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Résumé

Plusieurs avancées utilisant le discours obtenu de la tâche de description d’image ont été
réalisées dans la détection de la maladie d’Alzheimer (AD). L’utilisation de caractéristiques
linguistiques et acoustiques sélectionnées manuellement ainsi que l’utilisation de méthodolo-
gies d’apprentissage profond ont montré des résultats très prometteurs dans la classification
des patients avec AD. Dans ce mémoire, nous comparons les deux méthodologies sur
la scène Cookie Theft du Boston Aphasia Examination en entrainant des modèles avec
des caractéristiques sélectionnées à partir des extraits textuels et audio ainsi que sur un
modèle d’apprentissage profond BERT. Nos modèles sont entrainés sur l’ensemble de
données ADReSS challenge plus récent et évaluées sur l’ensemble de données CCNA et vice
versa pour mesurer la généralisation des modèles sur des exemples jamais vus dans des
ensembles de données différents. Une évaluation détaillée de l’interprétabilité des modèles
est effectuée pour déterminer si les modèles ont bien appris les représentations reliées à la
maladie. Nous observons que les modèles ne performent pas bien lorsqu’ils sont évalués
sur différents ensembles de données provenant du même domaine. Les représentations
apprises des modèles entrainés sur les deux ensembles de données sont très différentes, ce
qui pourrait expliquer le bas niveau de performance durant l’étape d’évaluation. Même si
nous démontrons l’importance des caractéristiques linguistiques sur la classification des AD
vs contrôle, nous observons que le meilleur modèle est BERT avec un niveau d’exactitude
de 62.6% sur les données ADReSS challenge et 66.7% sur les données CCNA.

Mots-clés: Traitement automatique des langues, Apprentissage machine, Maladie d’Alz-
heimer, Apprentissage par transfert
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Abstract

Many advances have been made in the early diagnosis of Alzheimer’s Disease (AD) using
connected speech elicited from a picture description task. The use of hand built linguistic
and acoustic features as well as Deep Learning approaches have shown promising results
in the classification of AD patients. In this research, we compare both approaches on
the Cookie Theft scene from the Boston Aphasia Examination with models trained with
features derived from the text and audio extracts as well as a Deep Learning approach using
BERT. We train our models on the newer ADReSS challenge dataset and evaluate on the
CCNA dataset and vice versa in order to asses the generalisation of the trained model on
unseen examples from a different dataset. A thorough evaluation of the interpretability of
the models is performed to see how well each of the models learn the representations related
to the disease. It is observed that the models do not perform well when evaluated on a
different dataset from the same domain. The selected and learned representations from the
models trained on either dataset are very different and may explain the low performance
in the evaluation step. While we demonstrate the importance of linguistic features in the
classification of AD vs non-AD, we find the best overall model is BERT which achieves a
test accuracy of 62.6% on the ADRess challenge dataset and 66.7% on the CCNA dataset.

Keywords: Natural language processing, Machine learning , Alzheimer’s disease, Trans-
fer learning
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Chapter 1

Introduction

Alzheimer disease (AD) is the most common form of Dementia. It is a neurodegenerative
disease that destroys brain cells causing irreversible language and memory loss over time
[20]. It mostly affects people in their 60’s and 70’s but in a small percent it can affect much
younger people in their 30’s and 40’s. According to the 2020 annual report by the Canadian
Public Health Agency, more than half a million Canadians are affected with Dementia with
two thirds being women [21]. The annual cost associated with treatment for Dementia is
expected to be $16.6 billion by 2031 [21].

Currently, the most common diagnostic tool is based on the results to a battery of
neuropsychological tests assessing cognition. One of the most common neuropsychological
diagnostic test to asses speech production used is the picture description task. This task
requires a patient to describe everything they see in a specific image to extract connected
speech (CS). The analysis of CS has shown that specific linguistic biomarkers can be apparent
between Healthy Controls (HC) and AD patients as shown by Slegers et al [28]. The use of
modern technology such as Machine Learning and Natural Language Processing (NLP) has
been used to extract and help identify those specific biomarkers characterising the disease.
The addition of Machine Learning in the diagnosis can not only help identify AD patients
faster and earlier but can also help identify new linguistic patterns characterising AD. These
Machine Learning approaches use hand built feature sets created from prior knowledge of
how the disease affects changes in the syntax and content of speech. It has been shown that
these features perform quite well when fed into Machine Learning models, but some of these
features are very specific to the type of image used during the test. This causes the model to
be very domain specific which has led to the use of Deep Learning approaches which helps
alleviate this by learning the representations directly from the text derived from the CS.

Currently, the state of the art for language models uses very large Deep Learning models
with millions of parameters on the most common NLP tasks [26]. For these models to
generalize well, a very large number of examples are needed to avoid overfitting. Since, the



datasets used in AD prediction are extremely small, with only a few hundred examples, we
are faced with an issue that makes the application of such models slightly more challenging.
This is a common problem in many areas of medical research, as it is quite difficult and
time consuming to collect data. This is where a technique called Transfer Learning could be
beneficial, which consists in training a model on a very large dataset typically not necessarily
related to the domain of the targeted tasks, then fine tuning it using the target dataset, often
much smaller than the training dataset [32]. BERT is an example of such a model and has
been shown to generalise quite well on the most common NLP tasks [8]. This could help
resolve the ability to use Deep Learning to classify the small datasets without causing the
model to potentially overfit.

The majority of research in the past years has been performed on the Dementia Bank
corpus for the binary classification of AD vs HC [29]. One inconvenience to publishing with
this dataset is that it does not contain a test set for standardisation of the publication of re-
sults. This has raised the question of the reproductibility and comparability of the published
results. Also, a lack of standardization of the use of the data across publications brings to
question the comparability of the results. In 2020, the ADReSS challenge dataset resolved
the issue of lack of standardization by creating a standardized version of the Dementia Bank
corpus which includes a clear training and test set [17].

Given the sparsity of the data, the training set of the ADReSS challenge dataset is
extremely small which raises the question of whether we can expect the model to generalize
well on CS extracted from a different dataset from the same domain. This is an important
question as this would demonstrate the true power of the models proposed in a real world
application.

Balagopalan et al [3] trains classical machine learning models with the most common
feature set in AD prediction compared to a model trained with BERT on the ADReSS
challenge dataset. This created an excellent baseline to use to compare results on this new
dataset. We thus propose to replicate the "To BERT or Not To BERT: Comparing Speech
and Language-based Approaches for Alzheimer’s Disease Detection" [3] paper in order to
validate how well the new ADReSS challenge dataset helps with standardization in this
field.

In this thesis we also propose to resolve this question by training on the ADReSS chal-
lenge dataset and evaluating them on both the test set from the ADReSS challenge and
the Canadian Consortium on Neurodegeneration in Aging (CCNA) datasets, which includes
data from AD and Subjective Cognitive Impairment, meaning that they have noticed po-
tential cognitive changes but the tests show that cognition is normal (i.e: healthy) [2], and
vice versa as cross dataset evaluation step. The ADReSS challenge dataset refers to their
HC as non-AD and we will refer to both groups as Cognitive Healthy Controls (CHC). Both
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the ADReSS challenge and CCNA datasets have been extracted by two completely different
research groups.

The main objectives of this thesis are firstly to reproduce the paper from Balagopalan et
al [3] in order to evaluate if the ADReSS dataset proposed helps with the standardization
of results in the field. The second objective is to evaluate the power of generalization of
the ADReSS dataset given its small size by performing a cross data evaluation step, where
we train on the ADReSS dataset and not only use the test set from the ADReSS challenge
dataset for evaluation but also the CCNA dataset. The opposite will also be performed
where we train on the CCNA dataset and evaluate on the ADReSS dataset. We believe this
is a crucial step to determining if the models generalize well to unseen examples given such
a small dataset for training and whether the trained models are transferable to new dataset
of the same domain.

The use of the most common acoustic and linguistic features in the literature will be ap-
plied to Machine Learning models as well as the use of BERT to make a thorough comparison
of both Machine Learning vs Deep Learning techniques.

Chapter 2 will dive deeper into the features extracted for the application of the Machine
Learning models. Chapters 3 and 4 will focus on the experimental setup and the results
extracted. Finally, Chapter 5 will conclude and elaborate on future directions.

1.1. Related Work
There have been many publications on the classification of HC and AD patients using

their CS extracts. Many have concentrated their efforts on utilising features derived from the
different biomarkers identified from the CS of affected patients, while others have chosen to
utilise Deep Learning techniques to classify affected patients directly from the text derived
from the CS.

Orimaye et al [22] used 242 AD patients and 242 HC from the Dementia Bank corpus and
achieved a 74% F1-score with SVM. They extracted a set of linguistic features with the addi-
tion of features extracted from the CHAT annotations that are different symbols representing
for example: pauses, repetitions, mispronunciations, etc. This makes the methodology less
extendable in a real world situation as the CHAT annotations are manually derived from the
audio files, therefore increasing the potential bias in the model as well as the dependency on
using the specified CHAT format for extracting text from audio files.

Fraser et al [9] utilised 370 linguistic and acoustic features extracted from 240 AD patients
and 233 HC from the Dementia Bank corpus trained with a logistic regression model. Using
10-fold cross validation they achieved a mean accuracy across all folds of 81.92% using only
the top 35 selected features in each fold. They demonstrated that the models perform
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relatively the same on the validation set until selecting 50 or more features out of the 370
where it drops drastically in accuracy.

Ammar et al [4] used 242 AD patients and 242 HC from the Dementia Bank corpus to
extract linguistic features from automatically transcribed text from audio extracts. They
achieved an accuracy of 79% with an SVM.

Hong et al have [11] trained a bidirectional LSTM with multiple attention layers on
242 HC and 257 AD from the Dementia Bank corpus. Using 10-fold cross validation they
achieved a mean accuracy of 83.35%.

Firtsch et al [10] trained an LSTM on 255 AD patients and 244 HC from the Dementia
Bank corpus. The predictions of patients was determined based on the perplexity of the
picture descriptions on both a HC language model and AD language model. Using the
perplexity values it allowed them to classify with an accuracy of 85.6%.

Karlekar et al [15] trained a CNN-LSTM on 208 AD patients and 243 HC from the
Dementia Bank corpus. The transcripts of each patient was separated by utterances to
generate more data samples of 11458 AD and 2904 HC. They achieved an accuracy of 84.9%
without adding the POS tag data. By adding the POS-tag data to the model they achieved
an accuracy of 91.1%.

Pan et al [23] trained a hierarchical Bi-LSTM with attention on 222 HC and 255 AD
patients from the Dementia bank corpus. Using 10-fold cross validation to split training,
test and development sets, they achieved 84.43% F1-score on the manual transcriptions.

Chen et al [7] trained a hybrid model using a CNN and a GRU with an attention mech-
anism on 256 AD patients and 242 HC from the Dementia Bank corpus. They also allow
the training of the embedding layer which improves significantly the accuracy of the model.
Using 10-fold cross validation they achieved a mean accuracy across all folds of 97.42%.

As one can see from the above related works, there is a significant discrepancy in the
number of HC vs AD patients used on the same Dementia Bank dataset. Also, there is not
a clear test set and the results are sometimes reported on the validation set which could
cause, without purposefully doing so, the optimization of the model on the test set leading
to overly optimistic results. Furthermore, the lack of a proper test set makes the results very
hard to compare across methodologies as simply the random seed and number of examples
has a significant effect on model training and therefore results.

Very recently in 2020, Haider et al [17] saw this discrepancy and elaborated a new
dataset solving these problems called the ADReSS challenge dataset. This dataset removes
the duplicate candidates, standardizes the age and has a clear test set with specific rules for
publication. This is an excellent step in standardizing the further publications but comes
with a drastic reduction in the number of samples to train on to only 108 examples and a
test set of 48 examples.
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Balagopalan et al [3] set out to use this new ADReSS challenge dataset and compare
both classical Machine Learning models trained on linguistic and acoustic features to a Deep
Learning approach trained on the raw text extracts. Using 10-fold cross validation to train
their models, they achieved 81.3% accuracy using a RBF-SVM and 83.3% using BERT on
the test set.

Furthermore, as we can see from the current related work, the test results are published
on data from the same dataset. This raises the question given such a small sample size how
well does the model generalize to new unseen examples extracted from a different group on
the same domain.

Therefore, we propose to use the experimental set up from Balagopalan et al [3] and
expand it by analysing the importance of the derived features and the learned attentions
patterns from BERT. We will then also evaluate the best models trained on the ADReSS
challenge dataset on a different test set from CCNA in order to evaluate how well the
trained models generalize to unseen examples. We believe that this is a paramount step in
determining the true potential of the described models in the literature and how well these
could work in a real world application.

1.2. Data
In this research, we use both the ADReSS challenge dataset and the CCNA dataset 1.

Both datasets are descriptions of the Cookie Theft scene from the Boston Aphasia Exami-
nation [25] as shown in Figure 1.1. Both datasets contain the manual text extractions from
audio and the raw audio files. They both differ in the mean age and gender distribution.
They also differ in the technique used to manually transcribe the audio files into the text
extracts. The ADReSS challenge Dataset utilises the CHAT protocol which adds extra an-
notations such as exact times of speech from both interviewer and patient and POS tags,
etc [18] while the CCNA dataset only extracts the text verbatim from the audio files with
minimal additional annotations without any information on the time of speech from both
the interviewer and patient.

1.2.1. ADReSS Challenge

The ADReSS challenge dataset is a standardized version of the classical Dementia Bank
dataset from Talk Bank [17]. Each of the audio files are manually transcribed using the
CHAT protocol [18]. The dataset contains only AD and control extracts with an equal
amount of women to men with standardized age gaps. The audio files are normalized for
1Many experiments and analyses were performed in the first part of this research using the Dementa Bank
dataset [29] to replicate the current literature to analyse the inconsistency in the dataset. This thesis will
not be describing these experiments as the ADReSS challenge dataset solves the inconsistency issues in the
aforementioned papers.
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Fig. 1.1. Cookie Theft scene.

noise and Voice Activity Detection (VAD) is used to extract the audio chunks of each
patient audio file. As shown in Table 1.1 the distribution of age and gender between both
HC and AD patients is the same. Here is an example of the input data:

CHC : "well there’s a mother standing there &uh &uh washing the dishes an(d) the sink
is overspilling [: overflowing] [* s:r] an(d) &uh the window’s open . and outside the window
there’s a <walk with a> [//] &c curved walk with a garden . and you can see another &uh
&uh building there . looks like a garage or something with curtains and the grass in the
garden . and there are dishes [//] &uh &uh two cups and a saucer on the sink . and &uh
she’s getting her feet wet from the overflow of the water from the sink . she seems to be
oblivious to the fact that the &s sink is overflowing . she’s also oblivious to the fact that her
kids are stealin(g) cookies out o(f) the cookie jar . and the kid on the stool is gonna fall off
the stool . he’s standing up there in the cupboard takin(g) cookies out o(f) the jar, handin(g)
them to his [//] &uh a girl about the same age . the kids are somewhere around seven or
eight years old or nine . an(d) the mother is gonna get shocked <when the> [/] when the
[//] he tumbles and the cookie jar comes down . an(d) I think that’s about all . [+ exc] "

AD : "okay . [+ exc] &uh we see a [/] &uh a &b little boy climbed up on a stool reaching
for the cookie jar . and &uh the stool <is about to or> [//] is falling .&uh he is trying to
get a cookie for himself and also one for his sister . &uh his sister is telling him to be very
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quiet . she’s goin(g) shh@o . can’t write that down . [+ exc] telling him to be quiet . [+
gram] and &uh let’s see . [+ exc] in the meantime &uh the mother is <washing the dishes
or yes> [//] washing dishes and the sink has &uh overflowed and &uh is pouring water on
the floor . (..) I don’t think I see anything else . [+ exc] okay . [+ exc] "

AD (n =78 ) CHC (n=78)

Age 66.6 (6.8) 66.3 (6.6)

Gender (male/female) 35/43 35/43

Vocabulary size (number different tokens) 1381 1584

Mean utterance length in number of tokens 143.6 139.8

Table 1.1. ADReSS challenge dataset main characteristics.

1.2.2. CCNA

CCNA datasets text extracts are derived from the audio files verbatim with annotations
on whether the patient laughs, coughs, etc [2]. The audio files are not normalized for noise
and volume. From Table 1.2 we can see that the number of both CHC and AD patients is
almost equal. The ratio of male to female is very different between both groups with a lot
more females to males in the CHC group. We can also see from Table 1.2 that the age gap
between AD and controls is still 5 years. Here is an example of the input data:

CHC : "Okay. Um, the boy is taking cookies from the cookie jar, and giving it to a girl,
I am assuming his sister. The stool is about to tip over. It’s a three legged stool. The mother
is washing the dishes, and the sink is overflowing. There are some dishes on the counter.
She is, [pause] it looks like she has got a dish in her hand perhaps, wa, washing it.Is there
anything else I can see? [Pause]. The cupboards, I said the cupboards are closed at the
bottom. Um. It looks like it is [pause], this looks like a, a very happy family. [Laughing].
Typical children, trying to steal cookies from the cookie jar. Um. [Pause].Yes. Yeah."

AD : "Well, there’s a little boy standing on a stool that’s about to fall over, trying to get
a cookie out of a cookie jar. He’s taken the lid off the cookie jar, and I think he’s probably
getting it for his sister, who is standing below him. While his mother is drying dishes, but
all of a sudden, the sink is overflowing.Uh, it looks like the mother is going to be in horrible
mess. [Laugh]. Um, she doesn’t look happy. The little girl looks as if she’s saying, oh my
goodness. Um, but she’s waiting to get the cookie in her hand. The window is open. There’s
a path going outside. Um, there’s some trees outside.Okay."
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AD (n = 32) CHC (n=33)

Age 75.2 (7.5) 70.9 (7.0)

Gender (male/female) 17/15 5/28

Vocabulary size (number different tokens) 1186 922

Mean utterance length in number of tokens 134.9 112.3

Table 1.2. CCNA dataset main characteristics.
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Chapter 2

Feature Extraction

The size of the dataset has a great impact on the methodology used to train and evaluate
models. A very interesting advantage of Deep Learning models is that they can learn repre-
sentations directly from the raw data, but to learn good representations a very large dataset
is required to generalize well to unseen examples and avoid overfitting. Classical Machine
Learning models can work quite well on hand built features extracted from a very small
dataset. Another advantage to using models trained on a hand built feature set compared to
the inferred feature space from the Deep Learning models is the ease of interpretability. The
interpretability of the learned features can be critical when building a model for a diagnostic
purpose. In this section we present a detailed explanation of all the features extracted which
will be used by our classical Machine Learning models in our experiments.

2.1. Data preparation
An extremely crucial part in NLP is the data preparation step of the text. This step is

very important prior to building features or to use directly in a model. The preprocessing
is required on the raw data in order to remove any noise or anomalies that can be found in
text such as special characters, etc. In this section we present the preprocessing done to the
data prior to extracting the feature set.

The text from the ADReSS challenge dataset is extracted from .cha files created using
the CHAT protocol [18] which is a transcription protocol that describes very specific rules
on how to transcribe audio files to the corresponding text in their specific .cha files format.
This permits to have a standardized file format of the translated audio files to text. The
CHAT protocol has a set of very specific rules for annotations for each of the text. For
example, here is a small text extract from a CHC with CHAT annotations from the ADReSS
challenge dataset:



"well there’s a mother standing there &uh &uh washing the dishes an(d) the sink is
overspilling [: overflowing] [* s:r] an(d) &uh the window’s open . and outside the window
there’s a <walk with a> [//] &c curved walk with a garden . and you can see another &uh
&uh building there . looks like a garage or something with curtains and the grass in the
garden . and there are dishes [//] &uh &uh two cups and a saucer on the sink . and &uh
she’s getting her feet wet from the overflow of the water from the sink . she seems to be
oblivious to the fact that the &s sink is overflowing . she’s also oblivious to the fact that her
kids are stealin(g) cookies out o(f) the cookie jar . and the kid on the stool is gonna fall off
the stool . he’s standing up there in the cupboard takin(g) cookies out o(f) the jar, handin(g)
them to his [//] &uh a girl about the same age . the kids are somewhere around seven or
eight years old or nine . an(d) the mother is gonna get shocked <when the> [/] when the
[//] he tumbles and the cookie jar comes down . an(d) I think that’s about all . [+ exc] "

From the example above we can see that the addition of annotations from the transcriber
are added. For example, an(d) would be an annotation that the speaker said an but it
should actually be and. Also, the annotation &uh means that it was the sound uh that was
pronounced by the patient. An other example of specific annotations is [: overflowing] [*
s:r] which is a correction to the previous word. The correction is in brackets [: overflowing]
and [* s:r] is the error code so if the error is semantic, phonetic, etc. Many more annotations
are available in the CHAT protocol such as [/] for repetition, etc and can be found in their
manual [18].

We normalized the raw data by removing all annotations added by the transcriber to
remove as much as possible any potential bias from the transcriber such as [/], [//], [+ exc],
etc. For example, here is the normalized text extract:

"well there’s a mother standing there uh uh washing the dishes an the sink is overspilling.
an uh the window’s open. and outside the window there’s a walk with a c curved walk with
a garden. and you can see another uh uh building there. looks like a garage or something
with curtains and the grass in the garden. and there are dishes uh uh two cups and a saucer
on the sink. and uh she’s getting her feet wet from the overflow of the water from the sink.
she seems to be oblivious to the fact that the s sink is overflowing. she’s also oblivious to
the fact that her kids are stealin cookies out o the cookie jar. and the kid on the stool is
gonna fall off the stool. he’s standing up there in the cupboard takin cookies out o the jar,
handin them to his uh a girl about the same age. the kids are somewhere around seven or
eight years old or nine. an the mother is gonna get shocked when the when the he tumbles
and the cookie jar comes down. an I think that’s about all. "
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Furthermore, the annotated .cha files have the timestamps of when each speaker in the
audio file making the extraction of phonation time and pause time very easy to determine.
We used the pylangacq library from python to extract the manual transcription from the
.cha derived from the audio [16].

The text from the CCNA dataset is extracted from the audio files with the addition
of annotations such as [Pause], [Laughing], etc., meaning that a transcriber will listen to
the audio file and transcribe word for word what is being said by the patient. Unlike the
ADReSS challenge dataset the CCNA dataset does not follow a specific protocol such as
the CHAT protocol for the naming and type of annotations used. For example here is a
small text extract from a CHC with annotations from the CCNA dataset:

"Okay. Um, the boy is taking cookies from the cookie jar, and giving it to a girl, I am
assuming his sister. The stool is about to tip over. It’s a three legged stool. The mother
is washing the dishes, and the sink is overflowing. There are some dishes on the counter.
She is, [pause] it looks like she has got a dish in her hand perhaps, wa, washing it.Is there
anything else I can see? [Pause]. The cupboards, I said the cupboards are closed at the
bottom. Um. It looks like it is [pause], this looks like a, a very happy family. [Laughing].
Typical children, trying to steal cookies from the cookie jar. Um. [Pause].Yes. Yeah."

All annotations are removed from the text such as [Pause], [Laughing], etc. for equal
comparison between both datasets. For example, here is the normalized text extract:

"Okay. Um, the boy is taking cookies from the cookie jar, and giving it to a girl, I am
assuming his sister. The stool is about to tip over. It’s a three legged stool. The mother is
washing the dishes, and the sink is overflowing. There are some dishes on the counter. She
is, it looks like she has got a dish in her hand perhaps, wa, washing it. Is there anything else
I can see?. The cupboards, I said the cupboards are closed at the bottom. Um. It looks like
it is , this looks like a, a very happy family. Typical children, trying to steal cookies from
the cookie jar. Um. Yes. Yeah."

For the audio files, no preprocessing was done for the ADReSS challenge dataset as the
audio files have already been normalized for noise and volume as mentioned in [17]. The
patient audio was extracted using the timestamps from CHAT annotations from the .cha
files.

For the CCNA dataset we also normalized the audio files for noise and volume. We
normalize for volume using the ffmpeg-normalize python package and use the EBU R128
normalization algorithm. For the extraction of the patient audio, the CCNA dataset text files
do not contain the timestamps of when the patient is speaking as is present in the ADReSS
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challenge datset. Therefore, the patient audio was extracted by cutting the interviewer audio
out manually.

As we can see the format of both datasets is quite different given the different types of
annotations provided. The choice of removal of all annotations of both datasets is a critical
decision as keeping any of them may skew the results in favor of one dataset and may add
bias to the dataset prior to any feature extractions. Also keeping these annotations would
interfere with the tokenization of the text. Therefore, we can see that the removal of all
annotations is required to level the playing field and make sure the text is as pure as possible
prior to the feature extraction process. It was decided to normalize the text so that the text
would closely resemble an automatically translated audio. If it was automatically translated
no additional annotations from the user would be added as they are not present in the audio
recording. It would only be the text without annotations of corrections and pauses, etc.
Furthermore, no specific details on the text preprocessing is elaborated by Balagopalan et
al [3] which is why we decided this direction for the text preprocessing.

Furthermore, it is important to note that this work does not perform Automatic speech
recognition from the audio files in order to extract the raw text. The linguistic features
are extracted from the manually transcribed text derived from the audio files given in the
dataset. This choice was made as it is the procedure currently done by most of the literature
and the one utilised by Balagopalan et al [3]. To maintain consistency we opted for this
approach to have a better comparison of results.

2.2. Features
2.2.1. Linguistic features

Linguistic features are some of the most used types of features in the literature for the
diagnosis of AD. Throughout the research, different anomalies present in the CS of patients
have been identified and elaborated into meaningful Machine Learning features. For this
research we chose our set of linguistic features based mostly on the features extracted by
both Balagopalan et al [3] and Fraser et al [9] which relate to the anomalies reported by
Slegers et al [28]. We also added a feature developed by Ilya Ivensky in his Masters thesis
[13] that is not found in both papers that also suggests differentiation between AD and
CHC called vector norm. Furthermore, the majority of the linguistic features used were also
tested on a different dataset and connex task of positive amyloid AD vs negative amyloid
AD by our team, Slegers, Chafouleas et al [27] which also demonstrated good differentiation
between both groups. Slegers et al did a thorough evaluation of the most common speech
anomalies found in the literature that affect patients with AD by comparing 44 different
articles which include the ones used by Fraser et al [9]. According to this review, AD
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patients use more pronouns, word categories (i.e: nouns, verbs, etc) with higher frequency
which gave rise to extracting features groups such as POST tag counts, Noun chunks,
Noun ratios, verb ratios, proportions, etc as described in Table 2.1 [28]. Also, according
to Slegers et al [28] it was shown that AD patients have trouble finding specific words
which is described by the feature groups Miscellaneous count which count words related
to hesitations, word finding, dietetics, uncertainty as described in Table 2.1. It was also
pointed out that AD patients provide fewer information units about the picture which
derived the feature group ICU Count and also convey less information than CHC in their
sentences which derived the feature group Semantic Idea Density as described in Table
2.1 [28]. These semantic differences led to the development of some meaningful features
used in the literature for the classification of AD patients. For example if we look at the
following extracts from both CHC and AD we can appreciate the intuition behind the
features elaborated in Table 2.1:

CHC : "well there’s a mother standing there uh uh washing the dishes an the sink is
overspilling. an uh the window’s open. and outside the window there’s a walk with a c
curved walk with a garden. and you can see another uh uh building there. looks like a garage
or something with curtains and the grass in the garden. and there are dishes uh uh two cups
and a saucer on the sink. and uh she’s getting her feet wet from the overflow of the water
from the sink. she seems to be oblivious to the fact that the s sink is overflowing. she’s also
oblivious to the fact that her kids are stealin cookies out o the cookie jar. and the kid on the
stool is gonna fall off the stool. he’s standing up there in the cupboard takin cookies out o
the jar, handin them to his uh a girl about the same age. the kids are somewhere around
seven or eight years old or nine. an the mother is gonna get shocked when the when the he
tumbles and the cookie jar comes down. an I think that’s about all. "

CHC : "okay . uh we see a uh a b little boy climbed up on a stool reaching for the
cookie jar . and uh the stool is falling .uh he is trying to get a cookie for himself and also
one for his sister . uh his sister is telling him to be very quiet . she’s goin . can’t write that
down . telling him to be quiet . and uh let’s see .in the meantime uh the mother is washing
dishes and the sink has uh overflowed and uh is pouring water on the floor . (..) I don’t
think I see anything else . okay . "

We can notice in the both of these extracts from the ADReSS challenge dataset that the
AD patient utters more uh than the CHC extract which corresponds to the hesitation feature
described in Table 2.1 which counts the number of tokens corresponding to hesitations (i.e :
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uh, um, etc) which was also pointed out by Slegers et al [28]. Also, it seems that the extracts
have a difference in the utterance length between both AD and CHC which corresponds to the
Mean utterance length feature described in Table 2.1. It is also apparent that the sentences
of the AD patient is much simpler and contains less information than the one uttered by
the CHC, this can also give an intuition on why the Semantic Idea density feature described
in 2.1 is used to discriminate AD patients in the literature. Furthermore, we notice that in
both extracts they mention ideas related to the image being described. As mentioned by
Slegers and al [28], AD patients mention less key information about the image than CHC.
In this example the CHC is a lot more detailed than the AD patient in describing the image
and conveying more information related to the image which refers to the commonly used
feature ICU count described in Table 2.1. As mentioned by Slegers and al [28], AD patients
use more pronouns, word categories (i.e: nouns, verbs, etc) with higher frequency which
is slightly apparent in this example where AD uses a slightly higher proportion of verbs
than the CHC group. This characteristic is extracted from the common feature groups for
all POS tag count and POS Tag ratio features described in Table 2.1 which extract keys
features related to the count and ratio of specific POS tags including the verb tag. These
are only a few of the characteristics and intuitions of the extractions of this set of features
on the classification of AD vs CHC in the literature.

The features were hand-built based on the description of the features from the literature.
In order to build all the features many open source libraries were used. The python imple-
mentation of most of the linguistic features were reused from the ones already implemented
by Ilya [13] and Slegers et al [27] as we had access to the source code and wanted to reuse for
standardization. The reminder of some of the linguistic features such as lexical norm-based
features were added in implementation. The Spacy library was used as the tokenization tool
and POS tagging mechanism [12] for building the majority of the features. For the idea den-
sity features, the use glove 50-d1 [14] and 300 google news2 [1] as the word embedding
dictionaries.

1https://nlp.stanford.edu/projects/glove/
2urlhttps://code.google.com/archive/p/word2vec/
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Feature group #Features Description

POS Tag 43 Count of different POS tag (i.e: pronoun, noun,
verb, adverb, adjective), out of vocabulary words,
L2norm, pronoun ratio, mean left and right chil-
dren)

Tree structure 5 Tree structure of texts using Spacy to determine
the trees. (dep diversity, total dep, avg dep
distance, average parse tree height, average tree
width)

Semantic Idea Density 4 Calculate the average cosine distance of all pair-
wise combination of word embeddings within a
sliding window [27]. This is calculated with a win-
dow size of 10. Done for both base tokenization
and only lemmas using 50-dimensional and 300-
dimensional embeddings.

Miscellaneous Count 6 Count of hesitations (i.e: uhm), personal pro-
nouns, word finding (i.e: ’know’, ’remember’, ’un-
able’), dietetics (i:e ’this’, ’that’, ’here’), uncer-
tainty (I.e: ’think’, ’look’, ’like’, ’kind’, ’seem’,
’maybe’, ’can’, ’something’)

ICU count 25 Boolean if a specific word related to the image is
mentioned during the description. We also have
the total number if ICU’s mentioned and the word
to ICU proportion.

Mean length utterance (MLU) 1 Number of morphemes over total number of utter-
ances per transcription. (using Spacy each token
is a morpheme containing the prefix and suffix)

Noun chunks 3 Noun chunks are flat phrases having noun as their
head. noun chunks (mean number of noun chunks
per transcripts), NP -> PRON (ratio of all noun
chunks where root is PRON), noun chunk length
(mean length of noun chunks)

Subordinate count 1 The sum of all subordinate counts (i.e: ’csubj’,
’xcomp’, ’ccomp’, ’advcl’, ’acl’)
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Feature type #Features Description

TTR 5 Type token ratio (TTR). This is the ratio number
of unique tokens (types) over number total tokens.
We also add types and tokens as own features. We
also do this for lemmas. [6]

Honore score 1 Score to show vocabulary richness. [6]
Brunet Score 1 Score to show vocabulary richness. [6]
MATTR10 & 3 4 Average TTR in a moving window size (i.e: 10 or

3) after filtering punctuation’s.
BiMATTR50 2 Average number of unique bigrams in a moving

window size of 50.
Proportions 34 Ratio of the following token type (’nouns’,

’pronouns’, ’verbs’, ’adjectives’, ’adverbs’,
’leftChildren’, ’rightChildren’, ’types’, ’subor-
dinates’, ’nounChunks’, ’nounChunkLength’,
’inflectedVerbs’, ’hesitation’, ’personalPronoun’,
’wordFinding’, ’deictics’, ’uncertainty’) with re-
spect to the token count. Also ratio with respect
to the ROOT token type count.

Vector norms 5 Average of vector norms over transcript of all
words, verbs, adjectives, nouns and adverbs [13].

Dependencies 25 Ratio of count tokens that are tagged as dependen-
cies by tokenizer over the count of ‘ROOT’ token.

Noun ratios 2 Ratio of nouns over verbs, nouns and adverbs. Ra-
tio of nouns over nouns, verbs, adverbs and adjec-
tives.

Verb ratios 4 Ratio of verbs over verbs, nouns and adverbs. Ra-
tio of verbs over nouns, verbs, adverbs and adjec-
tives.

Lexical norm-based 12 Average norms imageability, age of acquisition, fa-
miliarity and frequency across all words, noun and
verbs [3]

Sentiment rating 9 Average sentiment rating on valence, arousal and
dominance across all words, noun and verbs.

Table 2.1. List of linguistic features extracted from text with their short description.
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2.2.2. Acoustic Features

Extracting acoustic features directly from the audio files has been attempted in the
literature. Both Balagopalan et al [3] and Fraser et al [9] have extracted the mean, variance,
skewness and kurtosis of the Mel-frequency cepstral coefficients (MFCCs) and also the
pause duration. Balagopalan et al [3] also extracted the mean, variance, skewness and
kurtosis of the zero-crossing rate and fundamental frequency. For our experiment, the set
of acoustic features were hand-built based on Balagopalan et al [3] as shown in Table 2.2.
For example, it was pointed out by Slegers et al [28] that AD patients have a higher word
finding difficulty which can be described by pauses and also that AD patient had affected
phonation rates which is described the feature group pause and phonation described in
Table 2.2. The acoustic features were extracted with the help of the librosa [19] library
from python. Unlike both Balagopalan et al [3] and Fraser et al [9] where the pause
features are extracted using the timestamps from the CHAT annotations of the .cha files,
we extracted the pause features using Voice Activity Detection (VAD) using the pyannote
python library [5] which takes the audio directly and gives the timestamps from when there
is voice activity, i.e when someone is speaking. We can therefore use this to evaluate the
phonetion time and pause time of the audio file. This will allow a more universal approach
to pause extraction that does not require human timestamp annotation. For the replication
of "To BERT or Not To BERT: Comparing Speech and Language-based Approaches for
Alzheimer’s Disease Detection" the pause features were extracted using the timestamps
from the CHAT protocol as done by Balagopalan et al [3] for comparison.

Feature type #Features Description

Pause & phonation 7 number pauses, total phonetion time, pause phenetion
time, total pause time, mean pause time, number short
pauses (< 1s), number long pauses (> 1s)

MFCC 168 Mean, standard deviation, skewness and kurtosis of 42
MFCC coefficients.

Zero-Crossing rate 4 Mean, standard deviation, skewness and kurtosis zero
crossing rates.

Fundamental Frequency 4 Mean, standard deviation, skewness and kurtosis of fun-
damental frequency.

Table 2.2. List of acoustic features from audio files with their short descriptions.

To our knowledge there does not exist a tool to extract both the linguistic and acoustic
features and are assumed to be hand-built in the literature. As far as we are aware the
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way the features are built is very much left to the interpretation of the reader which makes
reproduction very difficult as the choice of implementation may have a very big impact on
the results. The standardization of the most common set of features reused throughout the
literature would benefit and help the advancement in the literature. We therefore created
an open source project containing the code to extract features from both text and audio
transcriptions in order to help forward the standardization across publications. 3

3https://github.com/gchafouleas/Connected-Speech-Feature-Extraction/tree/readme
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Chapter 3

Methodology

In this section we present the details of the classification models, feature selection process
and evaluation metrics.

3.1. Model selection
The main goal of our experiment is to be able to differentiate AD patients from CHC

using the text descriptions from the Cookie Theft scene. The complexity and potential subtle
differences between CHC and AD patients makes this less of a clear separable classification
problem as the subtleties in the disease may become more prevalent as the disease progresses.
This brings the question of what models are best suited for the task. Both classical Machine
Learning models and Deep Learning models have been used to perform the classification of
AD patients from their text extract in the literature. In this section we describe the different
models used in our experiments.

3.1.1. Feature based models

The choice of the model used on a feature set can have a great impact on the results. Each
model has different learning characteristics that may be better suited for different situations.
The choice of the models were based on models that have had success in the literature for
the classification of AD patients from CS.

Logistic Regression and SVM are the most common types of models used with linguistic
and acoustic features in the literature. We therefore chose to also utilise a Logistic Regression
and SVM with Linear Kernel (SVM) in order to have a baseline for comparison. Both the
Logistic Regression and SVM assume the data is linearly separable but differ in their objective
function. Logistic Regression tries to find the best line separating all the data and is usually
used as a good baseline. The SVM’s objective function maximizes the margin between
the support vectors therefore maximizing the distance of the data points from the decision
boundary. The larger the margin the better the model is at separating the data points.



One main advantage with using an SVM is that you can optimize the hyperparameter C
which determines how hard you want the margin to be. Meaning how tolerant you are to
errors which is beneficial for any classification problem but especially important in medical
classification, as you would want a large C value to tolerate the least amount of errors and
points very close to the decision boundary. Another advantage to using an SVM is that you
can change the type of kernel used. The kernel is an inexpensive way to transform the data
into a higher dimension in order to solve a non-linear problem. Therefore, we also opted for
the radial base kernel SVM (RBF-SVM) as used by Balagopalan et al [3] which showed good
results when used with linguistic and acoustic features.

Finally, we opted for a Multi Layer Perceptron (MLP) used on the linguistic and acoustic
features. This is a good option when the data may not be linearly separable. It is also a
very flexible model as the number of layers and hidden units can be optimized as well as the
use of different activation functions.

3.1.2. Bidirectional Encoder Representations from Transformers
(BERT)

Language based models using only the raw text as input have been shown to have great
performance on a wide range of NLP tasks [26]. The advantage of these models is that
they can learn the representations of the language themselves without prior knowledge of
the domain. One caveat is that these models are very big and have an extremely large
number of parameters to train and need very large amounts of examples to generalize well.
The more training data there is, the better it will be at matching the distribution of the
test data. Unfortunately, it is not always possible to retrieve a large enough set of labelled
data. This is especially true in the medical field as it is quite difficult and time consuming
to retrieve labelled data.

The use of transfer learning has been shown to solve this issue by training a very large
model on a very large dataset in a domain that can be transferable to another domain. For
the transfer of information to occur both domains need to have a connection [32]. This
permits smaller datasets to benefit from the learned representations from one domain and
transfer them to the classification task of a different domain therefore reducing the amount
of time needed to converge to proper solution. The pre-trained model is used to fine-tune
its weights to the new domain task.

We chose BERT as our transfer learning model as it was shown to perform very well
on classification of textual inputs [8]. It uses multi-layer bidirectional recurrent transformer
encoders. BERT utilises bidirectional self-attention for its transformer, meaning that every
token can attend to both the right and left side tokens. BERT is trained on two different
tasks. The first is predicting a percentage of the masked words of a sentence. The second is
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a binary prediction of the next sentence, i.e predicting whether the next sentence is either
sentence A or B. The pre-trained model can be used directly with a classification layer as
the output for a classification downstream task. A new model can be fine-tuned on the
classification task by updating the weights of the model for that particular classification
task.

For this research, we used BERT-base-uncased from the hugging face [31] python li-
brary for the implementation to fine-tune a binary classification model, as it is more light
weight in terms of parameters to train. This model contains 12-layer, 768-hidden, 12-heads,
110M parameters and is trained on lower-cased English text [31].

3.2. Feature Selection
Feature selection in a Machine Learning pipeline is a crucial component as it helps

determine which features are the most important in separating the data. This is especially
important when the number of features is larger than the number of examples. Many
different methods can be used to select the best features for a model. The main two
categories are selected based on statistical significance and selected based on an external
estimator which has feature ranking possibilities (ex: SVM, random forest, etc). We opted
for four different techniques which are described below.

Select K Best: The features are sorted according to their ANOVA f-value score between
labels and features from sklearn library [24]. The top k features with the highest scores
are kept.

Multicollinearity: From Slegers et al [27] with methodology as follows "1) per-
form Welch’s t-tests across groups; 2) correct the associated P values for multiple
comparisons by the Benjamini-Hochberg method for False Discovery Rate (FDR) at
.05; 3) subset only significant features at p <.05 after correction for FDR; 4) start-
ing with the largest Welch’s coefficient, enter the features in the model in a stepwise
manner at the condition that the added feature is not correlated >.75 to a previously en-
tered feature with a higher t statistic " where the value 0.75 is a hyperparameter to be tuned.

Recursive feature elimination (RFE): Using an external estimator (i.e SVM)
the estimator is trained on the whole feature set and the features with the smallest
coefficients are removed. This is done recursively on the subset of features until we have the
number of features desired using sklearn library [24].

Select from Model: Using an external estimator (i.e: SVM) the estimator is
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trained on the whole feature set and the top k features with the biggest coefficients from
the estimator are selected using sklearn library [24]

The feature selection process is only used with models that use the linguistic and
acoustic feature set as input. The input for the BERT model is the preprocessed text and
therefore we do not perform feature selection during the cross validation stage.

3.3. Experiments and Evaluation metrics
The experimental pipeline is based on "To BERT or Not To BERT: Comparing Speech

and Language-based Approaches for Alzheimer’s Disease Detection" by Balagopalan et al [3].
We utilise 10-fold cross validation with grid search to evaluate the best hyper parameters for
each model. The feature selection described in Section 3.2 is done at each fold of the cross
validation process. The validation accuracy of the model is used to evaluate the best hyper
parameters during cross validation. The 10-fold cross validation grid search was performed
for three different random seeds (i.e 42, 52, 62) each seed selecting the best hyper parameters
and best features across all folds. Figures 3.1 and 3.2 describe the experimental pipelines for
both BERT and feature based models.

Fig. 3.1. Overview of experimental pipeline for feature based models.

As shown in Figure 3.2, the input is the preprocessed text data and 10-fold cross vali-
dation is performed to find the best hyperparameters of the BERT model. Once the best
hyperparameters are selected we do a final training with all of the training data with the
selected hyperparameters to use as the model for evaluation. This is done three times for
three different random seeds.

As shown in Figure 3.1, feature selection is added at each fold of the cross validation
process for all models that are described in section 3.1.1 and have as input the feature set.
Also, prior to the feature selection process, the features are standardized using the standard
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Fig. 3.2. Overview of experimental pipeline for BERT model.

scalar method from sklearn for our pipeline. This ensures that all features have the same
variance and therefore, there is no feature that stands out more because the ranges are
significantly different. In "To BERT or Not To BERT: Comparing Speech and Language-
based Approaches for Alzheimer’s Disease Detection" by Balagopalan et al [3], it is not
specified if any normalization of the features is applied and therefore, no normalization of
the features is done prior to replicating the paper.

For the evaluation metrics we use accuracy, precision, recall, F1 and sensitivity across all
folds. The average across all random seeds. Accuracy alone can sometimes give an overly
optimistic overview of the performance as it does not discriminate the type of missclassifi-
cations made. Recall, precision, sensitivity and F1 can become more insightful on the true
performance of the model. Below are the metrics formulas:

accuracy = TP + TN

TP + FN + FP + TN
(3.3.1)

recall(positive class)/sensitivity = TP

TP + FN
(3.3.2)

precision = TP

TP + FP
(3.3.3)

F1 = 2 ∗ precision ∗ recall

precision + recall
(3.3.4)
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where

TP stands for True Positive, TN stands for True Negative,

FP stands for False Positive, FN stands for False Negative

Recall takes into account not only the true positive but the false negatives for the metric
which is an important metric for a medical model as one would want to minimize the number
of false negatives, i.e patients affected with the disease diagnosed as healthy and vice versa.
While as shown in equation 3.3.3, precision measures how accurate your model is at predicting
a specific class. In an ideal world we would like a high precision and recall but there is a
trade off between both metrics. By increasing recall the precision goes down and vice-versa.
This is where the F1 score can become useful as it is the weighted average of precision
and recall [24]. This score is very useful when one wants to find an optimal value of both
recall and precision. The unweighted average of recall and precision of both negative and
positive classes is reported in our results. Given that we would like to also have a metric
to track how correct we are at predicting only the AD class, sensitivity will be used in our
results. Sensitivity measures the recall associated with only the positive class in a binary
classification setting.

The mean metrics for accuracy, precision, recall, sensitivity and F1 across all random
seeds are presented as shown in Figure 3.2. The best models are selected based on the best
mean validation metrics across all random seeds. The test results are evaluated on the best
selected models for each random seed as shown in Figure 3.2. In the results section we
demonstrate both the mean validation metrics of the 10-fold cross validation and the mean
test metrics across all random seeds in order to properly compare the cross data evaluation.
Without the mean validation metrics it is difficult to see if the model is generalizing well to
the unseen examples on the different dataset and therefore helps to visualize the power of
generalization of the models to unseen examples.
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Chapter 4

Results and Discussion

4.1. Publication replication
In order to determine how well the ADReSS challenge dataset can help the standard-

ization of results across the literature we wanted to replicate "To BERT or Not To BERT:
Comparing Speech and Language-based Approaches for Alzheimer’s Disease Detection" by
Balagopalan et al [3]. They use both linguistic and acoustic features trained with classical
Machine Learning models and compare them to an implementation of BERT trained only
on the transcriptions. We compare our results to theirs on a RBF-SVM, MLP and BERT
model using the same hyperparameters described in section B of the publication. Therefore,
the same hyperparameters were used across all random seeds. Note that the exact random
seeds and particular details of BERT are not clearly defined, therefore these were arbitrarily
assigned to achieve best results. As shown in Tables 4.1 and 4.2 the paper only describes the
recall and precision for the positive class compared to our unweighted average. Therefore
for comparison of the results, the sensitivity metric in the tables is equivalent to their recall.
This choice was made as we wanted the macro evaluation of both classes to get a better
overview of the overall model performance and the addition of the Sensitivity to track the
AD specific metric performance.

As we can see from Tables 4.1 and 4.2 we achieve very similar results for the RBF-SVM
as Balagopalan et al [3] with a validation accuracy of 80.6% and test accuracy of 81.25%
compared to the paper of 79.6% for valid accuracy and 81.3% for test accuracy. The results
differ slightly for BERT as the valid and test accuracy are inverse to the paper with 83.5%
for valid accuracy and 81.25% for test accuracy. The main difference is the valid accuracy
of the MLP with 73.5% compared to 76.2% and test accuracy of 80.6% compared to 77.1%.
The difference in results of both the MLP and BERT models may be subject to the choice
of random seeds used, as the choice of the random seed can have a great impact on the start
of the parameter space when training a model. Furthermore, our best model is also BERT
but only slightly better than the SVM-RBF and MLP as observed by Balagopalan et all [3].



Our results
Model # features Accuracy Precision Recall Sensitivity F1

SVM-RBF 10 80.6 (1.1) 82.8 80.6 79.6 80.3
MLP 10 73.5 (5.5) 76.1 73.5 67.3 72.2
BERT – 83.5 (1.9) 83.7 83.6 83.3 83.6

Paper results [3]
Model # features Accuracy Precision Recall Specificity F1

SVM-RBF 10 79.6 81.0 78.0 82.0 79.0
MLP 10 76.2 77.0 75.0 77.0 76.0
BERT – 81.8 84.0 79.0 85.0 81.0

Table 4.1. 10-fold cross validation results across random seeds on ADReSS validation set
using the same hyperparameter as in [3] with actual paper results.

Our results
Model # features Accuracy Precision Recall Sensitivity F1

SVM-RBF 10 81.3 (0.0) 81.7 81.3 75.0 81.2
MLP 10 80.6 (2.6) 81.8 80.6 70.8 80.4
BERT – 81.3 (1.7) 85.1 81.3 66.7 80.7

Paper results [3]
Model # features Accuracy Precision (CHC

AD ) Recall (CHC
AD ) Specificity F1 (CHC

AD )

SVM-RBF 10 81.3 83.0
80.0

79.0
83.0 - 81.0

82.0

MLP 10 77.1 78.0
76.0

75.0
79.0 - 77.0

78.0

BERT – 83.3 86.0
81.0

79.0
88.0 - 83.0

84.0

Table 4.2. 10-fold cross validation results across random seeds on ADReSS test set using
the same hyper parameter as in [3] with actual paper results.

Another possible difference between our results and the publication, is how the initial text
is preprocessed as this might have a great impact on the tokenization and therefore affect
many of the features and lead to discrepancies in the results. For example, the term utterance
is very different if using the annotations from the CHAT files or the ones extracted using
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the Spacy library therefore affecting for example the MLU feature. Also, depending on the
tokenization tool used this may have an effect on the POS tag, proportion and tree features
as they may identify certain tokens as different types of tokens. It would be important
to standardize the most commonly used features as to make sure the comparison is more
tangible.

Overall the replication of the paper is achieved and confirms the implementation of
the Machine Learning pipeline for further experiments. As we have shown the results are
comparable but with some discrepancies even with a properly designed benchmark. We can
therefore conclude that this dataset is a great start for comparison between publications, but
future standardization of the features as well as more detailed documentation on the exact
text preprocessing done prior to feature extraction may help this discrepancy.

4.2. Results
In this section we present the results of performing grid search on our pipeline. For

each of the models a 10-fold grid search cross validation is performed to find the best hyper
parameters across all folds. The full list of all results for each feature selection technique
on the ADReSS challenge dataset is reported in the Appendix A. The addition of both a
Logistic Regression and SVM is used. The best models are reported in the tables with the
best feature selection method being Select K best also observed by Balagopalan et al [3].
After, multiple hyperparameter searches for BERT, the best model achieved is the same as
the one reported in Section 4.1.

Model Accuracy (std) Precision Recall Sensitivity F1

SVM 84.9 (0.4) 87.0 84.9 84.6 84.5
LR 87.0 (0.8) 90.0 87.0 84.6 86.9
RBF-SVM 88.3 (0.4) 87.0 88.3 88.9 88.1
MLP 89.8 (0.8) 91.5 89.8 88.9 89.7
BERT 83.5 (1.9) 83.7 83.6 83.33 83.6

Table 4.3. 10-fold cross validation best models results across random seeds on ADReSS
validation set using Select k Best feature selection method.

From Table 4.3 we observe that the best accuracy and overall performance on the vali-
dation set is obtained by the MLP model with a valid accuracy of 89.8%. From Table 4.4 it
is apparent that the MLP model does not generalize as well as expected on the test set with
an accuracy of 81.9% which is significantly lower than the valid accuracy. We notice the
same behavior with the RBF-SVM and the Logistic Regression. From Table 4.4, we observe
that the best model on the test set is the Logistic Regression with an accuracy of 84%.
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Model Accuracy (std) Precision Recall Sensitivity F1

SVM 81.9 (2.6) 84.1 81.9 69.4 81.6
LR 84.0 (2.0) 85.6 84.0 73.6 83.9
RBF-SVM 80.6 (1.0) 82.0 80.6 70.8 80.3
MLP 81.9 (1.0) 84.0 81.9 70.8 81.7
BERT 81.3 (1.7) 85.1 81.3 66.7 80.7

Table 4.4. 10-fold cross validation best ADReSS models results across random seeds on
ADReSS test set using Select k Best feature selection method.

Model Accuracy (std) Precision Recall Sensitivity F1

SVM 50.3 (1.5) 51.1 49.7 10.41 40.6
LR 53.9 (1.3) 58.9 53.3 15.6 45.2
RBF-SVM 60.0 (4.5) 67.8 59.5 25.0 53.5
MLP 55.9 (5.1) 59.4 55.35 19.8 48.6
BERT 62.6 (8.4) 76.1 62.0 26.0 55.2

Table 4.5. 10-fold cross validation best ADReSS models results across random seeds on
CCNA test set using Select k Best feature selection method.

This is higher than 81.3% observed by Balagopalan et al [3] but only by a small margin.
Furthermore, the recall and precision are very similar which is favorable as we would want
to have high recall and precision being 84.0% and 85.6% on the test set.

From Tables 4.3 and 4.4 we observe that the models with the most stable performance
seem to be the SVM, Logistic Regression and BERT when evaluated on the ADReSS chal-
lenge test set as the valid and test set accuracies do not differ greatly. We notice that the
sensitivity of the models are quite low compared to the average recall on the ADReSS chal-
lenge test set. For example, from Table 4.4 the SVM recall is 81.9% for which the sensitivity
is 69.4%. This may signify that the model is better at classifying CHC than AD patients.

However, from Table 4.5 we observe that the models trained on the ADReSS challenge
dataset do not generalize well to a new dataset. The highest test results are achieved by
BERT with an accuracy of 62.6% but with a very high standard deviation between the
random seeds showing that there is a very large difference in the results when changing the
random seed. Another observation is that the sensitivity of the models is extremely low,
averaging between 10% to 26% which indicates that the model has a very poor ability to
discriminate the AD patients at all. Overall, the models perform very badly when evaluated
on the CCNA dataset.
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A set of models trained on the CCNA dataset using the same feature selection procedure
Select K Best and fine tuning hyperparameters was done and evaluated on the ADReSS
challenge test set. Tables 4.6 and 4.7 show these results.

Model Accuracy (std) Precision Recall Sensitivity F1

SVM 81.0 (1.9) 81.7 80.6 76.6 79.2
LR 82.6 (1.5) 87.4 82.4 77.1 81.5
RBF-SVM 81.5 (1.1) 88.6 81.3 74.7 80.4
MLP 86.2 (2.2) 88.3 86.1 85.5 85.6
BERT 78.7 (1.5) 79.4 78.9 84.8 78.9

Table 4.6. 10-fold cross validation best models results across random seeds on CCNA
dataset using Select k Best feature selection method.

Model Accuracy (std) Precision Recall Sensitivity F1

SVM 57.6 (1.0) 58.7 57.6 40.3 56.3
LR 52.1 (2.9) 36.0 52.1 11.11 40.16
RBF-SVM 55.6 (5.2) 49.2 55.6 54.2 47.5
MLP 54.9 (3.5) 48.8 54.9 25.0 47.5
BERT 66.7 (1.7) 71.5 66.7 88.9 64.7

Table 4.7. 10-fold cross validation best CCNAmodels results across random seeds evaluated
on ADReSS challenge test set using Select k Best feature selection method.

From Table 4.6 we can observe that the best model trained on the CCNA dataset is MLP
with the highest overall metrics. This is the same observation when models are trained on
the ADReSS challenge dataset. The results on the CCNA validation set are a little lower
than the ones observed on the validation set from the ADReSS challenge dataset but only
by a few percentages bringing all models with a valid accuracy above 80% which follows
the results in the literature. From Table 4.7 we can observe that the models trained on
the CCNA dataset also do not generalize well to the ADReSS test set. The best results on
the ADReSS test set is observed by the BERT model with a test accuracy of 66.7% with
similar precision and recall scores, but again this is a very low score barely above the 50%
decision boundary which is equivalent to chance. Also, BERT has a very high sensitivity
which indicates that it is good at classifying correctly the AD patients.

Overall the deep learning model BERT seems to perform better when used on a different
dataset. The reason for this is potentially because it is initially a transfer learning model and
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is made to be used on multiple cross domain applications making it more robust to subtle
changes in the dataset.

Overall both datasets give very good results on the validation set but perform very poorly
when evaluated on a different dataset from the same domain. This raises the question as to
whether the models selected meaningful features and are these selected features too specific
to the ADReSS challenge dataset.

4.3. Feature Importance and Evaluation
In this section we evaluate the validity of the feature selection process and whether the

features selected are the expected biomarkers affecting AD patients we measure. Which
linguistic and acoustic feature group are the most discriminating in the feature selection
process.

ADReSS Selected Features CCNA Selected Features

Feature name group Feature name group

ratio of pronouns POS tag ratio of neg Dependencies
average parse tree height Tree structure number of verbs POS tag
ICU: stool ICU count number of inflected verbs POS tag
ICU: window ICU count verb word vector norm Vector norm
ICU: curtains ICU count proportion of pronouns Proportions
ICU: taking ICU count proportion of pronouns/ROOT Proportions
total ICU count ICU count proportion of verbs Proportions
proportion of noun Proportions proportion of verbs/ROOT Proportions
proportion adverbs Proportions noun ratio to noun/verb/adverb Noun Ratio
proportion of types Proportions noun ratio to noun/verb/adjective Noun Ratio
proportion inflected verbs Proportions proportion of inflected verbs Proportions
proportion of inflected verbs/ROOT Proportions proportion of inflected verbs/ROOT Proportion
ratio of determiner dependencies verb ratio to noun Verb Ratio
ratio of preposition dependencies verb ratio to noun/verb Verb Ratio
ratio of object of preposition dependencies verb ratio to noun/verb/adverb Verb Ratio

verb ration to noun/verb/adjective Verb Ratio
mfcc skew 6 MFCCs
mfcc skew 39 MFCCs
mfcc skew 40 MFCCs
mfcc skew 41 MFCCs

Table 4.8. Features selected across models and random seeds in Table 4.3 on ADReSS
challenge and in Table 4.5 CCNA dataset. Features in bold are common to both settings.

Table 4.8 shows the top features selected across all of the best models for both the
ADReSS and CCNA models. We can observe that linguistic features are selected by the
ADReSS models and mostly linguistic features and some of the MFCCs accoustic features
are selected by the CCNA models. These are interesting observations as it would have been
expected that the models would select pause features as one of top features as it was shown by
Slegers et al [28] where AD patients had 100% of the time word-finding difficulties which may
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Fig. 4.1. Mean valid accuracy when removing and keeping only specific feature groups on
ADReSS challenge dataset.

be indicated by a pause. Balagopalan et al [3] also observed the selection of only linguistic
features on the ADReSS challenge datset which correlates with our findings. From Table
4.8 we can observe that there are only two common features that are selected between both
CCNA and ADReSS challenge datasets which are the inflected verbs proportions features.
As we can see, the features selected by both datasets are completely different to build the
best models on the validation set which may explain why the performance on the test sets
is poor.

From Table 4.8 we can observe that POS tag, ICU count, proportion and dependencies
feature groups are selected when using ADReSS challenge dataset. While from Table 4.8
we can observed that POS tag, Proportions Noun ratio and verb ratio are the top selected
feature groups when using CCNA dataset. Figures 4.1 and 4.2 show the mean valid accuracy
when only training with the features of a specified feature group, for example only training
the best model using only POS tag features, etc as well as when training with all features
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Fig. 4.2. Mean valid accuracy when removing and keeping only specified feature group on
CCNA dataset.

except a specific feature group. Figure 4.1 shows that the three feature groups with the
most impact when training separately are ICU, POS Tag and Proportion feature groups
when using the ADReSS challenge dataset. We can also see that removing ICU count has
a slight drop in mean valid accuracy which reinforces the importance of this feature group,
but that overall removing only a specific feature group does not have significant effect on
the overall mean valid accuracy. This may suggest that the most significant feature group
selected when training on the ADReSS challenge dataset is in fact the ICU count feature
group. Given that this feature group determines if a specific token is mentioned out of a
predefined list of Information tokens, example Cookie, Jar, etc concerning the image, it is
possible that this feature group is very variable from one dataset to the next. Given that the
list of ICU tokens is human made, it may induce bias to the feature causing it to potentially
not work well on all datasets. Table 4.9 shows this discrepancy between both datasets for the
top selected ICU values. We can see that there is not a very significant difference between
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both AD and CHC on the CCNA dataset also supporting why it may have performed so
poorly.

ADReSS CCNA

ICU name AD CHC AD CHC

Stool 74 48 31 24
window 45 16 12 11
curtain 32 1 6 6
taking 49 15 21 12

Table 4.9. Count of times ICU is mentioned at least once in transcript on both CCNA and
ADReSS challenge dataset.

While when training on the CCNA dataset, we can observe in Figure 4.2 that keeping
only the ICU count feature reduces drastically the performance of the model compared to
that observed when trained on the ADReSS dataset. Also we can observe that the features
group that seem to discriminate the best between both CHC and AD groups are POS tag,
Proportions and noun/verb ratios which is consistent with the top selected features observed
in Table 4.8 when trained on the CCNA dataset but very different from the observed ones
when trained on the ADReSS challenge dataset. Given that both datasets have selected
drastically different features to train their best models may be the reason why the Machine
Learning models perform so poorly when evaluated on either datasets.

Table 4.8 also shows the high importance of using linguistic features as they form the
majority of the selected features. Moreover given that the CCNA models also selected some
of the acoustic features suggests their importance as well. It is apparent, therefore that both
categories of features have some importance in the classification of AD vs CHC.

In order to evaluate the learned representations of BERT in the classification of AD vs
CHC the interpretation of the attention heads is necessary. The model view from bertViz
[30] is used to visualize all attention heads at each layer. This permits us to identify specific
attention heads that may show interesting patterns from the tokens. Figures 4.3 and 4.4
shows a specific attention head at a specific layer for each of the three random seed models.
The most interesting patterns that are observed in most of the attention heads when trained
on the ADReSS dataset, but very visible in the ones in Figure 4.3, are the attentions to
specific words like cookie, dishes, stool, kids, washing, cookie jar, mother, floor. This is
very interesting as they have the most attention and represent the ICU tokens used to build
the ICU count feature group. This may indicate that the model also learnt that there is
attention to be made on the ICU tokens to predict AD patients. Furthermore, we observe in
both CCNA and ADReSS models the attention to the word "uh" which is interesting as AD
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ADReSS Attention heads

Fig. 4.3. Attention head of ADReSS models for specific layer for each random seed of the
sentence "I see uh two kids up at the cookie jar, one on a stool the other standing on the
floor.cupboard door is opened .mother’s washing the dishes.".Left: random seed 42 Middle:
random seed 52. Right: random seed 62.

patients present more word finding difficulties which can be apparent by pauses or the use
of an indeterminate term such as "uh" as described by Slegers et al [28]. From Figure 4.4 we
can observe that the most interesting attention when trained on CCNA data is the attention
to again ICU words but mostly for Cookie Jar, mother, dishes, stool which is also noted on
the ADReSS models attention. The main difference is there seems to be a slight increase
in the attention made to verbs such as washing, opened, standing, etc. This correlates
quite well with the top selected features from the machine learning models trained on the
CCNA data as they selected verb ratio and verb proportion features. From the attention
patterns it is possible that some representations that correlate with the linguistic differences
between AD and CHC have been learnt by BERT on the ADReSS challenge dataset and
CCNA dataset. It is apparent that there is a difference in the learned representation for
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CCNA Attention heads

Fig. 4.4. Attention head of CCNA model for specific layer for each random seed of the
sentence "I see uh two kids up at the cookie jar, one on a stool the other standing on the
floor.cupboard door is opened .mother’s washing the dishes.".Left: random seed 42 Middle:
random seed 52. Right: random seed 62.

both CCNA and ADReSS models which could explain the poor performance but there are
still some overlapping learned representations which could also explain why the BERT model
performs better when used on a different dataset compared to the Machine Learning models.
Another possible reason why BERT performs better when evaluated on a different dataset
may be due to the fact that it is a Transfer Learning model which is built to be applicable
to transferable domain data.

Both the selected features and the learnt representations from BERT seem to be more
domain specific to the task of connected speech of the Cookie Theft scene in English. This
is very domain and language specific and seems to not be transferable to another dataset
from the same domain.
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Chapter 5

Conclusion

To conclude, the replication of "To BERT or Not To BERT: Comparing Speech and
Language-based Approaches for Alzheimer’s Disease Detection" [3] was achieved using the
ADReSS challenge dataset. It was shown that potentially a more detailed and standard
way of extracting acoustic and linguistic features should be done to have proper comparison
between new techniques. A more thorough model selection was performed on the ADReSS
dataset and evaluated on a different CCNA dataset and vice versa. It was shown that
the trained models on the ADReSS challenge and CCNA dataset are not transferable to a
different dataset on the same domain.

We further explored the significance of the selected features by the best models and their
significance to the disease. It was shown that the selected features are very related to the
differentiation between the disease but are drastically different between models trained on
ADReSS and CCNA datasets. This may suggest that the two datasets are ,too small to
capture the distribution of both CHC and AD groups when evaluated on a new dataset.

In the future, it is crucial that given the use of very small datasets, that the evaluation
of the results be performed on a different dataset from the same domain. This is significant
in order to determine the generalization of the model. The potential combination of both
CCNA and ADReSS training set could be used to train the models. Also, continuing research
of predicting AD vs CHC with less attention to the specificity of the picture description task
would benefit greatly in building more robust and accurate models for the diagnosis of AD
as it was shown that the deep learning approach performed better when evaluated on a
different dataset. A potential research avenue could be the investigation of using Adapters
which could perform well on very small datasets as there are a significantly smaller number
of parameters to tune. Furthermore, exploration of the potential of the raw audio files should
be continued as these would help reduce the reliance on the transcription of the audio files
to text and the knowledge of the domain.
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Appendix A

Hyperparameter search results

SVM Accuracy(std) Precision Recall Sensitivity F1

SelectKBest 84.9 (0.4) 87.1 84.9 84.6 84.5
Correlation 85.5 (0.4) 87.9 85.9 84.6 85.3
RFE 83.0 (2.9) 86.8 83.02 80.9 82.6
SelectFromModel 84.9 (0.4) 87.1 84.9 84.6 84.5

Table A.1. SVM: 10-fold cross validation results across random seeds on ADReSS validation
set with hyper parameter search and different feature selection.

Logistic Regression Accuracy(std) Precision Recall Sensitivity F1

SelectKBest 87.0 (0.8) 90.0 87.04 84.6 86.9
Correlation 85.8 (0.9) 87.0 85.8 86.4 85.6
RFE 83.0 (1.9) 84.3 82.7 83.02
SelectFromModel 86.1 (0.8) 87.6 86.1 87.0 85.8

Table A.2. Logistic Regression: 10-fold cross validation results across random seeds on
ADReSS validation set with hyper parameter search and different feature selection.



RBF-SVM Accuracy(std) Precision Recall Sensitivity F1

SelectKBest 88.3 (0.4) 87.0 88.3 88.9 88.1
Correlation 87.04 (1.3) 86.3 87.0 90.7 86.8
RFE 84.9 (2.3) 85.8 84.9 85.8 84.6
SelectFromModel 86.4 (1.9) 88.33 86.4 86.4 86.1

Table A.3. RBF-SVM: 10-fold cross validation results across random seeds on ADReSS
validation set with hyper parameter search and different feature selection.

MLP Accuracy(std) Precision Recall Sensitivity F1

SelectKBest 89.8 (0.8) 91.5 89.8 88.9 89.7
Correlation 88.6 (0.9) 88.7 88.6 90.1 88.4
RFE 85.8 (0.9) 85.1 85.8 88.9 85.5
SelectFromModel 87.3 (1.2) 88.9 87.3 88.9 87.0

Table A.4. MLP: 10-fold cross validation results across random seeds on ADReSS validation
set with hyper parameter search and different feature selection.
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