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Abstract 

 

 

For the 24-hr foreign exchange market, Andersen and Bollerslev use intraday returns 

rather than daily returns to obtain a measure for the realized variance (RV). In equity 

markets, where trading is done during a part of the day, Hansen and Lunde suggest some 

estimators that use intraday returns during the active part of the day and close to open 

return for the inactive part of the day. In some markets such as futures market for 

S&P500, trading is done electronically when the real market is closed. Using this 

electronic data, we provide a new measure for the RV and then compare it with the 

variance estimators of Hansen and Lunde. If the measure that uses electronic data 

(RV_total) is considered as a reference, the optimal linear combination of open to close 

realized variance and squared close to open return, which is the third estimator of Hansen 

and Lunde, more corresponds to RV_total. Having access to such measure, forecasting 

the future variance values can be done exclusive of other variance estimators.  
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Introduction 

 

A precise and reliable measure of variance is useful for a range of applications. One of 

these applications is the evaluation of variance models. For example Hansen and Lunde 

(2005a) show that a noisy measure of variance can result an inconsistent ranking of 

variance models. Another study by Andersen and Bollerslev (1998) shows that in order to 

evaluate the performance of autoregressive conditionally heteroskedastic (ARCH)-type    

model, a precise variance estimator is necessary.  

 

One of the variance measures is realized variance (RV) which is the sum of intraday 

squared returns. This measure can be used as a more precise proxy for theoretical 

quantities such as integrated variance (IV). Andersen and Bollerslev (1998) showed that 

daily squared return as a standard variance model is extremely noisy although it is an 

unbiased estimator. They argued that both theoretically and empirically, the sum of the 

intraday squared return is the best measure for realized variance.  

 

Realized variance is constructed from high frequency intraday returns. High-frequency data 

are increasingly being used to address a wide range of problems in econometrics because 

of the information they contain about population parameters. But high-frequency data 

have been mainly used to estimate financial variance.  

 

To estimate RV for a full day one needs high-frequency data for 24 hours of the day. 

Andersen and Bollerslev‟s results are for 24 hours foreign exchange market. The difference 

between exchange market and stock market is that most equities are traded for a part of a day 

such as six or seven hours per day. Since a part of daily variance may take place during 
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inactive part of the day, using only the daily intermittent data does not reflect the variance 

for whole day. 

 

A number of measures for stock market variance combine intraday returns (open to close) 

and overnight return (close to open). For example Hansen and Lunde (2005) propose 

three estimators for daily variance that are based on the realized variance for the active 

part of the day, tRV ,2 , and the squared return of the inactive period , 2

,1 tr . They characterize 

the assumptions that justify using each of these estimators. Their first estimator simply 

adds up the returns of the active part of the day and the squared overnight return while 

the second estimator is the scaled open to close return and so the overnight return is not 

considered. Finally, the third estimator is the optimal linear combination of tRV ,2 and 2

,1 tr   

which is obtained by mean squared error (MSE) method. 

 

In some markets, although the real market is not active during close to open period, but 

electronic transactions are being done in this time interval. As an example S&P 500-

index futures are being traded on the electronic overnight trading system (GLOBEX) 

since 1994. Making use of these electronic data, we suggest another estimator for the 

whole day variance. This new estimator is based on realized variance for the active part 

of the day, tRV ,2 , and realized variance of electronic data for the period that the real 

market is closed. 

 

Having access to 24 hours data and computing such measure of variance (named as 

RV_total here) will be helpful. It can be used as a reference for comparing other variance 

estimators in order to recognize which variance measure represents better RV_total to be 

used in the case that RV_total is not at hand. Using our data, the results of comparing the 

estimators of Hansen and Lunde with RV_total show that their optimal variance estimator 

more corresponds to RV_total. It will also be interesting to see if this variance measure is 

accessible, can it exclusively be used in the further operations on volatility data like 

forecasting, or on the contrary, the alternative measures may improve the performance of 

forecasting. To do that, we should introduce a forecasting model that corresponds better 
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to our high frequency data. Consequently, by applying this model to different variance 

measures, we can obtain different series of predicted data that can be used to evaluate the 

forecasting performance of the variance measures. To forecast one day ahead volatility, 

we use AR model for each variance estimator separately. Applying AR on optimal 

estimator of Hansen and Lunde as well as RV_total and comparing the forecasted values 

show a better forecasting by RV_total.  

 

This paper is organized as follows. Next section explains the concept of realized 

variance. Section 2 explains how to calculate whole day variance by using electronic 

data. Section 3 discusses the three estimators of Hansen and Lunde. In section 4, a model 

is presented to forecast one day ahead volatility in the market. The results of sections 2 to 

4 are applied to two years of five minutes returns from S&P 500 index futures followed 

by discussion of their time series, statistical properties and forecasting process.  

     

 

 

 

 

1.  Definition of Realized Variance 

 

We consider    ,0

* )( ttp  as logarithmic efficient price process which may differ from the 

observed price process p because of the market microstructure noise. So, we define 

upp  *  where u is a noise process. If we use trading day as time unit and t as market 

closing time, close to close return will be )1()(  tptprt . 

We shall assume the following continuous time model for the price process: 

 

ttt dwdttdp  )(*
 

where tw  is the standard Brownian motion and 
t  and 

t denote to drift and volatility 

terms. We shall assume that 0t  for all t to simplify the problem. In fact, the drift term 
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is of order dt  which is smaller than 2/1)(dt  of the volatility term and so is negligible at 

high-frequency data (see e.g. Andersen, Bollerslev and Diebold (2002) for more details). 

After simplification, the model will be: 

ttdwtdp )(*
 

where 
t  is in general smooth time varying stochastic process that is independent of tw . 

Close to close return can be considered as: 

u

t

t

ut dwtptpr 



1

)1()(      t=1,2,… 

 

Dividing each day to the intervals with lengths h, intraday return for any horizon h can be 

defined as follow: 

u

ih

hi

uiii dwtptpr 


 
)1(

1)()(      For i=1… 1/h (1/h integer) 

 

 

We eliminate the dependence of ir  on the horizon h. Intraday returns are ),0(... 2hNdii  if 

  is constant. In other words we have: 

 

),0(...~)()()( 2

)1(

)1(

1 hNdiiuWWdwtptpr ihiihu

ih

hi

uiii   



   

Where  ),0(...~ hNdiiui  for i=1…1/h. 

 

 

The parameter of interest is integrated variance over a day that we assume it to be finite: 

duIV u
1

0

2  
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An empirical estimator of integrated variance is realized variance which is sum of the 

squared intraday returns: 

 





h

i

irRV
/1

1

2  

When 0h  or the number of intraday observations tends to infinity, RV is a consistent 

estimator of integrated variance under certain assumptions including absence of 

microstructure noise. 

 

We define realized variance for an interval [a,b] as follow: 

 

   




 
m

i

iiba tptpRV
1

2

1, )()(                                                                                                                                                                                        (1)  

 

Note that   is a partition of [a,b] and 

],[ baRV  is the realized variance of this partition. 

 

 

 

 

 

2. Calculating Realized Variance by Whole Day Data 

 

In order to calculate realized variance for a full day, we need the data of entire 24 hours 

of a day. For example Andersen and Bollerslev (1998) calculated realized variance upon 

24-hours foreign exchange rate market data. The problem is that future markets do not 

trade on a 24-hours basis. 

 

While it seems that the markets are normally open for a fraction of a day such as 7 or 8 

hours a day, most equities are electronically traded during the hours the real market is 

closed. In this situation that we have access to high frequency data during day and 

electronic data over night, realized variance for the whole day can be estimated by   
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   




 
m

i

iibat tptpRVRV
1

2

1, )()(  

Where [a,b] is the interval of one complete day. )( itp represents either the asset price 

during the active part of the day or the electronic asset price over night when the real 

market is closed. 

 

 

3.  Estimating RV by Open Market Hours Data 

 

Hansen and Lunde (2005), presented three estimators to calculate whole day variance if 

high frequency data are available only for the active period of a day. Note that here active 

period represents the hours of opening the market and so does not include electronic 

trades while the market is closed. 

 

 Defining 
0  as the interval of time in which the market is active, ],1[,1 0 ttt IVIV  and 

],[,2 0 ttt IVIV   represent integrated variance of inactive and active part of the day, 

respectively. We also write ttt rrr ,2,1   that )1()( 0,1  tptpr t  is close to open return 

and )()( 0,2
 tptpr

t   is the open to close return. Open to close period is exactly the 

time when the high frequency data are available. We let ],[,2 0 ttt RVRV   

the RV measure of this active part of day. 

 

Three estimators of Hansen and Lunde (2005), are based on realized variance of active 

part of the day, tRV ,2  and the square of close to open return,
2

,1 tr .Their first estimator is a 

scaled value of tRV ,2  while the second one uses the value of
2

,1 tr and is the sum of tRV ,2  

and
2

,1 tr . Finally, they define the third estimator as tt RVr ,22

2

,11   in which 21 , are the 

weights that minimize the mean-squared error (MSE). 
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3.1 Scaling estimator of IV 

The first estimator of IV presented by Hansen and Lunde (2005) is constructed scales the 

tRV ,2  by constant value of


 , so they consider t

scale

t RVRV ,2.


  . If 



n

t

trnr
1

1
__

, 

then 





n

t

t

n

t

t RVrr
1

,2

1

2
_

)( is a consistent estimator of ][][ ,2 tt RVEIVE . 

The condition needed to justify this simple scaling are completely characterized through 

theorem 1 of Hansen and Lunde (2005). 

 

3.2   Incorporating the over night return 

While scaling of tRV ,2  seems interesting to obtain whole day variance, an alternative is to 

make use of over night return, tr ,1  as well. Hansen and Lunde (2005) presented two ways 

to combine tRV ,2 and tr ,1 in order to calculate daily variance. In the first approach, tr ,1 is 

simply added to the high frequency intraday return and thus the estimator is given by 

tt

on

t RVrRV ,2

2

,1 
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Note that the two terms of tRV ,2  and  2

,1 tr  can be considered as estimators of IV during the 

active period (open to close) and inactive period (close to open), respectively. 

The second approach is to consider general linear combination of 2

,1 tr  and
tRV ,2
 , 

eventually        ttt RVrRV ,22

2

,11)(                                                                (2) 

where ),( 21
  . Thus the two estimators of scale

tRV  and  on

tRV  are the special case of 

)(tRV using the weights of (0,


 ) and (1, 1), respectively. 

In equation (2) the optimal value of ),( 21   is the solution of the following 

optimization problem: 

21 ,
min



)var( ,22
2
,11 tt RVr   , s.t.  

02211                                               (3) 

where 210 ,,   are defined as )(0 tIVE , )(
2

,11 trE  and )( ,22 tRVE . Under 

some assumptions, tt IVwRVE )]([  for all   that satisfy 02211    (see 

Hansen and Lunde (2005) for further details). 

„‟Let tt RVr ,2

2

2

2

,1

2

1 var),var(   and ),cov( ,2

2

,112 tt RVr . The solution to equation (3) is 

given by  

1

0*

1 )1(



   and  

2

0*

2



                                                                        (4)     

Where
 

 is a relative importance factor, defined by  

1221

2

2

2

1

2

1

2

2

1221

2

1

2

2

2 







                       (5) 

 

This solution is intuitive and is particularly simple to interpret
 
if 12 = 0. In this special 
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case we have 
2

1

2

2

12*

2

*

1



    which shows that an increase in volatility during the 

active
 
period (relative to the inactive period) has a positive impact

 
on the relative 

weight 0)()( 12

*

2

*

1   , whereas the opposite is the case for an increase in the 

relative noise, 0)()(
2

1

2

2

*

2

*

1   ‟‟ 

The result of this theorem can be easily used in practice by replacing the quantities of 

2121 ,,,   and 
2,1 by their sample average. 

 

4. Forecasting Realized Variance 
 

 

Financial market volatility is a key factor in risk management theory and asset pricing. 

As an example, investor‟s assessment of the stock variance over the life of the option is a 

crucial parameter in most pricing models. Thus accurate volatility forecast is necessary to 

successfully determine the price of derivative securities. Many statistical methods have 

been suggested to describe volatility dynamic in the financial markets, including ARMA, 

different versions of GARCH models and many other models that are based on the daily 

return.  

  

The preceding models are mostly based on the daily return volatility. Andersen, 

Bollerslev, Diebold and Labys (ABDL) (2003) have proposed a framework for 

forecasting the realized volatility where high- frequency intra day returns are available. 

This model is motivated from following regularities which are the results of experimental 

analysis by ABDL. First, the distribution of logarithms of realized volatility is 

approximately Gaussian, although the distribution of realized volatility is right skewed. 

Second, a fractionally-integrated long run process can provide a good estimation for the 

long run memory of the logarithms of realized volatility.  

 



 10 

Regarding the mentioned distributional features, they consider this simple vector auto 

regressive model for the logarithm of realized variance or VAR-RV.   

 

                                  tt

d yLL   )()1)((                                   (6) 

Where 
ty  is the logarithm of realized volatility and 

t  is a white noise process. After 

determining the degree of fractional differencing operator or d , the model can be easily 

estimated by applying OLS. 

 

This method efficiently makes use of the information in the intraday returns without 

having to present a model for this intraday data. On the other hand, comparing with the 

other currently popular models that are relied on the daily returns, VAR-RV makes a 

significant improvement in forecasting performance.   

 

ABDL (2003) have compared their results of forecasting the exchange rate market 

volatility with a wide variety of models.  For example, they have compared VAR-RV 

with the long memory filtered daily logarithmic absolute return. This model is identical to 

(6) except for the volatility proxy which is the daily absolute return instead of the realized 

volatility.  

 

VAR-RV forecasts are also compared with the GARCH model of Engle (1982) and 

Bollerslev (1986) which is the most popular procedure in academic applications. They 

have also considered FIEGARCH that is a variant of the GARCH model that incorporate 

long memory. Another model considered by ABDL is RiskMetrics by J.P.Morgan‟s 

(1997) which is the most widespread model used by practitioners.  

 

The results of forecasting variance by all the above models and also VAR- RV have been 

striking. The regressing for forecast evaluation has the following form 

 

 

 

If this regression includes only one variance measure, 2R  is always the highest for VAR-

        it
iModelttiRVVARttit uvbvbbv ,1

21

,12

21

,10

21

1 .. 








 



 11 

RV in the data used by ABDL. On the other hand, for almost none of the VAR-RV 

forecast, can they reject the hypothesis that 00 b  and 11 b  in the corresponding t-test. 

They reject the hypothesis that 00 b  and/or 12 b  for most of the models. 

Furthermore, if the regression includes both VAR-RV and another alternate variance 

forecast, for most of the cases, the estimation of 1b and 2b  is close to 1 and 0, respectively.  

 

As it was mentioned, the long run dependence in financial market volatility can be 

modeled by fractionally integrated processes such as the VAR-RV model explained 

previously or integrated ARCH; see, e.g., Baillie, Bollerslev and Mikkelsen (1996). In 

order to obtain parameter d  in fractionally integrated processes, the implied hyperbolic 

decay rate 
12  dk  can be used. Using the Geweke and Porter-Hudak (1983) log-

priodogram regression, called GPH technique, the value of d can be estimated. In 

essence, if we estimate the logarithm of correlation by the lag logarithms, the estimated 

linear estimation of logarithm has the slope of 12  d .ABDL (2003) applied multivariate 

extension of GPH estimator to the sample of autocorrelation of the realized logarithmic 

volatility in exchange rate market out to lag of 70 days which resulted on an estimation of 

d  equal to 0.401, which is a common value in such markets. 

 

 Implementing the degree of fractional differencing equal to 0.401 to filter our data does 

not result in a good forecast. Since the size of available data is not big enough, estimating 

d  by our sample does not lead to the best value for d . However, as it can be seen in 

figures 1 and 2 it suggests that the values of d  which are closer to zero can provide a 

better prediction for
ty . Choosing  d  equal to zero transforms the model (6) to an AR 

process for which is the model finally applied to our data. Here, )log()2/1( tt Vy   or the 

logarithm of volatility, where 
tV  is the variance of returns at day t and. It is assumed that 

the order of lag polynomial is one day. Therefore the AR process that is considered is as 

follow 

                                              ttyL   ))((                                                   (7) 
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                                                  Figure 1 sample autocorrelation 

 

   

 

 

      Logarithmic correlation    ________     Figure2 sample logarithmic autocorrelation 

       Fitted value                   ________ 
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This simple autoregressive model can be applied to RV_total and also to different 

variance measures of Hansen and Lunde to forecast one day ahead volatility. 

Consequently, the forecasting done by each of the variance estimators can be evaluated 

by comparing different forecasts. In fact, there is no generally accepted method to 

evaluate the performance of competing forecasts and many statistical procedures have 

been used to do that (see Andersen, Bollerslev, and Lange (1999). Here the alternative 

forecasts are evaluated by projecting the volatility logarithm on a constant and the 

different model forecasts. 

 

                          1121101 )()(   tttttt uzyy                                  (8) 

 

 

The relative weight of coefficients and the statistics of the regression can be used to 

evaluate the different forecasts.  

 

5.   Empirical application to S&P 500 futures  

In this section, the results of the previous parts are applied to the data of S&P 500 index-

futures transaction prices. The estimated RV‟s are calculated for S&P 500 index futures 

prices. S&P 500 index futures have traded electronically on GLOBEX during night when 

the stock market is inactive since 1994. The chosen period for this study is from January 

2006 to December 2007. The sample period contains n=514 trading days. 

 

 

At Chicago Mercantile Exchange (CME), futures floor trading is open from 8:30 a.m. to 

3:15 p.m., Chicago time, for day time trading. GLOBEX overnight trading begins from 

3:30 p.m. and lasts until 8:15 a.m. of the next day. 5-minutes intervals are selected to avoid 

market micro structure problem such as bid- ask bounce. In each 5-min interval, the chosen 

price is the last price of the interval or closing price. 
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In order to estimate daily variance accurately, a high number of intraday returns should 

be available. On the other hand if the chosen time intervals are too small or the returns 

are too frequent, then microstructure effects such as bid-ask spread may cause some 

biases. Finally, 5- minutes intervals are used to eliminate such biases. 

 

Daily realized variance is calculated based on four estimators. The first estimator,
tRV , 

which was presented in section 2 uses both day time trading and electronic night time 

trading. Variance of each day is calculated by replacing )( itp  by logarithm of 5-minute 

interval prices. )( itp could be either the real market price (in day time) or the electronic 

price (in night time). The realized variance calculated by this method is referred as 

RV_total. 

 

 

The three remaining estimators were explained in section 3. All of these three estimators 

use the realized variance of active part of the day, tRV ,2 and the squared close to open 

return 
2

,1 tr . Therefore the night time electronic data are not considered in these estimators. 

As it was explained, to obtain the scaled estimator the parameter of 


 is needed which is 

calculated in section 3.1. We call this estimator as es_var1. The second estimator of daily 

variance is achieved simply by adding  tRV ,2  and
2

,1 tr . This estimator is referred as 

es_var2.  

 

The third estimator is the optimum linear combination of tRV ,2 and 
2

,1 tr suggested by 

Hansen and Lunde and was explained in section 3.2. The estimates of  ,, 21 are 

defined from (4) and (5). The following equations could be used to estimate the 

parameters needed in (4) and (5). 
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Table 1 summarizes the statistical properties of the four estimated variances. RV_total is 

the daily variance using electronic data and es_var1, es_var2 and es_var3 are the three 

estimators that use tRV ,2  and
2

,1 tr . If RV_total is considered as a reference, it is possible to 

compare the three estimators of Hansen and Lunde together. Considering the average and 

variance of different variance measures in the table, the average of es_var3 is much 

closer to RV_total. Besides that this measure is more stable than es_var2 and es_var3. 

 

Figure 3 shows the time series plot of four estimated daily variances. As it can be seen in 

the figure, if RV_total is the reference, es_var1 underestimates RV_total and as a result 

the position of es_var1 time series is lower than RV_total and the other estimators. 
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Table1 statistical properties of different variance measures 

 

 

 

                                              Mean 510                St.Dev. 510              Skewness                           kurtosis                                                        

 

RV_total                      0.6921                     0.8305                    3.716                      19.853 

es_var1                       0.6872                      0.8160                     3.577                      18.532                      

es_var2                       0.6567                      0.8436                     3.939                      21.365 

es_var3                        0.6566                     0.7783                     3.500                      17.383 

 

  
correlation           RV_total            es_var1            es_var2              es_var3 

 

RV_total                   1             

es_var1               0.9372                     1            

es_var2               0.9344               0.8913                   1 

es_var3               0.9509               0.9972               09225                     1 

 

 

 

This table contains the statistical properties of RV_total, es_var1, es_var2 and es_var3 as 

different measures of variance. If RV_total is considered as the reference, es_var3 which 

is the optimal linear combination of tRV ,2  and 2

,1 tr , is closer to RV_total.  
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es_var1                             Figure3 Time series plot for RV_total, es_var1, es_var2 and es_var3 

es_var1 

es_var2 

es_var3        

 

 

There is a bias problem in the realized variance measure of equation (1). This bias is due 

to the autocorrelation in the intraday returns which is caused by market microstructure 

effects such as bid ask bounces, nonsynchronous trading, and rounding errors. [see, e.g., 

Andreou and Ghysels (2002)] 
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The intraday returns autocorrelation becomes more problematic when sample frequency 

increases. Bandi and Russell (2004) and Zhang, Mykland and Ait Sahalia(2005) found 

that under independent market microstructure noise the optimal sampling frequency is 

often between one and five minutes. In practice the frequency which corresponds to five 

minutes intraday returns is chosen. Figure 5, 6 and 7 shows the autocorrelation plot of 

different variance measures.   

 

 

 

 

 

 

 

Figure4 Autocorrelations with 95% Confidence Limit (RV_total) 

 

 

 

 

 

 

 

 

                               

 

Figure5 Autocorrelations with 95% Confidence Limit (es_var1) 
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Figure6 Autocorrelations with 95% Confidence Limits (es_var2) 

                              

                                 

                                

 

 

 

 

 

 

  

 

                                       

                              

 

Figure7 Autocorrelations with 95% Confidence Limits (es_var3) 
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In the following part we implement the results of part 4 to forecast one day ahead 

logarithm of volatility or 
ty  for in-sample data. As it was mentioned in part 4, the model 

which is considered to is AR for
ty . The degree of lag polynomial, selected by Bayesian 

information criterion (BIC), is equal to 2. Therefore we have 

 

 

ttyL   ))((   

 

or                                               tyt tt
yy   


2211  

 

 

This AR model can be applied to any measure of variance. We apply this model to 

RV_total as the measure of variance that uses electronic data during nights and also to the 

es_var3 which is the optimum variance measure of Hansen and Lunde. Figure 8 shows 

the time series of in sample forecast for RV_total and es_var3. Table 2 shows the 

statistical parameters of the AR(2) model.  

 

To evaluate the forecasting performance of each model, we use the regression (8) or 

 

 

 

 

Where ty  is the logarithm of volatility obtained from electronic data 

or )_log()2/1( ttotalRV  and 
tz  is the logarithm of the optimal volatility estimated by 

Hansen and Lunde or )3var_log()2/1( tt esz  . Table 3 shows the statistics of this 

regression.  

 

The results show the coefficients of ty  and tz  are close to 1 and 0 respectively. From this 

result and also negative sign of 2 , it appears that including the optimal variance of 

Hansen and Lunde or es_var3 doesn‟t add any new information in the forecasting process 

and RV_total measure of variance can be effectively used for forecasting, if it is 

available. 

1121101 )()(   tttttt uzyy 
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      In sample volatility    ________     Figure8 in sample volatility and 1 day prediction 

      1-day prediction       ________ 

 

 

 

                     Table2 coefficient estimation for AR(2) 

              

                                                      1                  2                 2R   

 
                           RV_total        0.529                   0.232                0.500 

                           es_var3          0.461                   0.202                0.361 

 

 
                    Table3 coefficient estimation for forecasting evaluation regression 
                                                     

 

                              1                 2                )( 1valuep          )( 2valuep                 2R   

                       1.215        -0.236             0.000                 0.194                0.501  
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6. Conclusion 

 

 

In this study the idea of using intraday returns to measure the daily variance which was 

presented by Andersen and Bollerslev (1998) is applied for measuring the stock market 

variance. The stock markets are usually active for a fraction of the day, but in some 

markets electronic trading is active when the real market is closed overnight. In this 

situation, we can use the real market data for the active part of the day and electronic data 

for the remaining part of the day in order to estimate the realized variance.  

 

Another alternative which was suggested by Hansen and Lunde (2005) does not consider 

the electronic data. In their method the whole day variance is declared by three estimators 

that make use of the intraday returns for the active part of the day and the squared close 

to open return for the inactive part of the day.  

 

To compare the different variance measures, the results of the study are applied to two 

years S&P500 index futures data. In the empirical analysis it can be seen that the 

estimator that has the form of scaled active part variance underestimates the daily 

variance if the estimator which uses the electronic data is considered as reference. In 

addition, we can see that the optimal linear combination of intraday returns and squared 

overnight return declares a better estimation for the whole day variance comparing to the 

first and second estimator of Hansen and Lunde.  

An AR(2) model could be effectively used to forecast one day ahead logarithmic 

volatility using all different measures of variance. Forecasting evaluation of RV_total that 

uses 24 hours data (electronic during nights) and the optimal variance measure of Hansen 

and Lunde, shows that RV_total has a better forecasting performance.  
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