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Résumé

La prédominance d’algorithmes de prise de décision, qui sont souvent basés sur des
modèles issus de l’apprentissage machine, soulève des enjeux importants en termes de la
discrimination et du manque d’équité par ceux-ci ainsi que leur impact sur le traitement de
groupes minoritaires ou sous-représentés. Cela a toutefois conduit au développement de tech-
niques dont l’objectif est de mitiger ces problèmes ainsi que les les difficultés qui y sont reliées.

Dans ce mémoire, nous analysons certaines de ces méthodes d’amélioration de l’équité
de type «pré-traitement» parmi les plus récentes, et mesurons leur impact sur le compromis
équité-utilité des données transformées. Plus précisément, notre focus se fera sur trois
techniques qui ont pour objectif de cacher un attribut sensible dans un ensemble de données,
dont deux basées sur les modèles générateurs adversériaux (LAFTR [67] et GANSan [6])
et une basée sur une transformation déterministe et les fonctions de densités (Disparate
Impact Remover [33]). Nous allons premièrement vérifier le niveau de contrôle que ces
techniques nous offrent quant au compromis équité-utilité des données. Par la suite, nous
allons investiguer s’il est possible d’inverser la transformation faite aux données par chacun
de ces algorithmes en construisant un auto-encodeur sur mesure qui tentera de reconstruire
les données originales depuis les données transformées. Finalement, nous verrons qu’un
acteur malveillant pourrait, avec les données transformées par ces trois techniques, retrouver
l’attribut sensible qui est censé être protégé avec des algorithmes d’apprentissage machine
de base. Une des conclusions de notre recherche est que même si ces techniques offrent
des garanties pratiques quant à l’équité des données produites, il reste souvent possible de
prédire l’attribut sensible en question par des techniques d’apprentissage, ce qui annule
potentiellement toute protection que la technique voulait accorder, créant ainsi de sérieux
dangers au niveau de la vie privée.

Mots clés: Equité, respect de la vie privée, apprentissage machine, réseaux génératifs
antagonistes.
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Abstract

The prevalence of decision-making algorithms, based on increasingly powerful pattern
recognition machine learning algorithms, has brought a growing wave of concern about dis-
crimination and fairness of those algorithm predictions as well as their impacts on equity and
treatment of minority or under-represented groups. This in turn has fuelled the development
of new techniques to mitigate those issues and helped outline challenges related to such issues.

In this work, we analyse recent advances in fairness enhancing pre-processing techniques,
evaluate how they control the fairness-utility trade-off and the dataset’s ability to be used
successfully in downstream tasks. We focus on three techniques that attempt to hide a
sensitive attribute in a dataset, two based on Generative Adversarial Networks architectures
(LAFTR [67] and GANSan [6]), and one deterministic transformation of dataset relying
on density functions (Disparate Impact Remover [33]). First we analyse the control over
the fairness-utility trade-off each of these techniques offer. We then attempt to revert
the transformation on the data each of these techniques applied using a variation of an
auto-encoder built specifically for this purpose, which we called reconstructor. Lastly we
see that even though these techniques offer practical guarantees of specific fairness metrics,
basic machine learning classifiers are often able to successfully predict the sensitive attribute
from the transformed data, effectively enabling discrimination. This creates what we believe
is a major issue in fairness-enhancing technique research that is in large part due to intricate
relationship between fairness and privacy.

Keywords: Fairness, Privacy, Machine Learning, Generative Adversarial Network
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Introduction

To some extent, excitement towards machine learning and artificial intelligence might
seemed to be cooling down given the growth of private sector investment in AI-related
projects decreasing in 2019 for the first time in 5 years [31]. However, this is at most a
reckoning of the limitations of the underlying algorithms, not a reduction of their overall
use or deployment. One area in which these algorithms are known to perform reasonably
well is in support of decision-making systems, using anything from a dozen data points
to a many thousands in the case of images as input and offer a probability as output,
which will then be used by algorithm designers to make a decision. Use cases include
bank loan applications [32], sentencing decisions [84], school admissions [109] and job
applications [92]. For example the GRADE system [109] used by the computer science
department of the University of Texas at Austin uses historical decisions made by admission
committee to train a machine learning algorithm that will output a likelihood of PhD
applicants being admitted to the program. Similarly, the unmanageable number of job
applicants have encouraged research in systems using the candidate’s job history in order to
infer future behavior [92].

It is therefore becoming of increasing importance to understand how the use of machine
learning models influence decision-making systems, amongst other things to prevent biases
in the data to be reflected in the output of the algorithms. The risk is to perpetuate and
reinforce those biases given the unprecedented scale at which those models are deployed
in the real world. Another possible objective, which will not be discussed further in this
thesis, is to better understand the inner working of algorithms by providing explanations
for a decision, thus also increasing algorithmic accountability. A common example for the
explain ability of algorithms is the decision tree, in which each branch characterizes the
path that has led of a binary prediction. Here, the hope is to be able to provide a similarly
simple explanation for other algorithms as to how they reach their predictions.

A second approach, which motivated this research, is to design methods to better control
or bound the underlying decision-making process by compensating for a specific bias, which



has made headway mostly in computer vision [82]. This can be done in a variety of ways
and according to different fairness metrics, a subset of which will be our focus in this thesis.
Three main categories of fairness-enhancing algorithms exist: pre-processing, in-processing
and post-processing techniques [37]. In a nutshell, post-processing consists in modifying
the model output (i.e., the decision) according to certain principles or metrics to ensure
fairness. A straightforward example of this is offered in the same research by Kamiran et
al. [57] consisting of modifying the leaves of their decision tree algorithm after its training
in order to achieve better fairness. In-processing is about the model itself, and adjusting its
inner working to prevent bias contained in the training data from being overly important
in the decision-making process. A simple method by Kamiran et al. [57] consisting of the
introduction of a regularising term for a decision tree. The regularising term will work
against the algorithm training and attempt to compensate or prevent the use of biases
contained in the training set. The last approach, which is investigated in this thesis, is
to attempt to prevent the algorithm from relying on the data biases by transforming the
data a priori, with the objective that the data should be usable by any downstream process
without worries of discrimination and biases.

Furthermore, with the fast pace of new algorithms and architecture development in
the field of machine learning and deep learning, some interest in the past few years has
been on leveraging the adversarial learning approach that is the basis of Generative Adver-
sarial Networks (GANs) to address the trade-off between utility and fairness discussed above.

In this thesis, we analyse three recent pre-processing methods that aim at creating a
general transformation to be applied to input data, such as a loan applicant’s personal
information, to reduce bias measured through various metrics while preserving utility of
the data, also known as a fairness-utility trade-off. The challenge is that besides directly
removing the sensitive attribute, the correlations that this attribute has with the other
features has to be mitigated as well, especially given the ease at which deep learning
algorithms can recognize those patterns and correlations. Our contribution is to show that
although those techniques allow their transformations to create (practical) guarantees that
transformed data scores high on fairness metrics, it is often easy for an external classifier to
predict the hidden sensitive attribute, which in effect nullifies their whole process. Two of
the three algorithms studied leverage the GAN architecture (GANsan [6] and LAFTR [67]),
while the third relies on deterministic transformations to change the training data before
the algorithm training [34].

The main dataset used in this research to evaluate the success of attacks is the UCI data
repository Adult dataset (presented in Section 1.2) and the Compas dataset (presented in
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Section 2.2).

The main contributions of this thesis in the field of fairness enhancing pre-processing
techniques can be summarized as follows:

(1) Optimizations based on a fairness metric do not offer sufficient protection against
basic machine learning based inference attacks.

(2) This inference means that a properly tuned deep-learning model trained with the
“fair” or “transformed” user profile might reconstruct this feature unbeknownst to
its developer.

(3) The inter-dependency of fairness and privacy in fairness-related machine learning use
cases means both need to be taken into account when developing fairness-enhancing
techniques.

(4) The use of an additional external classifier exogenous to the base fairness-enhancing
method during training seems to be able to mitigate some of those issues.

The next three chapters cover the relevant work necessary to understand this thesis’
motivations. First, we review the concepts and previous work in machine learning and recent
developments in generative models (Chapter 1). Second, we cover fairness concepts, popular
metrics and recent techniques to improve fairness in decision-making algorithms (Chapter
2). Third, we look at privacy concepts, privacy-preserving methods and popular attack
frameworks (Chapter 3) that motivate the development of fairness and privacy-enhancing
techniques. We then go over our research objectives (Chapter 4), the experiments we ran
on data generated by three different fairness optimising pre-processing techniques, as well
as their resistance to simple machine learning algorithms (Chapter 5). Our evaluation of
the fairness-enhancing methods is be three-fold: first, we look whether the method indeed
produces data that is fair according to each method-optimized fairness metric. We then
evaluate the control on the level of protection the method offers. Third, we evaluate whether
it is possible to predict the original sensitive attribute that was hidden, using only the data
that each method outputs. Finally, in Chapter 6, we conclude with recommendations for
future development of fairness-enhancing methods.
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Chapter 1

Machine learning basics

1.1. Preliminary notions
In this chapter, we first look at a brief history of machine learning, leading to the more

recent subfield of deep learning [42]. We then explain and define fundamental machine-
learning concepts before jumping to more specific deep learning models and architectures
relevant to our experiments.

Finally, we have a look at current state-of-the-art architectures for various tasks as well
as commonly used datasets for research and comparative analysis.

1.1.1. Machine learning categories and main concepts

Alexander Smola, in his 2002 book on machine learning states that “[...] much of the
art of machine learning is to reduce a range of fairly disparate problems to a set of fairly
narrow prototypes. Much of the science of machine learning is then to solve these problems
and provide good guarantees for solutions.” [98]. More concretely, it can be understood
intuitively by looking at the linear regression algorithm that belongs to both statistics and
was more recently borrowed by machine learning [10]. Linear regression takes as input
historical data and learns to recognise patterns. Then, these patterns can be used to
predict where future occurrences of data coming from a similar distribution will fall. This
knowledge can then be used when looking at previously unseen occurrences of the data. As
we will see, research in machine learning uses these principles to design powerful algorithms
that are increasingly good at recognising such patterns in a variety of circumstances and
tasks.

Machine Learning can be segmented into three broad main subfields: supervised,
unsupervised and reinforcement learning. Supervised learning implies that the algorithm
designer has a labelled dataset of points (x, y) in which x is a vector referred to as the



data input, which is of size d and y ∈ R as the label or target. The objective of the
system is to be able to learn how to predict the y value having x as input by maximising
the value of the probability p(ŷ|x) in which ŷ is the label the system predicts for its
corresponding x. For example, x could consist of various information about a bank
customer, and y the likelihood of this customer paying back a loan. Supervised learning,
can be represented in a abstract manner agnostic to the underlying algorithm, model or
architecture as a function with an input and output ŷ = f(x). This function in practice
sometimes represents a neural network, which is a collection or system with multiple
units of calculation arranged one after another and in parallel, each taking a number as
input and giving a transformed number as output, finally combining to offer what is of-
ten probabilities as final output. These neural networks are presented in depth in Section 1.1.

The system will slowly adapt its decision by updating the value of its parameters θ to
improve the quality of its prediction by optimising an objective function. The objective
function is optimised through a loss function. The loss function quantifies how good or bad
the prediction of the system is. For example, the commonly used Mean Square Error (MSE)
loss given in Equation 1.1.1 shows that for each of the n predictions of ŷ made by the system,
the loss will be calculated as the average of the square of difference between the true label y
and ŷ.

MSE = 1
n

n∑
i=1

(Yi − Ŷi)2 (1.1.1)

The loss function has to be chosen carefully, as it dictates how the system will be
penalised for being wrong in its prediction, and therefore how it will adjust its weights
θ internally, for instance through a back propagation algorithm for neural networks (see
Section 1.1.2). Some loss function is specific to different types of tasks, for example the
Damage loss is appropriate to compare the difference between the input and the output of
a model.

Supervised learning can be, furthermore, split in two subdomains, depending on the
type of the target value ŷ it tries to predict. If y is a continuous variable, then the
problem is a regression task, while when the system needs to decide in which of n classes
the input belongs for y ∈ [1, n], it corresponds to a classification task. In classification
problems, the algorithm usually tries to identify the decision boundary, in which an
input would be classified as one class instead of another. For example, for a binary clas-
sification task and for an input vector of size 2, a decision boundary could look like Figure 1.1.
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Fig. 1.1. Decision boundaries for a supervised learning algorithm.
On the left, a linear regression is an algorithm able to find the decision boundary and

correctly classify the data. On the right side, a much more expressive function (see Section
1.1.2) is needed to do so.

The second category, unsupervised learning does not rely on labelled data (i.e., it has no
knowledge of label y) but instead tries to recognise patterns within the data. For instance,
one of the common unsupervised learning tasks is clustering, which attempts to group data
points according to their similarities. A typical example of a clustering method is the k-means
algorithm (see Figure 1.2).

Fig. 1.2. Unsupervised Learning: Clustering of
2-dimensional dataset with k-means in which

k = 3 [69].

Another unsupervised learning architecture is the Auto-Encoder (AE) [42], and more
recently the Variational Auto Encoder (VAE) [42], which takes a data point as input and
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passes it through a multi-layer neural network (a function f(x) as described in Section 1.1)
whose middle layer (referred to as the latent layer) is usually smaller than the input, and
the output layer is the same size as the input. More on neural networks will be discussed in
the following section. These auto-encoders are often used in dimensionality reduction tasks,
where we want to find a representation of some data in lower dimensions, while retaining as
much information as possible on the data. Typical use cases include data compression and
visualising multidimensional data in a 2d or 3d graph. As shown in Figure 1.3, the portion
before the latent layer is known as the encoder since it encodes data in smaller dimensional
representations while the following portion is the decoder as it decodes the representation
back to its original representation. Here, the objective function aims at producing an
output that is as similar as possible to the input. When such an objective is attained,
the middle (or latent) layer concentrates the useful information contained in the data to
lower dimensions, hence removing noise. Because of this, it is also sometimes considered a
dimensionality reduction technique. The Variational Auto Encoder is a version of the AE in
which the latent layer is, instead of actual data, the parameters required to generate each
piece of data. Taking the normal distribution as an example, the latent layer of a VAE will
learn a means µ and standard deviation θ for each neuron of the latent layer, allowing to
generate a value to be sent to the decoder. It is important to note that many other tasks,
architectures and algorithms exist in unsupervised learning, but they are outside the scope
of this thesis.

Fig. 1.3. Unsupervised Learning:
Auto-encoder architecture with 3 neuron

wide latent layer [110].

The last type of machine learning subfield is reinforcement learning. Reinforcement
learning is based on the idea of not telling the system directly what is considered a right
or wrong decision, but instead give general principles of how to achieve success [42].
Reinforcement learning therefore also does not use explicit labels nor an objective function
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to tell it when it is wrong. This technique aims at finding an equilibrium between the
exploration of the data space and the exploitation of previously learned features. The
system poses actions that are generated by a policy following an input vector. It then
receives a positive feedback if the action was a good one, and negative feedback if it
was not the case. The system learns by trying to optimize the reward it receives. In
addition, the output of the policy is expressed as a distribution over possible actions,
therefore adding some level of randomness to the exploration. This is needed to avoid
repeating the same actions and hopefully reach faster convergence towards better outcomes
(i.e., higher rewards) [74]. Reinforcement learning will not be discussed further in this thesis.

The remainder of this chapter will delve into an important subfield of machine learning:
deep learning.

1.1.2. A brief history of neural networks

The concept of artificial neural networks dates back from Rosenblatt’s initial paper
in 1958 introducing the Perceptron, which is basically a 1-layer neural network without
activation function [90].

A neuron, a neural-networks’ basic computation unit, takes as input a value, transforms
it and outputs a new value (or possibly the same). The name comes from the fact that its
output is a signal whose degree can change during training, analogous to how the brain’s
neurons communicate between themselves and evolve. Ideally during training, each neuron
learns different features of the data distribution it is trained on, which is more easily
visualised in computer vision as shown for various layers of the network in Figure 1.5. The
concept of neuron exists in all neural networks models [78, 82].

Fig. 1.4. ReLU Activation Function
f(x) = max[0, x].

Activation functions will be explained in depth in later paragraphs, but simply put they
are a mathematical operation made onto each neuron’s output. A layer consists of one
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or more d ∈ N neurons. Activation functions were introduced by Minsky and Papert in
1969 [73] but among the major breakthroughs was the discovery of the rectified linear unit
(ReLU) activation function (Figure 1.4) [76], taking over from less popular sinus and tanh
activation functions. ReLU has since gained the title of most widely used and successful
activation function mostly due to its consistency, although extensive research is still being
conducted to find better alternatives [86]. The simplicity of the ReLU allows for easy
computation, good performance of algorithms and fast training of models.

Fig. 1.5. Use of multifaceted feature visualization to show what each layer of a
Convolutional Neural Network learns [78]. Each pixel of each picture corresponds to a

single neuron in the network.
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A first key addition to the training of modern neural networks is back-propagation
with gradient descent as a learning mechanism, solving the issue of how to adjust in an
iterative manner the parameters of the neurons of the hidden layers (i.e., the layer located
between the input and output layers) [91]. It created a relatively inexpensive method of
converging towards local (and sometimes global) minima. The alternatives used before
the discovery of the back-propagation algorithm were extremely expensive, which for some
times has limited the applicability and widespread use of neural networks (Newton [75],
Quasi-Newton [104] [41], Levenberg-Marquardt Method [62], all of which were based on
expensive Hessian matrices).

Both back-propagation and ReLU have greatly contributed to increase the accuracy of
the predictions of neural networks. Nonetheless, the training of neural networks remains
costly and the lack of understanding of its inner working due to its black-box aspect makes
it a less popular choice against simpler machine learning algorithms, such as Support
Vector Machines (SVMs) and decision trees that consistently offered similar performances
throughout the 90s [70] in a much shorter training time [14]. More recently, an even wider
choice of activation functions as well as different architectures, such as convolutional Neural
Networks for image recognition and Recurrent Neural Networks for text processing, have
emerged (more in Section 1.2). The neural networks have also gained in popularity due
to the combination of factors such as Moore’s Law, parallelisation, increase of spending
(including development of GPU acceleration) as well as improvement of the algorithm’s
efficiency [51].

Among the important factors to consider when building a neural network is the
bias-variance trade-off. Using our example from Figure 1.1, the linear regression on the
left side is in a family of functions that could qualify as low expressivity functions because
of their inability to discover the decision boundary for a dataset such as the one on the
right, which is would lead to a high bias error. The bias error refers to how well a learning
function (here the linear regression) is able to model the true function (represented by the
training set) [77]. On the other hand, we could say that the function used to represent
the decision boundary to the right is relatively more expressive and would have a lower
bias when working on the right-hand dataset. Given various datasets, and even within
the same dataset, there are many ways (i.e., functions) to define the decision boundary.
In particular, some functions allow us to draw more complicated ones, with the caveat
that more expressive functions usually need more data to be successfully trained. It would
therefore be tempting to always use a highly expressive function to be safe (as long as we
have enough data). However this may lead to another issue called overfitting [48] and high
variance, which refers to the fluctuation in performance of the trained model when facing

11



new data [77].

The bias-variance trade-off hence appears, when we want to use a function that is
expressive enough to be able to find a good decision boundary (i.e., low bias) while trying
to avoid it causing too much overfitting and resulting in high variance. It is usually recom-
mended to follow the Occam’s Razor principle [87], which states to use the simplest (i.e.,
low expressivity) function that works sufficiently well. High variance, usually undesirable,
means that the model is not able to generalise to the general population, outside of the data
it was trained on and that its performance varies significantly depending on the data it is
used on. The decision criteria for identifying the expressivity level that we need include the
size of data available for training, their properties, how confident we are that the data are
representative of real-world data. Deep learning simply is a new, highly expressive function,
with the advantages and disadvantages that were described above and controlled through
the number of layers and their respective sizes. It is worth noting that some recent research
indicates that the variance might not increase with the model’s complexity when we also
increase the width of its layers [77].

Another key concept already mentioned is generalization, defined by Google’s Machine
Learning Crash Course as Generalization refers to your model’s ability to adapt properly to
new, previously unseen data, drawn from the same distribution as the one used to create
the model [66]. Generalization is a key quality for any machine learning algorithms and
closely related to overfitting [48]. Given the higher-than-ever expressivity of models that
deep-learning permits, generalization has to be kept in mind when training in order to
ensure the model will be making accurate predictions when used on new data that has not
been seen during training. One way to mitigate this is through a training-validation-testing
separation of the dataset available for training. Following this methodology, an algorithm
is trained by looking only at a subset of the data. The proportion of each dataset depends
on many factors such as the task considered, the size of the full dataset as well as the
architecture, depth (i.e., amount of layers) of the neural network and acceptable prediction
accuracy error rate [45]. The validation set is a relatively smaller subset compared to the
training one and used during training to verify the quality of the prediction at regular
intervals, leading to adjustment of the parameters of the model. Finally, the test set is used
at the end of training to evaluate the generalization ability of the model.

The concepts of generalization and train-valid-test split are often dependent on a last
key feature of the data, which is the extent to which the training data is representative of
the underlying true data distribution. We humans work the same way; as a toddler if you
are almost always presented with green apples and yellow pears (your training set), when
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you see a green pear for the first time, there is a good probability you will classify it wrongly
as an apple. The reason is that you never (or rarely) encountered such thing as a green
pear. Supervised algorithms work the same: they are able to generalise, but have a limi-
ted capacity to extrapolate to data that is drawn from a different data distribution or domain.

1.1.3. Generative Adversarial Networks (GANs)

Generative Adversarial Networks were introduced at NIPS 2014 with the objective of
applying deep learning to bypass the mathematical limitations of existing generative models
(including auto-encoders), with an initial focus on image generation [43]. GANs are com-
posed of two neural networks competing against each other, each with their own objective,
architecture, loss function and training procedure but trained as a whole system. The first
model called the Generator (red box of Figure 1.6), takes as input a vector of random (or
coming from a particular distribution) noise and outputs what we would hope to be some-
thing similar to data coming from the real distribution of the training data. The second
model named the Discriminator (blue box of Figure 1.6), is a simple binary (two classes)
classifier that is randomly shown either an input from the real distribution or one generated
by the Generator and tries to determine which of the two it observes.

Fig. 1.6. Generative Adversarial Network general structure [44].

In its first versions, following the discriminator’s prediction, the loss is compiled for
both models and back-propagated on each through gradient descent. However, in practice
the difficulty of successfully training such networks has often resulted in different rates of
training and loss computation. This creates an adversarial game between the two networks
where the generator G tries to minimize the accuracy of the discriminator accuracy while
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the discriminator D tries to maximize its accuracy [93]. The objective function of this game
can be formalized as follows:

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (1.1.2)

This non-exhaustive list of architectures has been developed over the years and is designed
for a specific task such as predicting the probability of a customer to pay back his loan.
Nonetheless, we have witnessed the emergence of a handful of benchmark tasks and datasets
allowing to compare those different architectures. These are presented in the following
section.

1.2. State-of-the-art in machine learning
In this section, we go over the common datasets used for benchmark in machine learning

tasks and the current top performing architectures. This includes computer vision, Natural
Language Processing (NLP) and tabular data (structured into rows, columns and cells often
represented in an Excel-like table). We will go over the first two quickly and the last one
in more detail, as tabular data is the focus of this research for reasons explained in Chapter 4.

Starting with computer vision, one of the most commonly used dataset is MNIST.
This dataset consists of 60 000 training images and 10 000 test images, both 28x28 pixels,
giving an input vector of size 784. The images represent handwritten digits from 0 to 9
(thus resulting in 10 classes in total) in black and white, and is nowadays considered a
relatively easy task. Basic machine learning algorithms such as the k-nearest-neighbour
algorithm consistently achieving less than 2% error on the test set, Support Vector Machines
(SVM) less than 1%, and more advanced convolutional neural networks are able to reach
less than 0.5% error rate [116]. Other popular image datasets include CIFAR10 (10
classes) and CIFAR100 (100 classes), which consist in slightly larger (32x32) colour images
representing many things from aeroplanes to trucks, as well as cats and dogs. Regular
Deep Neural Networks (DNN) are able to achieve above 90% on the 10-class version,
while CNN reach closer to 95% since 2015 [89]. CIFAR100 high class numbers are still
proving a challenge with state-of-the-art architectures unable to reach more than 76%
accuracy, with unsurprisingly many top performers being the same architectures as CIFAR10.

Natural Language Processing is a field with a much wider range of tasks that can hardly
be compared between themselves. These tasks range from translation, text classification,
language modelling, speech recognition, sentiment analysis, to text summarising. However,
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a key concept that has lead to better performance and faster training in language tasks
are word embeddings and the use of context (other words before and after a target
word). In particular, the research has gathered speed following Mikolov’s 2013 Word2Vec
embedding [72] and many more that followed. In addition, the performance of models
varies across different languages. Google is trying to solve this issue and has recently
released a multilingual benchmark consisting of 7 tasks, trying to benchmark complete NLP
systems [52], although it is too recent to confirm widespread adoption. Nonetheless, various
language models architectures for different tasks have shown consistent improvement in top
performance scores achieved over the past 10 years [106, 94] with a majority of advances
focused on English-based tasks or other languages to English translation tasks.

To summarise, given their obvious real-world use and attractiveness to the private sector,
a lot of efforts have been put into developing increasingly complex deep-learning-based
models for computer vision and language processing tasks. The development of CNN’s
and different language processing models has enabled neural networks to surpass the
traditional methods used for vision and language tasks [116, 94, 89], but not for tabular
data. That being said, Haldar et al. researching for AirBnB have shown in 2018 that for
larger datasets (1.7 billion structured data points with 32 dimensions), DNN’s outperform
gradient boosting [46], and others have shown seemingly generalisable attempts to beat
decision trees and gradient boosting techniques [83]. Nonetheless a handful of datasets
stand out for often being used to benchmark new neural network architectures aimed at
tabular data. The most common according to UCI Machine Learning Repository is the
Adult Census Dataset [24]. This dataset is composed of 32 561 profiles extracted from
the 1994 US Census Bureau Database, and the binary classification task is to determine
whether each individual’s (entry) revenue is above (>) or below (<=) $50 000. Each entry
contains 12 features plus the target (label), often used as 6 numerical and 8 categorical
features. Historically, categorical features such as native-country had been embedded in a
two dimensional one-hot (Figure 1.7) and min-max encoding (Equation 1.2.1). Min-max is
a normalization method to improve a model’s learning capabilities by bringing closer values
that have large variance between each other.

X = X −Xmin

Xmax −Xmin

. (1.2.1)

Deep neural networks achieve around 86% accuracy on the Adult dataset, which is about
the same as other machine learning algorithms shown in Figure 1.8.
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Fig. 1.7. Illustration of one-hot encoding.

Fig. 1.8. Classification of Income on Adult Dataset. 10k-fold cross validation repeated 3
times for each algorithm. One-Hot and Min-Max Scalar are used for encoding [11].

A new trend to deal with tabular data has emerged in recent years. At its core it is a new
way to encode the categorical features, borrowing techniques developed in natural language
processing, more specifically 1-dimensional and 2-dimensional word embeddings [100].
This technique effectively creates a 2D image from textual or tabular data, in order to
use the relatively higher performance of CNN’s to solve this kind of task. Results have
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only been marginally better, but they might show a path towards specified neural network
architectures for structured data, the same way text and images have theirs.

Finally, the access to pre-trained or deep-learning based classifier services have been
rolled out by all major cloud providers [17, 95, 5] allowing various levels of abstraction
of machine learning fundamentals in order to ease the process of developing deep-learning
based classifiers. This allows anyone with a training dataset to create its own state-of-the-art
model and deploy it to for real-world applications, or to use one of the pre-trained models
offered as a service. The fast pace advancement of new architectures and techniques, paired
with the availability of an increasing number of non-technical users has created some moral
hazards and potential issues. Those often have to do with the lack of explain ability of how
algorithms achieve a certain outcome. For example, it is not trivial to know the extent of
the impact of one feature, age for example, on the output of the model. In addition, an
issue has emerged with libraries such as python’s Scikit-Learn and pytorch, allowing users
to create and train machine learning algorithms in a few lines of code. It is hence becoming
increasingly difficult to keep track of where and how these algorithms are being used for
accountability purposes. These issues will be discussed in the following chapter.
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Chapter 2

Fairness in machine learning

In the early days of deep learning developments, designers of decision-making algorithms
were sometimes tempted to claim the absence of bias due to the objective nature of their
algorithms as sufficient fairness criteria, considering that the bias within the dataset was not
their fault or problem. Statistical bias occurs when the decision-making algorithm’s expected
value E[ŷ] is consistently different from the real value y [3].

For a classic machine learning designer, the main objective is to create a classifier with
100% accuracy on the test set (although rarely the case in practice), which would represent
a perfect generalisation. One shortcoming of this approach is that statistical bias says
nothing about the distribution of data. In particular, an algorithm could assign the average
probability all the time, keeping statistical bias low, while having a very high error rate.

Another major issue is that these types of algorithms are increasingly deployed in
the real world, having significant impact on people’s lives through hiring decisions [92],
bank loan applications [32], recidivism and sentencing [84], etc. Those are part of the
reasons why the lack of statistical-bias argument was quickly rejected by the FAT (Fairness,
Accountability and Transparency) research community, composed of computer scientists,
ethicists and lawyers to name a few, who claimed that the real objective should be "making
algorithms systems to support human values" [3]. In this chapter, we will first provide an
overview of fundamental concepts and debates in the algorithmic fairness field. Then, we
will present three state-of-the-art techniques that have been developed with the objective
of mitigating the fairness issues of classical algorithms, each focusing on specific fairness
metrics. All will then be analysed and compared in Chapter 5.



2.1. Fundamental notions of fairness
Finding the root causes of unfairness is a challenging task in itself. Previous research has

identified three main possible causes: prejudice, underestimation and negative legacy [58].
To help understand, we can adjust the model’s prediction formula used in the previous
chapter: ŷ = argmax(p(y|x)) where y is the desired output and x, ŷ the actual input and
output respectively. We then extract from x the sensitive attribute s we want to protect
(often race or gender), which would give us:

ŷ = argmax(p(y|x, s)). (2.1.1)

With prejudice, the decision is made directly by looking at a certain feature, resulting
in a direct discrimination. Prejudice is difficult to pinpoint when decisions are made by
humans given that those prejudices are not straightforward to detect, and even sometimes
unknown to the holder. A similar issue arises for black-box learning algorithms whose pre-
dictions are used by decision-making processes, and even more in deep learning, due to
the lack of explainability (see Section 1.1.1), which makes it difficult to assess whether the
decision-making process is prone to prejudice. Moreover, removing the feature that leads to
discrimination is often not sufficient since a machine learning model can easily exploit the
correlation between this attribute and use other features that will act as proxies, resulting
in indirect discrimination [81, 58]. We will go over this phenomenon in more detail further
on.

The second category, underestimation, refers to a model that cannot reach convergence
or its full capacity, due to the availability of a small dataset. This phenomenon is related to
our earlier concept of variance and capacity to generalise with high-capacity models needing
more training data to reach convergence (see Section 1.1.2). This issue could possibly be
mitigated by using a model with a lower capacity.

Finally, the third category is negative legacy, which reflects societal bias through either
historical undersampling of a specific group or a history of humans consistently wrongly
labelling subgroups, whether consciously or not. An example would be an implicit bias
of a bank clerk that consistently and unreasonably classifies customers with blue eyes
as less likely to pay back loans. This societal bias in the training dataset will likely
be picked up by the learning algorithm and lead to a biased decision-making process.
This issue has been reported on widely [88, 97]. For example, in computer vision a
study has shown that facial recognition systems, including commercial systems [19, 84],
are not able to recognise non-Caucasian people’s pictures with the same accuracy as
Caucasian ones [80]. This point demonstrates a known limitation of machine learning
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algorithms, which is that they can never be better than the underlying data they are fed with.

Other challenges in the fairness community have not only to do with the difficulty of
agreeing on terms, definitions and metrics, but also with which ones are the right ones to
focus on. This is key to the development and comparison of fairness enhancing and/or
privacy-preserving techniques. An often used high level segmentation distinguishes between
Individual Fairness and Group Fairness. In a nutshell, individual fairness requires that
similar individuals have similar expected value from a given predictive model’s output [27].
Basically, this means that similar individuals should be treated similarly [119, 28]. For
binary sensitive value, for any small value of ε, individual fairness can be defined as:

p(y|x) ≈ p(y|x′)where dist(x,x′) ≤ ε (2.1.2)

Group Fairness, also referred to as demographic parity, depends on different demographic
groups having similar treatments [27]. For two distinct subgroups of the population, for
instance male and female, we should have:

p(y|x, s = Male) ≈ p(y|x, s = Female) (2.1.3)

where s is the sensitive attribute (either male or female in this case), x represents all
other attributes used as input to the model and y the desired output for each corresponding
set of inputs x,s.

As a subset of Group Fairness, Feldman and co-authors [34] have proposed to apply the
concept of disparate impact to machine learning. The concept dates back from a Supreme
Court of the United States judgement in 1971, which has defined the term [79]. According to
this judgement (and the interpretation of Feldman and co-authors [34]), Disparate Impact
occurs “when a selection process has widely different outcomes for different groups, even
as it appears to be neutral” [34], emphasising the effect that discrimination can have over
specific attribute(s) at the group level. The acceptable rate set by the Supreme Court is less
than 20% difference between both groups’ decisions, which is why it is sometimes referred
to as the 80% rule.

Take for instance, the scenario of an automatic bank loan application system that
could lead to discrimination, which has gender as the sensitive attribute. In this setting,
individual fairness would aim at ensuring that regardless of gender, similar profiles have a
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similar chance of being approved, whereas group fairness would put emphasis on one (or
possibly multiple) attributes [34], hereby requiring that the probability of women being
approved is similar to that of men. Given the common use of Disparate Impact and general
acceptance as a valuable fairness-enhancing method in the literature, we decided to include
it as one of the three methods studied in Section 2.2.3 and compare it with other methods
in our experiments.

Many other metrics of fairness can be considered to belong to one of those two
categories. For example, Equalised Odds and Predictive Rate Parity [39] are instances
of Group Fairness while Balanced Error Rate and Counter Factual Fairness [61] can be
consider to belong to Individual Fairness. The relevance of using one type of fairness
metric over the other is an ongoing debate in the field, which needs to take the context
into account and is beyond the scope of this research. Notably, Dwork [26] argued that
group fairness is problematic as it often leaves some individual with an unfair outcome.
In addition, Chouldechova (2017) has shown that even when aiming to achieve group
fairness, it is not possible to simultaneously optimize more than two metrics at the same
time [16]. Nonetheless for the purpose of this research, we will focus on various definitions
and methods of group fairness-enhancing methods as they have received extensive interest
in recent years. We should keep in mind that the definition of what constitutes a group and
its granularity has a huge implication when quantifying fairness. For example, we might
split a group between male and female, and see very little discrimination, while further split-
ting the group of female using another attribute such as race, see more fairness issues arising.

A fundamental trade-off when improving an algorithm’s fairness, regardless of how it
is defined, is between utility and fairness. In particular, it has been demonstrated that
optimising an algorithm with respect to a particular sensitive attribute and a single fairness
metric usually works in opposition to the level of utility, as measured by the accuracy of the
prediction [20]. This occurs for instance when the model’s prediction relies on the very same
sensitive attribute [47]. In other words, increasing fairness often means sacrificing some
utility. This specific trade-off has been at the centre of the evaluation of new techniques
and algorithms, with the objective of increasing the former as much as possible, while
minimising the effect on the latter. Some of those techniques will be examined in depth in
Section 2.2 and assessed in Chapter 5.

Recall that the removal of the sensitive attribute (i.e., the race of a loan applicant), also
referred to as blindness, from the data used to train the learning model or from the classifier’s
input is not sufficient to prevent the risk of discrimination, as it can lead to very little
change in the results of the prediction [47, 3]. The problem lies within other features that
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might contain hidden information about the sensitive attribute through correlations [99]
effectively acting as a proxy or information leak of the sensitive attribute [26]. In addition,
machine learning algorithms are very good at detecting even more complex patterns in the
data, such as linear combinations of features, to improve its prediction accuracy. A typical
example of proxy is how closely ZIP codes (not always considered as personal identifiable
information) are related to race in some parts of the United States [13]. Proxies may give
rise to indirect discrimination, especially given the complexity of deep learning models and
the challenge to explain how information is conceptualised in each layer and neuron. As
long as we lack the capacity to explain how deep-learning algorithms come up with their
predictions, this issue will likely remain. In the meantime, the US Consumer Financial
Protection Bureau recognises that to avoid discrimination it is better to include sensitive
information in the algorithm to actively mitigate against potential bias than not collecting
this information [13]. This can be considered as a final blow to the lack-of-statistical-bias
argument.

Knowing that blindness of the sensitive attribute is not sufficient, and that after deciding
which fairness metric to optimise, the next step is the choice of the method to find an ideal
trade-off between the data utility (e.g., with respect to a particular task) and this fairness
criterion. Offering these types of guarantees has also been shown to be easily quantifiable
but non-trivial to find the optimal solution. Note that the process of enhancing the fairness
of machine learning algorithms has many names in the literature some calling it adversarial
and fair representation [67], sanitised data [49], de-correlated data, censored and fair
representation [55] [55], disentangled representation [21], just to name a few. A compre-
hensive analysis of various ways of tackling this trade-off by Friedler and co-authors has
identified [38] three different types of interventions, namely pre-processing, algorithm modifi-
cation, also called in-processing, and post-processing techniques modifying the model output.

We will delve deeper in the pre-processing, but first briefly explain the other two
approaches. The in-processing or algorithm modification approach consists of adjusting
the training mechanism of the algorithm to learn a model respecting a chosen fairness
metric. Some of these so-called fair classifiers are fine-tuned for each algorithm we want
to implement (e.g., SVM or logistic regression) [118] while others offer a more generalised
approach such as adding a regularising term to the loss function used during the training
phase [58]. More precisely, this term will adjust the loss function to guide the training in
the direction of increased fairness, which as mentioned earlier will often work in opposition
to the main term of the loss that is optimising the accuracy of predictions. An example of a
fairness-adjusted MSE loss is given in Equation 2.1.4 in which R(·) is the regularising term,
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η a factor allowing to control the influence of R in the loss and s the sensitive feature.

Loss(x,s,y,ŷ) = MSE(x,y,ŷ) + ηR(x,s,ŷ) (2.1.4)

The post-processing approach adapts the output of a classifier that was previously
trained, thus attempting to compensate for a negative bias embedded in it. One of the
first papers to successfully introduce such an approach for decision trees in 2010 [56] also
incorporates some algorithm modification techniques. However, this work is specifically
tailored for decision trees only, which are known to have a decision-making process easy to
explain, hence to control [108]. Other research has proved that post-processing techniques
with binary sensitive attribute and prediction are computationally intractable and require
strong relaxation of the equalised odds criteria when using some type of loss functions that
otherwise are known to work well [112]. Post-processing can also be considered risky since
the sensitive data would still need to be used as input to the model, thus causing potential
privacy harms.

Finally, the pre-processing approach is the design of new representation of data that
prevents or at least minimises biases and unfair treatment with respect to some demographic
group in a later task (such as classification). It is especially relevant for this research
because it can be done prior to any data analysis task and machine learning algorithms,
and is therefore much more generic. The pre-processing approach transforms the data to
remove the negative bias a priori. This transformation could possibly be performed by a
third party, who would then share the transformed data with anyone. Another possible use
case for the pre-processing approach is the situation in which the owner of the data (here
the individual) locally pre-processes his personal data (e.g., using his/her personal phone)
before sharing it with a third parties or advertisers. This would contribute for a user to
maintain the sovereignty on his own data while also minimising the trust assumption on
external entities.

A lot of the research on structured data, such as tabular data, mentioned in previous
paragraphs were developed for standard machine learning algorithms (e.g., decision-Trees,
SVM’s, etc), given their high accuracy to computational cost ratio (see Section 1.1.1). Deep
learning based techniques have also recently been investigated to address the utility-fairness
trade-off. In the following section, we analyse and compare state-of-the-art techniques in

24



both deep-learning and the deterministic transformation-based method of Disparate Impact
Remover (Section 2.2.3).

2.2. State-of-the-art in fairness-enhancing methods
This section presents common datasets that have been historically associated with

studies of fairness-enhancing methods and techniques. We will see some of these have
history that has wide societal implication. Others are datasets we already saw in Section 1.2,
and where initially popular datasets for the general field of machine learning. Researchers
later found fairness discrepancies with respect to specific attributes. Similarly to machine
learning, many datasets that are currently used by researchers will not be discussed, the
datasets discussed here are ones that standout by their relatively widespread use to compare
fairness-enhancing techniques between themselves.

The Compas recidivism dataset is a sparsely populated dataset containing between
5 000 - 10 000 rows (depending on algorithms’ designers data pre-processing) and around 50
attributes that were created by ProPublica [84] using a recidivism prediction tool developed
by NorthPoint Inc. and used at least in one US state’s legal system to compute the risk of
recidivism [54]. The story of this dataset begins when ProPublica published a newspaper
article outlining how the algorithm was biased towards white defendants, with among other
things a much higher false positive (i.e., predicting likelihood to recidivate) recidivism rate
for black defendants and much higher false negative rate for white defendants (cf. Table
2.1). NorthPoint Inc. (now Equivant) rejection of the study results [111] sets off the debate
about which fairness metric is the most appropriate in which situation. Not only the
discussions were beneficial to raise the awareness of fairness issues in machine learning, but
it also resulted in the Compas dataset becoming a benchmark for new fairness-enhancing
techniques.

A second popular dataset in the fairness literature is the Adult Census dataset [24]
discussed in Section 1.2. Although not initially collected for this purpose, this dataset
is especially relevant for fairness-related tasks because it is biased, to different extents,
both with respect to race in which whites account for 87% of profiles and gender as
males represent 2/3 of the data (our research focus primarily on gender bias). Although
the difference of false negative rate for the gender variable using most machine learning
algorithms is not as large as with Compas, it has already been demonstrated that for
individuals in executive or managerial occupations, women are more than twice as likely to
fall in the false negative category than men [15]. This is a good example of how the concept
of group in group fairness can be defined in different ways, which can significantly impact
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the appraisal with respect to (the lack of) fairness (see Section 2.1). For this dataset, it was
also demonstrated that the difference in false positive rate tends to decrease as the available
training data increases [15]. This phenomenon relates to the variance (with respect to
better generalisation or accuracy on test set) that tends to diminish with more data to train
on.

Among other popular datasets used in fairness is the Ricci dataset coming from the
US legal systems, the case was Ricci v. DeStefano Supreme Court (2009) discussing a
firefighter promotion exam that is biased over race. This dataset has only 118 entries, which
is a very small dataset for most learning algorithms. Another dataset commonly used is
German Credit, which is composed of 1000 entries with gender and age being the potential
sensitive features, although the bias is less pronounced than in the other datasets mentioned
previously. These datasets are often used as secondary datasets to help support results, but
rarely as the main ones.

2.2.1. Commonalities across the field

Before delving into the different frameworks and algorithms for tackling the fairness-
utility trade-off, we will outline the commonalities that are shared by most of them. First,
the utility-fairness trade-off is usually controlled by a parameter, which we will refer to as α.
However, as it is often the case in machine learning, the naming convention for this parameter
varies widely from one paper to another. It has become increasingly important, especially
given the debates we mentioned in Section 2.1 about which fairness metric to choose, and
which level of unfairness is acceptable. This parameter α offers the possibility to tune the
level of fairness we want to achieve. Ideally, it would display a linear relationship with the
fairness metric the algorithm optimises, but as we will see (Chapter 5) this is not always true.

Group fairness metrics have been studied extensively and among them, demographic
parity, equalised odds and equal opportunity (at the core of the disparate impact method in
Section 2.2.3) are relatively common (Equations for binary tasks in Section 2.2.1). Balanced
Error Rate (BER) is also a well-established metric for measuring the accuracy in binary
classification tasks. In particular, we will use it later to quantify the difficult of predicting
the sensitive attribute in Section 2.2.2. The BER can be seen as the average rate of false
prediction across each class. An optimal BER value varies between 0 and 1 and an ideal
value sits as close as possible to 0.5.
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Demographic Parity: p(ŷ|s = 0) = p(ŷ|s = 1) (2.2.1)

Equal Opportunity: p(ŷ = 1 | s = 0, Y = 1) = p(Ŷ = 1 | s = 1, Y = 1) (2.2.2)

Equalised Odds: p(ŷ = 1 | s = 0, Y = y) = p(Y = 1 | s = 1, Y = y) (2.2.3)

Balanced Error Rate: (False Negative rate + False Positive Rate)/2 (2.2.4)

One of the challenges is that not all datasets are biased towards the same attributes and/or
fairness metrics, making it difficult to benchmark techniques across them. Tables 2.1 and
2.2 outline the metrics that are known to be specifically problematic for both the Compas
and Adult datasets, in which statistics for Compas are computed with respect to race, while
for Adult gender is considered for the bias.

Metric All Defendants White Defendants Black Defendants
Total Data 7214 3696 2454
False Positive rate 32.35 23.45 44.85
False Negative rate 37.40 47.72 27.99
BER 0.1431 NA NA
Disparate Impact [34] 0.7244 NA NA

Table 2.1. Various Fairness Metrics of Compas dataset (White vs Others) [84].

Metric Adult dataset
Disparate Impact 0.3482
Demographic Parity 0.3709
Equalised odds 0.16
Balanced Error Rate 0.1431

Table 2.2. Various baseline Fairness Metrics of Adult dataset (Male vs Female) [67].

These metrics were chosen because they are the ones implemented in the algorithms we
will see in later sections, will be fundamental concepts used in the next chapters and are
usually considered good proxy metrics for fairness.

2.2.2. Adversarial game for fair data generation

An idea that has gathered a lot of interest in recent years, is to apply a GAN-like
approach to fairness-enhancing algorithms [21, 6, 67, 115, 93].

As illustrated in Figure 2.1, there are several components in the architecture. In
our setting, two players (i.e., the generator and the discriminator), which are usually
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Fig. 2.1. High-level architecture of GAN-based fairness-enhancing techniques.

neural networks, are competing against each other to optimise the information leaked
about the sensitive attribute, thus tuning the fairness-utility trade-off. While the details
of the implementation and the architecture used may vary, the generator, usually an
auto-encoder, takes a real profile as input and produces a new profile as output. More
precisely, the generator’s objective is to produce a modified version of the profile from
which discovering the sensitive attribute is impossible by reducing correlations between
the sensitive attribute and other attributes, which is why it is sometimes referred to as a
sanitiser [6]. One of the main differences in implementations is the representation space
in which the newly generated data lives. For instance, one possibility is that the profile
produced remains in the same space (ie. the output profile share the same dimensions) as
the input profile. One advantage of this situation is that the attributes are then of same
size and can be easily compared with the original attributes [6, 58], allowing to easily
analyse the data generated as well as the remaining correlations. Another possibility is
that the profile generated is not in the same space as the original one [67], which offers
more freedom for exploring alternative representations, but lacks the interpretability of
the first method since human readable feature names such as “age” or “education” will
be lost. Note that both methods implement the generator as an auto-encoder whose
hyper-parameters (i.e., number of layers, size of latent layer, . . . ) depend on the implemen-
tation, but in which the sensitive attribute that needs protection is removed from the output.

The second player, the discriminator, can also be implemented in different ways but
usually consists of two different classifiers, which each optimise different tasks. The first
classifier that makes up the discriminator aims at predicting the original decision attribute
y, thus addressing the utility part of the trade-off. Thus, its predictions are taken into
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account in the computation of loss value of the generator. The second classifier tries to
predict the sensitive attribute from the produced profile, thus having an opposite objective
of the generator objective.

As mentioned in Section 1.1.3, successfully training regular GANs and achieving
convergence for the underlying min max game is a notoriously difficult task. The same
difficulties have been mentioned by the techniques for improving fairness based on GANs.
More specifically, learning a generator that can produce profiles with a good level of variance
has proven to be challenging [6]. Generators have a tendency to output a median or average
profile, meaning it will consistently output a profile that is somewhere in the centre of
the distribution (with average values for each feature) and therefore have a reasonably
minimised loss value. This problem was identified from the early days of GAN’s under the
term Mode Collapse [7]. During our research, we replicated results from [6] using a vector
of the loss value during gradient descent instead of an average value. This change makes it
possible to achieve much higher diversity of the profiles that are created by the generator.

Fig. 2.2. Example of Disparate Impact Remover when applied on synthetic SAT scores
(standardized test score used for admission in USA universities). The red curve is the
protected group while the blue one is the non-protected one. The black curve is the

Repaired Data that the method creates [33].
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2.2.3. Disparate impact remover

Disparate Impact Remover has been developed in 2015 by Feldman and co-authors [34].
This method addresses the utility-fairness trade-off by building a deterministic mapping,
which essentially transforms the value of all attributes of given profiles. It also offers
theoretical guarantees of strongly preserving each attribute ranking with respect to other
profiles by making a translation of same size on each attributes’ cumulative density functions
(CDF). With the CDF and the median of the original distribution, it then applies the
translation to a new CDF while keeping the ordering intact. Finally, it uses a logistic
regression algorithm. An example with synthetic data taken from the original paper is
shown in Figure 2.2. The effectiveness of the disparate impact remover diminishes when it
is applied to protect more than one attribute, although this is not something other methods
discussed later seem to offer. Although the initial implementation by Feldman worked
only with numerical attributes, a more advanced implementation enables them to integrate
categorical attributes as well. This first implementation was also included in the IBM’s
AIF360 Fairness library and it is the one we have used in our experiments (see Chapter 5).

In the original paper, the method was evaluated mostly with the Adult dataset as well
as synthetic data created for the purpose of the experimentations. Figure 2.2 illustrates
the resulting distribution obtained when applying the method on synthetic data (red
and blue lines). In addition, the results for Adult are also encouraging, demonstrating
that it is possibly to comply with the 80% rule areas with a BER score of about 0.42
while maintaining an accuracy on the task (i.e., income prediction) of 75%. Furthermore,
changing the value of α, seems indeed correlated with the change of disparate impact score,
while it does not seem to have a significant impact on the utility as computed by the
accuracy of the initial task of income prediction.

2.2.4. Learning Adversarially Fair Representation (LAFTR)

Following the idea of learning a fair representation striking the right bargain between
fairness and utility, LAFTR was among the first to realise this using an adversarial learning
approach [67]. LAFTR builds on McNamara’s work outlining that a fairness guarantee
can be created by separating data users, regulators and producers, who each work to
optimize their respective metric [68]. For example, we can think of one entity producing the
data, individuals for example, another independent entity regulating the data and making
all privacy and fairness enhancement needed (a non-profit organization or a government
board), before the last entity (a company for example) uses the data. Similarly, the
adversarial network model is trying to replicate this within one learning system. The
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closest work to LAFTR, which is also cited as an explicit source of inspiration, is a method
proposed by Louizos and collaborators that use variational auto-encoder to learn a new
data representation increasing fairness while also maintaining a high level of utility [64].
Madras and co-authors have pushed the concept further by pairing this auto-encoder
to a discriminator and create one of the first adversarial networks to achieve fair data
representation simulating a GAN network.

As mentioned earlier, it might be desirable to optimise different fairness metrics, and
in this sense LAFTR is quite flexible. In particular, the discriminator of the model can be
designed to optimise one of three following metrics : demographic parity, equalised odds or
equal opportunity. In Figure 2.3, x refers to the original input, with an encoder and decoder,
just as in Figure 2.1. In LAFTR, the latent layer of the auto-encoder is directly used as the
generated data. As the size of the latent layer is smaller than the original profile, the latent
representation produced resides in a new data space, which is not directly interpretable
by a human. Afterwards, the latent layer is passed through g(Z), which tries to predict
the label y and through the discriminator h(Z), which aims at predicting the sensitive
attribute A. In this method, the equivalent of α is called γ. Note that only the loss function
of h(Z) is included in the auto-encoder to improve the latent representation Z while the
classifier g(Z) is trained in parallel. The learning method requires to train the auto-encoder
first, before training the classifier g(Z) using the generated data Z with the original labels
y. The loss values for the encoder, decoder and discriminator individual terms are then
summed up, with γ having a direct impact on the discriminator loss value. The search
for an optimal γ proceeds through “sweeping”, by training several models using various
values of γ to identify the best fairness-utility trade-off [67]. Contrary to other methods
analysed in this paper, it is not clear that the process of tweaking the model to find the
best trade-off follows a structured pattern. We will also see in Chapter 5 that there is not
a linear correlation between γ and the amount of protection offered for the sensitive attribute.

The performance was evaluated on Adult dataset and varies slightly depending on the
fairness metric optimised. Nonetheless all three implementations demonstrate a clear trend
in which LAFTR achieves convergence with respect to the fairness metric optimised with
a reasonable impact on the accuracy of prediction for the decision attribute. The biggest
change is obtained when optimising the demographic parity. Indeed, starting with a regular
deep-learning classifier g(Z) with an accuracy of 85% for a demographic parity score of
close to 0.2, the best values from LAFTR gives us a 92% decrease in fairness score, down to
around 0.01, with less than 4% drop in accuracy (full results are displayed in Figure 2.4).
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Fig. 2.3. LAFTR architecture as shown in original paper [67].
Starting with the real profile X, we train the auto-encoder represented by f(X) and

k(Z,A). We then take the new representation Z and use the discriminator h(Z) to ensure
fairness towards attribute A. Finally, another classifier tries to predict the label Y to

ensure Z still has relevant information about the initial profile X.

Fig. 2.4. LAFTR Score on demographic parity (∆DP) optimization [67].

2.2.5. Local data debiasing through GAN-based local sanitiser
(GANSan)

The final technique analysed as part of this research is named GANSan [6]. Referring
to the figure accompanying the paper (Figure 2.5), in which the starting point is clearly
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indicated, the input profile goes through the sanitiser, which outputs a sanitised version of
this profile. The sanitiser is also implemented in the form of an auto-encoder but the vector
produced by the final output layer output is used as the sanitised profile. As a result, the
output resides in the same space, which means that it produces the same attributes and
after decoding the values, can easily be compared to the original profile. This output profile
is then handed over to the discriminator, which tries to predict the sensitive attribute from it.

Fig. 2.5. GANSan architecture [6].

The sanitiser optimisation measures the distance (in the original paper, the L2 distance
is implemented) between the original profile and the sanitised one, to quantify the utility
loss. Similarly to LAFTR, the optimisation also integrates the quality of the prediction of
the discriminator with respect to the sensitive attribute. More precisely, the Balanced Error
Rate (BER) is used to measure the error rate of each of the output classes. As for the back
propagation, a variant of a standard implementation is used. The usual implementation
average output loss value for all dimensions, resulting in one value to use in our gradient
descent algorithm. GANSan uses the un-reduced vector of loss values, meaning it does not
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compute the average, but keep one loss value for each attribute, and applies the gradient
descent iteratively over each one. In contrast to LAFTR, the discriminator is trained jointly
with the sanitiser, albeit at different rates. This is more in line with the original GAN
architectures and results in the discriminator becoming increasingly better at identifying
the sensitive attribute from the sanitised profile. The training of the discriminator relies
on the Mean Square Error (see Section 1.1.1) between its prediction and the corresponding
original sensitive attribute. In addition, the fidelity between the original and sanitise
profile is used to quantify the utility of the sanitised data (how similar the two profiles
are). The α parameter enables to control the fairness-utility trade-off and is shown in
the original paper to be linearly correlated to a higher fairness and lower utility (i.e., fidelity).

A key feature of this method, as describe in more details in Chapter 5, is the use of
additional external classifiers (not shown in Figure 2.5) at each of the algorithm’s iteration
(also referred to as epochs), and for each value of α to identify the ideal fairness-utility
trade-off, which would be a BER of 0.5 and a Fidelity value of 1. The results obtained
on the Adult dataset demonstrate that GANSan can achieve an optimal BER of 0.5 for a
Fidelity rate above 93% but with a relatively high cost in terms of the prediction of the
decision y of the initial task at hand (determining whether a profile’s income is above or
below $50 000). Reducing slightly the value of α incrementally decreases the BER with an
inversely proportional increase in the prediction of decision.

A wealth of other adversarial training algorithms and methods have been developed in
recent years that we do not mention here. We picked these three for a few reasons including a
trade-off between diversity of methods (one deterministic, two based on deep learning based),
comparability (they are all pre-processing methods), common dataset implementation (Adult
dataset) as well as availability and reproducible code (for all three we used code available as
it is).
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Chapter 3

Privacy models and attacks

This chapter presents notions and protection mechanisms regarding privacy that have
been introduced in machine learning. First, we introduce the two main privacy models
that have been developed and are used by some of the biggest technology companies to
mitigate privacy issues in real-world applications [105]. Afterwards, we review the most
common privacy attacks against machine learning models. Each of these attacks targets
a specific type of setting, in which various amounts of information about the model is
released by its designers. Finally, we discuss how privacy and fairness are interrelated
and have to be considered as a whole when designing nondiscriminatory algorithmic systems.

3.1. Preliminary notions in privacy
The renewed interest in machine learning has also brought new worries with respect

to data privacy. Encryption, which can be used to ensure the confidentiality of communi-
cations, is fundamental to protect the privacy of data at rest or in transit [8]. However,
it does not answer all privacy problems, in particular when considering the situations in
which data is shared or published (see Section 2.1). Given that a profile might be used to
predict other characteristics (e.g., the ZIP code is a good predictor of race) it would be
tempting to encrypt all the data. This would prevent anyone from using the data to build
predictive algorithms, thus ensuring privacy while sacrificing utility. The concept of privacy
in machine learning is intrinsically linked to fairness, particularly when a fairness-enhancing
technique attempts to prevent knowledge discovery or usage of a specific attribute to overly
influence the prediction. For example, if we want to prevent a banker from using the race
as a basis for decision-making (thus achieving fairness), we need to ensure that the race of
the customer is well hidden (thus ensuring privacy). Dwork and co-authors have clearly
outlined the relationship between those two and the need to create methods to ensure
privacy when working on fairness [26]. The first step of such process is to make sure that



the attribute in question remains hidden and cannot be retrieved by an adversary. As we
will see the increase in sophistication of attacks (Section 3.2) has accelerated the pace at
which previous privacy-preserving techniques come to offer insufficient levels of protection,
which also brings potential fairness issues.

The public release of medical history data in the United States for research purposes is a
great illustration of those concerns. For example, the re-identification of the then governor
of Massachusetts’ [102] demonstrates that simply protecting datasets is not enough. The
medical history is often anonymized in the United States by removing names, street
address and other personal information. It was believed that the privacy of individuals was
guaranteed following this procedure. However, Sweeney has shown in 2000 that she was
able to identify 87% of USA residents with only the combination of three attributes (ZIP
code, gender and date of birth), all publicly available [101]. More precisely, she has built
on that research by cross-referencing publicly released health data with another dataset she
bought (legally) for $20 (the voter registration list). From this, she was able to demonstrate
that it is possible to infer the governor’s address, party affiliation and other information
(see Figure 3.1).

We can easily see how this could translate in fairness concerns, in which people with
certain medical conditions exposed could be excluded from insurance schemes or knowing
the ZIP code would allow for discrimination based on race (see Section 2.1). In another
medical data-related research, Malin and co-authors have performed a systematic review of
re-identification, which is discussed in Section 3.2.2, in which they found a potential gap
between the anonymisation mechanisms mandatory for medical data release without the
patient’s consent and the re-identification methods available where the latter, under some
circumstances, tend to outperform the former [50]. Those are the type of issues and topics
that this chapter covers. In particular, different frameworks for privacy attacks on machine
learning models are discussed in Section 3.2.1. However, first we review two of the most
important privacy models.

3.1.1. k-anonymity

Sweeney did not stop with the re-identification of Massachusetts’ governor in her 2002
paper but also proposed a potential solution that has been for some time considered one
of the best approaches to anonymize data. To address the increasing concerns of privacy
attacks such as linkage, membership inference and information leakage that can occur
following multiple queries (see Section 3.2 for more details), she introduced the k-anonymity
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Fig. 3.1. Example of a linkage attack between two datasets, which relies on
quasi-identifiers to associate an identity to an “anonymized profile” as shown by Latanya

Sweeney [102].

privacy model. The first step when applying her approach is to identify the attributes
that can lead to a privacy breach. Building on her previous work [101], she defined these
attributes quite broadly to refer to any attribute that could be used in a linkage attack.
Linkage attacks can be considered to be part of a greater category called Re-Identification
(or de-anonymisation) attacks. She refers to such attributes as quasi-identifiers (QID),
meaning they can be used to identify anonymized attributes by cross-referencing datasets.

As we can already see one limit of this method is that the QID selection depends on
the knowledge of public data available to create successful linkage attack. In practice,
malicious actors rely on data that is not always known to be available for such purposes.
Sweeney has also defined the notion of sensitive attributes (different from the sensitive
attribute we saw in the context of fairness) as attributes that will not be considered to
be QID and will be released to the public (see Figure 3.2) resulting in fairness issues (see
Section 2.1). Once the QIDs are identified, the anonymisation process modifies the entries
of those attributes through generalisation and suppression to achieve k-anonymity. The
main objective of k-anonymity is to guarantee that any record in a sanitised database will
be indistinguishable from at least k − 1 other entries. Note that they are usually multiple
ways to reach k-anonymity (see Figure 3.2), but that in order to preserve utility the records
should be changed as little as possible. With respect to the computational costs of this
method, finding the optimal procedure that would change the minimal number of records
has been proven to be an NP-hard problem [71]. Although most algorithms for k-anonymity
can be considered as heuristics that efficiently find an acceptable solution, it is important
to keep in mind the trade-off with utility discussed in Section 2.1. In this setting, the
trade-off reappears albeit being bounded by computing costs; finding the method (through
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heuristics) to achieve the desired level of privacy while minimize the decrease in utility.

Fig. 3.2. Two versions of k-anonymized dataset in which k = 2.
An example of a complementary release attack as the two versions can be linked on

“problem” attribute [102].

Sweeney herself has outlined the following limitations of her approach. First, if the
data entries are not randomly shuffled (e.g., if they are ordered alphabetically by name or
chronologically by age), this could be a potential issue since an attacker could rely on the
ordering to assume data that had been transformed. For example, a k-anonymized database
release that heavily relied on changing the date of birth would be problematic if entries were
ordered by age. Second, multiple releases of a same database with different k-anonymity
schemes could allow privacy attacks using those different releases, known as Complementary
Release Attack (see Figure 3.2). This is created by the possible identification of unique
entries in k-anonymized databases released at different times. By identifying unique entries,
an attacker can then have additional information by combining both database releases.
Finally, Temporal Attacks occur when adding, deleting or removing entries to a database
and rerunning the k-anonymity algorithm. Under such an attack, it is possible that
some records will be re-identified. In this type of attack, an attacker will use multiple
k-anonymized datasets that are released with different anonymisation. Then, by merging
the different data that was released in each table, the attacker could gain additional insights
leading to privacy issues.

A few alternatives have been proposed to improve on Sweeney’s initial privacy model.
For instance, `-diversity aims at preventing the low occurrence of some attributes by
requiring each k-anonymous group have at least ` occurrences of a sensitive value [65].
t-proximity extends this approach by ensuring that each k-anonymous group has a sensitive
attribute distribution that is t-close to the overall attribute distribution [63]. The two main
distance metrics used to calculate t-proximity are the variational distance (Equation 3.1.2)
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and the Kullback-Leibler distance (Equation 3.1.1).

KL(P ‖ Q) = −
∑
x∈X

p(x) log
(
Q(x)
p(x)

)
(3.1.1)

D[P,Q] =
m∑

i=1

1
2 |pi − qi| (3.1.2)

3.1.2. Differential privacy

Another privacy model designed to safely answer database queries that has gained wide
interest since the last decade is Differential Privacy (DP) [22, 25]. This privacy model was
originally developed to offer stronger privacy guarantees than k-anonymity. While it was
only popular in the research community at its beginning, it has since been implemented by
Apple [114] and Google [105] for preserving the privacy in various applications. The main
idea behind the privacy model is to prevent any inference that could be done with respect
to a particular record by ensuring that its contribution to a query or computation has only
a limited impact. Without going in the details, DP is usually achieved by the addition of
random noise or through randomisation of the underlying computation. Once again the
objective is to limit the inference that an adversary could perform with respect to a specific
individual, while being able to discover or exploit global statistical information about the
dataset.

The level of protection is parametrised by the privacy parameter ε [8]. The smaller the
value of ε, the more protected the data is. Note that DP can also be implemented at the
local level, in which the choice of ε is made by an individual or globally in which the choice
of ε is the same for all individuals. This last model was designed for use cases in which the
database administrator would provide answers to queries following a DP algorithm, hence
users could leverage the data as they pleased [102] given the data they receive is already
anonymized. There are inherent limitations of differential privacy, some of them that could
apply to any privacy model. For instance, the publication of differentially private results
of a study finding a relationship between beer drinking and happiness inherently leaks
information about happiness of beer drinkers, regardless of one’s inclusion in the study
dataset. In addition, developing DP algorithms for a particular task, finding an optimal
value of ε and then implementing the algorithm have proven to be difficult [40]. In addition
even if a DP algorithm was successfully implemented, for example at Apple [114] using
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local-DP, the choice of ε, which sets the trade-off between privacy and utility of data, has
shown to be a challenge. For instance, some research has demonstrated that Apple has used
values of ε that are too high to provide useful privacy guarantees [103].

3.2. Families of privacy attacks
This section discusses common attack frameworks that adversaries could apply on

released models or data to jeopardize users’ privacy. Before that, we review the main
dimensions influencing the attack framework.

The first dimension is whether the attack takes place in a white-box or black-box setting.
A white-box setting implies that the adversary has some knowledge about the model, such
as the number and width of layers as well as other hyper-parameters. A common use case
is when a company sells a pre-trained deep-learning model, which the buyer either uses as
it is or further trains with his own data. The black-box approach is, as the name indicates,
more restrictive. It assumes no knowledge of the underlying model and the adversary can
only query the model with an input of his choice and receive the corresponding output.
Note that several types of outputs are possible. Indeed while the output is usually a vector
composed of as many values as there are classes, each with a confidence score, the model
could also only return the most probable class, with the latter usually making the task of
the adversary more challenging. Such use cases include the MLaaS (Machine Learning as
a Service) paradigm, in which a client usually interacts with the service provider through
pay-per-request application programming interface (API) systems. Releasing these systems
is known to potentially leak information about the training data (see Section 3.2.3), and
commercial value is among the reasons why the model’s inner workings are unknown to the
public and users.

A second dimension in segmenting the different approaches to privacy attacks has been
with respect to what is the target of the discriminator [113]. In particular, attacks optimising
a specific privacy metric such as the ones we saw in Section 3.1.2 often led to improvement
and development of those techniques by somehow raising the bar in terms of how well data
is protected. On the other hand, attacks targeting specific attributes aim at finding the
minimal amount of perturbation needed to offer a certain level of privacy for these particular
attributes.
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3.2.1. Linking attack

We already covered a linking attack in our example with the Governor of Massachusetts
(Figure 3.1) without naming it. This attack generally uses an external database sharing
a subset of attributes with the data attacked. Another example of such de-anonymization
attacks was shown by Narayanan and Schmatikov [4] in which they were able to re-identify
individuals from the Netflix’s allegedly anonymized movie rating dataset by using Internet
Movie Database as an auxiliary dataset. It has since been reproduced using publicly
available Amazon reviews as auxiliary information for the linkage attack [2].

Genomics is another field in which there is a strong tension between sharing data
for research purposes and privacy [9] as shown by linkage attacks. This is also true in
healthcare in general in which data sharing is a core principle and existing privacy-preserving
mechanisms are often insufficient [30]. A review of the literature has found that since 2009,
72% of successful re-identification attacks have been completed through linkage using global
datasets such as social medias [50].

3.2.2. Model inversion attack

The second attack we discuss is the Model Inversion Attack. This attack usually occurs
in a black-box setting and leverages the knowledge of the model to infer additional attributes
on specific profiles. It was initially proposed in genomics by Fredrikson and co-authors [36],
before being later formalized [113]. In model inversion attack, the adversary exploit the
confidence intervals released with the prediction of a model to draw conclusions about rela-
tionships between inputs and outputs of the model. A possible way to implement a model
inversion attack is by changing the value for the attacked attribute to look at which value
maximises the posterior probability of the sensitive attribute belonging to a specific input
p(xs|x0,x1..xd, y). Repeating this process multiple times using inputs for which the output
is known will allow an attacker to have an increasingly accurate idea of what inputs achieve
what output and possibly predict sensitive attributes. Unless optimal DP (with the minimal
amount of data transformation) is implemented (which we saw in Section 3.1.2 is compu-
tationally costly), the success of the attacks usually increases with the augmentation of ε [36].

A possible use case for such attack is the service offered by most major cloud providers,
in which an API is available to send input to, and where the service returns a prediction
with a confidence score, known as the MLaaS we covered in Section 3.2. Another use
case developed with a new version of the attack also by Fredrikson and collaborators [35]
involved a facial recognition task, in which the confidence score can be used to mount a
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model inversion attack whose results are shown qualitatively in Figure 3.3. This new version
also avoids the computationally expensive calculation involved with finding all possible
combinations of the attacked attribute through posterior probability analysis. It has further
been shown that the confidence score is in some case not even required for the attack to
be successful [107]. Note that this attack does not provide any guarantee that the queried
input was used in the training of the target model, something that we will discuss in the
following section.

Fig. 3.3. The image on left was generated by a model inversion attack while the image on
the right is the original one [35].

Recent research also proposes to rely on Generative Adversarial Networks (GANs) to
conduct an attack in the black-box setting. For instance, GAMIN [1] consists of a generator
network that maps noise z to an output x while a surrogate model takes x as input and
tries to predict what this same x’s output would be when passed through the target model.
The generator and surrogate are trained jointly using a cross-entropy loss computed not
only from the prediction of x from both the surrogate and true model, but also using the
target model’s prediction of the noise z. The result is a surrogate model that has learned the
decision boundaries of the target model and can approximate it on any x. As the experiments
were conducted on pictures, the evaluation of whether the attack is successful had to be done
by qualitative human appraisal. Surveys were therefore passed in order to ask people as to
whether they could recognise the image as the class it belongs to. In this case, the images
generate were black and white digits from 0 to 9, trained on the MNIST dataset discussed
in Section 1.2. The results varied with which class (i.e., which digit) but people had more
difficulty recognising images generated from deeper networks such as CNN’s [1].
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3.2.3. Membership inference attack

In a membership inference attack, the attacker attempts to determine whether a specific
input has been previously used in the training of a black-box model. This can create
privacy concerns for instance in the case of hospital discharge data, which was used in a
major paper showing such attacks on Google’s and Amazon’s MLaaS services [96]. More
precisely, the authors have first set up a black-box membership attack, in which the problem
is transformed into a simple binary classification task, while the classifier is trained to
distinguish between data used in training for the target model and data that was not [96].
In parallel, a shadow model is trained to replicate the predictions of the target model.
More precisely, first multiple shadow models are trained to imitate the target model either
synthetic or any real-world data in which the true labels are known. Afterwards, the main
attack model is trained by using a combination of input-output to recognise whether they
were used in the shadow models.

Once trained, this attack model was able to achieving 90% accuracy in membership
inference attack on the Google’s MLaaS model by using only synthetic data for shadow
model training. It also reached over 70% accuracy on the hospital discharge data confirming
privacy concerns and, as we now know, potential fairness issues. Note that to know
whether a profile is in training data or not with an accuracy above 50% can prove to be
problematic. A key information needed for this attack to perform well was the knowledge
of the confidence score for each class that those MLaaS service returns through their API.
The authors therefore outlined that removing the confidence score of the k least probable
classes was the best mitigating strategy to prevent their attacks from being successful with
the reduction in the overfitting of the model being another possible approach [96].

Membership attacks have since increased in sophistication, for example showing that
differentially-private deep learning models do not protect against membership attacks unless
the value of ε is so low that the data loses most of its utility [85]. Another work has attacked
state-of-the-art generative models by training a shadow GAN with the data generated by
the target model [49]. Once that network is trained, the problem is now in the white-box
setting, and from there querying the discriminator of the GAN has shown to have learned the
distribution of the training data, hence becoming a binary classifier that predicts whether a
specific data point was used in training [49].

3.2.4. Model stealing attack

The next type of attack covered is the model stealing attack. As mentioned earlier,
many firms are reluctant to release their models entirely for various reasons. For instance,
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with respect to privacy as we just discussed, once we have a copy of the target model, we
fall in a white-box setting in which it becomes easier to predict membership or to make
multiple inferences about the sensitive attributes. These attacks have been shown to be
extremely straightforward and simple, not only against basic learning algorithms such as
decision trees and SVMs, but also against deep neural networks and state-of-the-art models
offered by Google and Amazon through their API.

Tramer and collaborators have used the same output from these services as Fredrikson
and co-authors [113] for their model inversion attack in which the output is a vector of
confidence score for each class predicted by the classifier. More precisely, their attack
compares the shadow model’s prediction and the one given by the API. In their experiments,
a shadow model as simple as a linear regression allowed to reach near-perfect score for
binary classification tasks with fewer than 113 queries. For multi-classes, their attack [107]
achieved 100% equivalent models against Google and Amazon within minutes and a few
thousand API queries (see Figure 3.4). The results were similar even when the depth of
the neural network increases which intuitively leads to more difficult learning from shadow
models.

Fig. 3.4. Metrics of successful attacks of various multi-class models that were able to
extract a 99% equivalent model [107] computed by comparing similarity in each model’s

output.

As mentioned previously, a possible counter-measure is the removal of the confidence
score from the prediction API output. In this case, attacks were equally successful with
the only caveat that it required more queries to achieve the same performance. The results
of this research highlight the simple, quick, and relatively cheap (in actual dollars) cost of
this model stealing attack, which could be used as a first step to facilitate the other attack
discussed previously.

3.2.5. Reconstruction attack

Lastly, the concept of reconstruction attack was introduced by Kasiviswanathan and
co-authors [59] in which they applied linear reconstruction attacks developed in previous
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work by Dwork and co-authors [29, 23] to non-linear contexts. Those attacks, as applied
by [59] are meant to find a more robust lower bound of noise or disruption to original
data to ensure privacy, adding formal guarantees to methods discussed in Sections 3.1.1
and 3.1.2. The objective of the attack is to reverse the noise or distortion that was
introduced in databases, which would imply the protection has been removed. The results
show that with simple machine learning algorithms such as logistic regressions and de-
cision trees, such attacks were surprisingly successful [59], fuelling a development in the area.

3.3. Insufficient privacy leading to lack of fairness
A common theme from most attacks is that their efficiency is increasing with the amount

of overfitting [117], which translates in higher confidence scores. As a consequence, those
high confidence scores are providing more information to attackers. The silver lining that
this creates is a rare common ground between privacy advocates and algorithms designers
endless quest for better models, since as we saw, overfitting is undesirable as it increases
variance and offers a less generalisable model to use in the real world. As discussed
previously, removing or adding noise to these confidence scores is not always sufficient
to prevent all attacks, especially model stealing attacks, which can facilitate many other
attacks by leading to the white-box setting.

Another observation that becomes clear after looking at the state-of-the-art on privacy
attacks and data leakage frameworks is how privacy and fairness are intricately linked. This
relationship is an interdependence since offering guarantees on one almost automatically re-
quires offering some level of protection on the other. However, neither fairness-enhancing nor
privacy-enhancing techniques seem to directly offers protection on the other. As discussed a
lot of research has focused on one or the other but very few on the interplay between them.
We will see in the following chapters that leaving aside privacy concerns when developing
fairness-enhancing techniques open the door for extremely simple privacy attacks. Such
successful attacks could then endanger the fairness guarantees that the technique was origi-
nally designed to provide, which has been the main driver of our contribution in this research.
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Chapter 4

Design of privacy attacks against
pre-processing methods

The emergence of fairness and privacy concerns in the wake of the current deep learning wave
has shown that there can be a multitude of fronts from which to approach the development
of fairness-enhancing techniques. In particular not only the choice of the fairness metric,
but also the technique used vary widely, which makes the comparison between approaches
difficult. In this research, we decided to focus on pre-processing algorithms because they
seem to offer the most direct and generic way to avoid discrimination while being agnostic
to the form of the input data or the future use of this data. In particular, we envision
situations in which a pre-processing approach could occur directly on users’ devices before
the sharing of the data with a third party. In this scenario, the data producer (i.e, the user)
would give his profile as input to the pre-processing algorithm, with a desired α value (i.e.,
the level of protection) that could be chosen by him or decided in advance according to an
external criterion. This would contribute to data sovereignty as it would give more control
of their data back to their owner, while still enabling to benefit from personalised services.

4.1. Research objectives
While this research field has been burgeoning in recent years, as exemplified by the

increased interest in conferences focused on fairness, accountability and transparency [18],
one possible gap is a comparative analysis of the different existing methods to have a better
understanding of the circumstances under which a particular method is more appropriate,
as well as the extent to which those techniques are generic. Given the advent of adversarial
methods for fairness enhancement described in Section 2.2.2, we chose to investigate two
pre-processing methods : one in which the sanitised data remains in the space as the
original data (GANSan [6]) and the other in which the representation produced lives in



a different space (LAFTR [67]). Finally, we chose the third method to be a non-machine
learning based approach, in which we could potentially achieve better or at least similar
performance with relatively simpler deterministic transformation to the data, instead of
more complex and expensive machine learning-based techniques. For this, we picked the
Disparate Impact Remover [34], a method that has been implemented in IBM’s AIF360
library for AI fairness [53] and which has been cited many times in the fairness literature.

Our objective is to test the resistance and protection of the sensitive attribute of these
methods when facing various attacks on the sanitised data they produced. For reasons
outlined in Section 2.1, we do not expect a priori these techniques to perform well with
respect to other fairness metrics than the one they explicitly optimised.

Hence, the first hypothesis that we were interested to explore is whether or not the
parameter α (or its equivalent) does offer a direct control on the fairness-utility trade-off as
explained in Section 2.2. Although this might not have been desired by the model creators,
as we explained it is highly desirable to allow the user to control the fairness-utility trade-off.

The second part of our experiments is to reconstruct the original profile from the
sanitised profile produced by these fairness-enhancing methods, which is undesirable both
from a privacy and fairness point of view since it would allow attackers to return to the
initial situation, before the protection. In particular, as two out of three methods that
we have analysed the sanitised profile is generated through an auto-encoder, one of our
hypothesis was that it may be possible with a properly tuned auto-encoder to reverse the
process using similar learning methods than those that were used to transform it initially.
The objective there would be to learn an inverse transformation that would take the
sanitised profile as input and produced as output a version of the profile that is closer to
the original, the ideal case being that this profile is exactly identical to the original profile
including the sensitive attribute. For the third method, an even simpler approach should be
able to reverse the transformation, although tested it with a model based on reconstruction
attacks seen in Section 3.2.5. We called this part of our model architecture a reconstructor,
for the sake of comparison.

Finally, we looked at how well the sensitive attribute was protected with respect to
correlations with other attributes. As explained in Chapter 3, privacy with respect to the
sensitive attribute is required, in our context to guarantee fairness. To assess this, we have
built standard machine learning classifiers taking as input x̂, the sanitised data without the
sensitive attribute or label y, which attempts to predict the original sensitive attribute. We
refer in particular to the Scenario 2 from Table 4.1 in which our classifiers (here f(x)) are
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searching for a function that maximises the prediction accuracy of the original sensitive value
by taking as input the sanitised data (see Equation 4.1.1). Throughout this section, when
referring to the average of our set of machine learning classifiers, unless otherwise indicated,
this will include a Multi-Layered Perceptron (MLP), SVM, Bagging, Gradient Boosting and
decision tree (CART).

E[s] = f(x̂) (4.1.1)

Within the context of this attack, a successful classifier would remove a lot of guarantees
in terms of fairness that the method should provide, since it would make it possible to
reconstruct the original value of the sensitive attribute, thus potentially allowing for direct
or indirect discrimination. This attack is similar in spirit to the linear reconstruction attacks
developed against differential privacy [59], our objective being to set a lower bound on the
amount of privacy the fairness-enhancing technique offers. This is a concrete example of the
relationship between privacy and fairness, as a lack of the former leads to concerns about
the latter.

4.2. Experimental setting
Hereafter, we explain in more details the setting in which our experiments take place,

including the information available to a potential adversary. This will help us to understand
under which circumstances such experiments could be replicated by a malicious actor. This
analysis will mainly be performed using the Adult dataset while the Compas dataset will be
used for Disparate Impact Remover and GANSan to validate the results obtained on Adult.

We have so far discussed different variants of the same data: original, sanitised and
reconstructed. To be precise, the experiments mostly involve using data that has previously
been sanitised, while keeping the original values for the sensitive and decision attributes.
This can be seen as the most likely to occur in a future where fairness-enhancing methods
are being used. Only the transformed profiled is known to the public, but we can assume
that the associated label ŷ is close enough to the real label y, since that would be the
objective to the algorithm designer. Moreover, scenario 2 corresponds to a situation in
which an adversary has used (possibly as a black-box) the publicly available pre-processing
approach under attack to generate a training dataset. More precisely, the adversary receives
as input the pre-processing method as well as the user profiles for which he knows the true
label y as well as the sensitive attribute, obtaining values for x, s, y and x̂.
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Scenario Train set composition Test set composition
A Y A Y

Baseline Original Original Original Original
Scenario 1 Sanitized Sanitized Sanitized Sanitized
Scenario 2 Sanitized Original Sanitized Original
Scenario 3 Sanitized Sanitized Original Original
Scenario 4 Original Original Sanitized Original

Table 4.1. Different possible use cases for using fairness-enhancing methods [6] in which A
is the input profile and Y the label to predict. In this research, we have adopted scenario 2.

With this information in hand, the objective of the discriminator is to predict the sensitive
attribute from the sanitised input by maximizing the conditional probability as defined in
Equation 4.2.1.

ŝ = argmax(p(s|x̂)) (4.2.1)

An important point to reiterate is that unlike LAFTR and GANSan, the data generated
by Disparate Impact Remover contains only a subset of the attributes (columns) as the
implementation currently available in IBM’s AIF360 library is based on the initial version
of the method [34]. An extended version was released later, which is able to deal both
with categorical and numerical attributes. However the difficulty to reproduce previous
reported results with this version made us more confident to work with the initial version.
The attributes that the different methods are able to handle are summarised in Table 4.2.
Hereafter, we summarise the fairness result that we were able to obtain with the three
methods that we have analysed.

Finally, once we had generated the sanitised data with the three different methods, we
had to make sure that the results obtained were in agreement with what was reported in their
associated papers. As mentioned in the introduction, we only expect the data to perform
similarly well to what was outlined by its authors on the specific metric it was designed to
optimise. Table 4.3 displays the results for the optimal value of α value. We see that all
three methods bring the values of the optimised metric within the acceptable range discussed
in Section 2.1 which is above 0.8 for disparate impact, below 0.2 for demographic parity, and
close to 0.5 for the balanced error rate.
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Disp. Impact LAFTR GANsan
age x x

fnlwgt x x
education-num x x
capital-gain x x
capital-loss x x

hours-per-week x x
Workclass x

Marital-Status x
Occupation x
Relationship x

Native Country x
Total Dimension 6 6 11

Table 4.2. Attributes included in the sanitised data generated by each of the three methods.
Note that LAFTR generates a sanitised profile that lives in a new space, and thus all 6
attributes can be considered “new” and are not interpretable like age, education and others.

Methods Metric Original Value Value α value
Disp. Impact Remover Disparate Impact 0.6964 0.9331 1.0

LAFTR Weighted Demo. Parity 0.3709 0.0931 0.1
GANsan Balanced Error Rate 0.1431 0.4830 0.9875

Table 4.3. Metrics on data generated and used in this research and its corresponding α
value.

Fig. 4.1. High-level overview of the reconstructor attack.

4.3. Architecture of the reconstructor
Before proceeding to the experiments, in this section we detail the architecture implemen-

ted for the reconstruction attack. This attack takes place in the black-box setting, assuming
no prior knowledge of the models behind the methods under attack. The architecture of
the reconstructor model (i.e., effectively an auto-encoder) is shown in Figure 4.1. The im-
plemented loss used for the training is the absolute distance error (also called the L1 error)
shown in Equation 4.3.1.
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L1 Loss =
n∑

i=1

∣∣∣xi − xi
∣∣∣ (4.3.1)

The reconstructor takes a sanitised profile x as input and its objective is to learn a
transformation outputting a profile x̂, which ideally should be more similar to the original
profile (our labels y) than the sanitised profile. For each attribute, the loss function
computes the absolute difference between the predicted value x̂i and the true value xi (the
definition of L1 Loss). As mentioned in Section 2.2.2 and illustrated in Figure 2.5, using the
common approach of taking the average value of the loss over all attributes for the gradient
descent results in a very low diversity of outputs and often converges to a median profile.
In our case, every single value outputted was always the same one, irrespective of the input,
which causes issues for the prediction task later on. If all profiles are the same, how can a
bank decide to whom to lend. However, the solution taken from Section 2.2.2 has also been
successful in increasing the diversity of output. As previously mentioned, this solution keeps
the multiple values and applies the gradient descent iteratively for each value. Another
architecture decision was to generate a profile that does not contain the sensitive attribute
and to predict it afterwards with another classifier instead of having the auto-encoder
outputting the attribute directly (although we experimented with both versions). Intuitively
these two approaches should give similar results and the assumption taken was that one
fewer attribute to predict would be easier for the reconstructor. In addition, it is possible
that the mutual information contained in other attributes of the reconstructed profile might
give additional information to the external classifier trying to predict the sensitive attribute.
It is important to note that it could also be argued that during the reconstruction phase,
the information that passes through the auto-encoder might facilitate the reconstruction of
the sensitive attribute right away, but we did not explore this possibility further.

Once the reconstructor has completed its training and selected the epoch in which the
average L1 loss over all attributes was minimised, then the five type of classifiers were used
with 10 k-fold cross-validation. This means the same training is run 10 times, by splitting
the train and test set differently each time, in order to reduce statistical noise. Additionally,
the attack does not require to encode the categorical attributes or other types of attributes,
since the output of the three methods provides ready to use encoded data. Finally, we
chose the Adam optimizer, a variant of the regular gradient descent that adjusts the rate
of learning in the model’s parameter instead of keeping the same one throughout [12],
which is a common choice for many classification tasks on tabular data such as Adult dataset.

These choices were made to ensure the success of the reconstruction attack of the profiles.
First, it needs to ensure the data coming out of our reconstructor should be on average more
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similar to the original data than the data that came from the models attacked, meaning
our model would take a transformed profile as input, and output a version that is more
similar to its original, pre-transformed version. Second, it needs to increase the amount
of information leaked about the sensitive attribute by making it easier to predict it. To
summarise, increasing the risk of discrimination by being able to infer the hidden sensitive
attribute is the end goal of the adversary.
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Chapter 5

Experimental evaluation of privacy attacks

As mentioned, our experiments can be separated into three distinct, although related sub-
experiments. First we look at whether or not, and if so to what extent, the parameter we
referred to in Section 2.2 as α offers a direct control on the fairness-utility trade-off. Secondly,
we attempt to inverse the transformation to the original profile that these 3 methods made
with the help of our custom-built reconstructor. Lastly, we evaluate the level of protection
these methods produce and whether they effectively protect the sensitive attribute (here the
person’s gender) from external attacks. We use various external classifiers and train them
to try to infer this attribute using the transformed profile as input.

5.1. Control on level of protection with α
Before testing extensively how well the three fairness-enhancement methods are able to

prevent the inference of the sensitive attribute, our first analysis consists in measuring how
well the parameter α enables to control the fairness-utility trade-off. To realise this, we
have observed the evolution of both the accuracy with respect to the initial task on the
Adult dataset (i.e., predicting the income) and the fairness metric optimised. Figure 5.1
summarises the results obtained for those two metrics on the y-axis, with the corresponding
values of α on the x-axis. Note that the direction of the correlation is not as important
in our context as observing the general trend resulting from the change in α. Indeed, the
analysis of the whether the discrimination observed is beneficial or detrimental to the people
is beyond the scope of our research. We simply want to establish the presence and extent of
the discrimination. From the bottom row, we can see that both disparate impact remover
(first column) and GANSan (third column) display a clear trend in which an increase in
α leads to a better protection. However, such trend is not observed for LAFTR. The red
horizontal bar represents for the leftmost and centre graph the level above which each fairness
metric value is considered to offer an acceptable level of protection. For the rightmost graph,



Fig. 5.1. For each method, the impact of the change of value of α is assessed.
Top Row: Accuracy on classification task (i.e., predicting income)

Bottom Row: Fairness Metric
Note: GANSan results are the averaged results of Gradient Boosting, MLP and SVM.

we consider that the closest to the red bar (representing 0.50) results are, the fairer the data
is.

The second step of the analysis is to look at the top row of Figure 5.1. An ideal scenario
discussed in Section 2.1 would be that the accuracy of the classification task does not
decline too much as the fairness metric improves. In our experiments, this occurs only for
Disparate Impact Remover, which is not surprising given the minimal distortion it creates
on the data as we saw earlier in Figure 5.4 from Section 5.2. Thus, we can conclude that
Disparate Impact Remover is particularly efficient in changing the data as little as possible
to improve the metric it is optimising. The results for LAFTR are less clear as the fairness
evolution seems to be rather unstable. The results obtained for GANSan are the most
surprising and have led to multiple reviews of our code implementation and results. In
particular, the accuracy is constantly improving with the increase of the value of α, which
also leads to an improvement of the fairness metric. This would signify that the data is at
the same time fairer and better suited for the initial classification task, which is a win-win
situation. While the in-depth study of this phenomenon observed with GANSan is beyond
the scope of our research, a possible explanation could be that the training mechanism of
GANSan has learned to distil the information about the label y in each attribute.

When looking at our second dataset, Compas, we can see the limits of using only
one technique as well as the importance of choosing carefully the metric to optimise.
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Fig. 5.2. Disparate Impact obtained for various values of the repair level α on the
Compas data for Disparate Impact remover.

The original disparate impact value of the Compas dataset is 0.8371, which is within the
acceptable range as discussed in Chapter 2. Using only numerical attributes, which are the
only ones that the IBM-AIF360 implementation can handle, we see that Disparate Impact
Remover barely changes the data with a 0.11% improvement of disparate impact metric
with a maximised α value (see Figure 5.2). This is not surprising as the process quantifying
the extent to which the data need to be transformed is directly based upon the metric’s
initial value. Given the known bias in the Compas dataset (see Section 2.2), it seems clear
that relying only on one metric prevents from seeing the complete picture in some cases.
Surprisingly, we still see the increase in prediction accuracy for the initial task, with values
upwards of 84% accuracy to predict y, the two-year recidivism rate. This seems to indicate
that the Disparate Impact Remover in this specific case, although minimally changing the
data, helps to achieve a higher prediction accuracy, which can be interesting not for fairness
research but more basic research techniques.

5.2. Reconstruction of the sanitised profile
The second step in our experiments is to attempt to reconstruct the original profile,

as well as the sensitive attribute, using the sanitised profile outputted by each fairness-
enhancement techniques, which is composed of the attributes mentioned in Table 4.2.
The design choices in terms of architectures and hyper-parameters (e.g., batch size,
learning rate, and number of layers to the auto-encoder) were made by iteratively trying

57



out different combinations using a grid-search approach. In practice, the batch size has
little impact on the quality of reconstruction. However, a faster convergence is observed
with a bigger batch size, something generally expected in machine learning. The total
number of layers leads to better results when set to only one hidden layer on each size of
the latent layer, which can be explained by the small amount of training data available.
As mentioned in Section 1.1.1 to work with models with higher capacity, more data
needs to be available to be trained on. Finally, other things being equal, the learning
rate has an impact similar to the batch size. More precisely, a small learning rate simply
slowed down the convergence rate (i.e., the same loss would be achieved but in more epochs).

With respect to the attacks on GANSan, the training results are shown in Table 5.1 and
Figure 5.3, for reconstruction generated with different mix of hyper-parameters and data
transformed initially by GANSan algorithm. The curves of reconstruction shows the loss
hitting the same local minima at about the same loss values, under various combinations
of hyper-parameters. We can also assume from the first column of Figure 5.3 that lower
loss values passed this local minimum do not seem likely since the loss tends to shoot
upwards. Therefore, although it seemed that we have successfully optimised our model by
minimising the L1 distance on GANSan, which has made the reconstructed profile “more
similar” on average, the actual profiles created by our reconstructor were not consistently
giving more information about the sensitive feature. In particular, we found out that
the best performing model, although being able to reconstruct 61 out of 78 (encoded)
attributes of the input, was unable to predict sensitive attributes with better accuracy
compared to models with a hyper-parameter mix achieving less well the reconstruction of
attributes. The model reconstructs much more easily the continuous attributes (e.g., age,
fnlwgt, education-num, capital-gain, capital-loss, hours-per-week) compared to categorical
attributes (e.g., native-country and marital-status). The lack of diversity was acute for
these two attributes, as the model continuously chose the majority value (90% are from
the USA in original data) and assigned it to all profiles. At the end, we can say that the
original objective of the reconstruction attack, which was to increase the ability to predict
the sensitive attribute from the reconstructed profile, has not been conclusive despite the
fact that the reconstructed profile is closer to the original profile than the sanitised one.

The reconstruction attempts on data sanitised by Disparate Impact Remover [33] yields
even less conclusive results, which may be due to the small percentage of values changed,
as seen in Table 5.2. Figure 5.4 (top row) further shows that the number of data points
modified for 4 of the 5 attributes used as input 4 remains lower than 1000 (out of 35 000
total) regardless of the value of α. Moreover, the average change for the modified data
points remains below 6% (second row). In practice, the reconstruction of this data was
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Batch Size Learning Rate Ave. Loss Epoch
2048 1e-05 23.809 59
2048 1e-07 23.8078 936
2048 1e-08 23.811 1268

Table 5.1. Learning rate value and impact on lowest average loss (and its epoch) for the
training of the reconstructor training. Tested on GANSan for a value of α=0.2 and

BER=0.205.

Fig. 5.3. Various plots showing the loss when reconstructing the GANSan data showing
the minimal impact of learning rates. In general we are looking for downward slopes which

would mean continuous learning and improvement of our machine-learning models.

even less successful than with GANSan. In particular, even though the loss could reach a
minimum, none of the attributes were reconstructed closer to their original values while the
prediction of the sensitive attribute was also unsuccessful. The easiest explanation for this
phenomenon is that the scope for reducing the very small change on the data was so narrow
that our model was not able to address it.

Similarly inconclusive results were achieved for LAFTR, although more difficult to
interpret due to the new space in which the data resides. In addition, the training method
did not allow us to match the original profiles with their sanitised versions, so for a given
profile transformed by LAFTR we could not match it with the original profile (which is
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Attribute Number of values changed (32 562) Ave. Change Std. Dev. of change
Age 1 0.013699 0.0

Education-Num 0 X X
Capital-gain 611 0.003798 0.00824
Capital-Loss 1058 0.02144 0.025818

Hours-Per-Week 21 671 0.067362 0.19506
Table 5.2. Statistics on the extend to which Disparate Impact Remover transforms data

for α=1.0.

Fig. 5.4. Visual representation of Disparate Impact impact/change of original data for
different α values.

used as the output x̂ in our generator).

We have tried other methods to achieve better results such as a Variational Auto-Encoder
version of the reconstructor (where the middle layer is composed of the mean and standard
variation that generates the distribution of value, see Section 2.2.4), a version without classi-
fiers in which the auto-encoder directly recreates the sensitive attribute, using Mean Square
Error (L2) or Damage (see Section 1.1.1) as loss functions. All these attempts did not result
in any improvement with respect to the quality of reconstructed profiles. We believe that
more research would need to be done since it should intuitively be possible to reverse more
or less perfectly the protection provided by the adversarial methods. This intuition is due
to the fact that the model fundamentally does a mathematical operation on the input data,
which should be reversible. In addition, a discriminator that has a white-box knowledge of
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the Disparate Impact Remover algorithm (meaning he was aware of the algorithm’s trans-
formation discussed in Section 2.2.3) could easily reverse it without even relying on learning
methods as we did. This is true because Disparate Impact remover applies deterministic
transformations whereas the other two algorithms do not. Nonetheless, as we tested the mu-
tual information between the sensitive attribute (gender) and all others from data generated
by the three different methods, it gave us the intuition that much simpler attack methods
might be able to break the protection these methods offer, these external classifiers attacks
will be the core of the analysis of Section 5.3.

5.3. External classifiers attacks
As mentioned in the previous section, the reconstruction attack has failed. The last step

of the reconstructor system, referring back to Figure 4.1, involves a classifier that takes
the reconstructed data, and tries to predict the original sensitive attribute. We noted that
for GANSan, although the profile was successfully reconstructed (at least partially), the
accuracy on the prediction of the sensitive attribute did not improve, or even worsen. Simi-
larly for Disparate Impact, although the average profile was not successfully reconstructed,
these external classifiers predicting the sensitive attribute surprisingly reached an average
accuracy of around 84% depending on the value of α.

Further investigation (still relative to Scenario 2 from Table 4.1) summarised in Figure
5.5 shows the average classification accuracy of the sensitive attribute of our five machine
learning classifiers for the sensitive attribute on disparate impact remover for different
values of α. Despite the fact that the fairness metric is successfully optimised (above the
80% bar here), our classifier displays a very high prediction accuracy, even higher than the
84.88% on the original data. The results with the Compas dataset are inconclusive as the
Disparate Impact Remover algorithm as implemented by IBM’s AIF-360 does not allow
to reach a disparate impact value above the desired 80% threshold even with an extreme
value of α = 1.0 (here called the repair-level value). When we ran our classifiers against
the data sanitised with this method, we achieve a high 85.66% accuracy in predicting the
sensitive attribute, which is much higher than the 69% baseline accuracy on the original data.

This surprising result creates potential issues, both in terms of privacy and fairness.
This result made us wonder whether other methods also failed to prevent the prediction of
sensitive attribute despite their successful fairness metric improvement. Figure 5.6 shows
the same graph for LAFTR-generated data. Although the accuracy of the prediction of
sensitive attribute does not reach the 90% range observed with Disparate Impact Remover,
the method fails to reduce the accuracy towards values closer to the actual male-female
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Fig. 5.5. Accuracy of the prediction of the sensitive attribute prediction for the data
sanitised by disparate impact remover for various values of α.

distribution of 67%-33%, staying around 85% for most values of α. Thus, we observe
here the same issue in which the method, by optimising a fairness metric only, does not
necessarily protect against external actors from inferring the sensitive attribute, opening
the door to issues of privacy which themselves lead to fairness issues, a relationship that
was discussed in Section 3.3.

Finally, Figure 5.7 offers the same analysis for data sanitised by GANSan. This method
does not lead to the same conclusions as the previous two methods. In particular, the
prediction accuracy of the sensitive attribute decreases quite proportionately with an
increase in the value of α (which as we previously saw also improves the fairness metric).
This can be considered the most ideal results so far, in fact, the only one offering a significant
level of privacy protection for the sensitive attribute. The lowest accuracy value around
69% is extremely close to what can be considered an optimal 67%-33%, which corresponds
to a naïve classifier predicting the gender according to the true proportion of male-female
in training data (this classifier could for instance discard the information available on the
sanitised profile and always predict the majority class). It also seems that the α parameter
offers relatively good control on the level of protection offered. One caveat is the accuracy
peak with the highest value of α, which does not follow the trend that is otherwise fairly
consistent for all other values.
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Fig. 5.6. Accuracy of the prediction of the sensitive attribute using the LAFTR-generated
data for various values of α.

Fig. 5.7. Prediction accuracy of sensitive attribute on GANSan sanitised data for various
values of α. Recall that an accuracy of 67% is considered optimal.

5.4. Analysis of the source of leaked information
As mentioned in earlier chapters, to prevent indirect discrimination a fairness-enhancing

method should reduce the correlations of the sensitive attribute with other attributes,
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in addition of removing the sensitive attribute. One of the possible reasons for the high
prediction of the sensitive attribute is probably the high level of mutual information
between the original sensitive attribute and the other attributes. The machine learning
classifiers can rely on this mutual information to make accurate prediction. To verify this,
we have computed the Normalised Mutual Information (NMI), for each attribute of each
method with the sensitive attribute and compared it with the original Adult dataset and we
obtained the results displayed in Figure 5.8. NMI is computed between two attributes and
returns how much information from the first attribute can be extracted from the second
attribute. For example if we can predict the race of a person with his or her postal code,
NMI between race and postal code is likely to be high.

Fig. 5.8. Normalized Mutual Information for each attribute of each method studied. Red
boxes indicates that the sanitisation made the feature significantly more correlated with

the sensitive attribute.

For Disparate Impact Remover as well as GANSan, we computed the NMI using the
data sanitised with the value of α offering the lower prediction accuracy for the sensitive
attribute, which are respectively 1.0 and 0.9875. In the case of LAFTR, all 7 attributes
have an NMI of 0.128, regardless of the value of α. As 0.127 denotes a higher correlation
than most of the original data, this could explain the high accuracy of classification of the
sensitive attribute for LAFTR. In practice, we believe that it is very likely that a machine
learning classifier would be able to leverage this information to help predict the sensitive
attribute. Given the issue of output diversity (constant generation of a median profile)
when working with adversarial models (discussed in Section 1.1.3 and seen in Section 5.2),
it might be the case that LAFTR model ended up settling for this average NMI value across
attributes, although more investigation would need to be done to confirm this.

64



A surprising finding from Figure 5.8 is that individual attributes sanitised by Dispa-
rate Impact Remover seem to be less correlated with the sensitive attributes compared to
GANSan’s sanitisation, although it was much easier to predict the sensitive feature with
the former. This means that there is a possibility of a remaining more complex correlation
resulting from combination of features, which is not encapsulated in the NMI. For example,
a combination of age and education-num could potentially contain a lot of information to
predict the gender of the profiles, while each of this attribute alone might be weakly corre-
lated.

5.5. Potential avenues for explaining variations in per-
formance of the attacks

GANsan has very little similarities with Disparate Impact Remover in terms of the
architecture and training procedure with the exception of the external classifier that
Disparate Impact Remover uses in its computation of the transformation to be applied
to the data. The relatively unconvincing results of Disparate Impact Remover on hiding
the sensitive attribute could be attributed to the algorithm designers’ choice of a single
linear, low-expressivity logistic regression as classifiers and no other classifiers external
to the transformation procedure. A simple way to support this hypothesis is to use the
same logistic regression classifier (python library ’sklearn’ implementation with balanced
class weights) to compare its performance on tests we made thus far. This will help us
understand whether this specific logistic regression algorithm is able to perform well on the
Adult dataset task of predicting profiles’ income. More precisely, two results are specifically
relevant to our research. First, the performance of such algorithms on the core Adult dataset
task of predicting income from all other inputs achieves 80.124% accuracy, which is 4% lower
than our group of five classifiers (MLP, SVM, Bagging, Gradient Boosting and CART).
Second, using the Disparate Impact Remover with an extreme value for the sanitisation of
α = 1.0, this logistic regression only achieves 53.454% in predicting the sensitive attribute,
much lower than the baseline of 84.88% for our five machine classifiers. This suggests that
the logistic regression used in the implementation of the Disparate Impact Remover does
not have a high-enough complexity to predict the sensitive attribute on the Adult dataset.

Comparing the training procedure of GANSan in Figure 2.5 and LAFTR (Figure 2.3),
there are some similarities with respect to the optimisation procedure. In particular, both
have to optimise two functions that take similar inputs, one for the data generator and one
for the discriminator (albeit not trained at the same rate). Nonetheless, some differences
were outlined in Section 2.2 and the training order of the generator and discriminator as well
as the choice of loss function is unlikely to be able to account for and explain the whole story.
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The biggest difference is GANSan’s training with 10-k-fold for any values of α, is that at
each epoch and for each fold, additional external classifiers are used to predict the sensitive
attribute. In addition, the fairness metric for each of the 10 folds returns multiple different
values of the fairness-utility trade-off (fairness-fidelity is used as proxy in the paper) from
which we choose the best one. The training process then chooses the data generated by the
sanitiser according to the best fairness/utility, defined in the paper as:

BestV alue = min
{(

BERmin −
1
2

)2
+ fide

}
(5.5.1)

in which BERmin refers to the lowest BER value from the external classifiers. The in-
clusion of these external classifiers, which simulate an attack on the sensitive attribute,
has shown to have strong implications in the privacy guarantees the sanitised data offers.
Counter-intuitively, it even seems to have an even bigger impact on the mutual information
about the sensitive attribute contained in the sanitised data. Although Figure 5.8 has shown
that the mutual information was higher for most of the numerical attributes, it was lower for
a majority of the categorical. It also outlines the issue that relying only on the discriminator
classifier whose training is bound by the full training procedure of the system is therefore
unlikely to provide a full account of the possible privacy risks in terms of inference. This is
a known phenomenon of adversarial learning, in which the discriminator tends to converge
(i.e., improve) faster than the generator [93]. This issue is usually mitigated by constraining
the generator in a number of ways, most commonly by manually slowing down the conver-
gence of its training, which gives a desirable conclusion in typical data-synthetization use
cases, but seemingly not for fairness-enhancing methods.

66



Chapter 6

Conclusion

In conclusion, our initial objectives of reconstructing the user profiles to retrieve the
information supposed to be hidden by the three fairness-enhancing methods assumed the
data was well protected. First, while optimizing using a fairness metric, most of these
methods intrinsically offer little guarantees with respect to privacy. Second, relying only
on the traditional GAN-learning procedure prevents the adversary classifier to reach its
full potential since the discriminator is known to have trouble reaching its full capacity
(see Section 5.5). The main effect is giving a perception that information about sensitive
attributes is removed from the data, what we showed is not the case. Third, minimising the
mutual information between the sensitive attribute and the other sanitised attributes is not
sufficient in itself to prevent the prediction of the sensitive attribute.

Indeed in all cases we have investigated, the analysed methods succeeded in optimising
fairness according to various well-established metrics. Even if finding some form of inverse
transformation to rebuild the original data does not seem to be an easy task, the remaining
mutual information in the released data allows in some cases to retrieve the value of the
sensitive attribute with simple machine learning classifiers. In other cases, the use of more
powerful classifiers confirms that it is increasingly difficult to infer the hidden sensitive
attribute from the sanitised data. These classifiers are necessary during two distinct phases.
They are embedded in the training, but also used externally to validate the protection with
high-expressivity classifiers as is the case in GANSan.

Although those fairness-improving methods based on optimising a single fairness metric
open the door to very big privacy concerns, research on approaches such as GANSan [6]
showed that the inclusion of external classifiers throughout the training (as opposed to their
inclusion at the end only) seem to mitigate some of those risks.



6.1. Future work
The reconstruction attack approach started in this research would clearly benefit from

further investigation. In particular, as we mentioned, intuition suggests that it should be
possible to learn a reverse transformation for the data that was transformed with all three
methods under investigations. If not a deep-learning model like the auto-encoder we used,
an adversarial model, more similar to the one used to transform the data, could prove more
accurate. Additionally, seeing that relative convergence of the L1 loss did not result in
an accurate classification of the sensitive value, changing or tweaking of the loss used in
training seems to be a potential avenue to investigate.

A second promising avenue to explore is the increase in the diversity of output that was
achieved not by merely reducing the loss vector to its average value, and applying gradient
descent for every value at every epoch, which is far from standard in most machine learning
applications. A quick verification in Section 4.3 showed us that, summing up, the vector
and applying a single gradient for each epoch did not have the same effect. This suggests
the model gains from moving around more in the data space (given we apply gradient
descent multiple times in one epoch as opposed to once), and further investigation should
give us theoretical knowledge of how and why this is the case.

Some assumptions discussed in earlier sections could also be challenged for a better
understanding of the fairness-utility trade-off. For example, some work suggests rather
counter-intuitively that including the sensitive attribute in the algorithm’s input might
increase performance of both fairness and the downstream task [60]. Their algorithm’s
result for student’s GPA in university admission showed that a classifier that is aware of
the sensitive attribute (on which most of all this paper is based on) can achieve better results.

Finally, as we saw with Disparate Impact Remover applied on Compas data, a single
metric may lead to false sense of comfort with respect to fairness in a specific dataset.
Taking into account more than one fairness metric simultaneously during training could
potentially mitigate these dangers, although we have yet to see such an implementation.

The increased research in the field of fairness-enhancing algorithms will lead to improve
methods and techniques for improving fairness. We should nonetheless make sure to keep
an eye on the root of the cause that makes this work necessary. In particular, finding out
why there is such a disparate prevalence among certain groups in the first place and how can
we build a society in which such fairness-enhancing algorithms are superfluous. Using the
Adult dataset as an example, we saw that non-white profiles are disproportionately likely
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to earn incomes lower than $50 000. It is great that technology could be used to make sure
these imbalances are not amplified, but tackling the root of the problem here would involve
figuring out why these imbalances are in the data in the first place as well as how can we,
as a society mitigate those when we deem them undesirable.
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