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Sommaire

L’approximation de phénomènes physiques, tels qu’une simulation de liquides en informa-

tique graphique, requiert l’utilisation de méthodes complexes nécessitant des temps de calcul

et une quantité de mémoire importants. Malgré les avancées récentes dans ce domaine, l’écart

en réalisme entre un liquide simulé et la réalité demeure encore aujourd’hui considérable. Cet

écart nous séparant du réalisme souhaité nécessite des modèles numériques de simulation dont

la complexité ne cesse de croître. L’objectif ultime est de permettre à l’utilisateur de mani-

puler ces modèles de simulation de liquides sans la nécessité d’avoir une connaissance accrue

de la physique requise pour atteindre un niveau de réalisme acceptable et ce, en temps réel.

Plusieurs approches ont été revisitées dans les dernières années afin de simplifier ces modèles

ou dans le but de les rendre plus facilement paramétrables. Cette thèse par articles encadre

bien les trois projets constituant nos contributions dans le but d’améliorer et de faciliter la

génération de simulations de liquides en informatique graphique.

Tout d’abord, nous introduisons une approche hybride permettant de traiter séparément

le volume de liquide non-apparent (i.e., en profondeur) et une couche de particules en

surface par la méthode de calcul Smoothed Particle Hydrodynamics (SPH). Nous revisitons

l’approche par bandes de particules, mais cette fois nouvellement appliquée à la méthode

SPH qui offre un niveau de réalisme supérieur. Comme deuxième projet, nous proposons

une approche permettant d’améliorer le niveau de détail des éclaboussures de liquides.

En suréchantillonnant une simulation de liquides existante, notre approche est capable de

générer des détails réalistes d’éclaboussures grâce à la dynamique de balistique. En complé-

ment, nous proposons une méthode de simulation par vagues permettant de reproduire les

interactions entre les éclaboussures générées et les portions quasi-statiques de la simulation

existante. Finalement, le troisième projet introduit une approche permettant de rehausser

la résolution apparente d’un liquide par l’apprentissage automatique. Nous proposons une
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architecture d’apprentissage inspirée des flux optiques dont l’objectif est de générer une

correspondance entre le déplacement des particules de simulations de liquides à différentes

résolutions (i.e., basses et hautes résolutions). Notre modèle d’apprentissage permet

d’encoder des caractéristiques de hautes résolutions à l’aide de déformations pré-calculées

entre deux liquides à différentes résolutions et d’opérations de convolution basées sur le

voisinage des particules.

Mots clés: Liquide par particules, modèle de simulation hybride, bande de parti-

cules, éclaboussures de liquide, suréchantillonnage, simulation par vagues, apprentissage

automatique, apprentissage profond, rehausse de détails, déformations inter-résolution,

convolution par voisinage.
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Summary

The approximation of natural phenomena such as liquid simulations in computer graphics

requires complex methods that are computationally expensive. Despite recent advances in

this field, the gap in realism between a simulated liquid and reality remains considerable.

This disparity that separates us from the desired realism requires numerical models whose

complexity continues to grow. The ultimate goal is to provide users the capacity and tools to

manipulate these liquid simulation models to obtain acceptable realism. In the last decade,

several approaches have been revisited to simplify and to allow more flexible models. In this

dissertation by articles, we present three projects whose contributions support the improve-

ment and flexibility of generating liquid simulations for computer graphics.

First, we introduce a hybrid approach allowing us to separately process the volume of

non-apparent liquid (i.e., in-depth) and a band of surface particles using the Smoothed

Particle Hydrodynamics (SPH) method. We revisit the particle band approach, but this

time newly applied to the SPH method, which offers a higher level of realism. Then, as a

second project, we propose an approach to improve the level of detail of splashing liquids.

By upsampling an existing liquid simulation, our approach is capable of generating realistic

splash details through ballistic dynamics. In addition, we propose a wave simulation method

to reproduce the interactions between the generated splashes and the quasi-static portions

of the existing liquid simulation. Finally, the third project introduces an approach to

enhance the apparent resolution of liquids through machine learning. We propose a learning

architecture inspired by optical flows by which we generate a correspondence between the

displacement of the particles of liquid simulations at different resolutions (i.e., low and

high resolutions). Our training model allows high-resolution features to be encoded using

pre-computed deformations between two liquids at different resolutions and convolution

operations based on the neighborhood of the particles.
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Chapter 1

Introduction

The requirements to achieve the desired level of realism are constantly increasing in the

application areas of media and entertainment. This is especially true for physically-based

models such as fluid simulations used in movies and video games. These models require a

level of complexity that has a direct impact on the interactivity and precision throughout

production. The granularity of the discretization of these physical models strongly influences

the precision with which details are captured, especially for those details at small scale. In

other words, the realism and accuracy of the simulation are closely bound to the resolution

of the discretization. In this thesis, we present three contributions to overcome, in different

ways, the resolution limitations associated with the discretization of numerical simulations

of liquids.

Our first contribution [33] aims to reduce the computation times of traditional Smoothed

Particle Hydrodynamics (SPH) methods by coupling a band of particles at the surface to a

coarse Eulerian grid underneath the surface, dividing respectively fine details from the rest

of the simulated liquid. The work of Chentanez et al. [5] on a hybrid grid-SPH method is

the most similar to ours in spirit. They manage to compute their model in real time but at

the cost of some inherent physical differences caused by coupling Shallow Water Equations

(SWE) on a 3D grid with SPH particles making the stability of the simulation highly sensitive

to an adequate parameterization. In comparison, our Eulerian-based approach with fictitious

particles allows us to retain the realism and stability provided by a state-of-the-art SPH

method. Despite similarities of our approach with the narrow-band Fluid Implicit Particle

(FLIP) method [11], we propose in comparison a non-homogeneous way (as presented by

Desbrun [7]) to deal with density fluctuation and to constrain the particle band around the



fluid interface. Our approach is very effective with large bodies of liquid while preserving

SPH small-scale surface tension details where it matters.

For our third and last contribution [34], we propose an up-resing approach leveraging

deep learning to express scene flows as Lagrangian motions for particle-based liquids. Al-

though a few methods have been proposed recently to increase the apparent resolution of

fluid flows, our approach is the first to tackle the up-resing problem of liquid simulations

from a Lagrangian perspective. In contrast with Xie et al. [43], our up-resing approach is

applied directly to the particles of liquid simulations. By decoupling the up-resing part from

the advection step, our approach offers a more efficient way to encode and generalize local

high-resolution features. Also, as we infer Lagrangian displacements, we propose modified

convolution layers inspired from Liu et al. [23], allowing us to use the neighborhood contri-

butions as with SPH models. In comparison with FlowNet3D, our network combines a pair

of highly deformable particle-based liquids by leveraging feature similarities to encode the

motion between them.

The thesis is organized as follows: We first provide an introduction to the fundamentals

of fluid simulations in computer graphics (Sections 1.1 to 1.4) to properly understand the

contributions covered by our projects. The following three chapters respectively present

the research projects covering our contributions: a narrow band for SPH (Chapter 2), a

post-processing upsampling for splashing particle-based liquids (Chapter 3), and a deep-

learning approach for up-resing liquids (Chapter 4). Each of these research contributions is

supported by a publication. Finally, we conclude by discussing promising avenues for future

work (Chapter 5) for each of our contributions and liquid simulations in general.

1.1. Discretized Liquids for Media and Entertainment

The movement of a fluid (e.g., liquid, smoke, sand, snow, and so on) remains difficult to

describe and compute effectively. In computer graphics, as we mainly focus on the visual

aspect of the resulting animation, we are inclined to approximate the behavior and interac-

tions of fluids while maintaining realism. In the following sections, we briefly summarize the

fundamentals of numerical simulations and flow representations for liquids.
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Figure 1.1. Comparison between the Lagrangian (bottom) and Eulerian (top) viewpoints

of an impact for a simulated liquid drop (left).

1.1.1. Liquid Motion with Numerical Simulations

In computer graphics, the behavior of most fluids of interest is described by the incom-

pressible Navier-Stokes equations:

∂~u

∂t
+ ~u · ∇~u+ ∇p

ρ
= ~Fext + ν∇ · ∇~u, (1.1)

∇ · ~u = 0, (1.2)

defined within a constrained simulation domain Ω ⊂ Rd where d is the number of dimensions

(usually two or three). Eq. 1.1 is called the momentum equation and expresses the motion

of the fluid mass and density. This equation is an adapted form of Newton’s law of motion
~F = m~a to fluid mechanics. With this formulation, each portion of fluid has a mass m, a

volume V , and a velocity ~u. The force exerted on each of these portions of fluid is defined

by a material derivative D as follows:

~F = m
D~u

Dt
, (1.3)

where Eq. 1.3 describes a rate of change of a physical quantity (i.e., density, temperature,

etc.) of a material measured at time t. The material derivative can also serve as a way

of describing the flow with the appropriate viewpoint (more on that in Section 1.1.2). The

motion of these physical quantities q over time and within a certain domain Ω is commonly

3



called advection.

Dq

Dt
= 0, (1.4)

∂q

∂t
+ ~u · ∇q = 0. (1.5)

In other words, these quantities q are moving within that simulation domain Ω without

being necessarily modified. That being said, we will now explain the influence of each term

of Eq. 1.1 to better understand the motion of each portion of fluid. The left-hand side

(LHS) terms of Eq. 1.1 are respectively the acceleration, the advection, and the pressure

gradient, whereas the right-hand side (RHS) terms are respectively the external forces and

the viscosity. In practice, each term of Eq. 1.1 is solved separately to prevent numerically

solving for a huge system, which is called splitting. In general, the rate of change of a

physical quantity ∂q
∂t

can be expressed as the sum of several terms. For example, any of

the aforementioned pairs of terms of Eq. 1.1 can be summarized in two consecutive steps as

follows:

q̃ = qn + αδt, (1.6)

qn+1 = q̃ + βδt, (1.7)

where q is a quantity computed at time n and δt is the time step between two consecutive

frames. Within these steps, the intermediate contribution of Eq. 1.6 is added to the con-

tribution of Eq. 1.7 (similar to the first-order forward Euler method). Using this splitting

approach with Eq. 1.1, each term is added to compute the resulting velocities that are used

to update the position of the fluid elements. The stability and precision of this step highly

depend on the integration method used. For example, a simple forward Euler integration

step can be expressed as follows:

xt+1 = xt +4tẋt, (1.8)

in which the integration error is (4t)2 per time step (i.e.,
(
4t
k

)2
k for the whole simulation,

where k equals the number of time steps). A smaller time step can reduce this error at the

cost of considerably lengthening the time necessary to compute a single frame. Other explicit

integration methods offer more stability and precision (e.g., Runge-Kutta and Midpoint).
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Lastly, as mentioned earlier, in computer graphics we use the incompressible form of the

Navier-Stokes equations. We assume that the fluid mass and density will not change much

over time, especially for visual purposes. This is where the second equation (Eq. 1.2) comes

into play. This equation is called the incompressibility condition which enforces that the

velocity within the simulation domain remains divergence-free.

1.1.2. Fluid Flow Viewpoints

A broad set of numerical methods has been proposed over the last few decades to

discretize fluids. These methods can be generally grouped into two main categories:

Lagrangian and Eulerian. There is also a third category combining the two methods, which

is generally referred to as hybrid.

Lagrangian methods treat the elements of liquid as particles. Each particle has a

position ~x and a velocity ~u (bottom image of Fig. 1.1). Lagrangian methods are capable of

reproducing thin structures such as liquid sheets, droplets, and splashes. Although these

methods can provide efficient and intuitive ways to focus on the fluid elements within a

constrained simulation domain Ω, they require a more complex data structure to encode

their neighborhood connectivity. Among several methods available, Smoothed Particle

Hydrodynamics (SPH) [12, 27] and Position-Based Fluids (PBF) [25] are arguably the most

widely used by pure Lagrangian schemes. In the following section, we describe in more

depth the SPH method exploited by the hybrid method proposed in our first contribution.

Smoothed Particle Hydrodynamics methods are essentially based on interpolating

quantities evaluated at arbitrary locations in space. Algo. 1 shows the main steps calculated

by a traditional SPH method at each time step 4t of the simulation. These approximated

quantities are computed with contributions from a finite number of neighbor particles. The

interpolation of a quantity Ai evaluated at an arbitrary location ~ri for a particle i is computed

from known quantities Aj of neighboring particles j at location ~rj:

Ai(r) =
∑
j

mj

ρj
AjW (~ri − ~rj,h), (1.9)

where mj is the mass of particle j , ρj the density at the position of particle j, and function

W (~r,h) the smoothing kernel evaluating the contribution between particles i and j. In

5



Algorithm 1: Overview of a traditional SPH method.

Input: P /* set of particles */

for i ∈ P do

ρi = ∑
jmjWij /* density at particle i */

pi = k
((

ρi

ρ0

)7
− 1

)
/* Tait’s pressure calculation */

for i ∈ P do /* sum forces at particle i */
~F p
i = −mi

ρi
∇pi /* pressure forces */

~F ν
i = miν∇2~ui /* viscosity forces */
~F ext
i = mi~g /* external forces (e.g., gravity) */
~Fi = ~F p

i + ~F ν
i + ~F ext

i

for i ∈ P do

~ui(t+4t) = ~ui(t) +4t ~Fi

mi
/* velocity update */

~xi(t+4t) = ~xi(t) +4t~ui(t+4t) /* position update */

4t = λ h
||~umax|| /* adaptive time step (Eq. 1.22) */

Eq. 1.9, functionW (~r,h) is evaluated using a smoothing radius h and is expressed as follows:

W (~r,h) = 1
hd
f(~r), (1.10)

where d is the simulation domain dimensions, and f is the desired smoothing kernel. The

smoothing kernel is usually similar to a Gaussian function [27]. The idea is to give less

importance to particles j farther from the estimated quantity at position i, and vice versa.

The number of neighboring particles that are considered in the summation of Eq. 1.9 is

dependent on the spacing between particles (initialized by the user), the smoothing kernel

k(~r), and the domain dimensionality d. The spacing between particles is usually of the

same order of magnitude as the smoothing radius h [27]. The chosen smoothing kernel

function influences the approximation obtained by the summation. A typical smoothing

kernel function is the cubic spline:

Wcubic(~r,h) = 1
πh3


1− 3

2 −
(
~r
h

)2
+ 3

4

(
~r
h

)3
0 ≤ ~r

h
< 1

1
4(2− ~r

h
)3 1 ≤ ~r

h
< 2

0 otherwise.

(1.11)
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(a) poly6 (b) spiky

Figure 1.2. Comparison between the influence of smoothing kernel functions (a) poly6 and

(b) spiky. The bold curve represents the function and the dashed curve its gradient.

As shown in Fig. 1.2, there are other smoothing kernel functions used in fluid simulation [30,

8]:

Wpoly6(~r,h) = 315
64πh9

 (h2 − ~r 2)3 0 ≤ ~r ≤ h

0 otherwise.
(1.12)

Wspiky(~r,h) = 45
πh6

 (h− ~r)3 0 ≤ ~r ≤ h

0 otherwise.
(1.13)

For example, some kernels are better suited to approximate certain forces. The advantage

of the poly6 [30] smoothing kernel is that it does not require the additional computation of

a square root (between particle i and its neighbors j). Nevertheless, this type of smoothing

kernel may be inadequate for estimating pressure forces. In this case, particles tend to form

agglomerations for high-pressure values. The closer the particles come together, the more

the pressure forces dissipate (gradient tends towards zero). Using the spiky [8] smoothing

kernel resolves the dissipating gradient issue. The spatial derivatives of a quantity A for

particle i are approximated by applying operators solely to the kernel function [29]. The

gradient (Eq. 1.14), divergence (Eq. 1.15), and Laplacian (Eq. 1.16) operators are expressed

as follows:

∇Ai = ρi
∑
j

mj

(
Ai
ρ2
i

+ Aj
ρ2
j

)
∇Wij, (1.14)

∇ · ~Ai = − 1
ρi

∑
j

mj
~Aij · ∇Wij, (1.15)

∇2Ai = 2
∑
j

mj

ρj
Aij

~xij · ∇Wij

~xij · ~xij + 0.01h2 , (1.16)

7



where the index ij denotes a difference between a value evaluated at position i and a value

evaluated at position j (e.g., ~rij = |~ri − ~rj|). In addition, the gradient of Wij is expressed as(
∂Wij

∂rix
, ∂Wij

∂riy
, ∂Wij

∂riz

)
. These expressions are particularly useful when computing the pressure pi

(Eq. 1.14) and viscosity ν (Eq. 1.16) forces. For example, as we need to evaluate the pressure

gradient to make the velocity field divergence-free, the gradient form will be used as follows:

∇pi = ρi
∑
j

mj

(
pi
ρ2
i

+ pj
ρ2
j

)
∇Wij, (1.17)

where the pressure term pi can be computed in many ways. A popular and stable form of

the constitutive equation is Tait’s equation [28]:

pi = k

( ρi
ρ0

)7

− 1
 , (1.18)

where k is the stiffness of the fluid, ρ0 the rest density, and ρi the density at the location of

a particle i:

ρi =
∑
j

mjWij. (1.19)

Enforced by its Lagrangian nature, the SPH method requires knowledge of the neighborhood

for each particle. A neighborhood structure is used to approximate the physical properties of

the simulation by a weighted summation. Naturally, at each time step4t, this neighborhood

changes dynamically following the advection of the particles. Although an adaptive structure

such as a kd-tree seems appropriate tp efficiently keep track of neighborhoods, many prefer

the use of a uniform grid. A uniform grid is subdivided into cells of the same size. This way

the grid is constructed in O(n) and is accessed in constant time, i.e., O(1). Other types of

hierarchical structures require O(n log(n)) at creation and O(log(n)) in access, which may

explain the implementation choice of using a uniform structure. Structures of type kd-tree

may be preferred in a context of non-uniform distributions. Finally, once the divergence-free

velocity field is obtained, the position and velocity of each particle i is updated using a

semi-implicit integrator of Euler (also called symplectic Euler):

~ut+4t = ~ut + h~̇ut, (1.20)

~xt+4t = ~xt + h~u(t+4t). (1.21)

There are other time integrators available, but the symplectic one is mostly favored for

Lagrangian approaches [35, 15]. The acceleration force u̇t is calculated from the pressure,

8



viscosity, and external forces at time t. The adaptive time step 4t is constrained by the

Courant-Friedrich-Levy (CFL) condition:

4t = λ
h

||~umax||
. (1.22)

The constant λ is initialized to 0.4 [27]. The velocity ~umax is expressed as the maximum

velocity allowed at a time t. This time step 4t is said to be adaptive since it can be

recomputed at each simulation iteration.

In our first contribution [33], we propose an approach to couple the SPH method to

an Eulerian grid. The main known limitations of the SPH method over the FLIP method

are the stability and the longer computation time required per simulation iteration. By

its stability, the FLIP method makes it possible to use much larger time steps, thus

reducing considerably computation times per frame. Although the stability of SPH methods

has been significantly improved in the last years (e.g., DFSPH [2]), computation times

per frame remain much higher than with the traditional FLIP method. Inspired by

the recently introduced narrow band FLIP [11], we propose a hybrid method defining

the liquid interface as a band of SPH particles. By handling the coarse portions of

the liquid volumes with a uniform Eulerian grid, we are able to offer significant speed-up

factors over the state of the art while preserving fine details making the SPH model realistic.

Eulerian methods, as opposed to Lagrangian methods, track fluid quantities (e.g.,

velocity ~v, density ρ, etc.) at fixed positions in space (top image of Fig. 1.1). These positions

are usually defined by cells of a uniform grid structure. An advantage of using an Eulerian

viewpoint to discretize fluids is that spatial derivatives (e.g., pressure gradients) are much

easier to approximate numerically using uniform and regular data structures, which are also

more suitable for GPU implementation. However, thin liquid structures remain difficult to

capture and model correctly for details below the resolution of the underlying grid cell. In

computer graphics, Stam’s work [37] remains a reference when it comes to Eulerian methods

for fluids. The implementation details of a grid-based liquid simulation is similar to the

Algo. 2 presented for the FLIP method later in Section 1.2.1. However, as opposed to FLIP,

which advects particles, a level set φ serves as the free surface to represent liquids in purely

Eulerian methods.
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1.2. Hybrid Methods for Efficient and Detailed Liquids

As previously exposed, Lagrangian and Eulerian methods have their advantages and

disadvantages. This fact has inspired researchers to combine both viewpoints (Fig. 1.3) to

overcome these known limitations while making the most of their strengths. In the following

sections, we provide a brief overview of the different ways to couple these schemes in order

to improve previous work. They are also related to our first contributions presented in

Chapter 2.

Figure 1.3. Visualization of a hybrid method of the same animation presented in Fig. 1.1.

1.2.1. Combining Methods

By combining methods, it is possible to take advantage of the various structures that

make up the simulation model. Using both particles and a data structure such as a uniform

grid, fluid elements can be defined using Lagrangian and Eulerian quantities. In general,

hybrid methods are intended either to speed up numerical solvers or to reproduce the details

that would otherwise be dissipated. A well-known and most commonly used hybrid method

in the visual effects community is the Fluid Implicit Particle (FLIP) [45]. Several hybrid

methods combining particles with different types of Eulerian data structures have been

introduced over the last two decades. Often used as computational structures, these types

of Eulerian data structures include: 3D MAC grids [17], 2D height fields [18], meshes [20, 4],

and so on. One of the existing challenges on these hybrid methods is to couple both

schemes, enforcing stability while preserving small-scale details during simulation as we do

in our hybrid Eulerian-DFSPH approach (Chapter 2). In the following section, we describe

in more depth the FLIP method as exploited by our second [32] and third contribution [34].
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Fluid Implicit Particle methods are the most commonly used in the visual effects

industry. The method was introduced to computer graphics in order to simulate sand [45].

The FLIP method takes advantage of the Lagrangian and Eulerian viewpoints. This method

allows a Lagrangian advection on a set of particles while offering to solve the interaction with

boundaries as well as the incompressibility of the fluid using a grid. The standard steps of a

FLIP simulation are presented in Algo. 2. The implementation proposed in this document

(and in our work) uses a level set to initialize the volume of liquid.

Algorithm 2: Overview of a traditional FLIP method.

Input:
liquid /* initialize the liquid volume with an input mesh */

obstacles /* initialize static boundaries with input meshes */

resolution /* discretization of the velocity grid uMAC */
uMAC = initializeGridMAC(resolution);

P = sampleGridWithParticles(uMAC);

φl = computeLevelSet(liquid)

for oi ∈ obstacles do
φo ∪ computeLevelSet(oi)

flags = updateFlagCells(φl,φo)

for fi ∈ frames do
advectInGrid(P, uMAC, 4t)

weights = mapParticlesToGrid(P, uMAC, flags)

extrapolateGridWeight(uMAC, weights)

updateFlagCells(P, flags) /* update fluid cells */ applyGravity(uMAC)

updateBoundaryConditions(uMAC, flags)

solvePressure(uMAC, flags)

applyVelocityUpdate(P, uMAC)

A grid of labels (flag grid) is used to identify the nature of the elements contained in

each cell (i.e., fluid, air, and solid). The information about the simulation is stored in a

MAC grid (Marker-and-cell). This type of grid allows preserving velocities on the faces of

cells and pressure forces at the center of cells (Fig. 1.4). Using a uniform grid whose values

are all calculated at the center of cells is not ideal [3], especially at borders. For example,

the divergence calculation does not take into account the current cell. The divergence at the
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Figure 1.4. An example of theMAC grid in 2D storing pressures p and velocity components

u and v [3].

center of cells (of dimension 4x) is defined by the expression:

∇ · ~ui,j = ~ui+1,j − ~ui−1,j + ~ui,j+1 − ~ui,j−1

24x . (1.23)

This calculation method can generate large differences between divergence values in the grid.

The MAC grid allows one to work around this problem by reformulating Eq.1.23 into:

∇ · ~ui,j =
~ui+ 1

2 ,j
− ~ui− 1

2 ,j
+ ~ui,j+ 1

2
− ~ui,j− 1

2

4x
. (1.24)

Another important part is the transfer of velocities to the grid (and vice versa). The transfer

uses a weighted interpolation on the particles inside the current cell. Cells that contain par-

ticles are flagged to speed up transfer and force calculations. The interpolation is computed

relative to each corner vertex of a cell. Each value weighted by the distances between the

corner vertices is stored at the faces of the MAC grid. In the FLIP method, all forces are

stored in the grid. The advection step is the only one performed directly on the particles.

The pressure solve is performed directly on the grid uMAC. This step is called the projec-

tion step and is required to satisfy the condition of incompressibility (Eq. 1.2). In theory,

we need to determine the Lagrange multipliers whose gradient subtractions give a velocity

field without divergence. The equation is in the form of a Poisson equation. One way to

formulate it is by the Helmholtz-Hodge decomposition. This formulation highlights the fact
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Figure 1.5. Comparing Affine-PIC (APIC), FLIP, PIC-FLIP, and PIC. The APIC method

considerably reduces the noise generated by FLIP while preserving the nature of the fluid [17].

that most vector fields can be represented by a sum of vector fields without divergence and

an irrotational field. It is therefore sufficient to subtract the pressure gradient from the

velocities to ensure the conservation of volume. The system to be solved is the following

Poisson equation:

∇2p = ∇ · ~u. (1.25)

There are several numerical methods for solving linear systems in this form. When imple-

menting this method, we favored the conjugate gradient as it offers fairly fast convergence

times. Finally, the pressures obtained allow the velocities to be corrected in order to ob-

tain a vector field without divergence. These velocities can now be transferred back to the

particles. The interpolation method used is the same as for the transfer to the grid. How-

ever, the method of updating the interpolation velocities for a non-viscous liquid is usually

a combination of PIC-FLIP (Eq. 1.26 and Eq. 1.27, respectively).

~uPIC
i = interp(~ut+4tMAC, ~xpi

), (1.26)

~uFLIP
i = ~ut+4tMAC + interp(4~uMAC, ~xpi

), (1.27)

where ~xi and ~ui are respectively the position and the velocity of the particle i. The FLIP

update method is more suitable for a liquid, but less stable than the PIC method (numerical

dissipation). We therefore give more importance to ~uFLIP (α = 0.97) than to ~uPIC (1 − α).
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Using these weights, the velocity update can be expressed for a stable and non-viscous liquid:

~ui = (1− α)~uPIC
i + α~uFLIP

i . (1.28)

More recently, an improvement of the FLIP method, so-called the Affine-PIC method, has

been proposed to prevent using a weighted velocity update [17] as shown in Eq. 1.28. The

main contributions of the Affine-PIC method are improving stability (caused by the FLIP

velocity update) while reducing energy dissipation (compared to the PIC velocity update).

Conserving angular momentum in the grid preserves energy at both small and large scales. A

combination of the two velocity update models results in a much smoother and more stable

fluid (Fig. 1.5). Later, the FLIP method was extended to focus the computation efforts on

particles at the surface of the liquid volume and around static and dynamic boundaries [11].

Their band method resamples particles only within a narrow band near the surface. They

also introduce a coupling scheme between particles and the grid to reduce energy fluctuations.

1.2.2. Adaptive Methods

As previously mentioned in Section 1.1.2, grid-based methods (i.e., Eulerian) have diffi-

culties in resolving fluid details below the resolution of the underlying grid cell. In general,

two ways have been proposed to overcome this issue: using an adaptive data structure [24]

or using multiple scales of particles [36]. In both ways, the key is to detect when to increase

or decrease adaptive elements while preserving visible details. Grid-based methods were

the first to introduce adaptivity to alleviate the resolution bounding issues. When using

adaptive data structures such as an octree, the fluid quantities (e.g., such as pressure gra-

dients) are computed using different grid cell sizes. In these cases, one way is to compute

the weighted average using a linear interpolation between cells. On the other hand, dealing

with many scales of particles can also be challenging since each one of them may convey

different contributions to one another. As proposed by Solenthaler and Gross [36], using a

pre-determined number of scales for particles can simplify the simulation model while offering

interesting features. At the other end of the spectrum, allowing the use of continuous particle

scales can provide improved accuracy and stability, as recently introduced by Winchenbach

et al. [41, 42].
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1.3. Enriching Liquid Animations

Although hybrid and adaptive methods can alleviate limitations related to coarse dis-

cretizations, other complementary (i.e., in the simulation loop) and post-processing methods

are often required to simulate small-scale phenomena such as splashes, whitewater, foam,

and spray in addition to the input simulation. In general, these additional details are com-

puted either by generating high-frequency features or by extracting fluid elements dissipated

by a coarse discretization.

1.3.1. Generating High-Frequency Details

Generating high-frequency details using additional simulation structures, such as surface

points, can enhance the level of detail even when using a coarse simulation resolution (i.e.,

low-resolution velocity grid and/or a small number of particles). Using an existing liquid

animation as input to these complementary methods, fine details are seamlessly integrated,

improving the flow behavior using previously computed physical characteristics. Among

several others, the most commonly used input characteristics for such methods are velocity

and vorticity fields. The generated details are often represented as an additional set of

particles governed by constraints [10], combined forces [14], and wave simulations [26, 44].

Most of these methods are so-called physically plausible (as opposed to physically accurate)

because they infer realistic details while not necessarily preserving divergence-free flows.

1.3.2. Extracting Dissipated Details

In computational fluid dynamics (CFD), numerical dissipation is referred to as the error

introduced throughout iterations over a discretized simulation domain Ω, and cumulated at

each time step (i.e., determined by the time integration scheme). Numerical dissipation in

fluid simulations is mostly noticeable in small structures such as vortices.

Extracting dissipated features to enhance fluid details has also been an active research

topic in the last decade or so. Often referred to as vorticity confinement methods, these

techniques introduce rotational forces, allowing vortex structures to appear within the coarse

flow. As introduced for visual effects by Lentine et al. [22], vorticity confinement methods

allow for preserving both energy and momentum present in a coarse simulation. Such vortex

structures can be expressed using multiple energy scales (sub-grid fluid values) [16] or by
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amplifying existing vorticity [25]. In general, vorticity confinement methods provide ways

for preserving small-scale vortices but are unable to reproduce surface turbulence as opposed

to the high-frequency-based methods aforementioned in Section 1.3.1.

1.4. Machine Learning Methods for Liquid Simulations

As part of the extended family of simulated natural phenomena, fluid simulations have

become in recent years a clear target for machine learning. Even today, fluid simulation

models remain computationally expensive and challenging to control within an artistic pro-

cess for visual effects. In the last decade, many research work have been proposed to improve

their underlying numerical solvers, compute complex features, and infer additional or dissi-

pated visual details by leveraging machine learning algorithms. In the following, we briefly

overview the main challenges when using machine learning to improve physically-based sim-

ulation methods.

1.4.1. Neural Networks and Physics-Based Simulations

With available ways to facilitate the generation of synthetic data, deep learning algo-

rithms have become an effective way to learn and encode complex representations through

large datasets using artificial neural networks. Deep learning algorithms allow us to map

input samples X to the approximated target outputs Y through generating a learned para-

metric function fθ as follows:

fθ(X) ≈ Y, (1.29)

where θ contains the learned function parameters commonly called weights. While predicted

outputs Y (i.e., the last layer of the deep network) are generated using input samples X (i.e.,

the first layer of the deep network), several inner layers of neurons are used to learn these

weights θ. To summarize, the inner layers can expressed as:

yi = σ(Wyi−1 + b), (1.30)

where yi−1 is the output from the previous layer i − 1, yi is the output of the current layer

i, and θ are the trainable weights along with biases b. The nonlinearity is introduced by

the activation function σ (e.g., σReLU(x) = max(0,z)) to approximate the function f during

the forward pass. The weights θ and biases b are refined using a loss function L through

the backpropagation pass (short for backward propagation of errors) performed with an
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optimization method such as the gradient descent. In general, the loss function L is com-

puted by measuring the differences between the predicted outputs and ground truth samples.

The weights θ are adjusted by the gradient of the loss function ∇L (i.e., computed by the

optimization method) using the chain rule. As illustrated in Fig. 1.6, the step of the opti-

mization method is determined with a learning rate αt initialized and updated throughout

the iterations, typically using an adaptive method such as the ADAM optimizer [19]. At

the end of an epoch of training, a local minimum is approximated from a cumulative loss

term. One epoch means that the optimizer has passed through every training sample once.

In physics-based simulation, machine learning methods are generally used to learn and im-

Figure 1.6. Example of the gradient descent method minimizing a single weight θ1.

prove models in three different ways [40]: data-driven, loss-driven, and simulation-driven.

Using one of these approaches may depend on the available data and the desired objectives.

Data-driven approaches are used when the predicted output is generated from existing or

captured simulated data. This type of approach is categorized as a forward problem as it

predicts outputs directly, whereas approaches categorized as a reverse problem are predict-

ing parameters to approximate simulated output. The second type loss-driven is partially

integrated in the simulation model. With this type of approach, the learning process is per-

formed, throughout the loss function, using differentiable PDE-based formulations from the

simulation (e.g., from the numerical solver). In contrast, the last type, simulation-driven,

interleaves the learning process with the simulation model. As an example, a neural network

architecture (or stacked networks) is used to approximate a velocity field as a preconditioner

input to the advection step of the simulation model. Given the amount of available fluid

simulation data [9], data-driven and loss-driven methods for fluid simulations have become
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more attractive for the visual effects community [6, 39]. Although these types of methods

offer convincing results, tightly integrating neural networks into the simulation model can

provide more flexibility and control [21, 38]. As exposed by the previous work, each sim-

ulation viewpoint can benefit from simulation-driven solutions. In addition to facilitating

the numerical approximation of spatial derivatives, Eulerian approaches offer intuitive capa-

bilities when used with 2D convolution operations (such as in CNNs). On the other hand,

Lagrangian approaches partially benefit from the recent advances in deep learning for point

clouds.

1.4.2. Encoding High-Resolution Features for Particle-Based Liquids

In contrast to data-driven solutions, encoding high-resolution features is used to gen-

erate additional or dissipated details to enhance the visual appearance of existing liquid

animations. This task is usually categorized into two types of learning approaches: detail

synthesis [6] and super-resolution [43, 1]. With the detail synthesis learning approaches, a

high-resolution dataset is used to learn a mapping to the corresponding low-resolution sam-

ples. In comparison, super-resolution approaches upscale a coarse input to infer the sub-grid

details at high resolution. Xie et al. [43] propose a method using GAN to produce volumet-

ric high-resolution details using spatial and temporal discriminators. Recently, a dictionary

learning method has been proposed [1] to upsample coarse smoke flows by generating sparse

representations of local velocity patches to encode high-resolution temporal features. Our

contributions presented in Chapter 4 fits in the detail synthesis category.

As we focus on convolutional neural networks in our work in Chapter 4, understanding

the fundamental differences of the discrete convolution operations on different types of data

is crucial to appreciate our related contributions. Using 2D convolutions on images is rather

intuitive. As shown in Fig. 1.7(a), a 3× 3 filter kernel w is used on samples x. In this case,

the convolution output y is performed by applying the kernel matrix w to extract various

features from an input image. For CNNs, the kernel values of w are learned to extract latent

features. Stacking these convolution operations per layer allows us to produce a hierarchical

decomposition of this input. It is worth mentioning that images (rendered or captured) may

introduce undesired features during the training process caused by capture noise or rendering

artifacts, as slightly noticeable with the aliasing effect at the silhouette of the sphere in the
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(a) Image (b) Mesh (c) Points

Figure 1.7. Comparing discrete convolution operations on different data structures.

enlarged view of Fig. 1.7(a). Using convolution operations on images is straightforward since

they are performed on a regular grid of pixels for which the neighborhood is structured (i.e.,

always with the same number of neighbors and using the same relative locations). However,

things become more challenging when dealing with 3D irregular structures such as meshes

and point clouds. These structures are not defined on a regular grid, meaning that for each

element (i.e., vertex or point), the number of neighbors and their locations might change

(Figs. 1.7(b) and 1.7(c)). We refer to these structures as irregular. Different ways have

been introduced to perform convolution operations on irregular structures such as meshes.

In their work, Hanocka et al. [13] propose to express convolution operations on triangular

meshes using intrinsic geodesic properties. Convolutions are applied to the edges allowing

a fixed number of neighboring faces and associated edges to be processed. Using the mesh

connectivity for such a task is important to query the neighborhood for each edge. Although

their work has considerably improved our knowledge on processing irregular structures for

deep learning, point clouds carry an additional layer of complexity in order to be used

with learning algorithms. As illustrated in the enlarged view of Fig. 1.7(c), the number

of sampled neighbors surrounding each point is highly variable (e.g., neighborhood deep

under the surface versus at the surface). In contrast with meshes, point clouds (or particle

systems) contain under-the-surface elements. These invisible elements must be considered
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during the convolution operations to fully encapsulate the contributions. Several methods

have been proposed to take into account this type of data structure in 3D for deep learning

algorithms [31, 23].

In comparison to Chu et al. [6], our approach is performed directly on the fluid elements

in 3D, which slightly complicates the downsampling and upsampling operations. As our third

contribution aims to apply displacements directly onto the particles, our network needs to

handle convolution similarly to point clouds (Fig. 7(c)), hence handling neighborhoods with

beneath-the-surface elements as contributions. However, since applying displacements on el-

ements beneath the surface might introduce undesirable noise during inference, most of our

training samples were generated using the narrow band FLIP method exploiting only a band

of visible particles at the interface between the liquid and air. Nevertheless, as we focus the

learning towards particle-based liquids and not point clouds, we introduced the known con-

cept of weighted neighborhood contributions directly in the upsampling and downsampling

operations to preserve the inherent properties of the liquid through embedding. We refer

the reader to Chapter 4 for further details on our neural representation for particle-based

liquids.
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Chapter 2

A Hybrid Eulerian-DFSPH
Scheme for Efficient Surface
Band Liquid Simulation

This first paper introduces a hybrid approach for efficient and realistic particle-based

liquid simulations. Our approach combines a low-resolution Eulerian simulation with an SPH

particle-based simulation to model the liquid behavior below and at the surface, respectively.

By approximating the behavior of the liquid below the surface with a coarser representation,

our approach offers a significant reduction in computation times upon previous work. In

addition, our SPH particle band formulation allows us to focus our attention on visible

regions of the surface and therefore improves the level of detail in those volumes of liquid.

Publication

This paper [82] was published in Computers & Graphics, Volume 77, in December 2018.

It has been reformatted for this thesis. Roy was involved in the formulation and numerical

analysis of the hybrid approach. He was also responsible for the design, implementation, and

evaluation of the approach. Poulin supervised each stage of the research project. The first

draft of the published paper was written by Roy and improved by Poulin prior and during

the submission process.
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Figure 2.1. A high-quality rendered close-up view (left) of a larger scene of light rain

simulated with 10M SPH particles (2M band particles and 300k fictitious particles). The

scene is clipped at the front plane to show the water surface and the ground underneath.

The two types of particles (band SPH in blue and fictitious in orange) for this frame are

shown at the top right. The remaining portion of the liquid is handled by our Eulerian solver

(grid in green). The image at the bottom right shows a sensitive region where the density

contribution is computed with SPH and fictitious particles (with slightly larger masses).

Abstract

The discretization of fluids can significantly affect computation times of traditional SPH

methods. Even if state-of-the-art SPH methods such as divergence-free SPH (DFSPH) pro-

duce excellent small-scale details for complex scenarios, simulating a large volume of liquid

with these particle-based approaches is still highly expensive considering that only a frac-

tion of the particles will contribute to the visible outcome. This paper introduces a hybrid

Eulerian-DFSPH method to reduce the dependency of the number of particles by constrain-

ing kernel-based calculations to a narrow band of particles at the liquid surface. A coarse

Eulerian grid handles volume conservation and leads to a fast convergence of the pressure

forces through a hybrid method. We ensure the stability of the liquid by seeding larger

25



particles (which we call fictitious) in the grid below the band and by advecting them along

the SPH particles. These fictitious particles require a two-scale DFSPH model with distinct

masses inside and below the band. The significantly heavier fictitious particles are used to

correct the density and reduce its fluctuation inside the liquid. Our approach effectively

preserves small-scale surface details over large bodies of liquid, but at a fraction of the com-

putation cost required by an equivalent reference high-resolution SPH simulation.

Keywords: Physics-based Animation, Hybrid Method, Surface Band, Particle-based Liquid

2.1. Introduction

Visual effects (VFX) in feature films are constantly raising the bar for physically based

liquid simulations in terms of level of detail, computation times, and controllability. With

most types of liquid simulations, the level of detail is mainly dependent on the finite reso-

lution of the discretization for the associated structures. In the VFX industry, implicit and

explicit particle-based methods are the most widely used for liquid simulations. Although

Fluid-Implicit-Particle (FLIP) methods for liquid simulations are usually preferred for large-

scale scenarios, SPH methods are still widely used for their realistic behavior, including the

generation of natural small-scale details (as shown in Figure 2.1). SPH simulations also allow

for effective modeling of surface tension and its related free-surface cohesive forces.

Unfortunately, state-of-the-art SPH methods are still expensive in term of computation

compared to FLIP methods. Each particle carries a heavy cost for its contributions with

neighboring particles. However, combining Lagrangian and Eulerian methods has proven to

be an efficient and tailored solution to consider different scales of detail for complex scenarios

in fluid simulations. Purely Lagrangian methods are well suited to handle small-scale details

close to geometrically complex boundaries and close to the free surface (interface between air

and liquid). In all other regions (e.g., below the free surface), an Eulerian perspective proves

an appropriate alternative. In order to meet industry needs, we propose a method coupling a

particle surface band with a grid-based liquid simulation. Our approach uses SPH particles

within a surface band defined along the level set φ at the interface (i.e., where φ = 0). The

thickness of our surface band is dependent on the underlying support radius used by the

SPH particles of the narrow band (and a user-defined distance from φ = 0). Particles with

larger masses are seeded close to the transition between the particle band and the Eulerian
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grid. Those particles are used to couple the solvers by correcting the density around this

transition. We call these particles fictitious because their contribution is exclusively on a

density-level.

The work of Chentanez et al. [57] on a hybrid grid-SPH method is the most similar to

ours in spirit. They achieve to compute their model in real time but at the cost of some

inherent physical differences caused by the use of Shallow Water Equations (SWE) on a 3D

grid and a coupling that is highly sensitive to an adequate parameterization. In comparison,

our Eulerian-based approach with fictitious particles allows us to retain the realism and

performance properties provided by a state-of-the-art SPH method. The only user-defined

parameter to tune is the number of fictitious particles seeded per cell along the particle

band. Furthermore, as for narrow band FLIP [63], our approach will be slightly slower than

a traditional SPH method if it is used for scenarios consisting of exclusively thin sheets of

liquid. A minimum band thickness is required in order to exploit the benefits of the hybrid

structure. However, our hybrid method allows preserving the Lagrangian nature of a band-

only SPH model without suffering from the noise and instability of FLIP. With our hybrid

model, we want to avoid grid artifacts such as undesired interactions between separate liquid

bodies prior to collisions between them. Our method allows a drastic reduction of the number

of particles compared to equivalent high-resolution liquids. In summary, the contributions

of our approach consist of:

• We extend a hybrid model to focus on a band of SPH particles at the interface defined

by a level set method;

• We use fictitious particles within our grid to correct for neighborhood deficiency and

to couple the Lagrangian and the Eulerian solvers;

• We exploit a two-scale model to correct the densities through the liquid inside our

simulation domain.

The results achieved over various scenarios show only small differences from the ground

truth defined by reference simulations. Moreover, we are able to preserve the small-scale

realistic behavior of an SPH method at much lower cost than a full SPH simulation.
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2.2. Related Work

Animating large volumes of liquid is computationally expensive and remains a challenging

problem, especially within an SPH method. Such a density-based model is highly related

to neighborhood contributions. Several approaches have been introduced to reduce this

influence on the computation of forces by combining a Lagrangian method with a grid-based

(Eulerian) representation [77, 68, 75, 91, 81, 85, 57].

However, with most of these hybrid methods, considerable efforts are focused on regions

where there are no significant visual contributions (i.e., beneath the surface). With our

hybrid method, we significantly reduce the dependency of the SPH neighborhood influence

to focus computation efforts almost exclusively around the surface of the liquid, and this,

without introducing grid artifacts. Over the last decade, various approaches have been pre-

sented to combine fluid simulation models and exploit their respective strengths. Combining

various models may be especially beneficial when there is a need to capture several distinct

scales of behavior. As an introduction to this field of study, we will briefly highlight a few

approaches proposed to effectively represent these various scales of detail in fluid simulations.

2.2.1. Large-scale Scenes

The FLIP method [55] is the most widely used hybrid model in fluid simulations for

VFX; it was introduced in computer graphics by Zhu and Bridson [92]. Velocities are stored

on particles, and pressure projection is performed on a grid. The resulting divergence-

free velocity field is used to interpolate those values back to particles. The FLIP method

is widely used to simulate large-scale scenarios (e.g., large bodies of liquid breaking over

complex geometries). Other researchers extend the FLIP method by adaptively resampling

particles near the surface to improve the level of detail in these regions [48] or by using a

spatially adaptive mesh structure to capture and model the behavior of particles at different

scales [49]. Um et al. [88] improve the distribution of particles around the fluid interface by

applying a correction on positions in high-frequency regions within a sub-grid scale. Jiang

et al. [72] introduce Affine-PIC, which proposes a way to resolve the limitations of the FLIP

methods by preserving the stability of the Particle-in-cell (PIC) velocity update without

dissipation. Finally, Aanjaneya et al. [46] propose a method to take advantage of a power
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diagram with an adaptive octree structure to preserve high-resolution details near the liquid

surface.

2.2.2. Small-scale Behavior and Fine Details

SPH methods have often been preferred for their realistic small-scale behavior. However,

their scheme, based on neighborhood contributions, makes them very expensive in term of

computation time. The method was originally proposed [66] a while before being introduced

to the computer graphics community by Desbrun and Gascuel [62], and later improved by

Müller et al. [80]. Many extensions have been proposed over recent years to improve the

limitations of SPH methods. Becker and Teschner [51] propose to use the Tait pressure

equation to reduce density fluctuations. Solenthaler and Pajarola [86] put forward a method

to enforce incompressibility by a prediction-correction scheme to estimate particle pressures.

Density fluctuations are iteratively propagated through particles until a targeted density is

obtained. Their method to resolve pressures is a lot less expensive than solving a Poisson

equation.

The projection step was also improved with a discretized form of the pressure Poisson

equation [70]. This method was later extended to FLIP to combine the pressure projection

step of the Implicit Incompressible SPH (IISPH) approach with the mass preservation and

boundary handling of the FLIP method [58]. An exhaustive survey has been recently pub-

lished [71]. Da et al. [60] recently introduced a surface-only liquid. They propose a way to

store Lagrangian velocities directly into a mesh. Finally, Bender and Koschier [53] propose

a two-solver approach (called DFSPH) to enforce low volume compression. They achieve a

more stable and efficient SPH formulation by enforcing incompressibility on both position

and velocity levels. Since our hybrid model needs a robust density correction step along the

band, even though we developed our work on a standard SPH method, it proved convenient

and intuitive to integrate DFSPH into our pipeline; therefore, we report most of our results

on our implementation of DFSPH.

2.2.3. Multiscale Fluids

Several approaches propose to leverage the respective strengths of Lagrangian and Euler-

ian methods in order to model different scales of detail. Losasso et al. [77] use a particle

level set (PLS) method to represent dense volumes of liquid and SPH particles for diffuse
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volumes. Diffuse particles allow reproducing different types of interaction between liquid and

air (present in splashes, foam, whitewater, etc.). A similar approach using escape particles

from the coarse simulation modeled by a PLS method has also been proposed by Lee et

al. [75]. In their model, escape particles model small-scale details and are governed by an

SPH scheme.

Other researchers focus their effort on such a hybrid model for air bubbles within a liq-

uid [68]. They use a grid-based simulation to model large bodies of liquid and a Lagrangian

method for the motion of small bubbles. Coupling between those two models allows the

approach, through a split-and-merge process, to transfer contributions from small to large

scale (and vice versa). This idea has been extended as well to simulate various speeds in

simulations of smoke [64]. By representing high-speed smoke regions with particles, this

approach effectively animates and models a large-scale scenario at low speed. Induced tur-

bulence can also be preserved if this kind of approach is coupled with a localized hybrid

method around obstacles [91]. An SPH-FLIP formulation is used to model local vorticity

flow in those regions.

Raveendran et al. [81] introduce a clever way to exploit the strengths of both models

(Eulerian and Lagrangian). They propose a hybrid SPH method that preserves its La-

grangian nature without generating grid artifacts. A divergence-free velocity field is enforced

by resolving a Poisson equation on a coarse grid. In addition, hybrid models have provided

ways to simulate fluids in real time by using adaptive grid structures [56]. Combining a

Lagrangian method with a grid-based method is not the only way to model different scales

in fluid simulations. Adaptive particle sizes can also be used to represent different scales

of detail in a particle-based simulation [85]. A standard spatial grid using cubic cells is

placed on top of a layer of tall cells in order to reduce computations. Moreover, preserv-

ing surface details using an Eulerian approach has been an active research topic in the last

few years [54, 78]. Recently, Chentanez et al. [57] couple a grid-based method, a solver for

Shallow Water Equations (SWE), and an SPH method. The SWE solver allows tracking

of the fluid interface using a heightfield representation. Those equations are a simplified

form of the Navier-Stokes equations, and provide a wave propagation model at the surface

of a liquid. Surface elements are represented and resampled with particles following an SPH

formulation. This idea has naturally been extended to the FLIP method [63]. Their band
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method resamples particles only within a narrow band near the surface. They also introduce

a coupling scheme between particles and the grid to reduce energy fluctuations.

A portion of our hybrid model is inspired by Raveendran et al. [81]. Since our hybrid

approach runs on the DFSPH model, it allows for significantly large timesteps with our

Eulerian solver, while retaining stability. However, we chose to solve our Poisson equation

by updating a zero level set that tracks our fluid interface instead of managing markers

within the simulation domain. The level set method is also used to resample our particle

surface band around the fluid surface. Although the intuition behind our band method is

similar to the one proposed by Ferstl et al. [63], we concentrate its application exclusively

on SPH methods (more like Chentanez et al. [57] do). Despite the latter similarities to our

approach, we propose in comparison a non-homogeneous way (as presented by Desbrun [61])

to deal with density fluctuation and to constrain the particle band around the fluid interface.

Our approach is very effective with large bodies of liquid while preserving SPH small-scale

surface tension details where it matters.

Similarly to Solenthaler and Gross [85], we use a two-scale model to compute complex

behaviors with SPH particles. However, instead of using feedback forces in-between the

different resolutions, we use significantly heavier particles (larger masses and underneath

the liquid surface) to correct the density while reducing substantially the requirement on

the number of particles. Also, we use a generalized approach and simulate a narrow band

of particles at the surface over the whole domain (as opposed to locally). Recently and

in parallel with our work, Winchenbach et al. [89] presented an approach to allow infinite

continuous adaptivity for incompressible SPH. Their scheme of mass redistribution allows

smooth variation of the masses and sizes particles according to a distance to the surface of

the fluid.

2.3. Method Overview

The core idea behind our hybrid method is to provide an effective way to handle the fine

details with a particle-based surface band and the coarse volume of the liquid with an Euler-

ian model. We use a DFSPH model to represent the particle-based portion and to update

the velocity field of the Eulerian grid underneath the liquid (see § 2.4). A first pressure esti-

mation is computed from the grid and transferred to the SPH particles as a preconditioner
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when computing the divergence error (same as DFSPH). Similarly to Raveendran et al. [81],

we compute an hybrid pressure term by combining values from both models (Eulerian and

SPH) and allows preserving the Lagrangian behavior near the free surface. After computing

the DFSPH steps, velocities from the particles are interpolated back to our velocity field

and extrapolated afterward. Because we want to exclusively focus the DFSPH computa-

tions along the free surface, a few additional steps are performed to compute and update

a narrow surface band of particles. We use a level set method to provide a proper way to

track the liquid interface (as with the method of Gibou et al. [65]). The level set is advected

using a semi-Lagrangian method, and is used to evaluate and resample our particle band

thickness. For the Eulerian-DFSPH coupling, we leverage the idea of seeding larger-scale

particles (which we call fictitious) at the transition between the particle band and the Euler-

ian grid. We use a non-homogeneous model to compute the density around that transition.

An overview of our method is provided in Algorithm 3.

Furthermore, since our method deals with SPH band particles, fictitious particles, and

grid cells, we introduce a notation to make algorithms and equations easier to understand.

We use the subscripts b, f , and g to respectively identify the source of each quantity for

band particles, fictitious particles, and grid cells. For instance, the quantities ~xfi
, ~vfi

, and

~ρfi
are respectively the position, velocity, and density of the i-th fictitious particle. We also

use a compact notation to express quantities of multiple elements, e.g., ρ(b,f)i
as densities of

the i-th band and fictitious particles. Naturally, the number of fictitious particles is always

smaller than the number of band particles.

2.4. Hybrid Strategy

This part of our approach is inspired by Raveendran et al. [81]. Although we compute a

hybrid pressure force as they do, ours is obtained by combining a first estimation from the

Eulerian solver and the one from the divergence error step from DFSPH. The SPH particle

initial states are used to initialize our level set at the first frame. In most of our scenarios,

the grid velocity is initialized to zero at the first frame.

In order to adequately match the movement of the surface particles, a volume correction

step is performed on the grid velocity field at each iteration to enforce a proper tracking of

the liquid surface according to φ. An initial volume V0 is computed from the simulation at
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Algorithm 3: Simulation loop for our approach
Compute volume correction (∇ · ~vg)∗ (Eq. 2.4)

Apply correction to ~vg
Solve Poisson equation for pg using MICCG (§ 2.4)

Compute neighborhood for SPH and fictitious particles

for ∀i do /* for every band and fictitious particle */
Compute densities ρ(b,f)i

and factors α(b,f)i

Correct density error on ~v(b,f)i
(DFSPH)

Interpolate pressure pgc of cell c(~x(b,f)i
) to p(b,f)i

Correct velocity ~v(b,f)i
with ∇p(b,f)i

Compute densities ρ(b,f)i
and factors α(b,f)i

Correct divergence error on ~v(b,f)i
(DFSPH)

Compute 4t according to CFL condition (Eq. 2.7)

Integrate ~v(b,f)i
(t+4t) and ~x(b,f)i

(t+4t)
for ∀c do /* for every cell at φ < 0 */

Interpolate velocities ~v(b,f) of particles to cell c (Eq. 2.8)

Extrapolate velocity ~vgc

Advect and update φgc

Resample particle surface band (§ 2.5.3)

Seed fictitious particles (§ 2.5.1)

Update non-homogeneous density (§ 2.5.2)

rest. Volume variation is obtained from the ratio between the current volume Vt and the one

at its initial state V0:

4V = Vt − V0

V0
. (2.1)

The current volume Vt (as well as the volume at the initial state V0) is computed with the

Marching Cubes algorithm [76] on our level set to determine where liquid is present in the

simulation domain. The cube configurations extracted (from each cell) allow estimating the

space occupied by the liquid. The occupation ratio of a cell (cube) is equal to 1 if it is

completely inside the liquid, and equal to 0 if it is completely outside. Otherwise, a cell

spans the liquid interface with a ratio proportionally between 0 and 1. The volume variation

(Equation 2.1) represents a difference between what we have and what we aim for. From
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this variation 4V , Kim et al. [73] compute a correction term cV according to a loss or gain

of volume:

cV = −
(
kp4V − ki4V4t

4V + 1

)
, (2.2)

where terms kp and ki are obtained by performing an analysis on the volume change of a

region under a constant divergence (see [73]) :

kp = 2.3
ψ4t

, ki =
(
kp
2ξ

)2

. (2.3)

Constants ψ and ξ are respectively fixed to 25 and 2 (refer to the paper of Kim et al. [73]

for further details). Finally, the correction term cV is used as a proportion control on the

divergence field ∇·~vg to compensate for that variation in volume

(∇ · ~vg)∗ = ∇ · ~vg
h
− cV . (2.4)

In Equation 2.4, h = 1
n
, where n is the grid resolution. Now that our divergence field

(∇ · ~vg)∗ takes into account volume preservation, we have everything we need to solve for

pressure on the grid. The linear system Ax = b to solve is a Poisson equation, where A

is a Laplacian defined by φ [50] used by the level set method, and b is the divergence field

∇ · ~vg. To solve for x (i.e., for pressure) we use the Modified Incomplete Cholesky (MIC)

Conjugate Gradient (CG) algorithm. The MIC algorithm is used as a sparse approximation

for Cholesky factorization. It is very useful to speedup computation when applied as a

preconditioner with the CG algorithm.

The pressure values obtained with our MICCG solver are transferred by simple trilinear

interpolation from grid cells to SPH band and fictitious particles. As in the method of

Raveendran et al. [81], we use those pressure values to compute the final pressure forces

in our DFSPH model. We use the SPH formulation for pressure gradient to preserve the

Lagrangian nature of our particles and where the current pressure (for particle i) and the ones

from its neighbors (particles j) are transferred from the grid. The pressure force computed

in the grid is used as a preconditioner in addition to the pressure values computed afterward

with the special case equation of state (γ = 1 as with DFSPH). As presented by Bender and

Koschier [53], we use the DFSPH equation to compute iteratively the divergence error ~v dei :

~v dei = 4t
∑
j

mj

 κi
ρ(b,f)i

+ κj
ρ(b,f)j

∇Wij, (2.5)
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where κ is the stiffness constant also obtained while computing the divergence-free solver

(see [53] for more details). As noted by Raveendran et al. [81], we save a few iterations

(compared to the DFSPH method) by initializing ~v dei with our correction solved from the

MICCG on the Eulerian grid. The hybrid pressure force is computed with the densities

obtained from the first pressure solver (also called the density correction step in DFSPH).

Then, the divergence correction step (second pressure solver) is performed on updated parti-

cle velocities. It allows our system to remain stable with large timesteps and without the use

of a large stiffness constant (k as stated by Becker and Teschner [51]) with our SPH model.

We chose DFSPH as our particle-based model because of its low density fluctuation

property and its stability. As for Bender and Koschier [53], the particle neighborhoods are

updated using compact hashing. A maximum timestep is computed with respect to the

Courant-Friedrichs-Lewy (CFL) condition [59, 79] with the form

4t ≤ h/c, (2.6)

and it must satisfy the additional constraint

4t ≤ min h

|~F |
, (2.7)

where c is the speed of sound (as used in thermodynamics [87]). Finally, a symplectic

advection employing a Leap-frog scheme is used to integrate and obtain the updated velocity

and position. The timestep 4t is also used with our Eulerian solver. We update the grid

velocities from these new values, as well as using an interpolation based on the position of

particles (as with FLIP) in each cell.
N−1∑
i=0

~vgc(~x(b,f)i
) = ~vgc(~x(b,f)i

) + trilerp(~v(b,f)i
). (2.8)

We transfer the updated velocities ~v(b,f) from the band and fictitious particles onto the grid

faces. We also assign trilinearly weighted coefficients to each corner of cell c according to

the barycentric coordinates of each band and fictitious particle within this cell. We then

extrapolate the newly updated velocities in our grid to enforce consistency near the liquid

interface. That interface (between liquid and air) is tracked where φ = 0. The zero level set

is essentially where the values in the associated distance field are equal to zero. We define

our distance field to be ]0,1] outside the liquid, and [−1,0[ inside. It is relevant to mention

that our level set uses the same grid as for SPH neighborhood. It allows us to effectively link
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particles from the surface band to the Eulerian part of the model. It is important to note

that the level set is advected with our Eulerian grid in order to match the liquid interface

if the resampling step within the band (§ 2.5.3) is done on highly turbulent and complex

scenarios. Otherwise, it would have been far simpler to reconstruct the level set from the

particles at each iteration.

Hybrid steps

Level-set
advection

Band
sampling

Density
correction

Figure 2.2. Schematic overview of our particle surface band algorithm.

2.5. Particle Surface Band

This section focuses on the additional steps required to maintain our SPH surface band

along the liquid interface defined by the level set. As mentioned briefly in § 2.3, the particles

are advected alongside the level set function. After each substep, the surface band needs to

be resampled in order to preserve a consistent density among our SPH particles. Finally, a

density correction step is performed to update the density among fictitious particles. These

particles are used as probes inside the liquid to resample and correct the density of SPH

particles along the surface band. A brief overview of these steps computed on the surface

band is presented in Figure 2.2.

2.5.1. Lagrangian Nature

One of our main goals with the proposed approach is to preserve the Lagrangian nature

(behavior and visual appearance) of an SPH method, without the necessity of handling
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particles with negligible visual contributions (i.e., deep inside the volume of liquid). Our

hybrid method can be considered as two-way coupled by the manner it governs the coarse

flow. Grid velocities are updated from the particles, and are then used to advect φ where the

surface band is resampled. The fictitious particles can be considered as the coupling interface

between the Lagrangian (SPH) and the Eulerian (grid) models of our approach. Because the

adaptive timestep is computed from the SPH surface band particles, our level set (Eulerian

part) does match fairly well. The SPH steps performed on the particles allow preserving the

Lagrangian behavior and appearance. To achieve this, the steps of neighborhood search and

density computation are crucial.

(a) (b) (c) (d)

Figure 2.3. (a) Particles from the surface band (blue) are advected with our zero level

set (red). (b) At each substep, a resampling must be performed to preserve a valid density

between the surface band and the fictitious particles (orange). (c) The resampling process

is performed using a Poisson sphere distribution [74] method based on every interface point

defined by φ. (d) Resampling can also be performed among fictitious particles.

After the surface band resampling step (§ 2.5.3), we need to recover for any loss or gain of

density within each significant volume of liquid. This is where the fictitious particles come

into play. They apply a correction on density where there is neighborhood deficiency. These

particles are seeded inside the liquid, so basically where φ < 0. The resampling method

is based on the grid resolution. By using the grid cells as resampling starting points, we

simplify the search for these particles as neighbors. When we compute the density from

these fictitious particles, the three following scenarios can arise.
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2.5.1.1. At the Band Interface

This is the simplest scenario, where there are only SPH parti-

cles (blue) that contribute to the current density (red). In other

words, neighbors (green) of each particle are SPH particles. In that

scenario, the standard SPH formulation for density computation is

employed. However, note that some of those neighbor’s densities

might have been computed from other scenarios described below in §2.5.1.2 and § 2.5.1.3.

2.5.1.2. Deep inside the Liquid without SPH Particles

In that scenario, the density is computed exclusively from ficti-

tious particles (orange). Similarly to density computation described

in § 2.5.1.1, we use standard SPH formulation with significantly

larger masses and smoothing radii. These density values are pre-

computed in case the nearby density of the SPH particles of the

band is insufficient to preserve the stability of the simulation. More details on this specific

scenario are discussed in § 2.5.2.

2.5.1.3. Near the Transition of SPH and Fictitious Particles

This is the most sensitive scenario, where SPH particles and fic-

titious particles are used together to contribute to density values.

For those instances, we use a non-homogeneous density formulation

to compute the density (as shown in § 2.5.2). By non-homogeneous,

we mean that particles might have different masses. With fictitious

particles, masses are significantly larger than the ones from SPH particles because of their

proportional contribution (based on their masses and support radii) to the simulation. How-

ever, because we would like to prevent an expensive nonuniform pressure force computation

(as done by Yan et al. [90]), the density needs to be similar to that of the traditional method

(i.e., DFSPH in our case). Difficulties lie in the fact that the support radii (in addition to

masses) are unequal among the particles. This matter is covered in detail in § 2.5.2.

Finally, while performing the volume computation step (§ 2.4), every cell is marked as

part or not part of a significant volume of liquid. A volume is considered too small if it is
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below a certain threshold inside an isolated cell (without neighbor cells marked as liquid).

Because of the grid resolution limitation (i.e., the goal is to keep memory requirements

for the grid relatively small), our approach will not be able to resample a surface band to

enclose these very small volumes. Nevertheless, these small volumes are simply treated by

the traditional steps of the DFSPH method [53].

2.5.2. Non-homogeneous Density Model

hi/4
hj/4

sh

Figure 2.4. Example of overlapping support radii in 2D. In this case, the spherical caps

are equal because they come from the same plane.

The fictitious particles are considered as neighbors as much as all other particles. They

are stored in the same grid used for our level set φ, and so there is no additional treatment

to search for them. The only validation needed is whether they lie inside the support radius

of the current particle, which can be done at the neighborhood computation step. In order

to take full advantage of the band approach, the number of fictitious particles must be

significantly lower than in the reference high-resolution simulation. Densities of fictitious

particles are computed like normal SPH particles. However, because of their relative masses

mfi
and support radii hfi

, different kernel functions must be precomputed using these forms

mfi
= 3

4πρ0r
3
i , hfi

= ε 3
√
mfi

/ρ0, (2.9)

where ε is determined by the desired number of neighbors (as referred to by Desbrun [61] and

revisited by Adams et al. [47] a few years later). The radius ri of a particle is proportional to

the particle spacing ω used at the initial state (i.e., ri = dhi

ω
e). As mentioned earlier, if there

are enough neighbors around an SPH particle, we use the traditional way to compute density.
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However, if there is a deficiency in the neighborhood, we must use a different formulation

that combines SPH and fictitious neighbors. To prevent instabilities within the simulation,

the size of a fictitious particle (proportional to its mass) must not overlap the one from

an SPH particle (within the band). The initial particle spacing must be preserved at all

times. When computing the density of an SPH particle (from the surface band) that has

neighborhood deficiency, an estimation of the overlapping area between the two support radii

must be performed (shown in Figure 2.4). Basically, we compute a ratio of that overlapping

area (which is a volume between two spheres in 3D) and then multiply it by the density of

the fictitious particle. The fictitious density contribution is expressed as

ρ∗fi
= αijρfi

, (2.10)

where αij is the overlapping volume ratio computed as

αij =
πs2

hi

3

(
3hi4 − shi

)
+
πs2

hj

3

(
3hj4 − shj

)
, (2.11)

where shi
and shj

are respectively the spherical caps of the support radius influence (defined

as a sphere in 3D) for the current particle i and his neighbor particle j. That density

contribution is added as a corrective term to the SPH density of the current particle i.

Even if this is an approximation of the neighboring density, the hybrid pressure computation

prevents abrupt changes in density. It is important to note that in Equation 2.10, we

consider the support radius volume to be equal to 1. However, in practice, the ratio αij must

be divided by the current volume to be expressed as a normalized factor (i.e., between 0

and 1). Similarly to the band particles, the fictitious particle final velocities are computed

as follows:

~vfi
= ~vfi

−4t
∑
j

mj

(
κi
ρ∗fi

+ κj
ρ∗fj

)
∇Wij, (2.12)

where κv(i,j) are the stiffness parameters for the current particle i and its neighboring parti-

cles j (see [52] for more details), and ρ∗f(i,j)
is computed with Equation 2.10.

2.5.3. Adaptive Band Resampling

The sampling step is performed along the surface band defined by φ (Figure 2.3). After

the semi-Lagrangian advection step on φ, we perform a resampling among the SPH particles

to enforce a minimum thickness at the liquid interface. We use a Poisson sphere distribu-

tion [74] pattern to reflect the current distribution of SPH particles (according to the initial
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Figure 2.5. An example of pouring liquid in a container, with the number of particles

increasing over time. The fictitious particles (orange) are seeded below the free surface

and provide a correction step on densities to couple the Lagrangian (particle band) and the

Eulerian solvers (grid cells in green).

particle separation). The region of interest to resample is near the transition between the

particle surface band and the fictitious particles. As with [47], we use an additional re-

sampling step to perform split and merge operations along the inside portion of the band

to ensure that SPH densities are smooth across the interface and within this transition (as

shown in Figures 2.3(c) and 2.3(d)). Moreover, in order to enforce a smooth transition at

the surface band boundaries, we use a slightly larger SPH support radius to resample the

particles along the surface band. The number of samples used to seed fictitious particles

is currently a user-defined parameter. With all of our examples (except for the example

of Figure 2.5 where only 3 to 4 samples were sufficient), we used 5 samples per cell. This

number of samples offered experimentally a fair trade-off between stability and computa-

tion time. In some of our results and in our accompanying video sequences, some fictitious

particles appear to lie outside the liquid surface. We extrapolate those samples in order to
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Figure 2.6. Three large drops falling in a container filled with the same liquid. The finer

surface band particles (blue) lie on top of the inner fictitious particles (orange). The remain-

ing portion under the free surface (green) is exclusively handled by our Eulerian solver, as

illustrated by a regular grid of points.

ensure an adequate cover of the band when band particles are advected with φ. However,

we do not consider fictitious particles if a band particle has a sufficient SPH neighborhood.

In other words, at each timestep, several fictitious particles are never processed by our band

algorithm. The neighborhood adequacy is determined by a minimum number of neighbors

provided as a user-defined parameter (usually around 30-40, as stated by Monaghan [79]).

Because particles at the free surface are known to suffer from particle deficiency, we only

consider particles from a certain depth. This depth is basically at the boundary between the

surface band and the fictitious particles inside our liquid.

2.6. Implementation and Results

Our method has been implemented on GPU with CUDA. The MICCG solver has been

completely developed with CUDA, and most of the DFSPH implementation and our hybrid

model (i.e., Eulerian level set) runs on GPU. For validation and comparison purposes, we also

implemented every step of our approach on CPU, because some methods to which we compare

ours (e.g., [81, 63]) were implemented exclusively on CPU. All CPU implementations for our

method and the ones we compare to are run on a single CPU without multithreading. Our

approach has been developed and is fully integrated as a geometry node with the development

kit (HDK) in Houdini [84].
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Method
Example

Fig. 2.1 Fig. 2.6 Fig. 2.5

WCSPH [51] 0.008 0.001 0.005

Hybrid-SPH [81] 2.1 2.2 3.1

PCISPH [86] 3.3 3.5 1.7

DFSPH [53] 3.9 4.1 2.8

Ours 4.1 4.2 2.8

Table 2.1. Comparisons of average timesteps used (in milliseconds) to simulate some of the

presented examples.

We have managed to obtain significantly better computation times per step with our GPU

implementation. For comparison, we simulated the scenario from Figure 2.6 on a GTX 1080

at 3 seconds per frame, leading to a 15× speedup. As stated earlier, we have managed to

use a larger timestep compared to explicit SPH approaches. We were able to preserve the

liquid stability with timesteps almost 2× larger than PCISPH and quite similar to DFSPH

(as shown in Table 2.1). It is also worth mentioning that the orange particles shown in the

results represent the presence of our fictitious particles seeded (using the same grid than for

our distance field) beneath the surface (also visible in the video provided as supplementary

material) and close to the free surface.

Method
Example

Fig. 2.1 Fig. 2.6 Fig. 2.5

WCSPH [51] 11339.3 4224.3 2826.1

Hybrid-SPH [81] 2050.2 763.8 542.6

PCISPH [53] 794.2 310.3 30.8

DFSPH [53] 110.5 41.7 5.2

NB-FLIP [63] 53.6 51.3 50.9

Ours 47.5 25.2 4.9

Table 2.2. Comparisons of computation times (in minutes) for all 500 frames between

several state-of-the-art approaches that we implemented and ours.
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In §2.6.1 to § 2.6.5, we present static images of scenarios simulated with our approach.

Full animated sequences from these scenarios (and others) are available in the accompanying

video. Finally, note that the bouncing behavior appearing in the first frames of some of the

examples presented is inherited from the traditional SPH method.

2.6.1. Large Bodies of Liquid

Figure 2.6 shows a classic scenario simulating large drops of liquid falling in a container

partially filled. This scenario is a good illustration of what our approach aims for: It is

designed to perform better with large bodies of liquid, while we attempt to preserve as much

as possible small-scale details at the surface (especially with splashes).

Table 2.2 illustrates the gap in timings between our approach and state-of-the-art meth-

ods proposed in recent years. Our method offers a considerable speedup compared to a full

Step
Example (Fig.)

2.1 2.6 2.8(a) 2.8(b)∗ 2.5

Volume correction 5.2% 6.3% 5.0% 6.3% 9.1%

MICCG solver 19.0% 18.8% 20.0% 18.8% 18.2%

Hybrid-DFSPH 31.0% 31.3% 30.0% 31.3% 27.3%

Advect & update φ 10.3% 9.4% 10.0% 12.5% 9.1%

Resample band 15.5% 15.6% 15.0% 12.5% 18.2%

Seed fictitious 10.3% 9.4% 10.0% 12.5% 9.1%

Fictitious density 8.6% 9.4% 10.0% 6.3% 9.1%

Total 5.7 3.1 1.8 1.5 1.1

Table 2.3. Average computation time breakdown per step (percentage values are relative

to the total time in seconds) for some of our examples. ∗This scenario (Figure 2.8(b)) is a

good example that shows the limitation of our approach with small volumes and thin layers

of liquid.

resolution hybrid model [81] and is very similar in computation times to the narrow band

FLIP [63]. Although our approach does not achieve real-time performances as Chentanez

et al. [57], we manage to offer rather competitive offline computation times while retaining
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the Lagrangian nature of the SPH model without altering its behavior through the coupling

process. Our hybrid method preserves most of the small-scale details offered by the state-

of-the-art SPH method. We took advantage of a similar hybrid approach from Raveendran

et al. [81] to estimate pressure forces from a hybrid model and by focusing our efforts on a

band-oriented method. It is also important to mention that the Hybrid-DFSPH computation

times from Table 2.3 include the steps of density and divergence correction. As shown in

Table 2.3, the steps required by our surface band (resampling and non-homogeneous density)

do not require much additional computation time compared to processing a full resolution

SPH method, with its neighborhood and high pressure force. Another interesting example

is shown in Figure 2.5. In that scenario of pouring liquid, the number of particles is always

increasing over time. As expected, the larger the volume of liquid, the better our approach

performs. However, such an example is difficult to properly benchmark because of this vari-

ation in complexity (see Table 2.3). It is a very good trade-off because the SPH method

typically performs well with fewer particles, and our extensions offer excellent performance

when processing large bodies of liquid.
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Figure 2.7. Influence of the resampling of fictitious particles over the density correction

(illustrating the stability) along the surface band, especially around the outer interface. The

boundaries are handled by ghost solid particles (grey regions) and the fictitious particles are

resampled in the empty space inside the sphere. The columns of the figure, from left to right,

represent different times in the simulation, and the rows from top to bottom represent the

number of fictitious particles per cell (set respectively to 1, 3, and 5).

2.6.2. Density and Divergence Correction

As mentioned earlier, applying density correction within a band-oriented SPH method

is not trivial. An isolated scenario has been used to validate the density correction step

along the particle surface band. The setup for this scenario simulates a constrained sphere

of particles without gravitational forces. The velocities are updated using artificial viscosity

forces and corrected at the pressure projection step. We used ghost air particles (represented

by the grey boundaries in Figure 2.7) introduced by Schechter and Bridson [83] to spatially

constrain the liquid interface over time. Figure 2.7 illustrates different numbers of fictitious
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particles used to adjust density along the surface band (especially along the interior inter-

face). In most of our examples, we use around 5 fictitious particles per cell. However, this

number may differ depending on the type of scenario. The most sensitive region is clearly

along the surface band inside the liquid (the inner interface). This region needs to be re-

sampled every step with SPH particles (after advection). As shown in Figure 2.7, most of

our examples may become unstable after a few steps in presence of too few (i.e., below 3)

fictitious particles per cell.

An intuitive way to understand the relation between the number of samples (i.e., number

of fictitious particles) and the stability of the band is by observing the grid cells in those

regions. Since we use a hybrid pressure term as a first approximation for the DFSPH solvers,

the fewer fictitious particles we have in these coupling regions and the more biased this

approximation will be. However, based on our multiple experiments, most of the time using

a small number of fictitious particles along the SPH particle band will result in a loss of

small-scale details.

Figure 2.9. Columns of stabilizing liquids (80k particles). These color-coded examples

compare the divergence errors respectively between (left) PCISPH, (center) DFSPH, and

(right) our method (grid cells, band and fictitious particles). The errors are color coded

from white (no error) to red (from yellow to red in HSV color space).
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Figure 2.8. (top) An example where we use ghost solid particles to interact as a static

obstacle with our particle surface band. (bottom) An example where our approach is unable

to capture the thin layers. The volume of liquid is too small to be considered for band

resampling and is therefore only handled by the DFSPH solver.

Along the same line of ideas, the density computed at the boundaries of the particle-band

(between the inside of the liquid and the band) is essential to the stability of the simulation.

The pressure forces computed (with these densities) in these areas are mostly responsible

for the size of the timestep used and therefore for the computation time per iteration before

convergence. An insufficient number of fictitious particles can create instabilities (even with

a short timestep). Otherwise, an erroneous density can also result in loss of fine surface

details. We used the same scenario (fluid hitting a pillar with 80k particles) than Bender

and Koschier [52] to compare our resulting divergence error. Figure 2.9 shows the divergence

errors compared to other state-of-the-art methods. As shown, PCISPH presents some diver-

gence errors especially close to the boundaries (deeper inside the liquid). On the other hand
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Figure 2.10. Performance comparison between DFSPH and ours on example Fig. 2.6.

and as expected, DFSPH shows almost no significant divergence errors within the simulation

domain. Our method introduces a maximum local divergence error of 11.4 s−1 in different

regions within our hybrid model. As exposed in Figure 2.9, our divergence errors mostly

occur deep in the liquid since the density estimation is solely performed on grid cells. This

divergence error is larger than for DFSPH (around 3 s−1 for that same scenario), but sig-

nificantly lower than the one occurring with PCISPH (around 73 s−1). The error seems to

increase within a thin layer nearby the transition in-between the surface band and the ficti-

tious particles. This miscalculation is essentially caused by the way the density is computed

for these regions. The correction made from the overlapping support radii step on non-

homogeneous density model (§ 2.5.2) reduces the related error but still, it remains present.

An accumulated divergence error also lies underneath the surface since the fictitious particle

densities are computed from fewer neighborhood contributions with much larger masses.

Furthermore, the main advantage of our approach is clearly exposed as we increase res-

olution (i.e., number of particles) for a specific example. As shown in Figure 2.10, although

our method is slower for small numbers of particles compared to pure DFSPH, it shows

better speedup factors as resolution increases. Similarly to the issue explained in Figure 2.8,

our hybrid framework is slightly more demanding for small volumes of liquid and coarse
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Figure 2.11. Example of mixing different density/viscosity liquids in a bowl (e.g., water

in blue and oil in red). Our method updates a second particle band underneath the liquid

to handle non-homogeneous liquid-liquid interactions. The green portion below the surface

(selected grid cells on the left image) is handled by the Eulerian solver and coupled with the

fictitious particles resampled along both surface bands.

discretizations since our hybrid model requires additional steps to approximate the deep

portions and to handle the coupling of both models (i.e., grid and particles).

2.6.3. Flows with Obstacles

Our approach is also compatible with ghost solid particles to support static and dynamic

boundaries (such as obstacles). Figure 2.8(a) shows an example where our approach suc-

cessfully handles a static obstacle (unlike Figure 2.8(b), with not enough liquid). With the

container partially filled with liquid, we can define a particle surface band within a reason-

able volume. The level set does not consider the ghost particles and allows us to extend our

surface band around the obstacle.

2.6.4. Density-contrast Liquid-liquid Interactions

Our method has also proven to be able to handle several narrow bands within the same

simulation domain. In the example shown in Figure 2.11, we use our approach to model the

interaction of mixing two different density (and viscosity) liquids. Each liquid of different

density is represented by a single band of particles (blue for water and red for oil). In

order to adequately follow the interface of each liquid, distinct level sets have to be updated.

Moreover, some band particles are discarded underneath the liquid where both level sets are

overlapping. We usually keep φ (and its associated band) from the densest liquid. In this

scenario, we used a grid pattern to initialize the particles which explain the visible pattern
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Example : Grid res.
# particles Ratio (%)

Full res. Band Fictitious Band
SPH

Fict.
Band

Fig. 2.1 : 96× 96× 96 10.2M 2.1M 310k 20.6 14.8

Fig. 2.11 : 64× 64× 64 2.5M 575k 123k 23 21.4

Fig. 2.6 : 64× 64× 64 5.7M 800k 175k 14.1 21.9

Fig. 2.8(a) : 32× 32× 64 200k 75k 17.5k 37.5 23.3

Fig. 2.8(b)∗ : 32× 32× 64 100k 90k <5k 90 –

Fig. 2.5 : 32× 40× 32 – 12.5k 10.5k – –

Table 2.4. Parameters and statistics related to our simulation examples. The number of

particles used for the band and the fictitious is averaged over all the simulation frames.

(compare to the red particles emitted). We used the same initialization method for the initial

state used with Figure 2.6.

Figure 2.12. Instabilities can occur when our level set is not able to capture small features

in the form of too-thin layers.

2.6.5. Limitations with Thin Layers

Our approach is able to process small-scale details within the limits of the resolution

of our level set (defined inside a grid). Because of this grid resolution, a detached volume

of liquid must have an above-threshold volume to be considered. The grid resolution must

be kept fairly low in order to achieve reasonable computation times per step, but it must
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be high enough to follow a much more deformed interface of the liquid. Table 2.4 shows

grid resolutions used in our examples. In some examples, there is so much high-frequency

motion that our level set is unable to match the actual interface. We could increase the grid

resolution, but at the cost of increasing the number of fictitious particles of smaller masses

in order to preserve our density. It is also interesting to mention that the example shown

in Figure 2.8(b) is a good illustration of when our approach fails to deliver a performance

gain (compared to PCISPH). As exposed in Table 2.3, the average computation time per

step gets larger than using exclusively a hybrid model instead (such as [81]). The additional

framework required by our approach makes each step very expensive in order to preserve

an adequate surface band (which is mostly the whole simulation). We could overcome this

limitation by using an adaptive structure (e.g., k-d tree) for small volumes of liquid, but we

have not implemented it so far.

Another limitation with thin layers of liquid is related to a specific case of surface tension.

A typical and perfect example of surface tension is to let a single drop of liquid fall on the

ground. The inability to track and preserve a coherent interface makes it really difficult to

resample around the surface band. Moreover, in that specific example, it causes instability in

the corners of the container (as shown in Figure 2.12). The reason for this is the deficiency

in these neighborhoods when hybrid pressure forces are computed. It accumulates errors

based on few fictitious particles and almost no SPH neighbors. Switching to a standard SPH

method resolves those instabilities when small volumes are detected. Consequently, most

of our examples use a traditional SPH method locally in areas where there are thin layers

of liquid (or insufficient density information) at the free surface. A mesh-based method

(e.g., [60]) would be much more adequate for this specific example. Also as exposed by He

et al. [67], surface tension with SPH methods is still an active research topic.

2.7. Conclusion and Future Work

Our approach is very effective with a wide range of scenarios featuring small-scale details

in large bodies of liquid. The band-only method is an increasing trend in particle-based fluid

simulation for computer graphics because it allows focusing efforts mainly on the visible

parts of an animated fluid. Our approach offers an Eulerian-DFSPH scheme along a non-

homogeneous density model to greatly reduce the particle count requirement in comparison
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to a full-resolution SPH simulation. We achieve a considerable speedup while preserving the

expected behavior and realistic level of detail of an SPH model.

We can witness some losses in volume when small detached portions of liquid are removed

after the resampling step on the surface band. As future work, it would be possible to treat

these small detached volumes as diffuse particles [77]. To some extent, it would be also

interesting to push the limits of the proposed approach to a fully adaptive model with

multiple scales of particles (similar to [69] and [89]). Finally, we plan to use our band-

oriented approach for procedural surface details. We could improve local regions from our

particle band in order to add induced turbulence, splashes, and other diffuse behaviors such

as liquid-air mixtures.
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Chapter 3

Particle Upsampling as a
Flexible Post-Processing
Approach to Increase
Details in Animations
of Splashing Liquids

This second paper presents an approach for enriching existing animations of splashing

liquids. In order to achieve this, we construct and upsample a splash volume to induce

splash dynamics. Ballistic particles are used to simulate diffuse dynamics and infer surface

tension bevahior with artificial forces. In addition, we use an implicit wave model to couple

interactions between splashing particles and the existing coarse volume of liquid.

Publication

This paper [130] was published in Computers & Graphics, Volume 88, in May 2020. It has

been reformatted for this thesis. Roy was involved in the formulation and numerical analysis

of this approach. He was also responsible for the design, implementation, and evaluation of

the approach. Poulin supervised each stage of the research project. The first draft of the

published paper was written by Roy and improved by Paquette and Poulin prior and during

the submission process.



Particle Upsampling as a Flexible Post-
Processing Approach to Increase Details in
Animations of Splashing Liquids
BRUNO ROY, Université de Montréal
ERIC PAQUETTE, École de technologie supérieure
PIERRE POULIN, Université de Montréal

(a) Coarse (400k particles) (b) Ours
(coarse + 450k upsampled particles)

(c) Reference (85M particles)

Figure 3.1. Induced splash dynamics is generated (b) on top of a coarse FLIP liquid pro-

vided as input (a). Our approach is able to reproduce localized realistic splashes comparable

to a high-resolution (about 100× more particles) reference (c) with solely 450k upsampled

particles seeded within a small portion of the domain.

Abstract

Realistic and detailed liquid splashes require costly fine-scale discretization. We present an

efficient post-processing approach for particle-based methods to locally improve the behavior

of splashes on coarser liquids. Our method first computes a splash volume over time from

the intersections between an identified upsampling volume and colliding volumes. We then

upsample particles inside cells of the splash volume; these cells are pre-computed using a

likelihood score based on criteria favoring emerging particles. In addition to the advection

scheme, enhanced realism is achieved by applying a localized artificial pressure on upsampled

particles in order to mimic surface tension in critical regions of splashes. Finally, we propa-

gate waves using a novel implicit model that couples the impact of upsampled particles on

the coarser liquid by updating the velocity field at these locations. Our implicit wave model

can produce detailed swirls by solely applying velocity updates directly on the underlying

particles from the coarse liquid, and prevents from using a high density of surface points. As

a result, our approach can generate localized and parameterizable high-resolution splashes
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from solid-liquid and liquid-liquid interactions, and thus can simulate a wide range of unique

and customizable splashes on top of an animated coarse liquid.

Keywords: Splash Modeling, Post-processing Approach, Procedural Method, Multi-scale,

Multi-resolution, FLIP

3.1. Introduction

In liquid simulation for visual effects, the discretization of the model is key to extract

important features from complex examples, such as splashes and highly turbulent flows. This

implies that in a particle-based liquid simulation, the number of particles must be strongly

increased to bring out the fine details desired for the final outcome. With a uniform density

of particles, most of the particles do not contribute to the desired and expected behavior

displayed in the final rendered image, as they are either submerged below the surface or

remain almost motionless throughout the simulation.

In this paper, we propose a flexible post-processing approach to improve splash modeling

on top of a lower-resolution FLIP liquid surface. A subset of the input liquid volume is

extracted from an input FLIP simulation. The extracted volume, so-called splash volume,

is generated using the solid-liquid or liquid-liquid interactions occurring during the input

animation. This volume is then augmented with a denser set of additional particles advected

through the input velocity field. Tracer particles are seeded among the upsampled particles

to control the behavior of the denser splash volume introduced by our approach. These

tracers exert artificial forces, allowing the simulation of a surface-tension effect similar to

applying an artificial pressure force. The collisions between airborne upsampled particles

and the surface of the input coarse liquid are used as impact sources that inject energy into

a surface-based linear wave model.

We present a novel and comprehensive splash modeling approach for particle-based liq-

uids. Our main contributions can be summarized as the introduction of:

• A volume-based method to determine and upsample the splash zone for liquid-liquid

and solid-liquid interactions.

• Localized tracers to induce diffuse and surface-tension behaviors on upsampled par-

ticles.
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• A sparse implicit linear wave formulation to handle interactions between the coarse

input and the upsampled particles at impact locations.

• A trade-off between realistic and artistic splash effects.

• An interactive splash editing approach (once pre-computation steps are performed).

3.2. Related Work

Over the years, several solutions to simulate realistic and detailed fluids have been pro-

posed for purely Lagrangian methods, such as explicit and implicit SPH [139, 111, 98], and

for hybrid methods, such as FLIP [152, 99, 95, 107, 131]. We refer readers to a comprehensive

survey [112] and a book [101] describing in detail these methods. Procedural methods have

also proven to be very efficient to enrich an input coarse fluid with fine details while offering

a more practical artistic control. In the following, we focus primarily on topics more closely

related to our work.

3.2.1. Upsampling Methods and Adaptive Models

Several approaches have explored different ways to increase the apparent spatial resolu-

tion of a coarse fluid simulation. In the last decade, the challenge of increasing the apparent

resolution of fluid simulations has been addressed through many variants of sophisticated

upsampling methods and spatial adaptive simulation models.

3.2.1.1. Upsampling Methods

These methods are able to effectively improve the high-frequency details while preserving

the low-frequency behavior of the fluid, especially for smoke simulations [117, 127, 133, 129].

Although we focus solely on increasing the resolution of localized splash behaviors in liquids,

our work shares this same goal. Few attempts to apply this goal to liquids were made for both

Eulerian [127] and Lagrangian [149, 135] methods. Instead of upscaling the input velocity

field, our method provides a realistic way to upsample localized portions of the unmodified

coarse simulation data (particles and velocity field).

Some researchers have considered adding sub-scale quantities (e.g., curl noise) to existing

coarse simulations [117, 127], while others have coupled these quantities to the Navier-Stokes

equations [133]. In all these techniques, the quantities are extrapolated into the obstacles

(geometric models) to prevent artifacts around them, but at the cost of significantly less
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realistic behaviors compared to high-resolution simulations. Selle et al. [134] proposed an

approach to introduce particle-based vorticity to grid-based methods. Their work was ex-

tended by Pfaff et al. [129] to handle dynamic obstacles. In contrast to adding sub-scale

quantities to existing simulations, other researchers have introduced multi-scale and adap-

tive formulations for particle-based methods that extract different ranges of details within a

simulation domain [137, 97, 95, 96].

Kim et al. [116] introduced a novel Eulerian approach to increase the apparent spatial

resolution of an existing liquid simulation. As they noted, increasing the free-surface details

has shown to be a valid solution to the up-scaling problem on liquids, since the tangential

velocity (and associated turbulence) is loosely coupled to the fluid velocity field. Their work

was extended by Mercier et al. [122] to propose a coupled scheme using a high-resolution wave

simulation while preserving the entire frequency spectrum of the input coarse simulation. For

more details, we refer readers to the comprehensive survey by Thuerey et al. [142] on recent

fluid up-scaling methods. These methods are unable to generate small-scale details and are

limited to increase the actual apparent resolution. We offer a complementary and efficient

way to recreate the missing small-scale details at sudden disturbance locations occurring

with coarse liquids.

3.2.1.2. Spatial Adaptive Models

Even though our approach acts as a post-processing method, it is closely related to the

essence of several spatial adaptive simulation models of the state of the art. Adjusting the

spatial resolution of simulation models has been firstly introduced for fluid simulation by Des-

brun and Cani [106]. Their approach adaptively handles highly deformable models through

a refining step applied to the particle resolutions. Similarly, Adams et al. [94] proposed

an adaptive sampling method focusing on the computational efforts of complex geometric

regions of a fluid volume. They reduce the number of particles according to their visual

contributions. Adaptive sampling on fluid simulations has also been used to improve and

preserve the visual appearance of thin sheets of fluids. After identifying the thin portions

of the fluid, the approach introduced by Ando et al. [95] resamples these critical regions

based on the anisotropy of the particle neighborhoods. On a different note, Orthmann and

Kolb [128] used a temporal blending technique to reduce the number of particles within
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low-resolution regions. Horvath and Solenthaler [108] improved the conservation of mass for

resolution refining methods of particle-based fluid simulation. Meanwhile, Zhu et al. [151]

proposed a new grid structure to extend the domain dimensions while preserving the fine

details of a fluid simulation. More recently, Aanjaneya et al. [93] also introduced an effi-

cient and sparse data structure to leverage the adaptivity of large-scale simulation domains.

Recently, Sato et al. [132] extended the narrow band FLIP method to adaptively allow a

transition between the particle band and the grid-based simulation anywhere in the domain

(i.e., not exclusively close to the surface). Lastly, inspired by leveraging the data struc-

ture adaptively toward multi-scale fluid simulations, Ibayashi et al. [109] introduced a novel

warping grid in order to dynamically deform a regular grid evolving during the simulation.

While using spatial multi-scale resolution with particles improves visible surface details of

liquids, their adaptive nature makes it difficult to exploit a trade-off between procedural and

physics-based methods as our approach offers.

Although the resolution dependency is well known in the field of fluid simulation for

computer graphics, some challenges remain. Re-computing the forces and the advection step

of a small portion of the liquid within a given simulation could be significantly expensive

and particularly demanding to preserve its stability. Some authors have shown that this can

be improved by using a machine learning process [118, 104, 144, 147]. Compared to these

data-driven methods, our approach only requires a coarse liquid simulation to generate high-

resolution results. Closer to our motivation, procedural methods have proven that upscaling

a simulation can produce interesting small-scale features [116, 122]. In contrast to these

procedural methods, our approach is able to locally generate splash details that were poorly

approximated due to a coarse discretization of the input simulation domain.

3.2.2. Diffuse Material and Splash Modeling

Several researchers have focused their work on handling interactions of air-liquid mix-

tures. The results of these interactions generate phenomena such as foam, spray, and white

water at the interface of the liquid. Several papers have proposed hybrid schemes to handle

sub-scale details with particles advected through a grid-based simulation [140, 119, 123, 145].

A purely Lagrangian approach was proposed by Ihmsen et al. [110]; they used post-processed

layers of diffuse particles on top of an SPH simulation to represent foam and spray effects.
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In our method, we handle the diffuse portions of a liquid as ballistic particles and refine

their behavior with localized artificial pressure corrections from seeded tracers among the

upsampled particles.

The diffuse air-liquid interactions are more likely to happen within splashes and highly

turbulent regions of liquids. Kim et al. [115] focused their efforts on identifying under-

resolved regions and adding massless markers in splashing portions of the liquid. Chentanez

and Müller [103] also proposed a solution to improve the visual appearance of liquids for

real-time application. Their hybrid model uses spray particles to approximate the liquid-air

interactions between rigid and soft bodies. Recently, Um et al. [144] introduced a novel data-

driven method to increase the realism of diffuse effects on splashing liquids. A perceptual

study was also published on these splashing behaviors [143]. However, in contrast with our

work, we are focusing solely on improving the splash modeling before its diffuse effects. Our

approach focuses on key events prior to splashing behaviors.

3.2.3. Wave Simulation

Many researchers have considered using a wave simulation instead of a computational

fluid to simulate liquid motion [114, 150, 141, 105]. Through the years, they have presented

several variations to reproduce waves with the capillary wave equation [114], the iWave

model [141], and the shallow-water equation [146]. These methods were used to represent

a very large body of liquid (e.g., an ocean) as well as to enrich fine-scale details in liquid

simulations.

Particle-based waves were also used to increase high-frequency details of liquid simu-

lations [105, 122, 148]. In these methods, the wave equation is used and seeded through

advected particles. However, some of these approaches have experienced difficulties when

handling complex scenarios such as splashing and highly turbulent behaviors [150, 105].

Mercier et al. [122] managed to robustly couple a dense point set wave representation to

a smooth and meshless surface. Later, Yang et al. [148] proposed a novel implicit linear

wave model to enrich SPH simulations. Recently, the dispersion kernels used with wave

simulations were improved for real-time applications [102, 113]. Similarly, we handle inter-

actions between the upsampled particles and the input coarse liquid with a point-based wave

representation and update the input particle velocities and positions.
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Pre-computation Steps Runtime Steps High-Res. ResultLow-Res. Input

Splash Volume Upsampling

Capillary Waves

Next Frame

Artificial ForcesSeeding Tracers

Figure 3.2. Overview of our pipeline. The particles and the velocity field of an existing

animated coarse liquid are used as initial inputs. The first two steps are part of a pre-

computation process to determine and upsample a splash volume. The simulation steps

iterate on the tasks to seed tracers among the upsampled particles, apply a localized artificial

pressure, and generate linear waves at impact particle locations on the coarse liquid surface.

The highly detailed splashes generated by our approach are computed at a much lower

cost than would have been necessary to simulate similar splashes at high resolution with

traditional approaches.

3.3. Method Overview

We briefly describe in this section each step of our pipeline (Fig. 3.2). As we aim to

benefit from hybrid methods, we decided to rely on the widely known FLIP-based fluid that

we use as a coarse input to our approach.

From a coarse simulation as input data (e.g., particles and a velocity field for each frame

of the input simulation), two pre-computation steps are performed. First off, we compute a

splash volume (§ 3.4.1) by combining the intersection between user-defined colliding volumes

and the input volume (i.e., generated from the coarse input liquid). As presented in Fig. 3.2,

the splash volume (e.g., green portion of the upsampling step) is slightly extended (e.g.,

yellow portion of the upsampling step) to fully cover disturbances surrounding solid-liquid

and liquid-liquid interactions. Thereafter, the resulting volume is discretized and upsampled

using a higher density of particles per cell (§ 3.4.2). These upsampled particles are then

injected into the existing velocity field and advected alongside the input particles of the

coarse liquid (§ 3.5.3). Among upsampled particles, so-called tracers are seeded (§ 3.5.1) and

used as control particles to apply localized artificial forces mimicking the effect of surface

tension (§ 3.5.2). Lastly, we use a point-based linear wave model to couple interactions
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between the upsampled particles and coarse particles at impact locations. The waves are

seeded to enrich these impacts over the coarse input liquid (§ 3.6). As shown in Fig. 3.2,

two pre-computation steps are performed only once for the whole input simulation data and

can be reused with different parameter sets to generate alternative high-resolution results.

3.4. Splash Volume

A subset of the input simulation domain is determined to locally increase details around

potentially splashing portions of the liquid. This volume is computed from the coarse input

simulation data. At each frame of the input simulation, we identify a colliding volume that

will contribute to the splash volume (§ 3.4.1). Thereafter, the splash volume is refined to

upsample important portions of the liquid with more particles (§ 3.4.2).

3.4.1. Splash Volume Generation

From the input liquid, our method splits the scene into upsampling and colliding

volumes. These distinct volumes are determined manually at the first frame of the

input animation. The colliding volumes can be either a volume of liquid or a static or

dynamic obstacle. We identify the upsampling volume as Ωup and the colliding volumes as Ωc.

The splash volume ΩS is obtained from the unions of the upsampling volume Ωup

and the colliding volumes Ωc over time. The splash volume ΩS is therefore pre-computed

from all Nf frames of the input simulation and is expressed as

ΩS =
Nf⋃
i=1

(Ωc
i ∩ Ωup

1 ) , (3.1)

which corresponds to the intersection between the upsampling volume Ωup and the union of

the colliding volumes. The updating process of the splash volume ΩS is illustrated in Fig. 3.3

as well as in the accompanying video. As shown in the top row, we only keep the intersection

with the volume Ωup at the first frame i = 1.
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Figure 3.3. Generation of the splash volume from the upsampling volume (blue) and the

collision volumes (green).

Our method for generating a splash volume handles scenarios in which solid-liquid or

liquid-liquid collisions occur. For solid-liquid collisions, we convert the input mesh of the

static or dynamic obstacle into a volume Ωc. As shown in Fig. 3.3, only the intersection with

Ωup is kept since it will ultimately represent the splash volume ΩS to be upsampled. For

liquid-liquid interactions, we split the volume of the input liquid into distinct volumes: one

volume Ωup to be upsampled (e.g., liquid container), and volumes Ωc that will collide with

the upsampled volume (e.g., a falling drop of liquid). For this type of interaction, we keep

track of the particles initially composing Ωc to generate the deforming volume Ωc
i over time.

3.4.2. Particle Upsampling

The purpose of the oversampling step is to identify regions within the splash volume ΩS

in which upsampled particles should be added (see § 3.7 for implementation details). As

opposed to upsampling entirely the volume ΩS, our upsampling method focuses on regions

(i.e., subset of cells) in which significant changes are likely to occur (see § 3.8.6 for a compar-

ative analysis). Our emerge-tendency upsampling method concentrates on the regions of the

splash volume in which particles are most likely to emerge. We define the emerge-tendency

of cells as their probability to contain particles that reach the surface at some point during

the entire animation. A likelihood score is computed for each cell identifying which ones to

upsample. The likelihood score is obtained by computing three reward terms as follows:

Θ(x) =
Nf∑
i=1

rti(x) + α
Nf∑
i=1

rui(x) + (1− α)
Nf∑
i=3

rsi(x), (3.2)
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where Θ is a set of cells containing the score associated with each grid cell x within ΩS and

in which the reward terms are respectively based on particle trails rt, velocity norm ‖~ui(x)‖2

noted as ru, and velocity orientation stability rs. We also introduce a weighting factor α to

the reward terms ru and rs controlling the relative influence of each other on the likelihood

score. We used α = 0.5 in all our examples except with the River (see § 3.8.2). Given as

Algorithm 4: Identify cells to upsample with ΩS.

for x ∈ ΩS do
rt(x) = ru(x) = rs(x) = 0

for i ∈ [1, Nf ] do

if crossSurface(p(x), i) then
rt(x) += rti(x)

ru(x) += ‖~ui(x)‖2

for i ∈ [3, Nf ] do

rsi(x) = 1 for j ∈ [i− 2, i] do
rsi(x) ∗= max (~uji (x) · ~ni(x), 0) ≥ cos ψ

2

rs(x) += rsi(x)
Θ(x) = rt(x) + αru(x) + (1− α)rs(x)

meanScore = computeMeanScore(Θ)

s = ∅

for x ∈ ΩS do

if Θ(x) ≥ meanScore then
s← s ∪ x

UpsampleCells(s, sup)

input the entire animation of the coarse liquid, computing the particle trail reward term rt

is fairly trivial. We set rti(x) to be equal to the number of particles p(x) originating from

cell x that cross a surface cell within the splash volume at frame i. The surface cells are

defined as the discretization of the surface level set. Since our objective is to predict which

particles among the upsampled particles will reach the surface, only computing the trails of

the coarse particles will be insufficient. In that sense, the input velocity field ~u complements

the particle trails. We set rui(x) to the L2 norm of the grid cell velocity. Consequently, the

velocity L2 norm term penalizes cells containing a lower velocity over time.

Lastly, we complement the likelihood score Θ of each cell x with the reward rs, which

considers the grid cell velocity orientation over time. The rs term rewards grid cells with
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(a)

ψ

(b)

Figure 3.4. 2D example of rsi evaluation.

velocity orientations pointing toward the liquid interface for a sequence of consecutive frames.

The velocity orientation stability rsi(x) is equal to 1 if consecutive velocities lie within a cone

defined by an angle ψ aligned with the normal of the liquid interface (otherwise rsi(x) = 0).

We figured out (after a few experiments) that a window of three consecutive frames (i.e.,

i−2, i−1, and i) was a good compromise to estimate our stability term over time. Consider

the 2D example shown in Fig. 3.4: the current and two previous velocities are oriented inside

the cone defined by ψ in green (top image: rsi(x) = 1). The bottom image shows a case

where one of the velocities ~u t (red) is outside the cone (i.e., rsi(x) = 0).

The resulting subset of cells s to upsample contains the cells with a likelihood score (as

shown in Alg. 4) greater or equal to the average likelihood score among the cells contained

inside the splash volume ΩS. Finally, the cells identified are upsampled using the commonly

known jittered grid technique. As proposed by Zhu and Bridson [152], we create randomly

jittered particles in every cell using d3 subgrid positions where d is the subgrid dimensions.

The number of particles per cell used in our examples corresponds to the number of particles

per cell given from the coarse input liquid multiplied by a factor sup. Therefore, the number

of particles upsampled is equal to supd
3.

3.5. Tracers and Upsampled Particles

Tracers are seeded in the splash volume, but only within the narrow band (§ 3.5.1) defined

from the interface of the liquid. These tracers are used to influence the upsampled portions

of the liquid; they mimic the effect of surface-tension forces observed in splashes. We call
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them tracers because they trace trajectories for upsampled particles. The movement of a

tracer is initialized with the velocity transferred from the closest upsampled particle, and

afterward, it is only influenced by gravity. The upsampled particles within a user-defined

maximum distance of tracers are affected by an artificial pressure term as used with position-

based fluids (PBF) [120]. The details of upsampled particles velocity update are presented

in § 3.5.3.

3.5.1. Seeding Tracers

Since our aim is to enhance surface details around localized portions of the input liquid,

we constrain the seeding of tracers within a narrow band according to a set of criteria. The

seeding operation is performed in a way to achieve a uniform distribution, to distribute the

tracers close to the interface, and to seed them according to the velocity norm throughout

the animation. Tracers are seeded using the Fast Poisson Disk sampling method [100] within

a narrow band of the splashing liquid. The narrow band is defined as a set of cells discretized

from the liquid interface. We use the 3D implementation of the sampling method considering

the narrow band thickness (see § 3.7 for implementation details). The band thickness4τtp is

defined as twice the influence radius of the tracers (refer to Table 3.1). This band thickness

was chosen to ensure a minimum number of upsampled particles affected by our tracers and

to avoid neighborhood deficiency.

The last criterion on the velocity norm is used to discard insignificant motionless portions

of liquid. The velocity norm criterion focuses on seeding tracers in regions where the input

liquid is likely to be disturbed and to present notable small-scale detail differences. Tracers

are seeded at locations where the L2 norm of the velocity is increasing. In other words,

tracers are seeded in cells with increasing velocities over time. The moment of creation of

tracers is determined by the velocity criterion as well. To trigger the seeding process, we use

a five-frame temporal sliding window 4wtp and evaluate the velocity L2 norm change for

every grid cell. The L2 norm evaluation of the velocities is performed as shown in Alg. 5.

Although evaluating velocities within a five-frame window leads to very good results on

our examples, this frame interval could be adjusted by the user. Cells where tracers will be

seeded must also have a high velocity; the velocity L2 norm must be higher or equal to the

current average velocity ‖~ui‖ in order to exclude small velocities increasing over time. We
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Algorithm 5: Evaluate if the velocity L2 norm of a cell at time t satisfies the tracer

seeding conditions within the temporal frame interval [t, t+4wtp[.

for i ∈ [t, t+4wtp[ do

if ‖~ui+1‖2 ≤ ‖~ui‖2 or ‖~ui‖2 < ‖~ui‖
2 then

return false
return true

update an average velocity from all the cells containing particles at each frame and use it as

a reference. Seeding tracers is computed at a negligible cost since it is performed exclusively

on cells at the interface and inside the splash volume.

3.5.2. Localized Artificial Forces

We use the tracers to apply a correction term on the position of the upsampled particles

to avoid artifacts such as clustering and clumping. These artifacts issued from negative

pressures occur at the initialization step with the input velocity field. We use an approach

similar to that of Monaghan [124] to correct tensile instability with an artificial pressure

term, as follows:

sp = −k
(
W (~pi − ~pj, h)
W (~pi − ~q, h)

)n
, (3.3)

where ~q is a point inside the smoothing domain defined between ~pi and ~pj, n the pressure

power constant, and k a stiffness constant (we always use k = 0.1 and n = 4). The particle

displacement 4~pi based on the artificial pressure term sp is then expressed as follows in the

particle position update step, as used by Macklin and Müller [120]:

4~pi = 1
ρ0

∑
j

sp∇W (~pi − ~pj, h). (3.4)

The support radius htp is defined between 0 and the input support radius h to adjust the

influence of tracers over the upsampled particles. The value of htp depends on the desired

visual outcome (as shown in Fig. 3.16). Furthermore, the particle density is usually unknown

when using the FLIP simulation method. We thus derived a normalized expression implicitly

taking density into account [138]:

4~pi = 1∑
jW (~pi − ~pj, h)

∑
j

sp∇W ∗
tracer(~rij, htp). (3.5)
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Similarly to Müller et al. [125], we use the Poly6 kernel for density estimation and the Spiky

kernel for gradient estimation. In Eq. 3.5, we employ a slightly different kernel function to

compute the position update. We propose a tracer-relative kernel function as follows:

W ∗
tracer(~rij, ~rit, htp) =

 (htp −min(|~rij|, |~rit|))3 0 ≤ |~rit| ≤ htp

0 otherwise,
(3.6)

where |~rij| is the length of the vector between upsampled particles i and j, and |~rit| is the

length of the vector between upsampled particle i and the closest tracer. By promoting the

closest tracer, we ensure to improve a localized particle attraction based on the most signif-

icant contributor. In the proposed approach, tracers are used as control particles over the

upsampled particles. Their kernel-based contribution influences the neighboring upsampled

particle positions by updating their velocities and by applying an artificial force to mimic

the pressure nature of liquids on diffuse particles.

Figure 3.5. Our tracers (red) constrain an artificial pressure term integrated with PBF.

The localized correction produces a smooth and controllable surface-tension effect among

the upsampled particles (left) compared to the originally diffuse behavior (right).
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By comparison to position-based fluids (PBF) (Eq. 3.3), we use a point ~q defined as the

position of the closest tracer. In contrast with the one used by Macklin and Müller [120],

our artificial pressure term is primarily applied to particles within a radius distance from the

seeded tracers. The distance between an upsampled particle and the closest tracer must be

smaller or equal than the support radius h used for the coarse input. This term improves

the generation of fine surface-tension details among the upsampled particles.

Our tracer-relative kernel function can also be easily integrated into the PBF model. As

shown in Fig. 3.5, seeding tracers among the particles and applying our constrained artificial

pressure can locally improve affected regions in a PBF liquid.

3.5.3. Upsampled Particles: Advection and Lifespan

During their lifespan, upsampled particles evolve between different states, based on the

types of details they are likely to add to the simulation. In this section, we will explain the

three states (bulk, ballistic, and impact) and how particles evolve between states (Fig. 3.6).

The bulk state is flagged when an upsampled particle is inside the splash volume. By

default, all upsampled particles are considered as bulk at the initialization step (i.e., when

seeded at pre-computation steps). The bulk particles pbulk are advected using a Runge-Kutta

scheme through the input velocity field [152]. The velocity update used for bulk particles is

performed solely using the input coarse velocity field as follows:

~u i
pbulk

= ~u i−1
pbulk

+ lerp(4~u i
input, ~x

i
pbulk

). (3.7)

As with FLIP, the weighted average of the velocities of the upsampled particles is computed

and added to the nearby staggered MAC grid ~u i
input nodes. At each step, the interpolated

difference from the input grid velocity 4~u i
input is computed and assigned to each particle

at their respective position ~x i
pbulk

. This velocity update step is very effective since we are

computing these velocity changes only for cells inside a subset (i.e., splash volume) of the

input simulation domain.
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Upsampled
Particle
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ballistic
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Ballistic
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Figure 3.6. State machine (trigger events in green) for determining the particle state (yel-

low).

The ballistic state is triggered when an upsampled particle leaves the bulk volume deter-

mined by the liquid interface of the input simulation (see Fig. 3.6). The upsampled particles

flagged as ballistic are initialized with the current particle velocity ~u i
pbulk

previously computed

before leaving the coarse liquid (i.e., w.r.t. the liquid surface). They are later influenced by

gravity and possibly by tracers (as previously described in § 3.5.2) as follows:

~u i
pbal

= ~u i−1
pbal

+ ~g4t, (3.8)

and where the updated position of a bulk particle ~x i
pbal

at frame i is obtained by integrating

the resulting ~u i
pbal

with the correction term defined in Eq. 3.5.

Lastly, the impact state is triggered when a ballistic particle intersects back with the

coarse liquid surface. The name impact is taken from the fact that these particles will

alter the velocity of the particles within the bulk volume. This state is only flagged for a

particle during one frame. It allows us to detect the positions for seeding point-based waves

within the bulk portion of the input liquid (§ 3.6). As soon as we store the impact position,

the particle is flagged back as bulk and its velocity is updated according to the underlying

velocity field. We use trilinear interpolation for a smooth transition of the velocity from its

ballistic nature to the current grid cell.

For efficiency reasons, we discard particles that are unlikely to contribute to splashes. We

define an upsampled particle as discarded if it no longer contributes to the surface details of

the liquid. We use two criteria to determine if an upsampled particle contributes to surface
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Before droplets impact
Coarse input With implicit waves

After droplets impact
Implicit points

(a) (b) (d)(c)

(frame 30)
(frame 60)

Figure 3.7. The small droplets of a splash (a) are often absorbed on impact (b), resulting

in loss of multiple fine surface details. Our implicit linear wave model provides convincing

interactions through small swirls generated by these droplets (c). The waves are propagated

through the implicit points projected on the surface (d).

details: its distance to the interface inside the liquid and its current velocity. With these two

criteria, we manage to preserve small- and large-scale details around induced splashes. The

distance criterion uses the same distance as defined when seeding tracer particles (§ 3.5.1).

However, this threshold does not apply if the upsampled particle is still inside the splash

volume. As a second criterion, we also discard upsampled particles if their velocity is lower

than the average velocity. We use the same average velocity per cell obtained when seeding

tracers (see § 3.5.1).

3.6. Implicit Linear Waves

Since ballistic particles are likely to touch the interface of the coarse liquid, additional

details must be generated on the liquid interface in order to preserve the realism of the

approach. Following the detection of impact particles (i.e., ballistic particles intersecting

the coarse liquid surface), we handle their interactions with the coarse liquid provided as

input (Fig. 3.8). In our approach, these interactions are reflected as velocity updates on the

grid cells, and generated as seeded waves evolving from the impact locations. These waves

are modeled by surface points uniformly distributed to cover the implicit surface. A wave

displacement is computed according to the impact properties and the estimated normals

obtained from the implicit surface. The evolving waves locally affect the neighboring cell

velocities by their tangential velocities. The neighboring affected area is determined by the

impact radius. The positions of the coarse input particles are then updated to reflect these

changes (see Fig. 3.7).
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Impact Detected Seed and Evolve Wave Update Coarse Liquid

Figure 3.8. An impact is defined by the intersection between an impact particle and the

coarse liquid (left). Surface points distributed and projected on the surface are used to

support and evolve the linear waves (middle). The tangential velocities of the point-based

waves are used to update the underlying grid velocity, and then the positions of the input

particles from the coarse liquid (right).

3.6.1. Surface Points

The surface points are distributed uniformly over the entire implicit surface generated

from the coarse liquid. These surface points are generated once at the very first frame of

the input animated fluid. We use a Poisson distribution to initialize the surface points along

the surface. The positions of the surface particles from the coarse input liquid are used as

the initial locations for Poisson disk sampling [100]. The surface points that we call implicit

points from this stage, are then projected on the surface of the coarse liquid. The number

of implicit points created is bounded by the particle density per cell of the input liquid.

Since we aim to solely introduce small impact interactions, our wave model does not require

a computationally expensive maintenance process (as opposed to Mercier et al. [122]) on

implicit points after the projection step. In addition, it is noted that surface points are not

used when generating the surface mesh (as shown in Fig. 3.8(c)) considering that their sole

purpose is to perturb surrounding cells of the input velocity grid.

3.6.2. Wave Seeding and Propagation

The seeding locations are determined by the position of the upsampled particles flagged

as impact particles. We use the current velocity magnitudes of the upsampled particles at

impact locations to parameterize the wave properties when seeded. Since our goal is to infer

interactions from these impacts, our wave model is defined as an efficient gridless version
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of the 2D heightfield liquid simulation [126]. With this model, height is the factor that

determines the wave velocity. On impact, we update the heights hpimpl of the implicit points

(pimpl) i within radius as follows:

hipimpl
= hipimpl

+ 1
N

N−1∑
j=0

[
cos

(
‖~c− ~pj‖
rim

π

)
αs‖~uim‖

]
, (3.9)

where ~c is the center of the impact position, ~pj the position of the jth implicit neighbor of

N points, and ~uim the velocity of the impact weighted by a user-defined normalized scaling

factor αs. The radius of the impact rim is also defined as a function of the impact velocity

norm ‖~uim‖ as follows

rim = αr‖~uim‖, (3.10)

and weighted by a user-defined normalized constant αr. In our examples, we used an αr

equal to 10% of the simulation scale from the coarse input liquid. The first term in brackets

of Eq. 3.9 is the height displacement applied by an implicit neighbor point j, and the second

term is basically the strength of the wave displacement.

We propagate and evolve the waves using the neighbor contributions at each frame. For

each implicit point i, an average height h̄pimpl from the neighborhood is computed and used

to update a local 1D wave velocity (initialized as zero before impact):

uipimpl
= uipimpl

+ 1
N

N−1∑
j=0

[
(1− βdamp)ujpimpl

+ 2(h̄pimpl − hjpimpl
)4t

]
. (3.11)

The updated height is obtained by adding this 1D velocity to its current value uipimpl
(ini-

tialized by the grid velocity at that position). The term (1− βdamp) enforces wave damping.

Finally, we update the positions on every implicit point affected, and according to the ori-

entation of the implicit point normal . The normal at these points is computed using an

averaged least-squares planar fit of the local gradient of Φ based on the implicit point neigh-

bors. The planar fit allows us to compute a plane defined by a tangent and a bi-tangent,

both orthonormal to its normal.

3.6.3. Influence over Coarse Particles

We achieve the update on the input surface particle positions by converting the affected

particles to bulk particles. The subset of affected particles is determined by the impact

radius. As a wave is affected by damping, the corresponding particles return progressively
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to their current input state. The implicit point velocities upimpl are used to alter the coarse

grid velocity, and to update the affected coarse particles. We use the tangential velocity

at each implicit point defining the waves. The tangential velocity is computed by orienting

the implicit point velocity towards its tangent vector. For our wave model, we chose the

tangent vector ~t ipimpl
according to the impact velocity orientation and with respect to ~n i

pimpl
.

We compute the updated grid cell velocity by interpolating it between its current value and

the tangential velocity at that position (i.e., ~xpi
impl

). The grid cell velocity is returning to its

unmodified value as the tangential velocity gets attenuated as:

~u ∗input(x) = (1− γatt)~uinput(x) + γatt(u i
pimpl

~t ipimpl
). (3.12)

The normalized interpolation term γatt is calculated based on the ratio between the current

implicit point velocity at frame t and the one when the wave has been seeded (~u0
pimpl

):

γatt =
‖~upimpl‖
‖~u0

pimpl
‖
. (3.13)

The velocity updates are performed exclusively on the surface cells (i.e., according to the

discretized level set).

3.7. Implementation

Most of the steps of our approach are computed on the GPU with CUDA. Our examples

were generated on an Intel i7 quad core running at 3.4 GHz with 16 GB of RAM, and using

an NVIDIA GTX 1080 with 8 GB GDDR5X. Our input coarse simulations come from the

implementation of FLIP available in Houdini 16.5 [136]. Although our input is obtained from

a traditional FLIP method, the use of any of its variants, such as narrow-band FLIP [107],

would have been equally valid. The parameter values used with the presented examples are

exposed in Table 3.1. In the following, we also include implementation details for core steps

of our method to facilitate reproducibility of the presented results.
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Parameter Notation Value

Input support radius h ∗

Scaling reward terms α [0.5, 0.7]

Subgrid dimensions d [2, supd]]

Tracer influence radius htp [0, h]

Tracer band thickness 4τtp 2h

Tracer temporal window 4wtp 5

Tracer pressure power n 4

Tracer stiffness constant k 0.1

Upsample factor sup [2, 6]

Scaling impact velocity αs 0.5

Scaling impact radius αr 0.1sup

Scaling wave damping βdamp [0.7, 1.0[

Table 3.1. Parameters used to generate our results. As exposed, our approach has only few

user-defined parameters. Most of the parameters presented are fixed (i.e., invariant from the

types of scenario) or given from the input liquid. ∗ The input support radius h and scaling

upsample factor sup are the only parameters that are specific to a scenario; they depend on

the scale and the level of detail required by it.

Splash Volume. When generating the splash volume, Ωup and Ωc are computed using an

SDF of the input particles. During SDF computation, we also consider as boundaries the

input obstacles such as static and dynamic meshes. The discretized splash volume resolution

corresponds to the resolution of the input velocity grid. It is formed as a subset of cells of

the input velocity grid. Of course, we solely consider cells containing particles as part of

this subset. In the case of liquid-liquid interactions, we keep track of the distinct volumes of

liquid by assigning the particle unique IDs to a volume ID. Naturally, and for that reason, we

avoid using a resampling step when generating the input liquid simulation. For both solid-

liquid and liquid-liquid interactions, we expand the colliding volume Ωc in order to capture

properly the disturbance on the upsampling volume Ωup. Expanding Ωc is particularly helpful

with solid-liquid interactions since obstacles tend to push particles outside their boundaries.
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Moreover, we can automatically trigger to stop updating the splash volume ΩS if it remains

constant after several consecutive frames (e.g., as with the Hulk’s wrath example shown in

Fig. 3.13). We observed that while we should limit the number of cells in the splash volume,

the impact on the total computations is less critical than other parts of our method. Lastly,

we determine the first frame i from which we track the splash volume as the first collision

detected between the colliding volume Ωc and the upsampling volume Ωup.

Volume Upsampling. In our implementation, we upsample ΩS by using its discretized repre-

sentation (i.e., set of cells). The input particles contained in the splash volume are automati-

cally converted to upsampled particles. Therefore, we are able to prevent undesired artifacts

that may occur by separately processing upsampled particles from the low-resolution in-

put liquid. Using eight particles per grid cell is usually enough to extract fine details with

the FLIP simulation model. As discussed by Zhu and Bridson [152], using more particles

will rarely generate better results. However, since our approach aims to upsample an input

coarse liquid for visual improvements, using locally more particles can greatly increase the

small-scale details of the results. In fact, for the purpose of generating dynamic details for

splashing liquids, we show that a higher density of particles will locally produce high-detailed

and realistic results.

Seeding Tracers. As described by Bridson [100], we chose k to define the density of tracers

for each sample xi (k = 5 was used in all our examples). The samples xi are initially defined

at each center of the cells contained in the discretized narrow band of the liquid surface.

Finally, the same distance as used with 4τtp is employed for the Poisson disk radius r. For

effeciency, a tracer is discarded as soon as it touches the interface of the bulk liquid.

3.8. Results and Discussion

Our post-processing approach can locally generate realistic splashes in a wide range of

scenarios. These splashes are obviously different than the ones that would result from a

simulation with denser particles everywhere, but they are representative of such simulations

since they affect both the splash details and the coarse liquid surface. We can handle induced

dynamics for solid-liquid as well as liquid-liquid interactions. In the following, we discuss

the results obtained for the different examples presented in this paper and its supplemental

material.
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(a) (b) (c)

Figure 3.9. Spherical drop: (a) Low-resolution (95k particles, 403 grid resolution,

0.9 s/frame) simulation of a spherical drop of liquid falling in a pool of liquid. (b) High-

resolution (1.2M particles, 2003 grid resolution, 7 s/frame) simulation. (c) Our method

(115k added particles, 0.3 s/frame).

Figure 3.10. Induced splash dynamics is generated on top of a coarse FLIP liquid provided

as input. Our approach is able to reproduce localized realistic splashes (left enlarged) that

were initially absent in the input coarse liquid. We also handle interactions between our

geometric model and the coarse input, such as reflected swirls and waves (right enlarged),

by adding an implicit linear wave model.

3.8.1. Comparison with High-Resolution Results

The idea behind our approach is to provide a sufficient density of particles locally to

reduce the noticeable numerical dissipation occurring at sudden disturbance locations in the

liquid. Our method focuses on generating splashes locally where they should appear. As

shown in Fig. 3.9(a), the low-resolution liquid is unable to represent the small crown splash

because of its very coarse discretization (95k particles). We had to increase the number
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of particles to slightly above a million (Fig. 3.9(b)) to successfully generate a fine-detailed

splash with a traditional FLIP method.

High-resolution (900k particles)

Ours (coarse + 115k upsampled particles)

Figure 3.11. A ball falls in a small container of liquid. As clearly noticeable in the low-

resolution example (left), the splash is totally nonexistent. Despite using this same coarse

liquid as an input to our method, we managed to generate a detailed crown splash (top

right), that is similar to the high-resolution reference (bottom right).

Despite the fact that the standard FLIP method provided enough fine details to extract

a decent splash at high resolution, the computational cost of simulating this example was

high (∼7 s/frame) compared to the low-resolution version (∼0.9 s/frame). Although this

has been solved for hybrid methods, it is still worth mentioning that most of the high-

resolution particles barely contributed to the desired result, even within a narrow band

(e.g., [107, 131]). Our experiments on this example showed that only around 100k of these

particles from the high-resolution simulation actually contributed to the central splash. With

our post-processing approach, we need to add only 115k particles (based on criteria provided

in § 3.4.2) on top of the coarse input particles, to generate a realistic splash reproducing a

behavior matching the one found in the high-resolution simulation. Solely a small portion of

the simulation domain needed to be processed by our method at a very inexpensive cost of
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(a) Coarse input (b) Chentanez and Müller [103]

(c) Ihmsen et al. [110] (d) Ours

Figure 3.12. Comparison between our approach and state-of-the-art methods using spray

particles. The spray particles ((b) and (c)) and our upsampled particles (d) are identified in

red.

about a second per frame from the coarse input liquid. Clearly, an arbitrary larger simulation

domain would have resulted in larger gains.

3.8.2. Solid-Liquid Interactions

Our method has a fully automatic way to deal with solid-liquid interactions. The ani-

mated mesh of the solid interacting with the liquid is used to generate the associated splash

volume. This step is computationally inexpensive and the frames only need to be processed

once to compute and upsample the resulting splash volume. Another advantage of our ap-

proach is that once the pre-computation steps (splash volume and upsampling) are performed

for a specific scenario, it can be used efficiently to experiment with different sets of values

for parameters (as shown in Fig. 3.16)

Because our splash volume is computed by the interactions between a closed mesh and

the input liquid, we must extend slightly the interface of the updated SDF by an epsilon

value to gather the part of the coarse liquid in the vicinity of the moving object. For
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Example

Simulation time Simulation

Low High
Ours Advection

Seeding Artificial Implicit

Res. Res. Tracers Pressure Waves

Spherical drop 0.9 7.0 0.3 14% 18% 23% 46%

Ball drop 1.0 6.5 0.4 14% 16% 23% 47%

Hulk’s wrath 3.1 9.3 0.5 16% 23% 21% 40%

Speedboat ride 3.5 10.5 0.7 17% 13% 19% 52%

Fractal fruits 5.2 102.7 0.9 16% 14% 18% 52%

River 2.6 11.2 0.8 15% 12% 17% 55%

Table 3.2. Discretization statistics and simulation computation times breakdown. The

computation times are expressed in seconds per frame.

example, we used an epsilon equal to 0.2 (twice the particle separation) for the Fractal

fruits (Fig. 4.1) and the Ball drop scenarios (Fig. 3.11) with a domain size of 8 × 5 × 8.

For the scenario of Hulk’s wrath (Fig. 3.13), epsilon is 0.5 for dimensions of 10 × 5 × 3.

We extend the SDF to ensure that the resulting splash volume will contain most of the

particles affected by this induced interaction. The Speedboat ride scenario (Fig. 3.10) is a

Figure 3.13. Hulk’s wrath is a good example of our approach with solid-liquid interactions.

(top) The splash is almost nonexistent in the low-resolution example. (bottom) Our method

manages to generate a realistic splashing liquid out of this very coarse liquid.

good example to push the limits of our method. It would be reasonable to think that our

method could be even more costly than a traditional FLIP method if the resulting splash

volume were generated over the whole simulation domain. As shown in the Speedboat
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ride scenario, the path followed by the animated boat passes through most of the domain.

Therefore, the evaluated splash volume at the end of the animation is indeed as large as

the surface covering the whole liquid. However, even with a difficult scenario like this one,

we managed to keep increasing the splash details while reducing significantly (compared to

the equivalent high resolution) the associated computation time per frame. The criteria for

upsampling are key to avoid oversampling at non-visually-interesting areas. As evidenced

with the low-resolution example of this scenario, the boat does not generate much detail

except when tight turns occur. From the input coarse resolution, our score based on the

tendency of a particle to reach the surface helps to wisely upsample the underlying cells of

the discretized splash volume. As shown in Table 3.3, the Speedboat ride example was more

Example

Number of particles Pre-computation∗

Low High Upsampled Splash
Upsampling

Res. Res. Res. Volume

Spherical drop 95k 1.2M 115k 2.3 1.4

Ball drop 100k 0.9M 115k 2.5 1.5

Hulk’s wrath 225k 1.1M 150k 3.6 1.8

Speedboat ride 280k 2.3M 300k 34.2 2.5

Fractal fruits 400k 85.4M 450k 6.2 3.5

River 250k 10.6M 350k 3.3 5.2

Table 3.3. Discretization statistics and pre-computation times breakdown. Our method

adds upsampled particles to the low-resolution particles. ∗ The pre-computation steps (in

seconds) are excluded from the simulation times (Table 3.2) since they are computed only

once before simulating.

costly in pre-computation steps because we had to compute the volume based on the whole

animation (500 frames). In contrast, the Hulk’s wrath splash volume example was very fast

to compute, considering that the hand was in contact with the liquid for just a few frames of

the animation. In such cases, we were able to stop early the volume pre-computation step.

The Fractal fruits (Fig. 4.1) example successfully demonstrates the capability and scalability

of our post-processing approach. Once the required pre-computation steps are performed
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(total of 9.7 s to compute and upsample the splash volume for 200 frames), our method

faithfully reproduces realistic and parameterizable splash details with less than one second

per frame at runtime. According to this demonstration, our approach achieves a speedup

factor of more than 100× over the high-resolution reference (see Table 3.2). Furthermore,

the advantages of our approach also become apparent when simulating with different sets of

values for parameters in order to obtain the desired result (e.g., as shown with Fig. 3.16).

We also experiment with our approach in a more dynamic environment. The River scenario

(available in the accompanying video) demonstrates the flexibility of our approach on a high-

velocity flow. As explained in § 3.4.1, we compute the splash volume from the first collision

between the upsampling and colliding volumes (i.e., Ωup and Ωc). However, in this case,

since the initial velocity of the upsampling volume is fairly high, we process the upsampling

step at the first collision frame.

3.8.3. Liquid-Liquid Interactions

We also provide examples of liquid-liquid interactions. This type of scenario can produce

an adequate splash volume by separating the input liquid into different volumes. For instance,

with the Spherical drop scenario (Fig. 3.9), we divided at initialization the domain into two

parts: the sphere and the liquid in the container. The sphere is handled similarly to a

mesh in the sense that we pre-compute an SDF based on the related coarse particles. The

resolution used for computing the level set needs to be high enough to capture and separate

at the initial state (i.e., at the first frame or at emission) the input coarse liquid into distinct

volumes. We used a resolution of 1283 in all our examples and it has proved to be sufficient

for our purposes.

Fig. 3.9(a) Fig. 3.9(b) [103] [110] Ours

# spray / splash
- - 49k 262k 115k

particles

Time per iteration
900 7000 2 248 80

(ms)

Table 3.4. Computation times comparison with state-of-the-art methods and ground truth

(i.e., high resolution) on an example as shown in Fig. 3.12.
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3.8.4. Comparison with Spray Particles

We compared our approach with state-of-the-art spray particle methods. In order to

present a fair comparison, only the contributions associated with spray particles are exposed.

As shown in Fig. 3.12(b), Chentanez and Müller [103] introduce a very diffuse model to

simulate spray particles. Since they target real-time applications, their spray model is added

on top of a heightfield fluid, preventing particle-particle interactions. More similarly to

ours, Ihmsen et al. [110] present a fully procedural spray model adapted for particle-based

liquids. Their approach is capable of generating convincing diffuse behaviors, the motion

of the spray particles is solely influenced by external forces and gravity (similar to our

upsampled particles flagged as ballistics). This is where our approach and the purpose of

tracers stand out. The localized forces applied by the tracers reproduce a better surface-

tension behavior (Fig. 3.12(d)) as compared to the spray particles proposed by Ihmsen et

al. [110] (Fig. 3.12(c)). Moreover, our implicit linear wave model generates smooth swirls at

the base of the crown splash, introducing better interactions between our upsampled model

and the coarse input liquid, as opposed to Ihmsen et al. [110].

3.8.5. Integration with Hybrid-DFSPH

To demonstrate that our approach works with most particle-based methods, we imple-

mented our splash volume and upsampling method in a hybrid DFSPH model [131] (results

are shown in the accompanying video). Although the velocity field can be estimated from

the particle velocities, using the one provided from a hybrid model is even better. Our

approach is completely independent of the input architecture. Nevertheless, we had to con-

straint the upsampling step to focus on regions with the splash volume bounded by the input

narrow band of particles. We experiment with different strategies but doing so prevents us

from generating artifacts deep under the liquid interface (i.e., in the Eulerian portion of the

simulation).

3.8.6. Comparison with Uniform Upsampling

As shown in Fig. 3.14, our upsampling method faithfully preserves the small-scale details

at the top of the crown splash (image on the right) while a uniform upsampling (image on the
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(a) Uniform upsampling (b) Emerge-tendency upsampling

Figure 3.14. This crown splash example shows a comparison with a naive (a) uniform up-

sampling method and (b) our upsampling method (right). (Bottom) The density of particles

per cell is shown in green inside the splash volume (red).

left) causes clustering of particles at the base of the splash, in regions where velocity mag-

nitudes tend to be zero over time. Adding particles to these regions will hardly contribute

to increase details. Our upsampling method offers a more effective way to upsample and

distribute particles within the splash volume. As shown in the graph of Fig. 3.15, our up-

sampling method presents a distribution trend similar to the one of the Maxwell-Boltzmann

distribution. As stated by Mandl [121] and in reference to the Maxwell-Boltzmann statistics,

the density of particles highly depends on the distribution of velocities inside the fluid. By

oversampling particles in the regions identified by our method, we ensure to solely increase

particle density to bring out fine details dissipated and bounded by the input resolution.

Also, since our method highly upsample a subdomain of the input simulation, preserving

such a distribution is critical for detail enhancement and to avoid undesired particle clump-

ing. As expected, our upsampling method preserves a high density of particles in cells with

velocities close to ‖~̄u‖ (average velocity norm). Low densities of particles are kept in cells with
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Figure 3.15. This graph plots the density against the velocity distribution exclusively

within the splash volume of the scenario shown in Fig. 3.14. ρ0 corresponds to the number of

particles per cell as used by the input coarse liquid; 6ρ0 represents the maximum number of

upsampled particles used in this examples (i.e., sup = 6). Also note that the dash plot (uni-

form upsampling) indicates many more particles in total (upsampled) than the continuous

blue plot (emerge-tendency upsampling).

low velocities and very high velocities (way above average). The low densities of particles in

high-velocity cells correspond to highly diffuse particles (e.g., such as small droplets).

3.9. Conclusion and Future Work

We have presented a flexible and physics-motivated post-processing approach to gener-

ate detailed and realistic splash behaviors from a coarser particle-based input liquid. Our

approach is divided into different steps. A splash volume is computed and upsampled by

analyzing the surrounding environment and by determining where sudden disturbances oc-

cur. The upsampled particles advected alongside the coarse liquid provide a practical way

to enrich portions of liquid that could not otherwise capture such details. We also provided

a novel way to affect splashing particles through tracers and localized artificial pressure

corrections. Finally, our efficient implicit wave model offers a controllable method to pro-

cess interactions between upsampled splash particles and input particles. As noted by the

statistics presented in Table 3.2, even if we compare the computation times by adding the
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simulation of a low-resolution liquid to our upsampling method, we still manage to outper-

form the reference high-resolution simulations. In addition, once the pre-calculation steps

are completed, our method allows a user, without any limitation, to adjust the level of detail

almost interactively.

Nevertheless, our method suffers from a few limitations. First of all, precomputing the

splash volume once for the whole animation prevents us from upsampling at different time

intervals. In other words, highly dynamic scenarios would require an adaptive upsampling

method to address frequent changes in the regions of interest through time. Our approach is

currently designed to better suit scenarios in which the upsampled portion is initially static.

An evolving 4D splash volume would be an interesting direction for future work. By tracking

these splash volumes temporally, we could improve our upsampling method to cover complex

interactions. Secondly and along the same lines, while our method offers a controllable way

to improve the apparent resolution of splashing liquids, some high-resolution scenarios would

hardly benefit from its current state. For example, simulating the collision between a high-

velocity volume of liquid and a complex geometry (e.g., firehose shooting water on a highly

detailed armadillo) would barely benefit from our proposed upsampling approach.

Because of the flexibility of our approach, we plan to explore more art-directable methods

to use controls similar to our tracers as a modeling tool for splashes and turbulent flows. It

would be also relevant to improve the steps of upsampling and tracer seeding at different

scales through machine learning techniques. State-of-the-art neural network approaches

could improve the prediction on seeding locations for better results. It could also provide an

efficient way to upsample particles based on learned high-resolution examples, and result in

even more similar splashes.
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(columns) on the appearance of the liquid.
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Chapter 4

Neural UpFlow: A Scene Flow
Learning Approach to Increase

the Apparent Resolution
of Particle-Based Liquids

This third paper introduces a deep learning approach to enhance the level of detail

of particle-based liquids. Our network allows us to generalize high-resolution details for

liquids and to express them as displacements. To generate the displacements, the proposed

architecture learns differences between positions based on the neighborhoods of the particles.

We also use an adapted interpolation method to infer the magnitude of the deformations

between pairs of liquids at low and high resolutions. The predicted displacements are then

expressed as a Lagrangian motion to advect the particles inferring dissipated details bounded

by the input resolution. In complement to our work, we also provide a framework using this

same interpolation method to augment particle-based liquid datasets for multi-resolution

training purposes.

Publication

This paper [177] was published in Proceedings of the ACM in Computer Graphics and

Interactive Techniques (PACMCGIT), proceedings of the ACM SIGGRAPH/Eurographics



Symposium on Computer Animation 2021 (SCA), in September 2021. It has been refor-

matted for this thesis. Roy was involved in the formulation and numerical analysis of this

approach. He was also responsible for the design, implementation, training, and evaluation

of the approach. The first draft of the published paper was written by Roy and improved by

Poulin and Paquette prior and during the submission process.
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(a) Coarse Input (b) Ours (c) Reference

Figure 4.1. Our learning deformation field reproduced (b) most of the small- and large-

scale details from the high-resolution ground truth (c) using solely the low-resolution input

example (a). Particles are added and displaced by our network to generate plausible details

of up-resed animations at a fraction of a high-resolution simulation cost.

Abstract

We present a novel up-resing technique for generating high-resolution liquids based on scene

flow estimation using deep neural networks. Our approach infers and synthesizes small- and

large-scale details solely from a low-resolution particle-based liquid simulation. The proposed

network leverages neighborhood contributions to encode inherent liquid properties through-

out convolutions. We also propose a particle-based approach to interpolate between liquids

generated from varying simulation discretizations using a state-of-the-art bidirectional op-

tical flow solver method for fluids in addition with a novel key-event topological alignment

constraint. In conjunction with the neighborhood contributions, our loss formulation allows
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the inference model throughout epochs to reward important differences in regard to signifi-

cant gaps in simulation discretizations. Even when applied in an untested simulation setup,

our approach is able to generate plausible high-resolution details. Using this interpolation

approach and the predicted displacements, our approach combines the input liquid proper-

ties with the predicted motion to infer semi-Lagrangian advection. We furthermore showcase

how the proposed interpolation approach can facilitate generating large simulation datasets

with a subset of initial condition parameters.

Keywords: Fluid Simulation, Particle-Based Liquid, Deformation Field, Optical Flow, Up-

Resing, Machine Learning, Deep Neural Network

4.1. Introduction

Machine learning approaches have been rising in popularity in the last few years due to

their accessibility and versatility. These learning approaches have been adapted for many

applications in media and entertainment areas, and more specifically in graphics, such as an-

imation [154], motion capture [182], style transfer [186], 2D-to-3D sketching techniques [162],

physically-based rendering [159], texture synthesis [164], fluid simulations [165], and so on.

In recent years, the use of machine learning on fluids has considerably reduced the empha-

sis on computationally expensive numerical methods while taking advantage of the existing

knowledge in the field. So far, machine learning techniques have been used to improve nu-

merical solvers [168, 194, 181], to compute fluid features [184, 189, 165, 183], and to infer

visual details [171, 161]. However, very few of these methods have directly addressed the no-

tion of improving the apparent resolution of particle-based fluids, particularly in the context

of learning on unstructured data. Lately though, researchers in the computer vision com-

munity [172, 173] have studied irregular data, such as point clouds, and introduced ways to

directly process them as inputs for 3D classification and segmentation tasks. Moreover, their

work has been recently extended [169, 187] to learn on temporal motions of point clouds such

as defined using scene flow estimation methods. Considering structural similarities between

point clouds and particle systems, we demonstrate in this paper that using scene flows ex-

pressed as Lagrangian motions on particles is promising to infer fine and controllable details

on fluids.
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The work most similar in spirit to ours is the one by Prantl et al. [171]. They propose

to leverage neural networks to learn precomputed deformations of liquid surfaces. While we

partially share their goal in encoding space-time deformations for liquids, there are several

noticeable differences. First, we target particles as opposed to signed distance functions

(SDF) to provide greater flexibility on the method used to apply deformations. We show

that applying deformations directly on particles before generating a surface facilitates bring-

ing out fine details, often depending on the discretization. Second, using a neighborhood

embedding layer, our network does not require multiple learning phases to encode realistic

high-resolution liquid features. In addition, we use a deformation weight obtained from the

work of Thuerey [180] to guide (i.e., through our deformation-aware loss function) and speed

up convergence.

In this paper, we propose an adapted deep neural network architecture that combines

a recent scene flow machine learning method with particle neighborhood interactions ex-

pressed as fluid simulation properties. Our network exploits particle neighborhoods inspired

by hybrid liquid simulation methods to encode hierarchical features of the particle-based sim-

ulations during the convolution operations. We show that we are able to preserve important

liquid features at every level of convolution. Our loss function also includes a coefficient to

weigh important local features while reducing convergence time. Finally, we introduce an ad-

vection scheme that allows us to displace the particles while taking the actual low-resolution

motion into account. This same advection scheme is also used to artificially grow our existing

multi-resolution simulation dataset using an adapted interpolation method. With this com-

prehensive learning pipeline, our approach is able of accurately reproducing high-resolution

details using solely a very coarse particle-based liquid. To summarize, the main contributions

of our work are:

• an adapted deep neural network architecture using particle neighborhoods and a

deformation-aware loss function reducing the inference noise encoded during convo-

lutional operations,

• an advection scheme that transposes a scene flow into Lagrangian motion using the

input velocity field,

• an interpolation scheme for matching key events topological changes between simu-

lations at different resolutions, and
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• a data augmentation framework that artificially grows an existing particle-based sim-

ulation dataset.

4.2. Related Work

Multi-Scale and Procedural Methods. In the last decade or so, several methods have

been proposed to enhance the apparent resolution of liquid simulations. While procedural

methods were more practical for decoupling simulations from discretization, multi-scale

methods were particularly efficient to process independently surface details and separate

them from coarse volumes of liquid. Using a resampling strategy to segregate multiple layers

of the simulation data (e.g., particles) has been revisited multiple times. Adaptive models

were proposed to dynamically adjust the size (and contributions on forces) of particles using

split-and-merge operations within the simulation loop [155, 190]. While these methods share

the same goal in spirit, Winchenbach et al. [190] leverage the fundamental basis of Smoothed

Particle Hydrodynamics (SPH) methods. Their proposed scheme enables defining with pre-

cision particle masses to improve stability while preserving small-scale details. Similarly,

Solenthaler and Gross [179] introduced an adaptive method to couple a dual particle-layer

scheme using two distinct particle resolutions. The method of Winchenbach et al. [190] was

also extended to improve spatial adaptivity by introducing a continuous objective function

as a refinement scheme for SPH [191].

A method focusing on preserving thin sheets was introduced by Ando et al. [156] al-

lowing them to adapt the resolution of particles in Fluid Implicit Particle (FLIP) simula-

tions. Later, narrow-band methods were introduced to get the best of both Eulerian and

Lagrangian schemes by expressing the liquid surface with particles and the coarser volume

with a grid [163]. The method was first introduced to FLIP given its semi-Lagrangian na-

ture. The method was then extended by Sato et al. [178] to process arbitrary locations (as

opposed to exclusively the liquid surface), identifying where particles are needed to refine

the appearance of the surface. The same idea was revisited and adapted to SPH meth-

ods [174, 160, 176]. Other adaptive methods were also proposed to exploit spatially adaptive

structures to capture different simulation scales [157, 153].

Meanwhile, procedural methods have also been introduced as a refinement scheme by gen-

erating surface points through wave simulations. As noted by Kim et al. [166], high-frequency

99



details are not necessarily coupled to the coarse simulation and can be independently gen-

erated directly onto the animated mesh. In comparison to the work of Kim et al. [166],

which was applied in an Eulerian setup (i.e., solely based on the corresponding SDF and

the velocity field), Mercier et al. [170] proposed a Lagrangian up-res method to increase the

apparent resolution of FLIP with a secondary surface wave simulation. Recently, another

procedural method was introduced focusing solely on splashing liquid details [175]. As we

focus on neural networks (NN) to enrich the liquid surface, we will not compare our work

with procedural methods. Although we share the similar goal of improving the apparent

resolution of the liquid surface at a fraction of the cost and computational time, our ap-

proach offers the capabilities to synthesize plausible details because it is trained on real fluid

simulations.

Machine Learning for Fluids. Leveraging machine learning methods for fluids was first

introduced in graphics by Ladickỳ et al. [168]. They demonstrated the inference of SPH

forces to approximate Lagrangian positions and velocities using regression forests. Along

the same line of ideas, a similar method was lately proposed to apply neural networks to

Eulerian methods [194]. More recently, NNs were combined with numerical solvers to model

diffuse particle statistics for the generation of splashes [183]. Convolutional neural networks

(CNN) were also widely used, but instead to predict Eulerian simulation properties. Thomp-

son et al. [181] introduced a method exploiting CNNs to speed up existing solvers. They

proposed a CNN-based architecture as a preconditioner for the pressure projection step.

CNNs were also used to learn flow descriptors to visually enhance coarse smoke simulations

using precomputed patches [161]. In a context where synthetic and plausible samples can

be generated on-demand, using generative adversarial networks (GAN) seemed suitable for

fluids. GANs were initially used as a super-resolution technique to enhance temporally co-

herent details of smoke simulations directly in image-space [193]. Meanwhile, Kim et al. [165]

proposed another generative network for precomputing solution spaces for smoke and liquid

flows. Super-resolution was later revisited for fluids, enabling an LSTM-based architecture to

predict the pressure correction and generate physically plausible high-frequency details [188].

Due to their sequential properties, LSTM-based layers were later used by Wiewel et al. [189]

to predict changes of the pressure field for multiple subsequent timesteps. Another work on

convolutional networks for Lagrangian fluids has been presented by Ummenhofer et al. [184].
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They proposed a way to express particle neighborhoods using spatial convolutions as differ-

entiable operators. In contrast with these methods, our network learns to encode differences

between resolutions as opposed as to map fluid features using similarities.

Recently, Prant et al. [171] proposed a stacked neural network architecture allowing them

to learn space-time deformations for interactive liquids. Although we share the same goal

of precomputing simulation data of the liquid surface, our work focuses on the learning in a

Lagrangian setup for up-resing purposes. Moreover, in comparison to the work of Prant et

al. [171], in which two stacked NNs are used to learn deformations, we propose a simpler and

more efficient NN architecture by using a deformation coefficient directly in our objective

function and by exploiting the particle neighborhoods to guide the convolution downsampling

layers.

4.3. Method

Given consecutive frames of an input animation of a liquid, our approach predicts La-

grangian deformations to infer high-resolution details and behavior. We propose an adapted

scene flow learning architecture, that we call FluidFlowNet (FFNet), to determine La-

grangian motions on particle-based liquids. Our learning architecture is inspired from

FlowNet3D [169]; it encodes displacements between two unstructured and unordered particle-

based liquids simulated at different resolutions using solely their positions and velocities as

input (§ 4.5.1). Our dataset is composed of over one thousand randomly generated pairs of

liquid simulation scenarios in which each pair is composed of two simulations using the same

initial parameters but at different resolutions: one simulation at a coarse resolution and the

other at a high resolution (§ 4.4.2). Similarly to the work of Thuerey [180], we compute a

mapping correspondence between the two liquids using an optical flow solve on a 4D volume.

However, in our case, the resulting optical flow is used to capture the deformations between

pairs of multi-resolution simulations guiding our loss function. We use the multi-resolution

liquid pairs as a training set to encode a deformation using our FFNet model. Finally, the

inferred deformation field obtained from our learning pipeline is transposed into Lagrangian

displacements and used as up-resing operators on the low-resolution particle-based liquid

(§ 4.6). With these displacements, we encode the missing details and behavior bounded
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from the input low-resolution simulation. In addition, a post-processing step refines the par-

ticles’ positions combining the low-resolution input velocities with the applied displacements

while reducing the inference noise. Fig. 4.2 shows an overview of our up-resing pipeline for

liquids. In this paper, we use bold lowercase symbols for vectors and bold uppercase symbols

for matrices. For clarity in Fig. 4.2, we use dotted symbols for the Lagrangian properties.

For instance, the velocity of a particle would be noted as u̇.
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Figure 4.2. Overview of our up-resing pipeline. The input data used during the training

phase is prepared using pairs of simulations at low (in orange outline) and high resolution

(in green outline), which is also used to generate a deformation field. Our network encodes

particle displacements using differences between neighboring particles as a scene flow. These

predicted displacements are then refined and applied directly to the particles to infer details

(result in blue outline).

Preparing Simulation Data. The dataset is built in three stages: (1) generating many

pairs of liquid animation scenarios (i.e., low-resolution and high-resolution) using different

subsets of initial conditions, (2) producing a deformation field using an optical flow solve

on generated 4D volumes (used later in our loss function), and (3) augmenting artificially

the number of training samples using the deformation field to interpolate new variants of

simulated scenarios.

Learning Particle-Based Deformations. We use a neural network to learn and encode

Lagrangian deformations between low- and high-resolution particle-based liquids. The pro-

posed FFNet exploits the output of the optical flow solve to weigh each deformation between

the input local features. The input features to our network are then expressed as the particle

positions for the low- and high-resolution liquids.
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Inference and Refinement. Because we apply the deformations directly on particles, our

approach firstly requires to upsample the particles close to the liquid interface before infer-

ence. Also, we generate our results using Narrow Band FLIP liquids to reduce the memory

footprint since the deformations are mainly modeled according to surface particles. Finally,

we deploy a refinement step at inference to account for generalization errors and to adjust

the final particle motion according to the input velocity field.

4.4. Inter-Resolution Liquid Interpolation

In this section, we adapt an algorithm originally from Thuerey [180] to interpolate be-

tween a low- and a high-resolution liquid. We refer to inter-resolution as an interpolation

performed between a low-resolution simulation and a high-resolution simulation from an

SDF point of view. We use this interpolation approach in our proposed pipeline for two

reasons: preparing the data for training with our neural network, and combining Eulerian

deformations with the particle motions. Using an Eulerian deformation factor along with a

particle-based deformation field (u̇ in Fig. 4.2), our approach interpolates between resolu-

tions directly on the particles. We are expressing these deformations in a Lagrangian manner

to increase small-scale details and to offer a more intuitive control to infer deformations to

particles. As highlighted in Fig. 4.3, applying deformations directly on the particles allows

a more faithful reproduction of fine details of the interpolation target (e.g., the sharp edges

of the cube). In addition, we have observed that our approach gives a more realistic liquid

appearance while preserving certain visual characteristics such as surface tension. In order

to provide a fair comparison, both interpolation methods were performed using the same

grid resolution.

Our motivation in applying displacements directly to the particles is to better reflect the

small-scale deformations while not being strictly bounded to the resolution of an underlying

grid. An Eulerian deformation is quite successful in detecting smooth large-scale motions,

but its inherent regularization prevents it from matching fine surface details at the cost of

additional correction steps. Inspired by the method proposed by Thuerey [180], we use a 4D

optical solve to interpolate between input scenarios using the same initial conditions, but at

different resolutions (low and high resolutions).
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(a) Input (b) Interpolation (c) Target

Figure 4.3. A simple case where a sphere is morphed at three different steps (b) into a

cube: comparing our interpolation approach applied directly on particles (bottom in green)

with a state-of-the-art interpolation method [180] applied on the corresponding SDF (top in

purple).

4.4.1. Up-Resing Optical Solve

Inter-Resolution Optical Flow. We employ an approach similar to the work of

Thuerey [180], that we briefly summarize in the following, as we propose a slightly altered

form of it for learning purposes. Although our goal is also to compute a deformation field,

we adapt Thuerey’s method to interpolate a low-resolution input into a higher resolution

one, using the same initial conditions for both inputs. The generated deformation field is

used with the particles of each simulation (i.e., low- and high-resolution) as input features

of the training set for our neural network (FFNet).

Given a pair of corresponding surfaces (i.e., generated SDF Φ from the input particles)

using two distinct simulation resolutions (i.e., number of particles and grid resolution), the

optical flow solve is expressed as a weighted sum of energy terms to be minimized to compute

deformation field u:

min
u

Ed(u) + βSEsmooth(u) + βTETikhonov(u), (4.1)

where the first term corresponds to the information related to the SDF (i.e., occupancy pro-

portion values). The second and third terms are respectively the smoothness and Tikhonov
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regularizers. The smoothness term Esmooth penalizes non-smooth solutions, and the Tikhonov

term penalizes vectors with large magnitudes. The discretized minimization of Eq. 4.1 yields

a system of linear equations AUpOFu = b where the first term AUpOF corresponds to the

discretized energy terms:

AUpOF = ∇Φh
T∇Φh + βS

∑
j

Lj + βT I, (4.2)

and where the terms are respectively the discrete spatial gradient squared, the smoothness

(using the discrete Laplacian L), and the Tikhonov regularizers. Finally, we express the right-

hand side b of the linear system as [∇Φh]T Φδ where Φδ is the finite difference between the

input surfaces Φh and Φl. Solving the linear system for u gives us the up-res deformation field

uup. Up to this point, our approach differs only from that of Thuerey [180] by its preparation

and application to the input data as we use it between simulation pairs of varying resolutions

(see Algo. 7 for details).

Key-Event Alignment. As we focus on the differences between variable resolution inputs,

we propose an additional and novel key-event alignment term directly within the optical

flow solve to constrain the solution according to specific surface topological changes. The

motivation is to align the deformations between inputs simulated at different resolutions to

capture and match certain key events in time. To do so, we define a soft constraint expressed

as a penalty term D detecting cells (using the grid of the SDF Φ) with topological changes.

Since our method is already applying the optical solve on the SDF, we decided to use the

Figure 4.4. As highlighted in this illustration, the key-event constraint term allows match-

ing surface points between (right image) low- and (left image) high-resolution liquid surfaces.

The complex cells are marked with a red background (middle image); the feature surface

points are identified and connected using red points and lines.
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complex cell tests [192] to determine which cells are too complex to be represented with

piecewise linear isosurfaces [185]. Each cell complexity ci (0 or 1) in D is weighted using a

proportional coefficient dxi→xk
based on its 4D Euclidean distance to the closest key surface

point xk:

di = 1
dxi→xk

ci. (4.3)

The closest key surface point xk is computed using the same feature point extraction method

as used with point cloud registration. The feature points are selected using the local mean

curvature approximation µ and compared to the domain distribution. We keep the feature

points above a certain threshold with respect to their distribution µ + αρ. The coefficient

α is used to control the number of feature surface points preserved. The Euclidean distance

dxi→xk
is computed using the first step of the Iterative Closest Point (ICP) algorithm which

is used to determine the closest 4D key surface point xk for each surface point at position

xi (Fig. 4.4). Using the proportional coefficient di, we can then rewrite Eq. 4.2 as follows:

AUpOF = ∇ΦT
h∇Φh + βS

∑
j

Lj + βT I + D. (4.4)

As shown in Fig. 4.5, small-scale artifacts arise when trying to interpolate between two

liquids having major differences bounded by their resolution. By aligning the deformations

uup using key-event feature surface points, we improve the fidelity (i.e., as close as possible

to the high-resolution ground truth) of deformation on the low-resolution input.

Figure 4.5. Comparing the deformation precision of uup when applied to a low-resolution

surface using our key-event alignment term.

The motivation behind using the proportional coefficient di with complex cells is to in-

fluence the deformation solution uup according to key cells (i.e., cells containing key points)
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defining a correspondence between two simulations. However, the discretization of a simu-

lation may produce significant differences that can make it difficult to determine a match.

Knowing that generating a match between these key events in some scenarios would be chal-

lenging, we opted for a soft constraint even though the solution would sometimes be partially

satisfied (as opposed to enforcing a hard constraint on Eq. 4.4).

4.4.2. Dataset and Data Augmentation

Our dataset is composed of pairs of simulated Fluid Implicit Particle (FLIP) liquids using

initial conditions from a parameter matrix Θ. We would like to note that nothing in our

particle-based method is limited to FLIP, but FLIP and Narrow Band FLIP are commonly

used and efficient, which facilitated the generation of our datasets. As previously stated, each

pair is composed of two simulated liquids: one at a low resolution and the other at a higher

resolution. We adjusted the liquid resolution by changing the particle spacing (i.e., particle

density per cell) and the underlying grid resolution. For all of the presented examples, we

used a particle separation (ps) of 0.02 and 0.005, and a grid scaling factor (i.e., used to

compute the cell size with the particle spacing) (gs) of 2.0 and 1.2, respectively for low- and

high-resolution liquid samples. We define a pair of sample liquids as Pi = {X l,Xh}i where

each sample X i, regardless of its resolution, is expressed as a set of particle coordinates x.

The simulated liquids are generated using selected initial conditions taken from a matrix

(as shown in Algo. 6). We refer to each of these initial parameters using a subscript to our

parameter matrix Θ ∈ Rn×m where n is the number of parameters, and m the number of

initial values for each parameter (e.g., obstacle shape type ost, obstacle position xo, emitter

position xem, container dimensions cd). As an example, the notation Θxem would be for

an emitter position of a sample simulation. The resolution parameters, particle spacing ps,

and grid scale gs are not included in the matrix because they are fixed for all pairs of

simulated liquids. For our dataset purpose, the emitter velocity is computed with respect

to the emitter position in order to be oriented toward an existing obstacle and/or container.

The types of shapes ost can be used as static boundaries or as a liquid initial shape. We

present in Appendix 4.11 a small subset of generated samples for the training set.

Data Augmentation. As shown in the second half of Algo. 6, we use data augmentation

on the simulated liquids to artificially grow the number of samples within our dataset. In
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Algorithm 6: Pseudo-code for generating and augmenting our training dataset.

Input:

ost: obstacle shape type(6 different shapes)

xo: obstacle position(xo ∈ R3)

xem: emitter position(xem ∈ R3)

cd: container dimensions(cd ∈ R3)


= Θ

P = ∅

for ∀Θi ∈ Θ do /* for each parameter set Θi */

X l = simulate(Θi, ps = 0.02, gs = 2.0) /* FLIP solver */

Xh = simulate(Θi, ps = 0.005, gs = 1.2) /* FLIP solver */

P ∪ {X l,Xh}
P ∗ = P

for ∀Pi ∈ P do /* for each pair of simulated liquids Pi */

Pj = randomize({Pj|j 6= i, j ∈ 0 ≤ j ≤ |P |})

{X l,Xh}i, {X l,Xh}j = Pi, Pj

X∗
l = UpFlOF({X l}i, {X l}j,Φ({X l}i),Φ({X l}j), αFlOF = 0.5)

X∗
h = UpFlOF({Xh}i, {Xh}j,Φ({Xh}i),Φ({Xh}j), αFlOF = 0.5)

P ∗ ∪ {X∗
l ,X

∗
h}

this regard, we use the original FlOF algorithm as proposed by Thuerey [180] to interpolate

liquids between precomputed initial conditions. We first randomly select each simulation

pair Pi with a pair Pj (where i 6= j) to generate a new pair of liquids. Then, we extract

for each pair their associated particle coordinates X as inputs to the interpolation method.

The interpolated liquid is obtained by computing a bidirectional optical flow uω applied

on the surface Φ(X). We use αFlOF = 0.5 to generate an in-between simulation for each

interpolated liquid (see the UpFlOF method in Algo. 7).

Even though the resulting liquids generated by interpolation are inevitably not physically

accurate, they still provide significant additional data points allowing us to improve the

generalization rate when it comes to predicting complex high-resolution behaviors.
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Figure 4.6. The proposed network architecture. Given a pair of input liquid simulations,

the particle deformation network focuses on encoding the particle displacement between

low- and high-resolution particle-based simulations guided by the outputs from the UpFlOF

approach. The dimensions at each convolution layer is expressed as a portion of the input

resolution (N : number of upsampled particles from the input) by 3 (number of components

of the input feature). The number of local features grows as we progress down in the

downsampling convolutions (e.g., 32, 64, 128, and so on).

4.5. Scene Flow Learning for Lagrangian Deformation on Particles

In this section, we will further detail the network architecture of our proposed approach

(§ 4.5.1) and our neighborhood-based loss function for particle-based liquids (§ 4.5.2).

4.5.1. Network Architecture

As previously mentioned in § 4.3, our proposed learning architecture (Fig. 4.6), which we

call FFNet, is an adaptation of the FlowNet3D method [169] in order to successfully capture

the inherent and latent liquid properties. By giving additional cues of the underlying liquids,

our learning approach converges faster to a more precise displacement solution.

Inspired by FlowNet3D, our network architecture is divided into three main modules:

multi-resolution input features, flow embedding, and flow refinement. We will describe how

we adapted each module in the following.

Multi-Resolution Input Features. In this first part of our learning pipeline, we use the

local neighborhoods to estimate the convolution operators, as proposed with the PointNet++
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architecture [173]. Since a traditional convolution does not work with unstructured data

points such as a particle set, using a downsampling approach based on the neighborhood

provides a suitable way to encode these local features.

Figure 4.7. At each iteration for our network, a correspondence map is generated between

the input pairs of multi-resolution simulations X l and Xh consisting of respectively Nl and

Nh particles. These n correspondences are expressed as representative neighborhood for each

level of convolution.

As shown in Fig. 4.7, a convolution layer downsamples an input liquid with N particles

into n neighborhoods. Each particle pi = {xi,f i}, where xi is the R3 coordinates of particle

i and f i its associated local features generated at each layer of our network. Using the

SPH neighborhood computation [158], we consider the contributions of each particle pi in its

neighborhood using weighted averages. As opposed to computing each weighted average at

the position of a particle, we compute the contributions at the center of each downsampled

neighborhood nj. The weighted local features f ∗i for a downsampled neighborhood are then

computed as follows:

f ∗i (x) = f i|x− x̄nj
|, (4.5)

where x is the center coordinates of neighborhood nj, and x̄nj
is the weighted average of the

coordinates of particles in that neighborhood:

x̄nj
=
∑
i∈nj

wixi. (4.6)
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The weights for each neighborhood nj are computed using the same smooth kernel function

introduced by Zhu and Bridson [195]:

wi(x) = k(|x− xi|R−1)∑
j k(|x− xj|R−1) , (4.7)

where k(s) = max(0,(1− s2)3) for a smooth transition between neighbor contributions, and

the neighborhood radius R is equal to twice the particle separation used to generate the

input simulation. We express the weighted features as the importance level of each local

feature during the convolution phases.

We have noticed throughout experiments that using the weighted average to estimate the

local features for each downsampled neighborhood nj improved the recall when predicting

large-scale flows. Finally, we use an element-wise max pooling operatorMAX on a nonlinear

approximation using a multi-layer perceptron (MLP) on the weighted f ∗i (x) as follows:

f ∗nj
= MAX
{i|‖xi−x′

nj
‖≤R}
{h(f ∗i ,xi − x′nj

)}, (4.8)

where h is the nonlinear MLP function, x′nj
is the center coordinate of the neighborhood nj,

and R the same radius as used in Eq. 4.7.

Fluid Flow Embedding. Once the weighted local features are computed for an input pair

(i.e., for both low and high resolutions), the two local features f ∗nj
and g∗nj

, respectively

generated from the low-resolution input X l and the high-resolution input Xh, are combined

before applying convolution to training samples.

Similarly to creating the multi-resolution input features, we use the same number of

neighborhoods to describe each particle-based input liquid pair, even if they are discretized

differently. That way, our network can define the flow embeddings using the same neigh-

borhood center coordinates xnj
for a simulation pair alongside the weighted local features

and the original particle coordinates. We use the same weighted function wi(x) as input to

the nonlinear MLP function h to aggregate each neighbor contribution prior to being max

pooled. We express each particle embedding as:

ei = MAX
{i|‖xi−x′

j‖≤R}
{h(f ∗nj

⊕ g∗nj
, {xl}i − {xh}i)}, (4.9)

where f ∗nj
aggregates the input features of the downsampled neighborhood nj from the low-

resolution particle-based liquid, and g∗nj
the input features of the downsampled neighborhood
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nj from the high-resolution one. We perform a few additional convolutions to spatially

smooth out the corresponding features with respect to each particle of each neighborhood.

Flow Refinement. Finally, as the last step of the network, we focus the learning on prop-

agating the embedded features ei from the downsampled neighborhood nj to the original

low-resolution input particles Nl. We use upsampling convolution operations to learn how to

project weighted features back to the input particle coordinates. We have noticed through-

out experiments that propagating the weighted features from the embedding layer improved

the ability of the network to recover nonlinear features specific to fluids, such as vorticity.

We show the precision of our refinement step on downsampled features (Fig. 4.8) as

opposed to solely using a symmetric MLP function on these. A last and dense regression

layer is used after the upsampling convolutions to project back the scene flow prediction in

R3 (i.e., without using an activation function). Also note that as shown in Fig. 4.6, we use

skip connections between downsampling and upsampling layers to infer multi-scale feature

learning.

Figure 4.8. Example of a cascade of downsampling convolution operations applied on a

high-resolution particle-based liquid.

4.5.2. Deformation-Aware Loss Function

As explained previously, we are using pairs of particle-based simulations as input samples.

Our training loss on these samples is evolving throughout epochs to capture the differences

in displacements between simulations using the same initial condition parameters, but at

different discretizations. We express our loss function as L1 metrics to encode absolute

differences between the low-resolution and high-resolution samples:

Lup = 1
nj

nj∑
i

‖ωi − ω∗i ‖1 + λnj
‖ω←i − ωi‖1, (4.10)
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where ωi is the predicted displacement and ω∗i is the ground truth. Interestingly, the cycle-

consistency regularization term ‖ω←i −ωi‖1 (in Eq. 4.10) acts as a penalization constraint to

enforce the bidirectionality of the resulting scene flow for displacements. In other words, this

term enforces that the forward and backflow flows (i.e., displacement between the predicted

particle coordinates and the displaced one ω←i using ω∗i ) closely match each other. Also, we

have noticed empirically that adding an adaptive weight λnj
to adjust the neighborhood nj

contributions (as opposed to using λ = 1 for every neighborhood) has improved significantly

the convergence rate throughout iterations. We compute λnj
using the normalized magnitude

of the deformation initially computed with the UpFlOF algorithm (Algo. 7). From our anal-

ysis comparing different training experiments, we have observed that using such an adaptive

weight was allowing emphasis on encoding features where the main differences between dis-

cretized simulations were occurring within neighborhoods. Throughout the experiments, we

also observed that the proposed adaptive weight improved (in some of the results presented)

the reconstruction of small complex details, as we were able to train through more iterations

without overfitting the resulting generalization model.

4.6. Deformation Inference and Refinement

In the following sections, we dive into the final steps of applying the predicted displace-

ments onto the input particle-based liquid. First, we apply the displacements taking into

account the existing velocities of the input particles. Then, a refinement step is performed

to reduce the displacement noise generated by the inference.

4.6.1. Applying the Displacement on Particles

In this section, we explain the steps performed by our approach to combine the input

velocity with the predicted Lagrangian displacements ω̇. Firstly, we upsample the input

narrow band X of depth db to ensure that the density of the upsampled particle set X ′ is

high enough to capture the small-scale deformations generated by our resulting deformation

field. Once the predicted displacements are generated, we transfer them to a velocity field uω.

The cell size of uω is adjusted with respect to the number of particles per cell to prevent

undesirable gaps in the liquid during motion, as suggest by Zhu and Bridson [195]. We

resample the velocity field in a MAC grid uMAC that will then be updated by extrapolation
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within a distance dMAC outside the SDF Φ′l in order to fully cover the simulation domain

of the upsampled input particles X ′. Using the updated uMAC, we can now update our

displacements to compensate for the actual input motion. That way, our approach can infer

Lagrangian displacement regardless of the input motion. The MAC grid u′MAC is weighted

according to the magnitudes of the resampled velocity field ûω and added to the current

velocity field ûω. Finally, we advect the particles in a grid (as with FLIP) using û′ω on

the upsampled particles X ′ at each time step. Although our approach requires switching

back and forth between Eulerian and Lagrangian deformations, we have empirically noticed

that our model learns better to preserve fine details on the surface, as opposed to learning to

deform these solely in an Eulerian manner. An overview summarizing these steps is presented

with Algo. 7 (with isInference() equal to true).

4.6.2. Upsampling and Reducing Surface Noise

We have noticed during our experiments that surface noise was introduced at the inference

step when compared to the ground truth. In order to validate the source of this noise, we

have investigated on the resulting deformations before combining them with the input motion

(i.e., exclusively based on ω̇). Similar to regression methods with point clouds (such as used

with scene flow), this regression noise was appearing in the downsampling operations during

the learning phase. As suggested by Liu et al. [169], performing multiple passes of inference

on randomized resampled samples using average predictions improved the results, but at the

cost of losing some of the small-scale liquid behavior mostly perceptible during motion.

Since our goal is to focus the deformation close to the surface, performing a regression

on the whole particle-based fluid seemed like an inadequate solution. As a matter of fact,

the resulting noise came mostly from particles emerging from deep below the surface. We

then determined that a resampling approach as used in Narrow Band FLIP [163] would be

more suitable to convey where to resample in order to prevent displacing particles deep in

the liquid (as opposed to randomly resampling). We ended up performing multiple passes of

inference using varying depths d defining the particle band thickness.

As shown in Fig. 4.9, we came up with a fair tradeoff throughout several experiments.

For our purpose, this tradeoff is purely qualitative and might differ for other types of simula-

tions. An error (between the displacement and the ground truth) smaller than 0.1 is barely
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Algorithm 7: UpFlOF - Pseudo-code for inferred semi-Lagrangian advection and

data augmentation.

Input:

X: set of particles

uMAC: low-res. MAC velocity grid

dMAC: extrapolation distance (2 cells)

db: depth of narrow band (2-3 cells)

rh: grid resolution larger than the input
Φl = computeSDF(X)

X ′ = resampleNarrowBand(X, db)

if isInference() then /* for predicting displacements */

ω̇ = predict(X) /* see Fig. 4.6 */

uω = transferToGrid(ω̇)

Φ′l = Φl

else /* for data augmentation */
Φ′l = upscaleInterpolate(Φl, rh)

uω = FlOF(Φ′l,Φh, αFlOF = 1) /* see Algo. 6 in [180] */
ûω = resampleOFtoMAC(uω,uMAC)

uMAC = extrapolate(uMAC,Φ′l, dMAC)

u′MAC = ‖ûω‖uMAC

û′ω = ûω + u′MAC /* inject input motion */

Xadvect = advectInGrid(X ′, û′ω, t) /* t = t+4t */

noticeable (especially in motion). Also, as exposed in Fig. 4.9 (rightmost image generated af-

ter 12 iterations), performing more than 6 inference iterations is diluting the high-resolution

features and ultimately converging back to the low-resolution input (i.e., fading out the

displacements). The final displacement obtained is then averaged over all the iterations.

4.7. Results

In the following, we discuss the training experiments and expose details of the correspond-

ing datasets. We also demonstrate on multiple examples the capabilities of our approach to

increase the apparent resolution using solely coarse particle-based simulations as input. We

refer the reader to the supplemental video for the corresponding animations.
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Figure 4.9. We compare the influence of varying upsampling distances d over the surface

noise (expressed as an error on the vertical axis) generated throughout the inference itera-

tions. The images corresponding to the evolving level of noise (i.e., from iteration 1 to 12)

of the green curve is presented on the top of the chart.

4.7.1. Training and Inference

Datasets and Augmentation. The simulations in our dataset have been generated using

the Bifröst R© fluid solver for Maya R©. The simulations for both resolutions are computed

using varying parameters as exposed in Algo. 6. We have divided the datasets into three

categories referred to as Colliding, Shape, and Container (see Table 4.1 for further details).

These datasets are covering several simple and specific simulation cases to improve inference

generalization. The Colliding dataset contains simulations in which an emission source

hits a single collision shape (see Fig. 4.19 in Appendix 4.11). The Shape dataset contains

simulations in which a single liquid volume (initialized with different shapes) falls into an

empty container. The Container dataset contains simulations in which an emission source

pours into a liquid container. For all these datasets, we define the breadth of simulation

scenarios used for training by enumerating all combinations from a fixed set of obstacle shapes

ost, obstacle positions xo, position of emission sources xem, and dimensions of container cd.

The shapes were determined to cover different shapes including sharp edges (cube), curved

faces (sphere), and a mixture of both (cylinder).

In order to artificially grow each of these datasets for training, we interpolate each sim-

ulation pair using Thuerey’s method [180] on shape’s SDF, shape position, and emission
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Dataset
Simul. res. (low/high) Augment. # simul.

# particles Veloc. grid factor pairs

Colliding 0.30M / 2.4M 963 / 1923 ×2 432

Shape 0.15M / 1.5M 963 / 1923 ×2 432

Container 0.40M / 3.2M 1283 / 2563 ×8 432

Table 4.1. Datasets of simulation pairs used as training and validation sets. We also present

the augmentation factor (Augment. factor) used to grow our datasets prior to training.

position. On both Colliding and Shape datasets, we interpolated with weight αFlOF = 0.5,

giving us an augmentation factor of ×2. We used more interpolation weights on the Con-

tainer dataset since it originally consisted of fewer simulations. Each simulation pair of the

Container dataset was interpolated at αFlOF ∈ {0.25, 0.50, 0.75} giving us an augmentation

factor of ×8. Finally, we used a data split of 90%:10% respectively for training and vali-

dation sets. The test set was composed of new and significantly different simulation setups

as enumerated in Table 4.2. We also provide a breakdown of the evaluation times of the

presented examples in Appendix 4.10.

Performance Analysis. We have tested our approach on a variety of simulation setups to

validate its robustness when generalizing within unknown initial conditions. As shown in

Table 4.2, we tested our learning model on input simulations of a fairly coarse resolution.

The simulation time to generate the coarse simulation in Maya R© is presented because that

simulation data is used as input to our network for inference. As previously mentioned, since

we are mostly interested in surface details, we opted for the Narrow Band FLIP method to

generate the particle-based liquids used for both training and testing inference. The compu-

tation times presented are expressed in seconds and computed at each frame of simulation

and inference. The computation times of our FFNet network at inference are also presented.

An interesting aspect when looking at these is that they are only slightly influenced by the

input complexity. Another benefit of using the neighborhood convolutions to downsample

multi-resolution particle-based simulations is that the evaluation times at inference turns out

almost constant and decoupled from the input resolution as we progress down the convolution

layers.
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Example # part. Grid res. Simul. FFNet eval.

Fig. 4.1: Pouring 500k 1283 0.724 0.071

Fig. 4.4: Collision 320k 963 0.542 0.061

Fig. 4.5: Cylinder 290k 963 0.497 0.055

Fig. 4.12: Stirring 250k 1283 0.482 0.058

Fig. 4.14: Multi-stage 1100k 1923 1.249 0.112

Fig. 4.18: Multi-streams 900k 1923 1.045 0.098

Table 4.2. Statistics for the presented examples generated using our up-resing neural net-

work FFNet. The discretization details (i.e., number of particles and velocity grid resolution)

are shown for each example and the computation times per frame are expressed in seconds.

The training was performed for 300 epochs on 1296 pairs of simulations, taking an hour

on average for each epoch computed on two nodes of four NVIDIA R© GeForce R© RTX 2080

Ti. For each pair of simulations, we used on average a window of 50 consecutive frames in

order to capture most of the interactions of interest for learning. A longer temporal window

may lead to a less accurate feature matching. We used a rather small batch size of 8 samples

per iteration since our multi-resolution samples generate a significant memory footprint on

the GPU. We used the ADAM optimizer [167] with an initial learning rate of 10−4 decaying

at an exponential rate of 5% after each series of 50k iterations.

The FFNet architecture is composed of three downsampling convolution layers (detailed

in Fig. 4.8), one embedding layer, and three upsampling convolution layers. An aggregation

operation is performed after the first downsampling convolution layer to combine both input

resolutions. Lastly, a linear flow regression layer is added at the end of the learning pipeline

to output predicted particle displacements in R3. Table 4.4 in Appendix 4.9 shows the

specifications of each MLP layer. We also use skip connections at each convolution level

to concatenate the outputted local features between downsampling and upsampling layers.

Finally, the MLP function h is activated by rectified linear units (ReLU) preceded by batch

normalizations for both downsampling and upsampling convolution layers. The training

and evaluation steps have been performed using the TensorFlow library. For performance

reasons, the inference part has been implemented using the TensorFlow C++ API within

the Autodesk Bifröst Graph R©.
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We chose a few baselines to compare the efficiency of our approach at the evaluation

stage. In fairness and validity, we constrained the comparison to exclusively point-based

learning methods. The evaluation metrics selected to compare the validity of these methods

with respect to ours in the application context are the estimated position error (EPE) and

the accuracy of the predicted displacement (Flow accuracy) when compared to ground truth.

The EPE is evaluated as the average L2 distance between the predicted and the ground-truth

displacement vectors. Since the number of particles of the ground truth may differ from the

up-resed one generated with our approach (i.e., upsampled X∗
l of the X l coarse input),

we use the closest particle to match each particle of the reference particle-based liquid. The

flow accuracy measures the proportion of predicted displacements (using a small error margin

ε = 0.001 with respect to the scene scale) that are below a certain threshold (we used 0.1).

Method EPE
Flow Convergence

accuracy time

PointNet [172] 0.45 26.11% 14.4

PointNet++ [173] 0.44 29.84% 13.6

FlowNet3D [169] 0.37 52.27% 10.3

FFNet (ours) 0.23 63.71% 8.1

Table 4.3. Flow estimation results on the Colliding dataset.

As highlighted in Table 4.3, our approach performs much better for the up-resing task

on particle-based simulations when compared with the selected baselines. In addition to

providing better results, our network converges much faster as shown in Fig. 4.10. The

convergence times are expressed in hours per epoch. Moreover, we have noticed that with

our approach, up to 40% of the EPE is due to static regions. These regions can show

significant differences in volume when varying the simulation discretization parameters (i.e.,

particle spacing ps and grid resolution gs). When we manually exclude these regions (as

suggested in § 4.7.2), the EPE reduces significantly.

Fig. 4.10 shows training losses evolving over iterations on several point-based learning

methods. As shown, our approach offers a more steady error reduction over iterations as

opposed to the presented baselines. In other words, our approach requires fewer iterations to
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Figure 4.10. Comparing training losses on the Container dataset measured with our ap-

proach and a few point-based learning baselines. In order to lighten the chart, the validation

loss (noisy orange curve) is showed only for our approach (black curve).

mimic the high-resolution details with good accuracy. Fig. 4.10 also highlights the general-

ization capabilities on a much more complex example (Fig. 4.18). As expected, we also have

observed that similar examples from the training set take less time to converge to a decent

level of detail (as compared to the corresponding reference). We observed a clear up-resing

displacement after around 200 epochs as shown in Fig. 4.11. We noticed small differences

in the precision of displacements in the range of 240 to 300 epochs (i.e., depending on the

complexity of the input simulation), so for our purpose, training past that iteration threshold

will unlikely bring significant value.

4.7.2. Evaluation and Discussion

Up-Resing Coarse Input. In the presented results, we provide as input to our network the

particle positions and a displacement field obtained between the current frame and the next

one. We use these displacements to act as deformation preconditioners to our network (i.e.,

hint on spatial and temporal deformations). More importantly, using these preconditioners

as deformations prevents us from computing an actual deformation field uup (i.e., using the

UpFlOF algorithm) which would defy the objective of this approach by requiring a high-

resolution input. The generated displacement by our network is then combined with the
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Figure 4.11. Convergence plot of our Lup loss for the Stirring example from Fig. 4.12. We

show the loss error (Y -axis) evolving throughout the training epochs (X-axis).

velocity of the coarse input to account for the coarse motion of the liquid since displacements

are computed locally and with respect to their neighborhood.

(a) Coarse input (b) Ours (c) Reference

Figure 4.12. Comparison of our result (b) generated with FFNet using a low-resolution

input (a) with the corresponding high-resolution reference (c).

For convenience, we initially decided whether to process selected regions or the whole

volume of liquid. The reason is that generating up-resing details on static volumes of liquid

introduces noise due to the regression operations on downsampled neighborhoods. Therefore,

in some of our examples, we initially flagged regions (and contained particles) that might

be of interest to provide compelling details often absent in coarse simulations. However, in

some cases, it was simpler to predict displacements for the whole simulation domain and

then smooth out selected regions of the generated surface.
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Lastly, it was observed that droplets and highly diffuse volumes of liquid are not faithfully

generated by our displacement network. One solution could be to flag diffuse particles as

proposed by Um et al. [183]. For example, as exposed in the close-up insets of Fig. 4.12,

our approach generates convincing splashing details while mostly remaining attached to the

main volume of liquid. On the other hand, our network successfully reproduced eddies

surrounding the moving obstacle that stirs the liquid. However, as compared with the high-

resolution reference (Fig. 12(c)), we were unable to recreate the small droplets detached from

the splashing portions of the liquid.

(a) Spray and foam particles (red) (b) Whitewater render

Figure 4.13. Spray and foam particles (red) added to our generated results (blue).

Nevertheless, these missing droplets can easily be procedurally added (as shown with the

red particles in the inlet figure) on top of our displaced particles (e.g., using existing tools

such as Maya R© to create whitewater details). We have noticed that more static details such

as smooth swirls are not fully reproduces by our approach. In these cases, the differences

between low- and high-resolution liquids are subtle, and therefore, are underrepresented by

our method of selecting samples whose window captures only specific liquid-liquid or solid-

liquid behaviors (e.g., such as collisions, splashes, and so on). We provide an example to

highlight this limitation in the supplemental video.

Fig. 4.1 is also a good example where adding spray and foam particles would improve

the end results generated by our approach as it clearly lacks droplets compared to the high-

resolution reference. On a related note, we have noticed that sparse neighborhoods require

more iterations during training to converge and to reconstruct these small-scale details. In

other words, these diffuse regions contribute less throughout iterations and would require

more epochs during training with our network.
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Generalization on More Complex Inputs. We have also tested the generalization capa-

bilities of the proposed approach on more complex examples to evaluate how well it performs

on unknown simulation setups. As exposed in § 4.7.1, our dataset is composed of solely single

sources of disturbance either on static liquid or static obstacles. In Fig. 4.18, we compare our

results with the ground truth on a three-streams example pouring into a single container.

There are a few interesting features to observe in that figure. First, the small-scale details

noticeable in the reference were successfully reproduced around the streams and at the im-

pact points in the static liquid container. As previously mentioned, although our approach

does not capture the diffuse particles very well (e.g., droplets), we can still observe a few

detached chunks of liquid at the stream impacts.

Another interesting aspect observed in our results is the ability to reproduce the energy

level of the simulations at higher resolutions. As noticeable in Fig. 4.18, the energy loss

caused by a coarse discretization (Fig. 18(a)) is partially restored in appearance when up-

resed using our approach (Fig. 18(c)). The arced streamlines in our result (Fig. 18(c)) closely

reproduce those of the high-resolution reference (Fig. 18(b)). It is also apparent in Fig. 4.14

that the static container is significantly more agitated in our result than it is in the coarse

(a) Coarse input (b) Ours (c) Reference

Figure 4.14. Comparison of our result (b) generated with FFNet using a low-resolution

input (a) with the corresponding high-resolution reference (c).
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input simulation. At each level of that cascading stream, our approach was able to infer

dynamic and turbulent behavior within impacted regions. In the lower container (i.e., the

one with the cylinder obstacle), we have noticed that our result (Fig. 14(b)) was showing a

slightly different but plausible turbulence behavior (Fig. 14(c)).

Improved Alignment. The alignment term (Eq. 4.4) is used to improve the precision of

the deformation between resolutions. In order to fully reproduce high-resolution details

on coarse liquids, the deformations applied with the inferred displacements of our network

must be aligned in space and time to capture the small differences between the simulation

resolutions. As an example, the impacts on the sphere shown in Fig. 4.1 present noticeable

differences between the coarse and the high-resolution liquids. Our goal with that alignment

in this particular example would be to ensure that we are able to capture the detailed

splashing impacts of the reference and infer this on the coarser liquid. With the exception

of the detached droplets, we show in Fig. 4.15 that our approach (top row in green) does a

fairly good job at reproducing similar fine details around the impact crown as compared to

the reference (bottom row in blue).

Figure 4.15. Comparing the evolution between our inferred liquid (top) and the high-

resolution reference (bottom).

The benefit of using key-event alignment is illustrated in Fig. 4.16, where we compare

the deformations applied with and without the alignment term D. We can observe that

the green liquid fits better to the fine splashes of the reference (semi-transparent in blue) in

comparison to the red liquid which presents the deformations before the correction on the
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(a) Without key-event alignment (b) With D

Figure 4.16. Comparing without/with the proposed key-event alignment term on the ex-

ample of Fig. 4.1.

alignment. The red liquid is missing most of the small-scale details of the main volume of

liquid; this is due to a misalignment of the deformation field mapping the high-resolution to

the low-resolution input.

Upsampling for Inference. The upsampling process of an input liquid prior to inference is

a crucial step to fully appreciate the details generated by our approach. By analogy, this step

is comparable to the need to have enough material to model fine details on a physical object.

In our context, the material is discretized as particles. Applying our approach directly to

a coarse liquid (i.e., without oversampling) would result in an extremely diffuse liquid. In

fact, modeling so much detail through our inferred displacements only on a coarse liquid

would simply spread the particles sparingly. In addition, an insufficient particle density may

cause unwanted artefacts on the surface of the up-resed liquid. Furthermore, it is important

to note that the input resolution at inference determines the displacement resolution of

our network’s output. In other words, the input resolution constrains the resolution of the

inferred displacement. Nevertheless, the neighborhoods used by our convolution operators

enable us to decouple our network from the input resolution while reproducing appealing

details. Results shown in Figs. 4.14 and 4.18 are concrete examples of cases in which the

upsampling of the input simulation made it possible to faithfully reproduce several apparent

characteristics in the associated reference.

In Fig. 4.17, we show the influence of different distances d over the precision of the

inferred displacements. As shown in that figure, the smaller the sampling radius, the higher
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(a) d = R (b) d = 0.75R (c) d = 0.5R (d) d = 0.25R

Figure 4.17. We show the influence of upsampling the particle band prior to the inference

step. As shown in this figure, we qualitatively evaluated the results by varying the resampling

radius of the narrow band.

the level of detail of the applied displacements. We have used d = 0.5R (i.e., equal to the

input particle separation radius) in most of the examples presented to limit the size of the

input liquid to our network and because using a larger distance did not have a noticeable

difference in the final result. Lastly, similarly to the work of Liu et al. [169], we also perform

multiple passes of inference (usually 3-6 passes) using different upsampling distances of the

surface band to reduce the inference noise and to prevent particles from emerging following

the application of the displacements.

4.8. Conclusion and Future Work

We have presented an approach leveraging deep learning to increase the apparent reso-

lution of a coarse particle-based liquid. In addition, we have proposed a framework using

a state-of-the-art interpolation method to generate and augment a dataset of particle-based

simulations for machine learning purpose. Our approach can infer plausible and complex

details on the surface of low-resolution liquids, as illustrated in the examples in this paper

and animated sequences in the accompanying video.

Looking toward the future, we believe that using a stacked network could improve our

results with highly diffuse liquids and thin sheets. Our work could be combined with a

spray particle classification network, such as proposed by Um et al. [183], to update an

adaptive neighborhood within the convolution layers. Finally, we think that it would also be

126



interesting to investigate volumetric learning methods targeting up-resing applications like

this one but for smoke simulations.
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4.9. Appendix A: Network Architecture Layer Specifications

We provide more details on the specifications of the layers composing our FFNet network.

The neighborhood radius R is expressed as a multiplication factor of the input particle

separation ps. On the other hand, the sample rate is expressed as a proportion of the

sample points kept from one layer to another. These proportions were obtained during

several experiments aiming for the best visual-performance tradeoff at evaluation. The N×3

displacement vectors are the result of the last linear regression layer. Lastly, we expose the

number of nodes as width for each layer.
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Layer R Sample rate Width

Down. Conv. 2 · ps 0.5× {32,32,64}

Down. Conv. + Agr. 4 · ps 0.25× {64+64,64+64,128+128}

Down. Conv. 8 · ps 0.125× {256,256,512}

Embedding 8 · ps – {256,256,512}

Up. Conv. 8 · ps 2× {128,128,256}

Up. Conv. 4 · ps 4× {128,128,256}

Up. Conv. 2 · ps 2× {128,128,128}

Linear – – 3

Table 4.4. Specifications of the MLP layers used in our network architecture.

4.10. Appendix B: Evaluation Times Breakdown

The evaluation steps were performed on an NVIDIA RTX R© A6000 with 48 GB of GDDR6

memory. For each example in Table 4.2, we present a breakdown of the computation times

(in seconds) under FFNet eval. as shown in Table 4.5.

Example Reference

FFNet evaluation

Particle Network UpFlOF
Speed-up

Upsampling Prediction Advection

Fig. 4.1 6.9 0.012 0.043 0.016 16×

Fig. 4.4 5.2 0.010 0.038 0.013 15×

Fig. 4.5 4.9 0.009 0.034 0.012 13×

Fig. 4.12 4.8 0.009 0.036 0.013 17×

Fig. 4.14 11.1 0.020 0.067 0.025 19×

Fig. 4.18 10.3 0.017 0.059 0.023 17×

Table 4.5. Breakdown of the evaluation times to generate our results using the prediction

displacements of our network FFNet. Note that we include the upsampling and advection

steps in the evaluation times.
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The FFNet evaluation step includes the particle upsampling, the displacement predictions

by our network, and the advection using the UpFlOF advection scheme. Each step has

been implemented using CUDA capabilities to offer interactive computation times. Both

upsampling and advection steps are really fast to compute. Predicting displacements takes

most of the FFNet evaluation time since this step requires reading the pre-trained model. The

reference column shows the computation times per iteration of the high-resolution ground

truth (composed of 5M to 20M particles). Our approach provides speed-ups between 13×

and 19× faster than the references.

4.11. Appendix C: Multi-resolution Datasets

Each simulation sample used to generate our datasets is composed of a pair of liquids

(each pair using the same initial conditions): a coarse low resolution and a detailed high

resolution. In Fig. 4.19, we present a small subset of our datasets.

Figure 4.19. A small subset of simulation pairs from our multi-resolution Colliding dataset

used to train the proposed FFNet model.

4.12. Appendix D: Notation

Table 4.6 details our notation. Generally speaking, matrices are in bold uppercases,

vectors in bold lowercases, and single values in italics. A dotted field is actually for one

particle of that field.
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Symbol Description Symbol Description

Φ Signed Distance Function X l Low-resolution particle set

u Deformation field (Thuerey’s) Xh High-resolution particle set

uω Predicted velocity field X ′ Upsampled particle set

u̇ Velocity of a particle f Local feature generated

uup Deformation field for up-resing f∗ Weighted local feature

Ed SDF energy term nj Neighborhood j

βS Smoothness coefficient pi Particle i

Esmooth Smoothness regularizer w Weight

βT Tikhonov coefficient k Kernel function

ETikhonov Tikhonov regularizer Lup Loss function

AUpOF Discretized energy term ω Predicted displacement

dxi→xk
4D Euclidean proportional coefficient ω∗ Ground truth displacement

xk Closest key surface point ω̇ Displacement of a particle

xi Surface point λnj Adaptive weight

x̄ Weighted average of the coordinates db depth of narrow band

P Pair of multi-resolution simulations dMAC Extrapolation distance

Θ Matrix of initial conditions αFlOF Interpolation weight

Table 4.6. Notation and associated meaning for our terms.
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Chapter 5

Conclusion

In this thesis, we presented three papers in which we propose approaches to improve the

efficiency, parameterization, and quality of particle-based liquid simulations. From our con-

tributions, we were able to reduce the dependencies of the SPH method to particles [201],

decouple realistic splashing details from the simulation model [200], and infer high-resolution

features on coarse particle-based liquids [202]. These contributions were made with the com-

mon goal of improving current methods leading to efficient, configurable, and interactive

high-resolution liquid simulations for the media and entertainment community. When com-

bined, these contributions can pave the way for significant improvements over currently

available methods. Foremost, as the tracer particles already benefit from artificial pres-

sure forces similar to SPH methods, integrating our splash model into the proposed hybrid

Eulerian-DFSPH would make sense. In addition, we could easily use this combined approach

to generate hybrid SPH liquid animations for our up-res neural approach. On top of learn-

ing displacements, we could stack another network, i.e., before FFNet, to classify diffuse

particles and treat them as ballistic as we do in our second contribution [200].

In the following sections, we discuss our published contributions along with future re-

search avenues that we believe are worth exploring. We conclude by opening on thoughts

related to untapped and promising research topics.

5.1. Redefining Hybrid Models for Fluids

The first paper [201] provides a hybrid scheme to simulate a narrow band of SPH parti-

cles coupled with an Eulerian grid for in-depth and coarser flows. Our approach leverages



adaptivity by focusing the details using particles exclusively around the surface and complex

dynamic boundaries.

Continuous Adaptivity. As mentioned in the paper, our approach suffers from instability

in small volumes of liquid where the number of SPH particles is insufficient with respect to

the number of fictitious particles. One way to resolve this is by treating these small volumes

using solely the SPH simulation part of the model (i.e., without the Eulerian grid and the

fictitious particles). Another interesting and more efficient way to resolve this issue would be

to use an adaptive variant of the fictitious particles, as recently proposed by Winchenbach

et al. [204, 205].

Figure 5.1. Comparing our current particle band model (left enlarged view) with a conti-

nous adaptive band model (right enlarged view).

As shown in Fig. 5.1, our current particle band model (left enlarged view) has significant

mass discontinuities between the SPH and fictitious particles, inevitably causing energy

dissipation during transfers of the hybrid steps. By using continuous particle sizes and

thus allowing a smoother transition in masses at the boundaries between the two models

(right enlarged view), our narrow band of particles could handle thin sheets of liquid while

remaining stable. The challenging part would remain to define a precise way to threshold

the transition between the continuous adaptive band of particles and the Eulerian grid. This

threshold mass could be expressed as the contribution accuracy of the underlying grid cells.
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Unbounded Simulation Domain. On a related note, although hybrid methods have pro-

vided significant advances to take advantage of particles while remaining stable and efficient,

relying on a grid-based simulation below the liquid surface inevitably restricts the domain

of simulation. Even if their work has been solely introduced to Eulerian methods, we be-

lieve that combining Kelvin transformations as proposed by Nabizadeh et al. [191] would

overcome the limitations related to bounded simulation domains. Naturally, coupling the

particles with that infinite domain could be challenging with the boundaries and highlighted

singularities within the resulting domain.

Figure 5.2. Infinite simulation domain generated from Kelvin Transform.

Using the Kelvin Transform to invert the domain (i.e., Ωinv) distances from the origin

of Ω, we could extend our current Eulerian domain to an infinite horizon as defined by Ω∗.

We can imagine simulating a dam break scenario based on the scene shown in Fig. 5.2. In

such a scenario, the walls (in red of the bottom image) could be shattered, letting the liquid

expend itself past the initial container. Once the infinite domain is generated, the band of

particles can be coupled on top of Ω∗, as introduced with our approach.
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5.2. Decoupling Splash Dynamic

Although SPH is considered more physically accurate, FLIP remains faster, more stable,

and opens up to many possible workflows that are not possible with the SPH model. Our

second paper [200] benefits from the FLIP model as we introduce a novel way to integrate

diffuse particles in splashing liquids. In our paper, we present a post-processing approach to

simulate splashing details on top of existing liquid animations. With nearly no additional

cost, our volume-based method allows us to interactively generate multiple variants of the

same splashing liquid. Moreover, our implicit wave model introduces a seamless and efficient

way to couple procedurally added particles with a coarse volume of liquid for improved

interactions.

Improved Splash Dynamics. Nevertheless, as highlighted in our paper, pre-computing

the splash volume requires going through each frame of the input animation. This process

is computationally expensive even though it needs to be computed only once for a specific

scenario. Given the availability of the simulation data, such a pre-computed volume could

be adaptively predicted from a small temporal window (i.e., 4D data). As opposed to

combining volumes throughout the animation, we could compute a smaller intermediate

volume generated from detecting possible diffuse particles. Recently, the work of Um et

al. [203] showed that detecting diffuse particles could generate convincing splashes. Inspired

by their work, we could train a classifier to predict the likelihood of particles being diffused.

In contrast to their proposed splash modeling, we would keep the upsampling and the ballistic

steps to preserve the controllability of the approach.

Stylization through Diffuse Material. Another interesting research avenue would be to

reformulate diffuse material (i.e., foam, spray, and droplets) as a spatio-temporal style for

liquids. Similar to Liu and Jacobson [197], we could define the dynamic differences between a

low- and a high-resolution liquid as differences between the associated two generated surfaces

for a single frame of animation.

By optimizing that expression as a loss term with respect to the ground truth, it would

be possible to learn the diffuse behavior occurring at high resolution as a style that can be

applied to a coarse liquid surface. As shown in Fig. 5.3, the surface of the input coarse

liquid would be considered as the base to which we add the dissipated details visible in the

high-resolution reference.
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Figure 5.3. Applying style learning [197] (top) to generate a detailed liquid surface from a

coarse base surface (bottom).

5.3. Towards Resolution-Agnostic Models

Our third paper [202] presents an up-resing approach for particle-based liquids using a

deep neural network architecture. By combining particle neighborhoods to encode similarities

between discretizations with our deformation prior, we provide consistent up-resing details

throughout a broad range of simulation settings. In addition, we decouple the inference

part from the advection part to offer a more robust generalization over a broad spectrum of

simulation scenarios.

Pure Lagrangian Displacement. For future work, as we initially process the high-

resolution features as position displacements, using position-based dynamics [199] would

make sense with our approach as our goal is to offer a purely Lagrangian approach for particle-

based learning on liquids. Even though our approach currently benefits from a velocity grid

for pre-computed deformations, skipping the semi-Lagrangian advection part could improve

its scalability to other types of particle-based liquids. Furthermore, it would be interesting to

look into ways of proposing a simulation-driven approach using a position-based fluid [198].

Such a position-based approach could allow the integration of position constraints directly

into the interleaved network, enforcing both constant density and incompressibility.
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Discretization-Free Models. The discretization of physical phenomena such as liquids

can introduce various artifacts, including dissipated small-scale details. As we represent a

liquid with more elements (i.e., particles, grid cells, etc.), we theoretically tend towards the

exact solution. However, getting the exact solution in a discretized context means that we

are using an infinity of elements to simulate our physical phenomenon, which is impossible

for numerical methods. Nevertheless, there is an actual trade-off between the number of

elements used and the visual quality. At a certain scale along with the discretization, pushing

it further will only slightly change the generated solution, making it unnecessary to get past

a certain threshold. Even when using an analytical solution, numerical methods are required

to be evaluated for a finite number of values over a finite number of times.

Figure 5.4. Reinforcement learning pipeline to approximate the simulation discretization.

That being said, learning a quasi-optimal way (i.e., as close as possible to the ground

truth) to discretize an animated liquid could partially alleviate the painful process of dis-

cretization toward an adequate solution. As previously introduced to better approximate

PDEs [196], we could optimize a neural network to learn to discretize a volume of fluid with

a suitable representation (e.g., using an adaptive grid). Such a learning pipeline could be
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trained using real examples captured as videos to encapsulate both the spatial and tem-

poral features. A reinforcement learning method could be effective to learn such features

(Fig. 5.4). An agent could approximate a liquid by applying a distinct scale of discretization

as the action on a specific scenario using pre-determined initial conditions. The state of the

liquid would be evaluated over time until the generated simulation reaches a certain level

of precision when compared to the ground truth (e.g., could be from a reference video).

Following that evaluation (i.e., based on policies), the action on the environment used to

update the solution is penalized or rewarded depending on the outcome (i.e., getting closer

to the solution or not).

5.4. Above and Beyond

We believe that several untapped research tracks on fluid simulations are worth exploring

in more depth. We take a step back here and make a few observations based on our experience

accumulated throughout the presented contributions.

As we advanced through this journey of modeling simulation models, numerical methods

to approximate the complex behavior of fluids have slowly morphed from analytic models to

robust and precise iterative models. But even today, modeling phenomena such as fluids in a

discretized manner remains challenging. Although iterative models have proven to be efficient

to reproduce fluid dynamics, the way computers force us to use creativity to discretize these

phenomena is just the tip of the iceberg. As an example, over the last two decades, several

methods were proposed to use adaptivity to represent fluid elements in a more flexible way to

encapsulate the Navier-Stokes equations. However, with most of these methods, an element

of fluid has been defined as a particle or a grid cell, or many variants of them. Nevertheless,

there might be more suitable structures that could be used to simulate fluids. Multi-scale

methods are valid examples of this ongoing tendency. Similar to generative design, there

might be more suitable and unintuitive organic structures that would better fit this purpose.

Deep learning also offers promising avenues towards this goal by providing efficient ways

to extract meaningful and unobservable features of fluids from latent space. On a related

note, advection of implicit surfaces and meshes is a promising avenue to properly define the

evolution of fluid volumes.
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Finally, between the hybrid and unified methods lies an inherent challenge that is the

way we observe the motion of these fluid elements. Using time integrators, we are capable of

looking at the current and previous states to approximate a future state. Given the amount

of data available and keeping in mind that machine learning techniques are getting better to

predict future states based on examples and experiences (e.g., GAN), we can imagine that

time integrators currently used in state-of-the-art approaches could benefit from these. On a

different note, there is also the idea of transfer between Eulerian and Lagrangian approaches.

Nonlinear models could be used through deep learning to express bijective mapping functions

between different viewpoints. Again, a remaining challenge would be to define a meaningful

function connecting low-resolution to high-resolution elements for staying resolution agnostic.

By using an operator projecting the Eulerian elements in Lagrangian space and vice versa,

we would be able to adequately assess the efficiency of the inference with respect to ground

truth.
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