
Université de Montréal

On Representation Learning for Generative Models of

Text

par

Sandeep Subramanian

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée en vue de l’obtention du grade de
Philosophiæ Doctor (Ph.D.)

en Discipline

August 25, 2021

c� Sandeep Subramanian, 2021

Université de Montréal

Faculté des arts et des sciences

Cette thèse intitulée

On Representation Learning for Generative Models of Text

présentée par

Sandeep Subramanian

a été évaluée par un jury composé des personnes suivantes :

Philippe Langlais
(président-rapporteur)

Christopher Pal
(directeur de recherche)

Yoshua Bengio
(codirecteur)

Aaron Courville
(membre du jury)

Samuel R. Bowman
(examinateur externe)

Ian Charest
(représentant du doyen de la FESP)

Sommaire

Cette thèse fait des petits pas dans la construction et la compréhension des systèmes d’ap-
prentissage des représentations neuronales et des modèles génératifs pour le traitement du
langage naturel. Il est présenté comme une thèse par article qui contient quatre travaux.

Dans le premier article, nous montrons que l’apprentissage multi-tâches peut être utilisé
pour combiner les biais inductifs de plusieurs tâches d’apprentissage auto-supervisées et
supervisées pour apprendre des représentations de phrases distribuées de longueur fixe à
usage général qui obtiennent des résultats solides sur les tâches d’apprentissage par transfert
en aval sans tout modèle de réglage fin.

Le deuxième article s’appuie sur le premier et présente un modèle génératif en deux étapes
pour le texte qui modélise la distribution des représentations de phrases pour produire de
nouveaux plongements de phrases qui servent de “ contour neuronal ” de haut niveau qui est
reconstruit en mots avec un récurrent neuronal autorégressif conditionnel décodeur.

Le troisième article étudie la nécessité de représentations démêlées pour la génération de
texte contrôlable. Une grande partie des systèmes de génération de texte contrôlables re-
posent sur l’idée que le contrôle d’un attribut (ou d’un style) particulier nécessite la construc-
tion de représentations dissociées qui séparent le contenu et le style (Hu et al., 2017; Shen
et al., 2017b; Fu et al., 2017). Nous démontrons que les représentations produites dans des
travaux antérieurs qui utilisent la formation contradictoire du domaine ne sont pas disso-
ciées dans la pratique. Nous présentons ensuite une approche qui ne vise pas à apprendre
des représentations démêlées et montrons qu’elle permet d’obtenir des résultats nettement
meilleurs que les travaux antérieurs.

Dans le quatrième article, nous concevons des modèles de langage de transformateur qui
apprennent les représentations à plusieurs échelles de temps et montrent que ceux-ci peuvent
aider à réduire l’empreinte mémoire importante de ces modèles. Il présente trois architec-
tures multi-échelles différentes qui présentent des compromis favorables entre la perplexité
et l’empreinte mémoire.

Mots-clés: Apprentissage profond, traitement du langage naturel, apprentissage de la
représentation, modèles génératifs, modélisation du langage

v

Summary

This thesis takes baby steps in building and understanding neural representation learning
systems and generative models for natural language processing. It is presented as a thesis
by article that contains four pieces of work.

In the first article, we show that multi-task learning can be used to combine the induc-
tive biases of several self-supervised and supervised learning tasks to learn general-purpose
fixed-length distributed sentence representations that achieve strong results on downstream
transfer learning tasks without any model fine-tuning.

The second article builds on the first and presents a two-step generative model for text
that models the distribution of sentence representations to produce novel sentence embed-
dings that serves as a high level “neural outline” that is reconstructed to words with a
conditional autoregressive RNN decoder.

The third article studies the necessity of disentangled representations for controllable text
generation. A large fraction of controllable text generation systems rely on the idea that
control over a particular attribute (or style) requires building disentangled representations
that separate content and style (Hu et al., 2017; Shen et al., 2017b; Fu et al., 2017). We
demonstrate that representations produced in previous work that use domain adversarial
training are not disentangled in practice. We then present an approach that does not aim to
learn disentangled representations and show that it achieves significantly better results than
prior work.

In the fourth article, we design transformer language models that learn representations
at multiple time scales and show that these can help address the large memory footprint
these models typically have. It presents three different multi-scale architectures that exhibit
favorable perplexity vs memory footprint trade-offs.

Keywords: Deep Learning, Natural Language Processing, Representation Learning,
Generative Models, Language Modeling

vii

Contents

Sommaire . v

Summary . vii

List of tables . xv

List of figures . xxi

List of Acronyms and Abbreviations .xxiii

Acknowledgements . xxv

Chapter 1. Introduction. 1

1.1. Thesis Overview . 4

Chapter 2. Background . 5

2.1. Machine Learning . 5
2.1.1. Supervised Learning . 5

2.2. Deep Learning . 6
2.2.1. Artificial Neural Networks . 6
2.2.2. Training Neural Networks with Backpropagation . 9
2.2.3. Stochastic Gradient Descent . 10

2.3. Sequence Modeling with Neural Networks . 10
2.3.1. Recurrent Neural Networks . 11
2.3.2. Convolutional Neural Networks . 15
2.3.3. Content Based Attention Mechanisms . 16
2.3.4. Language Models . 17
2.3.5. Sequence-to-Sequence Models . 18
2.3.6. Transformers and Self-attention Models . 20
2.3.7. Representation Learning for NLP . 22

2.4. Adversarial Methods . 23

ix

2.4.1. Generative Adversarial Networks . 23
2.4.2. Domain Adversarial Training. 24

Chapter 3. Prologue to the first article . 27

3.1. Article Details . 27

3.2. Context. 27

3.3. Contributions . 27

3.4. Research Impact . 28

Chapter 4. Multi-task Learning of Sentence Representations 29

4.1. Introduction . 29

4.2. Related Work . 30

4.3. Sequence-to-Sequence Learning . 32
4.3.1. Multi-task Sequence-to-sequence Learning . 32

4.4. Training Objectives & Evaluation . 33
4.4.1. Multi-task training setup. 34

4.5. Model Training . 35
4.5.1. Vocabulary Expansion & Representation Pooling . 36

4.6. Multi-task model details . 36

4.7. Evaluation Strategies, Experimental Results & Discussion . 37
4.7.1. Evaluation Strategy . 37
4.7.2. Description of evaluation tasks . 38
4.7.3. Experimental Results & Discussion. 40

4.8. Conclusion & Future Work . 44

Chapter 5. Prologue to the second article . 47

5.1. Article Details . 47

5.2. Context. 47

5.3. Contributions . 48

5.4. Research Impact . 48

x

Chapter 6. Towards Text Generation with Adversarially Learned Neural

Outlines . 49

6.1. Introduction . 49

6.2. Related Work . 51

6.3. Approach . 52
6.3.1. General Purpose Sentence Encoders . 52
6.3.2. Generative Adversarial Training . 53
6.3.3. Decoding Generated Sentence Vectors to Words . 53
6.3.4. Model Architecture . 55

6.4. Experiments & Results. 55
6.4.1. Unconditional Sentence Generation . 56
6.4.2. Towards Quantitatively Evaluating Unconditional Sentence Samples 57
6.4.3. Conditional Text Generation . 61

6.5. Walking the Latent Space via Gradient-Based Optimization 63

6.6. Conclusion . 64

Chapter 7. Prologue to the third article . 67

7.1. Context. 67

7.2. Contributions . 68

7.3. Research Impact . 68

Chapter 8. Multiple-Attribute Text Rewriting. 69

8.1. Introduction . 69

8.2. Related Work . 71

8.3. Controllable Text Rewriting. 72
8.3.1. Are Adversarial Models really Doing Disentanglement? . 73
8.3.2. Our Approach . 74
8.3.3. Implementation . 75

8.4. Experiments . 76
8.4.1. Datasets . 76
8.4.2. Evaluation . 78

xi

8.4.3. Model selection . 79
8.4.4. Comparisons to Prior Work . 79
8.4.5. Evaluating Multiple Attribute Control . 80
8.4.6. Ablation study . 82

8.5. Conclusion . 82

8.6. Training Details . 83

8.7. Dataset Creation Details . 84

8.8. Additional Examples . 86

Chapter 9. Prologue to the fourth article . 93

9.1. Context. 93

9.2. Contributions . 93

9.3. Research Impact . 94

Chapter 10. Multi-Scale Transformer Language Models. 95

10.1. Introduction . 95

10.2. Related Work . 97

10.3. Models . 98
10.3.1. Language Modeling & Transformer Preliminaries . 98
10.3.2. Multi-scale Transformers (Notation) . 99
10.3.3. Top-down Model . 99
10.3.4. Bottom-up Model . 100
10.3.5. Retina Model . 100
10.3.6. Space & Time Complexity for Transformer Layers. 101

10.4. Experiments & Discussion . 102
10.4.1. Datasets . 102
10.4.2. Experimental Details . 103
10.4.3. Analyzing Transformer LM behavior to context perturbations 104
10.4.4. Ablations . 106
10.4.5. Perplexity vs Memory Footprint Trade-off . 106

10.5. Conclusion. 107

xii

10.6. Additional Results & Algorithms. 107
10.6.1. NLL vs Word Frequency . 107
10.6.2. Coarse-only Transformer LMs. 108
10.6.3. Sample-Level Evaluation Metrics . 109

Chapter 11. Conclusion . 117

11.1. On Memory & Better Inductive Biases for Transformers . 118

11.2. Modeling Long-tail, Low-frequency Phenomena, and Systematic
Generalization . 119

References . 121

xiii

List of tables

4.1 An approximate number of sentence pairs for each task. 34

4.2 Evaluation of word embeddings. All results were computed using Faruqui & Dyer
(2014) with the exception of the Skipgram, NMT, Charagram and Attract-Repel
embeddings. Skipgram and NMT results were obtained from Jastrzebski et al.
(2017)1. Charagram and Attract-Repel results were taken from Wieting et al.
(2016) and Mrkšić et al. (2017) respectively. We also report QVEC benchmarks
(Tsvetkov et al., 2015) . 40

4.3 Supervised & low-resource classification accuracies on the Quora duplicate question
dataset. Accuracies are reported corresponding to the number of training examples
used. The first 6 rows are taken from Wang et al. (2017), the next 4 are from
Tomar et al. (2017), the next 5 from Shen et al. (2017a) and The last 4 rows are
our experiments using Infersent (Conneau et al., 2017a) and our models. 41

4.4 Evaluation of sentence representations on a set of 10 tasks using a linear model
trained using each model’s representations. The FastSent and NMT En-Fr models
are described in Hill et al. (2016), CNN-LSTM in Gan et al. (2016), Skipthought
in Kiros et al. (2015), Word embedding average in Arora et al. (2016), DiscSent
from Jernite et al. (2017), Byte mLSTM from Radford et al. (2017), Infersent in
Conneau et al. (2017a), Neural Semantic Encoder from Munkhdalai & Yu (2017),
BLSTM-2DCNN from Zhou et al. (2016). STN, Fr, De, NLI, L, 2L, STP &
Par stand for skip-thought next, French translation, German translation, natural
language inference, large model, 2-layer large model, skip-thought previous and
parsing respectively. � indicates the average improvement over Infersent (AllNLI)
across all 10 tasks. For MRPC and STSB we consider only the F1 score and
Spearman correlations respectively and we also multiply the SICK-R scores by
100 to have all differences in the same scale. Bold numbers indicate the best
performing transfer model on a given task. Each column contains exactly two
rows that are underlined to indicate a) the best performing model from prior work
and b) our best performing model. 42

xv

4.5 Evaluation of sentence representations by probing for certain sentence
characteristics and syntactic properties. Sentence length, word content & word
order from Adi et al. (2016) and sentence active/passive, tense and top level
syntactic sequence (TSS) from Shi et al. (2016). Numbers reported are the
accuracy with which the models were able to predict certain characteristics. 43

4.6 COCO Retrieval with ResNet-101 features . 43

4.7 Evaluation of sentence representations on the semantic textual similarity
benchmarks. Numbers reported are Pearson Correlations x100. Skipthought,
GloVe average, GloVe TF-IDF, GloVe + WR (U) and all supervised numbers
were taken from Arora et al. (2016) and Wieting et al. (2015) and Charagram-
phrase numbers were taken from Wieting et al. (2016). Other numbers were
obtained from the evaluation suite provided by Conneau et al. (2017a) 44

4.8 A query sentence and its nearest neighbors sorted by decreasing cosine similarity
using our model. Sentences and nearest neighbors were chosen from a random
subset of 500,000 sentences from the BookCorpus . 45

6.1 The impact of noise on reconstruction quality measured tokenized BLEU-4 scores
on the SNLI (Bowman et al., 2015a) dataset. We also show samples from decoders
trained with different amounts of noise but always conditioned on the same

sentence vector generated from a GAN. 54

6.2 Dataset Statistics. Note: SNLI (unconditional) concatenates premise and
hypothesis sentences and removes duplicates, while the conditional setting uses
the dataset as is. 55

6.3 Generated samples from our model trained on the BookCorpus (top) and WMT15
(bottom) . 56

6.4 Linear interpolations along two randomly sampled points in the input space of
the GAN generator on the BookCorpus (top left), SNLI (top right), and WMT15
(bottom). Points along the line between the two points are transformed into
sentence vectors via the generator and then decoded with beam search. 57

6.5 Quantitative evaluation of sample quality from ARAE, WD-LSTM and our model.
We report the FPPL and RPPL from a KN smoothed 5-gram language modeled
trained on a distinct but large subset of the data. We also report FPPLs and
RPPLs on samples generated with multinomial sampling with temperatures of
0.5 and 1.0, as well as deterministic decoding with beam search (B). Note that

xvi

deterministic decoding is not suitable for the WD-LSTM since there needs to be
some stochasticity to produce diverse samples. 58

6.6 A preliminary analysis of overfitting by computing the average BLEU score
between samples from the WD-LSTM and Our models with the nearest neighbor
in the training set. Samples were generated with multinomial sampling with
temperatues of 0.5 and 1.0 as well as decoding with beam search (B) 58

6.7 N-gram statistics of the generated BookCorpus samples from our model and
a WD-LSTM. The Unique n-gram ratio metric is the ratio of the number of
unique n-grams in our generated samples to the real data with an equal number
of sentences. The n-gram validity quantifies the percentage of n-grams in the
generated samples that are present in a holdout set of 6M sentences. 58

6.8 InfoGAN samples when varying a single categorical latent variable with 10
categories on the BookCorpus. The latent code captures significant factors of
the text sentence such as the choice of pronoun (She/He/It/I), the presence of
discourse markers (5), as well as other structures such as quotations (7,8,9).
Different rows in each category correspond to different random samples of noise
with the categorical latent variable fixed . 59

6.9 Results of human evaluation of unconditional samples produced by our system and
WD-LSTMs at difference softmax temperatures on the WMT and BookCorpus
datasets. 61

6.10 Samples from our GAN trained to conditionally transform a given hypothesis and
a label as either (E)ntailment, (C)ontradiction or (N)eutral into a premise that
satisfies the specified relationship . 62

6.11 NLI classification accuracies of generated samples on the test set evaluated by the ESIM
model (Chen et al., 2017b). All results except ours were obtained from Shen et. al (Shen
et al., 2018). Our model also had an FPPL of 15.01, which is comparable to results in
Table 6.5 . 62

6.12 Sentiment Classification Accuracies using a trained FastText classifier (Joulin
et al., 2016a) and FPPLs on 3200 generated samples from the SentiCap and
Amazon Review datasets. 62

6.13 Samples from our GAN trained to conditionally generate sentences of a specified
binary sentiment label on the SentiCap (bottom) and Amazon Review (top)
datasets. 63

xvii

6.14 Interpolations using gradient-based optimization on the BookCorpus. 65

8.1 Our approach can be applied to many different domains beyond sentiment flipping, as
illustrated here with example re-writes by our model on public social media content.
The first line in each box is an input provided to the model with the original attribute,
followed by its rewrite when given a different attribute value. 70

8.2 Recovering the sentiment of the input from the encoder’s representations of a
domain adversarially-trained Fader model (Fu et al., 2017). During training,
the discriminator, which was trained adversarially and jointly with the model,
gets worse at predicting the sentiment of the input when the coefficient of the
adversarial loss �adv increases. However, a classifier that is separately trained on
the resulting encoder representations has an easy time recovering the sentiment.
We also report the baseline accuracy of a fastText classifier trained on the actual
inputs. 73

8.3 The number of reviews for each attribute for different datasets. The SYelp,
FYelp and the Amazon datasets are composed of 443k, 2.7M and 75.2M sentences
respectively. Public social media content is collected from 3 different data sources
with 25.5M, 33.0M and 20.2M sentences for the Feeling, Gender and Age attributes
respectively. 78

8.4 Automatic evaluation of models on the SYelp test set from (Li et al., 2018). The
test set is composed of sentences that have been manually written by humans,
which we use to compute the BLEU score. Samples for previous models were
made available by (Li et al., 2018). For our model, we report different results
corresponding to different choices of hyper-parameters (pooling kernel width and
back-translation temperature) to demonstrate our model’s ability to control the
trade-off between attribute transfer and content preservation. 80

8.5 Top: Results from human evaluation to evaluate the fluency / content preservation
and successful sentiment control on the (Li et al., 2018) SYelp test set. The mean
and standard deviation of Fluency and Content are measured on a likert scale
from 1-5 while sentiment is measured by fraction of times that the controlled
sentiment of model matches the judge’s evaluation of the sentiment (when also
presented with a neutral option). Bottom: Results from human A/B testing of
different pairs of models. Each cell indicates the fraction of times that a judge
preferred one of the models or neither of them on the overall task.) 81

xviii

8.6 Results using automatic evaluation metrics on the FYelp and Amazon test sets.
Different rows correspond to the set of attributes being controlled by the model. 81

8.7 Model ablations on 5 model components on the FYelp dataset (Left) and SYelp
(Right).. 82

8.8 Example re-writes by our model on the FYelp and Amazon datasets when controlling a
single attribute. The first line in every box is the pre-specified input with its attribute
on the left, and the subsequent line is our model’s re-write conditioned on a different
attribute value. 86

8.9 Demonstrations of our model’s ability to control multiple attributes simultaneously
on the Amazon dataset (top) and FYelp dataset (bottom). The first two columns
indicate the combination of attributes that are being controlled, with the first row
indicating a pre-specified input . 87

8.10 Examples of our model’s ability to re-write sentences from public social media content
when conditioned on information about the feeling expressed by the writer (Relaxed vs
Annoyed) . 88

8.11 Model re-writes of sentences from public social media content when conditioned on the
age-group of the writer (18-24 vs 65+) . 89

8.12 Examples of human edits from our FYelp and Amazon datasets. The first line in every
box was the input presented to a crowd worker followed by their corresponding edit with
the specified attribute. 90

8.13 Examples of controlling sentiment with different model checkpoints that exhibit
different trade-offs between content preservation (self-BLEU) and attribute control
(Accuracy). The first line in both examples is the input sentence, and subsequent
lines are a model’s outputs with decreasing content preservation with rows
corresponding to model checkpoints at different epochs during training. 91

8.14 Examples of the learned attribute biases for sentiment and restaurant categories
on FYelp. 91

10.1 Dataset statistics . 103

10.2 Model ablations for the number of scales, number of transformer layers per scale,
type of downsampling function, skinny and deep networks and different local
attention/retina attention masks. All reported results are on our BookCorpus test
set. The attention context window column indicates what attention heads at each
scale look at - for example, "0:512" implies all scales see the entire history while

xix

"0:8,8:256,256:512" indicates that the finest scale sees only the previous 8 tokens,
the subsequent scale from 8-256 and so on. 105

10.3 Model performance on CC-news. 106

10.4 Model performance on Wikitext-103. 107

10.5 Sample based evaluation of models on the BookCorpus. The N-gram repeat
column reports 1/2/3/4-gram repeat fractions with a lookback window of 256
tokens . 109

10.6 Examples of coarse LM completions . 110

10.7 Nearest neighbors computed using representations obtained at different scales . . . 111

10.8 Memory footprint breakdown within different models. The number within brackets
in the "Total" rows corresponds to what PyTorch reports versus our computed
numbers. 112

10.9 Samples from different models. 113

xx

List of figures

1 A multi-layer perceptron with 5 input neurons, 7 hidden neurons, 3 hidden layers
and 1 output neuron. 7

2 Sigmoid, Tanh, ReLU & GeLU activation functions . 8

3 Computation graph for an MLP . 9

4 A compact diagram of an RNN (left) and unrolled in time for 6 time steps (right).
It consists of input weights U , recurrent weights W and output weights V all
shared across time. 11

5 A 2D convolution operation on a 4 ⇥ 4 image (light blue) using a 3 ⇥ 3 kernel
(dark blue) and the resulting feature map in green. Figure from Dumoulin &
Visin (2016) . 15

6 A recurrent sequence-to-sequence model. An Encoder RNN encodes the sequence
(s1, s2, s3) into a sequence of hidden states (green). The last green hidden state
h3 is transformed via a projection to produce the initial hidden state h0 (blue) for
the decoder RNN. The decoder RNN is then trained as a language model given
the initial hidden state. 19

7 A Transformer sequence-to-sequence model. It consists of an Encoder (left) which
comprises N transformer blocks with self-attention and a Decoder (right) which
has similar transformer block with self-attention as well as cross-attention over
the encoder’s hidden states. Figure from Vaswani et al. (2017) 20

8 Skip-gram and CBOW Word2vec models from (Mikolov et al., 2013) to learn word
embeddings. 22

4.1 T-SNE visualizations of our sentence representations on 3 different datasets. 37

6.1 Overall Model Architecture. (Left) A GAN trained to model the distribution of
fixed-length sentence vectors. Noise indicated by a small dotted Gaussian ball, is
injected to every point on the data mainfold when feeding it to the decoder. (Right)
Samples produced from our generative process by interpolating linearly between
two points sampled at random from the input noise space of the generator. 50

xxi

8.1 Accuracy and self-BLEU curves on the FYelp dataset for different pooling operator
configurations. Without pooling, the model tends to converge to a copy mode very
quickly, with a high self-BLEU score and a poor accuracy. The pooling operator
alleviates this behaviour and provides models with a different trade-off accuracy /
content preservation. 83

10.1 Our proposed model architectures: (a) Top-down model that builds
representations from coarse (yellow) to fine (red) scales. (b) Bottom-up Model

that does the opposite while aggregating representations from different scales
before operating at the finest scale. (c,d,e) Retina Model that treats different
parts of of the model’s context with different granularities - nearby information is
fine-grained, but coarse in the distant past. We visualize this using the model’s
attention mask. (c) is a standard autoregressive mask in vanilla transformers, (d)
a local attention mask (Parmar et al., 2018) that only looks at local information
(e) our proposed retina variant with green and yellow indicating progressively
coarser scales . 96

10.2 (a) Memory footprint and run time vs sequence length and run time for a single
transformer LM layer at different scales (b) Test perplexity vs train Memory
footprint for vanilla transformer LMs and our topdown (64x,16x,4x,1x) and
Bottom-up (16x,4x,1x) multi-scale variants on the BookCorpus test set. Numbers
next to each point indicates the number of layers per scale. 102

10.3 Increase in NLL for a trained model on the Wikitext-103 and BookCorpus datasets
when word order is destroyed by shuffling its context (perturbation), as a function
of the distance from the shuffled context.. 104

10.4 Test NLL vs word frequency. Left to right: rarest to most frequent word bins. . . . 108

10.5 Test NLL vs word frequency. Left to right: rarest to most frequent word bins. . . . 108

xxii

List of Acronyms and Abbreviations

BPTT Backpropagation Through Time

CNN Convolutional Neural Network

ERM Empirical Risk Minimization

GAN Generative Adversarial Network

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

MLE Maximum Likelihood Estimation

MLP Multi-Layer Perceptron

MTL Multi-task Learning

NLP Natural Language Processing

NLU Natural Language Understanding

xxiii

NMT Neural Machine Translation

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

TBPTT Truncated Backpropagation Through Time

VAE Variational Autoencoder

WGAN Wasserstein Generative Adversarial Network

WGAN-GP Wasserstein Generative Adversarial Network with Gradient Penalty

xxiv

Acknowledgements

I feel extremely privileged to have had the chance to pursue a PhD at Mila. I’ve learned
an immense amount from amazing peers and mentors and I will always been grateful to
everyone at this incredible lab.

Most importantly, I want to thank my advisor Chris for being the most supportive advisor
one could ask for. His enthusiasm, positivity and optimism right from when I met him as a
prospective student is something I hope to inculcate. I am also grateful to Yoshua Bengio,
my co-advisor, for his early guidance and running a lab where one is surrounded by incredibly
smart people, and providing us an environment where ideas are exchanged freely. Thank
you Linda and Celine, without you, we’d be lost in an administrative maze.

I’ve made many wonderful friends over the course of my PhD. Dishank, Akilesh, Ankit,
Vighnesh, David, Tegan, Olexa, Vinayak, Ankesh, Akram and Meghana - you have all been
great company! Thank you Rithesh, Disha and Gunshi for all of the memorable conversations
and outings at Beaver Lake. Chiheb for having a huge heart and always encouraging me
with his kind words. Sarath, Prasanna, Chinna and Gaurav for making the winters eventful
with board games. Rosemary, Anirudh and Alex for the Aunt Dai and Nos Thes dinner
plans. I also want to thank my friends from undergrad and school that I’ve known since we
were little kids - Krishna, Maddy, Suraj, Kanna, Aarthi, Deepthi, Dayn and Vivek. They
have had such a big influence on me and I continue to hold a very special place for them in
my heart. I’d also like to thank Juneki, Guillaume, Shrimai, Chirag, Dheeraj and Kazuya
for an amazing time at CMU and for playing a big part in my decision to pursue a PhD.

I’ve also been fortunate to have been mentored by several amazing researchers during my
internships. I’d like to thank Adam Trischler at Maluuba and Microsoft Research for being a
great mentor and giving me a lot of freedom to explore many different and often silly ideas.
Y-Lan Boureau and Marc’Aurelio Ranzato and for their guidance in not just one, but two
internships at Facebook AI Research. Their wealth of knowledge and humility is something
I’ve benefited from significantly. Ronan Collobert for hosting me at FAIR in Menlo Park
and giving me the freedom to formulate and work on my ideas. Chris Pal at ElementAI for
giving me the resources I needed to do large-scale NLP. Kundan Kumar at Descript, from

xxv

whom I learned a great deal on how to do applied research at a company with a product
that relies significantly on deep learning.

There were also several co-authors who have contributed substantially to the articles in
this thesis and I haven’t already thanked - Eric Smith, Ludovic Denoyer, Alessandro Sordoni
and Aaron Courville. Thank you for giving me the opportunity to work with you. I’ve
learned a lot from our interactions.

I would also like to thank Borealis AI for granting me a PhD fellowship and Microsoft
Research for awarding my colleagues and I a research grant, giving me the resources I need
to do research and write this thesis.

Finally, I am indebted to my family, My father and mother for giving me all the resources
I needed to be a successful student right from my childhood. Thank you for giving me the
right push whenever I needed it. My wife, Varsha, for constant support and understanding.
Thank you for putting up with me and always volunteering to proof read my papers and this
thesis.

xxvi

Chapter 1

Introduction

Building computer systems that “understand” human language and can engage in meaningful
conversations with them (Winograd, 1972) has been the goal for a large fraction of natural
language processing (NLP) and AI researchers since the late 1950s. Initial attempts at
building such systems involved designing rules and specifying by hand, the sequence in
which to apply them to produce an appropriate response. This paradigm, despite having a
few successes (Weizenbaum, 1966), needs to handle the vast complexity of human language
with a set of hand design rules and heuristics, which has proven to be futile as building even
very narrow domain systems require an extremely large number of rules.

Humans, in contrast, have the ability to continually learn from experiences and data.
Attempts to impart such capabilities in NLP systems and several other application domains
have been the focus of machine learning (ML) and statistics. These are largely data-driven
approaches that have strong synergies with the vast amount of spoken and written language
available on the internet. These techniques may either complement rule-based approaches in
the field such as the induction and use of probabilistic context-free grammars (Baker, 1979)
for parsing natural language or information extraction etc or be used “tabula rasa” without
significant amounts of human specification such as n-gram language models1 (Good, 1953)
or IBM word alignment models (Brown et al., 1993).

This thesis focuses almost entirely on the latter class of systems where an entirely
learning-based approach is adopted to take baby steps towards solving open problems in
NLP. We focus on a particular class of learners - Artificial Neural Networks that in recent
years have enabled significant advances across many fields. A few reasons for their success
is that they can learn highly complex non-linear functions which allow them to model com-
plex phenomena that we know and observe in language. They are easy to train on modern
massively parallel computer hardware, making it easy to leverage the vast amounts of data
available to us today. Neural networks have seen a rise and fall in popularity over the decades
1In practice, there tend to be human specified inductive biases such as the order of the language model and
ways to smooth probabilities, but these are minimal when compared to rule-based methods

starting with the McCulloch and Pitt’s (MCP) model (McCulloch & Pitts, 1943) and the
Rosenblatt perceptron (Rosenblatt, 1958) which Minsky and Papert (Minsky & Papert, 1969)
would later show couldn’t learn non-linear functions such as XOR. While deep multi-layered
networks could in theory model the XOR function, it wasn’t clear at the time how one could
train such a network. The backpropagation algorithm proposed later, a learning rule for deep
differentiable multi-layered networks with non-linearities (Werbos, 1974; Rumelhart et al.,
1986) made it possible to learn high-dimensional non-linear functions, including the XOR.
This then spurred interest in training networks with different connectivity patterns such as
convolutional networks (Fukushima et al., 1983; LeCun et al., 1990) that are better suited for
processing image and audio data. In this thesis, we extensively use recurrent neural networks
(Rumelhart et al., 1986; Jordan, 1986; Elman, 1990; Hochreiter & Schmidhuber, 1997b) that
share connections across all of the words/characters in a sequence of text. They however fell
out of favor towards the end of the 90s for a few reasons - training fairly deep neural networks
with more than 7-8 layers was difficult in practice due to optimization issues and they lacked
theoretical guarantees that other methods were able to offer. Greedy layer-wise pre-training
(Bengio et al., 2007) and better parameter initialization (Glorot & Bengio, 2010) made it
possible to train deeper and more hence more expressive models, which ultimately led to a
large convolutional network that achieved state-of-the-art performance on object recognition
benchmarks (Krizhevsky et al., 2012) and outperformed previous approaches that relied on
hand-engineered features of images by a large margin. This kick-started the deep learning
(LeCun et al., 2015) paradigm that focused on learning good internal representations of the
underlying data (Bengio et al., 2009, 2013) without strong human specification. In the con-
text of NLP, this would mean learning neural representations of characters, words, phrases,
and sentences from the underlying linguistic form only.

Arguably the first clear demonstration that this paradigm is well suited to learn repre-
sentations of language was Bengio et al. (2003) where a neural network that was trained
to predict the next word in a text sequence learned good internal representations of words.
“word2vec” (Mikolov et al., 2013), another approach to learning word representations, re-
lies on the “distributional” hypothesis of language (Weaver et al., 1955; Firth, 1957), which
assumes that a good fraction of the “meaning” of a word can be inferred from its context.
Word2vec leverages this by formulating word representation learning as a classification prob-
lem of predicting either a word given its context or vice-versa. A lot of the work in this thesis
and AI today more broadly centers around the idea that prediction is central to intelligence
(Hawkins & Blakeslee, 2007). Our models learn representations of the world by predict-
ing certain aspects of it. The tasks are typically set up in such a way that making good
predictions requires learning a nontrivial amount of information about the data the model
sees.

2

A common thread of research across multiple application domains in machine learning
is to explore the hypothesis that generative models - ones that produce examples that look
like samples from a data distribution such as images, text, speech, or videos will build useful
internal representations (Vincent et al., 2008; Salimans et al., 2016; Dumoulin et al., 2016;
Radford et al., 2018), loosely inspired by the famous quote from Richard Feynman What
I cannot create, I do not understand. Generative models and in particular density models
(ones that assign explicit probabilities to data samples) are used in a wide variety of settings
such as translating between pairs of languages such as English and French (Bahdanau et al.,
2014), summarizing documents (Rush et al., 2015) or conversing with humans (Vinyals &
Le, 2015). In the early days of deep NLP, advances in representation learning seldom made
their way into generative models except for word embeddings. Word embeddings provide
representations of words that are independent of the specific context in which they are used
ex: The embedding of the word “ knocked” in the sentence “she knocked on the door” and
“she knocked me out of the race” are used in roughly the same sense, but have fairly distinct
meanings based on the context. In contrast, “contextualized” representations of words depend
strongly on the context in which they are used. In practice, several NLP problems typically
use task and context agnostic word representations and then build contextualized task-
specific representations from scratch on top of them (Lample et al., 2016). Most parameters
for a particular task were learned from scratch.

In contrast, neural computer vision pipelines at the same time, typically involved large-
scale supervised pre-training of convolutional neural networks (Krizhevsky et al., 2012; Si-
monyan & Zisserman, 2014) on Imagenet (Deng et al., 2009). The entire network or parts
of it would be fine-tuned to different tasks.

This thesis started with the goal of building an analog of AlexNet (Krizhevsky et al., 2012)
or VGG (Simonyan & Zisserman, 2014) for NLP, wherein a single recurrent neural net could
be trained on large amounts of data and be fine-tuned to different tasks. It then continued to
draw inspiration from computer vision, by exploring latent space generative models of text
akin to (Nguyen et al., 2016) that build on advances in sentence representation learning for
text. Finally, it discusses how disentangled and multi-scale representations impact generative
models.

In recent years, models that do density estimation have been shown to be good general-
purpose contextualized representation learners (Peters et al., 2018; Radford et al., 2018) and
even similar approaches (Devlin et al., 2018; Lample & Conneau, 2019) that do not are fine-
tuned for generative tasks indicating strong synergies between representation learning and
generative models.

3

1.1. Thesis Overview

The thesis contains 4 articles that broadly focus on representation learning and generative
modeling for text.

Chapter 2 starts with an introduction to the field of Machine Learning and typical cat-
egorizations of problems into supervised or unsupervised/self-supervised learning. It then
discusses recent advances in training deep neural networks including adversarially trained
models (Ganin et al., 2016; Goodfellow et al., 2014) and those particular to NLP.

Chapter 4 presents a large-scale multi-task learning approach that combines the induc-
tive biases of different supervised and self-supervised learning methods to learning “general-
purpose” representations of sentences. Representations are evaluated on downstream classi-
fication tasks and are probed to determine if they encode certain characteristics of sentences.

Chapter 6 builds on Chapter 4 to train generative models of text. It uses adversarial
methods to train a generative model of text in a learned latent space of sentences.

Chapter 8 investigates the commonly held belief that disentangled latent spaces are
needed for unsupervised “style transfer” between different domains of text. It presents an
approach based on denoising autoencoders and backtranslation that does not explicitly build
disentangled representations but achieves better performance than previous approaches that
do.

Chapter 10 presents multi-scale transformer language models that attempt to build better
inductive biases into large-scale transformer language models through multi-scale represen-
tations. Language exhibits structure at multiple time scales - grammar is often quite local
while generating an entire novel requires coherence across multiple paragraphs and chapters
and multi-scale models are a way to exploit this structure while also being memory efficient.

Chapter 11 presents an overall conclusion of the contributions in this thesis and presents
some shortcomings of our work.

4

Chapter 2

Background

2.1. Machine Learning

Machine learning is an approach to Artificial Intelligence that builds systems or algo-
rithms that “learn” from experience. Formally, Mitchell et al. (1997) define a learning ma-
chine as an algorithm that improves with experience on a particular task, given a certain
performance measure to evaluate the system. In the context of this particular thesis, we
are interested in building systems that improve their language understanding or generation
capabilities as they are presented with more text.

In most settings, we assume a fixed number of data points is available to us, that are inde-
pendently drawn from the same unknown data distribution. Some of that data is partitioned
for our systems to learn on and the rest is to test how it generalizes to unseen examples. This
idea of generalizing to data drawn from the same distribution is a fairly common assumption
made in most machine learning systems since a large number of theoretical guarantees on
the generalization properties of systems have relied on this assumption. This is however
being questioned more as our systems do not generalize systematically and perform poorly
when dealing with out-of-distribution data. For the sake of this introduction however, we
will assume that our data is independent and identically distributed (iid).

2.1.1. Supervised Learning

Supervised learning typically entails learning functions that map high-dimensional inputs
such as images, text, speech to low-dimensional categories as outputs. The low-dimensional
categories are often obtained from human feedback such as a rating for a particular product
review on an e-commerce website, the object present in an image or the name of the speaker
in a particular audio recording.

These functions map a d-dimensional, typically real-valued vector input x 2 Rd from the
space of possible inputs X to a discrete scalar output label y from the space of k possible

outputs Y . We assume our data comes from an unknown joint probability distribution over
inputs and outputs p(x, y) where x 2 X and y 2 Y and we would like to learn a function
f✓ : Rd

! Rk that maps X to an estimate of P (Y |X). We observe examples from this
distribution ((x1, y1) . . . (xN, yN)) The subscript ✓ is used to indicate that our function has
parameters associated with it. This doesn’t always have to be the case, and there exist
“non-parameteric” models in machine learning, but in the context of this thesis that focuses
on neural networks, we are interested in learning functions that often have many millions of
parameters. There are many possible functions that can map from X to a distribution over
Y , but we are often interested in learning one that makes as few mistakes as possible. We
define a loss function L(ŷ,y) that measures the penalty incurred when classifying y as ŷ and
try to optimize f✓ to minimize this loss given a finite amount of data. We can use this loss
to define the empirical risk associated with a particular function as the expected loss over

the entire training set Remp(X, Y, f✓) =
1
N

NP
i=1

L(f✓(xi),yi). For a given dataset, there may be

many functions f 2 F in the hypothesis space, that achieve the same or even 0 empirical
risk on the training data subset, but generalize poorly to unseen examples. In such cases, we
want to bias our learners to certain solutions that may have better generalization properties
such as those with low parameter norms with L1/L2 regularization, max-margin methods
(Vapnik, 1963) or dropout (Srivastava et al., 2014) etc. Empirical Risk Minimization (ERM)
tries to find argminf2F Remp(f).

f✓(x) outputs a probability distribution over possible class labels and the loss func-
tion used is typically the negative log-likelihood of the correct class � log p✓(Y = y|x).
The frequentist approach to parameter estimation termed Maximum Likelihood Estima-
tion (MLE) finds a setting of parameters that maximizes the likelihood of the observed

data p✓(Y |X) =
NQ
i=1

p✓(yi|xi). Since the logarithm is a monotonically increasing func-

tion, we can maximize the log p✓(Y |X) and break the product into a bunch of sums

log p✓(Y |X) =
NP
i=1

log p✓(yi|xi). To turn it into a minimization problem, we can minimize

the negative log-likelihood of the data, showing that empirical risk minimization (ERM)
with the negative log-likelihood loss corresponds to maximum-likelihood estimation of the
parameters of the model. At inference/test time, the model outputs argmaxỹ p✓(ỹ|xi).

2.2. Deep Learning

2.2.1. Artificial Neural Networks

Artificial Neural Networks are loosely inspired from biological ones in that they contain
neurons that are connected to one another via synapses through several layers.

6

Fig. 1. A multi-layer perceptron with 5 input neurons, 7 hidden neurons, 3 hidden layers
and 1 output neuron.

This connection is evident when looking at the structure of a multi-layer perceptron
(MLP) in Figure 1. It contains several layers of weight matrices (and biases) that represent
synaptic strengths of the connections between neurons (black arrows between subsequent
layers). Given a high dimensional input signal x 2 Rd, an MLP applies an affine transforma-
tion at every layer l to an input hl�1

2 Rdlin using a matrix Wl
2 Rdlin⇥dlout and bias vector

bl
2 Rdlout followed by a nonlinearity f(·) to produce an output hl

2 Rdlout . The non-linearity
is generally performed element-wise and its presence in the network allows learning complex
non-linear functions. The affine transformation is a matrix-vector product that can be intu-
itively thought of as implementing many independent weighted averages of the input. Each
hidden neuron or computational unit (blue circle in Fig 1) implements one such weighted
average using one column of the weight matrix Wl. For example neuron j in layer l can be
computed as

hl
j = f

⇣ dlinX

i=1

Wl
ijh

l�1
i + bl

i

⌘
(2.1)

In general, by taking advantage of the simplicity of linear algebra notation, we can drop
subscripts and write the expression for the representation of any hidden layer as

hl = f(Wlhl�1 + bl) (2.2)

7

with the input to the network being h0. In the case of a supervised binary classification
problem, the network will produce a single scalar output (like shown in Figure 1) which is
typically soft-thresholded by a sigmoid function �(·) to produce values in the closed interval
[0, 1].

�(x) =
1

1 + e�x
(2.3)

With multiple classes, the probability of a class j is typically computed using the softmax
function using the weights and hidden states of the final layer n in the network. We will use
o to make it clear that it is the output of the network, but it can be thought of as activations
of the final layer hn as well.

oj = exp
�X

i

Wn
ijh

n�1
i + bn

j

�
/

⇣X

j0

exp
�X

i

Wn
ij0h

n�1
i + bn

j0
�⌘

(2.4)

At inference, for binary classification, a thresholding function is used to determine which
of the two classes the input belongs to, the simplest example of such a function is to classify
values > 0.5 as one class and < 0.5 as the other. For multi-class problems, the most likely
class argmaxj oj is selected.

Fig. 2. Sigmoid, Tanh, ReLU & GeLU activation functions

There exist many popular choices for non-linear activation functions within the network
f(·). The sigmoid activation that is typically used at the output of the network for binary
classification tasks is sometimes used within the network as well. Other common choices
are the hyperbolic tangent (tanh) function or rectified linear units (ReLU) (Nair & Hinton,
2010) and their variants. See Figure 2 for a graphical depiction of these activation functions.
ReLU variants unlike sigmoid and tanh activations, are unbounded. In most current day
feed-forward neural networks, ReLU variants are preferred for this reason, because they
prevent gradients from saturating (becoming 0) in deep networks. The subsequent section
(2.2.2) will provide more insights into this.

8

2.2.2. Training Neural Networks with Backpropagation

Fig. 3. Computation graph for an MLP

As discussed in Section 2.1.1, we want to
train a neural network to minimize the empir-
ical risk with respect to an i.i.d dataset of ex-
amples ((x1, y1) . . . (xN , yN)). When using the
negative log-likelihood loss function, ERM corre-
sponds to maximum-likelihood estimation of the
parameters of the model. In this section, we will
discuss the backpropagation algorithm (Rumel-
hart et al., 1986; Werbos, 1974) for computing
the gradients of the loss function with respect to
the model’s parameters.

To simplify things, let L be a differentiable
multi-variate loss function and ✓ be all of the
model’s parameters. In the neighborhood of a
point (in parameter space), L decreases fastest if
one takes a step in the opposite direction of the
partial derivative @L(x,y;✓)

@Wl , for small step sizes.
Backpropagation uses the chain rule of differen-
tiation to compute these derivatives. The chain
rule is particularly useful when computing gradi-
ents involving a composition of many functions
such as f(g(·)), which is the case in neural net-
works. It consists of a “forward-pass” through the
network where all intermediate activations h

l at
each layer are stored in memory and a “backward-
pass” that computes the gradient of the loss with respect to the parameters using the current
model parameters and the stored activations.

Neural network operations are often best described in the language of computation
graphs, which is a general tool to analyze mathematical expressions. The computation
graph for an MLP is shown in Figure 3. For simplicity, we assume a binary classification
problem where F is the sigmoid activation function for the output layer as well as within
the network. Nodes in the graph are variables or expressions and arrows indicate how nodes
feed into each other to create increasingly complex expressions. To compute the gradient of
the loss with respect to any node in the graph, backpropagation recursively applies the chain
rule, starting from the node that computes the loss. The expression for the gradient of the
loss with respect to the model’s parameters at some layer l can be written as

9

@L(x,y; ✓)

@Wl
=

@L(x,y; ✓)

@hn

⇣ Y

l<i6n

@hi

@hi�1

⌘
@hl

@Wl
(2.5)

Computing the expression above for each parameter naively can incur quadratic complex-
ity in the number of parameters in the model. It is evident from the mathematical expression
as well as by tracing the computation graph backwards that the same sub-expressions are
computed multiple times when done naively. We can therefore memoize or cache the partial
derivatives once computed to massively speed up backpropagation. This reduces complexity
from quadratic to linear in the number of parameters and can be the difference between
training a neural network with a million parameters in hours or days to several years. Com-
puting gradients in this fashion is also called "reverse-mode" automatic differentiation. For
a review of automatic differentiation techniques we refer the reader to Margossian (2019).

2.2.3. Stochastic Gradient Descent

The computed gradient is used to update the current values of the model’s parameters.
To begin with, a model’s parameters are initialized at random and then iteratively update
via stochastic gradient descent (SGD). The gradient may be estimated using the entire
dataset or using only a subset of the data. The latter, which is most commonly used when
training neural networks, is referred to as SGD. Stochasticity arises from the fact that the
gradient depends on the selection of the subset of the training data (commonly referred to
as a minibatch). The model takes many stochastic gradient steps (often several thousand),
even revisiting the same training example many times, to converge to a point estimate of
the parameters that achieves low error. The SGD update rule at step t for a parameter Wl

can be written as

Wl
t = Wl

t�1 � ↵
@L(x,y; ✓t�1)

@Wl
t�1

(2.6)

Where ↵ is a learning rate that controls how large a step to take in the direction of the
gradient. ↵ can be fixed over the course of training or change adaptively as a function of t
or even be parameter-specific based on the history of gradients.

2.3. Sequence Modeling with Neural Networks

While multi-layer perceptrons are quite flexible when working with data from different
domains, we’d often like to adapt neural network architectures based on the nature of the
inputs they process. Typical domains of interest like language, images, videos or speech
are highly structured and the neural connectivity patterns in architectures are designed to
account for this. For example, pixels in an image have strong local structure - spatially
distant pixels are only weakly related while nearby ones have stronger associations. An

10

MLP consists of many “fully-connected” layers where each output neuron is a function of all
input neurons. An output neuron in a convolutional neural network (See section 2.3.2) in
contrast, is computed based only on a subset of spatial positions (Fig 5) and the associated
weights are shared over the entire image. This significantly reduces the number of parameters
in the model as well as time and memory requirements and provides a strong inductive bias
for processing images.

Sequential data like speech, time series and language also have strong local structure. For
example grammar imposes strong local constraints on word choice and order in language.
Convolutional networks are capable of exploiting such temporal structure as well, although
recurrent models that process the input sequentially and share weights across time are often
preferred.

2.3.1. Recurrent Neural Networks

Fig. 4. A compact diagram of an RNN (left) and unrolled in time for 6 time steps (right).
It consists of input weights U , recurrent weights W and output weights V all shared across

time.

Recurrent neural networks (Rumelhart et al., 1986) take a sequence of inputs
x = (x1, x2, . . . ,xn) and transforms it into a sequence of vector representations
h = (h1,h2, . . . ,hn). We use subscripts to denote the position of an element within
the sequence. xi can be discrete, continuous and vector or scalar valued. They do so using
the following general recurrence function:

ht = F (ht�1,xt, ✓) (2.7)

In the vanilla case,

11

ht = tanh(Wht�1 +Uxt + b) (2.8)

The hidden state at time t is a non-linear function of the previous hidden state ht�1,
and the current input xt and parameterized by a recurrent weight matrix W and input
weight matrix U and a bias term b that are shared across time. If the inputs xi 2 Rdin

are continuous vector valued inputs, then U 2 Rdin⇥dhid and W 2 Rdhid⇥dhid (W doesn’t
necessarily need to be a square matrix, but for the sake of notational convenience, we will
assume it is). Depending on the task, there may be an output weight matrix V 2 Rdhid⇥dout

that produces outputs ot = Vht.
When RNNs are used for language processing, inputs to the neural network are

discrete elements, typically words, sub-words or characters. In such cases, the input
matrix U 2 R|V |⇥dhid acts as a “lookup table” that maps each element from the vo-
cabulary V to a unique vector of size dhid. RNNs are stateful models. The hidden
state ht contains a summary of the sequence x1 . . .xt and computation for posi-
tions x>t are independent of xt given ht. In practice, the state representation has
a recency bias wherein it encodes more information about recent inputs than ones
in the distant past. Recurrent networks can scale along both depth and time. To
scale along depth, one can use the outputs of an RNN as the inputs to another RNN.

Bidirectional Models - Given a sequence of inputs x1 . . .xn, the hidden state ht

encodes only the prefix x1 . . .xt (8t < n). In many practical settings, we would like the state
representation at time t to be informed by both the past and the future. A common way of
achieving this is to have a “bidirectional” model that consists of two independent RNNs, one
that runs forward from x1 . . .xn and another that runs backwards from xn . . .x1 (Schuster
& Paliwal, 1997). For some time step t, the forward RNN encodes the prefix

�!
h t, and the

backward RNN encodes the suffix
 �
h t of length n�t. The final bidirectional representation at

time t is often the concatenation of the forward and backward representations ht = [
�!
h t;
 �
h t].

Backpropagation Through Time - Recurrent networks can be trained using the same
principles as feedforward networks like MLPs. They can be unrolled in time (Figure 4 (right))
into a deep feedforward model with shared weights and the same principles used to compute
gradients in Section 2.2.2 can be used while accounting for shared weights. The algorithm
to do so is commonly referred to as the Backpropagation Through Time (BPTT) (Werbos,
1990). The gradient of the loss with respect to the output weights are fairly straightforward
to estimate.

@L(x,y; ✓)

@V
=

X

1tn

@L(xt,yt; ✓)

@ot

@ot

@V
(2.9)

12

The gradients with respect to the recurrent weights W are trickier to compute because
of the recurrence relation between ht and ht+1.

@L(x,y; ✓)

@W
=

X

1tn

@L(xt,yt; ✓)

@ot

@ot

@ht

X

1it

@ht

@hi

@
+hi

@W
(2.10)

We borrow notation from Pascanu et al. (2013) in defining @+hi
@W as the immediate

derivative of the hidden state with respect to the recurrent weights such that it is 0 for all
time steps < i. Estimating the Jacobian @ht

@hi
itself involves computing a product of partial

derivatives from i to t, similar to the product term in the MLP backpropagation equation
in Section 2.2.2. We can store intermediate gradients similar to regular backpropagation
to avoid computing the inner sum on every time step. This reduces the time and space
complexity of BPTT to linear in the number of time steps. Often, when processing very
long sequences such as entire documents or books, we may not want to backpropagate
errors over very long time horizons for several reasons including the difficulty in learning
long range dependencies (Bengio et al., 1994) and for computational reasons (memory
requirements scale linearly in the length of the sequence). In such cases, we can use a variant
of BPTT called Truncated BPTT (TBPTT) that sets gradients for long-range associations
to 0. As an example, one way of implementing this would be to chunk a large sequence
of n inputs into k chunks and backpropagate only within each chunk of size n/k. This
still incurs O(n) time complexity (although it can now be parallelized by a factor k) but
only O(n/k) memory since we don’t have to store activations for associations longer than this.

Vanishing Gradients & Gated Recurrent Models - Vanishing gradients in recur-
rent networks (Hochreiter, 1991; Bengio et al., 1994; Pascanu et al., 2013) is the phenomenon
by which it becomes hard to learn long-range associations due to the gradient of the loss at
some time t with respect to the representations at some time t�k becomes extremely small.
We refer readers to Bengio et al. (1994); Pascanu et al. (2013) for a formal analysis of the
reasons why this happens. A common remedy to this is to alter the RNN cell by introducing
gates that control information flow across time, allowing for potential “shortcut” learning
paths across all time steps. Long Short-term Memory (LSTM) and Gated Recurrent Units
(GRU) are such gated recurrent networks that partly alleviate vanishing gradients in practice.

LSTM & GRU - In most practical use cases, the vanilla RNN variant that we have
discussed thus far is seldom used and its gated variants such as LSTMs (Hochreiter & Schmid-
huber, 1997a) and GRUs (Cho et al., 2014) are used when handling sequential data. For
example, these have been immensely popular in NLP (Sutskever et al., 2014; Bahdanau
et al., 2014), computer vision (?) and speech recognition (Chan et al., 2016). LSTMs differ
from standard RNNs in that they seek to alleviate vanishing gradients by learning to carry

13

information over several time steps or ignore certain certain parts of the input through an
internal memory or cell state and gates that control their behavior. LSTMs have three gates
called the input, output and forget gates (it,ot, ft respectively). The gates are computed
similar to how the hidden states in the vanilla RNN were computed

ft = �(Wfht�1 +Ufxt + bf) (2.11)

ot = �(Woht�1 +Uoxt + bo) (2.12)

it = �(Wiht�1 +Uixt + bi) (2.13)

The input and recurrent matrices are parameterized separately per gate and have the
same dimensions as in the standard RNN Ui,f,o 2 Rdin ⇥ dhid and Wi,f,o 2 Rdhid ⇥ dhid.
Another transformation with similarly parameterized matrices Wc and Uc, with a tanh

activation is used to compute the candidate cell state, which then used to compute the the
final cell state based on the input and forget gates. Finally, the hidden state is a function of
the cell state and output gates.

c̃t = tanh(Wcht�1 +Ucxt + bc) (2.14)

ct = ft � ct�1 + it � c̃t (2.15)

ht = ot � tanh(ct) (2.16)

The cell state in conjunction with the forget gate can act like identity connections that
propagate information without changing them across several steps, which can help with
vanishing gradients. The input gate controls what parts of the input to keep and discard.

GRUs have one less gate when compared to LSTMs - they have a reset gate (rt) which
can force the model to completely ignore the previous hidden state and only use the current
input and an update gate (zt) allows long range information flow by enabling a possibly
identity path for hidden states:

gt = �(Wght�1 +Ugxt + bg) (2.17)

zt = �(Wzht�1 +Uzxt + bz) (2.18)

h̃t = tanh(Wc(zt � ht�1) + +Ucxt + bc) (2.19)

ht = gt � ht�1 + (1� gt)� h̃t (2.20)

Aside from vanishing gradients, these models may also have exploding gradients where
the gradients may grow extremely large. Common ways to deal with this include gradient
clipping where the magnitude of the gradients with respect to every parameter is clipped to

14

a maximum value (Pascanu et al., 2012), weight initialization strategies (Le et al., 2015) or
normalization of activations within the model (Ba et al., 2016).

2.3.2. Convolutional Neural Networks

As described at the beginning of Section 2.3, convolutional networks are useful for pro-
cessing data that have strong spatial, temporal or spatio-temporal structure. They share
weights across spatial or temporal positions (LeCun et al., 1990). The weight structure,
unlike in MLPs fits the structure of the input data, for example weights for images that have
height, width and possibly many channels are organized into a 4D tensor W 2 Rk⇥c⇥�x⇥�y

where k is the number of convolution kernels, c is the number of input channels (ex: 3
channels for R,G,B images) and �x,�y are the width and height of the kernel. The convo-
lutional operation for one of the k kernels (illustrated in Figure 5) involves sliding it (dark
blue square) across an image h 2 Rc⇥x⇥y (light blue square of size x ⇥ y) and computing a
weighted sum at each position to yield an output feature map (green). The feature maps
for different kernels are stacked to form k output channels. For simplicity, the figure shows
the kernel moving by one position to the right or below, but it can move by larger amounts
(strides). The output of convolution layers, with appropriate padding of the input, can be
made to have the same shape as the input. We refer readers to Dumoulin & Visin (2016)
for a detailed guide on convolutional arithmetic which comprehensively discusses how the
shapes of the input, kernel, strides, dilations and other factors affect the shape of the output
feature maps.

Fig. 5. A 2D convolution operation on a 4⇥ 4 image (light blue) using a 3⇥ 3 kernel
(dark blue) and the resulting feature map in green. Figure from Dumoulin & Visin (2016)

Convolutional networks aren’t as popular for language processing as recurrent nets, but
have nonetheless been explored for a variety of tasks including sequence labeling (Part-
of-speech (POS) tagging, Named Entity Recognition (NER)) (Collobert et al., 2011), text
classification (Zhang et al., 2015) and machine translation (Gehring et al., 2017).

15

2.3.3. Content Based Attention Mechanisms

Recurrent models have a couple of shortcomings in that learning long-range associations
even with gated variants like LSTMs or GRUs is hard and computation is sequential in
nature making them hard to scale on modern parallel hardware platforms. Recent work
has explored alternatives that make gradient propagation over long time horizons easier and
avoid a sequential computation bottleneck. Attention models (Bahdanau et al., 2014; Xu
et al., 2015; Vaswani et al., 2017) possess such properties - they compute association scores
between an input (queries), which is either a single vector or a sequence of vectors and
context (keys), another sequence of vectors.

Content-based attention mechanisms were presented in Bahdanau et al. (2014) for neural
machine translation. The idea was to compute a score for every word in the input language
given the hidden state of an RNN for a word in the output language. The scores would
serve as an indicator for the word that a model needed to focus or attend to to generate
the next word in the output language. The method was presented in the context of a
sequence-to-sequence model, which we will discuss later in Section 2.3.5, but the specifics of
the attention layer can be understood in isolation. While attention may be intuitive from
a human cognitive perspective such as with translation or generating captions for images
(Xu et al., 2015), they may be used in settings where there isn’t a clear notion of alignment
between two sequences or even when there is only a single sequence (where the operation
is commonly referred to as “self-attention”). Like RNNs and Convolutional networks, they
can process a variety of sequential data. It is not necessarily interpretable and one must be
cautious when using it to explain model decisions (Jain & Wallace, 2019).

Consider the example of an attention model that processes a sequence of words xt =

(xt
1 . . .x

t
m) conditioned on context xs = (xs

1 . . .x
s
n). xs may be a sentence comprising words

in English while xt is it’s corresponding translation in French. Let s and t be encodings of
the English and French sentences. The attention layer computes a context-aware encoding
for t̃j for every word in the French sentence as follows:

eij = score(si, tj) (2.21)

score(si, tj) = t>j Wsi (2.22)

↵ij =
exp(eij)

nP
k=1

exp(ekj)
(2.23)

t̃j =
nX

k=1

↵kjsk (2.24)

16

Scores eij between queries and keys can be computed in parallel. The equations above
use the “general” score function (Luong et al., 2015b), but one can use MLPs (Bahdanau
et al., 2014) or other scoring functions as well. Scores are normalized across input positions
to produce attention weights ↵ij and used to compute a weighted sum over s to generate a
context-aware representation t̃ of the French sentence. When encoding the French sentence
with an RNN as in Bahdanau et al. (2014); Luong et al. (2015b), it is common to have the at-
tention module within the recurrence function of the RNN, the context aware representation
may be computed before or after the RNN recurrence.

The attention module introduces direct paths for gradient propagation between a target
word’s encoding and all context words making it possible to learn long-range associations.

2.3.4. Language Models

Language models estimate the probability of a sequence of words P (x) = P (x1 . . .xn).
Most approaches factorize the joint probability over the sequence of words into a product of
conditional probabilities of a word given all words that precede it. This is follows from the
chain rule of probability

P (x1 . . .xn) = P (xn|x1 . . .xn�1)P (x1 . . .xn�1) (2.25)

P (x1 . . .xn�1) = P (xn�1|x1 . . .xn�2)P (x1 . . .xn�2) (2.26)

. (2.27)

P (x1,x2) = P (x2|x1)P (x1) (2.28)

In general, we can write the factorization as

P (x1 . . .xn) = P (x1)
nY

i=2

P (xi|x<i) (2.29)

The chain rule allows for any order of factorization, but for convenience we will factorize
from left-to-right (from the first to last word or character in a sequence of text). The language
modeling problem thus involves modeling these conditional probabilities as accurately as
possible. N-gram language models (Heafield, 2011) estimate the conditional probabilities
using counts given a large corpus of text. The equation above does not restrict the number
of elements to condition on, however with count-based estimation, given a large number of
preceding elements, counts get sparse extremely quickly. In practice therefore, we restrict
context sizes. A 2-gram (bigram) language model for example will estimate the conditional
probabilities of a word given only it’s previous word:

P (xi|xi�1) =
count(xi,xi�1)

count(xi�1)
(2.30)

17

Larger context sizes help model long range dependencies better but suffer from sparsity,
for example, we may encounter an n-gram at test time that we’ve never seen before. In such
cases, it is common to use some form of smoothing to estimate the probabilities (Kneser &
Ney, 1995).

Count-based language models suffer from the curse of dimensionality (Bengio et al., 2003)
- the space of possible valid English sentences (or any other language) is incredibly large and
count-based models do not encode a notion of similarity among lexical items (every element
is equally far from one another, regardless of their semantic or syntactic similarity), making
generalization to new sequences difficult.

Bengio et al. (2003) in contrast, train a neural language model that learns continuous
embeddings for words as a by-product of language modeling. The approach concatenates
the embeddings of a sequence of k words xt�k, . . . ,xt�1, and uses an MLP, that outputs a
probability distribution over the entire English vocabulary, to predict the next word in the
sequence xt. This MLP slides across the sequence, making predictions at every word. It is
trained via backpropagation to minimize negative log-likelihood � logP (xt|xt�k, . . .xt�1; ✓)

of the actual next word in the sequence given the preceding k words. The learned word
embeddings encode a notion of similarity which would help encourage smooth generalization
to unseen sequences. In subsequent work, Mikolov et al. (2010) replaced the MLP with an
RNN allowing for memories beyond just the last k words.

Language models can also be used to generate plausible text, by sequentially sampling
from the learned conditional probabilities. The same principles can also be used to model
the probability of observing a certain sequence of pixels (?) or audio samples (Van Den Oord
et al., 2016; Mehri et al., 2016).

Language modeling efforts have since initially focused on regularization (Zaremba et al.,
2014; Merity et al., 2017), then on better recurrent or feed-forward architectures (Bradbury
et al., 2016; Dauphin et al., 2017) and now to scaling to longer sequences and larger datasets
with bigger models (Radford et al., 2018, 2019).

2.3.5. Sequence-to-Sequence Models

Many problems, especially in NLP, can be formulated as transforming one sequence of
inputs into another sequence of inputs. For example, machine translation from English
to French involves transforming a sequence of words in English to a sequence of words in
French that conveys the same meaning. Sequence-to-sequence neural networks (Sutskever
et al., 2014) formulate this by having two separate neural networks: an encoder, that encodes
the input into a single or a sequence of hidden representations and a decoder neural network
that conditions on the hidden representations of the encoder to produce the output sequence.

18

Fig. 6. A recurrent sequence-to-sequence model. An Encoder RNN encodes the sequence
(s1, s2, s3) into a sequence of hidden states (green). The last green hidden state h3 is

transformed via a projection to produce the initial hidden state h0 (blue) for the decoder
RNN. The decoder RNN is then trained as a language model given the initial hidden state.

The decoder models the conditional probability of the output sequence autoregressively given
the input.

P (t1 . . . tn|s; ✓) =
nY

i=1

P (ti|t<i,hs; ✓) (2.31)

Figure 6 illustrates a sequence-to-sequence model that uses RNNs as the encoder and
decoder. The RNN encoder (often bidirectional) produces a hidden representation for every
element in the input sequence. The last hidden state is taken to be a “summary” of the entire
input sequence and is used to condition the decoder RNN through a learnable transformation
to produce the initial hidden state h0 for the decoder. Given the initial state, the decoder
is trained as an RNN language model (similar to Section 2.3.4). In practice, the encoder
and decoder often have separate parameters (which we indicated with the subscripts s and
t in Figure 6). The model is trained “end-to-end”, which means the encoder’s parameters
are updated using the gradient from the predicting the next element in the sequence in the
decoder. The gradient path length for BPTT in such models can be quite large for long
sequences and the encoder is often gradient starved.

Bahdanau et al. (2014) addressed this issue by using the attention mechanism discussed
in Section 2.3.3 by having direction connections between decoder and encoder hidden states
introducing shortcuts for easy gradient propagation. Sequence-to-sequence models have been
used extensively in NLP and speech for tasks like Machine Translation (Wu et al., 2016),
Text Summarization (Rush et al., 2015), and Speech Recogntion (Chan et al., 2016).

19

2.3.6. Transformers and Self-attention Models

Transformers (Vaswani et al., 2017) are neural networks that consist primarily of attention
layers and position-wise MLPs. Figure 7 from their paper shows the internals of transformers
used for sequence-to-sequence learning.

In section 2.3.3, we made a distinction between the context sequence s over which the
attention scores are computed and the input sequence t. An important idea in Transform-
ers is to use the attention mechanism to process a single sequence called “self-attention”
where the model computes attention scores only over itself. The paper establishes a general
language for describing attention that includes self and encoder-decoder (similar to Section
2.3.5) attention in the same formalism. Attention is a function of 3 tensors - queries Q, keys
K and values V.

Fig. 7. A Transformer sequence-to-sequence model. It consists of an Encoder (left) which
comprises N transformer blocks with self-attention and a Decoder (right) which has similar
transformer block with self-attention as well as cross-attention over the encoder’s hidden

states. Figure from Vaswani et al. (2017)

20

Attention(Q,K,V) = softmax
�QK>
p
d

�
V (2.32)

Self-attention uses the same tensor for queries, keys and values while “cross-attention”
has queries that come from the decoder hidden states and keys and values that come from
the encoder hidden states. It is common to have separate projection weights Wq,Wk,Wv

to produce the queries, keys and values before the attention operation. The self and cross-
attention can be written as

SelfAttention(s) = softmax
�Wqs(Wks)>

p
d

�
Wvs (2.33)

CrossAttention(s, t) = softmax
�Wqt(Wks)>

p
d

�
Wvs (2.34)

Vaswani et al. (2017) also present multi-headed attention which performs the attention
operation k times, with different projections of the queries, keys and values, one for each
“attention head”. The attention vectors from each head are concatenated and projected back
to the original hidden size.

MultiHeadAttention(Q,K,V) = concat(head1, head2, . . . , headk)Wo (2.35)

headi = Attention(Wi
qQ,Wi

kK,Wi
vV) (2.36)

The attention mechanism as presented here is agnostic to the positions of each vector in
s and t. To allow transformers to model things like word order within a sequence of text,
positional encodings which are vectors associated only with positions within the sequence are
added to the input word embeddings before being fed to a transformer. A Transformer con-
sists of a stack of Transformer blocks with residual connections (He et al., 2016b). Residual
blocks are organized differently when used as an Encoder or Decoder within a sequence-
to-sequence model. An encoder block consists of self-multi-headed attention followed by
residual addition and layer normalization (Ba et al., 2016), followed by an MLP that is
shared across time and another residual addition and layer normalization. When used as a
decoder, the block is almost identical except a cross-multi-headed attention layer is added
after the self-attention layer.

Self-attention within the encoder is unrestricted - every position may attend to every
other position but the autoregressive factorization restricts self-attention in the decoder
from looking at future positions in the sequence.

Transformers have become the cornerstone of modern day NLP and are used extensively
for natural language understanding (Devlin et al., 2018), language modeling (Radford et al.,

21

2018, 2019), summarization (Subramanian et al., 2019; Zaheer et al., 2020) and a variety of
other problems.

2.3.7. Representation Learning for NLP

Fig. 8. Skip-gram and CBOW Word2vec models from (Mikolov et al., 2013) to learn word
embeddings.

Being able to represent data appropriately is important for making decisions on that
data in any domain. In language, the linguistic form we use to communicate is discrete -
characters which compose to form words, which in turn compose to form sentences and so
on. Representation learning on discrete data poses some challenges that are well discussed
in Bengio et al. (2003) - small changes in discrete elements can induce significant changes
on the decisions one might want to take on that data. Altering a few or even a single word
in a sentence has the potential to significantly change its meaning but changing continuous
pixel values slightly in an image don’t significantly alter it.

Neural networks provide the promise of learning smooth internal representations which
are particularly desirable for discrete data since smoothness does not exist in the input space.
For NLP, we would like to build representations of characters, words, sentences, paragraphs
and documents. Initial work from Bengio et al. (2003) demonstrated this by training an MLP
to do language modeling, which yielded good word embeddings and LM performance. While

22

there is still plenty of research and debate on characterizing and measuring desirable prop-
erties of data representations, in the majority of this thesis, we will measure representation
quality by using the learned representations to perform other potentially related tasks.

Representation learning requires 1) designing the right training objective to induce good
representations and 2) choosing the right model class. The choice of training objective may
impact choice of data as well, for example supervised representation learning will typically
require different data from unsupervised learning. Mikolov et al. (2013) presented “word2vec”
a method to learn word embeddings from large amounts of unlabeled data. Figure 8 presents
the two flavors of word2vec, the continuous bag-of-words model (CBOW) (left) and the
skip-gram model (right). Both approaches take advantage of the distributional hypothesis
of language which posits that a word’s local neighborhood is indicative of its syntactic and
semantic properties. Similar words will be used in similar contexts. The skip-gram and
CBOW models are cast as predicting all words in a local neighborhood around a word
(skip-gram) or predicting the word given its neighborhood (CBOW). Embeddings that arise
from training a model this way are considered “general-purpose”. For example, they may
be used to initialize U in Section 2.3.1 when used for downstream tasks such as named
entity recognition, text classification, machine translation etc. There exist “character aware”
extensions of word2vec (Joulin et al., 2016a) where character prefix and suffix embeddings
are concatenated with the word embedding and learned along with the training objective.

Computer vision at the time, in contrast, showed that large-scale supervised pre-
training on image classification tasks (Deng et al., 2009) with convolutional neural networks
(Krizhevsky et al., 2012; Simonyan & Zisserman, 2014) could learn useful image representa-
tions. The right training objective for NLP to obtain good sentence representations however
was unclear with both supervised and unsupervised/self-supervised approaches yielding re-
sults that weren’t as impressive as those in computer vision. We present a review of sentence
representation learning work in Section 4.2. More recently however, with more data, better
and larger models, contextualized representations of sentences - representations that do not
represent an entire variable length sentence with a single vector, but rather as a sequence of
vectors (one per word) (Peters et al., 2018; Devlin et al., 2018) with self-supervised objec-
tives like language modeling and denoising have made impressive progress in representation
learning.

2.4. Adversarial Methods

2.4.1. Generative Adversarial Networks

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) is an approach to
generative modeling that involves training two separate neural networks, a generator network

23

G and a discriminator network D, where the generator transforms samples from a simple
distribution such as a standard normal into those that look like ones from a complicated data
distribution such as natural images and a discriminator is trained to identify if an image was
produced by the generator or comes from the true data distribution. The generator is trained
to maximize the likelihood of the discriminator classifying its outputs as coming from the true
data. The formulation is fairly different from the standard maximum-likelihood formulation
in Sections ?? and 2.3.4 since it is a two-player min-max game. Let x ⇠ PD be data drawn
from a data distribution (ex: natural images or handwritten digits) and z ⇠ P (z) be a
sample from a simple prior distribution such as a standard normal N (0, I). The overall
training objective for both D and G can be written as

min
G

max
D

V (D,G) = E
x⇠PD

[logD(E(x))] + E
z⇠P (z)

[log(1�D(G(z)))] (2.37)

GANs, unlike likelihood-based generative models like autoregressive models (Section
2.3.4) cannot estimate the likelihood of a data point but can only produce samples that
look like ones from the data distribution. We refer readers to (Arjovsky & Bottou, 2017) for
details regarding the nature of the divergence between the generator and true data distri-
bution being minimized with the standard GAN objective. Nowozin et al. (2016) present a
way to train GANs to minimize a variety of f-divergences.

In our thesis, we make use of Wasserstein GANs, (Arjovsky et al., 2017) with stabilization
methods (Gulrajani et al., 2017) that argue that while KL divergence is a good divergence
for low-dimensional data, it is often too strong in the high-dimensional settings we are often
interested in modeling.

GANs have been used to generate high fidelity images, but they are fundamentally built
for modeling continuous data distributions such as images where gradients from the discrim-
inator can propagate through the generator’s output to compute gradients with respect to
the generator’s parameters. When modeling discrete data, producing discrete outputs at
the generator will require sampling or other operations that are incompatible with gradient-
based learning and one may have to resort to policy-gradient methods to circumvent these
issues, which have had limited success in language application (Caccia et al., 2018). In this
thesis (Chapter 6), we circumvent discreteness entirely by training GANs in a continuous
latent space of sentences.

2.4.2. Domain Adversarial Training

Domain Adversarial Training of neural networks (Ganin et al., 2016) uses an idea similar
to that in Goodfellow et al. (2014) to learn neural representations of data that are invariant
to certain attributes. Ganin et al. (2016) motivate this is in the context of domain adaptation

24

wherein a model is trained on a certain data distribution but has to generalize to a similar
but slightly different distribution at test time. Representations that encode domain-specific
features rather than task-specific ones (often due to spurious correlations between domain
and task), may find it harder to generalize.

Ganin et al. (2016) present a way to have the representations of a neural network be
agnostic to the data domain from which it comes. This is achieved by training a discriminator
neural network to classify the input’s domain from its latent representation. The network is
trained to minimize the probability of correct domain classification by the discriminator and
they hypothesize that the encoder network will achieve this by not encoding domain-specific
information in its representation.

In natural language, there are several cases where we may want to learn representations
that are agnostic to certain attributes. When classifying the sentiment of online product
reviews, we want representations that are agnostic to the product category to generalize to
new categories or those that have minimal training data. With neural systems finding their
way into production environments that interact with people in the real world, systems that
encode protected information such as gender, sexual orientation, ethnicity etc are particularly
worrying when such systems can make life altering decisions such as hiring decisions or
approving credit card or loan applications. Domain adversarial training in such cases may not
weed out the problem entirely, as we show in Chapter 8 where they still encode information
attributes that they were trained to be invariant to.

25

Chapter 3

Prologue to the first article

3.1. Article Details

Learning General Purpose Distributed Sentence Representations via Large

Scale Multi-task Learning. Sandeep Subramanian, Adam Trischler, Yoshua Bengio,
Christopher Pal. International Conference on Learning Representations 2018.

Personal Contribution The project began with discussions between Christopher Pal and
Sandeep Subramanian about the state of representation learning in NLP and trying to design
a “general purpose” sentence representation space. I was involved in writing all of the code,
running the experiments, coming up with the idea of using multi-task learning, choosing
the different multi-task objectives and writing parts of the paper. Adam Trischler, Yoshua
Bengio and Christopher Pal advised on the project, were involved in discussing results,
suggesting experiments to run and writing parts of the paper.

3.2. Context

The goal of this work was to build a general purpose sentence representation space on
which one could have small neural modules operate to transform sentences directly in the
latent space. This paper focuses on the first sub-problem of building good sentence represen-
tations. The subsequent chapter (Chapter 6) builds on this work to train generative models
of text using this learned latent space.

3.3. Contributions

The paper presents a multi-task sequence-to-sequence learning approach with a diverse
selection of training objectives to learn sentence embeddings. The method achieved state-of-
the-art performance on the SentEval at time of publication, a transfer learning benchmark
for sentence representations on NLU tasks.

3.4. Research Impact

The work remains one of the best performing fixed-length sentence embedding methods on
SentEval and has become part of the official repository as an example of using the benchmark.
It was also used as one the baselines when designing the popular GLUE (Wang et al., 2018)
NLU benchmark. In the last few years however, representation learning has largely focused
on contextualized word representations that move away from the fixed-length paradigm.
These perform far better than sentence embedding methods on most NLU tasks.

28

Chapter 4

Multi-task Learning of Sentence Representations

4.1. Introduction

Transfer learning has driven a number of recent successes in computer vision and NLP.
Computer vision tasks like image captioning (Xu et al., 2015) and visual question answering
typically use CNNs pretrained on ImageNet (Krizhevsky et al., 2012; Simonyan & Zisserman,
2014) to extract representations of the image, while several natural language tasks such as
reading comprehension and sequence labeling (Lample et al., 2016) have benefited from
pretrained word embeddings (Mikolov et al., 2013; Pennington et al., 2014) that are either
fine-tuned for a specific task or held fixed.

Many neural NLP systems are initialized with pretrained word embeddings but learn their
representations of words in context from scratch, in a task-specific manner from supervised
learning signals. However, learning these representations reliably from scratch is not always
feasible, especially in low-resource settings, where we believe that using general purpose
sentence representations will be beneficial.

Some recent work has addressed this by learning general-purpose sentence representations
(Kiros et al., 2015; Wieting et al., 2015; Hill et al., 2016; Conneau et al., 2017a; McCann
et al., 2017; Jernite et al., 2017; Nie et al., 2017; Pagliardini et al., 2017). However, there
exists no clear consensus yet on what training objective or methodology is best suited to this
goal.

Understanding the inductive biases of distinct neural models is important for guiding
progress in representation learning. Shi et al. (2016) and Belinkov et al. (2017) demonstrate
that neural machine translation (NMT) systems appear to capture morphology and some
syntactic properties. Shi et al. (2016) also present evidence that sequence-to-sequence parsers
(Vinyals et al., 2015) more strongly encode source language syntax. Similarly, Adi et al.
(2016) probe representations extracted by sequence autoencoders, word embedding averages,
and skip-thought vectors with a multi-layer perceptron (MLP) classifier to study whether
sentence characteristics such as length, word content and word order are encoded.

To generalize across a diverse set of tasks, it is important to build representations that
encode several aspects of a sentence. Neural approaches to tasks such as skip-thoughts, ma-
chine translation, natural language inference, and constituency parsing likely have different
inductive biases. Our work exploits this in the context of a simple one-to-many multi-task
learning (MTL) framework, wherein a single recurrent sentence encoder is shared across
multiple tasks. We hypothesize that sentence representations learned by training on a rea-
sonably large number of weakly related tasks will generalize better to novel tasks unseen
during training, since this process encodes the inductive biases of multiple models. This
hypothesis is based on the theoretical work of Baxter et al. (2000). While our work aims at
learning fixed-length distributed sentence representations, it is not always practical to assume
that the entire “meaning” of a sentence can be encoded into a fixed-length vector. We merely
hope to capture some of its characteristics that could be of use in a variety of tasks.

The primary contribution of our work is to combine the benefits of diverse sentence-
representation learning objectives into a single multi-task framework. To the best of our
knowledge, this is the first large-scale reusable sentence representation model obtained by
combining a set of training objectives with the level of diversity explored here, i.e. multi-
lingual NMT, natural language inference, constituency parsing and skip-thought vectors.
We demonstrate through extensive experimentation that representations learned in this way
lead to improved performance across a diverse set of novel tasks not used in the learning
of our representations. Such representations facilitate low-resource learning as exhibited by
significant improvements to model performance for new tasks in the low labelled data regime
- achieving comparable performance to a few models trained from scratch using only 6% of
the available training set on the Quora duplicate question dataset1.

4.2. Related Work

The problem of learning distributed representations of phrases and sentences dates back
over a decade. For example, Mitchell & Lapata (2008) present an additive and multiplicative
linear composition function of the distributed representations of individual words. Clark
& Pulman (2007) combine symbolic and distributed representations of words using tensor
products. Advances in learning better distributed representations of words (Mikolov et al.,
2013; Pennington et al., 2014) combined with deep learning have made it possible to learn
complex non-linear composition functions of an arbitrary number of word embeddings using
convolutional or recurrent neural networks (RNNs). A network’s representation of the last
element in a sequence, which is a non-linear composition of all inputs, is typically assumed
to contain a squashed “summary” of the sentence. Most work in supervised learning for NLP
builds task-specific representations of sentences rather than general-purpose ones.

1Code available at https://github.com/Maluuba/gensen

30

Notably, skip-thought vectors (Kiros et al., 2015), an extension of the skip-gram model
for word embeddings (Mikolov et al., 2013) to sentences, learn re-usable sentence represen-
tations from weakly labeled data. Unfortunately, these models take weeks or often months
to train. Hill et al. (2016) address this by considering faster alternatives such as sequential
denoising autoencoders and shallow log-linear models. Arora et al. (2016), however, demon-
strate that simple word embedding averages are comparable to more complicated models like
skip-thoughts. More recently, Conneau et al. (2017a) show that a completely supervised ap-
proach to learning sentence representations from natural language inference data outperforms
all previous approaches on transfer learning benchmarks. Here we use the terms “transfer
learning performance" on “transfer tasks” to mean the performance of sentence representa-
tions evaluated on tasks unseen during training. McCann et al. (2017) demonstrated that
representations learned by state-of-the-art large-scale NMT systems also generalize well to
other tasks. However, their use of an attention mechanism prevents the learning of a single
fixed-length vector representation of a sentence. As a result, they present a bi-attentive clas-
sification network that composes information present in all of the model’s hidden states to
achieve improvements over a corresponding model trained from scratch. Jernite et al. (2017)
and Nie et al. (2017) demonstrate that discourse-based objectives can also be leveraged to
learn good sentence representations.

Our work is most similar to that of Luong et al. (2015a), who train a many-to-many
sequence-to-sequence model on a diverse set of weakly related tasks that includes ma-
chine translation, constituency parsing, image captioning, sequence autoencoding, and intra-
sentence skip-thoughts. There are two key differences between that work and our own. First,
like McCann et al. (2017), their use of an attention mechanism prevents learning a fixed-
length vector representation for a sentence. Second, their work aims for improvements on
the same tasks on which the model is trained, as opposed to learning re-usable sentence
representations that transfer elsewhere.

We further present a fine-grained analysis of how different tasks contribute to the encoding
of different information signals in our representations following work by Shi et al. (2016) and
Adi et al. (2016).

Hashimoto et al. (2016) similarly present a multi-task framework for textual entailment
with task supervision at different levels of learning. “Universal" multi-task models have also
been successfully explored in the context of computer vision problems (Kokkinos, 2016; Eigen
& Fergus, 2015).

31

4.3. Sequence-to-Sequence Learning

Five out of the six tasks that we consider for multi-task learning are formulated as
sequence-to-sequence problems (Cho et al., 2014; Sutskever et al., 2014). Briefly, sequence-to-
sequence models are a specific case of encoder-decoder models where the inputs and outputs
are sequential. They directly model the conditional distribution of outputs given inputs
P (y|x). The input x and output y are sequences x1, x2, . . . , xm and y1, y2 . . . , yn. The
encoder produces a fixed length vector representation hx of the input, which the decoder
then conditions on to generate an output. The decoder is auto-regressive and breaks down
the joint probability of outputs into a product of conditional probabilities via the chain rule:

P (y|x) =
nY

i=1

P (yi|y<i,hx) (4.1)

Cho et al. (2014) and Sutskever et al. (2014) use encoders and decoders parameterized
as RNN variants such as Long Short-term Memory (LSTMs) (Hochreiter & Schmidhuber,
1997b) or Gated Recurrent Units (GRUs) (Chung et al., 2014). The hidden representation
hx is typically the last hidden state of the encoder RNN.

Bahdanau et al. (2014) alleviate the gradient bottleneck between the encoder and the
decoder by introducing an attention mechanism that allows the decoder to condition on every
hidden state of the encoder RNN instead of only the last one. In this work, as in Kiros et al.
(2015); Hill et al. (2016), we do not employ an attention mechanism. This enables us to
obtain a single, fixed-length, distributed sentence representation. To diminish the effects of
vanishing gradient, we condition every decoding step on the encoder hidden representation
hx. We use a GRU for the encoder and decoder in the interest of computational speed. The
encoder is a bidirectional GRU while the decoder is a unidirectional conditional GRU whose
parameterization is as follows:

rt = �(Wrxt +Urht�1 +Crhx) (4.2)

zt = �(Wzxt +Uzht�1 +Czhx) (4.3)

h̃t = tanh(Wdxt +Ud(rt � ht�1) +Cdhx) (4.4)

ht+1 = (1� zt)� ht�1 + zt � h̃t (4.5)

The encoder representation hx is provided as conditioning information to the reset gate,
update gate and hidden state computation in the GRU via the parameters Cr, Cz and Cd

to avoid attenuation of information from the encoder.

4.3.1. Multi-task Sequence-to-sequence Learning

Dong et al. (2015) present a simple one-to-many multi-task sequence-to-sequence learning
model for NMT that uses a shared encoder for English and task-specific decoders for multiple

32

target languages. Luong et al. (2015a) extend this by also considering many-to-one (many
encoders, one decoder) and many-to-many architectures. In this work, we consider a one-
to-many model since it lends itself naturally to the idea of combining inductive biases from
different training objectives. The same bidirectional GRU encodes the input sentences from
different tasks into a compressed summary hx which is then used to condition a task-specific
GRU to produce the output sentence.

4.4. Training Objectives & Evaluation

Our motivation for multi-task training stems from theoretical insights presented in Baxter
et al. (2000). We refer readers to that work for a detailed discussion of results, but the
conclusions most relevant to this discussion are (i) that learning multiple related tasks jointly
results in good generalization as measured by the number of training examples required per
task; and (ii) that inductive biases learned on sufficiently many training tasks are likely to
be good for learning novel tasks drawn from the same environment.

We select the following training objectives to learn general-purpose sentence embed-
dings. Our desiderata for the task collection were: sufficient diversity, existence of fairly
large datasets for training, and success as standalone training objectives for sentence repre-
sentations.

Skip-thought vectors Skip-thought vectors (Kiros et al., 2015) are an extension of
skip-gram word embedding models to sentences. The task typically requires a corpus of
contiguous sentences, for which we use the BookCorpus (Zhu et al., 2015). The learning
objective is to simultaneously predict the next and previous sentences from the current
sentence. The encoder for the current sentence and the decoders for the previous (STP)
and next sentence (STN) are typically parameterized as separate RNNs. We also consider
training skip-thoughts by predicting only the next sentence given the current, motivated by
results in Tang et al. (2017) where it is demonstrated that predicting the next sentence alone
leads to comparable performance.

Neural Machine Translation Sutskever et al. (2014) and Cho et al. (2014) demon-
strated that NMT can be formulated as a sequence-to-sequence learning problem where the
input is a sentence in the source language and the output is its corresponding translation in
the target language. We use a parallel corpus of around 4.5 million English-German (De) sen-
tence pairs from WMT15 and 40 million English-French (Fr) sentence pairs from WMT14.
We train our representations using multiple target languages motivated by improvements
demonstrated by Dong et al. (2015).

Constituency Parsing (linearized parse tree construction) Vinyals et al. (2015)
demonstrated that a sequence-to-sequence approach to constituency parsing is viable. The
input to the encoder is the sentence itself and the decoder produces its linearized parse tree.

33

Following Vinyals et al. (2015), we train on a combination of 3 million weakly labeled parses
obtained by parsing a random subset of the 1-billion word corpus with the Puck GPU parser2

and gold parses from sections 0-21 of the WSJ section of Penn Treebank. Gold parses are
duplicated 5 times and shuffled in with the weakly labeled parses to have a roughly 1:5 ratio
of gold to noisy parses. (Vinyals et al., 2015) report that models trained with the additional
noisy parses tend to produce valid parses more often and also achieve higher accuracies.

Natural Language Inference Natural language inference (NLI) is a 3-way classifica-
tion problem. Given a premise and a hypothesis sentence, the objective is to classify their
relationship as either entailment, contradiction, or neutral. In contrast to the previous tasks,
we do not formulate this as sequence-to-sequence learning. We use the shared recurrent sen-
tence encoder to encode both the premise and hypothesis into fixed length vectors u and
v, respectively. We then feed the vector [u;v; |u � v|;u ⇤ v], which is a concatenation of
the premise and hypothesis vectors and their respective absolute difference and hadamard
product, to an MLP that performs the 3-way classification. This is the same classification
strategy adopted by Conneau et al. (2017a). We train on a collection of about 1 million
sentence pairs from the SNLI (Bowman et al., 2015a) and MultiNLI (Williams et al., 2017)
corpora.

Table 4.1 presents a summary of the number of sentence pairs used for each task.

Task Sentence Pairs

En-Fr (WMT14) 40M
En-De (WMT15) 5M
Skipthought (BookCorpus) 74M
AllNLI (SNLI + MultiNLI) 1M
Parsing (PTB + 1-billion word) 4M
Total 124M

Table 4.1. An approximate number of sentence pairs for each task.

4.4.1. Multi-task training setup

Multi-task training with different data sources for each task still poses open questions.
For example: When does one switch to training on a different task? Should the switching
be periodic? Do we weight each task equally? If not, what training ratios do we use?

Dong et al. (2015) use periodic task alternations with equal training ratios for every
task. In contrast, Luong et al. (2015a) alter the training ratios for each task based on the
size of their respective training sets. Specifically, the training ratio for a particular task,
↵i, is the fraction of the number of training examples in that task to the total number of

2https://github.com/dlwh/puck

34

training samples across all tasks. The authors then perform ↵i ⇤ N parameter updates on
task i before selecting a new task at random proportional to the training ratios, where N is
a predetermined constant.

We take a simpler approach and pick a new sequence-to-sequence task to train on after
every parameter update sampled uniformly. An NLI minibatch is interspersed after every
ten parameter updates on sequence-to-sequence tasks (this was chosen so as to complete
roughly 6 epochs of the dataset after 7 days of training). Our approach is described formally
in the Algorithm below.

Require: A set of k tasks with a common source language, a shared encoder E across all tasks
and a set of k task specific decoders D1 . . .Dk. Let ✓ denote each model’s parameters,
↵ a probability vector (p1 . . . pk) denoting the probability of sampling a task such that
⌃k
i pi = 1, datasets for each task IP1 . . . IPk and a loss function L.

while ✓ has not converged do
1: Sample task i ⇠ Cat(k,↵).
2: Sample input, output pairs x,y ⇠ IPi.
3: Input representation hx E✓(x).
4: Prediction ỹ Di✓(hx)

5: ✓ Adam(r✓L(y, ỹ)).
end

4.5. Model Training

We present some architectural specifics and training details of our multi-task framework.
Our shared encoder uses a common word embedding lookup table and GRU. We experi-
ment with unidirectional, bidirectional and 2 layer bidirectional GRUs (details in Appendix
section 4.6). For each task, every decoder has its separate word embedding lookups, condi-
tional GRUs and fully connected layers that project the GRU hidden states to the target
vocabularies. The last hidden state of the encoder is used as the initial hidden state of
the decoder and is also presented as input to all the gates of the GRU at every time step.
For natural language inference, the same encoder is used to encode both the premise and
hypothesis and a concatenation of their representations along with the absolute difference
and hadamard product (as described in (Conneau et al., 2017a)) are given to a single layer
MLP with a dropout (Srivastava et al., 2014) rate of 0.3. All models use word embeddings
of 512 dimensions and GRUs with either 1500 or 2048 hidden units. We used minibatches
of 48 examples and the Adam (Kingma & Ba, 2014) optimizer with a learning rate of 0.002.
Models were trained for 7 days on an Nvidia Tesla P100-SXM2-16GB GPU. While Kiros

35

et al. (2015) report close to a month of training, we only train for 7 days, made possible by
advancements in GPU hardware and software (cuDNN RNNs).

We did not tune any of the architectural details and hyperparameters owing to the
fact that we were unable to identify any clear criterion on which to tune them. Gains in
performance on a specific task do not often translate to better transfer performance.

4.5.1. Vocabulary Expansion & Representation Pooling

In addition to performing 10-fold cross-validation to determine the L2 regularization
penalty on the logistic regression models, we also tune the way in which our sentence repre-
sentations are generated from the hidden states corresponding to words in a sentence. For
example, Kiros et al. (2015) use the last hidden state while Conneau et al. (2017a) perform
max-pooling across all of the hidden states. We consider both of these approaches and pick
the one with better performance on the validation set. We note that max-pooling works best
on sentiment tasks such as MR, CR, SUBJ and MPQA, while the last hidden state works
better on all other tasks.

We also employ vocabulary expansion on all tasks as in Kiros et al. (2015) by training
a linear regression to map from the space of pre-trained word embeddings (GloVe) to our
model’s word embeddings.

4.6. Multi-task model details

This section describes the specifics our multi-task ablations in the experiments section.
These definitions hold for all tables except for 4.2 and 4.5. We refer to skip-thought next
as STN, French and German NMT as Fr and De, natural language inference as NLI, skip-
thought previous as STP and parsing as Par.

+STN +Fr +De : A concatenation of the representations trained on these tasks with
a unidirectional and bidirectional GRU with 1500 hidden units each.

+STN +Fr +De +NLI : A concatenation of the representations trained on these tasks
with a bidirectional GRU and one trained without NLI, each with 1500 hidden units.

+STN +Fr +De +NLI +L : A concatenation of the representations trained on these
tasks with a bidirectional GRU and one trained without NLI, each with 2048 hidden units.

+STN +Fr +De +NLI +L +STP : A concatenation of the representations trained
on these tasks with a bidirectional GRU and one trained without STP, each with 2048 hidden
units.

+STN +Fr +De +NLI +2L +STP : A concatenation of the representations trained
on these tasks with a 2-layer bidirectional GRU and a 1-layer model trained without STP,
each with 2048 hidden units.

36

+STN +Fr +De +NLI +L +STP +Par : A concatenation of the representations
trained on these tasks with a bidirectional GRU and a model trained without Par, each with
2048 hidden units.

In tables 4.2 and 4.5 we do not concatenate the representations of multiple models.

4.7. Evaluation Strategies, Experimental Results & Dis-

cussion

In this section, we describe our approach to evaluate the quality of our learned represen-
tations, present the results of our evaluation and discuss our findings.

4.7.1. Evaluation Strategy

We follow a similar evaluation protocol to those presented in Kiros et al. (2015); Hill et al.
(2016); Conneau et al. (2017a) which is to use our learned representations as features for a
low complexity classifier (typically linear) on a novel supervised task/domain unseen during
training without updating the parameters of our sentence representation model. We also
consider such a transfer learning evaluation in an artificially constructed low-resource setting.
In addition, we also evaluate the quality of our learned individual word representations using
standard benchmarks (Faruqui & Dyer, 2014; Tsvetkov et al., 2015).

(a) SUBJ (b) TREC

(c) DBpedia

Fig. 4.1. T-SNE visualizations of our sentence representations on 3 different datasets.
1

37

The choice of transfer tasks and evaluation framework3 are borrowed largely from Con-
neau et al. (2017a). We provide a condensed summary of the tasks in section below, but
refer readers to their paper for a more detailed description.

4.7.2. Description of evaluation tasks

(Kiros et al., 2015) and (Conneau et al., 2017a) provide a detailed description of tasks that
are typically used to evaluate sentence representations. We provide a condensed summary
and refer readers to their work for a more thorough description.

• Text Classification - We evaluate on text classification benchmarks - sentiment
classification on movie reviews (MR), product reviews (CR) and Stanford sentiment
(SST), question type classification (TREC), subjectivity/objectivity classification
(SUBJ) and opinion polarity (MPQA). Representations are used to train a logis-
tic regression classifier with 10-fold cross validation to tune the L2 weight penalty.
The evaluation metric for all these tasks is classification accuracy.

• Paraphrase Identification - We also evaluate on pairwise text classification tasks
such as paraphrase identification on the Microsoft Research Paraphrase Corpus
(MRPC) corpus. This is a binary classification problem to identify if two sentences
are paraphrases of each other. The evaluation metric is classification accuracy and
F1.

• Entailment and Semantic Relatedness - To test if similar sentences share similar
representations, we evaluate on the SICK relatedness (SICK-R) task where a linear
model is trained to output a score from 1 to 5 indicating the relatedness of two
sentences. We also evaluate using the entailment labels in the same dataset (SICK-
E) which is a binary classification problem. The evaluation metric for SICK-R is
Pearson correlation and classification accuracy for SICK-E.

• Semantic Textual Similarity - In this evaluation, we measure the relatedness of
two sentences using only the cosine similarity between their representations. We
use the similarity textual similarity (STS) benchmark tasks from 2012-2016 (STS12,
STS13, STS14, STS15, STS16, STSB). The STS dataset contains sentences from a
diverse set of data sources. The evaluation criteria is Pearson correlation.

• Image-caption retrieval - Image-caption retrieval is typically formulated as a rank-
ing task wherein images are retrieved and ranked based on a textual description and
vice-versa. We use 113k training images from MSCOCO with 5k images for valida-
tion and 5k for testing. Image features are extracted using a pre-trained 110 layer
ResNet. The evaluation criterion is Recall@K and the median K across 5 different
splits of the data.

3https://www.github.com/facebookresearch/SentEval

38

• Quora Duplicate Question Classification - In addition to the above tasks which
were considered by (Conneau et al., 2017a), we also evaluate on the recently pub-
lished Quora duplicate question dataset4 since it is an order of magnitude larger than
the others (approximately 400,000 question pairs). The task is to correctly identify
question pairs that are duplicates of one another, which we formulate as a binary
classification problem. We use the same data splits as in (Wang et al., 2017). Given
the size of this data, we consider a more expressive classifier on top of the repre-
sentations of both questions. Specifically, we train a 4 layer MLP with 1024 hidden
units, with a dropout rate of 0.5 after every hidden layer. The evaluation criterion is
classification accuracy. We also artificially create a low-resource setting by reducing
the number of training examples between 1,000 and 25,000 using the same splits as
(Shen et al., 2017a).

• Sentence Characteristics & Syntax - In an attempt to understand what informa-
tion is encoded in by sentence representations, we consider six different classification
tasks where the objective is to predict sentence characteristics such as length, word
content and word order (Adi et al., 2016) or syntactic properties such as active/pas-
sive, tense and the top syntactic sequence (TSS) from the parse tree of a sentence
(Shi et al., 2016).
The sentence characteristic tasks are setup in the same way as described in (Adi et al.,
2016). The length task is an 8-way classification problem where sentence lengths
are binned into 8 ranges. The content task is formulated as a binary classification
problem that takes a concatenation of a sentence representation u 2 Rk and a word
representation w 2 Rd to determine if the word is contained in the sentence. The
order task is an extension of the content task where a concatenation of the sentence
representation and word representations of two words in sentence is used to determine
if the first word occurs before or after the second. We use a random subset of the 1-
billion-word dataset for these experiments that were not used to train our multi-task
representations.
The syntactic properties tasks are setup in the same way as described in (Shi et al.,
2016).The passive and tense tasks are characterized as binary classification problems
given a sentence’s representation. The former’s objective is to determine if a sentence
is written in active/passive voice while the latter’s objective is to determine if the
sentence is in the past tense or not. The top syntactic sequence (TSS) is a 20-way
classification problem with 19 most frequent top syntactic sequences and 1 miscella-
neous class. We use the same dataset as the authors but different training, validation
and test splits.

4https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
5https://github.com/kudkudak/word-embeddings-benchmarks/wiki

39

Embedding Dim V143 SIMLEX WS353 YP130 MTurk771 RG65 MEN QVEC

SENNA 50 0.36 0.27 0.49 0.16 0.50 0.50 0.57 -
NMT En-Fr 620 - 0.46 0.49 - 0.46 0.59 0.49 -
GloVe6B 300 0.31 0.37 0.61 0.56 0.65 0.77 0.74 0.47
GloVe840B 300 0.34 0.41 0.71 0.57 0.71 0.76 0.80 -
Skipgram GoogleNews 300 - 0.44 0.70 - 0.67 0.76 0.74 -
FastText 300 0.40 0.38 0.74 0.53 0.67 0.80 0.76 0.50
Multilingual 512 0.26 0.40 0.68 0.42 0.60 0.65 0.76 -
Charagram 300 - 0.71 - - - - - -
Attract-Repel 300 - 0.75 - - - - - -
Our Model

+STN +Fr +De +NLI +L 512 0.56 0.59 0.66 0.62 0.70 0.65 0.67 0.54

Table 4.2. Evaluation of word embeddings. All results were computed using Faruqui & Dyer
(2014) with the exception of the Skipgram, NMT, Charagram and Attract-Repel embeddings.

Skipgram and NMT results were obtained from Jastrzebski et al. (2017)5. Charagram and
Attract-Repel results were taken from Wieting et al. (2016) and Mrkšić et al. (2017)

respectively. We also report QVEC benchmarks (Tsvetkov et al., 2015)

4.7.3. Experimental Results & Discussion

Table 4.4 presents the results of training logistic regression on 10 different supervised
transfer tasks using different fixed-length sentence representation. Supervised approaches
trained from scratch on some of these tasks are also presented for comparison. We present
performance ablations when adding more tasks and increasing the number of hidden units
in our GRU (+L). Ablation specifics are presented in section 4.6.

It is evident from Table 4.4 that adding more tasks improves the transfer performance of
our model. Increasing the capacity our sentence encoder with more hidden units (+L) as well
as an additional layer (+2L) also leads to improved transfer performance. We observe gains
of 1.1-2.0% on the sentiment classification tasks (MR, CR, SUBJ & MPQA) over Infersent.
We demonstrate substantial gains on TREC (6% over Infersent and roughly 2% over the
CNN-LSTM), outperforming even a competitive supervised baseline. We see similar gains
(2.3%) on paraphrase identification (MPRC), closing the gap on task specific models. The
addition of constituency parsing improves performance on sentence relatedness (SICK-R)
and entailment (SICK-E) consistent with observations made by Bowman et al. (2016).

In Table 4.3, we show that simply training an MLP on top of our fixed sentence repre-
sentations outperforms several strong & complex supervised approaches that use attention
mechanisms, even on this fairly large dataset. For example, we observe a 0.2-0.5% improve-
ment over the decomposable attention model (Parikh et al., 2016). When using only a small
fraction of the training data, indicated by the columns 1k-25k, we are able to outperform
the Siamese and Multi-Perspective CNN using roughly 6% of the available training set. We

40

Model Accuracy
1k 5k 10k 25k All (400k)

Siamese-CNN - - - - 79.60
Multi-Perspective-CNN - - - - 81.38
Siamese-LSTM - - - - 82.58
Multi-Perspective-LSTM - - - - 83.21
L.D.C - - - - 85.55
BiMPM - - - - 88.17
DecAtt (GloVe) - - - - 86.52
DecAtt (Char) - - - - 86.84
pt-DecAtt (Word) - - - - 87.54
pt-DecAtt (Char) - - - - 88.40
CNN (Random) 56.3 59.2 63.8 68.9 -
CNN (GloVe) 58.5 62.4 66.1 70.2 -
LSTM-AE 59.3 63.8 67.2 70.9 -
Deconv-AE 60.2 65.1 67.7 71.6 -
Deconv LVM 62.9 67.6 69.0 72.4 -
Infersent (LogReg) 68.8 73.8 75.7 76.4 -
Infersent (MLP) 71.8 75.7 77.2 78.9 84.79
Our Models

+STN +Fr +De +NLI +L +STP (LogReg) 70.4 74.8 75.9 77.2 -
+STN +Fr +De +NLI +L +STP (MLP) 74.7 77.7 78.3 81.4 87.01

Table 4.3. Supervised & low-resource classification accuracies on the Quora duplicate
question dataset. Accuracies are reported corresponding to the number of training

examples used. The first 6 rows are taken from Wang et al. (2017), the next 4 are from
Tomar et al. (2017), the next 5 from Shen et al. (2017a) and The last 4 rows are our

experiments using Infersent (Conneau et al., 2017a) and our models.

also outperform the Deconv LVM model proposed by Shen et al. (2017a) in this low-resource
setting.

Unlike Conneau et al. (2017a), who use pretrained GloVe word embeddings, we learn
our word embeddings from scratch. Somewhat surprisingly, in Table 4.2 we observe that the
learned word embeddings are competitive with popular methods such as GloVe, word2vec,
and fasttext (Bojanowski et al., 2016) on the benchmarks presented by Faruqui & Dyer
(2014) and Tsvetkov et al. (2015).

In Table 4.5, we probe our sentence representations to determine if certain sentence
characteristics and syntactic properties can be inferred following work by Adi et al. (2016)
and Shi et al. (2016). We observe that syntactic properties are better encoded with the
addition of multi-lingual NMT and parsing. Representations learned solely from NLI do
appear to encode syntax but incorporation into our multi-task framework does not amplify
this signal. Similarly, we observe that sentence characteristics such as length and word order
are better encoded with the addition of parsing.

41

Model MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STSB �

Transfer approaches

FastSent 70.8 78.4 88.7 80.6 - 76.8 72.2/80.3 - - - -
FastSent+AE 71.8 76.7 88.8 81.5 - 80.4 71.2/79.1 - - - -
NMT En-Fr 64.7 70.1 84.9 81.5 - 82.8 - - - - -
CNN-LSTM 77.8 82.1 93.6 89.4 - 92.6 76.5/83.8 0.862 - - -
Skipthought 76.5 80.1 93.6 87.1 82.0 92.2 73.0/82.0 0.858 82.3 - -
Skipthought + LN 79.4 83.1 93.7 89.3 82.9 88.4 - 0.858 79.5 72.1/70.2 -
Word Embedding Average - - - - 82.2 - - 0.860 84.6 - -
DiscSent + BiGRU - - 88.6 - - 81.0 71.6/- - - - -
DiscSent + unigram - - 92.7 - - 87.9 72.5/- - - - -
DiscSent + embed - - 93.0 - - 87.2 75.0/- - - - -
Byte mLSTM 86.9 91.4 94.6 88.5 - - 75.0/82.8 0.792 - - -
Infersent (SST) (*) 83.7 90.2 89.5 (*) 86.0 72.7/80.9 0.863 83.1 - -
Infersent (SNLI) 79.9 84.6 92.1 89.8 83.3 88.7 75.1/82.3 0.885 86.3 - -
Infersent (AllNLI) 81.1 86.3 92.4 90.2 84.6 88.2 76.2/83.1 0.884 86.3 75.8/75.5 0.0
Our Models

+STN 78.9 85.8 93.7 87.2 80.4 84.2 72.4/81.6 0.840 82.1 72.9/72.4 -2.56
+STN +Fr +De 80.3 85.1 93.5 90.1 83.3 92.6 77.1/83.3 0.864 84.8 77.1/77.1 0.01
+STN +Fr +De +NLI 81.2 86.4 93.4 90.8 84.0 93.2 76.6/82.7 0.884 87.0 79.2/79.1 0.99
+STN +Fr +De +NLI +L 81.7 87.3 94.2 90.8 84.0 94.2 77.1/83.0 0.887 87.1 78.7/78.2 1.33
+STN +Fr +De +NLI +L +STP 82.7 88.0 94.1 91.2 84.5 92.4 77.8/83.9 0.885 86.8 78.7/78.4 1.44
+STN +Fr +De +NLI +2L +STP 82.8 88.3 94.0 91.3 83.6 92.6 77.4/83.3 0.884 87.6 79.2/79.1 1.47
+STN +Fr +De +NLI +L +STP +Par 82.5 87.7 94.0 90.9 83.2 93.0 78.6/84.4 0.888 87.8 78.9/78.6 1.48

Approaches trained from scratch on these tasks

Naive Bayes SVM 79.4 81.8 93.2 86.3 83.1 - - - - -
AdaSent 83.1 86.3 95.5 93.3 - 92.4 - - - -
TF-KLD - - - - - - 80.4/85.9 - - -
Illinois LH - - - - - - - - 84.5 -
Dependency tree LSTM - - - - - - - 0.868 - -
Neural Semantic Encoder - - - - 89.7 - - - - -
BLSTM-2DCNN 82.3 - 94.0 - 89.5 96.1 - - - -

Table 4.4. Evaluation of sentence representations on a set of 10 tasks using a linear model trained
using each model’s representations. The FastSent and NMT En-Fr models are described in Hill et al.
(2016), CNN-LSTM in Gan et al. (2016), Skipthought in Kiros et al. (2015), Word embedding average
in Arora et al. (2016), DiscSent from Jernite et al. (2017), Byte mLSTM from Radford et al. (2017),

Infersent in Conneau et al. (2017a), Neural Semantic Encoder from Munkhdalai & Yu (2017),
BLSTM-2DCNN from Zhou et al. (2016). STN, Fr, De, NLI, L, 2L, STP & Par stand for skip-thought

next, French translation, German translation, natural language inference, large model, 2-layer large
model, skip-thought previous and parsing respectively. � indicates the average improvement over
Infersent (AllNLI) across all 10 tasks. For MRPC and STSB we consider only the F1 score and
Spearman correlations respectively and we also multiply the SICK-R scores by 100 to have all

differences in the same scale. Bold numbers indicate the best performing transfer model on a given task.
Each column contains exactly two rows that are underlined to indicate a) the best performing model

from prior work and b) our best performing model.

In Table 4.6, we note that our sentence representations outperform skip-thoughts and are
on par with Infersent for image-caption retrieval. We also observe that comparing sentences

42

Model Length Content Order Passive Tense TSS
Sentence characteristics Syntatic properties

Majority Baseline 22.0 50.0 50.0 81.3 77.1 56.0
Infersent (AllNLI) 75.8 75.8 75.1 92.1 93.3 70.4
Skipthought - - - 94.0 96.5 74.7
Our Models

Skipthought +Fr +De 86.8 75.7 81.1 97.0 97.0 77.1
Skipthought +Fr +De +NLI 88.1 75.7 81.5 96.7 96.8 77.1
Skipthought +Fr +De +NLI +Par 93.7 75.5 83.1 98.0 97.6 80.7

Table 4.5. Evaluation of sentence representations by probing for certain sentence
characteristics and syntactic properties. Sentence length, word content & word order from Adi
et al. (2016) and sentence active/passive, tense and top level syntactic sequence (TSS) from Shi
et al. (2016). Numbers reported are the accuracy with which the models were able to predict

certain characteristics.

using cosine similarities correlates reasonably well with their relatedness on semantic textual
similarity benchmarks (Table 4.7).

We also present qualitative analysis of our learned representations by visualizations using
dimensionality reduction techniques (Figure 4.1) and nearest neighbor exploration (Table
4.8). Figure 4.1 shows t-sne plots of our sentence representations on three different datasets
- SUBJ, TREC and DBpedia. DBpedia is a large corpus of sentences from Wikipedia labeled
by category and used by Zhang et al. (2015). Sentences appear to cluster reasonably well
according to their labels. The clustering also appears better than that demonstrated in
Figure 2 of Kiros et al. (2015) on TREC and SUBJ. Table 4.8 contains sentences from the
BookCorpus and their nearest neighbors. Sentences with some lexical overlap and similar
discourse structure appear to be clustered together.

Caption Retrieval Image Retrieval
Model R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

Sentence Representations trained from scratch

m-CNN 38.3 - 81.0 2 27.4 - 79.5 3
m-CNN Ensemble 42.8 - 84.1 2 32.6 - 82.8 3
Oreder-embeddings 46.7 - 88.9 2 37.9 - 85.9 2
Transfer learning approaches

Skipthought 37.9 72.2 84.3 2 30.6 66.2 81.0 3
Infersent (SNLI) 42.4 76.1 87.0 2 33.2 69.7 83.6 3
Infersent (AllNLI) 42.6 75.3 87.3 2 33.9 69.7 83.8 3
+STN +Fr +De +NLI +L +STP 43.0 76.0 87.0 2 33.8 70.1 83.6 2.8

Table 4.6. COCO Retrieval with ResNet-101 features

43

Model STS12 STS13 STS14 STS15 STS16

Unsupervised/Transfer Approaches
Skipthought+LN 30.8 24.8 31.4 31.0 -
GloVe average 52.5 42.3 54.2 52.7 -
GloVe TF-IDF 58.7 52.1 63.8 60.6 -
GloVe + WR (U) 56.2 56.6 68.5 71.1 -
Charagram-phrase 66.1 57.2 74.7 76.1 -
Infersent 59.2 58.9 69.6 71.3 71.4

+STN +Fr +De +NLI +L +STP 60.6 54.7 65.8 74.2 66.4
Supervised Approaches
LSTM w/o output gates 51.0 45.2 59.8 63.9 -
PP-Proj 60.0 56.8 71.3 74.8 -

Table 4.7. Evaluation of sentence representations on the semantic textual similarity
benchmarks. Numbers reported are Pearson Correlations x100. Skipthought, GloVe

average, GloVe TF-IDF, GloVe + WR (U) and all supervised numbers were taken from
Arora et al. (2016) and Wieting et al. (2015) and Charagram-phrase numbers were taken

from Wieting et al. (2016). Other numbers were obtained from the evaluation suite
provided by Conneau et al. (2017a)

4.8. Conclusion & Future Work

We present a multi-task framework for learning general-purpose fixed-length sentence
representations. Our primary motivation is to encapsulate the inductive biases of several
diverse training signals used to learn sentence representations into a single model. Our
multi-task framework includes a combination of sequence-to-sequence tasks such as multi-
lingual NMT, constituency parsing and skip-thought vectors as well as a classification task -
natural language inference. We demonstrate that the learned representations yield compet-
itive or superior results to previous general-purpose sentence representation methods. We
also observe that this approach produces good word embeddings.

In future work, we would like understand and interpret the inductive biases that our
model learns and observe how it changes with the addition of different tasks beyond just our
simple analysis of sentence characteristics and syntax. Having a rich, continuous sentence
representation space could allow the application of state-of-the-art generative models of
images such as that of Nguyen et al. (2016) to language. One could also consider controllable
text generation by directly manipulating the sentence representations and realizing it by
decoding with a conditional language model.

44

Query and nearest sentence

i ... i want ... ” she could n’t finish the sentence and she did n’t have to .
i ... ” she had no idea what she had intended to say .
and ... ” she could n’t finish .
i ... ” he winced as if he could n’t bear whatever flashed through his mind .
you were going to sleep with her just to ... ” i could n’t even finish my sentence .
tyler was kind enough to wait two weeks before talking about their relationship again .
he ’d been more than honest in setting forth his feelings about their relationship .
she did n’t wait for him to ask what she was talking about .
damn , just thinking about it made him want to talk to her again .
i did n’t wait for my bestie to try and talk me out of it .
“ you can , my lady . ”
“ of course , my lady . ”
“ what can i do for you , my lady ? ”
“ watch yourself , my lady . ”
“ where to , my lady ? ”
they ’d kept silent about it , a terrifying secret between them that was n’t going away .
he ’d known they had secrets between them , things they were n’t ready to share .
she ’d kept his secret , even from her two closest confidantes .
he ’d made her a promise and he was n’t about to break it .
she ’d brushed them off as shock-induced ramblings , but now riley was n’t so sure .
“ you deserve good things , ” marshal said , but he was still wearing that damn pitying smile .
“ i ’m really happy to see you , ladybug , ” he said softly , the smile never leaving his eyes .
“ you ’re a bad liar , ” he said , still smiling .
“ it ’s okay , ” i said , but he shook his head and sighed .
“ i ’ll answer that , ” he said , his eyes still lit with humor .
belatedly i turned to look up at max and exclaimed , “ hey ! ”
i started , hollering at his retreating form , “ thank you ! ”
he slowly turned and looked at me as he barely said , “ fine . ”
my head came up and i asked , “ sorry ? ”
i shook my head and mouthed , “ i ca n’t believe you ! ”

Table 4.8. A query sentence and its nearest neighbors sorted by decreasing cosine similarity using
our model. Sentences and nearest neighbors were chosen from a random subset of 500,000 sentences

from the BookCorpus

45

Chapter 5

Prologue to the second article

5.1. Article Details

Towards Text Generation with Adversarially Learned Neural Outlines.
Sandeep Subramanian, Sai Rajeswar, Alessandro Sordoni, Adam Trischler, Aaron Courville,
Christopher Pal. Neural Information Processing Systems 2018.

Personal Contribution The project began as an extension of Chapter 4 to see if the
learned sentence representations could help with text generation. After working on Subra-
manian et al. (2018c), Alessandro Sordoni, Adam Trischler and Sandeep Subramanian were
investigating the smoothness of the learned sentence representation space (end of Chapter 6)
via latent space interpolations - this necessitated a “universal decoder” that could reconstruct
the contents of a sentence embedding. These discussions led to the gradient-based interpo-
lation idea. Sandeep Subramanian and Sai Rajeswar formulated the GAN-based approach
for modeling the distribution of sentence embeddings. Christopher Pal and Aaron Courville
advised on the project and suggested experiments to run. Sandeep Subramanian wrote all
of the code for the project, ran all of the experiments and wrote parts of the paper.

5.2. Context

The goal of this work was to present a two-step generative model for text by first using
a GAN to model the distribution of sentence embeddings and then using its generator to
generate a synthetic sentence embedding. An autoregressive decoder then reconstructs its
contents. The generated sentence embedding provides strong and “global” conditioning for
the decoder. GAN training is straightforward in this setup since we’re dealing with contin-
uous sentence embeddings rather than the underlying discrete data. It has the advantage
of having a good learned prior when compared to VAEs and not suffering from posterior
collapse.

5.3. Contributions

The paper presents a latent-space generative model for text that combines GANs and
autoregressive models. It generates better samples than an LSTM language model at high
temperatures and performs similarly at low temperatures. It demonstrates that the approach
can be adapted to a conditional generation setting using a conditional GAN. Finally, it shows
how continuous representations of text and and a decoder can be used to interpolate smoothly
in the latent space using gradient signals from the decoder.

5.4. Research Impact

The work was a promising way of using GANs in text by sidestepping discreteness and
training in a continuous latent space. Since then, several approaches have used learned latent
spaces to generate and alter text (Dathathri et al., 2019; Wang et al., 2019; Mai et al., 2020).

48

Chapter 6

Towards Text Generation with Adversarially

Learned Neural Outlines

6.1. Introduction

Deep neural networks are powerful tools for modeling sequential data (Mikolov et al.,
2010; Van Den Oord et al., 2016; Jozefowicz et al., 2016). Tractable maximum-likelihood
(MLE) training of these models typically involves factorizing the joint distribution over
random variables into a product of conditional distributions that models the one-step-ahead
probability in the sequence via the chain rule. Each conditional is then modeled by an
expressive family of functions, such as neural networks. These models have been successful
in a variety of tasks. However, the only source of variation is modeled in the conditional
output probability at every step: there is limited capacity for capturing the higher-level
structure likely present in natural text and other sequential data (e.g., through a hierarchical
generation process (Serban et al., 2016)).

Variational Autoencoders (VAE) (Kingma & Welling, 2013) provide a tractable method
to train hierarchical latent-variable generative models. In the context of text data, latent
variables may assume the role of sentence representations that govern a lower-level generation
process, thus facilitating controlled generation of text.

However, VAEs for text are notoriously hard to train when combined with powerful
auto-regressive decoders (Bowman et al., 2015b; Goyal et al., 2017b; Shabanian et al., 2017).
This is due to the “posterior collapse” problem: the model ends up relying solely on the
auto-regressive properties of the decoder while ignoring the latent variables, which become
uninformative. This phenomenon is partly a consequence of the restrictive assumptions on
the parametric form of the posterior and prior approximations, usually modeled as simple
diagonal Gaussian distributions.

General-purpose sentence encoders have been shown to produce representations that are
useful across a wide range of natural language processing (NLP) tasks (Kiros et al., 2015;

Fig. 6.1. Overall Model Architecture. (Left) A GAN trained to model the distribution of
fixed-length sentence vectors. Noise indicated by a small dotted Gaussian ball, is injected

to every point on the data mainfold when feeding it to the decoder. (Right) Samples
produced from our generative process by interpolating linearly between two points sampled

at random from the input noise space of the generator.

Conneau et al., 2017a; Subramanian et al., 2018c). Such models seem to capture syntactic
and semantic properties of text in self-contained vector representations (Subramanian et al.,
2018c; Conneau et al., 2018). Although these representations have been used successfully in
downstream tasks, their usefulness for text generation per se has not yet been thoroughly
investigated, to the best of our knowledge.

In this paper, we study how high-quality sentence representations, obtained by general
purpose sentence encoders, can be leveraged to train better models for text generation. In
particular, we interpret the set of sentence embeddings obtained from training on large text
corpora as samples from an expressive and unknown prior distribution over a continuous
space. We model this distribution using a Generative Adversarial Network (GAN), which
enables us to build a fully generative model of sentences as follows: we first sample a sentence
embedding from the GAN generator, then decode it to the observed space (words) using a
conditional GRU-based language model (which we refer to as the decoder in the rest of this
work). The sentence embeddings produced by the learned generator can be seen as “neural
outlines” that provide high-level information to the decoder, which in turn can generate
many possible sentences given a single latent representation. The conditioning information
effectively guides the decoder to a smaller space of possible generations.

The takeaways from our work are:

• We propose the use of fixed-length representations induced by general-purpose sen-
tence encoders for training generative models of text, and demonstrate their potential
both qualitatively and quantitatively.

50

• We extend our model to conditional text generation. Specifically, we train a condi-
tional GAN that learns to transform a given hypothesis representation in the sentence
embedding space into a premise embedding that satisfies a specified entailment rela-
tionship.

• We propose a gradient-based technique to generate meaningful interpolations between
two given sentence embeddings. We see this technique as being able to navigate
around holes in the data manifold by moving in areas of high data density using
gradient signals from the decoder. Qualitatively, the obtained interpolations appear
more natural than those obtained by linear interpolation, when the distribution (in
our case the sentence embeddings distribution) doesn’t have a simple parametric form
such as a Gaussian.

6.2. Related Work

Our work is similar in spirit to the line of work that employs adversarial training on
a latent representation of data, such as Adversarial Autoendoers (AAE) (Makhzani et al.,
2015), Wasserstein Autoencoders (WAE) (Tolstikhin et al., 2017) and Adversarially Regular-
ized Autoencoders (ARAE) (Kim et al., 2017). AAEs and WAEs are similar to Variational
Autoencoders (VAE) (Kingma & Welling, 2013) in that they learn an encoder that produces
an approximate latent posterior distribution q�(z|x), and a decoder p✓(x|z) that is trained
to minimize the reconstruction error of x. They differ in the way they are regularized.
VAEs penalize the discrepancy between the approximate posterior and a prior distribution
DKL(q�(z|x)kp(z)), which controls the tightness of the variational bound on the data log-
likelihood. AAEs and WAEs, on the other hand, adversarially match the aggregated or
marginal posterior q�(z), with a fixed prior distribution that shapes the posterior into what
is typically a simple distribution, such as a Gaussian.

ARAEs train, by means of a critic, a flexible prior distribution regularizing the sentence
representations obtained by an auto-encoder. In contrast, we provide evidence that assuming
a uniform prior distribution during the training of sentence representations and fitting a
flexible prior a posteriori over the obtained representations yields better performance than
learning both jointly, and helps us scale to longer sequences, larger vocabularies, and richer
datasets.

Recent successes of generative adversarial networks in the image domain (Karras et al.,
2017) have motivated their use in modeling discrete sequences like text. However, discrete-
ness introduces problems in end-to-end training of the generator. Policy gradient techniques
(Williams, 1992) are one way to circumvent this problem, but typically require maximum-
likelihood pre-training (Yu et al., 2017; Che et al., 2017), as do actor-critic methods (Goyal

51

et al., 2017a; Fedus et al., 2018). Gumbel-softmax based approaches have also proven use-
ful in the restricted setting of short sequence lengths and small output vocabulary sizes
(Kusner & Hernández-Lobato, 2016). Approaches without maximum-likelihood pre-training
that operate on continuous softmax outputs from the generator such as (Gulrajani et al.,
2017; Rajeswar et al., 2017; Press et al., 2017) have also shown promise, but apply mostly
in artificial settings. Adversarial training on the continuous hidden states of an RNN was
used by (Shen et al., 2017b) for unaligned style transfer motivated by the professor forcing
algorithm (Lamb et al., 2016), which uses adversarial training to match the hidden states of
a free-running and teacher forced RNN.

In this work, we argue that generative adversarial training on latent representations of a
sentence not only alleviates the non-differentiability issue of regular GAN training on discrete
sequences, but also eases the learning process by instead modeling an already smoothened
out manifold of the underlying discrete data distribution. We also simultaneously reap the
benefits of having a “sequence-level” training objective while somewhat side-stepping the
temporal credit assignment problem.

6.3. Approach

In this section we discuss the building blocks of our generative model. Our model consists
of two distinct and independently trainable components: (1) a generative adversarial net-
work trained to match the distribution of the fixed-length vector representations induced by
general purpose sentence encoders and (2) a conditional RNN language model trained with
maximum-likelihood to reconstruct the words in a sentence given its vector representation.
The overall architecture is presented in Fig. 6.1.

6.3.1. General Purpose Sentence Encoders

With the success of models that learn distributed representations of words in an unsu-
pervised manner, there has been a recent focus on building models that learn fixed-length
vector representations of whole sentences that are “general-purpose” enough to be useful as
black-box features across a wide range of downstream Natural Language Processing tasks.
Extensions of the skip-gram model to sentences (Kiros et al., 2015), sequential de-noising
autoencoders (Hill et al., 2016), features learned from Natural Language Inference models
(Conneau et al., 2017a), and large-scale multi-task models that are trained with multiple
objectives (Subramanian et al., 2018c) have been shown to learn useful (Conneau & Kiela,
2018; Wang et al., 2018) fixed-length representations of text. They also encode several char-
acteristics of a sentence faithfully, including word order, content, and length (Conneau et al.,
2018; Adi et al., 2016; Subramanian et al., 2018c). This is important, since we want to be
able to reliably reconstruct the contents of a sentence from its vector representation. In

52

this work, we will use the pre-trained sentence encoder from (Subramanian et al., 2018c),
which consists of an embedding look-up table learned from scratch and a single layer GRU
(Chung et al., 2014) with 2048 hidden units. We use the last hidden state of the GRU
to create a compressed representation. Thus, each sentence x is represented by a vector
E(x) = hx 2 R2048, where E denotes our general-purpose sentence encoder.

6.3.2. Generative Adversarial Training

Generative Adversarial networks are a family of implicit generative models that formulate
the learning process as a two player minimax game between a generator and discriminator/-
critic (Goodfellow et al., 2014): the critic is trained to distinguish samples of the true data
distribution from those of the generator distribution. The generator is trained to “fool” the
critic by approximating the data distribution, given samples from a much simpler distribu-
tion, e.g., a Gaussian. The discriminator D or critic fw and the generator G are typically
parameterized by neural networks. In our setting, the data distribution is the distribution
P (hx) of sentence embeddings hx = E(x) provided by our sentence encoder E applied to
samples x ⇠ PD from a dataset D. Specifically, the discriminator and generator are trained
by:

min
G

max
D

V (D,G) = E
x⇠PD

[logD(E(x))] + E
z⇠P (z)

[log(1�D(G(z)))] (6.1)

In presenting the Wasserstein GAN, (Arjovsky et al., 2017) argue that while KL di-
vergence is a good divergence for low-dimensional data, it is often too strong in the high-
dimensional settings we are often interested in modeling. We found training to be more
stable using the 1-Wasserstein distance between two distributions. We follow the setup of
(Gulrajani et al., 2017), which we found leads to more effective and robust training.

We also explore training GANs with categorical latent variables using the InfoGAN frame-
work (Chen et al., 2016).

6.3.3. Decoding Generated Sentence Vectors to Words

Given generated or real sentences in their fixed-length latent space, we would like to train
a model that maps these vectors back to their respective sentences. To this end, we train a
conditional GRU language model that, for each sentence x, conditions on the sentence vector
hx representation as well as previously generated words at each step to reconstruct x. We
parameterize this decoder with an embedding lookup-table, a single layer GRU, and an affine
transformation matrix. The GRU is fed the sentence vector at every time step as described
in (Subramanian et al., 2018c). The decoder is trained with standard maximum-likelihood
training.

53

Given that E(x) is a deterministic function of x ⇠ PD, where PD is a discrete distribution
in the case of textual data, the distribution P (hx) is a discrete distribution embedded in a
continuous space. Our sentence embedding generator approximates the high-dimensional
discrete distribution P (hx) with a continuous distribution G(z). Therefore, samples from
G(z) will likely produce data points that are off-manifold, which may induce unexpected
behavior of the decoder since it has been trained only on samples from the true distribution
P (hx). In order to encourage better generalization for samples from G(z), during the training
of the decoder we smooth the distribution P (hx) by adding a small amount of additive
isotropic Gaussian noise to each vector hx.

In Table 6.1, we demonstrate the impact of noise on the reconstruction BLEU scores and
sample quality. We notice that the amount of noise injected introduces a trade-off between
reconstruction and sample quality. Specifically, as we increase the amount of noise the
reconstruction BLEU score decreases but samples from a GAN start looking qualitatively
better. This aligns with observations made in (Engel et al., 2017), where VAEs trained with
a variance of ⇠ 0.1 had crisp reconstructions but poor sample quality, while those with a
variance of 1.0 had blurry reconstructions but better sample quality.

Noise BLEU-4 Samples
0.00 64.54 the young men are playing volleyball in the ball .
0.07 53.12 -
0.12 48.60 the young child is playing soccer .
0.17 41.16 -
0.20 37.51 a young child is playing with a ball .

Table 6.1. The impact of noise on reconstruction quality measured tokenized BLEU-4
scores on the SNLI (Bowman et al., 2015a) dataset. We also show samples from decoders

trained with different amounts of noise but always conditioned on the same sentence
vector generated from a GAN.

The injection of noise into neural models has been explored in many contexts (An, 1996;
Vincent et al., 2008; Plappert et al., 2017; Srivastava et al., 2014; Poole et al., 2014) and
has been shown to have important implications in unsupervised representation learning.
Theoretical and empirical arguments from Denoising Autoencoders (DAEs) (Vincent et al.,
2008) show that the addition of noise leads to robust features that are insensitive to small
perturbations to examples on the data manifold. Contractive Autoencoders (CAEs) (Rifai
et al., 2011) impose an explicit invariance of the hidden representations to small perturbations
in the input by penalizing the norm of the Jacobian of hidden representations with respect
to the inputs. This was shown to be equivalent to adding additive Gaussian noise to the
hidden representations (Poole et al., 2014), where the variance of the noise is proportional to
the contraction penalty in CAEs. Although this was proved to be true only for feedforward

54

autoencoders, we believe this has a similar effect on sequential models such as the ones we
use in this work.

6.3.4. Model Architecture

In all experiments, we use the sentence encoder from (Subramanian et al., 2018c). In our
generator and discriminator, we use 5-layer MLPs with 1024 hidden dimensions and leaky
ReLU activation functions. We use the WGAN-GP formulation (Gulrajani et al., 2017) in all
experiments, with 5 discriminator updates for every generator update and a gradient penalty
coefficient of 10. Our decoder architecture is identical to the multi-task decoders used in
(Subramanian et al., 2018c). We trained all models with the Adam (Kingma & Ba, 2014)
stochastic optimization algorithm with a learning rate of 2e-4 and �1 = 0.5,�2 = 0.9. We
used a isotropic gaussian noise with a standard deviation of 0.12 for experiments involving
SNLI and 0.20 for others.

6.4. Experiments & Results

To evaluate our generative model, we setup unconditional as well as conditional English
sentence generation experiments. We consider the SNLI (Bowman et al., 2015a), BookCorpus
(Zhu et al., 2015) and WMT15 (English fraction of the En-De parallel corpus) datasets
in unconditional text generation experiments. For conditional generation experiments, we
consider two different tasks: (1) to generate a premise sentence that satisfies a particular
relationship (entailment/contradiction/neutral) with a given hypothesis sentence from the
SNLI dataset, similar to (Shen et al., 2018; Kolesnyk et al., 2016); and (2) a synthetic task of
generating captions (without the image) of a particular binary sentiment from the SentiCap
dataset (Mathews et al., 2016).

Dataset Sentences Tokens
SNLI (Unconditional) 630k 6.1M
SNLI (Conditional) 550k 12.2M

BookCorpus 12M 159.5M
WMT15 4.5M 117.2M

Table 6.2. Dataset Statistics. Note: SNLI (unconditional) concatenates premise and
hypothesis sentences and removes duplicates, while the conditional setting uses the dataset

as is.

55

6.4.1. Unconditional Sentence Generation

In all settings, we partition the dataset into equally sized halves, one on which we train
our generative model (GAN & Decoder) and the other for evaluation. The large holdout set
is an artifact of our evaluation setup, described in the next section.

In Tables 6.3 and 6.4, we present samples and interpolations produced from our model
on three datasets. Additionally, in Table 6.8 we present samples from the BookCorpus by
varying a 10-dimensional categorical variable.

1 the room was nicely decorated and the two of them were very comfortable and the bathroom was fantastic .
2 all of the information was gathered from the police or the court of justice in the united states .
3 we are working with the elders to tell the story of the ancient egyptian stories of the past .
4 all of our doctors , nurses , and other health care providers have been waiting for me .
5 and this is why it is so important that the health care system be fully understood .
6 this is going to be a good way to get a glimpse of the new york city council .
7 “ what ’s going on with you ? ”
8 i shook my head , not trusting myself .
9 i was too tired to think about it .
10 “ yes , ” he said , nodding .
1 in the mid-1980s , he was appointed as a member of the court of human rights in afghanistan .
2 do you have any other ideas about cooperation between the european union and other countries in the world ?
3 secondly , i am not happy to see that the countries of the european union are in agreement .
4 the main objective of this study is to promote the development of a more comprehensive and accessible information society .
5 we’ve been looking forward to welcoming you to the beach , with a view of the sea .
6 but it is clear that the west and east of the country are not yet fully committed .
7 i would like to point out to the house that there are some amendments to the fisheries act .
8 health and education , research and development are a major factor in the development of health education programs .
9 i therefore ask the commission to cooperate fully with the commission and to parliament to approve this report .
10 i hope that the next step will be to ensure that this agreement is maintained in the eu .

Table 6.3. Generated samples from our model trained on the BookCorpus (top) and
WMT15 (bottom)

In Table 6.5, we compare unconditional samples from ARAEs1, a state-of-the-art LSTM
language model2 (Merity et al., 2017) and our model. We experimented with different hy-
perparameter configurations for the ARAE to increase model capacity but found that the
default parameters gave us the best results. For (Merity et al., 2017), we use the default
hyper-parameters without Averaged SGD since we noticed that it didn’t have an impact on
results, therefore referring to this baseline as WD-LSTM.

Our model with beam search is competitive with the WD-LSTM at low temperatures
(0.5) in terms of sample quality and diversity, but is able to maintain quality even at high
1https://github.com/jakezhaojb/ARAE
2https://github.com/salesforce/awd-lstm-lm

56

temperatures (1.0). We also outperform the ARAE on the benchmarks. All experiments
were performed with a vocabulary size of 80,000 words and a maximum sequence length of
50, except for the ARAE model on SNLI where we used the pre-trained models provided in
the code repository.

1 “ you ’re human , ” she said softly . 1 a girl on a stage holding a guitar .
2 “ you ’re a vampire , ” she said . 2 a girl on a stage holding a scythe .
3 “ you ’re a vampire , ” she said . 3 the girl in the sweat shirt plays a guitar on a stage .
4 “ you ’re a b**ch , ” she said . 4 the girl in the sweat vest is reading a newspaper .
5 “ you ’re angry , ” he said flatly . 5 a woman in a white shirt is taking a shortcut .
6 “ you ’re a jerk , ” he said dryly . 6 a woman in a white shirt is holding a scythe .
7 “ you ’re not going to let me out ? ” 7 a woman is playing the sax .
8 “ i do n’t know why you ’re here ? ” 8 a man is in the firehouse .
9 “ i do n’t know why you ’re here ? ” 9 a man is in the firehouse .
10 “ you do n’t know what to do ? ” 10 two men are in an enclosed room .
1 it is therefore quite impossible to separate the various provisions of the single market with regard to quotas .
2 i do not therefore think that it is necessary to continue with a different view of the commission .
3 i am therefore very sensitive to the issue of women in different member states and the social repercussions .
4 therefore , i am very pleased with the report on women and their social rights in the member states .
5 i am also very pleased to have the opportunity to discuss with the european parliament on this matter .
6 i would also like to take the opportunity to comment on the issue of the european economic partnership .
7 i would not like to mention the commission ’s statement on the issue of the council ’s statement .
8 i do not want to answer any of the commissioner ’s questions to the commission .
9 mr president , i am not going to reply to mr santer ’s statement on the lisbon strategy .
10 mr president .

Table 6.4. Linear interpolations along two randomly sampled points in the input space of
the GAN generator on the BookCorpus (top left), SNLI (top right), and WMT15

(bottom). Points along the line between the two points are transformed into sentence
vectors via the generator and then decoded with beam search.

For details on the evaluation methodology, see below.

6.4.2. Towards Quantitatively Evaluating Unconditional Sentence

Samples

Evaluating implicit generative models such as GANs is still an active area of research, with
several pieces of work focusing on evaluating image samples (Salimans et al., 2016; Heusel
et al., 2017). In this section, we revisit the evaluation method that was originally proposed
in (Goodfellow et al., 2014), of fitting a non-parametric kernel density estimator (KDE) on
the samples produced by a GAN and then evaluating the likelihood of real examples under
this KDE. As pointed out in (Theis et al., 2015), KDEs seldom do a good job of capturing
the underlying density, since they do not scale well with data. However, when the underlying
data distribution is discrete, count-based non-parametric models such as smoothed n-gram

57

Dataset ARAE WD-LSTM Ours
FPPL RPPL FPPL RPPL FPPL RPPL

0.5 1.0 B=1 0.5 1.0 B=1 0.5 1.0 0.5 1.0 0.5 1.0 B=5 0.5 1.0 B=5
BookCorpus 389.6 555.6 364.2 209.2 206.2 213.3 9.4 185.2 280.7 137.2 25.5 66.6 10.5 220.4 152.8 250.9

WMT15 448.7 965.1 385.8 476.2 378.7 626.3 21.4 369.0 528.9 250.5 105.5 212.9 19.9 350.5 254.1 373.2
SNLI 67.5 109.1 62.0 54.8 54.0 59.9 5.9 57.0 86.8 34.5 18.6 35.6 15.3 90.8 49.5 59.8

Table 6.5. Quantitative evaluation of sample quality from ARAE, WD-LSTM and our
model. We report the FPPL and RPPL from a KN smoothed 5-gram language modeled
trained on a distinct but large subset of the data. We also report FPPLs and RPPLs on

samples generated with multinomial sampling with temperatures of 0.5 and 1.0, as well as
deterministic decoding with beam search (B). Note that deterministic decoding is not

suitable for the WD-LSTM since there needs to be some stochasticity to produce diverse
samples.

language models (Heafield, 2011) are extremely fast to train and produce reasonable density
estimates which can be used as weak proxies for the real and model data densities.

Dataset BLEU-4
WD-LSTM Ours

T=0.5 T=1.0 B=5 T=1.0
BookCorpus 26.8 6.8 47.7 17.92

WMT15 16.6 4.6 13.7 5.5
SNLI 45.8 14.7 34.8 22.1

Table 6.6. A preliminary analysis of overfitting by computing the average BLEU score
between samples from the WD-LSTM and Our models with the nearest neighbor in the
training set. Samples were generated with multinomial sampling with temperatues of 0.5

and 1.0 as well as decoding with beam search (B)

Approach Unique n-gram ratio N-gram validity
n=2 n=3 n=4 n=2 n=3 n=4

Ours (Beam) 0.04 0.05 0.07 95.76% 86.44% 65.35%
WD-LSTM (Temp 0.5) 0.05 0.07 0.12 95.22% 84.87% 61.68%

Ours (Temp 1.0) 0.55 0.56 0.57 63.06% 44.34% 26.14%
WD-LSTM (Temp 1.0) 1.38 1.30 1.29 46.20% 31.75% 17.52%

Table 6.7. N-gram statistics of the generated BookCorpus samples from our model and a
WD-LSTM. The Unique n-gram ratio metric is the ratio of the number of unique n-grams
in our generated samples to the real data with an equal number of sentences. The n-gram
validity quantifies the percentage of n-grams in the generated samples that are present in a

holdout set of 6M sentences.

Further, we identify a few simple statistics about generated samples to act as proxies
for sample quality and diversity. In Table 6.7, we report statistics about the distribution

58

Latent Category 1 Latent Category 2 Latent Category 3
1 she turned her head to look at him . he did n’t know how to stop him . it was the most beautiful thing to do .
2 she had no idea what to do next . he turned away from the window and left . it was not a good thing to do .
3 but she knew it would be a lie . he looked at her , his expression grim . it had been a long time since then .
4 she did n’t want him to hurt her . he stopped and stared at the closed door . it was n’t fair to say that .
5 she asked , her eyes pleading with concern . he looked at zane , who was smiling . it was like a punch to the gut .
6 she wrapped her arms around him and squeezed . he could n’t help but smile at her . it was a good idea to walk home .
7 her hand trembled slightly , her heart racing . he wanted to know where he was going . it was the strangest thing in the world .
8 she went to the bathroom to get dressed . his voice was low , his eyes narrowing . it was almost three o’clock in the morning .
9 she twisted her arms around his neck again . he waited for a moment to regain consciousness . it was a long way from the city .

Latent Category 4 Latent Category 5 Latent Category 6
1 i thought i was in love with him . no , not your father , he said . oh , shit , i ’m so sorry !
2 i was in a hurry to find out . i mean , you know what i mean . come on , let ’s go to bed .
3 i took a deep breath and exhaled slowly . oh , yeah , well , i guess . he asked , as if to say something .
4 i was pretty sure i was a fan . look at me , i love you too . she asked , her voice dripping with sarcasm .
5 i did n’t mean to be with you . i dont know , she said to herself . she asked , her eyes wide with annoyance .
6 i heard the door slam shut behind me . im sorry , she said with a sigh . she asked , her eyes pleading with concern .
7 my heart was pounding , my chest hurt . yeah , well , that ’s all right . oh , shit , she said to herself .
8 i got up and went to the kitchen . when she did , she didnt say anything . he said , his voice thick with emotion .
9 i swallowed hard and tried to sound stupid . i mean , what are you doing here ? yes , of course , i ’m sure .

Latent Category 7 Latent Category 8 Latent Category 9
1 “ that ’s what you ’re doing here . “ that ’s right , ” he said . “ i love you , my love . ”
2 “ it ’s all you have to say . “ i ’m fine , ” she said . “ i ’m not a good man . ”
3 “ i do n’t know where to go . “ i do n’t , ” ashe said . “ i do n’t think so . ”
4 “ i did n’t mean to upset you . “ i ’ll go , ” he says . “ i ’m sure it ’s a trick . ”
5 “ you ’ve got to be kidding me . “ you ’re beautiful , ” she said . “ she did n’t tell him that ! ”
6 “ she ’s not going to kill you . “ it ’s not , ” he said . “ that ’s why i ’m here . ”
7 “ that ’s not what i ’m saying . “ you ’re not , ” he said . “ i ’ll take care of you . ”
8 “ i ’m so glad you ’re here . “ she ’s not , ” ethan said . “ maybe you can do that again ? ”
9 “ you ’re going to be a hero . “ it ’s okay , ” i say . “ i thought you might like that . ”

Table 6.8. InfoGAN samples when varying a single categorical latent variable with 10 categories on
the BookCorpus. The latent code captures significant factors of the text sentence such as the choice
of pronoun (She/He/It/I), the presence of discourse markers (5), as well as other structures such as
quotations (7,8,9). Different rows in each category correspond to different random samples of noise

with the categorical latent variable fixed

of n-grams in the generated samples from our model as well as the WD-LSTM. We present
the “unique n-gram ratio” metric as a proxy for sample diversity which measures the ratio of
unique n-grams to the real data measured with the same number of sentences (512,000). The
“n-gram validity” metric which measures the percentage of n-grams in the samples that occurs
in a holdout set of 6M sentences, is intended to serve as a proxy for sample quality. We see
that when generating at low temperatures or with beam search, both models have extremely
low sample diversity with our model having better n-gram validity. When sampling at high
temperatures (i.e.) from the true distribution learned by these models, we can see that
there is a significant difference between the diversity of our samples versus the WD-LSTM

59

- the WD-LSTM actually contains more unique n-grams than the real data. Naturally, the
n-gram validity metric captures this trade-off between sample quality and diversity of the
two models.

A common criticism of GANs are that they appear to produce samples that are near
copies of ones in the training set. We attempt to shed some light on the extent to which
this happens in our model as well as the WD-LSTM. Specifically, we compute the tokenized
BLEU-4 between samples and their nearest neighbor in the training set. We compute nearest
neighbors using the FAISS3 library in the space of averaged 300 dimensional GloVe vectors.
The results appear to depend on the dataset, while our model overfits a lot more on the
BookCorpus, it does less so on WMT15 and SNLI than the WD-LSTM at low temperatures
or with beam search.

Let P be the data distribution and Q be our model’s distribution. Since P is unknown
and Q is an implicit generative model, we do not have access to either of the underlying
data generating distributions, only samples from them. Nevertheless, we’d like to find an
evaluation criterion that measures an (approximate) measure of similarity between these
distributions. To do so, we fit a non-parametric Kneiser-Ney smoothed 5-gram language
model (Heafield, 2011) to samples from P and Q and denote the resulting density models as P̂
and Q̂. Alternatively, we could fit a parameteric model such as an RNN language model to P

and Q, but their behavior on examples that are off-manifold is not well characterized. Using
these, we formulate two complementary evaluation criteria, the "Forward" and "Reverse"
perplexities (FPPL, RPPL), that correspond to approximations of cross-entropies H(Q,P)

and H(P,Q), respectively. It is straightforward to see that this is the case by substituting
Q with Q̂ H(P,Q) ' � E

x⇠P
log Q̂(x) and P with P̂ H(Q,P) ' � E

x⇠Q
log P̂ (x). We use the

forward and reverse terminologies in the opposite way researchers refer to the forward and
reverse KL divergences in an optimization setting when P is the true distribution we’d like
to approximate with Q. This reversal is to maintain consistence with (Kim et al., 2017).

Computationally, the RPPL is equivalent to training a KN 5-gram LM on the samples
from our model and reporting perplexities and the real data, while FPPL involves the oppo-
site. Note that H(P,Q) and H(Q,P) differ in the order of arguments in the KL-divergence,
with the latter being more sensitive to sample quality and the former to a balance between
diversity and quality.

Finally, we also carried out human evaluations to compare samples from our model and
the WD-LSTM in an A/B test. Annotators are presented with two samples - one from
our model and one from the WD-LSTM (with the presentation order random each time)
and asked to pick which they prefer along three dimensions: grammaticality, topicality,
and overall quality. This protocol is identical to Fedus et al. (2018) who also evaluate

3https://github.com/facebookresearch/faiss

60

unconditional text generation samples. Annotators are allowed to rate two samples as having
equal grammaticality and topicality but not overall quality. We collected a total of 1,094
annotations from 16 annotators. In Table 6.9, we report results for comparisons across
the WMT and BookCorpus datasets with different sampling parameters: Temp=1.0 and
Temp=0.5 vs. beam search. We compare our beam search variant with the WD-LSTM at
Temp=0.5 since we found it to be the most similar to beam search in trading off RPPL
and FPPL. Every entry in the table corresponds to the percentage of annotations where
annotators preferred a sample from a particular model. Our model does consistently better
at high temperatures, while being comparable to the WD-LSTM at low temperatures.

WMT (Temperature 1.0) Grammaticality Topicality Overall

Ours (Temperature 1.0) 46.19% 48.73% 63.95%

WD-LSTM (Temperature 1.0) 28.90% 25.88% 36.05%
WMT (Beam Search vs Temperature 0.5)

Ours (Beam Search) 20.00% 15.20% 53.20%

WD-LSTM (Temperature 0.5) 19.30% 24.80% 46.80%
BookCorpus (Temperature 1.0)

Ours (Temperature 1.0) 50.75% 54.27% 70.35%

WD-LSTM (Temperature 1.0) 19.59% 23.61% 29.65%
BookCorpus (Beam Search vs Temperature 0.5)

Ours (Beam Search) 22.68% 35.29% 57.28%

WD-LSTM (Temperature 0.5) 25.21% 17.64% 42.72%

Table 6.9. Results of human evaluation of unconditional samples produced by our system
and WD-LSTMs at difference softmax temperatures on the WMT and BookCorpus

datasets.

6.4.3. Conditional Text Generation

In most real world settings, we are interested in conditional rather than unconditional text
generation. Conditional GANs (Mirza & Osindero, 2014) have proven extremely powerful in
this context for generating images conditioned on certain discrete attributes. In this work,
we explore the relatively simple and artificial task of generating sentences conditioned on
binary sentiment labels from the SentiCap and Amazon Review datasets.

While true sentiment is certainly more nuanced, the binary setting can serve as a simple
test-bed for initial experiments with such techniques. Quantitative and qualitative results
are presented in Tables 6.12 and 6.13.

Using the SNLI dataset, we also explore the task of generating a premise sentence con-
ditioned on a given hypothesis plus a label that specifies a relationship between them (Shen
et al., 2018). We believe that transforming hypotheses into premises in SNLI is a harder
problem than the inverse since it requires filling in extra details rather than removing them.

61

Label Given Hypothesis Generated Premise
E the woman is very happy . a lady wearing a blue white shirt is laughing .
C no one is dancing . a group of people playing guitar hero on a stage .
N the man is reading the sportspage . a man in a white shirt is sitting in a recliner .
E a man is in a black shirt a man in a black shirt stands in front of a store

while a man in a blue hat and white shirt stands
beside him .

C an old woman has no jacket . a woman with a white hat and jacket is playing
with a girl in a red jacket .

N a person is waiting for a train . person in white and black hat standing in front of a
train track .

Table 6.10. Samples from our GAN trained to conditionally transform a given hypothesis
and a label as either (E)ntailment, (C)ontradiction or (N)eutral into a premise that

satisfies the specified relationship

Method Accuracy
Random 41.1%

Baseline-Seq2Seq (Mean) 59.6%
Baseline-Seq2Seq (MOSM) 62.6%
Shen et. al Mean (N=1) 62.4%

Shen et. al MOSM (N=1) 75.9%
Ours 70.8%

Table 6.11. NLI classification accuracies of generated samples on the test set evaluated by the
ESIM model (Chen et al., 2017b). All results except ours were obtained from Shen et. al (Shen
et al., 2018). Our model also had an FPPL of 15.01, which is comparable to results in Table 6.5

Dataset Sentiment Classification Accuracy FPPL
Positive Negative Overall Positive Negative Overall

Senticap 67.65% 84.65% 76.15% 33.1 45.3 38.8
Amazon Review 78.29% 54.68% 66.48% 14.2 14.7 14.4

Table 6.12. Sentiment Classification Accuracies using a trained FastText classifier (Joulin
et al., 2016a) and FPPLs on 3200 generated samples from the SentiCap and Amazon

Review datasets

In both these sets of experiments, we use a conditional GAN with our generators and
discriminators as MLPs that use conditioning information in their input layers. Conditioning
information for sentiment and NLI labels is learned via a 128 dimensional embedding layer
updated only by the discriminator. For premise generation, the MLPs are also presented
with the sentence representation corresponding to the given hypothesis. We present quan-
titative evaluations of both models in Tables 6.11 and 6.12, evaluated using a combination
of pre-trained classifiers and sample fluency evaluations using FPPL. On SNLI, we are able
to outperform a baseline sequence-to-sequence model as well as Shen et al. (2018)’s simpler

62

Positive

i was very excited to read this book .
this is one of the best on the market .
if you are a fan of the music .
this book is one of the best things that i have ever read .
this is a very good product , and it is a very good way to not not do work .
a beautiful view of the beach .
a small crowd of people are walking on a beautiful beachfront
the girl is reading a newspaper in a nice , and white tiled room .
two little boys are having a good time with barbies
a happy woman standing in a large room filled with her computers
Negative

i bought this for my husband and had to replace it . the product is horrible .
i was so excited about this camera , but i was a little disappointed .
i would not recommend this book .
the product is a good product , but it did not work .
when i first got this item , i was very disappointed in the store .
a tired man with a machete
a wrinkled cat watching a dog .
a sad man is laying on the grass in front of a huge tree
a little girl is holding a dead bird in the water .
a dirty baby is jumping in the water

Table 6.13. Samples from our GAN trained to conditionally generate sentences of a
specified binary sentiment label on the SentiCap (bottom) and Amazon Review (top)

datasets.

model variant of averaging word embeddings to produce a sentence representation. Quali-
tative examples shown in in Table 6.10 and Supplementary Table 4 indicate that the model
is able to capture some simple aspects of the mapping from sentiment or entailment labels
to generated sentences/premises. We did however observe cases, that may be attributed to
a form of mode collapse where the model adds in the same trivial details to the caption to
satisfy entailment such as the color of one’s shirt or other such adjectives.

6.5. Walking the Latent Space via Gradient-Based Opti-

mization

We explore three different techniques to produce interpolations between sentences. The
first, which is presented in Table 6.4, interpolates linearly in the input noise space of the GAN
generator. The second and third techniques, which are presented in this section, interpolate
between two given sentences in the sentence encoder latent space linearly or via gradient-
based optimization. We show that the gradient-based method works on high-dimensional
continuous representations of text that are more expressive than the Gaussian typically used

63

in VAEs. We exploit the fact that we have continuous representations on which we can take
gradient steps to iteratively transform one sentence into the other. We use our decoder that
maps sentence representations into words to provide the gradient signal to move the sentence
representation of the first sentence towards the second.

Specifically, given two sentences x1 and x2, we formulate the interpolation problem as
an optimization that iteratively transforms x1 into x2 by taking gradient steps along hx1 in
order to reconstruct x2. We start the optimization process at h0 = hx1 and take gradient
steps as follows

ht = ht�1 + ↵rht�1 logP (x2|ht�1)

logP (x2|ht�1) is given by our decoder described in Section 6.3.3. At every step of the
optimization process, we can run the sentence representation ht through our decoder to
produce an output sentence. Unlike linear interpolations, this procedure is not guaranteed
to be symmetric, i.e., the interpolation path between x1 and x2 might not be the same as the
path between x2 and x1. Sample interpolations using this technique are presented in Table
6.14.

6.6. Conclusion

We investigate and demonstrate the potential in leveraging general purpose sentence
encoders that produce fixed-length sentence representations to train a two-step generative
models of sentences. We show that it is possible to train conditional generative models of
text that operate by manipulating and transforming sentences entirely in the latent space.
We also show that smooth transitions are learned by our models in the observed space when
moving linearly along the input space for the GAN generator. Finally, we qualitatively show
that our gradient-based optimization technique to walk the latent space of sentences is better
than linear interpolations in models when the latent distribution isn’t simple like a Gaussian.

64

Start her boyfriend eyed him curiously and gave him a cautious nod , then followed her into the bar , not waiting for a reply .
1 her boyfriend eyed him curiously , not waiting .
2 her boyfriend gave him a cautious nod .
3 her boyfriend never showed up at the bar .
4 grace gave him a cautious nod of approval .
5 grace never met her a boyfriend that night .
6 her boyfriend never showed up at the mall .
7 grace never showed up at work that night .
8 grace never showed up at her job in the mall .
9 grace never showed up at her job in the mall that night .
10 grace never showed up at her job in the mall that started at 5:00 that night .

End grace never showed up at her job in the mall that started at 5:00 that night .
Start naturally , he was upset when i said it was over .

1 naturally , he was upset when i said it was over .
2 he was upset when she said it .
3 naturally , he was upset when she said it .
4 naturally , she was upset when she said it .
5 no way , she said .
6 no way , she said , turning slightly .
7 no way , she said , turning her head slightly so she was nose to nose with him .

End no way , she said , turning her head slightly so she was nose to nose with him .
Start “ i ’ve been growing it out for a while .

1 “ i ’ve been growing out of it .
2 “ i ’ve been growing for a while .
3 “ i ’ve been listening for a while .
4 “ i ’ve been listening to a voice .
5 peter listen to me , you need it .
6 peter listen , you need to speak out .
7 peter listen , the voice didnt give him a chance to speak , you need to understand something .

End peter listen , the voice didnt give him a chance to speak , you need to understand something .
Start it ’s one of the lesser-known failings of the vampire .

1 it ’s one of the lesser-known failings of the vampire .
2 it ’s one of the failings of the vampire .
3 im sure it ’s one of the failings .
4 im sure it s one of their own .
5 im sure they got one of their own .
6 im sure theres a program of their own .
7 im sure they got a program of their own .

End im sure cascadias got a program of their own , but it wouldnt be the same .

Table 6.14. Interpolations using gradient-based optimization on the BookCorpus.

65

Chapter 7

Prologue to the third article

Multiple Attribute Text Rewriting. Sandeep Subramanian⇤, Guillaume Lample⇤, Eric
Smith, Ludovic Denoyer, Marc’Aurelio Ranzato, Y-Lan Boureau (⇤denotes equal contribu-
tion). International Conference on Learning Representations 2019.

Personal Contribution The project began with discussions between Sandeep Subrama-
nian, Guillaume Lample and Marc’Aurelio Ranzato preceeding Sandeep Subramanian’s in-
ternship at Facebook AI Research. The goal of the work was to leverage advances in un-
supervised neural machine translation to do text “style transfer”. The authors met weekly
to discuss datasets, modeling details and experiments to run. Sandeep Subramanian and
Guillaume Lample were involved in writing scripts to obtain, pre-process and create a new
large-scale multi-attribute text rewriting benchmark. They also collaboratively wrote all of
the code for this project. Sandeep Subramanian ran all of the experiments on existing bench-
marks and some of the experiments on the proposed datasets. Guillaume Lample ran most of
the large-scale experiments on the larger Amazon and public social media content. Sandeep
Subramanian also setup the human evaluation MTurk interface and ran all of the human
evaluation experiments. Eric Smith ran code for prior work. Ludovic Denoyer, Marc’Aurelio
Ranzato and Y-Lan Boureau advised on the project.

7.1. Context

The goal of this work was to explore the feasiblity of using techniques from unsupervised
machine translation for text “style transfer”. Along the way, we found that existing datasets
were inadequate because they were too simple with sentences of only up to 12 words, con-
tained only a single controllable attribute and were an order of magnitude or two smaller
than machine translation datasets. We also found that domain adversarially trained au-
toencoders 1) perform better than reported in previous work 2) surprisingly, do not achieve
disentanglement in practice.

7.2. Contributions

The work made three main contributions 1) demonstrating that methods which rely
on disentanglement of content and style using domain adversarial training do not achieve
disentanglement in practice 2) building a model that controls multiple attributes and does
not rely on disentanglement and instead uses building blocks from unsupervised machine
translation to achieve better results 3) presenting a new large-scale, more realistic benchmark
for text rewriting.

7.3. Research Impact

The work was another example of the success of backtranslation methods in NLP. Al-
though there are a few follow-up papers that adopt the online backtranslation approach
presented here (Zheng et al., 2020), there still exist several pieces of work that use exter-
nal rewards trained with policy gradient methods and latent space refinement (Dathathri
et al., 2019). The adoption of our proposed large-scale benchmarks however hasn’t been as
widespread as we had hoped.

68

Chapter 8

Multiple-Attribute Text Rewriting

8.1. Introduction

One of the objectives of unsupervised learning is to learn representations of data that
enable fine control over the underlying latent factors of variation, e.g., pose and viewpoint
of objects in images, or writer style and sentiment of a product review. In conditional
generative modeling, these latent factors are given (Sohn et al., 2015; Mirza & Osindero,
2014; Ficler & Goldberg, 2017), or automatically inferred via observation of samples from
the data distribution (Chen et al., 2017a, 2016; Higgins et al., 2017).

More recently, several studies have focused on learning unsupervised mappings between
two data domains such as images (Taigman et al., 2016; Isola et al., 2017; Zhu et al., 2017),
words or sentences from different languages (Conneau et al., 2017b; Lample et al., 2018).

In this problem setting, the generative model is conditioned not only on the desired at-
tribute values, but also on a initial input, which it must transform. Generations should retain
as many of the original input characteristics as possible, provided the attribute constraint is
not violated. This learning task is typically unsupervised because no example of an input
and its corresponding output with the specified attribute is available during training. The
model only sees random examples and their attribute values.

The dominant approach to learn such a mapping in text is via an explicit constraint on
disentanglement (Hu et al., 2017; Fu et al., 2017; Shen et al., 2017b): the learned repre-
sentation should be invariant to the specified attribute, and retain only attribute-agnostic
information about the “content”. Changing the style of an input at test time then amounts
to generating an output based on the disentangled latent representation computed from the
input and the desired attributes. Disentanglement is often achieved through an adversarial
term in the training objective that aims at making the attribute value unrecoverable from
the latent representation.1

1Datasets and code for this work are available at https://git.io/Je3RV

Relaxed $ Annoyed

Relaxed Sitting by the Christmas tree and watching Star Wars after cooking dinner. What a nice night
Annoyed Sitting by the computer and watching The Voice for the second time tonight. What a horrible way to start the weekend

Annoyed Getting a speeding ticket 50 feet in front of work is not how I wanted to start this month
Relaxed Getting a haircut followed by a cold foot massage in the morning is how I wanted to start this month

Male $ Female

Male Gotta say that beard makes you look like a Viking...
Female Gotta say that hair makes you look like a Mermaid...

Female Awww he’s so gorgeous can’t wait for a cuddle. Well done xxx
Male Bro he’s so f***ing dope can’t wait for a cuddle. Well done bro

Age 18-24 $ 65+

18-24 You cheated on me but now I know nothing about loyalty ok
65+ You cheated on America but now I know nothing about patriotism. So ok.

65+ Ah! Sweet photo of the sisters. So happy to see them together today .
18-24 Ah Thankyou #sisters happy to see them together today

Table 8.1. Our approach can be applied to many different domains beyond sentiment flipping,
as illustrated here with example re-writes by our model on public social media content. The first

line in each box is an input provided to the model with the original attribute, followed by its
rewrite when given a different attribute value.

This paper aims to extend previous studies on “style transfer” along three axes. (i) First,
we seek to gain a better understanding of what is necessary to make things work, and in
particular, whether disentanglement is key, or even actually achieved by an adversarial loss
in practice. In Sec. 8.3.1 we provide strong empirical evidence that disentanglement is not
necessary to enable control over the factors of variation, and that even a method using
adversarial loss to disentangle (Fu et al., 2017) does not actually learn representations that
are disentangled. (ii) Second, we introduce a model which replaces the adversarial term with
a back-translation (Sennrich et al., 2015a) objective which exposes the model to a pseudo-
supervised setting, where the model’s outputs act as supervised training data for the ultimate
task at hand. The resulting model is similar to recently proposed methods for unsupervised
machine translation (Lample et al., 2017a, 2018; Artetxe et al., 2018; Zhang et al., 2018b), but
with two major differences: (a) we use a pooling operator which is used to control the trade-
off between style transfer and content preservation; and (b) we extend this model to support
multiple attribute control. (iii) Finally, in Sec. 10.4 we point out that current style transfer
benchmarks based on collections of user reviews have severe limitations, as they only consider
a single attribute control (sentiment), and very small sentences in isolation with noisy labels.
To address this issue, we propose a new set of benchmarks based on existing review datasets,
which comprise full reviews, where multiple attributes are extracted from each review. Note
that using “gender” (or any other attribute for that matter) as a differentiating attribute
between several bodies of text implies that there are indeed signatures of gender in the
data. These signatures could be as innocuous as some first names like Mary being usually

70

associated with women, or disheartening like biases and stereotypes exposed by statistical
methods, (e.g., “man is to computer programmer as woman is to homemaker” (Bolukbasi
et al., 2016)). We certainly do not condone those stereotypes, and on the contrary, we hope
that showing that our models can uncover these biases might down the line turn them into
powerful tools for researchers who study fairness and debiasing (Reddy & Knight, 2016).

The contributions of this paper are thus: (1) a deeper understanding of the necessary
components of style transfer through extensive experiments, resulting in (2) a generic and
simple learning framework based on mixing a denoising auto-encoding loss with an online
back-translation technique and a novel neural architecture combining a pooling operator
and support for multiple attributes, and (3) a new, more challenging and realistic version of
existing benchmarks which uses full reviews and multiple attributes per review, as well as a
comparison of our approach w.r.t. baselines using both new metrics and human evaluations.
We will open-source our code and release the new benchmark datasets used in this work,
as well as our pre-trained classifiers and language models for reproducibility. This will also
enable fair empirical comparisons on automatic evaluation metrics in future work on this
problem.

8.2. Related Work

There is substantial literature on the task of unsupervised image translation. While initial
approaches required supervised data of the form (input, transformation, output), e.g., differ-
ent images of the same object rendered with different viewpoints or/and different lighting
conditions (Hinton et al., 2011; Yang et al., 2015; Kulkarni et al., 2015), current techniques
are capable of learning completely unsupervised domain mappings. Given images from two
different domains X and Y (where X could be the domain of paintings and Y the domain of
realistic photographs), and the task is to learn two mappings F : X ! Y and G : Y ! X ,
without supervision, i.e., just based on images sampled from the two domains (Liu & Tuzel,
2016; Taigman et al., 2016; Isola et al., 2017). For instance, Zhu et al. (2017) used a cycle
consistency loss to enforce F (G(y)) ⇡ y and G(F (x)) ⇡ x. This loss is minimized along with
an adversarial loss on the generated outputs to constrain the model to generate realistic
images. In Fader Networks (Lample et al., 2017b), a discriminator is applied on the latent
representation of an image autoencoder to remove the information about specific attributes.
The attribute values are instead given explicitly to the decoder at training time, and can
be tuned at inference to generate different realistic versions of an input image with varying
attribute values.

Different approaches have been proposed for textual data, mainly aiming at controlling
the writing style of sentences. Unfortunately, datasets of parallel sentences written in a
different style are hard to come by. (Carlson et al., 2017) collected a dataset of 33 English

71

versions of the Bible written in different styles on which they trained a supervised style
transfer model. Li et al. (2018) released a small crowdsourced subset of 1,000 Yelp reviews for
evaluation purposes, where the sentiment had been swapped (between positive and negative)
while preserving the content. Controlled text generation from unsupervised data is thus the
focus of more and more research.

An theme that is common to most recent studies is that style transfer can be achieved
by disentangling sentence representations in a shared latent space. Most solutions use an
adversarial approach to learn latent representations agnostic to the style of input sentences
(Fu et al., 2017; Hu et al., 2017; Shen et al., 2017b; Zhang et al., 2018a; Xu et al., 2018; John
et al., 2018; Zhao et al., 2018). A decoder is then fed with the latent representation along
with attribute labels to generate a variation of the input sentence with different attributes.

Unfortunately, the discrete nature of the sentence generation process makes it difficult
to apply to text techniques such as cycle consistency or adversarial training. For instance,
the latter (Shen et al., 2017b; dos Santos et al., 2018; Zhang et al., 2018c) requires methods
such as REINFORCE (He et al., 2016a) or approximating the output softmax layer with
a tunable temperature (Hu et al., 2017; Prabhumoye et al., 2018; Yang et al., 2018), all of
which tend to be slow, unstable and hard to tune in practice. Moreover, all these studies
control a single attribute (e.g. swapping positive and negative sentiment).

The most relevant work to ours is Zhang et al. (2018b), which also builds on recent
advances in unsupervised machine translation. Their approach first consists of learning cross-
domain word embeddings in order to build an initial phrase-table. They use this phrase-table
to bootstrap an iterative back-translation pipeline containing both phrase-based and neural
machine translation systems. Overall, their approach is significantly more complicated than
ours, which is end-to-end and does not require any pre-training. Moreover, this iterative
back-translation approach has been shown to be less effective than on-the-fly back-translation
which is end-to-end trainable (Lample et al., 2018).

8.3. Controllable Text Rewriting

This section briefly introduces notation, the task, and our empirical procedure for eval-
uating disentanglement before presenting our approach.

We consider a training set D = (xi
,y

i)i2[1,n] of n sentences x
i
2 X paired with attribute

values y
i. y 2 Y is a set of m attribute values y = (y1,...,ym). Each attribute value yk is a

discrete value in the set Yk of possible values for attribute k, e.g. Yk = {bad,neutral,good}
if yk represents the overall rating of a restaurant review.

Our task is to learn a model F : X ⇥ Y ! X that maps any pair (x,ỹ) of an input
sentence x (whose actual set of attributes are y) and a new set of m attribute values ỹ to
a new sentence x̃ that has the specified attribute values ỹ, subject to retaining as much as

72

possible of the original content from x, where content is defined as anything in x which does
not depend on the attributes.

The architecture we consider performs this mapping through a sequence-to-sequence auto-
encoder that first encodes x into a latent representation z = e(x), then decodes (z, ỹ) into
x̃ = d(z, ỹ), where e and d are functions parameterized by the vector of trainable parameters
✓. Before giving more detail on the architecture, let us look at disentanglement.

8.3.1. Are Adversarial Models really Doing Disentanglement?

Almost all the existing methods are based on the common idea to learn a latent rep-
resentation z that is disentangled from y. We consider z to be disentangled from y if it is
impossible to recover y from z. While failure to recover y from z could mean either that z

was disentangled or that the classifier chosen to recover y was either not powerful enough or
poorly trained, success of any classifier in recovering y demonstrates that z was in fact not
invariant to y.

�adv Discriminator Acc (Train) Post-fit Classifier Acc (Test)

0 89.45% 93.8%
0.001 85.04% 92.6%
0.01 75.47% 91.3%
0.03 61.16% 93.5%
0.1 57.63% 94.5%
1.0 52.75% 86.1%
10 51.89% 85.2%

fastText - 97.7%

Table 8.2. Recovering the sentiment of the input from the encoder’s representations of a
domain adversarially-trained Fader model (Fu et al., 2017). During training, the

discriminator, which was trained adversarially and jointly with the model, gets worse at
predicting the sentiment of the input when the coefficient of the adversarial loss �adv

increases. However, a classifier that is separately trained on the resulting encoder
representations has an easy time recovering the sentiment. We also report the baseline

accuracy of a fastText classifier trained on the actual inputs.

As a preliminary study, we gauge the degree of disentanglement of the latent representa-
tion. Table 8.2 shows that the value of the attribute can be well recovered from the latent
representation of a Fader-like (Fu et al., 2017) model even when the model is trained ad-
versarially. A classifier fit post-hoc and trained from scratch, parameterized identically to
the discriminator(see paragraph on model architecture in Section 8.3.3 for details), is able
to recover attribute information from the "distengeled" content representation learned via
adversarial training. This suggests that disentanglement may not be achieved in practice,

73

even though the discriminator is unable to recover attribute information well during train-
ing. We do not assert that disentangled representations are undesirable but simply that it
isn’t mandatory in the goal of controllable text rewriting. This is our focus in the following
sections.

8.3.2. Our Approach

Evaluation of controlled text generation can inform the design of a more streamlined
approach: generated sentences should (1) be fluent, (2) make use of the specified attribute
values, and (3) preserve the rest of the content of the input.

Denoising auto-encoding (DAE) Fu et al. (2017) is a natural way to learn a generator
that is both fluent and that can reconstruct the input, both the content and the attributes.
Moreover, DAE is a weak way to learn about how to change the style, or in other words, it
is a way to force the decoder to also leverage the externally provided attribute information.
Since the noise applied to the encoder input x may corrupt words conveying the values of
the input attribute y, the decoder has to learn to use the additional attribute input values
in order to perform a better reconstruction. We use the noise function described in Lample
et al. (2017a) that corrupts the input sentence by performing word drops and word order
shuffling. We denote by xc a corrupted version of the sentence x.

As discussed in Sec. 8.3.1, disentanglement is not necessary nor easily achievable, and
therefore, we do not seek disentanglement and do not include any adversarial term in the
loss. Instead, we consider a more natural constraint which encourages the model to perform
well at the task we are ultimately interested in - controlled generation via externally provided
attributes. We take an input (x,y) and encode x it into z, but then decode using another set
of attribute values, ỹ, yielding the reconstruction x̃. We now use x̃ as input of the encoder
and decode it using the original y to ideally obtain the original x, and we train the model
to map (x̃, y) into x. This technique, called back-translation (BT) (Sennrich et al., 2015a;
Lample et al., 2017a, 2018; Artetxe et al., 2018), has a two-fold benefit. Initially when the
DAE is not well trained and x̃ has lost most of the content present in x, the only useful
information provided to the decoder is the desired attribute y. This encourages the decoder
to leverage the provided attributes. Later on during training when DAE is better, BT helps
training the sequence-to-sequence for the desired task. Overall, we minimize:

L = �AE

X

(x,y)⇠D

� log pd
⇣
x|e(xc), y

⌘
+ �BT

X

(x,y)⇠D,ỹ⇠Y

� log pd

✓
x|e

⇣
d
�
e(x), ỹ

�⌘
, y

◆
(8.1)

where pd is the probability distribution over sequences x induced by the decoder, e(xc)

is the encoder output when fed with a corrupted version xc of the input x, and d(e(x), ỹ) is
a variation of the input sentence x written with a randomly sampled set of attributes ỹ. In

74

practice, we generate sentences during back-translation by sampling from the multinomial
distribution over words defined by the decoder at each time step using a temperature T .

8.3.3. Implementation

So far, the model is the same as the model used for unsupervised machine translation
by Lample et al. (2018), albeit with a different interpretation of its inner workings, no longer
based on disentanglement. Instead, the latent representation z can very well be entangled,
but we only require the decoder to eventually “overwrite” the original attribute information
with the desired attributes. Unfortunately, this system may be limited to swapping a sin-
gle binary attribute and may not give us enough control on the trade-off between content
preservation and change of attributes. To address this limitations, we introduce the following
components:
Attribute conditioning. In order to handle multiple attributes, we separately embed each
target attribute value and then average their embeddings. We then feed the averaged em-
beddings to the decoder as a start-of-sequence symbol.

We also tried an approach similar to Michel & Neubig (2018), where the output layer
of the decoder uses a different bias for each attribute label. We observed that the learned
biases tend to reflect the labels of the attributes they represent. Examples of learned biases
can be found in Table 8.14. However, this approach alone did not work as well as using
attribute-specific start symbols, nor did it improve results when combined with them.
Latent representation pooling. To control the amount of content preservation, we use pooling.
The motivating observation is that models that compute one latent vector representation per
input word usually perform individual word replacement, while models without attention are
much less literal and tend to lose content but have an easier time changing the input sentence
with the desired set of attributes. Therefore, we propose to gain finer control by adding a
temporal max-pooling layer on top of the encoder, with non-overlapping windows of width w.
Setting w = 1 results in a standard model with attention, while setting w to the length of the
input sequence boils down to a sequence-to-sequence model without attention. Intermediate
values of w allow for different trade-offs between preserving information about the input
sentence and making the decoder less prone to copying words one by one.

The hyper-parameters of our model are: �AE and �BT trading off the denoising auto-
encoder term versus the back-translation term (the smaller the �BT/�AE ratio the more
the content is preserved and the less well the attributes are swapped), the temperature T

used to produce unbiased generations (Edunov et al., 2018) and to control the amount of
content preservation, and the pooling window size w. We optimize this loss by stochastic
gradient descent without back-propagating through the back-translation generation process;
back-translated sentences are generated on-the-fly once a new mini-batch arrives.

75

Model Architecture. We use an encoder parameterized by a 2-layer bidirectional LSTM and
a 2-layer decoder LSTM augmented with an attention mechanism (Bahdanau et al., 2014).
Both LSTMs and our word embedding lookup tables, trained from scratch, have 512 hid-
den units. Another embedding lookup table with 512 hidden units is used to embed each
attribute value. The decoder conditions on two different sources of information: 1) at-
tribute embedding information that presented that it as the first token, similar to (Lample
et al., 2018) and at the softmax output as an attribute conditional bias following (Michel &
Neubig, 2018). When controlling multiple attributes, we average the embeddings and bias
vectors that correspond to the different attribute values. 2) The decoder also conditions on
a temporally downsampled representation of the encoder via an attention mechanism. The
representations are downsampled by temporal max-pooling with a non-overlapping window
of size 5. Although our best models do not use adversarial training, in ablations and exper-
iments that study disentanglement, we used a discriminator paramaeterized as 3 layer MLP
with 128 hidden units and LeakyReLU activations.

8.4. Experiments

8.4.1. Datasets

We use data from publicly available Yelp restaurant and Amazon product reviews fol-
lowing previous work in the area (Shen et al., 2017b; Li et al., 2018) and build on them
in three ways to make the task more challenging and realistic. Firstly, while previous ap-
proaches operate at the sentence level by assuming that every sentence of a review carries
the same sentiment as the whole of review, we operate at the granularity of entire reviews.
The sentiment, noisy estimate of the gender of the author and product/restaurant labels are
therefore more reliable. Secondly, we relax constraints enforced in prior works that discard
reviews with more than 15 words and only consider the 10k most frequent words. In our
case, we consider full reviews with up to 100 words, and we consider byte-pair encodings
(BPE) (Sennrich et al., 2015b) with 60k BPE codes, eliminating the presence of unknown
words. Finally, we leverage available meta-data about restaurant and product categories to
collect annotations for two additional controllable factors: the gender of the review author
and the category of the product or restaurant being reviewed. A small overview of the corre-
sponding datasets is presented below with some statistics presented in Table 10.1. Following
(Li et al., 2018), we also collect human reference edits for sentiment and restaurant/product
categories to serve as a reference for automatic metrics as well as an upper bound on human
evaluations (examples in Appendix Table 8.12).

76

Yelp Reviews: This dataset consists of restaurant and business reviews provided by
the Yelp Dataset Challenge2. We pre-process this data to remove reviews that are either
1) not written in English according to a fastText (Joulin et al., 2016b) classifier, 2) not
about restaurants, 3) rated 3/5 stars as they tend to be neutral in sentiment (following
(Shen et al., 2017b)), or 4) where the gender is not identifiable by the same method as
in (Reddy & Knight, 2016; Prabhumoye et al., 2018). We then binarize both sentiment
and gender labels. The process of binarization of gender here is not inclusive to (a) non-
binary individuals and (b) those whose names aren’t in the US census data. An ideal
situation would be where individuals are able to self-report gender, but such information
is typically unavailable in most data sources. Coarse-grained restaurant category labels,
Asian, American, Mexican, Bars & Dessert, are obtained from the associated meta-data.
Since a review can be written about a restaurant that has multiple categories (ex: an Asian
restaurant that serves desserts), we train a multi-label fastText classifier to the original data
that has multiple labels per example. We then re-label the entire dataset with this classifier
to pick the most likely category to be able to model the category factor as a categorical
random variable. (See Appendix section 8.7 for more details.) Since there now exists two
variants of the Yelp dataset, we refer to the one used by previous work (Shen et al., 2017b;
Fu et al., 2017; Li et al., 2018) as SYelp and our created version with full reviews along with
gender and category information as FYelp henceforth.

Amazon Reviews: The amazon product review dataset (He & McAuley, 2016) is com-
prised of reviews written by consumers of Amazon products. We followed the same pre-
processing steps as in the Yelp dataset with the exception of collecting gender labels, since
a very large fraction of amazon usernames were not present in a list of gender-annotated
names. We labeled reviews with the following product categories based on the meta-data:
Books, Clothing, Electronics, Movies, Music. We followed the same protocol as in FYelp to
re-label product categories. In this work, we do not experiment with the version of the Ama-
zon dataset used by previous work, and so we refer to our created version with full reviews
along with product category information as just Amazon henceforth. Statistics about the
dataset can be found in Table 10.1.

Public social media content: We also used an unreleased dataset of public social
media content written by English speakers to illustrate the approach with examples from
a more diverse set of categories. We used 3 independent pieces of available information
about that content: 1) gender (male or female) 2) age group (18-24 or 65+), and 3) writer-
annotated feeling (relaxed or annoyed). To make the data less noisy, we trained a fastText
classifier (Joulin et al., 2016b) for each attribute and only kept the data above a certain
confidence threshold.

2https://www.yelp.com/dataset/challenge

77

Sentiment Gender Category

SYelp Positive Negative Male Female American Asian Bar Dessert Mexican
266,041 177,218 - - - - - - -

FYelp Positive Negative Male Female American Asian Bar Dessert Mexican
2,056,132 639,272 1,218,068 1,477,336 904,026 518,370 595,681 431,225 246,102

Amazon Positive Negative - - Book Clothing Electronics Movies Music
64,251,073 10,944,310 - - 26,208,872 14,192,554 25,894,877 4,324,913 4,574,167

Social Media Content Relaxed Annoyed Male Female 18-24 65+
7,682,688 17,823,468 14,501,958 18,463,789 12,628,250 7,629,505

Table 8.3. The number of reviews for each attribute for different datasets. The SYelp,
FYelp and the Amazon datasets are composed of 443k, 2.7M and 75.2M sentences

respectively. Public social media content is collected from 3 different data sources with
25.5M, 33.0M and 20.2M sentences for the Feeling, Gender and Age attributes respectively.

8.4.2. Evaluation

Automatic evaluation of generative models of text is still an open research problem. In
this work, we use a combination of multiple automatic evaluation criteria informed by our
desiderata. We would like our systems to simultaneously 1) produce sentences that conform
to the set of pre-specified attribute(s), 2) preserve the structure and content of the input,
and 3) generate fluent language. We therefore evaluate samples from different models along
three different dimensions:

• Attribute control: We measure the extent to which attributes are controlled using
fastText classifiers, trained on our datasets, to predict different attributes.

• Fluency: Fluency is measured by the perplexity assigned to generated text
sequences by a pre-trained Kneser–Ney smooth 5-gram language model using
KenLM (Heafield, 2011).

• Content preservation: We measure the extent to which a model preserves the
content present of a given input using n-gram statistics, by measuring the BLEU
score between generated text and the input itself, which we refer to as self-BLEU.
When a human reference is provided instead, we compute the BLEU score with
respect to it, instead of the input, which we will refer to as just BLEU (Papineni
et al., 2002). “BLEU” scores in this paper correspond to the BLEU score with respect
to human references averaged across generations conditioned on all possible attribute
values except for that of the input. However, when reporting self-BLEU scores, we
also average across cases where generations are also conditioned on the same attribute
value as the input.

A combination of these metrics, however, only provides a rough understanding of the
quality of a particular model. Ultimately, we rely on human evaluations collected via a

78

public crowd-sourcing platform. We carried out two types of evaluations to compare different
models. 1) Following a protocol similar to (Li et al., 2018), we ask crowd workers to annotate
generated sentences along the three dimensions above. Fluency and content preservation are
measured on a likert-scale from 1 to 5 and attribute control is evaluated by asking the worker
to predict the attribute present in the generated text. 2) We take a pair of generations from
two different models, and ask workers to pick the generation they prefer on the overall
task, accounting for all the dimensions simultaneously. They are also presented with a “no
preference” option to discard equally good or bad generations from both models.

8.4.3. Model selection

Since our automatic evaluation metrics are only weak proxies for the quality of a model,
we set minimum thresholds on the content preservation and attribute control criteria and
only consider models above a certain threshold.

The few models that met the specified threshold on the validation set were evaluated by
humans on the same validation set and the best model was selected to be run on the test
set.

8.4.4. Comparisons to Prior Work

Our first set of experiments aims at comparing our approach with different models re-
cently proposed, on the SYelp dataset. Results using automatic metrics are presented in
Table 8.4. We compare the same set of models as in (Li et al., 2018) with the addition of our
model and our own implementation of the Fader network (Lample et al., 2017b), which cor-
responds to our model without back-translation and without attention mechanism, but uses
domain adversarial training (Ganin et al., 2016) to remove information about sentiment from
the encoder’s representation. This is also similar to the StyleEmbedding model presented by
(Fu et al., 2017). For our approach, we were able to control the trade-off between BLEU and
accuracy based on different hyper-parameter choices. We demonstrate that our approach
is able to outperform all previous approaches on the three desired criteria simultaneously,
while our implementation of the fader is competitive with the previous best work.

Since our automatic evaluation metrics are not ideal, we carried out human evaluations
using the protocol described in Section 8.4.2. Table 8.5 (top) shows the fluency, content
preservation and attribute control (sentiment) scores obtained by our model, DeleteAn-
dRetrieve (DAR) and turkers from (Li et al., 2018) 3 on the SYelp dataset. While humans
clearly outperform both models, our model is better than DeleteAndRetrieve on all 3 dimen-
sions. We further demonstrate our model’s strength over DeleteAndRetrieve in Table 8.5

3https://github.com/lijuncen/Sentiment-and-Style-Transfer/tree/master/evaluation/outputs/
yelp

79

Model Accuracy (") BLEU (") PPL (#)

Fader/StyleEmbedding (Fu et al., 2017) 18% 16.7 56.1
MultiDecoder (Fu et al., 2017) 52% 11.3 90.1
ControllableText (Hu et al., 2017) 85% 20.6 232.0
CAE (Shen et al., 2017b) 72% 6.8 53.0
Retrieval (Li et al., 2018) 81% 1.3 7.4

Rule-based (Li et al., 2018) 73% 22.3 118.7
DeleteOnly (Li et al., 2018) 77% 14.5 67.1
DeleteAndRetrieve (Li et al., 2018) 79% 16.0 66.6

Fader (Ours w/o backtranslation & attention) 71% 15.7 35.1
Ours 87% 14.6 26.2
Ours 85% 24.2 26.5
Ours 74% 31.2 49.8

Input copy 13% 30.6 40.6
Table 8.4. Automatic evaluation of models on the SYelp test set from (Li et al., 2018).
The test set is composed of sentences that have been manually written by humans, which
we use to compute the BLEU score. Samples for previous models were made available by

(Li et al., 2018). For our model, we report different results corresponding to different
choices of hyper-parameters (pooling kernel width and back-translation temperature) to
demonstrate our model’s ability to control the trade-off between attribute transfer and

content preservation.

(bottom) in an A/B test between two the models, where crowd workers prefer our model
54.4% compared to theirs 20.8%. Interestingly, our baseline Fader model is also able to do
better (37.6% vs 29.7%), suggesting limitations in our automatic metrics, since Fader does
not do as well in Table 8.4.

8.4.5. Evaluating Multiple Attribute Control

Table 8.6 presents the quantitative results obtained by the FYelp and Amazon datasets
when controlling single and multiple attributes. For this table, unlike for Table 8.4, the
DeleteAndRetrieve (DAR) results were obtained by re-training the model of (Li et al., 2018).
We use our implementation of the Fader model since we found it to be better than previous
work, by human evaluation (Table 8.5). While we control all attributes simultaneously
during training, at test time, for the sake of quantitative evaluations, we change the values
only of a single attribute while keeping the others constant. Our model clearly outperforms

80

Fluency Content Sentiment

DAR ((Li et al., 2018)) 3.33 (1.39) 3.16 (1.43) 64.05%
Ours 4.07 (1.12) 3.67 (1.41) 69.66%
Human ((Li et al., 2018)) 4.56 (0.78) 4.01 (1.25) 81.35%

Our Model No Preference DAR

DAR vs Our Fader 37.6% 32.7% 29.7%
DAR vs Ours 54.4% 24.7% 20.8%

Table 8.5. Top: Results from human evaluation to evaluate the fluency / content
preservation and successful sentiment control on the (Li et al., 2018) SYelp test set. The
mean and standard deviation of Fluency and Content are measured on a likert scale from

1-5 while sentiment is measured by fraction of times that the controlled sentiment of model
matches the judge’s evaluation of the sentiment (when also presented with a neutral

option). Bottom: Results from human A/B testing of different pairs of models. Each cell
indicates the fraction of times that a judge preferred one of the models or neither of them

on the overall task.)

Dataset (Model) Attributes
Sentiment Category Gender

Accuracy (") self-BLEU (") Accuracy (") self-BLEU (") Accuracy (") self-BLEU (")

Yelp (DAR) Sentiment 78.7% 42.1 - - - -

Yelp (Our Fader)
Sentiment 85.5% 31.3 - - - -
Sentiment + Category 85.1% 20.6 46.1% 22.6 - -
Sentiment + Category + Gender 86.6% 20.4 47.7% 22.5 58.5% 23.3

Yelp (Ours)

Sentiment 87.4% 54.5 - - - -
Sentiment + Category 87.1% 38.8 64.9% 44.0 - -
Sentiment + Category + Gender 88.5% 31.6 64.1% 36.5 59.0% 37.4
Gender - - - - 59.1% 47.0

Amazon (Ours)
Sentiment 82.6% 54.8 - - - -
Sentiment + Category 82.5% 48.9 81.4% 41.8 - -

Input Copy - 50.0% 100.0 20.0% 100.0 50.0% 100.0

Table 8.6. Results using automatic evaluation metrics on the FYelp and Amazon test
sets. Different rows correspond to the set of attributes being controlled by the model.

the baseline Fader model. We also demonstrate that our model does not suffer significant
drops in performance when controlling multiple attributes over a single one.

Demonstrations of our model’s ability to control single and multiple attributes are pre-
sented in Table 8.8 and Table 8.9 respectively. What is interesting to observe is that our
model does not just alter single words in the input to control an attribute, but often changes
larger fragments to maintain grammaticality and fluency. Examples of re-writes by our model
on social media content in Table 8.1 show that our model tends to retain the overall structure
of input sentences, including punctuation and emojis. Additional examples of re-writes can
be found in Table 8.10 and Table 8.11 in Appendix.

81

8.4.6. Ablation study

Model
Test (FYelp) Test (Li et al., 2018)

Accuracy (") self-BLEU (") Accuracy (") BLEU (")

Our model 87% 54.5 80% 25.8
-pooling 89% 47.9 - -
-temperature 86% 45.2 80% 21.3
-attention 93% 25.4 80% 22.1
-back-translation 86% 32.8 69% 16.4
+adversarial 86% 45.5 78% 25.1
-attention -back-translation 90% 26.0 71% 15.7

Table 8.7. Model ablations on 5 model components on the FYelp dataset (Left) and
SYelp (Right).

In Table 8.7, we report results from an ablation study on the SYelp and FYelp datasets
to understand the impact of the different model components on overall performance. The
different components are: 1) pooling, 2) temperature based multinomial sampling when
back-translating, 3) attention, 4) back-translation, 5) the use of domain adversarial training
and 6) attention and back-translation in conjunction. We find that a model with all of these
components, except for domain adversarial training, performs the best, further validating our
hypothesis in Section 8.3.1 that it is possible to control attributes of text without disentangled
representations. The absence of pooling or softmax temperature when back-translating also
has a small negative impact on performance, while the attention and back-translation have
much bigger impacts.

Table 8.13 shows examples of reviews re-written by different models at different check-
points, showing the trade-off between properly modifying the attribute and preserving the
original content. Figure 8.1 shows how the trade-off between content preservation (self-
BLEU) and attribute control (accuracy) evolves over the course of training and as a function
of the pooling kernel width.

8.5. Conclusion

We present a model that is capable of re-writing sentences conditioned on given at-
tributes, that is not based on a disentanglement criterion as often used in the literature.
We demonstrate our model’s ability to generalize to a realistic setting of restaurant/product
reviews consisting of several sentences per review. We also present model components that
allow fine-grained control over the trade-off between attribute control versus preserving the
content in the input. Experiments with automatic and human-based metrics show that our

82

Fig. 8.1. Accuracy and self-BLEU curves on the FYelp dataset for different pooling operator
configurations. Without pooling, the model tends to converge to a copy mode very quickly, with a

high self-BLEU score and a poor accuracy. The pooling operator alleviates this behaviour and
provides models with a different trade-off accuracy / content preservation.

model significantly outperforms the current state of the art not only on existing datasets, but
also on the large-scale datasets we created. The source code and benchmarks are available
at https://git.io/Je3RV.

8.6. Training Details

We used the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 10�4, �1 = 0.5,
and a batch size of 32. As in Lample et al. (2018), we fix �BT = 1, and set �AE to 1
at the beginning of the experiment, and linearly decrease it to 0 over the first 300,000

iterations. We use greedy decoding at inference. When generating pseudo-parallel data via
back-translation, we found that increasing the temperature over the course of training from
greedy generation to multinomial sampling with a temperature of 0.5 linearly over 300,000
steps was useful (Edunov et al., 2018). Since the class distribution for different attributes in
both the Yelp and Amazon datasets are skewed, we train with balanced minibatches when
there is only a single attribute being controlled and with independent and uniformly sampled
attribute values otherwise. The synthetic target attributes during back-translation ỹ are also
balanced by uniform sampling.

83

8.7. Dataset Creation Details

In addition to the details presented in Section 10.4, we present additional details on the
creation of the FYelp and Amazon datasets.
FYelp: Reviews, their rating, user information and restaurant/business categories are ob-
tained from the available metadata. We construct sentiment labels by grouping 1/2 star
ratings into the negative category and 4/5 into the positive category while discarding 3 star
reviews. To determine the gender of the person writing a review, we obtain their name
from the available user information and then look it up in a list of gendered names4 follow-
ing (Prabhumoye et al., 2018; Reddy & Knight, 2016). We discard reviews for which we
were unable to obtain gender information with this technique. Restaurant/business cate-
gory meta-data is available for each review, from which we discard all reviews that were not
written about restaurants. Amongst restaurant reviews, we manually group restaurant cate-
gories into “parent” categories to cover a significant fraction of the dataset. These categories
were determined by a combination of manually looking at Yelp restaurant categories and
training fastText classifiers over the 50 most frequently occurring categories and looking at
the classifier’s confusion matrix. The grouping is as follows:

• Asian - Japanese, Thai, Ramen, Sushi, Sushi Bar, Chinese, Asian Fusion, Viet-
namese, Korean, Noodles, Dim Sum, Cantonese, Filipino, Taiwanese

• American - American (New), American (Traditional), Canadian (New), Southern
• Mexican/Latin American/Spanish - New Mexican Cuisine, Mexican, Tacos, Tex-

Mex, Tapas Bars, Latin American
• Bars - Brasseries, Nightlife, Bars, Pubs, Wine Bars, Sports Bars, Beer, Cocktail Bars
• Desserts - Desserts, Bakeries, Ice Cream & Frozen Yogurt, Juice Bars & Smoothies

Donuts, Cupcakes, Chocolatiers & Shops
As described in Section 10.4, we train a classifier on these parent categories and relabel the
entire dataset using this.
Amazon: Reviews, their rating, user information and restaurant/business categories are ob-
tained from the metadata made available by (He & McAuley, 2016). We construct sentiment
labels in the same manner as in FYelp. We did not experiment with gender labels, since we
found that Amazon usernames seldom use real names. We group Amazon product categories
into “parent categories” manually, similar to FYelp as follows:

• Books - Books, Books & Comics, Children’s Books, Literature & Fiction, Comic
Books, Kindle eBooks etc.

• Electronics - Car Electronics, Cell Phones, Electrical & Electronics, Electronics,
Electronics & Gadgets, Mobiles, Tablets, Headphones etc.

• Movies - Movies, Movies & TV, Movies & Video, TV & Film

4https://www.ssa.gov/oact/babynames/names.zip

84

• Clothing - Clothing, Shoes & Jewelry, Baby Clothing, Fashion
• Music - CDs & Vinyl, Music, Digital Music, Children’s Music, World Music, Elec-

tronic Music
We relabel reviews with a trained product category classifier similar to FYelp.

For the FYelp and Amazon datasets, we normalize, lowercase and tokenize reviews using
the moses (Koehn et al., 2007) tokenizer. With social media content, we do not lowercase
data in order to exploit interesting capitalization patterns inherent in the data, but we still
run other pre-processing steps. We use byte-pair encodings (BPE) (Sennrich et al., 2015b)
with 60k replacements, on all 3 datasets, to deal with large vocabulary sizes.
Human Annotated References. (Li et al., 2018) released a set of human reference edits when
controlling the sentiment of a review, on a test set of 500 examples on the SYelp dataset. We
follow suit by collecting a similar dataset of 500 human reference edits, which will be made
publicly available, for both sentiment and product categories on the FYelp and Amazon
datasets. When collecting such data, we use pre-trained sentiment/category classifiers to
interactively guide crowd workers using the ParlAI (Miller et al., 2017) platform, to produce
edits with the desired attribute value as well as significant content overlap with the input.

85

8.8. Additional Examples

Positive $ Negative (Yelp)

Positive frozen hot chocolate with peanut butter cups = amazing. i’ll be back for some food next time!
Negative frozen hot chocolate with peanut butter ? horrible. i’ll stick with the coffee shop next door!

Negative one word: underwhelming. save your money and find the many restaurants in vegas that offers a real experience.
Positive one word: delicious. save room for the best and most authentic indian food in vegas.

Asian $ Mexican (Yelp)

Asian best thai food i’ve ever had in the us. great duck specials on monday.. best yellow curry fried rice..
Mexican best mexican food i’ve ever had in my life. great guacamole on the side.. best carnitas tacos i have ever had..

Mexican awesome carne asada! try the papa verde with steak! it’s delicious and the portions are great!
Asian awesome orange chicken! try the orange chicken with the spicy sauce! it’s delicious and the portions are great!

Male $ Female (Yelp)

Male good food. my wife and i always enjoy coming here for dinner. i recommend india garden.
Female good food. my husband and i always stop by here for lunch. i recommend the veggie burrito.

Female we are regulars here... me n my husband just gorge on these freaking amazing donuts!!!!! loved it
Male we are regulars here... every time we come here she loves the new york style pizza!!!!!!

Positive $ Negative (Amazon)

Positive i love this game. takes patience and strategy, go online and look for hints and cheats, they help alot. great game!!!
Negative i don’t like this game. it takes a lot of time to figure out how to play, and it doesn’t work. i would not recommend this game.

Negative i did not like the conflicting historical data. what was real and what was not. i prefer fiction with facts intact.
Positive i enjoyed the historical references. what a great read and i loved it. i highly recommend this book.

Movies $ Books (Amazon)

Movies very good movie with outstanding special effects i recommend this to all shi fi lovers. good acting great plot lots of action
Books very good book with outstanding character development i recommend this to all the readers. good job great plot twists and turns

Books definitely not a stone barrington book, but a story told that keeps you wanting more. great read!
Movies definitely not a film noir, but a story that keeps you on the edge of your seat. great acting and a great story.

Clothing $ Electronics (Amazon)

Clothing got this cause it said it would help with tennis elbow and guess what my tennis elbow still bothering me
Electronics got this cause it said it would help with windows xp and guess what my windows xp still crashed

Electronics i have no choice. this is the only black ink that works with my printer.
Clothing i have no choice. this is the only black color that works with my dress.

Table 8.8. Example re-writes by our model on the FYelp and Amazon datasets when controlling
a single attribute. The first line in every box is the pre-specified input with its attribute on the
left, and the subsequent line is our model’s re-write conditioned on a different attribute value.

86

Sentiment Category Input / Generations

Amazon

Positive Movies exciting new show. john malkovich is superb as always. great supporting cast. hope it survives beyond season 1

Positive Books exciting new book. john grisham is one of the best. great read. hope he continues to write more.
Negative Books nothing new. john grisham is not as good as his first book. not a good read.
Positive Clothing awesome new watch. fits perfectly. great price. great quality. hope it lasts for a long time.
Negative Clothing horrible. the color is not as pictured. not what i expected. it is not a good quality.
Positive Electronics works great. the price is unbeatable. great price. great price. hope it lasts for a long time.
Negative Electronics worthless. the picture is not as clear as the picture. not sure why it is not compatible with the samsung galaxy s2.
Positive Movies exciting new show. john goodman is great as always. great supporting cast. hope it continues to end.
Negative Movies horrible. the acting is terrible. not worth the time. it’s not worth the time.
Positive Music awesome new album. john mayer is one of the best. great album. hope he continues to release this album.
Negative Music horrible. the songs are not as good as the original. not worth the price.

Yelp

Negative Dessert the bread here is crummy, half baked and stale even when “fresh.” i won’t be back.

Positive American the burgers here are juicy, juicy and full of flavor! i highly recommend this place.
Negative American the bread here is stale, dry and over cooked even though the bread is hard. i won’t be back.
Positive Asian the sushi here is fresh, tasty and even better than the last. i highly recommend this place.
Negative Asian the noodles here are dry, dry and over cooked even though they are supposed to be “fresh.” i won’t be back.
Positive Bar the pizza here is delicious, thin crust and even better cheese (in my opinion). i highly recommend it.
Negative Bar the pizza here is bland, thin crust and even worse than the pizza, so i won’t be back.
Positive Dessert the ice cream here is delicious, soft and fluffy with all the toppings you want. i highly recommend it.
Negative Dessert the bread here is stale, stale and old when you ask for a “fresh” sandwich. i won’t be back.
Positive Mexican the tacos here are delicious, full of flavor and even better hot sauce. i highly recommend this place.
Negative Mexican the beans here are dry, dry and over cooked even though they are supposed to be “fresh.” i won’t be back.

Table 8.9. Demonstrations of our model’s ability to control multiple attributes
simultaneously on the Amazon dataset (top) and FYelp dataset (bottom). The first two

columns indicate the combination of attributes that are being controlled, with the first row
indicating a pre-specified input

87

Relaxed ! Annoyed

Relaxed Wow! Sitting on my sister’s patio, a glass of wine, and glorious music! Hmmmm!
Annoyed Wow! Sitting on my sister’s patio, a glass of wine, and the neighbors are out! Geez!

Relaxed Nothing like a few after a long productive day!!
Annoyed Nothing like a flat tire after a long day at work!!

Relaxed I decided it was time for a little chill time with my people tonight, I Missed them! Plus I need a break.
Annoyed I thought I was sleeping for a little while at the end of the week, I’m done! Plus I need a nap.

Relaxed Rain = Sleepy! Love the sound of rain on my tin roof. FYI: Tomorrow is FRIDAY!
Annoyed Rain = Mad! The sound of rain on my tin roof. Rain is overrated!

Relaxed Yay!! A quick pedicure before I pick up the little angel from school!
Annoyed Yay!! A week before I pick up the little bastard from school! FML

Relaxed Had an amazing day driving around. The sea, the woods, just great.
Annoyed Had an amazing day driving around. The weather, the roads are delayed, and the traffic is closed.

Relaxed Happiness is watching movie in a rainy day cuddling with your kids in a cozy bed
Annoyed Yet again watching tv in a rainy day cuddling with my kids in a cozy house

Relaxed Love sitting in the tree listening to the woods wake up!! Last day of 6 day
Annoyed Love sitting in the tree listening to the wake up call!! Last day of my holiday was just ruined

Relaxed A cup of hot creamy #coffee is all i need #relaxed #focused
Annoyed A cup of hot coffee is the worst feeling ever #overit

Relaxed I am in bed, listening to my music. 50 60 70 2000s.....
Annoyed I am in bed, trying to sleep. This 50 + degree weather.....

Relaxed A nice end to a busy day, dinner & drinks with the hubby
Annoyed A bad end to a busy day, dinner & drinks are just ruined

Annoyed ! Relaxed

Annoyed Looks like my shovelling is done. Just broke my shovel.
Relaxed Looks like my adjustable couch is done. Just chilling.

Annoyed Nothing makes me more mad on Thursday get paid and the ATM at back is also broke. Thanks for the great service
Relaxed Nothing better than a good massage on the beach and watching the sunset at the pool. Thanks for the great company

Annoyed Who cares that Golden State won... im so over it... ready for football
Relaxed Out of town by the Sea, and... im so excited... ready for vacation

Annoyed Some people just can’t be themself! #actthesamearoundeveryone
Relaxed Having a great time with the bestie! #momanddaughterday #muchneeded

Annoyed When gmail is isn’t connecting and you tried to get stuff submitted before midnight
Relaxed When the day is just over and you finally get to enjoy some rays before bed

Annoyed I’ve never been this mad in my life!!!
Relaxed I’ve never been this relaxed in my life!!!

Annoyed I hate it when I can’t get to sleep. Stop it brain!!
Relaxed I love it when I can’t get up. Beautiful weather!!

Annoyed When u get one of those phone calls that messes up ur day ..
Relaxed When u get one of those massage chairs that helps ur body

Annoyed Don’t u just love it when people don’t respond to ur texts
Relaxed Don’t u just love it when it’s time to pamper yourself

Annoyed 5 of battery and no charger since it just broke a min ago ugh!!
Relaxed 5 minutes of sun and a bottle of beer now just watching a movie

Table 8.10. Examples of our model’s ability to re-write sentences from public social media
content when conditioned on information about the feeling expressed by the writer (Relaxed vs

Annoyed)
88

65+ ! 18-24

65+ Reality leaves a lot to the imagination. - John Lennon
18-24 Reality leaves a lot of memes - John Cena

65+ Photos are beautiful. It must be unreal in person
18-24 Cool pic bro - It must be fab in person!

65+ where did the time go ? LOVE the toothless smile!
18-24 lemme show u something toothless smile

65+ so pretty I feed so many in my yard and just love seeing them everyday.
18-24 so pretty I wanna tag in my family and just love them everyday

65+ Just where are you. I am loving the pictures and just a bit envious.
18-24 Just wanna be you I’m loving the pictures and just a bit excited

65+ Yes, so true! It is incredible what moms learn from daughters and grands!
18-24 Lmao so true! It’s incredible what moms learn from daughters and kids x

65+ Fantastic picture, Peter you look younger all the time, must be the love!
18-24 Osm pic Peter you look younger all the time, must be the love

65+ What a sweet little girl. One can see the love between you 2.
18-24 What a sweet little girl can see the love between you 2

65+ Congratulation young man. I am very proud of you, keep up the good work.
18-24 Congratulation sis I’m very proud of you keep up the good work

65+ So good to hear you are doing well. Love seeing pictures of your precious granddaughter
18-24 So good to hear you’re doing well seeing pictures of your precious baby

18-24 ! 65+

18-24 Yeah ight bitch. We gon see who get the last laugh
65+ These ignorant idiots. We might see who get the last laugh!!!!!

18-24 Y’all are cute tho and I’m happy for you guys
65+ Hi, you are cute folks and I am happy for you guys.

18-24 i dont love boys they’re so urgh
65+ What a lovely group of boys! They are so fortunate to have an exceptional faces.

Table 8.11. Model re-writes of sentences from public social media content when conditioned on
the age-group of the writer (18-24 vs 65+)

89

Positive $ Negative (Yelp)

Positive happy to find this hidden gem near my office. great food and best of all, fast delivery.
Negative the restaurant near my office was such a dump. late delivery and gross, cold food.

Negative omfg no. i ordered baklava and they nuked it on a styrofoam dish for me. the insides were still cold and it tasted like cancer :/
Positive yes! i ordered baklava and it was the perfect temperature on a fancy plate. the inside was great and it tasted excellent.

Mexican $ Asian (Yelp)

Mexican just awful. so called’asada burrito’ was cold and bland... just a lump of plain carnitas and some iceberg lettuce in a cheap tortilla.
reminiscent of taco bell in the 90s but worse.

Asian just awful. so called spring roll was cold and bland....jump a lump of meat and vegetables in an egg noodle wrapper.
reminded me of frozen chinese food but worse.

Asian $ American (Yelp)

Asian my new favorite curry house! definitely coming back. chicken katsu and takoyaki is soooo goood! cant wait to try the pork katsu.
American my new favorite american bistro house! we are definitely coming back. fried chicken and waffles is soooo good.

cant wait to try the new bbq rib sandwich.

Mexican $ Dessert (Yelp)

Mexican tacos were delicious. tried the carne asad, bbq pork, and chorizo. came with onion and cilantro topping and a house made choice
of mild or hot salsa.

Dessert cheesecake was delicious. tried the strawberry flavored one with chocolate drizzle. came with a fresh cherry on top and a house
made choice of iced or hot coffee

Positive $ Negative (Amazon)

Negative too sci fi for me. characters not realistic. situation absurd. i abandoned it halfway through, unusual for me. simply not my taste in mysteries.
Positive i love how sci fi this was! the characters are relatable, and the plot was great. i just had to finish it in one sitting,

the story got me hooked. this is has to be one of my favorite mysteries.

Positive my mom love this case for her i-pod. she uses it a lot and she is one satisfied customer. she would recommended it.
Negative my mom initially liked this case for her i-pod. she used it for a while and it broke. since it is not solid she would not recommend it.

Clothing $ Books (Amazon)

Clothing nice suit but i wear a size 8 and ordered at 12 and it was just a bit too small.
Books great book but i can’t read small text with my bad eyesight, unfortunately, this one happened to be printed rather small.

Books $ Clothing (Amazon)

Books great book about the realities of the american dream. well written with great character development. i would definitely recommend this book.
Clothing great dress with american flags printed on it. well made with great materials. i would definitely recommend this dress.

Books $ Music (Amazon)

Books i loved the book an can’t wait to read the sequel! i couldn’t put the book down because the plot and characters were so interesting.
Music i loved the music and can not wait for the next album! i couldn’t stop listening because the music was so interesting.

Table 8.12. Examples of human edits from our FYelp and Amazon datasets. The first line in
every box was the input presented to a crowd worker followed by their corresponding edit with the

specified attribute.

90

Accuracy Self-BLEU Input / Swap

not a fan. food is not the best and the service was terrible the two times i have visited.

78.7% 73.8 great little place. food is great and the service was great the two times i have visited.
83.5% 51.5 best food in town. food is great and the service was the best two times i have visited.
92.8% 27.7 best thai food in town. the food is great and the service is excellent as always.
96.8% 13.1 best chinese food in town. great service and the food is the best i have had in a long time.

overpriced specialty food. also very crowded. service is slow. would not recommend at any time.

78.7% 73.8 great homemade food. also very crowded. service is fast. would recommend at least once.
83.5% 51.5 great specialty food. also very crowded. service is friendly. would recommend any time at the time.
92.8% 27.7 great variety of food. also very friendly staff. good service. would recommend at least once a week.
96.8% 13.1 great tasting food. very friendly staff. definitely recommend this place for a quick bite.

Table 8.13. Examples of controlling sentiment with different model checkpoints that
exhibit different trade-offs between content preservation (self-BLEU) and attribute control
(Accuracy). The first line in both examples is the input sentence, and subsequent lines are
a model’s outputs with decreasing content preservation with rows corresponding to model

checkpoints at different epochs during training.

Positive Negative Male Female American Asian Bar Dessert Mexican

pampered dishonest ammo manicure primanti guu promoter patisserie tortas
relaxation fraud tenant pedi bobby chashu bouncers froyo fundido
delightfully incompetence bachelor hubs flay izakaya bouncer buttercream arepas
complemented unethical barbers bridesmaids lux tonkotsu hakkasan dunkin burritos
cutest insulted wife bridal nacho khao postino groomers tostada
plush audacity firestone pedicure bj soju bachi bakeries taquitos
punctual confronted provider instructors gown tonkatsu brio bakery nacho
housemade cockroach data mattresses applebee banchan cabanas custard fajita
precision crooks plumber stylist burgr shabu films doughnuts guac
masterpiece disrespect motor jacuzzi chilis teppanyaki trader pastries refried
restored roaches contractor hubby mesa gai hooters gelato mexico
comprehensive refunds hertz pregnancy bmw kbbq karaoke cheesecakes empanadas
sublime shrugged hvac bachelorette denny pho irish donut tapas
made liars qualified husbands mastro hotpot harry croissants queso
tastefully rudest incompetence barre cellar soi darts doughnut cantina
treasures accused transmission cutest bachi karaage nightclub danish salsas
addicting inconsiderate summary lashes rubbed omakase applebee cheesecake pollo
marvelous roach contractors sephora flatbread saigon whiskey fritter asada
handsome rudely automotive bf skins panang cereal macarons barrio
healing cancellation audio boyfriends grille cantonese perform oreos barbacoa

Table 8.14. Examples of the learned attribute biases for sentiment and restaurant categories on
FYelp.

91

Chapter 9

Prologue to the fourth article

Multi-scale Transformer Language Models. Sandeep Subramanian, Ronan Collobert,
Marc’Aurelio Ranzato, Y-Lan Boureau. arXiv preprint.

Personal Contribution The project began with discussions between Sandeep Subrama-
nian, Ronan Collobert, Marc’Aurelio Ranzato and Y-Lan Boureau during a subsequent in-
ternship at Facebook AI Research. The initial discussions were about pitfalls of current
transformer language models and their large training memory footprint and designing good
inductive biases to mitigate them. We explored multi-scale architectures since they hadn’t
been done in the context of transformers and would naturally reduce memory footprint. All
authors met weekly to discuss progress, research directions and experiments. Sandeep Sub-
ramanian proposed the top-down and bottom-up variants, wrote all of the code, ran all of
the experiments and wrote parts of the paper. Ronan Collobert, Marc’Aurelio Ranzato and
Y-Lan Boureau proposed the retina variant, provided advice and guidance throughout the
project and wrote parts of the paper.

9.1. Context

The need for memory efficient transformers became painstakingly evident from work
we did on using transformer language models for abstractive summarization (Subramanian
et al., 2019). Sparse attention had already been explored (Child et al., 2019) to alleviate this,
but would require dedicated sparse operations to see memory and compute gains. Some of
the multi-scale architectures we explored in this work in contrast wouldn’t require anything
more than what is presently available in most deep learning frameworks.

9.2. Contributions

The work presents 3 different multi-scale transformer architectures that exhibit favorable
memory footprint versus perplexity trade-offs in language modeling. The gains are more
pronounced in the low memory setting. Multi-scale architectures allow models to scale

in terms of the number of parameters without incurring significant memory and compute
overhead.

9.3. Research Impact

The work is relatively new, but has influenced similar work on compression based memory
efficient transformers (Dai et al., 2020). While most concurrent work on efficient transformers
has focused largely on reducing memory in the attention layer, in most practical settings, the
feedforward layers dominate memory footprint and our proposed multi-scale architectures
address this.

94

Chapter 10

Multi-Scale Transformer Language Models

10.1. Introduction

Human language displays simultaneous organization at multiple scales and granularities:
topics are maintained over long spans of text without controlling every word, while grammat-
ical correctness imposes strong local constraints without influencing word choice at a very
long range. The choice of a word is thus governed both by fast-changing local constraints,
and by longer-range information that tends to be more stable. This makes hierarchical ar-
chitectures a seemingly natural choice for language modeling, This multi-scale structure is
reminiscent of well-studied hierarchies in many domains of natural perception. In vision, the
resolution of receptive fields decreases as one moves either away from the center of the retina,
or higher in the hierarchy of visual cortex areas (from V1 to V2 to V4). This gives rise to
phenomena such as crowding (Pelli & Tillman, 2008), where only some ensemble statistic of
a set of elements can be perceived, and the existence of metamers, distinct visual stimuli that
look the same when seen at the periphery (Freeman & Simoncelli, 2011; Wallis et al., 2019).
Incorporating both local and global organizational constraints and compressing represen-
tations with statistical pooling have been suggested to better explain empirical perceptual
vision phenomena (Wallis et al., 2019). Multi-resolution pyramids such as Laplacian pyra-
mids have been shown to produce more convincing image generation (Denton et al., 2015)
and efficient compression (Burt & Adelson, 1983). Combining representations at multiple
scales has also been successful for speech and audio generation (Mehri et al., 2016).

Language modeling efforts however, typically rely on modeling the multi-scale nature of
language without strong architectural priors. Representations are learned only at the finest
scale, usually that of words or subwords, and rely on the training objective of predicting the
next word in the sequence to implicitly capture the need to maintain consistency and coher-
ence across multiple scales. Some previous efforts have advocated for multi-scale sequence
models (Koutnik et al., 2014; Chung et al., 2016; Mehri et al., 2016), but these haven’t seen

[14 [24 [34 [44

[1
1� [2

1� [3
1�[1 - [1�

CaXVaO TUaQVfRUPeU La\eUV (16[HieUaUch\)

h1
1� h2

1� h3
1�

.........

CaXVaO TUaQVfRUPeU La\eUV (4[HieUaUch\)

............

CaXVaO TUaQVfRUPeU La\eUV (1[HieUaUch\)

ConYolXWional
Upsampler

(X)

ConYolXWional
Upsampler

ConYolXWional
Upsampler

ConYolXWional
Upsampler

ConYolXWional
Upsampler

ConYolXWional
Upsampler

............

............

............

.............

AYg
Pool
(d)

[1� - [32
AYg
Pool [33¬-¬[4�

AYg
Pool

[12 -¬[15

AYg
Pool

[24¬-¬[2�

AYg
Pool

[52¬-¬[55

AYg
Pool

[20 [4� [50 [��

P(Z1�_Z�1�) P(Z21_Z�21)
P(Z51_Z�51)

......................

(a) Top-down Model

AWWeQWLRQ AJJUeJaWLRQ La\eU (Y)

............

[11 [21

CaXVaO TUaQVfRUPeU La\eUV (4[HLeUaUcK\)

[11�

h14

AYeUaJe PRRO

AYeUaJe PRRO

h24

[11 [21 [31 [41

CaXVaO TUaQVfRUPeU La\eUV (16[HLeUaUcK\)

AYeUaJe PRRO

............

[14 [24

h11�

[1DJJ [2DJJ [3DJJ [4DJJ

CaXVaO TUaQVfRUPeU La\eUV T1 (1[HLeUaUcK\)

h11 h21 h31 h41

P(Z5_Z�5)P(Z3_Z�3)

............

............

(b) Bottom-up Model

(c) Vanilla Attention (d) Local Attention
ß1 ß2 ß�

(e) Retina Attention

Fig. 10.1. Our proposed model architectures: (a) Top-down model that builds
representations from coarse (yellow) to fine (red) scales. (b) Bottom-up Model that does
the opposite while aggregating representations from different scales before operating at the

finest scale. (c,d,e) Retina Model that treats different parts of of the model’s context
with different granularities - nearby information is fine-grained, but coarse in the distant
past. We visualize this using the model’s attention mask. (c) is a standard autoregressive
mask in vanilla transformers, (d) a local attention mask (Parmar et al., 2018) that only

looks at local information (e) our proposed retina variant with green and yellow indicating
progressively coarser scales

96

widespread adoption in language modeling on current large-scale benchmarks. The poten-
tial of leveraging multiple scales of representation to reduce memory footprint (see Section
10.3.6) is especially appealing for language modeling because transformers (Vaswani et al.,
2017), which are currently the most popular architectures, suffer from quadratic memory
usage scaling as context length increases.

Despite this promise, current efforts typically do not rely on strong architectural priors.
Instead, representations are learned only at the finest scale, usually that of characters, words
or subwords, and rely on the training objective of predicting the next word in the sequence
to implicitly capture the need to maintain consistency and coherence across multiple scales.

An obstacle to the adoption of multi-scale architectures is that the many decisions in-
volved in designing such architectures have an unclear effect on language modeling perfor-
mance. In this work, we conduct multiple ablation studies in three different multi-scale
transformer-based architectures and examine trade-offs in terms of memory footprint and
perplexity. Our work makes the following contributions: (1) We present three different
multi-scale transformer architectures for language modeling. (2) We study the impact of
design choices such as the number of scales, assignment of model capacity across scales, local
attention window sizes, and attending over the model’s context with different granularities.

10.2. Related Work

We review previous work that has explored multi-scale sequence models and memory
efficient transformer models.

Multi-scale architectures for sequential data (Schmidhuber, 1992; El Hihi & Bengio,
1996; Koutnik et al., 2014) have attempted to exploit the multi-scale nature of data like lan-
guage, speech, music and audio. They have seen success in modeling conversations (Sordoni
et al., 2015), raw audio, speech and music (Mehri et al., 2016), and language (Chung et al.,
2016). Sordoni et al. (2015); Garg et al. (2019) use the available hierarchical structure in
text (e.g., sentences or paragraph) to define a shallow hierarchy, Koutnik et al. (2014) and
Mehri et al. (2016) use fixed time scales, while Chung et al. (2016) try to learn the clocking
function using the task-specific training objective in an end-to-end manner, with an RNN-
based architecture. To the best of our knowledge, more generic multi-scale architectures
not relying on limited data-dependent boundaries haven’t been explored in conjunction with
transformer language models.

Memory-Efficient Transformers Sukhbaatar et al. (2019) present an adaptive atten-
tion mechanism that learns how far back into the past each head in a transformer should
attend. Liu et al. (2018); Rae et al. (2019) explore approaches that compress the trans-
former’s memory (context) with strided convolutions. Child et al. (2019); Beltagy et al.
(2020); Correia et al. (2019) present sparse transformers along with efficient CUDA kernels

97

for sparse attention demonstrating the ability to generate very long sequences. Liu & Lapata
(2019) proposes a hierarchical extension of the architecture proposed in Liu et al. (2018) that
attends over very long sequences, with the aim to better model paragraph and document-
level contexts. Kitaev et al. (2019) use reversible layers and LSH attention to reduce memory
footprint. Bai et al. (2019) train infinite-depth weight-tied feedforward nets via root-finding,
yielding a memory footprint that like Kitaev et al. (2019) does not scale with network depth,
but incurs computational overhead.

A recent survey of efficient transformers (in terms of memory and compute) (Tay et al.,
2020a) reported that most approaches incur a fairly significant performance drop in exchange
for efficiency. In this work, we search for architectures that incur almost no drop in language
modeling performance.

10.3. Models

We first briefly review language modeling and transformers (Vaswani et al., 2017) which
are the base for our architectures. We then describe the three different multi-scale archi-
tectures we explore for language modeling. See Figure 10.2 for a visual depiction of our
proposed architectures and Listings 1, 2 and 3 for a PyTorch-like implementation of the
forward pass through the models.

10.3.1. Language Modeling & Transformer Preliminaries

The goal of language modeling is to estimate the joint probability of a sequence of tokens.
The models we consider in this work factorize the joint probability over words into a product
of conditional probabilities of each word given everything that precedes it. Conditional
probabilities are typically parameterized as recurrent neural networks like LSTMs (Graves,
2013; Mikolov et al., 2010) or feedforward models like gated convnets (Dauphin et al., 2017),
transformers (Vaswani et al., 2017; Radford et al., 2018), or estimated with non-parametric
count-based statistics like in n-gram language models.

Transformers have become ubiquitous for large-scale language modeling (Radford et al.,
2018; Baevski & Auli, 2018; Radford et al., 2019; Dai et al., 2019; Kaplan et al., 2020).
They are self-attentive models that have stacks of residual blocks, each of which contains
layers of multi-headed self-attention and feedforward modules. Multi-headed attention is a
generalization of dot-product attention (Bahdanau et al., 2014; Luong et al., 2015b) where
a score is computed between a query Q and key K for different learned projections of both.
The scores are then normalized with a softmax function and used as weights to compute
a weighted average over values V at each position in the sequence. In language models,
we use self-attention where Q = K = V . The resulting representations are then summed
with the input to the residual block and then normalized using LayerNorm (Ba et al., 2016)

98

followed by a feedforward layer, normalization, and residual summing again. All operations
in the model have the advantage of being easily parallelizable on current hardware, and the
attention mechanism allows the model to learn long-range dependencies.

We use dmodel and dff to refer to the dimensionality of the intermediate hidden states in
the transformer and the position-wise feedforward layers in the model, respectively.

10.3.2. Multi-scale Transformers (Notation)

Let k1 < . . . < km, denote the m scales of a multi-scale model, where k1 = 1 is the finest
scale that looks at every token, and scales ki incorporates information that has been down-
sampled by a factor ki through a down-sampling operator d (e.g., an average over windows
of size ki or a strided convolution). For example, a model with scales (k1, k2, k3) = (1, 4, 16)

would use three scales with each scale being 4 times coarser than the preceding scale. Given
a sequence of n, words, they are first represented as word embeddings x1 . . . xn of dimension
dmodel using a lookup table. Let xki denote the representation that is fed as input to vanilla
transformer blocks tki at scale ki (with possibly different numbers of layers at each scale),
and h

ki the representation at scale ki. We now detail how x
ki ,h

ki are computed for each of
the variants we propose.

10.3.3. Top-down Model

Our proposed Top-down model (Fig. 1(a)) is largely inspired by SampleRNN (Mehri et al.,
2016), a multi-scale recurrent architecture for generating audio. It is “Top-down” because it
builds representations of the sequence progressively from coarser to finer scales, by running
multiple transformer layers at a particular coarse scale followed by convolutional upsampling
to the subsequent (finer) scale. Predictions are made at the finest scale. The motivation
is to have early layers learn high-level or coarse outlines and have those representations be
progressively upsampled to include finer and finer details.

The model uses downsampling operators d, that take a sequence of vectors as input, and
a factor ki by which to downsample them, to compute a representation of the input at scale
ki of length of n/ki; in our experiments, d is average pooling with a kernel of size ki, or
causal strided convolutions.

The input to the coarsest scale in the model xkm , is the pooled token embedding x̄
km

over windows of size km. Inputs xki to the finer-scale transformers thereafter are obtained by
combining the pooled token embeddings x̄

ki at the corresponding scale with the upsampled
representation from the immediately coarser scale:

99

x̄
ki = d(x1 . . . xn, ki),m � i � 1,

x
km = x̄

km ,

h
ki = tki(x

ki),m � i � 1,

x
ki�1 = f(x̄ki�1 , u(hki , ki/ki�1)),m � i � 1,

where f denotes a function that concatenates its inputs (of equal dimension), followed
by a learned linear projection to half the dimension of the concatenated vector; u is an
upsampling function such that u(hki , ki/ki�1) indicates that representations h

ki are being
upsampled by a factor ki/ki�1. The model is trained to predict the next word in the sequence
using representations hk1 . To make sure representations aren’t informed by the future at any
position, we slice and shift the inputs to d appropriately.

10.3.4. Bottom-up Model

In contrast to the Top-down model, the Bottom-up model (Fig. 1(b)) builds representa-
tions progressively from fine to coarse scales. Instead of a final upsampling operator back
to the finest scale, the architecture uses an aggregation layer, denoted by v, to incorporate
information from coarser scales at the word level. This is a transformer layer where certain
subsets of heads attend to representations from different scales. Specifically, inputs to the
multi-headed attention module within the layer are the word embeddings themselves denoted
by x1 . . . xn, and the keys and values are representations at different coarser scales denoted
by h

k2 . . . h
km ; we denote this operation via v(hk2 . . . h

km , x1 . . . xn). This aggregation layer
is applied before running transformer layers at the finest scale:

h
k1 = h

1 = x1 . . . xn,

x
ki = d(hki�1 ,ki/ki�1), 2  i  m,

h
ki = tki(x

ki), 2  i  m,

x
agg = v(hk2 . . . h

km , x1 . . . xn),

h
out = t1(x

agg),

where h
out is the output from which word probabilities are predicted.

10.3.5. Retina Model

Our “Retina” model (Fig 1(e)) learns progressively coarser representations for tokens
further away in the past, in a way that is reminiscent of the progressively bigger receptive
fields in the retina as one moves away from the center. The underlying intuition is that a lot
of the fine-grained information at the word level might be necessary in a close range (e.g., for
grammaticality), but not so much at larger distances (see Section 10.4.3 on model sensitivity

100

to perturbations near and far away from the current token being predicted). The model is a
multi-scale variant of Liu et al. (2018).

The Retina model does not have separate transformer layers at every scale, we imple-
ment it with a simple modification to the multi-headed attention module of a transformer.
Different subsets of heads look at representations from different scales. The queries to the
multi-headed attention always come from the representations at the finest 1x (k1) scale, while
the keys and values are selected and downsampled appropriately based on each input query
position and the scale assigned to each head.

Formally, consider a setting with scales k1, . . . , km, context window boundary for scale ki

as �
ki and token embeddings x1, . . . , xn, predicting the next token at position t. Downsam-

pled representations x̄
ki and output representation h

out are obtained by:

x̄
ki = d(xt��ki . . . xt��ki�1�1, ki),m � i � 1,

h
out = t(x̄k1 . . . x̄

km).

Listings 1, 2 and 3 show an implementation of the forward pass for our model variants.

10.3.6. Space & Time Complexity for Transformer Layers

Transformer language models typically require large amounts of GPU memory to train.
There are a few factors that contribute to this.
1. Model Depth - All intermediate activations are stored at each layer for backpropagation.
Memory scales linearly with the number of layers.
2. Attention - Multi-headed attention with queries, keys and values Q,K, V requires
computing a score for every pair of elements in the query and key (i.e.) the QK

T matrix is
of size N⇥N (assuming a batch size of 1) where N is the number of elements in the sequence.
Both memory and time complexities are therefore quadratic in the length of the sequence
O(N2), computation however is typically less of a problem since it can be parallelized easily
across N . With short sequences, where the embedding dimension of the queries, keys, and
values are greater than the sequence length, the (QK

>)V matrix becomes expensive to store
and compute. The overall complexity is O(N2+NH), where H is the embedding dimension.

3. Position-wise Feedforward Layers - Position-wise linear layers are often of size 4H
and in typical setups, where N ⇡ H, storing these activations dominates memory footprint
(Dai et al., 2020).

Our multi-scale architecture addresses 2 and 3 by reducing the number of positions over
which transformer layers at coarser scales need to operate on. This is evident from Fig. ??

and Table. 10.8 that shows memory footprint and time for a single transformer layer at
different scales.

101

(a) Memory and Time vs Sequence Length (b) Training memory vs Perplexity

Fig. 10.2. (a) Memory footprint and run time vs sequence length and run time for a
single transformer LM layer at different scales (b) Test perplexity vs train Memory

footprint for vanilla transformer LMs and our topdown (64x,16x,4x,1x) and Bottom-up
(16x,4x,1x) multi-scale variants on the BookCorpus test set. Numbers next to each point

indicates the number of layers per scale.

10.4. Experiments & Discussion

10.4.1. Datasets

We consider three word/sub-word level language modeling benchmarks of different sizes.
In order to make our results comparable to previous published research, we use standard
datasets that have been used in prior language modeling efforts - Wikitext-103 (Merity
et al., 2016), BookCorpus (Zhu et al., 2015) & CC-news (Liu et al., 2019). Dataset statistics
are described in Table 10.1. We use the standard train/validation/test splits for Wikitext-
103 and use random splits for the BookCorpus and CC-news. Dataset statistics are reported
in Table 10.1. Following Baevski & Auli (2018), we BPE tokenize (Sennrich et al., 2015b)
Wikitext-103 with 32k replacements, but report perplexities at the word level for comparison
with previous work, by re-normalizing the average perplexity by the actual number of words
in valid/test sets. We use 30k replacements for the BookCorpus and CC-news datasets, and
report the average sub-word level perplexities since all models being compared are trained
with the same tokenization and BPE pre-processing.

102

Dataset Size
(GB)

Train
Tokens

Valid
Tokens

Test
Tokens

Vocab
Size

Wikitext-103 .54 111M 231K 261K 33,346
Toronto BookCorpus 3.6 832M 108M 106M 31,300

CC-news 83 16.6B 370M 370M 63,724

Table 10.1. Dataset statistics

10.4.2. Experimental Details

Across all datasets, our primary point of comparison is with a vanilla transformer lan-
guage model (Radford et al., 2018). For the Wikitext-103 and BookCorpus datasets, we use
a model that has either 12, 14 or 16 layers, dmodel = 768, 12 attention heads, dff = 3,072,
dropout of 0.1 everywhere including the attention scores and GeLU activations (Hendrycks
& Gimpel, 2016) - a configuration similar to the smallest GPT-2 model (Radford et al.,
2019). For the CC-News dataset, we increase dmodel to 1,024 and dff to 4,096. We use a
batch size of 256 randomly sampled chunks of 512 tokens. For our CC-News models, we use
gradient accumulation to simulate a batch size of 256. At inference, we consider the entire
piece of text as one contiguous block and use a sliding window of size 512 tokens with a
stride of 256 and make predictions only over the last 256 tokens in the window. This en-
sures that for every minibatch of examples, the model has some context to work with. Each
model was trained on 8 GPUs for roughly 1 week - run times for the top-down, bottom-up
and vanilla transformers were almost the same, while the retina model was slower since our
implementation didn’t leverage sparsity.

Our multi-scale architectures use the same configuration above for every transformer
layer, with added upsampling and downsampling modules. Our best-performing models use
average pooling for downsampling (over max-pooling) and we present an ablation study
with strided convolutions in Table 10.2. We used a single transpose convolution layer with
an appropriate kernel size and stride for upsampling. Each scale increases by a factor of 4
from the previous.

All models were trained with mixed precision and optimized using Adam (Kingma & Ba,
2014) with the learning rate increased linearly to 2.5⇥e�4 over 40,000 warmup steps and then
annealed to 0 over a million steps using a cosine schedule (Radford et al., 2018). We tuned
the dropout rates in our Wikitext-103 in the range of 0.1 to 0.5 with increments of 0.05,
since we found that our models were able to overfit the data quite easily. For BookCorpus
and CC-News, we only experimented with the number of transformer layers at each scale
and the number of scales (see Table 10.2).

103

10.4.3. Analyzing Transformer LM behavior to context perturba-

tions

Khandelwal et al. (2018) and Sankar et al. (2019) analyzed how LSTM language models
and dialog systems use context, by perturbing it with different kinds of noise and observing
changes in the likelihood assigned by the model to every subsequent (unperturbed) token in
the sequence. Khandelwal et al. (2019a) show that perturbations which destroy word order,
like shuffling, affects the likelihood that the model assigns to words near the shuffled context,
but not far away.

We observe similar patterns for transformer language models on the Wikitext-103 and
BookCorpus datasets, as shown in Figure 10.3. In particular, we consider a sequence of 512
tokens, shuffle the first 256 tokens and observe the likelihood that an already trained model
(without perturbations) assigns to the subsequent 256 tokens. When the shuffled context is
more than 50 tokens away, the change in likelihood, compared to when the model is presented
with a completely unshuffled context is already minimal, indicating that the model may not
be using word order beyond this distance. This observation might partly explain why our
Retina model, which only looks at fine-grained context in a local way while using coarser
representations for distant context, can perform on par with a model that uses the entire
context at a fine-grained scale (see results in Table 10.2). The same argument holds for the
use of average pooling operations in the top-down and bottom-up variants which destroys
word order.

Fig. 10.3. Increase in NLL for a trained model on the Wikitext-103 and BookCorpus
datasets when word order is destroyed by shuffling its context (perturbation), as a function

of the distance from the shuffled context.

104

Model Scales
Attention
Context
Window

Layers Test
PPL

Mem
(GB)

Ablation for number of scales

Vanilla 1 0:512 12 16.95 20.98
Vanilla 1 0:512 14 16.54 23.78

Top-down 4,1 0:512 8,12 15.87 25.45
Top-down 16,4,1 0:512 4,8,12 15.76 25.23
Top-down 64,16,4,1 0:512 2,4,8,12 16.00 22.62

Ablation for capacity at different scales

Top-down 64,16,4,1 0:512 16,12,6,1 22.14 10.61
Top-down 64,16,4,1 0:512 10,10,8,5 17.89 13.59
Top-down 64,16,4,1 0:512 8,8,7,7 17.16 16.87
Top-down 64,16,4,1 0:512 7,7,8,8 16.86 18.22
Top-down 64,16,4,1 0:512 5,5,9,9 16.57 19.47
Top-down 64,16,4,1 0:512 3,3,10,10 16.31 20.71
Top-down 64,16,4,1 0:512 2,2,11,11 16.12 22.05
Top-down 64,16,4,1 0:512 1,1,12,12 15.95 23.40

Ablation for downsampler

Top-down
(Avg-Pool) 64,16,4,1 0:512 7,7,8,8 16.86 18.22

Top-down
(Conv) 64,16,4,1 0:512 7,7,8,8 17.95 18.45

Ablation for deep & narrow networks

Vanilla
(256/1024) 1 0:512 30 22.15 22.07

Vanilla
(512/2048) 1 0:512 20 17.70 22.77

Ablation for attention context window

Vanilla 1 0:512 12 16.95 23.78
Vanilla 1 0:256 12 17.00 23.78
Vanilla 1 0:128 12 17.39 23.78
Vanilla 1 0:64 12 17.88 23.78
Vanilla 1 0:16 12 19.01 23.78
Vanilla 1 0:8 12 20.19 23.78
Retina 16,4,1 0:8,8:256, 256:512 12 16.81 23.95
Retina 16,4,1 0:16,16:256, 256:512 12 17.07 23.95
Retina 16,4,1 0:128,64:256,128:512 12 17.08 23.95

Table 10.2. Model ablations for the number of scales, number of transformer layers per
scale, type of downsampling function, skinny and deep networks and different local

attention/retina attention masks. All reported results are on our BookCorpus test set. The
attention context window column indicates what attention heads at each scale look at - for
example, "0:512" implies all scales see the entire history while "0:8,8:256,256:512" indicates
that the finest scale sees only the previous 8 tokens, the subsequent scale from 8-256 and so

on.

105

10.4.4. Ablations

In Table 10.2 we investigate how the main design choices of multi-scale transformers,
such as the number of scales and number of layers at each scale, impact perplexity on the
BookCorpus. We observe that: (1) perplexity slightly improves when adding the 4x and
16x scales, but not 64x; (2) adding model capacity at finer scales is more important than at
coarser ones; (3) gains from multi-scale modeling do not come solely from being able to train
deeper models for the same memory budget, since narrow and deep vanilla transformers with
similar memory footprint perform poorly; (4) local attention even with very small windows
are competitive - with less than 1 ppl difference between a lookback of 64 vs 512 tokens.
Note however, that the effective receptive field of a model trained with local attention grows
with depth. (5) Average pooling outperforms strided convolutions for downsampling. (6)
Our retina model, with small attention windows at the finest scale, performs on par with a
vanilla transformer with global attention.

Additionally, Section 10.6 has a breakdown of perplexity vs tokens frequencies and in-
cludes sample based evaluations.

10.4.5. Perplexity vs Memory Footprint Trade-off

Figure 2(b) plots model memory footprint1 versus perplexity for vanilla, top-down and
bottom-up models for different model sizes. There is a small gain in perplexity for the
same memory footprint (with smaller models showing bigger gains). Results in Tables 10.3
and 10.4 on Wikitext-103 and CC-news however show only very minimal gains. We suspect
that the poor results on Wikitext-103 are due to the fact that it is a much smaller dataset,
which our deeper multi-scale models overfit on.

Model Layers Test
PPL

Train Mem
(GB)

Vanilla 10 20.99 16.76
Vanilla 12 20.23 19.04
Vanilla 14 19.62 21.31

Top-down 5,5,6,6 20.92 14.66
Top-down 5,5,9,9 20.26 18.35
Top-down 2,4,8,12 19.47 20.96

Table 10.3. Model performance on CC-news.

1using torch.cuda.max_memory_allocated

106

Model Layers Test
PPL

Mem
(GB)

Previous Work

Vanilla (Welleck et al., 2019) 16 25.6 -
Transformer-XL (Dai et al., 2019) 16 24.3 -

DEQ-Transformer (Bai et al., 2019) - 24.2 -
DEQ-Transformer (Adaptive) (Bai et al., 2019) - 23.2 -

Adaptive Inputs (Baevski & Auli, 2018) 16 18.7 -
Our Models

Vanilla 16 25.9 26.85
Top-down (4x, 1x) 6,12 25.6 25.15
Top-down (4x, 1x) 5,10 26.1 22.08
Bottom-up (4x, 1x) 5,10 26.8 21.83
Retina (16x, 4x, 1x) 16 26.6 29.92

Table 10.4. Model performance on Wikitext-103.

10.5. Conclusion

We study design choices in three multi-scale transformer architectures for language mod-
eling on three datasets. We find that (1) given a memory and depth budget, our multi-scale
models do better than vanilla transformers; (2) biasing capacity assignment towards finer
scales works better; (3) local attention with small attention windows performs surprisingly
well, on par with global attention when combined with attention over coarse representations.

These proposed models leverage the robustness of transformers to word ordering in distant
context windows (Fig 10.3). In these architectures, the representation produced by coarser
scales which operate on much shorter sequences, is combined with the representation of the
finest scale, thereby reducing the overall computational and memory cost.

Future work will explore how to combine our multi-scale architectures with adaptive
attention head spans and how different types of information (e.g., topic, grammatical cor-
rectness) are differently affected by architecture scale choices.

10.6. Additional Results & Algorithms

10.6.1. NLL vs Word Frequency

In tables 10.4 and 10.5, we break down the token-level perplexities based on their fre-
quency of occurrence in the training set, similar to (Baevski & Auli, 2018). We bin tokens
into 5 or 10 equally sized bins, based on cumulative frequency and report the average NLL
within each bin, with bins sorted from those that contain least to most frequent words. We
find that the performance gap between models with smaller and larger context window sizes
stems from modeling of low-frequency tokens.

107

Fig. 10.4. Test NLL vs word frequency. Left to right: rarest to most frequent word bins.

Fig. 10.5. Test NLL vs word frequency. Left to right: rarest to most frequent word bins.

10.6.2. Coarse-only Transformer LMs

We explore the possibility of training a model that makes predictions directly at a par-
ticular scale. For example, if we consider a scale of 4, we initially downsample the input by
a factor of 4 by averaging the embeddings of every non-overlapping 4-gram chunk. We then
run transformer layers on this input and use the final representations at each step to predict
the next 4-gram chunk. We train the model to make these predictions by minimizing the
cross-entropy between the model’s output distribution and a uniform distribution over the
subsequent 4-gram.

108

Table 10.6 presents qualitative results showing model predictions for the following. We
experimented with adding this criterion of being able to predict the subsequent bag of words
distribution in our top-down model at all scales, but didn’t observe any improvements.
This experiment mostly served as a sanity check to ensure that the representations learned
at different scales can be useful. To ensure that representations at different scales learn
meaningful representations, we qualitatively analyze them by looking at nearest neighbors
computed using them in Table 10.7. We found that nearest neighbors computed on Wikitext-
103 typically returned segments within highly related topics.

Model Layers N-gram
PPL

GPT-2
PPL

Ref
BLEU

N-gram
Repeat

Time
(s/seq)

Vanilla 14 22.81 7.30 7.45 0.75/0.45/0.29/0.20 1.35

Top-down 2,4,8,12 21.17 7.69 6.80 0.73/0.41/0.26/0.16 0.93

Bottom-up 8,9,9 24.54 8.53 7.04 0.75/0.45/0.28/0.18 1.36

Retina 12 20.91 8.64 7.37 0.73/0.42/0.26/0.17 1.72

Table 10.5. Sample based evaluation of models on the BookCorpus. The N-gram repeat
column reports 1/2/3/4-gram repeat fractions with a lookback window of 256 tokens

10.6.3. Sample-Level Evaluation Metrics

A hallmark of the recent progress in language modeling has been improvements not
only in perplexity, but sample quality as well. While evaluating generative models of text
purely based on their samples is extremely difficult and an ongoing effort (Cífka et al., 2018;
Semeniuta et al., 2018), we would like to ensure that we aren’t losing out on sample quality
with respect to vanilla transformer LMs.

We therefore borrow a few sample-level evaluation metrics typically used to evaluate
GAN-based text generation methods to compare samples from our model with vanilla
transformer LMs. In all sample-based evaluation setups, we provide models with 64 tokens
of context and generate sequences of length 256 with topk sampling (Fan et al., 2018) and
a temperature of 0.7.
N-gram and GPT-2 PPL - We compute the likelihood of model generated samples
under a pre-trained kneser-ney smoothed 4-gram language model (Heafield, 2011) and a
pre-trained GPT-2 345M parameter model (Radford et al., 2019).
Ref BLEU - Given an a particular input context, we generate 3 distinct completions and
use these as references to compute BLEU wrt the ground truth completion.
N-gram repeats - Following Welleck et al. (2019), we also estimate the fraction of 1,2,3

109

and 4-grams that the model repeats.

Quantitative results for different models are presented in Table 10.5, with qualitative
samples in Table 10.9. We could not observe any significant difference in sample quality
between the different models. We also report the time it takes for each model to generate a
sequence of 256 tokens given a context of 64 tokens.

Reference Text :

Prisoner of Azkaban was the third film in the series . Radcliffe ’s performance was panned by New York Times journalist
A. O. Scott , who wrote that Watson had to carry him with her performance . Next was Harry Potter and the Goblet of
Fire in 2005 . The film was the second @-@ highest grossing Harry Potter

2x Completions - | film | , |

4x Completions - | film | the | , | and |

8x Completions - | the | film | of | , | . | in | and | series |

16x Completions - | grossing | the | , | worldwide | and | $ | in | . | million | of | @-@ | highest | grossed | film | Part |
@.@ |

64x Completions - | . | Harry | the | , | and | of | in | a | " | film | was | to | ’s | @-@ | The | that | Watson | Gob@@ | Potter
| for | rint | Rowling | her | as | Prison@@ | performance | with | Columbus | an | on | by | she | it | Stone | had | Times |
Phoenix | at | Best | Radcliffe | Half | In | from | book | series | first | grossing | his | one | role | instal@@ | Philosop@@ |
but | be | $ | which |) | he | (| ab@@ | is | novel | character |

Reference Text :

set fire to the ship to prevent her from falling into enemy hands . Patriots in small boats sailed out to the burning ship ,
fired some of its cannons at the British ships , took what stores and loot they could , and retreated shortly before the ship
’s powder magazine exploded . = = Aftermath = = The British did not

2x Completions - | the | have |

4x Completions - | the | their | to | fire |

8x Completions - | the | , | to | and | any | of | not | until |

16x Completions - | the | , | . | of | and | to | British | a | was | in | were | that | The | ’s | as | on |

64x Completions - | . | the | , | and | of | to | British | ships | a | in | was | on | had | that | The | were | ’s | for | with |
by | ship | at | from | wounded | as | fleet | sailed | American | his | her | which | they | but | HMS | not | been | an | @-@ |
two | after | men | returned | York | battle | harbor | be | fire | = | she | their | killed | Boston | French | it | damage | off |
captured | one | guns | In | crew | into | he | schooner |

Table 10.6. Examples of coarse LM completions

110

Reference Text :

good on Megadeth ’s claim to being the world ’s state @-@ of @-@ the @-@ art speed metal band " . Musicologist Glenn Pillsbury stated
the guitar work on the album was a mixture of Mustaine ’s " controlled chaos " and the " technical brilliance " of Marty Friedman .
Studio efforts released in the mid- and late 1990s featured songs with compact structures and less complicated riffing . Megadeth ’s lyrics
often focus on death , war , politics , and religion . The lyricism centers on nihilistic themes , but occasionally deals with topics such as
alienation and social problems . The earliest releases featured themes such as occultism , graphic violence

Nearest Neighbors at the 4x Scale

vocalist Jock Cheese and keyboardist / vocalist Eugene de la Hot Croix Bun , and enjoyed a large underground / independent following .
Their third album , Machiavelli and the Four Seasons , reached the Australian national top 10 in 1995 . TISM were known for their hybrid
of dance music and rock ’n’roll , high @-@ energy live shows and humorous lyrics . TISM ’s songs frequently satirised modern culture ,
celebrities and the entertainment industry , classic literature and art , current affairs , politics and sport . The titles of their songs were
often wordplays created by juxtaposing pop culture references with more intellectual ones (for

n ; 1950 ’s blues artists Guitar Slim , Johnny Watson , and B.B. King ; R & B and doo @-@ wop groups (particularly local <unk>
groups) ; and modern jazz . His own heterogeneous ethnic background , and the diverse social and cultural mix in and around greater
Los Angeles , were crucial in the formation of Zappa as a practitioner of underground music and of his later distrustful and openly critical
attitude towards " mainstream " social , political and musical movements . He frequently lampooned musical fads like psychedelia , rock
opera and disco . Television also exerted a strong influence , as demonstrated by quotations from show

magazine , " I am a young adult now , and I think this album shows my growth vocally . " Aaliyah was mastered by Bernie Grundman
at his studio in Los Angeles . = = Music and lyrics = = An R & B and neo soul album , Aaliyah featured midtempo funk songs , hip
hop @-@ textured uptempo tracks , and slow jams that draw on older soul influences . Along with contemporary urban sounds , its music
incorporated Middle @-@ Eastern influences , muted alternative rock , and , particularly on Timbaland ’s songs for the album , Latin
timbres . " Never No More " mixed both older soul and modern hip hop sounds with

Nearest Neighbors at the 16x Scale

well received by both critics and fans , and was responsible for bringing Slayer to the attention of a mainstream metal audience . Kerrang
! magazine described the record as " the heaviest album of all " . Alongside Anthrax ’s Among the Living , Megadeth ’s Peace Sells ...
but Who ’s Buying ? and Metallica ’s Master of Puppets , Reign in Blood helped define the sound of the emerging US thrash metal scene
in the mid @-@ 1980s , and has remained influential subsequently . Reign in Blood ’s release was delayed because of concerns regarding
its graphic artwork and lyrical subject matter . The opening track , " Angel of Death " , which refers to Josef

music industry in 1992 , through his vocal contributions on Dr. Dre ’s The Chronic . That album is considered to have " transformed the
entire sound of West Coast rap " by its development of what later became known as the " G @-@ funk " sound . The Chronic expanded
gangsta rap with profanity , anti @-@ authoritarian lyrics and multi @-@ layered samples taken from 1970 ’s P @-@ Funk records . Snoop
Dogg contributed vocals to Dre ’s solo single , " Deep Cover " , which led to a high degree of anticipation among hip hop for the release
of his own solo album . Doggystyle and The Chronic are associated with

the most innovative popular musicians in America if not the world " but also " the most politically ambitious . Not even in the heyday of
[the] Clash has any group come so close to the elusive and perhaps ridiculous ’ 60s rock ideal of raising political consciousness with music
. " Their music on the album inspired leftist and Afrocentric ideals among rap listeners who were previously exposed to more materialist
themes in the music . Reeves said it introduced black consciousness to the " hip @-@ hop youth " of the " post @-@ black power generation
" , " as leather African medallions made popular by rappers like P.E. replaced thick gold chains as

Neighbors at the 64x Scale

an album that established the concept for Metallica ’s following two records . Colin Larkin , writing in the Encyclopedia of Popular Music
, singled out " For Whom the Bell Tolls " as an example of Metallica ’s growing music potential . Popoff regards Ride the Lightning as an
album where " extreme metal became art " . Megaforce initially printed 75 @,@ 000 copies of the album for the US market , while Music
for Nations took care of the European market . By the autumn of 1984 , Ride the Lightning had moved 85 @,@ 000 copies in Europe ,
resulting in Metallica ’s first cover story for British rock magazine Kerrang ! in its December issue

best record of derisive punk rock since Exile on Main St. (1972) by the Rolling Stones . In The New Yorker , Ellen Willis wrote that
she learned to appreciate Too Much Too Soon more than New York Dolls after seeing the band perform songs from the former album in
concert , particularly " Human Being " and " Puss ’ n ’ Boots " , while Ron Ross from Phonograph Record magazine said the group ’s "
easy going ironic sensibility " was expressed " far more amusingly and accessibly " here than on their debut album . Some reviewers were
critical of Too Much Too Soon for what they felt was a poorly recorded and overproduced

= Riot Act features a diverse sound , including folk @-@ based and experimental songs . Stephen Thomas Erlewine of AllMusic said "
Riot Act is the album that Pearl Jam has been wanting to make since Vitalogy - a muscular art rock record , one that still hits hard but
that ’s filled with ragged edges and odd detours . " Gossard said " Riot Act really seems to showcase all of our thing . There ’s the simple
rock songs we could have written in the earlier era , but it covers all the different times and dynamics we ’ve had and still holds together .
" The musical experiments also lead several songs on the album to use alternate

Table 10.7. Nearest neighbors computed using representations obtained at different scales

111

Scale Layers Emb Q,K,V
Proj QKT QKTp

dk
V FC LN, Drop

Residual
Output
+ Grad

Hierarchical
Representations

Total
(GB)

Memory footprint breakdown for a single transformer LM layer at different scales

1x 1 - 0.150 0.06000 0.100 0.500 0.500 - - 1.325
4x 1 - 0.038 0.00400 0.025 0.120 0.120 - - 0.319
16x 1 - 0.009 0.00030 0.006 0.031 0.031 - - 0.079
64x 1 - 0.002 0.00005 0.002 0.008 0.008 - - 0.020

Memory footprint breakdown for a 12 layer vanilla transformer

1x 12 0.05 1.81 0.80531 1.208 6.040 6.644 4.10 - 21.26
Model - - - - - - - - - 0.266
Total - - - - - - - - - 21.52 (20.98)

Memory footprint breakdown for a 30 layer top-down transformer

1x 8 0.05 1.06 0.41 0.7 3.87 3.52 3.59 0.308 14.27
4x 8 - 0.26 0.025 0.176 0.87 0.96 - 0.175 2.529
16x 7 - 0.05 0.001 0.037 0.18 0.29 - 0.042 0.545
64x 7 - 0.01 0.00006 0.008 0.04 0.05 - 0.009 0.121

Model - - - - - - - - - 0.521
Total - - - - - - - - - 17.98 (18.22)

Memory footprint breakdown for a 23 layer Bottom-up transformer

1x 8 0.05 1.21 0.536 0.805 4.02 4.42 4.10 0.686 16.19
4x 8 - 0.30 0.033 0.201 1.00 1.10 - 0.013 2.76
16x 7 - 0.06 0.002 0.044 0.22 0.24 - 0.003 0.60

Model - - - - - - - - - 0.427
Total - - - - - - - - - 19.97 (20.41)

Table 10.8. Memory footprint breakdown within different models. The number within
brackets in the "Total" rows corresponds to what PyTorch reports versus our computed

numbers.

112

Retina Model

one has the bluegrass and which one has blue grass? "Zane barely resisted the impulse to shake him again. It wouldn’t
help, but it might help him feel better." I’m not asking where Burns told you you were. "Ty nodded, refusing to
comment on that. Zane shook his head and then

reached into his pocket to pull out his phone. He turned it on and pressed the buttons for the Miami Police Department. He had a feeling
that Burns had told him about the specific questions he’d asked, and he looked over at Ty. "You ever been to Texas?" he asked. Ty shook
his head and looked away, giving Zane the privacy he needed. He glanced at Ty. "I ’ll be in touch," he promised, and then turned to walk
away. "What?" Zane asked, surprised. "You ’re pretty sure of yourself. "Zane grinned and nodded." Not even in the Marines? "Ty shook
his head." Never. "Zane stared at him a moment longer, then walked over to the bar and poured himself a beer. He leaned against the
wall and watched Ty walk away. He couldn’t help but smile. "You don’t have to go." Ty stopped and turned, looking back at

top-down Model

I told Dominic silently, I just wigged out. Dominic’s gaze met mine, his dark eyes glowing, his hair falling around his
cheeks. You told him to get off. He didn’t. The prick hasn’t even apologized. I don ’t think he’s going to, I replied
calmly, I don

’t know what to say . Dominic’s voice was stern. "I will not tolerate that kind of behavior from you." I knew I had to look at him, because
he was glaring at me . He wasn’t being a very nice guy, but I knew he was right. He deserved to be treated like a human being. I’d never
seen him so angry. "Dominic," I said softly, trying to soothe him. "I ’m sorry. I didn’t mean to make you angry." I tried to make him look
at me, but he looked away. "I just don’t understand why you do it. You have to know that you’re not normal." He sighed and looked back
at me. "I know. I ’m sorry. I just don’t want to be like that." I sighed, knowing he was right. I didn’t want to be like that either. "Well,
I ’m going to go check

Vanilla Model

Anna’s lips twisted. "Over the past few days I’ve discovered that there are very few things that are impossible." "He’s
dead, "Morgana said, as much to convince herself as the annoying pest standing before her. "I watched him die." "You
betrayed him. "Morgana’s

eyes narrowed. "The king is dead, and the rest of the clan has been murdered."Anna’s jaw hardened with a fierce fury."What do you
want?" "I want you out of my office. Now. "Anna stiffened , but before she could react, Levet was at her side, his wings flapping furiously
in panic. "Sacrebleu, I beg of you. I cannot leave my sister. "Anna glared at the tiny demon. "I know." "I can ’t take you with me, "Anna
snapped. Levet’s wings flapped in panic. "I’m not leaving without Morgana." "You can’t be leaving her." "No, I can’t." "Then don’t leave
me alone." "I can ’t do it." "You can." "No." Levet’s words were swallowed by a sudden roar of anger

Bottom-up Model

door wide and I gasped as I stepped inside. It was more like a studio apartment than a guest bedroom; it was about three
times the size of our room back in Seattle. The walls were painted a surprisingly warm shade of gray, with furniture in
a deep, contrasting dark cherry. The bedspread was black with intricate

patterns in shades of red, gold, and green. The floors were of polished wood and a thick layer of brown dust covered the walls. The ceiling
was vaulted, giving the room a more natural light. There was a huge bay window and an easel in the corner. A large bed and a large,
flat-screen TV surrounded it. The only other thing that was obvious was the bathroom. There were two stalls off to the side, the toilet
and sink. There was a bathroom to the left of the bedroom, opposite a large, white, marble bathroom. There were two sinks, both full of
toilet paper. I walked over to the bed and looked out the window. The door was slightly ajar, and a couple of windows had a view of the
lake.

Table 10.9. Samples from different models.

113

Listing 10.1. top-down Model
def TopDownTransformerLM(

x, hierarchies, downsamplers, upsamplers,

transformer_layers, linear_layers, decoder

):

"""

Forward pass of the top-down model.

Args:

x: a 2D tensor of token indices (batch size x time steps)

hierarchies: a sorted (descending) list of hierarchies (ex: [16, 4, 1])

downsamplers: a ModuleDict of downsampling functions for each hierarchy

upsamplers: a ModuleDict of upsampling functions for each hierarchy

transformer_layers: a ModuleDict of autoregressive transformer decoders

for each hierarchy

linear_layers: a ModuleDict containing a linear layer for every hierarchy

each linear layer is of size (2 * emb_dim, emb_dim)

decoder: a Linear layer from emb_dim to vocab size

Returns:

loss: a scalar that contains average cross-entropy

"""

(batch size x time step x embedding dim)

x = WordAndPositionEmbeddings(x)

Get factor by which to upsample at each layer.

upsample_factors = [cur // next for cur, next in zip(hierarchies, hierarchies[1:] + [1])]

top_hierarchy = hierarchies[0]

Run transformers from coarsest to finest hierarchy

upsampled_representation = None

for i, hierarchy in enumerate(hierarchies):

Downsample the input by a factor equal to the current hierarchy

NOTE: Downsampling must be "causal"

(ex: if downsampling by 4x, cannot use a kernel of size > 4)

NOTE 2: Dowsampler at hierarchy 1 is just the identity function.

out = downsamplers[hierarchy](x[:, (top_hierarchy - hierarchy):-hierarchy], factor=hierarchy)

As input to the transformer, use a learned combination of

1) the upsampled representation from the previous hierarchy

2) the word-level representations downsampled to this scale

if upsampled_representation is not None:

out = gelu(linear_layers[hier](concatenate(

[out, upsampled_representation], dim=2)

))

Run all transformer layers at this hierarchy

for layer in transformer_layers[hierarchy]:

out = layer(out)

Upsample representations to the next tier if not the final hierarchy

if upsample_factors[i] > 1:

upsampled_representation = upsamplers[hierarchy](

out, factor=upsample_factors[i]

)

Compute LM loss

return CrossEntropy(

decoder(out), x[:, top_hierarchy:]

)

114

Listing 10.2. Bottom-up Model
def BottomupTransformerLM(

x, hierarchies, downsamplers, aggregation_layer,

transformer_layers, decoder

):

"""

Forward pass of the Bottom-up model.

Args:

x: a 2D tensor of token indices (batch size x time steps)

hierarchies: a sorted (descending) list of hierarchies (ex: [16, 4, 1])

downsamplers: a ModuleDict of downsampling functions for each hierarchy

transformer_layers: a single transformer layer that aggregates representations from different time scales

transformer_layers: a ModuleDict of autoregressive transformer decoders

for each hierarchy

decoder: a Linear layer from emb_dim to vocab size

Returns:

loss: a scalar that contains average cross-entropy

"""

(batch size x time step x embedding dim)

x = WordAndPositionEmbeddings(x[:, :-1])

Get factor by which to downsample at each layer.

downsample_factors = [

cur // next

for cur, next in zip(hierarchies[:-1], hierarchies[1:])

][::-1]

representations = []

for i, hierarchy in enumerate(hierarchies[1:][::-1]):

Downsample the input by ratio between the next and current time scale

NOTE: Downsampling must be "causal"

(ex: if downsampling by 4x, cannot use a kernel of size > 4)

NOTE 2: Dowsampler at hierarchy 1 is just the identity function.

out = downsamplers[hierarchy](x, factor=downsample_factors[i])

Run all transformer layers at this hierarchy

for layer in transformer_layers[hierarchy]:

out = layer(out)

representations.append(out)

Aggregate information from different scales with x as query and each representation as key \& value

out = aggregation_layer(x[:, :-1], representations)

Run transformer layers at the finest scale

for layer in transformer_layers[’1’]

out = layer(out)

Compute LM loss

return CrossEntropy(decoder(out), x[:, 1:])

115

Listing 10.3. Retina Model
def RetinaTransformerLM(

x, hierarchies, downsamplers,

attention_masks, transformer_layers, decoder

):

"""

Forward pass of the retina model.

Args:

x: a 2D tensor of token indices (batch size x time steps)

hierarchies: a sorted (descending) list of hierarchies (ex: [16, 4, 1])

downsamplers: a ModuleDict of downsampling functions for each hierarchy

attention_masks: a ModuelDict of tensors for each hierarchy that has the attention mask

transformer_layers: a list of autoregressive transformer layers with appropriate attention masks

decoder: a Linear layer from emb_dim to vocab size

Returns:

loss: a scalar that contains average cross-entropy

"""

(batch size x time step x embedding dim)

x = WordAndPositionEmbeddings(x)

for i, layer in enumerate(transformer_layers):

Get representations at all time scales by downsampling

NOTE: Downsampling must be "causal"

(ex: if downsampling by 4x, cannot use a kernel of size > 4)

NOTE 2: Dowsampler at hierarchy 1 is just the identity function.

representations = [

downsamplers[hierarchy](x[:, :-1], factor=hierarchy)

for hierarchy in in hierarchies

]

Attention masks specify what positions to look at from the representations at different time scales

x = layer(representations, attention_mask=attention_masks)

Compute LM loss

return CrossEntropy(decoder(x), x[:, 1])

116

Chapter 11

Conclusion

The articles presented as a part of this thesis are at the intersection of representation learning
and generative modeling for natural language processing.

(1) Representation Learning for Sentences (Chapter 4): In Subramanian et al.
(2018c), we present a multi-task learning approach to learning fixed-length distributed
sentence representations that achieve strong results on downstream transfer learning
tasks without any model fine-tuning.

(2) Latent Space Generative Models for Sentences (Chapter 6): In Subramanian
et al. (2018b), we present a way to leverage pre-trained sentence representations from
Subramanian et al. (2018c) to train generative models. Specifically, we propose a two-
step process where (1) a GAN models the distribution of sentence representations
from Subramanian et al. (2018c) and produces synthetic sentence embeddings (2) an
autoregressive RNN decoder is trained to reconstruct the contents of the sentence
embedding to generate text.

(3) Controllable Text Generation and “Style Transfer” (Chapter 8): A large frac-
tion of controllable text generation systems rely on the idea that control over a partic-
ular attribute (or style) requires building disentangled representations that separate
content and style (Hu et al., 2017; Shen et al., 2017b; Fu et al., 2017). In Subramanian
et al. (2018a), we demonstrate that representations produced in previous work that
uses domain adversarial training are not disentangled in practice. We then present
an approach that does not aim to learn disentangled representations and show that
it achieves significantly better results than prior work.

(4) Multi-Scale Transformer Language Models (Chapter 10): Over the past few
years, Transformers (Vaswani et al., 2017) have emerged as the neural architecture
of choice for several tasks in NLP including language modeling. Their use, however,
comes at the cost of a large memory footprint, which is quadratic in the length
of the sequence since they require storing associations scores between every pair of

positions in a sequence. The community has therefore explored memory-efficient
variants using sparsity and compression as inductive biases (Child et al., 2019; Rae
et al., 2019). In Subramanian et al. (2020), we explored building transformers that
contain representations at multiple time scales as an inductive bias for language
modeling of long sequences that have a smaller footprint than a vanilla transformer.
We demonstrated that such models have favorable memory footprint vs likelihood
trade-offs and can contain many more parameters than vanilla transformers for the
same memory and compute budget.

In the subsequent sections, we will discuss some shortcomings of existing generative
models and discuss a potential future research direction to address a few of these pitfalls.

11.1. On Memory & Better Inductive Biases for Trans-

formers

A combination of large amounts of data and big transformer language models has yielded
significant advances in text generation (Radford et al., 2018, 2019). They are capable of
generating fairly coherent and fluent sequences of a few hundred words. However, some of
the more ambitious goals in the field such as coherent story generation will require scaling
to much longer sequences. This becomes prohibitively hard for transformer models since
attending over all of the words in an entire novel is computationally infeasible.

Grammar has a strong local structure and while local attention (Parmar et al., 2018; Child
et al., 2019) is a good inductive bias to generate fluent text, long-term coherence, faithfulness
and factual consistency to the plot of a story are hard to achieve without attending over the
entire history. Recent work that reduces the memory footprint of self-attention from O(N2)

to O(N logN) or O(N) (Tay et al. (2020b) present a survey of such work) is promising,
however, it remains unclear if they come at the cost of expressiveness and underperform
global attention (Tay et al., 2020a). A potential alternative is better memory structures -
instead of trying to fit very long sequences into memory for backpropagation, we can cache
old activations (that receive no gradient) and retrieve a small subset of them on the fly
(Khandelwal et al., 2019b) or use training examples as non-parametric memory that can be
retrieved (Guu et al., 2020) conditioned on the current input sequence.

As models get larger with hundreds of billions of parameters, (Brown et al., 2020; Fedus
et al., 2021) the axes along which to scale are important to consider. Scaling purely by adding
parameters to the model has pitfalls - they are hard to adapt to data that is constantly
changing (Lazaridou et al., 2021). For example, a language model has to adapt to changing
facts about the world, such as the presidents of countries, that evolve with time. Explicit
separation of model parameters and external memory allows one to edit memories while
keeping parameters fixed to generalize better to non-static data.

118

11.2. Modeling Long-tail, Low-frequency Phenomena, and

Systematic Generalization

While large-scale transformer language models are often able to generate grammatically
accurate language, they often struggle to adequately model phenomena that are infrequent in
the training data. For example, a language model that reads a few documents about suitcases
may not be able to reliably learn about the ways in which it can be used in the real world,
and as a consequence, incorrectly generate sentences that are not plausible, example GPT-2
completes the prefix “I used a suitcase to” with “get up the stairs ...”. Although grammatically
correct, it is very likely implausible. In Subramanian et al. (2019), we built abstractive
document summarization systems using such large-scale transformer language models and
like several pieces of work have pointed out, our system often generated factually incorrect
summaries and hallucinated details not present in the input document. The community
at present relies largely on automatic metrics that compute some form of lexical overlap
between model-generated outputs and one or more references such as BLEU or ROUGE
to evaluate conditional text generation systems. While correlated with human judgments of
summarization quality, they fail to adequately measure things such as the factual correctness
of summaries. Some targeted evaluations of factual correctness (Kryściński et al., 2019; Wang
et al., 2020) are gaining traction, but they are nonetheless still specific to summarization, and
more general methods to understand the shortcomings of language models will help inform
better model design. Perplexity or log-likelihoods, that are commonly used to evaluate
language models weigh the likelihood scores of each word equally. Models that have better
likelihoods may do so just by better modeling high-frequency words. We observed this in
Subramanian et al. (2020), where transformers that use local attention achieve likelihoods
close to global attention models but produce poor samples. Looking at the breakdown
of likelihoods by word frequency, however, revealed that local attention did as well and
sometimes better than global attention with high-frequency words but much worse with
low-frequency ones.

119

References

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg. Fine-
grained analysis of sentence embeddings using auxiliary prediction tasks. arXiv preprint
arXiv:1608.04207, 2016.

Guozhong An. The effects of adding noise during backpropagation training on a generaliza-
tion performance. Neural computation, 8(3):643–674, 1996.

Martin Arjovsky and Léon Bottou. Towards principled methods for training generative
adversarial networks. arXiv preprint arXiv:1701.04862, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for
sentence embeddings. 2016.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun Cho. Unsupervised neural
machine translation. In International Conference on Learning Representations (ICLR),
2018.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

Alexei Baevski and Michael Auli. Adaptive input representations for neural language mod-
eling. arXiv preprint arXiv:1809.10853, 2018.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In Advances in
Neural Information Processing Systems, pp. 688–699, 2019.

James K Baker. Trainable grammars for speech recognition. The Journal of the Acoustical
Society of America, 65(S1):S132–S132, 1979.

Jonathan Baxter et al. A model of inductive bias learning. J. Artif. Intell. Res.(JAIR), 12
(149-198):3, 2000.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James R Glass. What
do neural machine translation models learn about morphology? In ACL (1), 2017.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document trans-
former. arXiv preprint arXiv:2004.05150, 2020.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural proba-
bilistic language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise
training of deep networks. In Advances in neural information processing systems, pp.
153–160, 2007.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review
and new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35
(8):1798–1828, 2013.

Yoshua Bengio et al. Learning deep architectures for ai. Foundations and trends R� in Machine
Learning, 2(1):1–127, 2009.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word
vectors with subword information. arXiv preprint arXiv:1607.04606, 2016.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai.
Man is to computer programmer as woman is to homemaker? debiasing word embeddings.
In Advances in Neural Information Processing Systems, pp. 4349–4357, 2016.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large
annotated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326,
2015a.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349,
2015b.

Samuel R Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D Manning,
and Christopher Potts. A fast unified model for parsing and sentence understanding. arXiv
preprint arXiv:1603.06021, 2016.

James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-recurrent
neural networks. arXiv preprint arXiv:1611.01576, 2016.

Peter F Brown, Stephen A Della Pietra, Vincent J Della Pietra, and Robert L Mercer. The
mathematics of statistical machine translation: Parameter estimation. Computational
linguistics, 19(2):263–311, 1993.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Peter Burt and Edward Adelson. The laplacian pyramid as a compact image code. IEEE
Transactions on communications, 31(4):532–540, 1983.

122

Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joelle Pineau, and Laurent
Charlin. Language gans falling short. arXiv preprint arXiv:1811.02549, 2018.

Keith Carlson, Allen Riddell, and Daniel Rockmore. Zero-shot style transfer in text using
recurrent neural networks. arXiv preprint arXiv:1711.04731, 2017.

William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition. In 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4960–
4964. IEEE, 2016.

Tong Che, Yanran Li, Ruixiang Zhang, R Devon Hjelm, Wenjie Li, Yangqiu Song, and
Yoshua Bengio. Maximum-likelihood augmented discrete generative adversarial networks.
arXiv preprint arXiv:1702.07983, 2017.

Mickaël Chen, Ludovic Denoyer, and Thierry Artières. Multi-view data generation without
view supervision. In ICLR 2018, 2017a.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. Enhanced
lstm for natural language inference. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pp. 1657–
1668, 2017b.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
Infogan: Interpretable representation learning by information maximizing generative ad-
versarial nets. In Advances in Neural Information Processing Systems, pp. 2172–2180,
2016.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural
networks. arXiv preprint arXiv:1609.01704, 2016.

Ondřej Cífka, Aliaksei Severyn, Enrique Alfonseca, and Katja Filippova. Eval all, trust
a few, do wrong to none: Comparing sentence generation models. arXiv preprint
arXiv:1804.07972, 2018.

Stephen Clark and Stephen Pulman. Combining symbolic and distributional models of
meaning. In Proceedings of the AAAI Spring Symposium on Quantum Interaction ‚Stanford
‚CA ‚2007, 2007.

123

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine
Learning Research, 12(Aug):2493–2537, 2011.

Alexi Conneau, German Kruszewski, Guillaume Lample, Loïc Barrault, and Marco Baroni.
What you can cram into a single vector: Probing sentence embeddings for linguistic prop-
erties. arXiv preprint arXiv:1805.01070, 2018.

Alexis Conneau and Douwe Kiela. Senteval: An evaluation toolkit for universal sentence
representations. arXiv preprint arXiv:1803.05449, 2018.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes. Super-
vised learning of universal sentence representations from natural language inference data.
arXiv preprint arXiv:1705.02364, 2017a.

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé
Jégou. Word translation without parallel data. arXiv preprint arXiv:1710.04087, 2017b.

Gonçalo M Correia, Vlad Niculae, and André FT Martins. Adaptively sparse transformers.
arXiv preprint arXiv:1909.00015, 2019.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhut-
dinov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860, 2019.

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc V Le. Funnel-transformer: Filtering out
sequential redundancy for efficient language processing. arXiv preprint arXiv:2006.03236,
2020.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino,
Jason Yosinski, and Rosanne Liu. Plug and play language models: a simple approach to
controlled text generation. arXiv preprint arXiv:1912.02164, 2019.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with
gated convolutional networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 933–941. JMLR. org, 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using
a laplacian pyramid of adversarial networks. In Advances in neural information processing
systems, pp. 1486–1494, 2015.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and Haifeng Wang. Multi-task learning for
multiple language translation. In ACL (1), pp. 1723–1732, 2015.

124

Cicero Nogueira dos Santos, Igor Melnyk, and Inkit Padhi. Fighting offensive language on
social media with unsupervised text style transfer. arXiv preprint arXiv:1805.07685, 2018.

Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning.
arXiv preprint arXiv:1603.07285, 2016.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Mar-
tin Arjovsky, and Aaron Courville. Adversarially learned inference. arXiv preprint
arXiv:1606.00704, 2016.

Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-
translation at scale. arXiv preprint arXiv:1808.09381, 2018.

David Eigen and Rob Fergus. Predicting depth, surface normals and semantic labels with a
common multi-scale convolutional architecture. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 2650–2658, 2015.

Salah El Hihi and Yoshua Bengio. Hierarchical recurrent neural networks for long-term
dependencies. In Advances in neural information processing systems, pp. 493–499, 1996.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.
Jesse Engel, Matthew Hoffman, and Adam Roberts. Latent constraints: Learning to generate

conditionally from unconditional generative models. arXiv preprint arXiv:1711.05772,
2017.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv
preprint arXiv:1805.04833, 2018.

Manaal Faruqui and Chris Dyer. Community evaluation and exchange of word vectors at
wordvectors. org. 2014.

William Fedus, Ian Goodfellow, and Andrew M Dai. Maskgan: Better text generation via
filling in the _. arXiv preprint arXiv:1801.07736, 2018.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961,
2021.

Jessica Ficler and Yoav Goldberg. Controlling linguistic style aspects in neural language
generation. arXiv preprint arXiv:1707.02633, 2017.

John R Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis, 1957.
Jeremy Freeman and Eero P Simoncelli. Metamers of the ventral stream. Nature neuro-

science, 14(9):1195, 2011.
Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, and Rui Yan. Style transfer in text:

Exploration and evaluation. arXiv preprint arXiv:1711.06861, 2017.
Kunihiko Fukushima, Sei Miyake, and Takayuki Ito. Neocognitron: A neural network model

for a mechanism of visual pattern recognition. IEEE transactions on systems, man, and
cybernetics, (5):826–834, 1983.

125

Zhe Gan, Yunchen Pu, Ricardo Henao, Chunyuan Li, Xiaodong He, and Lawrence Carin.
Unsupervised learning of sentence representations using convolutional neural networks.
arXiv preprint arXiv:1611.07897, 2016.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training
of neural networks. The Journal of Machine Learning Research, 17(1):2096–2030, 2016.

Vikas K Garg, Inderjit S Dhillon, and Hsiang-Fu Yu. Multiresolution transformer net-
works: Recurrence is not essential for modeling hierarchical structure. arXiv preprint
arXiv:1908.10408, 2019.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convo-
lutional sequence to sequence learning. pp. 1243–1252, 2017.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pp. 249–256, 2010.

Irving J Good. The population frequencies of species and the estimation of population
parameters. Biometrika, 40(3-4):237–264, 1953.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pp. 2672–2680, 2014.

Anirudh Goyal, Nan Rosemary Ke, Alex Lamb, R Devon Hjelm, Chris Pal, Joelle Pineau,
and Yoshua Bengio. Actual: Actor-critic under adversarial learning. arXiv preprint
arXiv:1711.04755, 2017a.

Anirudh Goyal, Alessandro Sordoni, Marc-Alexandre Côté, Nan Ke, and Yoshua Bengio.
Z-forcing: Training stochastic recurrent networks. In Advances in Neural Information
Processing Systems, pp. 6716–6726, 2017b.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. Improved training of wasserstein gans. In Advances in Neural Information
Processing Systems, pp. 5769–5779, 2017.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm:
Retrieval-augmented language model pre-training. arXiv preprint arXiv:2002.08909, 2020.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher. A joint
many-task model: Growing a neural network for multiple nlp tasks. arXiv preprint
arXiv:1611.01587, 2016.

Jeff Hawkins and Sandra Blakeslee. On intelligence: How a new understanding of the brain
will lead to the creation of truly intelligent machines. Macmillan, 2007.

126

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tieyan Liu, and Wei-Ying Ma. Dual
learning for machine translation. In Advances in Neural Information Processing Systems,
pp. 820–828, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016b.

Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fash-
ion trends with one-class collaborative filtering. In proceedings of the 25th international
conference on world wide web, pp. 507–517. International World Wide Web Conferences
Steering Committee, 2016.

Kenneth Heafield. Kenlm: Faster and smaller language model queries. In Proceedings of the
Sixth Workshop on Statistical Machine Translation, pp. 187–197. Association for Compu-
tational Linguistics, 2011.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Günter Klam-
bauer, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a
nash equilibrium. arXiv preprint arXiv:1706.08500, 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual
concepts with a constrained variational framework. In International Conference on Learn-
ing Representations (ICLR), 2017.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. Learning distributed representations of
sentences from unlabelled data. In HLT-NAACL, 2016.

Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Transforming auto-encoders. In
International Conference on Artificial Neural Networks, pp. 44–51. Springer, 2011.

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Technische
Universität München, 91(1), 1991.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9
(8):1735–1780, November 1997a. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL
http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997b.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing. Toward
controlled generation of text. In International Conference on Machine Learning, pp. 1587–
1596, 2017.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation
with conditional adversarial networks. CVPR, 2017.

127

Sarthak Jain and Byron C Wallace. Attention is not explanation. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 3543–
3556, 2019.

Stanisław Jastrzebski, Damian Leśniak, and Wojciech Marian Czarnecki. How to evaluate
word embeddings? on importance of data efficiency and simple supervised tasks. arXiv
preprint arXiv:1702.02170, 2017.

Yacine Jernite, Samuel R Bowman, and David Sontag. Discourse-based objectives for fast
unsupervised sentence representation learning. arXiv preprint arXiv:1705.00557, 2017.

Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga Vechtomova. Disentangled representa-
tion learning for non-parallel text style transfer. arXiv preprint arXiv:1808.04339, 2018.

MI Jordan. Serial order: a parallel distributed processing approach. technical report, june
1985-march 1986. Technical report, California Univ., San Diego, La Jolla (USA). Inst. for
Cognitive Science, 1986.

Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou, and
Tomas Mikolov. Fasttext. zip: Compressing text classification models. arXiv preprint
arXiv:1612.03651, 2016a.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for
efficient text classification. arXiv preprint arXiv:1607.01759, 2016b.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring
the limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv preprint arXiv:2001.08361, 2020.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans
for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Urvashi Khandelwal, He He, Peng Qi, and Dan Jurafsky. Sharp nearby, fuzzy far away: How
neural language models use context. arXiv preprint arXiv:1805.04623, 2018.

Urvashi Khandelwal, Kevin Clark, Dan Jurafsky, and Lukasz Kaiser. Sample efficient text
summarization using a single pre-trained transformer. In arXiv:1905.08836v1 [cs.CL] 21
May 2019, 2019a.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Gen-
eralization through memorization: Nearest neighbor language models. arXiv preprint
arXiv:1911.00172, 2019b.

Yoon Kim, Kelly Zhang, Alexander M Rush, Yann LeCun, et al. Adversarially regularized
autoencoders for generating discrete structures. arXiv preprint arXiv:1706.04223, 2017.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

128

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio
Torralba, and Sanja Fidler. Skip-thought vectors. In Advances in neural information
processing systems, pp. 3294–3302, 2015.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
In International Conference on Learning Representations, 2019.

Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram language modeling.
In 1995 International Conference on Acoustics, Speech, and Signal Processing, volume 1,
pp. 181–184. IEEE, 1995.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico,
Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Ondrej Bo-
jar Chris Dyer, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for
statistical machine translation. In Annual Meeting of the Association for Computational
Linguistics (ACL), demo session, 2007.

Iasonas Kokkinos. Ubernet: Training auniversal’convolutional neural network for low-,
mid-, and high-level vision using diverse datasets and limited memory. arXiv preprint
arXiv:1609.02132, 2016.

Vladyslav Kolesnyk, Tim Rocktäschel, and Sebastian Riedel. Generating natural language
inference chains. arXiv preprint arXiv:1606.01404, 2016.

Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. A clockwork rnn.
arXiv preprint arXiv:1402.3511, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pp.
1097–1105, 2012.

Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher. Evaluating the
factual consistency of abstractive text summarization. arXiv preprint arXiv:1910.12840,
2019.

Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep convo-
lutional inverse graphics network. In Advances in neural information processing systems,
pp. 2539–2547, 2015.

Matt J Kusner and José Miguel Hernández-Lobato. Gans for sequences of discrete elements
with the gumbel-softmax distribution. arXiv preprint arXiv:1611.04051, 2016.

Alex M Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron C Courville, and Yoshua
Bengio. Professor forcing: A new algorithm for training recurrent networks. In Advances
In Neural Information Processing Systems, pp. 4601–4609, 2016.

Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining. arXiv
preprint arXiv:1901.07291, 2019.

129

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris
Dyer. Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360,
2016.

Guillaume Lample, Ludovic Denoyer, and Marc’Aurelio Ranzato. Unsupervised machine
translation using monolingual corpora only. arXiv preprint arXiv:1711.00043, 2017a.

Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes, Ludovic Denoyer, et al.
Fader networks: Manipulating images by sliding attributes. In Advances in Neural Infor-
mation Processing Systems, pp. 5967–5976, 2017b.

Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio
Ranzato. Phrase-based & neural unsupervised machine translation. arXiv preprint
arXiv:1804.07755, 2018.

Angeliki Lazaridou, Adhiguna Kuncoro, Elena Gribovskaya, Devang Agrawal, Adam Liska,
Tayfun Terzi, Mai Gimenez, Cyprien de Masson d’Autume, Sebastian Ruder, Dani Yo-
gatama, et al. Pitfalls of static language modelling. arXiv preprint arXiv:2102.01951,
2021.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne E Hubbard, and Lawrence D Jackel. Handwritten digit recognition with a back-
propagation network. In Advances in neural information processing systems, pp. 396–404,
1990.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436,
2015.

Juncen Li, Robin Jia, He He, and Percy Liang. Delete, retrieve, generate: A simple approach
to sentiment and style transfer. arXiv preprint arXiv:1804.06437, 2018.

Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks. In Advances in
neural information processing systems, pp. 469–477, 2016.

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser,
and Noam Shazeer. Generating wikipedia by summarizing long sequences. arXiv preprint
arXiv:1801.10198, 2018.

Yang Liu and Mirella Lapata. Hierarchical transformers for multi-document summarization.
arXiv preprint arXiv:1905.13164, 2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser. Multi-task
sequence to sequence learning. arXiv preprint arXiv:1511.06114, 2015a.

130

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to
attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015b.

Florian Mai, Nikolaos Pappas, Ivan Montero, Noah A Smith, and James Henderson. Plug
and play autoencoders for conditional text generation. arXiv preprint arXiv:2010.02983,
2020.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey.
Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

Charles C Margossian. A review of automatic differentiation and its efficient implementation.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(4):e1305, 2019.

Alexander Patrick Mathews, Lexing Xie, and Xuming He. Senticap: Generating image
descriptions with sentiments. In AAAI, pp. 3574–3580, 2016.

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in transla-
tion: Contextualized word vectors. arXiv preprint arXiv:1708.00107, 2017.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose
Sotelo, Aaron Courville, and Yoshua Bengio. Samplernn: An unconditional end-to-end
neural audio generation model. arXiv preprint arXiv:1612.07837, 2016.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel
mixture models. arXiv preprint arXiv:1609.07843, 2016.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing
lstm language models. arXiv preprint arXiv:1708.02182, 2017.

Paul Michel and Graham Neubig. Extreme adaptation for personalized neural machine
translation. arXiv preprint arXiv:1805.01817, 2018.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur.
Recurrent neural network based language model. In Eleventh Annual Conference of the
International Speech Communication Association, 2010.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pp. 3111–3119, 2013.

Alexander H Miller, Will Feng, Adam Fisch, Jiasen Lu, Dhruv Batra, Antoine Bordes, Devi
Parikh, and Jason Weston. Parlai: A dialog research software platform. arXiv preprint
arXiv:1705.06476, 2017.

Marvin Minsky and Seymour Papert. An introduction to computational geometry. Cam-
bridge tiass., HIT, 1969.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

131

Jeff Mitchell and Mirella Lapata. Vector-based models of semantic composition. In ACL,
pp. 236–244, 2008.

Tom M Mitchell et al. Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45(37):870–877,
1997.

Nikola Mrkšić, Ivan Vulić, Diarmuid Ó Séaghdha, Ira Leviant, Roi Reichart, Milica Gašić,
Anna Korhonen, and Steve Young. Semantic specialisation of distributional word vector
spaces using monolingual and cross-lingual constraints. arXiv preprint arXiv:1706.00374,
2017.

Tsendsuren Munkhdalai and Hong Yu. Neural semantic encoders. In Proceedings of the
conference. Association for Computational Linguistics. Meeting, volume 1, pp. 397. NIH
Public Access, 2017.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In ICML, 2010.

Anh Nguyen, Jason Yosinski, Yoshua Bengio, Alexey Dosovitskiy, and Jeff Clune. Plug &
play generative networks: Conditional iterative generation of images in latent space. arXiv
preprint arXiv:1612.00005, 2016.

Allen Nie, Erin D Bennett, and Noah D Goodman. Dissent: Sentence representation learning
from explicit discourse relations. arXiv preprint arXiv:1710.04334, 2017.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural
samplers using variational divergence minimization. In Advances in Neural Information
Processing Systems, pp. 271–279, 2016.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. Unsupervised learning of sentence
embeddings using compositional n-gram features. arXiv preprint arXiv:1703.02507, 2017.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for au-
tomatic evaluation of machine translation. In Proceedings of the 40th annual meeting
on association for computational linguistics, pp. 311–318. Association for Computational
Linguistics, 2002.

Ankur P Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable
attention model for natural language inference. arXiv preprint arXiv:1606.01933, 2016.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander
Ku, and Dustin Tran. Image transformer. arXiv preprint arXiv:1802.05751, 2018.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding gradient
problem. CoRR, abs/1211.5063, 2(417):1, 2012.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. pp. 1310–1318, 2013.

Denis G Pelli and Katharine A Tillman. The uncrowded window of object recognition.
Nature neuroscience, 11(10):1129, 2008.

132

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In EMNLP, volume 14, pp. 1532–1543, 2014.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint
arXiv:1802.05365, 2018.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen,
Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space
noise for exploration. arXiv preprint arXiv:1706.01905, 2017.

Ben Poole, Jascha Sohl-Dickstein, and Surya Ganguli. Analyzing noise in autoencoders and
deep networks. CoRR, abs/1406.1831, 2014. URL http://arxiv.org/abs/1406.1831.

Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhutdinov, and Alan W Black. Style
transfer through back-translation. arXiv preprint arXiv:1804.09000, 2018.

Ofir Press, Amir Bar, Ben Bogin, Jonathan Berant, and Lior Wolf. Language genera-
tion with recurrent generative adversarial networks without pre-training. arXiv preprint
arXiv:1706.01399, 2017.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learning to generate reviews and dis-
covering sentiment. arXiv preprint arXiv:1704.01444, 2017.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. 2019.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compres-
sive transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507,
2019.

Sai Rajeswar, Sandeep Subramanian, Francis Dutil, Christopher Pal, and Aaron Courville.
Adversarial generation of natural language. arXiv preprint arXiv:1705.10929, 2017.

Sravana Reddy and Kevin Knight. Obfuscating gender in social media writing. In Proceedings
of the First Workshop on NLP and Computational Social Science, pp. 17–26, 2016.

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive
auto-encoders: Explicit invariance during feature extraction. In Proceedings of the 28th
International Conference on International Conference on Machine Learning, pp. 833–840.
Omnipress, 2011.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and orga-
nization in the brain. Psychological review, 65(6):386, 1958.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. nature, 323(6088):533–536, 1986.

Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model for ab-
stractive sentence summarization. CoRR, abs/1509.00685, 2015. URL http://arxiv.

133

org/abs/1509.00685.
Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and

Xi Chen. Improved techniques for training gans. In Advances in Neural Information
Processing Systems, pp. 2234–2242, 2016.

Chinnadhurai Sankar, Sandeep Subramanian, Christopher Pal, Sarath Chandar, and Yoshua
Bengio. Do neural dialog systems use the conversation history effectively? an empirical
study. arXiv preprint arXiv:1906.01603, 2019.

Jürgen Schmidhuber. Learning complex, extended sequences using the principle of history
compression. Neural Computation, 4(2):234–242, 1992.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE trans-
actions on Signal Processing, 45(11):2673–2681, 1997.

Stanislau Semeniuta, Aliaksei Severyn, and Sylvain Gelly. On accurate evaluation of gans
for language generation. arXiv preprint arXiv:1806.04936, 2018.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine transla-
tion models with monolingual data. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, pp. 86–96, 2015a.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, pp. 1715–1725, 2015b.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C Courville, and Joelle
Pineau. Building end-to-end dialogue systems using generative hierarchical neural network
models. 2016.

Samira Shabanian, Devansh Arpit, Adam Trischler, and Yoshua Bengio. Variational bi-lstms.
arXiv preprint arXiv:1711.05717, 2017.

Dinghan Shen, Yizhe Zhang, Ricardo Henao, Qinliang Su, and Lawrence Carin. Deconvolu-
tional latent-variable model for text sequence matching. arXiv preprint arXiv:1709.07109,
2017a.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. Style transfer from non-
parallel text by cross-alignment. In Advances in Neural Information Processing Systems,
pp. 6833–6844, 2017b.

Yikang Shen, Shawn Tan, Chin-Wei Huang, and Aaron Courville. Generating contradictory,
neutral, and entailing sentences. arXiv preprint arXiv:1803.02710, 2018.

Xing Shi, Inkit Padhi, and Kevin Knight. Does string-based neural mt learn source syntax?
In EMNLP, pp. 1526–1534, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation
using deep conditional generative models. In Advances in Neural Information Processing

134

Systems, pp. 3483–3491, 2015.
Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob Grue Simon-

sen, and Jian-Yun Nie. A hierarchical recurrent encoder-decoder for generative context-
aware query suggestion. In Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management, pp. 553–562, 2015.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. Journal of
machine learning research, 15(1):1929–1958, 2014.

Sandeep Subramanian, Guillaume Lample, Eric Michael Smith, Ludovic Denoyer,
Marc’Aurelio Ranzato, and Y-Lan Boureau. Multiple-attribute text style transfer. arXiv
preprint arXiv:1811.00552, 2018a.

Sandeep Subramanian, Sai Rajeswar, Alessandro Sordoni, Adam Trischler, Aaron Courville,
and Christopher Pal. Towards text generation with adversarially learned neural outlines.
In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, pp. 7562–7574, 2018b.

Sandeep Subramanian, Adam Trischler, Yoshua Bengio, and Christopher J Pal. Learning
general purpose distributed sentence representations via large scale multi-task learning.
arXiv preprint arXiv:1804.00079, 2018c.

Sandeep Subramanian, Raymond Li, Jonathan Pilault, and Christopher Pal. On extractive
and abstractive neural document summarization with transformer language models. arXiv
preprint arXiv:1909.03186, 2019.

Sandeep Subramanian, Ronan Collobert, Marc’Aurelio Ranzato, and Y-Lan Boureau. Multi-
scale transformer language models. arXiv preprint arXiv:2005.00581, 2020.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive
attention span in transformers. arXiv preprint arXiv:1905.07799, 2019.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pp. 3104–3112, 2014.

Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised cross-domain image generation.
arXiv preprint arXiv:1611.02200, 2016.

Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang, and Virginia R de Sa. Rethinking
skip-thought: A neighborhood based approach. arXiv preprint arXiv:1706.03146, 2017.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng
Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark
for efficient transformers. arXiv preprint arXiv:2011.04006, 2020a.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A
survey. arXiv preprint arXiv:2009.06732, 2020b.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of
generative models. arXiv preprint arXiv:1511.01844, 2015.

135

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein
auto-encoders. arXiv preprint arXiv:1711.01558, 2017.

Gaurav Singh Tomar, Thyago Duque, Oscar Täckström, Jakob Uszkoreit, and Dipanjan
Das. Neural paraphrase identification of questions with noisy pretraining. arXiv preprint
arXiv:1704.04565, 2017.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guillaume Lample, and Chris Dyer. Evaluation
of word vector representations by subspace alignment. 2015.

Aaron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A genera-
tive model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

Vladimir Vapnik. Pattern recognition using generalized portrait method. Automation and
remote control, 24:774–780, 1963.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural
information processing systems, 2017.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting
and composing robust features with denoising autoencoders. In Proceedings of the 25th
international conference on Machine learning, pp. 1096–1103. ACM, 2008.

Oriol Vinyals and Quoc Le. A neural conversational model. arXiv preprint arXiv:1506.05869,
2015.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton.
Grammar as a foreign language. In Advances in Neural Information Processing Systems,
pp. 2773–2781, 2015.

Thomas SA Wallis, Christina M Funke, Alexander S Ecker, Leon A Gatys, Felix A Wich-
mann, and Matthias Bethge. Image content is more important than bouma’s law for scene
metamers. ELife, 8:e42512, 2019.

Alex Wang, Amapreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461, 2018.

Alex Wang, Kyunghyun Cho, and Mike Lewis. Asking and answering questions to evaluate
the factual consistency of summaries. arXiv preprint arXiv:2004.04228, 2020.

Ke Wang, Hang Hua, and Xiaojun Wan. Controllable unsupervised text attribute transfer
via editing entangled latent representation. In Advances in Neural Information Processing
Systems, pp. 11036–11046, 2019.

Zhiguo Wang, Wael Hamza, and Radu Florian. Bilateral multi-perspective matching for
natural language sentences. arXiv preprint arXiv:1702.03814, 2017.

Warren Weaver et al. Translation. Machine translation of languages, 14(15-23):10, 1955.

136

Joseph Weizenbaum. Eliza—a computer program for the study of natural language commu-
nication between man and machine. Communications of the ACM, 9(1):36–45, 1966.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason We-
ston. Neural text generation with unlikelihood training. arXiv preprint arXiv:1908.04319,
2019.

Paul Werbos. Beyond regression:" new tools for prediction and analysis in the behavioral
sciences. Ph. D. dissertation, Harvard University, 1974.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings
of the IEEE, 78(10):1550–1560, 1990.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Towards universal para-
phrastic sentence embeddings. arXiv preprint arXiv:1511.08198, 2015.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Charagram: Embedding
words and sentences via character n-grams. arXiv preprint arXiv:1607.02789, 2016.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. In Reinforcement Learning, pp. 5–32. Springer, 1992.

Terry Winograd. Understanding natural language. Cognitive psychology, 3(1):1–191, 1972.
Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang

Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural
machine translation system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

Jingjing Xu, Xu Sun, Qi Zeng, Xuancheng Ren, Xiaodong Zhang, Houfeng Wang, and
Wenjie Li. Unpaired sentiment-to-sentiment translation: A cycled reinforcement learning
approach. arXiv preprint arXiv:1805.05181, 2018.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov,
Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation
with visual attention. In International Conference on Machine Learning, pp. 2048–2057,
2015.

Jimei Yang, Scott E Reed, Ming-Hsuan Yang, and Honglak Lee. Weakly-supervised dis-
entangling with recurrent transformations for 3d view synthesis. In Advances in Neural
Information Processing Systems, pp. 1099–1107, 2015.

Zichao Yang, Zhiting Hu, Chris Dyer, Eric P Xing, and Taylor Berg-Kirkpatrick. Un-
supervised text style transfer using language models as discriminators. arXiv preprint
arXiv:1805.11749, 2018.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial
nets with policy gradient. In AAAI, pp. 2852–2858, 2017.

137

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Trans-
formers for longer sequences. arXiv preprint arXiv:2007.14062, 2020.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regulariza-
tion. arXiv preprint arXiv:1409.2329, 2014.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In Advances in neural information processing systems, pp. 649–657, 2015.

Ye Zhang, Nan Ding, and Radu Soricut. Shaped: Shared-private encoder-decoder for text
style adaptation. arXiv preprint arXiv:1804.04093, 2018a.

Zhirui Zhang, Shuo Ren, Shujie Liu, Jianyong Wang, Peng Chen, Mu Li, Ming Zhou,
and Enhong Chen. Style transfer as unsupervised machine translation. arXiv preprint
arXiv:1808.07894, 2018b.

Zhirui Zhang, Shuo Ren, Shujie Liu, Jianyong Wang, Peng Chen, Mu Li, Ming Zhou,
and Enhong Chen. Style transfer as unsupervised machine translation. arXiv preprint
arXiv:1808.07894, 2018c.

Yanpeng Zhao, Wei Bi, Deng Cai, Xiaojiang Liu, Kewei Tu, and Shuming Shi. Language style
transfer from sentences with arbitrary unknown styles. arXiv preprint arXiv:1808.04071,
2018.

Yinhe Zheng, Zikai Chen, Rongsheng Zhang, Shilei Huang, Xiaoxi Mao, and Minlie Huang.
Stylized dialogue response generation using stylized unpaired texts. arXiv preprint
arXiv:2009.12719, 2020.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu, Hongyun Bao, and Bo Xu. Text clas-
sification improved by integrating bidirectional lstm with two-dimensional max pooling.
arXiv preprint arXiv:1611.06639, 2016.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. arXiv preprint, 2017.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations
by watching movies and reading books. In Proceedings of the IEEE international confer-
ence on computer vision, pp. 19–27, 2015.

138

