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Résumé

Cette thèse est composée de trois chapitres qui traitent de la problématique de la régula-

tion optimale des émissions de carbone pour atténuer le changement climatique.

Dans le premier chapitre, nous analysons les interactions stratégiques entre un cartel,

exportant une ressource non renouvelable génératrice de pollution, et deux pays impor-

tateurs hétérogènes qui souhaitent atténuer les dommages dus à la pollution. Les pays

importateurs diffèrent selon leur demande de la ressource et selon leur degré d’exposition

au stock (mondial) de pollution. Les pays importateurs fixent de manière non coopérative

des taxes carbone sur la consommation de la ressource polluante et le cartel exportateur

fixe son prix à la production. En utilisant l’équilibre de Nash en boucle ouverte, nous

obtenons des solutions explicites des trajectoires temporelles des taxes carbone, du prix

au producteur et du stock de pollution. Nous montrons que lorsque les pays importateurs

agissent de manière non coopérative, à un temps fini, le prix à la production bondit et

le pays importateur le plus touché par la pollution cesse de demander la ressource. Nos

résultats numériques basés sur la caractérisation explicite de l’équilibre non coopératif

montrent qu’une plus grande symétrie par rapport aux coûts de la pollution conduit à

une augmentation plus rapide du stock de pollution en début d’horizon temporel, mais à

un stock de pollution de long terme plus faible et un bien-être total plus élevé.

Dans le deuxième chapitre, Nous analysons les effets des ajustements carbone bilatéraux

aux frontières sur les taxes carbone dans un jeu non coopératif entre deux pays symétriques

ouverts ayant des firmes en concurrence imparfaite en présence de pollution transfrontal-

ière. Nous comparons également dans ce chapitre les résultats de ce jeu avec ceux de
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deux benchmarks (soient, le jeu non coopératif sans ajustements carbone aux frontières

et la solution efficace). Nous constatons que lorsque les pays souffrent peu de la pollution,

seuls des équilibres symétriques existent. En revanche, si les pays souffrent suffisamment

de la pollution, seuls des équilibres asymétriques existent. Les taxes sur le carbone en

équilibres symétriques sont plus élevées que les taxes efficaces, tandis que l’inverse est vrai

pour les équilibres asymétriques. Dans tous les cas d’intérêt, le bien-être total à l’équilibre

du jeu non coopératif avec ajustements carbone aux frontières est supérieur à celui du jeu

non coopératif sans ajustements carbone aux frontières. Lorsque les coûts de la pollution

sont suffisamment bas, il existe un niveau d’ajustement carbone aux frontières tel que les

taxes d’équilibre non coopératif sont efficaces. Enfin, dans le cas où les pays souffrent

suffisamment de la pollution, le niveau optimal d’ajustement carbone aux frontières peut

être partiel ou total selon les paramètres du modèle.

Nous étudions enfin, dans le dernier chapitre, un jeu de pollution transfrontalière non

coopératif entre respectivement deux pays et trois pays fixant des taxes carbone en

présence d’ajustements carbone aux frontières et avec présence d’une concurrence impar-

faite sur le marché international des biens polluants. Les pays sont asymétriques quant

à leur volonté de payer pour la réduction des émissions mondiales de carbone. Dans nos

modèles, seul le pays le plus touché impose un ajustement carbone aux frontières. Nous

montrons que, contrairement à la littérature existante utilisant des modèles à deux pays

avec un seul marché, le pays le plus touché préfère très généralement utiliser un ajuste-

ment carbone total aux frontières (c’est-à -dire un tarif qui ajuste exactement les écarts

entre sa propre taxe carbone et celles des autres pays) à un ajustement carbone partiel

aux frontières. De plus, un ajustement carbone total aux frontières est optimal pour le

bien-être global dans la plupart des cas d’intérêt.

Mots-clés: Pollution transfrontalière, Taxes carbone, Ressources non renouvelables,

Théorie des jeux, Fuite de carbone, Compétitivité, Ajustement carbone aux frontières.
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Abstract

This thesis is composed of three chapters which concern the problem of the optimal reg-

ulation of carbon emissions to mitigate climate change.

In the first chapter, we analyze strategic interactions between a resource cartel exporting

a non-renewable stock pollutant and two heterogeneous importing countries, who want to

mitigate pollution damages. The importing countries differ with respect to market size

and with respect to how strongly they are affected by the (global) stock of pollution. The

importing countries non cooperatively set emissions taxes and the exporting cartel sets

its producer price. Using open loop Nash equilibrium, we obtain explicit solutions for the

time paths of the carbon taxes, the producer price and the stock of pollution. We show

that when the countries act non cooperatively, at a finite time, the producer price jumps

and the country that is most affected by pollution stops demanding the resource. Our nu-

merical results based on the explicit characterization of the non-cooperative equilibrium

yield that more symmetry with respect to the cost of pollution leads to faster increase of

the stock of pollution initially, but to a lower long-term stock and higher total discounted

welfare.

In the second chapter, we analyzes the effects of bilateral border tax adjustments on

carbon taxes in a non-cooperative game between two symmetric open countries trading

in an oligopolistic framework with cross-border pollution. We also contrast the results of

this BTA game with those of two benchmarks (the non-cooperative game without BTA

and the efficient solution). We note that when countries suffer little from pollution, only

symmetric equilibria exist. By contrast, if countries suffer sufficiently from pollution,
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only asymmetric equilibria exist. Carbon taxes in symmetric equilibria are higher than

the efficient taxes, while the opposite is true for the asymmetric equilibria. In all cases

of interest, the total welfare in the equilibrium of the non cooperative game with BTA

is higher than that in the equilibrium of the non cooperative game without BTA. If the

cost of pollution is sufficiently low, there is a level of BTA such that non cooperative

equilibrium taxes are efficient. Finally, in the case where the countries suffer a lot from

pollution, the optimal level of BTA can be partial or full depending on the parameters of

the model.

Finally, in the last chapter, we study a non-cooperative transboundary pollution game be-

tween respectively two countries and three countries setting carbon taxes in the presence

of a Border Tax Adjustment (BTA) and with imperfect competition in the international

polluting goods market. Countries are asymmetric with respect to their willingness to

pay for reductions of global emissions. In our models, only the most affected country

imposes a BTA. We show that, unlike in the existing literature using two-country models

with only one market, the most affected country generally prefers using a full BTA, a

tariff that fully adjusts for the differences between its own carbon tax and those in other

countries, to a partial BTA. Moreover, a full BTA is optimal for the global welfare in

most cases of interest.

Keywords: Transboundary pollution, Carbon taxes, Non-renewable resources, Game

theory, Carbon leakage, Competitiveness, Border tax adjustment.
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Chapter 1

Trade of an Exhaustible Resource

with Multilateral Externality

1 Introduction

In the United States, the use of fossil fuel in 2017 was responsible for about 76%1 of emis-

sions of greenhouse gases in the atmosphere. Fuel taxes are a controversial but important

instrument for influencing emissions. As the problem of setting carbon taxes is compli-

cated by the presence of a resource-exporting cartel (the Organization of the Petroleum

Exporting Countries (OPEC)) (Liski and Tahvonen (2004), Dullieux, Ragot, and Schu-

bert (2011)), several authors have studied strategic interactions between a coalition of

importing countries and a resource-exporting cartel of a polluting non-renewable resource

(a stock pollutant) (e.g. Wirl (1994), Tahvonen (1996), Rubio and Escriche (2001), Liski

and Tahvonen (2004), Dullieux, Ragot, and Schubert (2011), Kagan, Van der Ploeg, and

Withagen (2015)). This literature studies differential bilateral monopoly games between

a resource-importing country (or a coalition of importing countries) setting a carbon tax

and a resource-exporting cartel setting a producer price. A main insight of this literature

is that Markov perfect Nash equilibrium taxes have two components, a pure Pigouvian

component (that corrects the externality) and a rent shifting component. By contrast,

open loop Nash equilibrium taxes are purely Pigouvian (see e.g. Dullieux, Ragot, and
1United States Environmental Protection Agency.
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Schubert (2011)).

The above literature has neglected the fact that importing countries do not necessarily

form a coalition to determine their carbon taxes and that countries can be asymmetric

with respect to how much they are affected by pollution2 (their cost of pollution) and

with respect to their demand for the resource.

In this paper, we extend a linear-quadratic version of the differential bilateral monopoly

game to analyze strategic interactions between three parties, two importing countries and

a resource-exporting cartel which owns the stock of the non-renewable, polluting resource.

Our goal is to shed light on how asymmetries between the importing countries, with re-

spect to the cost of pollution and/or market size, affect equilibrium taxes, producer prices,

consumption levels, the evolution of the stock of pollution, and welfare. We assume as

Rubio and Escriche (2001) that there is no decay of the stock of pollution. Our main

result is an (almost) explicit characterization of the unique open loop Nash equilibrium of

the differential game between the three players. Obtaining this characterization is not so

straightforward when countries differ in their cost of pollution, because the Hamiltonian

of the exporting cartel’s problem is not concave and because the more affected country

exits the market at a finite time. We show that taxes and the producer price are such that

both countries consume the resource before some finite time Θ, and that the producer

price then increases discontinuously to the price of a bilateral monopoly game between the

cartel and the less affected country. Thus, the cartel “excludes” the more affected country

(which sets a higher tax) from time Θ onwards. We characterize the equilibrium explicitly

up to an implicit equation for Θ, which has an easily computable, unique solution. We

have to restrict attention to the classical solution concept of open loop Nash equilibrium

for tractability.3 This means that the taxes set by the importing countries are purely

Pigouvian, i.e., they equal the present value of the discounted marginal damages, along

the equilibrium path.

Our analytical results allow interesting insights based on numerical simulations into how

the asymmetries between the two countries affect the equilibrium (consumption paths,
2Kaitala and Pohjola (1995) in their game theory model for an international environmental negotiation

problem, worked with countries that differ in their vulnerability to global warming.
3In the case of more than one importing country, it is difficult to have an explicit form of the equilibrium

with the closed loop model (i.e. Markov perfect equilibria, see Chou and Long (2009)).
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stock of pollution, etc.) and the discounted welfare of the two importing countries, and to

compare the non cooperative case with two benchmark scenarios. These benchmarks are

the equilibrium of the bilateral monopoly game between the coalition of the two importing

countries and the cartel, and the social optimum, respectively.

The paper is organized as follows. In sections 2 and 3, we set up the model and com-

pute the non cooperative open loop Nash equilibrium. In section 4, we compute two

benchmarks. Section 5 presents numerical results. We conclude in the last section.

2 The Model

Our basic model extends the infinite horizon bilateral monopoly models of trade of an

exhaustible and polluting natural resource (e.g. Tahvonen (1996), Rubio and Escriche

(2001), Liski and Tahvonen (2004)). We consider a world with a resource-exporting cartel

that acts as a monopoly and two resource-importing countries. The importing countries

can be asymmetric, both with respect to the size of their market and with respect to

their cost of pollution. The resource-exporting cartel extracts a stock of an exhaustible

and polluting natural resource and sells it to the two resource-importing countries. In

each importing country, the consumption of the natural resource increases utility but at

the same time, it generates a multilateral externality due to the fact that it increases the

global stock of pollution.

The representative consumer in importing country i ∈ {1, 2} has the quasi-linear instan-

taneous utility

Ui(qi(t), Z(t),m(t)) = Aqi(t)−
1

2βi

q2i (t)−
γi
2
Z(t)2 −m(t),

where qi(t) denotes her consumption of the exhaustible resource at time t, m(t) is the net

payment she has to make at time t, βi > 0 is country i’s size of market parameter, A > 0

is the choke price (which is the same for both importing countries), and γi
2
Z(t)2 is the

disutility due to the stock of pollution Z(t) at time t.

The tax rate on consumption of the polluting resource set by importing country i at time

t is denoted Ti(t). As usual, we assume that tax revenues are returned to consumers as

3



lump sum transfers. Consumers take the price of the resource, the stock of pollution and

the lump sum transfers as given. So, their demand depends only on the current consumer

price p(t) + Ti(t), and is given by

qi(t) = Qi(p(t) + Ti(t)) = max{0, βi(A− p(t)− Ti(t))}, (1.1)

where p(t) is the producer price.

It follows that if the time paths of the tax in country i and of the producer price are

Ti : R+ → R+ and p : R+ → R+, the discounted present value of the utility of the

representative consumer in country i is

∫ ∞

0

e−ρt

(
Aqi(t)−

1

2βi

q2i (t)− p(t)qi(t)−
γi
2
Z(t)2

)
dt, (1.2)

where ρ is the discount rate4.

After substituting qi(t) in (1.2) by expression (1.1) and after some simplifications, the

discounted present value of utility in (1.2) becomes

∫ ∞

0

e−ρt

(
max{βi

2

[
(A−p(t))2−T 2

i (t)
]
, 0}− γi

2
Z(t)2

)
dt. (1.3)

The cartel sets a uniform producer price of the natural resource for both importing coun-

tries in order to maximize its present discounted profits

∫ ∞

0

e−ρt

[
2∑

i=1

Qi(p(t) + Ti(t)) (p(t)− cZ(t))

]
dt, (1.4)

where cZ(t) is the marginal cost of extraction at time t of the natural exhaustible resource

by the cartel (c > 0).

We assume that one unit of consumption creates one unit of pollution, that pollution does

not decay, and that Z(0) = 0. Thus, for given p, T1 and T2, the stock of pollution evolves
4We assume the same discount rate for both importing countries and for the cartel.
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according to the equation

dZ(t)

dt
=

2∑
i=1

Qi(p(t) + Ti(t)). (1.5)

Following the related literature (e.g. Rubio and Escriche (2001), Liski and Tahvonen

(2004), Chou and Long (2009)), we assume that the initial stock of the exhaustible re-

source is bigger than A/c. Hence, there will be only economic (no physical) exhaustion

of the resource.

As it will not lead to any ambiguity, we omit from now on the time argument, and we

write Ż for dZ
dt

, Q̇i for dQi(t)
dt

, and so on.

Throughout the paper, we use the notation

B = β1 + β2 and Γ = γ1 + γ2.

3 Non cooperative Open Loop Nash Equilibrium

In this section, we develop our main analytical results. We establish a closed form charac-

terization of the unique open loop Nash equilibrium of the game where all three parties,

i.e., both importing countries and the cartel, act non-cooperatively. Both countries and

the cartel choose the entire time path of their control variable non-cooperatively and si-

multaneously at time t = 0, best-responding to the others’ choices. Thus, (T ∗
1 , T

∗
2 , p

∗) is

an open loop Nash equilibrium if and only if for i ∈ {1, 2}

T ∗
i ∈ argmax

Ti

∫ ∞

0

e−ρt

(
max{βi

2

[
(A−p∗)2−T 2

i

]
, 0}− γi

2
Z2

)
dt

subject to

Ż = Qi(p
∗ + Ti) +Qj(p

∗ + T ∗
j ) i ̸= j ∈ {1, 2},
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and

p∗ ∈ argmax
p

∫ ∞

0

e−ρt

[
2∑

i=1

Qi(p+ T ∗
i ) (p− cZ)

]
dt

subject to

Ż =
2∑

i=1

Qi(p+ T ∗
i ).

Without loss of generality, we assume that γ1 > γ2.

In order to ensure that the two importing countries have a positive consumption at the

beginning of the horizon (at time t = 0), we make the following assumption.

Assumption 1. We assume that
√
β1 + β2θ

′
2 >

√
β2θ2, where θ′2 = 1

2
(ρ +

√
∆′), ∆′ =

ρ2 + 2β2(ρc+ γ2), θ2 = 1
2
(
√
∆+ ρ) and ∆ = ρ2 + 2(Bρc+

∑2
i=1 γiβi).

We start by considering the optimal control problem faced by the government of country

i, if it takes as given some time paths p and Tj (where j ̸= i), i.e., the problem

max
Ti

∫ ∞

0

e−ρt

(
max{βi

2

[
(A−p)2−T 2

i

]
, 0}− γi

2
Z2

)
dt

subject toŻ = max{β1(A− p− T1), 0}+max{β2(A− p− T2), 0},

Z(0) = 0.

Here, p (with values in [0, A]) and Tj are assumed to be measurable, but not necessarily

continuous (in equilibrium, p will actually have a jump).

The current value Hamiltonian for this problem is

Hi = ri

(
max{βi

2

[
(A−p)2−T 2

i

]
, 0} − γi

2
Z2

)
+λi (max{βi(A− p− Ti), 0}+max{βj(A− p− Tj), 0}) ,

where ri ∈ {0, 1} and λi is the co-state variable associated to the state variable Z.5

5Equivalently, e−ρtλi(t) is the adjoint function for the standard Hamiltonian (rather than the current
value Hamiltonian).
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By Theorem 12 and footnote 9 on page 132 in Seierstad and Sydsaeter (1987), the following

conditions must be satisfied t-a.e. by an optimal solution Ti, provided that the value of

ri corresponding to the optimal solution is 1:

Ti ∈ argmax(Hi), (1.6)

λ̇i = ρλi + γiZ, (1.7)

Ż =
2∑

j=1

max{βj(A− p− Tj), 0}, (1.8)

for absolutely continuous functions λi and Z.

We note that if the optimal value of Ti in (1.6) (maximizing max{βi

2
[(A−p(t))2− T̂ 2

i ], 0}+

λimax{βi(A−p(t)−T̂i), 0}) is smaller than A−p(t), we must have Ti = −λi. Furthermore,

the optimal value is greater than or equal to A − p(t) if and only if A − p(t) ≤ −λi(t),

and we may set Ti(t) = −λi(t) without loss of generality (as all values of Ti(t) ≥ A− p(t)

maximize the Hamiltonian in this case, and the evolution of the state is unaffected by the

exact choice). Thus, we can replace (1.6) by

Ti = −λi. (1.9)

Combining (1.7) and (1.9), we obtain that the law of motion of Ti must satisfy

Ṫi = ρTi − γiZ.

By integrating the above differential equation with respect to time, we obtain that the

optimal time path for the tax rate in each importing country i (up to the degree of

arbitrariness where Ti(t) ≥ A− p(t)) is of the form

Ti = γi

∫ ∞

t

e−ρ(τ−t)Zdτ. (1.10)

As the maximized Hamiltonian (the Hamiltonian evaluated at Ti(t)) is concave with re-

spect to the state, and as the transversality condition lim inf
t→∞

e−ρtλi(t)(Ẑ(t) − Z(t)) ≥ 0

holds for any admissible path Ẑ, Theorem 14 in Seierstad and Sydsaeter (1987) (Arrow’s
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sufficiency Theorem) implies that Ti given by (1.10) is the unique optimal solution of

country i’s problem (up to the arbitrariness of Ti when Ti(t) ≥ A− p(t)).

Equation (1.10) shows that in any open loop Nash equilibrium, the tax rate at each time

t in each importing country is equal to the expected present value of the marginal dam-

ages along the equilibrium path. Thus, taxes are purely Pigouvian (Liski and Tahvonen

(2004)). This confirms previous results (e.g. Dullieux, Ragot, and Schubert (2011)) in the

literature that have shown that open loop Nash equilibrium taxes have no rent shifting

component.

We then see from (1.10) that the tax rate in importing country 1 is always larger than

the one in importing country 2 (T1 > T2), because we have assumed that γ1 > γ2.

We now consider the problem faced by the resource-exporting cartel (if it anticipates some

tax paths T1 > T2), i.e., the problem

max
p

∫ ∞

0

e−ρt[Q(p) (p− cZ)] dt

subject to Ż = Q(p),

Z(0) = 0,

where Q(p) =



∑2
j=1 βj(A− p− Tj) if p ≤ A− T1

β2(A− p− T2) if A− T1 ≤ p ≤ A− T2

0 otherwise

Note that we may restrict attention to prices in [0, A ] (as there is never any extrac-

tion/demand if p ≥ A).

The current value Hamiltonian for this problem is

He = reQ(p)(p− cZ) + µeQ(p),

where re ∈ {0, 1} and µe is the co-state variable associated to the stock of pollution.
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He is not concave in p (due to the kink of Q(p) at p = A − T1), and Arrow’s sufficiency

conditions (that are based on concavity of the maximized Hamiltonian with respect to

the state) are also not applicable. However, Theorems 12 and 16 (including footnote 27)

in Chapter 3 of Seierstad and Sydsaeter (1987) imply that if p is an optimal solution

then the following necessary conditions must be satisfied for re = 1 (it is straightforward

to verify that time paths satisfying the necessary conditions in Theorems 12 and 16 for

re = 0 cannot be optimal):

p ∈ argmax(He) (1.11)

µ̇e = ρµe + cŻ (1.12)

Ż = Q(p) (1.13)

lim
t→∞

e−ρtµe = 0, (1.14)

where (1.11), (1.12) and (1.13) must hold t-a.e. We will show below that this set of

necessary conditions has a unique solution. As Theorem 15 from Chapter 3 in Seierstad

and Sydsaeter (1987) implies that an optimal solution exists,6 we know that the unique

solution to the necessary conditions is the optimal time path for the cartel.

Equation (1.12) which characterizes the scarcity rent for the exporting cartel expresses

the fact that, the marginal unit of the stock of the resource demanded at time t increases

the future extraction costs by cŻ(t). This, in consequence, contributes to reduce future

profits, and increases the scarcity rent and today’s price.

The following lemma characterizes the producer price that maximizes the Hamiltonian

He at any given time t, for given time paths T1 > T2.

Lemma 1. At each time t, the price p∗ that maximizes the Hamiltonian He is given by:

p∗ =

p∗1 =
1
2B

(
BcZ +BA−Bµe −

∑2
i=1 βiTi

)
if cZ − µe ≤ D,

p∗2 =
1
2
(cZ + A− µe − T2) if cZ − µe ≥ D,

where D = A−
√
B√

B−
√
β2

∑2
i=1 βiTi

B
+

√
β2√

B−
√
β2
T2.

6The key condition to verify is that the set {(Q(p)(p − cZ) + x,Q(p))|p ∈ [0, A] , x ≤ 0} is a convex
subset of R2 for each Z, which is true because p− cZ decreases when Q(p) increases.
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Proof. See Appendix.

Observe that cZ − µe is increasing over time. Indeed, cŻ − ˙mue = −ρµe by (1.12), and

µe < 0 (otherwise (1.12) and (1.14) could not be jointly satisfied). On the other hand, D

is decreasing in t, because Z and thus (by (1.10)) T1 and T2 are increasing. Proposition 1

shows that in any open loop Nash equilibrium, there is a unique finite time Θ for which

cZ − µe = D, so that the producer price jumps from p∗1 to p∗2.

Proposition 1. The producer price path must be of the following form in any open loop

Nash equilibrium. There is a finite time Θ ≥ 0 such that p = p∗1 for t < Θ and p = p∗2 for

t > Θ. Thus, provided that Θ > 0 (which will be the case if Assumption 1 holds) there

is an initial period where both countries consume the resource. After time Θ, the cartel

excludes country 1, and chooses the bilateral monopoly price p∗2.

Proof. See Appendix.

We now derive the unique open loop Nash equilibrium, using our insights about the

structure of the producer price path (Lemma 1 and Proposition 1) and combining the

conditions we identified above for both importing countries and for the cartel. We focus

on the case of interest where Θ > 0 (i.e., we do not have a bilateral monopoly between

country 2 and the cartel from the beginning). The analysis will also reveal Assumption 1

as the necessary and sufficient condition for Θ > 0.

Before time Θ, both importing countries have a positive demand. From (1.1), we obtain

Bp+

(
2∑

i=1

βiTi

)
= BA−

(
2∑

i=1

qi

)
= BA− Ż,

which is equivalent to

p = A−
(∑2

i=1 βiTi

)
B

− Ż

B
. (1.15)

Using (1.15) and the expression for the producer price before time Θ (see Lemma 1), we

have

2A−
2
(∑2

i=1 βiTi

)
B

− 2Ż

B
= A+ cZ − µe −

1

B

(
2∑

i=1

βiTi

)
,
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which is equivalent to

A−
(∑2

i=1 βiTi

)
B

− 2Ż

B
= cZ − µe. (1.16)

Differentiating equation (1.16) with respect to time, we obtain

−

(∑2
i=1 βiṪi

)
B

− 2Z̈

B
= cŻ − µ̇e,

which is equivalent to

− 2Z̈

B
− cŻ =

(∑2
i=1 βiṪi

)
B

− µ̇e. (1.17)

Combining (1.9) and (1.7) with (1.12) and (1.17), we obtain

−2Z̈

B
− cŻ = ρ(

(∑2
i=1 βiTi

)
B

− µe)−
(∑2

i=1 βiγi
)

B
Z − cŻ,

which we rewrite as

− 2Z̈

B
+

(∑2
i=1 βiγi

)
B

Z = ρ(

(∑2
i=1 βiTi

)
B

− µe). (1.18)

Combining (1.16) and (1.18) gives

−2Z̈

B
+

(∑2
i=1 βiγi

)
B

Z = ρ(A− 2Ż

B
− cZ),

which is equivalent to

− 2Z̈ + 2ρŻ + (ρBc+
2∑

i=1

βiγi)Z = ρAB. (1.19)

The resolution of the differential equation (1.19) yields

Z(t) = w1e
θ1t+w2e

θ2t+
ρAB

ρBc+
∑2

i=1 βiγi
for all t ∈ [0,Θ[ with w1, w2 ∈ R, (1.20)

where θ1 =
1
2
(ρ−

√
∆), θ2 = 1

2
(
√
∆+ ρ) and ∆ = ρ2 + 2(Bρc+

∑2
i=1 γiβi).
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For t > Θ, the evolution of the stock of pollution, country 2’s tax, the producer price and

the cartel’s co-state variable must be of the following form (see Appendix 1 for how we

obtain these expressions).



Z(t) = w′
1e

θ′1t + Aρ
ρc+γ2

T2(t) =
γ2
θ′2
w′

1e
θ′1t + Aγ2

ρc+γ2

µe(t) = − cθ′1
θ′2
w′

1e
θ′1t

p(t) = cρ−γ2
2θ′2

w′
1e

θ′1t + Aρc
ρc+γ2

(1.21)

where w′
1 ∈ R, θ′1 = 1

2
(ρ−

√
∆′), θ′2 = 1

2
(ρ+

√
∆′) and ∆′ = ρ2 + 2β2(ρc+ γ2).

We find the unknowns by using the continuity of Z at time Θ, the Z(0) and the fact

that at time Θ, He(p
∗
1) = He(p

∗
2) (see Appendix 1 for details). After some resolutions, we

obtain

w′
1 =

β1Aθ
′
2(γ2 − γ1)e

−θ′1Θ

(ρc+ γ2)(Bρc+
∑2

i=1 γiβi −
√
Bβ2(ρc+ γ2))

,

w1 =
ZΘ + ABρ(eθ2Θ−1)

Bρc+
∑2

i=1 γiβi

eθ1Θ − eθ2Θ
,

w2 =
ZΘ + ABρ(eθ1Θ−1)

Bρc+
∑2

i=1 γiβi

eθ2Θ − eθ1Θ
,

where ZΘ = w′
1e

−θ′1Θ + Aρ
ρc+γ2

and Θ is the unique solution of the following equation

(θ1e
−θ1Θ−θ2e

−θ2Θ)(ZΘ−
ABρ

Bρc+
∑2

i=1 γiβi

)− ABρ
√
∆

Bρc+
∑2

i=1 γiβi

−

√
B

β2

w′
1θ

′
1e

−θ′2Θ(eθ1Θ−eθ2Θ) = 0,

When the importing countries are heterogeneous in their costs of pollution, the importing

country that has the highest cost of pollution stops demanding the resource at a finite

time. However, the lowest cost importing country demands the resource until economic

exhaustion.

This completes the characterization of the open loop Nash equilibrium when the param-

eters are such that Θ > 0. It is straightforward to see that Θ > 0 if assumption 1 is
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satisfied. Otherwise, Θ = 0, and we will have the uninteresting case where the more

affected country never consumes anything and the game is bilateral monopoly game be-

tween country 2 and the exporting cartel.

The analytical characterization of this section will allow us to examine variables of in-

terest, such as welfare and the equilibrium extraction path numerically, and to compare

them against the benchmarks established in Section 4.

4 Benchmarks

Cooperation between the importing countries (bilateral monopoly)

In this section, we assume that the two resource importing countries cooperate to maxi-

mize their joint welfare. This is the case studied in the literature when we have only one

importing country or a coalition of resource-importing countries (seeking to maximize

utilitarian welfare) and a cartel of resource-exporting countries (see Dullieux, Ragot, and

Schubert (2011), Rubio and Escriche (2001), Tahvonen (1996)). The following proposition

summarizes our results in this section.

Proposition 2. The open loop Nash equilibrium of the bilateral monopoly game between

the coalition of importing countries and the cartel, called the cooperative equilibrium, is

characterized as follows



Zc(t) = ρA
ρc+Γ

(
1− e−θct

)
T1(t) = T2(t) = T c(t) = AΓ

ρc+Γ

(
1− 2ρ

ρ+
√
∆c

e−θct
)

pc(t) = ρA
ρc+Γ

(
c+ Γ−cρ

ρ+
√
∆c

e−θct
)

qci (t) =
βiρA

(ρ+
√
∆c)

e−θct for i ∈ {1, 2}

(1.22)

with θc =
1
2
(
√
∆c − ρ) and ∆c = ρ2 + 2B(cρ + Γ). In particular, both countries demand

the resource until economic exhaustion.

Proof. See Appendix.

Proposition 2 shows that the rate of taxation in the resource-importing countries, the
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stock of resource already extracted and the consumer price are all continuously increasing

functions of time. When the two importing countries form a coalition, they set the same

tax rate. The tax rate does not depend on how the natural resource is distributed between

the two resource-importing countries.

Social Optimum

In this section, a social planner maximizes the sum of the joint welfare of the two resource-

importing countries and of the profits of the resource-exporting cartel. For completeness,

we also compute what the producer price and the optimal taxes would be in the case where

the social optimum results as an efficient equilibrium in an economy with competitive

producers (see details in the proof of Proposition 3 in the Appendix). The social optimum

is characterized in the following proposition.

Proposition 3. The social optimum is characterized as follows

Zo(t) = ρA
ρc+Γ

(
1− e−θt

)
µo = − ρA

ρc+Γ

(
ρ−

√
∆

2B
+ c
)
e−θt − AΓ

ρc+Γ

T o(t) = AΓ
ρc+Γ

(
1− ρ

ρ+θ
e−θt

)
qoi (t) =

βiρA(
√
∆−ρ)

2B(ρc+Γ)
e−θt for i ∈ {1, 2}

po(t) = ρAc
ρc+Γ

(
1− ρ

ρ+θ
e−θt

)
with θ = 1

2
(
√
∆− ρ) and ∆ = ρ2 + 4B(cρ+ Γ).

Proof. See Appendix.

In the social optimum, the consumer price, the producer price, the tax rate and the stock

of pollution are increasing functions of time while the demand decreases over time. Even

if the importing countries are heterogeneous in the way in which they are affected by the

stock of pollution, when they cooperate with each other and in the social optimum, their

consumptions differ only if they have different market size. This can be explained by the

fact that, when they cooperate, they only care about the overall cost of pollution.
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5 Numerical comparisons

In this section, we make some comparisons between the open loop Nash equilibrium when

all three parties act non-cooperatively and the two benchmarks scenarios of Section 4.

First, the long term stock of pollution, or equivalently the limit amount of the extracted

resource is larger in the non cooperative case than in the cooperative case. Consequently,

from an environmental point of view, cooperation between the two importing countries is

preferred to non cooperation. We also note that the final stock of pollution is the same in

the cooperative equilibrium and in the social optimum. This leads us to the same result as

Wirl (1994), which is that, from an environmental point of view, the cooperation between

the two resource-importing countries and the resource-exporting cartel is not necessary,

only the cooperation between importing countries matters.

Both in the case of cooperation between the resource-importing countries and in the social

optimum, the country that is most affected by the pollution does not stop consuming

the resource, in contrast to what we find for the non cooperative equilibrium. In both

importing countries, consumption is initially higher in the social optimum compared to

the cooperative equilibrium (qoi (0) > qci (0) for all i ∈ {1, 2}) which is the consequence

of the fact that the initial consumer price in the social optimum is lower than the one

obtained in the cooperative equilibrium. However, there is a time t1 after which the

consumption in the social optimum remains smaller in the cooperative equilibrium (for

all i ∈ {1, 2}, we have: qoi (t) > qci (t) for all t ∈ [0, t1[, qoi (t) < qci (t) for all t ∈]t1,∞[ and

qoi (t1) = qci (t1)).

Our characterization of the non cooperative equilibrium is not tractable enough for simple

analytical comparisons with the benchmark scenarios, but it allows us to easily make

numerical comparisons for given parameters, and to obtain interesting insights into the

evolution of consumption levels, the stock of pollution, and welfare. We assume as Chou

and Long (2009), that A = 100, c = 0.25, ρ = 0.05. For the value of the slope of the

marginal cost of pollution, we fix γ1 = 0.006 and γ2 = 0.001.7 Later, we also study the

effects of changing the asymmetry with respect to how much countries are affected by

pollution, by considering different values of (γ1, γ2) with Γ = 0.007.
7Liski and Tahvonen (2004) worked with a similar range of parameters.
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Table 1.1 – Welfare levels of importing countries and exporting cartel.

Cooperative Social optimum
Importing Exporting Importing Exporting

B=1 3057.2 5663.5 4237.5 4741.4
B=2 3446.3 6323.7 4377 5582.5
B=3 3634.6 6638.8 4431.5 5998.5
B=4 3751.6 6833.3 4461.5 6260

Table 1.1 shows the discounted joint welfare of the resource-importing countries (left

column) and the profits of the exporting cartel (right column) for the two benchmark

scenarios, for different values of the total market size B. We see that the welfare level of

the importing countries is always higher in the social optimum than in the cooperative

equilibrium, while the exporting cartel is better off in the cooperative equilibrium than

the competitive producers in the decentralized social optimum.

Table 1.2 – Welfare levels of the two importing countries in the non cooperative equilib-
rium.

β1 = β2 β1 = 1.5β2 β1 = 2β2 β1 = 3β2

B=1 −1896.5, 1961.5 −1359.3, 1811.8 −913.7, 1656.2 −236.9, 1380.4
β2 = β1 β2 = 1.5β1 β2 = 2β1 β2 = 3β1

B=1 −1896.5, 1961.5 −2306.7, 2036.1 −2524, 2056 −2745.8, 2058.5

Table 1.2 illustrates, for γ1 = 0.006, how the welfare levels of the more affected country 1

(left entry) and of country 2 (right entry) in the non cooperative equilibrium depend on

the relative market sizes of the two countries. Note that the total welfare of the coalition of

both countries in either the cooperative equilibrium or in the social optimum is the same

for all values of (β1, β2) shown in Table 1.2, because B = β1 + β2 = 1 is fixed (compare

the formulas in Propositions 2 and 3, which depend only on B and Γ). We see that the

total welfare of the two countries and the welfare of country 1 decrease sharply when the

market size parameter of the less affected country increases. A situation where a country

that does not suffer much from pollution has high consumer demand is particularly bad

for the other country’s welfare.
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Table 1.3 – Welfare levels of the two importing countries in the cooperative equilibrium
for β1 ≥ β2.

β1 = β2 β1 = 1.5β2 β1 = 2β2 β1 = 3β2

Import1 Import2 Import1 Import2 Import1 Import2 Import1 Import2
B=1 777.2 2280 1293.3 1763.9 1637.4 1419.8 2067.4 989.7
B=2 774.9 2671.4 1385 20613 1791.8 1654.5 2300.3 1146.1
B=3 766.7 2867.9 1424.3 2210.3 1862.7 1771.8 2410.7 1223.8

Tables 1.3 and 1.4 show the welfare levels of the two importing countries in the cooperative

equilibrium respectively when β1 ≥ β2 and when β2 ≥ β1 (still for γ1 = 0.006). Comparing

these tables with Table 1.2 for B = 1, we observe that the country that is more strongly

affected by pollution always gains from cooperation, while the less affected country only

gains from cooperation (coordinating actions in the game with the cartel) if it has a

sufficiently low relative market size. However, the total welfare of the importing countries

is always larger in the cooperative equilibrium than in the non cooperative equilibrium

(note also again that it only depends on B). We can then conclude that, the incentive of

country 2 to cooperate with country 1 may depend on whether the coalition can pursue

other objectives than maximizing utilitarian welfare and/or whether side payments are

possible.

Table 1.4 – Welfare levels of the two importing countries in the cooperative equilibrium
with β2 ≥ β1.

β2 = β1 β2 = 1.5β1 β2 = 2β1 β2 = 3β1

Import1 Import2 Import1 Import2 Import1 Import2 Import1 Import2
B=1 777.2 2280 261 2796.1 −83 3140.2 −513.1 3570.3
B=2 774.9 2671.4 164.7 3281.6 −242 3688.4 −750.4 4196.8
B=3 766.7 2867.9 109 3525.5 −329.3 3963.9 −877.3 4512

Figure 1.1 shows how Θ depends on γ1
γ2

∈ (1, 6] for Γ = 0.007 and under the assumption

that β1 = β2 = 0.5. The larger is the asymmetry between the two countries with respect

to their cost of pollution, the earlier we enter the bilateral monopoly phase.
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Figure 1.1 – Evolution of Θ with γ1
γ2

.

Figure 1.2 shows the carbon taxes in the two importing countries when they do not

cooperate and when they form a coalition. We see that, in importing country 2, the tax

rate is always much higher in the cooperative equilibrium than in the non cooperative

equilibrium. In importing country 1 the carbon tax is almost the same in both cooperative

and non cooperative equilibria at the beginning of the horizon, then at a certain time,

the non cooperative carbon tax becomes higher than the cooperative tax and it remains

larger forever. This can be explained by the fact that, when the two importing countries

cooperate, they both consume the resource until economic exhaustion. None of them

leave the market at a finite time.

Figure 1.2 – Tax rates with γ1 = 0.006 and γ2 = 0.001.

Figure 1.3 shows that consumption in country 2 converges more quickly to zero in the co-

operative equilibrium than in the non cooperative equilibrium. Moreover, its consumption
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is always higher in the non cooperative equilibrium than in the cooperative equilibrium.

Consumption in country 1 is always higher in the cooperative equilibrium than in the non

cooperative equilibrium. Concerning the stock of pollution, we see that at the beginning

of the horizon, the stock of pollution in the social optimum is higher than in the non

cooperative equilibrium.

Figure 1.3 – Price, Stock of pollution and Consumption levels with γ1 = 0.006 and γ2 = 0.001.

In Figure 1.4, we show the welfare of country 2 and the profit of the exporting cartel, both

for the non cooperative equilibrium and for a bilateral monopoly game between country

2 and the cartel. The latter scenario can be interpreted as a case where γ1 is so high

that Assumption 1 is violated, so that country 1 never consumes anything. We see that

the cartel’s profit is decreasing in the cost of pollution of the more affected country, γ1.

More interestingly, we see that country 2 may benefit from the presence of country 1. Its

welfare may be higher in the non-cooperative game with three players than in the bilateral

monopoly game. This happens when country 1 is sufficiently more affected than country

2, but not so much that it stays out of the market from the beginning.
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Figure 1.4 – Welfare of country 2 and that of the cartel with γ2 = 0.001.

Throughout the rest of the section, we fix B = 1. The upper part of Figure 1.5 shows

how the consumption paths in the non cooperative equilibrium depend on the relative

market sizes, for (γ1, γ2) = (0.006, 0001). We see that increasing the relative market size

of country 2 implies that country 1 is excluded earlier and consumes less overall. Country

2 consumes more early on and more overall, and its consumption converges faster to 0 in

the long term. Figure 1.7 shows the corresponding evolution of Z. For an initial period,

the evolution of Z looks similar for all values of β2, but in the middle and long term, Z is

higher for higher values of β2. Figure 1.8 shows that the differences become much smaller

when γ1 and γ2 are much more similar.

For the rest of the section, we fix Γ = 0.007 and let γ1 vary between 0.0037 and 0.006, while

we fix β1 = β2 = 0.5. This allows us to study how the asymmetry with respect to how

much the two countries are affected by pollution affects the non cooperative equilibrium

(while the cooperative equilibrium always remains the same). The lower part of Figure

1.5 shows the consumption paths, with the expected pattern that country 1 consumes less

and country 2 consumes more if the asymmetry increases. More interestingly, Figure 1.6

(in the Appendix) shows the evolution of Z. If countries are more symmetric, pollution

increases faster for a relatively long period. However, in the long term, pollution is higher

if countries are more asymmetric.
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Figure 1.5 – Consumption levels.

In Table 1.5, we can see that as the countries become more symmetric in the cost of

pollution, the welfare of country 1 increases while that of country 2 and of the exporting

cartel decrease. However, the global welfare of all countries is increasing. Figure 1.9 in

the Appendix shows how the welfare of countries depends on both (γ1, γ2) and (β1, β2)

for B = 1 and Γ = 0.007.

Table 1.5 – Welfare levels of countries with Γ = 0.007.

γ1 = 0.006 γ1 = 0.0055 γ1 = 0.005 γ1 = 0.0045 γ1 = 0.0037
Importing country 1 −1896.5 −1466.6 −1015.1 −531.3 350.5
Importing country 2 1961.5 1912.3 1774.2 1529.7 850.7
Exporting cartel 8014.6 7831.3 7697.5 7611.1 7559.6
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6 Conclusion

In this paper, we have extended a linear-quadratic version of the bilateral monopoly trade

model between an importing country and an exporting cartel of an exhaustible and pol-

luting resource (see Rubio and Escriche (2001), Liski and Tahvonen (2004), Dullieux,

Ragot, and Schubert (2011), Kagan, Van der Ploeg, and Withagen (2015)) by analyzing

the non cooperative open loop game between two asymmetric importing countries and a

resource-exporting cartel which owns a stock of a polluting resource.

We have shown that when the countries act non cooperatively, at a finite time, the pro-

ducer price jumps and the country that is most affected by pollution stops demanding the

resource. However, the country with the lowest cost of pollution demands the resource

until economic exhaustion. The cooperative equilibrium leads to a lower long term stock

of pollution than the non cooperative equilibrium and to the same long term stock as the

social optimum, and it is more conservative than the latter in the sense that extraction

occurs more slowly.

Our numerical results based on the explicit characterization of the non-cooperative equi-

librium have yielded a number of interesting insights. In particular, even a country that

has moderately large consumer demand for the resource and is significantly less affected

by pollution may be reluctant to join a coalition with the other importing country if

the coalitions’ objective is restricted to maximizing joint utilitarian welfare. In the non

cooperative scenario, more symmetry with respect to the cost of pollution leads to faster

increase of the stock of pollution initially, but to a lower long term stock and higher total

discounted welfare.
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Appendix

Figure 1.6 – Pollution stock with β1 = β2 = 0.5.

Figure 1.7 – Pollution stock with γ1 = 0.006 and γ2 = 0.001.
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Figure 1.8 – Pollution stock with γ1 = 0.0036 and γ2 = 0.0034.

Figure 1.9 – Sum of welfare of countries.

Proof of Lemma 1:

The current value Hamiltonian He has the form
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He =


H1

e =
∑2

j=1 βj(A− p− Tj) (p− cZ + µe) if p ≤ A− T1

H2
e = β2(A− p− T2) (p− cZ + µe) if A− T1 ≤ p ≤ A− T2

0 otherwise.

H1
e and H2

e are both strictly concave in p, and we have:

∂H1
e

∂p
= BA− 2Bp+ cBZ −Bµe −

2∑
j=1

βjTj,

∂H2
e

∂p
= β2A− 2β2p+ cβ2Z − β2µe − β2T2.

Thus, the unconstrained maximum of H1
e is p∗1 =

1
2B

(
BcZ +BA−Bµe −

∑2
i=1 βiTi

)
.

The unconstrained maximum of H2
e is p∗2 =

1
2
(cZ + A− µe − T2).

We note first that He cannot be maximized at p = A − T1. Indeed this would require
∂H1

e

∂p
≥ 0 and ∂H2

e

∂p
≤ 0 at p = A− T1, which is equivalent to

−A+ cZ − µe + 2T2 ≥
∑2

j=1 βjTj

B
and (1.23)

−A+ cZ − µe + 2T2 ≤ T2. (1.24)

If (1.23) and (1.24) hold simultaneously, we obtain
∑2

j=1 βjTj

B
≤ T2, i.e., T1 ≤ T2, which is

impossible, because according to (1.10), T1 > T2.

We now show that p = p∗1 maximizes He if and only if H1
e (p

∗
1) ≥ H2

e (p2∗), and that p = p∗2

maximizes He if and only if H1
e (p

∗
1) ≤ H2

e (p2∗). Note that p∗1 < p∗2. If p∗2 ≤ A − T1,

then H2
e (p2∗) ≤ H1

e (p
∗
2) ≤ H1

e (p
∗
1), where at least one of the inequalities is strict (be-

cause H1
e (p) ≥ H2

e (p) for p ≤ A − T1, and becauseH1
e is strictly concave), and p∗1 is the

unique maximizer of He. If p∗1 ≥ A − T1, then He
1(p

∗
1) ≤ He

2(p1∗) ≤ H2
e (p2∗), where

at least one of the inequalities is strict (because (A − T1 − p) ≤ 0 for p ≥ A − T1 and

H2
e is strictly concave). Finally, if p∗1 ≤ A − T1 and p∗2 ≥ A − T1, p∗1 maximizes He if

H1
e (p

∗
1) ≥ H2

e (p2∗), and p∗2 maximizes He if H1
e (p

∗
1) ≤ H2

e (p2∗). As H1
e (p

∗
1) T H2

e (p2∗) if

and only if cZ − µe S A−
√
B√

B−
√
β2

∑2
i=1 βiTi

B
+

√
β2√

B−
√
β2
T2 this proves the Lemma 1.
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Proof of Proposition 1:

As noted in the text, cZ−µe is increasing in t, and D = A−
√
B√

B−
√
β2

∑2
i=1 βiTi

B
+

√
β2√

B−
√
β2
T2

is decreasing in t. If cZ − µe ≥ D at t = 0, we are done. If cZ − µe < D at t = 0,

we must show that there is a finite time Θ for which cZ − µe = D. Observe that

p∗2 is the midpoint between cZ − µe and A − T2, and that p∗1 < p∗2. In particular,

Q(p) = Ż can only converge to 0 as t → ∞ (which must be the case, because Z is

a bounded, increasing function) if cZ − µe converges to A − T2. On the other hand,

A− T2 −D = β1

B−
√
Bβ2

(T1 − T2) =
β1

B−
√
Bβ2

(γ1 − γ2)
∫∞
t

e−ρ(τ−t)Z(τ)dτ is strictly positive

for any t and increasing (because Z is increasing). This proves the existence of a unique

Θ for which cZ − µe = D.

Appendix 1:

After time Θ, importing country 1 is already out of the market. However, by combining

the first order conditions of the problem of importing country 2 and the expression of

the producer price (p∗2) that the exporting cartel sets in this phase, we have the following

system of differential equations to solve:
Ż = β2

2
(−cZ + µe) +

1
2
β2(A− T2)

Ṫ2 = ρT2 − γ2Z

µ̇e = (ρ+ cβ2

2
)µe − c2β2Z

2
+ c

2
β2(A− T2)

The resolution of this system of differential equations gives the following results for all

t ∈ [Θ,∞) 

Z(t) = w′
1e

θ′1t + Aρ
ρc+γ2

T2(t) =
γ2
θ′2
w′

1e
θ′1t + Aγ2

ρc+γ2

µe(t) = − cθ′1
θ′2
w′

1e
θ′1t

p(t) = cρ−γ2
2θ′2

w′
1e

θ′1t + Aρc
ρc+γ2
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where w′
1 ∈ R, θ′1 = 1

2
(ρ−

√
∆′), θ′2 = 1

2
(ρ+

√
∆′) and ∆′ = ρ2 + 2β2(ρc+ γ2).

At the time Θ, the value of the Hamiltonian for the problem of the exporting cartel

is such that, He(p
∗
1) = He(p

∗
2). Using the two expressions for the formulas of Z at this

time (see (1.20) and (1.21)) with this equality, we get these two following equations

w′
1e

θ′1Θ =
β1Aθ

′
2(γ2 − γ1)

(ρc+ γ2)(Bρc+
∑2

i=1 γiβi −
√
Bβ2(ρc+ γ2))

, (1.25)

and

w1θ1e
θ1Θ+w2θ2e

θ2Θ=

√
B

β2

w′
1θ

′
1e

θ′1Θ. (1.26)

To find the values of the different unknowns w1, w2, w′
1 and Θ, we use the initial value

of the stock of pollution, the continuity of the stock of pollution at time Θ and the

equations (1.25) and (1.26). Combining these equations, the system of equations to solve

is the following 

w1+w2+
ρAB

Bρc+
∑2

i=1 γiβi
=0,

w1e
θ1Θ+w2e

θ2Θ+ ρAB

Bρc+
∑2

i=1 γiβi
= ZΘ,

w′
1e

θ′1Θ =
β1Aθ′2(γ2−γ1)

(ρc+γ2)(Bρc+
∑2

i=1 γiβi−
√
Bβ2(ρc+γ2))

,

w1θ1e
θ1Θ+w2θ2e

θ2Θ=
√

B
β2
w′

1θ
′
1e

θ′1Θ,

where ZΘ = w′
1e

θ′1Θ + Aρ
ρc+γ2

.

Proof of Proposition 2:

The problem solved by the two importing countries in the cooperative equilibrium is:

max
T1,T2

∫ ∞

0

e−ρt

2∑
i=1

(
max{βi

2

[
(A−p)2−T 2

i

]
, 0}− γi

2
Z2

)
dt

subject to Ż(t) =
∑2

i=1 max{βi(A− p− Ti), 0}

The current value Hamiltonian in this case is:

H = r
∑2

i=1

(
max{βi

2
[(A−p)2−T 2

i ] , 0}−
γi
2
Z2
)
+λ(

∑2
i=1 max{βi(A− p− Ti), 0}),
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where r ∈ {0, 1} and λ is the co-state variable related to the stock of pollution.

As H is concave in T1, T2 and Z with r = 1, the necessary conditions are also sufficient

(see Theorems 12 and 13 in Chapter 3 of Seierstad and Sydsaeter (1987)), and are given

by:

−βiTi − βiλ = 0 for i ∈ {1, 2} (1.27)

λ̇ = ρλ+ Z
2∑

i=1

γi (1.28)

Ż =
2∑

i=1

max{βi(A− p− Ti), 0} (1.29)

lim
t→∞

e−ρtλZ = 0 (1.30)

By combining equations (1.27) and (1.28), we obtain

Ṫi = ρTi − ΓZ for i ∈ {1, 2}. (1.31)

From equation (1.31), we can easily see that in equilibrium, T1 = T2 = T c.

The problem solved by the planner in the exporting country is:

max
p

∫ ∞

0

e−ρt

[(
2∑

i=1

max{βi(A− p− Ti), 0}

)
(p− cZ)

]
dt

subject to Ż =
∑2

i=1 max{βi(A− p− Ti), 0}

Given that T1 = T2 = T c, the current value Hamiltonian is:

H = rceBmax{(A− p− T c), 0} (p− cZ) + µcBmax{(A− p− T c), 0},

where rce ∈ {0, 1} and µc is the co-state variable related to the stock of pollution.

Because of the fact that He is concave in p and Z for rce = 1, the necessary conditions

below are also sufficient (see Theorems 12 and 13 in Chapter 3 of Seierstad and Sydsaeter
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(1987))

−B(p− cZ + µc) +B(A− p− T c) = 0 (1.32)

µ̇c = ρµc + cŻ (1.33)

Ż = B(A− p− T c) (1.34)

lim
t→∞

e−ρtµcZ = 0 (1.35)

From (1.32), we have:

p =
1

2
(cZ + A− µc − T c)) . (1.36)

When we replace p by its expression (1.36) into (1.34), we obtain

Ż =
B

2
(µc − cZ + A− T c). (1.37)

To obtain the cooperative equilibrium, we have to solve the following system of differential

equations: 
Ż = B

2
(µc − cZ + A− T c)

Ṫ c = ρT c − ΓZ

µ̇c = (ρ+ cB
2
)µc − cB

2
(cZ − A)− cB

2
T c,

the solution of which is given in (1.22).

Proof of Proposition 3:

The problem solved by the social planner in this case is as follows:

max
p+T1,p+T2

∫ ∞

0

e−ρt

2∑
i=1

[
Aβi(A−p−Ti)−

1

2βi

(βi(A− p− Ti))
2−βicZ(A−p−Ti)−

γi
2
Z2

]
dt

subject to

Ż(t) =
2∑

i=1

βi(A− p− Ti)

This problem can be rewritten as:
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max
p+T1,p+T2

∫ ∞

0

e−ρt

2∑
i=1

[
βi

2
(A−p−Ti) (A+ p+ Ti − 2cZ)− γi

2
Z2

]
dt

subject to

Ż(t) =
2∑

i=1

βi(A− p− Ti)

The current value Hamiltonian is:

H = ro
(∑2

i=1

[
βi

2
(A−p−Ti) (A+ p+ Ti − 2cZ)− γi

2
Z2
])

+ µo(
∑2

i=1 βi(A− p− Ti)),

where ro ∈ {0, 1} and µo is the co-state variable associated to the stock of pollution.

For ro = 1, H is concave in p+T1, p+T2 and Z. Thus, the following necessary conditions

for the optimality are also sufficient (see Theorems 12 and 13 in Chapter 3 of Seierstad

and Sydsaeter (1987)):

−βi

2
(A+ p− 2cZ) +

βi

2
(A− p− Ti)− βiµo = 0 for i ∈ {1, 2}

µ̇o = ρµo+cŻ+Z
2∑

i=1

γi

Ż =
2∑

i=1

βi(A− p− Ti)

lim
t→∞

e−ρtµoZ = 0

These conditions are equivalent to:

p+ Ti = cZ − µo for i ∈ {1, 2} (1.38)

µ̇o = (ρ+Bc)µo+(Γ− c2B)Z+ ABc (1.39)

Ż = −cBZ +Bµo + AB (1.40)

lim
t→∞

e−ρtµoZ = 0 (1.41)

To compute the optimal tax rate and the price in a decentralized efficient equilibrium, we

solve the problem of a competitive producer.
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This problem is as follows

max
q

∫ ∞

0

e−ρt [(p− cZ) q] dt

subject to Ż = q

The current value Hamiltonian is: H = roe (p− cZ) + µq,

where roe ∈ {0, 1} and µ is the co-stated variable related to the stock of pollution.

The first order conditions are

p = cZ − µ (1.42)

µ̇ = ρµ+ cŻ (1.43)

lim
t→∞

e−ρtµZ = 0 (1.44)

By combining (1.38) and (1.42), we obtain

Ti = µ− µo. (1.45)

By differentiating (1.45) and by combining the result with (1.39), (1.40), (1.43) and (1.45),

we find

Ṫi = ρTi − ΓZ. (1.46)

By differentiating (1.38) and by combining the result with (1.39), (1.40) and (1.46), we

obtain

ṗ = −ρ(Ti + µ). (1.47)

By solving the system of differential equations constitutes with (1.39), (1.40), (1.46) and

(1.47), we obtain that the stock of pollution, the optimal producer price and the optimal

tax rate at each time t are

Zo(t) =
ρA

ρc+ Γ
(1− e−θt),

po(t) =
ρAc

ρc+ Γ

(
1− ρ

ρ+ θ
e−θt

)
,

T o(t) =
AΓ

ρc+ Γ

(
1− ρ

ρ+ θ
e−θt

)
.
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Chapter 2

The Strategic Effects of a Bilateral

Border Tax Adjustment in an

Emissions Taxation Game

1 Introduction

Carbon emissions are the main driver of climate change. Climate change is a global prob-

lem. While full cooperation between all countries within an international environmental

agreement would be the best way to mitigate global emissions, agreements implementing

effective actions are difficult to achieve due to free-rider incentives. On the other hand,

the effectiveness of unilateral actions aimed at reducing greenhouse gas emissions may be

limited due to "carbon leakage". Stricter environmental policies for producers, for exam-

ple higher carbon taxes, may trigger a relocation of the production of emissions-intensive

goods to countries with laxer regulations. Consequently, reductions in domestic emissions

may be partially, or even fully, offset by higher emissions abroad. Furthermore, stricter

policies may reduce the international competitiveness of domestic firms.

Border adjustments have been widely proposed as a measure for eliminating or at least

reducing the issues of carbon leakage and loss of competitiveness (e.g. Hecht and Peters

(2019); Larch and Wanner (2017); Baksi and Chaudhuri (2017); Böhringer, Müller, and

Schneider (2015); Eyland and Zaccour (2012, 2014); Anouliés (2015)).
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Border adjustments can take the form of import tariffs, export rebates, or both. In the

case of border adjustments through an import tariff, a country with strict carbon regula-

tions imposes a tariff on imports from countries with lower levels of regulation to (partially

or fully) adjust the carbon price for goods consumed in the domestic market. Export re-

bates are subsidies granted by countries with stricter regulation for exports to countries

with laxer regulation, to adjust the carbon price and hence level the playing field in these

foreign markets.

The effectiveness of border adjustments has been studied by two different strands of lit-

erature.

The first strand uses empirically calibrated computable general equilibrium models to esti-

mate the mitigation of leakage effects through different forms of border adjustments (e.g.

Böhringer, Rosendahl, and Schneider (2014); Böhringer, Müller, and Schneider (2015);

Böhringer and Rutherford (2017)).

The second strand of literature studies the effects of border adjustments in strategic trade

models with oligopolistic industries and transboundary pollution (e.g. Hecht and Peters

(2019); Baksi and Chaudhuri (2017); Eyland and Zaccour (2012, 2014); Anouliés (2015)).

This literature analyzes countries’ strategic choices of emissions taxes to evaluate to what

extent border adjustments, and in particular the threat of border adjustments, can lead to

more efficient tax levels, when taxes are the only policy instrument and thus play a role in

addressing both the environmental problem and oligopoly distortions. Another question

in this context is whether full or partial adjustment of carbon prices is preferable, either

from the perspective of the country that imposes the border adjustment, or for global

welfare.

The latter literature has focused on two-country models and on duopoly competition

between one domestic and one foreign firm in each market. Moreover, most work has

restricted attention to Cournot competition and to import border adjustments, as these

are generally considered more likely to be compatible with WTO rules1.

The present paper contributes to this literature in two ways. First, we consider a model
1Hecht and Peters (2019) consider both Cournot and Bertrand competition in a model with differenti-

ated products, and they consider both import border adjustments and border adjustments that combine
an import tariff and an export rebate.
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with an arbitrary number of identical firms in each country, all of which compete à la

Cournot in both markets. This allows a more detailed analysis of how equilibrium emis-

sions taxes in the presence of an import border tax adjustment (BTA) depend on the

competitiveness of the industry. Secondly, the existing literature has assumed that coun-

tries differ in their vulnerability to (their cost of) pollution and has restricted attention

to cases where it is clear that the more affected country sets the higher tax and hence

charges the BTA, either by assuming this exogenously, or by making assumptions on the

parameters that guarantee it. By contrast, we take a closer look at the strategic effects

associated with a BTA when either country might be the one that sets the higher tax and

hence charges the BTA. This is called the case of a "bilateral" BTA-policy in Elboghdadly

and Finus (2020). To this end, we consider a model with two symmetric countries, called

Home and Foreign, engaged in oligopolistic trade of a polluting good that is very similar

to (a particular instance of) the free-trade model of Kennedy (1994) and introduce an

import BTA into that setting. If the Government of country k sets a carbon tax rate

tk per unit of production of its firms, and if tk > tl where tl is the carbon tax rate of

the other country (l), it imposes a per-unit adjustment tax δ(tk − tl) on its imports from

country l. Following Eyland and Zaccour (2012, 2014), we say that the BTA is partial if

δ < 1 and full if δ = 1.

We study the Nash equilibria of the game where both countries simultaneously choose

their taxes, taking as given the level of the BTA (δ), and anticipating the Cournot equi-

librium quantities and prices in both markets (which result for the given taxes and border

tax adjustments). Assuming free-trade (i.e., no BTA), Kennedy (1994) has shown that

equilibria are symmetric and that equilibrium taxes are always lower than efficient taxes,

due to two effects, a transboundary externality effect and a rent-capture effect.

Our main findings are as follow. First, we obtain a complete characterization of the pure-

strategy Nash equilibria of the game with arbitrary δ-BTA. We show that for any given δ,

when the cost of pollution is sufficiently small, equilibria are symmetric and tax rates are

higher than the efficient taxes. Thus, the threat of BTA pushes taxes above the efficient

levels. There is a unique level of the cost of pollution for which the symmetric equilibrium

is unique and efficient. For high level of pollution, the equilibria are asymmetric, and the
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taxes are uniquely determined and are both lower than the efficient taxes. The BTA

always help to mitigate global level of pollution. When the countries suffer little from

pollution there is a unique and generally partial BTA for which the non cooperative taxes

are equal to the efficient taxes. Whenever the cost of pollution is such that the efficient

tax is positive, the global welfare in the equilibrium with BTA (regardless whether equi-

librium is symmetric or asymmetric) is higher than in the non cooperative equilibrium

without BTA.

To the best of our knowledge, the other paper that study the effect of the bilateral BTA

is Elboghdadly and Finus (2020). However, they are interested in the case where firms

can endogenously choose their location and they focus on duopoly competition. Another

paper by Al Khourdajie and Finus (2020) studied the ability of border tax adjustment to

reduce free-riding in international environmental agreements.

The paper is organized as follows. In sections 2 and 3, we set up the model and discuss

preliminaries results. Section 4 analyzes the cooperative tax rate and sections 5 and 6

present our main results about the non cooperative taxes and some comparisons. We

conclude in section 7.

2 Model

We consider a world with two identical countries, denoted as Home (H) and Foreign

(F ). In each country, there are n firms who produce a homogeneous and polluting good

at a constant marginal cost of c ≥ 0. There is one market in each country, and the 2n

firms compete à la Cournot in quantities in each market. The quantity sold by firm i from

country l to the market k is denoted qilk, where i ∈ {1, ..., n} and l, k ∈ {H,F}. The inverse

demand function in each country is p(Ql) = α − βQl, where α > c, β > 0 and Ql is the

total quantity sold and consumed in country l ∈ {H,F}, i.e., Ql =
∑

k∈{H,F}
∑

i∈{1,..,n} q
i
kl.

We assume that one unit of production of the good generates one unit of pollution. The

global level of pollution is denoted by Z (i.e., Z = QH +QF ).

For each country, the cost of pollution is described by the function D(Z) = γ
2
Z2, where

γ ≥ 0 is a constant. The case that interests us is of course γ > 0. However, all of our
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analysis applies to the case γ = 0 (no pollution problem) as well, and it will be convenient

to refer to this case at some point. The higher is γ the more countries suffer from the

pollution. To regulate pollution, the Government in each country imposes a carbon tax

per unit of production of their firms. We denote the carbon tax rate imposed in country

k by tk. Moreover, each country sets a border tax adjustment (BTA) on imports if its

tax rate is higher than the one set in the other country. The BTA set by country k is

δ(tk − tl)1I{tk≥tl}, where δ∈ [0, 1], k ̸= l ∈ {H,F} and 1I{tk≥tl} is equal to 1 if tk ≥ tl and 0

otherwise. The parameter δ is exogenous. The case δ = 1 corresponds to a full BTA and

δ ∈ (0, 1) to a partial BTA (see Eyland and Zaccour (2012)).

The two countries play a two-stage game as follows: in the first stage, taking the parameter

of the BTA as exogenous, countries simultaneously determine their carbon taxes, and in

the second stage, firms simultaneously produce and sell to both markets. We compute

the subgame perfect equilibrium of this game.

3 Preliminaries

In this section, we determine the industry equilibrium (firms’ equilibrium quantities and

profits) for any given vector t = (tH , tF ) and any level of the BTA. We also state the

formulas for each country’s total welfare.

The industry equilibrium

We let q ∈ R2n denote the vector of quantities and t = (tH , tF ) the vector of tax rates.

The profit functions of firms i ∈ {1, 2, ..., n} from country H and j ∈ {1, 2, ..., n} from

country F are:

πi
H(q, t) =(A−βQH−tH)q

i
HH+(A−βQF−tH −δ(tF−tH)1I{tF≥tH})q

i
HF ,

πj
F (q, t) =(A−βQH−tF−δ(tH−tF )1I{tH≥tF })q

j
FH+(A−βQF−tF )q

j
FF .

where A = α− c.

If t and δ are such that all quantities in (2.1) below are positive, then these constitute
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the Cournot equilibrium quantities (see Belleflamme and Peitz (2015) for details on the

linear Cournot model):

qiHH =
A− (1 + n)tH + ntF + nδ(tH − tF )1I{tH≥tF }

β(1 + 2n)
,

qiHF =
A− (1 + n)tH + ntF + δ(1 + n)(tH − tF )1I{tF≥tH}

β(1 + 2n)
, (2.1)

qjFH =
A+ ntH − (1 + n)tF − δ(1 + n)(tH − tF )1I{tH≥tF }

β(1 + 2n)
,

qjFF =
A+ ntH − (1 + n)tF − nδ(tH − tF )1I{tF≥tH}

β(1 + 2n)
.

As all firms from a given country sell identical quantities, we omit the superscripts i and

j from now on.

The total quantity consumed in country k is given by:

Qk =
n
[
2A− tk − tl − δ(tk − tl)1I{tk≥tl}

]
β(1 + 2n)

with k ̸= l. (2.2)

The total quantity sold by firms from country k in market l is

Xkl = nqkl,

where qkl is given by the formula in (2.1). The aggregate quantity produced by firms from

country k is

Xk =
n
[
2A− 2(1 + n)tk + 2ntl + nδ(tk − tl)1I{tk≥tl} + δ(1 + n)(tk − tl)1I{tl≥tk}

]
β(1 + 2n)

with k ̸= l.

(2.3)

Regardless of the level of the border tax adjustment, the quantity sold by an individual

firm in the domestic market is a decreasing function of the domestic tax rate. The total

consumption in each country decreases with its own tax rate. Total consumption in the

country that sets the higher tax rate is decreasing in δ. Production in each country is a

decreasing function of its tax rate but is an increasing function of the other country tax

rate.
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Country k’s net exports are

Xk −Qk =
−n(tk − tl) [(1 + 2n)− δ(1 + n)]

β(1 + 2n)
with k ̸= l.

Welfare

The welfare of country k is:

Wk(tH , tF ) = CSk + nπk + TRk + nδ(tk − tl)1I{tk≥tl}qlk −
γ

2
Z2, (2.4)

where CSk =
βQ2

k

2
is the consumer surplus in country k, πk is the equilibrium profit of

a single firm from country k, TRk denotes the revenue from the environmental tax, the

fourth term is the revenue from BTA (k ̸= l ∈ {H,F}) and the last term is the damage

from global pollution.

4 The cooperative tax rate

We consider here the benchmark scenario where the two countries form a coalition and

cooperatively set taxes to maximize their joint welfare. In line with the cooperative

scenario, we assume that there is no BTA. Joint welfare is given by:

W c(tH , tF ) = βQ2 + 2(p(Q)− c)Q− γZ2. (2.5)

where Q = QH = QF is the equilibrium level of consumption in either country and

Z = 2Q.

Differentiating (2.5) with respect to taxes (using (2.2)), we obtain

∂W c(tH , tF )

∂tH
=

∂W c(tH , tF )

∂tF
=

−2n(p(Q)− c)

β(1 + 2n)
+

4nγZ

β(1 + 2n)
(2.6)

which easily yields the following result.
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Proposition 1. Joint welfare is maximized if both countries set the tax rate

tc = tc(A, β, n, γ) =
A(8nγ − β)

2n(β + 4γ)
, (2.7)

and tc is the unique symmetric tax rate maximizing joint welfare2.

Proof. See Appendix.

We refer to tc as the cooperative tax rate.

The quantity consumed in each country in this case is Qc = A
β+4γ

.

We make a few basic observations. First (nonsurprisingly), the cooperative tax rate is

increasing in the parameter of the cost of pollution, i.e., ∂tc(A,β,n,γ)
∂γ

> 0. Secondly, for

any γ > 0, the cooperative tax rate is lower than the corresponding Pigouvian tax, which

is equal to 2γZc, where Zc = 2Qc is the global level of pollution. This is due to the

fact that the tax is used to correct two market failures at the same time, the one due

to the environmental externality and the under-production problem due to oligopolistic

competition (see Kennedy (1994) for more explanations). Next, for any γ > 0, tc is

decreasing in β (∂t
c(A,β,n,γ)

∂β
< 0), i.e., increasing in the parameter 1

β
that is proportional

to “market size”. If γ = 0, then tc = −A/2n is independent of β, and exactly offsets the

oligopoly distortion, i.e., we have p(Qc) = c in this case. By contrast, for any γ > 0, we

have p(Qc) > c, i.e., price is above marginal production cost. Finally, we note that tc is

actually negative if 8nγ < β. All our main results below apply to cases where taxes are

positive and hence really correspond to a tax rather than a subsidy, but we formally allow

taxes to be negative unless otherwise mentioned.

5 The non cooperative taxation game

In this section, we study the non cooperative, simultaneous-move game where countries set

their taxes to maximize their own welfare, taking firms’ behavior (the industry equilibrium

that will result depending on t) as given.
2Due to the symmetry and the linearity properties of the model, joint welfare is also maximized for

asymmetric tax profiles satisfying tH + tF = 2tc (as long as all firms produce positive quantities). This
multiplicity is obviously irrelevant, as the socially optimal total quantity is unique.
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5.1 Nash equilibrium without BTA

As a benchmark, we first derive the Nash equilibrium taxes in the simple case when there

is no BTA (δ = 0). Without BTA, our model is very similar to a particular case of

the model studied by Kennedy (1994), for the case of perfectly transboundary (global)

pollution. Consequently, we obtain the same effects (see below). If δ = 0 (free trade), we

have QH = QF =: Q, and the welfare of country k can be written as follows.

W no
k (tH , tF ) =

βQ2

2
+ ((p(Q)− c)Xk −

γ

2
Z2. (2.8)

Differentiating (2.8) with respect to tk yields:

∂W no
k (tH , tF )

∂tk
= βQ

∂Q

∂tk
+ p′(Q)Xk

∂Q

∂tk
+ (p(Q)− c)

Xk

∂tk
− γZ(

∂Z

∂tk
).

In particular, a straightforward computation (using (2.2) and (2.3)) yields,

∂W no
k (tH , tF )

∂tk
|(tc, tc) = (−2n(1 + n))(p(Qc)− c)

β(1 + 2n)
+

2nγZc

β(1 + 2n)
. (2.9)

We know that ∂W c(tH ,tF )
∂tk

|(tc, tc) = 0. Then subtracting (2.6) from (2.9), we obtain:

∂W no
k (tH , tF )

∂tk
|(tc, tc) = −2n2(p(Qc)− c)

β(1 + 2n)
− 2nγZc

β(1 + 2n)
(2.10)

The first term in (2.10) is what Kennedy (1994) called the rent capture effect (RCE) and

the second term is what he called the transboundary externality effect (TEE). Using the

expression of the cooperative tax rate in (2.7) and the expressions of quantities in (2.1),

we obtain:

RCE =
−2n2(p(Qc)− c)

β(1 + 2n)
=

−8n2γA

β(1 + 2n)(β + 4γ)
(2.11)

TEE = − 2nγZ

β(1 + 2n)
=

−4nγA

β(1 + 2n)(β + 4γ)
(2.12)

We can see that under free trade (without BTA), two forces reduce the non cooperative

taxes below the efficient ones, for any γ > 0. First, countries ignore the environmental
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externality imposed on the other country (leading to the TEE). Secondly, given that

market price is above marginal costs, countries have an incentive to lower their own tax

to give an advantage to their producers and capture more rents from sales to foreign

consumers. The following Proposition provides the explicit formula for the equilibrium

tax rate.

Proposition 2. The unique pure-strategy Nash equilibrium of the non-cooperative taxa-

tion game without BTA is (tno, tno), where

tno = tno(A, β, n, γ) =
A(4nγ − β(1 + n))

2n(2γ + β(1 + n))
. (2.13)

Proof. See Appendix.

We note that, like tc, the non cooperative tax rate is an increasing function of γ and a

decreasing function of β. Moreover, in line with the observations we made above, tc > tno

holds for any γ > 0. Finally, for γ = 0, we have tno = tc = −A/2n. Thus, if there is no

pollution (only the oligopoly distortion), the equilibrium of the non-cooperative game is

actually efficient (in the symmetric setting considered here).

5.2 Nash equilibrium with BTA

We now study the game where both countries set their taxes non-cooperatively in the

presence of BTA. We begin with a discussion of country k’s welfare function. Throughout,

l denotes the other country.

The welfare of country k is given by

Wk(tk, tl) =

W 1
k (tk, tl) if tk ≥ tl

W 2
k (tk, tl) if tk ≤ tl

(2.14)

where

W 2
k (tk, tl) =

β

2
Q2

k + (p(Qk)− c)Xkk + (p(Ql)− c− δ(tl − tk))Xkl −
γ

2
Z2. (2.15)

W 1
k (tk, tl) =

β

2
Q2

k + (p(Qk)− c)Xkk + (p(Ql)− c)Xkl + δ(tk − tl)Xlk −
γ

2
Z2. (2.16)
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and all quantities are replaced by the respective expressions in (2.1) and (2.2). The term
β
2
Q2

k+(p(Qk)−c)Xkk is the sum of the consumer surplus and of the profits and tax revenues

associated with sales by domestic firms in the domestic market. If tk < tl, the profits and

tax revenues for country k associated with sales in country l are (p(Ql)− c−δ(tl− tk))Xkl

(as firms from country k have to pay the BTA in this case), while the corresponding

expression is (p(Ql) − c)Xkl if tk > tl. Moreover, if tk > tl, country k also earns the

revenue δ(tk − tl)Xlk on the BTA. This explains the formulas in (2.14), (2.15) and (2.16).

Of course, for any δ > 0, the marginal effects of a change in tk on the various quantities

of interest (Qk, Ql, Xkk, Xkl and Xlk) change discontinuously at tk = tl (recall that the

quantities have to be replaced by the expressions from (2.1) and (2.2)). In particular the

function Wk(tk, tl) has a kink at tk = tl whenever δ > 0. Moreover, while Wk is concave

in tk for tk < tl and also for tk > tl, it is often not globally concave in tk (see below).

Intuitively, the best response of country k to any given tax tl should be higher in the

game with BTA than in the game without BTA. Indeed, if tk is already weakly below tl,

marginally decreasing tk has the same effects in the domestic market (k) in both cases,

but the advantage given to domestic firms in the foreign market is smaller for δ > 0

than it is for δ = 0, and even disappears completely in the case of full BTA. Moreover,

if tk is already weakly above tl, country k has a stronger incentive to increases its tax

further in the case with BTA compared to the case without BTA: the negative effect on

the competitiveness of its firms is the same in the foreign market in both cases, but the

BTA ”protects” firms in the domestic market and also generates additional revenues. This

intuition is of course somewhat incomplete, as it ignores the effects on pollution and on

consumers.

As a full comparison of best response correspondences is involved and not needed for the

subsequent equilibrium analysis, we only show here that if one country sets the tax tno,

the optimal tax for the other country is higher than tno.The argument also allows us to

make some observations that are needed for the characterization of equilibria (in sections

5.2.1 and 5.2.2).

42



Consider the following derivatives:

∂W 1
k (tk, tl)

∂tk
= βQk

∂Qk

∂tk
+ p′(Qk)Xkk

∂Qk

∂tk
+ (p(Qk)− c)

∂Xkk

∂tk
+ p′(Ql)Xkl

∂Ql

∂tk

+ (p(Ql)− c)
∂Xkl

∂tk
+ δXlk + δ(tk − tl)

∂Xlk

∂tk
− γZ

∂Z

∂tk
. (2.17)

∂W 2
k (tk, tl)

∂tk
= βQk

∂Qk

∂tk
+ p′(Qk)Xkk

∂Qk

∂tk
+ (p(Qk)− c)

∂Xkk

∂tk
+

(
p′(Ql)

∂Ql

∂tk
+ δ

)
Xkl

+ (p(Ql)− c− δ(tl − tk))
∂Xkl

∂tk
− γZ

∂Z

∂tk
. (2.18)

Using the expressions of quantities in (2.1) and (2.2) to evaluate the derivatives in (2.17)

and (2.18) at (t, t), we obtain the one-sided derivatives of country k’s welfare function at

symmetric tax profiles.

∂W 1
k (t, t)

∂tk
=

n [2n2tβ(−2+δ)−tβδ+4Anγ(2+δ)+Aβ(−2+2n(−1+δ)+δ)−nt(4γ(2+δ)+β(4+δ))]

(β + 2nβ)2
.

(2.19)
∂W 2

k (t, t)

∂tk
=

n [2A(2nγ(2−δ)−β(1+n)(1−δ))+t(nβ(−4+δ)−2n2β(2−δ)−4nγ(2−δ)−βδ)]

(β+2nβ)2
.

(2.20)

A simple calculation shows that ∂W 1
k (t,t)

∂tk
− ∂W 2

k (t,t)

∂tk
≤ 0 if and only if t ≥ tc(A, β, n, γ).

Hence, Wk is a concave function of tk if and only if t ≥ tc(A, β, n, γ). Furthermore, equa-

tions (2.19) and (2.20) yield the following observations about the signs of ∂W 1
k (t,t)

∂tk
and

∂W 2
k (t,t)

∂tk
:

∂W 1
k (t, t)

∂tk
R 0 ⇔ t Q A [4nγ(2 + δ) + β(−2 + 2n(−1 + δ) + δ)]

2n2β(2− δ) + βδ + n(4γ(2 + δ) + β(4 + δ))
=: t1(A, δ, β, n, γ).

(2.21)
∂W 2

k (t, t)

∂tk
R 0 ⇔ t Q 2A(2nγ(2− δ) + β(1 + n)(−1 + δ))

nβ(4− δ) + 2n2β(2− δ) + 4nγ(2− δ) + βδ
=: t2(A, δ, β, n, γ).

(2.22)
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From section 5.1 (or by plugging δ = 0 into the formulas for t1(A, δ, β, n, γ) and t2(A, δ, β, n, γ)

in (2.21) and in (2.22)), we have t1(A, 0, β, n, γ) = t2(A, 0, β, n, γ) = tno(A, β, n, γ). More-

over, it holds that ∂t1(A,δ,β,n,γ)
∂δ

> 0 and ∂t2(A,δ,β,n,γ)
∂δ

> 0. In particular t1(A, δ, β, n, γ) >

tno(A, β, n, γ) and t2(A, δ, β, n, γ) > tno(A, β, n, γ) hold for all δ > 0. Thus, we can con-

clude by looking at (2.21) and (2.22) that for δ > 0, ∂W 1
k (t

no,tno)

∂tk
> 0 and ∂W 2

k (t
no,tno)

∂tk
> 0.

Therefore, if one country sets the tax rate tno, the welfare of the other country is strictly

increasing beyond tno (both the left hand and the right hand derivatives are strictly pos-

itive).

5.2.1 Symmetric equilibria

Given some tax level tl = t for the other country, the welfare of country k is maximized

for tk = tl if and only if we have ∂W 2
k (t,t)

∂tk
≥ 0 and ∂W 1

k (t,t)

∂tk
≤ 0.

According to (2.21) and (2.22), this condition is equivalent to

t1(A, δ, β, n, γ) ≤ t2(A, δ, β, n, γ) and t ∈ [t1(A, δ, β, n, γ), t2(A, δ, β, n, γ)] .

Furthermore, a simple calculation shows that

t1(A, δ, β, n, γ) ≤ t2(A, δ, β, n, γ) holds if and only if γ ≤ γ0,

where

γ0 = γ0(δ, β, n) =
βδ(1 + n)

4n(1 + 2n)(2− δ)
.

It follows that symmetric pure-strategy Nash equilibria exist if and only if γ ≤ γ0, and

that every t ∈ [t1(A, δ, β, n, γ), t2(A, δ, β, n, γ)] is an equilibrium tax rate in this case.

Proposition 3 summarizes our findings.

Proposition 3.

1. If γ > γ0(δ, β, n), there is no symmetric pure-strategy Nash equilibrium.

2. If γ ≤ γ0(δ, β, n), for all t ∈ [t1(A, δ, β, n, γ), t2(A, δ, β, n, γ)] ̸= ∅, (t, t) is a pure-

strategy Nash equilibrium.
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Proposition 3 shows that equilibria where both countries set the same tax rate exist only

if the cost of pollution is sufficiently small. The threshold γ0 is very small if δ is small.

The threshold is increasing in δ, but it is quite small even for more practically relevant

values of δ, including the case of full BTA, and even for duopoly competition (n = 1).

Furthermore, γ0 decreases with n and converges to zero as n tends to infinity. From the

formulas for tc(A, β, n, γ), t1(A, δ, β, n, γ) and t2(A, δ, β, n, γ) (see (2.7), (2.21) and (2.22)),

it is easy to see that

γ ≤ γ0(δ, β, n) holds if and only if tc(A, β, n, γ) ≤ t1(A, δ, β, n, γ).

and that

tc(A, β, n, γ) = t1(A, δ, β, n, γ) = t2(A, δ, β, n, γ) for γ = γ0(δ, β, n),

tc(A, β, n, γ) < t1(A, δ, β, n, γ) < t2(A, δ, β, n, γ) for γ < γ0(δ, β, n).

We therefore find the following interesting result. The non-cooperative game with δ-

BTA has a symmetric equilibrium precisely when the incentives to set higher taxes that

are provided by the BTA are strong enough to push both taxes not only above tno, the

equilibrium levels for the non cooperative game without BTA, but even (weakly) above

the efficient taxes. This happens for relatively small values of γ, for which tc is close to

tno (recall that tno = tc for γ = 0). As γ increases, tno and tc diverge, and the symmetric

equilibria cease to exist after γ passes the level for which the equilibrium taxes of the

δ-BTA game coincide with the efficient taxes.

Proposition 4. (Attaining efficiency). Assume that γ ≤ γ0(1, β, n) = β(1+n)
4n(1+2n)

. Then,

there is a unique value δ0, determined by the condition γ0(δ0, β, n) = γ, such that the

equilibrium taxes for the game with BTA are efficient: the unique pure-strategy Nash

equilibrium of the game with δ0-BTA is (tc, tc). Furthermore, for any other level of BTA

for which symmetric equilibria exist, i.e., δ > δ0, equilibrium tax rates are higher than the

cooperative tax rate, yielding lower global pollution, but also lower welfare.

Proof. See Appendix.
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Proposition 4 shows that if the cost of the pollution is sufficiently low, a particular partial

BTA maximizes welfare in equilibrium (if δ could be chosen by a planner prior to the

game, the value δ0 from Proposition 4 would be optimal).

We continue with a few basic welfare comparisons.

Proposition 5.

1. Assume that δ > 0 is given and that γ < γ0(δ, β, n). Then ∂Wk(t,t)
∂t

< 0, for t ∈

[t1(A, δ, β, n, γ), t2(A, δ, β, n, γ)], i.e., the symmetric equilibria are ranked in terms

of welfare, and (t1(A, δ, β, n, γ), t1(A, δ, β, n, γ)) is the most efficient one.

2. There is a value γ̄ = γ̄(δ, β, n) ∈ (0, γ0), given explicitly in (2.29) in the Appendix,

such that for k ∈ {H,F}:

W no
k (tno, tno) R Wk(t1(A, δ, β, n, γ)), t1(A, δ, β, n, γ)) ⇔ γ Q γ̄.

Proof. See Appendix.

For very small values of the cost of pollution (γ), tno is almost equal to tc, while the

strategic effects of the BTA push equilibrium taxes significantly above the cooperative

tax rate. As γ increases, the non cooperative tax rate without BTA moves away from

the cooperative tax rate and t1(A, δ, β, n, γ) gets close to tc. This explains part 2 of

Proposition 5: for low values of γ, each country has a higher welfare in the non coop-

erative equilibrium without BTA than in the best equilibrium with BTA. However, if

γ is above the threshold γ̄ welfare is higher in the case with BTA (at least in the best

equilibrium (t1(A, δ, β, n, γ), t1(A, δ, β, n, γ)), and for γ sufficiently close to γ0 also in the

worst equilibrium).

5.2.2 Asymmetric equilibria

We now show that for γ > γ0 (i.e., when the cost of pollution is so high that symmetric

pure-strategy equilibria cannot exist), the game with δ-BTA has asymmetric pure-strategy

equilibria. Furthermore, the two tax rates used in equilibrium are unique. There are
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exactly two equilibria then, one in which country H sets the lower tax and one in which

country F sets the lower tax. We also show that no asymmetric equilibria exist for γ ≤ γ0.

Without loss of generality, let us assume that country H is the one choosing the lower tax.

The two main necessary conditions for (t, t′) = (tH , tF ) with t < t′ to be an equilibrium

are that (a) t is the tax rate that maximizes W 2
H(tH , tF ) among all values tH < tF = t′

and (b) t′ is the tax rate that maximizes W 1
F (tF , tH) among all values tF > tH = t.

Given the strict concavity of WH on the relevant domain, property (a) holds if and only

if ∂W 2
H

∂tH
(t, t′) = 0. Thus, using (2.1), (2.2) and (2.18), property (a) is satisfied if and only

if we have both

t =
2A(2nγ(−2+δ)+(1 + n)β(1−δ))−t′(2n2β(1−δ)δ+βδ(1−2δ)−n(β+4γ−3βδ+4βδ2−γδ2))

−nγ(−2+δ)2+2β(−1+δ)δ + 2n2β(−2+δ2)+nβ(−3−2δ+4δ2)
(2.23)

and t < t′.

Similarly, property (b) holds if and only if ∂W 1
F

∂tF
(t′, t) = 0 and t′ > t, i.e., if and only if we

have both

t′ =
A(4nγ(2+δ)−β(2+2n(1−δ)−δ))−t(2n2β(1−δ)δ+βδ(1−2δ)+nγ(4−δ2)+nβ(1+3δ−5δ2))

2βδ2+nγ(2+δ)2+2n2β(2−2δ+δ2)+nβ(3−2δ+5δ2)
(2.24)

and t′ > t.

Solving the system of the two equations (2.23) and (2.24) without the restriction t < t′,

we obtain a unique solution, given by:

t′ =
A [βa1(δ)+2n2(γa2(δ)+βa3(δ))−4n3(βa4(δ)+γa5(δ))+n(γa6(δ)+βa7(δ))]

4n4β(−2+δ)2+βδ2+nδ(γd1(δ)+βd2(δ))+n2(βd3(δ)+γd4(δ))−2n3(βd5(δ)+γd6(δ))
,(2.25)

t =
A [βb1(δ)−2n2(1−δ)(βb2(δ)−γb3(δ))−n(γb4(δ)+βb5(δ))−4n3(βb6(δ)+γb7(δ))]

4n4β(−2+δ)2+βδ2+nδ(γd1(δ)+βd2(δ))+n2(βd3(δ)+γd4(δ))−2n3(βd5(δ)+γd6(δ))
,

where the coefficients ai(δ), bi(δ) and di(δ) are given in the Appendix.

The tax rates in (2.25) are such that t < t′ if and only if we have γ > γ0. Hence, no

asymmetric equilibrium exists for γ ≤ γ0.

To check that the vector (tH , tF ) = (t, t′) given by (2.25) really is an equilibrium if γ > γ0,
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we still have to verify that country F does not want to deviate to a tax below t and that

country H does not want to deviate to a tax above t′. This is the case if and only if the

following conditions are true:

(i) If t1(t′) > t′: W 2
H(t, t

′) ≥ W 1
H(t

1(t′), t′), otherwise W 2
H(t, t

′) ≥ W 1
H(t

′, t′) and

(ii) If t2(t) < t: W 1
F (t

′, t) ≤ W 2
F (t

2(t), t), otherwise W 1
F (t

′, t) ≤ W 2
F (t, t),

where t2 and t1 are respectively how we denote the function (of t′) on the right hand side

of (2.23) and the function (of t) on the right hand side of (2.24).

Let γ > γ0, considering the expressions of W 1
H and W 2

H given in (2.15) and (2.16) and by

replacing in t1(t′) and t2(t) (see their expressions in (2.24) and (2.23)), t and t′ with their

respective expressions (see (2.25)), we obtain by comparing the corresponding welfare

that the conditions (i) and (ii) are all satisfied.

Finally, to ensure the validity of the preceding analysis, we have to ensure that the quanti-

ties given in (2.1) are indeed all positive. This is the case as long as the following condition

is satisfied:

γ < γu(β, δ, n),

where

γu(β, δ, n) =
β [δ(2 + δ − 2δ2) + n(4 + δ + 5δ2 − 5δ3) + n2(12− 8δ + 6δ2 − 3δ3) + 2n3(−2 + δ)2]

δn(2− δ)(1 + 2n)(2− δ + 4n)
.

(2.26)

Our result can be summarized in the following proposition.

Proposition 6. For any γ ∈ (γ0, γ
u), the game with δ-BTA has exactly two pure-strategy

Nash equilibria, (tH , tF ) = (t, t′) and (tH , tF ) = (t′, t), where the asymmetric tax rates

t < t′ are given by (2.25).

Proposition 6 says that when the two countries suffer more from pollution, they set

different taxes.

Note that γu is very large for small values of δ. Furthermore, it is bounded from below by

a positive constant that is independent of n (and δ). Recalling the observations about γ0
from section 5.2.1, we can thus conclude (informally) that asymmetric equilibria exist for

a much larger range of parameters than symmetric equilibria. In particular, when there
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are many firms, equilibria are asymmetric for most interesting values of δ and γ.3

Proposition 7. Assuming that γ > γ0 and that (2.26) is satisfied, we have:

1.1. In the asymmetric equilibrium of the game with δ-BTA, both countries set tax

rates lower than the efficient tax rate: tc > t′.

1.2. Depending on the parameters, t may be larger or lower than tno.

2. Pollution in the equilibrium of the game with δ-BTA is lower than in the game

without BTA, but higher than under the cooperative solution: Z(tc, tc) < Z(t, t′) <

Z(tno, tno).

3. Total welfare in the asymmetric equilibrium of the game with δ-BTA is higher than

total welfare in the equilibrium of the game without BTA (and lower than total

welfare for the cooperative solution): WH(t
no, tno) + WF (t

no, tno) < WH(t, t
′) +

WF (t
′, t) = WH(t

′, t) +WF (t, t
′) < WH(t

c, tc) +WF (t
c, tc).

Proof. See Appendix.

The most interesting insights from Proposition 7 are that whenever the equilibrium is

asymmetric, both countries (not just the one setting the lower tax) set taxes below tc,

and that the global welfare is always higher in the non cooperative equilibrium with BTA

than in the non cooperative equilibrium without BTA. However, we also note that (in

contrast to the result of Proposition 4) when γ > γ0(1, β, n), there is no level of the BTA

that allows us to attain the full efficiency.

6 Further findings

So far, we have not distinguished cases where taxes are positive or negative. We have

found in section 5.2.1 that in the case where γ is sufficiently small (γ < γ̄(δ, β, n)), the

total welfare can actually be higher in the equilibrium of the game without BTA than

in the equilibrium of the game with a given level of BTA (e.g. full BTA). However, we
3For γ > γu, we would have to look for asymmetric equilibria where firms from one country do not

sell anything in the other country. We do not pursue this, as it adds little insights.
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show now that this can never be the case, at least for the Pareto best equilibrium, if the

cost of pollution is such that tc > 0. Indeed, according to (2.7), tc > 0 if and only if

γ > γc = γc(β, n),

where

γc(β, n) =
β

8n
.

Using the expression of γ̄ (see (2.29) in the Appendix), it is not difficult to see that

γc > γ̄(δ, β, n) for all δ. Consequently, for each γ > γc, we have also γ > γ̄. Thus,

whenever tc is positive and symmetric equilibria exist for a game with δ-BTA, the Pareto-

best symmetric equilibrium yields higher total welfare than the equilibrium without BTA.

Moreover, if γ is such that the equilibrium of the game with BTA is asymmetric, it always

yields higher welfare than the equilibrium of the game without BTA (part 3 of Proposition

7). This shows the claim.

We also note that it is indeed possible that symmetric equilibria exist in cases where tc is

positive, for sufficiently large δ. This holds because γ0(1, β, n) > γc(β, n). In particular,

there is a range of parameters of cost of pollution, γ ∈ (γc(β, n), γ0(1, β, n)], for which

(a) the pollution problem is severe enough for tc to be positive and (b) an appropriately

chosen BTA (close to full BTA) allows achieving full efficiency in the non-cooperative

game.

In the case where the two countries suffer a lot from pollution, if δ where chosen endoge-

nously by a social planner that maximized the global welfare of countries at a prior stage

before the Governments set their carton taxes, a partial or a full BTA can be optimal, it

depends on the parameters (see Figures 2.1(a) and 2.1(b) below). Indeed, in Figure 2.1(b)

we can see that the optimal level of BTA is strictly below 1. However, in Figure 2.1(a)

the full BTA is the optimal one.
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(a) γ = 0.2 (b) γ = 0.9

Figure 2.1 – Global welfare in the game with BTA in the case where A = β = n = 1 (γ0 = 1
6 ,

and the minimum value of γu = 1).

7 Conclusion

The problem of carbon leakage and the loss of competitiveness of firms in international

markets are the main problems that prevent countries that would like to take unilateral

measures to reduce emissions, in a world where not all countries want to cooperate to fight

against global warming. In the literature, border tax adjustments have been proposed

to address both of these issues. However, almost all of the previous papers that have

considered BTA have only worked with a unilateral BTA and with only one firm in

each country. Considering at the same time a framework where any country can impose

a border adjustment tax on imports and where countries have an arbitrary number of

firms, this paper has studied a non-cooperative game on carbon policies between countries

open to oligopolistic trade. We show that when countries are not sufficiently affected by

pollution, this game admits a continuum of symmetric equilibria and no asymmetric

equilibria. If pollution costs are significant, only asymmetric equilibria exist. In the

case of symmetric equilibria, carbon taxes are higher than efficient taxes. In this case, if

the value of BTA is even chosen optimally, the non-cooperative game could lead to full

51



cooperation. However, in the case where asymmetric equilibria exist, the carbon taxes

are lower than the efficient taxes. BTA on imports reduce the global level of pollution,

and the global level of pollution is even lower than the efficient level of pollution when

countries are not sufficiently affected by pollution. In all cases of interest (when the

efficient taxes are positive), introducing a BTA increases total welfare. In a world where

not all countries want to form a coalition to alleviate the global level of pollution, this

paper advocates the use of BTA as a solution to reduce carbon emissions and increase the

global welfare.

Appendix

Proof of Proposition 1:

Using (2.6) and (2.2), the first order conditions ∂W c(tH ,tF )
∂tH

= 0 and ∂W c(tH ,tF )
∂tF

= 0 are

equivalent to:
−2n(n(tH + tF )(β + 4γ) + A(β − 8nγ))

(β + 2nβ)2
= 0

This condition is sufficient for the optimality due to the fact that W c is concave in (tH , tF ).

In particular, (tc, tc), where tc = A(8nγ−β)
2n(4γ+β)

is optimal, and constitutes the unique optimal

symmetric tax vector.

Proof of Proposition 2:

A straightforward calculation shows that the first order condition for country k′s welfare

maximization is given by:

−n (2A(β + nβ − 4nγ) + n(β(3 + 4n)tk + 4γtk + tl(β + 4γ)))

(β + 2nβ)2
= 0

This condition is sufficient for the optimality due to the fact that W no
k is concave in tk.

The resulting system of two linear equations has the unique solution (tno, tno) given in

(2.13).

Proof of Proposition 4:

Using the expression for tc from (2.7) and the expressions for t1(A, δ, β, n, γ) and t2(A, δ, β, n, γ)

under the assumption that γ ≤ γ0(1, β, n) =
β(1+n)

4n(1+2n)
we obtain easily that:
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tc = t1(A, δ, β, n, γ) = t2(A, δ, β, n, γ) for δ = 8nγ(1+2n)
4nγ(1+2n)+β(1+n)

= δ0, which is the level of

the BTA for which γ0(δ0, β, n) = γ. Hence, for this level of the BTA, (tc, tc) is the unique

symmetric pure-strategy Nash equilibrium. Combined with the results of Section 5.2.2,

which show that there are no asymmetric equilibria in this case, this proves the first claim.

Furthermore, tc < t1(A, δ, β, n, γ) for every δ > δ0, proving the second claim.

Proof of Proposition 5:

1 : If both countries set the same tax rate t, we obtain by using the expressions of equi-

librium quantities (see (2.1)) Wk(t, t) = (β(1+n)
2n

− 2γ)Q2 + tQ,

where Q = 2n(A−t)
β(1+2n)

, is the global level of consumption in either country.

Differentiating with respect to t, we have:

∂Wk(t, t)

∂t
= − 4n2(β + 4γ)

(β(1 + 2n))2

(
t− A(8nγ − β)

2n(β + 4γ)

)
= − 4n2(β + 4γ)

(β(1 + 2n))2
(t− tc) (2.27)

The derivative in (2.27) is negative for all t ∈ [t1(A, δ, β, n, γ), t2(A, δ, β, n, γ)] because

tc < t1(A, δ, β, n, γ) < t2(A, δ, β, n, γ).

2 : Evaluating the equilibrium welfare level of either country in the game without BTA

and in the Pareto-best symmetric equilibrium of the game with BTA, we obtain:

W no
k (tno, tno) =

A2(1 + n)(β + nβ − 4nγ)

2(β + nβ + 2γ)2
, (2.28)

Wk(t1(A, δ, β, n, γ), t1(A, δ, β, n, γ)) =
2A2n(−2−n(2−δ))(n2(β−4γ)(−2+δ)−βδ−n(4γδ+β(2+δ)))

(−2n2β(−2+δ)+βδ+4nγ(2+δ)+nβ(4+δ))2
.

Using the expressions in (2.28) and assuming γ ∈ [0, γ0] we obtain that:

W no
k (tno, tno) R Wk(t1(A, δ, β, n, γ)), t1(A, δ, β, n, γ)) ⇔ γ Q γ̄,

with

γ̄ =
β

16 + 32n

[
−4+3n(−4+δ)+4n2(−2+δ)+

√
D
]
, (2.29)

and D = 16n4(−2+δ)2+24n3(8−6δ+δ2)+n2(208−88δ+9δ2)+16n(6+δ)+16(1+2δ)+8δn−1.

Proof of Proposition 7:

Let assume that γ ∈ (γ0, γ
u). Using the function Reduce of Mathematica, we have the
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following:

1.1 : Comparing the expression of tc in (2.7) and the expression of t′ given in (2.25), we

have tc > t′.

1.2 : is straightforward by comparing the expression of tno in (2.13)and the expression of

t given in (2.25).

1 and 2 : Using the expressions of the cooperative tax given by (2.7), the one of tno given

by (2.13) and the expressions of t and t′ given by (2.25) in the formulas of the global level

of pollution (Z(tH , tF )) and the welfare of each country (Wk(tH , tF )), we find that

Z(tc, tc) < Z(t, t′) < Z(tno, tno),

Wk(t
no, tno) +Wl(t

no, tno) < Wk(t, t
′) +Wl(t

′, t) < Wk(t
c, tc) +Wl(t

c, tc) k ̸= l ∈ {H,F}.

The coefficients for the formulas in (2.25) are given by:

a1(δ) = 2δ(−1+δ2), a2(δ) = 8(1+δ+δ2−2δ3), a3(δ) = −6+7δ−4δ2+2δ3, a4(δ) = 2−3δ+δ2,

a5(δ) = 2(−4−δ2+2δ3), a6(δ) = δ(12+4δ−13δ2), a7(δ) = −4+δ−4δ2+6δ3,

b1(δ) = δ(−2+δ+2δ2), b2(δ) = 6−δ+2δ2, b3(δ) = 8(1+2δ2), b4(δ) = δ(−4−8δ+13δ2),

b5(δ) = 4−δ+δ2−6δ3, b6(δ) = 2−3δ+δ2, b7(δ) = 2(−4+4δ−3δ2+2δ3),

d1(δ) = 2(4+4δ−7δ2), d2(δ) = 6+2δ−3δ2, d3(δ) = 8+8δ+5δ2−9δ3,

d4(δ) = 4(4+8δ2−9δ3), d5(δ) = −12+6δ−4δ2+3δ3, d6(δ) = 2(−8+4δ−6δ2+5δ3).
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Chapter 3

Transboundary Pollution and Border

Tax Adjustment

1 Introduction

Border adjustments have been proposed as a measure to mitigate issues of carbon leakage

and reduced competitiveness faced by a country that wishes to impose tighter environ-

mental regulations to reduce carbon emissions in the absence of an effective international

environmental agreement (see chapter 2 of this thesis for more details). In this chap-

ter, we examine the robustness of some interesting results found by Eyland and Zaccour

(2012, 2014). Eyland and Zaccour used a strategic trade model with two countries, called

“Home” and “Foreign”, that are heterogeneous with respect to the damages created by

global carbon emissions, and with Cournot competition between two firms producing a

polluting good (one from each country), to study how a border tax adjustment on imports,

imposed by the Home country, influences equilibrium carbon taxes in a non-cooperative

taxation game between the two countries, as well as the implications for welfare and for

the global level of pollution. Assuming in addition that the polluting good is demanded

only by consumers from the country that is more affected by pollution (Home), Eyland

and Zaccour found that the level of import border tax adjustment (BTA) that maximizes

global welfare is always partial. Moreover, even for the country that imposes the BTA,

the optimal BTA is a partial BTA (albeit at a higher level than the partial BTA that
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maximizes global welfare). We examine the robustness of these intriguing findings as fol-

lows. First, we extend the model of Eyland and Zaccour (2012, 2014) to a model where

the polluting good is also demanded by consumers from the Foreign country. We find

that in this case, Home often (for a large set of parameters measuring the damage costs

for country H) prefers a full BTA. Still, the BTA that maximizes total welfare is always

partial. Secondly, for further examination of the robustness of the results found by Ey-

land and Zaccour (2012, 2014), we then extend our two country-model to a model with

three countries and three firms (one per country). The new country, called “Middle” is

also affected by pollution, albeit less than Home, the country imposing a BTA. In partic-

ular, in the three-country model, all firms can sell to three different markets, and carbon

prices are adjusted, fully or partially (through the BTA), only for the market in the Home

country. Our most interesting finding is that when pollution damages are significant for

both the Home country and the Middle country, a full BTA is optimal among all possible

BTAs, both for global welfare and for the welfare of the Home country. Furthermore,

even if pollution damages are very low in the Middle country, a full BTA is optimal (for

global welfare and for the Home country), if the damage costs for Home are sufficiently

high. We conclude that in a broad range of cases, a full BTA is preferable to all partial

BTAs.

2 Duopolistic framework

2.1 Model

We consider a world with two countries, referred to as Home (H) and Foreign (F). In

each country, there is one firm that produces a homogeneous and polluting good at a

constant marginal cost of c ≥ 0. The firms compete à la Cournot for consumers in both

countries. The quantity sold by the firm from country i to market j is denoted qij, where

i, j ∈ {H,F}. The inverse demand function in each country is P (Qi) = α − βQi, where

α > 0, β > 0 and Qi is the total quantity sold and consumed in country i ∈ {H,F}, i.e.,

Qi =
∑

j∈{H,F} qji.

Each unit of production of the good generates one unit of carbon emissions. The global
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level of emissions is denoted by Z, Z = QH +QF .

The damages that are caused by global emissions for country i are Di(Z) =
γi
2
Z2, where

γi ≥ 0 is a constant.

We assume that the Foreign country does not suffer any damages (i.e., γF = 0) and that

γH = γ > 0.

We denote by ti the per-unit carbon tax in country i ∈ {H,F}. Moreover, we assume that

the more affected country (Home) practices an import border tax adjustment if tH ̸= tF .

That is, the Foreign firm has to pay a per-unit border-tax adjustment equal to δ(tH − tF ),

where δ ∈[0, 1] is a given constant1. The case without BTA corresponds to δ = 0. For

δ = 1, the BTA fully adjust for the difference between taxes in the two countries (for

country H’s imports). For δ ∈ (0, 1), the adjustment is only partial. Note that like

Eyland and Zaccour (2012, 2014), we assume for simplicity that Home practices the BTA

even if tH < tF . Compared to Emel Pokam Kake (2020), who assumes that a country

only practices a BTA if its tax is higher than the other country’s tax (and that both

countries can impose a BTA), this assumption simplifies the equilibrium analysis because

it implies that countries’ welfare functions are differentiable with respect to taxes even

at the point where both taxes coincide. While the assumption implies that Home would

actually subsidize the foreign firm if tH < tF , this does not actually happen in equilibrium

if the two countries are sufficiently asymmetric with respect to pollution damages (γ is

above a certain threshold), which we will assume throughout (see Section 2.2).

The two countries play a game with the following timing. In the first stage, taking δ

as given, countries set their carbon tax rates simultaneously. In the second stage, firms

compete à la Cournot. We study the subgame perfect Nash equilibrium.

Industry equilibrium

The profit functions of the firms in Home and Foreign are respectively:

πH(q, t) = (α−βQH−c−tH)qHH+(α−βQF−c−tH)qHF , (3.1)

πF (q, t) = (α−βQH−c−tF −δ(tH−tF ))qFH+(α−βQF−c−tF )qFF ,

1See Eyland and Zaccour (2012, 2014).
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where q = (qHH , qHF , qFH , qFF )
′ and t = (tH , tF )

′ .

As marginal costs are constant, we easily find the equilibrium quantities for the second

stage of the game from standard results for the linear Cournot model2.

qHH =
1

3β
(A− 2tH + tF + δ(tH − tF ))

qHF =
1

3β
(A+ tF − 2tH)

qFH =
1

3β
(A− 2tF + tH − 2δ(tH − tF ))

qFF =
1

3β
(A+ tH − 2tF )

where A = α− c > 0.

2.2 The non cooperative carbon taxation game

The welfare functions of the two countries are

WH = CSH + πH + TRH +BTAH −DH(Z), (3.2)

WF = CSF + πF + TRF ,

where CSi =
β
2
Q2

i is the consumers surplus in country i, TRi is the tax revenue in coun-

try i and BTAH is the revenue generated by the border tax adjustment. Note that, for

brevity, we suppress the dependence of these expressions on the tax vector t and the re-

sulting equilibrium quantities.

We now compute the Nash equilibrium taxes of the game where countries simultaneously

set their taxes (to maximize their own welfare), anticipating the Cournot equilibrium

quantities. Plugging the equilibrium quantities into (3.2), we obtain the following neces-

sary and sufficient first order conditions for determining countries’ best response functions:
∂WH

∂tH
= −4γ(tH+tF )+7βtH+βtF+4γδtH+(δ2(γ+9β)−6βδ) (tH−tF )−A (4γ(2+δ)+(3δ−4))

9β2
= 0,

∂WF

∂tF
= −tH + 7tF + 4A(1− δ)− 6δtH + 4δtF + 8δ2(tH − tF )

9β
= 0.

2See Belleflamme and Peitz (2015) for details of the equilibrium derivations.
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Hence, the best response functions in the two countries are respectively:

tH(tF ) =
βA (3δ−4)+4Aγ (2+δ)+ tF

[
γ(−4+δ2) + β(−1− 6δ + 9δ2)

]
β(7− 6δ + 9δ2) + γ(2 + δ)2

,

tF (tH) =
−4A (δ − 1) + (1− 6δ + 8δ2)tH

−(7 + 4δ − 8δ2)
.

Solving the system of best responses, we obtain the following subgame perfect equilibrium taxes:

t∗H =
A
(
β
(
24− 25δ + 16δ2 − 12δ3

)
+ 4γ

(
−18− 11δ + 13δ2 + 7δ3

))
2 (β (−24 + 7δ − 10δ2 + 9δ3) + γ (−12− 34δ + 20δ2 + 17δ3))

,

t∗F =
A
(
β
(
24− 25δ + 10δ2 − 12δ3

)
+ 4γ

(
6− 11δ + 7δ2 + 7δ3

))
2 (β (−24 + 7δ − 10δ2 + 9δ3) + γ (−12− 34δ + 20δ2 + 17δ3))

.

We note that t∗H > t∗F for all δ in [0, 1] if and only if γ > β/12, which we assume throughout for

the numerical analysis below.

For completeness, we also compute the social optimum.

2.3 Social optimum

In this section, we assume that the two countries form a coalition and cooperatively set carbon

tax rates that maximize their joint welfare in the first stage of the game. We assume here that,

there is no BTA (δ = 0). The joint welfare in this case is as follows:

W c(tH , tF ) = WH +WF = 2AQ− βQ2 − γ

2
Z2. (3.3)

where Q = QH = QF = 2A−tH−tF
3β is the equilibrium level of consumption in either country and

Z = 2Q.

Maximizing (3.3) with respect respectively to tH and tF , we obtain that the first order condition

is
∂W c(tH , tF )

∂tH
=

∂W c(tH , tF )

∂tF
=

2 ((β + 4γ)Q−A)

3β
= 0. (3.4)

The first order condition (3.4) is sufficient for the optimality, because W c is concave in (tH , tF ).

Solving this first order condition, we obtain a unique symmetric carbon tax rate that maximizes

the joint welfare:

tc =
A(4γ − β)

2(β + 2γ)
. (3.5)
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2.4 Numerical findings

We now analyze numerically which value of δ is socially optimal (maximizes the joint equilibrium

welfare of both countries), and also which value of δ maximizes the equilibrium welfare of the

more affected country. We call these values δglob and δH , respectively. Like Eyland and Zaccour

(2012, 2014), we fix α = β = 1. We also fix c = 0 (results are similar for higher values of c).

Given this, we consider all values of γ for which t∗H > t∗F (i.e., γ > 1/12) and such that both

firms actually compete in both markets (all equilibrium quantities are positive, and given by the

formulas in Section 2.1). The latter holds for γ ≤ 0.473.

Figure 3.1 shows δH and δglob depending on γ.

Figure 3.1 – Optimal level of δ

Eyland and Zaccour (2012) (see section 5.1) found that Home always prefers a partial BTA. By

contrast, we find that for large values of γ (γ ∈ [0.139, 0.473]), a full BTA yields the highest

welfare for Home.

Figure 3.1 also shows that, as in Eyland and Zaccour (2014), a partial BTA yields the highest

total welfare, even though the optimal level is significantly higher here than in their model (for

which consumption takes place only in country H).

We next verify some intuitive effects that the level of γ has on welfare and carbon tax rates. We

only present results for two values of γ (see Tables 3.1 and 3.2).

We can see by looking at Tables 3.1 and 3.2 that increasing γ decreases the total welfare as well

as the Home welfare. However, it increases the Foreign welfare in the non cooperative game

without BTA. In the non cooperative game with BTA, as γ increases, the tax rate in the Home

country increases quicker than the tax rate (subsidy) in the Foreign country.

Note also that the total welfare is larger in the cooperative scenario and in the BTA scenario than

in the non cooperative game without BTA. The Home welfare is larger in the non cooperative
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game with BTA than in the case without, while the reverse is true for the Foreign welfare. The

tax rate in the Home country is higher in the scenario with BTA than that in the non cooperative

game without BTA.

All these results are compatible with the results of Eyland and Zaccour (2014) who focus on a

two-country model where the good is only demanded by consumers in the Home country.

Table 3.1 – Results for γ = 0.3

Non coop. equi. without BTA Cooperative game Non coop. equi. with BTA

Total welfare 0.529301 0.625 0.622612

Home welfare −0.0302457 0.195313 0.168918

Foreign welfare 0.559546 0.429688 0.453694

Home tax −0.0434783 0.0625 0.185699

Foreign tax −0.565217 0.0625 −0.23152

Table 3.2 – Results for γ = 0.43

Non coop. equi. without BTA Cooperative game Non coop. equi. with BTA

Total welfare 0.38612 0.537634 0.530733

Home welfare −0.223475 0.144525 0.082659

Foreign welfare 0.609595 0.393109 0.448074

Home tax 0.119342 0.193548 0.318441

Foreign tax −0.588477 0.193548 −0.240176

3 Three countries framework

To further examine the question whether a partial BTA is preferable to a full BTA, either from

the perspective of a country that is strongly affected by pollution, or from the perspective of
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global welfare, we now extend the analysis to a three-country model.

3.1 Model

Here, we consider a world with three countries, referred to as Home (H), Middle (M) and For-

eign (F ). In each country, there is one firm producing a homogeneous and polluting good, at

constant marginal cost c ≥ 0. All firms compete la Cournot for consumers from each of the

three countries. The quantity sold by the firm from country i to market j is denoted qij , where

i, j ∈ {H,M,F}. The inverse demand function in each country is P (Qi) = α − βQi, where Qi

is the total quantity sold and consumed in country i ∈ {H,M,F}, i.e., Qi =
∑

j∈{H,M,F} qji.

Each unit of production of the good generates one unit of pollution and the global level of pol-

lution is denoted by Z, Z =
∑

iQi.

The cost of pollution in country i is Di(Z) = γi
2 Z

2, where γi ≥ 0 is a constant.

We assume that the Foreign country does not suffer from pollution (i.e., γF = 0) and that the

Home country suffers more from pollution than the Middle country (i.e., γH > γM ).

As before, ti denotes the per-unit carbon tax in country i ∈ {H,M,F}. The Home country

imposes a per-unit BTA equal to δ(tH − tj) on imports from country j ∈ {M,F} whenever

tH ̸= tj .

As in section 2, the three countries set their taxes non-cooperatively and simultaneously, antic-

ipating the ensuing industry equilibrium.

Industry equilibrium

The profit functions of the firms in Home, Middle and Foreign countries are

πH(q, t) = (α−βQH−c−tH)qHH+(α− βQM−c−tH)qHM+(α−βQF−c−tH)qHF , (3.6)

πM (q, t) = (α−βQH−c−tM −δ(tH−tM ))qMH+(α−βQM−c−tM )qMM+(α−βQF−c−tM )qMF ,

πF (q, t) = (α−βQH−c−tF −δ(tH−tF ))qFH+(α−βQM−c−tF )qFM+(α−βQF−c−tF )qFF ,

where q = (qHH , qHM , qHF , qMH , qMM , qMF , qFH , qFM , qFF )
′ , and t = (tH , tM , tF )

′ .

Again, we easily find the equilibrium quantities from standard results for the linear Cournot
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model.

qHH =
1

4β
(A− 3tH + tF + tM + δ(tH − tF ) + δ(tH − tM ))

qHM = qHF =
1

4β
(A+ tF + tM − 3tH)

qMH =
1

4β
(A− 3tM + tF + tH − 2δ(tH − tM )− δ(tF − tM ))

qMM = qMF =
1

4β
(A+ tF + tH − 3tM ) (3.7)

qFH =
1

4β
(A− 3tF + tM + tH − 2δ(tH − tF ) + δ(tF − tM ))

qFM = qFF =
1

4β
(A+ tH + tM − 3tF )

The quantities sold by the firm from the Home country in each market are decreasing functions

of the Home carbon tax rate. With the exception of the quantities produced by the Middle

firm and the Foreign firm for the Home market, that are positively related to the Home carbon

tax rate, if δ < 0.5 and negatively related to the Home tax rate for all others values of δ, the

quantities produced in each country for a foreign market are decreasing functions of its domestic

tax rate but are increasing functions of foreign taxes.

3.2 The non cooperative carbon taxation game

The expressions for countries’ welfare are

WH = CSH + πH + TRH +BTAH −DH(Z),

WM = CSM + πM + TRM −DM (Z), (3.8)

WF = CSF + πF + TRF ,

where CSi =
β
2Q

2
i is the consumers surplus in country i, TRi denotes the tax revenue in country

i, BTAH is the revenue from the BTA, and we again suppress the dependence on t and the

resulting equilibrium quantities.

As in section 2, we study the game where countries simultaneously set taxes, anticipating the

industry equilibrium. Plugging the quantities from (3.7) into (3.8), it is straightforward to check

that each Wi is strictly concave with respect to ti, and that the first order conditions ∂Wi
∂ti

(t) = 0

yield the following best response functions (we omit the straightforward algebra).
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tH(tM , tF ) =
3βA (2δ−3)+9AγH (3+2δ)−5β

(
1+δ−2δ2

)
(tF+tM )−γH (3+2δ) (3−δ) (tF+tM )

β(17−12δ+20δ2)+(3+2δ)2γH
,

tM (tH , tF ) =
3Aβ(2δ−3)−γM (3−δ) [(3−δ)tF+(3+2δ)tH − 9A]+β

[
(8δ−6δ2−5)tF+(10δ−12δ2−5)tH

]
β(17+12δ−18δ2)+(3−δ)2γM

,

tF (tH , tM ) =
3A (2δ − 3) + (10δ − 12δ2 − 5)tH + (8δ − 6δ2 − 5)tM

17+12δ−18δ2
. (3.9)

Both in Eyland and Zaccour (2012, 2014) and in our two-country model from Section 2, taxes

are not necessarily strategic substitutes: while best-response functions of both countries are

always decreasing for small values of δ, the more affected country’s best-response function is

actually increasing for high values of δ, and the less affected country’s best-response function is

increasing for intermediate values of δ. By contrast, we observe that in our three-country model

(where firms can sell to more than one foreign market), taxes are always strategic substitutes,

regardless of the BTA (imposed unilaterally by the most affected country).

Proposition 1. Taxes are strategic substitutes regardless of the size of the BTA.

∂ti
∂tj

< 0 for i ̸= j ∈ {H,M,F}

Proof. This result is straightforward from the best responses given in (3.9).

The following Lemma provides the expressions for equilibrium tax rates.

Lemma 1. The subgame perfect equilibrium taxes are:

t∗H =
3A [aH1(δ)β+aH2(δ)γH+aH3(δ)γM ]

b1(δ)β+b2(δ)γH+ b3(δ)γM
,

t∗M =
3A [e1(δ)β+e2(δ)γH + aM1(δ)γM ]

2(3+5δ−6δ2)(b1(δ)β+b2(δ)γH+ b3(δ)γM )
, (3.10)

t∗F =
3A [e1(δ)β+e2(δ)γH + aF1(δ)γM ]

2(3+5δ−6δ2)(b1(δ)β+b2(δ)γH+ b3(δ)γM )
,

where aH1(δ), aH2(δ), aH3(δ), e1(δ), e2(δ), aM1(δ), aF1(δ), b1(δ), b2(δ), b3(δ) are given in the

following table.
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Table 3.3 – Formulas for the coefficients appearing in (3.10).

Coefficients Expressions
aH1(δ) −18+21δ−18δ2+8δ3

aH2(δ) 126+75δ−54δ2−32δ3

aH3(δ) −36+3δ+45δ2−14δ3

e1(δ) 2(−54−45δ+141δ2−136δ3+124δ4−48δ5)
e2(δ) −216−234δ+534δ2−624δ3−104δ4+384δ5)
aM1(δ) 756−243δ−165δ2+642δ3−700δ4+168δ5)
aF1(δ) 3(−72+213δ−381δ2+406δ3−268δ4+56δ5)
b1(δ) 162−73δ+134δ2−48δ3

b2(δ) 3(18+75δ−18δ2−40δ3)
b3(δ) 54−135δ+177δ2−46δ3

Recall that in the two-country model of Section 2, Home’s equilibrium tax could be even lower

than Foreign’s equilibrium tax in cases where the pollution problem is very small: as we have

defined the BTA (in accordance with Eyland and Zaccour (2012, 2014)) to take place even when

Home’s tax is lower than that of the other country, Home finds it optimal to use the BTA to

subsidize the foreign firm in order to alleviate the underproduction problem. As noted by the

next proposition, this effect disappears in the three-country model: countries that are more

affected by pollution always set higher taxes in equilibrium.

Proposition 2. For any γH > γM > γF and any δ ∈ [0, 1], we have that.

t∗H > t∗M > t∗F .

Proof. This is immediate from a careful examination of the expressions for equilibrium taxes

provided in (3.10).

As an example, we note that if δ = 0, the taxes in equilibrium are given by:

t∗H =
(7γH − 2γM − β)A

3β + γH + γM

t∗M =
(7γM − 2γH − β)A

3β + γH + γM

t∗F = −(2γH + 2γM + β)A

3β + γH + γM
< 0

Thus, in this case the Middle country actually subsidizes its firm if 7γM < 2γH + β and taxes it

if 7γM > 2γH + β. Similarly, Home’s tax is positive if 7γH > 2γM + β.
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3.3 Full cooperation

In this section, we assume that the three countries form a coalition to fight against climate

change and set taxes to maximize joint welfare, anticipating the industry equilibrium. There is

no border tax adjustment (δ = 0) in this case. Accordingly, the total quantity consumed in each

market is the same, and we denote it by Q. The countries jointly solve the following problem

MaxtH ,tM ,tF

∑
i∈{H,M,F}

Wi, (3.11)

where

WH =
β

2
Q2 + 3βq2HH + 3tHqHH − γH

2
Z2,

WM =
β

2
Q2 + 3βq2MH + 3tMqMH − γM

2
Z2, (3.12)

WF =
β

2
Q2 + 3βq2FH + 3tF qFH ,

and quantities are as in (3) (for δ = 0).

The first order conditions are given by:

∂ (WH +WM +WF )

∂ti
= 0 for i ∈ {H,M,F}. (3.13)

These conditions are sufficient due to the fact that the second order conditions3 are satisfied.

Solving the system of first order conditions for countries, we obtain that there is a unique

symmetric tax rate that maximizes the joint welfare of the three countries, and this tax rate is

equal to:

tc =
A(9γH + 9γM − β)

3(3γH + 3γM + β)
. (3.14)

The cooperative tax rate is an increasing function of γH and γM . We can see that the cooperative

tax is lower than the pure Pigouvian tax, 3(γH+γM )A
3γH+3γM+β . This is due to the fact that we have two

market failures, the oligopoly distortion and the environmental damages.
3∑

i∈{H,M,F} Wi in concave in (tH , tM , tF ).
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The welfare of countries in equilibrium for the full cooperation are respectively:

W c
H =

A2(β − 3γH + 6γM )

2(β + 3(γH + γM ))2

W c
M =

A2(β − 3γM + 6γH)

2(β + 3(γH + γM ))2
> 0 (3.15)

W c
F =

A2(β + 6(γH + γM ))

2(β + 3(γH + γM ))2
> 0

We have W c
H < W c

M < W c
F . The global welfare is given by: W c

H +W c
M +W c

F = 3A2

2(β+3(γH+γM )) .

The global welfare is a decreasing function of γH and γM .

3.4 Numerical findings

We now study numerically, for the non-cooperative game with BTA, which value of δ is socially

optimal, and which value of δ maximizes the welfare of the country that is most affected by

pollution. As in Section 2, we call these values δglob and δH , respectively.

We again fix α = β = 1 and c = 0, and we restrict attention to those values of γM and γH for

which all quantities qij , i, j ∈ {H,M,F} are positive, regardless of δ. These values are shown

in Figure 3.2.

Figure 3.2 – The set of parameters (γM , γH) for which all qij , i, j ∈ {H,M,F} are positive for
any δ ∈ [0, 1].

Our main insight in this section is that δglob can only be smaller than 1 if γM is small (γM ∈

[0, 0.036)), and if in addition, γH is quite close to γM (and thus also small). In all other cases,

a full BTA is optimal from the perspective of global welfare maximization. This result is in

sharp contrast to the findings in our two-country model and in Eyland and Zaccour (2012, 2014)
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who found that δglob is always less than 1. Moreover, we find that for country H, a full BTA is

optimal for an even larger range of parameters. We also study how the welfare of the two other

countries, as well as quantities, taxes and pollution vary with δ, γM and γH .

3.4.1 Case 1: γM ∈ [0, 0.0183)

We assume here that γM is very low. The plots in this section are for γM = 0.01. But, our

results remain qualitatively unchanged for other values of γM ∈ [0, 0.0183). We represent the

equilibrium values of global welfare, welfare for each country, tax rates, global level of pollution

and quantities as functions of the border adjustment parameter, δ. We ran the simulations

for different values of γH ∈ [0.01, 0.127]. However, we present only the figures for γH = 0.01,

γH = 0.07 and γH = 0.127.4

Figures 3.3−3.6 illustrate how welfare depends on δ and γH . If γH is very close to γM , the global

welfare and the welfare in the Home country are inverse U-shaped in δ. The global welfare and

the Home welfare function are maximized for partial BTAs satisfying 0 < δglob < δH < 1. The

Middle country’s welfare is inverse U-shaped in δ and the Foreign country’s welfare is decreasing

in δ.

However, there is a threshold γ1H(γM ) such that for γH > γ1H(γM ), Home’s welfare is increasing

in δ. Moreover, there is a second threshold, γ2H(γM ) > γ1H(γM ), such that for γH > γ2H(γM ),

global welfare is increasing in δ.

4All other simulation results are available upon request.
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Figure 3.3 – Global welfare

Figure 3.4 – Welfare of Home country

Figure 3.5 – Welfare of Middle country

Figure 3.6 – Welfare of Foreign country

Numerical result 1. Given γM ∈ [0, 0.0183), there are two thresholds γ1H(γM ) and γ2H(γM ),

with γ2H(γM ) > γ1H(γM ), such that:

1. For any γH < γ1H(γM ), δglob < δH < 1.

2. For γH > γ1H(γM ), the Home country’s welfare is increasing in δ. In particular, it holds

that δH = 1.

3. For any γ1H(γM ) < γH < γ2H(γM ), δglob < 1.

4. For γH > γ2H(γM ), the global welfare is increasing in δ. In particular, it holds that

δglob = δH = 1.
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Thus, even if γM is very small, a full BTA can be optimal for maximizing global welfare (and

Home’s welfare).

Figure 3.7 – Equilibrium quantities sold by the three firms in the different markets

Figure 3.7 presents the quantities sold by the three firms in each of the three markets (recall

that the quantities for markets M and F coincide, i.e., qiF = qiM for i ∈ {H,M,F}). Clearly, if

δ = 0, each firm i sells the same quantity in each market, namely, A+tj+tk−3ti
4β , j, k ∈ {H,F,M}.

Moreover, this quantity is lowest for country H (which sets the highest tax/lowest subsidy) and

highest for country F. Figure 3.7 shows that the quantities sold by the firms from countries

M and F in markets M and F change relatively little as δ increases, even though tM and tF

increase substantially (see Figures 3.10 and 3.11) in response to a higher BTA (at least unless

γH is very large and δ already close to 1). This is possible due to the loss of competitiveness

of the firm from country H in markets M and F (tH increases even more substantially than

tM and tF ). The first main effect of increasing δ is that the exports from countries F and M

to country H decrease. Secondly, unless γH is very small (the case where the main problem

is underproduction, not pollution), increasing δ increases firm H’s competitiveness in market

H substantially (qHH is U-shaped, but increases a lot for larger values of δ), which explains

intuitively why country H prefers δH = 1: firm H’s competitiveness in market H increases, its

relative loss of competitiveness in markets F and M is not so important when γH is high (so that

tH would be high anyway even without BTA), and total pollution decreases (the total quantity

produced decreases, see Numerical result 2 and Figure 3.8). Finally, if γH is very large, the

consumption in countries M and F (the countries that are affected very little or not at all by

pollution) is satisfied almost only by the firms from countries M and F, and varies very little

with δ (see the graph for γH = 0.127 in Figure 3.7). This explains intuitively why the reduction

in pollution damages due to reduced consumption in country H (as δ increases) can be the

dominating effect, so that δglob = 1.
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Numerical result 2. Given γM ∈ [0, 0.0183), the equilibrium level of global pollution is de-

creasing in δ (and also in γH).

Figure 3.8 – Pollution

Figures 3.9 − 3.11 show the tax (subsidy) rates in Home, Middle and Foreign. For low values

of γH , all three countries subsidize their firm, but the subsidies decrease as δ increases and the

subsidy in Home is lower than the one in Middle and in Foreign.

For high value of γH , as δ increases, Home starts taxing its firm while Middle and Foreign still

subsidize their firms.

For fixed value of δ, the subsidies in Middle and Foreign increase with γH . However, they are

decreasing in Home as γH increases.
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Figure 3.9 – Tax, subsidy of Home country

Figure 3.10 – Tax, subsidy of Middle country

Figure 3.11 – Tax, subsidy of Foreign country

Finally, comparing the cooperative solution and the non cooperative equilibrium, we find that

the global welfare in always higher in the cooperative solution than in the non cooperative

equilibrium with BTA (see Figure 3.21 in the Appendix). However, as in Eyland and Zaccour

(2014), the non cooperative equilibrium with BTA always yields a higher global welfare compared

to the case with no BTA.

3.4.2 Case 2: γM ∈ [0.0183, 0.177]

For γM ≥ 0.0183, we find that δH is always equal to one. For γM ∈ [0.0183, 0.036) (damage

costs in country M are small, but not very small) δglob can still be smaller than 1, but only if

γH is very close to γM . For any other values of γH and γM , in particular whenever γM ≥ 0.036,

both δglob and δH are equal to one.

The plots in Figures 3.12 and 3.13, illustrate these findings for γM = 0.1, and for three different

values of γH . Figures 3.14 and 3.15 show the welfare for the two other countries in these cases.
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Figure 3.12 – Global welfare

Figure 3.13 – Welfare of Home country

Figure 3.14 – Welfare of Middle country

Figure 3.15 – Welfare of Foreign country

Numerical result 3.

1. If γM ≥ 0.0183, Home’s equilibrium welfare is increasing in δ. In particular, δH = 1.

2. If γM ∈ [0.0183, 0.036), there is a threshold γ3H(γM ) such that δglob < 1 for γH < γ3H(γM ),

and δglob = 1 for γH ≥ γ3H(γM ) (and equilibrium global welfare is increasing in δ).

3. If γM ≥ 0.036, equilibrium global welfare is increasing in δ. In particular, δglob = 1.

Figures 3.12− 3.15 illustrate these results.
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Figure 3.16 – Equilibrium quantities sold by the three firms in the different markets

Figure 3.16 presents the quantities sold by the three firms in each of the three markets for

γM = 0.1 and the three values of γH also considered in Figures 3.12 − 3.15. The effects of

increasing δ on the quantities sold by the Home firm are similar to case 1 above. Furthermore,

total quantity/pollution again decreases significantly with δ, see Figure 3.17. Combined with

the fact that γH is necessarily rather high now, this explains intuitively why δH is equal to 1.

However, in contrast to case 1, the decrease in total quantity as δ increases is now driven mostly

by the reduction of exports from Foreign to Home. The quantities that the firm from Middle

sells in the different markets, including market H, change relatively little as δ increases (the

most significant decrease occurs for δ very close to 1). As the Middle country now also benefits

substantially from reduced global pollution (due mainly to the decrease of qFH), this explains

why country M now also prefers high values of δ, and receives a close to maximal welfare for

δ = 1. This, in turn, clarifies why δglob = 1.

Figure 3.17 – Pollution

As in the first case, for a fixed value of δ, the carbon taxes (subsidies) increase (decrease) with

γH in Home (see Figure 3.18). However in Middle and Foreign countries (see Figures 3.19 and

3.20), as we fix δ the subsidies increase with the cost of pollution of the Home country.
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Figure 3.18 – Tax, subsidy of Home country

Figure 3.19 – Tax, subsidy of Middle country

Figure 3.20 – Tax, subsidy of Foreign country

4 Conclusion

In this paper, we extend the duopoly model of Eyland and Zaccour (2012) by first introducing

consumers also in the country that is unaffected by pollution. Then, we extend the analysis to

a three-country model, with three firms and asymmetric pollution damages.

We show that for a broad range of cases, and in particular when another country, apart from the

one unilaterally imposing the BTA, is also significantly affected by pollution, a full import BTA

is optimal among all possible import BTAs, both from the perspective of the global welfare and

the welfare of the most affected country.
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Appendix

Figure 3.21 – Global welfare
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