
Université de Montréal

Nouvelles perspectives sur les algèbres de type
Askey–Wilson

Dualité de Howe, opérateurs de Sklyanin–Heun et centralisateurs

par

Julien Gaboriaud

Département de Physique
Faculté des arts et des sciences

Thèse présentée en vue de l’obtention du grade de
Philosophiæ Doctor (Ph.D.)

en Physique

20 Août 2021

© Julien Gaboriaud, 2021



Résumé

Cette thèse se divise en trois parties qui peuvent être toutes regroupées autour d’une même
bannière : l’étude de structures algébriques reliées aux algèbres de type Askey–Wilson. Alors
que dans la première partie on s’efforce d’obtenir des interprétations duales (au sens de Howe)
de ces algèbres, dans les autres parties on étudie des généralisations de ces algèbres. Des
dégénérations de l’algèbre de Sklyanin, générées par des blocs plus fondamentaux que ceux
générant les algèbres de type Askey–Wilson, sont étudiées dans la deuxième partie et des
généralisations de plus haut rang des algèbres de type Askey–Wilson sont étudiées dans la
troisième partie.

Dans la première partie, en invoquant la dualité de Howe, deux interprétations duales
sont obtenues pour les algèbres de Racah, Bannai–Ito, Askey–Wilson, Higgs, Hahn, q-Hahn
et dual −1 Hahn. La façon dont la dualité de Howe opère est rendue explicite par l’examen
de processus de réduction dimensionnelle. Un modèle superintégrable 2D de mécanique
quantique superconforme dont l’algèbre de symétrie est celle de type dual −1 Hahn est
également introduit et solutionné.

Dans la deuxième partie, des algèbres générées par des opérateurs de contiguïté et
d’échelle encodant des propriétés de familles de polynômes sont étudiées. Ces opérateurs
appartiennent à la classe des opérateurs de Sklyanin–Heun, qui peuvent être définis sur plu-
sieurs grilles diverses. On découvre qu’ils génèrent des dégénérations de l’algèbre de Sklya-
nin. On démontre que les représentations irréductibles de dimension finie de ces algèbres ont
pour base des familles de para-polynômes. Les grilles linéaires, quadratiques, exponentielles
et d’Askey–Wilson sont étudiées et mènent respectivement aux polynômes orthogonaux des
familles de para-Krawtchouk, para-Racah, q-para-Krawtchouk et q-para-Racah. Enfin, la fa-
çon dont les polynômes de para-Krawtchouk et d’autres familles de polynômes orthogonaux
sont reliées aux représentations tridiagonales du plan de Jordan déformé est présentée.

Dans la dernière partie, on explore des généralisations à plus haut rang pour les algèbres
de Racah et Askey–Wilson. Pour ce faire, on étudie les réalisations de ces algèbres en termes
de Casimirs intermédiaires. Le rôle de la matrice R tressée est élucidé : celle-ci permet
de relier divers Casimirs intermédiaires entre eux par conjugaison. Un isomorphisme entre
l’algèbre de skein du crochet de Kauffman de la sphère à 4 trous et l’algèbre engendrée
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par les Casimir intermédiaires dans Uq(sl2)⊗3 est présenté et permet d’interpréter de façon
diagrammatique la conjugaison par la matrice R tressée mentionnée ci-haut. Finalement,
une présentation du centralisateur Zn(sl2) de U(sl2) dans U(sl2)⊗n par générateurs et
relations est obtenue et on montre que ce centralisateur est isomorphe à un quotient (obtenu
explicitement) de l’algèbre de Racah de plus haut rang R(n).

Mots-clés
• Algèbre d’Askey–Wilson
• Dualité de Howe
• Opérateurs de Sklyanin–Heun
• Centralisateurs
• Réduction dimensionnelle
• Algèbre de Sklyanin
• Para-polynômes
• Algèbre de skein du crochet de Kauffman
• Matrice R
• Théorie des invariants classique
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Abstract

This thesis is divided in three parts which all orbit around the same theme: the study
of algebraic structures related to the algebras of Askey–Wilson type. In the first part we
obtain two interpretations that are dual in the sense of Howe for the algebras of Askey–
Wilson type. Meanwhile, the other two parts are concerned with generalizations of these
algebras. In the second part, we study degenerations of the Sklyanin algebra, which are built
out of generators that are more fundamental than those of the Askey–Wilson algebra. In
the last part, generalizations of the Askey–Wilson type algebras to higher rank are studied.

In the first part, dual interpretations are obtained for the Racah, Bannai–Ito, Askey–
Wilson, Higgs, Hahn, q-Higgs and dual −1 Hahn algebras by invoking Howe duality. The way
that this Howe duality operates is made explicit through the examination of a dimensional re-
duction procedure. A 2D superintegrable superconformal quantum mechanics model, whose
symmetry algebra is the one of dual −1 Hahn type, is also introduced and solved.

In the second part, we study algebras that are generated by contiguity and ladder op-
erators that encode properties of families of orthogonal polynomials. We show that these
operators belong to the Sklyanin–Heun class of operators, which can be defined for vari-
ous grids. We also show how their algebraic relations correspond to those of degenerations
of the Sklyanin algebra. Then, we show how various families of para-polynomials sup-
port finite-dimensional irreducible representations of these degenerate algebras. From the
linear, quadratic, exponential and Askey–Wilson grids, we are respectively led to the para-
Krawtchouk, para-Racah, q-para-Krawtchouk and q-para-Racah polynomials. Later, we
connect the para-Krawtchouk polynomials (and other families of orthogonal polynomials) to
tridiagonal representations of the deformed Jordan plane.

In the final part, we explore higher rank generalizations of the Racah and Askey–Wilson
algebras. To that end, their realizations in terms of intermediate Casimir elements are
studied. The role of the braided R-matrix is understood as follows: it connects various
intermediate Casimir elements through conjugation. We obtain an isomorphism between the
Kauffman bracket skein algebra of the four-punctured sphere and the algebra generated by
the intermediate Casimir elements in Uq(sl2)⊗3. This leads to a diagrammatic interpretation
of the conjugation by the braided R-matrix mentioned in the above. Lastly, a presentation
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of the centralizer Zn(sl2) of U(sl2) in U(sl2)⊗n by generators and relations is obtained and
we show that this centralizer is isomorphic to a quotient (which we provide explicitly) of
the higher rank Racah algebra R(n).

Keywords
• Askey–Wilson algebra
• Howe duality
• Sklyanin–Heun operators
• Centralizers
• Dimensional reduction
• Sklyanin algebra
• Para-polynomials
• Kauffman bracket skein algebra
• R-matrix
• Classical invariant theory
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Introduction

Prologue
Nous sommes en 1981. Le jeune homme a 23 ans et est en train de compléter son service

militaire dans l’armée soviétique. Mais il n’est pas parti les mains vides. En sa possession,
un livre sur les fonctions spéciales qu’il étudie dans son temps libre [1]. Un chapitre en
particulier pique sa curiosité : celui sur les familles de polynômes orthogonaux de Meixner,
Krawtchouk et Charlier.

Le protagoniste s’intéresse aux opérateurs encodant les relations de récurrence et les
équations aux différences caractérisant ces trois familles de polynômes. En calculant les
relations algébriques entre ces opérateurs, il reconnaît les relations définissantes des algèbres
de Lie su(1, 1) et su(2).

C’est là le point de départ de ce qui suit.

1982. Notre protagoniste est rentré de son service militaire et débute ses travaux de
doctorat à Donetsk sous la supervision de Ya Granovskii. Il tente d’étendre les idées qu’il a
eu à la suite de ses observations sur les polynômes orthogonaux et les algèbres de Lie. Une
première publication en 1984 [2] explique comment obtenir les trois familles mentionnées
ci-haut à partir des algèbres de Lie su(1, 1) et su(2). Cependant, il note que son approche
ne fonctionne plus pour les familles de polynômes situées plus haut dans le tableau d’Askey
[Figure 1].

En quelques mots, la raison pour laquelle ça bloque, c’est qu’il n’est pas possible de
retrouver le spectre quadratique des familles de polynômes plus hautes dans le tableau
d’Askey uniquement à l’aide d’algèbres de Lie. Il faut des outils plus puissants.

La solution à laquelle parvient éventuellement le protagoniste : étudier des algèbres
quadratiques. Ici, il faut apprécier que ce type d’algèbre est hors du commun à cette



époque. Les algèbres de Lie sont des objets bien connus apparus à la fin du 19e siècle et la
classification des algèbres de Lie semi-simples a été complétée par Cartan un peu avant le 20e

siècle. En revanche, presque rien n’est connu sur la classe des algèbre quadratiques du type
étudié par le protagoniste, à l’exception peut-être de l’algèbre de Sklyanin [3] et certains
travaux indépendants sur les algèbres de symétrie de certains systèmes superintégrables [4].

Ces algèbres quadratiques sont la clé pour retrouver le spectre quadratique mentionné
précédemment. Les représentations tridiagonales de l’algèbre dite de Racah font alors
intervenir les polynômes de Racah, qui trônent au sommet du tableau d’Askey [5]. Nous
sommes alors en 1989. Autre curiosité : ces algèbres quadratiques apparaissent dans l’étude
du problème de Racah des algèbres su(1, 1) et su(2)...

Ce n’est pas la fin de l’histoire.

Il existe également un q-tableau d’Askey [Figure 2] qui rassemble des généralisations des
familles du tableau d’Askey par un paramètre q. Au sommet de ce q-tableau se trouvent les
polynômes d’Askey–Wilson. Dans la même veine que ce qui a été fait pour les polynômes
et l’algèbre de Racah, notre protagoniste se demande : existe-t-il des structures algébriques
similaires associées aux polynômes d’Askey–Wilson?

Deux publications en 1991 et 1993 [6, 7] répondent à l’affirmative. Une algèbre
cubique, baptisée algèbre d’Askey–Wilson par le protagoniste, possède des représentations
tridiagonales sur les polynômes d’Askey–Wilson et est de plus reliée au problème de Racah
de slq(2).

Dans les années qui suivent, les algèbres de Racah et d’Askey–Wilson prennent de l’am-
pleur et se mettent à apparaître dans un nombre grandissant de domaines des mathématiques
et de la physique.

22



Wilson

�
�
�
�
�
��

A
A
A
A
A
AU

?

Racah

�
�
�
�
�
��

A
A
A
A
A
AU

Continuous

dual Hahn
�
�
�
�
�
��

Continuous

Hahn
�
�

�
�

�
�
�

��+

�
�
�
�
�
��

A
A
A
A
A
AU

Hahn

�
�

�
�

�
�
�

��+

A
A
A
A
A
AU

Q
Q
Q
Q
Q
Q
Q
QQs

Dual Hahn

�
�
�
�
�
��

A
A
A
A
A
AU

Meixner
-

Pollaczek
@
@
@
@
@
@R

Jacobi

�
�
�

��

HHHHHHHHHj

?

@
@
@
@
@
@R

Pseudo

Jacobi
Meixner

������������� ?

Krawtchouk

�
�

�
�
�
�	

Laguerre

HHHHHHHHHHHHj

@
@
@
@
@
@R

Bessel Charlier

�
�
�

�
�
�	

�������������Hermite

Fig. 1. Tableau d’Askey des familles de polynômes orthogonaux classiques
hypergéométriques. Les flèches indiquent l’existence de limites permettant
de passer d’une famille à une autre. Les familles situées en haut du tableau
peuvent donc être considérées comme les plus générales.

23



Fig. 2. q-tableau d’Askey des familles de polynômes orthogonaux hypergéo-
métriques basiques. Les flèches indiquent l’existence de limites permettant
de passer d’une famille à une autre. Les familles situées en haut du tableau
peuvent donc être considérées comme les plus générales.
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Sur l’importance de l’algèbre et de la théorie des
groupes en physique

Pourquoi parler d’algèbre et de théorie des groupes dans une thèse de physique?

Il existe une riche tradition d’interactions entre la physique théorique et le domaine de
l’algèbre en mathématiques : à tour de rôle, un domaine inspire des avancées dans l’autre,
et les multiples connexions entre ces domaines sont riches et bénéfiques.

Dès les premiers balbutiements de la mécanique quantique déjà, des éléments d’algèbre,
de théorie des groupes et de théorie des représentations apparaissaient un peu partout dans
la théorie. Assez vite, certains physiciens se rendent compte que des arguments de symétrie
peuvent servir à expliquer les espacements entre les niveaux d’énergie et les dégénérescences
observées dans des expériences de spectroscopie. L’algèbre et la théorie des groupes sont le
langage mathématique naturel pour parler de symétries.

Petit à petit, les articles de pionniers tels que Wigner et Weyl commencent à cimenter
l’importance et à formaliser le rôle de la théorie des groupes (et de leurs représentations)
en mécanique quantique. Toutefois, le formalisme mathématique utilisé est peu familier
pour la plupart des physiciens. Un bon nombre voit cette formalisation mathématique de la
théorie quantique d’un mauvais œil; l’appellation Gruppenpest, ou « Peste de la théorie des
groupes » due à Ehrenfest est emblématique de cette d’opposition envers une abstraction
mathématique grandissante de la théorie quantique [8].

Malgré tout, cette résistance disparaît éventuellement en raison des multiples succès
rencontrés par la théorie des groupes en physique théorique. Pour n’en nommer que quelques
uns, mentionnons l’élucidation de l’effet Zeeman anomal, les progrès en chimie physique et en
spectroscopie, les développements dans l’étude des représentations irréductibles du groupe
de Poincaré, la classification des particules élémentaires, ainsi que le développement de la
théorie électrofaible et des théories de jauge.

Dans son livre The Theory of Groups and Quantum Mechanics [9], Weyl écrit :
It has recently been recognized that group theory is of fundamental impor-
tance for quantum physics; it here reveals the essential features which are not
contigent on a special form of the dynamical laws nor on special assumptions
concerning the forces involved.1

Les constatations de symétrie et de covariance sont si puissantes qu’elles fixent la forme des
lois physiques, sans même qu’on n’aie besoin de supposer quoi que ce soit sur la forme des

1« On a récemment reconnu l’importance fondamentale de la théorie des groupes en physique quantique;
celle-ci révèle des éléments essentiels de la théorie qui ne sont pas conditionnels à la forme des lois dynamiques
ou des forces impliquées » (traduction libre).
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forces physiques en action. C’est d’ailleurs ainsi qu’on arrive aux équations de Schrödinger
et de Dirac en partant des postulats de covariance de Galilée et de Poincaré.

L’étude de la théorie des groupes en mécanique quantique est fructueuse. Weyl en par-
ticulier travaille à l’interface des deux domaines et se met à étudier de plus près le groupe
symmétrique et le groupe des transformations linéaires. Dans les problèmes de couplage de
2 spins, il est bien connu que les propriétés de symétrie/antisymétrie de la fonction d’onde
totale sont reliées au spin total résultant de la combinaision. Ce lien entre spin et symétrie
sous permutation est en fait un cas particulier d’un phénomène plus général, étudié par Weyl
et baptisé « réciprocité entre les représentations du groupe symétrique et du groupe général
linéaire ». De nos jours, on le connaît sous le nom de « dualité de Schur–Weyl » et c’est un
résultat central en théorie des représentations.

La dualité de Schur–Weyl a vu le jour à la suite de progrès en mathématiques inspirés
en partie par des questions en physique. L’inverse se produit aussi parfois. Un des facteur
limitant certains progrès en physique est la capacité à effectuer des calculs pour solutionner
des problèmes, une difficulté fondamentalement mathématique. À cet égard, des avancées
mathématiques menant à des prouesses calculatoires permettent l’étude de modèles de plus
en plus sophistiqués. Mentionnons ici la solution du modèle d’Ising en 2D par Onsager [10]
en 1944 : un tour de force algébrique qui a par la suite grandement stimulé les domaines des
transitions de phase et l’étude des phénomènes critiques en physique.

De nos jours, la théorie physique moderne ayant rencontré le plus grand succès dans les
dernières décennies est le Modèle Standard de physique des particules, et ses symétries, qui
s’expriment dans le langage de l’algèbre et la théorie des groupes, jouent un rôle essentiel
dans cette théorie : ce sont elles qui encodent les forces fondamentales de la nature.

Intégrabilité et algèbre
Un autre domaine relativement récent en physique qui utilise l’algèbre à profusion est le

domaine des systèmes intégrables. Une tâche standard en physique théorique est de concocter
des modèles afin de rendre compte de phénomènes observés. Ces modèles sont, par exemple,
un système d’équations mathématiques décrivant la dynamique ou certaines propriétés d’un
système physique qu’on veut encoder. Si les solutions du modèle concocté parviennent à bien
reproduire ce qui est observé expérimentalement, alors on pourra utiliser ce modèle comme
point de départ pour développer une théorie physique du système.

Les modèles en physique jouent un rôle important dans l’élucidation de phénomènes,
mais en général ils ne sont pas exactement résolubles. La plupart du temps, on ne peut
que les solutionner numériquement ou bien en faisant des approximations. Toutefois, pour
un faible nombre de modèles, leurs solutions exactes peuvent être obtenues explicitement :
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ceux-ci sont dits exactement résolubles. Les systèmes associés sont dits intégrables et ont
beaucoup d’utilités en physique théorique.

Précisons un peu ce qui est entendu par système intégrable (pour une revue récente,
voir [11]). En mécanique classique, si un système possédant n degrés de liberté possède n
constantes du mouvement indépendantes et qui Poisson-commutent2 simultanément, on dit
que ce système est intégrable. Si ce système possède plus de n constantes du mouvement,
on dit qu’il est superintégrable. Enfin, un système est maximalement superintégrable s’il
possède le nombre maximal de constantes du mouvement, soit 2n−1, et qu’une d’entre elles,
l’Hamiltonien, commute avec toutes les autres.

Les systèmes maximalement superintégrables peuvent typiquement être solutionnés al-
gébriquement en tirant parti de leurs nombreuses symétries. C’est la présence de ces nom-
breuses symétries qui explique la solvabilité du système. Ces symétries sont très riches et
peuvent être plus générales que les symétries de groupe (associées à des algèbres de Lie) men-
tionnées à la section précédente : elles peuvent former des algèbres quadratiques, cubiques,
ou même polynomiales [4].

Qu’en est-il des systèmes intégrables en mécanique quantique? Malgré un volume élevé
de travaux et un nombre de définitions proposées pour définir la notion de système quantique
intégrable, il ne semble toujours pas y avoir de consensus à ce jour sur « la bonne » définition
[12]. Cela contraste avec la situation en mécanique classique où la théorie est bien établie.
Toutefois, tous ces travaux ne sont pas en vain et ont mené à une pluie de résultats en
physique et en mathématiques. En particulier, dans la foulée de l’étude des modèles sur
réseau utilisant la machinerie de la matrice de transfert ainsi que dans l’étude des systèmes
quantiques intégrables par l’entremise des méthodes de « scattering inverse » 3 , Drinfeld [13]
et Jimbo [14] ont identifié des nouvelles structures algébriques, les groupes quantiques. Ces
structures sont très riches : il s’agit d’algèbres de Hopf quasi-triangulaires non-commutatives
qui sont des déformations d’algèbres enveloppantes universelles d’algèbres de Lie. Dans cet
exemple-ci, c’est la physique qui inspire des progrès en algèbre.

Au-delà de leurs riches propriétés algébriques, les systèmes superintégrables ont d’autres
utilités en physique. Il est souvent utile d’approximer des systèmes plus complexes par des
perturbations de systèmes superintégrables (on peut penser ici à l’omniprésence d’oscillateurs
harmoniques en physique), lesquels sont exactement résolubles.

Les systèmes maximalement superintégrables semblent être tous exactement résolubles.
Il s’agit d’une conjecture pour laquelle aucun contre-exemple n’a été trouvé à ce jour. Les
solutions de systèmes intégrables font intervenir des polynômes orthogonaux et des fonctions
spéciales : d’autres connexions entre les mathématiques, l’algèbre et la physique théorique.
On peut résumer le principe des dernières pages par l’heuristique suivant :

2c’est-à-dire que leur crochet de Poisson s’annule
3ou bien « problème inverse de la diffusion quantique »?

27



Si on comprend davantage d’algèbres et les fonctions spéciales qui leur sont
associées, et que ces algèbres sont liées à des modèles en physique, alors on
peut solutionner davantage de problèmes en physique.

Les deux prochaines sections illustreront ceci par deux exemples.

Un premier exemple : l’oscillateur harmonique quan-
tique 2D

L’oscillateur harmonique quantique 2D a pour Hamiltonien

H = 1
2{a1, a

†
1}+ 1

2{a2, a
†
2} = N1 +N2 + 1, (0.0.1)

où les Ni sont donnés par

Ni = a†iai, i, j = 1, 2. (0.0.2)

Ici, {A,B} = AB + BA dénote l’anticommutateur et les a†i , ai sont respectivement les
opérateurs d’échelle de création et d’annihilation :

ai = 1√
2

(
xi + ∂

∂xi

)
, a†i = 1√

2

(
xi −

∂

∂xi

)
, i, j = 1, 2. (0.0.3)

Ceux-ci respectent les relations de commutation canoniques de l’algèbre de Weyl :

[ai, a†j] = δij, [ai, aj] = [a†i , a
†
j] = 0, i, j = 1, 2, (0.0.4)

où [A,B] = AB−BA dénote le commutateur. Quelles sont les symétries de ce système? On
trouve assez facilement que les Kij

Kij = a†iaj, i, j = 1, 2, (0.0.5)

commutent avec l’Hamiltonien (0.0.1) :

[H,Kij] = 0 (0.0.6)

et génèrent l’algèbre de symétrie du système. C’est la construction de Schwinger [15]. Puis-
qu’on exclut l’Hamiltonien des générateurs, prenons plutôt comme base

A+ = a†1a2, A− = a1a
†
2, D = N1 −N2. (0.0.7)

Un calcul direct permet d’obtenir

[D,A±] = ±2A±,

[A+, A−] = D,
(0.0.8)

et d’identifier l’algèbre de Lie su(2) comme algèbre de symétrie du système. Cette algèbre
de Lie est étroitement reliée aux rotations. Le système d’oscillateur harmonique 2D possède
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donc des propriétés d’invariance sous rotations. Dans le prochain exemple, on obtiendra une
algèbre qui n’a plus d’interprétation géométrique directe.

Un autre exemple : l’oscillateur singulier 2D
Ajoutons maintenant des termes centrifuges à l’Hamiltonien (0.0.1) pour obtenir l’Ha-

miltonien d’un oscillateur singulier 2D

Hk = 1
2 [J (1)
− , J

(1)
+ ] + 1

2 [J (2)
− , J

(2)
+ ] = J

(1)
0 + J

(2)
0 , (0.0.9)

avec

J
(i)
± = 1

4

(xi ∓ ∂

∂xi

)2

+ ki
xi2

 , J
(i)
0 = 1

4

[
− ∂2

∂xi2
− ki
xi2

+ xi
2
]
. (0.0.10)

Dans la limite k1, k2 → 0, on retrouve l’oscillateur harmonique 2D de la section précédente.
Ce modèle peut être vu comme une déformation du modèle précédent par des paramètres
k1, k2, et est donc un modèle légèrement plus sophistiqué. Mais cette légère sophistication
nous amène à utiliser des outils algébriques plus complexes.

Cette fois-ci, les relations de commutation sont

[J (i)
− , J

(j)
+ ] = 2J (i)

0 δij, [J (i)
0 , J

(j)
± ] = ±J (i)

± δij,

[J (i)
0 , J

(j)
0 ] = [J (i)

− , J
(j)
− ] = [J (i)

+ , J
(j)
+ ] = 0,

i, j = 1, 2. (0.0.11)

L’algèbre de symétrie de ce système est générée par des combinaisons à la Schwinger ana-
logues à celles dans l’exemple précédent4 :

A+ = 4J (1)
+ J

(2)
− , A− = 4J (1)

− J
(2)
+ , D = 2(J (1)

0 − J
(2)
0 ). (0.0.12)

Cette fois-ci les relations algébriques entre les générateurs ne sont plus linéaires. Un calcul
direct donne

[D,A±] = ±4A±,

[A+, A−] = −D3 +Dα1 + α2,
(0.0.13)

où les αi sont des termes centraux donnés par

α1 = 4H2 − (3 + 2(k1 + k2)), α2 = 4(k1 − k2)H. (0.0.14)

L’algèbre (0.0.13) est une extension centrale de l’algèbre de Higgs [16] et est un exemple
d’algèbre quadratique qui apparaît lors de l’étude des symétries de modèles en physique.

Algèbre quadratique ai-je dit? À première vue, les relations (0.0.13) semblent cubiques
et non quadratiques. Toutefois, l’algèbre de Higgs est isomorphe à l’algèbre de Hahn, qui est

4Pour simplifier les expressions ci-bas, on a ajusté la normalisation.
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clairement quadratique. Sous le changement de variables (inversible) suivant :

K1 = 1
2D,

K2 = −1
4(A+ + A− + 1

2D
2) + 1

8α1,

K3 = −1
2(A+ − A−),

(0.0.15)

les relations (0.0.13) prennent la forme (d’une extension centrale) de l’algèbre de Hahn :

[K1, K2] = K3,

[K2, K3] = −2{K1, K2} − 1
4α2,

[K3, K1] = −2K1
2 − 4K2 + 1

2α1.

(0.0.16)

L’exemple de l’oscillateur singulier 2D démontre qu’en étudiant un modèle légèrement plus
sophistiqué, on voit déjà le besoin d’introduire des structures algébriques plus générales que
les algèbres de Lie.

L’algèbre et les polynômes de Hahn
D’où l’algèbre de Hahn tire-t-elle son nom? Il existe une famille de polynômes orthogo-

naux classiques appelés polynômes de Hahn. Ces polynômes orthogonaux sont données par
l’expression suivante [17] :

Qn(x) := Qn(x;α, β,N) = 3F2

(
−n, n+ α + β + 1,−x

−N,α + 1 ; 1
)
, n = 0, 1, . . . , N, (0.0.17)

où la fonction hypergéométrique rFs est donnée par

rFs

(
a1, . . . , ar
b1, . . . , bs

; z
)

=
∞∑
k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k! (0.0.18)

et (a)k = a(a+ 1) · · · (a+ k − 1) est le symbole de Pochhammer.
Ces polynômes possèdent de nombreuses propriétés remarquables. En particulier, ils

obéissent à une relation de récurrence à trois termes
−xQn(x) = AnQn+1(x)− [An + Cn]Qn(x) + CnQn(x),

An = (n+ α + β + 1)(n+ α + 1)(N − n)
(2n+ α + β + 1)(2n+ α + β + 2) ,

Cn = n(n+ α + β +N + 1)(n+ β)
(2n+ α + β)(2n+ α + β + 1) ,

(0.0.19)

ainsi qu’à une équation aux différences

n(n+ α + β + 1)Qn(x) = B(x)Qn(x+ 1)− [B(x) +D(x)]Qn(x) +D(x)Qn(x− 1),

B(x) = (x+ α + 1)(x−N), (0.0.20)

D(x) = x(x− β −N − 1).
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Ces deux équations peuvent être vues comme des équations aux valeurs propres pour deux
opérateurs, un premier opérateur associé à la relation de récurrence

X = AnT+ − [An + Cn]I + CnT−, T±f(n) = f(n± 1), (0.0.21)

ainsi qu’un second opérateur associé à l’équation aux différences

D = B(x)∆+ − [B(x) +D(x)]I +D(x)∆−, ∆±f(x) = f(x± 1), (0.0.22)

ayant respectivement −x et n(n + α + β + 1) comme valeurs propres. Ici I est l’opérateur
identité.

Les Qn(x) sont simultanément les fonctions propres de deux problèmes aux valeurs
propres en deux variables différentes : n et x. Dans une telle situation, on dit que X et
D sont une paire bispectrale d’opérateurs, ou encore des opérateurs bispectraux, et que les
Qn(x) satisfont la propriété de bispectralité.

Les deux opérateurs X et D ne commutent pas. Les relations algébriques auxquelles
ils obéissent sont celles de l’algèbre de Hahn, nommée ainsi en référence aux polynômes du
même nom qui solutionnent leur problème bispectral. Sous le choix

K1 = −2X − 1
2(2N + β − α),

K2 = D + 1
4(α + β)(α + β + 2),

(0.0.23)

on obtient les relations de l’algèbre de Hahn :

[K1, K2] = K3,

[K2, K3] = −2{K1, K2}+ δ1,

[K3, K1] = −2K1
2 − 4K2 + δ2,

(0.0.24)

avec paramètres

δ1 = 1
2(2N + α + β + 2)(α2 − β2),

δ2 = 1
2(α− β)2 + 2N(2N + α + β + 2).

(0.0.25)

L’algèbre de Hahn est une algèbre quadratique qui apparaît dans une multitude de contextes
et a été également vue dans l’exemple de l’oscillateur singulier 2D à la section précédente.

Tous ces exemples ont pour but de faire valoir que les algèbres quadratiques (ou cubiques,
même polynomiales) sont des structures d’intérêt en physique qui apparaissent également
dans l’étude des fonctions spéciales en mathématiques.

Les algèbres de type Askey–Wilson
Les polynômes orthogonaux hypergéométriques et hypergéométriques basiques sont res-

pectivement classifiés dans le tableau d’Askey [Figure 1] et le q-tableau d’Askey [Figure 2].
Un certain nombre de familles −1 de polynômes orthogonaux obtenues des familles du

31



q-tableau d’Askey par des limites q → −1 particulières ont été définies et constituent le
−1-tableau d’Askey.

Toutes ces familles de polynômes sont bispectrales, c’est-à-dire qu’elles satisfont à la pro-
priété de bispectralité introduite précédemment. Pour chaque famille, il est donc possible de
considérer la paire bispectrale d’opérateurs de récurrence et aux différences et de déterminer
les relations de commutation qu’ils respectent. Les relations obtenues définissent une algèbre
abstraite qu’on nomme en fonction de la famille de polynômes à partir de laquelle elle a été
obtenue. Dépendemment de la famille étudiée, les relations de commutation s’expriment
linéairement (par exemple, pour les familles de Meixner, Krawtchouk et Charlier), quadra-
tiquement (familles de Hahn, Racah) ou cubiquement (famille d’Askey–Wilson) en termes
des générateurs.

Le cas le plus général est obtenu en considérant les polynômes d’Askey–Wilson et mène
à l’algèbre d’Askey–Wilson, baptisée et obtenue pour la première fois par Alexei Zhedanov
en [6] et dont l’origine historique a été racontée dans le Prologue.

Les objets autour desquels gravitent tous les travaux de cette thèse sont ce que j’appelle
les algèbres de type Askey–Wilson.

Définition. Dans cette thèse, on entendra par algèbres de type Askey–Wilson cha-
cune des algèbres abstraites (ainsi que leurs extensions centrales) obtenues en calculant les
relations de commutation de la paire d’opérateurs de bispectralité associée à une famille de
polynômes orthogonaux du q-tableau d’Askey ou de ses limites. Ceci comprend les familles
du tableau d’Askey et du −1-tableau d’Askey.

D’autres algèbres de type Askey–Wilson qui apparaîtront dans cette thèse sont les al-
gèbres de q-Hahn, Racah, Bannai–Ito, duale −1-Hahn, ainsi que certaines de leurs extensions
centrales.

Comme les exemples de l’algèbre de Hahn et de l’oscillateur singulier 2D l’illustrent
bien, ces algèbres de type Askey–Wilson sont omniprésentes et connectent des domaines
variés en physique et en mathématiques. En général, quand ces algèbres apparaissent, les
polynômes associés sont également présents. En plus de leur rôle comme algèbre de symétrie
de systèmes physiques et de leur présence en théorie des polynômes orthogonaux, ces algèbres
apparaissent en théorie des représentations dans l’étude du recouplement de représentations
irréductibles des algèbres Uq(sl2), osp(1|2) et sl2. Sans être exhaustif, on peut rajouter que :
ces algèbres sont des cas particuliers des algèbres de Painlevé, appartiennent à la classe
des algèbres de Calabi–Yau, elles peuvent être vues comme des troncations de l’algèbre
de q-Onsager, elles peuvent être obtenues par l’équation de réflexion dans le contexte de
modèles intégrables et du formalisme de la matrice R, elles apparaissent dans la classification
des paires de Leonard en combinatoire algébrique, elles sont reliées aux algèbres de Hecke
doublement affines, elles sont reliées à la dualité de Schur–Weyl quantique, elles apparaissent
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dans l’étude des modèles ASEP et elles sont présentes en théorie des noeuds. Plus de détails
et des références sont donnés dans l’introduction de l’article de revue The Askey–Wilson
algebra and its avatars [18] présenté au Chapitre 15. Leurs nombreuses apparitions dans des
domaines aussi variés permettent de connecter ces domaines et sont un signe indéniable de
la richesse de ces algèbres.

Structure de cette thèse
Tous les travaux dans cette thèse tournent autour de ces algèbres de type Askey–Wilson

et peuvent être séparés assez naturellement en trois parties. Chaque partie débutera par une
mise en contexte qui précèdera les articles.

La première partie porte sur la dualité de Howe et les algèbres de type Askey–Wilson. Les
articles dans la première partie utilisent le concept de paires duales en théorie des représenta-
tions (également connu sous le nom de dualité de Howe) afin de fournir deux interprétations
duales aux algèbres de type Askey–Wilson. Un modèle superintégrable de mécanique quan-
tique superconforme qui a été étudié dans la foulée de ces travaux est également présenté et
solutionné.

La deuxième partie porte sur des structures algébriques qui sont en un sens plus fonda-
mentales que les algèbres de type Askey–Wilson. Tout comme l’algèbre d’Askey–Wilson a
été obtenue à l’origine à partir des opérateurs de bispectralité, ces nouvelles structures algé-
briques sont obtenues à partir d’opérateurs associés à des familles de polynômes orthogonaux
mais qui sont cette fois-ci plus élémentaires. Les algèbres obtenues sont des dégénérations de
l’algèbre de Sklyanin. De nouvelles connexions entre les fonctions spéciales, les opérateurs
de Heun algébriques et les algèbres de Sklyanin dans le domaine des systèmes intégrables
sont mises de l’avant par l’introduction du concept d’opérateurs de Sklyanin–Heun.

La troisième partie porte sur la relation entre les algèbres de type Askey–Wilson et les
centralisateurs. Des outils comme la matrice R universelle, les théorèmes fondamentaux de
théorie des invariants et les algèbres de skein sont employés afin de préciser de quelle façon
les algèbres de type Askey–Wilson peuvent être vues comme des centralisateurs. Également,
on y obtient des ensembles de relations définissantes pour certains centralisateurs.
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Partie 1

Algèbres de type Askey–Wilson et dualité de
Howe



Introduction
La théorie des paires duales réductives, également connue sous le nom de dualité de

Howe, a été développée par Roger Howe dans les années 1970. Tout a commencé avec une
prépublication de Howe en 1976, Remarks on classical invariant theory [19], qui a beaucoup
circulé mais n’a été publié au final qu’en 1989. Dans cet article, Howe remarque qu’un
nombre de résultats épars en théorie des invariants classiques peuvent être formulés de façon
assez uniforme par l’introduction du concept de paires duales réductives.

Cette unification laisse envisager que ce nouveau concept est d’une grande importance;
entres autres, il permet également de jeter un éclairage nouveau sur les identités de Capelli,
la théorie des harmoniques sphériques, la cohomologie du groupe unitaire ainsi que diverses
structures mathématiques typiques qui apparaissent en physique théoriques telles que l’équa-
tion d’onde, l’équation de Laplace, les équations de Dirac et les équations de Maxwell [20].

Howe développe initialement sa théorie pour les groupes classiques (GLn, On, Spn, Un).
Par la suite, des travaux subséquents identifient des analogues des paires duales faisant
intervenir des groupes quantiques [21–23] et des superalgèbres de Lie [24] et le concept de
paire duale prend de l’importance en théorie des représentations.

Qu’est-ce qu’une paire duale? Voici tout d’abord une définition pour les groupes et
algèbres de Lie.
Définition 0.0.1. [20] Soit S un groupe de Lie et soient G, G′ deux sous-groupes de S.
Alors (G,G′) forment une paire duale de sous-groupes de S is G est le centralisateur de
G′ dans S et vice-versa. Dans ce cas, on dit également que la paire (g, g′) d’algèbres de Lie
des groupes (G,G′) est une paire duale dans l’algèbre de Lie s de S.
Définition 0.0.2. Lorsque les deux membres de la paire duale (G,G′) sont réductibles, on
dit que (G,G′) forment une paire duale réductive.

Si l’un des deux membres de la paire duale est un groupe compact, on obtient le résultat
suivant.
Théorème 0.0.3. [25, 26] Soit H un espace de Hilbert qui supporte des représentations de
S. Alors, les actions de G et G′ sur H commutent et sont complètement réductibles. L’espace
de Hilbert admet la décomposition (sans multiplicité) suivante :

H =
⊕
λ

Γ(λ) ⊗ Γ′(λ), (0.0.26)

où les Γ(λ) et les Γ′(λ) sont des modules irréductibles de G et G′ respectivement.
Ces définitions sont données ici pour les groupes et algèbres de Lie mais peuvent être

étendues de façon appropriée pour des superalgèbres de Lie et des algèbres quantiques.
Il est intéressant de noter la similarité avec l’énoncé de la dualité de Schur–Weyl [27].

Théorème 0.0.4. Les actions des groupes symmétrique Sk et du groupe général linéaire
GLn sur l’espace (Cn)⊗k commutent et cet espace se décompose en une somme directe sans



multiplicité de produits tensoriels de modules irréductibles des deux groupes

(Cn)⊗k =
⊕
λ

π
(λ)
k ⊗ ρ(λ)

n , (0.0.27)

où π(λ)
k sont des représentations irréductibles de Sk étiquettées par des diagrammes de Young

λ appropriés et les ρ(λ)
n , des représentations irréductibles de GLn également étiquettées par

λ.
Cette similarité n’est pas une coïncidence : on peut utiliser l’énoncé de la dualité de

Howe pour prouver l’énoncé de la dualité de Schur–Weyl [27]. Également, les Premier et
Second Théorèmes Fondamentaux de la théorie des invariants sont des conséquences de cet
énoncé [27]. Les avancées amenées par la dualité de Howe s’inscrivent dans l’héritage de
Weyl et de ses travaux à l’interface des domaines de la physique théorique et de la théorie
des représentations.

Tel que mentionné dans le Prologue, un nombre d’algèbres de type Askey–Wilson peuvent
être réalisées comme commutants et dans ce cadre, leurs générateurs sont réalisés par des
Casimirs intermédiaires. La dualité de Howe permet d’associer des représentations irréduc-
tibles de deux algèbres membres d’une paire duale réductive. De par le lemme de Schur, il
n’est donc guère surprenant qu’au niveau algébrique, cette association des représentations
irréductibles se traduise par une correspondance entre les Casimirs des deux algèbres qui
étiquettent ces représentations irréductibles. C’est ce qui est utilisé ici. Grâce à cette cor-
respondance, un énoncé portant sur le Casimir d’un membre de la paire duale peut être
interprété de façon duale en terme du Casimir de l’autre membre de la paire (si on se place
dans un contexte où la dualité de Howe prend place).

La question principale à laquelle répond à l’affirmative la première partie de cette thèse
est:

Peut-on obtenir des interprétations duales (dans le sens de Howe) des algèbres de
type Askey–Wilson?

L’astuce ici est de se placer dans une réalisation où la dualité de Howe prend place à
plusieurs niveaux simultanément. Les Casimirs intermédiaires qui réalisent les algèbres de
type Askey–Wilson comme centralisateurs sont tous mis simultanément en correspondance
avec les Casimirs associés aux autres algèbres des paires duales. Par la suite, une réinterpré-
tation de ces autres Casimirs donne lieu à une nouvelle interprétation (duale à la première)
des algèbres de type Askey–Wilson.

Dans cette première partie de la thèse, des interprétations duales sont fournies pour
les algèbres de Racah aux Chapitres 1 et 2, Bannai–Ito au Chapitre 3, Askey–Wilson au
Chapitre 6, Hahn au Chapitre 4, dual −1 Hahn au Chapitre 8 et q-Hahn au Chapitre 5. De
façon remarquable, l’astuce derrière la construction dans tous ces articles est en l’essence
la même; cette idée s’applique autant pour les paires duales réductives faisant intervenir
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des algèbres de Lie que celles faisant intervenir des superalgèbres de Lie et des algèbres
quantiques. L’article au Chapitre 9 présente cette observation tout en survolant l’ensemble
des résultats énumérés ci-haut. Un article sur la mécanique quantique superconforme faisant
intervenir l’algèbre duale −1 Hahn est également inclus au Chapitre 7 dans cette première
partie et a été rédigé dans la foulée des travaux sur les interprétations duales de l’algèbre
duale −1 Hahn.
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Chapitre 1

The Racah algebra as a commutant and Howe
duality

Par Julien Gaboriaud, Luc Vinet, Stéphane Vinet et Alexei Zhedanov.
Publié dans Journal of Physics A: Mathematical and Theoretical 51(50), 50LT01, 2018.
arxiv:1808.05261.

Abstract: The Racah algebra encodes the bispectrality of the eponym polynomials. It
is known to be the symmetry algebra of the generic superintegrable model on the 2-sphere.
It is further identified in the commutant of the o(2) ⊕ o(2) ⊕ o(2) subalgebra of o(6) in
oscillator representations of the universal algebra of the latter. How this observation relates
to the su(1, 1) Racah problem and the superintegrable model on the 2-sphere is discussed
on the basis of the Howe duality associated to the pair

(
o(6), su(1, 1)

)
.

Keywords: Racah algebra, commutant, Howe duality, superintegrability

1.1. Introduction
The Racah algebraR has three generators K1, K2, K3 that are subjected to the relations:

[K1, K2] = K3, [K2, K3] = K2
2 + {K1, K2}+ dK2 + e1,

[K3, K1] = K1
2 + {K1, K2}+ dK1 + e2,

(1.1.1)

where [A,B] = AB − BA, {A,B} = AB + BA and d, e1, e2 are central. This algebra has
appeared in many guises and we here add to its understanding with the identification of a new
realization. We shall indeed show that R arises in the commutant of the o(2)⊕ o(2)⊕ o(2)
subalgebra of o(6) in the representations of U(o(6)) on the Hilbert space of states of six
oscillators.

https://dx.doi.org/10.1088/1751-8121/aaee1a
https://arxiv.org/abs/1808.05261


The Racah algebra was introduced as an encoding of the bispectrality properties of the
Racah polynomials [1], see for example [2]. It is also intimately connected to the recouplings
of su(2) and su(1, 1) representations [3, 4] since the Racah coefficients for these Lie algebras
are expressed in terms of the Racah polynomials. We shall review this last aspect in the
next section because it is relevant for the results we want to present in this paper.

The Racah algebra has also been found [5] to be the symmetry algebra of the generic
superintegrable model on the two-sphere with Hamiltonian H given by

H = J 2
1 + J 2

2 + J 2
3 + a1

x12 + a2

x22 + a3

x32 (1.1.2)

where

Jk = εkij xi
∂

∂xj
, i, j, k = 1, 2, 3, x1

2 + x2
2 + x3

2 = 1 (1.1.3)

and a1, a2, a3 are parameters. We shall also bring this fact to bear on our discussion.
The Racah algebra has further been shown to have a natural embedding in su(2) [6,

7] and to be related to distance-regular graphs [8]. It also extends to arbitrary ranks [9]
with a connection to multivariate Racah polynomials of the Tratnik type [10, 11] and higher
dimensional superintegrable models [12]. We shall here add to this the commutant realization
mentioned above and explain how Howe duality [13–15] relates this observation to the fact
that R is also in the commutant in U(su(1, 1)⊗3) of the addition of three su(1, 1).

The paper will unfold as follows. As already indicated, we shall review in Section 1.2
the occurrence of the Racah algebra in the recoupling of three irreducible representations
of su(1, 1). This is where R will be in the commutant of su(1, 1) in U(su(1, 1)⊗3) with
the intermediate Casimir operators as generators. Our main result will be the object of
Section 1.3 where the connection with the Racah algebra and the Lie algebra o(6) will
be made. The link between this last incarnation of R as the commutant of the maximal
Abelian subalgebra o(2) ⊕ o(2) ⊕ o(2) of o(6) in the universal algebra of the latter and
the realization stemming from the Racah problem of su(1, 1) will be discussed in Section
2.4. This will be done by considering six harmonic oscillators and the dual reductive pair(
o(6), sp(2)

)
in sp(12) that acts on the Hilbert space of their collective states. This Howe

duality will be invoked to put in correspondance the o(6) and sp(2) ' su(1, 1) pictures for the
Racah algebra. In the last section, we shall complete the analysis by rederiving the results
pertaining to the symmetry of the generic superintegrable model on the 2-sphere. To that
end, we shall carry out the dimensional reduction of the six-dimensional (6D) oscillator under
the action of O(2)⊗O(2)⊗O(2) to obtain the Hamiltonian from the total Casimir operator
for the addition of six metaplectic representations of sp(2) and the constants of motion from
the proper intermediate Casimirs with the knowledge that they realize the Racah algebra.
Summary and outlook will form the Conclusion.
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1.2. The Racah problem for su(1, 1) and the Racah alge-
bra

The Lie algebra su(1, 1) has generators J0, J± that obey the following commutation re-
lations:

[J0, J±] = ±J±, [J+, J−] = −2J0 (1.2.1)

and its Casimir operator is given by:

C = J0
2 − J+J− − J0. (1.2.2)

Consider now the addition of 3 irreducible representations of su(1, 1) for which the initial
Casimir operators take values C(i) = λi, i = 1, 2, 3, and let us write

J
(123)
0 = J

(1)
0 + J

(2)
0 + J

(3)
0 , J

(123)
± = J

(1)
± + J

(2)
± + J

(3)
± (1.2.3)

with the superindex denoting on which of the three factors in su(1, 1)⊗3 the operator is
acting. In addition to the initial Casimir operator C(i) we also have the intermediate Casimir
operators associated to the addition of two representations

C(ij) =
(
J

(i)
0 + J

(j)
0

)2
−
(
J

(i)
+ + J

(j)
+

)(
J

(i)
− + J

(j)
−

)
−
(
J

(i)
0 + J

(j)
0

)
(1.2.4)

with (ij) = (12), (23), (31) and also the total Casimir operator, given by:

C(123) =
(
J

(123)
0

)2
− J (123)

+ J
(123)
− − J (123)

0 . (1.2.5)

Take C(123) = λ4. Let V (λi) denote irreducible representation spaces of su(1, 1), and look
at the decomposition of V (λ1) ⊗ V (λ2) ⊗ V (λ3) in irreducibles V (λ4). The Racah problem for
su(1, 1) is about determining the unitary transformations between the bases corresponding
to the steps (1⊕2)⊕3 and 1⊕(2⊕3) that respectively diagonalize the intermediate Casimirs
C(12) and C(23)

C(12) = 2J (1)
0 J

(2)
0 −

(
J

(1)
+ J

(2)
− + J

(1)
− J

(2)
+

)
+ λ1 + λ2,

C(23) = 2J (2)
0 J

(3)
0 −

(
J

(2)
+ J

(3)
− + J

(2)
− J

(3)
+

)
+ λ2 + λ3.

(1.2.6)

These intermediate Casimir operators realize the Racah algebra R, since the relations
(1.1.1) are satisfied by K1 = −1

2C
(12) and K2 = −1

2C
(23) with d = 1

2(λ1 + λ2 + λ3 + λ4),
e1 = 1

4(λ1 − λ4)(λ2 − λ3), e2 = 1
4(λ1 − λ2)(λ4 − λ3).

1.3. The Racah algebra and o(6)
We will now observe that R is in the commutant in U(o(6)) of a subalgebra of o(6) in

the oscillator representation. The algebra o(6) has 15 generators Lµν = −Lνµ, µ, ν = 1, ..., 6
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obeying

[Lµν , Lρσ] = δνρLµσ − δνσLµρ − δµρLνσ + δµσLνρ (1.3.1)

and it possesses the following quadratic Casimir:

C =
∑
µ<ν

Lµν
2. (1.3.2)

We will use the realization

Lµν = ξµ
∂

∂ξν
− ξν

∂

∂ξµ
, µ 6= ν, µ, ν = 1, ..., 6. (1.3.3)

Pick the o(2)⊕ o(2)⊕ o(2) subalgebra of o(6) generated by the commutative set
{L12, L34, L56}. We want to focus on the commutant of this Abelian subalgebra in
U(o(6)). It is fairly easy to see that it will be generated by the following two invariants:

K1 = 1
8
(
L12

2 + L13
2 + L14

2 + L23
2 + L24

2 + L34
2
)

(1.3.4)

K2 = 1
8
(
L34

2 + L35
2 + L36

2 + L45
2 + L46

2 + L56
2
)
. (1.3.5)

Define K3 by [K1, K2] = K3. One then finds that

K3 = 1
16
(
L35

2 + L36
2 + L45

2 + L46
2 − L13

2 − L14
2 − L23

2 − L24
2 − L15

2 − L16
2 − L25

2 − L26
2

+ L13L35L15 + L13L36L16 + L23L35L25 + L23L36L26 + L14L45L15

+ L14L46L16 + L24L45L25 + L24L46L26
)
.

(1.3.6)

Working out the commutation relations of K3 with K1 and K2, we find that they correspond
to those of a central extension of the Racah algebra with L12, L34, L45 and C playing role of
structure constants. Indeed one obtains
[K1, K2] = K3

[K2, K3] = K2
2 + {K1, K2} − 1

8K2
(
C+L12

2+L34
2+L56

2
)
− 1

64

(
C − L12

2 − 4
)(
L34

2−L56
2
)

[K3, K1] = K1
2 + {K1, K2} − 1

8K2
(
C+L12

2+L34
2+L56

2
)
− 1

64

(
C − L56

2 − 4
)(
L34

2−L12
2
)

(1.3.7)

where the parameters d = −1
8(C + L12

2 + L34
2 + L56

2), e1 = − 1
64(C − L12

2 − 4)(L34
2 − L56

2),
e2 = − 1

64(C − L56
2 − 4)(L34

2 − L12
2) are obviously central.

Let us indicate how this result is obtained. Take for example the commutator [K2, K3]
([K3, K1] is treated similarly). On the one hand, it is readily observed that the r.h.s in
(1.3.7) only contains terms of the form Lµν

2. On the other hand, using the o(6) commutation
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relations (1.3.1) and the explicit expressions (9.3.3), (1.3.6) for K2, K3, one obtains:

128[K2, K3] = {L35
2, L13

2}+ {L35
2, L23

2}+ {L36
2, L13

2}+ {L36
2, L23

2}

+ {L45
2, L14

2}+ {L45
2, L24

2}+ {L46
2, L14

2}+ {L46
2, L24

2}

− {L35
2, L15

2} − {L35
2, L25

2} − {L36
2, L16

2} − {L36
2, L26

2}

− {L45
2, L15

2} − {L45
2, L25

2} − {L46
2, L16

2} − {L46
2, L26

2}

+ 4(L13
2 + L23

2 + L14
2 + L24

2 − L15
2 − L25

2 − L16
2 − L26

2)

− 2L15L35L36L16 − 2L13L35L56L16 − 2L25L35L36L26 − 2L23L35L56L26

− 2L16L36L35L15 + 2L13L36L56L15 − 2L26L36L35L25 + 2L23L36L56L25

− 2L15L45L46L16 − 2L14L45L56L16 − 2L25L45L46L26 − 2L24L45L56L26

− 2L16L46L45L15 + 2L14L46L56L15 − 2L26L46L45L25 + 2L24L46L56L25

+ 2L14L45L35L13 − 2L14L34L35L15 + 2L24L45L35L23 − 2L24L34L35L25

+ 2L14L46L36L13 − 2L14L34L36L16 + 2L24L46L36L23 − 2L24L34L36L26

+ 2L13L35L45L14 + 2L13L34L45L15 + 2L23L35L45L24 + 2L23L34L45L25

+ 2L13L36L46L14 + 2L13L34L46L16 + 2L23L36L46L24 + 2L23L34L46L26.

(1.3.8)

The terms of the type LµνLρνLρσLµσ thus need to be re-expressed. The key to rewriting
them with factors involving only the Lµν2’s is to make use of the identity

LµνLρσ + LµρLσν + LµσLνρ = 0 (1.3.9)

which is directly proved in the realization (1.3.3) (and which in fact remains true for Dunkl
angular momenta ([16])), and to also take its square, which yields

{LµνLρσ, LµρLνσ} = Lµν
2Lρσ

2 + Lµρ
2Lνσ

2 − Lµσ2Lνρ
2. (1.3.10)

Combining these two identities and calling upon other elementary formulas such as

[Lσµ2 + Lσν
2, Lµν ] = 0 (1.3.11)

allows one to equate (1.3.8) with the r.h.s in (1.3.7), which completes the proof.

1.4. The Racah algebra and Howe duality
We shall now show how the result in the previous section can be explained by identifying

the Howe pair in play in the system we have considered. In the last two sections we showed
that the Racah algebra is in the commutant of su(1, 1) in U(su(1, 1)⊗3) and of o(2)⊕ o(2)⊕
o(2) in U(o(6)). The connection between these two observations can be traced to Howe
duality.
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It is known [15] that o(n) and sp(2d) form a dual pair in sp(2dn), i.e. these two subgroups
are mutual commutants. This implies that o(6) and sp(2) ' su(1, 1) have dual actions on
the Hilbert space of six oscillators. That means that their irreducible representations can be
paired and this can be done through the Casimirs.

Consider the following 6 oscillator realizations of sp(2):

J
(µ)
+ = 1

2ξ
2
µ, J

(µ)
− = 1

2
d2

dξ2
µ

, J
(µ)
0 = 1

2ξµ
d

dξµ
+ 1

4 , µ = 1, 2, 3, 4, 5, 6. (1.4.1)

We shall add these six representations by first coupling the three pairs (µν) = (12), (34), (56)
and shall write:

J (µν) = J (µ) + J (ν), J (123456) = J (12) + J (34) + J (56). (1.4.2)

Recall that the sp(2) Casimir is C = J0
2−J+J−−J0. The connection between the Casimirs

of combined metaplectic representations with elements in U(o(6)) is readily obtained:

C(µν) = −1
4(Lµν2 + 1), (1.4.3)

C(123456) = −1
4

(∑
µ<ν

Lµν
2 − 3

)
= −1

4C + 3
4 , (1.4.4)

C(1234) = −1
4(L12

2 + L13
2 + L14

2 + L23
2 + L24

2 + L34
2) = −2K1, (1.4.5)

C(3456) = −1
4(L34

2 + L35
2 + L36

2 + L45
2 + L46

2 + L56
2) = −2K2. (1.4.6)

In addition to observing that C(123456) and the Casimir C of o(6) are affinely related, we
see that the intermediate sp(2) Casimirs correspond to the generators of the commutant of
{L12, L34, L56} in U(o(6)). We know from Section 1.3 that the intermediate sp(2) Casimirs
realize the commutation relations of the Racah algebra. This will hence be the case also for
the commutant generators and we have here our duality connection.

1.5. The Racah algebra and the generic superintegrable
model on S2

We can now complete the picture by performing the dimensional reduction from R6 to
R+×S2 [17–19] to obtain the generic superintegrable model (introduced in Section 2.1) with
Hamiltonian H and to recover as well its symmetries. Make the following change of variables:

ξ2i−1 = xi cos θi,

ξ2i = xi sin θi,
L2i−1,2i = ξ2i−1

∂

∂ξ2i
− ξ2i

∂

∂ξ2i−1
= ∂

∂θi
, i = 1, 2, 3. (1.5.1)
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Eliminate the ignorable θis by separating these variables and setting L2i−1,2i
2 ∼ ki

2. After
performing the gauge transformation O 7→ Õ = x

1
2
i O x

− 1
2

i one obtains

J̃+
(2i−1,2i) = 1

2xi
2, J̃−

(2i−1,2i) = 1
2

(
d2

dxi2
+ ai
xi2

)
, J̃0

(2i−1,2i) = 1
2

(
xi

d

dxi
+ 1

2

)
, (1.5.2)

with ai = ki
2 + 1

4 . The reduced Casimirs

C̃(µ,ν,ρ,σ) = (J̃0)2 − J̃+J̃− − J̃0 with J̃ = J̃ (µ,ν) + J̃ (ρ,σ), (1.5.3)

are easily computed and have the following expressions:

C̃(1234) = −1
4

[
J3

2 + a1
x2

2

x12 + a2
x1

2

x22 + a1 + a2 + 1
]
,

C̃(3456) = −1
4

[
J1

2 + a2
x3

2

x22 + a3
x2

2

x32 + a2 + a3 + 1
]
,

C̃(1256) = −1
4

[
J2

2 + a3
x1

2

x32 + a1
x3

2

x12 + a1 + a3 + 1
]
, Jk = εkij xi

d

dxj
.

(1.5.4)

Using J̃ (123456) = J̃ (12) + J̃ (34) + J̃ (56) it is seen that

C̃(123456) = C̃(1234) + C̃(3456) + C̃(1256) − C̃(12) − C̃(34) − C̃(56). (1.5.5)

Since C̃(2i−1,2i) = −1
4

(
ai + 3

4

)
are constants, the invariant can be taken to be given by the

sum of the first three terms in C̃(123456). Assuming x1
2 + x2

2 + x3
2 = 1, this is recognized

to be the Hamiltonian (2.1.1) of the generic model (up to an affine transformation). The
Casimirs are essentially the conserved quantities:

Qi = Ji2 + aj
xk

2

xj2 + ak
xj

2

xk2 , i, j, k ∈ {1, 2, 3} cyclic (1.5.6)

and they generate R which is hence the symmetry algebra.

1.6. Conclusion
The Racah algebra R embodies the theory of the Racah polynomials. The ubiquity of

these orthogonal polynomials explains the diverse roles that R plays and motivates, with an
eye to generalizations, the examination of all facets of this algebra. It is hence quite nice
that we could find a new characterization of R . Put in simple terms, our findings can be
summarized as follows. We have shown that the Racah algebra is realized by polynomials
in the generalized angular momenta in six dimensions that are invariant under rotations in
three non-intersecting planes. We have further indicated that this picture is dual, in the
sense of Howe, to the one where the Racah algebra is realized by the Casimir operators in
the addition of three irreducible representations of su(1, 1). This was done by exploiting the
correspondence between the representations of o(6) and those of sp(2) acting on the state
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space of a 6D harmonic oscillator. The analysis provided an illuminating context within
which the Racah symmetry of the generic superintegrable model on the 2-sphere is naturally
obtained by dimensional reduction. This suggests numerous potential extensions.

It should be possible to extend all the results of this paper to higher dimensions, namely,
to Racah algebras with rank superior to one. These algebras have already been introduced
using the recoupling model, that is, as the ones realized by the various Casimir operators
arising the the addition of four and more su(1, 1) representations [9]. In view of our obser-
vations, it is natural to expect that these could be shown to be in duality with commutants
of the n-torus in o(2n) with n ≥ 4.

There are also two other important rank one algebras that share properties with the
Racah algebra: the Askey–Wilson (AW) and the Bannai–Ito (BI) algebras. The AW algebra
[20] accounts for the bispectral properties of the Askey–Wilson polynomials. It is the object
of much attention and like the Racah algebra it arises in particular in a Racah problem, this
time for the quantum algebra Uq(sl(2)) [21]. The Bannai–Ito polynomials are most simply
defined as a q → −1 limit of the Askey–Wilson polynomials [22]. They are also bispectral
and the BI algebra [23] encodes these defining features. The Racah problem of relevance in
this case is the one associated to the Lie superalgebra osp(1|2) leading to a realization of
the BI algebra again, in terms of the intermediate Casimir operators [24]. The BI algebra
has also been shown to be the symmetry algebra of a superintegrable model on the two-
sphere involving reflection operators [25] as well as of a Dirac–Dunkl equation in R3 [26].
This is observed by realizing the three osp(1, 2) that are added in terms of Dunkl operators
[27] and using a Clifford algebra in the latter problem. For a review of the BI algebra and
its applications see [28]. For both the AW and BI cases, it would be quite interesting to
determine if there is a Howe duality setting that would allow to develop for these algebras a
commutant interpretation similar to the one that we have found for the Racah algebra. How
dimensional reduction would then operate would be revealing with respect to superintegrable
models. The AW and BI algebras of higher ranks could then as well lend themselves to similar
descriptions. We plan to examine all these questions in the near future.
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Chapitre 2

The generalized Racah algebra as a
commutant

Par Julien Gaboriaud, Luc Vinet, Stéphane Vinet et Alexei Zhedanov.
Publié dans Journal of Physics: Conference Series 1194, 012034, 2019. arxiv:1808.09518.

Abstract: The Racah algebra R(n) of rank (n− 2) is realized in the commutant of the
o(2)⊕n subalgebra of o(2n) in oscillator representations of the universal algebra of o(2n).
This result is shown to be related in a Howe duality context to the realization of R(n)
in the algebra of Casimir operators arising in recouplings of n copies of su(1, 1). These
observations provide a natural framework to carry out the derivation by dimensional reduc-
tion of the generic superintegrable model on the (n−1) sphere which is invariant under R(n).

2.1. Introduction
The Racah algebra R(3) of rank 1 [1, 2] encodes the bispectrality properties of the Racah

polynomials [3] and is the symmetry algebra of the generic superintegrable model on the
2-sphere with Hamiltonian H given by [4]

H =
∑

1≤i<j≤3
Jij2 +

3∑
i=1

ai
xi2

(2.1.1)

where
Jij = xi

∂

∂xj
− xj

∂

∂xi
, x1

2 + x2
2 + x3

2 = 1 (2.1.2)

and a1, a2, a3 are parameters. For a review the reader is referred to [5]. Of particular
relevance is the fact that R(3) was seen to be in the commutant in U(su(1, 1)⊗3) of the
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embedding of su(1, 1) in the three-fold tensor product of this algebra with itself, or in other
words, that it is generated by the invariant operators arising in this Racah problem. This
observation provided a way to generalize R(3) to Racah algebras of arbitrary rank (n−2) [6]
by extending the picture to n factors and identifying structure relations between the various
Casimir operators arising in the possible recouplings. It follows that R(n) thus defined
is the symmetry algebra of the superintegrable model on the (n − 1)-sphere obtained by
straighforwardly extending to n variables the model on S2 defined above.

We have found recently [7] that R(3) can be realized in the commutant of the subal-
gebra o(2) ⊕ o(2) ⊕ o(2) ⊂ o(6) in oscillator representations of the enveloping algebra of
o(6). We further observed that this description of R(3) could be related to the one asso-
ciated to the Racah problem for su(1, 1) through the Howe duality corresponding to the
pair (o(6), su(1, 1)). This provided a natural background for obtaining the superintegrable
Hamiltonian (2.1.1) with R(3) as symmetry algebra, under the dimensional reduction of a
six-dimensional harmonic oscillator problem. We here wish to indicate how these results
extend for R(n), that is, for arbitrary ranks and dimensions.

The paper is structured as follows. In Section 2.2, we review how the Racah algebra R(n)
is obtained from the Casimir operators in the n-fold tensor product of su(1, 1) Lie algebras.
Structure relations satisfied by these Casimirs are provided. In Section 2.3, we show that the
generators of the commutant of the o(2)⊕n subalgebra of o(2n) satisfy the relations of R(n).
In Section 2.4, we invoke Howe duality to explain how the pairings between representations of
o(2n) and those of su(1, 1) underpin the connection between the tensorial and the commutant
pictures of R(n). How the R(n)-invariant superintegrable model on S(n−1) is obtained from
an n-dimensional harmonic oscillator by modding out the action of the n-torus group is
described in Section 2.5 and conclusions form Section 4.7.

2.2. The generalized Racah algebra and tensor products
of su(1, 1)

Let us recall how the generalized Racah algebra R(n) is defined from the n-fold tensor
product of su(1, 1). The su(1, 1) algebra has 3 generators, J0, J± obeying the commutation
relations

[J0, J±] = ±J±, [J+, J−] = −2J0. (2.2.1)

The Casimir element is given by

C = J0
2 − J+J− − J0. (2.2.2)

Let [n] = {1, 2, . . . , n} denote the set of the n first integers and consider the tensor product
su(1, 1)⊗n. Coproduct embeddings of su(1, 1) in su(1, 1)⊗n are labelled by subsets A ⊂ [n]
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with the generators mapped to

JA =
∑
i∈A

J i (2.2.3)

and where the superindex denotes on which factor of su(1, 1)⊗n the operator J i is acting.
Correspondingly, the Casimirs are sent to

CA =
(
JA0
)2
− JA+JA− − JA0 . (2.2.4)

The generalized Racah algebra R(n) is taken to be an algebra realized by all these interme-
diate Casimirs CA since this is the case for R(3).

It is important to note that not all intermediate Casimirs CA are independent; indeed
one has

CA =
∑
{i,j}⊂A

Cij − (|A| − 2)
∑
i∈A

Ci. (2.2.5)

where |A| stands for the cardinality of A. In order to characterize R(n), given that the
elements Ci are central, it therefore suffices to provide all the iterated commutators between
the Cij’s with i 6= j until closure is achieved. This has been carried out in [6]. It is convenient
to introduce P ij and F ijk:

P ij = Cij − Ci − Cj, F ijk = 1
2[P ij, P jk]. (2.2.6)

The defining relations of the Racah algebra R(n) then read

[P ij, P jk] = 2F ijk, (2.2.7a)

[P jk, F ijk] = P ikP jk − P jkP ij + 2P ikCj − 2P ijCk, (2.2.7b)

[P kl, F ijk] = P ikP jl − P ilP jk, (2.2.7c)

[F ijk, F jkl] = F jklP ij − F ikl
(
P jk + 2Cj

)
− F ijkP jl, (2.2.7d)

[F ijk, F klm] = F ilmP jk − P ikF jlm, (2.2.7e)

where i, j, k, l,m ∈ [n] are all different.
In the rank 1 case, (3.7.1c), (3.7.1d) and (3.7.1e) are redundant and the standard Racah

algera R(3) is fully described by (3.7.1a) and (3.7.1b). Note that the presentation that
results from the specialization of these equations to n = 3 is the equitable one. The relation
between this presentation and the standard one used in [7] is given explicitly in [8]. The
rank 2 Racah algebra (which has been studied in detail in [9]) only requires (3.7.1a)-(3.7.1c)
to be characterized, while the relations (3.7.1d) and (3.7.1e) have to be added in order to
define Racah algebras of rank 3 or higher.

52



2.3. The generalized Racah algebra and o(2n)
Let us now indicate how the relations (3.7.1) given above are satisfied by the generators

in U(o(2n)) of the commutant of n copies of o(2) sitting in o(2n). The algebra o(2n) has
n(2n− 1) generators Lµν = −Lνµ, µ, ν = 1, ..., 2n obeying

[Lµν , Lρσ] = δνρLµσ − δνσLµρ − δµρLνσ + δµσLνρ (2.3.1)

and possesses the following quadratic Casimir:

C =
∑

1≤µ<ν≤n
Lµν

2. (2.3.2)

We will use the realization

Lµν = ξµ
∂

∂ξν
− ξν

∂

∂ξµ
, µ 6= ν, µ, ν = 1, . . . , 2n. (2.3.3)

Pick the o(2)⊕n subalgebra of o(2n) generated by the commutative set {L12, L34, . . . , L2n−1,2n}.
We want to focus on the commutant in U(o(2n)) of this Abelian algebra.

It is easy to see that the set of invariants {Gi}1≤i≤n, {Kij}1≤i<j≤n,

Gi = L2i−1,2i
2, (2.3.4)

Kij = L2i−1,2i
2 + L2i−1,2j−1

2 + L2i−1,2j
2 + L2i,2j−1

2 + L2i,2j
2 + L2j−1,2j

2, (2.3.5)

is sufficient to generate this commutant and it happens to realize the generalized Racah
algebra. Indeed, with the following redefinitions

Ci = −1
4G

i + 1
4 , (2.3.6)

Cij = −1
4K

ij, (2.3.7)

P ij = −1
4K

ij + 1
4
(
Gi +Gj

)
+ 1

2 , (2.3.8)

F ijk = 1
32[Kij, Kjk], (2.3.9)

a long but straightforward calculation in the realization (2.3.3) shows that the defining
relations (3.7.1) of the algebra R(n) are obeyed.

2.4. The su(1, 1) and o(2n) descriptions of R(n) and Howe
duality

In the last two sections we indicated that the generalized Racah algebra R(n) is in the
commutant of su(1, 1) in U(su(1, 1)⊗n) and of o(2)⊕n in oscillator representations of U(o(2n)).
The connection between these two descriptions is rooted in Howe duality.
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It is known [10–13] that o(2n) and sp(2) form a dual pair in sp(4n), with these two sub-
algebras being their mutual commutants. This implies that o(2n) and sp(2) ' su(1, 1) have
dual actions on the Hilbert space of 2n oscillator states. That means that their irreducible
representations can be paired and this can be done through the Casimirs in the following
way.

Consider the 2n copies of the metaplectic realization of sp(2):

J
(µ)
+ = 1

2ξµ
2, J

(µ)
− = 1

2
∂2

∂ξµ
2 , J

(µ)
0 = 1

2

(
1
2 + ξµ

∂

∂ξµ

)
, µ = 1, 2, . . . 2n. (2.4.1)

We first add these 2n representations by coupling them pairwise

J (µ;ν) = J (µ) + J (ν). (2.4.2)

In what follows, we will always assume that the pairs denoted (µ; ν) are such that
(µ; ν) = (2i− 1; 2i), i = 1, . . . , n. Now take A ⊂ [n] to be any subset that is the union of N
such pairs:

A =
N⋃
i=1
{µi; νi}, (2.4.3)

with |A| = 2N and 1 ≤ N ≤ n. The su(1, 1) realization associated to such a subset A reads

JA+ = 1
2
∑
µ∈A

ξµ
2, JA− = 1

2
∑
µ∈A

∂2

∂ξµ
2 , JA0 = 1

2

 |A|
2 +

∑
µ∈A

ξµ
∂

∂ξµ

 . (2.4.4)

It is then straightforward to show that the Casimir for an embedding labelled by the subset
A is given by

CA =
(
JA0
)2
− JA+JA− − JA0 = |A|(|A| − 4)

16 −
∑
µ<ν
µ,ν∈A

(Lµν)2

4 . (2.4.5)

As already noted, not all CA’s are independent. The translation of (2.2.5) shows that all
CA’s can be rewritten as

CA =
∑

(µ;ν),(ρ;σ)∈A
µ<ν<ρ<σ

C(µ;ν)(ρ;σ) − |A| − 4
2

∑
(µ;ν)∈A

C(µ;ν) (2.4.6)

with

C(µ;ν) = −1
4
(
Lµν

2 + 1
)
, C(µ;ν)(ρ;σ) = −1

4
(
Lµν

2 + Lµρ
2 + Lµσ

2 + Lνρ
2 + Lνσ

2 + Lρσ
2
)
.

(2.4.7)

This shows that all higher order Casimirs can be reexpressed in terms of those of lowest
orders.

We thus observe that the intermediate sp(2) Casimirs correspond (up to an affine trans-
formation) to the generators of the commutant of {L1,2, . . . , L2n−1,2n} in U(o(2n)). We know
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from Section 2.3, that the intermediate sp(2) Casimirs realize the commutation relations of
the generalized Racah algebra. This will hence be the case also for the commutant generators
and we have here our duality connection.

2.5. The generalized Racah algebra and the generic su-
perintegrable model on Sn−1

We can now complete the picture by performing the dimensional reduction from R2n to
R+ × Sn−1 to obtain the generic superintegrable model with Hamiltonian H (introduced
in Section 2.1) and to recover its symmetries. Starting from the oscillator representation
(2.4.1), make the following change of variables:

ξ2i−1 = xi cos θi,

ξ2i = xi sin θi,
L2i−1,2i = ξ2i−1

∂

∂ξ2i
− ξ2i

∂

∂ξ2i−1
= ∂

∂θi
, i = 1, . . . , n. (2.5.1)

Eliminate the ignorable θi’s by separating these variables and setting L2i−1,2i
2 ∼ ki

2. After
performing the gauge transformation O 7→ Õ = x

1/2
i O x

−1/2
i one obtains the reduced system

J̃+
(2i−1,2i) = 1

2xi
2, J̃−

(2i−1,2i) = 1
2

(
∂2

∂xi2
+ ai
xi2

)
, J̃0

(2i−1,2i) = 1
2

(
xi

∂

∂xi
+ 1

2

)
,

(2.5.2)

with ai = ki
2 + 1

4 . Defining J̃ i ≡ J̃ (2i−1,2i), the reduced Casimirs

C̃i =
(
J̃0

i
)2
− J̃+

i
J̃−

i
− J̃0

i
, (2.5.3)

C̃ij =
(
J̃0

i + J̃0
j
)2
−
(
J̃+

i + J̃+
j
)(

J̃−
i + J̃−

j
)
−
(
J̃0

i + J̃0
j
)
, (2.5.4)

are easily computed and have the following expressions:

C̃i = −1
4

(
ai + 3

4

)
,

C̃ij = −1
4

[
Jij2 + ai

xj
2

xi2
+ aj

xi
2

xj2 + ai + aj + 1
]
,

Jij = xi
∂

∂xj
− xj

∂

∂xi
, i < j.

(2.5.5)

Using the fact that J̃ [n] = ∑n
i=1 J̃

i, the total Casimir C̃ [n] is obtained:

C̃ [n] = −1
4

∑
1≤i<j≤n

Jij2 − 1
4

(
n∑
i=1

xi
2
)

n∑
j=1

aj
xj2 + n(n− 4)

16 , (2.5.6)

and assuming ∑n
i=1 xi

2 = 1, one thereby obtains the Hamiltonian of the generic model on
Sn−1 (up to an affine transformation). The basic intermediate Casimirs are essentially the
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conserved quantities:

Qij = Jij2 + ai
xj

2

xi2
+ aj

xi
2

xj2 , 1 ≤ i < j ≤ n (2.5.7)

and they generate R(n) which is hence the symmetry algebra of the superintegrable model
on the (n − 1) sphere. (Note that the Qij’s are affinely related to the P ij’s in the relations
(2.2.6).)

2.6. Conclusion
Summing up, we have shown that the generalized Racah algebra R(n) can be defined in

the commutant of the o(2)⊕n subalgebra of o(2n) in oscillator representations of U(o(2n)).
This offers an alternative to the definition of R(n) in the algebra of the intermediate Casimirs
associated to the su(1, 1) embeddings in su(1, 1)⊗n. We have related these two pictures in
the context of Howe duality and obtained the generic R(n)-invariant superintegrable model
on Sn−1 through the dimensional reduction scheme stemming from the analysis. This has
provided a generalization to arbitrary ranks and dimensions of the study carried in [7] for
the standard Racah algebra.

We wish to remark that since o(nd) and sp(2) form a dual pair in sp(2nd), it is also
possible to realize the generalized Racah algebra as the commutant of the o(d)⊕n subalgebra
of o(nd). We have concentrated on the case d = 2 because it offers the simplest situation
that allows to obtain the superintegrable system on Sn−1 by dimensional reduction.

In the near future, we plan on exploring similarly the Askey–Wilson (AW) and the
Bannai–Ito (BI) algebras which share features with the Racah algebra since both encode
the bispectrality properties of the eponym polynomials and appear through tensor products
of Uq(sl(2)) [14] and osp(1|2) ' sl−1(2) [15] respectively. Moreover, the BI algebra is the
symmetry algebra of a superintegrable model on the sphere involving reflection operators
[16] as well as a Dirac–Dunkl equation in R3 [6]. It would be of interest to build on the work
of the present paper to obtain a Howe duality setting for the interpretation of the AW and
BI algebras as commutants; moreover extensions along the lines of this paper would shed
interesting light on the higher rank versions of these algebras.
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Chapitre 3

The dual pair Pin(2n)× osp(1|2), the Dirac
equation and the Bannai–Ito algebra

Par Julien Gaboriaud, Luc Vinet, Stéphane Vinet et Alexei Zhedanov.
Publié dans Nuclear Physics B 937, 226–239, 2018. arxiv:1810.00130.

Abstract: The Bannai–Ito algebra can be defined in the centralizer of the coproduct
embedding of osp(1|2) in osp(1|2)⊗n. It will be shown that it is also in the commutant of
a maximal Abelian subalgebra of o(2n) in a spinorial representation and an embedding of
the Racah algebra in this commutant will emerge. The connection between the two pictures
for the Bannai–Ito algebra will be traced to the Howe duality which is embodied in the
Pin(2n)× osp(1|2) symmetry of the massless Dirac equation in R2n. Dimensional reduction
to Rn will provide an alternative to the Dirac–Dunkl equation as a model with Bannai–Ito
symmetry.

3.1. Introduction
The Bannai–Ito algebra B(n) can be presented in terms of generators and relations [1, 2].

Let [n] = {1, 2, . . . , n} denote the set of the n first integers and S = {s1, . . . , sk} be an ordered
k-subset of [n]. The generators ΓS of B(n) are labelled by all subsets for k = 0, 1, . . . , n. For
any two subsets A and B of [n], the relations between the generators ΓA and ΓB that define
B(n) are:

{ΓA,ΓB} = Γ(A∪B)\(A∩B) + 2ΓA∩BΓA∪B + 2ΓA\(A∩B)ΓB\(A∩B), (3.1.1)

https://dx.doi.org/10.1016/j.nuclphysb.2018.10.011
https://arxiv.org/abs/1810.00130


where {X, Y } = XY + Y X. By convention Γ∅ = −1/2, and the generators associated to a
set are simply labelled by the indices Γ{i1,...,ik} ≡ Γi1 ... ik . Moreover, Γi, i ∈ [n] and Γ[n] are
central.

For the rank one case which occurs when n = 3, the relations for B(3) are seen to be [1,
3]

{Γij,Γjk} = Γik + 2ΓjΓijk + 2ΓiΓk, (3.1.2)

where i, j, k ∈ [3] are all distinct.
We shall present in this paper a defining context for B(n) (and B(3)) as a commutant

and relate this result to a Howe duality framework.
The Bannai–Ito algebra B(3) was initially introduced in [4] to encode the bispectral

properties of the Bannai–Ito polynomials which were discovered by the researchers whose
name they bear in a classification problem in algebraic combinatorics [5]. B(3) was later seen
[6] to be isomorphic to a degenerate double affine Hecke algebra (DAHA) of type (C∨1 , C1).
A key connection between the Lie superalgebra osp(1|2) and the Bannai–Ito algebra was
also made [3]. Indeed, the Bannai–Ito polynomials were identified as forming the Racah
coefficients for osp(1|2) [7]. It was then shown quite naturally that B(3) is realized by the
intermediate Casimir operators arising in the threefold tensor product of osp(1|2) with itself.
Extending this construction to the n-fold tensor product osp(1|2)⊗n led to the definition of
B(n) [1]. (More details will be given on this later.) A number of applications for B(n) were
subsequently found. For instance, the conserved quantities of a superintegrable model on the
(n − 1)-sphere [8–11] were seen to satisfy the commutation relations (3.1.1). Of particular
relevance to the present study is the fact that B(n) is also the symmetry algebra of the
(massless) Dirac–Dunkl [1, 12] equation in Rn.

The Bannai–Ito algebra B(n) has much in common with the Racah algebra R(n) [13].
Like B(n), R(n) can be defined in a tensorial fashion in the algebra formed by the inter-
mediate Casimir operators associated to the n-fold tensor product of the Lie algebra sl(2)
with itself. R(n) is also the symmetry algebra of a certain generic superintegrable model on
Sn−1 (without reflections). The relation between the rank one version R(3) and the Racah
polynomials [14] is quite similar to the one between the Bannai–Ito algebra B(3) and the
Bannai–Ito polynomials. R(3) has three generators K1, K2, K3 which are subjected to the
relations

[K1, K2] = K3, [K2, K3] = K2
2 + {K1, K2}+ dK2 + e1,

[K3, K1] = K1
2 + {K1, K2}+ dK1 + e2,

(3.1.3)

with d, e1, e2 central. The defining relations for R(n) [13] are given in Section 4.4 where an
embedding of R(n) into B(n) will be identified.
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We have recently observed that R(3) is in the commutant in oscillator representations
of the universal enveloping algebra U(o(6)) of the subalgebra o(2)⊕ o(2)⊕ o(2) of the Lie
algebra o(6) of rotations in six dimensions [15]. This was extended to R(n) in [16]. We shall
provide here an analogous description of B(n) and shall focus first on B(3).

After recalling in Section 3.2 how B(3) can be viewed in the centralizer of the coproduct
embedding of osp(1|2) into osp(1|2)⊗3, we shall show in Section 3.3 that B(3) is in the
commutant of o(2)⊕ o(2)⊕ o(2) in the enveloping algebra of the spinorial representation of
o(6) associated to the Clifford algebra in R6. By considering the (massless) Dirac equation, a
Howe duality setting will be brought up to explain the connection between the results of the
two previous sections. Dimensional reduction will be performed in Section 3.5 to complete the
picture and will result in a new class of model with Bannai–Ito symmetry. In Section 3.6 the
generalization of these results to the Bannai–Ito algebra B(n) will be obtained for n > 3. As
mentioned above, an embedding of the higher rank R(n) Racah algebra in the B(n) Bannai–
Ito algebra will be explicitly given in Section 4.4, thus linking the construction presented
here to the one in [16]. Brief concluding remarks will follow. Finally, in Appendix 3.A we
indicate that our results offer as a byproduct a derivation through dimensional reduction of
the superconformal quantum Hamiltonian of Fubini and Rabinovici which is known to be
invariant under sl(2|1) [17].

3.2. The superalgebra osp(1|2) and the Bannai–Ito alge-
bra as a centralizer

The superalgebra osp(1|2) can be presented as follows. Let J0, J± be respectively the
even and odd generators of the algebra, obeying the relations

[J0, J±] = ±J±, {J+, J−} = 2J0. (3.2.1a)

The Z2-grading of the superalgebra can be encoded through a grading involution S , which
commutes with even elements and anticommutes with odd elements:

[S , J0] = 0, {S , J±} = 0. (3.2.1b)

The sCasimir operator of osp(1|2) given by

S = 1
2 ([J−, J+]− 1) (3.2.2)

commutes with all the odd elements and anticommutes with all the even ones, that is
[S, J0] = 0, {S, J±} = 0. It is then straightforward to define a Casimir of osp(1|2) by com-
bining the sCasimir with the involution:

Γ = SS = 1
2 ([J−, J+]− 1) S . (3.2.3)
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This Casimir Γ commutes with all the elements of osp(1|2).
There is a coassociative algebra morphism, the coproduct ∆, which acts as follows:

∆ : osp(1|2)→ osp(1|2)⊗ osp(1|2)

∆(J0) = J0 ⊗ 1 + 1⊗ J0 = J
(1)
0 + J

(2)
0 ,

∆(J±) = J± ⊗S + 1⊗ J± = J
(1)
± S (2) + J

(2)
± ,

∆(S ) = S ⊗S = S (1)S (2),

(3.2.4)

where the superindex denotes on which factor of the tensor product the generator is acting.
Now consider the product of three copies of osp(1|2). The generators corresponding to

embeddings in two factors are

J
(ij)
0 = J

(i)
0 + J

(j)
0 , S (ij) = S (i)S (j), i, j = 1, 2, 3,

J
(12)
± = J

(1)
± S (2) + J

(2)
± , J

(23)
± = J

(2)
± S (3) + J

(3)
± , J

(13)
± = J

(1)
± S (2)S (3) + J

(3)
± .

(3.2.5)

Note the presence of S (2) in J (13)
± . Applying the coproduct twice yields

∆(2)(J0) = J
(1)
0 + J

(2)
0 + J

(3)
0 = J

(123)
0 ,

∆(2)(J±) = J
(1)
± S (2)S (3) + J

(2)
± S (3) + J

(3)
± = J

(123)
± ,

∆(2)(S ) = S (1)S (2)S (3) = S (123),

with ∆(2) = (∆⊗ 1) ◦∆.

(3.2.6)

The intermediate Casimirs ΓA associated to embeddings of osp(1|2) in osp(1|2)⊗3 labelled
by A ⊂ [3] can then be obtained from the sets above:

Γi = 1
2
(
[J (i)
− , J

(i)
+ ]− 1

)
S (i),

Γij = 1
2
(
[J (ij)
− , J

(ij)
+ ]− 1

)
S (ij),

Γ123 = 1
2
(
[J (123)
− , J

(123)
+ ]− 1

)
S (123). (3.2.7)

Even though the intermediate Casimirs ΓA commute with the action of osp(1|2), they do
not all commute with each other. A direct computation shows that they precisely obey the
commutation relations (3.1.2) of B(3) thereby proving that this algebra is in the centralizer
of ∆(2)(osp(1|2)) in U(osp(1|2)⊗3).

3.3. The rank 1 Bannai–Ito algebra as a commutant
We will now show how the Bannai–Ito algebra arises in the commutant of the subalgebra

o(2)⊕ o(2)⊕ o(2) of o(6) in spinorial representations of U(o(6)).
Let C`6 be the Clifford algebra generated by the elements γ1, . . . , γ6 verifying the relations

{γµ, γν} = −2δµν . (3.3.1)
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Denote by `µν , µ, ν = 1, . . . , 6 the generators of o(6) which obey

[`µν , `ρσ] = δνρ`µσ − δνσ`µρ − δµρ`νσ + δµσ`νρ. (3.3.2)

We shall consider the following representation of the algebra of Pin(6) where

Jµν = −iLµν + 1
2Σµν , (3.3.3)

with

Lµν = xµ
∂

∂xν
− xν

∂

∂xµ
, (3.3.4)

and Σµν = iγµγν the spin operators.
We are interested in the commutant of the o(2)⊕ o(2)⊕ o(2) subalgebra of o(6) repre-

sented by the set of elements {J12, J34, J56}. First note that:

[Jµν , LµρΣµρ + LνρΣνρ] = 0. (3.3.5)

Remark also that [Jµν ,Σµν ] = 0 and finally that [Jµν ,Σρσ] = 0 for µ, ν, ρ, σ all different.
It is observed that the commutant of the span of {J12, J34, J56} is generated by the

operators (see the remark below):

M1 = (L12γ1γ2 + L13γ1γ3 + L14γ1γ4 + L23γ2γ3 + L24γ2γ4 + L34γ3γ4) Σ12Σ34

M2 = (L34γ3γ4 + L35γ3γ5 + L36γ3γ6 + L45γ4γ5 + L46γ4γ6 + L56γ5γ6) Σ34Σ56

M3 = (L12γ1γ2 + L15γ1γ5 + L16γ1γ6 + L25γ2γ5 + L26γ2γ6 + L56γ5γ6) Σ12Σ56.

(3.3.6)

We can now see that these realize the (rank 1) Bannai–Ito algebra. It is convenient to first
introduce the shortened notation j ≡ {2j − 1, 2j}, j ∈ N. Take now the elements

Γ1 2 = M1 + 3
2Σ1Σ2,

Γ2 3 = M2 + 3
2Σ2Σ3, Γj =

(
L2j−1,2j γ2j−1γ2j + 1

2

)
Σ2j−1,2j = J2j−1,2j.

Γ1 3 = M3 + 3
2Σ1Σ3,

(3.3.7)

A straightforward calculation in the realization (3.3.4) shows that one has the defining rela-
tions of the rank 1 Bannai–Ito algebra B(3)

{Γ1 2,Γ2 3} = Γ1 3 + 2Γ2Γ1 2 3 + 2Γ3Γ1,

{Γ2 3,Γ1 3} = Γ1 2 + 2Γ3Γ1 2 3 + 2Γ1Γ2,

{Γ1 3,Γ1 2} = Γ2 3 + 2Γ1Γ1 2 3 + 2Γ2Γ3,

(3.3.8)

where Γ1 2 3 denotes the (Casimir) element

Γ1 2 3 =
 ∑

1≤µ<ν≤6
−iLµνΣµν + 5

2

Σ1Σ2Σ3 (3.3.9)

and Γ1 2 3, Γ1, Γ2, Γ3 are all central.
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Proof: Let us explain how the expression for {Γ1 2,Γ2 3} is derived. (The other anticommu-
tators are obtained in a similar way.) Making use of the Clifford algebra properties (3.3.1)
as well as the o(6) commutation relations (8.3.6), one obtains

{Γ1 2,Γ2 3} = 3(L12γ1γ2 + 2L34γ3γ4 + L56γ5γ6) + 2L12γ1γ2L56γ5γ6

+ 2(L15γ1γ5 + L16γ1γ6 + L25γ2γ5 + L26γ2γ6) + 9
2

+ L13γ1γ3 + L14γ1γ4 + L23γ2γ3 + L24γ2γ4

+ L35γ3γ5 + L36γ3γ6 + L45γ4γ5 + L46γ4γ6

+ 2L34γ3γ4

(
L12γ1γ2 + L13γ1γ3 + L14γ1γ4 + L23γ2γ3 + L24γ2γ4

+ L34γ3γ4 + L35γ3γ5 + L36γ3γ6 + L45γ4γ5 + L46γ4γ6 + L56γ5γ6

)
− 2(L13L45 + L14L53)γ3γ4γ1γ5 − 2(L13L46 + L14L36)γ3γ4γ1γ6

− 2(L23L45 + L24L53)γ3γ4γ2γ5 − 2(L23L46 + L24L36)γ3γ4γ2γ6.

(3.3.10)

The additional identity [18]

LabLcd + LacLdb + LadLbc = 0 (3.3.11)

satisfied in our realization is then the required tool in order to rewrite (3.3.10) as the r.h.s
of (3.3.8) using the definitions (3.3.7) and (3.3.9).

Remark: It is fairly obvious that the elements {Gi}1≤i≤n, {Kij}1≤i<j≤n,

Gi = L2i−1,2i
2,

Kij = L2i−1,2i
2 + L2i−1,2j−1

2 + L2i−1,2j
2 + L2i,2j−1

2 + L2i,2j
2 + L2j−1,2j

2,
(3.3.12)

also belong to the commutant of {J12, J34, J56}. It can be seen that they are algebraically
dependent on the Bannai–Ito generators given above. It is interesting to observe however that
these Gi and Kij realize the Racah algebra R(3) as shown in [15]. This highlights the fact
that the Racah algebra can be embedded in the Bannai–Ito algebra. The explicit embedding
and a generalization to the higher rank algebras will be given in Section 4.4. Operators
G̃i and K̃ij obtained by replacing Lij by Σij also belong obviously to the commutant of
{J12, J34, J56} but lead to trivial operators.

3.4. The Dirac model and Howe duality
We now wish to shed light on the result of the previous two sections by casting in a Howe

duality context the observation that the Bannai–Ito algebra arises in the commutant of both
osp(1|2) in U(osp(1|2)⊗3) and o(2)⊕3 in the considered spinorial representations of U(o(6)).
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To that end, we shall introduce a Dirac model where Pin(6) and osp(1|2) act as a dual
reductive pair [19] on the eigenfunctions so that their respective irreducible representations
can be paired through connections between the Casimir operators.

The Dirac operator D as well as x and E are defined in six dimensions as follows:

D =
6∑

µ=1
γµ∂µ , x =

6∑
µ=1

γµxµ , E =
6∑

µ=1
xµ∂µ, (3.4.1)

with {γµ, γν} = −2δµν .
These operators have osp(1|2) as their dynamical algebra. Indeed, with the Z2-grading

involution S given by

S = i
6/2

6∏
µ=1

γµ, (3.4.2)

and

J− = −iD, J+ = −ix, J0 = E + 3, (3.4.3)

the presentation (3.2.1) of the osp(1|2) algebra is realized, with the total Casimir given by

Γ[6] = 1
2 ([J−, J+]− 1) S . (3.4.4)

It should be noted that to any subset A ⊂ [6] there corresponds a realization of osp(1|2).
More precisely, if one defines

JA− = −i
∑
µ∈A

γµ∂µ , JA+ = −i
∑
µ∈A

γµxµ , JA0 = |A|
2 +

∑
µ∈A

xµ∂µ, (3.4.5)

these generators obey the osp(1|2) relations (3.2.1) with the involution given by

S A = i
|A|/2

∏
µ∈A

γµ (3.4.6)

when |A| is even. The Casimir has then the expression

ΓA = 1
2
(
[JA− , JA+ ]− 1

)
S A. (3.4.7)

We will first couple the six representations pairwise (each pair will correspond to an osp(1|2)
and we can hence use the previous observations for |A| even). We will refer to those pairs
using the shortened index notation, j = 1, 2, 3. The j’s will now label the representations
we want to pair next, in this two-step process.
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The Casimirs associated to one or two such indices are easily calculated using the ex-
pression (3.4.7) and they are found to be

Γj = −iLj + 1
2Σj ,

Γi j =
(
L2i−1,2i γ2i−1 γ2i + L2i−1,2j−1 γ2i−1 γ2j−1 + L2i−1,2j γ2i−1 γ2j

+ L2i,2j−1 γ2i γ2j−1 + L2i,2j γ2i γ2j + L2j−1,2j γ2j−1 γ2j + 3
2

)
Σ2i−1,2i Σ2j−1,2j.

(3.4.8)

They are immediately recognized as the generators (3.3.7) of the commutant of the set
{J12, J34, J56} in the spinorial representations of U(o(6)) that were identified in the previous
section.

It is here interesting to point out how the coproduct structure of osp(1|2) occurs in the
Dirac operator. In two dimensions, the gamma matrices are given in terms of the Pauli
matrices:

γ1 = iσ1, γ2 = iσ2, {γµ, γν} = −2δµν . (3.4.9)

The involution is simply S = iγ1γ2 = σ3 and coincides with the spin operator which we
denoted Σ12.

We observed that the Dirac equation in 4D provides an osp(1|2) made out ot two sub-
systems each realizing also an osp(1|2). It must hence result from the coproduct mapping:

D[2] 7→ ∆(D[2]) = D[2] ⊗S + 1⊗D[2] = D
(1)
[2] S

(2) +D
(2)
[2] . (3.4.10)

This connects with the construction of higher dimensional gamma matrices. Indeed, starting
with a realization of the Clifford algebra C`2 (generated for example by the 2 γi’s in (3.4.9)),
a systematic way to construct a realization of a Clifford algebra in two additional dimensions
(involving 4 γ̂i’s) is [20] to take

γ̂1 = γ1 ⊗ (iγ1γ2) =(iσ1)⊗ σ3

γ̂2 = γ2 ⊗ (iγ1γ2) =(iσ2)⊗ σ3

γ̂3 = 1⊗ γ1 = 1 ⊗ (iσ1)

γ̂4 = 1⊗ γ2 = 1 ⊗ (iσ2).

(3.4.11)

This construction can be iterated as many times as needed for higher dimensional Clifford
algebra realizations in even dimensions.

With this choice of gamma matrices, the Dirac operator in 4D reads:

D[4] = γ1∂1 + γ2∂2 + γ3∂3 + γ4∂4

=
(
∂1(iσ1) + ∂2(iσ2)

)
⊗ σ3 + 1⊗

(
∂1(iσ1) + ∂2(iσ2)

)
= D[2] ⊗S + 1⊗D[2],

(3.4.12)
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which checks with the expected coproduct result. The algebra involution S is realized by
the σ3 matrix and its occurence is made manifest in this fashion.

3.5. Dimensional reduction
It is instructive to perform the dimensional reduction of the six-dimensional Dirac oper-

ator to R3. Introduce the cylindrical coordinates

x2j−1 = ρj cos θj,

x2j = ρj sin θj,
j = 1, 2, 3. (3.5.1)

We then have transformed expressions for D, x and E. In particular,

D =
3∑
j=1

(
γ̌2j−1

∂

∂ρj
+ γ̌2j

1
ρj

∂

∂θj

)
, (3.5.2)

where
γ̌2j−1 = cos θj γ2j−1 + sin θj γ2j,

γ̌2j = − sin θj γ2j−1 + cos θj γ2j.
(3.5.3)

We can now bring the γ̌µ’s back to their original form (the γµ’s) by means of a rotation in
spin space. Let

S =
3∏
j=1

exp
(
−iθj2 Σj

)
, Σj = iγ2j−1γ2j, (3.5.4)

a straightforward calculation shows that

S−1γ̌µS = γµ, 1 ≤ µ ≤ 6. (3.5.5)

This rotation however leads to additional terms in the expression of D, which we can
also eliminate with a gauge transformation depending on the radii and of the form
eB = ∏n

i=1 fi(ρi). Requiring that after this additional transformation

D̃ =
3∑
j=1

(
γ2j−1

∂

∂ρj
+ γ2j

1
ρj

∂

∂θj

)
(3.5.6)

imposes that

eB =
3∏
j=1

1
√
ρj
. (3.5.7)

The following transformation

O 7→ Õ = e−BS−1OSeB, (3.5.8)

with eB and S given by (3.5.7) and (3.5.4) respectively, is thus to be carried.
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The angular momentum J12 (3.3.3) is one of the elements in the set whose commutant
we looked for. It is transformed into

J12 7→ J̃12 = e−BS−1
(
−i ∂
∂θ1

+ 1
2Σ12

)
SeB (3.5.9)

= −i ∂
∂θ1

+ 1
2Σ12 + (−i)

(−i
2 Σ12

)
= −i ∂

∂θ1
(3.5.10)

and similar results hold for J34 and J56.
We also have

x 7→ x̃ =
3∑
j=1

ρj γ2j−1, (3.5.11)

E 7→ Ẽ =
3∑
j=1

ρj
∂

∂ρj
, (3.5.12)

Σj 7→ Σ̃j = Σj. (3.5.13)

Fixing J̃2j−1,2j ∼ kj as a result of separation of variables, we can rewrite

D̃ =
3∑
j=1

(
γ2j−1

∂

∂ρj
+ γ2j

ikj
ρj

)
. (3.5.14)

Note that these reduced operators still generate the same dynamical algebra since this is not
altered by conjugation or separation of variables.

It is now interesting to investigate what is the effect of the reduction on the Casimirs
operators. Recall that the reduced Casimir associated to the subset {i1, . . . , in} = A ⊂ [6],
with j ≡ {2j − 1, 2j}, is given by

Γ̃A = 1
2
(
[x̃A, D̃A]− 1

)
Σ̃A, Σ̃A =

n∏
k=1

Σik
. (3.5.15)

The reduced Casimirs:

Γ̃i, Γ̃i j, Γ̃i j k, (3.5.16)

will satisfy the Bannai–Ito relations

{Γ̃i j, Γ̃j k} = Γ̃i k + 2Γ̃jΓ̃i j k + 2Γ̃iΓ̃k (3.5.17)

with

Γ̃j = 1
2
(
[x̃j, D̃j]− 1

)
Σj = J̃j = kj. (3.5.18)

This should be compared with the system studied in [1], where the Dirac operator was given
in terms of Dunkl derivatives Di of the Z2 type

Di = ∂i + ki
xi

(1−Ri), Rif(xi) = f(−xi). (3.5.19)
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The Bannai–Ito algebra was also seen to be the symmetry algebra in that case, with the one-
index Casimirs Γj equal to the deformation parameters kj. Here, we started with ordinary
partial derivatives in twice as many dimensions and found the one-index Casimirs taking the
values of the angular momenta that are diagonalized in the dimensional reduction. Hence,
the reduced system obtained here offers a new model with Bannai–Ito symmetry in addition
to the Dirac-Dunkl one.

3.6. The higher rank Bannai–Ito algebra as a commu-
tant

Let us now show how one can extend the result of the previous sections to the higher
rank Bannai–Ito algebra B(n).

Take any triple of pairwise disjoint subsets of [2n] called K, L, and M . There is an
obvious isomorphism

ospK(1|2)⊗ ospL(1|2)⊗ ospM(1|2) ∼= osp(1|2)⊗ osp(1|2)⊗ osp(1|2), (3.6.1)

so that the Casimir elements ΓK , ΓL, ΓM , ΓK∪L, ΓK∪M , ΓL∪M , and ΓK∪L∪M will generate
B(3) and hence obey

{ΓK∪L,ΓL∪M} = ΓK∪M + 2ΓLΓK∪L∪M + 2ΓKΓM . (3.6.2)

Now we wish to know {ΓA,ΓB} for any two subsets A and B. To that end, take K = A \B,
L = A ∩B, M = B \ A to see that in view of (3.6.2) the corresponding Casimirs satisfy

{ΓA,ΓB} = Γ(A∪B)\(A∩B) + 2ΓA∩BΓA∪B + 2ΓA\(A∩B)ΓB\(A∩B), (3.6.3)

which are the structure relations of B(n) given in (3.1.1) [2].
Underneath this quick derivation of (3.6.3) is the fact that the entire algebra B(n) is

realized by the Casimirs associated to 2-subsets since the general relations are inferred from
those of B(3). Let us map as we have done the 2-subsets {2i− 1, 2i}, i = 1, . . . , n of [2n] to
the elements i of [n] so that obviously {i, j} ∈ [n] corresponds to {2i−1, 2i, 2j−1, 2j} ∈ [2n].
It follows that the structure relations for the 4-subsets in [2n] are those of 2-subsets in [n].
Working with the set of n integers viewed in this way and in light of the preceeding remark,
it will suffice to examine the generators Γi j , namely the Γ2i−1,2i,2j−1,2j of the Dirac model
in 2n dimensions.

We can now use Howe’s duality to conclude that B(n) is in the commutant of the subal-
gebra o(2)⊕n. Let C`2n be the Clifford algebra generated by γµ, µ = 1, . . . , 2n with relations
as in (3.3.1). The spatial rotation generators are the Lµν verifying the o(2n) commutation
relations (8.3.6).
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Replacing 6 by 2n in equations (3.4.1), (3.4.2) provides operators D, x, E and S realizing
osp(1|2) in 2n dimensions.

Setting J− = −iD, J+ = −ix, J0 = E + n, the presentation of osp(1|2) coincides with
(3.2.1) and the total Casimir is Γ[2n] = 1

2 ([J−, J+]− 1) S . The Casimirs associated to one
or two labels j are easily calculated with the help of formula (3.4.7) which remains valid for
A ⊂ [2n]. One finds exactly the same operators Γj and Γi j with expressions as in (3.4.8) for
i, j = 1, . . . , n.

These Casimir operators are immediately recognized as the generators of the commutant
of the set {J12, . . . , J2n−1,2n} in the spinorial representation of U(o(2n)).

Since we know that the intermediate Casimirs realize the commutation relations of the
Bannai–Ito algebra, it is necessarily also the case for the generators of the commutant. This
therefore confirms our claim to the effect that B(n) is in the commutant of o(2)⊕n.

We can again perform the dimensional reduction of the 2n-dimensional model to obtain
a n-dimensional system whose symmetry algebra is B(n). Write D in the cylindrical coordi-
nates (3.5.1) with j = 1, . . . , n and the γ̌µ’s defined as in (3.5.3). Exactly as was done in six
dimensions, rotate the γ̌µ’s to their original form with the help of an operator S extending
(3.5.4) and accompany this with the gauge transformation defined by eB = ∏n

j=1 ρ
−1/2
j , thus

performing O 7→ Õ = e−BS−1OSeB. One then obtains for D̃, x̃ and Ẽ the same expressions
as in (3.5.6), (3.5.11) and (3.5.12) with the sum extending to n instead of stopping at 3.

The angular momenta J2j−1,2j (3.3.3) are then mapped to J̃2j−1,2j = −i ∂
∂θj

. Fixing
J̃2j−1,2j ∼ kj once the ignorable variable is eliminated, we can rewrite D̃ as in (3.5.14)
again extending the sum to n.

Note that the reduced operators still generate the same dynamical algebra.
The reduction of the Casimirs is as described from (3.5.15) to (3.5.18), except that A is

now a subset of [2n].
The reduced model thus obtained offers a new n-dimensional system in addition to the

Dirac–Dunkl one, with the B(n) Bannai–Ito algebra as its symmetry algebra. The one-index
Casimirs in the different models respectively take the values of the angular momenta and
the deformation parameters in the Dunkl-derivatives.
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3.7. An embedding of the R(n) Racah algebra in the B(n)
Bannai–Ito algebra

The higher rank Racah algebra R(n) is an associative algebra with generators {Ci}1≤i≤n,
{P ij}1≤i<j≤n, and defining relations [13]:

[P ij, P jk] = 2F ijk, (3.7.1a)

[P jk, F ijk] = P ikP jk − P jkP ij + 2P ikCj − 2P ijCk, (3.7.1b)

[P kl, F ijk] = P ikP jl − P ilP jk, (3.7.1c)

[F ijk, F jkl] = F jklP ij − F ikl
(
P jk + 2Cj

)
− F ijkP jl, (3.7.1d)

[F ijk, F klm] = F ilmP jk − P ikF jlm, (3.7.1e)

where i, j, k, l,m ∈ [n] are all different.
In [16] we identified the generators of the commutant of o(2)⊕n (in oscillator representa-

tions of U(o(2n))) which are the invariants {Gi}1≤i≤n, {Kij}1≤i<j≤n given in (3.3.12). With
the following redefinitions

Ci = −1
4G

i − 1
4 ,

Cij = −1
4K

ij,

P ij = Cij − Ci − Cj = −1
4K

ij + 1
4
(
Gi +Gj

)
+ 1

2 ,

(3.7.2)

a long but straightforward calculation in the oscillator realization showed that the defining
relations (3.7.1) of the algebra R(n) were obeyed.

It has been seen in [21] that R(3) admits an embedding in B(3). We already noted in
Section 3.3 that the commutant picture brought this inclusion to the fore and we shall exploit
it here together with the results in [16] to explicitly provide the embedding of R(n) in B(n).

The key point is that the intermediate Casimirs Ci and Cij realizing the R(n) algebra
can be obtained from the intermediate sCasimirs of the B(n) algebra.

We will only need to use the sCasimirs associated to 2 or 4 indices. They are given as
follows:

Sµν =
(
Lµνγµγν + 1

2

)
(3.7.3)

Sµνρσ =
(
Lµνγµγν + Lµργµγρ + Lµσγµγσ + Lνργνγρ + Lνσγνγσ + Lρσγργσ + 3

2

)
(3.7.4)
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and a straightforward calculation in the realization (3.3.4) allows to recover the Ci’s and
Cij’s as defined in (3.7.2) through the following formulae:

Ci = 1
4
(
S2i−1,2i

2 − S2i−1,2i − 3
4

)
, (3.7.5)

Cij = 1
4
(
S2i−1,2i,2j−1,2j

2 − S2i−1,2i,2j−1,2j − 3
4

)
. (3.7.6)

This readily gives the embedding of R(n) inside B(n).

3.8. Conclusion
This paper has offered a novel presentation of the Bannai–Ito algebra B(n) in the com-

mutant of o(2)⊕ · · · ⊕ o(2) in the spinorial representation of o(2n) associated to the Clifford
algebra C`2n. It has also indicated how this picture can be elegantly related to the defi-
nition of B(n) in the centralizer in U(osp(1|2)⊗n) of the coproduct embedding of the Lie
superalgebra osp(1|2) in osp(1|2)⊗n in the framework of the Howe duality associated to(
Pin(2n) , osp(1|2)

)
. This called for the introduction of a model involving the (massless)

Dirac equation in 2n dimensions and identifying the connection between the Casimir oper-
ators that describe the paired representations of the two mutually commuting algebras on
the solution space.

Invariance under the subalgebra of Pin(2n) allowed for dimensional reduction of the
Dirac equation under separation of variables. This resulted in a model in Rn with Bannai–
Ito symmetry without reflection operators that hence differ from the Dirac–Dunkl equation
already known to possess the same symmetry.

The commutant picture for B(n) made manifest the fact that the Racah algebra R(n)
can be embedded in B(n). This observation had been made for n = 3 [21] and could here
be explicitly extended.

Looking ahead it would be interesting to understand how various contractions of B(n)
(and R(n)) play out within the commutant presentation. The relation with superintegrable
systems would certainly be worth exploring [22, 23].

The Racah algebra is associated to sl(2) and the Bannai–Ito algebra to osp(1|2). The
Askey–Wilson algebra [24] is similarly related to the quantum algebra Uq(sl(2)). The rank 1
algebra encodes the bispectrality of the Askey–Wilson polynomials. Efforts are now deployed
to construct the extensions to arbitrary ranks [25, 26]. It is natural to think that the Askey–
Wilson algebra also admits a dual commutant presentation. We plan on examining this
matter which could shed useful light on the higher rank construction. We hope to report on
these questions we have raised in the near future.
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3.A. Connection with superconformal quantum me-
chanics

As an aside to our discussion, we wish to observe that the superconformal quantum
Hamiltonian with sl(2|1) symmetry presented in [17] can be obtained by dimensional re-
duction from the two-dimensional harmonic oscillator. The Dirac operator in 2D and the
corresponding position and Euler operators are given by

D = γ1∂1 + γ2∂2, x = γ1x1 + γ2x2, E = x1∂1 + x2∂2. (3.A.1)

They generate the osp(1|2) dynamical algebra (3.2.1), precisely realized upon defining
J− = −iD, J+ = −ix, J0 = E + 1, and taking the algebra involution to be S = Σ12 = iγ1γ2.
The 2D harmonic oscillator Hamiltonian is the algebra element

Hh.osc. = D2 − x2 = −
(
∂2

∂x12 + ∂2

∂x22

)
+
(
x1

2 + x2
2
)

(3.A.2)

and hence possesses this osp(1|2) symmetry.
Performing the dimensional reduction (x1, x2)→ ρ, carrying the transformation eBS and

fixing the angular momentum to be J12 ∼ k, as explained in section 3.5, one obtains

D̃ = γ1
∂

∂ρ
+ γ2

i k

ρ
, x̃ = γ1ρ, Ẽ = ρ

∂

∂ρ
, Σ̃12 = Σ12. (3.A.3)

With the gamma matrices realized in terms of the Pauli matrices as

γ1 = iσ1, γ2 = iσ2, Σ12 = σ3, (3.A.4)

the 2D harmonic oscillator Hamiltonian is “reduced” to

H̃h.osc. = − ∂2

∂ρ2 + k(k − σ3)
ρ2 + ρ2, (3.A.5)

which is identified with the superconformal quantum mechanical model introduced and an-
alyzed by Fubini and Rabinovici [17]. The supercharges are given by D̃ and x̃. In [17] the
Hamiltonian (3.A.5) is actually observed to have the larger sl(2|1) or osp(2|2) symmetry.
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This follows from the fact that Σ12 is an additional even symmetry which generates two
supplementary supercharges when commuted with D and x.
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Chapitre 4

The Higgs and Hahn algebras from a Howe
duality perspective

Par Luc Frappat, Julien Gaboriaud, Luc Vinet, Stéphane Vinet et Alexei Zhedanov.
Publié dans Physics Letters A 383, 1531–1535, 2019. arxiv:1811.09359.

Abstract: The Hahn algebra encodes the bispectral properties of the eponymous
orthogonal polynomials. In the discrete case, it is isomorphic to the polynomial algebra
identified by Higgs as the symmetry algebra of the harmonic oscillator on the 2-sphere.
These two algebras are recognized in the commutant of a o(2) ⊕ o(2) subalgebra of o(4) in
the oscillator representation of the universal algebra U(u(4)). This connection is further
related to the embedding of the (discrete) Hahn algebra in U(su(1, 1))⊗U(su(1, 1)) in light
of the dual action of the pair

(
o(4), su(1, 1)

)
on the state vectors of four harmonic oscillators.

The two-dimensional singular oscillator is naturally seen by dimensional reduction to have
the Higgs algebra as its symmetry algebra.

4.1. Introduction
This paper is concerned with the Higgs algebra [1–3] and the discrete version of the

Hahn algebra [4, 5] which actually designate two different but isomorphic presentations of
the same algebra [3, 6]. We aim to establish that this algebra arises in the commutant of a
o(2)⊕o(2) subalgebra of o(4) in the oscillator representation of the universal algebra U(u(4)).
We will moreover point out that this relation that the Higgs and Hahn algebras have with
o(4) is in duality, in the sense of Howe [7–9], with the one they are known to have with
su(1, 1)⊗ su(1, 1) [10, 11]. Let us start with some background.

https://dx.doi.org/10.1016/j.physleta.2019.02.024
https://arxiv.org/abs/1811.09359


The Hahn algebra has three generators K̂1, K̂2 and K̂3 subjected to the relations

[K̂1, K̂2] = K̂3,

[K̂2, K̂3] = a{K̂1, K̂2}+ bK̂2 + c1K̂1 + d1,

[K̂3, K̂1] = aK̂1
2 + bK̂1 + c2K̂2 + d2,

(4.1.1)

where {A,B} = AB +BA and a, b, c1, c2, d1, d2 are structure constants. We assume a 6= 0
(otherwise (4.1.1) would be equivalent to the Lie algebra sl(2)). This algebra describes the
eigenvalue problems of both the discrete and continuous Hahn polynomials [12]. We shall
henceforth consider the discrete case where c2 < 0 and which is realized by the bispectral
operators of the Hahn polynomials (see [13] for instance). In this case, upon performing the
affine transformation

K̂1 = 1
2
√
−c2K1 −

b

2a,

K̂2 = −1
2aK2 −

c1

2a,
(4.1.2)

one can cast the commutation relations in the form
[K1, K2] = K3,

[K2, K3] = −2{K1, K2}+ δ1,

[K3, K1] = −2K1
2 − 4K2 + δ2,

(4.1.3)

with δ1, δ2 constants (or central elements).
The Hahn algebra admits an embedding in U(su(1, 1))⊗U(su(1, 1)) that we shall describe

in details later as it is germane to our analysis. This observation underscores its connection
to the Clebsch–Gordan problem for su(1, 1) (and su(2)).

The Higgs algebra can be viewed as a polynomial deformation of su(2). It has three
generators D, A+, A− satisfying the following commutation relations:

[D,A±] = ±4A±,

[A+, A−] = −D3 + α1D + α2,
(4.1.4)

with α1, α2 central elements. That the Higgs algebra is isomorphic to the discrete Hahn
algebra is readily seen by taking

K1 = 1
2D,

K2 = −1
4

(
A+ + A− + 1

2D
2
)

+ α1

8 ,

K3 = [K1, K2] = −1
2(A+ − A−),

(4.1.5)
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and observing that the commutation relations (9.4.1) then follow from (4.1.4) with

δ1 = −α2

4 , δ2 = α1

2 . (4.1.6)

Historically, the algebra defined in (4.1.4) was found by Higgs, hence the name, as the one
realized by the conserved quantities of the Coulomb problem and harmonic oscillator on
the two-sphere. It can be viewed as a deformed su(2) algebra [14] or a truncation of the
quantum algebra Uq(sl(2)) [6]. This algebra has been identified as the symmetry algebra of
the Hartmann [4] and of certain ring-shaped potentials [5] as well as the singular oscillator
in two dimensions [2, 3]. The Higgs algebra has moreover emerged in the Heisenberg quan-
tization of identical particles [15]. Furthermore, it has been seen to coincide with the finite
quantum W-algebra W (sp(4), 2sl(2)) [16, 17]. (For a review of finite W-algebras and their
applications, see [18].)

Similarly to the Hahn case, the Racah algebra [3, 10, 19] is realized by the bispectral
operators of the corresponding polynomials. It admits an embedding in U(su(1, 1))⊗3 with
the intermediate Casimir elements representing the generators. The Hahn algebra can be ob-
tained through a contraction of the standard presentation of the Racah algebra in a way that
parallels the limit that takes the Racah polynomials into those of Hahn [12]. A generalization
of the Racah algebra to higher ranks is found in [20].

Recently the Racah algebra has been interpreted in a Howe duality framework and shown
to be in a commutant [21] in the enveloping algebra of o(6), the Lie algebra of the rotation
group in six dimensions. An extension of this result to the generalized Racah algebra is
given in [22]. An analogous treatment of the Bannai-Ito algebra [23–25], which is in a sense
a supersymmetric version of the Racah algebra, was also achieved in [26]. These advances
raised the question of how to describe the Higgs algebra from a Howe duality perspective.
The answer to this question will be provided here with the significant merit of expanding
and interconnecting the various descriptions of the Higgs and Hahn algebras.

The remainder of the paper is organized as follows. As preparation background, famil-
iar results on the metaplectic representation of su(1, 1) and the embedding of u(4) in the
Heisenberg-Weyl algebra will be reviewed in Section 4.2. The Higgs algebra will be obtained
in the commutant of o(2) ⊕ o(2) in U(u(4)) in Section 4.3. The embedding of the Hahn
algebra into U(su(1, 1)) ⊗ U(su(1, 1)) will be described in Section 4.4. The two pictures of
the Higgs/Hahn algebra presented in Sections 4.3 and 4.4 will be connected via the Howe
dual pair

(
o(4), su(1, 1)

)
that acts on the state vectors of the four-dimensional oscillator.

Dimensional reduction will be used in Section 4.6 to recover the fact that the symmetries
of the singular oscillator in two dimensions generate the Higgs algebra. The paper will end
with a summary of the findings and an outlook.
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4.2. su(1, 1), u(4) and oscillators
We shall be dealing with the Heisenberg–Weyl algebra W (n) generated by n pairs of

oscillator operators ai, a†i , i = 1, . . . , n, that satisfy

[ai, a†j] = δij, i, j = 1, . . . , n. (4.2.1)

The number operators Ni = a†iai are such that

[Ni, aj] = −aiδij, [Ni, a
†
j] = a†iδij. (4.2.2)

In the position coordinates xi, i = 1, . . . , n these operators read

ai = 1√
2

(
∂

∂xi
+ xi

)
, a†i = 1√

2

(
− ∂

∂xi
+ xi

)
, Ni = −1

2
∂2

∂xi2
+ 1

2xi
2 − 1

2 . (4.2.3)

The Lie algebra su(1, 1) has generators J0, J+, J− obeying the commutation relations

[J0, J±] = ±J±, [J+, J−] = −2J0. (4.2.4)

Its Casimir element is given by

C = J0
2 − J+J− − J0. (4.2.5)

Owing to the fact that su(1, 1) has a trivial coproduct, J (12)
0 = J

(1)
0 + J

(2)
0 , J (12)

± = J
(1)
± + J

(2)
±

with J (1)
• = J•⊗1 and J (2)

• = 1⊗J•, defines an embedding of su(1, 1) into su(1, 1)⊗ su(1, 1).
This fact and the notation extend to su(1, 1)⊗n.

The metaplectic representation of su(1, 1) is defined by the following map in W (1):

J (i)
0 = 1

2

(
a†iai + 1

2

)
, J (i)

+ = 1
2a
†
i
2, J (i)

− = 1
2ai

2. (4.2.6)

It consists in the direct sum of two irreducible su(1, 1) representations on the spaces spanned
respectively by the eigenstates of Ni = a†iai with either even or odd eigenvalues. The
Casimir element C has value −3/16 in that representation. In the following we shall consider
J (1234)
• = J (12)

• +J (34)
• which provides an embedding of su(1, 1) intoW (4) as per the remarks

above.
The Lie algebra u(4) with generators Eij, i, j = 1, . . . , 4 admits the following realization

à la Schwinger in W (4):

Eij = a†iaj, i, j = 1, . . . , 4. (4.2.7)

The Hamiltonian of the isotropic harmonic oscillator in four dimensions:

H = N1 +N2 +N3 +N4 + 2 (4.2.8)

is central, [H, a†iaj] = 0, and should be excluded from the 16 independant a†iaj to deal with
u(4) per se. In this oscillator representation, the o(4) subalgebra of u(4) is spanned by the
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infinitesimal rotation generators

Ljk = i

2(aja†k − a
†
jak) = − i2

(
xj

∂

∂xk
− xk

∂

∂xj

)
(4.2.9)

with commutation relations

[Ljk, L`m] = i

2(Lj`δkm − Lk`δjm + Lkmδj` − Ljmδk`), j, k, `,m = 1, . . . , 4. (4.2.10)

4.3. The Higgs algebra as a commutant in U(u(4))
We are now ready to obtain our first main result, namely that the Higgs algebra can

be defined as a commutant. Pick the o(2) ⊕ o(2) subalgebra of o(4) generated by L12 and
L34; clearly [L12, L34] = 0. We want to concentrate on the commutant of this subalgebra
in U(u(4)). We are thus looking for polynomials in the generators a†iaj, i, j = 1, . . . , 4 that
are invariant under rotations in both the (1 − 2)- and (3 − 4)-planes. It is not difficult to
convince oneself that an integrity basis for that set is provided by the three operators

A+ = (a†12 + a†2
2)(a3

2 + a4
2),

A− = (a1
2 + a2

2)(a†32 + a†4
2),

D = (N1 +N2)− (N3 +N4).

(4.3.1)

A± and D are manifestly invariant under the rotations generated by L12 and L34 and they
clearly commute with H (thus belonging to U(u(4))). All other elements of the commutant
are built from those.

Let us now determine the commutation relations of these generators. It is immediate to
see that

[D,A±] = ±4A±. (4.3.2)

There remains to evaluate [A+, A−]. Observe first that one has the following identities:

a†i
2ai

2 = Ni
2 −Ni (4.3.3)

as well as

ai
2a†j

2 + a†i
2aj

2 = 2NiNj +Ni +Nj − 4Lij2, i, j = 1, . . . , 4. (4.3.4)

A straightforward computation yields

[A+, A−] = 4
(
a†1

2a1
2 + a†1

2a2
2 + a†2

2a1
2 + a†2

2a2
2
)

(N3 +N4 + 1)

− 4 (N1 +N2 + 1)
(
a†3

2a3
2 + a†3

2a4
2 + a†4

2a3
2 + a†4

2a4
2
) (4.3.5)
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which with the help of (4.3.3) and (4.3.4) is readily converted to

[A+, A−] = 4
[
(N1 +N2)2 − 4L12

2
]

(N3 +N4 + 1)

− 4 (N1 +N2 + 1)
[
(N3 +N4)2 − 4L34

2
]
.

(4.3.6)

Since

N1 +N2 = 1
2(H +D − 2), N3 +N4 = 1

2(H −D − 2), (4.3.7)

upon substituting and after some algebra, one obtains

[A+, A−] = −D3 +
[
H2 + 8

(
L12

2 + L34
2
)
− 4

]
D − 8

(
L12

2 − L34
2
)
H. (4.3.8)

Since H, L12, L34 commute with all the generators, we thus conclude comparing with (4.1.4)
that indeed the Higgs algebra is in the commutant in U(u(4)) of o(2)⊕o(2) with the structure
“constants” given by

α1 = H2 + 8
(
L12

2 + L34
2
)
− 4,

α2 = −8
(
L12

2 − L34
2
)
H.

(4.3.9)

This provides a most simple characterization of the Higgs algebra.
We can translate these results in terms of the Hahn presentation. Substituting (4.3.1) in

(4.1.5), using formula (4.3.4) and keeping in mind the expression for α1 given in (4.3.9), one
arrives at the following nice expressions

K1 = 1
2 [(N1 +N2)− (N3 +N4)] ,

K2 = L12
2 + L13

2 + L14
2 + L23

2 + L24
2 + L34

2,

K3 = [K1, K2],

(4.3.10)

knowing that these operators will satisfy the commutation relations of the Hahn algebra
given in (9.4.1) with

δ1 = −α2

4 = 2
(
L12

2 − L34
2
)
H,

δ2 = α1

2 = 1
2H

2 + 4
(
L12

2 + L34
2
)
− 2.

(4.3.11)

4.4. The embedding of the Hahn algebra into
U(su(1, 1))⊗ U(su(1, 1))

Let us here indicate how the Hahn algebra is embedded in the tensor product of
U(su(1, 1)) with itself. Let ∆ : su(1, 1) → su(1, 1) ⊗ su(1, 1) be the coproduct homomor-
phism with ∆(J•) = J (12)

• = J (1)
• +J (2)

• in the superscript notation introduced in Section 4.2.
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Consider the following identification [10, 11]:

K1 = J
(1)
0 − J

(2)
0 ,

K2 = ∆(C) =
[
J

(12)
0

]2
− J (12)

+ J
(12)
− − J (12)

0 ,
(4.4.1)

that is K2 is the image of the Casimir element under the coproduct. It is clear that the
computation of the overlaps coefficients between the eigenbases of those two operators cor-
responds to the Clebsch–Gordan problem for su(1, 1).

A simple calculation gives

K2 = C(1) + C(2) + 2J (1)
0 J

(2)
0 − J

(1)
+ J

(2)
− − J

(1)
− J

(2)
+ (4.4.2)

with C(1) = C ⊗ 1, C(2) = 1⊗ C in keeping with the adopted notation. Let K3 = [K1, K2],
one finds

K3 = −2
(
J

(1)
+ J

(2)
− − J

(1)
− J

(2)
+

)
. (4.4.3)

One can now proceed to determine the commutators of K3 with K1 and K2 and one gets:

[K3, K1] = −2K1
2 − 4K2 + 2

(
J

(1)
0 + J

(2)
0

)2
+ 4

(
C(1) + C(2)

)
,

[K2, K3] = −2{K1, K2}+ 4
(
J

(1)
0 + J

(2)
0

) (
C(1) − C(2)

)
.

(4.4.4)

While the first is immediately obtained, a little bit of algebra involving the su(1, 1) commu-
tation relations and its Casimir operator gives the second.

Note that J (1)
0 + J

(2)
0 is central since it commutes with K1 and K2 by construction.

We recognize in (4.4.4) the commutation relations (9.4.1) of the (centrally extended)
Hahn algebra with

δ1 = 4
(
J

(1)
0 + J

(2)
0

) (
C(1) − C(2)

)
,

δ2 = 2
(
J

(1)
0 + J

(2)
0

)2
+ 4

(
C(1) + C(2)

)
.

(4.4.5)

We thus have with the formulas (4.4.1), the embedding of the Hahn algebra in
U(su(1, 1))⊗ U(su(1, 1)). What relation this has to do with the commutant picture
will be adressed next.

4.5. The Howe duality connection
We shall now indicate that the two descriptions of the Hahn algebra presented in Section

4.3 and 4.4 can be connected through Howe duality. It is known (see in particular [9]) that
there is a pairing between the representations of o(4) and su(1, 1) that act in a mutually
commuting way (see (4.5.3)) on the state space of the four-dimensional harmonic oscillator.
We shall exploit this to show that the embedding of the Hahn algebra in the double tensor
product of the universal enveloping algebra of one algebra of the pair, su(1, 1), is in duality
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with embedding in the commutant (in the universal algebra of u(4)) of the o(2) ⊕ o(2)
subalgebra of the other algebra of the pair o(4).

Let us consider the addition of four metaplectic representations (4.2.6) grouped in two
pairs, that is take

J (1234)
• = J (12)

• + J (34)
• (4.5.1)

with

J (ij)
0 = 1

2 [Ni +Nj + 1] ,

J (ij)
+ = 1

2
(
a†i

2 + a†j
2
)
,

J (ij)
− = 1

2
(
ai

2 + aj
2
)
.

(4.5.2)

Note that

[Lij,J (1234)
• ] = 0 ∀i, j = 1, . . . , 4. (4.5.3)

We shall put J (12)
• and J (34)

• in correspondance with the J (1)
• and J (2)

• of Section 4.4. In this
model,

K1 = J (12)
0 − J (34)

0 = 1
2 [(N1 +N2)− (N3 +N4)] (4.5.4)

which is identical with the expression in (4.3.10) forK1 arising from the commutant approach.
For K2 we have

K2 = C(1234) =
[
J (12)

0 + J (34)
0

]2
−
(
J (12)

+ + J (34)
+

) (
J (12)
− + J (34)

−

)
−
(
J (12)

0 + J (34)
0

)
.

(4.5.5)

Using (4.5.2), this becomes

K2 = 1
4H

2 − 1
2H −

1
4
(
a†1

2 + a†2
2 + a†3

2 + a†4
2
) (
a1

2 + a2
2 + a3

2 + a4
2
)

(4.5.6)

and with the help of formulas (4.3.3) and (4.3.4), we have

K2 = 1
4H

2 − 1
2H −

1
4(A+ + A−)− 1

4
(
(N1 +N2)2 + (N3 +N4)2 − 4L12

2 − 4L34
2
)
. (4.5.7)

This can be rewritten as

K2 = −1
4

(
A+ + A− + 1

2D
2
)

+ 1
8H

2 + L12
2 + L34

2 − 1
2 (4.5.8)

which coincides with the expression that was found when looking for generators commuting
with L12 and L34. Recall that we also found that the expression (9.3.3) can identically be
reexpressed as K2 = L12

2 +L13
2 +L14

2 +L23
2 +L24

2 +L34
2 which makes it also manifest that

K2, calculated as a su(1, 1) Casimir, belongs to the commutant of {L12, L34} in U(o(4)) ⊂
U(u(4)).
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A similar computation shows that the su(1, 1) Casimir for the representation J (ij)
• is

given by the square of the corresponding rotation generator in o(4), namely

C(ij) = Lij
2 − 1

4 . (4.5.9)

It follows that the structure constants become on the basis of (4.4.5):

δ1 = 4
(
J (12)

0 + J (34)
0

) (
C(12) − C(34)

)
= 2H

(
L12

2 − L34
2
)
,

δ2 = 2
(
J (12)

0 + J (34)
0

)2
+ 4

(
C(12) + C(34)

)
= 1

2H
2 + 4

(
L12

2 + L34
2
)
− 2,

(4.5.10)

in perfect correspondance with (4.3.11). Of course K3 = [K1,K2].
Owing to the pairing of the su(1, 1) and o(4) representations under Howe duality, it is

found that the embedding of the Hahn algebra into U(su(1, 1)) ⊗ U(su(1, 1)) leads to its
description as a commutant in U(u(4)).

4.6. Dimensional reduction and the singular oscillator
in two dimensions

We shall now carry the dimensional reduction of the four-dimensional isotropic harmonic
oscillator under the O(2)×O(2) action to identify in this way the Higgs/Hahn symmetry of
the singular oscillator in the plane.

Make the change of variables

x2j−1 = ρj cos θj, x2j = ρj sin θj, j = 1, 2. (4.6.1)

Eliminate the θi’s by separating the variables with

L2j−1,2j = − i2
∂

∂θj
. (4.6.2)

Take the eigenvalues of this operator equal to − i
2kj. After performing the gauge transfor-

mation O → Õ = (ρ1ρ2)1/2O(ρ1ρ2)−1/2 one sees that the su(1, 1) operators become:

J̃ (2i−1,2i)
0 = 1

4

[
− ∂2

∂ρi2
− ai
ρi2

+ ρi
2
]
,

J̃ (2i−1,2i)
± = 1

4

(ρi ∓ ∂

∂ρi

)2

+ ai
ρi2

 , ai = ki
2 + 1

4 , i = 1, 2. (4.6.3)
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The Hamiltonian of the singular oscillator in two dimensions is thus given by

H̃ = 2
[
J̃ (12)

0 + J̃ (34)
0

]
= −1

2

(
∂2

∂ρ12 + ∂2

∂ρ22

)
+ 1

2

(
ρ1

2 + ρ2
2 − a1

ρ12 −
a2

ρ22

)
. (4.6.4)

The constants of motion are clearly

K1 = J̃ (12)
0 − J̃ (34)

0 ,

K2 = C̃(1234),

K3 = [K1, K2].

(4.6.5)

We know from our construction that these will close to form the Hahn algebra. The
(reduced) Casimir C̃(1234) =

(
J̃0
)2
− J̃+J̃− − J̃0, with J̃• = J̃ (12)

• + J̃ (34)
• is easily computed

and one finds

K2 = −1
4

(ρ1
∂

∂ρ2
− ρ2

∂

∂ρ1

)2

+ a1

(
ρ2

2

ρ12 + 1
)

+ a2

(
ρ1

2

ρ22 + 1
)

+ 1
 ,

K3 = 1
4

[(
2ρ1

∂

∂ρ1
+ 1

)(
∂2

∂ρ22 + ρ2
2 + a2

ρ22

)
−
(

2ρ2
∂

∂ρ2
+ 1

)(
∂2

∂ρ12 + ρ1
2 + a1

ρ12

)]
.

(4.6.6)

This approach, which combines the commutant viewpoint via the dimensional reduction
under the torus group action and the su(1, 1) embedding through the metaplectic represen-
tation, provides an alternative and straightforward way of showing that the Hahn algebra is
the symmetry algebra of the singular oscillator.

4.7. Conclusion
This paper has provided a synthetic description of the Higgs and Hahn algebras in light

of Howe duality. With the understanding that the Higgs and the (discrete) Hahn algebras
are isomorphic, we have shown that this algebra can be viewed as a commutant in U(u(4)).
It has also been recalled that it can be embedded in the tensor product of U(su(1, 1)) with
itself. The two approaches have been linked in view of the fact that o(4) and su(1, 1) form
a dual pair on the state space of the harmonic oscillator in four dimensions. This has also
provided context to identify the Hahn symmetry of the singular oscillator in two dimensions
through dimensional reduction.

In this respect, one might think of obtaining the higher rank Hahn algebras and by that
token the symmetries of the singular oscillator in higher dimensions, by considering the com-
mutant of the sum of n o(2)’s in U(u(2n)). Take for instance n = 3. the resulting commutant
in U(u(6)) would have as subalgebras two Hahn algebras associated to the (12) and (23) co-
ordinate sectors as well as the Racah algebra also, since we know [21] it is the commutant of
o(2) ⊕ o(2) ⊕ o(2) in U(o(6)) ⊂ U(u(6)). The entire mixed Hahn–Racah algebra will be an
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interesting deformation of su(3). Its analysis would certainly warrant particular attention as
this algebra will encompass in particular the properties of the connection coefficients for the
various separated solutions of singular oscillators in higher dimensions [27, 28]. We plan to
return to this question from this angle.

We would also wish to determine if some Howe duality operates in the case of the algebras,
like the Askey–Wilson one, associated to q-polynomials. Examining the q-Hahn algebra to
that end in the wake of the present study might prove illuminating and is in our plans.
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Chapitre 5

The q-Higgs and Askey–Wilson algebras

Par Luc Frappat, Julien Gaboriaud, Eric Ragoucy, Luc Vinet.
Publié dans Nuclear Physics B 944, 114632, 2019. arxiv:1903.04616.

Abstract: A q-analogue of the Higgs algebra, which describes the symmetry prop-
erties of the harmonic oscillator on the 2-sphere, is obtained in the commutant of the
oq1/2(2) ⊕ oq1/2(2) subalgebra of oq1/2(4) in the q-oscillator representation of the quantized
universal enveloping algebra Uq(u(4)). This q-Higgs algebra is also found as a specialization
of the Askey–Wilson algebra embedded in the tensor product Uq(su(1, 1)) ⊗ Uq(su(1, 1)).
The connection between these two approaches is established on the basis of the Howe
duality of the pair

(
oq1/2(4), Uq(su(1, 1))

)
.

5.1. Introduction
The Higgs algebra was first obtained by Higgs [1] as the algebra of the conserved quantities

of the Coulomb problem and harmonic oscillator on the 2-sphere. Shown to be isomorphic to
the Hahn algebra [2], it was also identified as the symmetry algebra of the Hartmann potential
[3], of certain ring-shaped potentials [4] and of the singular oscillator in two dimensions [5, 6].
The Higgs algebra stands between Lie algebras and quantized universal enveloping algebras,
as it can be viewed both as a deformation of the su(2) Lie algebra [7] and a truncation
of the Uq(sl2) quantum algebra [8]. It has been obtained as the quantum finite W-algebra
W (sp(4), 2 sl(2)) [9, 10] and has also appeared in the context of Heisenberg quantization of
identical particles [11].

https://dx.doi.org/10.1016/j.nuclphysb.2019.114632
https://arxiv.org/abs/1903.04616


The Higgs algebra can be presented in the following form

[D,A±] = ±4A±,

[A+, A−] = −D3 + α1D + α2,
(5.1.1)

where α1, α2 are central elements.
We here aim to construct a q-deformation of (5.1.1) that preserves the general algebraic

underpinnings of this structure. This will lead to an algebra that differs from the one in [12]
where a certain q-extension of the Higgs algebra was defined by simply replacing the cubic
expression in D by one involving q-numbers (see (5.2.1)).

We propose to obtain a q-analogue of the Higgs algebra by following a commutant ap-
proach similar to [13] (see also [14, 15]), where the ordinary Higgs algebra was obtained
in the commutant of the o(2) ⊕ o(2) subalgebra of o(4) in the oscillator representation of
U(u(4)). This characterization was shown to be in duality in the sense of Howe [16–19] with
the well-established embedding of the Hahn algebra in U(su(1, 1)) ⊗ U(su(1, 1)) [20, 21].
While Howe duality, sometimes called “complementarity”, has not been thoroughly studied
in the context of q-algebras (see for instance [22–26]), the results in [27] will provide ap-
propriate background for our purposes. The merit of the approach we propose is that the
q-Higgs algebra obtained in a commutant also appears in a dual fashion as a specialization
of the Askey–Wilson algebra [28–30] in the tensor product Uq(su(1, 1))⊗2.

Let us now briefly present the contents of the paper. In Section 5.2, the q-deformations
of su(1, 1) and o(n) (respectively denoted Uq(su(1, 1)) and oq(n)) will be introduced along
with their q-oscillator realizations. In Section 5.3, a q-deformation of the Higgs algebra will
be obtained in a commutant of oq1/2(2)⊕ oq1/2(2) ⊂ oq1/2(4) in the q-oscillator realization of
Uq(u(4)). The embedding of a special case of the Askey–Wilson algebra into Uq(su(1, 1))⊗2

will be presented in Section 5.4. As will be shown in Section 5.5, the q-Higgs algebra proves
to be isomorphic to that specialization of the Askey–Wilson algebra, and this result will be
explained by invoking the fact that the pair

(
oq1/2(4), Uq(su(1, 1))

)
behaves as a Howe dual

pair in this context. Concluding remarks and perspectives will form the last section.

5.2. The Uq(su(1, 1)), oq(n) algebras and their q-oscillators
realizations

The duality connection that we shall invoke in our discussion involves the algebras
Uq(su(1, 1)) and oq(n). We shall thus begin by introducing these algebras and their q-
oscillator realizations.

Let q be a complex number such that |q| < 1. One defines for any number x the following
q-numbers:

(x)q := 1− qx
1− q and [x]q := qx − q−x

q − q−1 . (5.2.1)
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The same notation will be used for operators.

5.2.1. The Uq(su(1, 1)) and oq(n) quantum algebras

Uq(sl2) [31, 32] is the quantized universal enveloping algebra with three generators j0 and
j± subjected to the relations

[j0 , j±] = ±j±, [j+ , j−] = [2j0]q. (5.2.2)

It is endowed with a Hopf structure with coproduct ∆ : Uq(sl2)→ Uq(sl2)⊗ Uq(sl2)

∆(j0) = j0⊗1+1⊗j0, ∆(j+) = j+⊗q2j0 +1⊗j+, ∆(j−) = j−⊗1+q−2j0⊗j−. (5.2.3)

We shall denote by Uq(su(1, 1)) the non-compact real form of Uq(sl2) that has the three
generators J± and J0 obeying

[J0 , J±] = ±J±, J−J+ − q2J+J− = q2J0 [2J0]q. (5.2.4)

The coproduct ∆ : Uq(su(1, 1))→ Uq(su(1, 1))⊗ Uq(su(1, 1)) will read

∆(J0) = J0 ⊗ 1 + 1⊗ J0, ∆(J±) = J± ⊗ q2J0 + 1⊗ J±. (5.2.5)

The Casimir operator C of this algebra has the following expression

C = J+J−q
−2J0+1 − q

(q2 − 1)2

(
q2J0−1 + q−2J0+1

)
+ q2 + 1

(q2 − 1)2 . (5.2.6)

The coproduct being an algebra morphism, the relations (5.2.5) define an embedding of
Uq(su(1, 1)) into Uq(su(1, 1))⊗ Uq(su(1, 1)).
Remark 5.1. In the limit q → 1, one recovers the usual su(1, 1) Lie algebra with Casimir
operator C = J+J− − J0

2 + J0. Moreover, the standard presentation of Uq(su(1, 1)) [33] is
recovered if one considers instead the generators J̃0 = J0, J̃+ = J+q

−J0 and J̃− = q−J0J−,
which satisfy the commutation relations

[
J̃0 , J̃±

]
= ±J̃± and

[
J̃− , J̃+

]
=
[
2J̃0

]
q
and have

co-commutative coproduct.
We introduce next the non-standard q-deformation oq(n) of o(n) which is defined as the

associative unital algebra with generators Li,i+1 (i = 1, . . . , n− 1) and relations

Li−1,i Li,i+1
2 − (q + q−1)Li,i+1 Li−1,i Li,i+1 + Li,i+1

2 Li−1,i = −Li−1,i, (5.2.7a)

Li,i+1 Li−1,i
2 − (q + q−1)Li−1,i Li,i+1 Li−1,i + Li−1,i

2 Li,i+1 = −Li,i+1, (5.2.7b)

[Li,i+1 , Lj,j+1] = 0 for |i− j| > 1. (5.2.7c)

In the literature, this non-standard deformation is often denoted U ′q(son), see for instance
[34–37]. It has been shown in [38] that oq(n) can be viewed as a q-analogue of the symmetric
space based on the pair (gl(n), o(n)). Although it has no Hopf structure on its own, it is a
coideal subalgebra of Uq(sl(n)) [38] and appears in many areas of mathematical physics [36].
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The two cases where n = 3 and n = 4 are especially of interest to us.
Let us first note that it is possible to consider a so-called “Cartesian” presentation [39–41]

of Uq(sl2), in which the three generators play an “equitable” role, and which corresponds to
the non-standard deformation oq(3) (equivalently U ′q(so3) in refs. [40, 41]) of the universal
enveloping algebra U(so(3)), obtained by modifying the defining relations for the skew-
symmetric generators of so(3).

It goes like this. With j0, j±, the Uq(sl2) generators, form the following elements:

j1 = ig
{
q

1
2 j0 , j+ + j−

}
,

j2 = g
{
q−

1
2 j0 , j+ − j−

}
,

g = 1
(q 1

4 + q−
1
4 )(q 1

2 + q−
1
2 )
, (5.2.8)

where {a, b} = ab + ba is the anticommutator and g is a normalization factor. Defining
j3 ≡ [j1, j2]q, where [a, b]q := q

1
2ab − q− 1

2 ba is the q-commutator, j1, j2 and j3 then satisfy
the “Cartesian” relations

[j1, j2]q = j3, [j2, j3]q = j1, [j3, j1]q = j2. (5.2.9)

Upon identifying L12 = j1, L23 = j2, one finds that this corresponds precisely to the relations
(6.3.1) for the algebra oq(3). Note that the relations (6.3.1c) do not exist in this case.

For what follows, it will also be useful to have the formulas for oq(4) in full. These
relations read [42]

L12 L23
2 − (q + q−1)L23 L12 L23 + L23

2 L12 = −L12, (5.2.10a)

L23 L12
2 − (q + q−1)L12 L23 L12 + L12

2 L23 = −L23, (5.2.10b)

L23 L34
2 − (q + q−1)L34 L23 L34 + L34

2 L23 = −L23, (5.2.10c)

L34 L23
2 − (q + q−1)L23 L34 L23 + L2

23 L34 = −L34, (5.2.10d)

[L12 , L34] = 0. (5.2.10e)

It is immediate to see that L12, L23 and L23, L34 respectively generate two oq(3) subalgebras
of oq(4), however they do not appear within a direct sum, in contrast to what happens with
o(4).

If one introduces the following elements:

L±13 = [L12 , L23]q±1 , L±24 = [L23 , L34]q±1 , L±14 = [L±13 , L34]q±1 , (5.2.11)

where [a, b]q is defined as above and [a, b]q−1 := q−
1
2ab− q 1

2 ba, the two independent Casimir
operators of the algebra oq(4) are then given by [27, 34, 41]

C4 = q−2L12
2 + L23

2 + q2L34
2 + q−1L+

13 L
−
13 + qL+

24 L
−
24 + L+

14 L
−
14, (5.2.12a)

C ′4 = q−1L12 L34 − L+
13 L

+
24 + qL23 L

+
14. (5.2.12b)
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5.2.2. The q-oscillator algebras, Schwinger and metaplectic realiza-
tions

Let us now recall the properties of the q-oscillator operators that will be used to realize
the algebras presented above. The q-oscillator algebra Aq(n) [43–45] is defined as the unital
associative algebra over C generated by n independent sets of q-oscillators {A±i , A0

i } verifying

[A0
i , A

±
i ] = ±A±i , [A−i , A+

i ] = qA
0
i , A−i A

+
i − qA+

i A
−
i = 1, i = 1, . . . , n , (5.2.13)

and such that the commutators between elements with different indices i are equal to zero.
The last two relations allow one to express Ni = A+

i A
−
i in terms of A0

i :

Ni = A+
i A
−
i = 1− qA0

i

1− q = (A0
i )q. (5.2.14)

In the limit q → 1, A0
i coincides with the usual number operator Ni.

The q-oscillator algebra has the following representation on the space spanned by the
standard occupancy number states |n1, · · · , nn〉 = |n1〉 ⊗ · · · ⊗ |nn〉 (ni ∈ N):

A0
i |ni〉 = ni|ni〉, A+

i |ni〉 =
√

1− qni+1

1− q |ni + 1〉, A−i |ni〉 =
√

1− qni
1− q |ni− 1〉. (5.2.15)

These commuting q-oscillators can now be used to build realizations of the algebras consid-
ered above.

Firstly, the algebra oq(3) can be realized à la Schwinger in terms of two q-oscillators.
More precisely, using the homomorphism χ : Uq(sl2)→ Aq(2) given by

χ(j0) = 1
2(A0

1 − A0
2), χ(j+) = q−

1
4 (A0

1+A0
2−1)A+

1 A
−
2 , χ(j−) = q−

1
4 (A0

1+A0
2−1) A−1 A

+
2 ,

(5.2.16)
and the identification (5.2.8), the following realization of oq(3) is obtained:

χ(j1) = iq
1
4

q
1
2 + q−

1
2
q−

1
2A

0
2
(
q

1
4A−1 A

+
2 + q−

1
4A+

1 A
−
2

)
, (5.2.17)

χ(j2) = q
1
4

q
1
2 + q−

1
2
q−

1
2A

0
1
(
q

1
4A+

1 A
−
2 − q−

1
4A−1 A

+
2

)
. (5.2.18)

Another key ingredient is the metaplectic realization of Uq(su(1, 1)), which is given by the
homomorphism µ : Uq(su(1, 1))→ Aq(1):

µ(J0) = J0 = 1
2

(
A0 + 1

2

)
, µ(J±) = J± = 1

[2]q1/2
(A±)2. (5.2.19)

One sees immediately that it is a q-deformation of the usual metaplectic representation of
su(1, 1).
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Finally, we shall also use the realization of oq1/2(4) in terms of 4 q-oscillators which is
provided by:

Li,i+1 = q−
1
2A

0
i+

1
4
(
q

1
4A+

i A
−
i+1 − q−

1
4A−i A

+
i+1

)
, i = 1, 2, 3. (5.2.20)

One checks that the Li,i+1 indeed verify relations of the form (5.2.10) but whose q’s have been
replaced by q1/2’s. Furthermore, L12, L34 commute and hence generate a oq1/2(2)⊕ oq1/2(2)
subalgebra of oq1/2(4).

5.3. The commutant of oq1/2(2)⊕oq1/2(2) in the q-oscillator
realization of Uq(u(4)) and the q-Higgs algebra

It was shown in [13] that the Higgs algebra appears in the commutant of o(2)⊕ o(2) in
the universal enveloping algebra U(u(4)). This section aims to define the q-Higgs algebra
through a q-analogue of this commutant picture.

We consider first the oq1/2(2)⊕ oq1/2(2) subalgebra of oq1/2(4) generated by L12 and L34,
and look for its commutant in Uq(u(4)).

Introduce the following three operators

M+ =
(
qA

0
2+ 1

2 (A+
1 )2 + (A+

2 )2
)(

qA
0
4+ 1

2 (A−3 )2 + (A−4 )2
)
, (5.3.1a)

M− =
(
qA

0
2+ 1

2 (A−1 )2 + (A−2 )2
)(

qA
0
4+ 1

2 (A+
3 )2 + (A+

4 )2
)
, (5.3.1b)

L = (A0
1 + A0

2)− (A0
3 + A0

4), (5.3.1c)

which commute with the generators L12 and L34 (in the limit q → 1, L12 and L34 correspond
to rotations in the (1, 2) and (3, 4) planes).

One notes that each big parenthesis in the expression of the M± operators can actually
be obtained by applying the coproduct of Uq(su(1, 1)) to the J± generators. Recalling that
the bilinears of the form Eij = A+

i A
−
j , i, j = 1, 2, 3, 4 realize the Uq(u(4)) algebra [46], it can

be observed that M±, L generate the non-trivial part of the commutant of oq1/2(2)⊕ oq1/2(2)
in the q-oscillator realization of Uq(u(4)).

It is immediate to see that M± and L also commute with the central element

H =
4∑
i=1

(A0
i + 1

2). (5.3.2)

One could ask how were the expressions for L, M± obtained. First, the operator L obviously
commutes with L12 and L34. Second, instead of obtaining the factors in M± from the
coproduct one can look for elements T± in Aq(2) that commute with L12; this is most easily
done “on-shell”, that is, by solving [L12, T

±]|n1, n2〉 = 0 for any two q-oscillator states. One
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thus arrives at
T± = qα(A0

1+A0
2)
(
qA

0
2+ 1

2 (A±1 )2 + (A±2 )2
)
, α ∈ C. (5.3.3)

Since A0
1 +A0

2 = 1
2(L+H), only the second factor of T± is relevant. The same is done with

L34 on the direct product states |n3, n4〉. It is then clear that the only combinations of the
operators (5.3.3) and their (3, 4) analogues that will belong to Uq(u(4)) are those occurring
in M±.

It now remains to determine the algebra formed by the three generators M± and L.
Proposition 5.2. The operators M± and L have the following commutators:

[L,M±] = ±4M±,

[M+,M−] = (1 + q)
q(1− q)3 q

H
(

(q + q−1)(qL − q−L)− 2
(
q

1
2H + q−

1
2H
)
(q 1

2L − q−
1
2L)
)

+ (1 + q)
q2(1− q) q

H
((
q−

1
2HL12

2 + q
1
2HL34

2
)
q

1
2L −

(
q

1
2HL12

2 + q−
1
2HL34

2
)
q−

1
2L
)
.

(5.3.4a)

The elements L12, L34 and H, which are central, play the role of structure constants. We
shall take these relations to define abstractly the (universal) q-Higgs algebra.
Remark 5.3. Alternatively, if one considers the generator q 1

2L instead of L, the first set of
relations in (5.3.4a) becomes

q
1
2LM± = q±2M±q

1
2L. (5.3.4b)

Proof. The first relations of (5.3.4a) are obvious. The last relation is obtained by a di-
rect computation in the q-oscillator algebra. Starting with (5.3.1a)–(5.3.1b), and using the
identity [a+

1 a
−
2 , a

−
1 a

+
2 ] = [a+

1 , a
−
1 ]a+

2 a
−
2 −a+

1 a
−
1 [a+

2 , a
−
2 ] for a±i =

(
qA

0
2i+

1
2 (A±2i−1)2 + (A±2i)2

)
, one

gets

[M+,M−] =[
q2A0

2+1
[
(A+

1 )2, (A−1 )2
]

+
[
(A+

2 )2, (A−2 )2
]

+ qA
0
2+ 1

2 (1− q2)
(
(A+

1 )2(A−2 )2 + q−2(A−1 )2(A+
2 )2

)]
×
[
q2A0

4+1(A+
3 )2(A−3 )2 + (A+

4 )2(A−4 )2 + qA
0
4+ 1

2
(
(A+

3 )2(A−4 )2 + q−2(A−3 )2(A+
4 )2

)]
−
[
q2A0

4+1
[
(A+

3 )2, (A−3 )2
]

+
[
(A+

4 )2, (A−4 )2
]

+ qA
0
4+ 1

2 (1− q2)
(
(A+

3 )2(A−4 )2 + q−2(A−3 )2(A+
4 )2

)]
×
[
q2A0

2+1(A+
1 )2(A−1 )2 + (A+

2 )2(A−2 )2 + qA
0
2+ 1

2
(
(A+

1 )2(A−2 )2 + q−2(A−1 )2(A+
2 )2

)]
. (5.3.5)

Now, from the expression (5.2.20), one obtains

L12
2 = q−A

0
1+ 1

2
(
q(A+

1 )2(A−2 )2 +q−1(A−1 )2(A+
2 )2−q

1
2N1−q−

1
2N2−q(q

1
2 +q−

1
2 )N1N2

)
(5.3.6)

and a similar expression for L34
2 with the replacement A•1, A•2 → A•3, A

•
4.
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Using the relations[
(A+

i )2, (A−i )2
]

= −(1 + q)qA0
i

(
(q + q−1)Ni + 1

)
(5.3.7)

and
q(A+

i )2(A−i )2 = N2
i −Ni, (5.3.8)

and after some algebra, one is left with the following equation

[M+,M−] =[
(1 + q)qA0

1+A0
2−1
(

(1− q)L12
2 + q

1−q

(
qA

0
1+A0

2(1 + q2)− 2
))][

qA
0
3+A0

4−1L34
2+ [(A0

3 + A0
4)q]2

]
−
[
(1 + q)qA0

3+A0
4−1
(

(1− q)L34
2 + q

1−q

(
qA

0
3+A0

4(1 + q2)− 2
))][

qA
0
1+A0

2−1L12
2+ [(A0

1 + A0
2)q]2

]
.

(5.3.9)

Expressing the A0
i generators in terms of L and H, one finally obtains the desired commu-

tation relation.
Remark 5.4. In the limit q → 1, noting that

lim
q→1

L12 = 2iL12, lim
q→1

L34 = 2iL34, with Ljk = − i2

(
xj

∂

∂xk
− xk

∂

∂xj

)
, (5.3.10)

one easily recovers from (5.3.4a) the commutation relations of the Higgs algebra (5.1.1) in
the form:

[L,M±] = ±4M±,

[M+,M−] = −L3 + α1L+ α2,
(5.3.11)

where α1 = H2 + 8(L12
2 + L34

2)− 4, and α2 = −8H(L12
2 − L34

2).
Hence, the relations (5.3.4) indeed define a q-deformation of the Higgs algebra.

5.4. The Askey–Wilson algebra and an embedding into
Uq(su(1, 1))⊗2

We now indicate how (a special case of) the Askey–Wilson algebra can be embedded in
the tensor product Uq(su(1, 1)) ⊗ Uq(su(1, 1)). With ∆ the coproduct of Uq(su(1, 1)) given
in (5.2.5), we can take

K1 = 1
4

1− qJ0 ⊗ q−J0

1− q , (5.4.1a)

K2 = 1
2 ∆(C) = 1

2

(
C ⊗ q2J0 + q−2J0 ⊗ C + J+q

−2J0−1 ⊗ J− + J−q
−2J0+1 ⊗ J+

+ q2 + 1
(q2 − 1)2

(
q−2J0 ⊗ q2J0 − 1⊗ q2J0 − q−2J0 ⊗ 1 + 1⊗ 1

))
, (5.4.1b)
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where C denotes the Casimir operator given in (6.2.7).
Defining K3 = [K1, K2], a direct calculation gives

K3 = 1
8 (1 + q−1)

(
J+ ⊗ J− − J− ⊗ J+

)(
q−J0 ⊗ q−J0

)
. (5.4.1c)

We now proceed to calculate the commutation relations of K1, K2, K3. They are seen to
take the form of the relations of the Askey–Wilson (AW) algebra which read

[K1, K2] = K3, (5.4.2a)

[K2, K3] = rK2K1K2 + ξ1{K1, K2}+ ξ2K
2
2 + ξ3K2 + ξ4K1 + ξ5, (5.4.2b)

[K3, K1] = rK1K2K1 + ξ1K
2
1 + ξ2{K1, K2}+ ξ3K1 + ξ6K2 + ξ7, (5.4.2c)

where r is as in (5.4.3) below and ξ1, . . . , ξ7 are arbitrary in the generic AW situation.
After a rather cumbersome calculation, using the expressions (5.4.1) for the Ki’s as well

as the commutation relations (5.2.4), one finds that the Ki’s indeed obey the relations (5.4.2)
with the following specific expressions for the parameters:

r = −(q − q−1)2, ξ1 = 1 + q−2

2 , ξ2 = (1 + q)2(1− q)
4q2 , ξ3 = 4(q − 1) ξ7,

ξ4 = 0, ξ5 = −(1 + q)(1 + q2)
16q3 (C(1) − C(2))

[
J

(12)
0

]
q
, ξ6 = −(1 + q)2

16q2 ,

ξ7 = (1 + q)2

32q2

(
C(1)qJ

(12)
0 + C(2)q−J

(12)
0 − (1 + q−2)

[
1
2J

(12)
0

]2
q

)
,

(5.4.3)

where C(1) = C ⊗ 1 and C(2) = 1 ⊗ C are respectively the Casimir operators in the spaces
1 and 2 of the tensor product, and J (12)

0 = ∆(J0). These quantities C(i) and J (12)
0 commute

with K1, K2 and K3 and we hence have a version of (5.4.2) that is centrally extended.
Since there are only three independent quantities entering the ξi’s (there are four in the

general case), we conclude that theK1, K2, K3 generate a specialization of the Askey–Wilson
algebra. One checks that in the limit q → 1, the parameters r, ξ2, ξ3 vanish and one recovers
the Hahn algebra. The standard q-Hahn algebra is obtained from the Askey–Wilson algebra
by setting for instance ξ1 = 0 in (5.4.2). The algebra satisfied by K1, K2 and K3 is actually
isomorphic to the q-Hahn algebra as the standard form of the latter [28, 47] is obtained by
taking K2 = K̃2 − ξ1/r. The limit q → 1 is singular however if we adopt this presentation.

5.5. The q-Higgs algebra, the Askey–Wilson algebra,
and the dual pair

(
oq1/2(4) , Uq(su(1, 1))

)
We shall explain in this section how the q-Higgs algebra obtained as a commutant and the

specialized Askey–Wilson algebra found from the embedding just described are connected
through Howe duality and are in fact isomorphic.
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Take 4 metaplectic representations defined as in (5.2.19). We will add them first pairwise
using the Uq(su(1, 1)) coproduct (5.2.5):

J (2i−1,2i)
0 = 1

2

(
A0

2i−1 + A0
2i + 1

)
, J (2i−1,2i)

± = 1
[2] q1/2

(
qA

0
2i+

1
2 (A+

2i−1)2 + (A+
2i)2

)
, i = 1, 2,

(5.5.1)

and then using the coproduct once more will form

J (1234)
0 = J (12)

0 + J (34)
0 and J (1234)

± = J (12)
± q2J (34)

0 + J (34)
± . (5.5.2)

Mindful of Section 5.3, it is immediate to check that

[Li,i+1,J
(1234)
• ] = 0, i = 1, 2, 3, (5.5.3)

where the Li,i+1 are defined as in (5.2.20). Let us stress that (5.5.3) makes the key state-
ment that the algebras Uq(su(1, 1)) and oq1/2(4) are mutually commuting in the q-oscillator
realization.

It has been shown [27] that oq1/2(4) and Uq(su(1, 1)) actually form a Howe dual pair.
(They constitute precisely the quantum analogue of the classical pair (o(4), su(1, 1)) which
was used in the analysis of the Higgs and Hahn algebras [13].) This means that their
representations can be connected through their Casimirs. We will now proceed to indicate
explicitly how this is realized.

To that end, we first put the J (2i−1,2i)
• in correspondence with the J• from Section 5.4.

Let us focus on the coproduct embeddings (5.5.1). As each pairing of Uq(su(1, 1)) in the
spaces (1, 2) and (3, 4) gives a copy of Uq(su(1, 1)), we can embed the specialization of the
Askey–Wilson algebra of Section 5.4 into these two copies of Uq(su(1, 1)).

Indeed, upon substitution of (5.5.1) into equations (5.4.1) for K1, K2, K3, we obtain the
following q-oscillator realization of the specialized Askey–Wilson algebra:

K1 = 1
4

1− q 1
2L

1− q , (5.5.4a)

K2 = 1
2∆(3)(C) = 1

2

((
C (1)q

1
2H + C (2)q−

1
2H
)
q−

1
2L + (1 + q−2) q−

1
2L
[
L+H

4

]
q

[
L−H

4

]
q

+ q

(1 + q)2

(
q−1M+ + qM−

)
q−

1
2 (H+L)

)
, (5.5.4b)

K3 = 1
8(1 + q)

(
M+ −M−

)
q−

1
2H , (5.5.4c)

where ∆(n)(x) = (id⊗(n−1)⊗∆)∆(n−1)(x), ∆(1) = ∆ , ∆(0) = id; the generators M±, L,
H correspond to those given in (5.3.1) and (5.3.2) respectively and can alternatively be
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expressed as

M± = ([2]q1/2)2J (12)
± J (34)

∓ , (5.5.5)
1
2L = J (12)

0 −J (34)
0 , (5.5.6)

1
2H = J (12)

0 + J (34)
0 = ∆(3)(J0). (5.5.7)

By construction the K1, K2, K3 obey the relations of the specialized Askey–Wilson algebra
(5.4.2) with the parameters (5.4.3).

Also note that the quantities C (1) and C (2) are the images of the Casimir operators C(1)

and C(2) and that they are directly related to the L12 and L34 by

C (1) = 1
(1 + q)2

(
L12

2 + 1
)
, C (2) = 1

(1 + q)2

(
L34

2 + 1
)
. (5.5.8)

In view of this, it is now evident that in the q-oscillator realization, the generators of the
specialized Askey–Wilson algebra are expressible in terms of those of the q-Higgs algebra,
and vice-versa. Hence these two algebras are isomorphic, as in the q → 1 case.

To wrap things up, let us point out that the two Casimirs of oq1/2(4) given in (5.2.12)
have a direct interpretation in this q-oscillator framework.

The first Casimir of oq1/2(4), denoted C4, corresponds to the total Casimir of the quadru-
ple tensor product of Uq(su(1, 1)):

C4 =
(
q−1L12

2 + L23
2 + qL34

2 + q−
1
2 L +

13 L −
13 + q

1
2 L +

24 L −
24 + L +

14 L −
14

)
= (1 + q)2

2 ∆(3)(C).
(5.5.9)

This is precisely the pairing of the Casimirs of oq1/2(4) and Uq(su(1, 1)) that follows from the
Howe duality.

The second Casimir of oq1/2(4), denoted C ′4, is identically zero in the q-oscillator realiza-
tion:

C ′4 = q−
1
2 L12L34 −L +

13L
+
24 + q

1
2 L23L

+
14 = 0. (5.5.10)

It can be seen as the q-analogue of the usual relation between the angular momenta, see for
instance (4.1) in [48]: M12M34 +M13M42 +M14M23 = 0.

Let us mention in closing this section that the q → 1 limit of the above yields straight-
forwardly the duality presented in [13] between the Higgs or the Hahn algebras viewed as a
commutant in U(u(4)) or embedded in U(su(1, 1))⊗ U(su(1, 1)).

5.6. Conclusion
Summing up, we have introduced a q-analogue of the Higgs algebra by looking for the

commutant of a oq1/2(2)⊕ oq1/2(2) subalgebra of oq1/2(4) in the q-oscillator representation of
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Uq(u(4)). This algebra was then seen to be isomorphic to a special case of the Askey–Wilson
algebra (itself isomorphic to the standard q-deformation of the Hahn algebra) which has an
embedding in Uq(su(1, 1)) ⊗ Uq(su(1, 1)). The Howe dual pair

(
oq1/2(4), Uq(su(1, 1))

)
was

then invoked as the reason behind this double picture.
The q-oscillator realization in which oq1/2(4) and Uq(su(1, 1)) commute can be generalized

easily for oq1/2(n) with n arbitrary. It is known that
(
oq1/2(n), Uq(su(1, 1))

)
is a dual pair [27].

This opens up the door to the study of the full Askey–Wilson algebra. We hypothesize that
it should be possible to obtain this algebra in the commutant of a oq1/2(2)⊕oq1/2(2)⊕oq1/2(2)
subalgebra of oq1/2(6) in oq1/2(6) in this q-oscillator representation. It would be also of high
interest to see if the higher rank Askey–Wilson algebras [49, 50] could be obtained in a
similar fashion.

It should moreover be mentioned that the dual pair
(
oq1/2(n), Uq(su(1, 1))

)
was analyzed

in [27] in a q-commuting variable framework. It would be quite interesting to see if some
sort of dimensional reduction in q-commuting variables could be performed to obtain a q-
analogue of the superintegrable model on the n-sphere [51]. We hope to address all these
questions in the near future.
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Chapitre 6

The dual pair (Uq(su(1, 1)), oq1/2(2n)),
q-oscillators and Askey–Wilson algebras

Par Luc Frappat, Julien Gaboriaud, Eric Ragoucy, Luc Vinet.
Publié dans Journal of Mathematical Physics 61, 041701, 2020. arxiv:1908.04277.

Abstract: The universal Askey–Wilson algebra AW (3) can be obtained in
the commutant of Uq(su(1, 1)) in Uq(su(1, 1))⊗3. We analyze the commutant of
oq1/2(2) ⊕ oq1/2(2) ⊕ oq1/2(2) in q-oscillator representations of oq1/2(6) and show that it
also realizes AW (3). These two pictures of AW (3) are shown to be dual in the sense of
Howe; this is made clear by highlighting the role of the intermediate Casimir elements
of each member of the dual pair

(
Uq(su(1, 1)), oq1/2(6)

)
. We also generalize these results.

A higher rank extension of the Askey–Wilson algebra denoted AW (n) can be defined in
the commutant of Uq(su(1, 1)) in Uq(su(1, 1))⊗n and a dual description of AW (n) as the
commutant of oq1/2(2)⊕n in q-oscillator representations of oq1/2(2n) is offered by calling upon
the dual pair

(
Uq(su(1, 1)), oq1/2(2n)

)
.

6.1. Introduction
The Askey–Wilson algebra encodes the bispectrality properties of the eponym polynomi-

als [1]. It is finding applications in various areas such as integrable models [2–6], algebraic
combinatorics [7–10], knot theory [11], double affine Hecke algebras and representation the-
ory [12–14], etc. A universal extension is known to arise in an algebraic description of the
Racah problem for Uq(sl2) [15, 16]. The goal of the present paper is to enlarge the funda-
mental understanding of this algebra by casting it in an alternate framework. We shall offer
a picture of the universal Askey–Wilson algebra that is dual to the one which arises in the
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coupling of three representations of Uq(sl2) and that will be reviewed in Section 6.2. The
presentation that is the object of this paper will be deemed dual, in the sense of Howe, to
the Uq(sl2) tensorial approach because it will rely on the complementary member oq1/2(2n)
of the dual pair

(
Uq(su(1, 1)), oq1/2(2n)

)
.

The concept of dual pairs has been introduced by Howe in [17, 18] and has been since
connected to numerous physical models (for a non-exhaustive list see [19–21] and references
therein). Let us recall the definition of the dual pairs in the context of Lie groups and Lie
algebras [19]:

Let S be a Lie group and let G, G′ be a pair of subgroups of S. We say (G,G′) form a
dual pair of subgroups of S if G′ is the full commutant of G in S, and vice versa. The pair
(g, g′) of Lie algebras of (G,G′) are a dual pair in the Lie algebra s of S.

When each subgroup of the pair is reductive (that is, completely reducible), the pair is
referred to as a reductive dual pair. For the more technical details on the classification of
these pairs, see for instance [17, 18, 22, 23]. If one of the members of the pair is a compact
group, the following decomposition holds:

Consider a Hilbert space H which supports representations of S. Then, the actions of G
and G′ on H commute, the reductive dual pair (G,G′) admits dual representations on H

and one obtains a multiplicity-free decomposition of the form:

H =
⊕
λ

Γ(λ) ⊗ Γ ′ (λ) (6.1.1)

where Γ’s and Γ ′’s are irreducible modules of G and G′ respectively. (Note that a similar
decomposition occurs in the context of the Schur–Weyl duality.) In simpler words, the irreps
of each member of the pair are matched together. By virtue of the exponential mapping
correspondence between Lie algebras and Lie groups, a decomposition of the form (6.1.1)
also holds for irreducible modules of the Lie algebras (g, g′). We will be working at the
algebra level in what follows.

An example of particular interest resides with the algebras sp(2) ' su(1, 1) and o(2n)
which form a dual pair in sp(4n). This dual pair led to a novel interpretation of the Racah
algebra R(n) in the commutant of the o(2)⊕n algebra in oscillator representations of o(2n)
[24, 25]. To this end, models of both the su(1, 1)⊗2n and the o(2n) algebras were constructed
in terms of 2n oscillators. Due to the decomposition (6.1.1), the irreps could be paired. As
expected by Schur’s lemma, the pairing was expressed through the Casimirs which label
the irreps. This was done as follows: The commutant of o(2)⊕n in o(2n) could be identified
as the algebra generated by the quadratic Casimirs corresponding to o(2m) embeddings in
o(2n) with m = 1, . . . , n. In the oscillator model, all these quadratic Casimirs of o(2m) were
seen to be affinely related to some su(1, 1) Casimirs that arise from the recoupling of 2m
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copies of su(1, 1). But, the Racah algebra R(n) obtained in the commutant of su(1, 1) in
U(su(1, 1))⊗n is precisely generated by these su(1, 1) Casimirs occuring in the recoupling of
2m copies. Thus the two “dual” types of commutants give rise to the same Racah algebra.
The pairing of the irreps (6.1.1) proves evident because the Casimirs of the two members of
the pair are affinely related to each other, and it is this pairing that is fundamentally at the
root of the dual descriptions of the Racah algebra R(n).

The results on dual pairs that have been presented so far involve the so-called classical
dual pairs. One may wonder what happens if q-deformations of the classical Lie algebras sl2
and o(2n) are considered, and if q-analogs of the dual pairs can be defined, while preserving
a result analogous to (6.1.1) for the pairing of the irreps. Remarkably, a q-deformation of
the pair (sl2, o(n)) has been defined in [26]. The q-deformed dual pair

(
Uq(sl2), oq1/2(n)

)
will be used in an approach similar to the one employed for the Racah algebra to obtain
dual pictures of the Askey–Wilson algebra. Note that we will actually restrict ourselves to
the real form Uq(su(1, 1)) of Uq(sl2) throughout this paper as this will allow to highlight
more easily how the q → 1 limit connects with the results in [24, 25].

Here is the outline of the rest of the paper. In Section 6.2, the (universal) Askey–Wilson
algebra will be introduced along with its relation to Uq(su(1, 1)). The q-oscillator algebra will
be defined in Section 6.3 and then used to build realizations of the Uq(su(1, 1)) and oq1/2(m)
algebras. In Section 6.4, the Askey–Wilson algebra AW (3) will be obtained in the “dual”
commutant and this result will then be generalized to AW (n) in Section 6.5. Concluding
remarks and opening questions will complete the paper.

6.2. A brief review of the Askey–Wilson algebra
6.2.1. The Askey–Wilson algebra AW (3)

The Askey–Wilson algebra was first introduced by Zhedanov in [1]. It can be presented
in terms of two generators K0, K1 obeying the q-commutation relations

[K0, K1]q = K2,
[K1, K2]q = bK1 + c0K0 + d0,

[K2, K0]q = bK0 + c1K1 + d1,
(6.2.1)

where b, c0, c1, d0, d1 are (real) structure constants and [A,B]q = qAB−q−1BA. Throughout
the paper, we consider the case where q is not a root of unity.
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It is straightforward to reabsorb a few structure constants and to rescale the generators
in order to arrive to the following Z3-symmetric presentation. Taking

KA = −q
2 − q−2
√
c1

K0,

KB = −q
2 − q−2
√
c0

K1,

KC = −q
2 − q−2
√
c0 c1

(
K2 −

b

q − q−1

)
,

α = d0

c0
√
c1

(q + q−1)2(q − q−1),

β = d1

c1
√
c0

(q + q−1)2(q − q−1),

γ = b
√
c0 c1

(q + q−1)2,

(6.2.2)

relations (6.2.1) are rewritten as
[KA, KB]q
q2 − q−2 +KC = γ

q + q−1 ,

[KB, KC ]q
q2 − q−2 +KA = α

q + q−1 ,

[KC , KA]q
q2 − q−2 +KB = β

q + q−1 .

(6.2.3)

The universal Askey–Wilson algebra [8] is defined by the relations (9.4.5) with α, β, γ being
central elements. The universal Askey–Wilson algebra is the one that will be referred to in
the remainder of this paper.

6.2.2. The Uq(su(1, 1)) algebra and its Racah problem

We now review how the (universal) Askey–Wilson algebra appears in the context of the
Racah problem of Uq(su(1, 1)).

The Uq(su(1, 1)) algebra has three generators, J± and J0, obeying

[J0 , J±] = ±J±, J−J+ − q2J+J− = q2J0 [2J0]q. (6.2.4)

Here the notation [x]q stands for the q-number:

[x]q = qx − q−x

q − q−1 . (6.2.5)

This algebra can be endowed with a Hopf structure; in particular it posesses a coproduct
which is an algebra morphism that defines an embedding of Uq(su(1, 1)) in Uq(su(1, 1)) ⊗
Uq(su(1, 1)):

∆(J0) = J0 ⊗ 1 + 1⊗ J0, ∆(J±) = J± ⊗ q2J0 + 1⊗ J±. (6.2.6)

The Casimir operator C of Uq(su(1, 1)) has the following expression

C = J+J−q
−2J0+1 + (J0)q2(1− J0)q2 , (6.2.7)
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where the notation (x)q stands for another type of q-number:

(x)q = 1− qx
1− q . (6.2.8)

Remark 6.1. In the limit q → 1, one recovers the usual su(1, 1) Lie algebra. The Casimir
of Uq(su(1, 1)) that is being used has been shifted by a constant with respect to the more
conventional Casimir

C = J+J−q
−2J0+1 − q

(1− q2)2

(
q2J0−1 + q−2J0+1

)
(6.2.9)

so as to make sure the q → 1 limit is non-singular and yields the usual su(1, 1) Casimir
C = J+J− − J0

2 + J0. Moreover, the standard presentation of Uq(su(1, 1)) [27] is recovered
from (6.2.4) if one considers instead the generators J̃0 = J0, J̃+ = J+q

−J0 and J̃− = q−J0J−,
which satisfy the commutation relations [J̃0 , J̃±] = ±J̃±, [J̃− , J̃+] = [2J̃0]q.

Let us now consider the addition of three irreducible representations of Uq(su(1, 1)).
Associated to each of those copies of Uq(su(1, 1)) are the Casimirs

C(1) = C ⊗ 1⊗ 1, C(2) = 1⊗ C ⊗ 1, C(3) = 1⊗ 1⊗ C.

The coassociativity of the coproduct ensures that the following two ways to pair the repre-
sentations

(1⊕ 2)⊕ 3 ' 1⊕ (2⊕ 3) (6.2.10)

are equivalent.
In addition to the initial Casimirs C(i), there are the intermediate Casimirs associated to

the different embeddings shown above in (6.2.10), C(12) = ∆(C)⊗ 1 and C(23) = 1⊗∆(C),
as well as a total Casimir operator, C(123) = ∆(2)(C). Here, we use the notation ∆(N) =
(1⊗(N−1)⊗∆)∆(N−1), with ∆(0) = 1. The Racah problem of Uq(su(1, 1)) is to find the overlap
between the two different bases corresponding to (6.2.10), i.e. the one which diagonalizes
C(12) and the other which diagonalizes C(23).

The connection with the Askey–Wilson algebra follows from the fact that the interme-
diate Casimirs of Uq(su(1, 1)) realize it. In other words, the Askey–Wilson algebra can be
described in the commutant of Uq(su(1, 1)) in Uq(su(1, 1))⊗3. Indeed, performing the affine
transformation

C{•} = −q(q − q−1)2C(•) + (q + q−1), (6.2.11)

one checks that relations (9.4.5) are verified for

KA = C{1,2},

KB = C{2,3},

α = C{2}C{3} + C{1}C{1,2,3},

β = C{1}C{3} + C{2}C{1,2,3},

γ = C{1}C{2} + C{3}C{1,2,3}.

(6.2.12)
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It is worth noting that instead of looking at the q-commutation relations of the intermediate
Casimirs, one could have instead presented the relations using commutation relations. With
Q1 = C(12), Q2 = C(23), one obtains the following relations:

[Q1, Q2] = Q3,

[Q2, Q3] = rQ2Q1Q2 + ξ1{Q1, Q2}+ ξ2Q
2
2 + ξ3Q2 + ξ5,

[Q3, Q1] = rQ1Q2Q1 + ξ1Q
2
1 + ξ2{Q1, Q2}+ ξ3Q1 + ξ7,

(6.2.13)

where the elements r and ξi take the following values:

r = −(q − q−1)2, ξ1 = ξ2 = (1 + q−2),

ξ3 = −r
(
C(1)C(3) + C(2)C(123)

)
− ξ1

(
C(1) + C(2) + C(3) + C(123)

)
, (6.2.14)

ξ5 = ξ1
(
C(2) − C(3)

)(
C(1) − C(123)

)
, ξ7 = ξ1

(
C(2) − C(1)

)(
C(3) − C(123)

)
.

The q → 1 limit of this algebra immediately leads to the (classical) Racah algebra.

6.3. q-oscillator realization of the dual pair(
Uq(su(1, 1)), oq1/2(2n)

)
6.3.1. The oq1/2(N) algebra

The non-standard q-deformation oq1/2(N) of o(N), often denoted U ′
q1/2(soN) in the lit-

erature [28–31], can be defined as the associative unital algebra with generators Li,i+1

(i = 1, . . . , N − 1) obeying the relations

Li−1,i Li,i+1
2 − (q1/2 + q−1/2)Li,i+1 Li−1,i Li,i+1 + Li,i+1

2 Li−1,i = −Li−1,i, (6.3.1a)

Li,i+1 Li−1,i
2 − (q1/2 + q−1/2)Li−1,i Li,i+1 Li−1,i + Li−1,i

2 Li,i+1 = −Li,i+1, (6.3.1b)

[Li,i+1, Lj,j+1] = 0 for |i− j| > 1. (6.3.1c)

This algebra possesses numerous properties of interest, among which: oq(N) can be viewed
as a q-analogue of the symmetric space based on the pair (gl(N), o(N)) [32], it is a coideal
subalgebra of Uq(sl(N)) [32, 33] and appears in various areas of mathematical physics [30].

The quadratic Casimir of oq1/2(2n) is given in [26, 28]. We shall need the following
elements recursively defined:

L±ik = [L±ij , L±jk]q±1/4 = q±1/4L±ijL
±
jk − q∓1/4L±jkL

±
ij, for any i < j < k (6.3.2)

with L±i,i+1 = Li,i+1 by definition. The quadratic Casimir operator of the algebra oq1/2(2n)
then has the following expression:

Λ[2n] =
∑

1≤i<j≤2n
q
−2n+i+j−1

2 L+
ijL
−
ij. (6.3.3)
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6.3.2. The q-oscillator algebra

The q-oscillator algebra Aq(N) [27] is the unital associative algebra over C generated by
N independent sets of q-oscillators {A±i , A0

i } verifying

[A0
i , A

±
i ] = ±A±i , [A−i , A+

i ] = qA
0
i , A−i A

+
i − qA+

i A
−
i = 1, i = 1, . . . , N, (6.3.4)

and such that the commutators between elements with distinct indices i are equal to zero.
The last two relations lead to:

A+
i A
−
i = 1− qA0

i

1− q = (A0
i )q. (6.3.5)

The q-oscillator algebra Aq(N) admits an irreducible representation bounded from below
with orthonormal basis vectors |n1, · · · , nN〉 = |n1〉 ⊗ · · · ⊗ |nN〉 and with the operators Ai
acting on the i’th factor of the states according to:

A0
i |ni〉 = ni|ni〉, A+

i |ni〉 =
√

1− qni+1

1− q |ni + 1〉, A−i |ni〉 =
√

1− qni
1− q |ni − 1〉. (6.3.6)

These commuting q-oscillators can now be used to realize the algebras considered previously.

6.3.3. Dual realizations of the oq1/2(2n) and Uq(su(1, 1)) algebras

The algebras Uq(su(1, 1)) and oq1/2(2n) can be realized in terms of q-oscillators and shown
to have commuting actions on the Hilbert space of q-oscillators.

To that end, let us first consider 2n copies of the q-deformation of the usual metaplectic
representation [34] of su(1, 1), which is realized with 2n q-oscillators by taking

J i
0 = 1

2

(
A0
i + 1

2

)
, J i

± = 1
[2]q1/2

(A±i )2, i = 1, . . . , 2n. (6.3.7)

Owing to the fact that each set of J i
0 , J i

± acts only on the i’th factor and obeys the relations
(6.2.4), (6.3.7) hence gives a realization of Uq(su(1, 1))⊗2n. It is then straightforward to embed
Uq(su(1, 1)) inside Aq(2n) by repeatedly making use of the coproduct (6.2.6):

J (2n)
0 = ∆(2n−1)(J0) = 1

2

2n∑
i=1

(
A0
i + 1

2

)
,

J (2n)
± = ∆(2n−1)(J±) = 1

[2]q1/2

2n∑
i=1

(A±i )2
2n∏

j=i+1
qA

0
j+

1
2

 .
(6.3.8)

The algebra oq1/2(2n) can also be realized in terms of 2n q-oscillators. The 2n− 1 generators
take the form

Li,i+1 = q−
1
2 (A0

i+
1
2 )
(
q

1
4A+

i A
−
i+1 − q−

1
4A−i A

+
i+1

)
, i = 1, . . . , 2n− 1. (6.3.9)
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A direct calculation shows that these Li,i+1’s verify the relations (6.3.1). All the other L ±
ij ’s

can be obtained by (6.3.2).
Remark 6.2. In this particular realization, the following q-analogs of the angular momenta
relation M12M34 +M13M42 +M14M23 = 0 in [35] hold. For i < j < k < `, one has:

q−1/2L +
ij L +

k` −L +
ikL +

j` + q+1/2L +
i` L +

jk = 0,

q+1/2L −
ij L −

k` −L −
ikL −

j` + q−1/2L −
i` L −

jk = 0.
(6.3.10)

It is easy to check that [J (2)
0 ,L12] = [J (2)

± ,L12] = 0. A straightforward induction
argument using the coproduct (6.2.6) and the form of the expression (6.3.9) leads to

[J (2n)
0 ,Li,i+1] = [J (2n)

± ,Li,i+1] = 0, i = 1, . . . , 2n− 1. (6.3.11)

In other words, Uq(su(1, 1)) and oq1/2(2n) have commuting actions on the Hilbert space of
2n q-oscillators.

This feature precisely illustrates the Howe duality operating in this context and will be
the key to obtaining the Askey–Wilson algebra of arbitrary rank as a “dual” commutant.

6.4. The Askey–Wilson algebra AW (3) as a “dual” com-
mutant

6.4.1. The commutant of oq1/2(2)⊕3 in the q-oscillator realization of
oq1/2(6) and the Askey–Wilson algebra AW (3)

We now look for the commutant of the subalgebra oq1/2(2)⊕ oq1/2(2)⊕ oq1/2(2) of oq1/2(6)
generated by {L12,L34,L56} in its q-oscillator realization. From the expressions of the
quadratic Casimirs (6.3.3) it is easy to identify the following 6 independent elements:

Λ1 = L12
2,

Λ2 = L34
2,

Λ3 = L56
2,

Λ12 = q−1L12
2 + L23

2 + qL34
2

+ q−1/2L +
13L

−
13 + q1/2L +

24L
−
24 + L +

14L
−
14,

Λ23 = q−1L34
2 + L45

2 + qL56
2

+ q−1/2L +
35L

−
35 + q1/2L +

46L
−
46 + L +

36L
−
36,

Λ13 = q−1L12
2 + L +

25L
−
25 + qL56

2

+ q−1/2L +
15L

−
15 + q1/2L +

26L
−
26 + L +

16L
−
16.

(6.4.1)

These 6 elements form a generating set for the non-trivial part of the commutant. Instead
of using Λ13 as element of the generating set, one could alternatively take the element Λ123

which is a linear combination of the other Λ•’s above

Λ123 = q−1Λ12 + Λ13 + qΛ23 − (q−1Λ1 + Λ2 + qΛ3) (6.4.2)
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and corresponds to the quadratic Casimir of oq1/2(6) itself.
The algebraic relations obeyed by these Λ•’s correspond to those of the Askey–Wilson

algebra. First make the affine transformation

Λ̃i = [2]q −
(
q1/2 − q−1/2

1 + q

)2

(Λi + 1),

Λ̃ij = [2]q −
(
q1/2 − q−1/2

1 + q

)2

Λij,

Λ̃123 = [2]q −
(
q1/2 − q−1/2

1 + q

)2

(Λ123 − [3]q1/2),

(6.4.3)

then take KA and KB to be

KA = Λ̃12, KB = Λ̃23. (6.4.4)

A straightforward calculation shows that KA and KB obey the relations (9.4.5), with struc-
ture constants α, β, γ expressible in terms of Λ1, Λ2, Λ3 and Λ123.

α = Λ̃2Λ̃3 + Λ̃1Λ̃123,

β = Λ̃3Λ̃1 + Λ̃2Λ̃123,

γ = Λ̃1Λ̃2 + Λ̃3Λ̃123.

(6.4.5)

6.4.2. The Uq(su(1, 1)) and oq1/2(6) descriptions of AW (3) and Howe
duality

In Section 6.2 the Askey–Wilson algebra was described in the commutant of Uq(su(1, 1))
in Uq(su(1, 1))⊗3. That the AW algebra could also be described in the commutant of
oq1/2(2)⊕3 in q-oscillator representations of oq1/2(6) is not a coincidence. We now make explicit
the connection between these two approaches using Howe duality.

In [26] it was shown that Uq(su(1, 1)) and oq1/2(2m) are a dual pair in the sense of Howe.
It follows from this that these two algebras have commuting actions on the Hilbert space
of 2m q-oscillators (see (6.3.11)). This implies that their irreducible representations can be
paired through the eigenvalues of the Casimirs that label them. We shall now indicate how
the pairing occurs.

Take 6 q-oscillators, realizing 6 copies of Uq(su(1, 1)). We first couple them pairwise and
label each couple by ı ≡ (2i − 1, 2i) in order to obtain an embedding of Uq(su(1, 1))⊗3 in
Uq(su(1, 1))⊗6:

J ı
0 = 1

2
(
A0

2i−1 + A0
2i + 1

)
, J ı

± = 1
[2]q1/2

(
(A±2i−1)2qA

0
2i+

1
2 + (A±2i)2

)
, i = 1, . . . , 3.

(6.4.6)
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To each ı’th copy of Uq(su(1, 1)) corresponds a Casimir C ı given by (6.2.7).
Three additional embeddings of Uq(su(1, 1)) can be realized by repeatedly making use of

the coproduct (6.2.6)

J 1 2
0 = J 1

0 + J 2
0 ,

J 2 3
0 = J 2

0 + J 3
0 ,

J 1 2 3
0 = J 1

0 + J 2
0 + J 3

0 ,

J 1 2
± = J 1

±q
2J 2

0 + J 2
±,

J 2 3
± = J 2

±q
2J 3

0 + J 3
±,

J 1 2 3
± = J 1

±q
2J 2

0 q2J 3
0 + J 2

±q
2J 3

0 + J 3
±,

(6.4.7)

and the respective Casimirs associated to each of these embeddings, C1 2, C2 3, C1 2 3 can be
obtained from (6.2.7).

Schematically, these successive embeddings can be thought of as:
1 2

1

3 4

2

5 6

3

C1 C2 C3

C1 2 C2 3

C1 2 3

Uq(su(1, 1))⊗6

⊂

Uq(su(1, 1))⊗3

⊂

Uq(su(1, 1))

Upon looking at the explicit expressions of these C ı, C ı , C1 2 3 in terms of the q-oscillators,
one finds (recall (6.4.1)) that

C ı = 1
(1 + q)2 (Λi + 1) ,

C ı  = 1
(1 + q)2 (Λij) , for consecutive ij’s

C1 2 3 = 1
(1 + q)2

(
Λ123 − [3]q1/2

)
.

(6.4.8)

Those expressions show how the intermediate Casimirs of Uq(su(1, 1)) and those of oq1/2(6)
are affinely related. Let us emphasize that owing to the Howe duality between Uq(su(1, 1))
and oq1/2(6), the multiplicity-free decomposition of the form (6.1.1) takes place; the relations
(6.4.8) make this explicit keeping in mind the Schur’s lemma.

Moreover, this pairing of the Casimirs is precisely what is behind the fact that the Askey–
Wilson algebra, usually obtained from intermediate Uq(su(1, 1)) Casimirs, is expressible in
the commutant of the oq1/2(2)⊕3 algebra in q-oscillator representations of oq1/2(6). The duality
of the two pictures is thus expressed in (6.4.8).

6.5. The case for general n and the algebra AW (n)
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6.5.1. Towards the higher rank Askey–Wilson algebra

Let us first introduce the notation [i; j] for sets of consecutive integers:

[i; j] =


{i, i+ 1, . . . , j} j > i,

{i} j = i,

∅ j < i.

(6.5.1)

In [36], a higher rank extension of the Racah algebra R(n) was realized in the algebra
of the intermediate Casimir elements in U(su(1, 1)) associated to embeddings (labelled by
A ⊂ [1;n]) of su(1, 1) in its n-fold tensor product. A generating set for R(n) is given by
the intermediate Casimir operators related to consecutive tensor product space embeddings
[i; j], 1 ≤ i ≤ j ≤ n.

A similar story is emerging for the Askey–Wilson algebra. Studies towards a definition
of a higher rank extension AW (n) of AW (3) have been based on a tensorial approach[37,
38] where one considers the algebra of the intermediate Casimir elements CA of Uq(su(1, 1))
associated to embeddings (labelled by A ⊂ [1;n]) of Uq(su(1, 1)) in its n-fold tensor product.
A generating set for these CA’s is given by all C[i;j]’s, with 1 ≤ i ≤ j ≤ n. The C[i;j]’s are
obtained from the repeated action of the coproduct on the Uq(su(1, 1)) Casimir elements.

The algebraic relations of AW (4) are given in [37]. The full set of relations of AW (n) is
not known, however a large subset of those relations has been presented in [38]. Nevertheless,
we here advance the understanding of these algebraic structures by establishing the dual
connection between these intermediate Casimirs CA in Uq(su(1, 1))⊗n and the generators of
the commutant of a subalgebra of oq1/2(2n).

6.5.2. The Howe duality in the AW (n) case

We now proceed with this analysis of the higher rank case and look for the commutant of
oq1/2(2)⊕n in oq1/2(2n). The algebra oq1/2(2)⊕n is generated by the set {L12, . . . , L2n−1,2n}.

In view of the quadratic Casimirs (6.3.3), we examine the following
(
n+1

2

)
elements:

Λi = (L2i−1,2i)2,

Λij = q−1L2i−1,2i
2 + L +

2i,2j−1L
−
2i,2j−1 + qL2j−1,2j

2

+ q−1/2L +
2i−1,2j−1L

−
2i−1,2j−1 + q1/2L +

2i,2jL
−
2i,2j + L +

2i−1,2jL
−
2i−1,2j,

1 ≤ i < j ≤ n.

(6.5.2)

These elements all commute with oq1/2(2)⊕n:

[Λi,L2k−1,2k] = [Λij,L2k−1,2k] = 0, i < j, i, j, k = 1, . . . , n, (6.5.3)
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and they generate its commutant in the q-oscillator realization of oq1/2(2n). We claim that
the relations obeyed by these elements are precisely the relations of the higher rank Askey–
Wilson algebra AW (n) and that this follows from the Howe duality already observed in
Section 6.4. We shall now explain how this conclusion is reached.

It will be useful to make the following linear transformation in order to work with elements
ΛA where A ⊆ [1;n] is a set of consecutive indices. Form the Λ[k;`]’s as follows:

Λ[k;k] = Λk,

Λ[k;k+1] = Λk,k+1,

Λ[k;k+`−1] =
∑

1≤i<j≤`
qi+j−(`+1)Λk−1+i,k−1+j − [`− 2]q1/2

∑̀
i=1

qi−
`+1

2 Λk−1+i, ` ≥ 3,

(6.5.4)

with Λ∅ = 0 by convention. Note that there are still
(
n+1

2

)
elements of the form Λ[i;j] since∣∣∣{[i; j] | [i; j] ⊆ [1;n]}

∣∣∣ =
(
n+1

2

)
.

For the sake of comprehensiveness, let us also give here the inverse change of basis:

Λi = Λ[i;i],

Λij = Λ[i;j] + q−1Λ[i;i] + Λ[i+1;j−1] + qΛ[j;j] − q−1Λ[i;j−1] − qΛ[i+1;j].
(6.5.5)

We can now make use of the Howe duality observed in Section 6.4. Recall that the de-
composition (6.1.1) implied that the quadratic Casimirs of oq1/2(2m) were affinely related to
intermediate Casimirs of Uq(su(1, 1)) embeddings in (2m) copies of itself. This still holds
here.

Take 2n q-oscillators and couple them pairwise, with each couple labelled by ı ≡ (2i−1, 2i)
in order to obtain an embedding of Uq(su(1, 1))⊗n in Uq(su(1, 1))⊗2n. Nested embeddings then
give rise to all the intermediate Casimirs needed to generate the AW (n) algebra. This can
be visualized as follows:

1 2

1

3 4

2

5 6

3
· · · · · · 2n

n

C1 C2 C3 Cn

C1 2 C2 3

C1 2···n

Uq(su(1, 1))⊗2n

⊂

Uq(su(1, 1))⊗n

⊂

Uq(su(1, 1))

It remains to give the explicit correspondence between the paired Casimirs C ı ···  and the
Λ[i;j]’s (which will be the equivalent of (6.4.8)). We already know that they are affinely
related, so we start by writing

C1 2 ···m = ∆(2m−1)(C) = 1
β2m

(
Λ[1;m] + α2m

)
. (6.5.6)
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After a quick look at the coproduct and the form of the Λ[1;m]’s one convinces oneself that
β2m is constant, more precisely β2m = (1 + q)2. It remains to evaluate the α2m’s.

The α2m can be obtained by acting with (6.5.6) on the ground state |~0 〉 of 2m q-oscillators(
Λ[1;m] + α2m

)
|~0 〉 = (1 + q)2C1 2 ···m|~0 〉

= (1 + q)2∆(2m−1)
(
q−2J0+1J+J− + (J0)q2(1−J0)q2

)
|~0 〉

(6.5.7)

where we recall the definition (6.2.7) for the Uq(su(1, 1)) Casimir. Using (6.3.8) and recalling
the action of the q-oscillators (6.3.6) from which the realizations are built, that is L ±

ij |~0 〉 =
J i
−|~0 〉 = 0, this is further simplified to(

Λ[1;m] + α2m
)
|~0 〉 = α2m|~0 〉 = (1 + q)2

(
(∑2m

i=1J
i
0 )q2(1−∑2m

i=1J
i
0 )q2

)
|~0 〉. (6.5.8)

Furthermore, since J i
0 |~0 〉 = 1

4 |~0 〉, we have

α2m|~0 〉 = (1 + q)2 ((m/2)q2(1− m/2)q2)|~0 〉

= −[m]q1/2 [m− 2]q1/2|~0 〉,
(6.5.9)

and we conclude that

C1 2 ···m = 1
(1 + q)2

(
Λ[1;m] − [m]q1/2 [m− 2]q1/2

)
. (6.5.10)

This leads to the desired generalization of (6.4.8):

C ı ··· j = 1
(1 + q)2

(
Λ[i;j] − [j − i+ 1]q1/2 [j − i− 1]q1/2

)
. (6.5.11)

Upon shifting the Casimirs C ı ··· j using the procedure (6.2.11), one finally obtains the desired
generating set for AW (n)

CA = [2]q − q(q − q−1)2CA, (6.5.12)

where A is a consecutive set of indices. By virtue of the affine correspondence between the
intermediate Casimirs of Uq(su(1, 1)) and the oq1/2(2m) quadratic Casimirs given in (6.5.11),
the AW (n) algebra generated by all CA’s therefore admits two dual descriptions.
Remark 6.3. The q → 1 limit of the expression for the pairing of the Casimirs in (6.5.11)
coincides with the result obtained for the higher rank Racah algebra R(n). Indeed, for |A| =
2m, one has

CA = −(JA0 )2 + JA+J
A
− + JA0 = 1

4

 ∑
µ<ν∈A

Lµν
2 − |A|(|A| − 4)

4

 . (6.5.13)

6.6. Conclusion
To sum up, we have used the Howe duality to provide two dual pictures of the Askey–

Wilson algebra AW (n). In addition to the description of AW (n) in the commutant of
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Uq(su(1, 1)) in Uq(su(1, 1))⊗n, we have also depicted the algebra in the commutant of
oq1/2(2)⊕n in q-oscillator representations of oq1/2(2n). We have explained how the multiplicity-
free decomposition of the modules of the joint action of the dual pair

(
Uq(su(1, 1)), oq1/2(2n)

)
given in (6.1.1) translates to an affine correspondence between Casimirs of Uq(su(1, 1)) and
oq1/2(2m). This fact was then stressed to be the hallmark of the duality between the two
pictures.

The q → 1 limit is easily seen to give back results we have previously obtained on the
higher rank Racah algebra R(n). Note that in [25] we carried out the dimensional reduction
corresponding to the imposition of the o(2)⊕n invariance on the oscillator model and this had
led us to the generic superintegrable model on the (n−1)-sphere [39, 40]. Such a dimensional
reduction has not been performed here as the right q-analogues of polar coordinates are not
known, but it would be an interesting question to examine in the future.

Another interesting limit is q → −1. This limit yields the higher rank Bannai–Ito algebra
BI(n) if one starts from AW (n). In [41] two dual pictures of BI(n) were presented based
on a Dirac model. An especially striking result is that the non-naive embeddings of osp(1|2)
associated to non-consecutive tensor product spaces could be explained in the context of
the Dirac model by looking at the construction procedure of the higher dimension gamma
matrices. It is still an open question to obtain an analogous explanation for AW (n) and the
corresponding Uq(su(1, 1)) embeddings. We hope to return to this question soon.
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Chapitre 7

Superintegrability and the dual −1 Hahn
algebra in superconformal quantum

mechanics

Par Pierre-Antoine Bernard, Julien Gaboriaud, Luc Vinet.
Publié dans Annals of Physics 418, 168171, 2020. arxiv:2001.07309.

Abstract: A two-dimensional superintegrable system of singular oscillators with
internal degrees of freedom is identified and exactly solved. Its symmetry algebra is
seen to be the dual −1 Hahn algebra which describes the bispectral properties of the
polynomials with the same name that are essentially the Clebsch–Gordan coefficients of the
superconformal algebra osp(1|2). It is also shown how this superintegrable model is obtained
under dimensional reduction from a set of uncoupled harmonic oscillators in four dimensions.

7.1. Introduction
This paper introduces a simple superintegrable model in two-dimensions with internal

degrees of freedom. Its Hamiltonian defined on L2(R2,C4) belongs to a realization of the
superconformal algebra sl(2|1) and reads

H = −1
2

(
∂2

∂ρ2
1

+ ∂2

∂ρ2
2

)
+ 1

2
(
ρ2

1 + ρ2
2

)
+ k1(k1 − σ3 ⊗ 1)

2ρ2
1

+ k2(k2 − 1⊗ σ3)
2ρ2

2
, (7.1.1)

with σ3 =
(

1 0
0 −1

)
the standard Pauli matrix. The symmetry algebra generated by the

constants of motion includes the not-so-familiar dual −1 Hahn algebra [1].
Superintegrable models in d dimensions have the property of admitting more than d

(independent) constants of motion which hence form a non-Abelian symmetry algebra. In
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the scalar case, they are called maximally superintegrable if the number of these constants
is equal to 2d − 1 when the Hamiltonian is included. They are typically exactly solvable.
Interest in these systems is high. Some of the best known examples like the harmonic
oscillator or the Kepler/Coulomb problem are discussed in textbooks and are of central use
in Physics. Chiefly, these models are laboratories to study diverse expressions of extended
symmetries. Therein lies the motivation for their systematic exploration and identification.
The reader may consult [2] for a recent review.

One constructive approach to obtain superintegrable models that we shall use here com-
bines one-dimensional systems equipped with ladder operators [3, 4]. Consider for con-
creteness the singular harmonic oscillator H̃ = p2/(2m) + ωρ2 + λρ−2 which can be cast as
a generator in a realization of su(1, 1) and which hence exhibits conformal symmetry [5].
From the properties of the discrete series representations of su(1, 1), the spectrum of H is
known to be equidistantly spaced and therefore linear in a quantum number n. Adding two
such realizations say in the variable ρ1 and ρ2 to form a two-dimensional system leads to a
Hamiltonian with manifest degeneracies. The corresponding constants of motion are readily
constructed as products of the su(1, 1) raising and lowering operators from each of the two
summands that leave the total energy unchanged. These constants are seen to generate [3,
6] the Higgs algebra [7–9] which is isomorphic to the dual Hahn algebra [10–12]. The latter
is an example of the quadratic algebras [13] that are associated to the hypergeometric or-
thogonal polynomials of the Askey scheme [14]. These algebras are realized by the bispectral
operators of the corresponding families of polynomials. In the case of the dual Hahn alge-
bra, the associated dual Hahn polynomials are essentially the Clebsch–Gordan coefficients
of su(1, 1).

We wish to examine if this approach extends fruitfully to the supersymmetric context.
Can one combine one-dimensional superconformal Hamiltonian [15] with osp(1|2) as dynam-
ical algebra to obtain a superintegrable model? Positive indications arise from the fact that
the representations of osp(1|2) that belong to the discrete series imply a linear spectrum for
the Cartan generator which leads, here also, to degenerate situations for this operator in
combined representations. We shall call upon operators acting on vector-valued functions to
provide the appropriate realizations. Interestingly, we shall thus find a model with internal
degrees of freedom that has for symmetry algebra the one associated to the dual −1 Hahn
polynomials. These polynomials have been singled out [16] as the q → −1 limit of the
dual q-Hahn polynomials [14] and shown to be basically the Clebsch–Gordan coefficients of
osp(1|2) [1].

The present study has similarities with the analysis of the Dunkl oscillator in the plane
that also brings on supersymmetry [17–19]. In this case the relevant realizations of osp(1|2)
are the parabosonic [20, 21] ones constructed in terms of Dunkl and reflection operators
[22]. A deformation of su(2) obtained by extending the Schwinger construction to Dunkl
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creation and annihilation operators was identified as the symmetry algebra responsible for
the superintegrability of the Dunkl oscillator in two dimensions. It was called the Schwinger–
Dunkl algebra sd(2) but it actually coincides with the dual −1 Hahn algebra.

The upshot of the present paper is that there is a simple superintegrable model with
internal degrees of freedom that possesses the same dual −1 Hahn symmetry algebra and
the attractive feature of not involving reflection operators.

A further observation is that this new model can be obtained as well through dimensional
reduction. It was shown in [23] that harmonic oscillators in 2d dimensions can be reduced
to maximally superintegrable systems of singular oscillators in d dimensions with integrals
of motion inherited from those in the higher dimensions. This will be seen to prevail for the
model with dual −1 Hahn symmetry upon projecting uncoupled harmonic oscillators with
internal degrees of freedom from four to two dimensions.

The paper is structured as follows. Section 7.2 recalls facts about osp(1|2) and its repre-
sentations of the discrete series. Section 7.3 introduces the relevant realizations of osp(1|2)
in terms of matrix differential operators and the two-dimensional superconformal Hamil-
tonian of interest. This Hamiltonian is shown to be superintegrable in Section 7.4 and its
symmetry algebra is identified as the dual −1 Hahn algebra. The wavefunctions separated
in both Cartesian and polar coordinates are presented in Section 7.5. The total osp(1|2)
Casimir element, as one of the constants of motion, is also associated to separation in polar
coordinates. Its eigenfunctions are obtained in Section 7.6 and their overlaps with the wave-
functions separated in Cartesian coordinates are shown to be given in terms of the dual −1
Hahn polynomials. Finally, how the superintegrable singular oscillator with internal degrees
of freedom can be derived via dimensional reduction is the subject of Section 7.7. Concluding
remarks are found in Section 13.6. Appendix 7.A gathers the main properties of the dual −1
Hahn polynomials and Appendix 7.B collects technical details on the solutions of relevant
differential equations.

7.2. A review of osp(1|2)
The Lie superalgebra osp(1|2) can be presented as the algebra with generators A0, A±

and an involution P encoding the Z2-grading of the superalgebra (P commutes with the even
elements and anticommutes with the odd elements). These obey the relations

{A+, A−} = 2A0, [A0, A±] = ±A±, [P,A0] = 0, {P,A±} = 0. (7.2.1)

The sCasimir of osp(1|2)

S = A+A− − A0 + 1
2 (7.2.2)
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belongs to the universal enveloping algebra of osp(1|2) and satisfies the following relation

[S,A0] = {S,A±} = 0. (7.2.3)

In other words, the sCasimir commutes with even generators and anticommutes with odd
generators. One can then form a Casimir element by multiplying S with P :

Q =
(
A+A− − A0 + 1

2

)
P = 1

2 ([A+, A−] + 1)P. (7.2.4)

Positive infinite-dimensional discrete series representations are labelled by (µ, ε), with µ ≥ 0,
ε = ±1 and the actions of the generators on the associated basis vectors are given by

A0|µ, n, ε〉 = (n+ µ+ 1
2)|µ, n, ε〉, (7.2.5)

A+|µ, n, ε〉 =
√

[n+ 1]µ|µ, n+ 1, ε〉, (7.2.6)

A−|µ, n, ε〉 =
√

[n]µ|µ, n− 1, ε〉, (7.2.7)

P |µ, n, ε〉 = ε(−1)n|µ, n, ε〉, (7.2.8)

with the mu-numbers [n]µ defined as the following

[n]µ = n+ µ (1− (−1)n) . (7.2.9)

The Casimir element acts as a multiple of the identity on these irreps

Q|µ, n, ε〉 = −εµ|µ, n, ε〉. (7.2.10)

In the realizations of osp(1|2) that we shall soon provide, A0 will be interpreted as the
Hamiltonian.

7.2.1. The Clebsch–Gordan problem of osp(1|2)

We now turn to the study of the recoupling problem of two copies of osp(1|2). We
first introduce the coproduct ∆ : osp(1|2) → osp(1|2) ⊗ osp(1|2), a coassociative algebra
morphism that acts as follows on the generators:

∆(A0) = A0 ⊗ 1 + 1⊗ A0

∆(A±) = A± ⊗ P + 1⊗ A±
∆(P ) = P ⊗ P

= A
(1)
0 + A

(2)
0 ,

= A
(1)
± P

(2) + A
(2)
± ,

= P (1)P (2).

(7.2.11)

As a result

∆(Q) = Q(12) = (A(1)
− A

(2)
+ − A

(1)
+ A

(2)
− )P (1) +Q(1)P (2) +Q(2)P (1) − 1

2P
(1)P (2). (7.2.12)

Let us now look at the recoupling of two irreducible representations of osp(1|2) denoted
(µ1, ε1) and (µ2, ε2), following [24]. There are two natural bases to consider.
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To the direct product representation (µ1, ε1) ⊗ (µ2, ε2) are associated the basis vectors
given by |µ1, n1, ε1〉⊗|µ2, n2, ε2〉 that diagonalize the Casimir elements Q(1) and Q(2), A0⊗ 1,
1 ⊗ A0 and P ⊗ 1, 1 ⊗ P . It should be noted that it is equivalent to diagonalize A0 ⊗ 1,
∆(A0), P ⊗ 1, ∆(P ) instead of the previous four (this will be used later when we consider
the Clebsch–Gordan algebra associated to osp(1|2)). All these elements act as follows on the
basis vectors

(Q⊗ 1)|µ1, n1, ε1〉⊗|µ2, n2, ε2〉 =

(1⊗Q)|µ1, n1, ε1〉⊗|µ2, n2, ε2〉 =

(A0 ⊗ 1)|µ1, n1, ε1〉⊗|µ2, n2, ε2〉 =

(1⊗ A0)|µ1, n1, ε1〉⊗|µ2, n2, ε2〉 =

∆(A0)|µ1, n1, ε1〉⊗|µ2, n2, ε2〉 =

(P ⊗ 1)|µ1, n1, ε1〉⊗|µ2, n2, ε2〉 =

(1⊗ P )|µ1, n1, ε1〉⊗|µ2, n2, ε2〉 =

∆(P )|µ1, n1, ε1〉⊗|µ2, n2, ε2〉 =

− ε1µ1|µ1, n1, ε1〉⊗|µ2, n2, ε2〉,

− ε2µ2|µ1, n1, ε1〉⊗|µ2, n2, ε2〉,

(n1 + µ1 + 1
2)|µ1, n1, ε1〉⊗|µ2, n2, ε2〉,

(n2 + µ2 + 1
2)|µ1, n1, ε1〉⊗|µ2, n2, ε2〉,

(n1 + n2 + µ1 + µ2 + 1)|µ1, n1, ε1〉⊗|µ2, n2, ε2〉,

ε1(−1)n1|µ1, n1, ε1〉⊗|µ2, n2, ε2〉,

ε2(−1)n2|µ1, n1, ε1〉⊗|µ2, n2, ε2〉,

ε1ε2(−1)n1+n2|µ1, n1, ε1〉⊗|µ2, n2, ε2〉.

(7.2.13)

To the irreducible components (µ12, ε12) of the decomposition of the direct product represen-
tation are attached the basis vectors |µ12, n12, ε12〉. The diagonal operators are ∆(Q), ∆(A0),
∆(P ):

∆(Q)|µ12, n12, ε12〉 =

∆(A0)|µ12, n12, ε12〉 =

∆(P )|µ12, n12, ε12〉 =

− ε12µ12|µ12, n12, ε12〉,

(n12 + µ12 + 1
2)|µ12, n12, ε12〉,

ε12(−1)n12 |µ12, n12, ε12〉.

(7.2.14)

Owing to the decomposition [25]

(µ1, ε1)⊗ (µ2, ε2) =
∞⊕
j=0

(µ1 + µ2 + j + 1
2 , (−1)jε1ε2) (7.2.15)

one directly obtains that

µ12 = µ1 + µ2 + j + 1
2 , ε12 = (−1)jε1ε2, j ∈ N. (7.2.16)

The Clebsch–Gordan coefficients are then defined as the expansion coefficients between these
two bases

|µ12, n12, ε12〉 =
∑
n1,n2

Cn1,n2
n12,j |µ1, n1, ε1〉⊗|µ2, n2, ε2〉. (7.2.17)

It can be shown [1, 26] that the Clebsch–Gordan coefficients are expressible in terms of the
dual −1 Hahn polynomials. These Clebsch–Gordan coefficients will appear in Section 7.6
as overlaps of the solutions of our spinorial superintegrable system separated in both the
Cartesian and polar coordinates.
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7.3. A spinorial realization of osp(1|2)
Dunkl realizations of osp(1|2) have been studied extensively [17, 18, 20, 21]. These

realizations are built with reflection operators and were taken to act on scalar wavefunctions.
In this paper we shall focus instead on a realization with spin (internal) degrees of freedom
which offers a valuable alternative perspective. The wavefunctions of the system are then
given in terms of spinors. In the remainder of this paper, we will refer to this realization as
the spinorial realization of osp(1|2).

7.3.1. The spinorial model

Recall the usual Pauli matrices {σ1, σ2, σ3} and form

A± = 1√
2

[
σ1

(
ρ∓ ∂

∂ρ

)
∓ iσ2

k

ρ

]
, A0 = −1

2
d2

dρ2 + ρ2

2 + k(k − σ3)
2ρ2 . (7.3.1)

Using σaσb = δab + iεabcσc, one easily checks that

{A+, A−} = 2A0, [A0, A±] = ±A±. (7.3.2)

We shall interpret H = A0 as the Hamiltonian of this spinorial model. Note that parity
P : ρ 7→ −ρ satisfies the remaining relations of osp(1|2)

[P,A0] = {P,A±} = 0. (7.3.3)

Using the above, it is also seen that the Casimir element in this realization takes the form

Q = −kσ3P. (7.3.4)

Recalling that Q has eigenvalue −εµ in a discrete series irrep of osp(1|2) and taking µ = k,
we hence take

Pσ3 = σ3P = ε (7.3.5)

and it is seen that the identification P = εσ3 in irreps is consistent with the relations (7.3.3).
What does this tell us about the wavefunctions? Recall that σ3 has eigenvalue +1 for

spin up (↑) and −1 for spin down (↓). On the other hand, P encodes the parity of the
wavefunction: it has eigenvalue +1 for even wavefunctions and −1 for odd wavefunctions.
The eigenvalues then combine like this:

even wavefunction & spin ↑ −→ eigenvalue of σ3P = +1 = ε,

odd wavefunction & spin ↓ −→ eigenvalue of σ3P = +1 = ε,

even wavefunction & spin ↓ −→ eigenvalue of σ3P = −1 = ε,

odd wavefunction & spin ↑ −→ eigenvalue of σ3P = −1 = ε.

(7.3.6)
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In other words, for our spinorial model and for a given k, the set of scenarios (7.3.6) provides
us with an interpretation of the sign ε labelling the representations. Either (a) ε = +1 and
then there is a matching between the even wavefunctions and the spin up, and between the
odd wavefunctions and the spin down, or (b) ε = −1 and then there is a matching between
the odd wavefunctions and the spin up, and between the even wavefunctions and the spin
down.

This interpretation is in keeping with the fact that once we identify P with εσ3 in irreps,
we have from (7.2.8) that

P |µ, n, ε〉 = ε(−1)n|µ, n, ε〉 = εσ3|µ, n, ε〉, and hence σ3|µ, n, ε〉 = (−1)n|µ, n, ε〉.
(7.3.7)

This connects the spin with the energies which are known to depend on parity.

7.3.2. The osp(2|2) dynamical algebra

The dynamical algebra of this spinorial model further realizes osp(2|2) ' sl(2|1). This
superalgebra can be presented [27] in terms of four bosonic generators E±, H̄, Z and two
pairs of fermionic generators F±, F̄± obeying the relations

[H̄, E±] = ±E±,

[E+, E−] = 2H̄,

[Z,E±] = 0 = [Z, H̄],

{F±, F̄∓} = Z ∓ H̄,

{F±, F̄±} = E±,

{F±, F±} = 0 = {F̄±, F̄±},

{F±, F∓} = 0 = {F̄±, F̄∓},

[H̄, F±] = ±1
2F
±,

[Z, F±] = 1
2F
±,

[H̄, F̄±] = ±1
2 F̄
±,

[Z, F̄±] = −1
2 F̄
±,

[E±, F∓] = −F±,

[E±, F̄∓] = F̄±,

[E±, F±] = 0 = [E±, F̄±].

(7.3.8)

Here is how the algebra is realized in our model. As previously defined in (7.3.1), the element
A0 is a bosonic generator and A± are fermionic generators. Introduce Y , which commutes
with A0 and is realized by

Y = σ3

2i . (7.3.9)

This element leads to another osp(1|2) realization. Indeed, we can form supercharges tilde
as follows

Ã± = [A±, Y ] = 1√
2

[
−σ2

(
ρ∓ ∂

∂ρ

)
∓ iσ1

k

ρ

]
. (7.3.10)
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Those supercharges also obey the osp(1|2) defining relations:

{Ã+, Ã−} = 2A0, [A0, Ã±] = ±Ã±, [P,A0] = {P, Ã±} = 0. (7.3.11)

The dynamical algebra hence contains the two osp(1|2) subalgebras mentioned above and
can be identified as sl(2|1) by mapping its generators in the following way:

H̄ = 1
2A0 = 1

4

(
− ∂2

∂ρ2 + k(k − σ3)
ρ2 + ρ2

)
, (7.3.12)

Z = −1
2 (k + iY ) = −1

2

(
k + σ3

2

)
, (7.3.13)

F+ = (Ã+ − iA+)
2
√

2
= i

4(σ1 − iσ2)
(
∂

∂ρ
− k

ρ
− ρ

)
, (7.3.14)

F− = −i(Ã− − iA−)
2
√

2
= −1

4(σ1 − iσ2)
(
∂

∂ρ
− k

ρ
+ ρ

)
, (7.3.15)

F̄+ = i(Ã+ + iA+)
2
√

2
= 1

4(σ1 + iσ2)
(
∂

∂ρ
+ k

ρ
− ρ

)
, (7.3.16)

F̄− = − (Ã− + iA−)
2
√

2
= − i4(σ1 + iσ2)

(
∂

∂ρ
+ k

ρ
+ ρ

)
, (7.3.17)

E± = {F±, F̄±} = − i4

[
− ∂2

∂ρ2 + k(k − σ3)
ρ2 − ρ2 ±

(
1 + 2ρ ∂

∂ρ

)]
. (7.3.18)

The defining relations (7.3.8) are checked directly.
In the following we shall focus only on the osp(1|2) realization given in (7.3.1).

7.4. Constants of motion and the dual −1 Hahn algebra
In this Section we will show that the dual −1 Hahn algebra is the symmetry algebra

that accounts for the superintegrability of the two-dimensional model with internal degrees
of freedom (7.1.1).

7.4.1. Two-dimensional model

Using the osp(1|2) coproduct, we can form the following two-dimensional realization:

A
(12)
± = A± ⊗ P + 1⊗ A±

= ε2
1√
2

[
(σ1 ⊗ σ3)

(
ρ1 ∓

d

dρ1

)
∓ i(σ2 ⊗ σ3)k1

ρ1

]
(7.4.1)

+ 1√
2

[
(1⊗ σ1)

(
ρ2 ∓

d

dρ2

)
∓ i (1⊗ σ2)k2

ρ2

]

A
(12)
0 = −1

2

(
d2

dρ2
1

+ d2

dρ2
2

)
+ 1

2(ρ2
1 + ρ2

2) + k1(k1 − σ3 ⊗ 1)
2ρ2

1
+ k2(k2 − 1⊗ σ3)

2ρ2
2

. (7.4.2)
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The involution P is mapped to

P (12) = P (1)P (2) = ε1ε2(σ3 ⊗ σ3). (7.4.3)

These elements still satisfy the osp(1|2) algebra relations since they were obtained from the
coproduct morphism.

Now introduce the gamma matrices

γ1 = σ1 ⊗ σ3, γ2 = σ2 ⊗ σ3, γ3 = 1⊗ σ1, γ4 = 1⊗ σ2. (7.4.4)

These obey the Clifford algebra relations

{γa, γb} = 2δab. (7.4.5)

Denoting Σab = iγaγb, we form the two spin operators

Σ12 = −(σ3 ⊗ 1), Σ34 = −(1⊗ σ3), (7.4.6)

and the expressions above can be rewritten as

A
(12)
0 = −1

2

(
d2

dρ2
1

+ d2

dρ2
2

)
+ 1

2(ρ2
1 + ρ2

2) + k1(k1 + Σ12)
2ρ2

1
+ k2(k2 + Σ34)

2ρ2
2

, (7.4.7)

A
(12)
± = ε2

1√
2

[
γ1

(
ρ1 ∓

d

dρ1

)
∓ iγ2

k1

ρ1

]
+ 1√

2

[
γ3

(
ρ2 ∓

d

dρ2

)
∓ iγ4

k2

ρ2

]
, (7.4.8)

P (12) = ε12Σ12Σ34. (7.4.9)

We identify A(12)
0 as the Hamiltonian of our two-dimensional spinorial model. Its energies

are provided by the sum of two linear spectra:

n1 + n2 + µ1 + µ2 + 1. (7.4.10)

This spectrum is degenerate. We will now explain the degeneracies from the symmetries of
the Hamiltonian H12 = A

(12)
0 and the algebra they form.

7.4.2. Symmetries of H12 = A
(12)
0 and superintegrability

The total Hamiltonian of the two-dimensional system is

H12 = ∆(A0) = A
(1)
0 + A

(2)
0 (7.4.11)

where

A
(1)
0 = −1

2

(
d2

dρ2
1

)
+ 1

2(ρ2
1) + k1(k1 + Σ12)

2ρ2
1

, (7.4.12)

A
(2)
0 = −1

2

(
d2

dρ2
2

)
+ 1

2(ρ2
2) + k2(k2 + Σ34)

2ρ2
2

. (7.4.13)
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Given the ladder operators (7.2.6)–(7.2.7), combinations of the form A
(i)
± A

(j)
∓ will be sym-

metries of the total Hamiltonian H12 (they are constants of motion that preserve the total
energy of the system). We can form three independent such combinations (in addition to
the Hamiltonian) that commute with H12, thus showing that the model is superintegrable.

To identify the nature of the symmetry algebra, let

K1 = 1
4
(
{A(1)

+ , A
(1)
− } − {A

(1)
+ , A

(1)
− }

)
= 1

2
(
A

(1)
0 − A

(2)
0

)
. (7.4.14)

It is immediate to see that K1 is a symmetry of H12.
Another symmetry is (A(1)

− A
(2)
+ − A

(1)
+ A

(2)
− ); in essence, this is the total Casimir Q(12) =

∆(Q) presented in (8.4.9). This element obviously commutes with H12 = ∆(A0) because the
coproduct is an algebra homomorphism.

Note that both Σ12 and Σ34 are additional symmetries of H12. A natural symmetry
algebra generator is hence the total sCasimir ∆(S) which we shall denote by K2:

K2 = ε12Q
(12)Σ12Σ34. (7.4.15)

The commutation relations obeyed by the generators of the symmetry algebra are then seen
to be the defining relations of the dual −1 Hahn algebra [1]

[K1, K2] = K3, [K1, K3] = K2 − (ε1Q(1)Σ12 + ε2Q
(2)Σ34 − 1

2),

[K2, K3] = 2K3(ε1Q(1)Σ12 + ε2Q
(2)Σ34)− 4K1(1− ε1Q(1)Σ12 − ε2Q(2)Σ34)

− 2H12(ε1Q(1)Σ12 − ε2Q(2)Σ34),

{K2,Σ12} = 2(ε1Q(1)Σ12 + ε2Q
(2)Σ34 + 1

2)Σ12,

{K2,Σ34} = 2(ε1Q(1)Σ12 + ε2Q
(2)Σ34 + 1

2)Σ34,

0 = [K1,Σ12] = [K1,Σ34] = {K3,Σ12} = {K3,Σ34},

(7.4.16)

where Q(1), Q(2) and H12 are central elements. The algebra can also be recast in a more
symmetric presentation by reabsorbing the εi’s:

[K1, K2] = K3, [K1, K3] = K2 − (S(1) + S(2) − 1
2),

[K2, K3] = 2K3(S(1) + S(2)) + 4K1(S(1) + S(2) − 1)− 2H12(S(1) − S(2)),

{K2, P
(1)} = 2(S(1) + S(2) + 1

2)P (1),

{K2, P
(2)} = 2(S(1) + S(2) + 1

2)P (2),

0 = [K1, P
(1)] = [K1, P

(2)] = {K3, P
(1)} = {K3, P

(2)},

(7.4.17)
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This presentation emphasizes the role of the sCasimirs S(i) = Q(i)P (i) and makes the corre-
spondence with the presentation in [1] more explicit.

7.4.3. An embedding of the dual Hahn algebra

The dual Hahn algebra is connected with the Lie algebra su(1, 1), which is the even
subalgebra of osp(1|2). A natural question then arises: can the dual Hahn algebra be
embedded in the −1 Hahn algebra? As will now be shown, the answer is affirmative.

J± = 1
2(A±)2, J0 = 1

2A0, (7.4.18)

obey the defining relations of su(1, 1):

[J0, J±] = ±J±, [J+, J−] = −2J0. (7.4.19)

The Casimir element of su(1, 1) commutes with all J0, J± generators and has the following
expression in terms of the sCasimir S = QP of osp(1|2):

C = J0
2 − J+J− − J0 = 1

4

(
S2 + S − 3

4

)
. (7.4.20)

The dual Hahn algebra appears when looking at the Clebsch–Gordan problem of su(1, 1).
Here is how this is realized in terms of a two-dimensional model.

Consider the addition of the two realizations (7.3.1) of osp(1|2) and the corresponding
two-dimensional su(1, 1) model:

J
(12)
± = 1

2(A(12)
± )2 = 1

2
(
(A(1)
± )2 + (A(2)

± )2
)
, (7.4.21)

J
(12)
0 = 1

2(A(12)
0 ) = 1

2(A(1)
0 + A

(2)
0 ), (7.4.22)

C(12) = (J (12)
0 )2 − J (12)

+ J
(12)
− − J (12)

0 . (7.4.23)

Now, form the following two quantities that commute with the total Hamiltonian J (12)
0 :

K1 = 1
2
(
J

(1)
0 − J

(2)
0

)
,

K2 = C(12) = (J (12)
0 )2 − J (12)

+ J
(12)
− − J (12)

0 ,
(7.4.24)

The relations obeyed by these elements are those of the dual Hahn algebra [10–12]

[K1,K2] = K3,

[K2,K3] = −2{K1,K2}+ 4J (12)
0 (C(1) − C(2)),

[K2,K3] = −2K1
2 − 4K2 + 2(J (12)

0 )2 + 4(C(1) + C(2)),

(7.4.25)

with central elements δ1 = 4J (12)
0 (C(1) − C(2)) and δ2 = 2(J (12)

0 )2 + 4(C(1) + C(2)). This
explicitly shows the embedding of the dual Hahn algebra in the dual −1 Hahn algebra.
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7.5. Separated solutions
In this section we shall study the wavefunctions of the two-dimensional system described

by the Hamiltonian

H12 = −1
2

(
d2

dρ2
1

+ d2

dρ2
2

)
+ 1

2(ρ2
1 + ρ2

2) + k1(k1 + Σ12)
2ρ2

1
+ k2(k2 + Σ34)

2ρ2
2

(7.5.1)

in two different coordinates system. In the next section, the knowledge of the symmetry
algebra will allow to obtain the overlaps between the wavefunctions in these two coordinate
systems.

7.5.1. Solutions in Cartesian coordinates

The one-dimensional system obeys the following Schrödinger equation

Hψ = 1
2

(
− d2

dρ2 + ρ2 + k(k − σ3)
ρ2

)
ψ = Eψ. (7.5.2)

We give details in the Appendix 7.B on how this equation is solved.
The solutions ψm,k(ρ) are more conveniently expressed in terms of the generalized Hermite

polynomials Hk
m(x) [20, 28, 29]. This family of polynomials is composed of two alternating

sequences of generalized Laguerre polynomials:

Hk
2n+p(x) = (−1)n

√√√√ n!
Γ(n+ p+ k + 1

2) x
p L

(k− 1
2 +p)

n (x2), p ∈ {0, 1}. (7.5.3)

Identifying p with 1−s
2 , where s is the eigenvalue of σ3, the solutions are presented as

ψm,k(ρ) = (−1)bm2 ce−ρ2/2ρkHk
m(ρ), with m = 2n+ p,

Em = m+ k + 1
2 ,

(7.5.4)

and bxc is the floor function. In braket notation, the Schrödinger equation reads

H|m, k〉 = (m+ k + 1
2)|m, k〉, (7.5.5)

with

|m, k〉 =
ψm,k

0

 if m is even, and |m, k〉 =
 0
ψm,k

 if m is odd. (7.5.6)

One should note that we must have k > −1/2 in order for the solutions to be normalizable
and the energies to be non-negative. The action of the parity involution P : ρ 7→ −ρ on
these wavefunctions is

P ψm,k(ρ) = ψm,k(−ρ) = (−1)k+mψm,k(ρ). (7.5.7)
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Since P acts as ε(−1)m on a given osp(1|2) eigenvector |m, k〉, this means that we should
choose

ε = (−1)k. (7.5.8)

Since the positive-discrete series of osp(1|2) in (7.2.5)–(7.2.8) is defined for ε = ±1, we
impose k ∈ N.

It can be checked (using the Laguerre polynomials contiguity and recurrence relations
[30]) that A± realized as (7.3.1) acts on the eigenstates |m, k〉 according to (7.2.6)–(7.2.7).

A+|m, k〉 =
√

[m+ 1]k|m+ 1, k〉, A−|m, k〉 =
√

[m]k|m− 1, k〉. (7.5.9)

We now look at the solutions of the two-dimensional system. The Cartesian solutions are
obtained by combining two one-dimensional problems. Let us denote the coupled eigenstates

|m1, k1〉⊗|m2, k2〉 =|m1,m2, k1, k2〉, mi = 2ni + pi. (7.5.10)

These |m1,m2, k1, k2〉 are 4-component spinors, whose entries depend on the parity of both
m1 and m2 following (7.5.6),

|2n1, 2n2, k1, k2〉 =


ψ2n1,2n2,k1,k2

0
0
0

 ,

|2n1 + 1, 2n2, k1, k2〉 =


0
0

ψ2n1+1,2n2,k1,k2

0

 ,

|2n1, 2n2 + 1, k1, k2〉 =


0

ψ2n1,2n2+1,k1,k2

0
0

 ,

|2n1 + 1, 2n2 + 1, k1, k2〉 =


0
0
0

ψ2n1+1,2n2+1,k1,k2

 ,
(7.5.11)

and the entries of these spinors are the product of two one-dimensional wavefunctions

ψm1,m2,k1,k2(ρ1, ρ2) = ψm1,k1(ρ1)ψm2,k2(ρ2). (7.5.12)

The actions (7.2.5)–(7.2.8) extend naturally to the two-dimensional case. Moreover, from
the action of ∆(P ) = P1P2 : (ρ1, ρ2) 7→ (−ρ1,−ρ2) on ψm1,m2,k1,k2(ρ1, ρ2), it is checked that
ε12 = ε1ε2 as expected. The energies can be presented as

Em1,m2 = (m1 +m2) + (k1 + k2) + 1 (7.5.13)
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and have additional degeneracies, as is seen from

m1 +m2 =



2(n1 + n2) if (p1, p2) = (0, 0),
2(n1 + n2) + 1 if (p1, p2) = (0, 1),
2(n1 + n2) + 1 if (p1, p2) = (1, 0),
2(n1 + n2) + 2 if (p1, p2) = (1, 1).

(7.5.14)

This two-fold degeneracy comes from the fact that the Hamiltonian (7.1.1) is invariant under
the exchange of ρ1 ↔ ρ2, k1 ↔ k2 and the internal spaces 2↔ 3.

7.5.2. Solutions in polar coordinates

Superintegrable systems typically admit separation of variable in more than one coordi-
nate system [2]. This is the case here: one can also separate the solutions in polar coordinates.
Write

ρ1 = r cosφ, ρ2 = r sinφ, (7.5.15)

the Schrödinger equation takes the form

HΨ = 1
2

[
− ∂2

∂r2 −
1
r

∂

∂r
+ r2 − 1

r2

(
∂2

∂φ2 −
k1(k1 − σ3 ⊗ 1)

cos2 φ
− k2(k2 − 1⊗ σ3)

sin2 φ

)]
Ψ = EΨ.

(7.5.16)

To make the separation of variable in polar coordinates, write Ψ(r, φ) = R(r)Φ(φ). This
yields the angular equation[

d2

dφ2 −
k1(k1 − σ3 ⊗ 1)

cos2 φ
− k2(k2 − 1⊗ σ3)

sin2 φ
+m2

]
Φ = 0 (7.5.17)

and the radial equation
d2R

dr2 + 1
r

dR

dr
+
(
−r2 − m2

r2 + 2E
)
R = 0. (7.5.18)

These equations are solved in Appendix 7.B.

The orthonormalized angular solution to (7.5.17) is given in terms of Jacobi polynomials
J

(α,β)
d (φ):

Φk1,k2
`,s1,s2(φ) =

√√√√2(2`+ k1 + k2) (`− 2−s1−s2
4 )! Γ(`+ k1 + k2 + 2−s1−s2

4 )
Γ(`+ k1 + 2−s1+s2

4 ) Γ(`+ k2 + 2+s1−s2
4 )

× [cosφ]k1+ 1−s1
2 [sinφ]k2+ 1−s2

2 P
(k1−

s1
2 ,k2−

s2
2 )

`− 2−s1−s2
4

(− cos 2φ),

|m| = 2`+ (k1 + k2), s1, s2 ∈ {±1}.

(7.5.19)
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It is important to recall that in the above, ` ∈ {0, 1, 2, . . . } is a non-negative integer if
s1s2 = 1 and ` ∈ {1

2 ,
3
2 , . . . } is a half-integer if s1s2 = −1. Also, the normalization condition

is ∫ π/2

0
dφ
[
Φk1,k2
`,s1,s2(φ)

]2
= 1. (7.5.20)

The solutions are defined in the first quadrant, which corresponds to the domain of definition
of the Jacobi polynomials. In Section 7.7, it will be seen that it is natural for the solutions
to be given only in the first quadrant. The wavefunctions can be extended straightforwardly
to the four quadrants.

Next, the solutions of the radial equation are expressed in terms of Laguerre polynomials
like in the one-dimensional case:

RN ′(r) =

√√√√ 2(N !)
Γ(N ′ + |m|+ 1)r

|m|e−r2/2L
(|m|)
N ′ (r2). (7.5.21)

The orthonormalized solutions of the two-dimensional system in polar coordinates are then
given by

ψk1,k2
`,N ′,s1,s2

(r, φ) = Φk1,k2
`,s1,s2(φ)RN ′(r) (7.5.22)

The total energy of the two-dimensional system is

E = 2N ′ + |m|+ 1 = 2(N ′ + `) + (k1 + k2) + 1, (7.5.23)

which matches what was obtained for the Cartesian solutions in (7.5.13) upon letting

2(N ′ + `) = m1 +m2. (7.5.24)

Equation (7.5.16) can alternatively be presented in the form

H|`,N ′, s1, s2, k1, k2〉 = E|`,N ′, s1, s2, k1, k2〉 (7.5.25)

where the |`,N ′, s1, s2, k1, k2〉 are 4-component spinors, whose entries depends on the value
of s1, s2:

|`,N ′,+,+, k1, k2〉 =


ψk1,k2
`,N ′,+,+

0
0
0

 ,

|`,N ′,−,+, k1, k2〉 =


0
0

ψk1,k2
`,N ′,−,+

0

 ,

|`,N ′,+,−, k1, k2〉 =


0

ψk1,k2
`,N ′,+,−

0
0

 ,

|`,N ′,−,−, k1, k2〉 =


0
0
0

ψk1,k2
`,N ′,−,−

 .
(7.5.26)
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7.6. Overlaps: the dual −1 Hahn polynomials
The goal is now to compute the overlaps between the wavefunctions arising from the

separation of variables in Cartesian and polar coordinates and to relate these connection
coefficients to the symmetry algebra exhibited previously in Section 7.4.

7.6.1. A basis diagonalizing Q(12)

The separation of variables in polar coordinates amounted to the diagonalization of the
operator

Bφ = − d2

dφ2 + k1(k1 − σ3 ⊗ 1)
cos2 φ

+ k2(k2 − 1⊗ σ3)
sin2 φ

(7.6.1)

We will now diagonalize Q(12). The reason for this choice is that the overlaps between the
Cartesian eigenbasis and the eigenbasis of Q(12) are straightforward to obtain in light of our
knowledge of the action of the ladder operators on an osp(1|2) irrep (7.2.5)–(7.2.8) and of
that fact that the eigenstates of Q(12) can be obtained as a linear combination of the polar
eigenstates.

In our realization

Q(12) =
[
−iε2

d

dφ
Σ13 − ε2k1

sinφ
cosφΣ23 + ε2k2

cosφ
sinφΣ14 + k1Σ12 + k2Σ34 −

1
2

]
ε12Σ12Σ34.

(7.6.2)

Let us now fix the eigenvalue of Σ12Σ34 to be δ = ±1. We shall look for the eigenvectors of
Q(12) such that

Q(12)|Fδ〉 = qδ|Fδ〉. (7.6.3)

Looking at the eigenvalue of Σ34, which is either ±1, we write

|Fδ〉 =|f+
δ 〉+|f−δ 〉, (7.6.4)

with the labels ± chosen so that

Σ34|f±δ 〉 = ±|f±δ 〉. (7.6.5)

7.6.1.1. The case δ = +1. In the case that δ = +1 one has

|F+〉 =


f−+

0
0
f+

+

 =|f−+ 〉+|f+
+ 〉 = f−+


1
0
0
0

+ f+
+


0
0
0
1

 = f−+ |+,−〉Σ + f+
+ |+,+〉Σ. (7.6.6)
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One sees that f+
+ is related to f−+ by virtue of (7.6.3). Now, explicitly writing down (7.6.2)

gives rise to two equations that must be simultaneously satisfied

ε1

(
d

dφ
− k1

sinφ
cosφ + k2

cosφ
sinφ

)
f+

+ − ε12
(
k1 + k2 + 1

2

)
f−+ = q+f

−
+ , (7.6.7)

ε1

(
− d

dφ
− k1

sinφ
cosφ + k2

cosφ
sinφ

)
f−+ + ε12

(
k1 + k2 − 1

2

)
f+

+ = q+f
+
+ . (7.6.8)

Inserting (7.6.7) into (7.6.8), denoting q̃+ = q+ + 1
2ε12 and recalling that ε21 = ε22 = 1, we

obtain the following second-order differential equation:
d2f−+
dφ2 −

(
k1(k1 − 1)

cos2 φ
+ k2(k2 − 1)

sin2 φ
− q̃2

+

)
f−+ = 0. (7.6.9)

Comparing with (7.B.9), it is easily seen that the solutions are given in terms of Jacobi
polynomials (the exact normalization will be given below). We have

f−+ =

√√√√2 (`!) (2`+ k1 + k2) Γ(`+ k1 + k2)
Γ(`+ k1 + 1

2) Γ(`+ k2 + 1
2) (cosφ)k1(sinφ)k2P

(k1− 1
2 ,k2− 1

2 )
` (− cos 2φ)

= Φk1,k2
`,+,+(φ),

(7.6.10)

and the eigenvalues q̃+ are

q̃2
+ = (2`+ k1 + k2)2, =⇒ q̃+ = ±(2`+ k1 + k2), ` ∈ N. (7.6.11)

To obtain f+
+ , one could repeat what was done for f−+ and solve the resulting second-order

differential equation. This would yield, up to some normalization, f+
+ = Φk1,k2

`,−,−(φ). Since
the relative normalization between f−+ and f+

+ is crucial, we will use (7.6.8) instead. First
suppose ` > 0. We note that

(cosφ)k1(sinφ)k2
d

dφ
(cosφ)−k1(sinφ)−k2 = d

dφ
+ k1

sinφ
cosφ − k2

cosφ
sinφ . (7.6.12)

Then, it is straightforward to obtain

f+
+ = −ε1

q̃+ − ε12(k1 + k2)

√√√√2 `! Γ(`+ k1 + k2) (2`+ k1 + k2)
Γ(`+ k1 + 1

2) Γ(`+ k2 + 1
2)

× (cosφ)k1(sinφ)k2
d

dφ
P

(k1− 1
2 ,k2− 1

2 )
` (− cos 2φ),

(7.6.13)

and using [30]
d

dx
P (α,β)
n (x) = n+ α + β + 1

2 P
(α+1,β+1)
n−1 (x), (7.6.14)

138



one is led to

f+
+ =

−2ε1
√
`(`+ k1 + k2)

q̃+ − ε12(k1 + k2)

√√√√2 (`− 1)! Γ(`+ k1 + k2 + 1) (2`+ k1 + k2)
Γ(`+ k1 + 1

2) Γ(`+ k2 + 1
2)

× (cosφ)k1+1(sinφ)k2+1 P
(k1+ 1

2 ,k2+ 1
2 )

`−1 (− cos 2φ)

=
−2ε1

√
`(`+ k1 + k2)

q̃+ − ε12(k1 + k2) Φk1,k2
`,−,−(φ).

(7.6.15)

Recall that q̃+ has two possible expressions ±(2` + k1 + k2). Consider each case in turn.
This gives two solutions, corresponding to each sign. The full orthonormalized solutions to
(7.6.7)–(7.6.8) are then found to be:

|F`,+,+〉 =

√√√√`+ 1−ε12
2 (k1 + k2)

2`+ k1 + k2
|Φ`; +,−〉 − ε1

√√√√`+ 1+ε12
2 (k1 + k2)

2`+ k1 + k2
|Φ`; +,+〉, (7.6.16)

|F`,+,−〉 =

√√√√`+ 1+ε12
2 (k1 + k2)

2`+ k1 + k2
|Φ`; +,−〉+ ε1

√√√√`+ 1−ε12
2 (k1 + k2)

2`+ k1 + k2
|Φ`; +,+〉, (7.6.17)

with

|Φ`; +,−〉 = Φk1,k2
`,+,+(φ)|+,−〉Σ, |Φ`; +,+〉 = Φk1,k2

`,−,−(φ)|+,+〉Σ. (7.6.18)

These solutions indeed diagonalize Q(12)

Q(12)|F`,+,±〉 = (±|q̃+| − 1
2ε12) |F`,+,±〉 = ±(2`+ k1 + k2 ∓ 1

2ε12)|F`,+,±〉. (7.6.19)

In the case where ` = 0, Φk1,k2
0,−,−(φ) vanishes and there exists only a single eigenstate of Q(12),

whose eigenvalue equation is

Q(12)|F0,+,−ε12〉 = −ε12(k1 + k2 + 1
2). (7.6.20)

Let us now define the eigenvectors |qz〉, with z ∈ N:

|q2`〉 =|F`,+,−ε12〉, |q2`−1〉 =|F`,+, ε12〉, ` ∈ N. (7.6.21)

The spectrum of Q(12) can then be repackaged in a single expression

Q(12)|qz〉 = qz|qz〉, qz = ε12(−1)z+1(z + k1 + k2 + 1
2), z ∈ N. (7.6.22)

7.6.1.2. The case δ = −1. We repeat the analysis for the case δ = −1. One looks for
eigenvectors

|F−〉 =


0
f+
−

f−−
0

 =|f−− 〉+|f+
− 〉 = f−−


0
0
1
0

+ f+
−


0
1
0
0

 = f−− |−,−〉Σ + f+
− |−,+〉Σ. (7.6.23)
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Writing down (7.6.3) in the realization leads to the following equations:

ε1

(
d

dφ
− k1

sinφ
cosφ − k2

cosφ
sinφ

)
f−− + ε12

(
k1 − k2 + 1

2

)
f+
− = q−f

+
− , (7.6.24)

ε1

(
− d

dφ
− k1

sinφ
cosφ − k2

cosφ
sinφ

)
f+
− − ε12

(
k1 − k2 − 1

2

)
f−− = q−f

−
− . (7.6.25)

Similarly, substituting (7.6.24) into (7.6.25), one obtains

d2f−−
dφ2 −

(
k1(k1 + 1)

cos2 φ
+ k2(k2 − 1)

sin2 φ
− q̃2

−

)
f−− = 0, (7.6.26)

with q̃− = q− − 1
2ε12. Comparing with (7.B.9), it is easily seen that the solutions are again

given in terms of Jacobi polynomials:

f−− = Φk1,k2
`,−,+(φ), ` ∈ {1

2 ,
3
2 , . . . } (7.6.27)

and the eigenvalues are found to be

q̃2
− = (2`+ k1 + k2)2, =⇒ q̃− = ±(2`+ k1 + k2). (7.6.28)

We are interested in the relative normalization between f−− and f+
− , so we use (7.6.24). It

will be useful to call upon the identity
d

dz
P (α,β)
n (z) = α + n

z − 1 P
(α−1,β+1)
n (z)− α

z − 1P
(α,β)
n (z), (7.6.29)

which is obtained by combining the Laguerre mixed relations [30, p. 264, equations (9)−(17)]
with (7.6.14).

Treating the two possible values of q̃−, we obtain two solutions. Finally, the orthonor-
malized basis is obtained:

|F`,−,+〉 =

√√√√`+ 1−ε12
2 k1 + 1+ε12

2 k2

2`+ k1 + k2
|Φ`;−,−〉 − ε1

√√√√`+ 1+ε12
2 k1 + 1−ε12

2 k2

2`+ k1 + k2
|Φ`;−,+〉, (7.6.30)

|F`,−,−〉 =

√√√√`+ 1+ε12
2 k1 + 1−ε12

2 k2

2`+ k1 + k2
|Φ`;−,−〉+ ε1

√√√√`+ 1−ε12
2 k1 + 1+ε12

2 k2

2`+ k1 + k2
|Φ`;−,+〉, (7.6.31)

with

|Φ`;−,−〉 = Φk1,k2
`,−,+(φ)|−,−〉Σ, |Φ`;−,+〉 = Φk1,k2

`,+,−(φ)|−,+〉Σ. (7.6.32)

In this basis,

Q(12)|F−,±〉 = (±|q̃−|+ 1
2ε12) |F−,±〉 = ±(2`+ k1 + k2 ± 1

2ε12)|F−,±〉. (7.6.33)

Defining the eigenvectors |qz〉 for z ∈ N and ` ∈ N as

|q2`〉 =|F`,+,−ε12〉, |q2`+1〉 =|F`,−,ε12〉, ` ∈ N, (7.6.34)
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the spectrum of Q(12) can be presented in a single expression

Q(12)|qz〉 = qz|qz〉, qz = ε12(−1)z+1(z + k1 + k2 + 1
2), z ∈ N. (7.6.35)

7.6.2. Overlaps with the Cartesian basis and the dual −1 Hahn
polynomials

It is clear that the overlaps between eigenstates with different energies will vanish. Let
us then consider cases where m1 + m2 = 2(N ′ + `), i.e. cases where the energies of the
eigenstates in Cartesian coordinates and polar coordinates are equal.

The overlaps between the eigenvectors |qz〉 diagonalizing Q(12) and the Cartesian eigen-
vectors |m1,m2, k1, k2〉 ≡|m1;m2〉 are:

〈qz|Q(12)|m1;m2〉 = 〈qz|(A(1)
− A

(2)
+ − A

(1)
+ A

(2)
− )P (1) +Q(1)P (2) +Q(2)P (1) − 1

2P
(1)P (2)|m1;m2〉.

(7.6.36)

Using the actions given in (7.2.5)–(7.2.8) and defining 〈qz|m1;m2〉 = Mm1,m2 yields

qz Mm1,m2 = −ε12
(
k1(−1)m2 + k2(−1)m1 + 1

2(−1)m1+m2
)
Mm1,m2

+ ε1(−1)m1

(√
[m1]k1 [m2 + 1]k2Mm1−1,m2+1 −

√
[m1 + 1]k1 [m2]k2Mm1+1,m2−1

)
.

(7.6.37)

Making the change of variables N = m1 +m2, m = m1 and writing

Mm1,m2 =
(
ε2
2

)m
(−1)

m(m+2N+1)
2

 m∏
p1=1

N−m∏
p2=1

√√√√ [p2]k2

[p1]k1

N0,N Nm,N , (7.6.38)

we obtain a monic three term recurrence relation for the matrix elements:
(−1)N [2ε12 qz]Nm,N = Nm+1,N + [2(−1)m+1(k1 + (−1)Nk2)− 1]Nm,N

+ 4[m]k1 [N −m+ 1]k2 Nm−1,N .
(7.6.39)

A quick look at (8.A.1) shows us that these matrix elements Nm,N are dual −1 Hahn poly-
nomials Pm(xz; k1, k2, N) in the variable

xz = (−1)N+z+1(2z + 2k1 + 2k2 + 1), with z ∈ N. (7.6.40)

We then have the desired expression for Mm1,m2 = 〈qz|m1;m2〉 up to a normalization, which
can be determined using the orthonormality of the two bases:

δmm̄ =
∑
qz

〈m̄,N − m̄|qz〉〈qz|m,N −m〉. (7.6.41)
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If N is odd, (8.A.6) tells us that we have xz = xs by taking z = s ∈ {0, 1, . . . , N} and it
follows that

〈qz|m,N −m〉 = Pm(xz; k1, k2, N)

√√√√wz(k1, k2, N)
νm(k1, k2, N) . (7.6.42)

If N is even, we recover xz = xs by taking z = N − s ∈ {0, 1, . . . , N} and hence

〈qz|m,N −m〉 = Pm(xz; k1, k2, N)

√√√√wN−z(k1, k2, N)
νm(k1, k2, N) . (7.6.43)

It is then simple to reexpress the eigenvectors |qz〉 diagonalizing Q(12) in terms of the polar
eigenvectors |`,N ′, s1, s2, k1, k2〉. Indeed, from the definitions of |qz〉 in terms of |Φ`; s1, s2〉 in
(7.6.21) and (7.6.34) as well as (7.5.26), the relations are easily inversed. From there, one can
reexpress the overlaps between the polar and Cartesian eigenvectors as a linear combination
of dual −1 Hahn polynomials following the results in (7.6.42)–(7.6.43).

7.7. Dimensional reduction
The spinorial model obtained in Section 7.3 can furthermore be derived through a di-

mensional reduction procedure.
We start with a system of 4 uncoupled standard harmonic oscillator acting on 4 dimen-

sional space, described by the Hamiltonian

H̃ =
4∑
i=1

a†iai + 2I4, (7.7.1)

where ai , a
†
i are the usual annihilation/creation operators

ai = 1√
2

(
xi + ∂

∂xi

)
I4, a†i = 1√

2

(
xi −

∂

∂xi

)
I4, i = 1, . . . , 4, (7.7.2)

satisfying [a†i , aj] = δijI4 and I4 is the 4-dimensional identity matrix. One can now introduce
the cylindrical coordinates

x1 = ρ1 cos θ1,

x2 = ρ1 sin θ1,

x3 = ρ2 cos θ2,

x4 = ρ2 sin θ2.
(7.7.3)

The Hamiltonian (7.7.1) is rewritten as

H̃ = 1
2

2∑
i=1

(
ρ2
i −

∂2

∂ρ2
i

− 1
ρi

∂

∂ρi
− 1
ρ2
i

∂2

∂θ2
i

)
I4. (7.7.4)

We can now effect the gauge transformation χ on the radii to get rid of the 1
ρi

∂
∂ρi

term:

χ( · ) = (ρ1ρ2)1/2( · )(ρ1ρ2)−1/2. (7.7.5)
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This yields

χ(H̃) = H = 1
2

2∑
i=1

(
ρ2
i −

∂2

∂ρ2
i

−
1/4

ρ2
i

− 1
ρ2
i

∂2

∂θ2
i

)
I4. (7.7.6)

Owing to cylindrical symmetry, it is possible to set values for the spinorial angular momenta

J12 = −i ∂
∂θ1

+ 1
2Σ12 = −k1,

J34 = −i ∂
∂θ2

+ 1
2Σ34 = −k2,

(7.7.7)

and the desired Hamiltonian H12 is obtained:

H12 = 1
2

[
−
(
d2

dρ2
1

+ d2

dρ2
2

)
+ (ρ2

1 + ρ2
2) + k1(k1 + Σ12)

ρ2
1

+ k2(k2 + Σ34)
ρ2

2

]
I4. (7.7.8)

Recall that the solutions obtained in Section 7.5 were naturally defined for the first quadrant
only, that is φ ∈ [0, π2 ]. It is now clear from the dimensional reduction procedure that this
has to be the case. The reduced system coordinates ρ1, ρ2 are radial coordinates taking
values in R+, and those positive coordinates are precisely those that define the first quadrant
of the plane.

One may wonder if this dimensional reduction procedure can be carried out for all osp(1|2)
generators (that is, for the A(12)

± as well). The answer is affirmative, but there is some
refinement needed: one needs to perform an additional gauge transformation on the spinorial
space. This was carried out in [31, 32].

The reason for the need of an additional gauge transformation in spin space is that
the gamma matrices appearing in the expressions (7.4.8) of the A(12)

± acquire an angular
dependency when one passes to cylindrical coordinates. The spinorial gauge transformation
is meant to “rotate out” the angular dependency so that the procedure described in
(7.7.5)–(7.7.8) can be similarly applied.

The novel aspects of the superconformal system presented here come from the presence of
internal degrees of freedom whose non-trivial ties arise in dimensional reduction by fixing the
spinorial angular momentum. Comparison with the situation where only the spatial angular
momentum is fixed is instructive. In case we set

L12 = −i ∂
∂θ1

= −κ1,

L34 = −i ∂
∂θ2

= −κ2,

(7.7.9)
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the Hamiltonian (7.7.6) reduces to

H ′12 = 1
2

[
−
(
d2

dρ2
1

+ d2

dρ2
2

)
+ (ρ2

1 + ρ2
2) +

κ2
1 − 1

4
ρ2

1
+
κ2

2 − 1
4

ρ2
2

]
I4. (7.7.10)

This is in effect a system of two singular oscillators, and such oscillators are associated to
the algebra su(1, 1) instead of osp(1|2). These have been examined in detail and shown to
be superintegrable in [23]. The fact that many four-dimensional oscillators were a priori
considered is immaterial under this reduction process.

However, if one fixes the spinorial angular momentum (7.7.7), the reduction effectively
couples the internal degrees of freedom. This is the origin of the relations (7.3.6), which
connect the pure angular momentum (and thus the parity of the wavefunctions) with the
spin (and thus the index of the components of the spinors).

7.8. Conclusion
This paper has introduced a superconformal system with internal degrees of freedom

in two dimensions that is superintegrable and that has the dual −1 Hahn algebra as its
symmetry algebra. This model has been obtained by combining two spinorial realizations of
the superalgebra osp(1|2) and identifying the Hamiltonian as the resulting Cartan generator.

What about combining more than two representations of osp(1|2)?
It is known [6, 18] that the generic superintegrable model on the two-sphere [33] is

obtained in a similar spirit by combining three realizations of su(1, 1). In this case the
Hamiltonian is taken to be the total Casimir element. A two-dimensional system is obtained
because the norm of the radius vector is conserved. The constants of motion correspond
to the intermediate Casimir operators which generate the symmetry algebra known under
the name of Racah [6, 18, 34]. All other scalar second-order superintegrable models in
two-dimensions can be obtained as special cases or contractions [35] of this generic model.

Three parabosonic realizations of osp(1|2) have been similarly [36] combined to obtain
a superintegrable model with reflections on the 2-sphere that has the Bannai–Ito algebra
as symmetry algebra. Here again the Hamiltonian is related (quadratically) to the Casimir
operator of the underlying superalgebra. It has been shown [36] that the superintegrable
Dunkl oscillator in two dimensions can in fact be obtained as a contraction of this Bannai–
Ito invariant model on S2.

These observations suggest that it would be relevant to combine three spinorial repre-
sentations of osp(1|2) like the ones considered here to construct a model on S2, without
reflections, that should hence have by construction the Bannai–Ito algebra as its symmetry
algebra. One would a priori expect the model presented here to be a contraction of the
above. This raises interesting questions. One issue is that the number of degrees of freedom
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associated to combining two and three osp(1|2) representations differs from the start; an-
other has to do with the fact that the dual −1 Hahn algebra is known to be a contraction of
the algebra of the complementary Bannai–Ito polynomials [37] which is quite different from
the Bannai–Ito one. Sorting this out should prove enlightening.

Now adding three spinorial realizations of osp(1|2) and taking as done here the Hamil-
tonian to be the total Cartan generator will yield a superintegrable singular oscillator with
internal degrees of freedom in three dimensions. This has been performed with the para-
bosonic realizations to obtain the superintegrable Dunkl oscillator in three dimensions with
an invariance algebra called the Schwinger-Dunkl algebra sd(3) that extends su(3). We may
thus expect a similar outcome in the case with internal degrees of freedom. While this has not
been established, we could anticipate that the symmetry algebra, likely sd(3), is isomorphic
to the algebra of the rank 2 dual −1 Hahn algebra. This would be the algebra associated to
the bivariate or two-variable dual −1 Hahn polynomials that have not been characterized so
far. While the bivariate Bannai–Ito polynomials have recently been introduced and studied
[38], this is not the case for the bivariate complementary Bannai–Ito polynomials from which
the bivariate dual −1 Hahn polynomials should descend. With respect to contractions, these
three-dimensional singular oscillators should relate to systems on the three sphere obtained
by considering the addition of four realizations of osp(1|2) (see [39] in this connection).

In another register, we wish to point out that one may use the R-matrix approach to arrive
[40] at the generic superintegrable model on S2 and construct its constants of motion. One
proceeds via dimensional reduction with a Lax matrix that involves three su(1, 1) elements.
It has been shown recently [41] that the universal R-matrix of osp(1|2) plays a central role
in the description of the Bannai–Ito algebra. It should prove interesting to explore how
this general formalism of integrable systems applies to the description of the superintegrable
models with internal degrees of freedom that we have been discussing.

We thus observe that the superintegrable model introduced here presents itself as a nice
basis to examine some of the various questions we have pointed out that pertains generally
to the understanding of the algebras of Askey-Wilson type and their applications. We hope
to follow up with these matters in the near future.
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7.A. The dual −1 Hahn polynomials
Here are a few useful definitions and properties of the dual −1 Hahn polynomials [1, 16],

which have been introduced as a q → 1 limit of the dual q-Hahn polynomials [14].
We denote the monic dual −1 Hahn polynomials Pn(x; ξ, ζ,N), where the parameters

ξ, ζ > −1
2 and N is an integer. These polynomials satisfy a three-term recurrence relation

xPn(x) = Pn+1(x) + [2(−1)n+1(ξ + (−1)Nζ)− 1] Pn(x) + 4[n]ξ[N − n+ 1]ζ Pn−1(x)
(7.A.1)

Note that the factors are chosen for consistency with the definitions in references [1, 16].
Recall that the hypergeometric series rFs is defined by

rFs

(
a1, · · · , ar
b1, · · · , bs

; z
)

=
∞∑
k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k! (7.A.2)

with (c)k = c(c+ 1) · · · (c+ k− 1) the Pochhammer symbol. The dual −1 Hahn polynomials
can be expressed as a generalized hypergeometric truncating series.

For N even, denote δ = −1
2(ξ + ζ +N); the expressions are

P2n(x) = 24n
(
− N

2

)
n

(
1
2 −

N
2 − ζ

)
n

3F2

(
−n, δ + 1+x

4 , δ − 1+x
4

− N
2 , −

N
2 + 1

2 − ζ
; 1
)
,

(7.A.3)

P2n+1(x) = (x+ 2ξ + 2ζ + 1)24n
(
1− N

2

)
n

(
1
2 −

N
2 − ζ

)
n

3F2

(
−n, δ + 1+x

4 , δ − 1+x
4

1− N
2 , −

N
2 + 1

2 − ζ
; 1
)
.

(7.A.4)

For N odd, denote η = 1
2(ξ + ζ + 1); the expressions are

P2n(x) = 24n
(

1−N
2

)
n

(
ξ + 1

2

)
n

3F2

(
−n, η + 1+x

4 , η − 1+x
4

1−N
2 , ξ + 1

2
; 1
)
, (7.A.5)

P2n+1(x) = (x+ 2ξ − 2ζ + 1) 24n
(

1−N
2

)
n

(
ξ + 3

2

)
n

3F2

(
−n, η + 1+x

4 , η − 1+x
4

1−N
2 , ξ + 3

2
; 1
)
. (7.A.6)

These polynomials obey an orthogonality relation of the form
N∑
s=0

ws(ξ, ζ,N)Pn(xs; ξ, ζ,N)Pm(xs; ξ, ζ,N) = νn(ξ, ζ,N)δn,m (7.A.7)

on the grid points

xs =

(−1)s(2s− 2ξ − 2ζ − 2N − 1) N even,
(−1)s(2s+ 2ξ + 2ζ + 1) N odd.

(7.A.8)
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The weights are given by

w2m+j(ξ, ζ,N) =


(−1)m(−N2 )

m+j
m!

( 1−N
2 −ζ)m

( 1−N
2 −ξ)m

(−N−ξ−ζ)m
(−N2 −ξ−ζ)m+j

N even,

(−1)m( 1−N
2 )

m

m!
(ξ+ 1

2)
m+j

(ζ+ 1
2)
m+j

(1+ξ+ζ)m
( 1

2 (N+2ξ+2ζ+3))
m

N odd,
(7.A.9)

and the normalizations are given by

v2m+j(ξ, ζ,N)=


(−1)j24(2m+j)m!

(
ξ+ 1

2

)
m+j

(
1−N

2 −ζ
)
m

(
−N

2

)
m+j

(−N−ξ−ζ)N/2

( 1−N
2 −ξ)N/2

N even,

(−1)j24(2m+j)m!
(
ξ+ 1

2

)
m+j

(
1−N

2

)
m

(
−ζ−N

2

)
m+j

(ξ+ζ+1)(N+1)/2

(ζ+ 1
2)(N+1)/2

N odd.
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with j ∈ {0, 1} and m an integer.
The dual −1 Hahn polynomials are bispectral, but they satisfy a five term difference

relation [16] on the grid xs, hence they fall outside the scope of Leonard duality.

7.B. Solutions of the differential equations
7.B.1. The one-dimensional Schrödinger equation

The Schrödinger equation of the one-dimensional system is

Hψ = 1
2

(
− d2

dρ2 + ρ2 + k(k − σ3)
ρ2

)
ψ = Eψ. (7.B.1)

Let

ψ = e−ρ
2/2ραf, (7.B.2)

where α remains to be fixed. Putting this back in (7.B.1) gives

d2f

dρ2 + 2
(
−ρ+ α

ρ

)
df

dρ
+ α(α− 1)− k(k − σ3)

ρ2 f + (2E − 2α− 1)f = 0. (7.B.3)

The value of α is now chosen in order to cancel the term in ρ−2, that is

α =

k if σ3 has eigenvalue s = +1,
k + 1 if σ3 has eigenvalue s = −1.

(7.B.4)

Effecting the change of variable ρ = x1/2, this equation becomes

x
d2f

dx2 +
(
α + 1

2 − x
)
df

dx
+ 1

4 (2E − 2α− 1) f = 0. (7.B.5)
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The solutions of this equation are identified as generalized Laguerre polynomials [14] L(β)
n (x)

with parameter

β = α− 1
2 . (7.B.6)

The orthonormalized solutions of the one-dimensional system ψn,k,s(ρ) and the energies En
are then given by

ψn,k,s(ρ) = 〈ρ|n, k, s〉 =
√

n!
Γ(n+ k + 1− s/2)e−ρ2/2ρk+ 1−s

2 L
(k− s2 )
n (ρ2),

En = 2n+ k + 1− s/2, s = ±1.
(7.B.7)

Expressing these solutions in terms of the generalized Hermite polynomials Hk
m(x) [20, 28,

29], one obtains (7.5.3).

7.B.2. Separation in polar coordinates

First start with the angular equation (7.5.17) and denote

β1 = k1(k1 − s1), β2 = k2(k2 − s2). (7.B.8)

This yields [
d2

dφ2 −
β1

cos2 φ
− β2

sin2 φ
+m2

]
Φ = 0. (7.B.9)

Now take

Φ = sinγ(φ) cosδ(φ)f, (7.B.10)

with γ and δ to be determined, and (7.B.9) becomes

d2f

dφ2 + 2
(
γ

cosφ
sinφ − δ

sinφ
cosφ

)
df

dφ
+
[

[γ(γ − 1)− β2]
sin2 φ

+ [δ(δ − 1)− β1]
cos2 φ

− (γ + δ)2 +m2
]
f= 0.

(7.B.11)

The terms in cos−2 φ and sin−2 φ are eliminated upon choosing

δ(δ − 1) = β1, γ(γ − 1) = β2. (7.B.12)

Now introduce

x = − cos 2φ, (7.B.13)

(7.B.11) is rewritten as the differential equation

(1− x2)d
2f

dx2 + [(γ − δ)− (γ + δ + 1)x] df
dx

+ 1
4
(
m2 − (γ + δ)2

)
f = 0, (7.B.14)
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whose solutions are the Jacobi polynomials P (α,β)
d (x) with parameters

α = δ − 1
2 , β = γ − 1

2 (7.B.15)

and

|m| = 2d+ γ + δ. (7.B.16)

Recalling (7.B.8), we finally obtain the orthonormalized angular solution to (7.B.9)

Φk1,k2
`,s1,s2(φ) =

√√√√2(2`+ k1 + k2) (`− 2−s1−s2
4 )! Γ(`+ k1 + k2 + 2−s1−s2

4 )
Γ(`+ k1 + 2−s1+s2

4 ) Γ(`+ k2 + 2+s1−s2
4 )

× [cosφ]k1+ 1−s1
2 [sinφ]k2+ 1−s2

2 P
(k1−

s1
2 ,k2−

s2
2 )

`− 2−s1−s2
4

(− cos 2φ),

|m| = 2`+ (k1 + k2), s1, s2 ∈ {±1}.

(7.B.17)

In the above, ` ∈ {0, 1, 2, . . . } is a non-negative integer if s1s2 = 1 and ` ∈ {1
2 ,

3
2 , . . . } is a

half-integer if s1s2 = −1.

Next, the radial equation is
d2R

dr2 + 1
r

dR

dr
+
(
−r2 − m2

r2 + 2E
)
R = 0 (7.B.18)

and its orthonormalized solutions are obtained like the one-dimensional system, see (7.B.2)–
(7.B.7):

R =

√√√√ 2(N !)
Γ(N ′ + |m|+ 1)r

|m|e−r
2/2L

(|m|)
N ′ (r2). (7.B.19)
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Chapitre 8

A Howe correspondence for the algebra of the
osp(1|2) Clebsch–Gordan coefficients

Par Julien Gaboriaud, Luc Vinet.
Publié dans Physics Letters A 384, 126746, 2020. arxiv:2004.00109.

Abstract: Two descriptions of the dual −1 Hahn algebra are presented and shown to
be related under Howe duality. The dual pair involved is formed by the Lie algebra o(4)
and the Lie superalgebra osp(1|2).

Keywords: Howe duality, dual −1 Hahn algebra, Schwinger–Dunkl algebra, spinor
representation, oscillators.

8.1. Introduction
The dual −1 Hahn algebra [1] captures the bispectrality properties of the orthogonal

polynomials bearing the same name. These polynomials were first obtained [2] as a q = −1
limit of the dual q-Hahn polynomials and were shown to essentially define the Clebsch–
Gordan coefficients of the Lie superalgebra osp(1|2). This paper provides two related pictures
of the (centrally extended) dual −1 Hahn algebra and explains their connection on the basis
of Howe duality.

The dual −1 Hahn algebra is an example of the quadratic algebras of Askey–Wilson type
that are realized by the recurrence and the difference/differential equation operators of the
hypergeometric orthogonal polynomials of the Askey tableaux that correspond to q = 1, q
generic [3] but also to q = −1 in the case of the so-called Bannai–Ito scheme. Sitting at the
top of each of these are respectively, the Racah, the Askey–Wilson and the Bannai–Ito [4]

https://dx.doi.org/10.1016/j.physleta.2020.126746
https://arxiv.org/abs/2004.00109


polynomials. It is known that these orthogonal polynomials are, in the order in which they
are listed, the Racah coefficients of the Lie algebra su(2) or su(1, 1), of the quantum algebra
Uq(sl(2)) and of the superalgebra osp(1|2). This hints to the proven fact that the algebras
associated to each of these families of polynomials and called by their names are realized as
centralizers of the diagonal action of either su(1, 1), Uq(sl(2)) or osp(1|2) on their three-fold
product, an observation which is paving the way to higher rank extensions [5–8].

This feature explains in part why these algebras of Askey–Wilson type have become
preeminent in a number of areas in mathematics and physics such as representation theory
[9–11], combinatorics [12], knot theory [13] and integrable models [14–16]. There is hence
much interest in deepening their understanding. In this respect, the Racah, Bannai–Ito and
Askey–Wilson algebras have been given complementary descriptions [17–20] as commutants
of maximal Abelian subalgebras in the universal algebra U(o(n)) of the orthogonal algebra
o(n) and its non standard q-deformation denoted oq(n) or U ′q(o(n)). Furthermore, it has
been observed that these alternative presentations are in Howe duality with the centralizer
ones. For a recent review see [21].

Howe duality which was introduced in very influential papers [22] is an important concept
in representation and classical invariant theories. It has found various applications in Physics
that are reviewed in [23].

The dual Hahn polynomials, a limit of the Racah polynomials, enter in the Clebsch–
Gordan coefficients of su(1, 1). Their algebra which is isomorphic to the Higgs algebra
[24] arises in many contexts (see references in [25]) and in particular as a truncation of
the reflection algebra [9]. This dual Hahn algebra also admits two presentations which are
related through Howe duality based on the pair (o(4), su(1, 1)) [25]: in the first one, it is in
the commutant of o(2) ⊕ o(2) in the oscillator representation of U(u(4)) and in the second
it is embedded in U(su(1, 1))⊗ U(su(1, 1)). A q-deformation of this analysis was performed
[26] to define a q-analog of the Higgs algebra and provide a two-fold description of the dual
q-Hahn algebra with Howe duality resting in this case on the pair (oq(4), Uq(su(1, 1)). Hence
at the second level of the (discrete) Askey tableaux, this leaves the case q = −1, that is the
algebra of the dual −1 Hahn polynomials, as the only one for which a description in the
framework of Howe duality has not been given. The purpose of the present paper is to fill
this gap.

The dual −1 Hahn algebra has been characterized in [1]; it has been shown to arise in the
studies [27, 28] of the Dunkl oscillator in the plane and quite recently as the symmetry algebra
of a superintegrable two-dimensional singular oscillator with internal degrees of freedom [29].
The dual −1 Hahn polynomials form the Clebsch–Gordan coefficients of osp(1|2). This
superalgebra will be one element of the dual pair at play, the other will be o(4). It will
be seen that the dual −1 Hahn algebra is in the commutant of o(2) ⊕ o(2) in a spinorial
representation of o(4) given in terms of Bosonic and Fermionic oscillators. This picture will
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be shown to be in a duality relation with the embedding of the dual −1 Hahn algebra in
U(osp(1|2)⊗ U(osp(1|2) given in [1].

The paper will unfold as follows. Section 8.2 will recall the definition of the dual −1 Hahn
algebra and introduce as well the Schwinger–Dunkl algebra sd(2) which was identified [27,
28] as the symmetry algebra of the Dunkl oscillator in two dimensions. The nomenclature
comes from the fact that sd(2) is obtained when the raising operators in the Schwinger
construction of su(2) are replaced by creation and annihilation operators involving Dunkl
operators instead of ordinary derivatives. Section 8.3 will confirm that the dual −1 Hahn
algebra can be realized in a commutant in the fashion described above. We will initially
identify sd(2) and this is why the relation with the dual −1 Hahn algebra will have been
established in the preceding section. Section 8.4 will recall how the dual −1 Hahn algebra
is embedded in U(osp(1|2)⊗ U(osp(1|2) in light of the fact that this dual −1 Hahn algebra
characterizes the Clebsch–Gordan coefficients of osp(1|2). That Howe duality connects the
commutant and the embedding presentations of the dual −1 Hahn algebra will be the subject
of Section 8.5 and concluding remarks will form Section 13.6.

8.2. The dual −1 Hahn algebra and the Schwinger-
Dunkl algebra

We first introduce the two algebras of interest and show how they are closely related to
each other.

8.2.1. The dual −1 Hahn algebra and polynomials

The dual −1 Hahn algebra is defined [1] by the generators P, K1, K2, K3 and the relations

[K1, K2] = K3, [K1, K3] = K2 + νP + 1
2 ,

[K2, K3] = 4K1(1 + νP)− 2νK3P + σP + ρ,

[K1,P] = 0, {K2,P} = −P− 2ν, {K3,P} = 0,

(8.2.1)

where ν, σ, ρ are structure constants. By promoting the structure constants to central
elements, one obtains what will be referred to as the centrally extended dual −1 Hahn
algebra. Note that ρ can be reabsorbed in the generator K1, which is equivalent to removing
it from the rhs of the [K2, K3] relation.

The dual −1 Hahn algebra captures the bispectral properties of the polynomials with the
same name [2]. This algebra can be realized by taking K1 = 1

2D, where D is the dual −1
Hahn polynomials’ 5-term difference equation, K2 = 1

2x, where x is the 3-term recurrence
operator and P = R, the parity involution of the polynomials. The exact expressions are
detailed in the Appendix 11.A. In that realization, the parameters of the algebra take the
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following values:

ν = ξ + (−1)Nη, σ = (−1)N2η − 2ξ(1 + 2N)− (1− (−1)N)4ξη, ρ = 2(ξ − η −N).

8.2.2. The Schwinger–Dunkl algebra

The Schwinger–Dunkl algebra is the symmetry algebra of a two-dimensional isotropic
Dunkl oscillator in the plane. This system is described by the Hamiltonian

H12 = H1 +H2, Hi = −1
2(Dµixi )

2 + 1
2xi

2, Dµixi = ∂xi + µi
xi

(I −Ri), (8.2.2)

where I is the identity operator and the Ri, i ∈ {1, 2} are the reflection operators

R1f(x1, x2) = f(−x1, x2), R2f(x1, x2) = f(x1,−x2). (8.2.3)

The symmetry algebra of this system is obtained through the Schwinger construction. Form

a†i =
xi −Dµixi√

2
, ai =

xi +Dµixi√
2

, (8.2.4)

the parabosonic creation and annihilation operators, whose commutation relations are

[ai , a
†
j ] = (I + 2µiRi)δij. (8.2.5)

Then the three quantities

J1 = 1
2

(
a†1a2 + a1a

†
2

)
, J2 = 1

2i

(
a†1a2 − a1a

†
2

)
, J3 = 1

2 (H1 −H2) , (8.2.6)

are symmetries of the Hamiltonian H12, along with R1, R2. These elements J1, J2, J3, R1,
R2 obey the following commutation relations, which we will refer to as the relations of the
Schwinger–Dunkl algebra sd(2):

[J2, J3] = iJ1, [J3, J1] = iJ2,

[J1, J2] = i
(
J3(1 + µ1R1 + µ2R2)− 1

2H12(µ1R1 − µ2R2)
)
,

{J1, Rα} = 0, {J2, Rα} = 0, [J3, Rα] = 0, α = 1, 2.

(8.2.7)

8.2.3. Connection between the two algebras

Starting from the generators P, K1, K2, K3, write

j1 = i
2K3, j2 = −1

2(K2 + νP + 1
2), j3 = −K1 −

ρ

4 , (8.2.8)

the dual −1 Hahn algebra relations now take the form

[j2, j3] = ij1, [j3, j1] = ij2,

[j1, j2] = i
(
j3(1 + νP) + 1

4(νρ− σ)P
)
,

{j1,P} = 0, {j2,P} = 0, [j3,P] = 0.

(8.2.9)
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One then sees that the dual −1 Hahn algebra is indeed similar to the sd(2) algebra. The
difference is that sd(2) has 2 reflection-type operators, R1 and R2, whilst the dual −1 Hahn
algebra only has a single one, P. It will thus prove more useful to work with R1 and
R12 = R1R2 as the latter commutes with everything and can be viewed as a central element
in sd(2).

Then, the two algebras obey the same relations upon identifying

P = R1,

ν = µ1 + µ2R12,

ρ = 2H12,

σ = 2µ1 ρ,

(8.2.10)

where we recall that H12 and R12 are both central elements.
Hence, the Schwinger–Dunkl algebra sd(2) is essentially the centrally extended dual −1

Hahn algebra. In the remainder of the paper, we will encounter instances of algebras pre-
sented in the form of this sd(2) algebra.

8.3. The dual −1 Hahn algebra as a commutant
In this Section we will obtain the dual −1 Hahn algebra in the commutant of o(2)⊕ o(2)

in a spinorial realization.

8.3.1. The model

Consider the Hamiltonian

H = 1
2

4∑
i=1
{a†i , ai}, (8.3.1)

built from the standard Bosonic raising a†i and lowering ai operators obeying

[ai , a
†
j] = δij, [ai, aj] = [a†i , a

†
j] = 0. (8.3.2)

We also introduce Fermionic raising b†i and lowering bi operators obeying

{bi , b
†
j} = δij, {bi, bj} = {b†i , b

†
j} = 0. (8.3.3)

Above and below i, j = 1, 2, 3, 4. The Bosonic and Fermionic operators mutually commute
with each other. One sees that the combinations

γi = bi + b†i (8.3.4)

obey

{γi, γj} = δij (8.3.5)
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which are (up to a normalization) the relations of the Clifford algebra C`4. These Clifford
elements will be used as building blocks for a spinorial realization of o(4).

The Lie algebra o(4) is the algebra with 6 generators, `µν , 1 ≤ µ < ν ≤ 4, whose relations
are given by

[`µν , `ρσ] = −i (δνρ`µσ − δνσ`µρ − δµρ`νσ + δµσ`νρ) . (8.3.6)

Let us denote Lµν = a†µaν−aµa†ν and Σµν = 1
2γµγν . Both the combinations −iLµν and −iΣµν

realize the o(4) algebra. We now define the total angular momentum as the sum:

Jµν = −i(Lµν + Σµν). (8.3.7)

These total angular momenta Jµν realize again the o(4) commutation relations.

8.3.2. The commutant

We look for the commutant of the o(2)⊕ o(2) subalgebra of o(4), that is, operators that
commute with

J12 = −i
(
a†1a2 − a1a

†
2 + 1

2(b1 + b†1)(b2 + b†2)
)
,

J34 = −i
(
a†3a4 − a3a

†
4 + 1

2(b3 + b†3)(b4 + b†4)
)
.

(8.3.8)

The combinations
K1 = 1

2(a†1a1 + a†2a2 − a
†
3a3 − a

†
4a4),

K2 = 2(L12Σ12 + L13Σ13 + L14Σ14 + L23Σ23 + L24Σ24 + L34Σ34 − 3
4),

r = i(b1 + b†1)(b2 + b†2),

R = −(b1 + b†1)(b2 + b†2)(b3 + b†3)(b4 + b†4)

(8.3.9)

commute with H and J12, J34. This is verified by a direct calculation. The algebra generated
by the elements K1, K2, r closes onto the following form:

[K1,K2] = K3, [K1,K3] = K2 − (J12 + J34R)r + 1
2 ,

[K2,K3] = 4K1[(J12 + J34R)r − 1]− 2K3(J12 + J34R)r − 2H(J12 − J34R)r,

[K1, r] = 0, {K2, r} = −r + 2(J12 + J34R)r, {K3, r} = 0.

(8.3.10)

Here H, J12, J34 and R are central. These relations are identified with those in (8.2.1).
Hence we have obtained the centrally extended dual −1 Hahn algebra, or equivalently, the
Schwinger–Dunkl algebra sd(2), in a commutant.
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8.4. The algebra of the osp(1|2) Clebsch–Gordan coeffi-
cients

In this Section, we first introduce the osp(1|2) algebra, present its Clebsch–Gordan prob-
lem, and then show how it is connected to the dual −1 Hahn algebra.

8.4.1. The Lie superalgebra osp(1|2)

The osp(1|2) algebra can be presented as the algebra with generators A0, A± and an
involution P encoding the Z2-grading of the superalgebra (P commutes with the even element
A0 and anticommutes with the odd elements A±). The defining relations are

{A+, A−} = 2A0, [A0, A±] = ±A±, [P,A0] = 0, {P,A±} = 0. (8.4.1)

The algebra osp(1|2) also possesses an sCasimir [30]

S = 1
2 ([A+, A−] + 1) = A+A− − A0 + 1

2 (8.4.2)

which commutes with the even elements and anticommutes with the odd elements

[S,A0] = {S,A±} = 0. (8.4.3)

Multiplying the sCasimir by the involution, we obtain a Casimir element for osp(1|2)

Q =
(
A+A− − A0 + 1

2

)
P. (8.4.4)

This Casimir element commutes with all generators of osp(1|2).
Positive infinite-dimensional discrete series representations for osp(1|2) are labelled by

(µ, ε), with µ ≥ 0, ε = ±1. Let us denote by |n, µ, ε〉 the basis vectors associated to an irrep
(µ, ε). The generators act as follows in this basis:

A0|n, µ, ε〉 = (n+ µ+ 1
2)|n, µ, ε〉,

P |n, µ, ε〉 = ε(−1)n|n, µ, ε〉,

A+|n, µ, ε〉 =
√

[n+ 1]µ|n+ 1, µ, ε〉,

A−|n, µ, ε〉 =
√

[n]µ|n− 1, µ, ε〉,
(8.4.5a)

where we define the mu-numbers [n]µ as

[n]µ = n+ µ (1− (−1)n) . (8.4.5b)

By Schur’s lemma, the Casimir element acts as a multiple of the identity on these irreps

Q|n, µ, ε〉 = −εµ|n, µ, ε〉. (8.4.5c)

8.4.2. The Clebsch–Gordan problem of osp(1|2)

We shall now look at the recoupling of two representations (µ1, ε1) and (µ2, ε2) of osp(1|2).
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The direct product representation (µ1, ε1) ⊗ (µ2, ε2) has the associated basis vectors
|n1, µ1, ε1〉⊗|n2, µ2, ε2〉. The elements A0 ⊗ 1, 1 ⊗ A0, P ⊗ 1, 1 ⊗ P as well as the Casimir
elements Q⊗1, 1⊗Q are diagonal in this basis. Equivalently, we shall consider the elements
(A0 ⊗ 1 + 1⊗ A0), (A0 ⊗ 1− 1⊗ A0), P ⊗ 1 and P ⊗ P , also diagonal in this basis.

This direct product representation admits the following decomposition [31] in irreducibles:

(µ1, ε1)⊗ (µ2, ε2) =
∞⊕
j=0

(µ12(j), ε12(j)), (8.4.6)

where

µ12(j) = µ1 + µ2 + j + 1
2 , ε12(j) = (−1)jε1ε2. (8.4.7)

The coupled basis vectors associated to the irreducibles (µ12, ε12) are denoted |n12, µ12, ε12〉.
The Casimir elements Q ⊗ 1, 1 ⊗ Q are again diagonal in the coupled basis. The other
diagonal elements can be obtained as follows:

Consider the coproduct map ∆ : osp(1|2)→ osp(1|2)⊗ osp(1|2), which is a coassociative
algebra morphism. The coproduct maps the osp(1|2) generators as follows

∆(A0) = A
(12)
0 = A0 ⊗ 1 + 1⊗ A0

∆(A±) = A
(12)
± = A± ⊗ P + 1⊗ A±

∆(P ) = P (12) = P ⊗ P

= A
(1)
0 + A

(2)
0 ,

= A
(1)
± P

(2) + A
(2)
± ,

= P (1)P (2),

(8.4.8)

and the Casimir element according to

∆(Q) = Q(12) = (A(1)
− A

(2)
+ − A

(1)
+ A

(2)
− )P (1) +Q(1)P (2) +Q(2)P (1) − 1

2P
(1)P (2), (8.4.9)

where the superindex denotes on which factor of osp(1|2) the operator is acting. The elements
∆(A0) = A0 ⊗ 1 + 1⊗ A0, ∆(P ) = P ⊗ P and ∆(Q) are diagonal in the coupled basis.

The decomposition (8.4.6) indicates that the vector spaces spanned by |n1, µ1, ε1〉⊗|n2, µ2, ε2〉
and |n12, µ12, ε12〉 are isomorphic; one defines the Clebsch–Gordan coefficients Cn1,n2

n12,j as the
expansion coefficients between the two bases

|n12, µ12(j), ε12(j)〉 =
∑
n1,n2

Cn1,n2
n12,j |n1, µ1, ε1〉⊗|n2, µ2, ε2〉. (8.4.10)

The Clebsch–Gordan coefficients are characterized algebraically by the elements that are
diagonalized in each of the bases. In particular, P ⊗ 1, (A0 ⊗ 1− 1⊗A0) and ∆(Q) are not
diagonal in both bases, so they obey non-trivial commutation relations. The algebra formed
by these elements determines the Clebsch–Gordan coefficients.

Write

κ1 = 1
2(A0 ⊗ 1− 1⊗ A0), κ2 = Q(12)P (12), and p = P ⊗ 1, (8.4.11)
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a straightforward calculation in osp(1|2)⊗ osp(1|2) yields

[κ1, κ2] = κ3, [κ1, κ3] = κ2 − (Q(1) +Q(2)P (12))p+ 1
2 ,

[κ3, κ2] = 4κ1
(
1− (Q(1)+Q(2)P (12))p

)
+ 2p

(
κ3(Q(1)+Q(2)P (12)) + A

(12)
0 (Q(1)−Q(2)P (12))

)
,

[κ1, p] = 0, {κ2, p} = −p+ 2(Q(1)+Q(2)P (12)), {κ3, p} = 0.
(8.4.12)

Keeping in mind that the elements Q(1), Q(2), P (12) and A
(12)
0 are central since they are

diagonalized in both bases, one recognizes the defining relations of the (centrally extended)
dual −1 Hahn algebra (8.2.1). This reveals that the Clebsch–Gordan coefficients of osp(1|2)
are (essentially) the dual −1 Hahn polynomials [1, 32, 33].

8.5. The Howe duality correspondence
In Sections 8.3 and 8.4, we have obtained the (centrally extended) dual −1 Hahn algebra

in two different contexts. We will now reinterpret the contents of the last two Sections in
order to display the two presentations of the algebra in a unified way.

8.5.1. Connecting the two approaches

Let us go back to our construction in Section 8.3 involving four Bosonic and
Fermionic oscillators. We can form three copies of osp(1|2) labelled by one of the sets
S ∈ {{1, 2}, {3, 4}, {1, 2, 3, 4}} by introducing the operators:

AS− =
∑
µ∈S

aµγµ, AS+ =
∑
µ∈S

a†µγµ, AS0 = 1
2
∑
µ∈S
{a†µ, aµ}, PS = eiπ|S|/4

∏
µ∈S

γµ,

(8.5.1)

which obey the defining relations of osp(1|2) given in (8.4.1), (8.4.3). The Casimir element
associated to each set S is given by

QS = (AS+AS− −AS0 + 1
2)PS. (8.5.2)

Let us revisit the Clebsch–Gordan problem of osp(1|2) in this framework. As seen in Section
8.4, the elements of the set

E =
{

(A{1,2}0 +A{3,4}0 ), (A{1,2}0 −A{3,4}0 ),P{1,2},P{1,2}P{3,4},Q{1,2},Q{3,4},Q{1,2,3,4}
}

(8.5.3)

are diagonal in at least one of the bases. The elements that are diagonal in both bases
commute with all others, and the remaining ones obey the commutation relations of the
dual −1 Hahn algebra.

We now give the explicit form of all elements in E in the realization (8.5.1). It will appear
that they can be matched with certain expressions given in Section 8.3, thus explaining why
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the dual −1 Hahn algebra appeared in two seemingly different situations. The expressions
are the following ones when translated in terms of the a and b ladder operators:

A{1,2}0 +A{3,4}0 = H,

A{1,2}0 −A{3,4}0 = 2K1,

P{1,2} = r,

P{1,2}P{3,4} = P1234,

Q{1,2} = J12,

Q{3,4} = J34,

Q{1,2,3,4} = K2P1234.

(8.5.4)

In this framework, we easily see that having {Q{1,2},Q{3,4}} commute with all other genera-
tors implies that the commutant of {J12, J34} contains the dual −1 Hahn algebra.

8.5.2. An instance of Howe duality

That the dual −1 Hahn algebra can be viewed on the one hand in the commutant of
o(2) ⊕ o(2) in a spinorial representation of o(4) and can be embedded in U(osp(1|2)) ⊗
U(osp(1|2)) on the other hand can be attributed to Howe duality as we now explain.

It is known [34] that osp(1|2) and Pin(2n) have dual (commuting) actions on the space
of polynomials P(R2n,S) defined in Euclidean space R2n and taking values in a spinor space
S. In our situation, at the level of the algebras, this would correspond to the fact that
the generators of osp(1|2) and o(2n) commute. A direct computation using the expressions
(8.3.8) and (8.5.1) confirms that it is indeed the case:

[J12,A{1,2}• ] = [J34,A{3,4}• ] = 0, (8.5.5)

[Jij,A{1,2,3,4}• ] = 0, 1 ≤ i < j ≤ 4, (8.5.6)

where A• stands for any of A0, A±. As a byproduct, it can be shown that the Casimir
elements of both algebras can be put in correspondance. Recall that the Casimir element of
o(2n) denoted C{1,...,2n} is given by

C{1,...,2n} =
∑

1≤i<j≤2n
Jij

2. (8.5.7)

The Casimir elements of both osp(1|2) and o(2n) associated to each of the three copies
labelled by S are related by

C{1,2} = (Q{1,2})2, C{3,4} = (Q{3,4})2, C{1,2,3,4} = (Q{1,2,3,4})2 − 3
4 . (8.5.8)

Remark 8.1. That the relation between the Casimir element of o(2n) and the one of osp(1|2)
is quadratic does not come as a surprise. It is known [25] that in the context of Howe duality
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for the pair (su(1, 1), o(2n)), the relation between the associated Casimir elements is linear,
whilst the algebra osp(1|2) can be seen as a “square root” of su(1, 1).

8.6. Conclusion
To sum up, we have presented two frameworks that lead to the (centrally extended) dual

−1 Hahn algebra: one in which we looked at the commutant of a spinorial realization of the
o(2)⊕o(2) subalgebra of o(4), and the other in which we looked at the algebra of the osp(1|2)
Clebsch–Gordan coefficients. We have explained how these two approaches are dual (in the
sense of Howe) by considering representations that featured the dual pair (osp(1|2), o(2n)).
We have also highlighted how the results presented in this report can be seen as a “square
root” of those related to the dual pair (su(1, 1), o(2n)) [25].

One should note that the construction presented here generalizes straightforwardly if
one considers instead the commutant of the spinorial representation of the o(m) ⊕ o(m′)
subalgebra of o(m + m′); the (centrally extended) dual −1 Hahn algebra is still recovered
and the Howe duality again operates.
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8.A. The dual −1 Hahn polynomials Pn(x; ξ, η,N)
The dual −1 Hahn polynomials can be obtained as a q → −1 limit of the q-Hahn

polynomials [1, 2]. These polynomials depend on three variables ξ, η and N , with ξ, η > −1
2

and N an integer that corresponds to the maximal degree of the family. We here regroup a
few properties of the dual −1 Hahn polynomials with monic normalization, that is Pn(x) =
xn +O(xn−1). To ease the notation, we shall omit the parameters: Pn(x; ξ, η,N) ≡ Pn(x).

Firstly, the dual −1 Hahn polynomials satisfy a three-term recurrence relation

xPn(x) = Pn+1(x) + [2(−1)n+1(ξ + (−1)Nη)− 1] Pn(x) + 4[n]ξ[N − n+ 1]η Pn−1(x),
(8.A.1)

where the mu-numbers [n]µ are defined as [n]µ = n+ µ(1− (−1)n).
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These polynomials admit an expression in terms of a truncating generalized hypergeo-
metric series. Recall that the generalized hypergeometric series rFs is defined by

rFs

(
a1, · · · , ar
b1, · · · , bs

; z
)

=
∞∑
k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k! (8.A.2)

with (c)k = c(c+ 1) · · · (c+ k − 1) the Pochhammer symbol.

The expressions depend on the parity of N and n. For N even, the expression is

P2m+j(x) = 24m(x+ 2ξ + 2η + 1)j
(
j − N

2

)
m

(
1−N

2 − η
)
m

3F2

(
−m, δ + 1+x

4 , δ − 1+x
4

j − N
2 ,

1−N
2 − η

; 1
)
,

(8.A.3)

where we have defined δ = −1
2(ξ + η + N), m an integer and j ∈ {0, 1}. For N odd the

expression is

P2m+j(x) = 24m(x+ 2ξ − 2η + 1)j
(

1−N
2

)
m

(
ξ + j + 1

2

)
m

3F2

(
−m, γ + 1+x

4 , γ − 1+x
4

1−N
2 , ξ + j + 1

2
; 1
)
,

(8.A.4)

where this time γ = 1
2(ξ + η + 1).

These polynomials obey an orthogonality relation of the form
N∑
s=0

ws(ξ, η,N)Pn(xs)Pm(xs) = νn(ξ, η,N)δn,m (8.A.5)

on the grid points

xs =

(−1)s(2s− 2ξ − 2η − 2N − 1) N even,
(−1)s(2s+ 2ξ + 2η + 1) N odd.

(8.A.6)

The weights are given by

w2m+j(ξ, η,N) =


(−1)m(−N2 )

m+j
m!

( 1−N
2 −η)m

( 1−N
2 −ξ)m

(−N−ξ−η)m
(−N2 −ξ−η)m+j

N even,

(−1)m( 1−N
2 )

m

m!
(ξ+ 1

2)
m+j

(η+ 1
2)
m+j

(1+ξ+η)m
( 1

2 (N+2ξ+2η+3))
m

N odd,
(8.A.7)

and the normalizations are given by

v2m+j(ξ, η,N)=


(−1)j24(2m+j)m!

(
ξ+ 1

2

)
m+j

(
1−N

2 −η
)
m

(
−N

2

)
m+j

(−N−ξ−η)N/2

( 1−N
2 −ξ)N/2

N even,

(−1)j24(2m+j)m!
(
ξ+ 1

2

)
m+j

(
1−N

2

)
m

(
−η−N

2

)
m+j

(ξ+η+1)(N+1)/2

(η+ 1
2)(N+1)/2

N odd.

(8.A.8)
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The dual −1 Hahn polynomials are bispectral; in addition to their three-term recurrence
relation, they satisfy a five-term difference relation [2]:

DPn(x) = 2nPn(x), (8.A.9)

where D, the difference operator, has the following action on the polynomials:

DPn(x) = E1(x)Pn(x+ 4) + E2(x)Pn(x− 4) +G1(x)Pn(−x− 2) +G2(x)Pn(−x+ 2)

− [E1(x) + E2(x) +G1(x) +G2(x)]Pn(x)
(8.A.10)

and

E1(x) = (x+ 2ξ − (−1)N2η + 3)(x+ 2ξ + (−1)N2η + 1)(x− 2ξ − 2η − 2N + 1)
4(x+ 1)(x+ 3) ,

E2(x) = −(x− 2ξ − (−1)N2η − 3)(x− 2ξ + (−1)N2η − 1)(x+ 2ξ + 2η + 2N + 1)
4(x− 1)(x− 3) ,

G1(x) = −4(x+ 2ξ + (−1)N2η + 1)(ξ − (−1)Nη)(ξ + η +N + 1)
(x2 − 1)(x+ 3) ,

G1(x) = −2(x− 2ξ + (−1)N2η − 1)(ξ + (−1)Nη)(x+ 2ξ + 2η + 2N + 1)
(x2 − 1)(x− 3) .

(8.A.11)

The polynomials also possess an operator R encoding their parity

RPn(x) = (−1)nPn(x) (8.A.12)

which acts as follows on polynomials:

RPn(x) = Pn(−x− 2) + 2ξ + (−1)Nη
1 + x

[Pn(−x− 2)− Pn(x)]. (8.A.13)

It is easily checked that this operator R is an involution.
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Chapitre 9

Howe duality and algebras of the
Askey–Wilson type: an overview
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Publié dans Quantum Theory and Symmetries, CRM Series in Mathematical Physics
(Springer, 2021). arxiv:1911.08314.

Abstract: The Askey–Wilson algebra and its relatives such as the Racah and
Bannai–Ito algebras were initially introduced in connection with the eponym orthogonal
polynomials. They have since proved ubiquitous. In particular they admit presentations in
commutants that are related through Howe duality. This paper surveys these results.

Keywords: Howe duality, Racah, Bannai–Ito and Askey–Wilson algebras, commutants,
reductive dual pairs.

9.1. Introduction
The quadratic algebras of Askey–Wilson type such as the Askey–Wilson algebra itself,

the Racah and Bannai–Ito algebras and their specializations and contractions encode the
bispectral properties of orthogonal polynomials that arise in recoupling coefficients such as
the Clebsch–Gordan or Racah coefficients. It is therefore natural that these algebras be
encountered in centralizers of the diagonal action of an algebra of interest g′ such as sl(2),
osp(1|2) or Uq(sl(2)), on n-fold tensor products of representations of g′. Indeed, elements of
these centralizers will be used as labelling operators to define bases whose overlaps will be
expressed in terms of the corresponding orthogonal polynomials.
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Often the algebra g′ forms a reductive pair with another algebra g in which case the
Howe duality operates in certain modules. This leads to alternative characterizations of the
quadratic algebras that are in correspondance: on the one hand commutants in representa-
tions of the universal enveloping algebra U(g) and on the other hand, realizations of the type
mentioned above as centralizers in recoupling problems for g′. This is the topic of this brief
review which is organized as follows. Section 9.2 presents the general framework. Section 9.3
describes as illustration the dual commutant picture for the Racah algebra; this will involve
the reductive pair (o(6), su(1, 1)). Section 9.4 gives a summary of the different cases that
have been analyzed and Section 13.6 provides a short outlook.

9.2. General Framework
We shall say following [1] that two algebras g and g′ have dual representations on a

Hilbert space H if (1) this space carries fully reducible representations of both g and g′, (2)
the action of g and g′ commute, (3) the representation ρ of the direct sum g⊕ g′ defined by
the actions of g and g′ on H is multiplicity-free and (4) each irreducible representation of
g occurring in the decomposition of ρ is paired with a unique irreducible representation of
g′ and vice-versa. This is the essence of Howe duality which can be proved in a number of
situations. We shall consider such instances in this paper.

Consider now a setup with the representation of g′ in H = V ⊗2n given by

σ̄⊗2n[∆(2n−1)(g′)]

where σ̄ : g′ → End V is a representation of g′ on the vector space V , ∆ : g′ → g′⊗ g′ is the
coproduct and ∆(n) is defined recursively by ∆(n) = (∆ ⊗ 1⊗(n−1)) ◦ ∆(n−1), with ∆(0) = 1.
This symmetric situation makes it natural that there be an action of some other algebra
g on the carrier space H that commutes with the action of g′. Take the maximal Abelian
subalgebra h of g to be h ' X⊕n with X one-dimensional. The pairing under Howe duality
with the representations of X⊕n implies that

σ̄⊗2n[∆(2n−1)(g′)] = σ̄⊗2n[∆⊗n ◦∆(n−1)(g′)]

decomposes into representations of the form

σ1 ⊗ σ2 ⊗ · · · ⊗ σn(∆(n−1)(g′))

with the σi’s being irreducible representations arising in the decomposition of σ̄⊗2. This
quotienting by h is a way of posing a generalized Racah problem for the recoupling of the n
representations σi of g′.

We indicated in the introduction that the quadratic algebras A of Askey–Wilson type
can be obtained as (subalgebras of) centralizers of diagonal actions in n-fold tensor products
of representations. The intermediate Casimir elements in σ1 ⊗ σ2 ⊗ · · · ⊗ σn manifestly
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centralize the action of g′ on H mod h. They are taken to realize the quadratic algebra of
interest. This provides the first presentation of A in a commutant. The dual one is identified
as follows in the present context. We know that g is the commutant of g′ in H. Moreover
from the application of Howe duality, the generators of the representation σ1⊗ σ2⊗ · · · ⊗ σn
of g′ are known to commute with those that represent the subalgebra h ' X⊕n. The non-
trivial part of the centralizer of σ1 ⊗ σ2 ⊗ · · · ⊗ σn must therefore be obtained, in the given
representation on H mod h, by those elements in the universal enveloping algebra of g that
commute with X⊕n. In other words, A can also be identified in the commutant of h ⊂ g in
U(g) as represented on H.

There is an equivalent way of looking at this. The pairing of the representations of g and
g′ through Howe duality manifests itself in the fact that the Casimir elements of g and g′ are
affinely related. Let C be a Casimir element of g′. Consider for example the intermediate
Casimir element given by

σ̄⊗4[((∆⊗∆) ◦∆)(C)]⊗ 1⊗(2n−4)

corresponding to the embedding of g′ in the first four factors of g′⊗2n. There will be a
subalgebra g1 of g that will be dually related to g′ on the restriction of H to V ⊗4 so that its
Casimir element will be essentially the one of g′. Next, looking at the intermediate Casimir
element of g′ associated to a different embedding, for instance in the four last factors of
g′⊗2n, there will be a dual pairing with a different embedding in g of the same subalgebra g1

and again the two Casimir elements will basically coincide. These observations lead to the
conclusion that the set of intermediate Casimir elements associated to the representation
of g′ is algebraically identical to the set of Casimir elements of the subalgebras of g that
form dual pairs with g′ when intermediate representations of the latter are taken. It is not
difficult to convince oneself that the set of invariants connected to the relevant subalgebras of
g consists in the commutant of the maximal Abelian subalgebra of g as concluded differently
before.

To summarize, in situations where Howe duality prevails with (g, g′) the pair of algebras
that are dually represented on H and if the representation of g′ is of the form

σ̄⊗2n[∆(2n−1)(g′)],

the quadratic algebras A of Askey–Wilson type can be viewed on one hand in the commutant
of this action of g′ on H and thus realized by the intermediate Casimir elements of g′, or on
the other hand in the commutant of h ⊂ g in the intervening representation of U(g). We
shall present next an example of how this can be concretely realized.
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9.3. The dual presentations of the Racah algebra
The Racah algebra R has three generators K1, K2, K3 that are subjected to the relations

[2]:

[K1, K2] = K3, [K2, K3] = K2
2 + {K1, K2}+ dK2 + e1,

[K3, K1] = K1
2 + {K1, K2}+ dK1 + e2,

(9.3.1)

where [A,B] = AB −BA, {A,B} = AB +BA and d, e1, e2 are central.
We shall explain how dual presentations of the algebra R in a commutant are obtained in

the fashion described in Section 2. The dual pair will be (o(6), su(1, 1)) and the representation
space H will be that of the state space of six quantum harmonic oscillators with annihilation
and creation operators aµ, a†ν , µ, ν = 1, . . . , 6 verifying

[aµ, a†ν ] = δµν .

The corresponding Hamiltonian

H = a†1a1 + · · ·+ a†6a6

is manifestly invariant under the rotations in six dimensions. These are encoded in the Lie
algebra o(6), realized by the generators

Lµν = a†µaν − aµa†ν

and possessing the Casimir element

C =
∑
µ<ν

Lµν
2.

The Lie algebra su(1, 1) has generators J0, J± that obey the following commutation re-
lations:

[J0, J±] = ±J±, [J+, J−] = −2J0,

and its Casimir operator is given by

C = J0
2 − J+J− − J0.

The six harmonic oscillators also provide a realization of this algebra through the addition of
six copies of the metaplectic representation of su(1, 1), for which the generators are mapped
to:

J
(µ)
0 = 1

2(a†µaµ + 1
2), J

(µ)
+ = 1

2(a†µ)2, J
(µ)
− = 1

2(aµ)2, µ = 1, . . . , 6.

Note that the operators
6∑

µ=1
J (µ)
•
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are invariant under rotations. The space of state vectors H thus carries commuting repre-
sentations of o(6) and su(1, 1) and Howe duality takes place.

The maximal Abelian algebra of o(6) is o(2) ⊕ o(2) ⊕ o(2) and is generated by the set
{L12, L34, L56}. The non-abelian part of its commutant in the representation of U(o(6)) on
H is generated by the two invariants

K1 = 1
8
(
L12

2 + L34
2 + L13

2 + L23
2 + L14

2 + L24
2
)
, (9.3.2)

K2 = 1
8
(
L34

2 + L56
2 + L35

2 + L36
2 + L45

2 + L46
2
)
. (9.3.3)

Define K3 by [K1, K2] = K3. Working out the commutation relations of K3 with K1 and
K2, it is found that they correspond to those (9.3.1) of the Racah algebra with the central
parameters given by

d = −1
8
(
C + L12

2 + L34
2 + L56

2
)
,

e1 = − 1
64
(
C − L12

2 − 4
)(
L34

2 − L56
2
)
,

e2 = − 1
64
(
C − L56

2 − 4
)(
L2

34 − L2
12

)
.

For details see [3]. By abuse of notation we designate the abstract generators and their
realizations by the same letter.

Regarding the su(1, 1) picture, let

J (µ,ν,ρ,λ)
• = J (µ)

• + J (ν)
• + J (ρ)

• + J (λ)
•

denote the addition of the four metaplectic representations labelled by the variables µ, ν, ρ, λ
all assumed different. The corresponding Casimir operator is

C(µ,ν,ρ,λ) = (J (µ,ν,ρ,λ)
0 )2 − J (µ,ν,ρ,λ)

+ J
(µ,ν,ρ,λ)
− − J (µ,ν,ρ,λ)

0 .

Quite clearly, these actions of su(1, 1) restricted to state vectors of four oscillators are paired
with commuting actions of the Lie algebra o(4) of rotations in the four dimensions labelled
by µ, ν, ρ, λ. It is hence not surprising to find, owing to Howe duality, that

C(1234) = −2K1 and C(3456) = −2K2,

namely that the intermediate su(1, 1) Casimir operators corresponding to the recouplings of
the first four and last four of the six metaplectic representations are equal (up to a factor) to
the Casimir elements of the two corresponding o(4) subalgebras of o(6) which together gen-
erate as we observed the non-trivial part of the commutant of o(2)⊕ o(2)⊕ o(2) in U(o(6)).
This entails the description of the Racah algebra in the commutant in U(su(1, 1)⊗3) of the
action of su(1, 1) on H. Alternatively, picking the su(1, 1) representations associated to those
of o(2)⊕ o(2)⊕ o(2) under Howe duality yields the sum of three irreducible representations
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of su(1, 1) belonging to the discrete series; these are realized as dynamical algebras of three
singular oscillators. Note that corresponding to the su(1, 1) representation

J (µ,ν)
• = J (µ)

• + J (ν)
•

is the Casimir
C(µν) = −1

4
(
Lµν

2 + 1
)
.

With the dependance on the polar angles “rotated out”, the total Casimir element C(123456)

becomes the Hamiltonian of the generic superintegrable system on the two-sphere; the con-
stants of motion are the quotiented intermediate Casimirs elements and the symmetry algebra
that they generate is hence that of Racah.

9.4. More dual pictures – an overview
The main algebras of Askey–Wilson type have been studied recently from the commutant

and Howe duality viewpoints. We summarize in the following the main results and give in
particular the dualities that are involved.

9.4.1. The Racah family

The higher rank extension of the Racah algebra defined in the algebra generated by all
the intermediate Casimir elements of

σ1 ⊗ σ2 ⊗ · · · ⊗ σn(∆(n−1)(su(1, 1)))

can be described in the framework of the preceding section with the help of the dual pair
(o(2n), su(1, 1)) using in this case the module formed by the state vectors of 2n harmonic
oscillators. It is then seen to be dually in the commutant of o(2)⊕n in the oscillator repre-
sentation of U(o(2n)) [4].

The case n = 2 is special and of particular interest since it pertains to the Clebsch–
Gordan problem for su(1, 1), that is, the recoupling of the two irreducible representations σ1

and σ2. There are no intermediate Casimirs here; the relevant operators associated to the
direct product basis and the recoupled one are respectively

M1 = σ1(J0)− σ2(J0)

and the total Casimir
M2 = (σ1 ⊗ σ2)∆(C).

These are seen to obey the commutation relations of the Hahn algebra [5]:

[M1,M2] = M3, [M2,M3] = −2{M1,M2}+ δ1,

[M3,M1] = −2M1
2 − 4M2 + δ2,

(9.4.1)
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where

δ1 = 4(σ1(J0) + σ2(J0))(σ1(C)− σ2(C)), δ2 = 2(σ1(J0) + σ2(J0))2 + (σ1(C) + σ2(C))

are central. The name of the algebra comes from the fact that the 3j-coefficients involve dual
Hahn polynomials. In the setup with four harmonic oscillators, with H carrying the product
of four metaplectic representations, Howe duality will imply that the total Casimir element
C(1234) of su(1, 1) coincides with the Casimir of o(4) – this is the same computation as the one
described above. It is easily seen that σ1(J0)− σ2(J0) is derived from 1

2(N1 +N2−N3−N4)
under the quotient by o(2) ⊕ o(2) with Ni = a†iai, i = 1, . . . , 4. It can in fact be checked
directly, again abusing notation, that

M1 = 1
2(N1 +N2 −N3 −N4), M2 = −1

4
(
L12

2 + L34
2 + L13

2 + L23
2 + L14

2 + L24
2
)

satisfy the relations given in equation (9.4.1) with

δ1 = −1
2(N1 +N2 +N3 +N4 + 2)(L12

2 − L34
2),

δ2 = 1
2(N1 +N2 +N3 +N4 + 2)2 − (L12

2 + L34
2 + 2),

in correspondance with the preceding expressions for δ1 and δ2 in the realization J (1234)
• of

su(1, 1). From the expressions of these last M1 and M2, we can claim that the Hahn algebra
is in the commutant of o(2)⊕ o(2) in U(u(4)) represented on H. Let us stress that it is the
universal enveloping algebra of u(4) that intervenes here.

9.4.2. The Bannai–Ito ensemble

The Bannai–Ito algebra [6] takes its name after the Bannai–Ito polynomials that enter
in the Racah coefficients of the Lie superalgebra osp(1|2). This algebra has three generators
Ki, i = 1, . . . , 3 that satisfy the relations

{Ki, Kj} = Kk + ωk, i 6= j 6= k ∈ {1, 2, 3} (9.4.2)

with ωi central and {X, Y } = XY + Y X. The relevant reductive pair in this case is
(o(6), osp(1|2)) and the representation space H is that of Dirac spinors in six dimensions
with the Clifford algebra generated by the elements γµ verifying

{γµ, γν} = −2δµν , µ, ν = 1, . . . , 6.

That the pair (o(6), osp(1|2)) is dually represented on H is seen as follows:
The spinorial representation of o(6) with generators

Jµν = −iLµν + Σµν , Lµν = xµ∂ν − xν∂µ, Σµν = i

2γµγν
(9.4.3)
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leaves invariant the following operators:

J− = −i
∑

1≤µ≤6
γµ∂µ, J+ = −i

∑
1≤µ≤6

γµxµ, J0 =
∑

1≤µ≤6
xµ∂µ, (9.4.4)

which in turn realize the commutation relations of the Lie superalgebra osp(1|2):

[J0, J±] = ±J±, {J+, J−} = −2J0

with J0 even and J± odd. Howe duality thus takes place. As a matter of fact, for any subset
A ⊂ {1, . . . , 6} of cardinality |A| the operators

JA− = −i
∑
µ∈A

γµ∂µ, JA+ = −i
∑
µ∈A

γµxµ, JA0 = |A|
2 +

∑
µ∈A

xµ∂µ

realize osp(1|2). The Casimir element of osp(1|2) is given by

C = 1
2([J−, J+]− 1)S

with S the grade involution obeying

S2 = 1, [S, J0] = 0, {S, J±} = 0.

In the realizations at hand,
SA = i|A|/2

∏
µ∈A

γµ

with |A| even.
It can be checked that the operators

K1 = M1 + 3
2Σ12Σ34, K2 = M2 + 3

2Σ34Σ56, K3 = M3 + 3
2Σ12Σ56,

M1 = (L12γ1γ2 + L13γ1γ3 + L14γ1γ4 + L23γ2γ3 + L24γ2γ4 + L34γ3γ4) Σ12Σ34,

M2 = (L34γ3γ4 + L35γ3γ5 + L36γ3γ6 + L45γ4γ5 + L46γ4γ6 + L56γ5γ6) Σ34Σ56,

M3 = (L12γ1γ2 + L15γ1γ5 + L16γ1γ6 + L25γ2γ5 + L26γ2γ6 + L56γ5γ6) Σ12Σ56

realize the relations (9.4.2) of the Bannai-Ito algebra upon taking the following:

ωij = 2ΓkΓ123 + 2ΓiΓj,

where

Γ1 = J12, Γ2 = J34, Γ3 = J56, Γ123 =
(

5
2 − i

∑
1≤µ<ν≤6

LµνΣµν

)
Σ12Σ34Σ56.

That these arise from dual pictures is explained as follows (see [7] for details). On the one
hand, K1, K2, K3 are observed to belong to the commutant in U(o(6)) of the o(2)⊕o(2)⊕o(2)
subalgebra of o(6) spanned by {J12, J34, J56}. On the other hand, considering the Casimir
elements CA of osp(1|2) associated to the realization by the operators {JA0 , JA± , SA}, we find
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that
C(1234) = K1, C(3456) = K2, C(1256) = K3.

This confirms that the Bannai–Ito algebra can be dually presented either as in the commutant
of o(2) ⊕ o(2) ⊕ o(2) in the spinorial representation of U(o(6)) or in the centralizer of the
action of osp(1|2) on H. These considerations can be extended to higher dimensions [7] so as
to obtain analogously dual commutant pictures for the Bannai–Ito algebras of higher ranks
[6].

9.4.3. The Askey–Wilson class

The Askey–Wilson algebra can be presented as follows:
[KA, KB]q
q2 − q−2 +KC = γ

q + q−1 ,

[KB, KC ]q
q2 − q−2 +KA = α

q + q−1 ,

[KC , KA]q
q2 − q−2 +KB = β

q + q−1 ,

(9.4.5)

with [A,B]q = qAB − q−1BA and α, β, γ central.
The Uq(su(1, 1)) algebra has three generators, J± and J0, obeying

[J0 , J±] = ±J±, J−J+ − q2J+J− = q2J0 [2J0]q

with
[x]q = qx − q−x

q − q−1 .

Its coproduct is defined by

∆(J0) = J0 ⊗ 1 + 1⊗ J0, ∆(J±) = J± ⊗ q2J0 + 1⊗ J±.

The Casimir operator C of Uq(su(1, 1)) is given by

C = J+J−q
−2J0+1 − q

(1− q2)2

(
q2J0−1 + q−2J0+1

)
+ 1 + q2

(1− q2)2 .

The q-deformation oq1/2(N) of o(N) is defined as the algebra with generators Li,i+1 (i =
1, . . . , N − 1) obeying the relations

Li−1,i Li,i+1
2 − (q1/2 + q−1/2)Li,i+1 Li−1,i Li,i+1 + Li,i+1

2 Li−1,i = −Li−1,i,

Li,i+1 Li−1,i
2 − (q1/2 + q−1/2)Li−1,i Li,i+1 Li−1,i + Li−1,i

2 Li,i+1 = −Li,i+1,

[Li,i+1, Lj,j+1] = 0 for |i− j| > 1.

We shall use the notation
L±ik = [L±ij , L±jk]q±1/4
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for any i < j < k, and by definition L±i,i+1 = Li,i+1.
The reductive pair (oq1/2(6), Uq(su(1, 1)) is the one which is of relevance for the Askey–

Wilson algebra. Let us indicate how oq1/2(2n) and Uq(su(1, 1)) are dually represented on
the standard state space H of 2n independent q-oscillators described by operators {A±i , A0

i }
such that

[A0
i , A

±
i ] = ±A±i , [A−i , A+

i ] = qA
0
i , A−i A

+
i − qA+

i A
−
i = 1, i = 1, . . . , 2n.

The algebra Uq(su(1, 1)) is represented onH by using the coproduct to embed it in the tensor
product of 2n copies of the q-deformation of the metaplectic representation, this gives

J
(2n)
0 = ∆(2n−1)

(
1
2

(
A0
i + 1

2

))
= 1

2

2n∑
i=1

(
A0
i + 1

2

)
,

J
(2n)
± = ∆(2n−1)

(
1

[2]q1/2
(A±i )2

)
= 1

[2]q1/2

2n∑
i=1

(A±i )2
2n∏

j=i+1
qA

0
j+

1
2

.
(9.4.6)

The algebra oq1/2(2n) can also be realized in terms of 2n q-oscillators. The 2n− 1 generators
take the form

Li,i+1 = q−
1
2 (A0

i+
1
2 )
(
q

1
4A+

i A
−
i+1 − q−

1
4A−i A

+
i+1

)
, i = 1, . . . , 2n− 1.

It can be checked that

[J (2n)
0 , Li,i+1] = [J (2n)

± , Li,i+1] = 0, i = 1, . . . , 2n− 1,

in other words, that Uq(su(1, 1)) and oq1/2(2n) have commuting actions on the Hilbert space
H of 2n q-oscillators. This sets the stage for Howe duality. In order to connect with the
Askey–Wilson algebra we take n = 3. The expressions of the operators KA and KB acting
on H that realize the relations (9.4.5) (together with the specific central elements) are rather
involved and we shall refer the reader to [8] for the formulas. We shall only stress that
these operators can be obtained in a dual way: They are affinely related to the generators
of the commutant of oq1/2(2)⊕3 in oq1/2(6) as well as to the intermediate Uq(su(1, 1)) Casimir
elements

C(1234) = ∆(3)(C)⊗ 1⊗ 1 and C(3456) = 1⊗ 1⊗∆(3)(C)

of the q-metaplectic representation (see (9.4.6)). This can be extended to higher ranks
by letting n be arbitrary. For n = 2 we are looking at the Clebsch–Gordan problen for
Uq(su(1, 1)). The q-Hahn algebra that arises has two dual realizations [9]: one in the com-
mutant of oq1/2(2)⊕2 in Uq(u(4)) and the other in terms of the following two Uq(su(1, 1))
operators, (∆(J0)⊗ 1⊗ 1)− (1⊗ 1⊗∆(J0)) and ∆(2)(C) (the full Casimir element) in the
q-metaplectic representation.
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9.5. Conclusion
This paper has offered a summary of how the algebras of Racah, Hahn, Bannai–Ito,

Askey–Wilson and q-Hahn types can be given dual descriptions in commutants of Lie alge-
bras, superalgebras and quantum algebras. The connection between these dual pictures is
rooted in Howe dualities whose various expressions have been stressed. The attentive reader
will have noticed that the Clebsch–Gordan problem for osp(1|2) has not been mentioned; this
is because it has not been analyzed yet. We plan on adding this missing piece to complete
the picture.
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Partie 2

Au-delà des algèbres de type Askey–Wilson :
opérateurs de Sklyanin–Heun et

dégénérations d’algèbres de Sklyanin



Introduction
La deuxième partie de cette thèse peut être approchée de plusieurs points de vue équiva-

lents; en voici un. Cette deuxième partie généralise l’approche aux algèbres de type Askey–
Wilson par les opérateurs de bispectralité qui a été développée par Zhedanov. Elle explore
le cas où on part d’opérateurs encodant des propriétés des familles de polynômes plus élé-
mentaires que la bispectralité, en un certain sens, et s’intéresse aux structures algébriques
qu’ils génèrent.

Les trois résultats principaux dans cette partie sont les suivants :
(1) Les opérateurs de Sklyanin–Heun, définis comme une certaine classe d’opérateurs de

Heun algébriques, sont introduits. Un sous-ensemble de 4 opérateurs de Sklyanin–
Heun génère une algèbre qui s’avère être une dégénération de l’algèbre de Sklyanin.

(2) Ces 4 opérateurs peuvent être vus comme étant plus fondamentaux que les opérateurs
de récurrence et différence donnant lieu aux algèbres de type Askey–Wilson. En
ce sens, ces dégénérations de l’algèbre de Sklyanin peuvent être vues comme des
structures algébriques plus fondamentales que les algèbres de type Askey–Wilson.

(3) Les opérateurs de Sklyanin–Heun offrent une interprétation algébrique de chacune des
4 familles de para-polynômes définies à ce jour : les familles de para-Krawtchouk,
para-Racah, q-para-Krawtchouk et q-para-Racah. Les familles sont interprétées
comme servant de base supportant des représentations irréductibles de dimension
finie des dégénérations de l’algèbre de Sklyanin.

Les travaux de cette deuxième partie sont à l’intersection de plusieurs domaines. Men-
tionnons tout d’abord le concept d’opérateur de Heun venant du domaine de l’analyse de
signaux. Un problème typique est la reconstruction d’un signal à partir d’un ensemble de
mesures. En raison de contraintes évidentes, l’échantillon du signal qui peut être mesuré
est limité au niveau du temps (on ne peut pas échantilloner le signal pendant une période
de temps infinie) et des fréquences (les appareils de mesure utilisés ne peuvent capter qu’un
certain intervalle de fréquences). Une reconstruction parfaite du signal observé est impos-
sible sous ces conditions1, et on cherche alors à approximer un signal de façon optimale,
où la quantité à optimiser peut prendre plusieurs formes. Par exemple, on peut se deman-
der comment obtenir une reconstruction qui approxime le mieux possible l’énergie du signal
contenue dans l’intervalle de temps échantilloné.

La solution à ce problème nécessite d’introduire un opérateur intégral et de solutionner
son problème aux valeurs propres, mais malheureusement cette procédure est difficile à im-
plémenter numériquement en général, notamment en raison de la non-localité de l’opérateur

1Puisqu’un signal ne peut être limité au niveau du temps et des fréquences sans être trivial, on ne peut
qu’approximer ce qu’on observe.



intégral. Dans les années 1960, Slepian, Pollak et Landau trouvent une solution « miracu-
leuse » [28–30]. Ils identifient un opérateur différentiel, un cas particulier de l’opérateur de
Heun, qui commute avec l’opérateur intégral, possède donc les mêmes états propres mais
dont le spectre est beaucoup plus facile à obtenir numériquement. La questions d’obtenir
la meilleure approximation peut être ramenée à l’étude du problème aux valeurs propres
de cet opérateur de Heun. L’existence de cet opérateur différentiel qui commute avec avec
l’opérateur intégral reste un miracle inexpliqué, jusqu’en 1987, où Perline fournit une pre-
mière piste d’explication en utilisant des propriétés de familles de polynômes orthogonaux
classiques [31]. Une interprétation algébrique voit par la suite le jour en 2017 [32] et fournit
une explication plus complète du phénomène. Le concept d’opérateur de Heun algébrique est
introduit et connecte ces questions au domaine des polynômes orthogonaux du (q-)tableau
d’Askey. Les opérateurs de Sklyanin–Heun introduits dans cette partie de la thèse peuvent
être vus comme des blocs fondamentaux à partir desquels on peut reconstruire les opérateurs
de Heun algébriques.

On trouve également dans cette intersection l’algèbre de Sklyanin (et ses dégénérations)
qui appartient au domaine de l’intégrabilité. Dans le formalisme de la matrice de transfert
et de l’équation de Yang–Baxter dans l’étude des systèmes intégrables, Sklyanin [3] étudie
les conditions sous lesquelles l’équation LLR = RLL est satisfaite pour le cas de la matrice
R la plus générale (elliptique). Il en dérive une algèbre quadratique de 4 opérateurs, portant
de nos jours le nom d’algèbre de Sklyanin. Les représentations de cette algèbre encodent des
systèmes intégrables qui peuvent être résolus par la méthode de « scattering inverse ». Ces
systèmes sont d’un grand intérêt, car ils peuvent être considérés comme des approximations
sur des réseaux de divers systèmes intégrables continus. Diverses dégénérations de cette
algèbre, telles que les dégénérations trigonométriques et rationnelles, existent et permettent
de définir d’autres systèmes intégrables.

Ces algèbres sont quadratiques, riches en propriétés intéressantes pour les mathémati-
ciens, tout en étant non-triviales [33]. Elles sont de plus en plus étudiées en classifiées par
les algébristes et théoriciens des anneaux [34–36].

La façon dont les dégénérations de l’algèbre de Sklyanin sont obtenues dans cette partie
de la thèse est nouvelle. Plutôt que de partir d’une matrice R, nous partons d’opérateurs
de contiguïté et d’échelle associés à des familles de polynômes orthogonaux. En raison des
liens étroits avec les polynômes orthogonaux dans cette approche, on peut s’attendre à ce
que cette nouvelle approche permette d’obtenir des solutions explicites pour les nouveaux
systèmes intégrables associés à ces dégénérations d’algèbres de Sklyanin.

Enfin, on trouve également le concept de para-polynômes dans cette intersection. Les
para-polynômes ont été définis pour la première fois dans l’étude des problèmes de transfert
parfait et de revitalisation fractionnelle dans les chaînes de spin [37]. La première famille
identifiée est celle des para-Krawtchouk. Ces polynômes possèdent un spectre qui est une
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superposition de deux grilles linéaires. Ce spectre est analogue à celui d’un oscillateur para-
bosonique, d’où l’emploi de la terminologie « para-polynômes ». On a par la suite compris
que les polynômes de para-Krawtchouk peuvent être obtenus comme une spécialisation des
polynômes de Bannai–Ito complémentaires [38] ou bien à partir des polynômes continus de
Hahn sous une procédure de troncation non-standard [39]. Par après, en utilisant des condi-
tions de troncation analogues, des para-polynômes de type Racah, q-Krawtchouk et q-Racah
ont pu être définis à partir des polynômes de Wilson, Big q-Jacobi et Askey–Wilson. Tou-
tefois, aucune interprétation algébrique de ces familles de polynômes n’était connue jusqu’à
tout récemment. Il était pourtant naturel de s’attendre à ce qu’il y en ait, car les familles
du q-tableau d’Askey apparaissent dans divers contextes algébriques en théorie des repré-
sentations et il devrait en être de même pour leurs limites. Les travaux dans cette partie
ont permis d’identifier ces para-polyômes comme des bases supportant des représentations
irréductibles de dimension finie de diverses dégénérations de l’algèbre de Sklyanin.

Les opérateurs de Sklyanin–Heun sont définis en fonction d’une grille. La grille d’Askey–
Wilson, associée aux familles de polynômes d’Askey–Wilson et de q-para-Racah, est étudiée
au Chapitre 10. Puis la grille linéaire (associée aux familles des Hahn continus et de para-
Krawtchouk) et la grille exponentielle2 (associée aux familles des Big q-Jacobi et q-para-
Krawtchouk) sont étudiées en Chapitre 11. Enfin, la grille quadratique (associée aux familles
de Wilson et para-Racah) est étudiée au Chapitre 12. Des travaux subséquents sur les
polynômes de para-Krawtchouk menant à une interprétation algébrique additionnelle de
ceux-ci sont présentés au Chapitre 13 et concluent cette deuxième partie.

2ou q-linéaire
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Chapitre 10

Degenerate Sklyanin algebras, Askey–Wilson
polynomials and Heun operators

Par Julien Gaboriaud, Satoshi Tsujimoto, Luc Vinet, Alexei Zhedanov.
Publié dans Journal of Physics A: Mathematical and Theoretical 53(44), 445204, 2020.
arxiv:2005.06961.

Abstract: The q-difference equation, the shift and the contiguity relations of the
Askey–Wilson polynomials are cast in the framework of the three and four-dimensional
degenerate Sklyanin algebras ska3 and ska4. It is shown that the q-para Racah polynomials
corresponding to a non-conventional truncation of the Askey–Wilson polynomials form
a basis for a finite-dimensional representation of ska4. The first order Heun operators
defined by a degree raising condition on polynomials are shown to form a five-dimensional
vector space that encompasses ska4. The most general quadratic expression in the five
basis operators and such that it raises degrees by no more than one is identified with the
Heun–Askey–Wilson operator.

Keywords: Sklyanin algebras, Askey–Wilson operators and polynomials, q-para Racah
polynomials, Heun operators.

10.1. Introduction
Quite some time ago, it was shown [1, 2] that the Askey–Wilson difference operator could

be realized as a quadratic expression in the generators of the degenerate Sklyanin algebra
(of dimension four). A little earlier Kalnins and Miller [3] used symmetry techniques to
derive the orthogonality relation of the Askey–Wilson polynomials and identified to that
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end interesting ladder operators. Over the years the application of the factorization method
[4] to these polynomials and the study of their structure relations [5] brought attention to
related elements. More recently advances have been made in the elaboration of the theory of
q-Heun operators and the Heun–Askey–Wilson [6] and rational [7] Heun operators have been
identified by focusing on certain raising properties of their actions on appropriate spaces of
functions. The purpose of this report is to stress the connections between these topics.

The paper will develop as follows. In Section 10.2 we shall introduce three operators
involving q-shifts that realize a three-dimensional degenerate Sklyanin algebra ska3. These
operators will be ubiquitous; it will be observed that their linear combination is diagonal
on special Askey–Wilson polynomials in base q and, following [1], that the most general
quadratic expression formed with them yields the full Askey–Wilson operator in base q2. The
degenerate Sklyanin algebra ska4 obtained by Gorsky and Zabrodin will also be introduced.
It has ska3 as a subalgebra and will be seen to admit a formal embedding of the Askey–Wilson
algebra. In Section 10.3, it will be seen that the contiguity operators introduced by Kalnins
and Miller in their treatment of the Askey–Wilson polynomials all belong to a model of the
degenerate Sklyanin algebra ska4. It will also be seen that the q-para Racah polynomials
[8] support a finite-dimensional representation of the four-dimensional degenerate Sklyanin
algebra. Section 10.4 will indicate how the Askey–Wilson bispectral operators emerge in this
context. We shall consider first order q-difference operators and identify the conditions for
such operators to raise by one the degree of polynomials in the symmetric variable x = z+z−1.
This will lead to a five dimensional vector space of operators. A basis will consist of one
lowering operator, two that stabilize polynomials of a given degree and two that are raising
this degree by one. The lowering and stabilizing operators will coincide with the operators
realizing ska3 introduced in Section 10.2. A combination involving the two raising operators
will give the realization of the fourth generator of ska4 beyond those of ska3. The relations
obeyed by these five operators will be found in an Appendix. It will further be seen that
the most general quadratic operator in the five basis elements and not raising the degree
by more than one is the Heun–Askey–Wilson operator [9]. This parallels the fact that in
bispectral situations Heun operators could be defined equivalently as raising operators or as
bilinear expressions in the bispectral operators. As will be indicated in the conclusion this
approach is paving the way to the definition of Sklyanin-like Heun algebras associated to
different degenerations of the Askey–Wilson grid.
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10.2. Realizations of degenerate Sklyanin algebras and
Askey–Wilson operators

It is well known that quantum algebras can be realized in terms of q-derivatives. In the
case of Uq(su(2)) for example, the commutation relations

[B̂, Ĉ] = Â2 − D̂2

q − q−1 , [Â, D̂] = 0,

ÂB̂ = qB̂Â, B̂D̂ = qD̂B̂, ĈÂ = qÂĈ, D̂Ĉ = qĈD̂

(10.2.1)

are realized [10], [11] by taking

Â(ν) = q−νT+, B̂(ν) = z

2(q − q−1)(q2νT− − q−2νT+),

Ĉ = 2
(q − q−1)z (T+ − T−), D̂(ν) = qνT−,

(10.2.2)

where in the case of finite dimensional representations ν is integer or half-integer (see below)
and where T+ and T− are the q-shift operators that act as follows on functions of z:

T+f(z) = f(qz), T−f(z) = f(q−1z). (10.2.3)

We shall in the following look at models built with operators of the divided difference type.

10.2.1. The three-dimensional degenerate Sklyanin algebra ska3

Let p = (a, b, c, α, β, γ) be a set of parameters. The generalized three-dimensional
Sklyanin algebra Ŝp as defined in [12] (see also [13]), is given by three generators u, v, y
and the relations:

uv − avu− αyy = 0, vy − byv − βuu, yu− cuy − γvv = 0. (10.2.4)

Consider the operators

Y = 1
z − z−1 (T+ − T−),

U = 1
z − z−1 (zT+ − z−1T−),

V = 1
z − z−1 (zT− − z−1T+).

(10.2.5)

It is readily checked that they satisfy the following relations:

V Y − qY V = 0,

Y U − qUY = 0,

[U, V ] = (q − q−1)Y 2.

(10.2.6)
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Under the correspondence {y, u, v, } → {Y, U, V } , it is seen that Y , U , V realize a special
case of Ŝp with

a = 1, b = c = q, α = (q − q−1), β = γ = 0. (10.2.7)

We shall henceforth denote this algebra by ska3. As shown in [12], it corresponds to one of
the situations ((a, b, c) 6= (0, 0, 0) and β = γ = b− c = 0)) for which the generalized Sklyanin
algebra Ŝp has a polynomial growth Hilbert series (PHS) and Koszul properties. The algebra
ska3 thus defined possesses a quadratic Casimir elements Ω(2):

Ω(2) = uv + q−1y2 (10.2.8)

that takes the value 1 in the realization (10.2.5) which implies that UV is related to Y 2.

10.2.2. The Askey–Wilson polynomials and algebra

Let us recall that the Askey–Wilson polynomials pn(x; a, b, c, d|q) defined by

anpn(x; a, b, c, d|q)
(ab, ac, ad; q)n

= 4φ3

[
q−n, abcdqn−1, az, az−1

ab, ac, ad

∣∣∣∣∣q; q
]

(10.2.9)

with x = z + z−1 are eigenfunctions of the operator L(a,b,c,d)
q [14]

L(a,b,c,d)
q pn(x; a, b, c, d|q) = λnpn(x; a, b, c, d|q) (10.2.10)

with eigenvalues
λn = q−n(1− qn)(1− abcdqn−1). (10.2.11)

We use standard notation for the basic hypergeometric functions and q-shifted factorials [14].
In base qr, the Askey–Wilson operator reads

L(a,b,c,d)
qr = A(r)(z)T r+ − [A(r)(z) + A(r)(z−1)]I + A(r)(z−1)T r− (10.2.12)

with
A(r)(z) = (1− az)(1− bz)(1− cz)(1− dz)

(1− z2)(1− qrz2) (10.2.13)

and where I is the identity operator.
The Askey–Wilson algebra AW (3) [15] that encodes the bispectrality of the polynomials

pn is realized by taking the generators K0 = L(a,b,c,d)
q + (1 + q−1abcd) and K1 = x to find that

the defining relations of AW (3)

[K0, K1]q = K2,
[K1, K2]q = µK1 + ν0K0 + ρ0,

[K2, K0]q = µK0 + ν1K1 + ρ1,
(10.2.14)

where [A,B]q = q1/2AB − q−1/2BA, are verified with the parameters µ, ν and ρ related to
those, a, b, c, d of the polynomials pn (see for instance [16]).
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Consider now the following general linear combination of Y , U and V :

M(α,β,γ) = αY + βU + γV. (10.2.15)

Using (10.2.5), we see that

M(α,β,γ) = F (z)T+ + F (z−1)T− (10.2.16)

where
F (z) = γ(1− az)(1− bz)

1− z2 (10.2.17)

with
α

γ
= (a+ b), β

γ
= −ab. (10.2.18)

Since
F (z) + F (z−1) = γ(1− ab), (10.2.19)

we observe that
M(α,β,γ) = γ[L(a,b,q

1
2 ,−q

1
2 )

q + (1− ab)]. (10.2.20)

It follows that the eigenfunctions of a linear combination of the operators Y, U, V such as
M(α,β,γ) are special Askey–Wilson polynomials with the property of being “symmetric" when
looked at from the dual perspective where variable and degree are exchanged; this is because
the diagonal term inM(α,β,γ) is constant. Correspondingly, following [16], by taking

K0 = 1
γ
M(α,β,γ) and K1 = x (10.2.21)

we find that the Askey–Wilson algebra relations (10.2.14) are satisfied with

µ = 0, ν0 = 1, ρ0 = 0,

ν1 = −ab(q − q−1)2, ρ1 = (1− q−1)(a+ b)(ab+ q).
(10.2.22)

We shall consider next quadratic expressions in the generators of ska3.

10.2.3. The Askey–Wilson operator and ska3

An important observation [1] comes from considering the most general quadratic expres-
sion in the operators {Y, U, V } representing ska3. Let us go over this. Define as before
another general linear combination of these operators:

M(δ,ε,ζ) = δY + εU + ζV = G(z)T+ +G(z−1)T− (10.2.23)

where
G(z) = ζ(1− q−1cz)(1− q−1dz)

1− z2 (10.2.24)

with
δ

ζ
= q−1(c+ d), ε

ζ
= −q−2cd. (10.2.25)
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The productM(α,β,γ)M(δ,ε,ζ) will take the form:

M(α,β,γ)M(δ,ε,ζ)

= F (z)G(qz)T 2
+ + [F (z)G(q−1z−1) + F (z−1)G(q−1z)]I + F (z−1)G(qz−1)T 2

−.

(10.2.26)

A straightforward computation shows that for the specific functions F (z) and G(z) given in
(10.2.17) and (10.2.25), the following identity holds:

F (z)G(q−1z−1) + F (z−1)G(q−1z) = −F (z)G(qz)− F (z−1)G(qz−1) + Γ (10.2.27)

with Γ a constant given by

Γ = γζ(abcdq−2 − ab− cdq−2 + 1). (10.2.28)

Recalling the expression of A(2)(z) in (10.2.13), we see that

F (z)G(qz) = γζA(2)(z) (10.2.29)

and hence we write

M(α,β,γ)M(δ,ε,ζ) = γζ [L(a,b,c,d)
q2 + (abcdq−2 − ab− cdq−2 + 1)I]. (10.2.30)

We have thus obtained a factorization of the Askey–Wilson operator L(a,b,c,d)
q2 as a product

of two linear combinations of the generators in the representation (10.2.5) of the special
generalized Sklyanin algebra ska3.

We also note that

M(α,β,γ)M(δ,ε,ζ) = (αY + βU + γV )(δY + εU + ζV ) (10.2.31)

provides the most general quadratic expression in the three generators {Y, U, V }. Taking into
account the relations (10.2.5) between the generators and the expression of UV (10.2.45) (and
V U) in terms of Y 2 provided by the value of the Casimir, the productM(α,β,γ)M(δ,ε,ζ) can
be reduced to:
M(α,β,γ)M(δ,ε,ζ)

= βεU2 + γζV 2 + (αδ − βζq−1 − γεq)Y 2 + (αεq + βδ)UY + (αζq−1 + γδ)V Y + (βζ + γε)I.
(10.2.32)

We thus recover (with a different parametrization) the result of Gorsky and Zabrodin [1]
according to which the Askey–Wilson q-difference operator is a quadratic expression in the
generators of ska3. (As a matter of fact this result is presented in [1] in the context of the
four-dimensional degenerate Sklyanin algebra to which we shall turn in a moment.)
Remark 10.1. The idea of obtaining operators of interest, like the Askey–Wilson one, as
quadratic expressions in the generators of fundamental algebras has precedents. Of note is
the identification of the Askey–Wilson algebra as a coideal subalgebra of Uq(sl(2))[17] and the
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use of the realization (10.2.1) to obtain the difference operator of the big q-Jacobi polynomials
[18] as a generator in this embedding.

Returning to the factorization formula, since γ and ζ only occur in the global factor, we
may set γ = ζ = 1. Summing up we thus have:

M(α,β,1)M(δ,ε,1) = L(a,b,c,d)
q2 + (abcdq−2 − ab− cdq−2 + 1)I (10.2.33)

with
α = (a+ b), β = −ab,

δ = q−1(c+ d), ε = −q−2cd.
(10.2.34)

With the eigenvalues λn of L(a,b,c,d)
q2 given by (10.2.11) with q replaced by q2, it is straight-

forward to see that the Askey–Wilson polynomials with base q2 correspondingly verify[
M(α,β,1)M(δ,ε,1)

]
pn(x; a, b, c, d|q2) = ρn pn(x; a, b, c, d|q2) (10.2.35)

with

ρn = q−2n(1− abq2n)(1− cdq2n−2). (10.2.36)

Remark 10.2. If we were to consider two linear combinationsM(ᾱ,β̄,1) andM(δ̄,ε̄,1) of Y , U
and V where the roles of the pairs of parameters (a, b) and (c, d) are exchanged with respect
toM(α,β,1) andM(δ,ε,1), namely if we were to take

ᾱ = q−1(a+ b) = q−1α, β̄ = −q−2ab = q−2β,

δ̄ = (c+ d) = qδ, ε̄ = −cd = q2ε,
(10.2.37)

we would obtain again a factorization of the Askey–Wilson operator L(a,b,c,d)
q2 of similar form

M(δ̄,ε̄,1)M(ᾱ,β̄,1) = L(a,b,c,d)
q2 + (abcdq−2 − abq−2 − cd+ 1)I. (10.2.38)

This is because L(a,b,c,d)
q2 is invariant under the permutation of the parameters and the ex-

changes of the operators M with the q-shifts of the parameters given in (10.2.37) simply
amount to permuting the pairs (a, b) and (c, d) in the constant term of the rhs of (10.2.33).
This is in line with the fact that

M(α,β,1)M(δ,ε,1) −M(δ̄,ε̄,1)M(ᾱ,β̄,1) = (−ab+ cd)(1− q−2)I (10.2.39)

as is easily checked using the relations (10.2.6) as well as (10.2.45). Conversely,

M(α,β,1)M(δ,ε,1) −M(δ̄,ε̄,1)M(ᾱ,β̄,1) = (β − q2ε)(1− q−2)Ω(2) (10.2.40)

with the Ms taken as the linear combinations of the generators, can be seen to package
(abstractly) the relations between y, u and v (10.2.4) with parameters (10.2.7).
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10.2.4. The four-dimensional degenerate Sklyanin algebra ska4

The four-dimensional degenerate Sklyanin algebra ska4 was obtained in [1] as a limit
of the elliptic algebra originally introduced by Sklyanin [10] (see [19] for a mathematically
oriented review). It is presented in terms of four generators A, B, C, D obeying the following
homogeneous quadratic relations:

DC = qCD, CA = qAC, [A,D] = (q − q−1)3

4 C2,

[B,C] = A2 −D2

q − q−1 ,

AB − qBA = qDB −BD = −q
2 − q−2

4 (DC − CA).

(10.2.41)

This algebra possesses two Casimir elements:

Ω0 = AD + (q − q−1)2

4q C2, Ω1 = q−1A2 + qD2

(q − q−1)2 +BC + q + q−1

4 C2. (10.2.42)

We note that the subalgebra generated by {A,C,D} is isomorphic to ska3.
It was observed [1] that the degenerate Sklyanin algebra contracts to Uq(su(2)); indeed,

if one sets A = εÂ, B = B̂, C = ε2Ĉ, D = εD̂ and let ε go to zero we see that the relations
(10.2.41) reduce to (10.2.1). In keeping with the representation theory [10] of the Sklyanin
algebra, the finite dimensional representations of its degenerate version are characterized by
an integer or half-integer ν and are of dimension (2ν + 1). We know from [1] that these can
be realized by associating A, B, C, D to the following q-difference operators (we shall not
distinguish here the abstract algebra element from its realization):

A = q−νU, C = 2
(q − q−1)Y, D = qνV,

B = 1
2(q − q−1)(z − z−1)

[
q2ν(z2T− − z−2T+)− q−2ν(z2T+ − z−2T−)− (q + q−1)(T+ − T−)

]
,

(10.2.43)

where U , V , Y are as in (10.2.5). In this realization the Casimir elements Ω0 and Ω1 take
the following values:

Ω0 = 1, Ω1 = q2ν+1 + q−2ν−1

(q − q−1)2 . (10.2.44)

In light of (10.2.42) and (10.2.43), the former relation restates the already observed fact that
UV is related to Y 2, namely that

UV = 1− q−1Y 2. (10.2.45)
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In the realization (10.2.43), the contraction from the degenerate Sklyanin algebra to Uq(su(2)
amounts to taking z very large. It is quickly seen that in this limit the divided difference
operators {A,B,C,D} given above reduce to the {Â, B̂, Ĉ, D̂} of (10.2.2).

Now using the variable x = z + z−1, it is readily found that B can be expressed as

B = 1
2(q − q−1)

[
q−2ν(q−1xU − Ux) + q2ν(qxV − V x)− (q + q−1)Y

]
(10.2.46)

in terms of the operators (10.2.5) realizing ska3. We shall now indicate how x can be ex-
pressed as a formal power series in terms of A,B,C,D by inverting (10.2.46). In light of
the commutation relation [U, V ] = (q − q−1)Y 2 given in (10.2.5) and the Casimir relation
(10.2.45) we have

UV = 1− q−1Y 2 and V U = 1− qY 2. (10.2.47)

It follows that V has an inverse V −1 given by the formal power series in Y expressed as
follows:

V −1 = U(1− qY 2)−1 = (1− q−1Y 2)−1U. (10.2.48)

Using the relations Ux− qxU = −(q − q−1)Y and xV − qV x = q(q − q−1)Y , we arrive at

x = q−2ν
[
2B +

(
q + q−1

q − q−1 + q2ν − q−2ν
)
Y

]
[1− q−4νV −1U ]−1V −1. (10.2.49)

As indicated before the Askey–Wilson operator L(a,b,c,d)
q2 and x generate the Askey–Wilson

algebra. Within the realization in terms of divided difference operators, we saw that L(a,b,c,d)
q2

according to (10.2.33) is obtained as a quadratic expression in the generators of the subal-
gebra ska3 of ska4 and just found as per (10.2.49) that x is in the completion of the latter
algebra. We can therefore assert that the Askey–Wilson algebra can be formally embedded
in this realization of ska4.

10.3. Contiguity operators of the Askey–Wilson poly-
nomials and the degenerate Sklyanin algebra

In [3], Kalnins and Miller presented an elegant derivation of the weight function of the
Askey–Wilson polynomials which is based on symmetry techniques. We here wish to point
out that their approach can actually be cast in the framework of degenerate Sklyanin alge-
bras. Central to the treatment in [3] are certain contiguity and ladder operators that will
prove familiar. In order to facilitate comparison with the original reference we shall adopt
essentially the same notation; we shall however use q2 as the base.

Kalnins and Miller begin their considerations by observing that the Askey–Wilson poly-
nomials satisfy the following contiguity relation

µ(a,b,c,d)pn(x; a, b, c, d|q2) = q−n(1− abq2n−2)pn(x; aq−1, bq−1, cq, dq|q2) (10.3.1)
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if µ(a,b,c,d) is the following operator:

µ(a,b,c,d) = 1
(z − z−1)

(
− z−1(1− aq−1z)(1− bq−1z)T+ + z(1− aq−1z−1)(1− bq−1z−1)T−

)
.

(10.3.2)
It is further observed that

µ(cq,dq,aq−1,bq−1)pn(x; aq−1, bq−1, cq, dq|q2) = q−n(1− cdq2n)pn(x; a, b, c, d|q2). (10.3.3)

We may proceed from here to derive the weight function by requesting that it be such that
µ(cq,dq,aq−1,bq−1) is the formal adjoint of µ(a,b,c,d); this is done in [3]. Let us focus on the fact
that in view of (10.3.1) and (10.3.3), the Askey–Wilson polynomials are eigenfunctions of
µ(cq,dq,aq−1,bq−1)µ(a,b,c,d), namely,[

µ(cq,dq,aq−1,bq−1)µ(a,b,c,d)
]
pn(x; a, b, c, d|q2) = ρ̄n pn(x; a, b, c, d|q2), (10.3.4)

with

ρ̄n = q−2n(1− cdq2n)(1− abq2n−2). (10.3.5)

Not surprisingly the factorization of the Askey–Wilson operator that this eigenvalue equa-
tion entails will coincide with the one described in the preceding section. This is readily
established by recognizing that

µ(a,b,c,d) = (aq−1 + bq−1)Y − abq−2U + V

µ(cq,dq,aq−1,bq−1) = (c+ d)Y − cdU + V

=M(ᾱ,β̄,1),

=M(δ̄,ε̄,1).
(10.3.6)

These contiguity operators are thus found to belong to the realization (10.2.5) of the Sklyanin
algebra ska3 and we see that

µ(cq,dq,aq−1,bq−1)µ(a,b,c,d) =M(δ̄,ε̄,1)M(ᾱ,β̄,1), (10.3.7)

with the connection with the Askey–Wilson operator provided by (10.2.38); we note moreover
that the eigenvalue ρ̄n in (10.3.5) coincides with the expression obtained from (10.2.36) under
the exchange (a, b)↔ (c, d).

Kalnins and Miller consider in addition the lowering operator τ (a,b,c,d):

τ (a,b,c,d) = 1
z − z−1 (T+ − T−) = Y, (10.3.8)

which is nothing else than our operator Y (or C). They proceed to find its adjoint τ (a,b,c,d)∗

which reads:

τ (a,b,c,d)∗ = q−1

z − z−1

[(1− az)(1− bz)(1− cz)(1− dz)
z2 T+

− (1− az−1)(1− bz−1)(1− cz−1)(1− dz−1)
z−2 T−

]
.

(10.3.9)
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These operators act as follows on the Askey–Wilson polynomials:

τ (a,b,c,d)pn(x; a, b, c, d|q2) = qn(1− q−2n)(1− abcdq2n−2)pn−1(x; aq, bq, cq, dq|q2),

τ (a,b,c,d)∗pn−1(x; aq, bq, cq, dq|q2) = −q−npn(x; a, b, c, d|q2).
(10.3.10)

The key point is that τ (a,b,c,d)∗ can be expressed as a linear combination of the genera-
tors A, B, C and D of the degenerate Sklyanin algebra ska4. Let e1 = (a + b + c + d),
e2 = (ab+ac+ad+ bc+ bd+ cd), e3 = abc+abd+acd+ bcd and e4 = abcd be the elementary
symmetric functions in the parameters (a, b, c, d), one finds indeed that

τ (a,b,c,d)∗= q−1
[
−e3(e4)− 1

4A− 2(q − q−1)(e4) 1
2B + (q−q−1)

2 [e2 − (q + q−1)(e4) 1
2 ]C + e1(e4) 1

4D
]

(10.3.11)

with
q−2ν = (abcd) 1

2 . (10.3.12)

We thus observe that the contiguity and raising operators µ(a,b,c,d), τ (a,b,c,d) and τ (a,b,c,d)∗

belong to the realization of the degenerate Sklyanin algebra which is hence represented on
the Askey–Wilson polynomials. In general ν as given by the relation (10.3.12) above will
not be an integer or half integer and the corresponding representation extends the finite-
dimensional one discussed in Section 10.3 to an infinite-dimensional one.
Proposition 10.3. The operator µ(a,b,c,d), its adjoint µ(cq,dq,aq−1,bq−1), τ (a,b,c,d) and τ (a,b,c,d)∗

form a basis equivalent to the set {A,B,C,D} as a representation of the degenerate Sklyanin
algebra ska4. Their action on the Askey–Wilson polynomials pn(x; a, b, c, d|q2) is provided
by (10.3.1), (10.3.3) and (10.3.10) respectively. The connection formula [20], [21] of
Askey and Wilson can be used to express these formulae as combinations of polynomials
pk(x; a, b, c, d|q2), k = 0, 1, ..., with parameters a, b, c, d fixed, that span the representation
space.

Imposing that the representation be finite-dimensional amounts to enforcing the non-
conventional truncation condition

(q2)−N+1 = abcd, N = 2ν + 1 (10.3.13)

for the Askey–Wilson polynomials with base q2. Quite strikingly this leads to polynomials
called q-para Racah polynomials that have been recently characterized [8] and which are in
particular orthogonal on a bilattice composed of two Askey–Wilson grids. We wish to stress
this result.
Proposition 10.4. The q-para Racah polynomials with base q2 realize a basis for a repre-
sentation of the degenerate Sklyanin algebra of dimension N + 1 = 2ν + 2 with ν integer or
half-integer.
Remark 10.5. Remarkably the operator τ (a,b,c,d)∗ also features centrally in Koornwinder’s
study [5] of the structure relations of the Askey–Wilson polynomials. These relations amount
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to raising and lowering relations where in contradistinction with the shift relations that we
considered above (following Kalnins and Miller), the parameters are not affected. It is shown
in [5] that such a structure relation is obtained when τ (a,b,c,d)∗ (denoted by L in [5] with
the factor q−1 omitted) acts upon the Askey–Wilson polynomial pn(x; a, b, c, d|q) with base q.
Note that the shift relation in (10.3.10) acts on polynomials with base q2. It is also indicated
in [5] that (q − 1)τ (a,b,c,d)∗ = [L(a,b,c,d)

q , x].
Remark 10.6. It is further recognized in [5] on the basis of results of Rains [22] and Rosen-
gren [23] that the operator τ (a,b,c,d)∗ generates a representation of the degenerate Sklyanin
algebra ska4. This is ascertained from the relation

τ (a,b,ce,de−1)∗τ (qa,qb,q−1c,q−1d)∗ = τ (a,b,c,d)∗τ (qa,qb,q−1ce,q−1de−1)∗ (10.3.14)

given in [5] and easily checked from (10.3.9). As observed by Koornwinder [5], it is the
trigonometric specialization of a formula in [22] giving the defining relations of the Sklyanin
algebra. We show below how (10.3.14) encapsulates the relations (10.2.41) of ska4.

Consider the expression (10.3.11) for τ (a,b,c,d)∗ as a linear combination of the operators
A,B,C,D. Substituting (10.3.11) in (10.3.14) and multiplying by (e4) 1

4 e(1− e)−1(ce− d)−1,
one arrives at

0 = (e4) 3
4 (q − q−1)(a+ b)

[
A2 −D2 − (q − q−1)(BC − CB)

]
− 2(e4) 1

2 (q − q−1)ab(AB − qBA)

− 2(e4)(q − q−1)q−1(BD − qDB)

+ (e4) 1
4 (a+ b)(qab− q−1cd)

[
(AD −DA)− 1

4(q − q−1)3C2
]

− (e4) 1
2 (q−q−1)

2

(
((a+ b)2q2 − ab− cd)q−1 + (e4) 1

2 (1 + q−2)
)
CD

+ (e4) 1
2 (q−q−1)

2

(
((a+ b)2q2 − abq4 − cd)q−2 + (e4) 1

2 (1 + q−2)q
)
DC

− (q−q−1)
2

(
ab(q + q−1)(e4) 1

2 + [e4(2− q−2) + (b2cd+ a2cd− a2b2q2)]
)
AC

− (q−q−1)
2

(
−abq(q + q−1)(e4) 1

2 − q−1[e4(2− q2) + (b2cd+ a2cd− a2b2q2)]
)
CA.

(10.3.15)

We shall illustrate how the defining relations of ska4 can be obtained from (10.3.15). First
choose b = −a and c = 0. The equality (10.3.15) implies

CA = qAC. (10.3.16)
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Substituting this back in (10.3.15) and multiplying by (e4)− 1
4 yields

0 = (e4) 1
2 (q − q−1)(a+ b)

[
A2 −D2 − (q − q−1)(BC − CB)

]
− 2(e4) 1

4 (q − q−1)ab(AB − qBA)

+ (a+ b)(qab− q−1cd)
[
(AD −DA)− 1

4(q − q−1)3C2
]

− 2(e4) 3
4 (q − q−1)q−1(BD − qDB)

− (e4) 1
4 (q−q−1)

2

(
((a+ b)2q2 − ab− cd)q−1 + (e4) 1

2 (1 + q−2)
)
CD

+ (e4) 1
4 (q−q−1)

2

(
((a+ b)2q2 − abq4 − cd)q−2 + (e4) 1

2 (1 + q−2)q
)
DC

+ (q−q−1)(q2−q−2)
2 ((e4) 1

4ab− q−1(e4) 3
4 )CA.

(10.3.17)

Once again, choose c = 0 for instance. The equality (10.3.17) implies

AD −DA = (q − q−1)3

4 C2. (10.3.18)

Repeating the same kind of argument, one obtains the other relations (10.2.41) that define
ska4.

Through the realization that we have considered here, we have observed so far that the
degenerate Sklyanin algebra ska4 is a basic structure underneath the theory of Askey–Wilson
polynomials. Much like a supersymmetric Hamiltonian is the “square” of supercharges, the
Askey–Wilson operator is quadratic in generators realizing ska4. We also saw that this is
intimately connected to the application of Darboux transformations or of the factorization
method [3], [4] to this operator. This approach as we know is based on the identification
of raising operators. It has been realized recently that raising properties can provide a
unifying principle in the theory of Heun operators [24]. We next take this angle to revisit the
Heun–Askey–Wilson operator [6] and sort out the place occupied by the degenerate Sklyanin
algebra in this Heun operator picture.

10.4. S-Heun operators and the Heun–Askey–Wilson
operator

The standard Heun operator that defines the ordinary second order differential equation
with four regular singularities [25] has the property of raising the degree of polynomials
by one. It can also be obtained as a bilinear expression in the bispectral operators of the
Jacobi polynomials, namely, multiplication by the variable and the hypergeometric operator
[26]. Both viewpoints have been built upon to develop a broad perspective on operators
of Heun type and the algebras they realize. The tridiagonalization method based on the
hypergeometric operator has been generalized to any bispectral situation and the concept
of algebraic Heun operator [27] has emerged in this fashion. In a nutshell this construct
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amounts to forming the generic bilinear expression in the bispectral operators. The raising
property has been used to arrive at Heun operators defined on various lattices. In summary,
one looks in this case for the most general second-order operator that raises by one the degree
of polynomials on specified grids. Applied to the Askey–Wilson lattice or polynomials, both
approaches have led equivalently to the Heun–Askey–Wilson operator [6]. (The Heun–Racah
and Heun–Bannai–Ito operators have similarly been obtained [28].)

Let us mention that the Heun–Askey–Wilson operator has been shown [7] to arise as
a degeneration of the one-variable Ruijsenaars-van Diejen Hamiltonian [29], [30], [31]. It
has also been found that this operator can be diagonalized with the help of the algebraic
Bethe ansatz [32]. We shall expand this by relating here the Heun–Askey–Wilson operators
to our observations on Sklyanin algebras. To that end, we shall first focus on determining
the most general first order operators acting on the Askey–Wilson grid that raise the degree
of polynomials by one. We shall call them special Heun operators or S-Heun operators for
short. These can be viewed as second order operators without diagonal terms. Indeed if the
operator (11.2.1) given below is multiplied by T+, we readily see that it takes the form of a
first order operator A1(z)T 2

+ +A2(z) on a grid with base q2. Looking for S-Heun operators is
in fact a more basic problem than searching for the generic second order operator with the
raising property as a way of arriving directly at the Heun operator of Askey–Wilson type. It
is hence not surprising that there will be factorization connotations. This undertaking will
reveal that the S-Heun operators form a five-dimensional space that includes the operators
(A,B,C,D) realizing ska4. We shall further observe that the Heun–Askey–Wilson operator
has a quadratic expression in terms of these S-Heun operators.

10.4.1. The S-Heun operators

Before we apply the raising condition to determine the S-Heun operators that act through
q-differences on the symmetric variable x = z+z−1, for reference, let us first go over the most
simple case of first order differential operators that raise by one the degree of polynomials
in the variable z. Consider the operator S

S = F (z) d
dz

+G(z) (10.4.1)

and demand that Spn(z) = p̃n+1(z) with pn and p̃n polynomials of degree n. It is readily
seen that the most general admissible functions F (z) and G(z) are

F (z) = α0 + α1z + α2z
2, G(z) = β0 + β1z. (10.4.2)

S therefore belongs to a 5-dimensional vector space with the following natural basis

L = d

dz
, M1 = 1, M2 = z

d

dz
, R1 = z, R2 = z2 d

dz
, (10.4.3)

obtained by setting all coefficients αi and βi equal to zero except for one.
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These operators can be combined to form the usual finite-dimensional differential real-
ization of dimension 2j + 1 on monomials zn, n = 0, 1, . . . of the Lie algebra sl2, i.e.:

J0 = z
d

dz
− j = M2 − jM1, J+ = z2 d

dz
− 2jz = R2 − 2jR1, J− = d

dz
= L.

(10.4.4)

This corresponds to the q → 1 limit of the realization of Uq(su2) given in Section 10.2.
Consider now the q-difference operator

S = A1(z)T+ + A2(z)T− (10.4.5)

where A1,2(z) are functions of z. Note that these S-Heun operators can be viewed as “square
roots” of the general (second order) Heun operators used in [6]. Impose again a raising
condition on polynomials Pn(x(z)) of degree n in x(z) = z + z−1:

SPn(x(z)) = P̃n+1(x(z)) (10.4.6)

for all n = 0, 1, 2, . . . .
It is sufficient to check property (11.2.3) for the elementary Askey–Wilson monomials

χn(z) = zn + z−n, (10.4.7)

that is to verify that

Sχn(z) =
n+1∑
k=0

ankχk(z) (10.4.8)

for some coefficients ank. Let us look at the action of S on the two Askey–Wilson monomials
χn(x) of lowest degrees. For n = 0, the raising condition reads

A1(z) + A2(z) = a00 + a01χ1(z) (10.4.9)

and similarly, for n = 1 we have

A1(z)(zq + z−1q−1) + A2(z)(zq−1 + z−1q) = a10 + a11χ1(z) + a12χ2(z) (10.4.10)

where a00, a01, a10, a11, a12 are arbitrary parameters. Evaluating the action of S on the
higher degree Askey–Wilson monomials does not give rise to new parameters: the higher
coefficients ank with n ≥ 2 are always expressed in terms of the a0k and a1k. Hence these
5 parameters account for all the degrees of freedom that the most general S-Heun operator
defined on the Askey–Wilson grid possesses.

Combining (10.4.9) and (10.4.10), we find for A1(z)

A1(z) = π4(z)
z(1− z2)(1− q2) , (10.4.11)
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where π4(z) is a polynomial of degree four:

π4(z) = (a12q − a01)z4 + (qa11 − a00)z3 − ((1 + q2)a01 − qa10)z2

+ q(a11 − qa00)z + q(a12 − qa01).
(10.4.12)

From the observation that both the lhs and rhs of the system (10.4.9)–(10.4.10) are invariant
under z → z−1, it follows that

A2(z) = A1(z−1). (10.4.13)

This leads to the following proposition.
Proposition 10.7. The most general S-Heun operators on the Askey–Wilson grid which are
required by definition to be of the form (11.2.1) and to raise by one the degrees of polynomials
in x = z + z−1 are specified by the functions A1,2(z) given in (10.4.11)–(10.4.13).

As the operator S depends on 5 free parameters, it gives rise as in the differential case
to a 5-dimensional linear space of S-Heun operators. A natural basis for this space is formed
by three sets which correspond respectively to lowering, stabilizing and raising operators:

(i) Taking a10 = 1 as the only non-zero parameter in (10.4.12) leads to the operator
denoted L which decreases the degree of any polynomial in x(z) by 1 and changes its parity.

(ii) Taking either a00 = 1 or a11 = 1 as the only non-zero parameter, one obtains
stabilizing operators, denoted either M1 or M2. Both preserve the degree as well as the
parity of any polynomial in x(z).

(iii) The choice a01 = 1 and all other parameters equal to 0 leads to the raising operator
R1, while the choice a01 = q, a12 = 1 and all other parameters 0 yields the operator R2.
Both increase by one the degree of any polynomial in x(z) and change parity.

For the sake of completeness, we give below the full expressions of these 5 operators

L = 1
q − q−1

1
z − z−1 (T+ − T−) ,

M1 = 1
q − q−1

1
z − z−1

(
(qz + q−1z−1)T− − (q−1z + qz−1)T+

)
,

M2 = 1
q − q−1

1
z − z−1 (z + z−1)(T+ − T−),

R1 = 1
q − q−1

1
z − z−1 (z + z−1)

(
(qz + q−1z−1)T− − (q−1z + qz−1)T+

)
,

R2 = 1
q − q−1

(
q2

z − z−1 (z + z−1)(zT− − z−1T+)− (zT− + z−1T+)
)
.

(10.4.14)

Proposition 10.8. The operators L, M1, M2, R1, R2 are linearly independent. They form
a basis for the linear space of S-Heun operators.

Note that the 3 operators L, M1, M2 span the 3-dimensional subspace of all “stabilizing”
S-Heun operators. This means that any operator S = α0L + α1M1 + α2M2 preserves the
degree of any polynomial in x(z), if at least one of α1, α2 is nonzero. Comparing (10.2.5)
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and (10.4.14), it is immediate to see that

Y = (q − q−1)L, U = M1 + qM2, V = M1 + q−1M2, (10.4.15)

and that the operators (L,M1,M2) equivalently realize ska3. We can thus rephrase as follows
the observations of Subsection 10.2.3 according to which the Askey–Wilson operator is given
as a quadratic expression in the operators (Y, U, V ) representing ska3:
Proposition 10.9. The Askey–Wilson operator can be given as the most general quadratic
combination of the S-Heun operators L, M1, M2 that stabilize the degree of polynomials in
x(z).

We know that the operators A,C,D in the realization (10.2.43) of ska4 are proportional
to U, Y, V respectively. It is not difficult to see that B in that same realization can be given
as the following combination of L,R1, R2:

B = (q + q−1)[(q2ν − q−2ν)− (q − q−1)]
2(q − q−1) L+ q1−2ν

2 R1 + (q2ν−1 − q1−2ν)
2(q − q−1) R2. (10.4.16)

We thus have:
Proposition 10.10. The realization (10.2.43) of ska4 is obtained from linear combinations
of S-Heun operators on the Askey–Wilson grid.

In addition, the operator x can be constructed as a quadratic polynomial in the the
elementary S-Heun operators; we have indeed:

x = 1
q2 − q−2

[
(1 + q−4)(qM2R2 −R2M2) + 2q−3(qM1R2 −R2M1)

]
. (10.4.17)

It follows that the Askey–Wilson algebra can be realized by combining quadratically the five
basic S-Heun operators.

10.4.2. Heun–Askey–Wilson and S-Heun operators

We shall now obtain a formula for the Heun–Askey–Wilson operator in terms of S-Heun
operators.

Consider the most general quadratic combination of the operators L, M1, M2, R1, R2

that raises the degree of polynomials in x(z) by at most one. There should hence be no
terms in R1

2 and R2
2. Using the relations in the Appendix 11.A, one can show that this

combination may be written as follows

QHAW =α1L
2 + α2LM2 + α3M1

2 + α4M1M2 + α5M2L+ α6M2
2

+ β1M1R1 + β2R1M1 + β3R2M2
(10.4.18)

where the γi’s and δi’s are arbitrary parameters. On functions f(z) this operator takes the
form:

QHAWf(z) = [A1(z)T 2
+ + A1(z−1)T 2

− + A0(z)I]f(z), (10.4.19)
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with

A1(z) = Q6(z)
z(1− z2)(1− q2z2) , A0(z) = −(A1(z) + A1(z−1)) + p1(x), (10.4.20)

where Q6(z) is a generic polynomial of degree 6 in z and p1(x) is a generic polynomial of
degree 1 in the variable x = z+ z−1. The exact parameters are expressible in terms of those
of (10.4.18):

p1(x) = β2x+ α3, Q6(z) = 1
q2(q − q−1)2

6∑
k=0

rkz
k, (10.4.21)

r0 = β2q
4 − β3q

4 + β1q
3 + β3q

2, r1 = α3q
4 − α4q

3 + α6q
2,

r2 = −β3q
6 + β1q

5 + 2β2q
4 + (α5 + β1)q3 + (α2 + β2 − β3)q2 + β1q,

r3 = −α4q
5 + (α3 + α6)q4 + α1q

3 + (α3 + α6)q2 − α4q,

r4 = −β3q
6 + β1q

5 + (α2 + β2 − β3)q4 + (α5 + β1)q3 + 2β2q
2 + β1q,

r5 = α6q
4 − α4q

3 + α3q
2, r6 = β1q

3 + β2q
2.

(10.4.22)

This operator is recognized as the Askey–Wilson Heun operator which has been identified
and characterized in [6]. (See also [7] and [11].) It is immediately seen that the Askey–Wilson
operator is recovered upon taking the βi’s equal to zero, which is equivalent to removing the
terms involving raising S-Heun operators from QHAW .

This formula giving QHAW as the most general quadratic combination in the S-Heun
operators on the Askey–Wilson grid provides a different characterization of the Heun–Askey–
Wilson operator. As pointed out at the beginning of this section, this operator was identified
in [6] on the one hand as the most general second order q-shift operator that raises by
one the degree of polynomials on the Askey–Wilson grid and on the other hand, as the
tridiagonalization of the Askey–Wilson operator as per the algebraic Heun construct. The
presentation obtained here with the S-Heun operators as basic building blocks has the merit
of providing, typically, a factorization of QHAW . Indeed it is seen that the Heun–Askey–
Wilson operator can also be written generically in the form:

QHAW = (ξ1L+ ξ2M1 + ξ3M2)(η1L+ η2M1 + η3M2 + η4R1 + η5R2) + κ. (10.4.23)

This formula for QHAW should be compared with equation (10.2.30) that provides the fac-
torization of the Askey–Wilson operator as the product of two ska3 elements. It is hence
manifest from (10.4.23) that QHAW reduces to the Askey–Wilson operator when η4 = η5 = 0.

10.5. Conclusion
To conclude, let us first summarize our observations and second offer a brief outlook.
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We have considered realizations of the Sklyanin algebras ska3 and ska4 in terms of q-
difference operators and we determined the first order operators of that type – the S-Heun
operators – that are the basic constituents of the most general degree raising operator in
that class. Within these realizations, our salient observations are:

• The Askey–Wilson operator factorizes as the product of two linear combinations of
elements in ska3;
• In analogy with the dynamical enlargement of a symmetry algebra with the inclusion
of ladder operators, the contiguity and shift operators of the Askey–Wilson polyno-
mials have been shown to generate a realization of the degenerate Sklyanin algebra
ska4 which formally includes a realization of the Askey–Wilson algebra.
• The q-para Racah polynomials (with base q2) have been identified as forming a basis
for the finite-dimensional representations of the degenerate Sklyanin algebra ska4.
• The set of S-Heun operators is five-dimensional and has a subset that realizes ska4.
• The operator multiplication by x has a quadratic expression in terms of the S-Heun
operators.
• The Heun–Askey–Wilson operator can also be written as a quadratic expression in
the S-Heun operators.

With respect to these last two points, let us mention the following. We recall that the alge-
braic Heun construct gives the Heun–Askey–Wilson operator QHAW as a bilinear operator
in x and the Askey–Wilson operator. In view of the first and next to last points, this implies
that QHAW is quartic in the S-Heun operators, an expression that must be reducible to the
quadratic formula (10.4.18) obtained here.

This study raises a number of questions. Let us mention two: (i) How does the ex-
amination of the S-Heun operators extend when the raising property is applied to rational
functions as in [7]? (ii) What other algebraic structures akin to the degenerate Sklyanin
algebras will emerge when the S-Heun operator approach is adapted to other lattices such
as for example the quadratic one on which the Wilson polynomials are defined? We plan on
addressing these and other related questions in the near future.
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10.A. Quadratic algebraic relations for L, M1, M2, R1,
R2

The homogeneous quadratic algebraic relations between the five S-Heun operators L,
M1, M2, R1, R2 are collected below:

[M1,M2] = (q + q−1)2L2, (10.A.1)

M1L− (q + q−1)LM1 = LM2, (10.A.2)

LM1 +M2L = 0, (10.A.3)

M1
2 +M2

2 + (q + q−1)M2M1 = 1, (10.A.4)

LR1 = 1−M2
2, (10.A.5)

R1L = 1−M1
2, (10.A.6)

LR2 = −2L2 + q−1M2
2 +M1M2 + q, (10.A.7)

R2L = −2L2 + qM2
2 + q2M2M1, (10.A.8)

R1M2 +M1R1 = 0, (10.A.9)

M1R2 +R2M2 = 2(q + q−1)M2L− (q + q−1)2LM2, (10.A.10)

qR1M1 −M1R1 = R2M1 + (q2 + q−2)LM1, (10.A.11)

R1M1 − (q + q−1)M1R1 = M2R1 − (q + q−1)(q − q−1)2M2L, (10.A.12)

M2R2 − (q + q−1)R2M2 = R2M1 + 2(q + q−1)M1L− (2q−2 + 1 + q4)LM1, (10.A.13)

R2
2 − qR2R1 + q−1R1R2 = −2(q + q−1)2M1M2 − (q + q−1)3M2

2

+ 2[(q2 + q−2)− (q2 − q−2)2]L2 (10.A.14)

These relations are checked directly from the expressions of the operators in (10.4.14). They
provide the necessary reorderings to reexpress the the most general quadratic combination
of the 5 operators as in (10.4.18).
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Chapitre 11

Sklyanin-like algebras for (q-)linear grids and
(q-)para-Krawtchouk polynomials
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Abstract: S-Heun operators on linear and q-linear grids are introduced. These
operators are special cases of Heun operators and are related to Sklyanin-like algebras.
The Continuous Hahn and Big q-Jacobi polynomials are functions on which these S-Heun
operators have natural actions. We show that the S-Heun operators encompass both the
bispectral operators and Kalnins and Miller’s structure operators. These four structure
operators realize special limit cases of the trigonometric degeneration of the original Sklyanin
algebra. Finite-dimensional representations of these algebras are obtained from a truncation
condition. The corresponding representation bases are finite families of polynomials: the
para-Krawtchouk and q-para-Krawtchouk ones. A natural algebraic interpretation of these
polynomials that had been missing is thus obtained. We also recover the Heun operators
attached to the corresponding bispectral problems as quadratic combinations of the S-Heun
operators.

Keywords: Sklyanin algebras, bispectral orthogonal polynomials, (q-)para-Krawtchouk
polynomials, Heun operators.

11.1. Introduction
In the study of orthogonal polynomials (OPs), many of their properties are expressed as

structure relations between family members with different parameters, arguments or degrees,
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examples are the three term recurrence relation, the differential/difference equation, the
backward/forward relation, etc. As it turns out, the operators involved in these formulas
realize algebras that synthesize much of the characterization of these polynomial ensembles.
The present paper relates to this framework.

One such instance that has proven very fruitful is the (algebraic) study of the two bis-
pectral operators associated to hypergeometric OPs. These operators are the recurrence and
the differential/difference operators. Let us focus on the developments related to the Askey–
Wilson polynomials; since these polynomials sit at the top of the Askey scheme, the gist
of their description descends onto all the lower families in the scheme. The two bispectral
operators for the Askey–Wilson polynomials do not commute: they form an algebra whose
relations have been found by Zhedanov in [1] and it is usually referred to as the Askey–Wilson
algebra.

This algebra has appeared in a great variety of contexts, such as knot theory [2], double
affine Hecke algebras and representation theory [3–5], Howe duality [6, 7], integrable models
[8–11], algebraic combinatorics [12–15], the Racah problem for Uq(sl2) [16, 17], etc. The
abovementioned connections have some specializations for all entries of the Askey tableau.

The work of Kalnins and Miller [18–20] based on the use of four structure or contiguity
operators is another approach that illustrates the use of symmetry techniques in the study
of OPs. These operators that shall be referred to as structure operators in the following
correspond to the backward and forward operators, as well as to another pair of operators
that “factorize” [21] the differential/difference operator. It was recently observed [22] that
for the Askey–Wilson polynomials, these operators realize the relations of the trigonometric
degeneration [23] of the Sklyanin algebra [24]. To our knowledge, the Sklyanin-like algebras
similarly connected to other families of OPs have not been described so far and will be the
center of attention here.

The differential/difference operator of which the OPs are eigenfunctions belongs to the
intersection of the sets of operators involved in the two pictures. A natural question is the
following: what is the most elementary set of operators that encompasses all operators in
both of the approaches above? In the case of the Askey–Wilson polynomials, this answer was
given in [25]: it is the set of so-called S-Heun operators on the Askey–Wilson grid (these
are special types of Heun operators that will be defined in the next section). Operators of
the Heun type are related to the tridiagonalization procedure [26, 27] and have been given
an algebraic formulation [28, 29]. They have been identified as Hamiltonians of quantum
Euler–Arnold tops [30], they have been connected to band-time limiting [31, 32] and to the
study of entanglement in spin chains [33, 34] and they have been studied quite a lot recently
[35–44]. As will be shown below, the S-Heun operators allow a factorization of these Heun
operators. Let us note that in addition to the unification of the two approaches described
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above, the S-Heun framework has also led to a novel algebraic interpretation of the q-para-
Racah polynomials. The goal of the present paper is to look at the grids of linear type
from the S-Heun operators point of view. As a byproduct, an algebraic interpretation of the
para-Krawtchouk and q-para-Krawtchouk polynomials will be obtained. These polynomials
were first identified in the context of perfect state transfer and fractional revival on quantum
spin chains [45–48] and their algebraic interpretation was still lacking.

We will introduce the S-Heun operators on linear grids in Section 11.2. The simplest
example of operators of this type will be worked out in Section 11.3 (this will involve dif-
ferential operators, the Jacobi polynomials and the ordinary Heun operator). Section 11.4
will focus on the S-Heun operators on the discrete linear grid. A new degeneration of the
Sklyanin algebra will be presented. Of relevance in this case, the Continuous Hahn polyno-
mials will be seen to truncate to the para-Krawtchouk polynomials under a special condition
and an algebraic interpretation of such a truncation will be given. The Heun operator on the
uniform grid will also be recovered. The q-linear grid will be examined in Section 11.5 and
the previous analysis will be repeated. The degeneration of the Sklyanin algebra that arises
will be identified as Uq(sl2). The Big q-Jacobi polynomials will be involved, and they will be
observed to reduce to the q-para-Krawtchouk polynomials under a certain condition. The
Big q-Jacobi Heun operator will also be recovered as well. Connections between the three
grids and the associated S-Heun operators and Sklyanin-type algebras will be presented in
Section 11.6, followed by concluding remarks. The quadratic relations between the S-Heun
operators for the three different types of grids are listed in Appendix 11.A.

11.2. S-Heun operators on linear-type grids
S-Heun operators are defined as the most general second order differential/difference

operators without diagonal term that obey a degree raising condition. Like Heun operators,
they can be defined on different grids. We now introduce the three linear grids that we will
use and obtain the S-Heun operators associated to each.

11.2.1. The discrete linear grid

Consider the operator S

S = A1T+ + A2T− (11.2.1)

where

T+f(x) = f(x+ 1), T−f(x) = f(x− 1) (11.2.2)
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are shift operators, and A1,2 are functions in the real variable x. Impose that S maps
polynomials of degree n onto polynomials of degree no higher than n+ 1, namely,

SPn(x) = P̃n+1(x) (11.2.3)

for all n = 0, 1, 2, . . . . This defines the S-Heun operators on the discrete linear grid.
It is sufficient to enforce this raising condition on monomials xn; for n = 0 and n = 1, it

reads

A1 + A2 = a00 + a01x, (11.2.4a)

A1(x+ 1) + A2(x− 1) = a10 + a11x+ a12x
2, (11.2.4b)

for some arbitrary parameters aij. This can be rewritten as

A1 + A2 = a00 + a01x, (11.2.5a)

A1 − A2 = a10 + (a11 − a00)x+ (a12 − a01)x2. (11.2.5b)

Straightforward induction shows that in general one has

Sxn = A1(x+ 1)n + A2(x− 1)n =
n∑
k=0

(
n

k

)
xk[A1 + (−1)n−kA2], (11.2.6)

which is a polynomial of degree n+ 1. Thus, the functions A1, A2

A1 = 1
2

[
(−a01 + a12)x2 + (−a00 + a01 + a11)x+ (a00 + a10)

]
, (11.2.7a)

A2 = 1
2

[
(+a01 − a12)x2 + (+a00 + a01 − a11)x+ (a00 − a10)

]
(11.2.7b)

satisfy (11.2.5) and the operator (11.2.1) meets the degree raising condition.
Proposition 11.1. With the functions A1, A2 given by (11.2.7), the operator S in (11.2.1)
is the most general S-Heun operator on the linear grid. S depends on 5 free parameters and
spans a 5-dimensional linear space. The elements

L = 1
2 [T+ − T−] , (11.2.8a)

M1 = 1
2 [T+ + T−] , (11.2.8b)

M2 = 1
2x [T+ − T−] , (11.2.8c)

R1 = 1
2x [(1− 2x)T+ + (1 + 2x)T−] , (11.2.8d)

R2 = 1
2x [T+ + T−] . (11.2.8e)

form a basis for this space.
Using (11.2.6), one sees that the operator L is a lowering operator (it lowers by one the

degree of polynomials in x), the operators M1, M2 are stabilizing operators (they do not
change the degree) and the operators R1, R2 are raising operators (they raise it by one).
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11.2.2. The q-linear grid

Condider now the q-linear grid z = qx (or exponential grid). The S-Heun operators Ŝ on
that grid are of the form

Ŝ = Â1(z, q)T̂+ + Â2(z, q)T̂−, (11.2.9)

with

T̂±f(z) = f(q±1z), (11.2.10)

and are taken to map polynomials in z onto polynomials of at most one degree higher:
ŜPn(z) = P̃n+1(z). Imposing this degree raising condition on the first monomials 1 and z

yields

Â1(z, q) + Â2(z, q) = a00 + a01z, (11.2.11a)

Â1(z, q)q + Â2(z, q)q−1 = a10z
−1 + a11 + a12z. (11.2.11b)

Straightforward induction shows that in general one has

Ŝzn = (Â1q
n + Â2q

−n)zn = zn[Â1q + Â2q
−1]q

n − q−n

q − q−1 − z
n[Â1 + Â2]q

n−1 − q1−n

q − q−1 , (11.2.12)

which is a polynomial of degree n + 1 in z. Thus, an operator Ŝ with Â1(z, q) and Â2(z, q)
that satisfies (11.2.11) will obey the degree raising condition on any monomial. We hence
obtain:

Â1(z, q) = Â2(z, q−1) = 1
(q − q−1)z

[
a10 + (a11 − a00q

−1)z + (a12 − a01q
−1)z2

]
. (11.2.13)

Proposition 11.2. With the functions Â1(z, q), Â2(z, q) given by (11.2.13), the operator Ŝ
in (11.2.9) is the most general S-Heun operator on the q-linear grid. Ŝ depends on 5 free
parameters and spans a 5-dimensional linear space. The elements

L̂ = 1
(q − q−1)z

−1(T̂+ − T̂−), (11.2.14a)

M̂1 = 1
(q − q−1)(−q−1T̂+ + qT̂−), (11.2.14b)

M̂2 = 1
(q − q−1)(T̂+ − T̂−), (11.2.14c)

R̂1 = 1
(q − q−1)z(−q−1T̂+ + qT̂−), (11.2.14d)

R̂2 = 1
(q − q−1)z(T̂+ − T̂−). (11.2.14e)

can be chosen as a basis for this space.
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Looking at (11.2.12) and (11.2.13), one sees that the operator L̂ lowers the degrees, and
that the M̂i’s and the R̂i’s are respectively stabilizing and raising operators.

11.2.3. The simplest case: differential S-Heun operators

The definition of the S-Heun operators on the real line goes as follows. Consider the
first-order differential operator

S̄ = Ā1(x) d
dx

+ Ā2(x) (11.2.15)

and impose the raising condition S̄pn(x) = p̃n+1(x) which demands that S̄ sends polynomials
into polynomials of one degree higher. The general solution is given by

Ā1(x) = a10 + a11x+ a12x
2, Ā2(x) = a20 + a21x. (11.2.16)

This leads to the following set of five linearly independent S-Heun operators [30]

L̄ = d

dx
, M̄1 = 1, M̄2 = x

d

dx
, R̄1 = x, R̄2 = x2 d

dx
, (11.2.17)

which are once again labelled according to their property of lowering (L̄), stabilizing (M̄) or
raising (R̄) the degree of polynomials in the variable x.

These S-Heun operators can also be obtained as a q → 1 limit of the ones defined on the
q-linear grid. More precisely, writing q = e~ and letting ~→ 0, one obtains

lim
q→1

L̂ = L̄, lim
q→1

M̂1 = M̄1 − M̄2, lim
q→1

M̂2 = M̄2,

lim
q→1

R̂1 = R̄1 − R̄2, lim
q→1

R̂2 = R̄2.
(11.2.18)

This connects with the definition of the continuous S-Heun operators. These S-Heun opera-
tors will also be related to the ordinary Heun operator introduced in the next section.

11.3. The continuous case
The goal of this section is to revisit (mostly known) results with a point of view that

will be adopted in the following sections. Here, we are interested in studying the OPs and
algebras related to the set of the five S-Heun operators defined in Section 11.2.3.

11.3.1. The stabilizing subalgebra

We first study the subset {L̄, M̄1, M̄2} of S-Heun operators that stabilize the set of poly-
nomials of a given degree. Let us denote by Q̄ the most general quadratic combination of
these operators. Using the relations of Appendix 11.A, it is always possible to reduce Q̄ to
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an expression of the form

Q̄ = α1L̄
2 + α2L̄M̄1 + α3L̄M̄2 + α4M̄1

2 + α5M̄1M̄2 + α6M̄2
2. (11.3.1)

Using the realizations (11.2.17), the eigenvalue equation for the second-order differential
operator Q̄ can be brought in the form

D̄P (α,β)
n (x) = n(n+ α + β + 1)P (α,β)

n (x),

D̄ = (x2 − 1) d
2

dx2 + [(α− β) + (α + β + 2)x] d
dx
,

(11.3.2)

which is recognized as the differential equation satisfied by the Jacobi polynomials [49].
We have thus identified the family of OPs related to these (ordinary) S-Heun operators,

and as will be seen in Subsection 11.3.2, certain combinations of these S-Heun operators
provide the structure relations of these polynomials.

11.3.2. Jacobi polynomials and their structure relations

Consider the forward and backward operators for the Jacobi polynomials

τ̄ = L̄, τ̄ (α,β)∗ = −L̄+ (α− β)M̄1 + (α + β)R̄1 + R̄2. (11.3.3a)

and the contiguity operators

µ̄(α) = −L̄+ αM̄1 + M̄2, µ̄(β)∗ = L̄+ βM̄1 + M̄2. (11.3.3b)

These four operators act very simply on the Jacobi polynomials:

τ̄P (α,β)
n (x) = 1

2(n+ α + β + 1)P (α+1,β+1)
n−1 (x), (11.3.4a)

τ̄ (α,β)∗P (α,β)
n (x) = 2(n+ 1)P (α−1,β−1)

n+1 (x), (11.3.4b)

µ̄(α)P (α,β)
n (x) = (n+ α)P (α−1,β+1)

n (x), (11.3.4c)

µ̄(β)∗P (α,β)
n (x) = (n+ β)P (α+1,β−1)

n (x). (11.3.4d)

The operators µ̄(α), µ̄(β)∗ , τ̄ , τ̄ (α,β)∗ built from linear combinations of S-Heun operators are
of the type studied by Kalnins and Miller [19].

We have mentioned in the introduction that S-Heun operators encompass both the struc-
ture operators of Kalnins and Miller and the bispectral operators. Let us indicate how the
latter operators appear in this context. First, as mentioned above, the Jacobi differential
operator appears as a quadratic combination of the stabilizing generators. We can actually
provide a factorization of this operator either as a product of two contiguous operators or as
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the product of the forward and backward operator:

D̄ = µ̄(α+1)µ̄(β)∗ − (α + 1)β

= µ̄(β+1)∗µ̄(α) − α(β + 1)

= τ̄ (α+1,β+1)∗ τ̄

= τ̄ τ̄ (α,β)∗ − (α + β).

(11.3.5)

The other bispectral operator X̄ is the multiplication by the variable x. It can be directly
expressed as R̄1, but since it will appear as a quadratic combination of the S-Heun operators
for other grids, we shall write it here as

X̄ = R̄1M̄1. (11.3.6)

We have thus recovered the two bispectral operators as quadratic combinations in the S-Heun
operators. This completes the observation that the S-Heun operators are the elementary
blocks behind the two factorizations.

11.3.3. The Sklyanin-like algebra realized by the structure opera-
tors

We now focus on the algebras that are realized by these sets of operators. On the one
hand the pair of bispectral Jacobi operators is known [50] to generate the Jacobi algebra that
has been well studied [51]. On the other hand, the algebra formed by the 4 linear operators
µ̄(α), µ̄(β)∗ , τ̄ , τ̄ (α,β)∗ can be seen to be a degeneration of the Sklyanin algebra [24].

We now give a presentation of this algebra. Denote ν = −1
2(α + β) and set

Ā = M̄2 − νM̄1, B̄ = R̄2 − 2νR̄1, C̄ = L̄, D̄ = M̄1. (11.3.7)

These linear combinations of µ̄(α), µ̄(β)∗ , τ̄ , τ̄ (α,β)∗ have been chosen in order to simplify the
relations.
Proposition 11.3. The operators Ā, B̄, C̄, D̄ obey the homogeneous quadratic relations

[C̄, D̄] = 0, [Ā, C̄] = −C̄D̄, [Ā, D̄] = 0,

[B̄, C̄] = −2ĀD̄, [Ā, B̄] = B̄D̄, [B̄, D̄] = 0.
(11.3.8)

Remark 11.4. One will notice that these relations are actually the relations of the sl2 Lie
algebra supplemented with a central element D (one recovers U(sl2) by quotienting the above
algebra (11.3.8) by the additional relation D = 1). The reason why we wrote these in a
quadratic fashion is to make easier the comparison with the other Sklyanin algebras that will
be obtained later.

One observes that if ν is an integer or half-integer, the realization (11.3.7) is associated
to a finite dimensional representation of dimension 2ν + 1.

214



11.3.4. Recovering the Heun operator

We now show how to recover the ordinary (differential) Heun operator from the knowledge
of the S-Heun operators.

The generic Heun operator W̄ can be expressed as the most general tridiagonalization of
the hypergeometric operator [27]. It has been known to be

W̄ = Q3(x) d
2

dx2 +Q2(x) d
dx

+Q1(x), (11.3.9)

where Q3(x), Q2(x) and Q1(x) are general polynomials of degree 3, 2 and 1 respectively.
Let us consider the most general quadratic combination of S-Heun operators that does

not raise the degree of polynomials by more than one. Using the quadratic homogeneous
relations of Appendix 11.A, it is always possible to simplify such an expression to

W̄ = α1L̄
2 + α2L̄M̄1 + α3L̄M̄2 + α4M̄1

2 + α5M̄1M̄2 + α6M̄2
2

+ β1M̄1R̄2 + β2M̄2R̄1 + β3M̄2R̄2.
(11.3.10)

From the differential expressions of the generators we obtain

W̄ = Q3(x) d
2

dx2 +Q2(x) d
dx

+Q1(x)I,

Q3(x) = α1 + α3x+ α6x
2 + β3x

3,

Q2(x) = (α2 + α3) + (α5 + α6)x+ (β1 + β2 + 2β3)x2,

Q1(x) = α4 + β2x,

(11.3.11)

where I is the identity operator: If(x) = f(x).
Proposition 11.5. The generic Heun operator (11.3.9) can be obtained as the most general
quadratic combination in the S-Heun generators (11.2.17) that does not raise the degree of
polynomials by more than one.

Calling upon the reordering relations of Appendix 11.A, it is seen that the Heun operator
generically factorizes as the product of a general S-Heun operator with a stabilizing S-Heun
operator:

W̄ = (ξ1L̄+ ξ2M̄1 + ξ3M̄2)(η1L̄+ η2M̄1 + η3M̄2 + η4R̄1 + η5R̄2) + κ. (11.3.12)

11.4. S-Heun operators on the linear grid
We now come to one of the main topics of the paper, namely the S-Heun operators defined

on the linear grid.
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11.4.1. The stabilizing subset

The subset of S-Heun operators that stabilizes the polynomials of a given degree is
{L,M1,M2}. The most general quadratic combination of these operators can always be
reduced to an expression of the form

Q = α1L
2 + α2LM1 + α3LM2 + α4M1

2 + α5M1M2 + α6M2
2 (11.4.1)

using the relations of Appendix 11.A. Substituting the expressions (11.2.8), one sees that
Q is a second-order difference operator. By straightforward manipulations, the eigenvalue
equation for Q can be transformed into the difference equation of the Continuous Hahn
polynomials [49]

DPn(x̃; a, b, c, d) = n(n+ a+ b+ c+ d− 1)Pn(x̃; a, b, c, d),

D = B(x̃)T 2
+ − [B(x̃) +D(x̃)]I +D(x̃)T 2

−,

B(x) = (c− ix)(d− ix), D(x) = (a+ ix)(b+ ix),

(11.4.2)

with x̃ = ix2 and where a, b, c, d are given in terms of the αi. From this, we recognize that
the key family of OPs related to these S-Heun operators is the Continuous Hahn family.

11.4.2. Continuous Hahn polynomials and their structure relations

The following combinations of S-Heun operators

τ = 2L, (11.4.3a)

τ (a,b,c,d)∗ = µ1L+ µ2M1 + µ3M2 + µ4R1 + µ5R2, (11.4.3b)

with
µ1 = 1

2(1− (a+ b+ c+ d)) + (ab+ cd),

µ2 = 1
2(a+ b− c− d)− (ab− cd),

µ3 = 1
2(c+ d− a− b),

µ4 = −1
4 ,

µ5 = 1
2(a+ b+ c+ d)− 3

4

(11.4.3c)

turn out to be the forward and backward operators, while

µ(a,b,c,d) = (d− a)L+ (a+ d− 1)M1 +M2, (11.4.3d)

µ(a,b,c,d)∗ = (c− b)L+ (b+ c− 1)M1 +M2, (11.4.3e)
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will act on polynomials as the contiguity relations. Indeed, these operators have the following
actions on the Continuous Hahn polynomials:

τ Pn
(
ix2 , a, b, c, d

)
= i(n+ a+ b+ c+ d− 1)Pn−1

(
ix2 , a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
,

(11.4.4a)

τ (a,b,c,d)∗ Pn
(
ix2 , a, b, c, d

)
= −i(n+ 1)Pn+1

(
ix2 , a−

1
2 , b−

1
2 , c−

1
2 , d−

1
2

)
, (11.4.4b)

µ(a,b,c,d) Pn
(
ix2 , a, b, c, d

)
= (n+ a+ d− 1)Pn

(
ix2 , a−

1
2 , b+ 1

2 , c+ 1
2 , d−

1
2

)
, (11.4.4c)

µ(a,b,c,d)∗ Pn
(
ix2 , a, b, c, d

)
= (n+ b+ c− 1)Pn

(
ix2 , a+ 1

2 , b−
1
2 , c−

1
2 , d+ 1

2

)
. (11.4.4d)

The 4 operators µ(a,b,c,d), µ(a,b,c,d)∗ , τ , τ (a,b,c,d)∗ have been studied by Kalnins and Miller in
[19].

We now indicate how the two bispectral operators are formed from the S-Heun operators.
As mentioned above, the Continuous Hahn difference operator can be formed by a quadratic
combination of the stabilizing generators. Moreover, we can provide factorizations of this
operator, either as a product of two contiguous operators or as the product of the backward
and forward operators:

D = µ(a+ 1
2 ,b−

1
2 ,c−

1
2 ,d+ 1

2 )µ(a,b,c,d)∗ − (a+ d)(b+ c− 1)

= µ(a− 1
2 ,b+

1
2 ,c+

1
2 ,d−

1
2 )∗µ(a,b,c,d) − (a+ d− 1)(b+ c)

= τ (a+ 1
2 ,b+

1
2 ,c+

1
2 ,d+ 1

2 )∗τ

= τ τ (a,b,c,d)∗ + 2− (a+ b+ c+ d).

(11.4.5)

The remaining bispectral operator X is the multiplication by the variable x in this basis:
Xf(x) = xf(x). It appears as a quadratic combination in the S-Heun operators

X = [M2, R2]. (11.4.6)

The framework of S-Heun operators presented here is thus seen to unite the symmetry
techniques of Kalnins and Miller and the approach based on the bispectral operators (see
[52] for more general context).

11.4.3. The Sklyanin-like algebra realized by the structure opera-
tors

Let us now look at the algebraic relations obeyed by these operators. On the one hand,
the pair of bispectral Continuous Hahn operators realizes the Hahn algebra [39]. On the
other hand, the algebra formed by the 4 linear operators µ(a,b,c,d), µ(a,b,c,d)∗ , τ , τ (a,b,c,d)∗ can
be seen as a degeneration of the Sklyanin algebra.
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This algebra can be presented as follows. Write ν = −1
2(a+ b+ c+ d) and take

A = 2(ν + 1)M1 − 2M2,

B = 1
2(2ν + 1)(2ν + 3)L−R1 − (4ν + 3)R2,

C = L,

D = M1.

(11.4.7)

These are linear combinations of µ(a,b,c,d), µ(a,b,c,d)∗ , τ , τ (a,b,c,d)∗ that have been chosen in order
to simplify the relations.
Proposition 11.6. The elements A, B, C, D obey the quadratic relations

[C,D] = 0, [A,C] = {C,D}, [A,D] = {C,C}, (11.4.8a)

[B,C] = {D,A}, [B,D] = {C,A}, [B,A] = {B,D}. (11.4.8b)

We shall refer to these relations as those of the Skl4 algebra.
The two quadratic Casimir elements are

Ω1 = D2 − C2, Ω2 = A2 +D2 − {B,C} (11.4.9)

and they take the following values in the realization:

Ω1 = 1, Ω2 = (2ν + 3)2. (11.4.10)

Remark 11.7. The stabilizing subalgebra of Skl4 (11.4.8a), which we shall denote by Skl3,
has been identified in [53] as the algebra T7|(a,b)=(0,0) whose relations are isomorphic to

[x, y] = z2, [y, z] = 0, [x, z] = zy. (11.4.11)

It enjoys nice properties such as being Koszul, PBW, and being derived from a twisted po-
tential. That the above algebra is Skl3 is seen by setting x = 1

2A, y = D, z = C.
We now explain that Skl4 is a degeneration of the Sklyanin algebra. We rewrite the

τ (a,b,c,d)∗ in terms of A, B, C, D, using e1 = a+ b+ c+ d:

τ (a,b,c,d)∗ = 1
4(a+ b− c− d)A+ 1

4B +
[

1
8(1− e1)(1 + e1) + ab+ cd

]
C

+
[

1
4e1(a+ b− c− d)− ab+ cd

]
D.

(11.4.12)

Two analogs of an identity due to Rains [54] can be obtained for τ (a,b,c,d)∗ . These are the
quasi-commutation relations:

τ (a+e,b,c,d−e)∗τ (a− 1
2 ,b+

1
2 ,c+

1
2 ,d−

1
2 )∗ = τ (a,b,c,d)∗τ (a− 1

2 +e,b+ 1
2 ,c+

1
2 ,d−

1
2−e)

∗
, (11.4.13)

τ (a,b+e,c−e,d)∗τ (a+ 1
2 ,b−

1
2 ,c−

1
2 ,d+ 1

2 )∗ = τ (a,b,c,d)∗τ (a+ 1
2 ,b−

1
2 +e,c− 1

2−e,d+ 1
2 )∗ . (11.4.14)

Proposition 11.8. Either of the quasi-commutation relation (11.4.13), (11.4.14) repackages
the relations (11.4.8) of the Skl4 algebra.
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Proof: Substituting the relation (11.4.12) into (11.4.13) and bringing all terms to the rhs,
one obtains (u = b− c, v = a− b− c+ d):

0 = e
4

{
1
2(AB −BA) + u(CB −BC) + 1

2 [(2− v)BD + vDB]

+ u
[
(2− v)AD + vDA− 2(1− v)C2

]
− 1

4

[
(v2 + 4u2 − 4v + 3)AC − (v2 + 4u2 − 1)CA

]
,

+ 1
4

[
v3 − 4u2v + 8u2 − 2v2 − v + 2

]
CD − 1

4

[
v3 − 4u2v − 4v2 + 3v

]
DC

}
.

(11.4.15)

The dependence on the free parameter e factors out. Taking v →∞, one obtains immediately
that

CD −DC = 0. (11.4.16)

Also, taking u→ 0 and v → 0, one gets

AB −BA = −2BD + 3
2AC + 1

2CA− CD. (11.4.17)

Substituting these relations back in (11.4.15) leads to

0 = e
4

{
u(CB −BC) + v

2 [DB −BD] + u
[
(2− v)AD + vDA− 2(1− v)C2

]
− 1

4

[
(v2 + 4u2 − 4v)AC − (v2 + 4u2)CA

]
+ 1

4

[
8u2 + 2v2 − 4v

]
CD

}
.

(11.4.18)

Repeating a similar process, the remaining relations of (11.4.8) are found. A similar deriva-
tion starting from (11.4.14) instead yields the same relations. �

11.4.4. Finite-dimensional representations

It is known that finite-dimensional representations of the Hahn algebra relate to the
Hahn polynomials [51]. We now wish to obtain finite-dimensional representations of the
Skl4 algebra; looking at (11.4.7), it is seen that one needs ν to be either an integer or half-
integer. It will be shown that this corresponds in fact to a truncation of the Jacobi matrix
of the Continuous Hahn polynomials.

Let us write the condition (ν is either an integer or half-integer) as

1− (a+ b+ c+ d) = N, (11.4.19)

where N is a positive integer that corresponds to the maximal degree of the truncated family
of polynomials.

This truncation condition is known [46] to be the one that takes the Wilson polynomials
to the para-Racah polynomials. In the present case, we start from the Continuous Hahn
OPs so the result of the truncation leads to a different family of para-polynomials.
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Proposition 11.9. The polynomials that arise from the truncation condition (11.4.19) form
a basis that supports (N + 1)-dimensional representations of the degenerate Sklyanin algebra
Skl4 and are identified as the para-Krawtchouk polynomials [45].

We indicate below how the recurrence relation of the para-Krawtchouk polynomials is
obtained from that of the Continuous Hahn polynomials by imposing (11.4.19).

11.4.4.1. N = 2j + 1 odd. In the case where N = 2j + 1 is odd (j is a non-negative
integer), we parametrize the truncation condition as follows

c = −a− j + e1t, b = −d− j + e2t (11.4.20)

and then take the limit t→ 0. We shall choose e1 = e2: this will lead to simpler expressions.
The more general solutions corresponding to e1 6= e2 can be recovered from the simpler
solutions by the procedure of isospectral deformations, see for instance [55]. Using the chosen
parametrization, the recurrence coefficients An, Cn appearing in the recurrence relation of
the Continuous Hahn polynomials

(a+ix)Pn(x; a, b, c, d)=AnPn+1(x; a, b, c, d) + CnPn−1(x; a, b, c, d)− (An+Cn)Pn(x; a, b, c, d),

Pn(x; a, b, c, d) = n!
in(a+ c)n(a+ d)n

pn(x; a, b, c, d)

(11.4.21)

become in the limit t→ 0:

An = −(n−N)(n+ a+ d)
2(2n−N) , (11.4.22a)

Cn = +n(n−N − a− d)
2(2n−N) . (11.4.22b)

Now take γ to be

γ = (b+ c)− (a+ d), (11.4.23)

it follows that (11.4.22) can be rewritten in view of (11.4.19) as

An = −1
2

(N − n)(N − 1− 2n+ γ)
2(2n−N) , (11.4.24a)

Cn = −1
2
n(N + 1− 2n− γ)

2(2n−N) . (11.4.24b)

These are recognized as the recurrence coefficients of the para-Krawtchouk polynomials in
the variable −x

2 introduced in [45]. These polynomials are defined on the union of two linear
lattices and the parameter γ describes the displacement of one lattice with respect to the
other.
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11.4.4.2. N = 2j even. In the case where N = 2j is even, we use the parametrization

c = −a− j + e1t, b = −d− j + e1t+ 1 (11.4.25)

and then take the limit t → 0. The recurrence coefficients in the recurrence relation of the
Continuous Hahn polynomials become

An = −(n−N)(n+ a+ d)
2(2n−N + 1) , (11.4.26a)

Cn = +n(n−N − a− d)
2(2n−N − 1) , (11.4.26b)

and upon writing

γ = 1 + (b+ c)− (a+ d), (11.4.27)

we obtain

An = −1
2

(N − n)(N − 2− 2n+ γ)
2(2n−N + 1) , (11.4.28a)

Cn = −1
2
n(N + 2− 2n− γ)

2(2n−N − 1) . (11.4.28b)

These are the recurrence coefficients of the para-Krawtchouk polynomials in the variable −x
2 .

The expressions for the monic polynomials are given in [46].

11.4.4.3. A remark on the truncation condition. It can be checked that in the realiza-
tion (11.4.7), applying the truncation condition (11.4.19) seems to suggest that the raising
operator B annihilates the monomial xN+1 and not xN . A priori, this means that the trun-
cation condition amounts to looking at (N + 2)-dimensional representations of the algebra
Skl4, which would seem to contradict the fact that the para-Krawtchouk polynomials were
truncated to have degrees at most N (and thus to span a space of dimension N + 1).

Looking at the situation more closely, one observes that B indeed maps para-Krawtchouk
polynomial of maximal degree N to a certain polynomial of degree N + 1. But this polyno-
mial of degree N +1 corresponds to the characteristic polynomial of the (upper block of the)
truncated Jacobi matrix, hence it is null on the orthogonality grid points. Keeping in mind
that the para-Krawtchouk polynomials are the basis vectors for the finite-dimensional repre-
sentation of Skl4, this characteristic polynomial thus corresponds to a null vector. Therefore
the dimension of the space on which the representation of the Skl4 algebra acts is indeed
N + 1.

11.4.5. Recovering the associated Heun operator

The Heun operator associated to the Continuous Hahn polynomials was implicitly defined
in [39]. This operatorWCH is the most general second order operator that acts on the discrete
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linear grid and maps polynomials of degree n into polynomials of degree n + 1. It can be
expressed as

WCH = A1T+ +A0I +A2T−, (11.4.29)

where A1,2 are general polynomials of degree 3 with the same leading order coefficient, and
A0 +A1 +A2 = π1(x), with π1(x) a general polynomial of degree 1.

We now consider the most general quadratic combination of S-Heun operators that does
not raise the degree of polynomials by more than one. Upon using the quadratic homogeneous
relations of Appendix 11.A, this general combination can be brought into the form

W = α1L
2 + α2LM1 + α3LM2 + α4M1

2 + α5M1M2 + α6M2
2

+ β1M1R2 + β2M2R1 + β3M2R2.
(11.4.30)

Substituting the expressions of the S-Heun basis operators (11.2.8), we obtain

W = A1T
2
+ +A0I +A2T

2
−,

A1 = 1
4 [−2β2x

3 + (α6 − 3β2 + β3)x2 + (α3 + α5 + α6 + β1 − β2 + β3)x

+ (α1 + α2 + α3 + α4 + α5 + β1)],

A2 = 1
4 [−2β2x

3 + (α6 + 3β2 − β3)x2 + (α3 − α5 − α6 + β1 − β2 + β3)x

+ (α1 − α2 − α3 + α4 + α5 − β1)],

A0 = (β1 + β2 + β3)x+ α4 − (A1 +A2).

(11.4.31)

Proposition 11.10. The generic Heun–Continuous Hahn operator (11.4.29) can be obtained
as the most general quadratic combination in the S-Heun generators (11.2.8) that does not
raise the degree of polynomials by more than one.

Using the relations of Appendix 11.A, one can see that the Heun operator generically
factorizes as the product of a general S-Heun operator with a stabilizing S-Heun operator:

W = (ξ1L+ ξ2M1 + ξ3M2)(η1L+ η2M1 + η3M2 + η4R1 + η5R2) + κ. (11.4.32)

11.5. The case of the q-linear grid
We consider now the S-Heun operators associated to the q-linear (or exponential) grid.

11.5.1. The stabilizing subspace

The stabilizing subset of S-Heun operators is {L̂, M̂1, M̂2}. Using the relations of Ap-
pendix 11.A, it is always possible to reduce the most general quadratic combination of these
operators to

Q̂ = α1L̂
2 + α2L̂M̂1 + α3L̂M̂2 + α4M̂1

2 + α5M̂1M̂2 + α6M̂2
2. (11.5.1)
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Substituting the expressions (11.2.14), one recognizes Q̂ as a second-order q-difference oper-
ator whose eigenvalue problem can be cast as the difference equation

D̂Pn(z;α, β, γ; q̃) = (q̃−n − 1)(1− αβq̃n+1)Pn(z;α, β, γ; q̃),

D̂ = B(z)T̂ 2
+ − [B(z) +D(z)]I +D(z)T̂ 2

−,

B(z) = αq̃(z − 1)(βz − γ)
z2 , D(z) = (z − αq̃)(z − γq̃)

z2

(11.5.2)

of the Big q-Jacobi polynomials [49] in base q̃ = q2, making those the OPs associated
to S-Heun operators on the exponential lattice. We note that there is a duality between
the Continuous Dual q-Hahn and the Big q-Jacobi polynomials [56] that can be pictured as
follows: exchanging the degree with the variable in some way takes one family of polynomials
into the other (with transformed parameters). Thus, if we were to write the S-Heun operators
(11.2.14) by replacing the variable with the degree in the appropriate way, the Continuous
Dual q-Hahn polynomials would arise instead.

11.5.2. Big q-Jacobi polynomials and their structure relations

Focusing on the structure and contiguity relations of the Big q-Jacobi polynomials, we
shall show how the set of S-Heun operators spans a space that contains the relevant operators.
Let

τ̂ = (q − q−1)L̂, (11.5.3a)

τ̂ (a,b,c,d)∗ = µ1L̂+ µ2M̂1 + µ3M̂2 + µ4R̂1 + µ5R̂2, (11.5.3b)

with
µ1 = −(q − q−1),

µ2 = (a+ b)q−1 − q(c−1 + d−1),

µ3 = (a+ b)− (c−1 + d−1),

µ4 = −abq−2 + q2c−1d−1,

µ5 = −abq−1 + qc−1d−1,

(11.5.3c)

and

µ̂(a,b,c,d) = (q − q−1)L− (aq−1 − qd−1)M1 − (a− d−1)M2, (11.5.3d)

µ̂(a,b,c,d)∗ = (q − q−1)L− (bq−1 − qc−1)M1 − (b− c−1)M2. (11.5.3e)

The actions of these operators on the Big q-Jacobi polynomials Pn(z;α, β, γ; q2) is best
presented as follows. Let

Φ(a,b,c,d)
n (z; q̃) = Pn(az; acq̃−1, bdq̃−1, adq̃−1; q̃). (11.5.4)
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It is clear that the parameter a is redundant. One has Φ(1,β/γ,αq̃,γq̃)
n (z; q̃) = Pn(z;α, β, γ; q̃).

It is seen that

τ̂ Φ(a,b,c,d)
n (z; q̃) = aq(1− q−2n)(1− abcdq2n−2)

(1− ad)(1− ac) Φ(aq,bq,cq,dq)
n−1 (z; q̃), (11.5.5a)

τ̂ (a,b,c,d)∗ Φ(a,b,c,d)
n (z; q̃) = (ac− q2)(ad− q2)

acdq
Φ(aq−1,bq−1,cq−1,dq−1)
n+1 (z; q̃), (11.5.5b)

µ̂(a,b,c,d) Φ(a,b,c,d)
n (z; q̃) = q

d
(1− adq−2)Φ(aq−1,bq,cq,dq−1)

n (z; q̃), (11.5.5c)

µ̂(a,b,c,d)∗ Φ(a,b,c,d)
n (z; q̃) = −q(ad− q

−2n)(1− bcq2n−2)
c(1− ad) Φ(aq,bq−1,cq−1,dq)

n (z; q̃). (11.5.5d)

The 4 operators µ̂(a,b,c,d), µ̂(a,b,c,d)∗ , τ̂ , τ̂ (a,b,c,d)∗ built from linear combinations of S-Heun
operators have been studied by Kalnins and Miller in [19].

Let us further indicate how the bispectral operators show up in this context. As men-
tioned above, the Big q-Jacobi difference operator appears as a quadratic combination of the
stabilizing generators. Moreover, one can actually provide factorizations of this operator in
terms of contiguity operators as well as backward and forward operators:

D̂ = αγq3µ(q, β
γq
,αq,γq3)µ(1,β

γ
,αq2,γq2)∗ − (1− γq2)(1− αβ

γ
)

= αγq3µ(q−1,βq
γ
,αq3,γq)∗µ(1,β

γ
,αq2,γq2) − (1− γ)(1− αβq2

γ
)

= −αγq3τ̂ (q,βq
γ
,αq3,γq3)∗τ

= −αγq3τ̂ τ̂ (1,β
γ
,αq2,βq2)∗ − (1− q2)(1− αβ).

(11.5.6)

The second bispectral operator X̂ is the multiplication by the variable z: X̂f(z) = zf(z).
It also appears as the quadratic combination of S-Heun operators:

X̂ = M̂2R̂1 − M̂1R̂2. (11.5.7)

The S-Heun operators thus underscore much of the characterization of the Big q-Jacobi
operators.

11.5.3. The Sklyanin-type algebra realized by the structure opera-
tors

The pair of bispectral Big q-Jacobi operators is known to realize the Big q-Jacobi algebra
[42, 57]. The algebra generated by the 4 linear operators µ̂(a,b,c,d), µ̂(a,b,c,d)∗ , τ̂ , τ̂ (a,b,c,d)∗ is a
familiar degeneration of the Sklyanin algebra [24].
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Denote q−ν = (abcd) 1
4 and form

Â = q−ν(M̂1 + qM̂2),

B̂ = 1
2(q − q−1) [q2ν(R̂1 + q−1R̂2)− q−2ν(R̂1 + qR̂2)],

Ĉ = 2L̂,

D̂ = qν(M̂1 + q−1M̂2).

(11.5.8)

Proposition 11.11. The operators Â, B̂, Ĉ, D̂ obey the quadratic relations

ÂB̂ = qB̂Â, B̂D̂ = qD̂B̂, ĈÂ = qÂĈ, D̂Ĉ = qĈD̂,

[B̂, Ĉ] = Â2 − D̂2

q − q−1 , [Â, D̂] = 0
(11.5.9a)

along with the additional relation

ÂD̂ = D̂Â = 1 (11.5.9b)

which define Uq(sl2).
When ν is an integer or a half-integer, one obtains finite-dimensional representations of

Uq(sl2) of dimension 2ν + 1. In that case, the maximal degree of the polynomials obtained
from the action of the raising operator B̂ is N .
Remark 11.12. The q → 1 limit of this realization yields the sl2 commutation relations.
In fact (11.5.8) tends to the differential Bargmann realization of sl2. Under the limit, the
q-linear grid becomes the continuum, and the above combinations of shift operators turn into
differential operators.
Remark 11.13. The algebra (11.3.8) has been obtained in [58] as a so-called “homogenized
sl2 algebra” H(sl2). Many algebras of a similar type with 4 generators A, B, C, D, and
D central, have been studied in [59]. A quantization of H(sl2) which is isomorphic to the
algebra with relations (11.5.9a) and which can be seen as a homogenization of Uq(sl2) has
been studied in [60].

11.5.4. Finite-dimensional representations

We now wish to obtain finite-dimensional representations of Uq(sl2) corresponding to a
particular truncation of the Jacobi matrix of the Big q-Jacobi polynomials. As mentioned
previously, this can be accomplished by taking ν to be either an integer or a half-integer. In
order to do so, we are led to take [61]

√
abcd = q1−N , (11.5.10)

where N is a positive integer that corresponds to the maximal degree of the truncated family
of polynomials.
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Proposition 11.14. The polynomials that arise from the truncation condition (11.5.10)
form a basis that supports (N + 1)-dimensional representations of Uq(sl2) in the realization
(11.5.8). The q-para-Krawtchouk polynomials [57] are the ones that arise from this truncation
condition.

We show below how their recurrence relation is obtained from the one of the Big q-Jacobi
polynomials.

11.5.4.1. N = 2j + 1 odd. In the case where N = 2j + 1 is odd, we write

d = a−1q−2j+e1t, b = c−1q−2j+e1t (11.5.11)

and then take the limit t→ 0. Using this parametrization, the recurrence relation of the Big
q-Jacobi polynomials

zPn(z; a, b, c; q̃) = AnPn+1(z; a, b, c; q̃) + CnPn−1(z; a, b, c; q̃) + [1− (An + Cn)]Pn(z; a, b, c; q̃)
(11.5.12)

has for coefficients

An = + (1− acq2n)(1− q2n−2N)
(1 + q2n−N+1)(1− q4n−2N) , (11.5.13a)

Cn = −q
2n−N−1(1− q2n)(ac− q2n−2N)
(1 + q2n−N−1)(1− q4n−2N) (11.5.13b)

after the use of (11.5.11) and the limit t→ 0. Now letting

ac = c3q
2 (11.5.14)

it follows that (11.5.13) can be rewritten as

An = + (1− c3q
2n+2)(1− q2n−2N)

(1 + q2n−N+1)(1− q4n−2N) , (11.5.15a)

Cn = −q
2n−N+1(1− q2n)(c3 − q2n−2N−2)

(1 + q2n−N−1)(1− q4n−2N) , (11.5.15b)

and one recognizes the recurrence coefficients of the q-para-Krawtchouk polynomials in the
base q̃ = q2 introduced in [57] when N is odd. These polynomials are defined on the union
of two q-linear lattices and the parameter c3 describes the shift of one lattice with respect
to the other.

11.5.4.2. N = 2j even. In the case where N = 2j is even, we take

d = a−1q−2j+e1t, b = c−1q−2j+e2t+2 (11.5.16)
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which ensures (11.5.10) in the limit t → 0. Using this parametrization and after letting
t→ 0, the recurrence coefficients of the Big q-Jacobi polynomials become

An = + (1− acq2n)(1− q2n−2N)
(1 + q2n−N)(1− q4n−2N+2) , (11.5.17a)

Cn = −q
2n−N−2(1− q2n)(ac− q2n−2N)
(1 + q2n−N)(1− q4n−2N−2) , (11.5.17b)

and upon letting

ac = c3q
2 (11.5.18)

An and Cn can be rewritten as

An = + (1− c3q
2n+2)(1− q2n−2N)

(1 + q2n−N)(1− q4n−2N+2) , (11.5.19a)

Cn = −q
2n−N(1− q2n)(c3 − q2n−2N−2)
(1 + q2n−N)(1− q4n−2N−2) . (11.5.19b)

These are the recurrence coefficients of the q-para-Krawtchouk polynomials in the base q̃ = q2

for N even. For more detail, see [57].

11.5.4.3. A remark on the truncation condition. There is once again an apparent mis-
match in the dimensions of the representations of the algebra and those of the representation
basis. The same remark as the one made in the preceding section applies here. It can be
checked that in the realization (11.5.8), applying the truncation condition (11.5.10) seems
to suggest that the raising operator B̂ annihilates the monomial zN+1 and not zN , which
means that the truncation condition leads to representations of the algebra Uq(sl2) of dimen-
sion N + 2. This would contradict the fact that the q-para-Krawtchouk polynomials were
truncated to a maximal degree N (and thus span a space of dimension N + 1).

It can be observed that B̂ maps the q-para-Krawtchouk polynomial of degree N to a
polynomial of degree N + 1. The resulting polynomial is the characteristic polynomial of
the (upper block of the) truncated Jacobi matrix, hence it is again null on the orthogonality
grid points. In the representation basis with which we are working (i.e. where the q-para-
Krawtchouk polynomials are the basis elements), this characteristic polynomial corresponds
to a null vector. Hence, the dimension of the space on which the realization of the Uq(sl2)
algebra acts is indeed N + 1.

11.5.5. Recovering the related Heun operator

The Heun operator associated to the Big q-Jacobi polynomials is given in [42] and had
also been introduced previously in [36]. This operator WBJ is the most general second order
q-difference operator that acts on the q-linear grid and maps polynomials of degree n into
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polynomials of degree n+ 1. Its expression is

WBJ = A1T̂+ +A0I +A2T̂−, (11.5.20)

where

A1 = π3(z)
z2 , A2 = q̃π3(z) + zπ2(z)

z2 (11.5.21)

and A0 +A1 +A2 = π1(z), with πk(z) a generic polynomial of degree k and q̃ the base.
Let us consider the most general quadratic combination of S-Heun operators that does

not raise the degree of polynomials by more than one. Using the quadratic homogeneous
relations of Appendix 11.A, we arrive at

W = α1L̂
2 + α2L̂M̂1 + α3L̂M̂2 + α4M̂1

2 + α5M̂1M̂2 + α6M̂2
2

+ β1M̂1R̂2 + β2M̂2R̂1 + β3M̂2R̂2.
(11.5.22)

Substituting the expressions (11.2.14) for the generators we obtain

W = A1T̂
2
+ +A0I +A2T̂

2
−,

A1 = z−2

(1− q2)2 [(qα1) + (q2α3 − qα2)z + (q2α6 − qα5 + α4)z2 + (q3β3 − q2β1 − q2β2)z3],

A2 = z−2

(1− q2)2 [(q3α1) + (q2α3 − q3α2)z + (q2α6 − q3α5 + q4α4)z2 + (qβ3 − q2β1 − q2β2)z3],

A0 = β2z + α4 − (A1 +A2).
(11.5.23)

Proposition 11.15. The generic Heun–Big q-Jacobi operator (11.5.20) (with base q2) can
be obtained as the most general quadratic combination in the S-Heun generators (11.2.14)
that does not raise the degree of polynomials by more than one.

Moreover, using the relations of Appendix 11.A, we see that the Heun operator typically
factorizes as the product of a raising S-Heun operator with a stabilizing S-Heun operator:

Ŵ = (ξ1L̂+ ξ2M̂1 + ξ3M̂2)(η1L̂+ η2M̂1 + η3M̂2 + η4R̂1 + η5R̂2) + κ. (11.5.24)

11.6. Connections between the different cases
It is well known that the three grids on which we have defined S-Heun operators can be

obtained as limiting cases or contractions of the Askey–Wilson grid. We now observe that
this translates into limits/contractions of the associated Sklyanin algebras.

Let us denote the points of the Askey–Wilson grid by

λs = zs + z−1
s , zs = qs. (11.6.1)
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The associated Sklyanin algebra was introduced in [23] as the trigonometric degeneration of
the Sklyanin algebra [24] and was studied from the perspective of S-Heun operators in [25].
The defining relations read

DC = qCD, CA = qAC, [A,D] = (q − q−1)3

4 C2,

[B,C] = A2 −D2

q − q−1 ,

AB− qBA = qDB−BD = −q
2 − q−2

4 (DC−CA).

(11.6.2)

The q-linear (or exponential) grid

λs = zs, zs = qs (11.6.3)

is obtained from the Askey–Wilson one in the asymptotic expansion zs →∞ and the same
limit takes the Askey–Wilson polynomials into the Big q-Jacobi OPs. At the level of the
algebras, this corresponds to the following contraction. Writing

A = εÂ, B = B̂, C = ε2Ĉ, D = εD̂ (11.6.4)

and taking ε→ 0, one recovers Uq(sl2):

ÂB̂ = qB̂Â, B̂D̂ = qD̂B̂, ĈÂ = qÂĈ, D̂Ĉ = qĈD̂,

[B̂, Ĉ] = Â2 − D̂2

q − q−1 , [Â, D̂] = 0.
(11.6.5)

We now compare the discrete linear grid to the continuum. A rescaling similar to the
one discussed above takes this grid to the real line. This also takes the Continuous Hahn
polynomials into the Jacobi ones. From the perspective of the algebras, (11.6.4) will relate
one algebra to the other. The Sklyanin algebra (11.4.8) associated to the discrete grid is

[C,D] = 0, [A,C] = {C,D}, [A,D] = {C,C},

[B,C] = {D,A}, [B,D] = {C,A}, [B,A] = {B,D}
(11.6.6)

and upon writing

A = εĀ, B = B̄, C = ε2C̄, D = εD̄ (11.6.7)

and taking ε→ 0, we recover

[C̄, D̄] = 0, [Ā, C̄] = −C̄D̄, [Ā, D̄] = 0,

[B̄, C̄] = −2ĀD̄, [Ā, B̄] = B̄D̄, [B̄, D̄] = 0.
(11.6.8)

We recall that the latter algebra is essentially the sl2 Lie algebra with a central element D.
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We have so far discussed the following contractions, denoted by full arrows:

AW grid

q-linear grid

discrete linear grid

continuum

?

One could wonder if it is possible to complete the diagram with the dotted arrows. The
bottom arrow is easy to add: this amounts to taking the limit q → 1. This limit takes the
q-linear grid to the continuum, the Big q-Jacobi polynomials to the Jacobi polynomials, and
at the level of the algebra, it takes Uq(sl2) to sl2.

The details corresponding to the upper arrow remain to be worked out. It is likely that
an intermediary step related to the quadratic grid λs = s2 should be required. Indeed, it
is known that the q → 1 limit of the Askey–Wilson grid leads to the quadratic grid. It
should thus be possible to apply the S-Heun construction to the quadratic grid; the related
polynomials should be those of Wilson, and the related Sklyanin algebra would stand in
between the one of Askey–Wilson type (11.6.2) and the one of the discrete linear type
(11.4.8).

11.7. Conclusion
The results of this paper are summarized as follows. We have introduced S-Heun oper-

ators on linear and q-linear grids. These operators are special cases of second order Heun
operators with no diagonal term. On the real line and the discrete and q-linear grids, the sets
of five S-Heun operators were constructed and shown to be related to the Jacobi, Continuous
Hahn and Big q-Jacobi polynomials respectively. These S-Heun operators were also shown
to encompass the bispectral and structure operators for each family of orthogonal polyno-
mials. A presentation of the relations for the four structure operators of Kalnins and Miller
was given in each case and identified as realizing degenerations, contractions or limits of the
Sklyanin algebra. For the discrete and q-linear grids, the finite-dimensional representations
of the Sklyanin-type algebras were obtained from a truncation condition on the Jacobi ma-
trix of the associated polynomials; this yielded the para-Krawtchouk and q-para-Krawtchouk
polynomials as bases of the finite representations and provided algebraic interpretations of
these sets of OPs that had so far been missing.

The Sklyanin-like algebra related to the discrete linear grid (11.4.8) has a simple pre-
sentaton and a detailed study of its representation theory would be interesting. It would
also be instructive to examine the types of Sklyanin algebra that the S-Heun operators on
the quadratic grid would lead to. We plan on undertaking this in the near future. Note
that we have restricted ourselves to Heun operators defined by actions on polynomials. The
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exploration of the generalizations that result from the extension to spaces of rational func-
tions have been initiated in [41] and should be actively pursued in the S-Heun framework in
particular.
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11.A. The homogeneous quadratic algebraic relations
The 14 quadratic homogeneous relations associated to all three sets of 5 S-Heun operators

are collected here. One notes that all three sets of relations display a similar structure. These
relations can be thought of as reordering relations and are especially useful when considering
the most general quadratic combinations in the generators.

11.A.1. The continuum

The relations between the S-Heun operators L̄, M̄1, M̄2, R̄1, R̄2 defined in (11.2.17) can
be presented as the fourteen following relations:

M̄1L̄ = L̄M̄1,

M̄2L̄ = L̄M̄2 − M̄1L̄,

M̄2M̄1 = M̄1M̄2,

M̄1
2 = 1,

L̄R̄1 = 1 + M̄1M̄2,

L̄R̄2 = M̄2
2 + M̄1M̄2,

R̄1L̄ = M̄1M̄2,

R̄2L̄ = M̄2
2 − M̄1M̄2,

R̄2R̄1 = R̄1R̄2 + R̄1
2,

R̄1M̄1 = M̄2R̄1 − M̄1R̄2,

R̄2M̄1 = M̄1R̄2,

R̄1M̄2 = M̄1R̄2,

R̄2M̄2 = M̄2R̄2 − M̄1R̄2,

M̄1R̄1 = M̄2R̄1 − M̄1R̄2.

(11.A.1)
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11.A.2. The discrete linear grid

Here are the relations between the S-Heun operators L, M1, M2, R1, R2 that have been
defined in (11.2.8):

M1L = LM1,

M2L = LM2 − LM1,

M2M1 = M1M2 − L2,

M1
2 = 1 + L2,

LR1 = 1− 2M2
2 −M1M2,

LR2 = 1 +M1M2,

R1L = 3M1M2 − 3L2 − 2M2
2,

R2L = M1M2 − L2,

R1M1 = 3M1R2 − 2M2R2 − 3LM1,

R1M2 = 2M2R2 − 3M1R2 + 3LM2 +M2R1,

R2M1 = M1R2 − LM1,

R2M2 = M2R2 −M1R2 + LM2,

M1R1 = 3M1R2 − 2M2R2 − 4LM2,

R2R1 = 2R2
2 +R1R2 − 4M2

2.

(11.A.2)

11.A.3. The q-linear grid

We remind the reader that the q-number 2 is written as [2]q = q + q−1. The S-Heun
operators L̂, M̂1, M̂2, R̂1, R̂2 defined in (11.2.14) obey the fourteen quadratic relations:

M̂1L̂ = [2]qL̂M̂1 + L̂M̂2,

M̂2L̂ = −L̂M̂1,

M̂2M̂1 = M̂1M̂2,

[2]qM̂1M̂2 = 1− M̂1
2 − M̂2

2,

L̂R̂1 = 1− M̂2
2,

L̂R̂2 = [2]qM̂2
2 + M̂1M̂2,

R̂1L = 1− M̂1
2,

R̂2L̂ = −M̂1M̂2,

R̂1M̂1 = −[2]q2M̂1R̂2 − [2]qM̂2R̂2 + M̂2R̂1,

R̂1M̂2 = [2]qM̂1R̂2 + M̂2R̂2,

R̂2M̂1 = [2]qM̂1R̂2 + M̂2R̂2,

R̂2M̂2 = −M̂1R̂2,

M̂1R̂1 = −[2]qM̂1R̂2 − M̂2R̂2,

[2]qR̂1R̂2 = −R̂1
2 − R̂2

2.

(11.A.3)
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Chapitre 12

The rational Sklyanin algebra and the Wilson
and para-Racah polynomials

Par Geoffroy Bergeron, Julien Gaboriaud, Luc Vinet, Alexei Zhedanov (2021).
Soumis au Journal of Mathematical Physics. arxiv:2103.09631.

Abstract: The relation between Wilson and para-Racah polynomials and represen-
tations of the degenerate rational Sklyanin algebra is established. Second order Heun
operators on quadratic grids with no diagonal terms are determined. These special or
S–Heun operators lead to the rational degeneration of the Sklyanin algebra; they also entail
the contiguity and structure operators of the Wilson polynomials. The finite-dimensional
restriction yields a representation that acts on the para-Racah polynomials.

12.1. Introduction
This paper pursues the exploration of the links between Heun operators, Sklyanin alge-

bras and orthogonal polynomials. Originally introduced in the context of quantum integrable
systems [1], Sklyanin algebras are typically presented in terms of generators verifying homo-
geneous quadratic relations. These algebras have been the object of much attention from
the perspective of algebraic geometry [2–4]. Classes of Heun operators can be defined [5]
from the property that they increase by no more than one the degree of polynomials defined
on certain continuous or discrete domains; they have been the focus of a continued research
effort [6–12] with many applications [13–19]. A key observation for our purposes is that a
special category of these operators, referred to as S–Heun operators, offers a path towards the
identification of interesting Sklyanin-like algebras through the relations they realize. This
connects with orthogonal polynomials as these concrete S–Heun operators are recognized as
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ladder and structure operators for families of bispectral polynomials belonging to the Askey
scheme. It is thus observed that these sets of orthogonal polynomials form representation
bases for Sklyanin algebras. Furthermore, the finite-dimensional representations of these
Sklyanin algebras are found to provide the algebraic setting that had so far been lacking for
the orthogonal polynomials of the so-called “para” type.

A first illustration of these connections was achieved in [20]. Building on results of Gorsky
and Zabrodin [21] on the one hand and of Kalnins and Miller [22] on the other, this paper
focused on S–Heun operators attached to the Askey–Wilson grid. The salient observations
were: i. that a subset of the S–Heun operators realize the trigonometric degeneration of the
original elliptic Sklyanin algebra and ii. that this Sklyanin algebra is a basic structure under-
neath the theory of Askey–Wilson polynomials. Indeed, as was stressed, the Askey–Wilson
operator admits a factorization in terms of the S–Heun operators realizing this degenerate
Sklyanin algebra and as was also pointed out, the ladder and structure operators for the
Askey–Wilson polynomials obtained by Kalnins and Miller actually realize this degenerate
algebra. In view of the fact that the Askey–Wilson algebra [23] accounts for the bispectral-
ity of the eponym polynomials, a parallel was thus drawn with the dynamical extension of
symmetry algebras by the inclusion of ladder operators in the set of generators. Finally, the
q-para Racah polynomials were seen to form a basis for the finite-dimensional representation
of the degenerate Sklyanin algebra. This set the course for the systematic examination of
the Sklyanin-like operators formed by S–Heun operators on lattices admitting orthogonal
polynomials.

The study of S–Heun operators on linear and exponential grid and of the Sklyanin al-
gebras they realize was carried out in [24]. It allowed to tie the representations of these
algebras to the continuous Hahn and big q-Jacobi polynomials and in finite dimensions to
the para-Krawtchouk and q-para Krawtchouk polynomials. This analysis confirmed the im-
portant role that Sklyanin algebras play in the interpretation of hypergeometric orthogonal
polynomials.

We here address the connection that the Wilson polynomials have with Sklyanin algebras.
(We recall that these polynomials are at the top of the q = 1 part of the Askey scheme.)
This will call for the determination of the S–Heun operators on quadratic grids. The rational
degeneration of the Sklyanin algebra first found by Smirnov [25] will be seen to emerge and
to be realized by the structure and ladder operators [26] of the Wilson polynomials. This will
hence attach these polynomials to representations of the rational Sklyanin algebra. In keeping
with preceding observations, the finite-dimensional restrictions of these representations will
be seen to offer an algebraic interpretation of the para-Racah polynomials [27].
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12.1.1. The Wilson polynomials and its truncations

As the Wilson polynomials will prove central in deriving subsequent results, some of
their known properties are summarized here. The four-parameter Wilson polynomials [28]
of degree n, denoted Wn(x2|a, b, c, d), are given by

Wn(x2|a, b, c, d) = (a+ b)n(a+ c)n(a+ d)n 4F3

−n, n+ a+ b+ c+ d− 1, a+ ix, a− ix
a+ b, a+ c, a+ d

∣∣∣∣∣∣1
,

where (a)n = a(a+1)...(a+n−1) are the Pochhammer symbols and 0 < a, b, c, d ∈ R. These
polynomials obey the orthogonality relation

∞∫
0

Wn(x2|a, b, c, d)Wm(x2|a, b, c, d)dω(x|a, b, c, d) = Nn(a, b, c, d)δn,m. (12.1.1)

The weight ω(x|a, b, c, d) and normalization Nn(a, b, c, d) are given explicitly in [28]. For
any admissible set of parameters, the Wilson polynomials form a basis of the space of poly-
nomials on the support of ω(x|a, b, c, d). Belonging to the Askey–Wilson scheme, they are
bispectral, that is, they diagonalize a three-term recurrence operator acting on the degree
and a difference operator acting on the variable.

The Wilson polynomials form an infinite set of orthogonal polynomials that can be trun-
cated [28] to a finite one by setting the parameters as follows

a = 1
2(γ + δ + 1), b = 1

2(2α− γ − δ + 1), c = 1
2(2β − γ + δ + 1), d = 1

2(γ − δ + 1),

and imposing any of the conditions

α + 1 = −N, β + δ + 1 = −N, or γ + 1 = −N.

One thus obtains the Racah polynomials after taking

ix 7−→ x+ 1
2(γ + δ + 1).

An additional truncation can be obtained [27] by imposing

a+ b+ c+ d = −N + 1. (12.1.2)

Indeed, while one is at first sight led to singular expressions, well-defined orthogonal polyno-
mials can nonetheless be obtained through the use of limits and the resulting polynomials,
first introduced in [lemay2016], are the para-Racah polynomials. These polynomials form a
three-parameter set of orthogonal polynomials Pn(x2|a, c, w) of maximal degree N . Explicit
expressions can be found by setting N = 2j + p, where j ∈ N and p = 0, 1, depending on
the parity of N . The para-Racah polynomial Pn(x2|a, c, w) obtained from the truncation
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(12.1.2) of the Wilson polynomial Wn(x2|a, b, c, d) is given by

Pn(x2|a, c, w) = ηn
n∑
k=0

An,kϕk(x2), ϕk(x2) ≡ (a− ix)k(a+ ix)k, (12.1.3)

where

An,k =


(−n)k(n−N)k

(1)k(−j)k(a+c)k(a−c−j+1−p)k
k ≤ j,

w−1(−n)k(n−N)N−n(1)n+k−1−N
(1)k(−j)j(1)k−j−1(a+c)k(a−c−j+1−p)k

k > j,

0 k > n,

(12.1.4)

with the normalization given by

ηn =


(1)n(−j)n(a+c)n(a−c−j+1−p)n

(−n)n(n−N)n n ≤ j,
w(1)n(−j)j(1)n−j−1(a+c)n(a−c−j+1−p)n

(−n)n(n−N)N−n(1)2n−1−N
n > j.

(12.1.5)

These polynomials are orthogonal on a discrete measure that has support on the zeros of the
characteristic polynomial PN+1(x2|a, c, w). The corresponding lattice is a quadratic bi-lattice
given by

x2s+t =

−(s+ a)2 t = 0, s = 0, 1, . . . , j,
−(s+ c)2 t = 1, s = 0, 1, . . . , j − 1 + p,

(12.1.6)

so that
N∑
s=0

Pn(x2|a, c, w)Pm(x2|a, c, w)ω̄s ∝ δn,m, (12.1.7)

where the weight ω̄s is given explicitly in [27]. They also satisfy a three-term recurrence
relation and a difference equation. However, they do not appear in classifications of classical
orthogonal polynomials as their spectrum is doubly-degenerate.

12.1.2. Outline

The remainder of the paper is organized as follows. In section 12.2, the S–Heun operators
are introduced and some of their properties are derived. The connection is made with the
algebraic Heun operator of the Wilson/Racah type. Section 12.3 focuses on a subset of
the S–Heun operators that preserves the degree of polynomials. A stabilizing algebra is
defined from the quadratic relations they obey and its representations are constructed. This
algebra is extended to a star algebra in section 12.4 for which a universal presentation is
obtained; it is subsequently recognized as a Sklyanin-type algebra. Finally, section 12.5
provides a presentation of the rational degenerate Sklyanin algebra introduced in [25] and
gives an isomorphism with the universal algebra of section 12.4. Using this isomorphism,
representations of the rational degenerate Sklyanin algebra on the Wilson and para-Racah
polynomials are constructed. A brief conclusion follows.
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12.2. Sklyanin–Heun operators on a quadratic grid
The generic algebraic Heun operators on a domain λ have the property that, when

acting on polynomials over λ, they raise the degree by at most one. The S–Heun operators
are a specialization of these Heun operators without a diagonal term. In this section, we
first identify the S–Heun operators on the quadratic grid and then proceed with a brief
characterization.

12.2.1. Sklyanin–Heun operators

Let λ = λx be a discrete grid indexed by x and define the shift operators T± acting on
functions on λ as follows

T±f(λx) ≡ f(λx±1).

Consider a second order operator S with no diagonal term

S = A1(λx)T+ + A2(λx)T−, (12.2.1)

where A1 and A2 are functions on λx. Demand that S satisfies the degree-raising property

S · pn(λx) = qn+1(λx), (12.2.2)

for pn and qn+1 arbitrary polynomials of degree n and n+1, respectively. One can determine
the coefficients A1 and A2 by acting on the first two monomials in λx as follows

S · 1 = u0 + u1λx, S · λx = u2 + u3λx + u4λ
2
x. (12.2.3)

One finds

A1(λx) = u2 + u3λx + u4λ
2
x − u0λx−1 − u1λx−1λx

λx+1 − λx−1
, (12.2.4)

A2(λx) = −u2 + u3λx + u4λ
2
x − u0λx+1 − u1λx+1λx

λx+1 − λx−1
.

The S–Heun operators are defined as the set of operators of the form (12.2.1) with the
coefficients given in (12.2.4). As these coefficients admit five independent parameters, the
S–Heun operators form a five-dimensional vector space SH of operators on λ. A basis for
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this space can be chosen as follows

L = N (λx)[T+ − T−],

M1 = N (λx)
[
(λx − λx−1)T+ + (λx+1 − λx)T−

]
,

M2 = N (λx)
[
(λx + λx−1)T+ − (λx+1 + λx)T−

]
, (12.2.5)

R1 = N (λx)λx
[
(λx − λx−1)T+ + (λx+1 − λx)T−

]
,

R2 = N (λx)λx
[
(λx + λx−1)T+ − (λx+1 + λx)T−

]
,

where

N (λx) ≡ [λx+1 − λx−1]−1 .

The naming conventions used in (12.2.5) will be explained in the next subsection.
Remark 12.1. Acting on the left with T+ for each of the operators in (12.2.5), it can be seen
that the set of operators SH can also be understood as the set of first order shift operators
of step two over λ that satisfies the property (12.2.2).

12.2.2. Sufficiency of the construction

As established above, for an operator S of the form (12.2.1) to satisfy the property
(12.2.2), the expressions (12.2.4) are necessary conditions. The sufficiency of these conditions
follows from the ensuing proposition.
Proposition 12.2. A generic element S ∈ SH satisfies the property (12.2.2) if the grid λx
is of one of the following forms

λx = αqx + βq−x + κ, λx = αx2 + βx+ κ, or λx = (−1)x(αx+ β) + κ,

(12.2.6)

for some constants α, β, κ.

Proof. An element S ∈ SH of the form (12.2.1) is specified by a set of parameters
{ui}i=0,1,··· ,4 (12.2.4). The action of S on a monomial in λx can be reduced by linearity
to the five cases given by ui = δi,j for j = 0, 1, . . . , 4. Upon inspecting (12.2.4), one under-
stands that only the operators defined by ui = δi,0 or ui = δi,2 need to be analyzed; those
remaining amount to one of these two operators multiplied by some power of λx.

The first case we treat is ui = δi,2 and it corresponds to the operator we have denoted L.
It can be seen from (12.2.4) that when ui = δi,3 or ui = δi,4, the corresponding operator is
λxL or λx2L, respectively. It follows that for S to satisfy property (12.2.2), one must have
that L decreases the degree of polynomials in λx by one. Similarly, it follows from (12.2.4)
that the case ui = δi,1 will satisfy (12.2.2) if the case of ui = δi,0, corresponding to the
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S–Heun operator 1
2(M1−M2), is an operator that stabilizes the set of polynomials of a given

degree.
Thus, a generic element of the form (12.2.1) will satisfy (12.2.2) if the subset of operators

generated by the cases ui = δi,j for j = 0, 2, 3 preserves the degree of polynomials. As
the generators of this subset are all tridiagonal operators, the proposition follows from the
results in [29] which identifies (12.2.6) as the possible grids allowing second-order difference
equations diagonalized by polynomials. �

On the quadratic grid, it can be shown that a generic element of the vector space spanned
by (12.2.5) satisfies the property (12.2.2). Indeed, as derived above, the expressions (12.2.4)
for the coefficients are necessary conditions. The derivations so far were grid-independent,
but to proceed further, one needs to fix the grid. Let us consider the quadratic grid

λx = x2. (12.2.7)

For this choice of grid, one has that proposition 12.2 holds and the sufficiency of the con-
struction is established.

The leading terms of the actions on monomials in λx are now computed for future refer-
ence. In the case of L, one obtains

L · λxn =
n∑
k=1

(
n

k

)
λn−kx

∑
j odd

0≤j≤k

(
k

j

)
(4λx + p2)

j−1
2 = nλx

n−1 +O(λn−2
x ), (12.2.8)

which is verified to be a degree lowering operator. Moreover, one finds that

1
2(M1 −M2) · λxn =

n∑
k=0

0≤j≤k

(
n

k

)(
k

j

)
λn−kx

[
1+(−1)j

2 (4λx + p2)
j
2 − 1−(−1)j

2 (λx + 1)(4λx + p2)
j−1

2
]

= (1− n)λxn +O(λxn−1), (12.2.9)

which preserves the degree of polynomials. The actions of the other generators follow from
(12.2.8) and (12.2.9) by noting that

1
2(M1 +M2) = λx L, R1 = λxM1, R2 = λxM2. (12.2.10)

With the above observations, it follows that a generic linear combination of the basis elements
(12.2.5) displays the degree raising property (12.2.2). These calculations enable one to see
that the choice of basis (12.2.5) decomposes the generic special Heun operator into operators
that have a prescribed action on polynomials in λx. Indeed, L can be identified as a lowering
operator, M1 and M2 as stabilizing operators while R1 and R2 are raising operators.
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12.2.3. S–Heun operators of the Wilson type and the Heun–Racah
operator

As the S–Heun operators are specialized algebraic Heun operators [5], they are related to
the general algebraic Heun operators associated to the same grid. The Heun–Racah operator
W on the quadratic grid introduced in [12] admits a quadratic embedding in the set SH
of S–Heun operators on the quadratic grid. In view of Remark 12.1, it will come as no
surprise that this embedding is obtained by first conjugating the Heun–Racah operator W
by a scaling of the grid µ : x → 2x, such that the shift operators in W act with a step of
two. One obtains

µ−1 ◦W ◦ µ = R1(a1M1 + a2M2 + a3L) +R2(a4M1 + a5M2 + a6L)

+ a7LM2 + a8M2
2 + a9L

2,
(12.2.11)

where the coefficients ai, i = 1, 2, . . . , 9 are given in terms of the parameters
t0, t1, u0, u1, u2, v0, v1, v2 and v3 of W in [12] as

a1 = 1
4(t1 + u2)− 1

16v3, a2 = −1
8t1 + 8u0 + u1 − 2v1 + 1

16v3,

a3 = 1
4(−8t0 − t1 − 64u0 − 3u2 + 16v1 + 2v2),

a4 = 1
4u2 − a2, a5 = 1

16v3, a6 = a3 − 2u1, a7 = 8u0, a8 = t0,

a9 = −t0 − 24u0 + 16v0.

(12.2.12)

The operator X that acts by multiplication by the grid variable λx can be written as a
quadratic expression in terms of the S–Heun generators:

X ≡ x2 = (R1 +R2)(M1 − L)− 1
2R1M2 − 1

2R2M1. (12.2.13)

12.3. The stabilizing subalgebra stab

By direct computations from the definitions (12.2.5), it can be seen that the S–Heun gen-
erators satisfy homogeneous quadratic relations, with the complete list given in the appendix
12.A. From these relations, it is observed that the subset of stabilizing S–Heun operators
generated by L,M1 and M2 closes as a quadratic algebra to be called stab whose relations
are

[L,M1] = 2L2, [L,M2] = {M1, L}, [M1,M2] = {M2, L} − 4L2. (12.3.1)

The Casimir element C is given by

C = M1
2 − {M2, L}+ 3L2, (12.3.2)

and is equal to the identity in the realization (12.2.5) in terms of shift operators. It will
prove fruitful to examine the stabilizing algebra (12.3.1) in this realization. Knowing that it
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stabilizes polynomials in λx of a given degree, one may set up an eigenvalue problem on this
space.

12.3.1. Diagonalization of a generic linear element

Consider a generic linear combination of the operators L,M1,M2

P (s, t) = uL+ vM1 + wM2, (12.3.3)

parametrized as follows

u = (1 + 2s)(1 + 2t)− 1
4 , v = 1

2(1 + s+ t), w = 1
2 ,

with 0 < s, t ∈ R being arbitrary parameters. It is straightforward to show that, under the
invertible transformation

ρ : x 7→ −ix,

the operator P is given by

P̃ ≡ ρ ◦ P ◦ ρ−1 = − 1
4ix

[
(t− ix)(s− ix)T̃+ − (s+ ix)(t+ ix)T̃−

]
,

with T̃± defined by T̃±f(x) 7→ f(x ± i). Multiplying each term in the above by (2ix ±
1)/(2ix± 1), one recognizes the off-diagonal terms of the difference operator diagonalized by
the continuous dual Hahn polynomials [28]. Denoting these polynomials as Sn(x2|1/2, s, t)
one has

P̃ Sn(x2|1/2, s, t) = (n− (s+ t)/2)Sn(x2|1/2, s, t).

Once an element is specified by (12.3.3), this defines an eigenbasis in terms of the continuous
dual Hahn polynomials. However, no meaningful action can be identified for the remaining
elements in stab. We consider instead quadratic combinations in the elements of the algebra.

12.3.2. Action on Wilson polynomials

A natural action of the stabilizing algebra stab on the Wilson polynomials arises from
the realization (12.2.5). Indeed, defining the following pair of operators from (12.3.3)

µ(a,b,c,d) = P (2a− 1, 2b− 1), µ∗(a,b,c,d) = P (2c, 2d), (12.3.4)

such that manifestly
µ∗(a,b,c,d) = µ(c+1/2,d+1/2,a−1/2,b−1/2),

one has the following proposition:
Proposition 12.3. The quadratic element Q ∈ stab defined by

Q ≡ µ∗(a,b,c,d)µ(a,b,c,d), (12.3.5)
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where µ and µ∗ are given by (12.3.4) and with 0 < a, b ∈ R and 1/2 < c, d ∈ R is realized,
up to a constant term, by the Wilson operator conjugated by the grid scaling

φ : x 7→ −2ix. (12.3.6)

Proof. In the realization (12.2.5), conjugating Q by the scaling transformation (12.3.6), it
can be seen by direct calculations that the transformed operator Q̃ is given by

Q̃ ≡ φ ◦Q ◦ φ−1 = B(x)T̃+ +D(x)T̃− − [B(x) +D(x)] + (a+ b)(c+ d− 1),

B(x) = (a− ix)(b− ix)(c− ix)(d− ix)
2ix(2ix− 1) ,

D(x) = (a+ ix)(b+ ix)(c+ ix)(d+ ix)
2ix(2ix+ 1) .

(12.3.7)

The above operator is identified as the Wilson operator [28], up to a constant term. �

Remark 12.4. The operator X that acts by multiplication by the variable λx can be embedded
(12.2.13) in the set SH of S–Heun operators. In addition, with the operator Q identified as the
Wilson operator, the bispectral pair of operators that generates the Racah/Wilson algebra [30–
32] admits an embedding in the set SH of S–Heun operators. Moreover, a quartic embedding
of the Heun–Racah operator (12.2.11) is obtained from the construction of the Heun–Racah
operator [12] by the tridiagonalization [33] of the Racah operator.

The definition of Q in (12.3.5) naturally provides a factorization of the Wilson operator
in terms of µ∗(a,b,c,d) and µ(a,b,c,d). Moreover, it directly follows from proposition 12.3 that
the operator Q̃ is diagonalized by the Wilson polynomials:

Q̃Wn(x2|a, b, c, d) = [n(n+ a+ b+ c+ d− 1) + (c+ d)(a+ b− 1)] Wn(x2|a, b, c, d).

Introducing a third operator τ (a,b,c,d) defined by

τ (a,b,c,d) = 4L, (12.3.8)

a presentation of stab in terms of the generators µ(a,b,c,d), µ∗(a,b,c,d) and τ (a,b,c,d) can be given
for generic values of the parameters a, b, c, d. This allows to construct representations of stab
on the Wilson polynomials.
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Proposition 12.5. A representation of stab on the Wilson polynomials W̃ (see (12.3.10))
is given by the following actions

µ(a,b,c,d)· W̃n(x2|a, b, c, d) = −(n+ a+ b− 1) W̃n

(
x2
∣∣∣a− 1

2 , b−
1
2 , c+ 1

2 , d+ 1
2

)
,

τ (a,b,c,d)· W̃n(x2|a, b, c, d) = n(n+ a+ b+ c+ d− 1) W̃n−1
(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
,

µ∗(a,b,c,d)· W̃n(x2|a, b, c, d) = −σ(n+ a+ b− 1) W̃n

(
x2
∣∣∣a− 1

2 , b−
1
2 , c+ 1

2 , d+ 1
2

)
− (1− σ)(n+ c+ d− 1) W̃n

(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c−

1
2 , d−

1
2

)
+ [σ(ab− cd)− 1

2(c+ d)− 1
4 ]n(n+ e1 − 1) W̃n−1

(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
,

σ ≡ (a+ b− c− d)−1, e1 ≡ a+ b+ c+ d,

(12.3.9)

with

W̃n(x2|a, b, c, d) ≡ φ−1 ·Wn(x2|a, b, c, d) = Wn

(
− x2

4

∣∣∣∣a, b, c, d), (12.3.10)

and φ defined in (12.3.6).

Proof. The conjugation of the three operators µ(a,b,c,d), µ∗(a,b,c,d) and τ (a,b,c,d) by the scaling
map (12.3.6) yields operators that are identified as the structure and forward shift operators
for the Wilson polynomials [28]. These structure operators have a known action on the
Wilson polynomials [26]. Using the identity

µ∗(a,b,c,d) = σ µ(a,b,c,d) + (1− σ)µ(c,d,a,b) +
[
σ(ab− cd)− 1

2(c+ d)− 1
4

]
τ (a,b,c,d), (12.3.11)

which is directly verified and applying the scaling (12.3.6) to the polynomials to get (12.3.10),
one obtains the actions (12.3.9). As one can use the orthogonality relation (12.1.1) of the
Wilson polynomials to express all polynomials with shifted parameters in (12.3.9) as sums of
Wilson polynomials with the initial parameters, these actions define representations of the
stabilizing algebra stab on the Wilson polynomials. �

12.4. Extension of stab to a star algebra
The construction laid out in the preceding section parallels the structural approach to

orthogonal polynomials due to Kalnins and Miller [22, 26]. In particular, Miller derives
in [26] the orthogonality (12.1.1) of the Wilson polynomials from the structural recurrence
relations associated to µ(a,b,c,d) and τ (a,b,c,d) by identifying the operator µ∗(a,b,c,d) and deriving
an inner product such that this operator is the adjoint of µ(a,b,c,d). An operator τ ∗(a,b,c,d) is
then identified as the adjoint of τ (a,b,c,d). A similar approach in the context of the S–Heun
operators can be pursued at the algebraic level.
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The representations defined through (12.3.9) are endowed with a natural inner product
inherited from the orthogonality relation (12.1.1). This enables one to define a star operation,
such that µ∗(a,b,c,d) is precisely the adjoint of µ(a,b,c,d) under the inner product. It follows that
Q̃ is a self-adjoint operator. However, the stabilizing algebra is not closed under the star
operation. This can be seen by taking the adjoint of τ (a,b,c,d), a lowering operator, which
would involve raising operators that are not contained in the stabilizing algebra stab. We
shall now extend stab to its closure under the star operation.

12.4.1. Star operation

With the help of (12.1.1), one constructs an operator as the adjoint of the forward shift
operator. This leads to the backward shift operator for the Wilson polynomials [28] with
action given by

(φ−1 ◦ τ ∗(a,b,c,d) ◦ φ) · Wn(x2|a, b, c, d) = Wn+1
(
x2
∣∣∣a− 1

2 , b−
1
2 , c−

1
2 , d−

1
2

)
. (12.4.1)

The operator τ ∗(a,b,c,d) can then be decomposed in terms of the S–Heun operators as follows

τ ∗(a,b,c,d) = a1L+ a2M1 + a3M2 + a4R1 + a5R2, (12.4.2)

with the coefficients given by

a1 = 4e4 − e3 + e1 − 1
4 , a2 = e3 −

e2

2 + e1

8 ,

a3 = e2

2 −
5e1

8 + 1
2 , a4 = e1

4 −
3
8 , a5 = −1

8 ,
(12.4.3)

where e1, e2, e3 and e4 are the elementary symmetric polynomials in the four parameters
a, b, c and d:

e1 = a+ b+ c+ d, e2 = ab+ ac+ ad+ bc+ bd+ cd,

e3 = abc+ abd+ acd+ bcd, e4 = abcd.
(12.4.4)

Introducing τ ∗(a,b,c,d) as a fourth generator together with those of the stabilizing algebra
stab leads to an algebra closed under the star operation.
Proposition 12.6. The algebra stab∗ generated by µ(a,b,c,d), µ∗(a,b,c,d), τ (a,b,c,d) and τ ∗(a,b,c,d),
together with the relations induced from their definitions in terms of S–Heun operators given
in (12.3.4), (12.3.8) and (12.4.2) admits the natural star map defined from its canonical
action on the generators:

∗ : τ 7−→ τ ∗, (12.4.5)

µ 7−→ µ∗. (12.4.6)

Proof. The result follows from the results of [26] after conjugation of the generators by the
scaling map (12.3.6). �
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12.4.2. A universal presentation of stab∗

The algebra stab∗ can be presented in terms of quadratic relations by making use of the
relations given in the appendix 12.A. However, such a presentation obfuscates the structure
of the algebra because the parameters a, b, c and d of the Wilson polynomial appear explicitly
in the relations. Thus, it does not define uniquely an algebra associated to the quadratic
grid.

Recall that the normalized Wilson polynomials are known [26] to be fully symmetric
under permutations of their four parameters. However, the definitions for the two stabilizing
generators given in (12.3.4) do not make this symmetry manifest, because they contain
the specific parameters of the representation. Nervertheless, the permutation symmetry of
the polynomials can be made manifest at the level of the algebra to obtain a universal
presentation.
Proposition 12.7. The algebra stab∗ admits a presentation as a unital associative algebra
with four generators U, V, Y and R obeying the following relations

[V, Y ] = −{U, Y }, [U, Y ] = −{Y, Y }, [U, V ] = {V, Y } − 2{Y, Y },

[R, Y ] = {U,U} − {U, V }+ {V, Y }, [R, V ] = 2{V, Y } − {Y, Y } − {V, V } − {U,R},

[R,U ] = {U, V }+ 2{V, Y } − 2{U, Y } − {V, V } − {Y, Y } − {R, Y }.
(12.4.7)

The two Casimir operators are given by

Q1 = U2 − {V, Y }+ 3Y 2, Q2 = U2 + V 2 − {U, V } − {U, Y } − {R, Y }. (12.4.8)

Proof. Consider the following generic linear combination of generators

uµ(a,b,c,d) + v µ∗(a,b,c,d).

Acting with the symmetric group S4 on the parameters (a, b, c, d), one constructs a fully
symmetric element in terms of the S–Heun operators as follows

1
|S4|

∑
σ∈S4

[
uµσ(a,b,c,d) + v µ∗σ(a,b,c,d)

]
=

1
2[(u− v)− e1(u+ v)]M1 −

1
2(u+ v)M2 +

[
e1

2 (u− v)− 2e2

3 (u+ v)
]
L.

Setting u = 1 and either u = v or u = −v in the above yields two independent generators that
are manifestly symmetric and can be used instead of µ and µ∗ to obtain another presentation
of stab∗. The relations in this new presentation now only involve the elementary symmetric
polynomials (12.4.4). Subsequently, it becomes straightforward to eliminate all remaining
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parameters in the algebraic relations by further redefining the generators as

U = M1 + e1 L, V = M2 + e1M1 + 1
2e1

2L, Y = L, (12.4.9)

R = R2 + (2e1 − 3)R1 + 1
2(3e1

2 − 10e1 + 4)M2 + 1
2(e1 + 1)(e1

2 − 4e1 + 2)M1

+ 1
8(e1

4 − 4e1
3 − 8e1

2 + 24e1 − 8)L. (12.4.10)

Using the quadratic relations of the S–Heun operators given in the appendix 12.A, the
relations (12.4.7), as well as the centrality of the two operators in (12.4.8), are verified. �

In a realization in terms of S–Heun operators, the Casimir operators (12.4.8) are propor-
tionnal to the identity and the coefficients are functions of the parameters of the polynomials.
One has

Q1 = 1, Q2 = (e1 − 2)(e1 − 4), (12.4.11)

where e1 is given in (12.4.4).
Remark 12.8. While a universal presentation of stab∗ has been given in proposition 12.7,
the star structure is not universal and depends explicitly on the representation parameters.
This is not surprising because the map (12.4.5) is constructed using the inner product (12.1.1)
corresponding to a specific realization with fixed parameters. Nevertheless, one can work in
a specific realization and write the generators in (12.4.7) in terms of the structural operators
(12.3.4), (12.3.8) and (12.4.2) as follows

U = 1
|S4|

∑
σ∈S4

[
µσ(a,b,c,d) − µ∗σ(a,b,c,d)

]
, V = 1

|S4|
∑
σ∈S4

[
−µσ(a,b,c,d) − µ∗σ(a,b,c,d)

]
+ αY,

Y = 1
4τ, R = 8τ ∗(e1,e2,e3,e4) − (2− 3α)V + (1− 3α + β)U + (1− β + γ)Y,

(12.4.12)

where

α = 1
2e1

2 − 4
3e2, β = −e1

3 + 4e2e1 − 8e3, γ = 3
4α e1

2 − e1
2e2 + 8e1e3 − 32e4,

(12.4.13)

with e1, e2, e3 and e4 given in (12.4.4). With the above, one obtains

U∗ = −U, V ∗ = V + α (Y ∗ − Y ),

Y ∗ = 1
32 [R + (2− 3α)V − (1− 3α + β)U − (1− β + γ)Y ] ,

R∗ =
[
32 + α (2− 3α)

]
Y − (2− 3α)V − (1− 3α + β)U +

[
1− β + γ − α (2− 3α)

]
Y ∗.

(12.4.14)
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12.4.3. The algebra stab∗ as a Sklyanin algebra

It can be seen from (12.4.9) and (12.4.10) that the generators of stab∗ only depend on the
parameters a, b, c, d via the elementary symmetric polynomial e1(a, b, c, d). Thus, they will be
invariant under a commensurate increase and decrease of any pair of parameters. A glance at
(12.4.2) indicates that this will not be the case for τ ∗(a,b,c,d). However, a pseudo-commutation
relation similar to the one introduced by Rains in [34] is obtained.
Proposition 12.9. In the realization (12.2.5) the identity

τ ∗(a,b,c+k,d−k) τ ∗(a+ 1
2 ,b+

1
2 ,c−

1
2 ,d−

1
2 ) = τ ∗(a,b,c,d) τ ∗(a+ 1

2 ,b+
1
2 ,c−

1
2 +k,d− 1

2−k), (12.4.15)

is satisfied. Moreover, at the abstract level (12.4.15) encodes the algebraic relations of the
stab∗ algebra (12.4.7).

Proof. Using the definition (12.4.2), the identity (12.4.15) is readily verified. The second
statement is demonstrated by using (12.4.12) to express τ ∗(a,b,c,d) in terms of the generators
(12.4.9) and (12.4.10) as

8τ ∗(a,b,c,d) = R + (2− 3α)V − (1− 3α + β)U − (1− β + γ)Y,

where α, β and γ are given in (12.4.13). Upon using the above in (12.4.15), one can pick
any one of the parameters a, b, c, d and take the remaining ones to be vanishing. Equating
the coefficients of each power of the remaining non-zero parameter in the left- and right-
hand side of (12.4.15) yields a set of relations that is algebraically identical to the relations
(12.4.7). �

That the relations of stab∗ are encoded in the identity (12.4.15) identifies the stab∗ algebra
as a Sklyanin-type algebra [34].

12.5. The rational degenerate Sklyanin algebra
The rational degenerate Sklyanin algebra sKr is obtained in [25] from the Sklyanin algebra

[1] and is associated to a rational degeneration of an elliptic R-matrix. A presentation can
be given as a unital associative algebra generated by four elements S0, S3, S+, S− obeying
the defining relations

[S0, S−] = −2{S−, S−}, [S0, S+] = 16{S3, S−} − 16{S−, S−}+ 2{S+, S−} − 4{S3, S3},

[S+, S−] = 2{S0, S3}, [S0, S3] = 2{S3, S−} − 8{S−, S−}, [S3, S±] = ±{S0, S±}.
(12.5.1)
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The rational degenerate Sklyanin algebra admits two Casimir operators which are given in
the above presentation by

C1 = S2
0 + S2

3 + 1
2{S+, S−}, C2 = 1

2{S+, S−}+ 2{S−, S3}+ S2
3 − 6{S−, S−}. (12.5.2)

The presentation (12.5.1) is recovered from the one in [25] upon setting the free parameter
η = 1 and defining S± = S1 ± iS2. The following proposition identifies the stab∗ algebra
with the rational degenerate Sklyanin algebra.
Proposition 12.10. The sKr algebra defined in (12.5.1) is isomorphic to the stab∗ algebra
defined in (12.4.7).

Proof. The following map is readily verified to be an isomorphism of algebras.

S0 = 4Y − 4U, S3 = 4U − 2Y − 4V, S+ = 16R− 14Y − 8U + 24V, S− = −2Y.
(12.5.3)

�

12.5.1. A realization in terms of difference operators

A realization of the rational degenerate Sklyanin algebra in terms of difference operators
is provided in [25]. The Casimir elements are realized as multiples of the identity and are
given by

C1 = 16(2s+ 1)2Id, C2 = 64s(s+ 1)Id.

The generators thus represented can be written in terms of the S–Heun operators (12.2.5)
as follows
S0 = 4(2s− 1)L− 4M1, S3 = −2(2s− 1)2L+ 4(2s− 1)M1 − 4M2, S1 − iS2 = −2L,

S1 + iS2 =− 2(4s2 − 1)(4s2 − 8s− 1)L− 8(2s− 1)(4s2 − 4s− 1)M1

+ 8(2s− 1)(6s+ 1)M2 − 16(4s− 1)R1 + 16R2.

(12.5.4)

It is immediate from the above that the realization in terms of S–Heun operators of the sKr
algebra involves coefficients that depend on the values of the Casimir operators. A similar
observation could be made for the case of the stab∗ algebra in (12.4.9) and (12.4.10). It
follows from proposition 12.10 that the parameters e1 and s are related by

e1 = 2− 2s.

12.5.2. A family of representations

The identification of the rational degenerate Sklyanin algebra sKr with the stab∗ algebra
directly leads to a family of representations of sKr on the Wilson polynomials.
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Proposition 12.11. A representation of the rational degenerate Sklyanin algebra sKr

(12.5.1) on the Wilson polynomials is defined by the following actions

S0 · W̃n

(
x2
∣∣∣a, b, c, d) = 4σ(n+ c+ d− 1) W̃n

(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c−

1
2 , d−

1
2

)
+ (4σ(ab− cd)− e1)n(n+ e1 − 1) W̃n−1

(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
− 4σ(n+ a+ b− 1) W̃n

(
x2
∣∣∣a− 1

2 , b−
1
2 , c+ 1

2 , d+ 1
2

)
,

S3 · W̃n

(
x2
∣∣∣a, b, c, d) = −4(n+ a+ b− 1) W̃n

(
x2
∣∣∣a− 1

2 , b−
1
2 , c+ 1

2 , d+ 1
2

)
+ 1

2(8(ab+ cd)− e1
2 − 1)n(n+ e1 − 1) W̃n−1

(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
− 4(n+ c+ d− 1) W̃n

(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c−

1
2 , d−

1
2

)
,

S− · W̃n

(
x2
∣∣∣a, b, c, d) = −1

2n(n+ e1 − 1) W̃n−1
(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
,

S+ · W̃n

(
x2
∣∣∣a, b, c, d) = 128W̃n+1

(
x2
∣∣∣a− 1

2 , b−
1
2 , c−

1
2 , d−

1
2

)
+ 8(6α− 1 + 2βσ)(n+ a+ b− 1) W̃n

(
x2
∣∣∣a− 1

2 , b−
1
2 , c+ 1

2 , d+ 1
2

)
+ 8(6α− 1− 2βσ)(n+ c+ d− 1) W̃n

(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c−

1
2 , d−

1
2

)
+ 8 [(1− 6α)(ab+ cd)− 2βσ(ab− cd) + ξ]n(n+ e1 − 1)

× W̃n−1
(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
,

where α, β and γ are defined in (12.4.13) and

ξ ≡ 1
2(1− 2e1

2 + e1
4 − 256e4),

with e1 and e4 defined in (12.4.4).

Proof. One first derives the action of the symmetrized structure operators on the Wilson
polynomials. It can be seen from (12.3.9) and (12.4.1) that the expressions in the case of τ
and τ ∗ are fully symmetric under permutations of the parameters such that their actions are
invariant under the symmetrization. To obtain similar expressions for µ and µ∗, one uses
(12.3.11) to write

µ(a,b,c,d) ± µ∗(a,b,c,d) = (µ(a,b,c,d) ± µ(c,d,a,b))∓ 1
2
(
c+ d+ 1

2
)
τ (a,b,c,d)

± σ
[
µ(a,b,c,d) − µ(c,d,a,b) + (ab− cd)τ (a,b,c,d)

]
. (12.5.5)
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The last term in the right-hand side of (12.5.5) is independent of the parameters as

σ
[
µ(a,b,c,d) − µ(c,d,a,b) + (ab− cd)τ (a,b,c,d)

]
= Y − U, (12.5.6)

and is thus invariant under the symmetrization. As it is verified that
1
|S4|

∑
π∈S4

(µπ(a,b,c,d) − µπ(c,d,a,b)) = 0,

one can use the invariance of τ under permutations of the parameters to obtain from (12.5.5)
using (12.5.6) that

1
|S4|

∑
π∈S4

(µπ(a,b,c,d) − µ∗π(a,b,c,d)) = σµ(c,d,a,b) − σµ(a,b,c,d) +
[1
4(e1 + 1)− σ(ab− cd)

]
τ (a,b,c,d).

Likewise, observing that µ(a,b,c,d)+µ(c,d,a,b)+(ab+cd)τ (a,b,c,d), is symmetric under permutations
of the parameters, one can use the invariance of τ and (12.5.6) in (12.5.5) to obtain

1
|S4|

∑
π∈S4

(µπ(a,b,c,d) + µ∗π(a,b,c,d)) = (1 + σ)µ(a,b,c,d) + (1− σ)µ(c,d,a,b)

+
[
(ab+ cd) + σ(ab− cd)− 1

3e2 −
1
4(e1 + 1)

]
τ (a,b,c,d).

The actions on the scaled Wilson polynomials (12.3.10) of τ, τ ∗ and of the operators in
(12.5.5) are obtained from (12.3.9) and found to be:

1
|S4|

∑
π∈S4

(µπ(a,b,c,d) − µ∗π(a,b,c,d)) · W̃n(x2|a, b, c, d) =
[1
4(e1 + 1)− σ(ab− cd)

]
n(n+ e1 − 1)W̃n−1

(
x2|a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
+ σ(n+ a+ b− 1)W̃n

(
x2|a− 1

2 , b−
1
2 , c+ 1

2 , d+ 1
2

)
− σ(n+ c+ d− 1)W̃n

(
x2|a+ 1

2 , b+ 1
2 , c−

1
2 , d−

1
2

)
,

1
|S4|

∑
π∈S4

(µπ(a,b,c,d) + µ∗π(a,b,c,d)) · W̃n(x2|a, b, c, d) =
[
(ab+ cd) + σ(ab− cd)− 1

3e2 −
1
4(e1 + 1)

]
n(n+ e1 − 1)W̃n−1

(
x2|a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
+ (σ − 1)(n+ c+ d− 1)W̃n

(
x2|a+ 1

2 , b+ 1
2 , c−

1
2 , d−

1
2

)
− (σ + 1)(n+ a+ b− 1)W̃n

(
x2|a− 1

2 , b−
1
2 , c+ 1

2 , d+ 1
2

)
1
|S4|

∑
σ∈S4

τσ(a,b,c,d) · W̃n(x2|a, b, c, d) = n(n+ e1 − 1) W̃n−1
(
x2
∣∣∣a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
,

1
|S4|

∑
σ∈S4

τ ∗σ(a,b,c,d) · W̃n(x2|a, b, c, d) = W̃n+1
(
x2
∣∣∣a− 1

2 , b−
1
2 , c−

1
2 , d−

1
2

)
.
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Using (12.4.12) and the above, one can construct a representation of (12.4.7) on the Wilson
polynomials (12.3.10). Proposition 12.11 then follows from proposition 12.10. �

Finite-dimensional representations can be obtained by truncating the representations of
proposition 12.11.
Proposition 12.12. The finite-dimensional representations obtained from truncations of the
representations in proposition 12.11 act on the para-Racah polynomials.

Proof. Looking at the content of proposition 12.11, it is seen that the only generator that
raises the degree is S+. Using (12.5.3), (12.4.12) and (12.4.10) this degree-raising action can
be traced back to the following combination of S–Heun operators

R2 + (2e1 − 3)R1.

With the help of (12.2.10),(12.2.9) and (12.2.8), one can obtain the leading term of the action
of the above operator on a polynomial of degree N in λx:

R1 · λxN = λx
N+1 +O(λxN), R2 · λxN = (2N − 1)λxN+1 +O(λxN),

[R2 + (2e1 − 3)R1] · λxN = 2(N − 1 + e1)λxN+1 +O(λxN). (12.5.7)

Demanding that the leading term in the above vanishes is tantamount to truncating the
representation of proposition 12.11 at the degree N . This truncation condition is precisely
the one that leads to the para-Racah polynomials (12.1.2). Thus, the finite-dimensional
representations of the rational degenerate Sklyanin algebra obtained under this truncation
have for basis the para-Racah polynomials. �

The actions of the generators in these truncated representations are as given in propo-
sition 12.11, although one has to carry the appropriate limiting process described in [27] to
deal with the otherwise singular expressions. Proposition 12.12 provides for the algebraic
interpretation of the para-Racah polynomials as the basis elements of the finite-dimensional
representations of the rational degenerate Sklyanin algebra.

12.6. Conclusion
This paper has introduced the S–Heun operators associated to the quadratic grid as

a special case of the algebraic Heun operator. These operators were shown to form a five-
dimensional space. The subset of these operators which stabilizes the space of polynomials of
a given degree was identified and the algebra that they realize was examined. The extension
of this stabilizing algebra to a star algebra was identified as the rational degenerate Sklyanin
algebra. This definition of the rational degenerate Sklyanin algebra through S–Heun oper-
ators directly led to the construction of infinite-dimensional representations on the Wilson
polynomials as well as finite-dimensional representations on the para-Racah polynomials.
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The rational degenerate Sklyanin algebra is known [25] to be a one parameter deforma-
tion of the Yangian Y (sl2). In the same way that the Yangian Y (sl2) is the quantum algebra
that encodes the symmetry of integrable XXX spin-half chains associated with the ordinary
rational R-matrix, the rational degenerate Sklyanin algebra can be understood as the sym-
metry algebra of a generalized XXX chain corresponding to a deformed rational R-matrix,
a new integrable model. Thus, it would be of interest to use the representations introduced
in section 12.5 to construct explicit realizations of this new integrable model in terms of finite
and infinite spin chains. In the finite case, one would expect the para-Racah polynomials
to appear as the basis of representations of the symmetry algebra. Interestingly, these para
polynomials were first introduced in the context of perfect state transfer on spin chains [35]
and the advances in this paper suggest they would also find applications as solutions to new
integrable spin chain models.
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12.A. Quadratic relations of the S–Heun operators
The set of homogeneous quadratic algebraic relations satisfied by the S–Heun operators

is given below for reference:
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[L,M1] = 2L2, [L,M2] = {M1, L}, [M1,M2] = {M2, L} − 4L2,

[L,R1] = M1
2 + L2 + {M1, L}+ 1

2{M2, L},

[L,R2] = M1
2 + L2 + {M1, L}+ 1

2{M2, L}+ {M1,M2},

[M1, R1] = 2M1
2 − 3L2 + {M1,M2} − 1

2{M1, L} − {M2, L},

[M1, R2] = M1
2 +M2

2 + 7L2 + 2{R2, L} − 5
2{M1, L} − 5{M2, L},

[R1,M2] = 3L2 −M1
2 −M2

2 + 2{R1 +R2, L} − {R1,M1}

−{M1,M2} − 5{M1, L} − 9
2{M2, L},

[R2,M2] = Y 2 −M1
2 −M2

2 + {R1,M1 −M2} − {M1,M2}+ 1
2{M1, L},

[R2, R1] = 2R1
2 +M1

2 + 2M2
2 + 3L2 + 1

2{R2 −R1, L}

−3
2{R1 +R2,M2}+ {M1,M2}+ 3

2{M1, L} − 1
2{M2, Y },

M1
2 − {M1,M2}+ 3L2 = 1, {R1 −R2, L}+M2

2 + {M2, L} − 3L2 = −3,

−2{R1, L} − 3L2 + {M1,M2}+ 2{M1 +M2, L} = 4,

M1
2 + 1

2L
2 + {R1,M1 −M2} − 5

2{R1, L} − 2{R2, L}+ {R1 +R2,M1}

+1
4{M1,M2}+ 6{M1, L}+ 4{M2, L} = 0.

(12.A.1)
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Chapitre 13

Orthogonal polynomials and the deformed
Jordan plane
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Abstract: We consider the unital associative algebra A with two generators X , Z
obeying the defining relation [Z,X ] = Z2 + ∆. We construct irreducible tridiagonal
representations of A. Depending on the value of the parameter ∆, these representations
are associated to the Jacobi matrices of the para-Krawtchouk, continuous Hahn, Hahn or
Jacobi polynomials.

Keywords: Para-Krawtchouk polynomials, deformed Jordan plane, tridiagonal representa-
tions.

13.1. Introduction
This paper is devoted to the study of irreducible tridiagonal representations of the two-

generated algebra A which is a deformation of the Jordan plane. It is shown how the
para-Krawtchouk polynomials appear quite naturally in this context, along with the other
families of classical orthogonal polynomials (OPs) of the Jacobi, continuous Hahn and Hahn
type.

The algebra A over R, with generators X , Z and satisfying

[Z,X ] = Z2 + ∆ (13.1.1)

https://dx.doi.org/10.1016/j.jmaa.2021.125717
https://arxiv.org/abs/2104.13960


with ∆ a parameter, is a special case of the most general two-generated quadratic algebra
Q with defining relation

α1X 2 + α2XZ + α3ZX + α4Z2 + α5X + α6Z + α7 = 0. (13.1.2)

This algebra has been of interest to various communities. Ring theorists have provided
classifications [1, 2] of the special cases it entails and studied its properties. The algebra Q
has also been related to non-commutative probability theory [3] and is related to martingale
polynomials associated to quadratic harnesses [4]. On the physics side, Q describes various
1D asymmetric exclusion models [5–7].

Recently, the last two authors have begun connecting Q and its various isomorphism
classes to families of special functions. We recall that in the context of orthogonal polyno-
mials, the coefficients appearing in their three-term recurrence relation can be presented in
a tridiagonal matrix called the Jacobi matrix which has a diagonal action on the basis of the
associated family of polynomials. The key observation in the paper will be that tridiagonal
representations of the generators of the algebra A can be seen as the Jacobi matrices for
a number of families of orthogonal polynomials. In [8], by studying the tridiagonal rep-
resentations of the q-oscillator algebra XZ − qZX = 1, the authors have identified how
they encompass the recurrence relations of the big q-Jacobi, the q-Hahn and the q-para-
Krawtchouk polynomials. The case of the q-Weyl algebra XZ − qZX = 0 has also been
studied in [9]. The present paper will add to this by considering an interesting special case of
(13.1.2) and identifying how the orthogonal polynomials of Jacobi, Hahn, Continuous Hahn
and para-Krawtchouk type are related to this algebra.

Since their introduction in [10], para-polynomials have been the object of growing interest.
Four families have been defined and studied offering para-versions of the polynomials of
Krawtchouk, q-Krawtchouk, Racah and q-Racah type. While they do not fall in the category
of classical orthogonal polynomials 1, they are understood as non-standard truncations of
infinite-dimensional families of classical OPs [11–13]. In addition to their natural occurence
in the study of perfect state transfer and fractional revival in quantum spin chains [10, 14,
15], recent advances have identified these para-polynomials as the basis for finite-dimensional
representations of degenerations of the Sklyanin algebra [16–18]. They have also appeared
in the study of the Dunkl oscillator in the plane [19]. The main goal of this paper is to show
that these para-Krawtchouk polynomials as well as the Jacobi, continuous Hahn and Hahn
polynomials arise in representations of the two-generated algebra A.

When ∆ = 0, A as defined in (13.1.1) is called the Jordan plane (with X and Z viewed as
noncommutative coordinates). We refer to the general case (13.1.1) as the deformed Jordan
plane. Three cases will be distinguished depending on whether ∆ = 0, ∆ > 0 or ∆ < 0.

1They obey a three term recurrence relation but a higher order difference equation.
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These three cases will be studied separately and provide a complete picture of the connection
between the algebra (13.1.1) and orthogonal polynomials.

The presentation is organized as follows. Section 13.2 will introduce the tridiagonal
representations of the algebra A and the non-degeneracy condition. Standardized versions
of A corresponding to ∆ = 0, ∆ < 0, ∆ > 0 will then be examined in the following sections.
The case ∆ = 0 will be studied in section 13.3 and the Jacobi OPs will appear, while the
case ∆ > 0 and the continuous Hahn polynomials will be the subject of section 13.4. Section
13.5 will focus on the case ∆ < 0 and will feature both the Hahn and the para-Krawtchouk
polynomials. Some concluding remarks and perspectives will close the paper.

13.2. Tridiagonal representations of the algebra A
Consider a tridiagonal representation of A where X 7→ X and Z 7→ Z. The actions of

X, Z on a semi-infinite orthonormal basis |n〉, n = 0, 1, 2, . . . are taken to be of the form

X|n〉 = cn|n− 1〉+ bn|n〉+ an|n+ 1〉, (13.2.1a)

Z|n〉 = un|n− 1〉+ vn|n〉+ wn|n+ 1〉, (13.2.1b)

with c0 = u0 = 0. To ensure that such a representation is irreducible we shall assume that
the off-diagonal coefficients are non-zero for n > 0. Acting with (13.1.1) on the basis |n〉 and
using the above definitions, one obtains

(ZX −XZ − Z2 −∆)|n〉

= (cnun−1 − cn−1un − un−1un)|n− 2〉

+(bnun − bn−1un + cnvn−1 − unvn−1 − cnvn − unvn)|n− 1〉

+(−∆− an−1un + anun+1 − v2
n + cnwn−1 − unwn−1 − cn+1wn − un+1wn)|n〉

+(anvn+1 − anvn + bnwn − bn+1wn − vnwn − vn+1wn)|n+ 1〉

+(anwn+1 − an+1wn − wnwn+1)|n+ 2〉.

(13.2.2)

For the actions in (13.2.1) to define a representation of A, each side of the above equation
must vanish. As the basis vectors are orthonormal, one obtains the following conditions on
the coefficients of (13.2.1) that define the representations:

0 = cnun−1 − cn−1un − un−1un, (13.2.3a)

0 = bnun − bn−1un + cnvn−1 − unvn−1 − cnvn − unvn, (13.2.3b)

0 = −∆− an−1un + anun+1 − v2
n + cnwn−1 − unwn−1 − cn+1wn − un+1wn, (13.2.3c)

0 = anvn+1 − anvn + bnwn − bn+1wn − vnwn − vn+1wn, (13.2.3d)

0 = anwn+1 − an+1wn − wnwn+1. (13.2.3e)
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13.2.1. General solutions to the recurrence relations

We now determine the general solutions to the above system of recurrence equations.
Dividing (13.2.3a) by unun−1, one obtains

cn
un
− cn−1

un−1
= 1.

This implies

φn = φ0 + n, φn ≡
cn
un
. (13.2.4)

Equation (13.2.3e) can be solved similarly. Dividing by wnwn+1, one has

δn = δ0 − n, δn ≡
an
wn
. (13.2.5)

Rewriting (13.2.3b) and (13.2.3d) in terms of φn and δn and dividing by un or wn, respectively,
one obtains

bn−1 − bn = (φn − 1)vn−1 − (φn + 1)vn, (13.2.6)

bn+1 − bn = (δn − 1)vn+1 − (δn + 1)vn. (13.2.7)

To solve for vn, shift the index of (13.2.6) and add (13.2.7) to find

0 = (δn − φn+1 − 2)vn+1 − (δn − φn+1 + 2)vn. (13.2.8)

Substituting the solutions (13.2.4) and (13.2.5) in (13.2.8) leads to

0 = (δ0 − φ0 − 2(n+ 2) + 1)vn+1 − (δ0 − φ0 − 2n+ 1)vn
= µn+2vn+1 − µnvn,

(13.2.9)

with µn ≡ (δ0 − φ0 − 2n + 1). Multiplying the above by µn+1 as an integrating factor, one
can solve the recurrence to obtain

vn = (δ0 − φ0 − 1)(δ0 − φ0 + 1)v0

(δ0 − φ0 − 2n+ 1)(δ0 − φ0 − 2n− 1) . (13.2.10)

To find bn, substract instead (13.2.6) with shifted index from (13.2.7) and get

bn+1 − bn = 1
2(δn + φn + 1)(vn+1 − vn), (13.2.11)

which, upon using (13.2.4) and (13.2.5), can be solved immediately and yields

bn = 1
2(δ0 + φ0 + 1)(vn − v0) + b0. (13.2.12)

Finally, (13.2.3c) is written as follows in terms of φn and δn using (13.2.4) and (13.2.5), as

∆ + v2
n = (δ0 − φ0 − 2(n+ 1))κn+1 − (δ0 − φ0 − 2(n− 1))κn, (13.2.13)
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with

κn ≡ unwn−1. (13.2.14)

Multipliying both sides by (δ0 − φ0 − 2n) as an integrating factor, one can reduce the above
to

(δ0 − φ0 − 2n)(δ0 − φ0 − 2n+ 2)κn = (δ0 − φ0)(δ0 − φ0 + 2)κ0 +
n−1∑
k=0

(∆ + v2
k)(δ0 − φ0 − 2k).

(13.2.15)

The sum over k in (13.2.15) can be reexpressed2 as
n−1∑
k=0

(∆ + v2
k)(δ0 − φ0 − 2k) = n(δ0 − φ0 − n+ 1)(∆(δ0 − φ0 − 2n+ 1)2 + v2

0(δ0 − φ0 − 1)2)
(δ0 − φ0 − 2n+ 1)2 .

(13.2.16)

From (13.2.15) and (13.2.16), recalling that u0 was required to vanish so that κ0 = u0w−1 = 0,
one has

κn = n(δ0 − φ0 − n+ 1)(∆(δ0 − φ0 − 2n+ 1)2 + v2
0(δ0 − φ0 − 1)2)

(δ0 − φ0 − 2n+ 1)2(δ0 − φ0 − 2n)(δ0 − φ0 − 2n+ 2) . (13.2.17)

13.2.2. The linear pencil X + µZ

The algebra A is invariant under the affine transformation

X 7−→ X + µZ, µ ∈ R.

As a result, one expects the transformed solutions for the coefficients in (13.2.1) to be given
by (13.2.4), (13.2.5) and (13.2.12) with modified parameters. Indeed one finds the parameters
to be replaced by

φ0 7−→ φ0 − µ, δ0 7−→ δ0 − µ, b0 7−→ b0 − µv0.

Thus, the diagonalization of the linear pencil X + µZ amounts to the diagonalization of X
up to a shift in the parameters.

13.2.3. Representations on polynomials

Denoting by 〈x| the dual eigenvectors:

〈x|X = x〈x|,

one can look for the polynomials qn(x) ≡ 〈x|n〉 that diagonalize X

Xqn(x) ≡ x qn(x) = cnqn−1(x) + bnqn(x) + anqn+1(x). (13.2.18)

2This is done by noticing the sum to be telescopic or via the polygamma function of the first order.
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By appropriate renormalization, one obtains a monic recurrence relation

Xpn(x) ≡ xpn(x) = an−1cnpn−1(x) + bnpn(x) + pn+1(x), pn(x) =
(
n−1∏
i=0

ai

)
qn(x).

(13.2.19)

The families of polynomials pn(x) that diagonalize X can be determined by identifying the
coefficients an−1cn and bn.

From (13.2.4), (13.2.5), (13.2.14) and (13.2.17), one has that

an−1cn = (n+ φ0)(n− δ0 − 1)n(n+ φ0 − δ0 − 1)(∆(2n+ φ0 − δ0 − 1)2 + v2
0(φ0 − δ0 + 1)2)

(2n+ φ0 − δ0 − 1)2(2n+ φ0 − δ0)(2n+ φ0 − δ0 − 2)
(13.2.20)

and from (13.2.12) and (13.2.10), that

bn = 1
2

(δ0 + φ0 + 1)(φ0 − δ0 + 1)(φ0 − δ0 − 1)v0

(2n+ φ0 − δ0 − 1)(2n+ φ0 − δ0 + 1) + b̃0, b̃0 ≡ b0 −
1
2(δ0 + φ0 + 1)v0.

(13.2.21)

Finite-dimensional representations of dimension N+1 are obtained if wN = 0 since it follows
that aN = 0 from (13.2.3e). This implies that κN+1 = 0. From (13.2.17), we see that this is
achieved for any value of ∆ by

N = (δ0 − φ0). (13.2.22)

If ∆ 6= 0, one finds an additional pair of solutions given by

N + 1 = −1
2
[
φ0 − δ0 − 1± (φ0 − δ0 + 1)v0

√
−∆−1

]
. (13.2.23)

13.3. The case ∆ = 0: Jacobi polynomials
With ∆ vanishing, the coefficient an−1cn (13.2.20) simplifies to

an−1cn = n(n+ φ0)(n− δ0 − 1)(n+ φ0 − δ0 − 1)(φ0 − δ0 + 1)2v2
0

(2n+ φ0 − δ0 − 1)2(2n+ φ0 − δ0)(2n+ φ0 − δ0 − 2) . (13.3.1)

Setting v0 = 2(φ0− δ0 + 1)−1, one identifies the basis vector to be proportional to the Jacobi
polynomials P (α,β)

n (x) with parameters

α = −δ0 − 1, β = φ0. (13.3.2)

Indeed, it follows that b̃0 = 0 and that the coefficient bn of (13.2.21) is given by

bn = (β2 + α2)
(2n+ β + α)(2n+ β + α + 2) . (13.3.3)

Comparing the expressions (13.3.1) and (13.3.3) for the coefficients using for instance [20],
we conclude:
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Proposition 13.1. In the case ∆ = 0, the eigenfunctions pn(x) of X (13.2.19) are the monic
Jacobi polynomials

p(α,β)
n (x) = 2nn!

(n+ α + β + 1)n
P (α,β)
n (x).

with parameters α, β given in (13.3.2).
The only truncation condition possible is (13.2.22). However, it yields singular expres-

sions in (13.3.1) and (13.3.3) for n ≤ N .

13.4. The case ∆ > 0: Continuous Hahn polynomials
If ∆ 6= 0, upon scaling the generators of the algebra according to

X̃ = ΩX , Z̃ = ΩZ,

we obtain
[Z̃, X̃ ] = Z̃2 + Ω2∆. (13.4.1)

In view of (13.4.1), one can choose Ω so that ∆ = ±1
4 . In this section, we shall consider the

case ∆ = +1
4 . The coefficient an−1cn (13.2.20) is then given by

an−1cn = (n+ φ0)(n− δ0 − 1)n(n+ φ0 − δ0 − 1)((2n+ φ0 − δ0 − 1)2/4 + v2
0(φ0 − δ0 + 1)2)

(2n+ φ0 − δ0 − 1)2(2n+ φ0 − δ0)(2n+ φ0 − δ0 − 2) .

(13.4.2)

Writing

φ0 + 1 = a+ c, −δ0 = b+ d, v0 = −i (a− b− c+ d)
2(a+ b+ c+ d) , (13.4.3)

one can factorize the term with v0:
1
4(2n+ φ0 − δ0 − 1)2 + v2

0(φ0 − δ0 + 1)2 = (n+ a+ d− 1)(n+ b+ c− 1).

With (13.4.3) and the above, (13.4.2) becomes

an−1cn = (n+ a+ c− 1)(n+ b+ d− 1)

× n(n+ a+ b+ c+ d− 2)(n+ a+ d− 1)(n+ b+ c− 1)
(2n+ a+ b+ c+ d− 1)(2n+ a+ b+ c+ d− 2)2(2n+ a+ b+ c+ d− 3) . (13.4.4)

Using (13.4.3) and taking b̃0 = i
4(a+ b− c− d), the coefficient bn (13.2.21) is found to be

bn = i
[
− (n+ a+ b+ c+ d− 1)(n+ a+ c)(n+ a+ d)

(2n+ a+ b+ c+ d− 1)(2n+ a+ b+ c+ d)

+ n(n+ b+ c− 1)(n+ b+ d− 1)
(2n+ a+ b+ c+ d− 2)(2n+ a+ b+ c+ d− 1) + a

]
.

(13.4.5)

The coefficients (13.4.4) and (13.4.5) can be identified in [20] and one arrives at:
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Proposition 13.2. In the case ∆ > 0, the eigenfunctions pn(x) of X (13.2.19) are the monic
continuous Hahn polynomials P (a,b,c,d)

n (x) with parameters given in (13.4.3).

13.4.1. Finite-dimensional representations and orthogonal polyno-
mials

Using (13.4.3), condition (13.2.22) becomes

N − 1 = −a− c− b− d, (13.4.6)

which leads to expressions for (13.4.2) and (13.4.5) that are ill-defined for n < N . How-
ever, this can be resolved using limits (see Section 13.5.2) and one thus obtains the para-
Krawtchouk polynomials [10].

Condition (13.2.23) reads

N + 1 = −1
2 [(a+ b+ c+ d− 2)± (a− b− c+ d)] =

−a− d+ 1
−b− c+ 1

(13.4.7)

and corresponds to the truncation of the continuous Hahn polynomials to Hahn polynomials.
However, for each of these truncations (13.4.6) and (13.4.7) to define real polynomials,

the operators X and Z have to be scaled by an imaginary number: X → iX, Z → iZ.
This is equivalent to setting ∆→ −∆, which corresponds to the situation ∆ < 0 that is the
subject of the next section.

13.5. The case ∆ < 0: Hahn and para-Krawtchouk poly-
nomials

When ∆ < 0, polynomials of a real variable are obtained only if (13.2.22) or (13.2.23)
are satisfied (see Section 13.4.1). We begin by treating the latter case.

13.5.1. Hahn polynomials

In view of (13.4.1), we may take ∆ = −1
4 without loss of generality. Expressing the

parameters as follows

φ0 = β, −δ0 = α + 1, v0 = −(α + β + 2N + 2)
2(α + β + 2) , b̃0 = 1

4(2N − α + β), (13.5.1)

so that (13.2.23) is satisfied, one obtains

an−1cn = n(n+ α)(n+ β)(n+ α + β)(n+ α + β +N + 1)(N − n+ 1)
(2n+ α + β − 1)(2n+ α + β)2(2n+ α + β + 1) , (13.5.2)
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as well as

bn = (n+ α + β + 1)(n+ α + 1)(N − n)
(2n+ α + β + 1)(2n+ α + β + 2) + n(n+ α + β +N + 1)(n+ β)

(2n+ α + β)(2n+ α + β + 1) . (13.5.3)

The coefficients given by (13.5.2) and (13.5.3) are found in [20].
Proposition 13.3. In the case ∆ < 0, the eigenfunctions pn(x) of X (13.2.19) related to the
finite-dimensional representation condition (13.2.23) are given in terms of the monic Hahn
polynomials Q(α,β)

n (x) for the choice of parameters given in (13.5.1).
As previously mentioned, these polynomials can also be obtained as a truncation of the

recurrence defined by (13.4.2) and (13.4.5). Indeed, setting

α = a+ c− 1, β = b+ d− 1, (13.5.4)

with one of (13.4.7), the coefficients (13.4.2) and (13.4.5) become proportional to (13.5.2)
and (13.5.3), respectively. Hence, the action of iX when ∆ = +1

4 also leads to the recurrence
relation of the monic Hahn polynomials.

13.5.2. Para-Krawtchouk polynomials

We shall finally indicate how a family of finite-dimensional representations of A relates
to para-Krawtchouk polynomials. Consider the condition (13.2.22). Although leading to
singular expressions for certain values of n, well-defined polynomials are obtained by carefully
taking limits. Mindful of (13.4.1), it is convenient in this case to take ∆ = −1. LetN = 2j+p
with j an integer and p = 0, 1 depending on the parity of N , and set

φ0 + 1 = e1t− j, −δ0 = e2t− j + 1− p, v0 = γ + p− 1
e1t+ e2t− 2j − p+ 1 , e1 = e2 = 1.

(13.5.5)

The parameters e1 and e2 are chosen equal in order to simplify the expressions. The more
general solutions can be recovered using isospectral deformations [12, 21]. With the above
parametrization, it can be seen that (13.2.22) is verified in the limit where t→ 0. With the
parameters as in (13.5.5), the coefficient an−1cn (13.2.20) becomes

an−1cn = (n− j + t− 1)(n− j + t− p)

× n(n− 2j + 2t− p− 1)(N − 2n+ p+ γ)(N − 2n− p+ 2− γ)
(2n− 2j + 2t− p− 1)2(2n− 2j + 2t− p)(2n− 2j + 2t− p− 2) . (13.5.6)

Taking the limit t → 0 and treating the cases for p = 0, 1 separately, one finds that the
results can be combined as follows

lim
t→0

an−1cn = n(N + 1− n)(N − 2n+ p+ γ)(N − 2n− p+ 2− γ)
4(2n−N + p− 1)(2n−N − p− 1) . (13.5.7)
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For the coefficient bn, setting b̃0 = 1
2(N + γ− 1) and inserting (13.5.5) in (13.2.21), one finds

bn = 1
2

(p− 1)(−2j − p+ 2t− 1)(γ + p− 1)
(2n− 2j − p+ 2t− 1)(2n− 2j − p+ 2t+ 1) + 1

2(N + γ − 1). (13.5.8)

Treating the cases p = 0 or p = 1 separately and taking the limit t → 0, one sees that the
results can be written jointly as

lim
t→0

bn = −(N − n)(N − 2n− 2 + p+ γ)
2(2n−N − p+ 1) − n(N − 2n+ 2− p− γ)

2(2n−N + p− 1) . (13.5.9)

The coefficients given by (13.5.7) and (13.5.9) are recognized in [12] as the coefficients for
the recurrence relation of the monic para-Krawtchouk polynomials.
Proposition 13.4. In the case ∆ < 0, the eigenfunctions pn(x) of X (13.2.19) in the finite-
dimensional representation (13.2.22) of A are the monic para-Krawtchouk polynomials.

13.6. Conclusion
We have studied tridiagonal representations of the algebra A with defining relation

[Z,X ] = Z2 + ∆. Depending on the value of ∆, in these representations, the linear pencil
X + µZ entailed the recurrence relations of the Jacobi (∆ = 0), continuous Hahn (∆ > 0),
Hahn and para-Krawtchouk (∆ < 0) polynomials.

In the wake of this work, two research avenues present themselves. One is the exploration
of the tridiagonal representations of the algebra [Z,X ] = Z2 + αX , another class of the
general quadratic algebra (13.1.2). It is expected that the tridiagonal representations will
lead to the Wilson, Racah and para-Racah polynomials in a similar fashion.

Another related direction is the study of the so-called meta algebras, poised to describe
both polynomial and rational functions of a given type, as shown in [22] for functions of
the Hahn type. The meta-Hahn algebra is in fact obtained by adjoining to A an additional
generator. As it turns out, the meta-algebra picture offers a rationale for considering tridiag-
onal representations; in the basis where the extra generator is diagonal, the generators of A
are tridiagonal. These developments suggest in particular that the work on the q-oscillator
algebra [8] should be revisited in order to bring to the fore the associated rational functions.
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Partie 3

Algèbres de type Askey–Wilson et
centralisateurs



Introduction
Une question centrale qui résume bien les travaux dans cette troisième partie est :
Comment définir des analogues de plus haut rang des algèbres de type Askey–Wilson?

Les algèbres de type Askey–Wilson étant riches et apparaissant dans de nombreux contextes,
il est assez naturel de vouloir les généraliser; on peut espérer que ces généralisations créent
davantage de connexions entre des domaines variés tout en conservant un nombre de pro-
priétés utiles et sans devenir trop compliquées.

À l’origine, l’algèbre d’Askey–Wilson a été obtenue à partir des opérateurs de bispectralité
des polynômes portant le même nom. Cette procédure a par la suite été répétée pour
les diverses familles de polynômes. Une possibilité de généralisation serait de regarder les
opérateurs de bispectralité associés aux généralisations multivariées des diverses familles de
polynômes orthogonaux et de calculer les relations algébriques auxquelles ils obéissent. Ce
n’est pas une tâche facile et, historiquement, ce n’est pas l’avenue qui a été empruntée.

Tel que mentionné dans le Prologue et dans la première partie de la thèse, il existe une
autre approche pour obtenir les algèbres de type Askey–Wilson qui revient à considérer les
Casimir intermédiaires utilisés dans l’étude des problèmes de recouplement de représentations
irréductibles des algèbres sl2, osp(1|2) et Uq(sl2). C’est cette approche qui a été généralisée,
historiquement. Une algèbre de Racah de rang général R(n) a pu être définie en étudiant
les relations auxquelles obéissent les Casimir intermédiaires associés aux recouplements de n
irreps de sl2 [40]. (Il faut ici mentionner qu’à l’origine le chemin avait été tracé pour l’algèbre
de Bannai–Ito [41], obtenue en étudiant les relations qu’obéissent les Casimir intermédiaires
de osp(1|2).) Voici de quoi a l’air l’algèbre R(n) dans cette approche :

Soient e, f , h les générateurs de sl2, obéissant

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h. (13.6.1)

Le Casimir de sl2 est donné par

C = 1
4h

2 − 1
2h+ ef. (13.6.2)

Le coproduit ∆ de sl2 agit comme suit :

∆(g) = 1⊗ g + g ⊗ 1, g ∈ {e, f, h}. (13.6.3)

Dénotons ∆(C) = C(1) ⊗ C(2) en notation de Sweedler [42]. Introduisons maintenant les
générateurs Ci, Cij ∈ U(sl2)⊗n

Ci = 1⊗(i−1) ⊗ C ⊗ 1⊗(n−i), Cij = 1⊗(i−1) ⊗ C(1) ⊗ 1⊗(j−i−1) ⊗ C(2) ⊗ 1⊗(n−j). (13.6.4)

On peut former les générateurs de R(n)

Pii = 2Ci, Pij = Cij − Ci − Cj = Pji. (13.6.5)



L’algèbre R(n), avec générateurs Pii, Pij obéit aux relations suivantes, pour des indices i, j,
k, `, m ∈ {1, . . . , n} et tous distincts :

Pii est central, (13.6.6a)

[Pij,Pk`] = 0, (13.6.6b)

[Pij,Pjk] = 2Fijk, (13.6.6c)

[Pjk,Fijk] = Pik(Pjk + Pjj)− (Pjk + Pkk)Pij, (13.6.6d)

[Pk`,Fijk] = PikPj` − Pi`Pjk, (13.6.6e)

[Fijk,Fjk`] = −(Fij` + Fik`)Pjk, (13.6.6f)

[Fijk,Fk`m] = Fi`mPjk − Fj`mPik, (13.6.6g)

Ce qui est remarquable de cette algèbre R(n) est que les relations peuvent être présentées
de façon uniforme en termes d’indices. Autrement dit, tous les Pij se comportent de façon
uniforme. La raison derrière cela est que les générateurs de sl2 sont des éléments primitifs.
Autre remarque : un générateur Pij (respectivement Fijk) ne contient que des termes dans
les espaces tensoriels i et j (respectivement i, j et k). L’identification des générateurs semble
donc très naturelle car elle réflète bien leur contenu dans les espaces tensoriels et mène à une
présentation symétrique des relations de l’algèbre.

Regardons maintenant ce qui arrive lorsqu’on q-déforme : on considère plutôt l’algèbre
quantique Uq(sl2) et l’algèbre d’Askey–Wilson, mais beaucoup des remarques ci-haut ne
tiennent plus. Une présentation symétrique des relations est possible dans le cas n = 3 pour
l’algèbre AW (3) dans la réalisation en termes de Casimir intermédiaires de Uq(sl2) :

C12 + [C23, C13]q
q2 − q−2 = C1C2 + C3C123

q + q−1 , (13.6.7a)

C23 + [C13, C12]q
q2 − q−2 = C2C3 + C1C123

q + q−1 , (13.6.7b)

C13 + [C12, C23]q
q2 − q−2 = C3C1 + C2C123

q + q−1 , (13.6.7c)

où les Ci, C12, C23 et C123 sont les Casimir intermédiaires de Uq(sl2). Cependant, ici, le
générateur C13 est difficile à interpréter et ne semble pas très naturel. Malgré le fait qu’il
n’est étiqueté que par les indices 1 et 3, il contient en réalité des termes dans les espaces
tensoriels 1, 2 et 3. Comment réconcilier cela avec la situation pour l’algèbre de Racah où
tout semble clair?

Une première partie de réponse est donnée au chapitre 14. Dans cet article, on montre
que l’élément C13 est obtenu de C12 par une conjugaison par la matrice R tressée de Uq(sl2).
Ceci explique de façon simple les facteurs non-triviaux présents dans l’espace tensoriel 2.
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Des travaux subséquents au chapitre 15 développent un calcul diagrammatique pour l’al-
gèbre d’Askey–Wilson en exploitant sa ressemblance avec l’algèbre de skein du crochet de
Kauffman pour une sphère à 4 trous. Cela permet notamment d’interpréter graphiquement
la conjugaison par la matrice R tressée introduite au chapitre précédent ainsi que l’action
du coproduit en terme de rotations de Dehn et de perforations de la sphère. Cela fournit
également une autre perspective sur la présence de termes non-triviaux dans les espaces 1, 2
et 3 pour l’élément appelé C13. On y formule également une conjecture que ces observations
tiennent pour un rang arbitraire n. Cette conjecture semble naturelle et permet de rendre
compte de tous les résultats obtenus à ce jour3 sur les généralisations à plus haut rang de
l’algèbre d’Askey–Wilson.

L’idée d’utiliser la matrice R tressée pour étudier les Casimir intermédiaires de Uq(sl2)
est venue suite à l’observation que les Casimir intermédiaires appartiennent au centralisateur
de Uq(sl2) dans Uq(sl2)⊗3 : en utilisant les propriétés de la matrice R tressée et du coproduit,
il est facile de montrer cela. L’algèbre d’Askey–Wilson est donc contenue dans le centrali-
sateur. Mais est-ce le centralisateur complet, ou bien y a-t-il davantage de relations dans le
centralisateur?

L’étude de cette question et l’utilisation de résultats classiques en théorie des invariants
permet de répondre à cette question dans le cas non-déformé (q = 1). Au Chapitre 16,
on montre qu’un quotient de l’algèbre de Racah de plus haut rang R(n) est isomorphe au
centralisateur Zn(sl2) de U(sl2) dans U(sl2)⊗n. Ce quotient est donné explicitement. Ceci
boucle en quelque sorte la boucle entamée à la Partie 1, dans laquelle la théorie de la dualité
de Howe, qui « transcend » la théorie classique des invariants était étudiée. Les résultats au
dernier chapitre donnent un analogue non-commutatif des Premiers et Seconds Théorèmes
Fondamentaux de théorie des invariants.

3au moment présent, lors de l’écriture de cette thèse...
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Chapitre 14

Revisiting the Askey–Wilson algebra with the
universal R-matrix of Uq(sl2)

Par Nicolas Crampé, Julien Gaboriaud, Luc Vinet, Meri Zaimi.
Publié dans Journal of Physics A: Mathematical and Theoretical 53(5), 05LT01, 2020.
arxiv:1908.04806.

Abstract: A description of the embedding of a centrally extended Askey–Wilson
algebra, AW (3), in Uq(sl2)⊗3 is given in terms of the universal R-matrix of Uq(sl2).
The generators of the centralizer of Uq(sl2) in its three-fold tensor product are naturally
expressed through conjugations of Casimir elements with R. They are seen as the images of
the generators of AW (3) under the embedding map by showing that they obey the AW (3)
relations. This is achieved by introducing a natural coaction also constructed with the help
of the R-matrix.

14.1. Introduction
This letter addresses a long-standing question regarding the intrinsic description of the

generators of a centrally extended Askey–Wilson algebra in its embedding into Uq(sl2)⊗3.
The answer will be shown to involve Casimir elements and the universal R-matrix of Uq(sl2).

The Askey–Wilson algebra can be defined with three generators and relations. It has
first been introduced [1] as the algebra realized by the recurrence and q-difference operators
intervening in the bispectral problem associated to the Askey–Wilson polynomials [2]. This
explains the name. Since the structure relations are not affected by truncations, this algebra
also encodes the properties of the q-Racah polynomials. Owing to the connection with these
6j or Racah coefficients for Uq(sl2) [3], a centrally extended Askey–Wilson algebra AW (3)

https://dx.doi.org/10.1088/1751-8121/ab604e
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can be realized as the centralizer of the diagonal action of this quantum algebra in its three-
fold tensor product. Related are the references [4–7]. In this context, two generators of
AW (3) are naturally mapped under the coproduct onto the intermediate Casimir elements
corresponding respectively to the recouplings of the first and last two factors in Uq(sl2)⊗3.
A natural algebraic interpretation of the image of the third generator has however been
lacking. This was circumvented so far by using one of the relations which gives the third
generator as the q-commutator of the other two; while this allows the homomorphism from
AW (3) into Uq(sl2)⊗3 to be defined, the resulting expression for this third generator is far
from illuminating. Note that all three generators are needed to provide a PBW basis for
AW (3). Besides the fact that this leaves a picture which is not fully satisfactory, this is
a serious shortcoming in attempts to generalize AW (3) to algebras of higher ranks. The
natural approach - in fact the only one that has been conceived - is to define AW (n) as the
centralizer of Uq(sl2) in Uq(sl2)⊗n. Proceeding with such an extension calls for an algebraic
understanding of all centralizing elements in the tensor product. Significant progress towards
describing the algebras AW (n) have been made nevertheless. The algebra AW (4) has been
explored in [8] by including generators defined through the q-commutators of coproduct
images of the Casimir element, as done for AW (3), and obtaining from there various structure
relations. Meaningful results have thus been found. The identification of the general AW (n)
has been attacked and largely advanced in [9, 10]. Much has been achieved in this case by
cleverly designing a coaction map that has been used to define the generators, starting from
the Casimir element of Uq(sl2), so as to ensure that these generators obey a q-deformation
of natural structure relations (i.e. those of the generalized Bannai–Ito algebra BI(n) [11])
and by proving that this is so in many (but not all) cases. Still, in spite of this progress, an
a priori algebraic description of the generators remained much desired.

We shall here settle this issue for AW (3) by providing a simple expression for the image
of its third generator in Uq(sl2)⊗3. The formula will involve conjugation with the universal
R-matrix of Uq(sl2) and will be seen to explain the origin of the coaction introduced in [9].
Basic facts about Uq(sl2) and its universal R-matrix are collected in Section 14.2. Section
14.3 focuses on the centralizer of Uq(sl2) in Uq(sl2)⊗3; it provides the algebraic description
that was missing. An additional centralizing element, conjugated to the usual third genera-
tor of AW (3) is also identified; this will be related to observations made in [8]. The universal
R-matrix and the Yang–Baxter equation are central here. With the expressions for the gen-
erators (in Uq(sl2)⊗3) in hand, Section 15.2.1 looks at their products and recovers the AW (3)
relations. To that end, a map from Uq(sl2) in Uq(sl2)⊗3 defined in terms of the R-matrix is
introduced. It is pointed out that this map, once spelled out, coincides with the coaction
used in [9]. The letter concludes with final remarks stressing the advantages of bringing the
universal R-matrix in the description of the algebras AW (n). As an illustration it is shown
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that a computation in AW (4) can be performed with these tools in a comparatively much
simpler way than otherwise.

14.2. Uq(sl2) and its universal R-matrix
In this section, we recall the definitions of the quantum algebra Uq(sl2) and of its universal

R-matrix as well as some of their properties. This allows to fix the notations and to make
this letter more self-contained.

The associative algebra Uq(sl2) is generated by E, F and qH with the defining relations

qHE = qEqH , qHF = q−1FqH and [E,F ] = [2H]q, (14.2.1)

where [X]q = qX−q−X
q−q−1 and q 6= ±1,±i. The center of this algebra is generated by the following

Casimir element

C = −(q − q−1)2

q + q−1

(
FE + qq2H + q−1q−2H

(q − q−1)2

)
. (14.2.2)

The normalization of the Casimir element C is irrelevant but chosen to yield computational
simplifications. There exists a homomorphism ∆ : Uq(sl2)→ Uq(sl2)⊗Uq(sl2), called comul-
tiplication, defined by

∆(E) = E ⊗ q−H + qH ⊗ E, ∆(F ) = F ⊗ q−H + qH ⊗ F and ∆(qH) = qH ⊗ qH .
(14.2.3)

We recall that this comultiplication is coassociative

(∆⊗ id)∆ = (id⊗∆)∆. (14.2.4)

The quantum algebra Uq(sl2) is quasi-triangular because there exists a universal R-matrix
R ∈ Uq(sl2)⊗ Uq(sl2) which is invertible and satisfies

∆(x)R = R∆op(x), for x ∈ Uq(sl2), (14.2.5)

where the opposite comultiplication ∆op(x) = x(2)⊗x(1) if ∆(x) = x(1)⊗x(2) in the Sweedler
notation, and

(id⊗∆)R = R12R13 and (∆⊗ id)R = R23R13. (14.2.6)

In the previous relation (14.2.6), we have used the usual notations R12 = Rα ⊗ Rα ⊗ 1,
R23 = 1 ⊗ Rα ⊗ Rα and R13 = Rα ⊗ 1 ⊗ Rα where R = Rα ⊗ Rα (the sum w.r.t. α is
understood). We will also use the following element

R̃ = R21 = Rα ⊗Rα, (14.2.7)
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satisfying

∆op(x)R̃ = R̃∆(x), for x ∈ Uq(sl2). (14.2.8)

The universal R-matrix also satisfies the Yang–Baxter equation

R12R13R23 = R23R13R12, (14.2.9)

and takes the following explicit form [12]

R = q2(H⊗H)
∞∑
n=0

(q − q−1)n
[n]q!

qn(n−1)/2(EqH ⊗ q−HF )n, (14.2.10)

where [n]q! = [n]q[n− 1]q . . . [2]q[1]q and, by convention, [0]q! = 1. For future convenience, by
using the commutation relations of Uq(sl2), we rewrite R̃ as follows

R̃ =
∞∑
n=0

(q − q−1)n
[n]q!

qn(n−1)/2(FqH ⊗ q−HE)n q2(H⊗H) = Θ q2(H⊗H). (14.2.11)

14.3. Centralizer of Uq(sl2) in Uq(sl2)⊗3

In this section, we want to describe the centralizer C3 of the diagonal action of Uq(sl2) in
Uq(sl2)⊗3:

C3 =
{
X ∈ Uq(sl2)⊗3

∣∣∣ [(∆⊗ id)∆(x), X] = 0, ∀x ∈ Uq(sl2)
}
. (14.3.1)

Let us define the so-called intermediate Casimir elements (in Sweedler’s notation)

C12 = ∆(C)⊗ 1 = C(1) ⊗ C(2) ⊗ 1 and C23 = 1⊗∆(C) = 1⊗ C(1) ⊗ C(2), (14.3.2)

and the total Casimir element

C123 = (∆⊗ id)∆(C). (14.3.3)

We define also C1 = C ⊗ 1 ⊗ 1, C2 = 1 ⊗ C ⊗ 1 and C3 = 1 ⊗ 1 ⊗ C. By using that the
Casimir element C is central in Uq(sl2), we deduce for example that

[(∆⊗ id)∆(x), C12] = 0 and [(id⊗∆)∆(x), C23] = 0, ∀x ∈ Uq(sl2). (14.3.4)

By definition (14.3.1), C1, C2, C3, C12, C23 and C123 belong to the centralizer C3

with C1, C2, C3 and C123 belonging to the center of C3. It is well-known that these el-
ements satisfy the Askey–Wilson algebra [1]. We will come back to this point in Section 14.4.

In the case of U(sl2) (i.e. the limit q → 1 of the case studied here), one can also prove
that the intermediate Casimir C13 = C(1) ⊗ 1⊗C(2) belongs to the centralizer. For q 6= 1, it
is not the case and the main objective of this letter is to provide a definition of this element
for the quantum algebra.
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Theorem 14.1. The following elements of Uq(sl2)⊗3

C
(0)
13 = R̃−1

23 C13R̃23 = R12C13R−1
12 , (14.3.5a)

C
(1)
13 = R̃−1

12 C13R̃12 = R23C13R−1
23 . (14.3.5b)

are in the centralizer C3, where R and R̃ are defined in (15.6.8) and (14.2.11) and C13 =
C(1) ⊗ 1⊗ C(2).

Proof. By using the coassociativity of the comultiplication (15.6.4) and by conjugating
with R23, the first relation in (14.3.4) reads

[(id⊗∆op)∆(x),R−1
23 C12R23] = 0. (14.3.6)

Finally, by exchanging the spaces 2 and 3, one gets that C(0)
13 is in the centralizer

[(id⊗∆)∆(x), R̃−1
23 C13R̃23︸ ︷︷ ︸

=C(0)
13

] = 0. (14.3.7)

One proves similarly that R12C13R−1
12 , R̃−1

12 C13R̃12 and R23C13R−1
23 are in the centralizer C3.

We must prove also the equality between R̃−1
23 C13R̃23 and R12C13R−1

12 . One gets

C
(0)
13 = R̃−1

23 C13R̃23 = R̃−1
23

(
C(1) ⊗ 1⊗ C(2)

)
R̃23 = R̃−1

23R13
(
C(2) ⊗ 1⊗ C(1)

)
R−1

13 R̃23,

(14.3.8)

where we have used property (15.6.5). The Yang–Baxter equation (14.2.9) implies that

C
(0)
13 = R12R13R̃−1

23R−1
12

(
C(2) ⊗ 1⊗ C(1)

)
R12R̃23R−1

13R−1
12 . (14.3.9)

Now, from (14.2.6), one deduces that [∆(C)⊗ 1, (∆⊗ id)(R)] = [∆(C)⊗ 1,R23R13] = 0 and
that [

(
C(2) ⊗ 1⊗ C(1)

)
,R12R̃23] = 0. Then, one obtains

C
(0)
13 = R12R13

(
C(2) ⊗ 1⊗ C(1)

)
R−1

13R−1
12 = R12C13R−1

12 . (14.3.10)

The equality between R̃−1
12 C13R̃12 and R23C13R−1

23 is proven similarly. �

From relations (14.3.5a) and (14.3.5b), one deduces that C(0)
13 and C(1)

13 are conjugated:

C
(1)
13 = R23R̃23C

(0)
13 (R23R̃23)−1 = (R12R̃12)−1C

(0)
13 R12R̃12. (14.3.11)

14.4. The Askey–Wilson algebra AW (3)
In this section, we study the algebra satisfied by the intermediate Casimir elements

introduced in the previous section and connect it with the central extension AW (3) of the
Askey–Wilson algebra introduced in [1]. We start by proving the following lemma.
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Lemma 14.2. The map defined by

τ : Uq(sl2)→ Uq(sl2)⊗ Uq(sl2)

x 7→ R̃−1(1⊗ x)R̃
(14.4.1)

yields the following explicit expressions when acting on the different elements of Uq(sl2) listed
below:

τ(C) = 1⊗ C, (14.4.2a)

τ(q−HE) = q−2H ⊗ q−HE, (14.4.2b)

τ(q−2H) = 1⊗ q−2H − (q − q−1)2q−HF ⊗ q−HE, (14.4.2c)

τ(Fq−H) = q2H ⊗ Fq−H + q−1(q + q−1)FqH ⊗ (C + q−2H)− (q − q−1)2F 2 ⊗ q−HE.
(14.4.2d)

Proof. We must prove that the map given in the theorem reproduces relations (14.4.2a)-
(14.4.2d). For relation (14.4.2a), it is direct, knowing that C commutes with any element of
Uq(sl2). To prove relation (14.4.2b), one computes (using the explicit form (14.2.11) of R̃)

τ(q−HE) = R̃−1(1⊗ q−HE)Θ q2(H⊗H) = R̃−1Θ (1⊗ q−HE)q2(H⊗H) = q−2H ⊗ q−HE,
(14.4.3)

which reproduces (14.4.2b).
We want now to compute τ(q−2H):

τ(q−2H) = R̃−1(1⊗ q−2H)R̃ = R̃−1(1⊗ q−2H)q2(H⊗H)
∞∑
n=0

an(q−HF ⊗ EqH)n

= R̃−1q2(H⊗H)
∞∑
n=0

anq
−2n(q−HF ⊗ EqH)n (1⊗ q−2H),

(14.4.4)

where we have introduced the parameters

an = (q − q−1)n
[n]q!

qn(n−1)/2. (14.4.5)

Remarking that

anq
−2n = an − an[n]qq−n(q − q−1), (14.4.6)

one gets

τ(q−2H) = R̃−1
(
R̃ − q2(H⊗H)

∞∑
n=0

an+1[n+ 1]qq−(n+1)(q − q−1)(q−HF ⊗ EqH)n+1
)

(1⊗ q−2H).

(14.4.7)

It is easy to show that the parameters an satisfy an+1[n+ 1]q = qn(q − q−1)an, which allows
to recover (14.4.2c).
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Similarly, to prove (14.4.2d), one computes

τ(Fq−H) = R̃−1(1⊗ Fq−H)R̃ = R̃−1(1⊗ Fq−H)q2(H⊗H)
∞∑
n=0

an(q−HF ⊗ EqH)n

= R̃−1q2(H⊗H)(q2H ⊗ Fq−H)
∞∑
n=0

an(q−HF ⊗ EqH)n.
(14.4.8)

Then, the identity

[F,En] = [n]q
q − q−1 (qn−1q−2H − q−(n−1)q2H)En−1 (14.4.9)

can be used to write

τ(Fq−H) = R̃−1q2(H⊗H)

×
∞∑
n=0

an(q−HF ⊗ EqH)n
(
q−2nq2H ⊗ Fq−H + q−2FqH ⊗ (q−2nq−2H − q2H)

)
.

(14.4.10)

Using again relation (14.4.6), one finds

τ(Fq−H) = q2H ⊗ Fq−H − q−1(q − q−1)2FqH ⊗ FE − FqH ⊗ (q2H − q−2H)

− (q − q−1)2F 2 ⊗ q−HE.
(14.4.11)

Finally, expressing FE in terms of C from definition (14.2.2), one recovers (14.4.2d). �

Using Lemma 14.2, we can rewrite C(0)
13 (14.3.5a) as follows

C
(0)
13 = (1⊗ τ)∆(C) (14.4.12)

= (q2H + C)⊗ τ(q−2H) + q2H ⊗ τ(C)

− (q − q−1)2

q + q−1

(
qHE ⊗ τ(Fq−H) + FqH ⊗ τ(q−HE)

)
. (14.4.13)

Proposition 14.3. The following relation
1

q − q−1 [C12, C23]q = C
(0)
13 + C1C3 + C2C123 (14.4.14)

holds in Uq(sl2)⊗3.

Proof. Using the expressions for the maps under τ given in Lemma 14.2, we obtain C(0)
13

in terms of the generators of Uq(sl2). A direct computation using the commutation relations
of Uq(sl2) proves the relation of the proposition. �

One of the advantages of the construction with the universal R-matrix is that we can
deduce all the other defining relations of AW (3) from (14.4.14) and some other relations.
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Corollary 14.4. The following relations
1

q − q−1 [C(0)
13 , C12]q = C23 + C2C3 + C1C123, (14.4.15a)

1
q − q−1 [C23, C

(0)
13 ]q = C12 + C1C2 + C3C123, (14.4.15b)

1
q − q−1 [C23, C12]q = C

(1)
13 + C1C3 + C2C123, (14.4.15c)

1
q − q−1 [C12, C

(1)
13 ]q = C23 + C2C3 + C1C123, (14.4.15d)

1
q − q−1 [C(1)

13 , C23]q = C12 + C1C2 + C3C123, (14.4.15e)

hold in Uq(sl2)⊗3.

Proof. We use the second relation in (14.3.5a) as well as the definitions (14.3.3) to write
relation (14.4.14) as follows

1
q − q−1 [∆(C)⊗ 1, C23]q = R12C13R−1

12 + C1C3 + C2(∆⊗ id)∆(C). (14.4.16)

Exchanging the spaces 1 and 2, the previous relation becomes
1

q − q−1 [∆op(C)⊗ 1, C13]q = R̃12C23R̃−1
12 + C2C3 + C1(∆op ⊗ id)∆(C), (14.4.17)

which leads to (14.4.15d) after conjugating by R̃12 (using property (14.2.8)).
Then, one starts from the relation (14.4.15d) we have just proven, uses the second relation

in (14.3.5b) to express C(1)
13 and exchanges spaces 2 and 3 to write

1
q − q−1 [C13, R̃23C12R̃

−1
23 ]q = 1⊗∆op(C) + C2C3 + C1(id⊗∆op)∆(C). (14.4.18)

Conjugating with R̃23, one proves relation (14.4.15a). Performing the same two steps starting
from (14.4.15a), one proves (14.4.15c) and (14.4.15b). Finally, the two same steps prove
(14.4.15e) and give again the equation (14.4.14). �

We now have a number of remarks regarding the merits of the R-matrix approach devel-
oped above.
Remark 14.5. Relations (14.4.14), (14.4.15a) and (14.4.15b) are the defining relations of
central extension AW (3) of the Askey–Wilson algebra introduced in [1]. Therefore, the results
presented in this letter offer another proof that the intermediate Casimir elements of Uq(sl2)
provide a realization of AW (3). In previous works [1, 6, 8, 9, 13], C(0)

13 was defined by
relation (14.4.14) whereas in our approach, it is defined independently of the commutation
relations via relation (14.3.5a).
Remark 14.6. The map τ with images given by (14.4.2a)-(14.4.2d) has in fact been intro-
duced in [9, 13] so as to obtain C(0)

13 as in relation (14.4.12). Our definition (14.4.1) gives a
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nice and powerful interpretation of this map. Let us remark that the comultiplication used in
this letter is slightly different from the ones used in [9, 13]. In order to establish exactly the
correspondence, the following transformation on our generators and Casimir element must
be performed: q2H → K, E → EK−1/2, F → K1/2F , q → Q and C → −Λ/(Q+Q−1).
Remark 14.7. To illustrate the appropriateness and advantages of definition (14.4.1) of the
map τ , we here prove its coaction property in a much simpler way than the direct calculation
described in [9, 13]. Using relation (14.2.6), it is easy to compute, for x ∈ Uq(sl2),

(∆⊗ id)τ(x) = (∆⊗ id)
(
R̃−1(1⊗ x)R̃

)
= R̃−1

23 R̃−1
13 (1⊗ 1⊗ x)R̃13R̃23, (14.4.19)

and

(id⊗τ)τ(x) = (id⊗τ)
(
R̃−1(1⊗ x)R̃

)
= R̃−1

23 R̃−1
13 (1⊗ 1⊗ x)R̃13R̃23. (14.4.20)

This proves that (∆⊗ id)τ(x) = (id⊗τ)τ(x) and thus that τ is a left coaction.
Remark 14.8. We can define also a right coaction τ̌ given by

τ̌ : Uq(sl(2))→ Uq(sl(2))⊗ Uq(sl(2))

x 7→ R(x⊗ 1)R−1,
(14.4.21)

satisfying

(τ̌ ⊗ id)τ̌ = (id⊗∆)τ̌ . (14.4.22)

We can show following steps similar to those of the proof of Lemma 14.2 that this right
coaction coincides with the one introduced recently in [10] with the identifications: q2H → K,
E → EK−1/2, F → K1/2F and C → −Λ/(q + q−1).
Remark 14.9. The element C(1)

13 has been introduced previously in [8] (where it is called
IQ(13)) and defined by relation (14.4.15c). Our definition (14.3.5b) gives a new interpretation
of this element.

14.5. Conclusion and perspective
In this letter, we study the centralizer of the diagonal action of Uq(sl2) and its connection

with the Askey–Wilson algebra AW (3). In comparison with the previous approaches, we
have emphasized the relevance of the universal R-matrix of Uq(sl2). We believe that its use
offers a deeper understanding of the realization of the Askey–Wilson algebra in terms of the
intermediate Casimir elements. It should moreover simplify the computations for further
investigations. To illustrate this point, let us show how one computation can be simplified
with this approach in the higher rank generalization AW (4) of AW (3) examined in [8]. The
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algebra AW (4) can be embedded in Uq(sl2)⊗4 and, in particular, one defines

C
(0)
13 = R̃−1

23 C13R̃23 = R12C13R−1
12 , (14.5.1a)

C
(1)
24 = R̃−1

23 C24R̃23 = R34C24R−1
34 . (14.5.1b)

Looking at the commutation relations, we can prove that these elements correspond to Q(13)

and IQ(24) of [8]. In the formalism introduced here, we see immediately that

[C(0)
13 , C

(1)
24 ] = 0, (14.5.2)

whereas the proof without the use of the R-matrix presented in [8] is quite cumbersome.
We believe that the R-matrix approach we have elaborated will prove quite helpful in the
study of the higher rank generalizations of AW (3). In a related series of papers [14, 15], the
Temperley–Lieb algebra with q = 1, the Brauer algebra (and others) over 3 strands have
been identified as quotients of the Racah [16] and Bannai–Ito [17] algebras of rank 1. The
results reported here pave the way to the pursuit of this program for AW (3) as well as in
situations of higher ranks with an arbitrary number of strands. It is our intent to actively
continue this research. Let us mention finally that, in a companion letter [18], we have
provided a parallel description of the Bannai–Ito algebras using the universal R-matrix of
the Lie superalgebra osp(1|2).
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Chapitre 15

The Askey–Wilson algebra and its avatars

Par Nicolas Crampé, Luc Frappat, Julien Gaboriaud, Loïc Poulain d’Andecy, Eric Ragoucy,
Luc Vinet.
Publié dans Journal of Physics A: Mathematical and Theoretical 54(6), 063001, 2021.
arxiv:2009.14815.

Abstract: The original Askey–Wilson algebra introduced by Zhedanov encodes the
bispectrality properties of the eponym polynomials. The name Askey–Wilson algebra is
currently used to refer to a variety of related structures that appear in a large number of
contexts. We review these versions, sort them out and establish the relations between them.
We focus on two specific avatars. The first is a quotient of the original Zhedanov algebra; it
is shown to be invariant under the Weyl group of type D4 and to have a reflection algebra
presentation. The second is a universal analogue of the first one; it is isomorphic to the
Kauffman bracket skein algebra (KBSA) of the four-punctured sphere and to a subalgebra
of the universal double affine Hecke algebra (C∨1 , C1). This second algebra emerges from the
Racah problem of Uq(sl2) and is related via an injective homomorphism to the centralizer of
Uq(sl2) in its threefold tensor product. How the Artin braid group acts on the incarnations
of this second avatar through conjugation by R-matrices (in the Racah problem) or half
Dehn twists (in the diagrammatic KBSA picture) is also highlighted. Attempts at defining
higher rank Askey–Wilson algebras are briefly discussed and summarized in a diagrammatic
fashion.

Keywords: Askey–Wilson algebra, Kauffman bracket skein algebra, Uq(sl2) algebra, dou-
ble affine Hecke algebra, centralizer, universal R-matrix,W (D4) Weyl group, half Dehn twist.
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15.1. Introduction
In order to provide an algebraic underpinning for the Askey–Wilson polynomials [1],

Zhedanov introduced what he called the Askey–Wilson algebra [2]. We shall refer to it
rather as the Zhedanov algebra. The Askey–Wilson polynomials sit at the top of the Askey
classification scheme of the hypergeometric orthogonal polynomials [3] and are, consequently,
of fundamental interest; their algebraic interpretation by Zhedanov hence bears commensu-
rate importance. These q-polynomials are bispectral: in addition to verifying a three-term
recurrence prescribed by Favard’s theorem for any family of orthogonal polynomials [4], they
are also eigenfunctions of a q-difference operator. The Zhedanov algebra was constructed by
taking these two bispectral operators as generators and identifying the relations they obey.
As sometimes happens with natural constructs, related structures have emerged in a variety
of contexts and have typically all been called Askey–Wilson algebras. This propensity keeps
rising and it is hence timely to review the topic. This paper will provide a taxonomy and
a description of the algebras that loosely go under the name of Askey–Wilson algebras and
will characterize in some depth two avatars of particular relevance. It will also set the stage
for the exploration of generalizations.

The focus of this survey will be on algebraic aspects. Before we discuss the contents in
more details, let us briefly go over some of the manifestations of these Askey–Wilson algebras
and the advances they have generated. Grosso modo, they have had direct applications in
physical models and have also been at the heart of mathematical developments establishing
useful interconnections between fields. One occurrence is in the recoupling of three irreducible
representations of Uq(sl2) which is called its Racah problem. It is known that the 6j-symbols
of this algebra are expressed in terms of q-Racah polynomials which are a finite truncation
of the Askey–Wilson ones. As a rule, whenever the Askey–Wilson polynomials (or their
truncated version) appear, the associated algebra will be present. In the case of the Racah
problem, it is found that the intermediate Casimir elements verify Askey–Wilson relations
[5, 6]. These polynomials and algebras appear in the study of the ASEP model with open
boundaries [7], as martingale polynomials and quadratic harnesses in probabilistic models
[8] and are connected to (a degeneration of) the Sklyanin algebra [9–11]. Quite generally,
the Askey–Wilson algebras are present in the context of integrable models, through the
Yang–Baxter and reflection equations [12–17], and can be viewed as truncations of the q-
Onsager algebra [12]. Elements of representation theory have been investigated in [2, 6,
18–20] and another of its manifestations is as a coideal subalgebra of Uq(sl2) [21–23]. The
Askey–Wilson algebras have also been cast in the framework of Howe duality using the pair
(Uq(sl2), oq1/2(2n)) [24–27]; they are special cases of the recently introduced Painlevé algebras
[28] and belong to the Calabi–Yau class [29]. There is a significant connection to the field
of algebraic combinatorics, as Askey–Wilson algebras are central in the classification of P -
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and Q- polynomial association schemes and the study of Leonard pairs and triples [30–
35]. The Askey–Wilson algebras have also been shown to offer a promising platform to
extend the quantum Schur–Weyl duality to arbitrary representations and have been seen in
that respect to admit the Temperley–Lieb and Birman–Murakami–Wenzl algebras [36] as
quotients. Askey–Wilson algebras have moreover found their way in the general framework
of knot theory through their identification with the Kauffman bracket skein algebras of the
four-punctured sphere Sk iq1/2(Σ0,4) and other elementary surfaces [37–39]. This is also closely
connected to double affine Hecke algebras (DAHA) as the Askey–Wilson algebra is related
to the spherical subalgebra of the DAHA of type (C∨1 , C1) [20, 28, 40–46].

This overview of the relevance of Askey–Wilson algebras in different domains motivates
the present topical report. Let us make at this point a few additional remarks on the
introduction of the algebra Sk iq1/2(Σ0,4) in the Askey–Wilson picture to stress that this
paper also features novel results relating the Askey–Wilson algebra, the Kauffman bracket
skein algebra and the braid group.

Kauffman bracket skein algebras (KBSA) have been defined independently by Turaev [47]
and Bullock and Przytycki [37] in the study of knot invariants and can be seen to encompass
the celebrated Jones polynomial [48, 49]. Computations in the KBSA are done through
diagrammatic manipulations given by a set of rules (the skein relations). It is appreciated
that this Sk iq1/2(Σ0,4) algebra is closely related to the centralizer of Uq(sl2) in its threefold
tensor product. This ties in with the Temperley–Lieb algebra which admits a diagrammatic
presentation [49–51] for generic q, is precisely the centralizer of Uq(sl2) in the threefold
tensor product of the fundamental representations of Uq(sl2) [52] and, as already indicated,
was found to be a quotient of the Askey–Wilson algebra [36].

A natural question that has arisen asks about higher rank extensions of Askey–Wilson
algebras. In view of the ubiquity of the 3-generated Askey–Wilson algebras it is to be
expected that such generalizations will prove quite fruitful. This question is non-trivial
however since many avenues that are likely to yield different outcomes can be followed.
Among those possibilities, one is to consider the algebra realized by the intermediate Casimir
elements in multifold tensor products of Uq(sl2) [53–56], and another is to increase the rank
of the algebra Uq(sl2) to, say, Uq(sl3) when studying the Racah problem. Augmenting the
number of punctures of the sphere in the KBSA approach could also be envisaged. Making
much sense is the idea to start from the multivariate Askey–Wilson polynomials [57], to work
out the algebra formed by its bispectral operators [55, 58, 59] and to take things from there.
This is after all how the story began. Steps have been taken in these directions but final
conclusions have not been reached. Some authors have considered higher order truncations
of the reflection algebra [60] understood as a quotient of the q-Onsager algebra (see also [61]
for the classical limit of this result). The upshot is that there is currently no clear consensus
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on what the higher rank Askey–Wilson algebra is1. This is not too surprising since there are
still a few loose ends in the rank one cases.

As a prelude to a solid understanding of the higher rank Askey–Wilson algebra, it is
appropriate to clarify the picture for the ordinary Askey–Wilson algebras. Indeed, as these
algebras have appeared in multiple instances in the literature, names, conventions and no-
tations are quite diverse. We are here proposing a standardization and offering a number
of new results. The paper will unfold as follows. The various Askey–Wilson avatars will be
introduced in Section 15.2. They will be given names and defined in a comparative way.
Emphasis will be put on two particular versions. The first is a quotient of the Zhedanov
algebra which we will call the Special Zhedanov algebra. In Section 15.3, we will show that
the Zhedanov algebra is obtained as the reflection algebra defined from particular R- and
reflection matrices. In this formalism, the Special Zhedanov algebra corresponds to fixing
the Sklyanin determinant to a certain value; the name Special is chosen in analogy with
the nomenclature of Lie groups. A Weyl group W (D4) symmetry of the Special Zhedanov
algebra will then be presented in Section 15.4, thus generalizing an analoguous result for the
Racah algebra. The second avatar that will be closely looked at will be called the Special
Askey–Wilson algebra. It can be seen as the equivalent of the Special Zhedanov algebra
where the parameters are promoted to central elements in the algebra. That this algebra is
isomorphic to the Kauffman bracket skein algebra of the four-punctured sphere Sk iq1/2(Σ0,4)
is the object of Section 15.5. In Section 15.6, the Special Askey–Wilson algebra will further
be related to the algebra A3 associated to the Racah problem of Uq(sl2) and to the centralizer
C3 of Uq(sl2) in its threefold tensor product. An injective homomorphism of algebras between
the latter two structures will be stated and its proof will be found in Appendix 15.A. The
relation between the Special Askey–Wilson algebra and the universal double affine Hecke
algebra (DAHA) of type (C∨1 , C1) will be discussed in Section 15.7. How the Artin braid
group B3 acts on both the A3 and Sk iq1/2(Σ0,4) algebras, respectively through conjugation
by braided R-matrices and through half Dehn twists will be highlighted in Section 15.8.
The question of the possible higher-rank generalizations of the Askey–Wilson algebra will
be addressed in Section 15.9. A crossing index will be introduced and used to summarize
efficiently the main results of [53] and [56] and new relations for the higher rank analogues
will be provided. Elements of interest for further study of the higher rank generalizations of
the Special Askey–Wilson algebra will be offered in addition. Concluding remarks will end
the paper.

15.2. Askey–Wilson algebras
1Remarkably, for the q → 1 and q → −1 limits of the Askey–Wilson algebra, higher rank extensions have
been more successfully defined respectively in [62] for the Racah algebra and in [63] for the Bannai–Ito
algebra.
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15.2.1. A jungle of Askey–Wilson algebras

As mentioned in the above, the name Askey–Wilson algebra has appeared and been con-
nected to diverse objects in a multitude of contexts. Therefore, the notations and appellations
in the literature are sometimes confusing. For the sake of clarity, we start by presenting these
different algebraic structures and give to them unambiguous names to distinguish them.

The Askey–Wilson algebra aw(3) is the unital associative algebra depending on the
parameter q with generators C12, C23, C13 and central elements C1, C2, C3, C123 obeying the
Z3-symmetric relations

C12 + [C23, C13]q
q2 − q−2 = C1C2 + C3C123

q + q−1 , (15.2.1a)

C23 + [C13, C12]q
q2 − q−2 = C2C3 + C1C123

q + q−1 , (15.2.1b)

C13 + [C12, C23]q
q2 − q−2 = C3C1 + C2C123

q + q−1 , (15.2.1c)

where the q-commutator is defined by [A,B]q = qAB − q−1BA. Throughout the paper, we
suppose that q ∈ C is not a root of unity. The Casimir element of this algebra is

Ω := qC12C23C13 + q2C12
2 + q−2C23

2 + q2C13
2 − qC12(C1C2 + C3C123)

−q−1C23(C2C3 + C1C123)− qC13(C3C1 + C2C123).
(15.2.1d)

Let us emphasize that this algebra aw(3) is not the algebra called Askey–Wilson algebra
by A. Zhedanov, and denoted AW (3) in [2]. In the present paper, we call the latter the
Zhedanov algebra (see below).

From the aw(3) algebra, we define multiple quotients or subalgebras which appear in different
contexts; these justify the importance of this algebra.

The Special Askey–Wilson algebra saw(3) is the quotient of aw(3) by the supple-
mentary relation

Ω = (q + q−1)2 − C123
2 − C1

2 − C2
2 − C3

2 − C123C1C2C3. (15.2.2)

A justification of the adjective special is given in Section 15.3. This algebra is isomorphic to
the Kauffman bracket skein module of the four-punctured sphere (see Section 15.5) and is
directly associated to the centralizer of the diagonal action of Uq(sl2) in its threefold tensor
product (see Section 15.6).

The universal Askey–Wilson algebra ∆q defined in [33] is the subalgebra of aw(3)
generated by C12, C23, C13 as well as the central elements α = C1C2 + C3C123, β = C2C3 +
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C1C123 and γ = C3C1 + C2C123. The Casimir element of ∆q becomes

Ω = qC12C23C13 + q2C12
2 + q−2C23

2 + q2C13
2 − qC12α− q−1C23β − qC13γ. (15.2.3)

An injective homomorphism of ∆q into Uq(sl2)⊗Uq(sl2)⊗Uq(sl2) has been studied in [6] and
its finite irreducible representations have been classified in [19]. The universal Askey–Wilson
algebra also intersects the theory of free Lie algebras, see e.g. [64] and [65].

The evaluated Askey–Wilson algebra Zq(m1,m2,m3) is the quotient of aw(3) by the
supplementary relations

Ci = qmi + q−mi , i = 1, 2, 3. (15.2.4)

It plays a central role in the study of the centralizer of the diagonal embedding of Uq(sl2) in
the threefold tensor product of representations of Uq(sl2) [36].

The Zhedanov algebra Zhq(m1,m2,m3,m4) is the quotient of aw(3) by

Ci = qmi + q−mi , C123 = qm4 + q−m4 , i = 1, 2, 3, (15.2.5)

and was first introduced by Zhedanov as the algebra encoding the bispectrality of the Askey–
Wilson polynomials [2]. To be precise, in [2], an alternative equivalent presentation recalled
in (15.4.10a)–(15.4.10c), (15.4.10e)–(15.4.10g) has been given. The above Z3-symmetric
presentation of Zhq(m1,m2,m3,m4) is introduced in [10]. This algebra appears to be also
the proper algebraic setting to characterize the Leonard pairs [32].

The Special Zhedanov algebra sZhq(m1,m2,m3,m4) is obtained as the quotient of
saw(3) by relations (15.2.5) (see (15.4.10a)–(15.4.10h) for an alternative presentation). It
appears naturally as the commutation relations of the intermediate Casimir elements acting
on the multiplicity space of the decomposition of the threefold tensor product of representa-
tions of Uq(sl2) (see Section 15.6.3).

15.2.2. Miscellaneous properties

PBW basis
The Askey–Wilson algebra aw(3) has a Poincaré–Birkhoff–Witt (PBW) basis given explicitly
by the following elements

C12
iC23

j C13
k C1

mC2
nC3

pC123
q, i, j, k,m, n, p, q ∈ N. (15.2.6)
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The proof is a slight generalization of the proof of the PBW basis for the universal Askey–
Wilson algebra ∆q given in [33]. We can also obtain a PBW basis for the Special Askey–
Wilson algebra saw(3) from the one of aw(3) by restricting the range of the exponent j to
{0, 1} instead of N.

Calabi–Yau algebra
The Zhedanov algebra Zhq(m1,m2,m3,m4) can be derived from a Calabi–Yau potential
in the following sense [66]. Let F = C[x1, x2, x3] be a free associative algebra and view
F as a graded algebra such that deg(x1) = d1, deg(x2) = d2 and deg(x3) = d3 (with
0 < d1 ≤ d2 ≤ d3). We define Fcycl = F/[F, F ] and the map ∂

∂xj
: Fcycl → F on cyclic words

as follows
∂[xi1xi2 . . . xir ]

∂xj
=

∑
{s|is=j}

xis+1xis+2 . . . xirxi1xi2 . . . xis−1 (15.2.7)

and we extend it to Fcycl by linearity. Let Φ(x1, x2, x3) ∈ Fcycl be a potential which can be
decomposed as follows

Φ(x1, x2, x3) = Φ(d)(x1, x2, x3) + Φ<d(x1, x2, x3), (15.2.8)

where Φ(d)(x1, x2, x3) is homogeneous of degree d = d1 + d2 + d3 and Φ<d(x1, x2, x3) is
composed of terms of degree strictly inferior to d. Then the algebra whose defining relations
are given by

∂Φ
∂xj

= 0, j = 1, 2, 3, (15.2.9)

is a Calabi–Yau algebra [29].
Now, let x1 = K12, x2 = K23, x3 = K13 and deg(x1) = deg(x2) = 2, deg(x3) = 3.

Consider the potential

Φ(7)(x1, x2, x3) = q[x1x2x3]− q−1[x1x3x2],

Φ<7(x1, x2, x3) = (q + q−1)([x1x2
2] + [x1

2x2])− ξ4[x1]− ξ′4[x2]− 1
2 [x3

2]− ξ2[x1x2].
(15.2.10)

It is easy to see that the defining relations of Zhq(m1,m2,m3,m4) presented in (15.4.10a)-
(15.4.10c) are equivalent to imposing (15.2.9) for the potential (15.2.10). In other words,
Zhq(m1,m2,m3,m4) derives from the Calabi–Yau potential Φ (15.2.10).

15.3. The Zhedanov algebra as a truncated reflection
algebra

In this section, we recall [12] that the defining relations of the algebra
Zhq(m1,m2,m3,m4) can be equivalently encoded in a reflection equation [67]. This
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realization of an algebra is usually called the FRT presentation, in honor of the authors
of [68]. This presentation allows one to connect the Zhedanov algebra to the reflection
algebra which is intensively studied in the context of quantum integrable systems. In
addition, we show that the algebra sZhq(m1,m2,m3,m4) can be also obtained naturally by
setting the Sklyanin determinant to a certain value; this justifies the appellation special for
the quotiented algebra since it is obtained by fixing the value of a determinant, as in the
definition of the Special Linear group SLn.

The cornerstone of the FRT presentation is the R-matrix. For the case of the algebra
Zhq(m1,m2,m3,m4), we start with the following R-matrix

R(u) =



uq − 1
uq

0 0 0

0 u− 1
u

q − 1
q

0

0 q − 1
q

u− 1
u

0

0 0 0 uq − 1
uq


. (15.3.1)

This R-matrix is associated to the quantum affine algebra Uq(ŝl2) and is a solution of the
Yang–Baxter equation

R12(u1/u2)R13(u1/u3)R23(u2/u3) = R23(u2/u3)R13(u1/u3)R12(u1/u2), (15.3.2)

where R12 = ∑
aRa ⊗ Ra ⊗ 1, R23 = ∑

a 1 ⊗ Ra ⊗ Ra, R13 = ∑
aRa ⊗ 1 ⊗ Ra if one writes

R = ∑
aRa ⊗Ra and 1 as the 2× 2 identity matrix. We define also the following truncated

reflection matrix (see remark 15.2 below) given by

B(u) =


uqC12 −

C23

uq
+

p4/u + p′4u

u2 − 1/u2
qu2 + 1

qu2 −
[C23, C12]q
q2 − 1/q2

+ p′′4
q + 1/q

−qu2 − 1
qu2 + [C12, C23]q

q2 − 1/q2
− p′′4
q + 1/q

uqC23 −
C12

uq
+ p4u+ p′4/u

u2 − 1/u2

 ,
(15.3.3)

where we refer to (15.4.7a)–(15.4.7c) for the definition of p4, p′4 and p′′4.
Proposition 15.1. [12] The set of relations obtained from the reflection equation

R(u/v)B1(u)R(uv)B2(v) = B2(v)R(uv)B1(u)R(u/v), (15.3.4)

where B1(u) = B(u) ⊗ 1 and B2(u) = 1 ⊗ B(u), is equivalent to the defining relations of
Zhq(m1,m2,m3,m4).

Proof. We look at each matrix element of the reflection equation (15.3.4) and derive 16
relations. For each or them, we extract the different coefficients w.r.t. the parameter u;
this provides relations between C12 and C23. By direct investigation, we verify that all the
obtained relations are equivalent to the defining relations of Zhq(m1,m2,m3,m4). �
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Rephrasing this proposition, the Zhedanov algebra Zhq(m1,m2,m3,m4) is isomorphic to
the truncated reflection algebra defined by the R-matrix (15.3.1) and the truncated reflection
matrix (15.3.3).
Remark 15.2. There exists a more general form for the reflection matrix, containing an
infinite number of generators encompassed in formal series of u and 1

u
. The elements of the

reflection matrix (15.3.3) can be obtained as a truncation of these formal series. The algebra
defined by the general reflection matrix obeying the reflection equation (15.3.4) is isomorphic
to the q-Onsager algebra [14]. Therefore, the Zhedanov algebra can also be seen as a quotient
of the q-Onsager algebra.

In the context of the reflection algebra it is well-known how to obtain central elements
[67]. Indeed, let us define the Sklyanin determinant sdetB(u) as follows

sdetB(u) := −1
2tr12 (R(1/q)B1(u/q)R(u2/q)B2(u)) . (15.3.5)

We can show that the coefficients of sdetB(u) commute with C12 and C23. We recover in
this way that the operator Ω given by (15.2.1d) commutes with C12 and C23. The Sklyanin
determinant gives solely Ω as a central element. Fixing the Sklyanin determinant to an
appropriate value allows us to give a FRT presentation of sZhq(m1,m2,m3,m4):
Proposition 15.3. The truncated reflection algebra defined by the R-matrix (15.3.1), the
truncated reflection matrix (15.3.3) and quotiented by the relation

sdetB(u) = q2(1− q4)2 (u2 + q−m2−m4)(u2 + qm2+m4)(u2 + qm4−m2)(u2 + qm2−m4)

× (u2 + q−m1−m3)(u2 + qm1+m3)(u2 + qm3−m1)(u2 + qm1−m3),
(15.3.6)

is isomorphic to sZhq(m1,m2,m3,m4).

Proof. By direct computations, we show that (15.3.6) is equivalent to imposing (15.2.2).
�

The fact that sZhq(m1,m2,m3,m4) can be defined as a truncated reflection algebra was
expected, but it is a surprise that the r.h.s. of (15.3.6) factorizes into such a simple form.

15.4. A W(D4) symmetry
The algebra sZhq(m1,m2,m3,m4) has a remarkable symmetry based on the Weyl group

W (D4) associated to the Lie algebra D4. To describe it, let us introduce a root system of
type D4 and fix a set of simple roots α1, α2, α3, α4 with labeling according to the following
Dynkin diagram:

1 3 4

2
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The Weyl group W (D4) is generated by the reflections si associated to the simple roots αi
which satisfy, for 1 ≤ i, j ≤ 4,

s2
i =1,

sisj =sjsi
sisjsi =sjsisj

if i and j are not connected in the Dynkin diagram,

if i and j are connected in the Dynkin diagram.

(15.4.1)

Its order is 192. Let us now associate the parameters m1,m2,m3,m4 with some of the roots
as follows:

m1 = α1, m2 = α2, m3 = α4, m4 = Θ, (15.4.2)

where Θ is the longest positive root. The explicit expression of Θ is:

α3 = 1
2(m4 −m1 −m2 −m3). (15.4.3)

It is elementary to calculate the actions si expressed in terms of the parameters:

s1 : m1 7→ −m1, s2 : m2 7→ −m2, s4 : m3 7→ −m3, s3 :


m1 7→ m1 + α3,

m2 7→ m2 + α3,

m3 7→ m3 + α3,

m4 7→ m4 − α3,

(15.4.4)

where the omitted actions are trivial and the explicit expression of α3 is given above. The
action of the Weyl group is extended to any function as follows:

(σf)(m1,m2,m3,m4) = f(σ(m1), σ(m2), σ(m3), σ(m4)) (15.4.5)

for σ ∈ W (D4).
Proposition 15.4. The Weyl group W (D4) is a symmetry of sZhq(m1,m2,m3,m4) i.e.

sZhq(m1,m2,m3,m4) = sZhq(σ(m1), σ(m2), σ(m3), σ(m4)), (15.4.6)

for any σ ∈ W (D4).

Proof. In sZhq(m1,m2,m3,m4), we remark that the only functions of mi which appear are

p4 = χm1χm2 + χm3χm4 , (15.4.7a)

p′4 = χm2χm3 + χm1χm4 , (15.4.7b)

p′′4 = χm1χm3 + χm2χm4 , (15.4.7c)

p6 = χm1
2 + χm2

2 + χm3
2 + χm4

2 + χm1χm2χm3χm4 , (15.4.7d)
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where χm = qm + q−m. By direct computations, we can show that these functions are
invariant by the transformations s1, s2, s3 and s4 given by (15.4.4), which concludes the
proof since they generate W (D4). �

In the study of the finite representations of the universal algebra ∆q a W (D4) symmetry
has been also investigated [69, 70].

15.4.1. Connection with the W (D4) symmetry in the Racah algebra

Let us perform the transformation

KI = CI − (q + q−1)
(q − q−1)2 , (15.4.8)

with I ∈ {1, 2, 3, 123, 12, 23}. Note that 13 does not belong to this set. In the algebra
sZhq(m1,m2,m3,m4), one gets, for i = 1, 2, 3, 4,

Ki = χmi − (q + q−1)
(q − q−1)2 =

[
mi

2

]
q

2
−
[1
2

]
q

2
, (15.4.9)

where the q-number is defined by [m]q = qm−q−m
q−q−1 . The commutation relations of the algebra

sZhq(m1,m2,m3,m4) become

[K12, K23]q = K13, (15.4.10a)

[K23, K13]q = (q + q−1)
(
− {K12, K23} −K23

2 + ξ2K23 + ξ4
)
, (15.4.10b)

[K13, K12]q = (q + q−1)
(
− {K12, K23} −K12

2 + ξ2K12 + ξ′4
)
, (15.4.10c)

and the supplementary relation becomes
q2

(q + q−1)2 K13
2 − qK12K23K12 − q−1K23K12K23 − q

q − q−1

q + q−1 K12K23K13

+
(

ξ2

q + q−1 − 1
)
{K12, K23}+ qξ4K12 + q−1ξ′4K23 = ξ6 − ξ4 − ξ′4 − 1

4ξ2
2,

(15.4.10d)

with

ξ2 = 1
[2]q

(
2(M1

2 +M2
2 +M3

2 +M4
2 − 1) + (q − q−1)2(M1

2M3
2 +M2

2M4
2)
)
, (15.4.10e)

ξ4 = (M1
2 −M4

2)(M3
2 −M2

2), (15.4.10f)

ξ′4 = (M1
2 −M2

2)(M3
2 −M4

2), (15.4.10g)

ξ6 = (M1
2M3

2 −M2
2M4

2)(M1
2 −M2

2 +M3
2 −M4

2) + 1
4(q − q−1)2(M1

2M3
2 −M2

2M4
2)2,

(15.4.10h)

where we use the notation Mi =
[
mi
2

]
q
. As expected, we can check that the functions ξ2, ξ4,

ξ′4 and ξ6 are invariant under the action of the Weyl group W (D4).

298



The advantage of this presentation of sZhq(m1,m2,m3,m4) is that the classical limit
q → 1 (see Appendix 15.A) is well-defined and provides straightforwardly the commutation
relations of the Racah algebra. Thus, the description of the Weyl group W (D4) action also
holds for the Racah algebra and we recover the results of [71].
Remark 15.5. In the classical limit q → 1, the functions ξ2, ξ4, ξ′4 and ξ6 form a basis for
polynomials invariant under the action of W (D4), as expected. In the generic case (q ∈ C,
not a root of unity), one gets two different sets of invariant functions: Sξ = {ξ2, ξ4, ξ

′
4, ξ6}

on the one hand and Sp = {p4, p
′
4, p
′′
4, p6} on the other hand. We have checked that there

exists an invertible polynomial mapping between these two sets. However, only Sξ admits a
non-trivial classical limit.

15.5. Kauffman bracket skein modules and algebras
Kauffman bracket skein module quantizations have been introduced in [37, 47] and further

studied along our lines of interest for this paper in [39, 72, 73]. We will now recall some key
definitions and results from these investigations. We shall work with an oriented 3-manifold
M which is a thickened surface, that is M = Σ0,n × I, where I = [0, 1] and Σ0,n is the
n-punctured sphere.
Definition 15.6. The quantized skein module Skθ(M) is the C[θ±1]-module spanned by
framed and unoriented links in M modulo the Kauffman bracket skein relations that allow
to “simplify the crossings”:

= θ + θ−1 , (15.5.1a)

= −(θ2 + θ−2), (15.5.1b)

where θ ∈ C is not a root of unity and in the framing relation (15.5.1b) the link should
not enclose a puncture. This defines an algebra, which we will denote Skθ(Σ0,n), for which
multiplication is given by stacking the links on top of each other in the I direction.
We shall use diagrams that correspond to the projection of the links on the surface (all the
while keeping the information about the relative “height” of the links in the I direction).
Let us now establish the conventions for these drawings (framed links diagrams).

The n-punctured sphere Σ0,n is equivalent to the plane with n − 1 punctures (denoted
by the (n− 1) drawn ×’s):

× × × . . . ×

(15.5.2)
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The dashed contour corresponds to the nth puncture of the sphere. We will omit the contour
in the subsequent diagrams but it is always understood to be there.

Framed links that enclose punctures are represented by loops drawn around the ×’s. We
shall use the term “loops” to refer unambiguously to the framed links in the remainder of the
paper. These loops can be homotopically deformed without crossing the holes (punctures).
Remark that loops enclosing a single puncture are central elements in Skθ(Σ0,n). This is
also true for the nth puncture, which amounts to saying that the loop enclosing the (n− 1)
punctures × is also central.

Let us now consider the surface Σ0,4 and give names to a few loops:

× × × = A12

× × × = A23

× × × = A13

× × × = A1

× × × = A2

× × × = A3

× × × = A123

(15.5.3)

Following the definition, multiplication of two loops X · Y means putting Y on top of X,
for example:

× × ×A12 · A23 = (15.5.4)

One would then proceed to use relations (15.5.1) to simplify the expressions:

A12 · A23 = θ
(
× × ×

)
− θ−1

(
× × ×

)

= θ2

 × × ×
 +

(
× × ×

)

+
(
× × ×

)
+ θ−2

 × × ×

 .

= θ2A13 + A2 · A123 + A1 · A3 + θ−2

 × × ×

 .

(15.5.5)

Similarly, exchanging the order of multiplication, one obtains the same diagrams but with
inverse coefficients:

A23 · A12 = θ−2A13 + A2 · A123 + A1 · A3 + θ2

 × × ×

 . (15.5.6)
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We see immediately that one gets

θ2A12 · A23 − θ−2A23 · A12 = (θ4 − θ−4)A13 + (θ2 − θ−2)(A2 · A123 + A1 · A3). (15.5.7)

The skein algebra Skθ(Σ0,4) is directly linked to the Askey–Wilson algebra as stated in the
following proposition:
Proposition 15.7. The Special Askey–Wilson algebra saw(3) is isomorphic to the Kauffman
bracket skein algebra Sk iq1/2(Σ0,4). The isomorphism is given by the following invertible map:

CI 7→ AI , (15.5.8)

for I ∈ {1, 2, 3, 123, 12, 23, 13}.

Proof. The isomorphism is directly verified by comparing the relations of saw(3) and the
ones of the Kauffman bracket skein algebra obtained in [37] (see also Proposition 3.1 of [73]
and [38] for additional details). �

This proposition gives a diagrammatic approach to study the algebra saw(3).

Let us emphasize that the previous isomorphism involves the Special Askey–Wilson algebra
saw(3). If we replace saw(3) by aw(3) in the map of the proposition, the homomorphism
would be not injective and if we instead replace saw(3) by ∆q (as in [6, 74]), it would be
not surjective.

One notes that the Z3-symmetry of the saw(3) relations is made manifest in terms of
the framed links picture, as the punctures do not have fixed positions and can be switched
around.

From now on we will unambiguously refer to the drawn loops identified as the generators
of Sk iq1/2(Σ0,4) directly as their CI counterpart following (15.5.8). This correspondence
(15.5.8) leads to a natural labeling of the punctures. Indeed, consider the generators given
in (15.5.3): the punctures enclosed in a given loop correspond precisely to the set of indices
I of the corresponding generator CI if one labels the punctures consecutively as:

× × ×
1 2 3 (15.5.9)

Remark 15.8. We recall that one arrives to the Special Zhedanov algebra
sZhq(m1,m2,m3,m4) from the Special Askey–Wilson algebra saw(3) by attributing a
value to the central elements Ci, i = 1, 2, 3, 123, see (15.2.5). In the same way, starting from
the Kauffman bracket skein algebra Sk iq1/2(Σ0,4), one can define an evaluated Kauffman
bracket skein algebra, denoted Sk iq1/2(Σ0,4;m1,m2,m3,m4) by attributing a value to the

301



puncture-framing relations:

×
i

= qmi + q−mi , i = 1, 2, 3,

× × × = qm4 + q−m4.
(15.5.10)

Note that the last drawing corresponds in fact to a contour enclosing the fourth
puncture on the sphere, see (15.5.2). As a corollary of Proposition 15.7, the al-
gebra Sk iq1/2(Σ0,4;m1,m2,m3,m4) is isomorphic to the Special Zhedanov algebra
sZhq(m1,m2,m3,m4).

Relations (15.5.10) with mi = 1 already appear in the definition of the skein algebra of
arcs and link introduced in [75], from where we borrowed the terminology ‘puncture-framing’.

15.6. Uq(sl2) and its centralizer in Uq(sl2)⊗3

The goal of this section is to discuss the notion of centralizer of Uq(sl2) in Uq(sl2)⊗3,
which we denote by C3, and connect it with the Special Askey–Wilson algebra saw(3).

15.6.1. Uq(sl2) and its universal R-matrix

Let us fix the notation and conventions that will be used to perform the explicit calcula-
tions in Uq(sl2) (note that the results obtained will be independent of these conventions at
the end). We shall first define the quasi-triangular Hopf algebra Uq(sl2), present its braided
universal R-matrix and list some additional properties of interest.

Uq(sl2) is an associative algebra generated by E, F , qH and q−H obeying the defining
relations

qHq−H = q−HqH = 1, qHE = qEqH , qHF = q−1FqH and [E,F ] = [2H]q. (15.6.1)

The center of this algebra is generated by the following Casimir element (denoted Λ in [54,
56])

Q = (q − q−1)2
(
FE + qq2H + q−1q−2H

(q − q−1)2

)
. (15.6.2)

The algebra Uq(sl2) can be endowed with a Hopf structure. In particular, its comultiplication
(or coproduct) homomorphism ∆ : Uq(sl2)→ Uq(sl2)⊗ Uq(sl2) is given by

∆(E) = E ⊗ q−H + qH ⊗ E, ∆(qH) = qH ⊗ qH , (15.6.3a)

∆(F ) = F ⊗ q−H + qH ⊗ F, ∆(q−H) = q−H ⊗ q−H , (15.6.3b)

and is coassociative

(∆⊗ id)∆ = (id⊗∆)∆. (15.6.4)
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The quantum algebra Uq(sl2) is called quasi-triangular because in a completion of Uq(sl2)⊗
Uq(sl2), there exists a universal R-matrix R which is invertible and satisfies

∆(x)R = R∆op(x) for x ∈ Uq(sl2), (15.6.5)

(id⊗∆)R = R12R13, (15.6.6)

(∆⊗ id)R = R23R13, (15.6.7)

where in the Sweedler notation we write the opposite comultiplication ∆op(x) = x(2)⊗x(1) if
∆(x) = x(1)⊗x(2). In the previous relation, we have used the notations R12 = Rα⊗Rα⊗ 1,
R23 = 1⊗Rα ⊗Rα and R13 = Rα ⊗ 1⊗Rα where R = Rα ⊗Rα (the sum over repeated
indices α is understood). The universal R-matrix is given explicitly by [76]

R = q2(H⊗H)
∞∑
n=0

(q − q−1)n
[n]q!

qn(n−1)/2
(
EqH ⊗ q−HF

)n
, (15.6.8)

where [n]q! = [n]q[n− 1]q . . . [2]q[1]q and, by convention, [0]q! = 1.
One can also define the so-called braided universal R-matrix Ř by

Ři = Ri,i+1σi,i+1 (15.6.9)

where σi,i+1 acts on the ith and (i+ 1)th factors of the tensor product as

σi,i+1(· · · ⊗ xi ⊗ xi+1 ⊗ . . . ) = (· · · ⊗ xi+1 ⊗ xi ⊗ . . . )σi,i+1. (15.6.10)

This braided universal R-matrix satisfies the braided Yang–Baxter equation

ŘiŘi+1Ři = Ři+1ŘiŘi+1. (15.6.11)

15.6.2. An algebra generated by the intermediate Casimir elements

Let us define the following intermediate Casimir elements

Q1 = Q⊗ 1⊗ 1, Q2 = 1⊗Q⊗ 1, Q3 = 1⊗ 1⊗Q,

Q12 = ∆(Q)⊗ 1 = Q(1) ⊗Q(2) ⊗ 1, Q23 = 1⊗∆(Q) = 1⊗Q(1) ⊗Q(2),

Q123 = (∆⊗ id)∆(Q).

(15.6.12)

The labeling of these intermediate Casimir elements is chosen so as to refer to the non-trivial
factors in the tensor product Uq(sl2)⊗3.
Definition 15.9. The algebra A3 is the subalgebra of Uq(sl2)⊗3 generated by the intermediate
Casimir elements Q1, Q2, Q3, Q12, Q23 and Q123.

Let us define an additional intermediate Casimir element

Q13 = Ř−1
2 Q12Ř2 = Ř1Q23Ř−1

1 . (15.6.13)
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It has been proven in [77] that this element is in Uq(sl2)⊗3 (and not in its completion), that
the second equality is compatible with the first one and that the following proposition holds:
Proposition 15.10. The intermediate Casimir elements Q1, Q2, Q3, Q123, Q12, Q23 and
Q13 belong to the centralizer C3 of the diagonal action of Uq(sl2) in Uq(sl2)⊗3 defined by

C3 =
{
X ∈ Uq(sl2)⊗3

∣∣∣ [(∆⊗ id)∆(x), X] = 0, ∀x ∈ Uq(sl2)
}
. (15.6.14)

The precise links between the Askey–Wilson algebra, the centralizer and the algebra A3

generated by the intermediate Casimir elements are given in the following proposition.
Proposition 15.11. The algebra saw(3) has an homomorphic injective image in C3. The
mapping is done as follows:

CI 7→ QI , for I ∈ {1, 2, 3, 123, 12, 23, 13}. (15.6.15)

The algebra saw(3) is isomorphic to A3.

Proof. All the relations of saw(3) given by (15.2.1) and (15.2.2) are easily checked in
Uq(sl2)⊗3 upon rewriting the QI ’s in terms of the Uq(sl2)⊗3 generators. The proof of the
injectivity is postponed to Appendix 15.A. The method used in [6] to prove the injectivity
of ∆q into Uq(sl2)⊗3 seems difficult to generalize to the case treated here and we propose an
alternative method based on classical invariant theory. Since the algebra A3 is the image of
the map (15.6.15), it follows that saw(3) is isomorphic to A3. �

This realization of the Askey–Wilson algebra in Uq(sl2)⊗3 was the motivation for adding
the relation (15.2.2) to the “intuitive” set of relations of aw(3). Indeed, since relation (15.2.2)
is obeyed by the intermediate Casimir elements, it should also be included in the algebra
encoding the properties of these Casimir elements.
Corollary 15.12. The algebra A3 is isomorphic to the Kauffman bracket skein algebra of
the four-punctured sphere Sk iq1/2(Σ0,4). The isomorphism is given by the following map:

φ : QI 7→ AI , for I ∈ {1, 2, 3, 123, 12, 23, 13}. (15.6.16)

Proof. A direct consequence of the Propositions 15.7 and 15.11.

15.6.3. Fundamental theorems of invariant theory

In the previous section, we introduced the centralizer C3 of the diagonal action of Uq(sl2)
in the threefold tensor product and showed its connection with the Askey–Wilson algebra
saw(3). We now focus on similar objects in the case where we represent each factor Uq(sl2)
in Uq(sl2)⊗3 by a finite-dimensional irreducible representation.

The quantum algebra Uq(sl2) has finite irreducible representations of dimension m =
2j + 1 that we will denote by M(m), with m ∈ Z>0. The name “spin-j representation”
is usually used to refer to M(m = 2j + 1). The representation map will be denoted by
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πm : Uq(sl2)→ End(M(m)). The representation of the Casimir element (15.6.2) in the space
M(m) is

πm(Q) = χm1m, (15.6.17)

where χm = qm + q−m and 1m is the m×m identity matrix.
From now on, we fix three integers m1, m2 and m3. The threefold tensor product of

irreducible representations of Uq(sl2) decomposes into the following direct sum of irreducible
representations

M(m1)⊗M(m2)⊗M(m3) =
⊕
m4

M(m4)⊗ V m4
m1,m2,m3 , (15.6.18)

where V m4
m1,m2,m3 is called the multiplicity space. We recall that we look at cases where q is

not a root of unity otherwise the previous statement would be wrong.
We now fix four integers m1, m2, m3, m4 and denote by QI the image of QI in V m4

m1,m2,m3

(for I ∈ {1, 2, 3, 123, 12, 23, 13}). We get Q1 = χm1 , Q2 = χm2 , Q3 = χm3 and Q123 = χm4 .
Proposition 15.13. There exists a surjective algebra homomorphism from
sZhq(m1,m2,m3,m4) to End(V m4

m1,m2,m3) given by

CI 7→ QI , for I ∈ {12, 23, 13}. (15.6.19)

This proposition which provides the generators for the centralizer of the diagonal action
is sometimes called in invariant theory the “first fundamental theorem”. The map in the
previous proposition is not injective. The description of the kernel of this map is the subject
of [36] (see also [78]) and is called the “second fundamental theorem”.

We recall that the algebra sZhq(m1,m2,m3,m4) possesses a W (D4)-symmetry. Let us
remark that a similar Weyl group symmetry of type E6 has been discovered recently [79] in
the case of the centralizer of the diagonal embedding of U(sl3) in two copies of U(sl3).

15.7. The Double Affine Hecke Algebra (C∨1 , C1)
Double affine Hecke algebras (DAHA) of type (C∨1 , C1) were introduced in [80] and their

connections with Askey–Wilson polynomials were first explored in [18] and [40]. Universal
analogues of these DAHA were later introduced and studied in [20, 43, 44].

In this section, we present another connection between the Special Askey–Wilson algebra
saw(3) and a certain subalgebra of a universal DAHA of type (C∨1 , C1).
Definition 15.14. We introduce the following algebras
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• The universal Double Affine Hecke Algebra of type (C∨1 , C1) [43] is defined as the
associative algebra Ĥq with generators {t±1

i , i = 0, . . . , 3} and relations:

tit
−1
i = t−1

i ti = 1, (15.7.1a)

ti + t−1
i is central, (15.7.1b)

t0t1t2t3 = q−1. (15.7.1c)

The “usual” DAHA, denoted Hq(k0, k1, k2, k3), is recovered when the central elements
ti + t−1

i have complex values ki + k−1
i , with ki 6= 0.

• The algebra Γq [44] is the subalgebra of Ĥq commuting with the distinguished generator
t0 (Γq is the centralizer of t0 in Ĥq):

Γq = {h ∈ Ĥq | [h, t0] = 0}. (15.7.2)

• Let e be the following idempotent of Hq(k0, k1, k2, k3) [73]

e = t0 − k0

k−1
0 − k0

. (15.7.3)

The spherical DAHA, denoted SHq(k0, k1, k2, k3) [41, 42], is defined as

SHq(k0, k1, k2, k3) = eHq(k0, k1, k2, k3) e. (15.7.4)

The following theorems relate DAHA to the previously introduced algebraic structures.
Theorem 15.15. [44] The map Θ : saw(3)→ Γq defined by

C12 7→ t1t0 + (t1t0)−1,

C23 7→ t3t0 + (t3t0)−1,

C13 7→ t2t0 + (t2t0)−1,

C1 7→ t1 + t−1
1 ,

C2 7→ t2 + t−1
2 ,

C3 7→ t3 + t−1
3 ,

C123 7→ q−1t0 + qt−1
0 .

(15.7.5)

is an injective algebra homomorphism.
Theorem 15.16. (Theorem 3.2 in [42]) The Special Zhedanov algebra sZhq(m1,m2,m3,m4)
is isomorphic to the spherical DAHA SHq(k0, k1, k2, k3).
Remark 15.17. Spherical DAHAs have also been connected to skein algebras of higher genus.
The Kauffman bracket skein algebra of the once-punctured torus Skθ(Σ1,1) is related to a
(spherical) DAHA of type A1 [37, 81] and the genus two skein algebra is related to a genus
two spherical double affine Hecke algebra in [82].

15.8. Actions of the braid group
In this section, we provide two actions of the braid group: the first one on the algebra A3

and the second one on the skein algebra Sk iq1/2(Σ0,4). Then, we show how these two actions
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are compatible and give a diagrammatic presentation of the intermediate Casimir elements
of Uq(sl2)⊗3.

We recall that the braid group on n strands Bn is generated by the elements s1, . . . , sn−1

as well as their inverses s−1
1 , . . . , s−1

n−1 satisfying

sisi+1si = si+1sisi+1,

sisj = sjsi if |i− j| ≥ 2,

s−1
i si = sis

−1
i = 1.

(15.8.1)

15.8.1. The braided universal R-matrix and a braid group action
on A3

Let us recall that we define the generators Q13 as follows

Q13 = Q13d = Ř−1
2 Q12Ř2 = Ř1Q23Ř−1

1 . (15.8.2)

From the result of Proposition 15.11, we know that Q13 satisfies

Q13 = Q1Q3 +Q2Q123

q + q−1 − [Q12, Q23]q
q2 − q−2 , (15.8.3)

and is in the algebra A3 which is generated by Q1, Q2, Q3, Q12, Q23 and Q123. Now from
(15.8.2) it is natural to consider the following element which is analogous to Q13d:

Q13u = Ř2Q12Ř−1
2 = Ř−1

1 Q23Ř1. (15.8.4)

It has been shown in [77] that this element is also in A3 since it can be obtained as

Q13u = Q1Q3 +Q2Q123

q + q−1 − [Q23, Q12]q
q2 − q−2 . (15.8.5)

The labels u and d added on the Casimir elements Q13d and Q13u stand for up and down.
These names come from the form of their image in Sk iq1/2(Σ0,4) given in Corollary 15.12:

× × × = φ(Q13u), (15.8.6a)

× × × = φ(Q13d).
(15.8.6b)

This procedure of obtaining additional elements of A3 by conjugations of braided R-matrices
can be described by an automorphism action. Let us define the following automorphisms of
A3 denoted Ψsi and Ψs−1

i
by

Ψsi(X) = ŘiXŘ−1
i and Ψs−1

i
(X) = Ř−1

i XŘi = Ψ−1
si

(X), (15.8.7)
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for i = 1, 2 and X ∈ A3, The previous maps are well-defined since the images of the gener-
ators of A3 are precisely in A3 (and not in its completion). Indeed, by direct computations
making use of the explicit form (15.6.8) of the universal R-matrix and the commutation
relations of Uq(sl2), one gets

Ψs1(Q1) = Q2, Ψs1(Q2) = Q1, Ψs1(Q3) = Q3, Ψs1(Q123) = Q123,

Ψs1(Q12) = Q12, Ψs1(Q23) = Q13d.
(15.8.8)

and
Ψs2(Q1) = Q1, Ψs2(Q2) = Q3, Ψs2(Q3) = Q2, Ψs2(Q123) = Q123,

Ψs2(Q12) = Q13u, Ψs2(Q23) = Q23.
(15.8.9)

We obtain similarly the actions of Ψs−1
i

on the generators of A3.
Since the braided R-matrix satisfies the braided Yang–Baxter equation (15.6.11), we can

show that the defining relations (15.8.1) of the braid group B3 are reproduced

Ψs1 ◦Ψs2 ◦Ψs1 = Ψs2 ◦Ψs1 ◦Ψs2 , (15.8.10a)

Ψsi ◦Ψs−1
i

= Ψs−1
i
◦Ψsi = id. (15.8.10b)

We extend the automorphisms ΨS to any S ∈ B3 by

ΨS(X) = (Ψg1 ◦Ψg2 ◦ · · · ◦Ψg`)(X), (15.8.11)

where S is decomposed as S = g1g2 . . . g` and gi ∈ {s1, s2, s
−1
1 , s−1

2 }. Note that the map
(15.8.11) does not depend on the choice of the decomposition of S due to (15.8.10).
Remark 15.18. The realization of the braid group given by ΨS is not faithful. For example,
one can verify that Ψ(s1s2)3 = id. This is checked to be true on the intermediate Casimir
elements by making repeated use of (15.8.8)-(15.8.9). It follows that it is also true for any
polynomial in those elements. Moreover, some elements of A3 have additional stabilizers,
e.g.

Ψs1s1(Q1) = Ř−1
1 Ř−1

1 Q1Ř1Ř1 = Ř−1
1 Q2Ř1 = Q1, (15.8.12a)

Ψs2(Q23) = Q23. (15.8.12b)

Identifying stabilizers of the braid group action on elements of A3 is easy to do but giving an
exhaustive list is harder.
Remark 15.19. It was shown in [83] how such a braid group action translates to the q → −1
limit. This limit of the Askey–Wilson algebra is referred to as the Bannai–Ito algebra. In
that case, the B3 braid group action simplifies to an action of the S3 symmetric group. It
is possible to study more generally the action of the Sn symmetric group on the higher rank
Bannai–Ito algebra B(n).

308



15.8.2. Half Dehn twists and the braid group action on Sk iq1/2(Σ0,4)

We now present a B3 group action on the Kauffman bracket skein algebra Sk iq1/2(Σ0,4),
denoted ψS : Sk iq1/2(Σ0,4)→ Sk iq1/2(Σ0,4), with S ∈ B3. The braid group action rotates the
placement of the punctures with respect to each other.

Here is how it goes. First, the actions ψsi and ψs−1
i

on Sk iq1/2(Σ0,4) are defined by the
so-called half Dehn twists [73, 84]. The four generators of B3 act as

× × ×ψs1
=

,

× × ×ψs−1
1

=
,

× × ×ψs2
=

,

× × ×ψs−1
2

=
,

(15.8.13)

where any framed link gets deformed continuously without crossing the punctures as the
rotations happen. For example, one gets

ψs−1
2

(A12) = ψs−1
2

(
× × ×

)
=
 × × ×



=

 × × ×
 = A13,

(15.8.14)

and

ψs2
(A23) = ψs2

(
× × ×

)
=
 × × ×


=
(
× × ×

)
= A23.

(15.8.15)

Proposition 15.20. The actions ψg for g ∈ {s1, s2, s
−1
1 , s−1

2 } are automorphisms of
Sk iq1/2(Σ0,4).

Proof. For any X, Y ∈ Sk iq1/2(Σ0,4) and g ∈ {s1, s2, s
−1
1 , s−1

2 }, one understands that

ψg(X · Y ) = ψg(X) · ψg(Y ). (15.8.16)

Indeed, from the way they were defined, the rotations do not add or change crossings. Thus,
the Kauffman bracket relations (15.5.1) that one makes use of to “simplify the crossings” of a
given product are unchanged under these rotations. Since the rotations are also defined in or-
der to avoid links crossing punctures, the topological properties (such as which punctures are
circled by which links) are preserved. Hence the action ψg is a homomorphism. Moreover ψg
is an endomorphism because links in Sk iq1/2(Σ0,4) are mapped to other links in Sk iq1/2(Σ0,4),
and it is invertible, as rotations can be inverted, thus ψg is an automorphism. �
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Let S = g1g2 . . . g` ∈ B3 be a decomposition of an element of the braid group on three
strands with gi ∈ {s1, s2, s

−1
1 , s−1

2 }. We define the automorphism ψS as follows:

ψS(X) = (ψg1 ◦ ψg2 ◦ · · · ◦ ψg`)(X). (15.8.17)

We use also the definition ψ1 = id. The previous map (15.8.17) does not depend on the
choice of the decomposition of S. Indeed, it is straightforward to check that the defining
relations of the braid group (15.8.1) are verified on the generators. By the homomorphism
property (15.8.16), it follows that these braid relations are verified for any element of the
Kauffman bracket skein module Sk iq1/2(Σ0,4).
Remark 15.21. More visually complicated loops can always be created by further “twisting”
the loops. For example,

ψ(s−1
1 )4(A23) = × × × (15.8.18)

is a more complicated analog of A23. The shadow filling the inside of the loop is there to
guide the eyes of the reader. These have also been studied in [85].
Remark 15.22. Let us remark that in [73], the author considers a similar braid group action
by half Dehn twists on the Kauffman bracket skein algebra of the four-punctured sphere. In
that paper, it is shown that the group SL(2; Z) acts on the DAHA of type (C∨1 C1) through
conjugations. Furthermore, the Artin braid group B3 action on the Kauffman bracket skein
algebra can be seen as a translation of this SL(2; Z) action. We also note that Terwilliger had
presented a B3 action on both the universal Askey–Wilson algebra and the universal DAHA
of type (C∨1 , C1) [44].

15.8.3. Connection between both braid actions

The following proposition establishes the connections between both braid group actions
presented above.
Proposition 15.23. The following diagram of isomorphisms

A3 A3

Sk Sk

ΨS

ψS

φ φ
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is commutative for any S ∈ B3. Here we used the shortened notation Sk ≡ Sk iq1/2(Σ0,4).
The isomorphisms φ, ΨS and ψS are given in (15.6.16), (15.8.11) and (15.8.17), respectively.

Proof. We can show that this diagram is commutative for all the generators of A and for
any S = si or S = s−1

i . For example:

φ ◦Ψs1(Q1) = φ(Q2) = A2 = ψs1(A1) = ψs1 ◦ φ(Q1). (15.8.19)

A more complicated example is

φ ◦Ψs2(Q12) = φ(Q13u) = × × × = ψs2(A12) = ψs2 ◦ φ(Q12). (15.8.20)

Since all the maps of the diagram are homomorphisms, the commutativity of the diagram
on the generators of A is enough to prove the proposition for any S ∈ B3. �

The commutativity of this diagram allows us to identify the conjugation by the braided
R-matrix for A3 as half Dehn twists around the punctures of Sk iq1/2(Σ0,4). In addition, we
can identify easily the elements of the algebra A3 obtained as an image by ΨS with a link of
Sk iq1/2(Σ0,4).

15.9. Towards a higher rank saw(n) algebra
Some natural generalizations of the different algebras have previously been introduced

and studied:
• the generalized Askey–Wilson algebra aw(n) is the algebra generated by {CI | I ⊂
{1, 2, . . . , n}} subject to the relations introduced in Theorems 3.1 and 3.2 of [56];
• the algebra An is the subalgebra of Uq(sl2)⊗n generated by all the intermediate
Casimir elements {QI | I ⊂ {1, 2, . . . , n}} obtained by the repeated action of the
coproduct of Uq(sl2);
• the centralizer Cn is defined by

Cn = {X ∈ Uq(sl2)⊗n
∣∣∣ [∆(n−1)(x), X] = 0 , ∀x ∈ Uq(sl2)} (15.9.1)

where ∆(n) = (∆(n−1) ⊗ id)∆ and ∆(1) = ∆;
• the algebra Skθ(Σ0,n+1) is the Kauffman bracket skein algebra associated to the (n+

1)-punctured sphere Σ0,n+1 [39]. Let us now associate to each set I ⊆ [1;n] ≡
{1, 2, . . . , n} a ‘simple’ loop AI of Skθ(Σ0,n+1). We write a set I as I = I1∪I2∪· · ·∪I`,
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where Ii are sets of consecutive integers and then we define the ‘simple’ loop AI as:

AI =
. . . ×

I1

... ×
I2

. . . ×
I`

. . .
(15.9.2)

These simple loops do not bend around, unlike (15.8.18). They are only extending in
the lower half of the plane. In particular, for I = {i, i+ 1, . . . , j}, a set of consecutive
integers, one gets

AI =
 ×

1

. . . ×
i

. . . ×
j

. . . ×
n

 =
 . . . ×

I

. . .
 (15.9.3)

What is lacking in the previous list is the generalization saw(n) of the algebra saw(3).
Such a generalization would provide a description of the algebra An in terms of generators
and relation. We know that saw(n) will be a quotient of the algebra aw(n) by relation(s)
of the type (15.2.2), with some Casimir elements to be determined. We conjecture that the
map φn from saw(n) to Skθ(Σ0,n+1) which sends QI to AI is an isomorphism 2.

Let us mention that there also exist generalizations in the non-deformed case (q = 1 and
q = −1) of the Askey–Wilson algebra: these are respectively called the “higher rank Racah
algebra” introduced in [62] as well as the “higher rank Bannai–Ito algebra” introduced in
[63].

In the remainder, we give different indications regarding ways to define saw(n).

15.9.1. Punctures on a sphere and a coassociative homomorphism
of Kauffman bracket skein modules

Recall we had highlighted that the punctures of the sphere were related to the tensor
product factors. Additionally, a loop encircling a puncture is associated to some intermediate
Casimir element with non-trivial factors in the tensor product factor corresponding to the
puncture.

Further recall that the coproduct ∆ acts as an algebra morphism from Uq(sl2) to
Uq(sl2)⊗2. One can define an action of the coproduct on any ith factor of a tensor prod-
uct: for any X ∈ Uq(sl2)⊗n, we define ∆i : Uq(sl2)⊗n → Uq(sl2)⊗(n+1) as:

∆i(x) =
(
1⊗(i−1) ⊗∆⊗ 1⊗(n−i)

)
(X). (15.9.4)

2During the preparation of this paper, the authors have been informed by J. Cooke that a similar idea was
pursued in an upcoming publication [39].
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Now in Uq(sl2)⊗3 some intermediate Casimir elements are related to each other by the co-
product, such as Q1 and Q12:

∆1(Q1) = (∆⊗ 1⊗ 1)Q1 = Q12 ⊗ 1. (15.9.5)

This relation between Q1 and Q12 appears in the framed links picture as well.
More precisely, ∆i has an analog, the δi morphism, which acts on a single puncture i by

creating another puncture next to it. If the puncture i is enclosed in a loop, the created
puncture is also enclosed in the same loop. The example (15.9.5) is illustrated as follows:

δ1A1 = δ1

(
× × ×

)
= δ1

(
× × ×

)
=
(
× × × ×

)
= A12 ∈ Skθ(Σ0,5)

(15.9.6)

This δi is a Kauffman bracket skein module coassociative algebra homomorphism. It provides
embeddings of Skθ(Σ0,n) → Skθ(Σ0,n+1). This can be seen as the commutativity of the
following diagram:

An An+1

Skθ(Σ0,n+1) Skθ(Σ0,n+2)

∆i

δi

φn φn+1

15.9.2. A crossing index

The defining algebra relations of Sk iq1/2(Σ0,4) (15.2.1)–(15.2.2) (see Proposition 15.7)
can be classified in three types. The relations always involve two generators, whose product,
commutator or q-commutator is reexpressed in terms of other generators. Now imagine we
draw both generators simultaneously in a framed links diagram (as if we were to multiply
them). Some crossings will appear if the two generators don’t commute.
Definition 15.24. The crossing index is defined as the minimal number of crossings that
appear in a framed link diagram no matter how the generators are drawn.

The relations (15.2.1)–(15.2.2) can be classified in terms of the crossing index as follows:
• If the generators can be drawn simultaneously in such a way that the loops have no
crossings (crossing index of 0), they will commute (for example, this is the case for
any central element Q1, Q2, Q3, Q123 multiplied with any other generator).
• If the generators can be drawn in such a way that their minimum number of crossings
is two (crossing index of 2), linear q-commutation relations of aw(3)-type will be
obtained, such as relations (15.2.1).
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• If the generators have a crossing index of 4, such as

φ(Q13uQ13d) = × × × , (15.9.7)

higher order relations of the type (15.2.2) will be obtained.
This crossing index proves useful for the analysis of the higher rank generalizations of saw(3).

15.9.3. The algebras aw(n) and Skθ(Σ0,n+1)

As mentioned previously, the algebra aw(n) is generated by CI with I ⊆ [1;n] and
subject to the relations of Proposition 3.1 of [56]. We can show by using the action of the
morphism δi that we have an homomorphism from aw(n) to Skθ(Σ0,n+1). Moreover, we can
show that all the relations of Proposition 3.1 of [56] correspond to the product of two simple
loops with crossing index 2. We believe that the relations in [56] exhaust all possibilities of
relations involving the product of simple loops with crossing index 2. We conjecture also
that the above mentioned homomorphism is surjective (but it is certainly not injective, even
for the case n = 3). The description of the kernel would involve products of links with a
crossing index strictly greater than 2. The complete description of this kernel would lead to
the definition of saw(n) and give an algebraic description of An and Skθ(Σ0,n+1).

The study of saw(n) should be guided by the intuition gained from the framed links
picture. To illustrate the type of insight we can gain, let us efficiently summarize some of
the results of [53]. In this paper, the authors study the intermediate Casimir elements in
Uq(sl2)⊗4 and introduce an involution I of the algebra as well as “involuted” generators IQ13

and IQ24 satisfying

[Q13, IQ24] = 0, and [IQ13, Q24] = 0. (15.9.8)

That these generators commute becomes evident when we rewrite (following our definitions)
IQ24 = Q24u, IQ13 = Q13u, and then draw the corresponding links. Indeed, the products

φ(Q13dQ24u) = × × × × = φ(Q24uQ13d), (15.9.9a)

φ(Q13uQ24d) = × × × × = φ(Q24dQ13u), (15.9.9b)

have 0 crossing hence [Q13d, Q24u] = 0 and [Q13u, Q24d] = 0.
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What about the product of terms likeQ13d andQ24d ? This calculation has never appeared
in the papers mentioned above because it has a crossing number of 4:

φ(Q13dQ24d) =
× × × ×

(15.9.10)

Remarkably, this calculation can be effected in Sk iq1/2(Σ0,5) using the conjectured morphism.
One writes the QI in terms of AI , computes using the skein relations of Sk iq1/2(Σ0,5), then
reexpresses all AI in terms of QI . This yields the following results

Q13Q24 = q2Q14Q23 + q−2Q12Q34 + q(Q14Q2Q3 +Q23Q1Q4) + q−1(Q12Q3Q4 +Q34Q1Q2)

+ (q + q−1)Q1234 +Q1Q2Q3Q4 +Q1Q234 +Q2Q134 +Q3Q124 +Q4Q123 (15.9.11)

and

Q24Q13 = q−2Q14Q23 + q2Q12Q34 + q−1(Q14Q2Q3 +Q23Q1Q4) + q(Q12Q3Q4 +Q34Q1Q2)

+ (q + q−1)Q1234 +Q1Q2Q3Q4 +Q1Q234 +Q2Q134 +Q3Q124 +Q4Q123. (15.9.12)

These have been checked to hold in Uq(sl2)⊗4.
Let us also mention that the action of the braid group B3 can be generalized to the action

of Bn on Skθ(Σ0,n+1) and An. This might turn out useful for proving results in the future.

15.10. Conclusion
Three objectives were principally pursued in this paper. The first aimed to review the

different avatars of the Askey–Wilson algebra and to clarify the relations between them.
Among those algebras, we focused on two and presented novel results related to these cases;
this was the second main goal. The Special Zhedanov algebra sZhq(m1,m2,m3,m4) was
obtained from (a quotient of) the reflection algebra by setting the Sklyanin determinant to
an appropriate value; its W (D4) symmetry was exhibited in addition. The Special Askey–
Wilson algebra saw(3), a universal analogue of sZhq(m1,m2,m3,m4), was shown to be
isomorphic to the algebra A3 that emerges from the Racah problem of Uq(sl2) and also to
the Kauffman bracket skein algebra of the four-punctured sphere Sk iq1/2(Σ0,4). An injective
homomorphism between A3 and the centralizer C3 of Uq(sl2) in its threefold tensor product
was stated and proved. Actions of the braid group on both Sk iq1/2(Σ0,4) (through half Dehn
twists) and A3 (through conjugation by braided R-matrices) were illustrated and shown to
be compatible. The third main objective was to discuss the generalization of saw(3) to
saw(n). To that end, we emphasized the diagrammatic approach, defined a crossing index,
and revisited the results of [53, 56] in a unified fashion.
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Let us conclude with more remarks regarding generalizations of Askey–Wilson algebras.
It would certainly be desirable to return to Zhedanov’s original quest and to determine
directly from the multivariate Askey–Wilson polynomials (of Tratnik type) [57] the algebra
that encapsulates their bispectral properties. Steps have been carried out [55, 58, 59] but
this should be completed. A definite higher rank generalization of the Zhedanov algebra
will emerge, whose quotients and central extensions could then be examined and should
connect to various fields in mathematics and physics. Considering higher rank Lie algebras
g instead of sl2 is another avenue that should be explored. The centralizer of the diagonal
action of Uq(g) in the n-fold tensor product Uq(g)⊗n, or the algebra generated by all the
intermediate Casimir elements of g in the associated Racah problem should be studied.
Connections with a generalization of Skθ(Σ0,n) to punctured manifolds of higher genera
would be worth investigating (see also [82]). We may also wonder whether the braided
universal R-matrix of Uq(g) plays a role in this context. Furthermore, the truncated reflection
algebra presented in Section 15.3 provides a natural framework to obtain generalizations of
Zhedanov algebras. Different possibilities are here conceivable. One could consider more
general truncations of the reflection algebra. This type of generalization has been already
studied in [60] and has been associated to quotients of q-Onsager algebras 3. Connections
with centralizers and/or skein algebras remain to be examined. Another possibility with
respect to truncated reflection algebras is the following. Instead of using the R-matrix
associated to quantum affine algebras, one could consider the R-matrix corresponding to
Yangians. In this case, a particular truncation of the reflection algebra leads to the Hahn
algebra, which is a specialization of the Zhedanov algebra, see [86]. Other truncations
should provide interesting generalizations of this algebra. Finally, the FRT presentation
of the reflection algebra associated to higher rank Lie algebras and superalgebras is well-
known. For instance, the twisted Yangians Y tw(on) and Y tw(spn) [87] and the reflection
algebra B(n, `) [88] correspond to subalgebras of the Yangian of sln. Some q-deformations of
these structures have been also studied previously [89] and are related to the quantum affine
algebra of sln. Their truncations have yet to be scrutinized and should possess interesting
features 4. These ideas that we plan on pursuing in the near future are indications that there
is much lying ahead with respect to algebras of the Askey–Wilson type and what they will
reveal and lead to.

3The classical limit q → 1 leads to subalgebras of the loop algebra of sl2 and to quotients of the Onsager
algebra by Davis relations [61].
4Such an approach has been pursued in the classical limit q → 1 [90] to obtain generalizations of the so-called
classical Askey–Wilson algebra and are seen as subalgebras of the sln Onsager algebra [91].
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15.A. Classical limit and injectivity
We provide an explicit description of the classical limit of the realization of saw(3)

in Uq(sl2)⊗3 in terms of polarized traces, and use it to prove the injectivity of the map
from saw(3) to the centralizer C3. In this appendix, we will work with the formal series
version of Uq(sl2) and reduce the proof of the injectivity statement to one in the universal
enveloping algebra U(sl2), where we can use known results of classical invariant theory
involving polarized traces.

15.A.1. Polarised traces in U(sl2)⊗3

The algebra U(sl2) is generated by elements eij, i, j ∈ {1, 2}, with the defining relations
[eij, ekl] = δjkeil − δliekj and e11 + e22 = 0. To join up with the notations used in the paper
for Uq(sl2), we set E = e12, F = e21 and H = 1

2(e11 + e22) = e11 = −e22, and the relations
become:

[H,E] = E, [H,F ] = −F, [E,F ] = 2H. (15.A.1)

In a tensor product U(sl2)⊗N , we denote the generators by e(a)
ij , where a ∈ {1, . . . , N} indi-

cates the corresponding factor in the tensor product. The polarized traces are the following
elements:

T (a1,...,ad) = e
(a1)
i2i1 e

(a2)
i3i2 . . . e

(ad)
i1id

, a1, . . . , ad ∈ {1, . . . , N}, (15.A.2)
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where the summation over repeated indices is understood. The specific combinations of
polarized traces that will appear are:

k1 := T (1,1), k2 := T (2,2), k3 := T (3,3), k4 := k1 + k2 + k3 + 2(T (1,2) + T (2,3) + T (1,3)),

X := k1 + k2 + 2T (1,2), Y := k2 + k3 + 2T (2,3), Z := −8T (1,2,3).

(15.A.3)

15.A.2. The algebra Uα(sl2)

In this appendix, we will work with the formal series version of the quantum group
Uq(sl2). We consider a formal parameter α. The algebra Uα(sl2) is, as a vector space,
the space U(sl2)[[α]] of all formal power series in α with coefficients in U(sl2), and the
multiplication is determined by the defining relations of Uq(sl2), see section 15.6.1, where q
is replaced by eα and qH is replaced by eαH . This results in the following relations deforming
(15.A.1):

[H,E] = E, [H,F ] = −F, [E,F ] = e2αH − e−2αH

eα − e−α
. (15.A.4)

Similarly, the algebra Uα(sl2)⊗̂N is the vector space U(sl2)⊗N [[α]] of formal series with coef-
ficients in U(sl2)⊗N and multiplication induced by the above relations in each factor. The
comultiplication of Uα(sl2) is naturally obtained from the comultiplication given for Uq(sl2).

Note that the limit α→ 0 from Uα(sl2) yields the algebra U(sl2) and the comultiplication
becomes the diagonal embedding.

15.A.3. Reduction to U(sl2)

We want to prove that the following elements

Q12
iQ23

j Q13
kQ1

mQ2
nQ3

pQ123
q i, j,m, n, p, q ∈ N, k ∈ {0, 1}, (15.A.5)

are linearly independent in Uα(sl2)⊗̂3. First it is more convenient (and equivalent) to replace
the generators QI by the modified versions introduced Section 15.4:

KI = QI − (q + q−1)
(q − q−1)2 , I ∈ {1, 2, 3, 123, 12, 23}. (15.A.6)

The index 13 does not belong to this set, and for this one, we set:

K13 = Q13 − (Q1 +Q2 +Q3 +Q123 −Q12 −Q23) + (q + q−1)
(q − q−1)3 . (15.A.7)

Calculating explicitly the first terms in the expansions in α (up to order 3 for Q13 and up to
order 2 for the others), we find that the new elements KI are well-defined in Uα(sl2)⊗̂3, and
moreover that their degree 0 coefficients are expressed in terms of polarized traces, using the
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notations in (15.A.3), as follows

Ki|α=0 = 1
2ki (i = 1, 2, 3), K123|α=0 = 1

2k4, (15.A.8)

K12|α=0 = 1
2X, K23|α=0 = 1

2Y, K13|α=0 = −1
8Z. (15.A.9)

These are straightforward calculations, the one for K13 being a bit lengthy (for which one
can use for example the explicit expression for Q13 using the R-matrix given in the paper).

Now, to prove that the elements of the set (15.A.5), with QI replaced by KI , are linearly
independent in Uα(sl2)⊗̂3, it is enough to prove that their “classical limits” (the degree
0 coefficients) are linearly independent in U(sl2)⊗3. In view of the above calculations, it
remains to show that the following set:

k1
ik2

jk3
kk4

mXnY pZq, i, j, k,m, n, p ∈ N, q ∈ {0, 1}, (15.A.10)

is linearly independent in U(sl2)⊗3.

15.A.4. Racah algebra and diagonal centraliser in U(sl2)⊗3

To prove that the set (15.A.10) is linearly independent, we use the same line of arguments
as the one used in the study of the recoupling of two copies of sl(3). Thus we only give here
a sketch and refer for more details to [79].

It is known from classical invariant theory [92, 93] that the centralizer of the diagonal
embedding of U(sl2) in U(sl2)⊗3 is generated by the polarised traces T (i,i), T (k,l), T (1,2,3),
with i = 1, 2, 3 and 1 ≤ k < l ≤ 3, and moreover that the Hilbert–Poincaré series of the
centralizer is:

1− t6
(1− t2)6(1− t3) . (15.A.11)

This series records the dimension for each degree of the centralizer, where the degree in
U(sl2)⊗3 is defined by deg(e(a)

ij ) = 1. From this information, we extract at once that the set
k1, k2, k3, k4, X, Y , Z generates the centralizer. Now, we have that these elements satisfy
the classical Racah relations:

k1, k2,k3, k4 commute with all generators,

[X, Y ] = Z,

[X,Z] = 4{X, Y }+ 4X2 − 4(k1 + k2 + k3 + k4)X + 4(k1 − k2)(k4 − k3),

[Z, Y ] = 4{X, Y }+ 4Y 2 − 4(k1 + k2 + k3 + k4)Y + 4(k3 − k2)(k4 − k1),

(15.A.12)

together with

Γ = 8(k1 − k2 + k3 − k4)(k1k3 − k2k4)− 32(k1k3 + k2k4), (15.A.13)
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where the element Γ is
Γ : = Z2 − 8(XYX + Y XY ) + 4(k1 + k2 + k3 + k4 − 4){X, Y }

− 8(k1 − k2)(k4 − k3)Y − 8(k3 − k2)(k4 − k1)X.
(15.A.14)

The relations (15.A.12) allow to rewrite any product in terms of ordered monomials in the
generators and (15.A.13) allows to rewrite Z2. So we deduce easily that the set (15.A.10) is
a spanning set for the centralizer. Finally, the comparison with the Hilbert–Poincaré series
in (15.A.11) shows that this set must be linearly independent.

This concludes the proof of the injectivity of the map from saw(3) to C3 ⊂ Uα(sl2)⊗̂3.
Remark 15.25. Specializing the central elements ki to m2

i−1
2 , one finds that the relations

(15.A.12)–(15.A.13) are expressed in terms of the polynomials:

4∑
i=1

mi
2,


(m1

2−m2
2)(m4

2−m3
2),

(m3
2−m2

2)(m4
2−m1

2),
(m1

2m3
2−m2

2m4
2)(m1

2−m2
2+m3

2−m4
2).

(15.A.15)

These polynomials are invariant polynomials under the action of the Weyl group W (D4) of
Section 15.4. This recovers explicitly the classical limit of the results in Section 15.4.
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Chapitre 16

Racah algebras, the centralizer Zn(sl2) and its
Hilbert–Poincaré series

Par Nicolas Crampé, Julien Gaboriaud, Loïc Poulain d’Andecy, Luc Vinet (2021).
Accepté dans Annales Henri Poincaré. arxiv:2105.01086.

Abstract: The higher rank Racah algebra R(n) introduced in [1] is recalled. A quotient
of this algebra by central elements, which we call the special Racah algebra sR(n), is then
introduced. Using results from classical invariant theory, this sR(n) algebra is shown to be
isomorphic to the centralizer Zn(sl2) of the diagonal embedding of U(sl2) in U(sl2)⊗n. This
leads to a first and novel presentation of the centralizer Zn(sl2) in terms of generators and
defining relations. An explicit formula of its Hilbert–Poincaré series is also obtained and
studied. The extension of the results to the study of the special Askey–Wilson algebra and
its higher rank generalizations is discussed.

Keywords: Racah algebra, centralizer, U(sl2), classical invariant theory, first and second
fundamental theorems, Hilbert–Poincaré series.

16.1. Introduction
This paper clarifies the connection between the higher rank Racah algebra R(n) and the

centralizer Zn(sl2) of the diagonal embedding of U(sl2) in its n-fold tensor product. The
central result of the paper is:

A particular quotient of the Racah algebra R(n), which we provide in (16.4.1),
is the centralizer.

In the case n = 3, the centralizer Z3(sl2) contains a number of subalgebras of interest for
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mathematics and physics. In representations, it is generated by the so-called “intermediate”
or “quadratic” Casimir elements [2]. These elements realize the relations of the Racah algebra
[3]. One may then wonder if the Racah algebra is the centralizer Z3(sl2) or if more relations
are needed in order to offer a full description of the centralizer by generators and relations.

A similar story repeats itself for the centralizer Zn(sl2). One observes that the inter-
mediate Casimir elements in the n-fold tensor product of U(sl2) realize the relations of the
higher rank Racah algebra [1], but two questions remain: Is the centralizer generated by
these intermediate Casimir elements, and are there additional relations needed in order to
fully describe the centralizer?

As will be seen, these questions are quite close to questions that appear in classical in-
variant theory. The issue of finding a generating set (of polynomial functions, for example) is
answered by the First Fundamental Theorem and the problem of obtaining defining relations
between these generators is answered by the Second Fundamental Theorem.

In this regard, the results that we obtain in Corollary 16.22 and Theorem 16.23 can be
seen as non-commutative analogues of the First and Second Fundamental Theorems.

16.1.1. On the Racah algebra

At this point it would be appropriate to provide some background on the Racah algebra,
which arises in numerous areas of mathematics and physics.

A first approach to the Racah algebra is from the theory of orthogonal polynomials.
The Racah polynomials are a family of bispectral classical orthogonal polynomials which
are characterized by a difference and recurrence operator [4]. These operators obey the
quadratic algebraic relations of the Racah algebra; this is actually how the algebra was
originally introduced [5] and the reason why it inherited its name. Thus, the representation
theory of the Racah algebra involves the eponym polynomials.

The problem of decomposing the tensor product of two irreducible representations of sl2
in a direct sum of irreducible representations is known as the Clebsch–Gordan problem of sl2.
When the three-fold tensor product is considered, there exist two natural decompositions.
The question of finding the overlaps between the two associated bases is called the Racah
problem of sl2. The intermediate Casimir elements labelling the two mentioned decompo-
sitions realize the Racah algebra [3], and thus the overlaps are found to be given in terms
of Racah polynomials. There are also realizations of the Racah algebra in terms of U(sl2)
[6–9].

The Racah algebra appears in various other mathematical contexts. For example, it
arises in algebraic combinatorics where it plays an important role in the classification of P -
and Q- polynomial association schemes [10]. The two operators satisfying the definition of
a Leonard pair of Racah type obey also the Racah algebra relations and this allows one to
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connect the representation theory of the Racah algebra [11] with the classification of such
pairs [12–14]. It is also deeply connected with other well-known algebras: the double affine
Hecke algebras [15], the rational degeneration of the Sklyanin algebra [16] as well as the
Temperley–Lieb and Brauer algebras [17].

The Racah algebra further shows up as an important object in physics. It is the sym-
metry algebra of the generic superintegrable system on the 2-sphere [18–21] from which all
superintegrable systems in two dimensions with constants of motion of degree two or less in
momenta can be obtained as limits or specializations of this generic system on the two-sphere
[22]. It hence follows that the symmetry algebras of all such systems correspond to limits or
contractions of the Racah algebra. The Racah algebra is also present in physical models in
dimensions higher than two, including the isotropic oscillator in three dimensional space of
constant positive curvature [23].

As is the case for various rich structures that have a lot of applications, the generalization
of the Racah algebra is something desirable. A higher rank Racah algebra has been defined
in [1] by looking at a 3D superintegrable system with the Racah algebra as its symmetry
algebra and then generalizing this system to n dimensions. The algebraic relations between
the constants of motion were then computed and used to define abstractly the higher rank
Racah algebra R(n). These relations of R(n) are also verified by the intermediate Casimir
elements that label various direct sum decompositions of the n-fold tensor product of sl2
irreducible representations [24]. These higher rank Racah algebras have also been observed
in physical models [25–29], interpreted in the framework of Howe duality [30], and the study
of their relation to multivariate Racah polynomials has been initiated [31–33].

16.1.2. Outline

The paper is organized as follows. In section 16.2, the abstract R(3) Racah algebra will
be introduced and its quotient by a certain central element will be presented and named the
special Racah algebra sR(3). Then, the higher rank Racah algebra R(n) will be presented
in Section 16.3 and various properties will be highlighted. Section 16.4 will define the higher
rank special Racah algebra sR(n). This algebra is a quotient of R(n) by a number of central
elements which will be given precisely. We then come to the main results of the paper. It
will be proven in Section 16.5 that the special Racah algebra is isomorphic to the diagonal
centralizer Zn(sl2) of U(sl2) in its n-fold tensor product. The Hilbert–Poincaré series of
the centralizer will be obtained in Section 16.6 and its rich combinatorial properties will be
examined. The PBW basis of the centralizer will then be given for the first few values of
n. A conclusion offering some comments about the q-deformation of these results and the
connection with the multivariate Racah polynomials will end the paper.
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16.2. The Racah algebra (of rank 1) and a special quo-
tient

We review the definition of the usual Racah algebra (of rank 1 in our terminology), along
with the algebraic properties we need for the following. We then give the definition of the
special Racah algebra of rank 1, to prepare for the generalization for any rank defined later
in the paper.
Definition 16.1. The Racah algebra R(3) of rank 1 is the associative algebra with generators
P11, P12, P13, P22, P23, P33, F123, and with the following defining relations for indices i, j, k
in {1, 2, 3} and all distinct:

Pii is central, (16.2.1a)

[Pij,Pjk] = 2Fijk, (16.2.1b)

[Pjk,Fijk] = Pik(Pjk + Pjj)− (Pjk + Pkk)Pij. (16.2.1c)

where [A,B] = AB − BA is the commutator, and Pij and Fijk are defined for any i, j, k ∈
{1, 2, 3} by the requirements:

Pij = Pji and Fijk = −Fjik = Fjki for any i, j, k ∈ {1, 2, 3}. (16.2.2)

We say that Fijk is antisymmetric whereas Pij is symmetric. Note that in view of
(16.2.1b), the element F123 can be removed from the set of generators of R(n) but it is
more convenient to keep it.

Relation (16.2.1b) is given for any i, j, k. If i, j, k are not ordered, the symmetry properties
of P and F are to be used. For example,

[P23,P13] = [P23,P31] = 2F231 = 2F123, (16.2.3)

where we used the symmetry of P, the antisymmetry of F and relation (16.2.1b) for (i, j, k) =
(2, 3, 1). Similar comments apply to relation (16.2.1c), which is given for any distinct i, j, k
and not only the case (i, j, k) = (1, 2, 3).

Let us introduce the notion of determinant for matrices with non-commuting entries. If
A is a n× n matrix with entries Ai,j (1 ≤ i, j ≤ n), we define the symmetrized determinant
of A as follows

detA := 1
n!

∑
ρ,σ∈Sn

sgn(ρ)sgn(σ)Aρ(1),σ(1)Aρ(2),σ(2) . . . Aρ(n),σ(n), (16.2.4)

where Sn is the permutation group of n elements and sgn(σ) is the signature of σ. For
commuting entries, it is the usual definition of the determinant of a matrix. We define also
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the following 3× 3 matrix

P abc
ijk =


Pia Pib Pic
Pja Pjb Pjc
Pka Pkb Pkc

 . (16.2.5)

There exist in addition to Pii, other central elements in R(3) given in the following proposi-
tion:
Proposition 16.2. The following elements are central in R(3)

Q3 = P12 + P13 + P23, (16.2.6)

wijk : = Fijk2 + 1
2 det(P ijk

ijk )

− 1
3 ({Pij,Pik}+ {Pij,Pjk}+ {PikPjk}+ PijPkk + PikPjj + PjkPii) ,

(16.2.7)

for 1 ≤ i, j, k ≤ 3 distinct and where the anticommutator is defined as {A,B} = AB + BA.
Moreover it is observed that wijk is symmetric i.e.

wijk = wjik = wjki. (16.2.8)

Proof. To show that an element is central, it is enough to show that it commutes with
P12,P13,P23 (since the Pii’s are central and 2F123 = [P12,P23]). For Q3, this is an easy
verification.

The symmetry of wijk is immediate. So it remains to show the centrality of w123. By
symmetry of the algebra under renaming of the indices, only the commutation with one
element, say P23, needs to be checked. This is a direct calculation using the defining relations
of the algebra. �

Remark 16.3. It should be stressed that the element w123 is essentially the known Casimir
element of the Racah algebra [5].
Remark 16.4. There exist other equivalent presentations of the Racah algebra R(3). Indeed,
introducing the following generators, for 1 ≤ i, j ≤ 3 distinct,

Cij = Pij + Pii + Pjj
2 , (16.2.9)

the defining relations (16.2.1) become

Pii is central, (16.2.10a)

[Cij, Cjk] = 2Fijk, (16.2.10b)

[Cjk,Fijk] = CikCjk − CjkCij − 1
2(Pjj − Pkk)(C123 − 1

2Pii). (16.2.10c)

with C123 = C12 +C23 +C13− 1
2(P11 + P22 + P33) (which is central by Proposition 16.2). This

presentation is the one used for example in [11, 34].
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The special Racah algebra. The special Racah algebra sR(3) is defined from the Racah
algebra R(3) by fixing the value of this non-trivial central element.
Definition 16.5. The special Racah algebra sR(3) of rank 1 is the quotient of R(3) by

w123 = 0. (16.2.11)

Remark 16.6. This relation (16.2.11) is akin to the relation that expresses the Casimir
element of the Racah algebra in terms of its central elements, see equation (3.4) in [3] for
instance.
Remark 16.7. It follows from (16.2.8) that w213 and other wijk obtained from permutations
of the indices are null in sR(3).

The appellation “special” is used in the same way as in [35], where a quotient of the
Askey–Wilson algebra by fixing the value of a central element expressed as a determinant
was denoted as the “special Askey–Wilson algebra” (this was inspired by the nomenclature
of Lie groups).

16.3. The higher rank Racah algebras
Following [1], we consider the following definition of the Racah algebra (of any rank).

Note that we consider it as an abstract algebra defined by generators and relations. It will
be clear that for n = 3 we recover Definition 16.1 for the rank one Racah algebra R(3).
Definition 16.8. The Racah algebra R(n) of rank n − 2 is the associative algebra with
generators:

Pij, 1 ≤ i ≤ j ≤ n and Fijk, 1 ≤ i < j < k ≤ n, (16.3.1)

and the defining relations are, for all possible indices i, j, k, l,m in {1, . . . , n}:

Pii is central, (16.3.2a)

[Pij,Pk`] = 0 if both i, j are distinct from k, `, (16.3.2b)

[Pij,Pjk] = 2Fijk, (16.3.2c)

[Pjk,Fijk] = Pik(Pjk + Pjj)− (Pjk + Pkk)Pij, (16.3.2d)

[Pk`,Fijk] = PikPj` − Pi`Pjk, (16.3.2e)

[Fijk,Fjk`] = −(Fij` + Fik`)Pjk, (16.3.2f)

[Fijk,Fk`m] = Fi`mPjk − Fj`mPik, (16.3.2g)

where in each relation all indices involved are distinct and Pij and Fijk are defined by:

Pij = Pji and Fijk = −Fjik = Fjki for any i, j, k ∈ {1, . . . , n}. (16.3.3)
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We say that Fijk (or simply F) is antisymmetric whereas Pij is symmetric. The same
comments as for the algebra R(3) after Definition 16.1 apply here. In particular, in view of
(16.3.2c), the elements Fijk can be removed from the set of generators of R(n) but it is more
convenient to keep them. Note that to check that a certain element X is central in R(n), it
is enough to check that it commutes with all generators Pij.
Remark 16.9. The form of the defining relations above is very symmetrical, and this is
quite useful in practice. Namely, for any permutation π of {1, . . . , n}, the corresponding
renaming of the generators (Pij,Fijk) 7→ (Pπ(i),π(j),Fπ(i),π(j),π(k)) is an automorphism of the
algebra. So when checking a relation in the algebra R(n), it is enough to do it for a chosen
set of indices. This property will be used in the proofs.
Remark 16.10. Relation (16.3.2f) seems different from the one provided in [1]. However,
using relation (16.3.18) which is a consequence of the defining relations as proven in the
following, relation (16.3.2f) can be transformed equivalently to the one of [1].

Recall that Pii is central in R(n). It is easy to show using (16.3.2b)-(16.3.2c) that the
following element is central in R(n):

Qn =
∑

1≤i<j≤n
Pij . (16.3.4)

We now introduce some elements of R(n) that will later play an important part. Recall the
definition of det(Pabcijk) (16.2.5) formulated in the preceding section. We define the following
elements in R(n):

wijk := Fijk2 + 1
2 det(P ijk

ijk )

− 1
3 ({Pij,Pik}+ {Pij,Pjk}+ {PikPjk}+ PijPkk + PikPjj + PjkPii) ,

(16.3.5)

xijk` := FijkFjk` + 1
2 det(Pjk`ijk) + 1

2(Fij` + Fik`)Pjk − 1
3(PijPk` + PikPj` + Pi`Pjk), (16.3.6)

yijk`m := FijkFk`m + 1
2 det(Pk`mijk ) + 1

2(Fij`Pkm − FijmPk`), (16.3.7)

zijk`mp := FijkF`mp + 1
2 det(P`mpijk ), (16.3.8)

where indices i, j, k, `,m, p ∈ {1, . . . , n} are all distinct. Only the element wijk appears in
the Racah algebra R(3) since there are not enough different indices for the other elements.

16.3.1. The Racah algebra R(4)

The algebra R(3) was previously studied in Section 16.2 so let us consider now the case
n = 4. According to the definition given above, there are 10 generators Pij of R(4) and
4 generators Fijk. Of the relations (16.3.2b)–(16.3.2f) only those involving no more than 4
different indices are necessary here.
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We already know that the elements Pii and Q4 given in (16.3.4) are central in R(4). The
following proposition gives less immediate consequences of the defining relations of R(4), and
in particular identifies the elements introduced in (16.3.5)–(16.3.6) as central elements.
Proposition 16.11. The following assertions are true in R(4):

• For 1 ≤ a ≤ 4, the following relations hold:

Pa1F234 − Pa2F134 + Pa3F124 − Pa4F123 = 0. (16.3.9)

• For distinct i, j, k ∈ {1, 2, 3, 4}, the elements wijk are symmetric (wijk = wjik = wjki)
and are central in R(4).
• For distinct i, j, k, ` ∈ {1, 2, 3, 4}, the elements xijkl are symmetric (xσ(i)σ(j)σ(k)σ(`) =
xijk` for σ ∈ S4) and are central in R(4).

Proof. All these statements are proven by invoking the associativity of the algebra. Here is
what is meant by that. Suppose that we have a word CBA, for A, B, C some generators, that
we want to reorder into the form ABC. This is done by using the defining relations of the
algebra (16.3.2). We decide, for example, to bring all P’s to the left of the F’s, and to order the
F’s and the P’s between themselves in the lexicographical ordering of their indices. There are
two ways to proceed: one can first start by reordering the pair (CB) into (BC)+some terms,
or one could instead start by reordering the pair (BA) into (AB) + some other terms. We
denote symbolically the difference at the end of these two computations by(

C(BA)− (CB)A
)
, (16.3.10)

and this must be identically 0 by the associativity of the algebra.
Let us first prove (16.3.9). In the present case, we shall look at the word CBA =

Fij`Pk`Pi`, for i, j, k, ` all distinct, and compute
1
2

(
(Fij`Pk`)Pi` − Fij`(Pk`Pi`)

)
. (16.3.11)

Using relations (16.3.2), this can be brought to the form

PiiFjk` − PijFik` + PikFij` − Pi`Fijk. (16.3.12)

By the argument above, this expression has to be zero. Then, choosing (i, j, k, `) = (1, 2, 3, 4),
(2, 3, 4, 1), (3, 4, 1, 2) or (4, 1, 2, 3), we recover (16.3.9) with a = 1, 2, 3, 4 respectively.

The proof that wijk is symmetric and that it commutes with all Pab with a, b ∈ {i, j, k}
was already done in Section 16.2 for the algebra R(3), and is still valid here. Using the
symmetry of wijk and the symmetry of the algebra under renaming of the indices, to prove
that wijk is central, it is enough to prove for example that [P34, w123] = 0.

This is done by making use of (16.3.9) and reducing the calculation to

[P34, w123] =
(
(F124 + 2F134)F123

)
P23 − (F124 + 2F134)

(
F123P23

)
(16.3.13)
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which is identically zero by the associativity of the algebra.
For the symmetry of xijk`, the particular case of xijk` = xikj` is immediate using the

symmetries of P and F. To complete the proof of the symmetry properties of x, it remains
to show that xjk`i = xijk`. Using the symmetry of the algebra R(4) under renaming of the
indices, it is enough to check that for example x2341 = x1234. Substituting from the definition
of xijk`, one has

x2341 − x1234 = (F134 − F123)F234 + 1
2

(
det(P234

134)− det(P234
123)

)
− 1

2

(
P34(F123 + F124) + P23(F134 + F124)

)
.

(16.3.14)

Now, looking at CBA = F234F124P34 and making use of (16.3.9), one computes
1
2

(
F234(F124P34)− (F234F124)P34

)
= (F134 − F123)F234 + 1

2

(
det(P234

134)− det(P234
123)

)
− 1

2

(
P34(F123 + F124) + P23(F134 + F124)

)
.

(16.3.15)

By the associativity of the algebra (see above), this expression has to be zero. This completes
the proof of the symmetry of xijk` since the right hand sides of (16.3.14) and (16.3.15) are
the same.

Using the symmetry of xijk` and the symmetry of the algebra under renaming of the
indices, the proof that xijk` is central reduces to proving that for example [x1234,P23] = 0
which is also done by a direct computation using expression (16.3.17) of x1234. �

Remark 16.12. The elements wijk and xijk` can be equivalently given by the following
formulae

w123 = F123
2 − F123P13 − P12(P13 + P23 + P33) + 1

2
∑
σ∈S3

sgn(σ)Pσ(1)1Pσ(2)2Pσ(3)3, (16.3.16)

and

x1234 = F123F234 − F123P24 + F124P23 + F134P23 − P14P23 + 1
2
∑
σ∈S3

sgn(σ)Pσ(1)2Pσ(2)3Pσ(3)4.

(16.3.17)

16.3.2. The Racah algebra R(n) for any n

Let now n be any positive integer. We already know that we have in R(n) central elements
Pii and Qn given in (16.3.4). Building upon all that has been proven up to now, we have the
following final proposition about the Racah algebra R(n).
Proposition 16.13. The following assertions are true in R(n):

• The relations below hold for 1 ≤ a ≤ n and 1 ≤ i < j < k < ` ≤ n:

PaiFjk` − PajFik` + PakFij` − Pa`Fijk = 0. (16.3.18)

• For distinct i, j, k ∈ {1, . . . , n}, the elements wijk are symmetric and central in R(n).
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• For distinct i, j, k, ` ∈ {1, . . . , n}, the elements xijk` are symmetric and central in
R(n).
• For distinct i, j, k, `,m ∈ {1, . . . , n}, the elements yijk`m are null in R(n):

yijk`m = 0 for all distinct i, j, k, `,m. (16.3.19)

• For distinct i, j, k, `,m, p ∈ {1, . . . , n}, the elements zijk`mp are null in R(n):

zijk`mp = 0 for all distinct i, j, k, `,m, p. (16.3.20)

Proof. If a is equal to i, j, k or `, relation (16.3.18) only involves 4 indices, and so its
validity follows directly from the Proposition 16.11 concerning the algebra R(4). To prove
the case when a is different of i, j, k and `, first compare (16.3.2g) for (i, j, k, `,m) equals to
(1, 2, 5, 3, 4) and (3, 4, 5, 1, 2). This leads to the identity

P15F234 − P25F134 + P35F124 − P45F123 = 0. (16.3.21)

The symmetry of the algebra under renaming of the indices suffices to complete the proof of
(16.3.18).

Regarding the statements about wijk and building on the verifications made in R(3) and
R(4), it remains only to check that wijk commutes with P`m when `,m /∈ {i, j, k}. This is
immediate since from the defining relations, any two elements (P’s or F’s) with no index in
common commute.

Concerning xijk`, building on the proof of the preceding subsection, it remains to show,
for example, that

[x1234,P45] = 0. (16.3.22)

This is shown using yijk`m = 0 (which is proven below) as well as (16.3.18). For xijk`,
it remains only to check that it commutes with Pmp when m, p /∈ {i, j, k, `}, and this is
immediate.

To prove that yijk`m is zero, we first look at the case (i, j, k, `,m) = (1, 2, 3, 4, 5). Write
1
2

(
F245(F123P23)− (F245F123)P23

)
. (16.3.23)

It is seen that this is equal to y12345, by making use of (16.3.18). Invoking associativity, it
follows that y12345 = 0. Since this can be repeated for all other combinations of distinct
indices i, j, k, `,m it is done.

For the nullity of zijk`mp, we invoke again the associativity of the algebra. Looking at
1
2

(
(F356F234)P12 − F356(F234P12)

)
(16.3.24)
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it is seen that this is equal to z123456. Thus it follows that

z123456 = 0. (16.3.25)

A similar reasoning can be repeated for different indices to complete the proof. �

16.4. The special Racah algebra sR(n)
After the preliminary discussion of the Racah algebra R(n), we are now ready to define

the special Racah algebra for any n. This is a generalization to arbitrary rank of the special
Racah algebra sR(3) from Section 16.2.
Definition 16.14. The special Racah algebra sR(n) of rank n− 2 is the quotient of R(n) by
all

wijk = 0, xabcd = 0, (16.4.1)

such that 1 ≤ i < j < k ≤ n and 1 ≤ a < b < c < d ≤ n.
Since sR(n) is the algebra involved for the study of the centralizer in the next section,

we collect here the generators and defining relations, to give an explicit definition without
reference to the Racah algebra (we keep the same name for the generators, which is justified
since this is a quotient, this should not lead to any ambiguity).
Definition 16.15 (Equivalent definition). The special Racah algebra sR(n), of rank n − 2
is the associative algebra with generators:

Pij, 1 ≤ i ≤ j ≤ n and Fijk, 1 ≤ i < j < k ≤ n. (16.4.2)

To give the defining relations, first we define Pij and Fijk by:

Pij = Pji and Fijk = −Fjik = Fjki for any i, j, k ∈ {1, . . . , n}. (16.4.3)

The defining relations are, for all possible indices i, j, k, `,m in {1, . . . , n}:

Pii is central, (16.4.4a)

[Pij,Pk`] = 0 if both i, j are distinct from k, `, (16.4.4b)

[Pij,Pjk] = 2Fijk, (16.4.4c)

[Pjk,Fijk] = Pik(Pjk + Pjj)− (Pjk + Pkk)Pij, (16.4.4d)

[Pk`,Fijk] = PikPj` − Pi`Pjk, (16.4.4e)

[Fijk,Fjk`] = Fjk`Pij − FijkPj` − Fik`(Pjk + Pjj), (16.4.4f)

[Fijk,Fk`m] = Fi`mPjk − Fj`mPik, (16.4.4g)
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along with

Fijk2 + 1
2 det(Pijkijk) = 1

3 ({Pij,Pik}+ {Pij,Pjk}+ {PikPjk}+ PijPkk + PikPjj + PjkPii) ,
(16.4.4h)

for 1 ≤ i < j < k ≤ n, and

FijkFjk` + 1
2 det(Pjk`ijk) = −1

2(Fij` + Fik`)Pjk + 1
3(PijPk` + PikPj` + Pi`Pjk), (16.4.4i)

for 1 ≤ i < j < k < ` ≤ n.

Consequences of the relations. From the results of the preceding sections, we know
that relations (16.4.4h)-(16.4.4i) for any distinct i, j, k, ` are automatically verified, along
with the relations:

FijkFk`m + 1
2 det(Pk`mijk ) = 1

2(FijmPk` − Fij`Pkm) (16.4.5a)

FijkF`mr + 1
2 det(P`mrijk ) = 0, (16.4.5b)

PaiFjk` − PajFik` + PakFij` − Pa`Fijk = 0. (16.4.5c)

for distinct i, j, k, `,m, r ∈ {1, . . . , n} and for any a ∈ {1, . . . , n}. These relations, although
satisfied, do not have to be included in the set of defining relations.
Example 16.16. The special Racah algebra sR(4) of rank 2 is the quotient of R(4) by

w123 = 0, w124 = 0, w134 = 0, w234 = 0 and x1234 = 0. (16.4.6)

Remark 16.17. Some analogues of the relations of sR(4) (excluding the ones of the type
(16.4.5c)) were obtained in a particular realization in [25]. For the higher rank case of sR(n),
analogous relations were also observed in a certain realization in [27], once again excluding
the ones of the type (16.4.5c).

16.5. Isomorphism between the centralizer Zn(sl2) and
the special Racah algebra sR(n)

The goal of this section is to connect the (higher rank) special Racah algebra introduced
and characterized in the previous two sections with the centralizer Zn(sl2) of the diagonal
action of U(sl2) in U(sl2)⊗n. This will provide an a posteriori justification for the quotient
that was chosen to go from the Racah algebra R(n) to the special Racah algebra sR(n): as
will be shown, this quotient is precisely the one that leads to an algebra isomorphic to the
centralizer Zn(sl2).
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16.5.1. Centralizer Zn(sl2) of the diagonal action U(sl2) into U(sl2)⊗n

and the algebra of polarized traces

We here define the centralizer associated to the Lie algebra sl2. The generators of sl2 are
eij, i, j ∈ {1, 2} obeying the defining relations

[eij, ek`] = δjkei` − δ`iekj, e11 + e22 = 0. (16.5.1)

We denote by U(sl2) the universal enveloping algebra of sl2. Its Casimir element is given by

C = e11
2 − e11 + e12e21. (16.5.2)

Now consider the tensor product of n copies of U(sl2) and define the following notation for
its generators

e
(a)
ij = 1⊗(a−1) ⊗ eij ⊗ 1⊗(n−a). (16.5.3)

The diagonal embedding of U(sl2) in its n-fold tensor product is given by

δ : U(sl2)→ U(sl2)⊗n

eij 7→
n∑
a=1

e
(a)
ij .

(16.5.4)

There is a natural degree-preserving action of sl2 on U(sl2)⊗n given by composing the diagonal
embedding δ followed by the adjoint action. On the generators, it is given by

eij · e(a)
k` = δjke

(a)
i` − δ`ie

(a)
kj . (16.5.5)

We then define the centralizer Zn(sl2) of the diagonal embedding of U(sl2) in U(sl2)⊗n as
the kernel of this sl2 action

Zn(sl2) =
{
X ∈ U(sl2)⊗n

∣∣∣ g ·X = [δ(g), X] = 0 ∀g ∈ U(sl2)
}

(16.5.6)

or in other words, as the set of elements in U(sl2)⊗n that commute with the diagonal em-
bedding of U(sl2).

Let us also define the polarized traces (the summation convention is assumed):

T (a1,...,ad) = e
(a1)
i2i1 e

(a2)
i3i2 . . . e

(ad)
i1id

, a1, . . . , ad ∈ {1, . . . , n}. (16.5.7)

It is seen by a direct computation that these elements are in the centralizer Zn(sl2).
Remark 16.18. It is easily checked from the definition (16.5.7) that T (a1,a2) = T (a2,a1)

and that T (a1,a2,a3) is antisymmetric in its indices a1, a2, a3, i.e. T (a1,a2,a3) = T (a2,a3,a1) =
−T (a2,a1,a3).
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Remark 16.19. A number of papers in the literature [3, 24] realize the Racah algebra with
the so-called “intermediate Casimir” elements Ci, Cij. These elements are given by

Ci = 1⊗(i−1) ⊗ C ⊗ 1⊗(n−i), Cij = 1⊗(i−1) ⊗ C(1) ⊗ 1⊗(j−i−1) ⊗ C(2) ⊗ 1⊗(n−j), (16.5.8)

where ∆(eij) = eij ⊗ 1 + 1 ⊗ eij and we denote ∆(C) = C(1) ⊗ C(2) in Sweedler’s notation.
Then the T (i,i) and T (i,j) can be expressed in terms of these intermediate Casimir elements
as follows

T (i,i) = 2Ci, T (i,j) = Cij − Ci − Cj. (16.5.9)

16.5.2. Elements of classical invariant theory

We now present results from classical invariant theory about the algebra of polynomial
functions on

sl2 × · · · × sl2︸ ︷︷ ︸
n factors

≡ sln2 , (16.5.10)

that are invariant under simultaneous conjugations by SL(2). For G elements of SL(2),
these actions on a polynomial function of sln2 are given by:

G · f(M1, . . . ,Mn) = f(G−1M1G, . . . , G
−1MnG), (16.5.11)

for Mi ∈ sl2. The first fundamental theorem of classical invariant theory states that:
Theorem 16.20 (see [36–38] or [39] and references therein). The algebra C[sln2 ]inv of polyno-
mial functions on sln2 that are invariant under simultaneous conjugations by SL(2) elements
is generated by the functions

T(a1,...,ad) : (M1, . . . ,Mn) 7→ Tr(Ma1 . . .Mad) (16.5.12)

for Mi ∈ sl2, d ≥ 2 and a1, . . . , ad ∈ {1, . . . , n}. Moreover, it is sufficient to take T(i,j)

(i ≤ j) and T(i,j,k) (i < j < k) to obtain a generating set.
The generating set of the invariant polynomial functions described in the preceding the-

orem (the ones of degrees 2 and 3) is not algebraically independent. A set of generators for
their ideal of relations is given in the next theorem (second fundamental theorem on these
invariants).
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Theorem 16.21 (see [40], Theorem 2.3 (ii) or [39], Theorem 3.4 (ii)). The defining relations
for the algebra of polynomial invariant functions are

Tr([Mi,Mj]Mk)Tr([Mp,Mq]Mr)

+ 2

∣∣∣∣∣∣∣∣
Tr(MiMp) Tr(MiMq) Tr(MiMr)
Tr(MjMp) Tr(MjMq) Tr(MjMr)
Tr(MkMp) Tr(MkMq) Tr(MkMr)

∣∣∣∣∣∣∣∣ = 0,
(16.5.13a)

Tr([Mj,Mk]M`)Tr(MpMi)− Tr([Mi,Mk]M`)Tr(MpMj)

+ Tr([Mi,Mj]M`)Tr(MpMk)− Tr([Mi,Mj]Mk)Tr(MpM`) = 0,
(16.5.13b)

with i, j, k, `,m, n, p, q, r ∈ {1, . . . , n}.
With the following reasoning that is adapted from [41], we now use Theorem 16.20 to

extract information about the algebra of polarized traces and the centralizer.
• The algebra U(sl2)⊗n is filtered. Take the degree of all generators e(a)

ij to be 1, then
the associated graded algebra is commutative. Recall the sl2 action (16.5.5). This
induces a natural action on gr(U(sl2)⊗n). Denote the generators of the graded algebra
by e(a)

ij . The induced sl2-action is given as follows on the generators:

eij · e(a)
k` = δjke(a)

i` − δ`ie
(a)
kj . (16.5.14)

• The algebra of polynomial functions on sln2 is the algebra of polynomials C[x(a)
ij ], where

x
(a)
ij is the linear form giving the (i, j) coordinate of the ath matrix in the product

sln2 . The simultaneous conjugation action of an element G of SL(2) on a polynomial
function of sln2 (16.5.11) is given infinitesimally by

ε
n∑
k=1

f(M1, . . . , [Mk, g], . . . ,Mn) (16.5.15)

for G = eiεg with g ∈ sl2. Thus, on the generators of polynomials functions x(a)
ij , this

infinitesimal action is

eij · x(a)
k` = δj`x

(a)
ki − δikx

(a)
j` (16.5.16)

and can be identified with the induced sl2 action on gr(U(sl2)⊗n) through

e(a)
ij ↔ x

(a)
ji . (16.5.17)

• It follows that under this identification, the invariant functions correspond to the
elements of gr(U(sl2)⊗n) in the kernel of the sl2 action, or in other words to the
image of the centralizer in gr(U(sl2)⊗n). Moreover, again under this identification,
the image in the graded algebra of the polarized trace T (a1,...,ad) defined in (16.5.12)
is the polynomial function Tr(Ma1 . . .Mad).
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16.5.3. The defining relations of Zn(sl2)

Knowing that the generators of the invariant functions (16.5.12) correspond to the po-
larized traces (16.5.7) (see Theorem 16.20), the image of the centralizer in gr(U(sl2)⊗n) is
therefore generated by the image of the polarized traces. Now consider an element of degree
N in the centralizer. Up to terms of degree N − 1, this element can be expressed as a poly-
nomial in T (a1,...,ad). The same can then be argued for each of the remaining lower degree
terms by induction, and thus any element in the centralizer can be expressed as a polynomial
in the polarized traces. Since all polarized traces belong in the centralizer, the two algebras
thus coincide. So we obtain the analogue of the first fundamental theorem:
Corollary 16.22. It follows from Theorem 16.20 that the polarized traces T (i,j), i ≤ j and
T (i,j,k), i < j < k generate the centralizer Zn(sl2) of the diagonal action of U(sl2) in U(sl2)⊗n.

Recall that relations (16.5.13) are a set of defining relations for the image of the centralizer
in gr(U(sl2)⊗n). We look for analogous defining relations for the centralizer in U(sl2)⊗n. Once
we find the deformations in U(sl2)⊗n of relations (16.5.13), we can prove their completeness
using for the ideal of relations the same sort of reasoning as before Corollary 16.22. In fact
the special Racah algebra was defined such that its set of defining relations gives precisely
the complete set of relations for the centralizer.
Theorem 16.23. With the following identification of the generators:

Pab 7→ T (a,b) and Fijk 7→ −T (i,j,k) (16.5.18)

for i, j, k all distinct, the centralizer Zn(sl2) is isomorphic to the special Racah algebra sR(n):

Zn(sl2) ∼= sR(n). (16.5.19)

In other words, a set of defining relations of Zn(sl2) is given in (16.4.4), where Pab and Fijk
are replaced by the corresponding polarized traces.

Proof. The defining relations are verified to hold in U(sl2)⊗n by direct computations. Note
that, due to the symmetry under renaming the indices, we only need to make calculations
in U(sl2)⊗n for n ≤ 5 in degrees less or equal to 6 in the generators.

Under the previous choice of degree for the generators of U(sl2)⊗n which was deg(e(a)
ij ) = 1,

it follows that

deg(T (i,j)) = 2, deg(T (i,j,k) = 3. (16.5.20)

The same degrees are given to the generators of the special Racah algebra sR(n): deg(Pij) =
2 and deg(Fijk) = 3. This makes it a filtered algebra, and it is straightforward to observe that
its associated graded algebra is isomorphic to the algebra of polynomial invariants functions.
Indeed, the first set of defining relations (16.3.2), or equivalently (16.4.4a)–(16.4.4g), ensures
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that the generators all commute in the graded algebra, and then the relations (16.4.4h)–
(16.4.4i) and (16.4.5) are mapped to (16.5.13).

Therefore both algebras related by the morphism in (16.5.18) have the same associated
graded algebras, and so in particular have the same dimensions in each component of the
filtration (that is, in each degree). Moreover the morphism is surjective from Corollary 16.22.
Consequently, an element in the kernel of the map (in other words, a relation in Zn(sl2) not
implied by the relations of the special Racah algebra), if non-zero, would contradict the
equality of dimensions for some degree. �

Remark 16.24. It is quite remarkable that we only need to quotient the Racah algebra R(n)
by the elements wijk and xijk` in order to recover the centralizer for any value of n. Indeed,
one could have expected that in order to recover the centralizer for increasing n, we would
need to quotient by elements of increasing degree or spanning an increasing number of indices.
That this is not the case is quite a surprising simplification.

16.6. The Hilbert–Poincaré series of Zn(sl2)
For more information on Hilbert–Poincaré series of graded algebras, we refer to [42]. The

Hilbert–Poincaré series contains useful information about a graded, or filtered, algebra. We
will illustrate this for the diagonal centralizer Zn(sl2). We will provide an explicit formula
for its Hilbert–Poincaré series, and then use it in conjunction with the defining relations
found in Theorem 16.23 to provide bases of Zn(sl2) for small n.

16.6.1. An explicit formula

The commutative algebra C[sln2 ]inv of polynomial functions on sln2 that are invariant under
simultaneous conjugation by SL(2) is a graded algebra: it is the direct sum of the subspaces
Ck[sln2 ]inv of homogeneous invariant polynomial functions of degree k. The Hilbert–Poincaré
series records the dimensions of all these subspaces:

Fn(t) =
∑
k≥0

dim
(
Ck[sln2 ]inv

)
tk. (16.6.1)

The centralizer Zn(sl2) inherits from U(sl2)⊗n the structure of a filtered algebra: it is the
union of the increasing sequence (in k) of subspaces Zn(sl2)≤k of elements of degree less
or equal to k (the degree is in the generators of U(sl2)⊗n). The Hilbert–Poincaré series
of Zn(sl2) records the dimensions of the homogeneous subspaces of the associated graded
algebra:

Fn(t) =
∑
k≥0

dim
(
Zn(sl2)≤k/Zn(sl2)<k

)
tk, (16.6.2)
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and thus, from the discussion in Section 16.5, is the same as the Hilbert–Poincaré series of
the invariant polynomial functions.

Several formulas, using various approaches, have been obtained for the Hilbert–Poincaré
series Fn(t) (see references in [39, 43, 44]). The formula presented below seems to be new.
Proposition 16.25. Let n ≥ 2 and recall that the rank r is defined by r = n − 2. The
Hilbert–Poincaré series of Zn(sl2) is:

Fn(t) = Pr(t)
(1− t2)3(r+1) , (16.6.3)

where the numerator is given by:

Pr(t) = (1 + t)r
2r∑
k=0

(−1)kaktk, where


a2k =

(
r
k

)2
,

a2k+1 =
(
r
k

)(
r

k+1

)
.

(16.6.4)

Proof. We take a detour through the graded character of SL(2) on the polynomial functions
on sln2 . The character of SL(2) for a finite-dimensional representation is seen as a Laurent
polynomial in x, given by the trace of the action of the element Diag(x, x−1). For example,
for the fundamental representation of SL(2), it is x+x−1. For the irreducible representation
of dimension d+1, which is the d-symmetrized power of the fundamental representation, the
character is thus xd+1−x−d−1

x−x−1 . Now, it is easy to check that, if we have the character χ(x) of
an arbitrary finite-dimensional representation of SL(2), then the formula:[

(1− x2)χ(x)
]

0
, (16.6.5)

where [ · ]0 means taking the constant term of a Laurent polynomial, gives the multiplicity
of the trivial representation.

After these classical preliminaries, note that the character of the adjoint representation of
SL(2) on sl2 is 1+x2 +x−2. On the polynomial function on sl2, the action of SL(2) preserves
the grading, and we record the character of the representation on its graded components
as a formal power series in t (also called, the graded character). For each degree, the
representation is a symmetrized power of the adjoint representation, so we find that the
graded character is:

1
(1− t)(1− tx2)(1− tx−2) . (16.6.6)

Equivalently, this is the graded character for the adjoint action on U(sl2). On the polynomial
functions sln2 (or equivalently, on U(sl2)⊗n), the graded character is thus:

1
(1− t)n(1− tx2)n(1− tx−2)n . (16.6.7)

Now, in each degree, we look for the dimension of the invariant subspace for the action of
SL(2). In other words, we look for the multiplicity of the trivial representation. By what
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we have recalled above, we obtain that the Hilbert–Poincaré series of Zn(sl2) is:

Fn(t) =
[

(1− x2)
(1− t)n(1− tx2)n(1− tx−2)n

]
0
. (16.6.8)

Using the expansion (1 − z)−n = ∑
k≥0

(
k+n−1

k

)
zk and straightforward manipulations, we

obtain:

Fn(t) = 1
(1− t)n

∑
k≥0

(−1)kãktk, where


ã2k =

(
n+k−1

k

)2
,

ã2k+1 =
(
n+k−1

k

)(
n+k
k+1

)
.

(16.6.9)

Thus the statement of the proposition reduces to the following equality of formal power
series:

1
(1− t)r+2

∑
k≥0

(−1)kãktk = (1 + t)r
(1− t2)3(r+1)

∑
k≥0

(−1)kaktk. (16.6.10)

To prove this, we multiply the ã-series by (1 + t) and the a-series by (1 − t), and after an
application of Pascal rule for binomials, we reach the equivalent formula:∑

k≥0
(−1)kã′ktk = 1

(1− t2)2(r+1)

∑
k≥0

(−1)ka′ktk, (16.6.11)

where now we have


ã′2k =

(
r+k+1
k

)(
r+k
k

)
,

ã′2k+1 =
(
r+k+1
k

)(
r+k+1
k+1

)
,

and


a′2k =

(
r
k

)(
r+1
k

)
,

a′2k+1 =
(
r
k

)(
r+1
k+1

)
.

This last formula is verified by writing the expansion of the right hand side and checking
the equality of the coefficients, making use of the following identity for binomial coefficients
[45]:

∑
i

(
i+ a+ b

i

)(
b

k − i

)(
a

k′ − i

)
=
(
k′ + b

k

)(
k + a

k′

)
. (16.6.12)

This identity is valid for any a, b, k, k′ and we use it for a = r+1, b = r and k′ ∈ {k, k+1}. �

The exponent 3(r + 1) appearing in the denominator of Fn(t) is the Krull, or Gelfand–
Kirillov, dimension of the algebra of invariant polynomial functions (see [46],[44]). Here
it means that there is a set of 3(r + 1) algebraically independent homogeneous elements
(a system of parameters) θ1, . . . , θ3(r+1) such that the algebra is a free module of finite
dimension over the polynomial subalgebra C[θ1, . . . , θ3(r+1)]. The freeness follows from the
property called Cohen–Macaulay, which is ensured here by the Hochster–Roberts theorem
from general invariant theory [47]. The form Fn(t) above with the positivity of the numerator
Pr(t) (see below) suggests that it might be possible that a system of parameters consists of
3(r+1) elements of degrees 2. If it were to be the case, then Pr(1) would be the dimension of
the algebra over C[θ1, . . . , θ3(r+1)]. Moreover, the different monomials in Pr(t) would indicate
in which degrees the elements of a basis over C[θ1, . . . , θ3(r+1)] would have to be found.
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Finally, the palindromic property of the numerator Pr(t) in the formula above shows that
the Hilbert–Poincaré series satisfies the functional equation:

Fn(t−1) = (−1)(n−1)t3nFn(t). (16.6.13)

This is well-known and related to a property, called being Gorenstein, for the algebra of
invariant polynomial functions (see [39] and references therein).
Remark 16.26. More generally, the Hilbert–Poincaré series of Zn(sl2) can be defined as
a power series in t1, . . . , tn if we consider the filtration by the multidegree of U(sl2)⊗n

(the degree of each component is recorded in an element of Nn). Now, in the multigraded
Hilbert–Poincaré series Fn(t1, . . . , tn), the coefficient in front of tk1

1 . . . tknn is the dimension of
Zn(sl2)≤k/Zn(sl2)<k, where k = (k1, . . . , kn), and l ≤ k means that li ≤ ki for all i = 1, . . . , n.

A slight generalization of the part of the proof up to Formula (16.6.9) gives the multigraded
version of this formula:

Fn(t1, . . . , tn) = 1
(1− t1) . . . (1− tn)

(∑
µ|=k
ν|=k

tµ1+ν1
1 . . . tµn+νn

n −
∑
µ|=k
ν|=k−1

tµ1+ν1
1 . . . tµn+νn

n

)
,

where µ |= k means that µ = (µ1, . . . , µn) ∈ Zn
≥0 such that µ1 + · · · + µn = k. To recover

Formula (16.6.9) from this, take t1 = · · · = tn = t and use that the number of µ |= k is(
k+n−1

k

)
.

Remark 16.27. More generally, the Hilbert–Poincaré series of Zn(sl2) can be defined as a
power series in t1, . . . , tn if we consider the gradation by the multidegree of U(sl2)⊗n. A slight
generalization of the part of the proof up to Formula (16.6.9) gives the multigraded version
of this formula:

Fn(t1, . . . , tn) = 1
(1− t1) . . . (1− tn)

(∑
µ|=k
ν|=k

tµ1+ν1
1 . . . tµn+νn

n −
∑
µ|=k
ν|=k−1

tµ1+ν1
1 . . . tµn+νn

n

)
,

(16.6.14)

where µ |= k means that µ = (µ1, . . . , µn) ∈ Zn
≥0 such that µ1 + · · · + µn = k. To recover

relation (16.6.9) from this, take t1 = · · · = tn = t and use that the number of µ |= k is(
k+n−1

k

)
.

16.6.2. Some related combinatorics

We have obtained an expression for the Hilbert–Poincaré series of Zn(sl2) of the form:

Fn(t) = (1 + t)rQr(t)
(1− t2)3(r+1) , where Qr(t) =

2r∑
k=0

(−1)kaktk, (16.6.15)
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and the coefficients ak are given in the proposition above. It is perhaps not so surprising that
the coefficients of the various polynomials involved show some connections with well-studied
combinatorial objects of “Catalan” flavor.

The polynomial Qr(t). The coefficient ak in the polynomial Qr(t) counts the number of
symmetric Dyck paths of semi-length 2r + 1 with k + 1 peaks (see A088855 in [48]). Their
expression with binomial coefficients corresponds to choosing a certain number of peaks and
troughs in the first r steps of the paths.

In fact, the polynomial Qr(t) is a t-deformation of the well-known Catalan number, that
is, the value of Qr(t) at t = 1 is the r-th Catalan number:

Qr(1) = cr =
(

2r
r

)
−
(

2r
r + 1

)
. (16.6.16)

Indeed it is not difficult to give a combinatorial proof that the alternating sum of the ak’s is
equal to the Catalan number cr (the number of Dyck paths of length 2r). We can also see it
as follows. The Catalan number is equal to the constant term of a Laurent polynomial in x:

cr =
[
(1− x2)(x+ x−1)2r

]
0

=
[
(1− x2)(1 + x2)r(1 + x−2)r

]
0
. (16.6.17)

Note that we keep the variable x2 to stay coherent with the notation used during the proof
above. In fact, the first equality expresses that the Catalan number cr is the multiplicity
of the trivial representation in V r ⊗ (V ?)r. The t-deformation is now immediate from this
formula for cr. Indeed, it follows from its explicit expression that the polynomial Qr(t) is
given by:

Qr(t) =
[
(1− x2)(1 + tx2)r(1 + tx−2)r

]
0
. (16.6.18)

In this sense, the polynomial Qr(t) is a natural t-deformation of the r-th Catalan number.

The numerator Pr(t). The numerator of the Hilbert–Poincaré series of Zn(sl2) is Pr(t) =
(1 + t)rQr(t). We will show explicitly that its coefficients are positive.

First, from what we have said above about Qr(t), it follows that Pr(t) is a t-deformation
of the number 2rcr, that is, its value at t = 1 is Pr(1) = 2rcr. This number counts several
classes of combinatorial objects (obtained from objects counted by the Catalan number, see
A151374 in [48]). The t-deformation giving Pr(t) can be expressed similarly as before as:

Pr(t) =
[
(1− x2)(1 + t)r(1 + tx2)r(1 + tx−2)r

]
0
. (16.6.19)
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Now regrouping the terms with an r-th power, this gives the following expression:

Pr(t) =
[
(1− x2)

(
1 + t3 + (t+ t2)(1 + x2 + x−2)

)r]
0

=
r∑

k=0
Rk

(
r

k

)
(1 + t3)r−k(t+ t2)k,

(16.6.20)

where the positive integer Rk is the Riordan number, one of the closest relative of the Catalan
number, which also admits many combinatorial interpretations (see A005043 in [48]). They
are given by either one of the following equalities:

Rn =
[
(1− x2)(1 + x2 + x−2)n

]
0

=
n∑
i=0

(−1)n−i
(
n

i

)
ci. (16.6.21)

We actually used the first one in the above calculation, while the second one shows that
the Catalan sequence is the binomial transform of the Riordan sequence, and thus allows to
recover that Pr(1) = 2rcr.

The formula (16.6.20) for Pr(t) has the advantage to show explicitly that it has positive
coefficients. So Pr(t) is a t-deformation with positive coefficients of 2rcr and therefore should
be given by an interesting statistics on a certain set of 2rcr objects.

16.6.3. PBW basis of Zn(sl2) for small n

With the help of the Poincaré–Hilbert series obtained and discussed above, we here
determine the PBW bases of Zn(sl2) for n = 2, 3, 4. Using Theorem 16.23, we identify
systematically Zn(sl2) with the special Racah algebra, and use the generators and relations
in Section 16.4. Note that from the discussion in Section 16.5.2, in order to show that a
subset of Zn(sl2) is a spanning set, it is enough to show that the images in the graded algebra
of invariant polynomial functions is a spanning set.

The case n = 2. The Hilbert–Poincaré series of Z2(sl2) is:

F2(t) = 1
(1− t2)3 . (16.6.22)

This allows easily to recover that the algebra of invariant polynomial functions, and Z2(sl2), is
a commutative polynomial algebra. A basis of Z2(sl2) is Pa11Pb12Pc22 with a, b, c ∈ Z≥0. Indeed
this set is obviously a spanning set, and moreover spans a subspace whose dimensions in each
degree are given precisely by the series (16.6.22). So this set is also linearly independent,
and is a basis.

The case n = 3. The Hilbert–Poincaré series of Z3(sl2) is:

F3(t) = 1 + t3

(1− t2)6 . (16.6.23)
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This allows to show that the following set is a basis of Z3(sl2):

{Pa11Pb12Pc13Pd22Pe23P
f
33Fε123}, where a, b, c, d, e, f ∈ Z≥0 and ε ∈ {0, 1}. (16.6.24)

Indeed, such a set is a spanning set since F123
2 can be expressed in terms of the P ’s. Com-

paring with F3(t), we see directly that this set spans a subspace of the correct dimension in
each degree. So this is a basis.

The case n = 4. The Hilbert–Poincaré series of Z4(sl2) is:

F4(t) = 1 + t2 + 4t3 + t4 + t6

(1− t2)9 . (16.6.25)

The four sets, for a, b, c, d, e, f, g, h, i ∈ Z≥0,

{F123Pa11Pb12Pc13Pd14Pe22P
f
23Pg24Ph33Pi34}, (16.6.26a)

{F124Pa11Pb12Pc13Pd14Pe22P
f
23Pg24Ph34Pi44}, (16.6.26b)

{F134Pa11Pb12Pc13Pd14Pe23P
f
24Pg33Ph34Pi44}, (16.6.26c)

{F234Pa12Pb13Pc14Pd22Pe23P
f
24Pg33Ph34Pi44}, (16.6.26d)

and, for a, b, c, d, e, f, g, h, i, j ∈ Z≥0 and aehj = 0,

{Pa11Pb12Pc13Pd14Pe22P
f
23Pg24Ph33Pi34P

j
44} (16.6.26e)

form a basis of Z4(sl2). To understand this, rewrite its Hilbert–Poincaré series as

F4(t) = 4t3
(1− t2)9 + 1− t8

(1− t2)10 . (16.6.27)

The first term corresponds to the first 4 sets and the second term corresponds to the fifth
one. These sets are spanning sets, since FijkFmnp can be expressed in terms linear in F by
using the relations wijk = 0 and xijk` = 0, and moreover FijkP`` (i, j, k, ` pairwise distinct)
can be expressed in terms of elements of the sets (16.6.26) by using (16.3.9). The condition
aehj = 0 for the fifth set comes from the following fact. Let us define the following 2 × 2
and 4× 4 matrices:

P ab
ij =

Pia Pib
Pja Pjb

 , P abcd
ijk` =


Pia Pib Pic Pid
Pja Pjb Pjc Pjd
Pka Pkb Pkc Pkd
P`a P`b P`c P`d

 . (16.6.28)
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Recall the definition of the symmetrized determinant (16.2.4). In Z4(sl2), the following
relation of degree 8 is satisfied by the generators:

det(P1234
1234) = −1

3

(
det(P124

123)− det(P134
123) + det(P234

123) + det(P134
124)− det(P234

124) + det(P234
134)

)
+ 2

3

(
P12 det(P34

34) + P13 det(P24
24) + P14 det(P23

23)

+P23 det(P14
14) + P24 det(P13

13) + P34 det(P12
12)
)
. (16.6.29)

The above relation is not a new relation (it is implied by the defining relations of sR(4) given
in (16.4.4)–(16.4.5)) and it allows one to express P11P22P33P44 in terms of the elements of
the sets (16.6.26).

16.7. Conclusion
Classical results about the invariant theory of the polynomials on sln2 has allowed to

provide a description in terms of generators and relations of the diagonal centralizer of sl2.
A precise connection with the higher rank Racah algebra was given. Various questions arise
and pave the way to different generalizations.

We would like to emphasize that the natural numbers appearing in the numerator of the
Hilbert–Poincaré form very well-known series of integers that have numerous interpretations
and appear already in the study of the representation theory of sl2. This suggests that there
should be a further understanding of these numbers.

The classification of the finite irreducible representations of the rank 1 Racah algebra
has been done in [15]. Following this, it should be possible to study the finite-dimensional
representations of the (special) higher rank Racah algebra R(n) (resp. sR(n)). These repre-
sentations must be closely related to the operators associated to the (n− 2)-variable Racah
polynomials. Indeed, the difference and recurrence operators characterizing the univariate
Racah polynomials satisfy the relations of R(3). The study of the generalization to (n− 2)-
variable polynomials has been initiated in [32, 33] and it would be interesting to verify if the
operators used in this case realize R(n) or sR(n). The Racah algebra appears also as the
symmetry algebra of some superintegrable models [18–22]. We trust that the observations
and theorems of the present paper will lead to a deeper understanding of this symmetry.

We focused here on the diagonal centralizer of sl2 in the n-fold tensor product of sl2.
Other cases where sl2 is replaced by other algebras are also known. For example the diagonal
centralizer of the oscillator algebra has been studied in [49], the diagonal centralizer of the
super Lie algebra osp(1|2) is known to be related to the Bannai–Ito algebra [50] and the
centralizer of sl3 in its twofold tensor product has been introduced in [41]. An important
generalization concerns the quantum group Uq(sl2). Its diagonal centralizer in the 3-fold
tensor product has been examined [51] and is associated to the Askey–Wilson algebra (see
e.g. [35] for a review). Many attempts [52–54] to generalize this result to n-fold tensor
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products have yielded relations of this centralizer but certainly did not give all the defining
relations. Looking ahead, we are planning to provide a complete set of defining relations, by
using some deformation of the defining relations of the special Racah algebra given in this
paper.

We have studied the centralizer Zn(sl2) at an algebraic level. It is however equally
important to study this centralizer when each factor in the n-fold tensor product is in a
finite-dimensional irreducible representation of sl2. In the case n = 3, a conjecture stating
that the centralizer is a quotient of the Racah algebra R(3) was given in [17] (see [55] for
the q-deformed case and [56] for osp(1|2)). This quotient associates the Racah algebra with
well-known algebras such as the Temperley–Lieb or Brauer algebras. The generalization of
these results to the case of the n-fold tensor product is desirable and the results obtained in
the present paper offer a nice starting point. As another follow-up, we plan on finding the
explicit quotient that provides a description of these centralizers in representations and to
compare them to the recent results reported in [57, 58].
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Conclusion

La recherche étant un processus de peaufinement sans fin, voici pour conclure un nombre
de questions de recherche qui, à mon avis, mériteraient d’être explorées, en continuation des
travaux de cette thèse.

Tout d’abord, dans la lignée des travaux sur la dualité de Howe, il devrait être possible
d’exploiter le genre de construction qui a été développée ici afin d’étudier d’autres familles
de paires duales réductives. Ceci permettrait d’obtenir des interprétations duales d’autres
algèbres générées par des Casimirs intermédiaires.

Notons également que pour les travaux sur les cas q-déformés, aucune procédure de
réduction dimensionnelle n’a été trouvée. Une telle procédure permettrait d’obtenir un
modèle intégrable possédant l’algèbre d’Askey–Wilson comme algèbre de symétrie. Une
piste de solution pour obtenir un tel modèle serait de travailler avec des coordonnées non-
commutatives.

Le modèle en deux dimensions de mécanique quantique superconforme introduit au cha-
pitre 7 pourrait aisément être généralisé à un modèle en 3, voire n dimensions. L’étude
de son algèbre de symétrie serait intéressante et on peut espérer que l’algèbre associée aux
polynômes de Bannai–Ito complémentaires fasse son apparition.

Tel que mentionné à plusieurs reprises déjà, les trois tableaux de polynômes orthogonaux
étudiés ici sont le tableau d’Askey ainsi que le q-tableau et le −1-tableau d’Askey. Dans la
foulée des résultats de la deuxième partie de la thèse, une question naturelle est de savoir
s’il existe des opérateurs de Sklyanin–Heun associés à des familles −1 de polynômes ortho-
gonaux, et quelles dégénérations de l’algèbre de Sklyanin sont associées à ceux-ci. Il s’agit
d’une question non-triviale; en général, pour étudier des limites q → −1 on ne peut pas tout
simplement remplacer q par −1 et il y a de nombreuses façons de prendre la limite q → −1.
Des travaux préliminaires semblent indiquer que la notion d’opérateur de Sklyanin–Heun
devra être étendue. On peut également se demander s’il existe une généralisation ellip-
tique des opérateurs de Sklyanin–Heun. Celle-ci serait associée à des fonctions elliptiques
et devrait permettre de retouver l’algèbre originale de Sklyanin [3]. Les fonctions spéciales
servant de base pour des représentations irréductibles de dimension finie pourraient alors
être considérées comme des généralisations des polynômes de q-para-Racah.



Dans un autre ordre d’idées, il serait intéressant d’explorer les liens entre équations de
Painlevé et opérateurs de Heun algébriques. Dans le cas continu, il est connu que l’équation
de Heun associée à l’opérateur de Heun continu ainsi que ses dégénérations sont reliées aux 6
équations de Painlevé par une procédure de « déquantification » [43]. Des versions discrètes,
ultra-discrètes et q-déformées des équations de Painlevé existent et il serait intéressant de
voir si des généralisations des opérateurs de Heun peuvent leur être associées. Des premiers
pas ont été faits dans cette direction [44, 45] et donnent bon espoir que cela soit possible.
Le rôle des opérateurs de Sklyanin–Heun dans ce contexte reste à être établi.

Les résultats du chapitre 13 font partie d’un programme de recherche plus général qui
a pour but d’obtenir les diverses familles de polynômes du tableau d’Askey en considérant
des représentations tridiagonales d’algèbres quadratiques à deux générateurs. Ces algèbres
sont les diveres classes d’isomorphismes de l’algèbre quadratique à deux générateurs la plus
générale. Cette algèbre quadratique à 2 générateurs est reliée aux modèles ASEP qui servent
à modéliser une grande quantité de phénomènes tels que le traffic et la magnétophorèse [46].
L’étude des fonctions spéciales associées à cette algèbre pourrait trouver des applications
dans ces problèmes. Il serait donc intéressant de compléter la classification. Cette étude
s’inscrit également dans un autre programme de recherche qui a pour but d’identifier et
classifier des familles de fonctions biorthogonales associées aux diverses familles de polynômes
orthogonaux du q-tableau d’Askey. Des progrès ont déjà été faits pour les familles de Hahn
[47] et Jacobi [48] mais il reste beaucoup à faire.

Plusieurs questions de recherche se présentent à nous suite aux travaux de la troisième
partie. Tout d’abord, la connection entre l’algèbre des Casimir intermédiaires du problème
de Racah de Uq(sl2) et l’algèbre de skein du crochet de Kauffman de la sphère à 4 trous
semble un peu magique et sans explication. Il serait extrêmement intéressant de comprendre
ce miracle : d’où vient cette correspondance aussi étroite entre deux algèbres qui semblent
a priori définies dans des contexte complètements différents?

Les éléments de l’algèbre de skein du crochet de Kauffman de la sphère non-trouée sont
les polynômes de Jones. Ceux-ci ont été identifiés dans les théories de Chern–Simon par
Witten en 1989 [49]. Il serait particulièrement intéressant d’obtenir les algèbres d’Askey–
Wilson dans des théories de Chern–Simons non-abéliennes. Ceci permettrait d’utiliser la
machinerie des polynômes orthogonaux et fonctions spéciales dans ces théories qui trouvent
de nombreuses applications.

Des conjectures sur les extensions à plus haut rang de l’algèbre d’Askey–Wilson ont été
présentées au chapitre 15. Il serait très satisfaisant de réussir à les prouver. Également, on
désirerait comparer les extensions proposées dans ces conjectures avec celles obtenues par
l’approche par les opérateurs de bispectralité de polynômes multivariés. Il semble qu’une
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réponse définitive à la question d’identifier l’algèbre d’Askey–Wilson de plus haut rang de-
vrait être en mesure d’unifier ces deux approches, tout comme ce qui a été accompli pour
l’algèbre de Racah de plus haut rang.

Enfin, il serait intéressant d’obtenir une présentation du centralisateur de Uq(sl2) dans
Uq(sl2)⊗n en termes de générateurs et relations définissantes. Ceci correspondrait à une
q-généralisation des résultats au chapitre 16 et des Premiers et Seconds Théorèmes Fonda-
mentaux de théorie des invariants.
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Épilogue
Nous sommes en 2021.

Le protagoniste Alexei Zhedanov est maintenant un chercheur respecté, dont le nom est
bien établi dans son domaine.

En raison de la pandémie COVID-19 qui sévit à travers le monde, cela fait maintenant
plus d’un an qu’il est au Canada; un séjour de recherche d’un mois auprès de son col-
laborateur de longue date Luc Vinet s’est transformé en visite substantiellement plus longue.

Profitant du fait qu’ils habitent désormais sur le même fuseau horaire, un étudiant
au doctorat en train d’écrire sa thèse et avec qui collabore le protagoniste lui demande
comment ses idées de recherche lui sont venues à l’origine...

Et c’est ainsi que le Prologue de cette thèse voit le jour.
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