q1q2 the resulting operator
is the product of the independent quadratures x̂1 and x̂2. However, the non-separable case
shows that the resulting operator is not factorisable and becomes quadratic combinations of
both quadratures x̂1 and x̂2. Similarly, the function f(q⃗,p⃗) = qj, for j = 1,2, the resulting
operator leads to a linear combination of both quadratures as well. In the limiting case ℓ = 0
(see cases above), the resulting quantisation reduces to that of separable squeezed states.

On the other hand, the semiclassical portrait is given by

f(q⃗,p⃗) 7→ Ǎf(q⃗,p⃗) = ⟨Âf⟩ =
∫
R4

d2q⃗d2p⃗

(2πℏ)2 f(q⃗ ′,p⃗ ′)|⟨q⃗ ′,p⃗ ′; ξ⃗,ϕ|q⃗,p⃗; ξ⃗,ϕ⟩|2. (6.3.32)

where the overlap between two non-separable squeezed states is explicitly given by

|⟨q⃗ ′,p⃗ ′; ξ⃗,ϕ|q⃗,p⃗; ξ⃗,ϕ⟩|2 = exp
R⃗T · M̃ · R⃗

∆

 ,
R⃗ =

(
q1 − q′

1
λ1

,
λ1(p1 − p′

1)
ℏ

,
q2 − q′

2
λ2

,
λ2(p2 − p′

2)
ℏ

)T

,

(6.3.33)
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with the matrix

M̃ =


θ1

L11
2

θ12
2

L12
2

L11
2 Ξ1

L21
2

Ξ12
2

θ12
2

L21
2 θ2

L22
2

L12
2

Ξ12
2

L22
2 Ξ2

 (6.3.34)

together with the coefficients

θ1 = 4 Re(∆1)|ℓ|2 + 16 Re(∆2)|∆1|2 + 8 Re(ℓ) Re(∆1ℓ
∗),

θ2 = 16 Re(∆1)|∆2|2 + 4 Re(∆2)|ℓ|2 + 8 Re(ℓ) Re(∆2ℓ
∗),

θ12 = 16 Re(∆1) Re(ℓ∆2) + 4 Re(∆2)|ℓ|2 − 8 Re(ℓ) Re(∆2ℓ
∗),

Ξ1 = 4 Re(∆2), Ξ2 = 4 Re(∆1), Ξ12 = 4 Re(ℓ),

L11 = −16 Im(∆1) Re(∆2) − 4 Im(ℓ) Re(ℓ),

L12 = −8 Im(ℓ) Re(∆1) − 8 Im(∆1) Re(ℓ),

L21 = 8 Im(ℓ) Re(∆2) + 8 Im(∆2) Re(ℓ),

L22 = −16 Im(∆2) Re(∆1) − 4 Im(ℓ) Re(ℓ).

(6.3.35)

Notice that for the non-separable states (6.3.33), besides mixing the canonical positions q1

and q2 among themselves, they also mix the canonical position q1 with both of the canonical
momenta p1 and p2. The same is true vice-versa for q2.

From the coefficients in (6.3.35) we can identify two interesting limiting cases:
• If the squeezing parameters are both equal, τ1 = τ2, we get ℓ = 0. We therefore have

θ12 = Ξ12 = L12 = L21 = 0, and thus the overlap (6.3.33) just couples q1 with p1, and q2

with p2. That is, the semiclassical canonical position observables q1 and q2 couple only with
their respective canonical momenta.

• If τ1,τ2 ∈ R, we get Im(∆1) = Im(∆2) = Im(ℓ) = 0. Therefore, the canonical position
q1 couples with q2, and the canonical momentum p1 couples with p2.

• For ϕ = 0 and τ1,τ2 ∈ R, the matrix M̃ becomes diagonal and no coupling among
the semiclassical observables is generated. This corresponds to the separable squeezed state
limiting case.

To illustrate these results, let us consider the classical function f(q⃗,p⃗) ≡ h(q⃗) which leads
to

Ǎh(q⃗) = πℏ2

2
√

∆

∫
R

dq⃗ ′

(2πℏ)2h(q⃗ ′)e
− C1

λ2
1∆

(q1−q′
1)2− C2

λ2
2∆

(q2−q′
2)2+ C12

λ1λ2
(q1−q′

1)(q2−q′
2)
, (6.3.36)

where

C1 = θ1 − Ξ1L
2
12 + Ξ2L

2
11 + Ξ12L11L12

4∆ , C2 = θ2 − Ξ1L
2
22 + Ξ2L

2
21 + Ξ12L21L22

4∆

C12 = θ12 + 2Ξ1L12L22 + 2Ξ2L11L21 + Ξ12(L11L22 + L12L21)
4∆ .

(6.3.37)
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Notice that the Gaussian function in (6.3.36), besides regularising the classical function h(q),
it couples the canonical position q1 with q2. This will lead to an anisotropic semiclassical
portrait Ǎh(q⃗) even if the original classical function is isotropic.

6.4. Position-dependent mass models
In this section, we apply the discussion from the previous sections to a specific problem.

In particular, we focus on a position-dependent mass (PDM) model defined in a classical con-
strained geometry. Before proceeding with our specific model, we require some generalities
in both the classical and semiclassical cases. To begin with, let us consider a two-dimensional
classical Hamiltonian of the form

H = H1 +H2, Hj =
p2

j

2mj(qj)
+ Vj(qj), j = 1,2, (6.4.1)

which is separable as the sum of two one-dimensional Hamiltonians. From the Hamilton
equations of motion [32], we obtain the canonical momentum pj = mj(qj)q̇j, from which,
the corresponding equation of motion for the position coordinate becomes

d2qj

dt2 + 1
2mj(qj)

(
∂mj(qj)
∂qj

)(
dqj(t)

dt

)2

+ 1
mj(qj)

(
∂Vj(qj)
∂qj

)
= 0, j = 1,2. (6.4.2)

Note that, in the constant mass case, m′
j = 0, the equations of motion (6.4.2) reduce to the

Newton equation of motion, mj q̈j = −∂Vj(qj)
∂qj

.
From the setup described in section 6.3.1, the corresponding semiclassical portrait can

be determined. In particular, the semiclassical Hamiltonian becomes

Ȟ(q⃗,p⃗) = 1
2Ǎp2

1M1(q1) + 1
2Ǎp2

2M2(q2) + ǍV1(q1) + ǍV2(q2), Mj(qj) = (mj(qj))−1 , (6.4.3)

where a general formula for Ǎp2
j h(q⃗) is given in (6.3.18). Interestingly, the semiclassical portrait

admits a symplectic structure similar to that of the classical model. That is, from the
semiclassical Hamiltonian (6.4.3), we can determine the evolution of qj(t) and pj(t) through
the Hamilton equations of motion (see [34] for a detailed proof)

q̇j(q⃗,p⃗) = ∂Ȟ(q⃗,p⃗)
∂pj

, −ṗj(q⃗,p⃗) = ∂Ȟ(q⃗,p⃗)
∂qj

, j = 1,2, (6.4.4)

where q̇j ≡ dqj

dt
and ṗj ≡ dpj

dt
. In the latter, the time derivatives are functions of qj and pj.

Nevertheless, by analogy to the classical case above discussed, we may cast the equations of
motion so that qj(t) is a function of time. To this end, we use (6.3.18) to obtain

q̇j = pjǍMj
+ 4ℏγj

∆2
pj
λ2

j

(
qjǍMj

− ǍqjMj

)
, (6.4.5)
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from which one may determine a relation between the semiclassical momentum pj and the
velocity q̇j. To determine the equation of motion for qj we use the time evolution relation
for any semiclassical observable df

dt
= {f,Ȟ}P B + ∂f

∂t
, with {f,g}P B the Poisson brackets.

Using the latter with q̇, and after some calculations, we get a nonlinear coupled second-order
differential equation for q1 and q2. An explicit form will be shown in the following section.

We have the general equations to determine the dynamics at both the classical and
semiclassical levels. Their solutions are specified by the mass, potential energy, and initial
conditions. One may foresee that the resulting equations of motion are in general nonlinear,
and we thus have to rely on numerical calculations in most cases.

6.4.1. Variable mass oscillator in constrained geometry

In order to implement the results obtained so far, let us consider the PDM Hamiltonian
introduced in [34], which is in turn contained in the family of non-linear oscillators in [37].
We thus introduce the corresponding two-dimensional classical Hamiltonian

H = H1 +H2, Hj =
p2

j

2m(qj)
+V jq

2
j , m(qj) = m0

1 − Λ2
jq

2
j

, V j,Λj ∈ R, j = 1,2, (6.4.6)

where m0 > 0 is the mass and an external oscillator interaction has been added, which can
be turned off by fixing V j = 0. Notice that the model is only well-defined inside the interval
qj ∈ (−Λ−1

j ,Λ−1
j ), as outside of such interval the mass takes negative values. Considering the

latter, we constrain the model to be defined only in the physically allowed regions. This is
done by implementing a characteristic function χE(q⃗) of the form

χE(q⃗) =

1 q1 ∈
(
− 1

Λ1
, 1
Λ1

)
, q2 ∈

(
− 1

Λ2
, 1
Λ2

)
0 otherwise

, (6.4.7)

so that the redefined nonlinear oscillator Hamiltonian becomes

Hχ(q⃗,p⃗) = χE

(
p2

1
2mΛ1(q1)

+ p2
2

2mΛ2(q2)
+ V 1q

2
1 + V 2q

2
2

)
. (6.4.8)

That is, we have introduced the characteristic function so that the dynamics are constrained
to the rectangle defined by χE.

In particular, for a null oscillator interaction, V1 = V2 = 0, the equations of motion (6.4.2)
for the Hamiltonian (6.4.6) can be determined in a closed form, leading to the solutions

qj(t) = 1
Λj

sin
 Λjv0;jt√

1 − Λ2
jq

2
0;j

+ arcsin(Λjq0;j)
 , (6.4.9)

with q0;j ≡ qj(t = 0) and v0;j ≡ q̇j(t = 0) the initial position and velocity, respectively.
Interestingly, despite the lack of a trapping interaction, the solutions for qj(t) describe

bounded and oscillatory trajectories, which is reminiscent of the dynamics of the harmonic
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oscillator. The corresponding dynamics in the q1−q2 plane is depicted in figure 6.1 for several
geometries, governed by the parameters Λj, and fixed initial conditions q0;j and v0;j. In all the
cases, the initial positions have been placed at the origin, q0;1 = q0;2 = 0, whereas the ratio
between the initial velocities, v0;1

v0;2
, and the rectangle lengths, Λ1/Λ2, have been chosen so

that they are both rational numbers. From the exact solution (6.4.9), it can be seen that the
oscillation frequency in each direction reduces to Λjv0;j, and so the ratio of the frequencies
is a rational number. This explains the closed trajectories observed figures 6.1a-6.1c.

(a) Λ1 = 1 (b) Λ1 = 3
2 (c) Λ1 = 2

Fig. 6.1. Trajectories on the (q1,q2) plane for a classical particle described by the Hamil-
tonian (6.4.8). In every case, we have fixed m0 = 1 and V 1 = V 2 = 0 (null external oscillator
interaction), together with the initial conditions q0;1 = q0;2 = 0, v0;1 = 1, and v0;2 = 2. The
particle is confined to the rectangle characterized by Λ2 = 1 and the indicated values of Λ1.
The red cross indicates the particle’s starting position of (0,0).

(a) V 1 = V 2 = 0.5 (b) V 1 = V 2 = 1.5 (c) V 1 = V 2 = 5

Fig. 6.2. Trajectories on the (q1,q2) plane for a classical particle described by the Hamilton-
ian (6.4.8). In every case, we have fixed m0 = 1, Λ1 = 2, Λ2 = 1, with the initial conditions
q0;1 = q0;2 = 0, v0;1 = 1, v0;2 = 2, which corresponds to the setup in figure 6.1c. In addition,
we have considered the external oscillator strength V 1 = V 2 = 0.5 (a), V 1 = V 2 = 1.5
(b), and V 1 = V 2 = 5 (c). The red and blue cross represent the initial and final position,
respectively, for a time interval t ∈ (0,65).
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On the other hand, the presence of the external oscillator interaction prevents us from
obtaining a closed expression, and the dynamics cannot not be foreseen a priori. Still,
it is expected that trajectories in this case would no longer be closed, as the additional
nonlinearities in the equation of motion would break the strict balance required to obtain
closed trajectories. Such behaviour is depicted in figure 6.2, where solutions for qj(t) have
been determined by numerical means. In these figures, we can see that the trajectories keep
spreading from the null-interaction case (figure 6.1c). For a large enough oscillator strength
(figure 6.2c), the trajectory seems to match the one related to null-interaction case; however,
the length of the trajectory shortens. This behaviour is due the additional confinement
produced by the external interaction, which constrains the particle in a smaller region inside
the rectangle.

6.4.2. Semiclassical dynamics

Now, let us determine the semiclassical dynamics related to the classical truncated Hamil-
tonian (6.4.8). To determine the semiclassical counterpart, we consider the example where
γ1 = γ2 = 0 in (6.3.18), with mass functions in (6.4.3) gaining some dependence on the other
coordinate by,

Mj(qj) → Mj(qj)χEi
(qi) = 1

m0
(1 − Λ2

jq
2
j )χEj

(qj)χEi
(qi), i,j = 1,2, i ̸= j. (6.4.10)

From these we obtain the semiclassical Hamiltonian

Ȟ =
(
p2

1
2 + ℏ2

2∆2
p1λ

2
1

)
ǍM1(q1)ǍχE2 (q2) +

(
p2

2
2 + ℏ2

2∆2
p2λ

2
2

)
ǍM2(q2)ǍχE1 (q1)+

V 1Ǎq2
1χE1 (q1)ǍχE2 (q2) + V 2Ǎq2

2χE2 (q2)ǍχE1 (q1) , (6.4.11)

where we have used the fact that the two-dimensional window function χE factorises as
χE = χE1χE2 in the rectangular geometry. The explicit form of the semiclassical portrait of
the window functions χEj

, as well as some other results necessary to this computation, are
presented in appendix 6.D. As we preserve the Hamiltonian structure, one may also derive
the equations of motion for the semiclassical system. For q1(t) we find,

q̈1 = q̇2
1

2ǍM1(q1)

∂ǍM1(q1)

∂qj

− q̇2
2
2
ǍM1(q1)ǍχE2 (q2)

ǍM2(q2)ǍχE1 (q1)

∂ǍχE1 (q1)

∂q1

+ q̇1q̇2

ǍχE2 (q2)

∂ǍχE2 (q2)

∂q2

−

ℏ2

∆2
p1λ

2
1
ǍM1(q1)Ǎ

2
χE2 (q2)

∂ǍM1(q1)

∂q1

− ℏ2

∆2
p2λ

2
2
ǍM1(q1)ǍM2(q2)ǍχE2 (q2)

∂ǍχE1 (q1)

∂q1

−

V 1ǍM1(q1)Ǎ
2
χE2 (q2)

∂Ǎq2
1χE1 (q1)

∂q1

− V 2ǍM1(q1)Ǎq2
2χE2 (q2)ǍχE2 (q2)

∂ǍχE1 (q1)

∂q1

 . (6.4.12)
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A similar differential equation holds for q2(t) by interchanging the subscript indices 1 and
2. This is a system of two coupled non-linear second order differential equations and it is
not possible to solve it by analytical means. For the generation of the dynamics we resort
to numerical methods.

(a) V 1 = V 2 = 0.5 (b) V 1 = V 2 = 5 (c) V 1 = V 2 = 7.5

Fig. 6.3. Trajectories on the (q1,q2) plane obtained from the semiclassical Hamilton-
ian (6.4.3). In every case we use units of ℏ = 0.1, and we have fixed m0 = 1, Λ1 = 2, Λ2 = 1,
with the initial conditions q0;1 = q0;2 = 0, v0;1 = 1, v0;2 = 2, which corresponds to the setup
in figure 6.2c. The regularisation parameters are λ1 = λ2 = 0.2 and τ1 = τ2 = 0.2.In addi-
tion, we have considered the external oscillator strength V 1 = V 2 = 0.5 (a), V 1 = V 2 = 5
(b), and V 1 = V 2 = 7.5 (c). The red and blue cross represent the initial and final position,
respectively, for a time interval t ∈ (0,30).

A curious result of the regularisation is an induced force due to the wall. The regularisa-
tion of the wall has rendered it finite and the particle can escape. This is a clear departure
from the classical case where the particle is always confined within the restricted region. In
figure 6.3a we see that for a particle fired towards the top right corner of the confined region,
its initial energy is enough to overcome the confining potential strength and thus it escapes.
Conversely, in figures 6.3b and 6.3c, the external potential strength is great enough to cap-
ture the particle. In the bounded case, the particle never quite reaches the boundary due
to the smoothing of the wall. In all cases we have to keep in mind that the terms in (6.4.3)
which are proportional to ℏ and its powers are the purely quantum corrections, and as such
we must consider the relative strength between the classical parts of the Hamiltonian and
the quantum parts. The classical effects in principle should be the dominant contributions
and the quantum effects should contribute less. For this reason we choose the scale ℏ = 0.1.

6.5. Conclusion
In this work we have looked at quantisation in two dimensions using general families

of two-dimensional squeezed states. We found the dependence of the quantised operators
and their semiclassical portraits on the squeezing parameters introduced, and found that
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in the case where the squeezed states are coupled (entangled), an anisotropy is induced
in the resulting operators and portraits. This offers additional control over the strength
and direction of the regularisation of discontinuous functions when compared with standard
coherent state quantisation. In principle the additional control available may allow one to
quantise a theory with more precision than would be available under different quantisation
schemes.

In section 6.2 we reviewed a quantisation scheme in one dimension using conventional
squeezed states. In section 6.3 we defined two distinct families of two-dimensional squeezed
states: coordinate separable squeezed states taken as the product of two one-dimensional
squeezed states, and the non-separable squeezed states which are not separable as a product
of two one-dimensional squeezed states. It was found that the quantisation of the classical
position functions q1 and q2 led to the expected quantum operators x̂1 and x̂2 respectively
for the separable squeezed states. On the other hand, for the non-separable squeezed states,
the quantisations of the individual classical position functions became linear combinations
of the quantum position operators for both modes. In section 6.4 we applied the preced-
ing formalism to a position-dependent mass model in two dimensions using the separable
squeezed states, and studied a comparison between the classical and semiclassical portraits
using squeezed state quantisation.

For future work, it would be interesting to look at quantisation in non-rectangular con-
fined regions. It would seem that there are a number of physical systems one could approach
when one can conveniently regularise confined regions in quantisation problems, such as the
hadron bag model [38], and quantum motion on non-rectangular surfaces. The anisotropic
effect of the squeezing parameters would allow one to distort the restricted region to ob-
tain semiclassical billiard-like dynamics in non-trivial geometries. Additionally, exploring
quantisation in higher-dimensional systems should lead to interesting results, the classes of
generalised coherent and squeezed states will proliferate and as such so will the ways in which
one can quantise a problem.
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6.A Resolution of the identity through holomorphic
Hermite polynomials

In this appendix we prove the resolution of the identity associated to the one-mode
squeezed states written in their Fock expansion given in (6.2.6). In such a case, the
coefficients are written in terms of complex Hermite polynomials. Thus, to determine
their completeness, we consider the holomorphic Hermite polynomials in two variables
Hn(x+ iy) [27, 28], which satisfy the orthogonality relationship∫

R2
dxdyHn(x+ iy)Hm(x− iy)e−ax2−by2 = π√

ab
2nn!

(
a+ b

ab

)n

δn,m, (6.A.1)
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where the constants a and b are constrained by

0 < a < b,
1
a

− 1
b

= 1. (6.A.2)

To simplify the notation, we use u1 = Re(α) and u2 = Im(α) throughout this section.
Substituting (6.2.6) into (6.2.7) leads to∫

R2

du1du2

π
µ(u1,u2)|α(u1,u2); ξ⟩⟨α(u1,u2); ξ| =

(1 − |τ |2) 1
2

∞∑
n,m=0

τ
n
2 (τ ∗)m

2

(2n+mn!m!) 1
2
Fn,m|n⟩⟨m|, (6.A.3)

where

Fn,m =
∫
R2

du1du2

π
µ(u1,u2)e−(1−Re(τ))u2

1−(1+Re(τ))u2
2+2 Im(τ)u1u2Hn(z1 + iz2)Hm(z1 − iz2),

(6.A.4)
and the functions z1 ≡ z1(u1,u2) and z2 ≡ z2(u1,u2) are defined through the following linear
transformation:z1

z2

 = M

u1

u2

 , M =

√
1 − |τ |2

2|τ |

 (|τ | + Re(τ))
1
2 (|τ | − Re(τ))

1
2

− (|τ | − Re(τ))
1
2 (|τ | + Re(τ))

1
2

 . (6.A.5)

In order to use the orthogonality (6.A.1), we have make a change of variable into z1

and z2. In this case the differential element in the new variables is given by du1du2 →
det(M−1)dz1dz2. Making these substitutions, Eq. (6.A.4) becomes

Fn,m = 2|τ |
1 − |τ |2

∫
R2

dz1dz2

π
µ(z1,z2)e−( 2|τ |

1+|τ |)z2
1−( 2|τ |

1−|τ |)z2
2Hn(z1 + iz2)Hm(z1 − iz2), (6.A.6)

from which we realise that, in order to use the orthogonality of the holomorphic Hermite
polynomials, the measure must be uniform and take the form µ(z1,z2) = µ0. Moreover,
from (6.A.6) we identify

a ≡ 2|τ |
1 + |τ |

, b ≡ 2|τ |
1 − |τ |

, (6.A.7)

making it clear that the constraints in (6.A.2) are fulfilled for all |τ | < 1, or equivalently
ξ ∈ C. In this form, Eq. (6.A.1) leads to

Fn,m = µ0

(1 − |τ |2) 1
2

(
2

|τ |

)n

n!δn,m. (6.A.8)

Finally, by substituting (6.A.8) into (6.A.3), with µ0 = 1, we get∫
R2

du1du2

π
|α(u1,u2); ξ⟩⟨α(u1,u2); ξ| =

∞∑
n=0

|n⟩⟨n| = I, (6.A.9)

recovering the resolution of the identity for the one-mode squeeze states with respect to the
uniform measure µ(α) ≡ µ(u1,u2) = 1.
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6.B Determining ψ(q⃗,p⃗; ξ⃗,ϕ; x⃗)
In this appendix, we detail the steps followed to get the wavefunction representation

associated to the two-mode states (6.3.20). The wavefunction can be determined without
explicitly expanding |α⃗; ξ⃗,ϕ⟩ in the two-mode Fock basis. We exploit the unitary transforma-
tions of the boson operators a1 and a2 generated by G sto determine an eigenvalue equation,
which in turns lead to a partial differential equation for the wavefunction.

To begin with, we use G in (6.3.21) together with the Baker–Campbell–Hausdorff formula
eABe−A = B + [A,B] + 1

2! [A,[A,B]] + . . . to get the unitary transformations

G†a1G = cosϕ
(
a1 cosh |ξ1| − a†

1
ξ1

|ξ1|
sinh |ξ1|

)
+ sinϕ

(
a2 cosh |ξ2| − a†

2
ξ2

|ξ2|
sinh |ξ2|

)
+ α1,

(6.B.1)

G†a2G = cosϕ
(
a2 cosh |ξ2| − a†

2
ξ2

|ξ2|
sinh |ξ2|

)
− sinϕ

(
a1 cosh |ξ1| − a†

1
ξ1

|ξ1|
sinh |ξ1|

)
+ α2,

(6.B.2)

where the transformations for the the creation operators follow straightforwardly from the
latter by applying the adjoint operation and exploiting the unitarity of G. On the other
hand, we may compute the following alternative unitary transformations:

Ga†
1G

† = cosϕ
(

(a†
1 − α∗

1) cosh |ξ1| + (a1 − α1)
ξ∗

1
|ξ1|

sinh |ξ1|
)

−

sinϕ
(

(a†
2 − α∗

2) cosh |ξ1| + (a2 − α2)
ξ∗

1
|ξ1|

sinh |ξ1|
)
, (6.B.3)

Ga†
2G

† = cosϕ
(

(a†
2 − α∗

2) cosh |ξ2| + (a2 − α2)
ξ∗

2
|ξ2|

sinh |ξ2|
)

+

sinϕ
(

(a†
1 − α∗

1) cosh |ξ2| + (a1 − α1)
ξ∗

2
|ξ2|

sinh |ξ2|
)
. (6.B.4)

Now, by recalling that |α⃗; ξ⃗,ϕ⟩ = G|0,0⟩, we apply (6.B.1) on |0,0⟩, then multiply on the
left by G in order to get

a1|α⃗; ξ⃗,ϕ⟩ =
(
α1 − ξ1

|ξ1|
sinh |ξ1| cosϕ

(
Ga†

1G
†
)

− ξ2

|ξ2|
sinh |ξ2| sinϕ

(
Ga†

2G
†
))

|α⃗; ξ⃗,ϕ⟩,

(6.B.5)
which, with the aid of (6.B.3)-(6.B.4), leads us to the eigenvalue equation(

A1a1 + A2a
†
1 + A3a2 + A4a

†
2

)
|α⃗; ξ⃗,ϕ⟩ = z1|α⃗; ξ⃗,ϕ⟩, (6.B.6)
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where the coefficients are given by

A1 = 1 + sinh2 |ξ1| cos2 ϕ+ sinh2 ξ2 sin2 ϕ,

A2 = ξ2

|ξ2|
sinh |ξ2| cosh |ξ2| sin2 ϕ+ ξ1

|ξ1|
sinh |ξ1| cosh |ξ1| cos2 ϕ,

A3 =
(
− sinh2 |ξ1| + sinh2 |ξ2

)
sinϕ cosϕ,

A4 =
(
ξ2

|ξ2|
sinh |ξ2| cosh |ξ2| − ξ1

|ξ1|
sinh |ξ1| cosh |ξ1|

)
cosϕ sinϕ,

(6.B.7)

with z1 = A1α1 +A2α
∗
1 +A3α2 +A4α

∗
2 a complex eigenvalue. Following the same steps, from

the unitary transformation of a2, we have a second eigenvalue equation of the form(
B1a1 + B2a

†
1 + B3a2 + B4a

†
2

)
|α⃗; ξ⃗,ϕ⟩ = z2|α⃗; ξ⃗,ϕ⟩, (6.B.8)

where B1 = A∗
3, B2 = A4, together with

B3 = 1 + sinh2 |ξ2| cos2 ϕ+ sinh2 ξ1 sin2 ϕ,

B4 = ξ2

|ξ2|
sinh |ξ2| cosh |ξ2| cos2 ϕ+ ξ1

|ξ1|
sinh |ξ1| cosh |ξ1| sin2 ϕ.

(6.B.9)

and z2 = B1α1 + B2α
∗
1 + B3α2 + B4α

∗
2.

From (6.3.2), we may revert the relationships between the boson operators and the canon-
ical position and momentum observables such that we get

aj = x̂j√
2λj

+ iλj p̂j√
2ℏ
, a†

j = x̂j√
2λj

− iλj p̂j√
2ℏ
, j = 1,2, (6.B.10)

which, once substituted in both eigenvalue equation (6.B.6) and (6.B.8), leads to two eigen-
value equations linear in both position x̂j and momentum p̂j. That is,[(

A1 + A2√
2λ1

)
x̂1 + i

(
A1 − A2√

2ℏ/λ1

)
p̂1 +

(
A3 + A4√

2λ2

)
x̂2 + i

(
A3 − A4√

2ℏ/λ2

)
p̂2 − z1

]
|α⃗; ξ⃗,ϕ⟩ = 0,[(

B1 + B2√
2λ1

)
x̂1 + i

(
B1 − B2√

2ℏ/λ1

)
p̂1 +

(
B3 + B4√

2λ2

)
x̂2 + i

(
B3 − B4√

2ℏ/λ2

)
p̂2 − z2

]
|α⃗; ξ⃗,ϕ⟩ = 0,

(6.B.11)
From the latter, and using the coordinate representation x̂j ≡ xj and p̂j ≡ −iℏ∂xj

, we get
a set of two first-order partial differential equations for ψ(α⃗; ξ⃗,ϕ; x⃗), which are solved by
introducing a Gaussian ansatz of the form

ψ(α⃗; ξ⃗,ϕ; x⃗) = N e
− ∆1

λ2
1

x2
1− ∆2

λ2
2

x2
2− ℓ

λ1λ2
x1x2+ ℓ1

λ1
x1+ ℓ2

λ2
x2
, (6.B.12)

with N the normalization factor, and the unknown coefficients ∆j, ℓj, and ℓ, for j = 1,2, are
to be determined once we substitute (6.B.12) into both eigenvalue equations.

This leads to a system of six equations involving the above-mentioned five unknown coef-
ficients, the system is therefore overdetermined. Nevertheless, the extra equation provides a
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compatibility condition that tells us whether the ansatz is correct. After several calculations,
it can be shown that compatibility condition is fulfilled, and the ansatz (6.B.12) provides a
valid solution. Thus, after solving the remaining five equations, we get the coefficients

ℓ1√
2

= − ((τ1 − τ2) cos 2ϕ− τ1τ2 + 1) Re(α1) + ((τ1 − τ2) sin 2ϕ) Re(α2)
(1 − τ1)(1 − τ2)

− i Im(α1),

ℓ2√
2

= − ((τ1 − τ2) sin 2ϕ) Re(α1) − ((τ1 − τ2) cos 2ϕ+ τ1τ2 − 1) Re(α2)
(1 − τ1)(1 − τ2)

+ i Im(α2),

(6.B.13)
together with ∆1, ∆2, and ℓ given in (6.3.24). To recover the coefficients given in (6.3.25),
we rewrite αj in (6.B.13) in terms of qj and pj, with j = 1,2, through the relationships
obtained in (??). The normalisation constant in (6.3.26) follows straightforwardly by using
elementary integrals involving Gaussian functions.

6.C Resolution of the identity for the non-separable
states

In this appendix, we explain the intermediate steps needed to recover the resolution of the
identity associated with the non-separable two-mode squeezed states. The squeezed states
should verify the property ⟨Ψ′|I|Ψ′⟩ = ⟨Ψ′|Ψ⟩, where

I ≡
∫
R4

dq⃗dp⃗
(2πℏ)4 µ(q⃗,p⃗; ξ⃗,ϕ)|q⃗,p⃗; ξ⃗,ϕ⟩⟨q⃗,p⃗; ξ⃗,ϕ|, dq⃗ = dq1dq2, dp⃗ = dp1dp2, (6.C.1)

to be considered an overcomplete family of states. In (6.C.1), µ(q⃗,p⃗; ξ⃗,ϕ) stands for the
measure required to satisfy the resolution of the identity. Since the wavefunction associated
to |q⃗,p⃗; ξ⃗,ϕ⟩ takes the form of a two-variable non-separable Gaussian (6.B.12), we consider
a uniform measure µ(q⃗,p⃗; ξ⃗,ϕ) = µ̃(ξ⃗,ϕ), which accounts for any remaining constants that
might appear after solving the resolution of the identity.

Thus, using the coordinate representation in the condition ⟨Ψ′|I|Ψ⟩ and combining
with (6.C.1), we are led to

⟨Ψ̃|I|Ψ⟩ =
∫
R4

dx⃗ ′dx⃗ [Ψ̃(x⃗ ′)]∗Ψ(x⃗)µ̃(ξ⃗,ϕ)
(4 Re(∆1) Re(∆2) − Re(ℓ)2

π2

) 1
2

×

e−∆1x2
1−∆∗

1x′2
1 −∆2x2

2−∆∗
2x′2

2 +ℓx1x2+ℓ∗x′
1x′

2

∫
R4

dq⃗dp⃗
(2πℏ)2 e

− i
ℏp1(x1−x′

1)e− i
ℏp2(x2−x′

2)

e
− 1

∆

(
η1
λ2

1
q2

1+ η2
λ2

2
q2

2+ η12
λ1λ2

q1q2

)
e

−
(

ℓx2+ℓ∗x′
2

λ1λ2
+

2∆1x1+2∆∗
1x′

1
λ2

1

)
q1
e

(
ℓx1+ℓ∗x′

1
λ1λ2

+
2∆2x2+2∆∗

2x′
2

λ2
2

)
q2

 , (6.C.2)
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with dx⃗ = dx1dx2, together with

η1 = 8 Re(∆1)
(
3 Re(ℓ)2 + 4 Re(∆1) Re(∆2)

)
, η2 = 8 Re(∆2)

(
3 Re(ℓ)2 + 4 Re(∆1) Re(∆2)

)
,

(6.C.3)
and ∆ given in (6.3.27).

From the term inside square brackets in (6.C.2), it is clear that integrating over p1 and
p2 leads to 2πℏδ(x1 − x′

1) and 2πℏδ(x2 − x′
2), respectively. Moreover, by integrating over q1

and q2 one can conclude that the term in square brackets reduces to δ(x1 − x′
1)δ(x2 − x′

2).
This is straightforward, as it involves elementary integrals on Gaussian functions, and will
be left to the reader to verify. We thus get

⟨Ψ̃|I|Ψ⟩ = µ̃(ξ⃗,ϕ)
∫
R4

dx⃗ ′dx⃗ [Ψ̃(x⃗ ′)]∗Ψ(x⃗)δ(x⃗− x⃗′) = µ̃(ξ⃗,ϕ)⟨Ψ′|Ψ⟩, (6.C.4)

from which it is clear that µ̃(ξ⃗,ϕ) = 1 in order to fulfil the resolution of the identity. We
therefore verify that the non-separable two-mode squeezed states form an overcomplete fam-
ily.

6.D Some useful formulae
Here we summarise the expressions for the semiclassical portraits used in section 6.4.1.

For a simplified notation, we use the reparametrised variables

zaj
= qj − aj√

2λj∆pj

, zbj
= qj − bj√

2λj∆pj

, j = 1,2. (6.D.1)

In this form, the semiclassical portrait of the characteristic function becomes

ǍχE
(q⃗) = ǍχE1

(q1)ǍχE2
(q2), ǍχEj

(qj) = 1
2
(
Erfc

(
zbj

)
− Erfc

(
zaj

))
. (6.D.2)

The semiclassical portrait related to f(q⃗,p⃗) = qjχE(q⃗) is

Ǎqk
1 χE

(q⃗) = Ǎqk
1 χE1

(q1)ǍχE2
(q2), Ǎqk

2 χE
(q⃗) = Ǎqk

2 χE2
(q2)ǍχE1

(q1), (6.D.3)

for k = 1,2,3,4, with the functions Ǎqk
j χEj

(qj) given by

ǍqjχEj
(qj) = qjǍχEj

(qj) +
∆pj

λj√
2π

(
e

−z2
aj − e

−z2
bj

)
, (6.D.4)

Ǎq2
j χEj

(qj) =
(
q2

j + ∆2
pj
λ2

j

)
AχEj

+
∆pj

λj√
2π

(
(aj + qj)e−z2

aj − (bj + qj)e
−z2

bj

)
, (6.D.5)

Ǎq3
j χEj

(qj) =
(
q3

j + 3∆2
pj
λ2

j

)
AχEj

+
∆pj

λj√
2π
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j + aqj + q2
j + 2∆2

pj
λ2

j)e
−z2

aj − (b2
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pj
λ2

j)e
−z2
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)
, (6.D.6)
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Ǎq4
j χEj

(qj) =
(
q4

j + 6q2
j ∆2

pj
λ2

j + 3∆4
pj
λ4

j

)
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+
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. (6.D.7)
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Conclusion

In this thesis we have presented a generalised construction of coherent states for a variety
of two-dimensional quantum systems. The fundamental idea throughout was to address
the degeneracy in the spectrum, construct a non-degenerate spectrum and, where possible,
define ladder operators for the new spectrum. A primary goal of this work was to ensure
that we captured the richness of two-dimensional quantum systems such as entanglement
and broader notions of non-classicality. Some of these features would not be discoverable by
simply taking tensor products of one-dimensional states to construct two-dimensional states.
The states we presented were constructed starting from very basic principles, and as such,
are applicable to a variety of quantum bound state problems.

We studied the examples of the harmonic oscillator and Morse potential because of their
importance and widespread application in physics. Applying the technique of averaging
degenerate contributions we were able to generate generalised two-mode squeezed states
of the harmonic oscillator, a new set of su(2)-type coherent states for the 2:1 anisotropic
oscillator, and coherent states for the two-dimensional separable Morse potential and its
non-separable supersymmetric partner. In each case study we explored aspects of non-
classicality including squeezing, non-separability of the wavefunction and non-localisation of
the wavefunction. Some non-classical features of the two-dimensional states for these systems
could be missed if one were to neglect the problem of degeneracy. The applicability of these
techniques to any system with degeneracy in its bound state spectrum is evident.

In chapter 1 we outlined some of the basic features of coherent and squeezed states of
the harmonic oscillator in one dimension. The spirit of chapter 2 was to generalise the
definitions from the one-dimensional oscillator into two dimensions. The complications in-
troduced were the lack of singled-indexed spectrum and lack of ladder operators to act on
said spectrum. In this regard we succeeded in overcoming these complications, we defined
generalised ladder operators as linear combinations of the one-dimensional ladder operators
which act on a single-indexed spectrum containing averaged contributions from degenerate
states. From these generalised ladder operators the definitions from the one-dimensional case



followed naturally, and we recovered the most general type squeezed state, including two-
mode squeezing. We also considered Chen’s definition of coherent states for the anisotropic
oscillator [1], as well as their Schrödinger-type variant under our formalism.

The purpose of chapter 3 was to fill in the gaps in the analysis of coherent states for two-
dimensional anisotropic oscillators. While the states of Chen [1] provide a very reasonable
ansatz of su(2)-like coherent states for anisotropic oscillators, they clearly miss some of
more attractive mathematical properties required by many definitions of generalised coherent
states. In our work we were able to construct ladder operators which necessitated the use
of non-linear combinations of the one-dimensional ladder operators in order to account for
the degeneracy in the spectrum. Moreover, we recovered the identity operator for the states
demonstrating that they form a complete set.

So far in the thesis we had only dealt with degeneracies which are linear in the quan-
tum numbers, such degeneracies have known symmetry groups. Chapter 4 was devoted
to extending our construction to a two-dimensional system whose spectrum is quadratic
in the quantum numbers. In particular we studied the Morse potential bound states. It
was found that in general accidental degeneracies appear which make the extension of the
analysis from the preceding chapters somewhat difficult. We were able to determine that if
the principle parameter of the model, p, is irrational, then states in the system are at most
twofold degenerate. Equipped with this we constructed a set of generalised coherent states
as approximate eigenstates of the annihilation operator on the non-degenerate spectrum and
found the dependence of the uncertainties on the mixing parameters γ1,γ2.

Following this, in chapter 5, we invoked the supersymmetry formalism. We studied the
non-separable Morse potential presented by Ioffe [2] and were able to transform the non-
degenerate states developed in the preceding chapter by the action of the supercharge Q+

into states of the partner Hamiltonian. We then constructed the generalised coherent states
and found that due to the singularity along the line y = x in the potential, the coherent
state wavefunction was unable to localise. This along with the squeezing in between position
and momentum quadratures led us to conclude that the states generated were significantly
non-classical.

Lastly, in chapter 6, we exploited one of the properties of coherent states we have stressed
throughout this thesis: the resolution of the identity. We studied the effects of quantisation
with coupled and uncoupled two-dimensional squeezed states and discussed the particular
example of a position dependent mass system. The use of non-separable squeezed states
generated a correlation between the quantised observables in each mode. We saw, for in-
stance, that the quantisation of the classical position q1 led to a quantum operator which is
a linear combination of x̂1 and x̂2. Such features would not be exposed without the aid of
more general classes of two-dimensional coherent states.
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There are several avenues which deserve thorough exploration. Of course there exist
many two-dimensional systems which may still benefit from the analysis presented in this
thesis. But perhaps the most tempting generalisation is to N -dimensional systems. The
ideas presented in chapter 2 seem ready to be generalised in this case, and one might expect
to generate an N -dimensional tensor product of one-dimensional coherent states. More
interestingly, one might expect to define the most general possible coupled squeezed state
in N dimensions while maintaining a direct mathematical analogy with the well-understood
one-dimensional construction. We would naturally generate all possible bilinear couplings
between each mode in the system. For more general multilinear couplings one would have
to explore defining new operators altogether.

With respect to the ideas presented in chapter 3 there is clearly a lot left to be done in
two dimensions. Generalisation to the case where the commensurable frequencies are relative
primes p : q, would seem to be the starting point. It would seem that higher order non-
linearities in the generalised ladder operators would be required to capture the degenerate
states leading to more difficult analysis. Nevertheless, generating complete sets of su(2)-
like coherent states for an arbitrary commensurable frequency anisotropic oscillators seems
attainable. Additionally, a construction of Schrödinger-type coherent states by defining a
unitary exponential operator out of A−,A+ will lead to an entirely different class of coherent
states for the problem.

The clearest omission in the analysis of chapters 4 and 5 was the explicit construction of
ladder operators to act on the non-degenerate spectra. For spectra quadratic in the quantum
numbers we can always apply the same principles of averaging degenerate contributions as we
have stressed throughout this thesis, but constructing explicit generalised ladder operators
for the non-degenerate spectrum out of the one-dimensional ladder operators or otherwise
has proven difficult. In this case the organisation of the spectrum has solutions in number
theory and is not related to a well understood Lie symmetry group. If one were to be able
to construct such explicit representations, it would open the door to new classes of coherent
states for the system. Additionally, in the spirit of the transition from chapter 4 to chapter 5,
the states we generated were compatible with supersymmetry, and it would be interesting to
explore the generation of non-degenerate eigenstates for more general non-separable partner
Hamiltonians.

The ideas presented in chapter 6 deserve to be explored further in the context of quan-
tisation in non-rectangular restricted geometries. Mathematically speaking, some computa-
tions become more challenging, but the geometry may represent a more physical example. A
particularly interesting example would be to study semiclassical billiard dynamics in the gen-
eralised squeezed stated formalism. We know that the squeezed states generate anisotropy
in the regularised restricted region and understanding the impact on the dynamics of a
point particle confined to the region represents a curious mathematical problem. We must
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mention that the generalisation to higher dimensions can give very precise control of the
regularisation strength and coupling between coordinates which may have applications in
multidimensional materials. The most general multidimensional squeezed state quantisa-
tion scheme requires the most general class of squeezed states, so it is integral to further
understand the generalisations of the work presented in chapter 2.

Multdimensional quantum systems afford us much richer physics. The mathematical
underpinnings of coherent state analysis have proved critical in our understanding throughout
physics and it seems that some formalism in the multidimensional case is missing. The goal
of this thesis was to reliably produce a coherent state formalism in two-dimensional systems
which captured the nuances that arise in dimensions greater than one. To this extent we
succeeded, and we advocate for the understanding of coherent states from the viewpoint
of degeneracy. We live in an interesting time in the development of quantum information
science, and we believe that a detailed understanding of generalised multimode coherent
states will be of great use moving forward.
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