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Résumé 

La croissance exponentielle et les progrès de la technologie ont rendu très pratique le partage de 

données visuelles, d'images et de données vidéo par le biais d’une vaste prépondérance de 

platesformes disponibles. Avec le développement rapide des technologies Internet et 

multimédia, l’efficacité de la gestion et du stockage, la rapidité de transmission et de partage, 

l'analyse en temps réel et le traitement des ressources multimédias numériques sont 

progressivement devenus un élément indispensable du travail et de la vie de nombreuses 

personnes. Sans aucun doute, une telle croissance technologique a rendu le forgeage de données 

visuelles relativement facile et réaliste sans laisser de traces évidentes. L'abus de ces données 

falsifiées peut tromper le public et répandre la désinformation parmi les masses.  

Compte tenu des faits mentionnés ci-dessus, la criminalistique des images doit être utilisée pour 

authentifier et maintenir l'intégrité des données visuelles. Pour cela, nous proposons une 

technique de détection passive de falsification d'images basée sur les incohérences de texture et 

de bruit introduites dans une image du fait de l'opération de falsification. 

De plus, le réseau de détection de falsification d'images (IFD-Net) proposé utilise une architecture 

basée sur un réseau de neurones à convolution (CNN) pour classer les images comme falsifiées 

ou vierges. Les motifs résiduels de texture et de bruit sont extraits des images à l'aide du motif 

binaire local (LBP) et du modèle Noiseprint. Les images classées comme forgées sont ensuite 

utilisées pour mener des expériences afin d'analyser les difficultés de localisation des pièces 

forgées dans ces images à l'aide de différents modèles de segmentation d'apprentissage en 

profondeur. 

Les résultats expérimentaux montrent que l'IFD-Net fonctionne comme les autres méthodes de 

détection de falsification d'images sur l'ensemble de données CASIA v2.0. Les résultats discutent 

également des raisons des difficultés de segmentation des régions forgées dans les images du jeu 

de données CASIA v2.0. 

Mots clés : Épissage d'images, Réseaux de neurones à convolution (CNN), ResNet-50, U-Net, 

Motif binaire local (LBP) 
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Abstract 

 

The exponential growth and advancement of technology have made it quite convenient for 

people to share visual data, imagery, and video data through a vast preponderance of available 

platforms. With the rapid development of Internet and multimedia technologies, performing 

efficient storage and management, fast transmission and sharing, real-time analysis, and 

processing of digital media resources has gradually become an indispensable part of many 

people’s work and life. Undoubtedly such technological growth has made forging visual data 

relatively easy and realistic without leaving any obvious visual clues. Abuse of such tampered 

data can deceive the public and spread misinformation amongst the masses. Considering the 

facts mentioned above, image forensics must be used to authenticate and maintain the integrity 

of visual data. For this purpose, we propose a passive image forgery detection technique based 

on textural and noise inconsistencies introduced in an image because of the tampering operation.  

Moreover, the proposed Image Forgery Detection Network (IFD-Net) uses a Convolution Neural 

Network (CNN) based architecture to classify the images as forged or pristine. The textural and 

noise residual patterns are extracted from the images using Local Binary Pattern (LBP) and the 

Noiseprint model. The images classified as forged are then utilized to conduct experiments to 

analyze the difficulties in localizing the forged parts in these images using different deep learning 

segmentation models.  

Experimental results show that both the IFD-Net perform like other image forgery detection 

methods on the CASIA v2.0 dataset. The results also discuss the reasons behind the difficulties 

in segmenting the forged regions in the images of the CASIA v2.0 dataset. 

Keywords: Image Splicing, Convolution Neural Networks (CNN), ResNet-50, U-Net, Local Binary 

Pattern (LBP) 
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Chapter 1 

Introduction 

This chapter discusses the evolution of Image Forgery and the need for its detection to prevent 

or minimize the spread of fake news. The chapter is organized to include motivation factors 

responsible for my thesis dissertation, " Image Forgery Detection using Textural Features and 

Deep Learning." Furthermore, the chapter explains the problem statement, research objectives, 

and organization of my thesis dissertation. 

1.1 Evolution of Image Forgery and motivation 

Making a forged image is almost as old as photography itself. Photography quickly became the 

preferred means for creating portraits in its early years, and portrait photographers discovered 

that retouching their images to please the sitter may boost sales. With the advent of digital 

cameras and picture editing software, photo manipulation has grown more common.  With the 

rapid development of Internet and multimedia technologies, performing efficient storage and 

management, fast transmission and sharing, real-time analysis, and processing of digital media 

resources has gradually become an indispensable part of many people’s work and life. Due to the 

proliferation of easy-to-use and low-cost gadgets, digital visual media has become one of the 

most popular communication methods. 

Furthermore, visual media have a greater expressive capacity than any other medium. It explains 

sophisticated scenes in a straightforward manner, which can be difficult to transcribe in different 

ways. While we may have historically had confidence in the integrity of this imagery, today’s 

digital technology has begun to erode this trust. Digital Image Forgery is the intentional alteration 

of digital photographs to deceive to change public perception. The modification is carried out in 

such a way that it leaves no visible traces. From the tabloid magazines to the fashion industry 

and in mainstream media outlets, scientific journals, political campaigns, courtrooms, and the 

photo hoaxes that land in our e-mail in-boxes, doctored photographs appear with a growing 

frequency and sophistication.  
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The following are some of the most well-known examples of photo manipulation throughout 

history. We will concentrate on the cases that raise the most intriguing ethical questions or those 

that have been the most disputed or well-known. The photographers have also experimented 

with composition or image splicing, i.e., combining multiple images (or parts of images) into one 

composite. One of the earliest examples of composition is shown in Figure 1. General Sherman 

poses with his generals in this shot by renowned photographer Mathew Brady. General Francis 

P. Blair (far right) was added to the original photograph [1]. The picture on the right is from the 

same meeting, at which General Blair was not present. 

 

Figure 1: American general Francis P. Blair (right) was added to Mathew Brady's famous photo 
of General Sherman’s retinue because he was not at the meeting. 

Such forged images are being used in today’s world to deceive the public and spread fake news. 

Therefore, image forensic tools must be developed so that image forgeries can be detected to 

prevent it. 

1.2 Problem Statement 

With the advent of technology and the introduction of low-cost, easy-to-use image editors like 

Adobe Photoshop, it is possible to splice and tamper with photos quite easily. Images can be 

modified to the point that it is impossible to tell the difference between an original and a forged 

image with the naked eye using such technologies. It becomes challenging to validate and 

maintain the integrity of photographs because of this. Such forged images are being used for 

deceiving people by propagating fake news and online deception. The field of digital forensics 
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has emerged in recent years to assist in restoring some trust in digital photographs [2]. We 

propose a method that classifies images as fake or pristine, and we also analyze the obstacles in 

localizing the forged region in forged images.  

1.3 Research objectives and our contribution 

Digital picture manipulation is no longer limited to specialists with the introduction and 

widespread availability of useful picture editing tools and software. Sumopaint and Photoshop 

CC are some of the most well-known picture editing applications available online. Manipulation 

of visual media is no longer an arduous task with such readily available technologies [3]. This 

jeopardizes image credibility and undermines public trust in social media and social media 

communication. Image forgery detection and localization have become necessary to validate and 

protect the integrity of images, which is addressed in this thesis. In this thesis, we try to answer 

the following research queries: 

• What is an alternative to the existing solutions and practical approach for image forgery 

detection? 

• How can textural inconsistencies in the image content be used to detect image forgeries? 

• Why currently available deep learning segmentation models are unable to localize the 

forged areas in these images?  

We tried to answer the above-mentioned research queries by our contribution, as explained 

below: 

• We extracted the textural and noise residual patterns of the images in the CASIA v2.0 

dataset. 

• We evaluated the effectiveness of different image representation approaches on forgery 

detection accuracy. 

• We evaluated our proposed approaches on the CASIA v2.0 dataset 

• We ran experiments on various sophisticated deep learning architectures and techniques 

to analyze the difficulties they face in localizing the forged regions. 

• Finally, we captured the experiment results, graphs and discussed the results. 
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1.4 Thesis Organization 

The thesis is organized into five chapters, including the introduction chapter. 

• Chapter 2 provides an insight into the literature review of the recent research work in 

image forgery detection. We discuss and compare the various types of image forgery 

detection techniques along with their limitations. 

• Chapter 3 addresses the limitations discussed in Chapter 2 and provides an insight into 

our proposed method for image forgery detection. 

•  Chapter 4 discusses the captured results after running experiments on the CASIA v2.0 

dataset. 

• In Chapter 5, we finally conclude the thesis along with the future work.  
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Chapter 2 

Literature Review 

In this chapter, we discuss recent works that have been done in the areas related to this thesis. 

2.1 Image Forgery 

Forgeries of any kind are usually done with the intent to deceive others. Image forgery means 

manipulating the digital image to conceal some meaningful or valuable information of the image 

[4]. One of the main reasons behind image forgery is an intent to deceive others for altering 

public perception. In today's world, where we have access to such sharp and high-quality images, 

images can portray a tremendous amount of information. Thus, image forgery techniques are 

used for manipulating the information provided in an image. With the advent of inexpensive and 

easy-to-use image editors such as Adobe Photoshop, Corel Draw, Pixlr, it has become easy to 

manipulate images wrongfully. With the help of such tools, images can be manipulated to such a 

degree that one cannot differentiate between an original image and a manipulated image from 

one's naked eye. This makes it very difficult to authenticate and maintain the integrity of images. 

Deception is defined as a message knowingly transmitted by a sender to foster a false belief or 

conclusion. In today's world, image forgery is also being used to propagate online deception 

amongst the users of various social media platforms. Surprisingly, image forgery and deception 

are not new. It has been recorded in history in the early 1840s. Hippolyte Bayard, an early 

inventor of photographic processes, is the first to create a fake image. Bayard's image is the first 

known instance of a faked photograph taken just one year after what can be considered 

photography's official "start" date in 1839. Bayard created the first staged photograph entitled 

"Self Portrait as a Drowned Man." He pretends to have committed suicide in the image sitting 

and leaning to the right (Figure 2) [5]. Since then, the number of fake images has grown drastically 

and is getting difficult to identify. 
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Figure 2: Self-portrait as a drowned man by Hippolyte Bayard [5] 

This has led to the decrease in the reliability of digital images and escalated copyright issues 

leading to the necessity of image authentication. Thus, in today's world, detecting fake images 

has become necessary to prevent fake news, misinformation, and online deception. But before 

understanding the techniques to detect forged images, it is essential to understand the different 

types of image forgery techniques and how they are implemented to produce forged images. 

2.2 Types of Image Forgery 

In an era filled with technological advancements, an image can be forged in many ways. Amongst 

them, the most common image forgery techniques are: 

• Copy-move / Cloning / Region Duplication Forgery 

• Image Splicing / Photomontage 

• Image Retouching 

These three techniques are the most highly used techniques to forge images to deceive people 

and spread misinformation [6]. 



20 
 

2.2.1 Copy-Move Forgery 

The copy-move image forgery technique is one of the most popular image forgery techniques 

because it is simple, easily implemented, and effective [7]. A copy-move image forgery is 

performed by copying certain parts of a given image, moving them to the desired location, and 

pasting them in the same image. Such kinds of forgeries are done to either highlight a particular 

object in an image or to conceal an element in it. 

As both the source and target region originate from the same image in copy-move forgery, 

properties such as dynamic range, Illumination conditions, noise, and color temperature are 

usually well matched between the forged region and the remainder of the image [8]. One of the 

ideal regions for copy-move forgery in an image is the textured region. Textured areas have 

identical noise variation and color properties regarding images, making them unperceivable for 

human vision and making it even more challenging to detect forged and inconsistent regions in 

an image [9]. In some situations, more processes such as noise addition, blurring, rotation, and 

scaling are also carried out on the forged image to make these copy-move operations look more 

natural. This makes it even more challenging to detect the forged region in the image through 

human eyes. Since the copied parts in an image can be of any shape and location, it becomes 

computationally impossible to search for all the possible image locations and sizes [2].  

Figure 3 shows an example of an image forged using the copy-move forgery technique. Iran 

released the forged image, and the entire western media published it, including BBC News, The 

Los Angeles Times, and The New York Times [10]. 
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(a) Original Image 

  

(b) Copy-Paste Forged Image 

Figure 3: An Example of Copy-Move Forgery [10] 

In addition to copy-move forgery, sometimes the copied part belongs to a separate image, 

resulting in a spliced image. This technique will be discussed in detail in the next section. 

2.2.2 Image Splicing 

Forging images is not limited to copying parts of an image and pasting them in the same image. 

In many cases, two or more images might be used to create a forged image. A common form of 

photographic manipulation is the digital splicing of two or more images into a single composite 

[2]. Splicing images carefully can output realistic images to such an extent that the border of the 

spliced regions can be imperceptible to the human eye. This forgery technique is more aggressive 

than both copy-move forgery and image retouching. Digital image tools such as Adobe Photoshop 



22 
 

and Corel Draw, which are simple to use and are readily available, can be used for splicing images 

together. 

Several infamous news reports involve the use of spliced images. One of the most recent and 

notorious cases of a spliced images that surfaced on social media was former US President Barack 

Obama shaking hands with the Iranian president Hassan Rouhani [11]. The image was a tweet by 

Congressman Paul Gosar on January 6, 2020, with the description, “The world is a better place 

without these guys in power.” It was then opposed by other political leaders stating that it was a 

fake image. The original image involved former Indian prime minister Manmohan Singh shaking 

hands with former US President Barack Obama. This image was spliced with the Iranian 

president’s photo and tweeted, as seen in Figure 4. 

Image splicing usually leads to a change in texture and background color composition, leading to 

local noise variances. For an un-tampered natural image, the noise variances across different 

regions typically differ only slightly. But with spliced regions from another image with a 

significantly different intrinsic noise variance, the inconsistency of local noise variances becomes 

telltale evidence of tampering [12]. Hence, one way of detecting such a kind of forgery is by 

checking the variation of the component, such as texture, dynamic range, and color palette. [13]. 

Apart from copy-move and image splicing, the third type of forgery does not perform these 

operations and instead focuses on enhancing specific features of the image. It is known as Image 

Retouching, and the next section discusses it in detail. 

2.2.3 Image Retouching 

Image retouching does not involve operations such as copying and pasting a region in an image. 

Instead, it enhances certain features of an image, such as color and image brightness. Such 

operations may be carried out to improve or degrade an image so that it looks more pleasing to 

the eye. Image retouching is popularly used in newspapers, magazines, and films. It is a passive 

image forgery technique and does not significantly impact the image [13]. But it must be noted 

that it is a type of image manipulation and thus can be characterized as an image forgery 

technique. 
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(a) Fake Spliced Image 
 

 
(b) Original Image 

Figure 4: Fake Spliced Image and the Original Image [14] 

Usually, image retouching enhances certain features of an image to make the image look more 

appealing to the masses. These enhancements in an image are ethically wrong, mainly when they 

are being used to deceive people. Such retouching of images can be primarily seen in 

advertisements where the companies want their products to look more appealing to the public 

so that they are attracted to buy their products.  It has been often seen that celebrities influence 

their fans by posting their photos on social media, which depict a particular physique, skin tone, 

etc. Many of these photos have undergone image retouching to make them more appealing. 
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Image retouching can be divided into two subcategories as follows: 

• Technical Retouching 

• Creative Retouching 

Technical retouching is used in case of image restoration or enhancement. It deals with adjusting 

noise, colors, white balance, sharpness, tonality, and visible flaws in the image [15].   

Creative retouching is a technique adopted for commercial use or as a form of art to make the 

images sleeker and more interesting for advertisements and art [16]. 

Based on the intent and the application, some image manipulations may be considered an art 

form as they may involve creating new images that do not deceive people. An example of image 

retouching can be seen in Figure 5.  

             

 Figure 5: The image on the left is an original image, and the image on the right is retouched 
[17] 

In the above figure, the image on the left is the original image of former US President Donald 

Trump, and the image on the right is his retouched image to make him look fatter. Such 

retouched photos can aid the spread of fake news and can influence public opinion. Thus, image 

forensics is required in today's world to detect such forged images and bring forward the truth 

behind them. 
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2.3 Image Forgery Detection   

In today's world, social media plays an integral role in a person's day-to-day life. Many people 

use various social media platforms such as Facebook, WhatsApp, Snapchat, Instagram, etc., to 

share images, text, and videos. Furthermore, the evolution of mobile devices has allowed people 

to capture images anywhere and share them on various social media platforms that very 

moment. Thus, images have become one of the most highly shared media types on social media 

platforms [18]. It makes it necessary to monitor the images that are being shared on various 

social media platforms.   

For many years photographs have been used as a part of the evidence in various judicial courts. 

Even though such analog pictures can be used to create composites, it requires immense 

knowledge and is quite time-consuming compared with digital images [19]. However, with the 

advent of readily available and powerful image editing tools manipulating images has become 

relatively straightforward. 

The increase in the available digital image data has bolstered the growth in available powerful 

image editing tools. It allows people to modify and manipulate images effortlessly, threatens 

images' credibility, and decreases the public's confidence in social media and social media 

communication. Thus, image forgery detection has become the need of the hour to authenticate 

and maintain the integrity of images. 

Unlike traditional semantic object detection, image forgery detection gives more importance to 

manipulating artifacts than the image content, making it necessary for image forgery detection 

techniques to learn rich features [20]. Figure 6 provides a broad classification of the various image 

forgery detection techniques. 

Image forgery detection techniques can be classified into the following two categories [13, 21, 

19, 7, 22, 23]: 

• Active Approach 

• Passive / Blind Approach 
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In the active approach of image forgery detection, first, the pre-processing of the image is carried 

out, followed by embedding a cipher key in the image. This key can then be used at the receiving 

end to authenticate the image [24]. In the active approach for image forgery detection, this 

cipher key embedded in the image is imperative for authentication and integrity checks. At the 

time of generation of the image, some code or ciphertext is embedded in the image using the 

active approach, which is usually imperceivable to the human eye. Therefore, it can detect if an 

image has been forged if the embedded code or the ciphertext cannot be extracted from the 

image. However, this may require dedicated hardware or software to embed such information 

in an image. 

 

Figure 6: Classification of Image Forgery Detection Techniques 

The active approach can be mainly categorized into two types: 

• Digital Watermarking  

• Digital Signatures 

Digital watermarking is an active approach to image forgery detection, which involves embedding 

a security structure into the image. A digital watermark is an identification code permanently 

embedded into digital data, which can carry information about the copyright owner, the creator, 

the authorized consumer, etc. [25]. 
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Digital signatures are used to sign images using a privately held decryption key. This signature 

can then be authenticated using the corresponding publicly revealed encryption key [26]. Usually, 

it is difficult to forge the digital signatures embedded in an image. 

On the other hand, the passive image detection approach does not involve any pre-processing. 

Instead, it analyzes the raw image data for semantic and statistical inconsistencies in the image 

content to detect and localize image forgeries. In contrast to the active approach, the passive 

approach does not require any previous information about the image. Instead, it takes advantage 

of specific detectable changes that forgeries can bring into the image [27]. The passive image 

forgery detection techniques do not require any prior information about the input image to 

detect image forgery. Instead, these techniques detect forgery based on the disturbances in the 

intrinsic features of the image that might have been introduced during its manipulation process. 

The images downloaded from the Internet have no prior information. Hence the active forgery 

detection techniques are of no use for such kinds of forged images. Therefore, it is evident that 

passive forgery detection techniques are comparatively more practical today. 

The passive approach can be further divided into two categories forgery-type dependent and 

independent detection techniques. The forgery-type dependent detection techniques are 

designed for specific forgeries, such as copy-move or image splicing. In contrast, the independent 

techniques are designed to detect forgeries regardless of the type of forgery. The independent 

techniques exploit three different artifacts to detect general tampering: traces of re-sampling, 

compression, and inconsistencies. The forgery type-dependent techniques can be divided into 

two categories: copy-move detection techniques (single image-based forgery) and image splicing 

techniques (multiple image-based forgeries) [27]. All these image forgery detection techniques 

are discussed in detail in the following sections. 

2.3.1 Digital Watermarking 

Digital watermarking can detect image forgery using the security structure that it embeds in an 

image. We can evaluate the integrity of an image using this embedded security structure. If any 

inconsistencies or discrepancies are found in this security structure embedded in the image, we 
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can conclude that the image has been forged or manipulated [21]. Also, by doing the reverse 

analysis of the security structure, we can locate the forged or manipulated region in the image. 

Digital watermarking can be divided into three branches: 

• Robust 

• Fragile 

• Semi-Fragile 

Robust watermarks are generally used for the task of copyright protection. Even though these 

watermarks provide excellent robustness and transparency, they cannot determine if a digital 

image has been forged and cannot localize the forged regions within the image [28]. Such 

watermarks are used in IPR protection applications as they are designed to resist host signal 

manipulations. Unfortunately, none of the available watermarking schemes can practically resist 

every type of modification, regardless of their austerity. Thus, it can be said that robustness refers 

to a specific degree of host signal depreciation and a subset of all the possible manipulations [29]. 

Watermarks designed to be vulnerable to all modifications so that they are undetectable by the 

slightest host data manipulation are called Fragile watermarks. Fragile watermarks can be 

designed more easily than robust watermarks, and thus they are commonly used in 

authentication services [29]. Fragile watermarks are made to detect even the tiniest variations in 

pixel values. Fragile watermarks treat digital images as an entirety and prohibit any alteration or 

manipulation. Thus, the digital image cannot pass the certification mechanism even if there is 

only a tiny alteration. 

The Semi-Fragile watermark class provides selective robustness to a set of modifications deemed 

allowable and legitimate while remaining vulnerable (fragile) to all others. These watermarks can 

also be utilized instead of fragile watermarks to provide authentication. The semi-fragile 

watermark, which combines the benefits of both the robust and fragile watermarks, is primarily 

used for fuzzy digital image authentication. Additionally, semi-fragile watermarking technology 

can locate and even recover tampered locations [28]. 
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However, in the last few years, the use of passive forgery detection techniques has grown rapidly. 

Researchers have shown more interest in passive forgery detection techniques, specifically those 

dealing with detecting copy-move and image splicing forgeries. The following sections discuss 

such forgery detection techniques in detail. 

2.3.2 Copy-Move Detection 

Copy-Move manipulation is used to make an object 'disappear' from the original image by 

covering it with a small fragment copied from another portion of the image. This method can also 

be used to duplicate objects that already exist in the image. Because these cloned blocks are 

made from the same image, their features will blend in with the rest of the content, making it 

difficult for the human eye to notice them. Copy-move forgery detection is a passive or blind 

method of detecting image manipulation in which one or more sections are transcribed and 

pasted within the same image [4]. When the duplicated section is relocated, it is sometimes 

followed by a blurring effect applied to the modified region's boundaries to reduce the 

irregularities between the original and manipulated areas [63]. Although it may be simple to spot 

the copied element, geometric operations and post-image processing operations make it difficult 

for forgery detection techniques. Post-processing operations and intermediate image processing 

operations are the two types of operations that are usually used. For structural harmonization 

and correlation between the copied region and the target image, intermediate operations are 

used. Mirroring, scaling, rotation, illumination or chrominance modification, and other 

operations are examples of these operations. Intermediate processing can be used in the middle 

of two or more operations in the practice of forging. Whereas to hide perceptible touches in the 

image, post-processing operations such as blurring or additive noise and JPEG compression are 

used [4]. 

The search for duplicate areas is the main emphasis of detection algorithms for this type of 

modification. When combined with additional post-processing techniques, such as geometrical 

transformations or the application of color filters, it can make detection by existing methods 

rather difficult [30]. Figure 7 depicts the use of the copy-move forgery technique. Figure 7 (a) 

shows an original image with two cats, whereas Figure 7 (b) is a copy-move forged image.  
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Two equal portions based on the attributes of the blocks into which the image is divided are the 

most common evidence used to detect copy-move operations. 

 

(a) Original Image 

 

 
 

(b) Copy-Move Forged Imaged  

                 Figure 7: Copy-Move Forgery Example [30] 

There are three types of detection strategies for copy-move forgeries: 

• Block-based 

• Keypoint-based 

• Deep Leaning-based  
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Various researchers in the past years have developed many block-based strategies. A block-based 

strategy was proposed by Fridrich et al. [9]  in 2003. It used the Discrete Cosine Transform (DCT) 

coefficient characteristics from overlapping picture blocks as one of the initial approximations to 

locate copied areas inside images. It was one of the first methods to employ DCT for detecting 

copy-move forged images. Popescu et al. [31]  introduced a method for detecting duplicate parts 

in a digital image. Instead of DCT, their technique used Principal Components Analysis (PCA). The 

approach performed PCA on small fixed-size image blocks before lexicographically sorting each 

block. This methodology demonstrated a high degree of efficiency in detecting copy-move 

forgeries and the ability to detect them even in the presence of considerable amounts of 

corrupting noise. Cozzolino et al. [32] presented a method that combined dense-field approaches 

with Zernike moments. To distinguish the manipulated areas in a digital image, the use of Singular 

Value Decomposition (SVD) was proposed in [33].  The use of lexicographic classification helped 

to identify similar blocks. This method proved to be both reliable and effective. For tampered 

images subjected to Gaussian blur filters, noise contamination, and compressions, the 

experimental results indicate the validity of this technique. Mahmood et al. [60] suggested a new 

method for detecting copy-move forgeries using the concept of stationary wavelets. They reduce 

the feature dimension using DCT in this approach.  

In 2009, Huang et al. used the Scale-invariant Feature Transform (SIFT) algorithm to identify copy-

move forgery in digital photos [34]. The SIFT computation algorithm using the block matching 

function was presented by the authors. Even when the images are noisy or compressed, this 

technique produced good results. To identify copy-move forgeries, Khayeat et al. introduced the 

enhanced dense scale-invariant feature transform (DSIFT) descriptor [35]. They also presented 

neighborhood clustering to eliminate false matches. They improved the DSIFT descriptor by first 

identifying the prevailing orientation using second and third-order central moments. Then, they 

took a circular region rather than a square one to reduce border effects. This method is 

somewhat robust to post-processing operations such as rotations. The authors of [36] suggested 

a strategy based on Speeded Up Robust Features (SURF), which has superior key point 

characteristics than SIFT since it works better with postprocessing techniques like blur variations 

and brightness.  
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The approaches based on key points, on the other hand, have a visual output problem since the 

copied and pasted regions are made up of lines and points that do not have an intuitive and clear 

visual effect. Amerini et al. presented an approach based on SIFT [37]. Duplicated portions in 

images can be detected using this method. In addition, this method also determined which 

geometric transformation was used. This method can also be applied to compressed images with 

a poor quality factor. Muhammad et al. presented a Dyadic Wavelet Transform (DyWT) based 

blind copy-move forgery detection approach [38]. The method primarily relied on two types of 

information: noise inconsistencies between image blocks and the similarity between these 

blocks. The authors carried out the experiments in three scenarios: i) copy-move region without 

rotation in same size images, ii) copy-move region with and without rotation in different size 

images, and iii) images with different Quality (Q) factors. These experiments showed the superior 

performance of this method compared with some of the previously mentioned methods. Zhao 

et al. presented a method for analyzing and detecting duplicate regions in images based on 

discrete cosine transform (DCT) and singular value decomposition (SVD) in their paper [39], which 

included seven steps. The input image was first partitioned into overlapping blocks, after which 

each block was subjected to DCT, and the DCT coefficients were quantized. Following that, each 

quantized block was subdivided into non-overlapping sub-blocks. Each sub-block was subjected 

to SVD, after which features were retrieved to lower the dimension of each block using its largest 

singular value. All feature vectors were lexicographically sorted at the end, and duplicated picture 

image blocks were matched using a predetermined threshold. The experiment revealed that this 

algorithm could analyze and detect manipulation over images to which post-processing 

operations such as gaussian blurring, additive white gaussian noise, and JPEG compression were 

applied, in addition to detecting copy-move forgeries and locating duplicated regions. Park et al. 

presented a technique [40] that managed scaling, reflection, and rotation, among other 

geometric transformations. This technique analyzed likely reliable matched pairs based on the 

distance ratio between the most and second most similar match, using key points and descriptors 

from the image based on SIFT. The matched pairs were then sorted by their ratio value into a set 

of real matches. 
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Apart from the above-mentioned block-based and key point-based methods, many deep 

learning-based techniques have also come up to detect copy-move forgeries. Rao et al. proposed 

an automatic hierarchical feature representations learning model in their paper [68] to detect 

splicing and copy-move forgeries. They proposed an eight-layer CNN model with a fully 

connected layer and a two-way classifier. The kernel weights were set using the 30 basic high-

pass filters in the first convolutional layer to improve generalization and speed up the network's 

convergence. RGB images were used to train the model. In their paper [41], Zhang et al. 

introduced CNN-based models for detecting copy-move forgeries. There were three 

convolutional layers with two max-pooling layers and two fully connected layers with a softmax 

layer in the fundamental models with two versions, Siamese (parameter sharing) and pseudo-

Siamese (without parameter sharing). The model was fed a pair of images, one copied (C) and 

one original (O). Zhang et al. presented a two-stage deep learning methodology for detecting 

counterfeit photos [42]. The image was first converted to YCrCb space, after which it was 

segmented into 32 × 32 patches. To acquire the complex features, each patch was subjected to 

a three-level 2D Daubechies wavelet decomposition. Then, the patches were fed to the SAE 

model, which used a multilayer perceptron (MLP) layer to learn the complicated features. The 

contextual information from the patches was then combined after SAE processing to detect the 

image manipulation.  

Wu et al. [43] proposed the BusterNet, a two-branch deep neural network-based CMFD model. 

Simi-Det and Mani-Det are the two branches that were used to detect cloned and modified 

regions, respectively. The CNN-based CMFD technique by Bayar et al. [44] used a confined 

convolutional layer to determine prediction error fields. They demonstrated the MISLnet CNN 

architecture, which included five convolutional layers for feature extraction with batch 

normalization and Tanh activation functions and three fully connected layers for classification 

with Tanh activation function and SoftMax layer. Table 1 represents a comparison amongst some 

of the above-mentioned deep learning-based copy-move image forgery detection techniques. 
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     Table 1: Comparing deep learning-based CMFD techniques 

Algorithm Approach & 
Features 

Advantages Limitations Datasets Used 

Zhang et al. [41] 
(2016) 

CNN based Siamese, 
pseudo-Siamese, 2-

Chanel, and Hybrid 2-
channel Siamese  

Detection accuracy of 
96.99%s 

The small training set, 
large negative 

samples, and shallow 
network 

INRIA Copydays, 
CoMoFoD, Image 

Manipulation Dataset,  
MICC-F2000, MICC-

F220 

Zhou et al. in [45] 
(2017) 

 rCNN, Tight blocking, 
and SVM classification 

The accuracy rate is 
decent but has 

robustness against 
JPEG compression 

Time-consuming and is 
not robust to many 

other post-processing 
techniques 

Columbia gray DVMM,  
CASIA v1.0, CASIA v2.0 

Rao et al. in [46] 
(2016) 

Xavier-CNN, SRM-CNN, 
 Patch wise sampling, 
SVM for classification 

Detection Efficiency is 
decent 

- Columbia gray DVMM,  
CASIA v1.0, CASIA v2.0 

Liu et al. [47] 
(2018) 

 
 

SKPD, COB, CKN, K-
nearest neighbor 
search, EM-based 

algorithm 

Improved time 
complexity 

Lacks robustness 
against many 

geometrical and post-
processing operations 

MICC-F220, CoMoFoD 

Zhou et al. [48] 
(2016) 

CPP network with a 
scalable color 

descriptor 

High accuracy ratios 
with small false 

negative values show 
robustness against 

several post-
processing operations 

like White Gaussian 
noise, blurring, JPEG 
compression, gamma 

correction 

Not robust against 
geometrical 

operations such as 
translation, rotation, 

and scaling 

CoMoFoD 

Wu et al. [43] 
(2018)  

VGG 16 architecture 
with percentile pooling 
and sigmoid activation 

function 

78% opt-in sample 
accuracy with 

robustness to several 
attacks 

Even though it shows 
robustness against 

several attacks, 
accuracy is quite low 

CoMoFoD, 
 CASIA v2.0 

Zhang et al. [42] 
(2016) 

SAE, 450-dimensional 3 
Level 2D Daubechies 

wavelet Decomposition 

91.09% detection 
accuracy along with 
forgery localization 

Training time is high Columbia gray DVMM,  
CASIA v1.0, CASIA v2.0 
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Apart from copy-move forgery, another highly used forgery technique is image splicing along with 

post-processing operations. The following section describes some of the benchmarked image 

splicing detection techniques presented by various authors to date. 

2.3.3 Image Splicing Detection 

Splicing is the process of replacing one or more elements of a host image with fragments from 

the other images, which could be used in malicious manipulation to create a scene that never 

existed to deceive the observers. Image splicing is a basic procedure of clipping and pasting 

sections from separate photos to create a new image without the need for post-processing, such 

as edge smoothing. Image splicing is one of the most basic and widely used image manipulation 

techniques. However, further image processing, such as smoothing the boundaries or removing 

the blur effect, can make it difficult to detect this manipulation. Image splicing is the basic 

technique of digital photomontage, in which photos are created by pasting images with the help 

of various editing tools such as Photoshop. It has become extremely popular, particularly to 

create "memes," as seen in a photo of Presidents Vladimir Putin and Donald Trump taken at the 

2017 G-20 conference. 

Just like the Catalan separatist demonstrations in October 2017, where some shocking 

photographs were deemed suspicious by the press [49], powerful images can be used to alter 

public opinion on a specific topic. During the 2004 presidential election campaign in the United 

States, a picture of Jane Fonda and John Kerry speaking together at an anti-Vietnam war 

demonstration was released and widely disseminated, as shown in Figure 8. It was eventually 

determined to be a spliced image made for political motives. 

Some image statistics get disarranged when an image splicing operation is performed. On the 

other hand, the human visual system may not be able to detect these statistical changes. Even 

when an expert burglar performs postprocessing operations such as blending and matting on the 

forged image, the statistical disarrangements of the image cannot be attenuated. As splicing is 

frequently employed as the first step in image tampering, and splicing can be challenging to 

detect with modern image processing techniques, image splicing detection is critical in image 

tampering detection. For digital data forensics and information assurance, image splicing 
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detection is very critical. People must be able to determine whether the given image has been 

spliced without any prior information. In another way, the splicing detection should be 

completely blind.  

 

Figure 8: An image splicing example [50] (a) the spliced image of Jane Fonda and John Kerry, (b) 
and (c) authentic image of Kerry and Fonda, respectively.  

 

Researchers have achieved significant progress in the field of image splicing detection 

technology. They have developed a variety of approaches, which are grouped into the following 

aspects as mentioned below [51]: 
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• Detection based on Noise patterns 

• Detection based on Illumination conditions 

• Detection based on the Image format 

The first aspect takes advantage of the noise patterns, assuming that different images have 

varying noise patterns due to a mix of the camera makes/models, post-processing operations, 

and image capture conditions [52, 53, 54, 55, 56]. In general, human vision cannot discern an 

image that has been successfully spliced together. Still, the splicing procedure will change the 

image's statistical features, and the information about the changes can be employed for image 

splicing detection. Because the spliced portion came from a different image (the donor image) 

than the host image, the noise pattern in the spliced region may differ from the noise pattern in 

the rest of the image. As a result, the noise pattern may be used to detect the spliced region. 

In prior studies, image analysis was performed using a high-order statistical property based on 

the wavelet transform [57, 58]. High-order statistical features can be used to represent the 

fundamental characteristics of natural images. Fu and Chen et al. proposed splicing detection 

based on the Hilbert-Huang transform [58, 59]. They applied the Hilbert-Huang transform on 

spliced images to generate features for classification considering the high non-linearity and non-

stationary nature of the splicing operation. Similarly, Chen et al. [60] coupled the Support Vector 

Machine (SVM) classifier with the grey level co-occurrence matrix generated from the Block 

Discrete Cosine Transform (BDCT) domain to detect splicing. Sutthiwan et al. [61] integrated 

Markov features with edge statistical features in the chrominance domain for splicing detection. 

They extracted these image features from the Cr Channel, a chrominance channel in the YCbCr 

color space. These extracted image features were then fed into an SVM classifier to classify 

images as spliced or pristine. 

The second aspect investigates the image's illumination conditions and uses Color Filter Array 

(CFA) interpolation patterns. Most digital cameras use a single image sensor with a CFA that 

produces one value per pixel to capture images. CFA interpolation (also known as demosaicing) 

is a technique for reassembling a full-color image by converting the captured output into three 

channels (RGB). Splicing can wreak havoc on CFA interpolation patterns in a variety of ways. For 
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example, various cameras may utilize different CFA interpolation techniques, resulting in 

discontinuities when combining two images. Spliced regions are also frequently rescaled, which 

can cause CFA interpolation patterns to be disrupted. Because splicing is frequently done with 

two images, the lighting inconsistency of the spliced area can be used to detect spliced images. 

As a result, these artifacts can be used to help locate a spliced region. Kee et al. modeled the 

lighting environment and used the model's illumination environment consistency [61] to 

accomplish splicing detection.    

The third aspect is based on the image format. JEPG images are the most used image storage 

format. As a result, the image-based JPEG format is used in several splicing detection systems. 

The third aspect takes advantage of the traces left behind by JPEG compression as it is a lossy 

compression format. These solutions rely on JPEG quantization errors or JPEG compression grid 

discontinuities [62, 63, 64, 65]. The original image is believed to have undergone sequential JPEG 

compressions in JPEG quantization-based approaches. However, the spliced section may have 

lost its initial JPEG compression features due to the smoothing or resampling of the spliced 

component. These characteristics can aid in the localization of a spliced regions. In addition, due 

to misalignment of the 8x8 block grids used in compression, spliced areas can be detected using 

JPEG grid-based algorithms. JPEG Ghost [65] and Error Level Analysis (ELA) are 

two methodologies that use JPEG compression traces. ELA can be used to detect areas in an 

image that have different compression rates. If a part of an image has a different error rate than 

the rest of the image, this might indicate that the image is digitally modified. In [66], Ramadhani 

used ELA along with Laplacian Edge-Detector to detect spliced images. He applies the ELA and 

Laplacian edge detection using the GIMP (GNU Image Manipulation Program) plugin. One of the 

significant issues with using ELA for image splicing detection is that it gives many false positives. 

This is often seen in cases where the JPEG image is of poor quality. 

Table 2 below shows the number of research papers published on Image Splicing Detection based 

on different feature extractors between January 2010 and June 2021. Cells with higher intensity 

colors represent a more significant number of research papers. Most of these studies have been 

carried out between 2015 and 2021. The last five years have marked the rise of deep learning 
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and computer vision, which is also depicted by the studies on image splicing detection based on 

deep learning models, as shown in Table 2. 

Table 2: Number of studies on Image Splicing Detection between January 2010 to June 2021 

Year Markov Features DWT DCT LBP Deep Learning 

2010 0 1 0 0 0 

2011 0 1 0 0 0 

2012 1 1 2 1 0 

2013 0 0 1 1 0 

2014 3 1 1 0 0 

2015 2 3 2 3 0 

2016 1 1 1 2 1 

2017 1 1 1 0 0 

2018 5 2 1 1 3 

2019 1 1 1 1 6 

2020 1 1 1 2 6 

2021 0 0 1 3 2 

 

Deep convolution neural networks (CNN) have recently demonstrated the ability to learn the 

image's deep-seated features. As a result, there has been a surge in interest in applying machine 

learning and deep learning algorithms to splicing detection and general image forensics. 

Classification approaches based on engineered or learned features have been developed by 

various researchers in the past couple of years. In each case, these strategies necessitate learning 

parameters or rules from a training set and applying these rules during the inference step. These 

methods detect or classify distinct types of manipulations using a learned classifier to detect 

them on a whole test image or on patches taken from a test image (although not all these 

methods explicitly target splicing attacks). Recently Patrick et al. [67] proposed an image splicing 

detection method in which they extract features using the Illumination-Reflectance model and 

Linear Binary Pattern (LBP). These features are then fed into a machine learning model such as 

SVM, Logistic Regression, K-Nearest Neighbors, etc., to get a computationally inexpensive 

solution. 

Similarly, Jaiswal et al. [68] proposed a deep learning-based image splicing detection method in 

which they extract features using a pre-trained ResNet-50 model and feed these extracted 
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features to three different classification models: Naïve Bayes, K-Nearest Neighbor, and SVM.  

Even though most researchers have lately focused only on image splicing detection, few studies 

have recently focused on the localization of the spliced regions in these spliced images. Rao et al. 

designed a CNN-based model that generates attention maps to represent the probability of 

splicing every pixel in the image [69]. In this method, convolution feature maps are fed to the 

attention module as inputs to generate the corresponding attention maps in which the pixel 

intensity represents the probability of being forged. Finally, Salloum et al. [70] presented an 

image splicing localizing method using a Multi-task Fully Convolution Network (MFCN). The MFCN 

uses two output branches where one branch is utilized to learn the surface labels while the other 

branch is used to learn the edges of the spliced region. However, these approaches do not 

provide a satisfactory solution to the localization problem in spliced images. Thus, we propose 

an image forgery detection technique and investigate the forgery localization problem in forged 

images. Before discussing the proposed methods in detail, let us discuss the available 

benchmarked image forgery datasets and compare them. 

2.4 Image Forgery Datasets  

There exist several public datasets of forged images that can serve as benchmarks for algorithm 

evaluation. Table 3 presents a list of today’s primary image forgery datasets and the 

characteristics of their content. Several factors are crucial when examining the usefulness of 

experimental datasets in evaluating forgery detection systems. The presence of ground truth 

binary masks for localizing the forged region is the first and foremost. We can only test forgery 

detection techniques without masks, and we cannot evaluate forgery localization strategies. 

Therefore, the dataset's scope is severely limited. In this regard, the CASIA v2.0 dataset, which is 

currently the largest realistic dataset accessible, has a severe flaw. Instead of ground truth masks, 

the dataset shows which two source photos were utilized to create each forged image. As a 

result, the only method to get solid ground-truth masks for the entire dataset is to use a semi-

automated technique, which would be incredibly time-consuming considering the dataset's size. 

Pham et al. [71] have recently made ground truth masks for the CASIA v2.0 dataset available 

online, which helps overcome the flaw mentioned above. 
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Table 3: Benchmarked Image Forgery Datasets 

 
Dataset Name 

 

 
Year 

 
Image 

Formats 

 
Coherent 

 
Fake/Pristine 

Count 

 
Total Size 

Columbia 
Monochrome 

[72] 

2004 BMP 
grayscale 

No 933/912 1845 
images 

Columbia 
Uncompressed 

[73] 

2006 TIFF No 183/180 363 
images 

First IFS-TC 
Image Forensics 

Challenge, 
Training [74] 

2013 PNG (with 
possible 

JPEG history) 

Yes 442/1050 1492 
images 

First IFS-TC 
Image Forensics 
Challenge, Phase 

1 Testing [74] 

2013 PNG (with 
possible 

JPEG history) 

Yes 5713 unlabeled 5713 
images 

First IFS-TC 
Image Forensics 
Challenge, Phase 

2 Testing [74] 

2013 PNG (with 
possible 

JPEG history) 

Yes 350/0 350 
images 

DSO-1 [75] 2013 PNG (with 
possible 

JPEG history) 

Yes 100/100 200 
images 

DSI-1 [75] 2013 PNG (with 
possible 

JPEG history) 

Yes 25/25 50 images 

CASIA v1.0 [76] 2013 JPEG Yes 921/800 

(459 Copy-Move 
and 462 Spliced) 

1721 
images 

CASIA v2.0 [76] 2013 JPEG, TIFF Yes 5123/7491 

(3295 Copy-Move 
and 1828 Spliced) 

12614 
images 
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The second characteristic is the image format of the dataset. Lossless formats, such as TIFF and 

PNG, have the advantage of allowing for uncompressed data, preserving the most sensitive traces 

required for noise-based and CFA-based approaches. On the other hand, JPEG-based techniques 

are unlikely to function on such datasets unless the images have a JPEG history and have been 

consecutively decompressed and encoded in a lossless format. Many JPEG-based algorithms may 

still operate in these circumstances. Despite the recent development of PNG files, JPEG remains 

the standard for Web-based forensics. In Table 3, only the CASIA v1.0 and CASIA v2.0 datasets 

[76] contain JPEG images, whereas most other datasets have PNG images with a possible JPEG 

history.  

Finally, the third and last crucial characteristic of an image forgery dataset is the quality of the 

forged operation. Forgeries have been made artificially in some datasets by automatically 

changing certain sections or putting a section of one image into another. Amongst the datasets 

provided in Table 3, the two Columbia datasets [72, 73] fall into this category. Thus, after 

comparing all these datasets, CASIA v2.0 was selected, considering the number of authentic and 

forged images available and the newly available ground-truth masks. 

2.5 Class Imbalance 

Many real-world applications naturally inherit high-class imbalance, and thus efficient 

classification of such imbalanced datasets is a vital area of research.  Furthermore, excessively 

imbalanced data makes classification and segmentation even more difficult as many deep 

learning models will get biased towards the majority group. In extreme circumstances, these 

deep learning models might even disregard the minority group entirely [77]. As mentioned by 

Johnson et al. [77], research in this area is minimal. Class imbalance occurs when the minority 

class contains considerably fewer samples than the majority class in a binary classification 

problem that uses data from two classes. The minority group, i.e., the positive class, is the class 

of interest in many problems like fraud detection, forgery detection medical imaging lesion 

detection [77, 78]. The effect of class imbalance in image segmentation differs from image 

recognition as the background class is the majority class in image segmentation, which has 
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diverse characteristics and highly robust segmentation accuracy. Figure 9 shows the ground-truth 

mask of various tampered images in the CASIA v2.0 dataset. It can be seen that the foreground 

pixels(white) are pretty less compared to the background pixels (black) that depict the class 

imbalance in the dataset. It can cause the model to overclassify the background class because of 

its higher prior probability. 

Furthermore, because foreground classes are primarily used to evaluate segmentation 

performance, the focus is on improving accuracy in those classes. When there is a class imbalance 

in training data, learners are more likely to overclassify the majority class because of its higher 

prior probability. As a result, the pixels belonging to the minority class are more frequently 

misclassified than pixels from the majority class. Due to these adverse effects, achieving the goal 

of effectively predicting the positive class of interest is quite difficult. 

 

Figure 9: Ground-truth masks of forged images in CASIA v2.0 

Deep learning approaches have become popular over the previous ten years as they have 

enhanced state-of-the-art image recognition, speech recognition, and various other fields [79]. 
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Increased data availability, different algorithmic innovations that speed up training and improve 

generalization to new unseen data, advancements in hardware and software are all factors in 

their recent success [80]. Despite these advancements, very little statistical work has adequately 

examined strategies for dealing with class imbalance using deep learning. Many researchers 

agree that deep learning with imbalanced data is an understudied topic [77, 81].  

When learning from unbalanced data, it is critical to examine the representation of the minority 

and majority classes. By developing artificial data sets with varied combinations of complexity, 

degrees of imbalance, and training set size, Japkowicz [82] investigated the impacts of class 

imbalance. The results showed that as the problem complexity increases, the sensitivity to class 

imbalance also increases. 

It is possible to reduce the bias towards the majority class by changing the model's underlying 

learning or decision mechanism to increase sensitivity to the minority class or by changing the 

training data to reduce imbalance [77]. To address the class imbalance, conventional approaches 

like re-weighting and resampling can be used to degrade the majority class’s accuracy [83]. These 

methods can be divided into algorithm-level techniques and data-level techniques. The learning 

or decision-making process is altered in algorithm-level techniques to give the positive class 

(minority class) more importance. The decision threshold is typically lowered to reduce bias 

towards the negative class, or algorithms are tweaked to account for class weights. These 

techniques include using various loss functions such as weighted cross-entropy loss and dice loss, 

which will be discussed in the next section. Data-level methods for tackling class imbalance 

include under-sampling and over-sampling [77].  These methods change the training data to 

reduce the level of class imbalance. Under-sampling discards data voluntarily, lowering the 

overall amount of data from which the model will learn. As a result, the model may miss out on 

learning essential information that could have been learned from the samples that were deleted 

due to under-sampling [84]. Oversampling involves randomly selecting samples of the minority 

class and duplicating them to increase the minority class samples in the dataset [85]. However, a 

single sample might get selected multiple times to get resampled. As a result, the oversampled 

dataset can have multiple copies of the same sample belonging to the minority class. Due to the 

larger size of the oversampled training set with multiple copies of a given sample, over-sampling 



45 
 

will increase training time and produce over-fitting [86]. Thus, algorithm-level techniques can be 

more helpful at tackling class imbalance in semantic segmentation. The following section 

discusses in detail some of the algorithm-level techniques used in this thesis. 

2.6 Loss Functions 

Most of the time, datasets will have some level of class imbalance. This problem of imbalanced 

datasets is often seen in image segmentation tasks. This section discusses in detail various loss 

functions that can be used to tackle the class imbalance problem for image segmentation.  

As seen in Section 2.5, the images in CASIA v2.0 suffer a high-class imbalance. It means that the 

background class (black) is the majority class and the foreground class (white, forged region) is 

the minority class, as shown in Figure 9. Many data-level techniques such as under-sampling 

and oversampling can be used to balance the dataset. However, as discussed in Section 2.5, 

both oversampling and undersampling can lead to new issues such as overfitting and loss of 

important information, respectively, and do not directly tackle the issues caused by class 

imbalance data. To prevent this, an algorithm-level technique such as a weighted loss function 

can be used. A weighted loss function considers class weights that are inversely proportional to 

the class frequencies in the image, i.e., the minority class will have a higher-class weight, and 

the majority class will have a lower-class weight. It gives more importance to the loss of the 

minority class and makes the model focus more on the minority class than the majority class. 

𝑊𝐵𝐶𝐸 =  −
1

𝑁
∑ 𝑤1𝑦𝑖 ∙ 𝑙𝑜𝑔(𝑝(𝑦𝑖)) + 𝑤0(1 − 𝑦𝑖) ∙ 𝑙𝑜𝑔(1 − 𝑝(𝑦𝑖))

𝑁

𝑖=1

 (1) 

Equation 1 depicts the weighted binary cross-entropy loss function where yi is the positive class 

(forged region) and p(yi) denotes the probability function. In the above equation 𝑤0 represents 

the class weight for the majority class whereas 𝑤1 represents the class weight for the minority 

class. The minority class, also called the positive class, is denoted by yi in the above equation. A 

higher value of 𝑤1 can be used so that when a pixel belonging to the minority class is classified 

incorrectly, the prediction error becomes larger, thus making the model pay more attention to 

the minority class [87, 88]. Some image segmentation metrics can also be used as loss functions 



46 
 

for the task of image segmentation. One such highly known metric is the Dice Coefficient (DSC). 

When it comes to class imbalance, the dice coefficient can perform well as a loss function, unlike 

other extensively used loss functions like Binary Cross-Entropy (BCE) loss function [89]. In 

contrast to BCE, the dice coefficient just considers the segmentation class and ignores the 

background class. In image segmentation, pixels can be classified as True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FN). These measures are shown in 

Equations 12, 13, 14, and 15 in Section 4.3. The dice coefficient can be represented by using these 

measures, as shown in the following equation. 

𝐷𝑆𝐶 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (2) 

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 = 1 − 𝐷𝑆𝐶 (3) 

 

As it does not consider the true negatives, it does not dominate over the minority class. It 

produces a score in the range of [0,1], where 0 represents no overlap and 1 represents perfect 

overlap. Therefore, by subtracting the dice coefficient from 1, we get the dice loss as shown 

above [90]. The losses mentioned above have been used to analyze and investigate the 

localization problem of forged regions in the images of CASIA v2.0 in Section 4.3. The next chapter 

will define the proposed methods used in this thesis. 
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Chapter 3 

The Proposed Method 

In this section, we present an image forgery detection method along with quantitative results 

utilizing various metrics. We also study the forgery localization problems using various deep 

learning segmentation models. The following sections first give an overview of our proposed 

model and then explain all the elements of its architecture. 

3.1 Overview 

The availability of low-cost, high-resolution digital cameras and the rapid expansion of user-

friendly and complex digital image editing programs have increased the difficulty of assuring 

digital image authenticity. It makes distinguishing authentic and tampered sections quite tricky 

when trying to locate forged sections. Thus, for combating malicious forgery, detecting and 

localizing image forgery have become critical. As a result, the development of reliable 

imagery authenticity verification tools is vital in today's digital world. Thus, this thesis presents a 

passive method for detecting image forgery based on texture categorization.  

The proposed method deals with detecting forged images by classifying the images as forged or 

pristine. It is named as Image Forgery Detection Network (IFD-Net) and consists of the following 

steps: 

• Converting the RGB channels of the image to YCbCr channels and extracting the Cr 

channel, 

•  Calculating the local binary pattern (LBP) and applying it to the Cr channel, 

• Finally, feeding these images to a ResNet-50 model for training the IFD-Net v1. 

Figure 10 provides a pictorial representation of the training phase pipeline of IFD-Net v1 for 

classifying the images as forged or pristine. At every step, we can see what type of preprocessing 

is applied to the image before it is fed to the ResNet-50 model. Figure 11 shows the pipeline for 

the testing phase of IFD-Net v1, which is used to evaluate the trained model on the test data.  
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Figure 10: IFD-Net v1: Classification of Images as forged or pristine, training phase pipeline 

 

 

Figure 11: Testing Phase Pipeline for IFD-Net v1 
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Like the IFD-Net v1, this thesis also presents a version two known as the IFD-Net v2. IFD-Net v2 

consists of the following steps: 

• Extracting the noise residual map using the Noiseprint Model, 

• Applying Adaptive Histogram Equalization (AHE), 

• Finally, feeding these images to the ResNet-50 (pre-trained) model for training the IFD-

Net v2. 

Figure 12 provides a pictorial representation of the training phase pipeline of IFD-Net v2 for 

detecting forged images. Each step shows how the original image is modified using preprocessing 

steps such as extracting noise residual maps and applying AHE before it is fed to the ResNet-50 

model. Figure 13 shows the pipeline for the testing phase of IFD-Net v2. Similar preprocessing 

steps as the training pipeline are followed, and then these preprocessed images are used to 

evaluate the trained model's performance. 

As detecting images as forged or pristine is a binary classification task, both IFD-Net v1 and IFD-

Net v2 use the Binary Cross-Entropy loss as shown in Equation 4 where yi is the positive class 

(forged images) and p(yi) denotes the probability function.   

𝐵𝐶𝐸 =  −
1

𝑁
∑ 𝑦𝑖 ∙ 𝑙𝑜𝑔(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) ∙ 𝑙𝑜𝑔(1 − 𝑝(𝑦𝑖))

𝑁

𝑖=1

 (4) 

 

Figure 12: IFD-Net v2: Classification of Images as forged or pristine, training phase pipeline 
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Figure 13: Testing Phase Pipeline for IFD-Net v2 

To study the forgery localization problem, an Image Forgery Localization Network (IFL-Net) is 

used. It consists of the following steps: 

• The first two steps are feeding the forged image (CR+LBP image) and its corresponding 

ground-truth mask to step three.  

• In step three, these images and ground-truth masks are then fed to a modified U-Net 

model for training the IFL-Net for the task of semantic segmentation. 

Figure 14 provides a pictorial representation of the training phase pipeline of IFL-Net for 

analyzing the localization of the forged regions in the images present in the CASIA v2.0 dataset. 

As discussed in Section 2.6, Weighted Binary Cross-Entropy (WBCE) loss and the Dice Loss are 

used for training the IFL-Net in accordance with the highly imbalanced data in the CASIA v2.0 

dataset. Figure 15 provides a pictorial representation of the testing phase pipeline of IFL-Net, 

which is used to evaluate the trained model on the test data.   
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Figure 14: IFL-Net: Localization of Forged Regions, training phase pipeline  

 

 

Figure 15: Testing Phase Pipeline for IFL-Net 



52 
 

The following sections explain the above-mentioned image forgery detection methods and 

investigates the localization problem in detail. 

3.2 Extracting the Red-Difference Chroma Component 

RGB color space displays colors by combining the red, green, and blue components of the color. 

Any color can be displayed using these three components. YCbCr is a color space family used in 

video and digital photography systems as part of the color image pipeline. The luminance 

component is Y, whereas the blue-difference and red-difference chroma components are Cb and 

Cr. The primary goal of this step is to concentrate on the characteristics of a single channel. 

Usually, RGB color spaces are used by image forgers to modify images and wrap modified traces. 

The chrominance spaces, which are regarded as an efficient means of identifying forged images, 

are utilized in this thesis to detect and localize forgery in digital images. The RGB input is 

converted to YCbCr representations using the equations (5), (6), (7), and (8), as shown below. 

 

 

𝑌 ← 0.299 ∙ 𝑅 + 0.587 ∙ 𝐺 + 0.114 ∙ 𝐵 (5) 

                                𝐶𝑟 ← (𝑅 − 𝑌) ∙ 0.713 + 𝑑𝑒𝑙𝑡𝑎 (6)  

                               𝐶𝑏 ← (𝐵 − 𝑌) ∙ 0.564 + 𝑑𝑒𝑙𝑡𝑎 (7) 

Where,  

𝑑𝑒𝑙𝑡𝑎 = {

128, 𝑓𝑜𝑟 8 − 𝑏𝑖𝑡 𝑖𝑚𝑎𝑔𝑒𝑠
32768, 𝑓𝑜𝑟 16 − 𝑏𝑖𝑡 𝑖𝑚𝑎𝑔𝑒𝑠

0.5, 𝑓𝑜𝑟 𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔 − 𝑝𝑜𝑖𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 
(8) 

 

The chroma spaces are created by subtracting luminance from red (Cr = R-Y) and blue (Cb = B-Y). 

The color is stored in the YCbCr color space in terms of luminance and chrominance, with 

chrominance being less sensitive to human eyes than luminance. The edge sensitivity and 

sharpness of the forged objects are more noticeable in the chroma channels of an image than in 

the RGB channels. Even though the altered image appears natural, there is some evidence of 
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tampering in the chrominance channels. Generally, humans are more sensitive to luminance than 

to chrominance in an image. Even though a forged image may look reasonably natural to the 

human eyes, some traces of forgery are always left in the chrominance channels. Forged edges 

in Cb or Cr components are not as smooth as the original RGB image edges. Thus, in this thesis, 

images are converted to chroma spaces to take advantage of such traces of tampering caused by 

the forgery operation. 

              

                                            (a) RGB Image                                               (b) Y Channel 

              

                         (c) Cb Channel                                          (d) Cr Channel 

Figure 16: (a) is the original RGB forged image, and (b), (c), and (d) are the corresponding Y, Cb, 
Cr channels, respectively. 
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A color image with its luminance and chrominance components is shown in Figure 16. It can be 

observed in these images that the monkey’s contours (which represent the forged region) are 

covered up and smooth in the Y component compared to the Cb and Cr components. The 

contours of the monkey are sharper than the rest of the objects in the Cr channel image. Thus, 

the edges of the forged region will be more detectable in the Cr channel. 

Following the extraction of the chroma component of the image, to further extract the image's 

textural features, a texture categorization feature is applied to the chroma component, as 

discussed in the following section. 

3.3 Local Binary Pattern (LBP) 

Local Binary Pattern (LBP) is a powerful texture categorization feature. LBP is a useful texture 

description operator for images used to classify image content and texture description. The 

spatial arrangement of color or intensity in an image or a selected part of an image is described 

by image texture. Face recognition is one of the most well-known applications where LBP 

features are used. In recent years, image mosaic detection has increasingly used a combination 

of LBP and conventional methods. 

In a rectangular window, a simple LBP operator is calculated. In a circular neighborhood (p, r), 

LBP is computed using 𝒑𝒄 as the central pixel value, p as the number of neighborhood pixels, and 

r as the radius of the neighborhood. Equations 9 and 10 depict the LBP operator where 𝑝𝑖 

represents the pixel value of the 𝑖𝑡ℎ pixel. 

𝐿𝐵𝑃𝑝,𝑟 = ∑ 𝑆(𝑝𝑖−𝑝𝑐) ∙ 2𝑖

𝑝−1

𝑖=1

 (9) 

 

𝑆(𝑝𝑖−𝑝𝑐) = {
1, 𝑝𝑖 ≥ 𝑝𝑐

0, 𝑝𝑖 < 𝑝𝑐
(10) 

 

The results of this thesis are presented using circular LBP. The rationale for adopting LBP is that 

when cut and paste operations are applied to an image, the texture consistency in the image is 
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broken. This textural inconsistency can be captured using LBP, which highlights such micro-

patterns in an image. The main advantages of LBP over other descriptors are that it is invariant 

to monotonic illumination changes, it is rotation invariant, and it has a low processing complexity. 

It assigns a binary number to each pixel in the image by thresholding the neighboring pixels with 

the center pixel. The LBP operator is applied to each image to highlight the forgery artifacts, i.e., 

the sharp edges along the boundary of the forged region and the micro-edges inside the forged 

region. This makes the forgery artifacts more prominent because of LBP’s capacity to capture 

micro-patterns in an image [91, 92]. Figure 17 shows the texture pattern after applying LBP to 

the Cr channel image extracted above. It can be observed that the texture pattern at the edges 

of the forged region is different when compared to the rest of the texture pattern of the image. 

It forms a kind of boundary around the forged area by capturing the micro-patterns. Thus, LBP is 

appropriate for emphasizing the forgery artifacts and making them more prominent in the 

tampered image [91]. In addition to the textural features, the noise inconsistencies introduced 

in the image after the forgery operation can also be used to detect forged images.  

             

                                (a) Cr Channel Image                                                (b) LBP Texture Pattern 

Figure 17: LBP Texture Pattern of Cr Channel Image 
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The following section explains how these noise inconsistencies can be used to generate a noise 

residual map that can help detect forged images. These noise residual maps are used in the IFD-

Net v2 for detecting forged images.  

3.4 Obtaining noise residual map using the Noiseprint 

When the high-level semantic (scene) content is subtracted or removed from an image, the 

remaining noise-like signal is known as the Noise Residual of the image. Such noise residuals can 

be extracted from images using high-pass filters in the spatial or transform domain (DCT, DWT) 

or by denoising algorithms [93]. Photo-response non-uniformity (PRNU) is one of the most 

effective ways for extracting noise residuals from digital photos. However, there are two 

significant drawbacks to this method: first, it requires multiple photos to analyze the camera 

fingerprint, and second, its effectiveness is hampered by the low power of the signal of interest 

in comparison to noise. Cozzolino et al. [93] presented Noiseprint, a new approach for extracting 

the noise residual from images to tackle these two drawbacks. This technique focuses on camera-

specific noise-based fingerprints while suppressing image content. Compared to other top-

performing approaches, including a PRNU-based method, the Noiseprint model outperforms 

them [94].  

The camera-specific fingerprints can be extracted using a variety of approaches. The Noiseprint 

model, on the other hand, is the most recent advancement. The Noiseprint model is a CNN-based 

Siamese network that outputs a noise residual map that consists of traces of the camera model 

artifacts rather than the traces of imperfections of individual devices. The noise residual map that 

the Noiseprint model generates is an image size pattern in which camera model-related artifacts 

are emphasized by removing the high-level scene content in an image. In most cases, spliced 

images are made up of photographs obtained by various camera models. During the image 

capture process, each camera model creates its unique fingerprint. As a result, these camera-

specific fingerprints may be retrieved and used to uncover the picture splicing manipulation by 

using Noiseprint. However, in copy-move forged images, these camera-specific fingerprints 

remain the same throughout the image as the copy-move forged region belongs to the same 

image. Thus, the noise residual map that Noiseprint outputs for a copy-move forged image might 
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be like the noise residual map of its original image as both have the same camera fingerprint. 

This makes it difficult to distinguish between pristine and copy-move forged images based on 

their noise residual maps. The Noiseprint model is used as a preprocessing step in the IFD-Net v2 

to obtain the noise residual from the images so that the IFD-Net can also be evaluated by taking 

advantage of the noise inconsistencies introduced due to the forgery operation. 

Additionally, a contrast boosting technique known as Adaptive Histogram Equalization (AHE) is 

applied to all the noise residual maps. AHE is an image processing approach to enhance image 

contrast that can enhance the noise residual map’s contrast. The adaptive equalization approach 

differs from traditional histogram equalization to compute multiple histograms, each 

corresponding to a different portion of the image and uses them to redistribute the image's 

brightness values. As a result, it is ideal for boosting local contrast and sharpening edge 

definitions in different parts of an image. Thus, AHE is applied to the noise residual maps 

generated using the Noiseprint model. Figure 18 shows an example of a spliced image and its 

corresponding noise residual map using the Noiseprint model to which AHE has been applied. It 

can be observed from the noise residual map of the spliced image that the spliced region 

(monkey) has a different noise residual pattern when compared with the rest of the image. This 

can be quite useful to distinguish spliced images from pristine images. 

3.5 Image Augmentations 

Many Computer Vision tasks have shown that deep convolutional neural networks perform 

exceptionally well. However, to avoid overfitting, these networks rely extensively on huge data. 

In many cases, imbalanced classes can be a further stumbling block. While there may be enough 

data for certain classes, under-sampled classes will suffer from poor class-specific accuracy. 

Overfitting occurs when a network learns a function with extremely high variance to model the 

training data perfectly. When a model is trained on only a few examples of a class, it is likely to 

overfit the small training dataset, causing the trained model to perform poorly on test data. 

Unfortunately, many application fields, such as medical image analysis and image forgery 

detection, do not have access to huge data. There are various approaches to deal with these 

problems that come with limited data in deep learning. 
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                                 (a) Spliced Image                                           (b) Noise Residual Map + AHE 

Figure 18: Noiseprint and AHE applied to a Spliced Image 

 

Data Augmentation is a term that refers to a range of strategies for increasing the size of training 

datasets so that deep learning models can be made more efficient. Image augmentation is a 

handy strategy for increasing the size of the training set without having to acquire new photos 

while creating convolutional neural networks. The concept is straightforward: replicate images 

with slight variations so that the model can learn from additional examples. These enhancements 

can be combined to create a variety of variations of the original image. However, augmentation 

will be detrimental if it produces images that are considerably different from those used to 

evaluate the model; thus, it must be done carefully. 
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(a) Original Image                                        (b) Vertical Flip 

         

                                       (c) Horizontal Flip                     (d) Random Right Angle Rotation 

Figure 19: Image Augmentations 

The question that arises is, “What is the impact of augmentation on prediction accuracy?” 

Extending the training dataset with different augmentation approaches and seeing which 

improves performance the most can help answer the above question. However, it is time-

consuming and must be done with care to ensure that the augmented images do not differ much 

from the images used to evaluate the model as it can have a negative impact. Augmentations must 

only be applied to the training set. Validation and test sets aim to evaluate the model's 

performance in a realistic application. Therefore, duplicated images may artificially enhance 

performance measures.  

Several geometric augmentation strategies include vertical and horizontal flipping, and random 

right-angled rotations. Figure 19 shows an example of these augmentations applied to an LBP 

image. Vertical and horizontal flipping are simple image augmentation techniques that flip the 
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input image either vertically or horizontally. Right-angled rotation is an image augmentation 

strategy that rotates the image by 90 degrees. To analyze the impact of these geometric 

augmentations on the detection accuracy of IFD-Net, we carry out experiments with augmented 

data and the original data. Section 4.2 discusses the impact of using these geometric 

augmentations on the prediction accuracy of the IFD-Net.  Before discussing the impact of these 

geometric augmentations, let us first go through the architectures of both IFD-Net and the IFL-

Net.  

3.6 Classification Using ResNet-50 

In discriminative tasks, deep learning models have made amazing progress. Deep network 

architectures, sophisticated processing, and access to massive data have all contributed to this. 

Thanks to the convolutional neural network discovery, deep neural networks have been 

effectively applied to Computer Vision applications such as object detection, image classification, 

and image segmentation. The spatial properties of images are preserved using parameterized, 

sparsely connected kernels in these neural networks. Convolutional layers down sample images' 

spatial resolution while growing the depth of their feature maps progressively. 

Deep neural networks with additional layers allow a deep neural network model to contain more 

parameters, which increases the degree of freedom of the model. The ability to learn additional 

complex features will increase as the model becomes more complex. When a neural network is 

given complete freedom to choose parameters without regularization, the likelihood of a global 

minimum is reduced, and the model instead finds local minima. As a result, regularization 

approaches effectively regulate the most in-depth neural networks and attempt to avoid model 

over-fitting behavior. However, even after using regularization methods, the model can still 

overfit. To avoid such behavior while maintaining the benefits of deep neural networks, 

researchers have devised a novel architecture known as Residual Network [95]. 

The vanishing gradients problem, in which gradients at the last layer cannot propagate back to 

the initial layers, is one of the most severe issues with deep neural networks. As a result, learning 

will be protracted and ineffective. Shortcut connections in Residual blocks (identity block shown 

above in Figure 20) allow a model to learn the input’s identity mapping quickly. The shortcut 
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connections also aid in carrying gradients back to starting layers without the issue of vanishing 

gradients. The problem of class imbalanced data in real-world applications is quite prominent 

and can make neural networks biased towards the majority class in the dataset. Ding et al. [96] 

performed various experiments on very deep CNN architectures (like 50 layers) to determine 

their performance on imbalanced datasets. They observed that as deeper neural networks have 

more local minimums with acceptable performance, it becomes easier for gradient descent to 

find acceptable solutions. Thus, we use the ResNet-50 architecture (pre-trained) rather than a 

simpler network such as AlexNet [97] for the binary classification of images as forged or pristine. 

Figure 32 in the Appendix shows the overfitting behavior of AlexNet at the task of binary 

classification of the images in the CASIA v2.0 dataset. 

 

Figure 20: IFD-Net Architecture (ResNet-50) 
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The ResNet-50 model consists of a total of 50 layers. These layers are grouped together in 

residual blocks of 3 layers, as shown in  Figure 20. There are two types of residual blocks: the 

convolutional block and the identity block. Both the blocks consist of a 1x1 convolutional layer, a 

3x3 convolutional layer, and finally, a 1x1 convolutional layer at the end. The output of the first 

two layers undergoes batch normalization followed by the RELU activation function. However, 

the output of the 3rd layer is first batch normalized, then added together with the shortcut 

connection, and then goes through the RELU activation function as shown in Figure 20. In the 

identity block, the input to the block is added to the output of the last layer using the shortcut 

connection. However, unlike the identity block, the shortcut connection consists of a 1x1 

convolution layer in the convolutional block. This 1x1 convolutional layer in the shortcut 

connection helps adjust the number of channels and the resolution before the adding operation. 

Multiple convolutional and identity blocks are used in conjunction with each other to form the 

ResNet-50 architecture, as shown in Figure 20. The final output layer is a Dense layer with a 

Softmax activation function that outputs the class probabilities. This architecture is in accordance 

with the ResNet-50 architecture as proposed by He et al. [95]. 

The IFD-Net v1 and v2 have the same network architecture as shown above in Figure 20. 

However, the input differs in both cases. The IFD-Net v1 uses Cr + LBP images as inputs to the 

ResNet-50 model. Similarly, the IFD-Net v2 uses Noiseprint + AHE images as inputs to the ResNet-

50 model. Then these inputs are used to train the ResNet-50 model and classify the test images 

as forged or pristine.  

In addition to forgery detection, we also analyze the problem of forgery localization using the 

CASIA v2.0 dataset. The following section describes the various segmentation models used to 

analyze the forgery localization problem. 
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3.7 Segmentation model for Analyzing Forgery Localization 

This thesis presents a convolutional neural network-based image forgery localization 

methodology using Image Segmentation. Image segmentation refers to partitioning the image 

into different segments such that each segment represents a different entity. The IFL-Net uses a 

modified version of U-Net, a convolution neural network developed for the task of biomedical 

image segmentation [98]. In contrast to classification, semantic segmentation necessitates pixel-

level discrimination and a technique to project the discriminative features learned at various 

stages of the encoder onto the pixel space.  

As discussed in Section 2.5, class imbalanced data makes it difficult for neural networks to 

generalize well as they tend to get more biased towards the majority class. However, Ding et al. 

[96] show the error surfaces of deep neural networks exhibit better training convergence 

properties than shallower neural networks. They show that as deeper neural networks have more 

local minimums with acceptable performance, it becomes easier for gradient descent to find 

acceptable solutions. Thus, to apply this to semantic segmentation for localizing the forged 

regions in forged images, we propose a modified U-Net architecture that uses a deep ResNet-34 

model as the encoder of the modified U-Net. Additionally, ResNet-34 is used as the encoder of 

the U-Net model because of its ability to tackle the vanishing gradients problem in deep neural 

networks. ResNet-34 uses shortcut connections that aid in carrying the gradients back to the 

initial layers without the issue of vanishing gradient problem. Thus, it is used as the encoder of 

the modified U-Net model. Figure 21 and Figure 22 show the proposed architecture of the 

modified U-Net, and Figure 23 shows the original architecture of U-Net.  
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Figure 21: Convolutional and Identity residual blocks for Modified U-Net 

 

The ResNet-34 [95] encoder in the modified U-Net first applies a convolutional layer to the input 

data with 64 filters (same as the original U-Net) with a filter size of 7×7 pixels. Filter size is the 

size of the filter that is used to apply the convolutional operation. The output from the above 

layer is passed through a max-pooling layer with stride two, which downsamples (reduces size) 

the input. This is followed by multiple convolutional and identity residual blocks, consisting of 

convolutional, batch normalization, and rectified linear unit (ReLU) layers, as shown in Figure 21 

and Figure 22. This is done in accordance with the ResNet-34 architecture as proposed by He et 

al. [95].  
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Figure 22: Modified U-Net Architecture 
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Figure 23: Original U-Net Architecture 
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The decoder (on the right) follows a similar architecture to the original U-Net. It up-samples the 

output from the encoder to double the spatial resolution (size) and halves the number of feature 

channels by using two 3×3 convolutional layers followed by the ReLU activation layer. These are 

used repetitively to perform up-sampling, and finally, a 1×1 convolutional layer is used to produce 

an output segmentation mask of the same size as the input image. 

To investigate the forgery localization problem, we also make use of other models. One such 

model is the LinkNet. Chaurasia et al. [99] proposed LinkNet, a lightweight and fast segmentation 

network with an intent to utilize the parameters of the neural network more efficiently. The 

results put forward by Chaurasia et al. [99] show that LinkNet is fast and efficient at the task of 

segmentation and matches and at times exceeds the performance of existing models. Another 

model used to investigate the forgery localization problem in this thesis is the PSPNet. Zhao et al. 

[100] proposed the PSPNet that considered the global context of the image for predicting local 

level predictions. The PSPNet was the winner of the ImageNet Scene Parsing challenge 2016. 

Since then, it has been used for segmentation in various other applications such as medical image 

segmentation [101, 102]. Several experiments were carried out to evaluate the performance of 

the proposed method and investigate the forgery localization problem. These experiments have 

been discussed in detail in the next chapter. 
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Chapter 4 

Experimental Results  

In this Chapter, extensive experiments are performed to illustrate the efficiency of the IFD-Net 

and analyze the obstacles in the localization of forged regions. The main goal of these 

experiments is to study the quality of classification and discuss the reasons behind the difficulties 

faced in the localization of forged images using the models mentioned in Chapter 3. 

4.1 Experimental Setup 

In this thesis, all the experiments are carried out on the complete CASIA v2.0 dataset. The dataset 

consists of 7491 pristine and 5123 forged color images in the JPEG and TIFF formats, ranging from 

240 x 160 to 900 x 600 pixels. Out of the 5123 forged images, 1756 forged images are spliced 

images, and the rest are copy-move forged images. All the forged images in the CASIA v2.0 

dataset are post-processed to increase detection and localization difficulty. For training the IFD-

Net, we use 5/6 of the pristine and forged images, and the remaining 1/6 of these images are 

used to test the trained model. This data split is done according to the methods in Table 4 so that 

a valid comparison of their performances can be made. The test set consists of unseen images 

that are only used to evaluate the performance of the trained model. As there is no validation 

split of the dataset, we do not tune the hyperparameters and use the standard hyperparameter 

values for the IFD-Net as mentioned in Section 4.2. 

For the localization experiments, we use the IFL-Net along with two other segmentation models 

LinkNet and PSPNet. As we train these models on the CASIA v2.0 dataset, we divide the dataset 

into the train, validation, and test sets in the ratio 70:10:20, ensuring that all the models have 

the same train and test data. Thus, the validation set is used for tuning the hyperparameter 

values for each of the three models.  

Once both the IFD-Net and the IFL-Net have been trained, they are evaluated on unseen images 

not part of the training set. Then, they are compared with the existing methods using the 

accuracy metric for the IFD-Net and the F1 and Intersection over Union (IoU) metrics for the IFL-

Net. 
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All the experiments were performed on a computer with 2.6 GHz Intel(R) Core(TM) i7-10750H 

CPU with 16 GB RAM and NVIDIA GeForce RTX 2070 GDDR6 @ 8 GB (256 bits) GPU. 

4.2 Image Forgery Detection using ResNet-50 

Pretrained ResNet-50 model is used in the IFD-Net to detect forged images in the CASIA v2.0 

dataset. All the forged and authentic images in the train and test sets are converted from the 

RGB color channel to the YCbCr color channel. Then only the Cr channel is extracted from these 

images and passed to the next step for calculating the LBP. For calculating the LBP, the following 

values as recommended by many other researchers are used for the parameters in Equation 9 in 

Section 3.3: p is the number of neighborhood pixels set to 8, and r is the radius of the 

neighborhood set to 1 [103, 104]. The generated LBP images are resized to 224 x 224 pixels to 

maintain the same size over the train and test sets. 224 x 224 image size was chosen to resize all 

the images as it is the image size originally used by the authors of the ResNet-50 model to train 

it, and we use this pre-trained ResNet-50 model in the IFD-Net.  

The metric used to evaluate the performance is Accuracy. Accuracy is defined in terms of True 

Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN), as shown in 

Equation 11. Figure 24 shows the confusion matrix that defines true positives, false positives, 

false negatives, and true negatives for forgery detection by IFD-Net. 

 

Figure 24: Confusion Matrix 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(11) 

 

Figure 25 shows the loss and accuracy graphs of the IFD-Net on the CASIA v2.0 dataset. IFD-Net 

makes use of the pre-trained ResNet-50 model as proposed by He et al. [95] along with 

hyperparameters such as Adam optimizer, learning rate as 0.0000002, and batch size as 32. When 

training deep neural networks, a batch size of 32 is a good value, as recommended by Bengio 

[105]. When using a pre-trained model for a given task, it is suggested to use a small learning rate 

[106]. As the IFD-Net uses a pre-trained ResNet-50 model, we use a small learning rate of 

0.0000002. Thus, these standard hyperparameter values are used, and no hyperparameter 

tuning is performed as there is no validation split in the dataset. Also, binary labels are used for 

both train and test sets for the IFD-Net as it is a binary classification problem. We make use of 

ImageDataGenerator class from the Keras library. ImageDataGenerator is an inbuilt method of 

the Keras library in Python that helps provide binary labels for the images and iterating over the 

train and test sets. To analyze the impact of geometric augmentations on the IFD-Net, we also 

experiment by applying various geometric augmentations such as rotation, vertical flipping, and 

horizontal flipping. Figure 26 shows the loss and accuracy graph of IFD-Net on the CASIA v2.0 

dataset when using these geometric augmentations.  

Comparing the graphs in Figure 25 and Figure 26, we see that the model trained without 

geometric augmentations converges faster. When geometric augmentations are used on the 

data for training IFD-Net, the loss is higher (around 26 %), as seen in Figure 26. Also, using 

augmentations has no improvement in the detection accuracy of IFD-Net. The accuracy achieved 

by the model without geometric augmentations is 91.35 %, whereas the accuracy with geometric 

augmentations is 89.28 %. Using geometric augmentations makes the model take a more 

significant number of epochs1 to converge and thus makes it computationally more expensive. 

Thus, using geometric augmentations such as flipping and rotation for this task on the CASIA v2.0 

is not beneficial and is more computationally expensive.   

 
1 An epoch is one complete pass of the entire dataset through the neural network. 
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Figure 25: Loss & Accuracy Graph, CASIA v2.0 Dataset 

 

Figure 26: Loss & Accuracy Graphs on CASIA v2.0 dataset with augmentations 
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Figure 27 shows the impact of RGB, Noiseprint, Cr channel, and LBP images on the detection 

accuracy of IFD-Net on the CASIA v2.0 dataset. The detection accuracy is the lowest when using 

RGB images. This is because most image forgers use the RGB color space to forge images and 

apply post-processing operations to hide the traces of forgery by smoothening the edges of the 

forged region. Using the noise residual maps generated using Noiseprint does improve the 

accuracy; however, it is still low. As discussed in Section, Noiseprint captures the camera-specific 

noise-based fingerprints from images. In spliced images, as the forged region belongs to a 

different image with a different noise fingerprint, the noise residual map can highlight the 

difference between the forged region and the original image. However, in copy-move forged 

images, these camera-specific fingerprints remain the same throughout the image as the copy-

move forged region belongs to the same image. Thus, the noise residual map that Noiseprint 

outputs for a copy-move forged image will be like the noise residual map of its original image as 

both have the same camera-specific noise-based fingerprint. This can be observed in the Figure 

33 in the Appendix. Thus, when these noise residuals maps are used for detecting forged and 

pristine images, the IFD-Net misclassifies many copy-move forged images as pristine images 

because the noise residual map does not show any significant variation in the fingerprints in both 

pristine and copy-move forged images. It can be seen from Figure 27 that the detection accuracy 

of Cr channel images is much higher than in the previous two cases. The edge sensitivity and 

sharpness of the forged objects are more noticeable in the chroma channels like the Cr channel. 

Even though image forgers try to hide and smoothen the edges of forged objects in the RGB color 

space, some traces of forgery (such as rough edges) are left in the chrominance channels. This 

helps the IFD-Net to classify images in the CASIA v2.0 dataset as forged or pristine more 

effectively. The detection accuracy is highest in the case of CR + LBP images. When the LBP 

operator is applied to each Cr channel image, it sharpens the rough edges of the forged object 

and the micro-edges inside the forged object in the CR channel images. This makes the edges of 

the forged object more prominent because of LBP’s ability to highlight micro-patterns. Thus, Cr 

+ LBP images perform the best amongst all other types of images used, as shown in Figure 27.    
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Figure 27: Effect of Noiseprint, Cr Channel and LBP on detection accuracy on CASIA v2.0 

We also compare the forgery detection accuracy of the IFD-Net with other methods on the CASIA 

v2.0 dataset. Table 4 provides this comparison of IFD-Net with other methods. None of these 

methods that we compare use a pre-trained model. The IFD-Net performs better than the 

methods proposed by Sutthiwan et al. [107] and Zhongwei et al. [108]. However, its detection 

accuracy is just a little less than the method proposed by Li et al. [109].  

Table 4: Detection Accuracy Comparison with other methods on CASIA v2.0 dataset 

Method Feature Extractor Average Test 

Accuracy (%) 

Sutthiwan et al. [107] Markovian Rate Transform 79.74 

Zhongwei et al. [108] Markov + DCT + DWT 89.76 

Li et al. [109] Markov + QDCT 92.38 

IFD-Net v1 Cr + LBP + ResNet-50 91.35 

 

The performance of IFD-Net v1 is at par with all the other techniques it is compared with. Also, 

the IFD-Net v1, which uses Cr + LBP images, performs better than IFD-Net v2, which uses the 

https://www.sciencedirect.com/science/article/abs/pii/S0031320312002440?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S0031320312002440?via%3Dihub#!
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noise residual maps extracted using the Noiseprint model. Several experiments were conducted 

to analyze the localization of forged regions in the forged images present in the CASIA v2.0 

dataset that are discussed in the next section. 

4.3 Analysis of Forgery Localization 

The IFL-Net and other deep learning models such as LinkNet and PSPNet have been used to 

investigate the localization of forged regions in forged images, as discussed in Section 3.7. Like 

the forgery detection method where the Cr channel is extracted and LBP is applied, the forgery 

localization method follows the same procedure. The same parameters are used for calculating 

the LBP as used in IFD-Net.  

The IFL-Net is used along with the hyperparameters, such as the initial batch size of 32, the Adam 

optimizer, and the learning rate set to 0.0007. These hyperparameters were chosen after tuning 

the hyperparameters on the validations set, as shown in Table 7 in the Appendix. The images are 

resized to 256 x 256 pixels to maintain the same size over the train and test sets for IFL-Net and 

LinkNet. However, as PSPNet accepts image sizes which are a multiple of 48, the images are 

resized to 240 x 240 pixels for the PSPNet experiments.     

The performance metrics used to evaluate the performance of the models mentioned above are 

𝐹1 score and Intersection over Union (IoU). The harmonic mean of recall and precision is known 

as 𝐹1 score. First, the True Positives (TP), False Positives (FP), True Negatives (TN), and False 

Negatives (FN) are calculated to calculate the recall and precision, which are then further used 

to calculate the F1 score. In addition, the metric IoU, also known as the Jaccard Index, is used to 

quantify the percent of overlap between the ground-truth mask and the predicted mask. From 

Equation 16 and 19, we can see that both the F1 score and IoU look similar. In comparison to the 

F1 score, IoU penalizes individual instances of misclassifications more than the F1 score. The F1 

score tends to provide a measure closer to the average performance as it is the weighted average 

of precision and recall. IoU and the F1 score are always within a factor of 2 of each other, as 

shown in Equation 20. The terms 𝑦𝑖
𝑡𝑟𝑢𝑒 and 𝑦𝑖

𝑝𝑟𝑒𝑑 in the following equations refer to the ground 

truth labels and the predicted labels, respectively.   
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𝑇𝑃 = ∑ 𝑦𝑖
𝑡𝑟𝑢𝑒 ∗ 𝑦𝑖

𝑝𝑟𝑒𝑑

𝑛

𝑖=1

 (12) 

𝑇𝑁 = ∑(1 − 𝑦𝑖
𝑡𝑟𝑢𝑒) ∗ (1 − 𝑦𝑖

𝑝𝑟𝑒𝑑) 

𝑛

𝑖=1

(13) 

𝐹𝑃 = ∑(1 − 𝑦𝑖
𝑡𝑟𝑢𝑒) ∗ 

𝑛

𝑖=1

𝑦𝑖
𝑝𝑟𝑒𝑑 (14) 

𝐹𝑁 = ∑ 𝑦𝑖
𝑡𝑟𝑢𝑒 ∗ (1 − 𝑦𝑖

𝑝𝑟𝑒𝑑) 

𝑛

𝑖=1

(15) 

 

𝐹1  = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 =  𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (16) 

Where,  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(17) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(18) 

 

𝐼𝑜𝑈 =
𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑢𝑛𝑖𝑜𝑛
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (19) 

 

𝐹1

2
≤  𝐼𝑜𝑈 ≤ 𝐹1 (20) 

 

The forged images in the CASIA v2.0 dataset are highly class imbalanced, as discussed in Section 

2.5. As discussed in Section 2.6, various loss functions such as dice loss and weighted binary-cross 

entropy loss are used to give more importance to the minority class. Figure 28 and Figure 29 

show the loss and F1 score graphs of IFL-Net when using the weighted binary-cross entropy loss.  

These graphs show that the IFL-Net overfits the data while training and thus will not generalize 

well.  
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Figure 28: IFL-Net Training & Validation Loss Graph, CASIA v2.0 Dataset 

 

Figure 29:IFL- Net Training & Validation F1 score Graph, CASIA v2.0 Dataset 

 

However, to further investigate this issue, we also conduct experiments using other models like 

LinkNet and PSPSNet. Figure 30 and Figure 31 show the F1 score graphs of the models LinkNet 

and PSPNet when using the WBCE Loss. It can be observed from these graphs that even these 

models are overfitting. We also compare the localization performances of the IFL-Net, LinkNet, 
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and PSPNet while using the WBCE and Dice loss functions. Table 5 and Table 6 compare their 

performance on the test data. These tables show that all three models do not localize well, as 

represented by the low F1 and IoU scores. 

 

Figure 30: LinkNet Training & Validation F1 score graph 

 

Figure 31: PSPNet Training & Validation F1 score graph 
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Table 5: Localization Model Comparison, WBCE Loss 

Model Test 𝑭𝟏 

Score 

Test  

IoU 

LinkNet 0.4316 0.2828 

PSPNet 0.3419 0.2148 

IFL-Net 0.4328 0.2855 

 

Table 6: Localization Model Comparison, Dice Loss 

Model Test 𝑭𝟏 

Score 

Test        

 IoU 

LinkNet 0.4562 0.3025 

PSPNet 0.4399 0.2909 

IFL-Net 0.4340 0.2858 

 

Several attempts to adjust the hyperparameters, such as the learning rate, were carried to adjust 

the training of these models. However, no significant improvement was observed, as shown in 

Table 8 and Table 9. One reason for the overfitting of all these models is the high-class imbalance 

in the images of the CASIA v2.0 dataset. When there is a class imbalance in training data, learners 

are more likely to overclassify the majority class because of its higher prior probability. The high 

imbalance caused by the majority class leads to the majority class accounting for most of the 

model’s loss. As a result, pixels of the minority class are misclassified more frequently than pixels 

of the majority class. Using the dice loss and weighted binary cross-entropy loss functions that 

focus more on the minority class show only a slight improvement, as seen from the results in 

Table 5 and Table 6. A recent study by Li et al. [110] shows that it is not difficult for a neural 

network to predict the minority classes without benefitting from these loss functions during 
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training due to overfitting. It is observed that the above-trained models did overfit and, in fact, 

in many cases overclassified the majority class, thus misclassifying the minority class. Figure 34 

in the Appendix shows that the trained model overclassifies the majority class and misclassifies 

the minority class. Thus, we can conclude that deep learning-based image segmentation models 

such as the modified U-Net, LinkNet, and PSPNet do not perform well at image forgery 

localization on the CASIA v2.0 dataset because of the high-class imbalanced data. Also, further 

work on handling highly imbalanced data by deep learning models is required, which can help 

solve such localization problems in various domains. 

The following section intends to provide an insight into the overall performance of both the IFD-

Net and the IFL-Net, along with the possible improvements that can be made. 

4.4 Discussion 

One can observe from the above-mentioned experimental results in Table 4 that the IFD-Net 

performs better on the CASIA v2.0 dataset compared to most of the related works it is compared 

with. Two versions of IFD-Net were used for the experiments. The first version used LBP to extract 

features, whereas the second version used Noiseprint to extract the noise residual maps that 

were then fed to the ResNet-50 model. IFD-Net v1 performs better than IFD-Net v2 for detecting 

forged images.  

Although IFD-Net has performed well, further experimentation is required to get more 

information about its performance on other image forgery datasets. Analyzing the forgery 

localization problem in the CASIA v2.0 dataset, it is observed that high-class imbalance in the 

forged images causes poor performance of various deep learning-based models. Even using loss 

functions that focus more on the minority class only provides a slight improvement in the 

performance of the models, as shown in Table 5 and Table 6 above. As mentioned by many other 

researchers, deep learning with class imbalanced data is an understudied topic, and more work 

in this direction is required. 

To summarize it all, we can say that the use of Cr + LBP images for forgery detection helped the 

IFD-Net perform well on unseen images compared to other image preprocessing methods, as 

shown in Figure 27. Also, further studies in the direction of class imbalanced data are required to 
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find better solutions to solve the issue of class imbalance with deep learning models. It is evident 

from the experimental results that the IFD-Net and analysis of the forgery localization in the 

CASIA v2.0 dataset address all the research objectives considered at the start of this thesis.  
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Chapter 5 

Conclusion and Future Work 

In this chapter, we conclude this thesis by justifying all the research objectives listed in Chapter 

1 and providing an insight into future work. 

5.1 Conclusion 

There are many challenges to overcome when implementing a solution for image forgery 

detection and localization. Existing solutions based on deep learning do provide decent forgery 

detection, but their performance is not satisfactory for forgery localization. With the recent 

advancements in powerful computers and the rise of deep learning, it has been possible to use 

various deep neural network architectures in varied domains. However, deep learning in the 

context of imbalanced class datasets is still understudied. Thus, this thesis presents a texture-

based solution for image forgery detection and analyzes the performance of various deep 

learning models at the task of localization of forged images.  

The main objective of this thesis was to provide an image forgery detection method that can 

efficiently differentiate forged images from pristine images. Moreover, in accordance with 

Section 1.3, the following objectives were successfully obtained: 

- Proposing a well-structured image forgery detection architecture based on textural 

features using a pre-trained ResNet-50 model. The steps of our methodology to achieve 

this objective were presented in Section 3.6. With the help of these steps, we explain how 

we use the textural features using LBP in classifying the images in the CASIA v2.0 dataset 

as forged or pristine using a pre-trained ResNet-50 model. We also explore the avenue of 

utilizing the noise residual maps of the images using Noiseprint as an input to the pre-

trained ResNet-50 model for image forgery detection. 

- Using an ablation study in Section 4.2, we show the positive impact of using LBP at image 

forgery detection when compared with other image preprocessing methods. This is used 

to show how can the textural inconstancies introduced in an image because of the forgery 

operation be used to classify images as forged or pristine. 
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- Analyzing the performance of the modified U-Net architecture and other deep learning 

models like LinkNet and PSPNet to investigate why these deep learning models face 

difficulties in localizing the forged regions in the forged images of the CASIA v2.0 dataset. 

Section 4.3 puts forward the reasons behind the performance of these models at the task 

of forgery localization and suggests that more study in this direction is required. 

In summary, this thesis presents an image forgery detection and localization method based on 

textural features and deep learning models. The IFD-Net can be used in various applications to 

distinguish between a forged image and a pristine image. This method can help reduce the spread 

of fake news and fake images that intend to change public opinion. Several experiments are 

carried out on the benchmarked dataset CASIA v2.0 to investigate why various deep learning 

models find it difficult to localize the forged regions in the forged images. 

5.1 Future Work 

In addition to the work presented in this thesis, the following directions can be explored as future 

work: 

- To study how the performance of IFD-Net can be further improved at detecting images 

as forged of pristine. This can help improve the ability of IFD-Net to detect different kinds 

of image forgeries and further prevent the spread of fake news and misinformation. 

- Deep learning from class imbalanced data is still understudied, and further work in this 

direction can be beneficial for applying deep learning in various domains. Thus, further 

studying class imbalance in datasets to devise solutions that can improve the 

performance of deep learning models on highly imbalanced datasets.  
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Appendix 
 

Figure 32 shows the loss and accuracy plots of AlexNet for classifying images of the CASIA v2.0 

dataset as forged or pristine. 

 

 

Figure 32: AlexNet performance on CASIA v2.0 
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Figure 33: Noiseprint Image of pristine and forged images 
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Table 7: Some hyperparameter settings experimented for IFL-Net 

Input Size Loss Function Learning Rate Validation 

𝑭𝟏 Score 

Validation 

IoU 

256 x 256 WBCE 0.0007 0.5496 0.3835 

256 x 256 WBCE 0.00001 0.2437 0.1204 

256 x 256 Dice Loss 0.0007 0.5027 0.3411 

 

Table 8: Some hyperparameter settings experimented for LinkNet 

Input Size Loss Function Learning Rate Validation 

𝑭𝟏 Score 

Validation 

IoU 

256 x 256 WBCE 0.0007 0.4829 0.3231 

256 x 256 WBCE 0.00001 0.2896 0.1437 

256 x 256 Dice Loss 0.00007 0.3504 0.2167 

256 x 256 Dice Loss 0.0007 0.5041 0.3454 

 

Table 9:Some hyperparameter settings experimented for PSPNet 

Input Size Loss Function Learning Rate Validation 

𝑭𝟏 Score 

Validation 

IoU 

240 x 240 WBCE 0.00001 0.1673 0.1232 

240 x 240 WBCE 0.0007 0.4080 0.2617 

240 x 240 Dice Loss 0.0007 0.5483 0.3853 

240 x 240 Dice Loss 0.00001 0.3371 0.1958 
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(a) Predicted Mask                                          (b) Ground Truth Mask 

 

(c) Predicted Mask                                          (d) Ground Truth Mask 

 

(e) Predicted Mask                                          (f) Ground Truth Mask 

Figure 34: IFL-Net Forgery Localization Predicitons 
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