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Sommaire

Le transport de la lumière permet de simuler physiquement le movement de photons dans
un environnement virtuel. En rendu d’images, la lumière se propage une dernière fois vers
un capteur virtuel la transformant en une image, affichée pour un observateur. Durant
ce voyage la lumière peut être analysée fréquentiellement pour comprendre ses variations
spatiales et angulaires afin d’accélerer le rendu. La génération d’images réalistes a subit de
grandes avancées au cours des dernières années, réduisant l’écart entre simulation et réalité.
Cependant les contraintes en terme de performance et de mémoire empêchent toujours aux
applications interactives et en temps-réel de bénéficier des effets de rendu les plus complexes.
Pour cela, les moteurs de rendu professionels modernes dépendent toujours de méthodes de
pré-calculation de données et de procédures asynchrones de traitement.

Cette thèse par article présente deux projets traitant du transport de la lumière à travers
une perspective fréquentielle dans le contexte d’applications interactives et en temps-réel.
Nous proposons premièrement une méthode pour réutiliser efficacement le calcul préalable de
chemins de lumière par méthode Monte Carlo pour des séquences animées. Nous prenons
avantage de l’analyse fréquentielle du transport de la lumière réalisée dans des travaux
antérieurs, étendue ici à l’échantillonement et reconstruction spatial, angulaire et temporel.
Notre seconde méthode pré-calcule le transport de la lumière à travers les volumes participatifs
jusqu’aux surfaces, que nous encodons comme réponse impulsive. Cet opérateur compacte et
efficace nous permet d’accélerer le transport à travers des volumes jusqu’aux surfaces dans le
contexte de diffusion multiple dans des conditions arbitraires de média participatifs.
Mots-clefs: Rendu réaliste, transport de la lumière, analyse fréquentielle, média participatif,
échantillonage adaptatif, filtrage, harmoniques sphériques.
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Summary

Light transport is the method of physically simulating the movement of photons in an
environment. Applied to rendering, light travels one last time to a virtual sensor that
captures it as an image displayed to an observer. As it travels, light is analysable frequentially
to understand how it varies spatially and angularly to accelerate rendering. Recent advances in
physically-based realistic rendering have been closing the gap between reality and simulation
but the memory and performance costs still preclude the inclusion of the more computationally
expensive effects in interactive and real-time applications. Because of this, modern production
renderers rely on the ahead-of-time precomputation of data for efficient reuse in the form of
offline computational processes and asynchronously distributed procedures.

This thesis by publication investigates with two papers the simulation of light transport
from a frequency-based perspective for interactive and precomputed real-time applications.
We first propose a method for efficiently reusing light path computations over time in
interactive Monte Carlo path-traced animation sequences. We leverage to this end the
frequency analysis of light transport introduced in previous works, extended to spatial,
angular and temporal sampling and reconstruction. Our second method investigates the
precomputation of participating volume-to-surface light transport as impulse responses, a
compact and efficient frequency-based transport operator. In turn, these operators accelerate
by orders of magnitude the computation of multi-scattered volume-to-surface transport in
arbitrary, potentially heterogeneous media conditions.
Keywords: Rendering, light transport, frequency analysis, participating media, adaptive
sampling, filtering, spherical harmonics.
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Rendering times per frame for our method and Durand et al. [10] are in red and
blue, respectively. Reconstruction times are provided using dashed lines of the same
color. Insets compare feature reconstruction our approach, equal-time Durand et
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21 Top left: 3-point geometry for radiance reflecting at x towards z as the sum
of radiance arriving from surface point y and all media points xy. Top right:
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attenuated surface radiance from y (black) and radiance arriving at x indirectly
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We ignore contributions from surfaces that are directly occluded, even though
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27 Cornell box with homogeneous media, 10-bounce inscattering-only without (a) and
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Chapter 1

Introduction

Computer graphics – or the computer-assisted generation of images – is an endeavor with a
decades-long history which product has become omnipresent. From line-drawing on CRT
displays to interactive virtual reality and photorealistic rendering, the field has evolved
drastically with the work of brilliant researchers, engineers and artists, bringing computer-
generated imagery to every devices and to varied disciplines ranging from the medical to the
entertainment industry.

Intersecting many fields, computer graphics relies on geometry, optics and physics among
others, is tightly tied with the creative and artistic processes, and evolves alongside the
hardware that allows its execution. The advances made in computing power have increased
our ability to experiment with physical models of light transport, geometric processing and
material synthesis, which in turn fuels always more efficient algorithms of rendering and
visualization.

Rendering – which has jokingly been described as “extreme data compression” with
the production of a final image as an advantageous side effect – is defined as the process
of generating synthetic images from a descriptive model, or scene – a set of virtual lights,
cameras, physical models, geometry and associated materials. The central problem that
rendering seeks to solve is to generate the colors of the objects that an observer sees.

Ubiquitous to video games, which made their way into the mainstream over the past two
decades, 3D CG has equally revolutionized film making. Computer-generated imagery(CGI)
now dominates the field of modern visual effects. The resulting photorealism – or drive to
imitate reality on artistic media – in many instances is enough to fool our visual senses:
virtual objects and physical phenomena are seamlessly embedded in photographic shots



and virtual worlds of increased geometric and lighting complexity, running over large-scale
physical simulation models like ocean water and weather effects.

Death Stranding (©2019 Sony)

Red Dead Redemption 2 (©2018 Rockstar Studios)

Blade Runner 2049 (©2017 Warner Bros.)

Fig. 1. In recent years, CGI quality has constantly evolved to build realistic worlds. Movies
(top-right) have always had lower frame time constraints and have increased the amount and
quality of special effects. In contrast, video-games (top-left, bottom) have quickly caught up,
exposing breathtaking worlds for players to explore in real-time.

More recently, physically based rendering(PBR) [62, 17] has aimed for models and
algorithms more anchored in the underlying physical principles of light transport and material
appearance, using strict regulations on measures and energy conservation that in turn
consolidate rendering pipelines and data sets. Always striving for efficiency, offline CG
animation rendering processes – which have the ability to last for hours or days for a frame –
have now benefited for a half a decade by the transition, boasting complex global illumination
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effects of photogrammetric materials and geometry; while interactive or realtime applications
such as games still heavily rely on precomputation methods to display the most expensive
effects to their players. Thus many challenges remain and advances often take the shape of
trade offs between performance, quality and interactivity.

Precomputation is one such method to offload data processing in an asynchronous way
ahead of – or amortized over – time. Being such a general term, it takes many form such as pre-
constructed hierarchical spatial data structures for scene management (e.g., for accelerating
ray-tracing), temporal data caches allowing an algorithm to carry information over a sequence
of frames, or light transport operators, that register in advance the physical behavior of
light over surfaces and volumes for the purpose of reuse under varied illuminations. These
methods, though ranging in use cases, are most often based on presumptive spatio-angular
knowledge of the problem to be solved, such as – respectively to the above examples – the
geometrical topology of a scene, the motion vectors of objects, and the reflectance of a
material. Such precomputed cache designs are valid as long as the presuppositions made
during their generation continue to hold true. This often is the case and exceptions to the
rule are usually treated separately with specialized costlier solutions.

Ray-tracing has been the tried and true method of estimating the behavior of light in
a virtual environment and an intuitive solution for light transport. Travelling at the speed
of light, photon particles scatter around us until their absorption by matter. In ray-tracing,
this behavior is abstracted by a segment between two locations, or ray originating from a
position in a given direction. A sensor such as a camera lens or the human eye may be at the
receiving end of such paths of light, which integrates contributing results as visible colors.
What defines which color is seen or captured depends on various physical variables such as
the power of the light source, the sensor mechanism and the many particles of matter the
light has interacted with before reaching that destination. This multitude of variables and
the infinite-dimensional nature of lighting interactions makes path-tracing and light transport
vibrant fields of research.

Described above as scattering photon particles, light is more thoroughly defined as
electromagnetic radiation over a wavelength spectrum. Frequency analysis of light transport
aims to better understand the intricate behavior of light by examining the changes in its
frequency spectrum as it travels and interacts with matter. This is an interesting topic, in
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that it can be used not only as a tool to retrieve prior knowledge about the complexity of
the light integrand at any particular location, and thus the adaptive amount of work needed
to solve it; but also as a mechanism for the encoding of lighting signals in the context of
illumination caching and reuse. The frequency content of the lighting signal may thus be
bounded as a mean of defining the variations within the domains of integration along its
path, or to adequately adjust lighting proxy representations for storage and to reduce the
processing cost of rendering algorithms.

This thesis presents two examples of rendering techniques solving complex light transport
scenarios for interactive applications. The first work proposes an adaptive ray-traced shading
computation amortized over time for the purpose of rendering interactive animations. The
second work presents a novel perspective on precomputing the influence of participating
media in light transport for real-time rendering. Both works study the behavior of light
transport with the help of frequency-space based analyses and offer practical applications via
the use of cache systems.
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1.1. Summary of Contributions

The main contributions of this thesis include
Frequency Analysis of Sample Placement and Reuse. Chapter 1.

• We extend the frequency analysis of light transport by Durand [23] towards sample
placement and reconstruction across animation frames, amortizing shading cost in
the spatial, temporal and integration domains.
• We introduce an adaptive integration strategy taking cues from our frequency analysis
based on material, lighting and visibility bandwidths.
• We present a lightweight sample caching framework for adaptively discard, reuse and
recompute shading and occlusion over time according to our frequency criteria.

Spherical Impulse Responses of Scattered Light. Chapter 2.
• We propose a novel formulation and analysis of the impulse response of inscattered
light in participating media for point, directional and differential area emitters.
• We extend the analysis to treat multiple scattering, heterogeneous media and
anisotropic phase functions.
• We propose a compact, precomputed-once tabular Zonal Harmonics parameterization
of our impulse responses to quickly apply volume-to-surface transport to precomputed
lightmap, vertex and probe targets, and implemented in a modern AAA video game.
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1.2. Organization of this Document

This thesis is divided in four chapters. The remainder of the introduction delves into the
theoretical background material and state of the art in rendering related to the topics presented
above and helful to the comprehension of the works exposed in later chapters. Section 1.3
introduces the fundamentals of light transport in vacuum, based on geometrical optics.
Section 1.4 supplements these fundamentals to account for the presence of volumetric media
and describes the various interactions between light and thin particulate mater. Section 1.5
explores the different manners in which frequency analysis is used as a mathematical tool
to further study the behavior of light and its interactions in an environment. Section 1.6
presents various storage schemes that are used to cache illumination for further reuse, spatially
and/or temporally. The following chapters present our published works. In Chapter 1 we
present our first contribution, a ray tracing framework leveraging a frequency analysis of
spatio-temporal sampling and reconstruction and using sample caching to preserve temporal
coherency in the context of rendering animations. We describe in Chapter 2 a method to
represent volume-to-surface transport during lighting precomputation built upon a novel
model of the impulse response of scattered light: an efficient and compact representation
of the influence of participating media in light transport. Finally, we conclude in the last
Chapter by outlining our contributions and examine further avenues of research.
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1.3. Fundamentals of Light Transport

Rendering considers the spatio-temporal behavior of light – or light transport – and how
it interacts with matter before ultimately reaching a sensor (e.g., mechanical camera or
biological eye), at which point an image resulting from the integration of the incoming light
is presented to the observer.

x
e

b

a

f

c
d

y z

Fig. 2. A scene illustrating light transport from the point of view of an observer at point
e. The scene is illuminated by three light sources, an area light (a), a point light (b) and
an image-based environment light (f). Primary rays (in red) are cast from e and intersect
the scene. Surfaces points x and z have a lambertian diffuse reflectance and y has a glossy
reflectance. Thin solid colored lines denote direct lighting, where a direct connection is formed
between a surface point and a light source, while dotted lines represent indirect lighting from
other surface points a and b, which must themselves in turn be lit by direct and indirect light
where the same process applies.

These countless interactions are studied within the theory of light transport as series of
local modulations of an incident lighting signal. Understanding these local procedures is
key to model light transport for the purpose of rendering. Different mathematical models
help us understand these operations at different sections along the path of light, such as
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models of light emission, reflection or refraction on or through a surface, occlusion and
integration. Furthermore, several models of transport exist when reasoning about light.
The most common, geometrical optics, makes the assumption of light as photon particles
traveling in a piecewise-linear manner, that is in straight lines (or rays) until an interaction
with matter occur. This simple premise is the basis of path tracing algorithms, and the
one we focus on in this dissertation. Other models include wave optics which additionally
considers diffraction effects and quantum optics, which further widen the range of describable
effects (e.g., phosphorescence). Having the benefit of targeting the limited human visual
system, rendering gains from using the former, simpler one, thus producing photorealistic
images at a reasonable cost. We make further assumptions for this section including the
restriction in analysis to light at – or before – it reaches the sensor, and thus won’t detail
camera effects and settings; and model light as traveling in vacuum, without the presence
of participating media, which is covered in Section 1.4. Light Transport is a comprehensive
field of study, which in computer graphics was exposed through Monte Carlo path tracing
(see Section 1.3.4) with the rendering equation [41] (see Section 1.3.3), based on previous
ray tracing efforts [2, 91, 20], and subsequently extended [4, 84]. Before expanding on
these concepts, we expose fundamentals of light emission in Section 1.3.1 and scattering in
Section 1.3.2.

1.3.1. Light Emission

Light is measured with various radiometric quantities, with the wavelength-dependent
photon eλ = hc/λ being the basic indivisible unit of radiometry, measured in watts (or Joules
per second) [W ≡ J · s], where h is the Planck constant, c is the speed of light and λ is the
particular wavelength. Light is quantified for a particular light wavelength by the amount of
such photons, called the radiant power Φλ.

The radiance L defines the light received by a surface from a particular direction or
emitted from a surface in a particular direction. This outgoing radiance at a point x in
the direction ω toward an observer is thus a good representation of the visible color of that
surface point and is defined as

L(x,ω) = d2Φ
dA⊥dω

,
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measuring the differential amount of light (power Φ, pre-integrated over the visible spectrum
of wavelengths λ) emitted from a differential solid angle dω per unit differential projected
area dA⊥ ≡ cos θdA. Radiance is thus measured in watts per sterradian per unit area
[W · sr−1 ·m−2]. Integrating radiance over the directional domain yields irradiance E, the
incident light at a point from all directions, measured in watts per unit area [W ·m−2]. Also
of note is the radiant intensity IΦ – measured in watts per steradian [W · sr−1]: the radiant
power flowing per unit solid angle – as a quantity often used to angularly specified intensities
over a spherical domain to model or mask various parts of the emission profile of a light
source, such as IES profiles.

This allows us to represent physical quantities of radiation over the light spectrum,
including radiations in ultraviolet, infrared and the visible range in between. A physically
based renderer models radiance over the visible wavelength spectrum (between 380nm
and 750nm). Some production renderers [28] have begun considering the whole visible
spectrum, a process called spectral rendering. The majority though only consider a simpler
model restricted to three wavelengths corresponding to a red, green and blue channel,
forming the RGB color model based on human perception and the limitations of traditional
display devices. Unless stated otherwise, we simplify later equations to abstract wavelength-
dependence and assume per-channel solves.

Light sources define in rendering how light is emitted in a virtual scene. In our physical
world light is (most often) emanation from converted heat radiation, a complexity that virtual
light sources bypass while preserving the physical laws of light transport. They are classified
in three categories: punctual, area based and image based light sources.
Punctual Lights. Point and spot lights are categorized as punctual lights, defined as
spatially infinitesimal radially emitting sources. They follow the inverse square law for
physical correctness: their intensity decreases proportionally to the square of the distance (or
radius r) to the illuminated object, which yields

L = IΦ

r2 .

This implies a weak singularity in the limit as the distance tends to 0, which is often time
prevented with bias by implying a minimum small radius. In the other direction, toward
infinity, punctual lights never truly reach zero radiance and bias by radius bounding is again
used for culling optimizations. This is commonly solved by interpolating to zero while taking
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care of preserving brighter closer radiance values. Point and spot differ by their angular
emission profile. Point lights emit in a constant manner in all directions, so that Φ = 4πIΦ,
while spot lights rely on an outer radius θout defining the cone of emission, with an optional
inner radius θin to model a smooth cone falloff from bright to dim, so that

Φ =
∫

Ω
IΦdω =

∫ 2π

0

∫ θout

0
IΦdθdφ = 2πI(1− cos θout/2),

while the actual radiance in a certain direction contained in the cone is modulated by a
smoothing function depending on the angular ratio of θout and θin. Punctual light sources
are resolved analytically and their visibility obtained with a single sample, making them a
common emitter type.
Area Lights. Also referred to as emissives, they are sources with a physical shape, most
commonly a triangle mesh representing an object, and more closely fit the description of
everyday light sources, such as a light bulb, a neon tube, a tv screen or the sun, without the
complex internal physical simulations. Though they follow regular surface-light interactions
(described in Section 1.3.2) when lit themselves, the majority of the contribution of area lights
come from emission. Additionally to being more relatable to by artists, they also behave more
appropriately for rendering algorithms by not having the weak spatial singularity present in
punctual lights, which cause both sharp shadows and shading aliasing for specular surfaces.

Area lights possess drawbacks in that they are not necessarily analytically solvable
depending on their shape and relative position to the receiver. Additionally, each point to be
lit must consider many sampling directions to capture both the spatially-varying lighting and
visibility to the area emitter. For precomputation and offline rendering, this is often done
with Monte Carlo estimation(see Section 1.3.4), while appealing closed-form solutions have
been found for interactive applications [3, 21, 32, 9].
Image-based Lights. Based on the concept of directional lighting, which flows in parallel
directions and have no spatial dimension, image based lighting(IBL) represents lighting from
the complete sphere of directions flowing inward to a central point; and get its name from the
textures they rely on to define angular intensities. Applying a 2D texture (or set of) to the
sphere of direction is performed effectively via various mappings, such as lattitude-longitude
or cubemap, each having advangages and drawbacks, especially concerning discontinuity
errors [49].
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IBL see uses for both distant (or global) and local lighting (usually represented by light

reflection probes). Distant image based lighting work especially well for modeling global
effects such as the sky or unreachable background environment, thus allowing variations over
time (e.g., to change the color of the sky as the day sets) but not over space, by definition.
For this reason, they are often defined by high resolution high-dynamic range HDR images,
often captured from real life photographs in locations around the world. The sun (or moon)
is often removed from such panoramas to be later modeled either as a directional light source
shining equally on the entire scene or as a far away punctual light. Because of its high
intensity and small solid angle when viewed from a surface, representing the sun as a disk
area-light reduces aliasing artifacts on specular surfaces.

Local light probes similarly model a surrounding environment but at a sparse scene
resolution to allow spatial changes in local lighting [?]. They are calculated by spherical
projection (or multi-faceted prespective projection) of the scene around them. This information
is later queried back by static or dynamic objects in the vicinity as a relighting method.
Drawbacks from light probe relighting include limited resolution (set by the capture) and
reprojection parallax between the probe itself, the source lighting information it captured, and
the target to be lit. A spatially dense sampling of probes in a scene offers better interpolation
and parallax management at the cost of a higher storage and processing cost. Probes model
a statically captured illumination at important locations, and must be recalculated whenever
the environment around it changes, e.g., dynamic objects and light sources.

Image-based lighting, whether from high resolution photographs or captured scene envi-
ronment, are often preprocessed before query through the construction of a mipmap hierarchy,
defining various levels of roughness between purely specular (i.e., the captured information)
and diffuse (see Sections 1.3.2, 1.6) to accelerate queries for a particular solid angle.

1.3.2. Surface Interactions

As described previously, radiance is dependent on the amount of photons of each particular
wavelength. Radiance stays invariant until an interaction with matter occur, at which point
the physical microscopic and macroscopic characteristics of the surface in contact define
the interplay between light and matter. These interactions are described by a bidirectional
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scattering distribution function(BSDF) [55, 59]. BSDF is an umbrella term for the math-
ematical class of functions defining the ratio of outgoing radiance to incident irradiance
at a surface point and by extension, how light is absorbed, reflected and transmitted by
a particular material. The perceived color of a surface is in a large part the result of the
wavelength-dependent loss of energy of the incident lighting spectrum contingent to the
aspects of the surface (e.g., pigment, geometric features, opaqueness) as it gets redirected
toward an observer.

A scattering function fs is in practice decoupled as the sum of its reflective part, the
bidirectional reflectance distribution function(BRDF) fr and its transmittive part, the bidirec-

tional transmittance reflection function(BTDF) ft. We consider the case of the BRDF, in
which both the incident and outgoing directions, ωi and ωo resp., lie in the same hemisphere
as defined by the normal direction n at the surface point x, defined as

fr(x,ωi,ωo) = dL(x,ωo)
dE(x,ωi)

= dL(x,ωo)
dL(x,ωi) cos θidωi

,

where cos θi = 〈ωi ·n〉 is the foreshortening factor due to the tilt of the surface to the incident
direction.

In practice, analytical reflectance models are used to model a 4-dimensional BRDF, as
opposed to dense data sets measured in reflectrometry [50, 89]. As edge reflectance cases,
the ideal specular (perfectly smooth) and the ideal diffuse (perfectly rough) have simple
closed-form solutions: the mirror reflection – where light only scatters when incident and
outgoing directions are reflections of each other with respect to n – and the Lambertian
reflectance – which is constant for all viewing directions, respectively. Few surfaces follow
these archetypes but instead range in roughness and appear glossy.

Physically based energy conservative microfacet models [83, 18, 88] studies macro-
scopic surfaces as statistical distributions of purely specular micro-surface normals governing
reflection directions. It is defined as

f(ωi,ωo) = D(h)G(ωi,ωo,h)F (ωi,h)
4〈n · ωi〉〈n · ωo〉

,

where h = ωi+ωo

|ωi+ωo| is the microfacet normal – or half-direction vector, F (ωi,h) is the Fresnel
term, D(h) is the microfacet normal distribution and G(ωi,ωo,h) is the geometric masking
term.
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1.3.3. The Rendering Equation

Rearranging the BSDF equation to solve for outgoing radiance and accounting for the
light emitted by the surface Le(x,ωo) yields the rendering equation (illustrated in Figure 2),
introduced alongside path-tracing in 1986 by Kajiya [41] as

L(x,ωo) = Le(x,ωo) +
∫

Ω
Li(x,ω)fs(x,ω,ωo)〈ω · n〉dω,

which describes exiting radiance at a surface point as the sum of emitted light and scattered
light – the integral of incoming light Li over the sphere of directions around x modulated by
the surface reflectance model.

Intuitive in its formulation, the rendering equation unfortunately has unbounded di-
mensionality in that the outgoing radiance L(x,ωo) is dependent on all incoming radiance
Li(x,ωi), itself having to be solved for as outgoing radiance L(y,− ωi), i.e., from another
point, in the opposite direction. This recursive nature makes statistical integration methods
better apt at converging toward an approximation over time.

Various rendering techniques attempt to solve the rendering equation, approaching the
dimensionality problem from different angles and navigating the trade-offs between quality,
compute time and memory limitations. From its linearity, the scattered part of the rendering
equation is often decoupled as the sum of direct and indirect incident lighting.

The direct lighting integral can be reformulated as a discrete sum of incident lighting
from the light sources present in the scene. Solving for direct lighting is in itself a intricate
problem as the complexity of scenes’ lighting grow [12]. Various works in hardware-accelerated
rendering has been proposed to extend or facilitate direct lighting computation [81, 35],
shadows [27, 33] or glossy reflections [93].

Indirect lighting – or global illumination – is nowadays commonly the product of numerical
estimation in the form of Monte Carlo path-tracing [67], discussed in Section 1.3.4, where
memory and performance limitations are aleviated by spatial, angular and temporal caching
mechanisms, which we present in Section 1.6. Various other branches of research on computing
global illumination exist [29, 40], which we won’t cover for the purposes of this document.
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1.3.4. Monte Carlo Integration

Unidirectional path-tracing using recursive ray-tracing from sensor to light sources was
proposed by Kajiya [41] to solve the unbounded rendering equation by building independent
light paths. This can be seen as a succession of discrete integral estimation steps. Monte
Carlo integration methods estimate such integrals statistically by evaluating the weighted
average value of the integrand modeled as a probability density function(PDF). Successive
averaged samples taken from a PDF will converge over time to the result, with an error
reduction proportional to 1√

N
, with N the number of random samples drawn uniformly over

the domain of integration V (e.g., 4π for the sphere). Reformulating the rendering equation
using Monte Carlo integration yields

L̂(x,ωo) ' Le(x,ωo) + V

N

N∑
j

Li(x,ωj)fs(x,ωj ,ωo)〈ωj · n〉.

Since Monte Carlo integration rely on independent samples, each step along a light path
will both randomly pick a direction toward the next step and calculate the probability of that
direction being taken, as well as contributing to convergence of the final value by adding a
potential light path contribution to the estimate. Thus, Monte Carlo estimation explores the
many dimensions of the problem in an independent fashion, decoupled from its dimensional
complexity. These methods are classified as unbiased and will converge to the correct answer
statistically as more samples are computed, until which point the error is perceived as noise.
The rate of convergence is analysed from the variance of the estimate in relation to the final
result – or ground-truth. Capturing the ground-truth result of such unbounded integrals is
in theory unfeasible. In practice, the ground-truth is estimated via an unbiased integration
method by drawing a large number of samples with no regard to performances in which the
variance should tend toward zero, against which error analysis is then performed for the
validation of another – potentially biased – method.

This is the objective of noise reduction methods, the implementation of methods achieving
equivalent qualitative results at a fraction of the samples and thus computing cost.

Importance sampling(IS) analyses the shape of the integrand to model a better fit density
function that prioritizes sampling in regions of higher values, instead of uniformly distributing
samples across the domain of integration. Convergence is achieved faster by privileging
a larger density of samples in these important regions. An intuive example is the mirror
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reflection, with which only one direction of the hemispherical domain above the surface
contains the information we require (i.e., delta function δ). Distributing samples uniformly
(i.e., with a constant PDF) in the domain will theorically never converge to the solution,
whereas a fitted delta density function reaches convergence with only one sample.

An importance sampling estimator f̂ for a target function f sampled according to a
probability density function p(k) : k1, · · · ,kN ∈ V is given by

f̂ ' V

N

N∑
j

f(kj)
p(kj)

, f ∼ p.

For an unbiased estimator, the chosen PDF must be strictly positive whenever the
integrand is as well. Finding an efficient density function for an integrand so that it is
proportional to it, i.e., f ∼ p, is the major obstacle in importance sampling. Certain functions
like analytical BRDFs tend to have identifiable PDFs which improve convergence, especially
when the reflectance of the material gets glossier and the solid angle of potentially sampled
directions shrinks. On the other hand, a distribution such as hemispherical visibility – or depth
to first occluder – is a complex problem modeling a spatio-angularly-varying high-frequency
function.

Importance sampling can be applied to the several independent terms of the rendering
equation [84, 68]: the BRDF fr and the lighting distribution Li. Veach and Guibas [85]
combine sampling and estimation of several density functions with multiple importance

sampling(MIS). An inadequate choice of density functions in this case is however shown to
perform poorly and to slow convergence relatively to regular importance sampling of the best
of the two distribution [60].

Orthogonally, progressive sampling has become a way of aleviating time-to-first-frame by
distributing sampling computation across time. A final image is not calculated once from a
defined number of samples N . Instead, by keeping track of integration weights, an estimate is
refined over time as more samples are drawn. This is especially convenient in the context of
preview renderers used by artists or scene designers for fast feedback and iterative workflows.

Adaptive sampling uses the variance of the integrand itself as an oracle for adapting
the sampling distribution [61, 69]. This driving criterion must first exist to control sample
generation and these methods are often iterative and/or progressive. Adaptive sampling
in image space results in a sparse set of samples that do not cover all the pixels and
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filtering techniques must be used to reconstruct the final image. We describe in Section 1.5
frequency-based methods to predict the sampling rate in 2-dimensional image space and the
3-dimensional spherical domains of the rendering integration. Filtering methods are reviewed
in Section 1.6 as a way to reconstruct the final image from these spare sets of contributions.

The next sections of this chapter independently introduce some of the fundamentals
necessary for the comprehension of the papers in the next chapters. We discuss in the next
section the role of participative media in path-traced light transport and how volumetric
media influences the rendering equation. We then review in Section 1.5 basis for the analysis
of light transport in the frequency domain to facilitate gathering prior knowledge on rendering
integrands and finding Monte Carlo adaptive sampling oracles. Finally, Section 1.6 describes
strategies to cache and reuse illumination information to reduce memory and computing costs
in interactive and real-time applications.
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1.4. Influence of Participating Media

The term participating media (or volumetric media) in graphics applies to the set of
phenomena that are volumetric in nature in that they can absorb, scatter or emit light.
Though we have covered these behaviors in the context of hard surfaces in the previous
section, the characteristics of a participating medium additionally describe the interactions
of light with sparse particles of matter of microscopic scale, so that it may be simulated
with geometric optics. The earth’s atmosphere, smoke, fire, water and sand are examples of
phenomena that are formulated and studied as participating media.

xs x

Tr(x,x4)

Lo(x,ω)

ωiωi

eLo(xs,ω)

x1 x2 x3
x4

Fig. 3. A simple scene depicting light transport in participating media following the VRE.
The total radiance incident to the eye e from direction ω combines the attenuated outgoing
surface radiance Lo(xs,ω) and in-scattered radiance Lm along the ray. Lm is the integral of
light scattered into ω from other directions at all points in the medium along the ray, here
pictured in red. The transmittance Tr(xa,xb) depends on the extinction coefficient σt of
the medium and governs the attenuation. Point x depicts a scattering event alongside ω.
Here, the spherically in-scattered light is depicted as thin solid lines for single scattering,
and dotted lines for multiple scattering. Each change in direction denotes a scattering event,
treated in the same manner as at x.
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Light transport in paticipating media has first been studied in graphics through diffusion
theory and the radiative transport problem [16, 78]. They define the radiative transport

equation(RTE) defining the differential change in radiance due to the effects of media

(ω · ∇)L(x,ω) = Le(x,ω)︸ ︷︷ ︸
emisson

−σa(x)L(x,ω)︸ ︷︷ ︸
absorption

+σs(ω)Li(x,ω)︸ ︷︷ ︸
in−scattering

−σs(ω)L(x,ω)︸ ︷︷ ︸
out−scattering

,

where Le is the emitted radiance, Li is the inscattered radiance and L is the general incoming
radiance within the spherical domain S2.

Volumetric media is defined in graphics as statistically independent particles, where the
density of the medium ρ defines the size and number of particles that compose it. The
absorption coefficient σa and scattering coefficient σs are derived from the density to specify
the predisposition of photons to undergo both particular interactions, as we describe below.
Emission. Just like a surface, as described in Section 1.3.1, a medium can emit light. Emission
in media is also a spatio-angularly varying source function and is fairly straightforward to
model as a linearly additive term in the formulation.
Absorption. As photons flow through a medium, some of them are absorbed upon contact
of volumetric particles and transformed in another source of energy. This decreases the total
amount of light depending on the absorption coefficient σa of the medium.
Scattering. Instead of being absorbed, a photon in contact with a medium particle can
scatter in another direction, just as with a surface. The scattering coefficient σs of a medium
guides the rate of scattering of photons within it. When considering the change in radiance
along a ray such as with the RTE, scattering is decoupled between in-scattering – or the
amount of photons scattering in that direction – and out-scattering of photons from that
direction to another. The directionality of scattering also depends on the phase function that
characterises the medium as we discuss later on.
Extinction. Absorption and scattering are often combined as extinction in radiative transfer
formulations and media parameterizations, yielding the extinction coefficient σt = σa + σs of
a medium. The extinction of a medium has various associated properties. The mean free

path of a photon in media is the inverse of the extinction coefficient, and defines its average
travel distance before being absorbed or scattered. When considering such light paths, the
optical thickness τ(x,ω,t) =

∫ t
0 σt(x + t′ω)dt′ models the integrated density along a ray in

media. The scattering albedo α = σs/σt is the ratio measuring the fraction of photons being
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scattered (as opposed to absorbed), where a value of unity implies that all extinction is due
to scattering events.

When styding light paths in media, the RTE indicates that the energy along that path
will be attenuated due to out-scattering and absorption. This effect is described by the
Beer-Lambert law [46] and the transmittance Tr models this attenuation between two points
as

Tr(x,xt) = e−τ(x,xt−x
t

,t), t = ||xt − x||.

A medium is considered homogeneous, as opposed to heterogeneous, when the extinction
coefficient is spatially invariant, that is σt(x) = σt. For homogeneous media, the transmittance
is simplified to Tr(x,xt) = e−σtt. This is a common assumption for certain types of thinner
media such as fog [47] and in the field of subsurface scattering [40]. Closed-form heterogeneity
simplifications are often employed as well, e.g., in the case of height-based media, where σt is
a 1-dimensional function.

By treating the surface rendering equation defined in the previous section as a boundary
condition of radiative transfer and by integrating the RTE, we define the volume rendering

equation(VRE) (depicted in Figure 3) for the radiance L as

L(x,ω) =
∫ s

0
σt(xt)Tr(x,xt)Lo(xt,ω)dt︸ ︷︷ ︸

Lm(x,ω)

+Tr(x,xs)Lo(xs,ω)︸ ︷︷ ︸
Ls(xs,ω)

,

where Lm is the radiance arriving from all points along ω in the medium, Ls the attenuated
radiance arriving from the surface intersected at the limit xs = x− sω and Lo is the outgoing
radiance

Lo(x,ω) = Le(x,ω) + σs(ω)Li(x,ω)

= Le(x,ω) + σs(ω)
∫
S2
f(x,ω,ωi)L(x,ωi)dωi,

in which f is the scattering distribution function that is either the BSDF fs or the phase
function fp depending on whether x is located on the surface A or in the medium V such that

f(x,ω,ωi) =


α(x)fp(x,ω,ωi) if x ∈ V ,

fs(x,ω,ωi) if x ∈ A.
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Phase Functions. When a scattering event occur in media, the phase function fp

defines the spherical bidirectional PDF used to estimate post-interaction directionality. It
possesses similar properties to the surface BSDF and the same propensity for closed-form
approximations [62] and importance sampling [10, 39]. Two theories on particulate
scattering approximations exist, which use depends on the size of the particles of the
simulated media. The Rayleigh theory [79] considers particules smaller than the wavelength
of light as are present in atmospheric scattering, while the Mie theory [54] is an approach for
particles of arbitrary sizes which generalizes well for particles larger than the wavelenght of
light, as in smoke and water. Complementary in nature, they indicate in aggregate that
smaller wavelengths of light scatter more intensely for smaller particles (hence variations
in sky color) and that the larger particles are, the more light they scatter forward albeit
with reduced wavelength dependence. The Henyey-Greenstein phase function [34] is the
most widely used approximation for Mie scattering and intuitively defines the anisotropy of
scattering directionality with a unimodal parameter g ∈ [−1,1], where g = 0 is the isotropic
phase function fp = 1/(4π), a proclivity for forward scattering is indicated by a positive g
and for backward scattering by a negative g.

Related to the distinction between direct and indirect lighting, a common simplification
of participating media models restricts the VRE to at most a single scattering event in the
medium, i.e., the vaccum formulation of radiance L(xt,ω) replaces Lo(xt,ω) in the definition
of Lm. Single scattering convey more energy in thin media, while multiple scattering, i.e.,
two scattering events or more, is absolutely necessary for denser media where hundreds of
scattering events are necessary to reproduce the appearance of phenomena such as dense
clouds [42]. In the absence of participating media, i.e., σt = 0, the volume rendering equation
defaults to the surface rendering equation denoted in the previous section.

As opposed to light transport in vacuum described in Section 1.3, solving the VRE
necessitates sampling ray-particle interactions along light paths [56], that is, a distance
along the ray and a scattering direction. While finding a scattering direction depends on
the phase function analytically or through importance sampling, various sampling strategies
have been conceived for the former problem. Luminaire sampling strategies work better in
thinner media where single scattering dominates [29] while exponential distance sampling
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techniques, based on the Beer-Lambert law, better explore heterogeneous dense media. This
is trivial in homogeneous media by inverting the transmission and solving for a distance
t. In heterogeneous media, null-collision unbiased methods such as Woodcock – or delta –
tracking [92, 57] use rejection sampling over the length of the ray by introducing ficticious
matter to render the medium homogeneous. Distances can then be sampled analytically
along the ray and rejected probabilistically depending on the ratio of real to fictitious density
at that location. Upon rejection, the ray continues forward and a new distance is sampled.
The performance of these techniques strongly correlate on how close the virtual homogeneous
density is to the actual density along the ray, introducing many rejection steps in the worst
case.
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1.5. Frequency Analysis in Computer Graphics

In the previous sections, we have identified light transport as a series of integration steps
along light-paths and how these discrete operative integrands inform us on the probabilistic
behavior of light. Studying the local radiance variations over the many domains of integration
we have identified can therefore communicate knowledge on the complexity of these signals.
Frequency analysis and the use of frequency basis functions have been greatly successful in
rendering for both the study of the lighting signal and its encoding.

The frequency content of a signal bounded to a specific domain in its primary space in
part yields insight regarding its rate of change inside that domain. Knowledge of the spatial
and angular variations of radiance, or other signals used in graphics, can greatly facilitate
various tasks such as deriving density functions, adaptive sampling or determining the sizes of
filtering kernels and the adequate band-limit for frequency based basis functions. We describe
in Section 1.5.1 the Fourier analysis, which decomposes a general function in its oscillatory
components, or frequency content. Section 1.5.2 briefly reviews spherical harmonics and their
applications in rendering as a polyvalent basis function.

1.5.1. Fourier Analysis

Frequency analysis was introduced in the nineteenth century by Joseph Fourier as a
method to solve the heat equation. In graphics, Cook [19] studies sampling distributions
in frequency space to introduce stochastic sampling, a method to generate appropriate
nonuniform sample locations which frequency content is similar to that of a Poisson disk
distribution, to aleviate the aliasing that results from regular uniform point sampling. Durand
and colleagues [23] later introduce the frequency analysis of light transport to derive knowledge
from the frequency content of radiance as it propagates from its source to the sensor, to
predict the characteristics of lighting interactions and drive adaptive sampling strategies. To
this end, they study spatio-angular bandwidth of the local 4-dimensional light field and how
it is altered by light transport, where the angular dimension of the light field is approximated
by its tangent via the paraxial hypothesis.

Frequency analysis in rendering thus seeks to study Monte Carlo numerical integration and
sampling patterns in the context of path tracing in terms of signal processing, where the source
of numerical error in frequency space is well recognized, linearity of functions is preserved, and
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convolution and multiplication are symmetrical operations between the spatial and frequency
spaces [22]. This field of study has since then been broadly researched in graphics, e.g., for
direct [5] and indirect [52, 11] illumination, distribution effects [77, 26, 8, 53, 94], soft
shadows [24, 25, 51] and participating media [7].

The Fourier transform is the mathematical mechanism that decomposes a function f –
expressed in the spatio-temporal primal domain – into its constituent frequencies ξ defining
a frequency spectrum F in the frequency domain. The Fourier transform F and its inverse
F−1 are defined as

F (ξ) = F{f} =
∫ ∞
−∞

f(x)e−2πixξdx,

f(x) = F−1{F} =
∫ ∞
−∞

F (ξ)e2πixξdξ.

where the decomposition comes from the relation eiθ = cos(θ) + i sin(θ).

According to the Nyquist-Shannon theorem, an integral can be estimated exactly without
aliasing with a sampling rate higher than its maximum frequency (bandwidth) – half the
Nyquist rate. Conversely, the Nyquist-limit (band-limit) of a signal – or largest representable
bandwidth – is one-half of the sampling rate. Deriving the band-limit of an integral function
by studying the bounds of its bandwidth in the frequency domain can thus serve as a criterion
for adaptive sampling. The bandwidth of an amplitude spectrum in frequency space can be
bounded by taking the 95th percentile along its orthonormal dimensions to encompass most
of the signal. Tighter fits of the spectrum have been studied as well [14, 26].

Instead of defining the band-limit of the amplitude spectrum in terms of bounded shapes,
Belcour and colleagues [8] approximate the extents of the spectrum as a gaussian parameterized
by the covariance matrix Σ of the local light field. The gaussian g(z) = e−zTΣ−1z bounds
the spectrum and is used directly to measure variation and anisotropy of the signal. The
covariance matrix is defined as

Σi,j ≡
∫

z∈Ω
〈z,ei〉〈z,ej〉|F (z)|dz,

where the diagonal elements of Σ are the variances of the amplitude of the spectrum along
each input dimension – the set Ω, with ei, ej ∈ Ω – of the local light field, and the off-diagonal
elements are the covariances between the ith and jth dimensions. Similarly to the seminal
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work of Durand et al. [23], the covariance matrix here serves the purpose of band-limiting
the spectrum for the purpose of deriving sampling densities and reconstruction filters sizes.

1.5.2. Spherical Harmonics

Spherical and hemispherical functions are ubiquitous in rendering, from distant and local
illumination to bidirectional reflectance distribution functions. Spherical Harmonics(SH) are
a natural basis functions for the representation of these angularly-defined functions. Harmonic
functions are functions that solve Laplace’s equation, and spherical harmonics are the set of
orthogonal functions that satisfy this equation over the two dimensional spherical domain, in
the same manner that the Fourier series solves it in one dimension over the circle. Several
resources [65, 66, 30, 63] extensively explore the intricacies of Spherical Harmonics and
their use in rendering.

Fig. 4. Plot of the first bands of real valued spherical harmonic basis functions. Blue
indicates positive values and green negative values. Top to bottom denotes the order l. Zonal
harmonics are the z-aligned subset m = 0 represented in the central column. The off-center
m 6= 0 bases denote the negative and positive degrees. A spherical function can be projected
onto each basis function to decompose it into its frequency moments. Reprinted from [64].
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The spherical harmonic basis functions possess several useful properties for rendering:
• As an orthonormal basis, it is straightforward to project a spherical function onto
and from spherical harmonics .
• Similarly to the Fourier transform, a convolution in the primal domain is a multipli-
cation in the SH domain and vice versa.
• Spherical harmonics are rotationally invariant, i.e., rotated sample sets of the primal
function present no aliasing when projected onto SH.
• They possess efficient forms for rotation operations and integrated product of two SH
functions.
• An isotropic spherical function projected to SH yields Zonal Harmonics(ZH) that
further possess efficient rotational qualities and compactness [58].

A spherical function f can be projected onto each spherical harmonic basis function yml
to obtain a vector fml of SH coefficients such that

fml =
∫
S2
f(ω)yml (ω)dω,

and the original function f can be expanded as a linear combination of these coefficients and
basis functions

f(ω) =
∞∑
l=0

l∑
m=−l

fml y
m
l (ω),

where the coefficients are indexed according to the order l and the degree m, where m
indexes the 2l + 1 basis functions of each band, an order-N projection comprises the bands
0 ≤ l ≤ N − 1 and lower bands represent lower frequencies. It is often convenient to
reformulate the expansion as a singly-indexed vector such that i = l(l + 1) +m+ 1. Zonal
harmonics form the SH subset with m = 0, reducing their size to one coefficient per band.
Figure 4 represents the five first bands of spherical harmonic basis functions.

In computer graphics, the real-valued set of spherical harmonic basis functions is prevalent,
defined as

yml (θ,φ) =


K0
l P

0
l (cos θ), m = 0

√
2 Km

l sin (|m|φ) P |m|l (cos θ), m < 0
√

2 Km
l cos (mφ) Pm

l (cos θ) , m > 0

,
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using here the spherical coordinate of the projected direction vector ω = (x,y,z) = (θ,φ) ∈ S2

and where Pm
l are the associated Legendre polynomials and Km

l the normalization factors

Km
l =

√√√√(2l + 1)
4π

(l − |m|)!
(l + |m|)! .

The set of spherical harmonics so defined forms a pyramid of basis functions which order
represent the frequency of the basis over the sphere. Note that retrieving the function f in
the primal domain from its frequency-space coefficients is a sum over an infinite number of
bands, similar to the Fourier transform. In practice, an upper bound on the bandwidth of the
signal is placed yielding a band-limited approximation of the primal function. Band-limiting
the signal introduces ringing artifact of positive and negative values in the reconstruction
that has to be dealt with accordingly [74]. Spherical harmonics are thus well tailored for the
representation and encoding of lower frequency signals, i.e., rougher BRDFs, sky illumination
and indirect local illumination. Inducing a band-limit to the signal is also commonly done
for performance purposes in the context of real-time illumination with SH basis functions
using vector instructions and parallel processing, e.g., the order-2 quadratic RGB SH uses 3
SSE vectors.

The trade-offs presented by spherical harmonics are attractive for the encoding of various
illumination and visibility functions of lower frequency content, while higher frequency effects
might be more appropriately represented by other frequency-space bases such as wavelets or
non-frequency-based functions [37, 9] such as spherical gaussians, radial basis functions or
cosine power lobes. Spherical harmonics are also commonly used as an intermediate bases for
further processing [36, 9].
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1.6. Illumination Caching and Reuse

Computing global illumination at interactive or real-time performances and manageable
memory cost is still a subject of active research. Knowing these limitations, such algorithms
rely instead on differed or asynchronous execution. Parts of the lighting, sampling
or data conversion is computed partially ahead of time and stored in memory to be
efficiently fetched at run-time. Abrash [1] illustrated this pattern in the early days of 3D
games by precomputing diffuse lighting, stored in texture maps then applied on surfaces.
This technique known as light mapping still lives on in modern production renderers today [72].

Precomputed Radiance Transfer. Following the theory of locally low dimensional light
transport [48], precomputed radiance transfer(PRT) methods [76, 75, 47] approximate
spatially coherent lighting signals such as diffuse and low frequency glossy interreflections,
smooth direct lighting and self-shadowing in a process called baking. Techniques based on PRT
precompute the transferred incident lighting at a sparse number of locations such as mesh
vertices [43], per-instance local probes [16] or global spatially distributed probes [31, 73],
encoded with basis functions, most often as spherical harmonics coefficients.

By assuming a locally static model in the case of diffuse interreflections, PRT encodes
transfer vectors [t(p)] at locations p representing how the local geometry shadows and scatters
light onto itself. The transfer vectors encode the linear transformation between SH projected
incident radiance [L]i and outgoing radiance Lo for the nth order SH projection as

Lo(p) =
n2∑
i

[t(p)]i[L(p)]i.

A single pass is necessary to encode self-shadowing from direct lighting, where the transfer
vector encode the cosine-weighted hemispherical kernel around normal n and binary visibility
function at a diffuse surface point of albedo ρ(p) such that

[t(p)]i = ρ(p)
π

∫
Ω
b〈ω · n〉cV (p,ω)yi(ω)dω.

The same paradigm is extended to diffuse interreflections by iteratively considering
the per-bounce transfer vectors [t(p)]bi now computed by summing the contributions
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from previous-bounce transfer vectors [t(p)]b−1
i . The sum of all bounce transfer vectors

account for direct and indirect shadowed diffuse lighting. Although needing higher order
projections to account for higher frequency content, PRT derives a similar procedure for
glossy reflections via sparse transfer matrices to account for directionality. At run-time, the
linear transformation of an arbitrary incident SH-projected lighting function occurs through
a dot product (resp. matrix-vector multiplication) with the transfer vectors (resp. matrices)
to retrieve the outgoing radiance at a point.

Filtering Methods. As described in Section 1.3, modern production renderers adaptively
sample regions of the final image or other integration domains to reduce the cost of shading
and filter or denoise the resulting sparse sample sets to fill-in empty or under-sampled regions.
As denoising algorithms get more performant [87, 15], reducing the amount of shaded
points and reconstructing the image becomes an attractive alternative. Though we discuss
frequency based sampling criteria in Section 1.5, alternative sampling strategies exist based
on gradient [90, 45] and hessian [71] analysis, on deep Monte Carlo renders [86] or on tools
from the machine learning community [6, 15].

Filtering methods are employed to smooth out noisy Monte Carlo images (denoising)
or reconstruct missing spatial information from a sparse set of point contributions. These
operations are dual of each other and respectively referred to as gathering and splatting
methods. Gathering methods apply a filter kernel w(p,q) iteratively on each element p of the
domain to determine by weighted average the contribution received from each surrounding
element q covered by the kernel w(p,q). Conversely, splatting methods iterate over each
input sample to spread their contribution to the neighboring area under the kernel. While
these techniques are by definition biased since each element becomes correlated to others
from their local neighborhood, the bias tends to zero in the limit as kernel sizes skrink to the
size of the element.

A denoising process evaluates the filtered value ĝ from input value g as

ĝ(p) = 1
W (p)

∑
q∈Np

w(p,q)g(q),

where w(p,q) is the kernel function, W (p) = ∑
q∈Np w(p,q) is the normalization factor for

the weighted average and Np is the neighborhood around p.
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Edge-preserving smoothing functions are a popular pick for denoising kernels, such as the
bilateral [82, 44] and non-local means filters [70]. They are defined to smooth the domain
while preserving spatial and radiometric high frequencies but can trivially be extended with
joint filtering to any complementary feature set available prior to filtering and defined over
the domain. A typical gaussian bilateral filter with feature vector f = f1,...,fk has the form

w(p,q) =
k∏
i=1

exp
(
−||fi(p)− fi(q)||2

2σ2
i

)
,

where σ2
i is the adjusting gaussian parameter of feature fi. Such kernels imply large weights

for elements that are closer over the set of feature spaces.

Precomputing filtered elements from a high frequency dataset is known as pre-filtering [13,
49] to avoid run-time processing at the cost of memory storage of the pre-filtered hierarchy.
This technique is often used for static elements such as triangular meshes in the case of level-
of-detail (LOD), albedo textures, BRDFs and image based lighting. The correct footprint is
then derived at run-time from the solid angle of integration to query the pre-filtered hierarchy.
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Cet article étend aux séquences animées le travail de recherche de Frédo Durand et
collègues de 2005 sur l’utilisation de l’étude fréquentielle du transport de la lumière pour
l’échantillonnage et la reconstruction. De ce fait, un nouvel oracle fréquentiel est dérivé
pour sous-échantillonner adéquatement l’image, mais aussi commander le cache de radiance
déployé pour aider à la cohérence temporelle nécessaire de l’image à travers l’animation. Cette
analyse fréquentielle aide également à l’intégration spatio-angulaire adaptative de la radiance,
dépendante de statistiques du matériau, de l’illumination et de la visibilité en chaque point.



Résumé. Nous proposons une méthode pour le rendu de scènes animées et illuminées par

éclairage distant direct, qui n’a besoin de calculer qu’une fraction des pixels de l’écran.

Nous prenons avantage d’analyses en espace fréquentiel du transport de la lumière afin de

déterminer les taux d’échantillonnage nécessaires au fil d’une animation par le biais d’un

cache d’échantillons. Pour cela, nous dérivons des bandes passantes fréquentielles prenant

en compte la complexité de la lumière distante, de la BRDF, et de la cohérence temporelle

durant l’animation. Nous appliquons finalement un filtre bilatéral pour la reconstruction de

l’image finale, utilisant les sets épars de points de radiance calculés et placés en accordance

avec nos oracles fréquentiels–habituellement < 25% des pixels, par image.

Mots clés : Techniques Monte Carlo, Echantillonnage et reconstruction, Mise en cache de

radiance

Abstract. We propose a method to render animation sequences with direct distant lighting

that only shades a fraction of the total pixels. We leverage frequency-based analyses of

light transport to determine shading and image sampling rates across an animation using a

samples cache. To do so, we derive frequency bandwidths that account for the complexity of

distant lights, visibility, BRDF, and temporal coherence during animation. We finally apply

a cross-bilateral filter when rendering our final images from sparse sets of shading points

placed according to our frequency-based oracles (generally < 25% of the pixels, per frame).

Keywords: Monte Carlo Techniques, Sampling and Reconstruction, Radiance Caching

1. Introduction

In physically based rendering, pixel colors are computed by estimating a multi-dimensional
integral. Pixels are usually computed independently, leading to potential redundancies. In the
case of animations, where variation across frames may only change sparsely, the probability
of performing redundant computation only increases. To exploit this redundancy, previous
work has targeted more efficient computation of individual pixels by improving the underlying
numerical integration routines (e.g., path-integral and density-estimation approaches [15, 14]
and importance sampling [37]), or by amortizing computation across image regions using
adaptive methods based on predictive models of light transport (e.g., caching, interpolants
and filters derived from frequency-space [10] or first-order [29] analyses).

We propose an adaptive approach to render animations with complex direct reflection
and shadows from environment lighting. We perform adaptive sampling in image space, as
well as during the numerical integration of each image sample. We further amortize shading
cost by reusing previously computed image samples across the animation in a conservative
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Fig. 5. For an equal quality target, our method (red curve) achieve almost two time faster
rendering time for a better rendering quality than the method of Durand et al. [10] (blue
curve). Insets from different images of the sequences (top) show how our method allows to
reconstruct images with much less artifacts and less noise than Durand et al. [10], and an
equal-time MIS integrator [37]

manner, based on frequency analysis of light transport. To do so, we devise a caching scheme
to store image samples using spatial, directional and temporal frequency bandwidths. Our
intuition is that frequency bandwidths of moving objects or viewpoints can be translated
into static spatio-angular bandwidths. For cases where this assumption fails (i.e., moving
occluders), we derive tailored conservative estimates.

Our oracles builds on frequency-based light transport analysis [10], and we additionally
leverage them during final image reconstruction. We are able to render images using few image
samples. Our frequency-analysis extends previous work to additionally treat temporally-
varying occlusion changes, to support animation sequences using a lightweight caching
scheme.

We perform rendering by applying three simple concepts :
(1) we shade only a carefully chosen sparse subset of pixels,
(2) when doing so, we adapt the spherical integration sampling rate according to variations

in lighting, BRDF, and occlusion, and
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Fig. 6. From an initial sparse image-space sampling ((a), showing part of our extended
G-buffer) we estimate the necessary sampling density for artifact free reconstruction (b). We
then reprojection & validate samples from our temporal cache ((c), in red) and compute
the sampling density from this first set (d) and subtract it from (b). We distribute samples
according to this difference in density (e) and reconstruct the final shading (f) using our
frequency-space oracles. New samples are added to the cache for the next frame.

(3) for animations, we further reduce the image sampling rates by reusing samples from
previous frames according to our frequency analysis, properly accounting for shading
and occlusion variations over time.

Specifically, our work consists of the following contributions :
• a frequency analysis of sample placement and reuse, within and across frames, that
amortizes shading computations over space, time, and integration domains,
• an adaptive integration scheme based on material, lighting, and visibility statistics
devised from our new frequency-analysis,
• a practical lightweight caching scheme that reuses, discards, and recomputes shading
and occlusion information over time, according to our frequency-analysis, in order to
control error.

2. Previous Work

Frequency Analysis of Light Transport. Durand et al. [10] proposed a frequency analysis
of local lightfields for surface based shading. They applied it to a proof-of-concept adaptive
image sampling and reconstruction application, where the numerical integration of the shading
integral at each sample location had already been computed to (visual) convergence. This
seminal work has promoted significant work on adaptive sampling and filtering techniques
that rely on local frequency analysis for rendering various effects including unshadowed
environmental shading [1], distribution effects [13, 34, 5, 22], soft shadows from geometric
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sources and ambient occlusion [11, 12, 23], and diffuse indirect illumination [24]. We are also
motivated by this seminal work and try to extend it to the problem of adaptively rendering
animation sequences. Like most of these work, we limit ourselves to the rendering of opaque
surface and let aside the problem of rendering participating media.
Lightfield Reconstruction. Lehtinen et al. [19, 20] reconstruct static images from a
sparse set of lightfield samples, leveraging the structure of continuous lightfield space. These
methods assume smoothness along reconstruction directions in the lightfield and rely on the
user provided sampling rate to be adapted to the integrand’s bandlimit. On the contrary,
we determine adequate sampling rates, and as such are better suited for higher frequency
variations.
Deep Image Filtering. A related set of techniques [30, 9, 32, 21, 6] apply denoising filters
directly to rendered images, using custom feature-space metrics, computed from unconverged
path traced simulation. Instead of leveraging structure in the high-dimensional lightfield,
these approaches formulate final rendering as a signal reconstruction problem ignoring, for
the most part, higher-order structures, coherence or frequency-content of the shading. Still,
they perform well in many complex scenarios. In certain cases, a limited form of temporal
filtering is supported, but only between adjacent frames; our caching scheme adapts over an
entire animation sequence.
Caching and Temporal Coherence. Irradiance and radiance caching [41, 18] model local
variations in indirect lighting to place sparse cache samples in a scene, and then compute
smooth shading from the samples using first- or second-order [31] interpolants. Again, here
the shading integral is computed independently at each sample (without any adaptivity), and
temporal coherence is not handled. Bala et al. [2] devise radiance interpolants and cache
re-use oracles based on error estimate bounds on (potentially reusable) shading samples,
and the render cache system [39, 3, 38] reprojects previous shading samples for interactive
preview. We also reproject cache samples for temporally coherent animations, but instead
leverage frequency bandwidth estimates that take local geometry variation, spatial and
temporal (spherical and camera) occlusion variations, reflectance and lighting changes into
account. Meyer and Anderson [25] used a smooth basis to reproject stochastic samples both
in space and time for smooth indirect illumination effects; our approach instead treats much
sharper features not amenable to smooth, generalized basis-space techniques.
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3. Overview

Our goal is to render still images and animated sequences, with all-frequency shadows
and reflections from direct environmental illumination, without dense sampling of pixels
nor of spherical integration samples for the outgoing radiance at each pixel (later refered as
“radiance points”). To do so, we leverage frequency analysis to adapt the sampling in both of
these spaces. For animations, we also build a lightweight cache of radiance points on-the-fly
in object space in order to further reduce sampling cost. This cache is maintained (discarding
/ adding elements) based on frequency criterion. At each frame, we reproject in screen space
radiance points from the cache and ensure that our target sampling rate, in screen space, is
met by resampling only were needed. Our approach works in four steps (see Figure 6 and
Algorithm 1):

(1) we perform an initial light sampling of radiance points to estimate the frequency
bandwidth metrics we will use to drive our final sampling rates (Figure 6(a));

(2) we reproject radiance points stored in a cache, according to their spatial, angular
and occlusion-aware temporal frequency bandwidths, to further prime our adaptive
sampling scheme (Figure 6(c));

(3) using the information gathered in #1 and #2, we adaptively sample screen space
(Figure 6(e)) according to the difference between the conservative sampling density
determined by our frequency analysis (Figure 6(b)) and the density of radiance points
reprojected from previous frames (Figure 6(d)), potentially adding new radiance
points in undersampled pixel regions. Newly sampled radiance points are computed
using an adaptive spherical integration approach; and,

(4) finally, we reconstruct the final image(s) using a frequency bandwidth-driven cross-
bilateral filter (Figure 6(f)).

We distinguish ourselves from previous techniques by:
• coupling adaptive image/object-space sampling (Section 5), spherical sampling (Sec-
tion 4) and final image reconstruction, using oracles devised from our frequency
analysis (Section 6),
• accounting for shading variations due to camera and object motion in our bandwidth
computation to, e.g., adaptively sample all-frequency shadows and reflection effects,
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accounting for complex occlusion and appearance variations in animated sequences
(Section 5), and by
• exploiting coherence in the spatio-angular outgoing radiance with a lightweight cache
of frequency-space metrics (Section 5).

Algorithm 1: Our adaptive sampling & reconstruction method.
input :Empty deep image img; Current cache cache; Viewpoint v

output :Reconstructed image buffer img

// Uniformly sample screen space (Section 5)

pts = initialPixelSampling(v)

// Compute radiance with adaptive integration at these positions

// and accumulate visibility statistics {µv, σv} (Section 4)

computePointsRadiance(pts, v)

// Save points for cache insertion after image generation

savePointsInCache(cache, pts)

// Cache point verification and reprojection (Section 5)

for c in cache do
if isValidEntry(c, v) do pts.add(c)

else cache.discard(c)
end

// For each pixel, reconstruct occlusion statistics and estimate

// the required sampling density (Section 4)

N = computeSamplingDensity(pts, v)

npts = sampleImageFromDistribution(N, Nmax)

// Compute the radiance at sampled positions and accumulate

// visibility statistics (Section 4)

computePointsRadiance(npts, v)

// Reconstruct final image (Section 6)

img = upsample(npts, v)
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Fig. 7. We only consider the frequency content of the (distant) incident lighting and visibility
within the view-evaluated BRDF footprint (in yellow), defined as a cone centered about the
mean reflection direction of the BRDF slice µρ with radius equal to three standard deviation
σρ of the BRDF lobe. Our visibility statistics, comprised of its mean µV and three standard
deviation σV , are also accumulated exclusively within this footprint.

4. Adapting the Spherical Sampling Rate

Our approach adaptively places radiance points in a scene (and across animation frames)
and, for each one of these point we use a spherical integration scheme that adapts the sampling
rate when computing the outgoing radiance estimate.

A radiance point corresponds to the outgoing radiance towards a viewing direction ωv, at
a 3D position p, based on the reflection equation [16]:

L(p,ωv) =
∫
H2
L∞(ωl)V (p,ωl)ρ(p,ωv,ωl)(ωl · n)dωl, (4.1)

computed using a Monte Carlo estimator (see details below). Here, we restrict ourselves to
direct illumination from distant environment/area sources L∞, where ρ is the BRDF, V is
the binary visibility function and H2 is the hemisphere of unit directions at p about the
surface normal n.

One of our goals is to accurately compute radiance points, with minimum computation,
by adapting the hemispherical sampling rate to the complexity of the integrand. Given a
bandwidth estimate B for our integrand, we apply Shannon’s sampling theorem to determine

43



the spherical sampling rate NΩ = 4B2 used for Monte Carlo integration1. We remark that
the integral in Equation 4.1 can be interpreted as a windowing of the incident lighting by a
filter comprised of the product of the BRDF and cosine term [27]. Consequently, incident
light and visibility frequencies outside of this window will not contribute to the integral and,
so, should not be considered when determining the spherical sampling rate.
BRDF Cone. When computing Equation 4.1 we first estimate the BRDF’s footprint defined
by its view-dependent lobe centered about its mean reflection direction µρ and of standard
deviation σρ, simplifying its formulation by assuming the lobe radially symmetric (see
Figure 7). For a Lambertian BRDF, µρ is the surface’s normal and the whole hemisphere is
considered. For rough microfacet-based BRDFs, a good approximation for µρ is the mirror
reflection of the view direction ωv and σρ should be proportional to the surface roughness
e [4, 35]. We derive σρ for a Phong BRDF of roughness e from the variance of its signal in
the 2D plane orthogonal to µρ defined as :

V ar[e] =
∫
t∈R

t2

(1 + t2)e/2dt =
√
π Γ[ e−3

2 ]
2 Γ[ e2 ] for e > 3 (4.2)

In practice, we approximate the gamma functions in Equation 4.2 with the convergent
version of Stirling’s formula. We found that the first three terms of the serie were enough
for the precision we need. The approximation is computed once per BRDF at initialization
time. For microfacet BRDFs, we first find the Beckmann-equivalent shininess such as
eMF =

√
2/(2 + ePhong) [40].

It is reasonable to treat any BRDF variation within the cone as negligible compared to that
of the incident light (see Figure 7), and so we must estimate the incident lighting’s frequency
content within the directional cone footprint in order to adapt the spherical sampling of our
Monte Carlo estimator of Equation 4.1.
Incident Lighting Bandwidth. To estimate the lighting bandwidth within the BRDF’s
cone, we pre-compute the environment light’s local bandwidth for several discrete cone
(window) sizes σρ and for several discrete cone directions µρ [1]: this data is stored in a mip-
like hierarchy of spherical textures (see Figure 8). We used cosine-windowed Fourier transforms
to estimate the bandwidth since they most closely match our BRDF-windowed integration
footprint profile. For different levels in the hierarchy, each cosine window corresponds to

1We square the 1D bandwidth to obtain a conservative 2D sampling rate.
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Fig. 8. We precompute the distant environment light’s bandwidth for multiple footprint
sizes (left), at discrete footprint directions. During rendering, we query this structure to
obtain the lighting’s bandwidth within the BRDF’s footprint (right).

Phong lobe with a shininess proportional to the window size, and computing this structure
must only be done once for each environment map. During spherical integration, we query
this structure based on the BRDF footprint direction µρ and size 3σρ in order to obtain the
lighting bandwidth BL∞ .

While we could proceed with B=BL∞ and use pre-filtering methods similar to previous
work [27, 28, 17, 1] to query the incident lighting with a sole sample, we want to additionally
account for the occlusion in the integration cone, and thus have to use actual sampling to
estimate our bandwidth.
Accounting for Visibility. It is impractical to directly incorporate the visibility’s bandwidth
into the integrand’s bandwidth estimate B, since piece-wise constant (binary) functions in
the primal (i.e., spherical) domain have infinite frequency bandwidth.

Instead, we motivate our solution by considering two spherical regions of integration, one
that is largely occluded and another that is not: we note that the spherical sampling rate
should not be modified in the unoccluded region since the sample rate already accounts for
the frequency of the integrand, and these regions will contribute the most to the integral; we
do, however, want to increase the sampling rate in occluded regions within the footprint, since
any occlusions will likely increase the frequency bandwidth. As such, we opt to modulate the
sampling rate determined by BL∞ by a factor fV that accounts for the amount of occlusion
in the solid angle subtended by the cone of integration, as follows:

NΩ = fV + 4B2
L∞ . (4.3)
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To determine the amount of occlusion, we accumulate a statistical representation of visibility
during a first Monte Carlo estimation of Equation 4.1, which we compute using multiple
importance sampling (MIS) [36] and NL = 4B2

L∞ spherical samples. Our MIS implementation
distributes samples evenly according to the pdf s of the environment light pL(ωωω) ∝ L∞(ωωω)
and the view-evaluated BRDF pρ(ωωω) ∝ ρ(p,ωv,ωωω). During integration, we progressively
accumulate the weighted arithmetic mean visibility vector µo and 3× 3 visibility covariance
matrix Σo within the BRDF’s footprint,

µo = 1
Ao

NL∑
i=1
piρi(1− vi),

Σo = N

(NL − 1)Ao2

NL∑
i=1

(ρi(1− vi))2(pi − µo) (pi − µo)T ,
(4.4)

which we will use to adapt our spherical sampling rate. Here, the pi are the first hit-points
visible from the shading position to the ith Monte Carlo (2D spherical) integration sample’s
direction ωωωi (expressed in the local coordinate frame about the BRDF cone’s central direction

Fig. 9. We increase the number of spherical integration samples to properly account for
shading variations due to occlusion. This reduces the error (right insets) with respect to the
ground truth.
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µρ) hitting a finite distance occluder, vi = V (ωωωi) is the binary visibility evaluated at ωωωi and
we weight the value by the view-evaluated BRDF’s pdf evaluated in the sampling direction
ρi = pρ(ωωωi) to avoid considering visibility samples in regions outside the BRDF footprint
(i.e., regions of little contribution to the final integral); finally, Ao = ∑N

i=1 ρi(1 − vi) is the
normalization of BRDF weights for the occluded samples (vi = 0).

The visibility’s standard deviation σV corresponds roughly to an occlusion coverage
measure within the BRDF’s footprint (see Figure 7) and is derived as

σV = max(
√

(µ̂ρt)T Σo µ̂ρt ,
√

(µ̂ρb)T Σo µ̂ρb ), (4.5)

where µ̂ρt and µ̂ρb are the unit tangent and binormal vector of the local coordinate frame
around µp. We use the ratio of this coverage to the size of the BRDF footprint to estimate
how many more samples are needed as fV = f(σV/σρ). We experimented with various easing
functions and found that a Gaussian profile, f(x) = (NΩmax − NΩ) e−1/2(x−1/2)2 yields good
results, where NΩmax is our maximum spherical sampling budget (Figure 9). We use the
remaining integration samples to improve our Monte Carlo estimate of Equation 4.1 (with
the same MIS estimator).

We use the frequency content of the BRDF and lighting, as well as occlusion statistics, to
adapt the spherical integration cost for each radiance point. To further reduce render time,
we will both reuse information from radiance points computed in previous frames (Section 5),
as well as reconstructing the final image using only a sparse set of image-space radiance
points (Section 6).

5. A Sparse, Adaptive Radiance Cache

When rendering an image, we first uniformly distribute a small number of radiance
points in image-space in order to gather the required information to compute the optimal
sampling density: we estimate the outgoing radiance’s spatio-angular frequency bandwidth
(Section 5.1). We then reuse radiance points from previous frames, leveraging an object-space
cache (Section 5.2). Shading variations caused by camera and/or object motion can invalidate
radiance points stored in the cache, and so we yet again leverage our frequency analysis to
appropriately handle cache sample invalidation, resampling, and reuse (Section 5.3) in a
manner that maintains image fidelity and temporal coherence.
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Fig. 10. To estimate the screen-space bandwidth BS, we start with the emitted (angular)
bandwidth of the environment light BL∞ reduced to the BRDF’s footprint (a), we then apply
the BRDF bandlimit Bρ (b) and modulate it according to the curvature, foreshortening,
and spatial transport [10] (c). The angular bandwidth serves directly as the screen-space
bandwidth estimate.

5.1. Adaptive Image Space Sampling

The spatio-angular bandwidth of the outgoing radiance in image-space will be used
to determine the (screen-space) density of radiance points required for artifact-free image
reconstruction (discussed in Section 6). To compute this bandwidth we proceed similarly
to previous work [10, 1] as illustrated in Figure 10: beginning with the bandwidth BL∞

emitted within the solid angle of the (distant) light subtended by the BRDF’s footprint
(Figure 10(a)), we analyze the reflected bandwidth (Figure 10(b)) accounting for the local
visiblity and BRDF’s band-limit Bρ, to estimate the bandwidth of the shade point at the
sensor location BS (Figure 10(c)).

48



Frequency analysis methods typically operate either on the bandwidth B or the variance
σ2 of the spectrum. We interchange between these two measures in our discussion using 3
standard deviations (corresponding to the 99th percentile of a Gaussian) as the bandwidth of
the spectrum from its variance: B ≈ 3

√
σ2. We use a compact 2D variance representation [5]

for our spatio-angular bandwidths, σ2 = {σ2
x, σ

2
θ}, where σx and σθ are the spatial and

(isotropic) angular bandwidths of the outgoing radiance field.
While accumulating the mean occlusion direction µo and covariance Σo during radiance

point integration (Section 4), we also compute the mean and variance of occluders’ distance
in the BRDF cone, similarly to Equations 4.4. We project the occluders’ hit information on
the mean reflection direction of the BRDF µp instead of on its local tangents. We thus get a
mean occlusion distance of µt = ‖µo‖ and a standard deviation of σt =

√
(µ̂ρ)T Σo µ̂ρ. We

approximate the minimum distance to occluders as

tmin = µt − 3× σt. (5.1)

Moreover, assuming a pinhole camera, the bandwidth incident on the aperture is equal to
the screen-space bandwidth we will use for sampling. And so, the screen-space spatio-angular
2× 2 covariance matrix is computed as

ΣS,θ = Tx→v
(
Cv ◦Bρs ◦CL

)(
σ2
L∞ + TV→x(tmin)

)
, (5.2)

where each of the five operators above are simply 2 × 2 matrices [1] (see Appendix 9 for
details): CL accounts for the local curvature and cosine factor between n and the mean
BRDF direction µρ; Bρs bandlimit the bandwidth according to the view-evaluated BRDF;
Cv accounts for the mirror reflection, curvature and cosine foreshortening between the shade
point and the viewpoint; σ2

L∞ is estimated using the bandwidth queried from our hierarchical
structure; and Tx→v transports the bandwidth from the shade point to the eye. When
accounting for occlusion, an additional transport operator TV→x warps the spatio-angular
occlusion bandwidth according to the minimum occluder distance between the shade point
and the light as derived in Equation 5.1 [10, 11].

From the covariance matrix ΣS,θ we retrieve the angular part σ2
θ defining our final scalar

image-space variance, and derive its bandwidth as stated above as

BS ≈ 3
√
σ2
θ . (5.3)
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Fig. 11. During reprojection, we test whether the new viewing direction remains inside the
BRDF’s footprint and, if so, we project the sample onto the screen (plain green line); if not,
we (optionally) discard the sample from the cache (dashed red line).

Sampling Density and Radiance Point Placement. We first uniformly sample pixels
in the image plane with a low number of samples per pixel to compute per pixel visibility
statistics. The number of directional samples used is proportional to the BRDF cone apex.
We apply a simple depth- and normal-aware bilateral upsampling filter [33] with filter sizes
proportional to the pixel’s unoccluded angular variance (see Appendices 9.1, 9.2) to remove
noise from the bandwidth and visibility statistic values, {µo,Σo}. We use these values to
compute the screen-space bandwidth BS using Equations 5.2 and 5.3, and determine the final
pixel sampling densities by clamping the bandwidth between zero and one (see Section 7)
which we use to sample the image space by rejection sampling : each pixel receiving one unique
sample if a random value between zero and one falls lower or equal than the corresponding
pixel’s sampling density, ensuring that a density of one always yields one and only one sample
and one of zero will never be sampled.

As detailed below in Section 5.2, we can further reduce the rendering cost by only
generating new radiance points in screen-space where reprojected (valid) radiance point
samples from our cache do not satisfy our pixel sampling density requirement. When
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introducing a new radiance point, we always perform spherical integration using the approach
in Section 4.

5.2. Caching and Reusing Radiance Points

During animation, the number of new radiance points computed each frame can be
significantly reduced if we carefully reuse radiance points from previous frames. As such, we
propose an object-space cache to store, update, invalidate, and reuse (when suitable) radiance
points across frames of an animation. Every scene object gets an associated cache for easier
management of its associated samples. Each cache entry consists of a tuple comprising a 3D
position, 2D viewing direction, surface normal, radiance value, time at which the sample was
originaly created, boolean flag identifying moving samples, spatial bandwidth Bx, angular
bandwidth Bθ, a temporal bandwidth Bt (see Section 5.3), and the occlusion ratio used to
define fV . The spatial, angular and temporal bandwidths (Bx, Bθ, Bt) (see derivation in
Appendix 9) are used to define a circular surface patch, a cone of directions (see Figure 11,
inset), and a time interval within which the sample’s radiance value is known to remain close
to the correct value. In the case where the associated object is a specular mirror, the tuple
receives an additional 3D position, normal and object ID describing the reflected object from
the view direction it was sampled from. Three render-time parameters qε{x,θ,t} are used (see
below) to control the accuracy of our method.

After our initial sampling, but before computing the current pixel sampling density, we
update (based on object motion) and reproject radiance points stored in our cache onto the
image plane. We only reuse these points for final image reconstruction if:

(1) they pass a z-buffer camera visibility test, and
(2) their radiance value remains valid after reprojection.

The validity of reprojected radiance points is determined according to spatial, angular and
temporal bandwidth tests in order to control the bias introduced in the final rendering (as
detailed below and in Figure 11). Reprojected radiance points that do not pass these tests
are not considered for reprojection nor reconstruction, and are flagged for discard from their
respective cache (as illustrated in Figure 12(a)).

Namely, object motion affects cache point validity in four ways:
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(1) camera and object motion can lead to failed z-buffer (i.e., camera visibility) tests
during reprojection,

(2) object motion can influence the validity of cached radiance points that lie on the

surface of the moving object,
(3) temporal changes of distant lighting affects the product of the light and BRDF during

integration, and
(4) object motion can influence the accuracy of radiance points due to changes in the

spherical visibility on all other objects.
We describe the latter case (visibility changes) in Section 5.3 and discuss here the remaining
points.

(a) Cache discard & reuse (b) Resampling

Fig. 12. Left, we visualize the previous frame’s reused (in black) and discarded radiance
points (in different colors). Invalid samples due to Bx are blue, to Bθ red, to Bt orange, and
to occlusion ratio are purple; Right, we show the number of reused and resampled radiance
points (in red and blue resp.) used for reconstruction.

Validating Reprojected Cache Points. We use the spatial, and angular bandwidths to
define a circular surface patch and directional cone with radii rx = 2πεx/Bx and rθ = 2πεθ/Bθ,
where the directional cone is centered along ωv (at the time of the radiance point’s insertion
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into the cache), ε{x,θ,t} = acos(1−qε{x,θ,t}) is based on quality thresholds qε{x,θ,t} corresponding
to the maximum relative error a cached point can cause during reprojetion. Validating a
reprojected radiance point corresponds to z-buffer testing the pixel onto which it projects (for
camera occlusion) and ensuring that the view vector is inside its directional cone (Figure 11).

To treat temporal changes in the radiance value due to lighting and occlusion motion, we
add a temporal validity period to each cache point based on temporal bandwidth ∆t = 2πε/Bt.
We apply Egan et al.’s [13] bandwidth estimate to treat variations in lighting rotation, and
we derive temporal bandwidths for changes in radiance due to occlusion motion in Section 5.3.
The final temporal bandwidth Bt is the maximum of these two bandwidths.
Image Resampling and Cache Updates. Once reprojected, cache samples contribute
in decreasing the per-pixel density in their screen-space reprojection neighbourhood. Each
reprojected sample is splatted on screen in a manner similar to the final reconstruction
(Section 6) and their derived screen-space bandwidth is subtracted from BS. This difference
density is used to distribute new samples with the same rejection sampling rules as the empty
cache case (see Figure 12(b)). Given the increased start-up density due to cache reprojection,
we are more likely to introduce samples in areas that are not covered by the reprojected
sampling.
Cache Point Discard and Merging. Each newly generated radiance point is added to
its corresponding cache and uses the spherical sampling scheme of Section 4. If two cached
radiance points reproject onto the same pixel they may be merged if their object IDs are
identical and if their spatial and angular bandwidths agree with the angular and spatial
distances between them (Figure 13). If a radiance point reprojects outside the view frustum,
it is also flagged for discard. Once per frame, each cache will remove in a batch all the
flagged-as-discard entries and set their slot as open again for further entries to be added on
future frames. The cache memory size increases if no open slot is available for this object,
which happens implicitly for the first frame, and less regularly during the rest of an animation.
Cache size is grown by sample batches and (re)allocations can thus occur a maximum of once
per object per frame. Each cache is grown at least once (for the first frame) by the amount
of slots the sampler gave each object for the initial frame.
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5.3. Handling Temporal Occlusion Changes

Modeling the impact of object motion on the scene visibility is challenging. Starting from
a time-dependent visibility formulation of the reflection equation (Equation 4.1), we will
perform a frequency analysis of changes in the outgoing radiance due to changes in visibility.
We will show that the temporal bandwidth Bt of the change in the final shading can be
modeled using the projected angular velocity of occluders and the distant light’s bandwidth.
We store this bandwidth Bt at each cached radiance point.

We consider the relative motion of occluders at a shade point in our time-dependent
reflection equation (below; Equation 5.4), and assume that only the spherical visibility changes
over time, but not the lighting nor reflectance:

L(p,ωv, t)=
∫
H2
L∞(ωl)V (p,ωl, t)ρ(p,ωv,ωl)(ωl · n)dωl. (5.4)

Concurrently treating temporal variations in lighting and reflectance is a challenging problem
that we leave to future work.

Fig. 13. We merge two cache points that reproject onto the same pixel only if both their
spatial and angular bandwidths overlap enough. In this example, while the two cache point’s
angular cones (ω1, ω2) align (gray), their spatial bandwidths at p1 and p2 do not overlap
enough. Consequently, the two points will not be merged.
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Next, we model the change in outgoing radiance ∆L due to the motion V (t) of a small
moving occluder patch2; we will later generalize this model to large occluders. The outgoing
radiance “removed” due to the (potentially moving) occluder at time t is

∆L(t) =
∫
Vt
L∞(ωl)ρ(ωl)(ωl · n)dωl , (5.5)

where we denote the set of all occluded directions at time t as Vt = {ωl | V (p,ωl, t) = 0}.
We can now rewrite the outgoing radiance at any moment of time as the sum of a temporally
constant (unoccluded) component, and the change in outgoing radiance that does vary with
time:

L(p,ωv, t) = [L(p,ωv, 0)−∆L(0)]︸ ︷︷ ︸
constant w.r.t. time t

+∆L(t) . (5.6)

Here, ∆L(t) can be thought of as time-dependent antiradiance [8]. We perform a frequency
analysis of this formulation in order to reason about the temporal bandwidth of changes to
the outgoing radiance at a radiance point and, given this segmentation, the Fourier transform
of the outgoing radiance is equal to the Fourier transform of the change in the outgoing
radiance, L̂(Ωt) = ∆̂L(Ωt), as:

L̂(Ωt) = F [L(p,ωv, t)] = F
[

[L(p,ωv, 0)−∆L(0)] + ∆L(t)
]

= Aδ(Ωt) + F [∆L(t)], (5.7)

where A is a constant offset we can ignore since it has a bandwidth equal to zero; as such, we
only need consider the last term in our bandwidth derivation:

F [∆L(t)] = ∆̂L(Ωt) = F
[ ∫
Vt
L∞(ωl)ρ(ωl)(ωl · n)dωl

]
.

We will directly relate the Fourier transform of the (change in) outgoing radiance to the
Fourier transform of the distant lighting, by assuming that the projected (spherical) area of
the moving occluder V (t) does not change w.r.t. time t and that the cosine-weighted BRDF
is constant over the projected occluder patch; this is reasonable given our small occluder and
small motion assumptions, and similar to reflectance-constancy assumptions used in previous
work [13, 11, 26]. We additionally model the spherical angular motion of the occluder as a
motion relative to the distant illumination, allowing us to rewrite the Fourier transform in
Equation 5.7 as an integration of the occluding patch in its original configuration at V (0),

2We occasionally omit location p and view ωv parameters for brevity.
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but now lit under the distant lighting rotated according to the appropriate inverse (angular)
rotation of the occluder motion:

∆̂L(Ωt) ≈ F
[
ρn

∫
V0
L∞(ωl + tv̇)dωl

]
, (5.8)

where v̇ is the angular velocity of the occluder patch, we introduce a notational abuse of the
+ operator to denote angular rotation of the lighting direction ωl for simplicity, and

ρn = 1
|V0|

∫
V0
ρ(p,ωv,ωl)(ωl · n)dωl (5.9)

is the average cosine-weighted BRDF value over the occluder.
We can interchange the order of the integral and Fourier transform (due to linearity)

in Equation 5.8, allowing us to express the Fourier transform of the (change in) outgoing
radiance as the product of the Fourier transform of the lighting, the ratio of the average
cosine-weighted BRDF and the angular occluder motion magnitude, and a phase term:

∆̂L(Ωt) ≈ ρn

∫
V0

eiΩt(ωl[θ]+ωl[φ])

|v̇|
L̂∞(|v̇|Ωt)dωl

= ρn
|v̇|
L̂∞(|v̇|Ωt)

[∫
V0
eiΩt(ωl[θ]+ωl[φ])dωl

]
, (5.10)

where the bracketed term is the phase component of the Fourier transform which we conser-
vatively bound below.

We can bound the bandwidth of ∆̂L(Ωt) by analyzing the spectrum’s amplitude, where
the amplitude is | · | =

√
Re(·)2 + Im(·)2; we first bound the amplitude of the phase term as

the projected solid angle of the occluder VΩ,∣∣∣∣∫
V0
eiΩt(ωl[θ]+ωl[φ])dωl

∣∣∣∣ ≤ ∫
V0
dωl︸ ︷︷ ︸
VΩ

, (5.11)

since |eix| ≤ 1, and we can then bound the amplitude of ∆̂L(Ωt) in Equation 5.10 as
∣∣∣∆̂L(Ωt)

∣∣∣ ≤ VΩ ρn
|v̇|

∣∣∣L̂∞(|v̇|Ωt)
∣∣∣ . (5.12)

Given this bound on the amplitude we can conservatively bound the bandwidth Bt,single of
the (change in) outgoing radiance due to a small occluding patch: since the temporal rotation
(i.e., shift) in the primal domain of L∞ in Equation 5.8 results in an scaling of the spectrum
L̂∞ by a factor of |v̇| in Equation 5.10, the lighting’s original bandwidth BL∞ is similarly
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Fig. 14. We illustrate the need for our moving occluders bandwidth to discard samples
during animations in the Killeroo scene after 10 frames. Without this bandwidth, the
cache incorrectly reproject shadows (bottom inset) onto the screen which result in a dark
region in at the feet of the Killeroo.

scaled to |v̇|BL∞ under the occluder’s relative motion. Thus, the bandwidth Bt,single of ∆̂L
is bounded as

Bt,single ≤ |v̇|BL∞ . (5.13)

Our analysis above considers the motion of only a single small occluding patch, and we
conceptually estimate the bandwidth due to the motion of all the occluders by taking the
maximum bandwidth across all the small occluding patches: during spherical radiance point
integration (Section 4), we compute (and cache; Section 5.1) the mean angular velocity of
occluding samples times the light bandwidth (estimated using our hierarchichal structure;
Section 4) µ[|v̇|BL∞ ] and its variance σ[|v̇|BL∞ ], in a manner similar to the accumulation of
the visibility statistics in Equation 4.4. We then approximate the final temporal bandwidth,
and thus the maximum bandwidth across all occluding patches, as the mean plus 3 times the
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Fig. 15. Stills from the Killeroo animation with one glossy and one diffuse Killeroo
rotating above a diffuse and glossy checkerboard, lit by the Pisa environment. Rendering
times per frame for our method and Durand et al. [10] are in red and blue, respectively.
Reconstruction times are provided using dashed lines of the same color. Insets compare
feature reconstruction our approach, equal-time Durand et al. [10], and an equal-time MIS
integrator.

standard deviation,

Bt = µ[|v̇|BL∞ ] + 3σ[|v̇|BL∞ ] . (5.14)

This conservative bandwidth estimate models the change in outgoing radiance that a radiance
point will undergo in time due to occluder motion; while it uses a conservative bound on the
amplitude of the integrated phase term, we do not need to explicitly account for the phase
term during its calculation. This bandwidth can be interpreted as associating a lifespan

to radiance points in the cache, and we simply extend our cache validity checks to accept
reprojected cache samples only if they are “young” enough; if not, we discard them. We also
discard samples which occlusion ratio is different from more than 0.125 with the occlusion
ratio computed at the pixel the reproject to (occlusion ratio are ranging from 0 to 1). This
further incorporate a change of viewpoint for the cache sample.

While our bandwidth estimate is far from accurate, it improves the quality of all-frequency
shadowed regions and behaves consistently: without occluder motion, cached samples will
have infinite lifespan and only be discarded if their spatial or angular bandwidth tests are
not satisfied resulting in blurred shadows (see Figure 14).
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6. Image Reconstruction

We generate the final image(s) with a reconstruction using all our (sparse) screen-space
samples. We apply texture maps after shading reconstruction to avoid having to account for
their potentially high-frequency content in our frequency analysis.

The reconstructed shading Li at a pixel i is a weighted sum of the radiance points’ values
Lp′ (where p′ denotes a projected pixel position) in its local neighborhood Ni, where we only
consider radiance points that reside on the same object as i:

Li = Ti
∑
p′∈Ni

Wp′→i Lp′ , (6.1)

where Ti is the texture value for pixel i. We use a standard cross-bilateral filter, as in previous
shading reconstruction works [10], tailored to our predicted bandwidth estimates:

Wp′→i = exp
[
−
∑

f

1
2σ2

f
||fi − fp′ ||2

]
, (6.2)

where fi|p′ = {p,n, µv, σv} is our feature vector, so that the reconstruction will not combine
values that differ much along any of the axes in this vector, and σf is a user defined standard
deviation. In the case of the pixel feature vector, fi, we use the center of the pixel. Since our
feature vector contains the frequency estimate, is capable of reconstructing both hard and
soft transitions in image-space caused by shadows and reflections.

7. Results and Implementation

Our implementation is built directly atop Intel’s Embree raytracing engine and operates
completely on the CPU, although it is readily parallelizable on the GPU. Our implementation
runs in parallel using OpenMP and a screen buffer separated into tiles of 16 by 16 pixels.
We used the a screen-space curvature estimator depending on object-space normals and
positions when computing an object’s curvature at eye-ray hitpoints. Our MIS estimator of
Equation 4.1 (Section 4) uses the power heuristic [37] and evenly distributes samples between
the light and BRDF pdf s.

To construct the environment map’s bandwidth hierarchy (Section 4), we use a 2D fast-
Fourier transform [7] and, for footprints smaller than 16× 16 pixels, we return the maximum
possible frequency (one sample per texel). The bandwidth is computed by taking the 95th
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Fig. 16. Stills from the Car animation with static geometry and a camera rotating around,
lit by the Hallstat environment. Rendering times per frame for our method and Durand et
al. [10] are in red and blue, respectively. Reconstruction times are provided using dashed
lines. Insets compare feature reconstruction our approach, equal-time Durand et al. [10], and
an equal-time MIS integrator.

percentile of the 2D spectrum. If the footprint spans several pixels at the target resolution,
we conservatively take the maximum value over the resulting pixels.

To prepare the screen-space bandwidth of Equation 5.3 for sampling by rejection, we first
modulate it according to the screen’s aspect ratio, and then bound it between zero and one.
So that the sampling density conforms to the aspect ratio, we multiply it by the maximum of
the horizontal and vertical modifiers, so that BS = BSmax

[
fx
W
, fy
H

]
, in pixel−1, where fx and

fy are the horizontal and vertical fields of view, for a W ×H sized image. We expose the
maximum filter radius fmax for reconstruction as a user parameter, from which we can derive
the minimum bandwidth we allow according to Shannon’s theorem as Bmin = 1

2×fmax . Bmin

is fixed at 1 so that we never sample a pixel more than once. This higher bound could be
extended to add support for sub-pixel supersampling.

If an object’s associated cache needs to accommodate more samples than its current
capacity during an animation, we resize it to be 1.5 time its current capacity so that we avoid
the constant reallocations that could theoretically occur.
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Fig. 17. When comparing cumulative rendering times, our cache (in red) allows for smaller
rendering time compared to the non-caching method [10] (in blue) where radiance points are
recomputed every frame. In the case of Helicopter we achieve almost half the rendering
time since we reuse most of the cache samples.

We add anti-aliasing as a post-process operation for the results of all the compared
techniques and which processing time is not included in the resulting times since it isn’t
relevant to the measure. For that reason, we use sub-pixel information for it about the
normals, depths and object IDs for a more precise detection of edges.
Results. We have tested our method on the following scenes: Helico (Figure 19) shows a
rotating rotor blade in a static scene with simple Whitted-style indirect specular effects and
texture mapping, Car (Figure 16) is an example of glossy, diffuse and mirror objects under
camera rotation, Killeroo (Figure 15) combines diffuse and glossy BRDFs with meshes
that exhibit high curvature, and so are particularly challenging for resolving reflections. All
results are generated on an Intel i7 CPU 930 2.80 Ghz at a resolution of 1280× 720, with
the following parameter settings fmax = 8, qεx = qεθ = 1e−4 and qεt = 1e−7.

Our method consistently reconstructs image sequences using only a fraction of the pixels
on a screen, and our results are temporally coherent (see video): we typically reuse between
10 and 25% of the pixels to render any given frame of an animation. Our cache size ranges
on tested scenes from 45k to 500k radiance points, but could potentially go further than that
(1M) for long, complex animations over convoluted scenes; corresponding to a maximum size
of 6, 68 and 136 Mb respectively.

61



We perform an equal-quality comparison of an animation sequence generated with our
method to that of Durand et al.’s [10] prototype (Figure 17): we also exhibit sublinear scaling
of the rendering time with respect to the number of rendered frames.

Finally, we perform an equal-time comparison of a still frame to the SURE-based opti-
mization for Adaptive Sampling and Reconstruction from Li et al. [21] (Figure 18). The
results were rendered with the parameter set put forth by the authors, that is σfk = 0.4, 0.125
and 0.3 for normal, texture color and depth respectively. We adapted the number of filter
bank iterations for the final pass as σs = {0, 1, 2, 4, 8} for performance purposes to reduce
the execution time of their technique to something closer to ours.
The SURE-based adaptive sampling method performs a lot better than raw MIS perceptually,
especially in low-frequency regions where their algorithm makes good use of larger filters.
While it performs quantitatively better than our method here, Li et al. technique appear
noisier, especially when handling all-frequency shadows, as present in the Helico scene.

8. Conclusion and Future Work

We presented an adaptive sampling, signal-tailored integration and reconstruction tech-
nique for all-frequency direct illumination, rendering images and animations using a fraction
of the cost of standard techniques. We develop new frequency bandwidth estimates to
appropriately sample occlusion, reflectance, and lighting variations. In the case of animation
sequences, we further amortize rendering cost with a lightweight caching scheme that also
exploits our frequency analysis.
Discussion. Our temporal bandwidth derivation for moving occluders assumes that the
projected size of a small occluding patch does not change over time; this only holds for
purely rotational occluder motion (from the shading point’s perspective), but still provides a
good approximation in the case of small motions. Alleviating this constraint could further
improve our visibility bandwidth, and we would like to investigate coupling the effects of
temporal changes in the reflectance and lighting together with the occlusion. Similarly, we
only consider linear object motion, as is common in many rendering approaches, so modeling
shading variations due to rotational motion could be an interesting avenue of future work.

We do not model the temporally varying depth complexity of occluders, which could lead
to shading variations when occluders subtend the same spherical region at certain moments in
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time during there motion; in the case where one moving occluder completely blocks another,
this may lead temporal bandwidth underestimation in our current approach, however we
have not noticed a case where this results in any artifacts during our investigation.

Li et al. [2012]

RMSE : 0.01001 RMSE : 0.01967

RMSE : 0.00913RMSE : 0.01174

MIS

Ours Durand et al. [2005]

Fig. 18. We present an equal-time still frame comparison between our technique and the
work of Li et al. [21], Durand et al.[10] and MIS as reference.
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Another more subtle issue arises when trying to simply multiply the reconstructed shading
by a texture value after the fact (Equation 6.1): this only holds when the texture value at a
pixel does not vary over time; this is clearly not the case for objects under relative motion
w.r.t. the camera. The correct solution would be to project the texture, masked by the
pixel’s spatial footprint, across time and onto our other filters in order to model its maximum
bandwidth using e.g. a mean-plus-3-standard-deviation approximation. We can then weight
the spatially-varying texture by the shading variation over the same time period.

While our caching scheme and bandwidth estimates can be readily integrated into other
frequency-based shading approaches to account for distribution effects such as defocus [34, 5]
or motion blur [13, 5], our algorithm and analysis are currently restricted to single-bounce
direct illumination (and Whitted-style recursive effects, e.g. mirror reflections). Extensions
to global illumination are not trivial, but one direction would be to formulate a progressively-
accumulated bandwidth estimate to deal with multiple bounces in e.g. a path-tracing
estimator.

Lastly, while one of the benefits of our cache system is that it is very lightweight,
we do not currently share or reuse integration samples across radiance points; previous
approaches [11, 12] have treated similar problems using a heavyweight ray-space cache. We
find our proposed solution to be a reasonable middle-ground solution, using higher-order
statistics to compare and reason about nearby radiance points, but we never share this
information across radiance points to influence the integration process. Doing so is left to
future work and could further improve the efficiency of a technique like ours.

9. Appendix A: Image-space spatio-angular variance

We derive the 2D spatial and angular variances of the incident light field in object and
image space to direct our sampling and reconstruction algorithms. We do this by analysing
how the light field function changes along the light path from the light source to the eye, and
work with 2× 2 matrix operators to facilitate derivation. Our analysis is based on previous
works [10, 11, 5, 1].

We do not consider the convolution by the surface texture’s spectrum in our analysis and
apply texturing by simply doing the per-pixel product of the final radiance estimation and
the texture value at that (u,v) point.
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9.1. Covariance Analysis

We first derive the light field variance in the unoccluded case, where the incident light
field is not obstructed from its origin to the considered surface point x, so that TV→x has no
effect on the purely angular variance at emission. We then study the variance in the occluded
case, where part of the light field can be obstructed by blockers between the light and the
surface.
Unoccluded Case. We only consider light from distant illumination modelled by environ-
ment maps, which has no spatial variation and only non-zero angular variance, as

Σ =

0 0
0 σ2

L∞

 . (9.1)

Light travels from the source to the surface point x in a straight line (since we do not tackle
participating media). This results in an angular shear with a magnitude equal to the distance
travelled d1. Since we use infinitely distant light with only angular variation, this operation
has no effect on the signal and isn’t represented in Equation 5.2. The operator is defined as

Td1 =

1 −d1

0 1

 . (9.2)

Reflection of the incident light field at the surface point x in the direction of the eye is
composed of a serie of transformations [10]:

(1) The re-parametrization of the light field in the surface’s local frame, where the light
field is first scaled by ci = cos θi to account for the foreshortening of the incident ray,
and then sheared by the effect of the curvature k of the surface. The scale due to the
incident angle is spatial and has no effect on our purely angular light signal here. In
matrix form, Σ is modified by

CL =

ci 0
k 1

 . (9.3)

(2) The angular convolution of the re-parametrized light field by the surface’s BRDF,
which band-limits the signal by an amount inversely-proportional to the BRDF’s
shininess. We only consider time- and space-invariant isotropic BRDFs and our analysis
is based on the Phong BRDF, for which we obtain the covariance covθ,θ(ρs) = s/4π2

65



for a Phong exponent (or shininess) of s [5], which can be rewritten in matrix form,
with b = 1/covθ,θ(ρs), as

Bρs =

0 0
0 b

 . (9.4)

(3) The re-parametrization in the outgoing direction to the eye, similar to the first step,
is first a mirror reflection in the spatial domain, followed by the inverse curvature
shear by −k and the scale by cv = 1/cos θv, as

Cv =

 cv 0
cv k −1

 . (9.5)

Finally, light travels from x to the eye by a distance d, and the signal is modified one last
time by the operator

Tx→v =

1 −d

0 1

 . (9.6)

We put everything together to get the spatial and angular variances in object and image
space. Let Σ be the covariance of the incident light field, we get the object space covariance
Σo
S,θ by the succession of operations involving the matrix operators defined above such as

Σc = CT
L Σ CL Σρ = Σc −

ΣT
c Bρs Σc

1 + Tr
[
ΣT
c Bρs

] Σo
S,θ = CT

v Σρ Cv, (9.7)

and the image space covariance ΣS,θ by applying the travel operator

ΣS,θ = TT
x→v Σo

S,θ Tx→v. (9.8)

Occluded Case. When accounting for occlusion, an additional transport operator TV→x

warps the spatio-angular occlusion bandwidth according to the minimum occluder distance

tmin between the shade point and the light [10, 11]

TV→x =

1 −tmin
0 1

 . (9.9)

Since we employ distant environmental illumination, this operation wouldn’t affect the
covariance as it only has non-zero angular variance σ2

L∞ at emission. We add an undefined
spatial frequency content a in the matrix at emission and apply the transport shear before
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the interaction with the surface, the BRDF and the re-projection to the eye, so that our
covariance matrix at emission is defined as

Σ =

a 0
0 σ2

L∞

 . (9.10)

The rest of the derivation of the object and image space covariances is done in the same
manner as in the unoccluded case above, except that

Σc = CT
L Σt CL, with Σt = TT

V→x Σ TV→x. (9.11)

To get defined results, we compute the covariance in the limit where the spatial content a of
our emitted light tends to infinity.

9.2. Scalar variance & Bandwidth

The matrix operations above are used to determine the object space spatial and angular
bandwidths (Bx, Bθ) to control the validity of re-projected cache samples in Section 5.2; and
the image space angular variance σ2

θ in Equation 5.3 of Section 5.1.
In practice, the occluded derivation is always used to get σ2

θ , Bx and Bθ. The only case
where the unoccluded derivation is used is when determining filter sizes of the bilateral
filtering pass used to smooth the visibility statistics {µo,Σo} in Section 5.1.

When computing the occluded variables, in the frequent case where no actual occlusion
occur between the surface and the light, tmin is undefined and we should optimally switch to
the unoccluded variables. However, we found that by using a large enough distance as tmin
when there is no occlusion gives us smoother transitions between occluded and unoccluded
areas and avoid the use of a hard switch. This maximum distance is scene dependent and is
defined proportionally to the scene’s bounds. By considering every direction as occluded, we
first bias our sampling scheme and reconstruction filter sizes to distribute more samples and
be smaller, respectively, than with the hard switch; and second make our cache re-projection
policy stricter. We allow those biases since they can only improve quality, and because the
maximum distance used is large enough as to make any of those effect imperceptible.

Below are the scalar variables used in practice, evaluated from the derivations above.
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Unoccluded Case.

(σoS)2 = Σo
S,θ[1,1] = (4 c2

v k
2 σ2

L∞)
/

(1 + b σ2
L∞),

(σoθ)
2 = Σo

S,θ[2,2] = (σ2
L∞)

/
(1 + b σ2

L∞), and

σ2
θ = ΣS,θ[2,2] = (1− 2 cv d k)2 σ2

L∞

/
(1 + b σ2

L∞).

Occluded Case.

(σoS)2 = lim
a→∞

Σo
S,θ[1,1] =

(
(ci + 2 tlim k)2 + b c2

i σ
2
L∞

)/
b t2lim ,

(σoθ)
2 = lim

a→∞
Σo
S,θ[2,2] = b−1, and

σ2
θ = lim

a→∞
ΣS,θ[2,2] = (tmin − cv d (ci + 2 tmin k))2 + b c2

v c
2
i d

2 σ2
L∞

b t2min
.

We derive bandwidths Bx and Bθ in the same manner (see Section 5.1) as

Bx = 3
√
σoS

2 and Bθ = 3
√
σoθ

2.

References

[1] Mahdi Mohammad Bagher, Cyril Soler, Kartic Subr, Laurent Belcour, and Nicolas Holzschuch. Interactive

rendering of acquired materials on dynamic geometry using frequency analysis. IEEE TVCG, 19(5),

2013.

[2] Kavita Bala, Julie Dorsey, and Seth Teller. Radiance Interpolants for Accelerated Bounded-Error Ray

Tracing. ACM Trans. Graph., 18(3), 1999.

[3] Kavita Bala, Bruce Walter, and Donald Greenberg. Combining edges and points for interactive high-

quality rendering. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2003), 22(3):631–640,

2003.

[4] Petr Beckmann and Andre Spizzichino. Scattering of Electromagnetic Waves from Rough Surfaces. 1987.

[5] Laurent Belcour, Cyril Soler, Kartic Subr, Nicolas Holzschuch, and Frédo Durand. 5D Covariance tracing

for efficient defocus and motion blur. ACM Transactions on Graphics, 32(3):31:1–31:18, 2013.

[6] Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A Iglesias-Guitián, David Adler, Kenny

Mitchell, Wojciech Jarosz, and Jan Novák. Nonlinearly weighted first-order regression for denoising

monte carlo renderings. In Computer Graphics Forum, volume 35, pages 107–117, 2016.

[7] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex Fourier

series. Mathematics of Computation, 19(90):297–297, May 1965.

[8] Carsten Dachsbacher, Marc Stamminger, George Drettakis, and Frédo Durand. Implicit visibility and

antiradiance for interactive global illumination. ACM Trans. Graph., 26(3), 2007.

68



[9] Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik P. A. Lensch. Edge-avoiding À-Trous

wavelet transform for fast global illumination filtering. In Proceedings of High Performance Graphics.

Eurographics, June 2010.

[10] Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and François X. Sillion. A frequency analysis

of light transport. ACM Transactions on Graphics, 24(3):1115–1126, 2005.

[11] Kevin Egan, Frédo Durand, and Ravi Ramamoorthi. Practical filtering for efficient ray-traced directional

occlusion. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2011), 30(6), December

2011.

[12] Kevin Egan, Florian Hecht, Frédo Durand, and Ravi Ramamoorthi. Frequency analysis and sheared

filtering for shadow light fields of complex occluders. ACM Transactions on Graphics, 30(2):1–13, April

2011.

[13] Kevin Egan, Yu-Ting Tseng, Nicolas Holzschuch, Frédo Durand, and Ravi Ramamoorthi. Frequency anal-

ysis and sheared reconstruction for rendering motion blur. ACM Transactions on Graphics (Proceedings

of ACM SIGGRAPH 2009), 28(3):93:1–93:13, 2009.

[14] Iliyan Georgiev, Krivanek Jaroslav, Davidovic Tomas, and Philipp Slusallek. Bidirectional Light Transport

with Vertex Connection and Merging. In Proceedings of SIGGRAPH Asia 2012, 2012.

[15] Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. A Path Space Extension for Robust

Light Transport Simulation. Technical report, 2012.

[16] James T. Kajiya. The rendering equation. In Proceedings of the 13th annual conference on Computer

graphics and interactive techniques - SIGGRAPH ’86, volume 20, New York, New York, USA, August

1986. ACM Press.

[17] Jaroslav Křivánek and Mark Colbert. Real-time Shading with Filtered Importance Sampling. Computer

Graphics Forum, 27(4):71, June 2007.

[18] Jaroslav Krivánek, Pascal Gautron, Sumanta Pattanaik, and Kadi Bouatouch. Radiance caching for

efficient global illumination computation. IEEE transactions on visualization and computer graphics,

11(5), January 2005.

[19] Jaakko Lehtinen, Timo Aila, Jiawen Chen, Samuli Laine, and Frédo Durand. Temporal light field

reconstruction for rendering distribution effects. ACM Transactions on Graphics, 30(4):1, July 2011.

[20] Jaakko Lehtinen, Timo Aila, Samuli Laine, and Frédo Durand. Reconstructing the indirect light field for

global illumination. ACM Transactions on Graphics, 31(4):1–10, July 2012.

[21] Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. SURE-based optimization for adaptive sampling and

reconstruction. ACM Transactions on Graphics, 31(6):1, November 2012.

[22] Soham Mehta, Jiaxian Yao, Ravi Ramamoorthi, and Frédo Durand. Factored Axis-Aligned Filtering for

Rendering Multiple Distribution Effects. Proceedings of ACM SIGGRAPH, 33(4), 2014.

[23] Soham Uday Mehta, Brandon Wang, and Ravi Ramamoorthi. Axis-aligned filtering for interactive

sampled soft shadows. Proceedings of ACM SIGGRAPH Asia, 31(6), November 2012.

69



[24] Soham Uday Mehta, Brandon Wang, Ravi Ramamoorthi, and Frédo Durand. Axis-aligned filtering for

interactive physically-based diffuse indirect lighting. Proceedings of ACM SIGGRAPH, 31(4), July 2013.

[25] Mark Meyer and John Anderson. Statistical acceleration for animated global illumination. ACM Trans-

actions on Graphics, 25(3), July 2006.

[26] Ravi Ramamoorthi, John Anderson, Mark Meyer, and Derek Nowrouzezahrai. A theory of monte carlo

visibility sampling. ACM Transactions on Graphics, 2012.

[27] Ravi Ramamoorthi and Pat Hanrahan. An efficient representation for irradiance environment maps. In

SIGGRAPH, NY, 2001. ACM.

[28] Ravi Ramamoorthi and Pat Hanrahan. Frequency space environment map rendering. ACM Transactions

on Graphics, 21(3), July 2002.

[29] Ravi Ramamoorthi, Dhruv Mahajan, and Peter Belhumeur. A first-order analysis of lighting, shading,

and shadows. ACM Transactions on Graphics, 26(1), 2007.

[30] Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. Adaptive Sampling and Reconstruction using

Greedy Error Minimization. ACM Transactions on Graphics, 30(6):1—-12, 2011.

[31] Jorge Schwarzhaupt, Henrik Wann Jensen, and Wojciech Jarosz. Practical Hessian-based error control

for irradiance caching. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2012),

31(6):1–10, 2012.

[32] Pradeep Sen and Soheil Darabi. On Filtering the Noise from the Random Parameters in Monte Carlo

Rendering. ACM Transactions on Graphics (TOG), 31(3):1–15, May 2011.

[33] Peter-Pike Sloan, Naga K. Govindaraju, Derek Nowrouzezahrai, and John Snyder. Image-based proxy

accumulation for real-time soft global illumination. Pacific Conference on Computer Graphics and

Applications, January 2007.

[34] Cyril Soler, Kartic Subr, Frédo Durand, Nicolas Holzschuch, and François X. Sillion. Fourier depth of

field. ACM Transactions on Graphics, 28(2):18:1–18:12, 2009.

[35] Kenneth Torrance and Emett Sparrow. Theory for off-specular reflection from roughened surfaces.

Journal of the Optical Society of America, 1967.

[36] Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford University,

1997.

[37] Eric Veach and Leonidas J. Guibas. Optimally combining sampling techniques for Monte Carlo rendering.

In SIGGRAPH 1995. ACM Press, September 1995.

[38] Edgar Velázquez-Armendáriz, Eugene Lee, Kavita Bala, and Bruce Walter. Implementing the render

cache and the edge-and-point image on graphics hardware. In Proceedings of Graphics Interface, June

2006.

[39] Bruce Walter, George Drettakis, and Steven Parker. Interactive rendering using the render cache. pages

19–30, June 1999.

70



[40] Bruce Walter, Stephen Marschner, Hongsong Li, and Kenneth Torrance. Microfacet Models for Refraction

through Rough Surfaces. Rendering Techniques (Proceedings of Eurographics Symposium on Rendering

2007), pages 195–206, 2007.

[41] Gregory J. Ward and Paul S. Heckbert. Irradiance gradients. In Eurographics Workshop on Rendering,

pages 17–20, 1992.

71



Deuxième article.

Impulse Responses for
Precomputing Light

from Volumetric Media
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Cet article a été soumis à la revue Eurographics Symposium on Rendering 2019, en avril
2019. Il a été reformaté afin de suivre convenablement le format de cette thèse.
Renaud Adrien Dubouchet est l’auteur principal de cet article. Il a été principalement
impliqué dans les dérivations mathématiques du nouveau modèle analytique basé sur les
réponses impulsives pour représenter le transport de lumière à travers les médias volumétriques
participatifs, ainsi que dans le design et l’implémentation de la technique dans un outil de
précalcul professionnel chez Activision Blizzard, Inc. Il a été l’auteur principal de la rédaction
de cet article et son présentateur à la conférence associée.

Ce second article présente une méthode novatrice permettant d’ajouter à faible coût les
chemins de lumière à travers les médias volumétriques participatifs sur des surfaces. Ces
transports ne sont habituellement pas pris en compte pour les applications intéractives du



au coût élevé nécessaire pour simuler les multiples évenements de dispersions que la lumière
effectue dans les médias participatifs.

Notre méthode se base sur une nouvelle vision du transport à travers les médias, jamais
encore étudiée, factorisant ces multiples intéractions sous forme d’harmoniques zonales;
délivrant ainsi une représentation compacte et simple d’utilisation. La technique est étendue
afin de pouvoir gérer le cas des médias hétérogènes–ajoutant une dimension spatiale à la
densité volumétrique– ainsi que les fonctions de phase anisotropiques–guidant angulairement
la distribution de lumière à chaque évènement de dispersion.
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Résumé. Les méthodes modernes de rendu intéractif s’appuient souvent sur le précalcul

du rendu d’illumination surfacique et volumétrique. Cependant, le transport de lumière à

travers des médias participatifs sur des surfaces est typiquement ignoré pour ces précalculs.

Nous proposons une méthode efficace et compacte pour simuler le transport de lumière de

volume à surface pour le précalcul d’illumination. Nous prenons avantage d’un nouveau

modèle se basant sur la réponse impulsive de la lumière dispersée et attenuée par les médias

volumétriques afin de simuler son transport sur des surfaces par le biais de simples tables de

correspondance. Nos tables modèlent cette réponse impulsive en fonction de la distance et

de l’angle entre lumières et surfaces, que nous remappons ensuite à des médias possèdant

différents paramètres de dispersion (possiblement hétérogènes) et/ou fonctions de phase,

et gèrant par composition la possibilité d’avoir multiples évènements de dispersion dans le

volume. Nous appliquons notre méthode pour précalculer le transport de lumière de volume

à surface dans des scènes complexes et générons des résultats indiscernables de simulations

vérité terrain. Nos tables permettent ces précalculs de transport de lumière à des ordres de

grandeur plus rapide que le pourraient des solutions optimisées de tracé de chemins.

Mots clés : Harmoniques Sphériques, Illumination précalculée, Rendu de Volumes

Abstract. Modern interactive rendering can rely heavily on precomputed static lighting

on surfaces and in volumes. Scattering from volumetric media can be similarly treated using

precomputation, but transport from volumes onto surfaces is typically ignored here. We

propose a compact, efficient method to simulate volume-to-surface transport during lighting

precomputation . We leverage a novel model of the spherical impulse response of light

scattered (and attenuated) in volumetric media to simulate light transport from volumes

onto surfaces with simple precomputed lookup tables. These tables model the impulse

response as a function of distance and angle to the light and surfaces. We then remap the

impulse responses to media with arbitrary, potentially heterogeneous scattering parameters

and various phase functions. Moreover, we can compose our impulse response model to

treat multiple scattering events in the volume (arriving at surfaces). We apply our method

to precomputed volume-to-surface light transport in complex scenes, generating results

indistinguishable from ground truth simulations. Our tables allow us to precompute volume-

to-surface transport orders of magnitude faster than even an optimized path tracing-based

solution would.

Keywords: Spherical Harmonics, Precomputed Lighting, Volume Rendering
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Fig. 19. In-game screenshot (a) with complex surface and volume shading. Standard
lightmaps (b) ignore volume-to-surface transport, which our method compensates for (c)
with media-attenuated surface global illumination (d) and volumetric single- and multiple-
scattering (e).

1. Introduction

Volumetric participating media can significantly impact the realism of virtual scenes, due
to both the subtle interplay between surface- and volume-transport effects and the presence of
entities like smoke and clouds. Modern video games increasingly seek to include such effects
to improve realism and artistic flexibility. While many works propose efficient simulation
methods for volumetric single- and multiple-scattering (e.g., [49, 12]), no interactive methods
accurately model the effects of scattering from a volume onto other surfaces/locations in a
scene, let alone several such bounces. Volume-to-surface transport has been studied in offline
image synthesis but these methods are too costly for interactive content pipelines.

Some interactive applications rely heavily on precomputed lighting [33, 6, 16, 38] where
the tradeoffs lie between what to precompute and what to evaluate at run-time. Indirect light
and lighting from complex area/sky sources is more often precomputed, whereas run-time
light source influence radii are often restricted to reduce shading; here, their artificially
clamped shading may also be precomputed [4], leading to shading that can be interpolated
between run-time evaluated and precomputed sources. Precomputed lighting data is cached
on surfaces and in free-space: lightmaps, per-vertex data and light probes. Precomputed
light probes are used to relight dynamic objects with the effects of the (static) lighting in the
scene. Relying on even the most efficient offline methods in order to include the effects of
volumetric scattering in these precomputed datasets would require hours to days to converge
for even moderately-sized in-game assets.
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Fig. 20. Consider surface x and probe xp locations lit by point (green), environment (blue)
and indirect (red) light. Offline rendering traces light paths to solve the radiative transport
equation (left; transparent lines). We encode the impulse response of volumetric transport
(right), to model media scattering in precomputed lighting.

As such, even in scenes with participating media, games usually only precompute surface-
to-surface transport. We propose a very efficient method to include the neglected volume-
to-surface interactions during precomputation, resulting in more accurate lighting and only
with modest performance overhead. Instead of relying on costly volumetric light transport
simulation, we model the spherical impulse response of volumetric light in a form that allows
us to quickly precompute volume-to-surface transport. Specifically, our contributions are:

• a formulation and analysis of the impulse response of volumetric in-scattered light for
point, directional and differential emitters,
• a modular extension from single- to multiple-scattering regimes,
• a treatment of heterogeneous, anisotropic volume scattering, and
• a compact, pretabulated zonal harmonic parameterization of the impulse response
applied to a constant-time algorithm for adding accurate volume-to-surface transport
to precomputed light maps.
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2. Related Work

Interactive rendering and games rely on faithful simulations of physically based light
transport effects. While many effects remain outside the performance constraints imposed in
these applications, precomputation-based solutions provide an avenue to include complex
lighting with low runtime cost. Building on light mapping [1] where precomputed lighting is
cached at texels, separate from higher frequency albedo, recent methods cache other forms
of light transport data: e.g., by representing variations due to normal mapped surfaces [33]
in a spherical/hemispherical basis, non-Lambertian view-dependent reflection can also be
cached [6, 36, 15, 38]. This added angular resolution can, in turn, allow baked data to be
represented at coarser spatial resolutions, such as per-vertex [28] or per-probe [16], improving
storage and performance. For non-static geometry, lighting is also precomputed in volumetric
data structures, variants of irradiance volumes [10]. Precomputation time can take between
minutes and hours, and even with new GPU advances it is costly [13].

Precomputed Radiance Transfer (PRT) cache transport operators (e.g., per vertex) to
model how incoming light (typically represented in a basis space) is locally transformed
by occlusion and scattering. The basis representation allows for precomputed transport
to be adapted, at runtime, to dynamic lighting and/or viewing scenarios [45, 44, 30, 31].
Several approaches explore various discretizations of the caching domain, including methods
that optimize the placement and interpolation of per-vertex lighting data [28] and lighting
“probe” placed in the open space of a scene in order to relight dynamic objects [10, 42].
These precomputation-based methods allow for costly effects, like interreflections or ambient
occlusion, to be incorporated at a fraction of the cost required for their dynamic evaluation.

Many basis choices have been used for PRT. Spherical and Zonal Harmonics (SH, ZH)
benefit from closed-form rotation and convolution operations [40, 45, 46, 43]. They are
unable, however, to compactly represent higher frequency angular variation. On the other
hand, wavelet bases are capable of representing angular variation across frequencies, but at
the cost of more complicated runtime operations [11]. Volumetric transport tends towards
angularly smooth radiance distributions, and so our work relies on compact ZH formulations
to encode the impulse response of emitted light scattered within a volumetric media.

In volumetric shading, the underlying transport theory and effective Monte Carlo-based
solutions are well understood [47, 29, 7, 37], and a tremendous amount of work has found
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Fig. 21. Top left: 3-point geometry for radiance reflecting at x towards z as the sum of
radiance arriving from surface point y and all media points xy. Top right: expanding the
recursion results in path throughput of a media subpath between x and y. Bottom left: we
decompose the incident radiance at x as the sum of the attenuated surface radiance from
y (black) and radiance arriving at x indirectly from y with any number of media bounces
in between (blue). This can include false contributions from light paths which should be
blocked (red +). Bottom right: We ignore contributions from surfaces that are directly
occluded, even though radiance could still arrive at x indirectly from y (red −).

success in applications to offline visual effects [48, 9]. Path tracing has dominated film
rendering [39, 8] due to its ability to scale and its speed to initial (albeit noisy) image result.
Two dominant forms of caching have furthered the adoption of these methods: radiance
caching [32, 41, 23, 19] and photon point and beam mapping [3, 21, 20, 24, 22]. In
contrast, the performance constraints of interactive graphics necessitate the use of simplified
volume shading methods.

Early work on subsurface scattering [25] modeled variation of scattering parameters
by assuming local homogeneity. Our method approximate heterogeneous media similarly,
relying on scattering parameters along a ray to make a directional-homogeneity simplification.
Tabulated BSSRDFs, and their applications to discrete random media [35] and shell transport
functions [34] are also tangentially related to our impulse response models for volume-to-point
transport.

3. Background and Theoretical Model

We review volumetric light transport (Section 3.1) and present a factorization we will
rely on (Section 3.2), before providing important definitions and properties of the SH basis

78



(Section 3.3). We focus on efficient simulation of costly volume-to-point transport effects
during surface lightmap and lightprobe precomputation.

3.1. Light Transport in Volumetric Media

Light transport in volumetric participating media is governed by the radiative transfer

equation (RTE) [5], a differential equation that describes the change in radiance L along
a ray due to scattering and absorption. Integrating this equation and treating the surface
rendering equation [26, 14] as a boundary condition yields the volume rendering equation

(VRE) for the radiance L(x, ω) arriving at point x from direction ω:

L(x, ω) =
∫ s

0
σt(xt)Tr(x,xt)Lo(xt,ω) dt︸ ︷︷ ︸

Lm(x,ω)

+Tr(x,xs)Lo(xs,ω)︸ ︷︷ ︸
Ls(x,ω)

, (3.1)

where Lm is the radiance arriving from all points xt = x − tω in the medium, Ls is the
radiance arriving from a surface at xs = x− sω, and σt is the media’s extinction coefficient.
Transmittance Tr models the attenuation due to extinction between two points:

Tr(x,xt) = e−
∫ t

0 σt(x+t′ω) dt′ = e−σtt. (3.2)

The outgoing radiance Lo is the sum of emitted radiance Le and the angular integral of the
incident radiance:

Lo(x,ω) = Le(x, ω) +
∫
S2
f(x, ω, ωi)L(x,ωi) d⊥ωi, (3.3)

where ωi and ω are incident and outgoing spherical directions about x, d⊥ωi is the differential
projected solid angle, and f is either the volumetric phase function fp(x, ω, ωi) or surface
BSDF fr(x, ω, ωi), depending on whether x is in the medium V or on a surface A:

f(x, ω, ωi) =


α(x)fp(x, ω, ωi) if x ∈ V ,

fr(x, ω, ωi) if x ∈ A,
(3.4)

where α = σs/σt is the albedo and σs the scattering coefficient. We precompute and tabulate
response parameterized by the scattering coefficient σs; we devise an approach to optionally
incorporate absorption coefficient during precomputation (Section 4.3).
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3.2. Radiance Decomposition

We can reparameterize Eq. (3.3) in a three-point configuration as

Lo(−→xz) = Le(−→xz) +
∫
A
f(x)L(←−xy) dA(y) (3.5)

where we let −→xz (and ←−xy) denote the unit direction from x to z (and from z to x), L(←−xy) =
Ls(←−xy) + Lm(←−xy) is the radiance arriving at x from surface points y ∈ A, with

Ls(←−xy) = Tr(x,y)G(x,y)Lo(−→yx), and (3.6)

Lm(←−xy) =
∫ y

0
Tr(x,xy)G(x,xy)Lo(−−→xyx) dy, (3.7)

where xy = x + y · −→xy ∈ V are points in the volume between x and y, and G and f are
generalized geometry and scattering terms:

G(x,y) = Dx(y)V (x,y)Dy(x)
‖x− y‖2 , Dx(y) =


|~nx · −→xy| if x∈A,

1 if x∈V ,
(3.8)

f(xi) =


σt(xi)α(xi) fp(xi+1,xi,xi−1) if x ∈ V ,

fr(xi+1,xi,xi−1) if x ∈ A.
(3.9)

Here, V is binary visibility and ~nx the normal at x ( Fig. 21, top left).
Assuming non-emissive media and expanding the recursion at media scattering events in

Eq. (3.7), we can rewrite L(←−xy) as a sum of the radiance arriving at x from points y with
≥ 0 medium scattering events in between:

L(←−xy) =
∞∑
k=0

∫
. . .
∫
T k0 Lo(−−→yxk) dV (x1) . . . dV (xk)︸ ︷︷ ︸

Lk(x,y)

(3.10)

where Lk(x,y) is incident radiance at x that has scattered exactly k times in the medium
after leaving y, and T k0 is the throughput for subpath x0 ≡ x, . . . ,xk+1 ≡ y (see Fig. 21; top
right, bottom left):

T k0 =
[
k∏
i=1

f(xi)
] [

k∏
i=0

Tr(xi,xi+1)G(xi,xi+1)
]
. (3.11)

Note, for k = 0, Eq. (3.10) reduces to the attenuated surface radiance in Eq. (3.6), whereas
k > 0 accounts for recursively expanded media radiance in Eq. (3.7). Moreover, while Lk(x,y)
represents radiance arriving (potentially indirectly) from y, the incident direction at x is
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defined by ←−−xx1, which can be any spherical direction about x when k 6= 0. This means that
when Eq. (3.10) is inserted into Eq. (3.5), the scattering function should be evaluated as
f(x1,x, z). When k = 0, x1 = xk+1 = y, so the scattering is evaluated as f(y,x, z).

3.3. Spherical Harmonics – Definitions and Properties

Preliminaries. Consider a scalar-valued function f(ω) over the unit sphere S2, with spherical
directions ω = (x,y,z) = (θ,φ) ∈ S2. We obtain a vector f of SH coefficients by projecting
f(ω) onto the real SH basis as f =

∫
S2 f(ω)y(ω)dω, where f = {f 0

0 , f
−1
1 , f 0

1 , f
1
1 , . . .} is a

vector of scalar projection coefficients fml and y(ω) = {y0
0, y
−1
1 , y0

1, y
1
1, . . .} a vector of the SH

basis functions:

yml (θ,φ) =


√

2 Km
l sin (|m|φ) P |m|l (cos θ), m ≤ 0

√
2 Km

l cos (mφ) Pm
l (cos θ) , m > 0

. (3.12)

Where Pm
l are associated Legendre polynomials and Km

l are normalization factors. An
order-N expansion of f onto the SH basis includes all functions for bands 0 ≤ l ≤ N − 1.
Each band comprises 2l + 1 basis functions, indexed by m. For a fixed band l, each of the
basis functions is a degree l polynomials in the Cartesian coordinates (x,y,z) of the (unit)
direction ω, and we often rely on a single indexing scheme, with i = l(l + 1) +m, for brevity
and convenience.
Zonal Harmonics. Zonal m = 0 subset of SH functions, y0

l (ω) = y0
l (θ), are circularly

symmetric about cos θ = z and referred to as zonal harmonics (ZH). Sloan et al. [46]
introduced a fast rotation convolutional formulation for ZHs in order to align any weighted
combination of the y0

l functions about an arbitrary axis ω̄ 6= x. Doing so yield a function
that can no longer be reconstructed as using solely a weighted combination of ZH functions,
however the SH coefficients hml of this arbitrarily-aligned (circularly symmetric) function
can be directly obtained from the ZH projection coefficients fl of the function in its original
orientation (i.e.,about z), as

hml = n∗l fl y
m
l (ω̄) = f ∗l y

m
l (ω̄) , (3.13)

where n∗l =
√

4π/(2l + 1) are convolutional normalization factors arising from the fact that
Eq. (3.13) is the Funke-Hecke theorem applied to the original zonal function and a delta at ω̄.
Double-product Integration. Given two spherical functions a(ω) and b(ω) with (effective)
bandlimits Na and Nb, the integral of their product is

∫
S2 a(ω)b(ω)dω = ∑n2−1

i=0 ai bi, where
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n = min(Na,Nb) and we arrive at the RHS by substituting the SH expansions of a and b

into the LHS and then applying the orthonormality property of SH:
∫
S2 yi(ω)yk(ω)dω = δi,k,

where δi,k is the Kroenecker delta.
We derive a double-product formulation for the special-case where a and b are (arbitrarily

rotated) circularly symmetric zonal functions (see Appendix 8), and we leverage this more
efficiently integration formulation in our shading algorithm (Section 4).

4. Impulse Response Models & Extensions

We present our theoretical contributions below, leaving discussions of practical and
technical considerations for Section 5. Specifically,

• we factorize homogeneous inscattered radiance (Section 4.1) to motivate a novel
spherical impulse response formulation for volume-to-point transport with three
emission schemes (point-, surface- and indirectly-reflected cosine-profiles; Section 4.2),
• we extend these canonical impulse responses to support media with heterogeneous
scattering coefficients (Section 4.4) and anisotropic phase functions (Section 4.5), and
• we derive an efficient double-product integration scheme (Appendix 8) to decouple
incident and outgoing radiance, leading to important run-time flexibility (Section 5).

We aim to accelerate the precomputation of volume-to-point transport in the digital content
creation pipeline for interactive graphics applications. We will leverage a novel factorized
formulation that admits an efficient basis-space integration scheme. Our scheme will model
singly- and multiply-scattered volumetric transport effects, as well as the effects of extinc-
tion through the media (Section 4.1). We avoid costly numerical path-based Monte Carlo
simulations typical to existing pipelines used, i.e., in feature film production.

We precompute small impulse response tables once in a scene-agnostic manner (Sections 4.2
to 4.5), and parameterize these tables to permit fast queries during surface transport-only

precomputation to incorporate volume-to-point transport effects, and all at a minimal
performance overhead[~4-15%](Section 5). Our results closely track ground truth obtained
with volumetric path-tracing, despite operating several orders of magnitudes faster (Section 6).
Indeed, existing volume-to-point transport simulation incurs a cost so large that it is normally
omitted from most interactive graphics pipeline due to the impact on art direction and design
iteration times.
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4.1. Caching Lightmap Radiance in the Presence of Media

Consider the spherical radiance distribution L(x, ω) incident at location x ∈ {V ∪ A}

either a lightmap texel or a location in free-space.
Instead of accumulating the contribution of many paths scattering at surfaces and in

the volume, and this for many cached receiver locations x, we will consider a bounce- and
emitter-based decomposition of the problem. Specifically, by carefully parameterizing the
single-scattered volumetric radiance arriving at a point from different emitter and reflector
configurations, we will first show:

• how to compactly express the incident radiance distribution L(x,ω) for an arbitrary

receiver-emitter configuration, for the three emission profiles (see Fig. 22), and
• how to shade lightmaps with this compact representation, composing the single-
scattered response to analytically account for approximate multiple-scattering effects.

We will show that zonal harmonics are an effective basis for representing, shading, and
sampling from the incident volume-to-point radiance distributions at cache locations in
Section 4.2.

4.2. Spherical Impulse Response for Airlight Integrals

Consider the directly attenuated and single-scattered light arriving at x from a point
emitter at xs in a homogeneous, isotropic medium. The spherical incident radiance at x due
to in-scattering and extinction L(≤1)(x,ω), i.e., from light that has scattered zero and one
times before arriving at x, is a special case of Eqs. (3.1) and (3.3) with Lo = Le where the
only source radiance is from the emitter, Le(x,ω) 6= 0 iff x = xs.

In the case of point emitters, this spherical incident radiance exhibits circular symmetric
about the axis from x to xS, and so we can represent it as L(≤1)(x,ω) ≈ ∑l L

(≤1)
l y0

l (θ) with
ZH coefficients

L(≤1)
l = σt

4π

∫
S2

[ ∫ s

0
Tr(x,xt)Tr(xt,xs)Le(xs,ω) dt

+ Tr(x,xs)Le(xs,ω)
]
y0
l (ω) dω , (4.1)

where Le(xs,ω) = I0/(|x− xS|2) and I0 is the point source’s intensity. For a fixed receiver x,
emitter xs and media {σt, σs} configuration we compute the coefficients with Monte Carlo
integration, importance sampling points xt on the ray in the inner integrand with equi-angular
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Fig. 22. The three canonical emission types we support: point, directional and differential
surface area profiles.

sampling [29], and uniformly sample the outer spherical integrand with low-discrepancy
quasi-Monte Carlo samples [39]. More advanced strategies exist, taking advantage of special
parameterizations of SH [18] or semi-analytic integration schemes [2], but we found this
yields acceptable results.

We can express the ZH-projected incident radiance at x due to directly attenuated and
single-scattered light arriving from a directional emitter. It is important to note that the
effects of transmission due to such an infinitely-distant source depends on the projection of
the emitter’s direction onto the boundary of the medium’s bounding shape, which we denote
xtop (Fig. 22, middle). For infinite media, the transmittance from any point to the “location”
of the directional source is 0. The projection coefficients are,

L(≤1)
l = σt

4π

∫
S2

[ ∫ s

0
Tr(x,xt)Tr(xt,xtop)Le(xtop,ω) dt

+ Tr(x,xtop)Le(xtop,ω)
]
y0
l (ω) dω (4.2)

and we can compute Eq. (4.2) with the same MC scheme as before, with Le(xtop,ω) =
I0 δ(ω −−−−→xxtop) for distant directional sources.

The last emitter profile we consider is a differential area source centered at xs with normal
~nxs (Fig. 22, right). Unlike the point and directional emitters, we will use this source to not
only model the effects of area lights but also the effects due to indirectly-reflected surface
reflection from global illumination. Furthermore, the directly-attenuated and single-scattered
incident radiance at x due to this source is not generally a circularly-symmetric function:
as the source’s normal deviates from the direction towards the receiver ←−−xxs, the radiance’s
spherical anisotropy increases, necessitating a full SH representation as opposed to a much
more compact ZH one.
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Fig. 23. Light scatterd from point (and directional) sources result in circularly symmetric
radiance distributions at x (left; in blue). For differential area sources the distribution skews
with the emitters normal and is no-longer circularly symmetric; we determine a best-fit
circularly symmetric approximation (green).

Fortunately, we observe strongly unimodal (albeit off-axis) directionality in this distribu-
tion, even as the angle between ~nxs and ←−−xxs approaches π/2 (Fig. 23, right), motivating the
following circularly-symmetric approximation: beginning from the full SH projection vector
of the incident radiance at x,

L(≤1)= σt
4π

∫
S2

[ ∫ s

0
Tr(x,xt)Tr(xt,xs)Le(xs,ω) b~nxs · ωc dt

+ Tr(x,xs Le(xs,ω) b~nxs · ωc
]

y(ω) dω ,

one choice for the ZH approximation of L(≤1) uses the optimal linear direction
−→
lopt =

(−(L(≤1))1
1,−(L(≤1))−1

1 , (L(≤1))0
1) as the axis of symmetry [46]. We found that the lowest-

error ZH approximation’s axis depends on the angle θ between ~nxs and ←−−xxs, lying between
the direction to the light

−→
l ≡ −←−−xxs and the optimal linear direction

−→
lopt . We apply Brent’s

parabolic interpolation method to search for the best-fit ZH axis
−→
lfit, repeating the search

for many discretized incident angles. We store the angle θfit between
−→
lfit and −←−−xxs, the

optimized lobe axis
−→
lopt itself, and its ZH coefficients L(≤1)

l,θ for every incident angle θ (Fig. 23,
right),

L(≤1)
l,θ = σt

4π

∫
S2

[ ∫ s

0
Tr(x,xt)Tr(xt,xs) b~nxs · ωcLe(xs,ω) dt

+ Tr(x,xs)Le(xs,ω)
]
y0
l

(
(
−→
lfit(θ)) · ω

)
dω , (4.3)

and Le(xs,ω) = I0/(|x−xS|2). We re-parameterize according to a shift distance dfit = sin θfit
instead of the angle θfit to optimize the runtime. These impulse responses only hold for a
single receiver-emitter and media configuration. They also only treat homogeneous media
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Fig. 24. Left: we compute and store the ZH impulse response at x for many distances d
and a canonical σs. Right: when querying the tables in a scene with a different σ′s, we adjust
the lookup distance dq = σr d

′ and scale the ZH coeffs. according to our σ-ratio σr.

with isotropic scattering. We show how to resolve each of these limitations in Sections 4.3 to
4.5 to compactly represent spherical impulse responses for arbitrary configurations, before
detailing how to apply these responses when computing full, multi-bounce volume-to-point
transport for precomputed lighting in Section 5.

4.3. Compact Impulse Response Parameterizations

We reduce from the 6D spatial configuration (3D for each of x and xs) to 1D tables
for the point and directional sources using the relative distance dx,xS ≡ |x − xS| between
a receiver/shading point x and the point emitter location, and the latter by the distance
dx,xtop ≡ |x − xtop| to the nearest position on the boundary of the media xtop towards the
directional source. The 2D ZH tables for differential area sources are parameterized by the
shift distance dshift and the (cosine of the) angle θ formed between the source area patch’s
normal ~nxs and the direction

−→
−l from the receiver to the patch (see Fig. 22). This works for

fixed media parameters σt and σs, 3D and 4D tables would still be unwieldy.
Relative Media Coefficient Parameterization. Next, we eliminate the dependence on
media parameter configurations by showing how to analytically map between impulse response
coefficients tabulated from a canonical {σt,σs} to those needed for an arbitrary medium’s
{σ′t,σ′s}. To do so, we consider the manner in which solutions to the RTE behave when
these parameters change. Begin by considering the impact of changing σs. Here, both the
transmittance Tr and inscattering probability in Eq. (3.7) are affected. For Tr(x,y) = Tr(d)
for d ≡ ‖x−y‖, the optical thickness −σs d behaves predictably as σs changes: modifying the
optical thickness for varying σs it amounts to inversely modifying d. Specifically, exp−σsd =
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exp−σ′sd′ when d = (σ′s
/
σs)d′. From this relation, we can precompute the inscattering

impulse response for some canonical σs account for changes in the actual media parameters
in two simple steps: first, we adjust the table distance query as dq = (σ′s

/
σs)d′; second, as

inscattered events have new scattering probability σ′s, we account for this discrepancy by
scaling the queried ZH coefficients by σr ≡ σ′s

/
σs, which we call the σ-ratio.

With point and differential area sources, we need to also consider the effect on emission
intensity I0

/
d2, which fall-off with an inverse square profile. When querying the tables

with an adjusted dq, the intensity fall-off must be similarly adjusted by the σ-ratio, as per
I0
/

[σr d]2. This adds an additional factor of σ2
r for these types of sources that needs to

be modeled when computing their inscattered contribution over a single-scattered ray in
Eqs. (3.1) and (3.3). When integrating over the inscattered ray, and over a distance adjusted
by σr, a factor of σr arises from the integration and cancels one of the additiona 1/σr intensity
adjustment terms, above.

As such, point and differential area entries are ultimately adjusted by a factor of σ2
r , and

directional source entries remain unaffected.
Accounting for Absorption. While less often used in game assets, we can also support
media absorption with σt = σa + σ′s is used. The adjusted query distance and coefficient
weighing scheme need only rely on the appropriately modified σ-ratio of σr = σt

/
σs.

We note that including absorption will preclude an efficient table composition method we
propose for multiple-scattering in Section 5.1. We will show that, since only the scattering
coefficient drives inscattering probability, in the absence of absorption we can arrive at a
single table that encodes the ZH response for all of the media interactions: direct attenuation,
single-scattering and an arbitrary number of multiple-scattering bounces. To do so, we will
employ a multi-bounce generalization of the σ-ratio. Figure 24 summarizes the adjustments
necessary for arbitrary media parameters.

Next we discuss how to extend the impulse response formulations to heterogeneous
(Section 4.4), anisotropic (Section 4.5) media.

4.4. Impulse Response in Heterogeneous Media

In games, homogeneous media are most often used to model the effects atmospheric
scattering, but in closed environments the predominant form of participating media used in
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Fig. 25. Heterogeneous media is approximated by spherically-homogeneous media from the
point of view of x. Here, the ray’s optical thickness is d1σ1 +d2σ2 +d3σ3. The ray’s scattering
coefficient is obtained by normalizing optical thickness by ray length.

interactive media are heterogeneous – with spatially-varying density and scattering parameters.
Artists author this media with many strategies, including layering procedural patterns (e.g.,
Perlin noise), storing and combining volumetric “brushes” with hierarchical data structures
(e.g., oriented bounding boxes, octrees), or by “sweeping” 2D image stencils (e.g., gradients,
exponential ramps, binary masks).

One of the largest complications due to heterogenous media is the added complexity of
evaluating the transmittance Tr, as this necessitates some ray marching-based solution in
the setting of general heterogeneity. We make the following simplification to enable another
remapping of our (homogeneous) impulse response coefficients to heterogeneous media: we
assume that the media acts homogeneously for any fixed ray in space, but that the parameters
of the per-ray "effective homogeneity" can vary per ray. This can be interpreted as replacing
heterogeneous media with a spatio-directionally-varying homogeneous media: every ray in a
scene “observes” a different homogeneous medium. The effective scattering parameter can be
efficiently computed: σeffectives = (∑i σs,i di)

/
D, where D is the total ray length (Fig. 25).

We can now apply σ-ratio remapping to our impulse response tables (Section 4.3) with
σeffectives to query the table entries. Note that our assumption for heterogeneous media does not
introduce any approximation for the directly-attenuated volumetric light, since the product of
transmittance (for discrete changes in density) along the ray is equal to the transmittance of
the average density over the ray: exp (−∑i σs,i di)

/
D = Πi exp (−σs,i di). The single-scattered

impulse contribution will, however, incur approximation error since it integrates rays that fall
off-axis from the central ray used to estimate the effective homogeneous scattering coefficient.
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Fig. 26. Comparing our method to ground truth generated in Mitsuba [17] in an extreme
scenario. The final rendering (a) includes eye-ray attenuation atop the final precomputed
surface lightmaps. Our lightmap (b) and the ground truth lightmap (c) include volume-to-
surface transport from directly attenuated (but unoccluded, in our case) lights, and single- and
multiple-scattering. Artifacts are most evident when only visualizing inscattering (d) versus
ground truth (e): these are due to the extreme heterogeneous discontinuity, the positioning
of light sources outside the medium, and surface-to-light connections that do not receive
inscattering when not intersecting the volume.

We only noticed visible artifacts in degenerate cases, e.g., binary media; see Fig. 26 for an
failure case under extreme conditions.
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4.5. Impulse Response with Anisotropic Phase Functions

We consider the Henyey-Greenstein phase function (HG), parameterized by a single
parameter g ∈ [−1,1], where g > 0 favors forward scattering, g < 0 favors backward scattering,
and g = 0 is isotropic scattering. When tabulating the canonical impulse response coefficients
(Section 4.2) we compute three separate tables, one for each of g = {−grange, 0, grange}, where
grange is an artist-chosen parameter depending on the degree of desired anisotropy. All our
results use grange = 0.5. We do this only for the directly-attenuated and single-scattered
tables, as we only treat isotropic scattering for multiple-scattering (see Section 5.1).

We track both an effective scattering coefficient σeffectives and an effective HG anisotropy
geffective per ray during lighting precomputation (Section 5). Given geffective, we linearly
interpolate the ZH coefficients from the three g-dependent impulse response tables and, for
multiple-scatter (Section 5.1) we adjust our query σs to be (1− g)σs according to similarity
theory [50].

This is equivalent to building a discrete function space bi(θ) to parameterize the space
of phase functions, such that any phase function can be expressed as fp(θ) = w · b(θ) =∑
iwi bi(θ), and then computing single-scattered impulse response matrices M with ZH

response coefficient columns due to each basis phase function bi. The matrix-vector product
M ·w would result in the appropriate ZH impulse response function for the arbitrary phase
function. This does not scale to multiple scattering events: K-scattering events requires
a (K + 1)-dimensional tensor, that has to be collapsed to a response vector for the given
per-bounce scattering parameters along the ray. With N basis phase functions, you would
require N (K+1) coefficients for the tensor, which is impractical.

5. Using Impulse Responses to Precompute Lighting

Given pretabulated impulse response coefficients (Section 4.2) and approaches to query
them for arbitrary receiver, emitter and media configurations (Sections 4.3 to 4.5), we first
detail the process of the incorporating volume-to-point effects from volume attenuated and
single-scattered contributions due to direct- and indirect-illumination from surfaces and
emitters, below. We then discuss our treatment of multiple-scattering and the effects of
occlusion on our approximation (Sections 5.1 and 5.2).
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Fig. 27. Cornell box with homogeneous media, 10-bounce inscattering-only without (a) and
with (b) back-scattering. (c) and (d) are false-color ground truth difference images at 3EV.
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Fig. 28. Order-11 ZH response coefficients (dark red to blue) vs. canonical distances dx,xs

or dx,xtop : 1-, 2- and 10-bounce response for point emitters, and 1-bounce for directional
emitters. Table bin indices are on the top x-axis. Radiance tends to isotropy with higher
bounces, increasing the ZH DC component (dark red) as expected. Differential area emitter
plots (not shown) behave similarly to the point emitter.

From Surface-only Baking to Volumetric Transport. Integrating volume-to-point in-
teractions atop standard path-tracers using in surface-transport light baking is straightforward.
Moreover, we effectively avoid the cost and complexity of tracing additional volumetric paths
inside media and between the media and surfaces.
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We traces surface-transport paths, but we keep track of when rays enter and exit media.
For any path vertex xi with a ray entering or exiting media, we weigh the radiance L(←−−−xixi+1)
to x from the direction towards the next path vertex ←−−−xixi+1 by the appropriately queried
ZH impulse response vector at x: determined by tracking the (potentially heterogeneous) σs
along the ray for the path segment xixi+1 (Section 4.4) and computing the necessary σ-ratio
and g (Sections 4.3 and 4.5). Weighing this ZH vector amounts to replacing I0 in the Le
terms of Eqs. (4.1) to (4.3) with L(←−−−xixi+1).

Note that when xi+1 lies on an emitter (i.e., for explicit direct lighting connections in path
tracing), the weighted ZH vector models the incident radiance due to directly attenuated
light emission and single scattering from the light source; when xi+1 lies on another surface
(i.e., for implicit indirect lighting connections), it models the incident radiance due to directly
attenuated indirect surface radiance and single-scattered events that arise from a bounce of
light from indirectly lit surfaces into the volume and then towards the receiver x. For xi+1

on emitters, we use the point or directional lookup tables for these types of emitters, and
the differential area table for area sources. For xi+1 on (indirectly-scattering) surfaces, we
query the differential area table. When querying the differential area table, we need to also
compute the angle between −−−→xixi+1 and ~nxi+1 .

Given the queried ZH incident radiance vector lin at x, the final step in precomputed
shading is to compute the outgoing radiance contribution at x, i.e., in the lightmap. For
lightprobes, we typically directly store the incident radiance lin and convert to outgoing
radiance when shading dynamic objects, using the same process we detail next for the lightmap
shading case. Given a cosine-weighted BRDF fr and ZH incident radiance Lin(x, ωi) =
lin · y(ωi), we wish to compute the double-product integral

∫
S2
fr(x, ω, ωi)Lin(x, ωi) dωi = fr(ω) · lin from Section 3.3, (5.1)

where are the SH coefficients of the view-evaluated cosine-weighted BRDF fr(ω) at x, rotated
to align in the local coordinate frame of the incident radiance’s axis of alignment. In general,
evaluating Eq. (5.1) can be costly for arbitrary BRDFs since their projection coefficients
would have to either be pre-tabulated for many outgoing directions ω or computed on-the-fly.
Moreover, the SH rotation incurs an additional cost; alternatively, we can rotate the ZH
incident radiance more efficiently (Section 3.3) to the local frame at x.
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With special-case circularly symmetric BRDFs, like Lambertian or Phong, their (po-
tentially view-evaluated) projection coefficients can be expressed in ZH along an axis of
symmetry, then rotated into an appropriate frame for shading. This still requires expanding
at least one of the two terms in Eq. (5.1) into full SH. When both terms in the double-product
integrand exhibit circular symmetry, but along different axes, we develop a new fast-ZH
shading formulation that avoids expanding any of the two terms into full SH (Section 8).
We use this formulation in these special-case scenarios, typically on diffuse surfaces in the
lightmap where the cosine-weighted BRDF is a circularly-symmetric function about the
surface ~nx normal at x, with analytically obtainable ZH coefficients [40].

5.1. Single- and Multiple-scattering Tables

Without absorption, we use our single-scattering tables to accelerate the computation of
multiple-scattered ZH incident radiance impulse vectors: much like how indirect bounces are
precomputed in surface-based PRT, where indirect ray intersections accumulate transport
vector contributions from previous bounce’s PRT simulation [45], we can recompute the
MC integral estimates of the directly-attenuated and single-scattered responses in Eqs. (4.1)
to (4.3), but each time now replacing the Le terms with the previous bounce’s ZH inscattered
response evaluated in the appropriate direction using the SH/ZH expansion equation in
Section 3.3. Here, the same σ-ratio, heterogeneous and HG phase function remappings
(Sections 4.3 to 4.5) can be applied at multiple-scattered bounces, and we can combine
scattering impulse response vectors across each of these bounces into a single lookup table.

When σa 6= 0 we need to individually tabulate the multiple-scattering and, in the case of
anisotropic media, we adjust isotropic scattering according to a similarity theory mapping.
Specifically, we weight the ZH response of each bounce-b of multiple scattering by a factor
of
(
σ′s
/
σt
)b
, as per the discussion concerning the σ-ratio adjustments in the presence of

absorption in Sections 4.2 and 4.5.
We always tabulate order-11 ZH response, with 256 bins for discretized distances dx,xtop

or dx,xs , and eight discrete angle (really, shift distance) bins. Fig. 28 illustrates the form
of the 11-vector ZH response, and the tabulation ranges and steps, for our tables. As the
number of scattering bounces increases the signal tends towards lower directionality (i.e.,
high-order coefficients lose magnitude relative to low-order ones).
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Fig. 29. In-game screenshot with heterogeneous media (a). Lightmaps without (b) and with
(c) our volume-to-surface method: we capture media-attenuated direct and indirect light from
surfaces (d) and volumetric single- and multi-scattering from emitters, surfaces and media
(e).

5.2. Occlusion and Back-scattered Contributions

In general, light may scatter around occluders in participating media (Fig. 21) and our
impulse responses do not model this effect. After analyzing the solid angle subtended by
the impulse response lobes, however, we found that single-scattered response is limited to
angular extents between 5-to-6°, across all configurations. This reduces the impact of ignoring
occluders during pre-tabulation, and we further mitigate this by testing for occlusion with
direct emission rays and only computing impulse contributions for unoccluded rays.

Another important factor to take into consideration is light that scatters volumetrically
off of surfaces that are behind (or co-planar with) x, before arriving back at x. We observe
empirically that this back-scattered contribution can be significant, and so we compensate
for it during impulse response MC pre-tabulation, as follows: we slightly shift x→ x + ε ~nx

and sample incident rays over the entire sphere of directions S2, instead of just about the
hemisphere Ω at ~nx, when accumulating ZH impulse response. We always set ε = 0.125. We
artificially set the distances of these back-scattered ray intersections to 0, as if x had not
been shifted at all. Fig. 27 illustrates the impact of the back-scattered contribution.
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6. Results & Discussion

We implement our method in a game studio’s baking pipeline, supporting volume-to-
surface transport for light maps, light grids and lightprobe-based meshes. Our implementation
uses Intel® Embree ray tracing kernels and runs on the CPU. The runtime engine models
single scattering to the eye using a modified implementation of existing work [49], ignoring
the effects of media between the light source and froxel grid and only treating media back to
the eye.

For large-scale production scenes with both homogeneous air density and dozens of
heterogeneous media volumes, adding volume-to-surface transport with our method incurs
a modest ~4 to 15% overhead atop surface-only baking. We benchmark using high- and
lower-quality tracing settings to differentiate between final bake and iterative workflow modes.
For the same scene (shown from viewpoints in Figs. 19, 29 and 30), baking takes 10.5 /

3.7 minutes without and 12 / 3.8 minutes with our volume-to-surface transport, for
high-/low-quality: corresponding to a 14.6% / 4.7% overhead. Runtime performance
remains unchanged.
Limitations & Future Work. We discuss the approximation in single- and multiple-
scattering (but not directly attenuated radiance) due to our treatment of heterogeneous media
(Section 4.4), and addressing this limitation can further improve our accuracy (see Fig. 26).

Ignoring effects of light scattering around occluders is reasonable for single-scattering, due
to the limited angular extent of this impulse response, the impact on multiple-scattering can
be larger (i.e.,around a corners or small occluders; Fig. 21, bottom right). The amount of
energy in multiple-scattered events diminishes quickly for thin media [27]. Better modeling
local occlusion to compensate for this lost energy is an avenue we leave for future work.
Handling glossy materials might require investigating representations that allow for higher
angular frequencies.

7. Conclusion

We present a method for incorporating volumetric transport during lighting precompu-
tation for interactive graphics applications. Our results agree closely to ground truth path
tracing, at a fraction of the cost: we incorporate volumetrically-attenuated emission, single-
and multiple-scattering from volumetric media with a modest overhead of 4-15% compared
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a b c d

Fig. 30. Homogeneous media lit by point and directional emitters. Final renderings (a, b)
include scattering towards the eye, lightmap visualizations (c, d) only include indirect light.
Only treating volumetric extinction (a, c) fails to capture important volume-to-surface effects.
Our method (b, d) accounts for these with minimal overhead, avoiding costly multi-bounce
media path tracing.

to existing surface-only precomputation times. It is straightforward to implement in existing
pipelines, and has been implemented at a large gaming studio. Our impulse response tables
are compact and need to be precomputed only once.

Our spherical impulse response analysis of directly-attenuated and single-scattered airlight
integrals validates the utility of ZH representations for this problem. We generalize our
canonical (i.e., unit homogeneous, isotropic) impulse response analysis to account for media
with arbitrary scattering, extinction and absorption coefficients, arbitrary phase functions,
and heterogeneity. Our algorithm is parallelizable and, as we target the static lighting pipeline,
our method requires no added runtime cost. Despite this, the subtle but important lighting
cues that we account for with volume-to-surface/point transport allows digital content artists
to better employ media when developing complex and realistic virtual environments.

8. Appendix A: Efficient Cosine Double-product Integration

Computing Eq. (5.1) with a diffuse BRDF is required to convert the ZH incident radiance
from our impulse response into outgoing radiance. We derive an efficient O(N) integration
scheme that avoids the O(N2) computation of SH coefficients for either of these (independently
symmetric) factors.

We use the SH addition theorem, that expresses ZH rotated along any axis ω̄ as a product
of its canonical z-axis oriented coefficients n∗l and the value of SH basis functions evaluated
at ω̄: z0

l (ω → ω̄) = ∑
l n
∗
l

∑
m y

m
l (ω)yml (ω̄).
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The symmetry of the two ZH expansions allows a coordinate system where the first
function g(θ) (with coefficients gl) is aligned about a canonical axis ωc and the second
h(θ) (with hl) is related to g by the angular difference in their axes. Reconstructing g

along this axis is non-zero only for the m = 0 ZH, and h need only be evaluated at these
coefficients, simplifying its reconstruction to h(ω) = ∑

l gl y
0
l (ωc)hl y0

l (ω · ω̄), where ω is ωc in
the transformed space and (ω · ω̄) is the cosine of the angle between the axes.

SH reconstruction is

h(ω) =
∑
l

gl
y0
l (ωc)

y0
l (ωc)

hl
y0
l (ωc)

y0
l (ω · ω̄) =

∑
l

gl hl y
0
l (ω · ω̄)

/
y0
l (ωc) .
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Conclusion

In this dissertation we have introduced two novel methods for caching and reusing prior
lighting computation to accelerate path-traced rendering for interactive and precomputed
real-time applications.

Speeding up light transport computations is an active field of research as they are the
standard for production renderers, whether it is in the gaming or movie industry. Physically-
based renderers have become ubiquitous and have completely changed the authoring pipelines
present in the industry. The tools that artists and designers use to model worlds and effects
need to showcase what the final output of on-going work looks like, and fast workflow and
iteration time have become targets when conceiving new rendering techniques for authoring
tools, i.e., the time-to-first-frame is now a common goal in and of itself. Adaptive and
progressive rendering have by this standard become essential, as is the use of memory caches
to avoid recomputing what needn’t.

At the same time, the quality of the final frame has increased phenomenally in games,
especially considering the frame time restrictions. This has in part been due to an increased
use of global illumination solutions, bringing scenes to life through indirect lighting. Still,
trade-offs are made and increased quality is often possible only by setting constraints on
the dynamicality of the system. Thus, precomputation methods for global illumination still
dominate, adding load to the authoring pipeline. By its nature, indirect lighting is hard
to decouple from itself and modifying the environment implies having to recompute light
transport, making the process fastidious if too slow.

Our first paper presented an adaptive sampling and reconstruction technique for direct
illumination, allowing us to shade only a fraction of the pixels and amortizing rendering cost.
To this end we developped new frequency bandwidth estimates to drive both sampling and
reuse across animation frames. We adequately sample and compute lighting contribution



when necessary as our frequency criterion considers light emission, travel, occlusion and
shading bandwidths. Finally, our lightweight cache handles the life time of these contributions
following the same criterion. The principal obstacle during the development of this technique
has been the question of occlusion. As the bandwidth estimate is exact for the unnocludded
case, rendering correct shadows was the principal source of error. Visibility being such a high
frequency signal, investigating a non-frequency-driven solution for visibility that would pair
with the unnoccluded bandwidth estimate would be interesting. Another intriguing extension
would be to implement this frequency-driven method to recent GPU ray-tracing frameworks
as they are particularly optimized for coherent primary ray tracing. Extending the method
to indirect transport isn’t trivial, potentially through a progressively estimated indirect
bandwidth. Doing this would mean a change in the caching and reuse scheme, as previously
cached sample points would need updating. A solution based on sample connections that
would keep computed points longer in the cache as secondary elements is also interesting to
think about.

The second paper presents a novel analysis of in-scattered light in participating media
which we formulate as impulse responses. This operator allows a complete decoupling from
any particular medium and is tabulated one time only. In a specific scene-dependent setting,
this zonal harmonics transport parameterization is efficiently queried for varying potentially-
heterogeneous media densities and handles multiple scattering and anisotropic phase functions.
As a result, the usual multi-dimensional extension of scattered light transport in media can
be folded back to a simple table lookup, and we implemented our method in a modern AAA
video game light baking tool. There are limitations to this method which have mainly to do
with occlusion. We only model in-scattering if there is a direct connection between the surface
and the light source and we left the investigation of the effect of occluding geometry between
the two for future work. It would be interesting to extend the model to arbitrary orientations
of the receiving surface, i.e., with normal in the same hemisphere as the light direction, though
such a solution would also necessitate a different handling of the lighting bake using our
tables afterwards, as direct visibility is not a predicate of a potential contribution anymore.
Our method works well with heterogeneous media, but modern renderers make heavy use of
animated media such as rolling fog or flowing smoke. Due to the low frequency of indirect
lighting, approximating dynamic media with its time-averaged density yields a decent estimate
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but tailored solutions have to be designed for more extreme cases. This joins the category of
solutions that have to be thought through in the near future as precomputation algorithms
and precomputed data become more dynamic.
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