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Résumé 

La consommation de cannabis durant l'adolescence est associée à des risques accrus de 

problèmes de santé mentale, y compris la toxicomanie et la psychose. Tout en considérant qu'une 

partie de l'étiologie de ces troubles est héréditaire, nous avons étudié le risque génétique de 

psychose et de troubles liés à l'usage de substances et leurs relations avec le cannabis et le 

système endocannabinoïde. Dans notre premier travail, nous avons étudié la relation entre les 

marqueurs génétiques endocannabinoïdes et les troubles d’usage d'alcool (TUA) pour deux 

cohortes d'adolescents. À l’aide d’approches de gènes candidats, nous avons démontré une 

relation significative entre ces gènes endocannabinoïdes et les TUA, mais ces résultats n'ont pas 

été répliqués chez une deuxième cohorte indépendante. Lors d’une seconde étude, nous avons 

examiné si la relation entre le score de risque polygénique pour la schizophrénie (PRS-Sz) et les 

expériences prépsychotiques (PLE) est médiée et/ou modérée par la consommation de cannabis, 

pour deux cohortes indépendantes. Des modèles de régression de médiation et de modération 

ont été utilisés pour examiner dans quelle mesure la relation prospective entre PRS-Sz et PLE est 

expliquée par la consommation de cannabis. Les résultats des analyses de médiation et de 

modération n'étaient pas significatifs, bien que le PRS-Sz et la consommation de cannabis aient 

tous deux prédit indépendamment les PLE. Ces résultats suggèrent que la consommation de 

cannabis reste un facteur de risque de psychose, au-delà de la vulnérabilité génétique connue 

pour la schizophrénie et qu’il n'y a pas de preuve que les individus génétiquement vulnérables 

étaient plus sensibles aux conséquences psychotiques de la consommation de cannabis. Le travail 

décrit démontre que les risques posés par la consommation de cannabis chez les adolescents 

pourraient ne pas être associés à une prédisposition génétique aux maladies psychiatriques, 

nonobstant l’implication du système endocannabinoïde dans la pathogenèse de ces mêmes 

maladies. 

Mots clés: endocannabinoïde, cannabis, trouble d’usage d'alcool, psychose, gène candidat, score 

de risque polygénique 





 

 

Abstract 

Cannabis consumption during adolescence, increases the likelihood of adverse mental health 

outcomes, including substance abuse and psychosis. Considering that part of the etiology of these 

disorders are heritable, we aimed to elucidate the genetic risk for psychosis and substance use 

disorders and their relationships to cannabis and the endocannabinoid system. In our first work, 

we investigated the relationship between endocannabinoid genetic markers and alcohol use 

disorder in two adolescent cohorts. Through candidate gene approaches we demonstrated a 

significant relationship between these endocannabinoid genes and AUD, but the results were not 

replicated in the second cohort. In a second work, we examined if the relationship between 

polygenic risk score for schizophrenia (PRS-Sz) and psychotic like experiences (PLE) is mediated 

and/or moderated by cannabis use, in two cohorts. Mediation and moderation regression models 

were used to examine the extent to which the prospective relationship between PRS-Sz and PLE 

is accounted for by cannabis use. The results of both the mediation and moderation analyses 

were not significant, although PRS-Sz and cannabis use both independently predicted PLE. These 

results suggest that cannabis use remains a risk factor for psychotic-like experiences, over and 

above known genetic vulnerability for schizophrenia and there was no evidence that genetically 

vulnerable individuals were more susceptible to the psychosis-related outcomes of adolescent 

onset cannabis use. The work described demonstrates that the risks posed by adolescent 

cannabis consumption may be unrelated to one’s genetic predisposition to psychiatric disease, 

notwithstanding the involvement of the endocannabinoid system in the pathogenesis of these 

same diseases.  

Keywords: endocannabinoid, cannabis, alcohol use disorder, psychosis, candidate gene, 

polygenic risk score  
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Preface 

Although the first recorded use of cannabis dates back to 2500 BCE, archeological and 

palaeontological evidence suggests that cannabis has been used by humans for almost 10,000 

years (1). Today, cannabis is among the most commonly used substances in the world, with the 

latest Canadian estimates reporting that close to 50% of people aged 15 or older have consumed 

cannabis in their lifetime(2). Over the last year, close to 30% of Quebec residents aged 18-24 have 

consumed cannabis at least once in the last 3 months (3). In view of the socially accepted, and 

widespread, use of cannabis in the general population, an understanding of the effects of the 

substance on the body, and in particular the brain, is of public health importance.  

The field of cannabinoid science was born in the 1940s, through the isolation of the first 

cannabinoid molecules (4). Since then, researchers have discovered a slew of receptors, enzymes 

and signalling molecules that are grouped into what is now known as the endogenous 

cannabinoid, or endocannabinoid (eCB), system. This system interacts with and is modulated by 

the hundreds of cannabinoid molecules that are found in varying concentrations in the cannabis 

plant. Moreover, the proteins of the eCB system - which are among the most widely expressed 

proteins in the mammalian nervous system(5)(6) – are involved in everything from fetal 

development, pain signalling, digestion, and higher order cognitive processes. Bearing the 

complexity of cannabinoids and endocannabinoid signalling in mind, a brief primer on certain 

fundamental biochemical notions of the endocannabinoid system is necessary. Thus, I will begin 

this work with a brief description of the functions of the various proteins of the “canonical” 

endocannabinoid system and the interactions of phytocannabinoids (cannabinoids produced by 

the cannabis plant) with the mammalian endocannabinoid system. Next, I will outline certain 

consequences of cannabis consumption on mental health and psychiatric disease, with a 

particular focus on substance use disorders and psychosis. Following this introductory chapter, 

the subsequent chapter will serve as an overview of genetic markers of cannabinoid-related risk 

for mental health. Particularly, I will examine the transition from candidate gene studies to a 

hypothesis free framework through the examples of research on endocannabinoid genetic 
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markers and their role in substance use disorders, and an introduction of polygenic risk scoring in 

cannabis-psychosis research. In the context of this literature review, I will advance the objectives 

and hypotheses of the research completed throughout this Master’s degree. A description of the 

methodology used in my studies thesis will follow. Then, the two manuscripts completed during 

this degree will be presented. Finally, I will describe my work in the context of current psychiatric 

genomics literature, outline the strengths and limitations of my studies, and elaborate on the 

potential for future works.  
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Introduction 

Cannabis and the Endocannabinoid System 

A biochemical overview of the endocannabinoid system 

The first scientific publication studying cannabis use for medical purposes dates back to 

the 1800(4). A century later, Δ-9-tetrahydrocannabinol (THC) – the main psychoactive molecule 

in the cannabis plant – was first isolated by Gaoni and Mechoulam (7). While this discovery and 

the isolation of other cannabinoids were tantamount to the field cannabinoid science, it was only 

two decades later that the binding sites for THC, the cannabinoid receptors one (CB1) and two 

(CB2), were discovered (8)(9). Thereafter, endogenous ligands and related enzymes responsible 

for the synthesis and degradation of these ligands have been identified, laying the foundations 

for the field of endocannabinoid research.   

CB1, regarded as one of the most highly expressed G-protein coupled receptors in the 

human nervous system (5)(6), is expressed in many sub-cortical (amygdala, nucleus accumbens 

(NAc), ventral tegmental area (VTA)) and cortical brain regions and has been shown to be involved 

in the processes of brain development, cognition, reward and addiction(10)(11). While the 

neuronal nature of CB2 has been subject of controversy(12), it is generally accepted that CB2 is 

widely expressed by immune and glial cells, and is involved in the general neuronal “protective 

system”(13). While other endocannabinoid receptors have been proposed (GPR55 (14) and 

TRPV1(15)), most of the research focusing on the neurodevelopmental functions of the 

endocannabinoid system have focused on CB1 and CB2. The two main endocannabinoid signalling 

molecules, which act on CB1 and CB2, are anandamide (AEA) and 2-arachidonoylglycerol (2-AG). 

These non-classical neurotransmitters are not stored in vesicles(16).  Rather they are produced, 

in an on demand fashion, by a calcium dependent enzymatic cascade and are rapidly degraded 

thereafter by enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase 

(MAGL) (16)(17). N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD), plays a 

crucial role in the synthesis of AEA, while 2-AG is synthesized by diaglycerol lipase (DAGL). While 

a complete review of the biochemical functions of the endocannabinoid system can be found 



 

30 

here (17), this goes beyond the scope of this work. Succinctly, at the neuronal level, 

endocannabinoids can be seen as important mediators of the balance between excitatory and 

inhibitory neurotransmission(18), and are required for several forms of synaptic plasticity(19) and 

neurodevelopmental mechanisms(17). 

Cannabis, cannabinoids and the endocannabinoid system 

Cannabis is the taxonomic genus that includes three species of plants: Cannabis Sativa, 

Cannabis Indica, Cannabis Ruderalis. Through our consumption for religious, medicinal, and 

recreational purposes, humans have created an enduring and complicated relationship with the 

cannabis plant. Historically, this plant has been used as material for the fabrication of various 

materials including clothing, rope, and sails, in the form of hemp(20). Above its material uses, the 

cannabis plant has been consumed – in a variety of ways – for its euphoric effects. These euphoric 

effects are caused by the pharmacological effects of the multiple phytocannabinoid molecules. 

While researchers have identified over 140 phytocannabinoid molecules in the cannabis 

plant(21), the best studied and most significant molecules remain THC and cannabidiol (CBD). In 

short, THC can act as an agonist and antagonist of both CB1 and CB2, while CBD is more typically 

an antagonist of these receptors(22). Moreover, the action of THC and CBD on cannabinoid 

receptors depend on their complex pharmacodynamics and pharmacokinetics properties: 

specifically the mode of consumption, circulating concentration, and regularity of use (see Lucas 

et al. for review (23)). Circulating levels of THC and CBD have been shown to disrupt neural 

plasticity mechanisms such as short-term depression, long term depression and long-term 

potentiation (24)(25)(26).  Moreover, THC acts at both excitatory and inhibitory synapses(17), as 

well as interacting with various neurotransmitter and neuromodulators including the 

serotoninergic, opioid and dopaminergic systems(27). While the acute intoxicating effects of 

phytocannabinoids are usually short lived (2-12 hours depending on mode of consumption)(23), 

cannabis use has various acute and chronic consequences on the brain; particularly, on the 

developing adolescent brain. Moreover, considering the inordinate increases in THC 

concentrations over the last decades(28), an increase in the mental health consequences of 

cannabis consumption, at the populational level, is of legitimate concern.    
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Mental health risks associated to cannabis consumption 

From its roles in fetal axonal growth and synaptic formation(29) to its role in the 

maintenance of cognitive, behavioral, emotional and developmental processes(18) (30), the 

endocannabinoid system plays a vital role in the various stages of brain development. Thus, 

considering the innate vulnerability of the developing brain, some have hypothesized that 

disrupting the endocannabinoid system through the introduction of exogenous cannabinoids, 

particularly during neurodevelopmental processes, could increase the likelihood of deleterious 

consequences(31). Epidemiological evidence has linked adolescent cannabis consumption to 

serious adverse mental health outcomes, such as depressive disorders and increased 

suicidality(32). This risk is often shown to be dose dependent and increased in those who 

consume chronically(33). Correspondingly, cannabis consumption is an addictive process, with 

the Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5) (34), including cannabis use 

disorder (CUD) among the many other substance use disorders. At this point, I do feel it necessary 

to define “addiction” and outline the conceptualization of addiction I will refer to throughout this 

text. Please also note that although I recognize that they are not truly equivalent terms, for the 

sake of simplicity, I have chosen to use the terms “addiction”, “substance abuse” and “substance 

use disorder” interchangeably throughout.  

Addiction or Substance Use Disorders 

I have elected to use the American Society for Addiction Medicine’s short definition of addiction, 

for this work:  

Addiction is a primary, chronic disease of brain reward, motivation, memory and 
related circuitry. Dysfunction in these circuits leads to characteristic biological, 
psychological, social and spiritual manifestations. This is reflected in an individual 
pathologically pursuing reward and/or relief by substance use and other behaviors. 

Addiction is characterized by inability to consistently abstain, impairment in behavioral 
control, craving, diminished recognition of significant problems with one’s behaviors 
and interpersonal relationships, and a dysfunctional emotional response. Like other 
chronic diseases, addiction often involves cycles of relapse and remission. Without 
treatment or engagement in recovery activities, addiction is progressive and can result 
in disability or premature death   
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This definition is based on notions proposed in the brain disease model of addiction, first 

published by Leshner in 1997 (35). Through this definition of addiction, one first recognizes that 

addiction, at its core, is a disease of the brain. In its most simplified version, the brain disease 

model of addiction posits that addictive substances or behaviours, will permanently modify the 

mesolimbic circuitry – or reward circuits – of the brain(35). It is also important to note that we 

cannot simply reduce addiction and addictive behaviour to only a “brain disease”. As Leshner 

writes, “it is a brain disease for which the social contexts in which it has both developed and is 

expressed are critically important” (35). Thus, while some research (such as my own) cannot 

consider the social and cultural contexts of drug use and abuse, it is important to note that these 

considerations must be included in any complete model of addiction. Building upon Leshner’s 

original model, Nora Volkow and Allan Koob – among others – have proposed a more complete 

neurobiological model of addiction(36)(37)(38). Their model conceptualizes drug addiction as a 

chronic cyclical process comprising of three stages: binge/intoxication, withdrawal/negative 

affect and preoccupation/anticipation. These stages are influenced by multiple neuroadaptation 

in three domains; 1) increased incentive salience, 2) decreased brain reward and increased stress, 

and 3) compromised executive function in three neuro-biological brain circuits (basal ganglia, 

extended amygdala, and the prefrontal cortex (PFC) (37)(38). As such, it is within the context of 

this extension of the brain disease model of addiction that we will understand the potential 

effects of cannabis consumption on the brain.    

Cannabinoids, endocannabinoids and addictive disorders  

Cannabis is among the most widely used addictive substances, with approximately 1 in 11 

(9%) users developing a cannabis use disorder in Canada (39). Moreover, this estimate increases 

to 1 in 6 individuals, in those who report using cannabis during their adolescence(39). Cannabis 

use disorder is theorized to develop from the neuroadaptations that occur following repeated 

chronic exposure to THC(40). THC directly modifies reward circuits of the brain(41), with ample 

evidence suggesting that repeated exposure to THC reduces dopaminergic function in chronic 

cannabis users(42). Additionally, in rodent models, THC withdrawal is associated to increases in 

corticotropin-releasing factor (CRF) in the amygdala; similar increases of CRF have been observed 

in the withdrawal of other drugs of abuse such as nicotine, psychostimulants and opiates(43). 
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Chronic cannabis use has also been associated to a collection of morphological brain changes, 

identified in brain imaging studies. For example, CUD is associated with reductions in amygdala 

gray matter volume, in a dose dependent manner: higher CUD is inversely correlated to gray 

matter volume(40)(44)(45). This finding is particularly interesting considering the role of the 

amygdala in craving and drug seeking behaviours described in Volkow and Koob’s model of 

addiction(37). Finally, chronic THC exposure leads to increased tolerance for the drug, in a 

mechanism associated to downregulations of CB1(46). While the consumption of 

phytocannabinoids, such as THC, are associated with the development of addictive processes, 

there is also evidence that the endocannabinoid system, in it of itself, plays an etiological role in 

the development of many substance use disorders (see (47) for review).  

Through its anatomic distribution, and influence of neurotransmission and synaptic 

plasticity,  the endocannabinoid system has an influence on many rewarding behaviours such as 

feeding, sexual activity, social interactions, and drug use(41)(48)(49)(50). As alluded to above, 

endocannabinoid receptors and related enzymes are expressed in many of the reward centers of 

the brain involved in the three stages of the addiction development, including the NAc, VTA, 

amygdala, and basal nucleus of the stria terminalis (BNST), in animal models and humans(6)(41). 

Expectantly, in rodent models, AEA and 2-AG have been shown to increase extracellular levels of 

dopamine in the NAc, in a CB1 dependent manner (51), by acting as a retrograde feedback system 

on presynaptic glutamatergic and GABAergic nerve terminals(42). The effect of endocannabinoids 

on dopamine transmission can also be blocked by CB1 antagonists(42). Correspondingly, levels of 

circulating endocannabinoids are modified by drugs of abuse such as ethanol(52). For example, 

Basavarajappa and colleagues (53) demonstrated, in rodents, that that acute ethanol use is 

associated with an increase in endocannabinoid signaling, while others have reported that alcohol 

use decreases endocannabinoid signaling(54)(55). Moreover, as is the case with other drugs of 

abuse, endocannabinoids mediate the reward signals associated with alcohol use(56). The 

endocannabinoid system has also been linked to the enhanced stress reactivity seen in people 

suffering from substance use disorders (37). This involvement is crucial, considering that the 

overreactive stress systems, and prolonged negative emotional states seen in individuals with 

addictive disorders, are theorized to be central to the development and maintenance of the 
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chronically relapsing compulsive drug taking behaviours seen in individuals with addictive 

disorders (37).   

The addictive consequences of cannabis use are particularly important for adolescent 

users. First, when controlling for other factors, age of onset of use is predictive with future 

cannabis use disorder, i.e. those who begin using at a younger age have a higher risk of developing 

cannabis use disorder(40). Moreover, the peak of vulnerability for future CUD development is in 

late adolescence or young adulthood(57). Adolescent cannabis use also increases ones risk for 

other use of other substance of abuse(58). A recent meta-analysis reported a close to 8 fold 

increase in risk of other illicit substance use among those who reported using cannabis daily 

before the age of 17 (adjusted OR = 7.80; 95% CI, 4.46–13.63) (59). Interestingly, some 

adolescents may have a biological predisposition to cannabis consumption, with research 

demonstrating that reduced brain volume in the orbitofrontal cortex(65) and reduced grey matter 

in the hippocampus(66) are significantly associated to cannabis consumption in young teens. 

While the consequences of these morphological changes are not yet clear, it is evident that 

cannabis consumption during the vulnerable period of adolescence has a particular impact on 

substance use behaviours.   

 Although endocannabinoid signalling seems to play a role in the development of various 

addictive behaviours in animal models, the interactions between the endocannabinoid system 

and alcohol use disorder are of particular interest considering the widespread and concomitant 

use of both alcohol and cannabis among Canadians. In fact, according to the Canadian Tobacco, 

Alcohol and Drugs Survey (CTADS) in 2017, alcohol use and cannabis use were among the top 

three most used psychoactive substances in Canada(60). Alcohol use disorders, and alcohol use 

in general are associated with very high levels of morbidity, mortality and  societal costs (61). A 

recent study demonstrated that 10,556 deaths (95% UI, 8285-13,609), and 440,709 disability 

adjusted life years (DALYs) (95% UI, 388,853, 527,260) were attributable to alcohol use in Canada 

in 2016, with 99,501 DALYs were attributable to AUD itself in Canada in 2016(62), and close to 

21.5 million DALYs being attributed to AUD worldwide(61). Moreover, individuals with AUD are 

at increased risk of death (HR = 2.98; 95% CI, 2.96-3.00) and die 12.2 years younger on 

average(63). Epidemiological surveys of alcohol and cannabis use suggest that the combined use 
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of these substances is related to greater harms than alcohol use alone(64). In a study by 

Subbaraman and Kerr(64), the simultaneous use of alcohol and cannabis compared to alcohol use 

alone, was associated to an increased risk of monthly heavy drinking (OR = 5.56 ; 95% CI, 3.43-

9.02), drunk driving (OR = 2.30; 95% CI, 1.61-3.30), and self-harm (OR = 2.22; 95% CI, 1.49-3.32). 

Cannabis use is also associated with the development of alcohol use disorder(65). For example, 

one study reported that cannabis use in individuals was associated to an increased incidence of 

alcohol use disorders three years later, compared to individuals who did not use cannabis (OR = 

5.43; 95% CI, 4.54-6.49) (65). Taken together these results highlight the importance of 

understanding the shared etiology of cannabis use and alcohol use disorders, as well as the 

important influences that use of each drug has on other.    

 Overall, the underlying evidence suggests that cannabis use is addictive through an 

interaction with the endocannabinoid system and the brain circuits that mediate reward, and that 

the endocannabinoid system, which is modulated by other drugs of abuse, plays an independent 

role in the pathophysiology of various substance use disorders, including alcohol use disorder. 

Nevertheless, a gap in the literature remains: notably there is a lack of understanding of the 

underlying mechanisms driving the common vulnerability to substance use disorders and the role 

of the eCB system in determining an individual’s vulnerability to these disorders. 

Psychiatric burden of cannabis consumption  

Although cannabis use does not lead to fatal overdose, cannabis use has been associated 

with an increased risk for a variety of psychiatric disorders and other substance use disorders(66). 

In a recent study of a nationally representative sample of US adults, Blanco and colleagues 

reported that cannabis use was significantly associated with increased odds of any psychiatric or 

substance use disorders (adjusted OR = 2.1; 95% CI, 1.8-2.6), when adjusting for a variety of 

confounders including history of divorce, history of SUD, history of social deviance, age, and sex 

among others(67). However, while cannabis use at time one significantly increased risk for any 

substance use disorder at time two (adjusted OR = 2.8; 95% CI, 2.4-3.4), it was not significantly 

associated to an increased risk for mood or anxiety disorders in this cohort(67). Among the best 

studied consequences of cannabis use, is the increased risk for psychosis and schizophrenia 

spectrum disorders among cannabis users. Multiple prospective, and longitudinal studies have 
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demonstrated that cannabis use often precedes psychosis(68), independent of alcohol and other 

drug use(69)(70)(71). In one study, following 6534 youths from the Northern Findland Birth 

Cohort, teenage cannabis use was significantly associated to developing a psychotic disorder, 

irrespective of baseline prodromal symptoms or other drug use (HR = 3.0; 95% CI, 1.1–8.0) (72). 

On the other hand, not using cannabis is a protective factor for patients, with non-users reporting 

less positive (OR = 0.42; 95% CI, 0.34-0.51), negative (OR =0.18; 95% CI, 0.15-21), and 

disorganization symptoms (OR = 0.33; 95% CI, 0.27-0.40)(73). These results remain consistent 

across systematic-review and meta-analysis (74)(75). This relationship is also dose-dependent, 

with the heaviest users having close to a four-fold increase in psychosis risk(76). The cannabis-

psychosis association has also been demonstrated experimentally, with systematic review and 

meta-analyses reporting that even single doses of THC can induce temporary positive psychotic 

symptoms in healthy individuals, with large effect sizes (77). Thus, a recent international multi-

site study, calculating the populational attributable fraction of cannabis use on psychosis, argued 

that if high-potency cannabis were no longer in circulation, at least 12.2% (95% CI, 3.0-16.1) of 

cases of first-episode psychosis could be prevented in the areas studied(78). This cannabis-

psychosis relationship is highlighted by the particular vulnerability of adolescent cannabis 

consumers. Adolescent cannabis use is strongly associated to earlier onset of psychotic 

symptoms(79) and worsened prognosis(80) for those who do transition to psychosis.  

The relationship between cannabis use and psychosis development is particularly 

interesting in the adolescent “clinical high-risk for psychosis”(81) population. These individuals 

are at a high risk for psychosis in the context of sub-clinical psychotic symptoms, functional 

decline and/or genetic risk(81). While cannabis use rates have systematically been shown to be 

higher in cohorts of clinical high-risk patients(82), a recent meta-analysis of enriched samples did 

not find that cannabis use was a risk factor for transition to psychosis in this population(83). As 

the authors note, this is probably due to the enrichment of the studies examined, and binary 

nature of the cannabis use measure in many studies(83). In fact, previous meta-analyses only 

found a significant association between cannabis use and psychosis transition in clinical high risk 

populations, among the highest users, or those with cannabis use disorder(84), further 

emphasizing the dose-dependent nature of the cannabis-psychosis relationship.   
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To understand the development of psychosis and the clinical-high risk state, researchers 

study the emergence of psychotic-like experiences (PLE). PLE are highly prevalent sub-clinical 

psychotic symptoms (85), reported in about 7% of individuals(86)(87). Meta-analysis has shown 

the PLE are associated with increased odds for any mental disorder (OR = 3.08; 95% CI, 2.26-4.21) 

(88).  Self-reported PLE have also been shown to be risk factors for subsequent psychiatric 

hospitalization (89). In their study, Werbeloff and colleagues demonstrated that self-reported PLE 

predicted the risk for later hospitalization for nonaffective psychotic disorders 5 years after 

baseline (adjusted OR = 4.31; 95% CI, 2.21-8.41) and the risk of later hospitalization for other 

psychiatric disorders (adjusted OR = 2.21; 95% CI, 1.02-4.82) (89). PLE are also predictive of 

increased risk for suicidality later in adolescents; in a cohort of 16 and 17 year old individuals with 

suicidal ideation, co-occuring psychotic experiences predicted a 6-fold increase of persistence of 

suicidal ideation at ages 19 and 20(OR = 5.53; 95% CI, 1.33-23.00) (90). While these sub-clinical 

experiences are transitory in about 80% of individuals, PLE are persistent in 20% of 

individuals(91).  The identification of PLE is particularly important in those considered at clinical-

high risk for psychosis(81). These individuals have a higher incidence of clinical disorders along 

the psychotic spectrum, with 10-40% converting to psychotic disorders within 2 years(92)(93).  

With this in mind, along with more recent genetic, neuropsychological, social and environmental 

studies, authors have argued for a dimensional model of psychosis(94)(95)(96). Accordingly, there 

would exist a distribution of psychotic-like and psychotic experiences across the entire 

population, ranging from “normative” experiences to clinical psychotic symptoms(95). Thus, 

while psychotic-like experiences may not be exclusive to psychotic disorders, “these experiences 

can endure over time in some individuals, and may be followed by a psychotic disorders” (91). As 

such, diagnostic tools which examine psychotic-like experiences such as the Comprehensive 

Assessment of the At-Risk Mental State (97) and the Structured Interview for Psychosis Risk 

Syndromes (SIPS)(98), have been developed to identify those at a clinical-high risk for psychosis. 

Moreover, self-report questionnaires such as the Community Assessment of Psychic Experiences 

- 42 (CAPE-42) questionnaire (99), have been used as screening tools for high-risk states for 

psychosis(100)(101)(102)(103). Factor analysis of these clinical interviews, and self-report 

questionnaires have allowed researchers to subdivide PLE into replicable domains, such as 
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positive, negative, depressive and anxious symptoms(85)(104)(105). Taken together, the above 

literature would suggest that although the presence of PLE does not mean presence of psychotic 

disorder, their presence should be treated as part of the continuous psychotic spectrum, and 

measures of PLE could be used in the study of risk factors for future psychotic or other 

psychopathological disorders. 

Considering the close relationship of psychotic-like experiences to psychotic disorders, 

many have tested the hypothesis that cannabis use also increases one’s risk for PLE (see (106) for 

systematic-review). One study found that cannabis use is significantly associated with the positive 

PLE sub-clinical symptoms (β=0.061, p<1X10-4), even after controlling for numerous confounding 

factors such as age, gender, socio-economic status, social support, alcohol use, cigarette smoking, 

and urbanicity, among others(105).  Another study found that the relationship between PLE and 

cannabis use is increased in the heaviest of cannabis consumers(104); in those who spend >25 

€/week on cannabis (i.e heaviest users), there was an increased odds for various domains of PLE 

such as, negative symptoms (OR = 3.4; 95% CI, 2.9-4.1), positive symptoms (OR = 3.0; 95% CI, 2.4-

3.6), and depressive symptoms (OR = 2.8; 95% CI, 2.3-3.3)(104). Furthermore, cannabis use has 

also been shown to temporally precede PLE in adolescent cohorts(107), but psychotic-like 

experiences in childhood do not predict cannabis use(108). Overall, the study of PLE in cohorts of 

cannabis users, therefore, may be an interesting avenue to understand the nature and potential 

directionality of the cannabis-psychosis relationship.  

Genetic markers of cannabinoid-related risk for mental health 

Part of the etiology of substance use disorders, psychosis and psychopathology in general 

can be explained through genetics. In fact, the observation that psychiatric disorders are heritable 

can be traced to antiquity(109). These early observations were then confirmed by the first major 

twin, family and adoption studies in the early 20th century(110). By the end of the 20th century, 

with the introduction of new genotyping methods, researchers set out to explore the relationship 

between genomics and psychopathology by studying the relationship of polymorphisms in 

biologically plausible candidate genes and related psychopathologies. These “candidate gene 

studies”, led to a boom in the field of psychiatric genetics. Within ten years, hundreds of studies 
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were published in the field, and there was excitement among researchers interested in 

understanding the basis of psychiatric disease. However, critics quickly noted that most candidate 

gene studies are riddled with bias, and major meta-analyses of large samples demonstrated that 

we cannot draw any conclusions from most candidate gene studies in psychiatry(111)(112). 

Furthermore, the introduction of large-scale genome wide association studies (GWAS) to the field 

further pushed the classical candidate gene studies aside. The main advantage of the these GWAS 

publications was the replicability of the results, and the ability to use the data to make valid 

predictions in other datasets(113), using tools like polygenic risk scores and mendelian 

randomization analyses. Although psychiatric genetic publications employing candidate gene 

methodologies have dramatically dropped in recent years, the statistical and genetic methods 

employed by these studies are foundational to the more advanced methods used in today’s 

genomic research. It should be noted that the psychiatric candidate gene studies that have been 

the most successful to date are those studying substance use disorders – specifically in the field 

of alcohol abuse ((114) for review). These studies are among the only candidate gene studies in 

psychiatric genomics to have identified genetic markers that have been replicated by GWAS.  

Therefore, an outline of some of the literature surrounding candidate gene studies in psychiatry 

– in particular those studying the cannabinoid system and alcohol – remains relevant. 

Endocannabinoid genes as a marker for Substance Use Disorders 

The first studies examining the link between the genetics of the endocannabinoid system 

to substance use demonstrated that the CNR1 gene, the gene coding for CB1 is associated with a 

range of diseases, psychiatric disorders and substance use (115)(116)(117). Although, many 

studies have looked at various aspects of the endocannabinoid genes and their relationship with 

substance abuse, and risk-taking behaviour, results vary between studies, and most studies have 

yet to be replicated, as is the case with most of the candidate gene literature. For example, one 

of the first studied single nucleotide polymorphism (SNP) in the CNR1 gene, rs1049353;G1359A, 

was associated with severe alcoholism(118). In this cohort, the minor allele (A) was associated 

with the drug abuse behaviour, as well as impulsivity in another study (119) but in other studies 

the major allele (G) was associated with heroin addiction(120). Moreover, several haplotype 

blocks within the CNR1 gene, have been associated to addiction and addictive behaviour 
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(121)(122)(123)(124). In a cohort of mostly alcohol dependent individuals, Agarwal and 

colleagues found that a haplotype block including SNPs rs806380, rs806368 and rs754387, was 

associated with cannabis dependence (123), however other studies have reported conflicting 

results in similar or different cohorts (121)(122).  A meta-analysis of studies focusing on the CNR1 

gene and its association with illicit drug dependence found that among the variety of genetic 

changes in the CNR1 gene studied at the time, only the AAT repeat (>=16) had a modest 

association to abuse(125). Among the other endocannabinoid genes, additional genetic loci have 

been implicated in endocannabinoid regulation of addiction. For example, polymorphisms in the 

CNR2 (coding for CB2) and FAAH (coding for FAAH) genes have been associated with problem 

drug use and addiction (126)(127)(128)(129). Other works have looked at the MGLL and DAGL 

genes, the gene coding for the MAGL and DAGL enzymes (130)(131)(132). Recently, Carey and 

colleagues (132), found that one SNP in the MGLL gene (rs604300) interacted with childhood 

adversity to predict cannabis dependence symptoms, while Muldoon et al. (131), found that 

rs549662 was significantly associated with less subjective symptoms of nicotine withdrawal. 

Ishiguro and colleagues found that the missense polymorphism Pro899Leu in DAGLA(one of the 

genes coding for DAGL) was associated to alcoholism in a Japanese population(133). Considering 

the issues with candidate gene studies outlined above, all of the above results must be 

interpreted with caution, considering they use candidate gene methods and have yet to be 

consistently replicated.  

Polygenic risk scores: A reliable alternative to candidate gene methods  

With the rapidly decreasing cost of genome sequencing, the feasibility of studying genetic 

markers as they relate to psychiatric phenotypes – through GWAS – has increased substantially.  

Though modern GWAS studies employ a wide-variety of genomic methods (including gene-set 

analysis, natural selection analysis, and fine mapping approaches) to analyze and understand the 

relationships between genetics and complex diseases, it is the use and manipulation of the GWAS 

results for other predictive analyzes that are of interest to this work. Due to the open-source 

nature of psychiatric GWAS results, thanks to the collaboration of researchers through the 

Psychiatric Genetic Consortium(134), researchers around the world could download the summary 

statistics of GWAS and apply higher order statistical techniques to better understand how the 
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genome interacts with the environment in the development of psychiatric disease; one such 

technique being the polygenic risk score.   

While the results of GWAS studies are robust, and replicated across studies, the variants 

identified typically have small effects, and represent only a small fraction of the truly associated 

variants(135)(136)(137). Bearing this in mind, Yang and colleagues demonstrated that by 

aggregating the effects of SNPs identified in GWAS, and combining them into a score – the 

polygenic risk score (PRS) – one can explain larger proportions of the heritability of complex traits, 

such as height (138). Accordingly, a variety of polygenic risk calculation techniques were 

developed to estimate genetic liability to a trait at the individual level (100).  

In general, polygenic risk scores are created by taking the sum of the number of risk alleles 

of an individual, weighted by the effect size of the risk allele as estimated by the GWAS of the 

phenotype(135). Moreover, by varying the number of SNPs included in the PRS (i.e. using a priori 

p-value thresholds) one can increase the predictive ability of the PRS (135). Although polygenic 

risk scores for psychiatric diseases can currently only account for small portions of the variance 

of said disease (approximately <10% (140)), they remain flexible proxies of an individual’s 

vulnerability to a trait, and can be used to identify shared genetic etiology of various phenotypes 

(i.e PRS for depression predicts suicide attempts(141)). As such, the study of the summary 

statistics from the GWAS studies of schizophrenia(142), psychotic-like experiences(143), and 

cannabis use(144), have been used to elucidate the relationship between psychosis and cannabis 

use.  

In a recent article focusing on genetically informed methods, Gillespie and Kendler 

outlined three different hypothesis which could explain the cannabis-psychosis association:  (1) 

the relationship is fully causal, i.e cannabis use causes schizophrenia, (2) the relationship may be 

partially confounded by shared genetic and environmental confounders and/or reverse causation 

(i.e. that genetic risk for schizophrenia may increase risk for cannabis use rather than cannabis 

use causing schizophrenia), (3) this link is entirely non-causal (145). Thus, researchers have used 

the PRS for schizophrenia (PRS-Sz), which was derived to summarize the contribution of variants 

consistently related to schizophrenia risk(142), to understand these associations, with most 
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studies reporting a positive significant correlation between PRS-Sz and cannabis use 

(146)(147)(148)(149). Moreover, recent work has shown that there is strong genetic overlap 

between schizophrenia and cannabis use (144) and between psychotic experiences and risk for 

schizophrenia (150). From these studies, some researchers have concluded that the PRS-Sz and 

cannabis association represents a pathway from genetic risk for schizophrenia to cannabis use 

(149), while others have suggested that the sensitivity to exposure to cannabis use is moderated 

by this genetic risk for schizophrenia(151). Contrary to these reports, one highly powered study 

demonstrated that PRS-Sz was not associated to cannabis use disorder in healthy controls, or 

patients with psychiatric disorders other than schizophrenia(152). Additionally, the authors show 

that the association between prior cannabis use disorder and later development for 

schizophrenia was not altered after adjustment for PRS-Sz and PRS of other psychiatric 

disorders(152). Thus Hjorthøj and colleagues argue that the association between cannabis use 

and development of schizophrenia is not explained by common genetic vulnerability (152).  

Nevertheless, the majority of the evidence studying polygenic risk scores, and other similar 

methods such as linkage disequilibrium score regression (153)(154), suggest that significant 

genetic confounding exists, i.e. that common genetic risk factors increase the probability of using 

cannabis and schizophrenia, which is inconsistent with the fully causal, first hypothesis (145).  

The PRS-Sz is also related to PLE, but the results of these studies are less consistent. Initial 

reports did not demonstrate an association between PRS-Sz and the positive symptoms 

(hallucinations, paranoia, thought disturbance) of PLE in the general population (155)(156). Yet, 

more recent work has demonstrated an association between PLE and PRS-Sz. Specifically studies 

have demonstrated a significant association between the negative (157)(158), positive symptom 

domains (159)(160).  

 Other genetic modalities have also been used to study the cannabis-psychosis association. 

For example, discordant relative designs allow for strong, yet indirect, statistical control of genetic 

confounding for specific outcomes. Discordant relative designs are studies in which one sibling or 

family member is exposed to the variable of interest, while the other is not(161). This design 

allows the researchers to study the exposure-outcome association, all the while controlling for 

genetic and shared environmental factors(161). Some studies are considered “co-relative control 
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designs”, which include relatives of varying degrees (siblings, half-siblings, first-cousin pairs), 

which in turn would allow for varying amounts of shared genetic and environmental relatedness 

across pairs (161). In the only study(161) examining the relationship between cannabis use and 

schizophrenia using a discordant co-relative control design, the authors reported that although 

the association between cannabis use and schizophrenia was clinically significant, the relationship 

decreased as genetic relationship increased: general population OR=10.44, discordant-

monozygotic twins OR=3.38. This result supports the second hypothesis outlined by Gillespie and 

Kendler (145) (i.e. the cannabis-psychosis relationship is partially confounded by genetic and/or 

environmental confounders and/or reverse causation). This result, along with the results of other 

studies employing instrumental-variables to infer causal relationships – such as mendelian-

randomization studies (144)(162) – support the notion that the epidemiological relationship 

between schizophrenia and cannabis use may actually be confounded by shared genetic markers 

and reverse causation (145) .  

The strong epidemiological evidence, along with the results from polygenic-risk score 

studies and from other genomic designs suggest that the while the cannabis-psychosis association 

may partially causal, it is also partially confounded by shared genetic and environmental factors, 

as well as possibly being confounded by some reverse causation processes (145). Considering that 

the purported risks for adverse effects of cannabis are largely increased during adolescence, and 

that PLE are strong markers for psychosis risk in adolescent populations(100), examining the link 

between all three risk factors (polygenic risk, cannabis use, and PLE), is an interesting avenue of 

study. Specifically, using polygenic risk scores, and a longitudinal design, one could study if 

cannabis use partially mediates or moderates the relationship between polygenic risk for 

schizophrenia and psychotic-like experiences.  
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Objectives and hypotheses 

Previous candidate gene studies were limited by cohort size (typically N<500), and the high 

cost of genotyping a wide array of genomic markers. As such, past candidate gene efforts were 

often limited by the study of a constrained number of polymorphisms within biological systems 

of interest. Due to the inability to replicate findings of said candidate gene studies through meta-

analysis, some authors have called for an end to hypothesis-testing approaches in psychiatric 

genetics(163). Nonetheless, others have argued that the failure to replicate candidate gene 

findings do not necessarily suggest the findings are false, rather significant candidate gene 

findings, in adequately powered cohorts, could represent particular phenotypes of sub-groups of 

individuals, which could account for a small portion of the genetic effect on the phenotype in 

question(164). In addition, the increased affordability of genome-wide arrays, larger collaborative 

cohort studies, and the efficiency of new data analysis platforms, have enabled researchers to 

study the aggregate effects genetic changes across entire genes, biological systems and the 

genome as a whole(165). This is important because the study of the effects of multiple genes not 

only reduces the likelihood of false negative results, by reducing the number of statistical tests 

performed, but is also more aligned with the polygenic nature of most complex behaviours (132) 

(166). One recent example of the utilization of a biological systems level genomic approach 

(rather than a genome-wide approach) in the field of addiction psychiatry, is the set-based 

analysis used by Carey and colleagues(132). In this study, the group employed a set-based test to 

examine whether genetic variation in multiple endocannabinoid genes and childhood sexual 

abuse interact to predict cannabis dependence symptoms(132). At the gene level, they reported 

a significant interaction between the MGLL gene and childhood sexual abuse to predict cannabis 

dependence (p=0.009). This effect seems to have been driven by one SNP (rs604300) within the 

MGLL gene(132). This study, like others utilizing similar gene-set approaches applied to the study 

of addictive disorders(167), support the use of candidate gene studies to help identify putative 

mechanisms, or biological markers, involved in the development of psychiatric and substance use 

disorders. 
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Thus, I completed two studies examining different genomic approaches (i.e., biological 

systems approach and genome-wide approaches) in the aim of understanding the polygenic 

nature of the development of psychopathologies in the context of substance use in adolescent 

and young adult populations. While the substance use outcomes vary greatly in the two studies, 

these works remain related considering the prevalence of alcohol use, and cannabis use across 

ages, and the relationships between the endocannabinoid system, alcohol use, cannabis use and 

the development of psychopathologies (i.e. role of endocannabinoid system in development of 

substance use disorders, relationships between cannabis use and increased burden of alcohol use 

and alcohol use disorder, relationship between cannabis use and development of other 

psychopathologies such as psychotic disorders).  

Study one: Considering the previous literature associating the endocannabinoid genes to 

substance use disorder, and the relationship between the endocannabinoid system and 

the neurobiological systems associated to substance use, I hypothesize that genetic 

markers within the endocannabinoid related genes are predictive of alcohol use disorder 

in adolescents. This study is novel in that it is the first study, to our knowledge, to use 

gene-set analyses to examine the relationship between problematic alcohol use in 

adolescent populations and the genomics of the endocannabinoid system as a whole.    

Study two: Due to the fact that it has not yet been determined if the commonly reported 

cannabis-schizophrenia relationship is determined by genetic risk for psychotic disorders 

or through other environmental mediators, I examined if the relationship between 

polygenic risk score for schizophrenia (PRS-Sz) and psychotic like experiences (PLE) is at 

least partially mediated by cannabis use, in two independent cohorts of European 

individuals. Additionally, we also test a moderation hypothesis, in which cannabis might 

exacerbate genetic vulnerability to psychosis. This is contrasted with a null hypothesis that 

suggests that despite any potential shared genetic vulnerability between cannabis use and 

schizophrenia, the relationship between cannabis use and psychotic-like experiences is 

independent of (or in addition to) the relationship between polygenic risk for 

schizophrenia and psychotic-like experiences.  
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Methods 

Participants 

Study 1 

IMAGEN 

Data from the IMAGEN cohort, which is a longitudinal imaging genetics study of over 

healthy adolescents, mostly of European descent, was used for primary analysis in this study(168). 

The IMAGEN cohort has been repeatedly assessed on various cognitive, psychosocial, and 

substance use outcomes at 14, 16, 18 and 21 years of age. Moreover, participants contributed 

genetic data at 14, and underwent anatomic and functional neuroimaging batteries at the various 

follow ups.  The IMAGEN project had obtained ethical approval by the local ethics committees (at 

their respective sites) and written informed consent from all participants and their legal 

guardians. All datasets were de-identified by using codes for individuals. See Schumann et 

al.(168), for a more detailed description of the IMAGEN cohort.  

Study 1 used data for all 2087 individuals who completed the IMAGEN battery at 14, 16 or 

18 years of age, and who contributed genetic data at 14. Considering the use of sex as a covariate, 

3 individuals were removed because of an unassigned sex after sex determination analysis in 

PLINK1.9(169).  Moreover, 11 the individuals who did not complete the Alcohol Use Disorder 

Identification Test (AUDIT) were removed from the study. 11 pairs of siblings are found among 

the IMAGEN participants. As such, one sibling from each pair (random assignation) was removed, 

to reduce potential bias in estimation of standard errors of SNP effect sizes(170). We asses for 

European ancestry using Admixture, using HapMap III (171) as a reference population. Eleven 

individuals, with non-European ancestry were removed prior to analysis. Ancestry is controlled 

because allele frequencies differ between subpopulations, and the presence of multiple 

subpopulations can therefore lead to false positive or false negative results(170)(172). Overall, in 

this study there was a total of 1043 female and 1008 males. 
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Saguenay Youth Survey 

Genetic and alcohol-use data from the Saguenay Youth Study (SYS) were used as an 

independent replication cohort in study 1. The SYS is a two-generational study comprised of 1029 

adolescents and 962 parents(173). Participants in this study were recruited over a 10-year period. 

After recruitment, adolescents provided genetic material and underwent a detailed 

neurocognitive and psychosocial assessment. Data for the 772 adolescents, aged 14 or older, who 

had contributed genetic data and completed SUD assessment were included in this study. 

Study 2 

IMAGEN 

Data from the IMAGEN cohort, described above, was used for primary analysis in study 

two. Data from all 2087 individuals who completed the IMAGEN study and provided genetic data 

at 14 years of age were included in this study. After genetic quality control, described below, 1740 

individuals remained for statistical and genetic analysis.   

Utrecht cannabis cohort  

Data from the Utrecht cannabis cohort, used in study 2, comes from a subset (N=1223) of 

data from a cohort (N=17,698) of young Dutch participants. This subset is comprised of individuals 

who had contributed genetic, cannabis use and PLE data was available. Participants gave online 

informed consent, and the data collection methods of the Utrecht cannabis cohort received 

approval by the University Medical Centre Utrecht medical ethical commission. This is a particular 

cohort due to the enriched nature of PLE and cannabis use data. To increase power for gene x 

environment interactions in previous studies(174), data from individuals from the general 

population was combined with data of participants selected from the top or bottom quintile of 

total PLE scores, who are either non-users(<2 lifetime exposures to cannabis) or heavy users (i.e. 

current expenditure for personal cannabis use exceeded €10 weekly).  
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Genetic data  

Quality control 

STUDY 1 

IMAGEN 

The genotyping for the IMAGEN cohort was run using the Illumina Quad 610 chip and 

660Wq at the "Centre National de Genotypage" (Paris, France). First, quality control (QC) of 

individuals is performed, by removing individuals with ambiguous sex, call rates of >98%, related 

(identity by state analysis), and non-European individuals. Non-Europeans are removed following 

methods published by Huguet et al.(175). Next, SNPs within ±10kb of the genes of interest (CNR1, 

NAPE, FAAH, MGLL, DAGLA), with a minor allele frequency (MAF) of > 5%, a call SNP rate of 90%, 

and respecting Hardy Weinberg Equilibrium (HWE) (<1x10-6), were kept for the study.  Following 

quality control steps, the first study analyzed data from 69 SNPs and 2051 individuals. All QC 

methods are run in PLINK1.9(169).  

SYS  

All individuals in this dataset were genotyped using whole blood samples. Genotyping was 

executed at either the “Centre Nationale de Génotypage” (610Kq array; 599 arrays) or at the 

Genome Analysis Centre of Helmholtz Zentrum München (HOE-V12 array; 1395 arrays). We use 

genetic data that was imputed using previously published methods(173), after which data for the 

69 SNPs identified in the IMAGEN study was extracted. Detailed descriptions of the cohort, 

genotyping and data collection have previously been published(176)(177). 

STUDY 2 

IMAGEN 

In study two we exclude SNPs with a minor allele frequency (MAF) of less than 2%, a 

genotyping rate of 2% or SNPs that did not respect Hardy Weinberg Equilibrium (HWE) (<1x10-6). 

Individuals with disproportionate levels of individual missingness (<2%), ambiguous sex, evidence 

of cryptic relatedness (>0.125), excessive heterozygosity were removed. After the first steps of 
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quality control, 1950 individuals of the IMAGEN cohort remained. The data of the IMAGEN cohort 

were then combined with data from HapMap III, and principal component analysis was performed 

in PLINK1.9(169) to determine ancestry information. We removed individuals who did not fall 

within 3SD of the mean of the first 2 principal components of the CEU + TSI populations from 

HapMapIII(171). In all, 1740 individuals and 488426 SNPs remained for polygenic risk score and 

regression analysis.  

Utrecht cannabis cohort 

The genotyping in this cohort was run using either the Illumina® HumanOmniExpress 

(733,202 SNPs; 576 individuals) or the Illumina® Human610-Quad Beadchip (620,901 SNPs; 768 

individuals). Detailed descriptions of the quality control and imputation methods for this cohort 

were previously published(178).   

Phenotypes evaluated 

STUDY 1  

Alcohol misuse 

IMAGEN 

The Alcohol Use Disorder Identification Test (AUDIT), is used as a measure for alcohol use 

disorder. The AUDIT is a validated self-report questionnaire, developed by the World Health 

Organization to screen for heavy drinking and current alcohol dependence(179). Individuals were 

considered to screen positive for an AUD, if they scored 8 or more on the AUDIT. While other 

studies focusing on adolescent alcohol abuse report using a less stringent cut-off 

(180),(181),(182), or differing cut-off depending on sex(183), a score of 8 or more was used as this 

is the cut-off with the strongest sensitivity, and a favorable specificity across all studies(184). Four 

different “case/control” statuses were derived: “ALL” representing having screened positive for 

AUD at any timepoint from 14-18 years of age, then a score for each of the reassessments, 14, 16 

and 18 years. 
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SYS 

The alcohol-use data used for study 1, were obtained via a self-report questionnaire 

developed specifically for the SYS cohort (185). The items from this questionnaire that were 

deemed to overlap sufficiently with AUDIT questions were used for this study (see Annex 1 – 

Supplementary Table 4, for overlapping questions).  

Covariates 

In this study, for logistic regressions, we include sex, the first 6 principal components, 

parental alcohol abuse, and parental education as co-variables (see Annex 1 - Figure S1 for results 

of principal component analysis). Data for parental educational is taken from the relevant 

questions in the European School Survey Project on Alcohol and Other Drugs (ESPAD) (186). AUD 

in parents was measured using the AUDIT for the first 2 follow ups. If ESPAD or AUDIT data was 

missing for parents at 18 years old, the most complete and recent information was used. In post-

hoc analysis, for SNPs that significantly predicted AUDIT flags, after controlling for covariates, we 

control for potential confounding of interaction(187), and include the interaction of the covariate 

of no interest by SNP. The set-based test, Fisher exact test, and logistic analyses were all carried 

out using PLINK program(169). 

STUDY 2  

Cannabis use 

IMAGEN 

Participants in the IMAGEN cohort were assessed for cannabis use at 14, 16, 18 and 21 

years of age using the ESPAD questionnaire. ESPAD is a widely used self-report questionnaire that 

measures use of various drugs of abuse (186) (188). In this study cannabis use data from the 16-

year-old follow up is taken from responses to the question, “On how many occasions in your 

whole lifetime have you used marijuana (grass, pot) or hashish (hash, hash oil)?”. Answers are 

scored on a scale from 0-6: ‘0’ = 0, ‘1-2 times’=1, ‘3-5 times’=2, ‘6-9 times’=3, ‘10-19 times’=4, 

’20-39 times’=5, ‘40 or more times’=6. To compare data directly to the replication cohort, 
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cannabis use is then dichotomized into “case/control” status, where >=10 lifetime uses is 

considered a case.      

Utrecht cannabis cohort 

Cannabis use data for this cohort is taken from a self-report questionnaire, developed for 

this cohort. Data for lifetime cannabis use is categorized as never = 0, ‘1 time’ = 1, ‘2 times’ = 2, 

‘5-9 times’ = 3, ‘>=10 times’ =4. Data is then dichotomized, to allow direct comparison to the 

IMAGEN data set, with >= 10 lifetime uses considered as cases.  

Psychotic-like experiences 

PLE data for both IMAGEN and Utrecht cannabis cohorts is taken from the Community 

Assessment of Psychic Experiences - 42 (CAPE-42) questionnaire (99). CAPE-42 is a reliable, and 

validated, self-report questionnaire that measures lifetime PLE (189). Moreover, this 

questionnaire was designed to have three subscales, which capture three dimensions of PLE: 

positive, negative and depressive symptoms. The CAPE-42 questionnaire is mainly derived from 

the Peters et al. Delusions Inventory (PDI-21)(190), which is a dimensional questionnaire 

developed to measure delusional ideation in the general population(99). Thus, the CAPE-42 was 

developed through the addition of questions on auditory hallucinations, negative symptoms and 

depressive symptoms. Negative symptoms were taken from the highly cited SANS 

questionnaire(191). Due to the difficulty to discriminate between depressive and negative 

symptoms, only questions that allowed for more reliable discrimination between depressive and 

negative symptoms (i.e. questions of sadness, pessimism, hopelessness, feeling a failure, and 

feeling guilt) were included into the CAPE-42(192).  

The CAPE-42 questionnaire seems to be both internally reliable and factorially valid. Meta-

analysis of the psychometric properties of the CAPE-42 questionnaire demonstrated high internal 

reliability(189). The meta-analytic mean of the Cronbach’s alpha scores reported in the 5 studies 

analyzed was 0.91 (SD=0.05) for the CAPE-42 questionnaire as a whole(189). Moreover, it should 

be mentioned the positive and negative subscales are more reliable in adolescent populations 

than adult population, while the depressive subscale is equally reliable across studies (189). A 

review of studies using confirmatory factor analysis has demonstrated that the purported three-
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factor model of the CAPE-42 (positive, negative and depressive subscales) is acceptable in the 

original Greek version(189). However, results of studies which conducted confirmatory factor 

analysis in translated versions of the CAPE-42 demonstrated that the 3-model fit was not 

“optimal”(189). For example, in a validation study of the English and French translation of CAPE-

42, the three-factor model did not meet optimal goodness of fit indices on all fit indexes (GFI, 

AGFI, CFI <0.9, and RMR <0.05)(193). Nevertheless, the authors note the since the goodness of fit 

index was near 0.9 (GFI=0.862) it was within an acceptable range (193). Thus, while it is generally 

accepted that the CAPE-42 questionnaire has a factor structure which contains three dimensions 

(positive, negative and depressive symptoms), potential cultural and language differences should 

be considered when interpreting results from studies using the CAPE-42(189).            

In this study, we use only the frequency of symptom measured, as distress caused by 

symptoms is highly correlated to frequency of symptoms in the IMAGEN cohort (Pearson r=0.86). 

For primary analysis of this study, the logarithm of sum total frequency scores are used, while the 

log of the sum of the various-sub domains are analyzed in post-hoc analyses.  In IMAGEN data 

from the 18-year-old follow up is used.  

Polygenic risk score construction  

Polygenic risk scores for schizophrenia (PRS-Sz) are constructed for each of the IMAGEN 

and Utrecht cannabis cohort individuals, who passed genetic QC, as described above. The base 

dataset is taken from the most recent schizophrenia GWAS based on 40 675 cases and 64 643 

controls (139) as a base set. Base and target (IMAGEN + Utrecht cannabis cohort) datasets 

underwent stringent quality control prior to PRS calculation. Target quality control has been 

described above. SNPs included in the construction of the PRS are those that overlap with the 

1000 Genome reference set, target and base sets. Then SNPs with a MAF of <0.01 and SNP impute 

quality of <0.8 are excluded from base data set. Next, SNPS in complex LD-regions are removed 

(see Annex 2 – table S1). Using standard clumping procedures, PRS are then calculated using 

PRSice2(194). For each cohort, two PRS are retained for primary analyses. First, for each 

individual, a PRS-Sz is built using the p-value threshold (pt) of <0.05, as this is the PRS-SZ that 

optimally captures phenotypic variance in schizophrenia(142). Next, we construct 12 PRS-Sz for 
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each individual (Pt= 5x10-8,5X10-7, 5X10-6, 5X10-5, 5X10-4, 5X10-3, 5X10-2,0.1,0.2,0.3,0.4,0.5), to 

capture the PRS which explains the most variance (Nagelkerke’s R2) in the logistic regression 

between PRS-Sz and cannabis use. To control for type-1 error, we obtain an empirical p-value 

10000. Furthermore, the replication of the PRS result in an independent and similarly powered 

cohort would further confirm the validity of the result.  Therefore, the same protocol is used to 

create PRS, and dichotomize phenotype measures, to ensure comparability between cohorts. 

Finally, we control for age (in years) in regressions using the Utrecht cannabis cohort data, as this 

study is cross sectional and includes participants with a wider age range. After PRS calculation, 

PRS-Sz are center scaled using the scale function in R(195) to ease interpretability of the results.   

Statistical analyses 

Study 1 

After quality control, 69 SNPs located within or near 5 endocannabinoid related genes are studied 

in relation to AUDIT scores. Set based test, Fisher exact test, and logistic regression are all run in 

PLINK1.9(169).   

Set-based test 

69 SNPs within the CNR1, NAPEPLE, FAAH, MGLL, DAGLA genes are included for gene-set 

based tests, which are run in the PLINK1.9 program. Considering that no “standard” parameters 

have been accepted in the literature, at the time of this study, we conduct three set-based tests 

while varying parameters across each test. The parameters that are varied across tests are p-value 

for significant variants, r2 of variant pairs, and maximum set size. Results for each test underwent 

10,000 label swapped permutations. The parameters for the first test, for which results are 

considered in subsequent analyzes, include a p-value of 0.05, r2 of 0.5, and set-max of 5 SNPs. The 

second and third are more stringent with p-value of 0.05 and 0.01, r2 of 0.3 and 0.1, and set max 

of 3 and 2 respectively. The second and third test were run as a form of sensitivity analyses. 

Statistical significance for set-based test was corrected for multiple testing (5 gene sets) and 

maintained at an empirical p-value of <0.01. SNPs that were independent (based on r2) and 
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nominally significant (p<0.05), were then analyzed in subsequent case-control and logistic 

analyzes.    

Case-control analysis and logistic regression  

Significant and independent SNPs were considering for Fisher’s exact case-control 

analysis. False-Discovery rate (FDR) was used to correct for multiple tests in case-control analysis. 

SNPs that survived correction were included in logistic regression models as independent 

variables. In logistic regression we include all co-variates described above. As a final post-hoc 

analysis, we control for potential confounding of interaction of covariates of no interest by SNP 

of interest(187).     

Generalized multifactor dimensionality reduction (GMDR) 

We utilize a generalized multifactor dimensionality reduction analysis to study how 

SNPxSNP interactions across the endocannabinoid system relate to AUDIT scores. This analysis is 

run using the GMDR(v1.0) tool, which is an open source tool readily available online(196). We 

screen for the best interactions across the 69 SNPs and AUDIT flag, and analyze one SNP, two SNP 

and three SNP models. 10,000 label swapped permutations are used to obtain an empirical 

corrected p-value. For more information on the GMDR method see Lou et al, 2007(196).  

Study 2  

Regression analysis  

Multimonial linear and logistic regression are used to study the association between PRS-

Sz, cannabis use and PLEs. In our primary analysis, the PRS-Sz that best predicts cannabis use, and 

well of the PRS-Sz that best predicts schizophrenia (Pt<0.05) are used as independent variables to 

predict PLE. We use the log-transformed sum of CAPE-42 score as the dependent variable in 

primary analyses. For analyses the first six principal components and sex are used as covariates. 

We replicate these results using data from the Utrecht cannabis cohort cohort, where we add age 

as a covariable. A p-value of 0.025 is considered as significant, to account for multiple testing (two 

PRS-Sz). For models using dichotomous dependent variables Nagelkerke’s R2 is used to determine 

variance explained. As a post-hoc analysis, we conduct similar regression analyses where the 
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various sub-domains of the CAPE-42 (positive, negative and depressive symptoms) are considered 

as dependent variables. Finally, as a form of sensitivity analyses, we use PRS-Sz with more 

stringent Pt (5X10-8, 5X10-5). We also control for genetic risk for cannabis use, by including a PRS 

for lifetime cannabis use – derived from a recent lifetime cannabis use GWAS(144) – as a covariate 

in sensitivity analyses. All regression analyses are run in R(195).  

Mediation and moderation analysis 

In our model, we hypothesize that cannabis use (M), mediates the relationship between 

PRS-Sz (independent variable; IV) and PLE (dependent variable; DV). We run all mediation 

analyses using the ‘mediation’ package in R(197). Considering that the Utrecht data is cross-

sectional, we only run mediation analyses with the IMAGEN data, to infer directionality of the 

result. Thus, in mediation analyses, sex and the first 6 principal genetic components are 

considered as covariables. A non-parametric bootstapping (n=10000) procedure is used to 

estimate sampling distribution of the indirect effect (mediation effect). If the confidence interval 

of the indirect effect does not cross zero, we consider the average causal mediation effect (ACME; 

or indirect effect) to be significant.  

To examine if cannabis use increases risk for PLE in those with high genetic risk for 

schizophrenia, a moderation analysis, using the ‘MeMoBootR’ package in R. This package “a 

complete two-way moderation analysis with one moderator, similar to model 1 in PROCESS by A. 

Hayes (2013)”. In this model cannabis use is hypothesised to moderate the effect of PRS-Sz on 

PLE. Again, the model is run for both IMAGEN and Utrecht cannabis cohorts. Covariates for these 

analyses are sex, the first 6 principal components and age (in the Utrecht cannabis cohort 

analysis).    
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Abstract 

Genetic markers of endocannabinoid system have been linked to a variety of addiction-related 

behaviours that extend beyond cannabis use. In the current study we investigate the relationship 

between endocannabinoid (eCB) genetic markers and alcohol use disorder (AUD) in European 

adolescents (14-18 years old), followed in the IMAGEN study (n=2051) and explore replication in 

a cohort of North American adolescents from Canadian Saguenay Youth Study (SYS) (n=772).  

Case-Control status is represented by a score of more than 7 on the Alcohol Use Disorder 

Identification Test (AUDIT). First a set-based test method was used to examine if a relationship 

between the eCB system and AUDIT case/control status exists, at the gene level. Using only SNPs 

that are both independent and significantly associated to case-control status, we perform Fisher’s 

exact test to determine SNP level odds ratios in relation to case-control status and then perform 

logistic regressions as post-hoc analysis, while considering various covariates. Generalized 

multifactor dimensionality reduction (GMDR) was used to analyze the most robust SNP x SNP 

interaction of the 5 eCB genes with positive AUDIT screen. While no gene-sets were significantly 

associated to AUDIT scores after correction for multiple tests, in the case/control analysis, 7 SNPs 

were significantly associated with AUDIT scores of > 7 (p<0.05; OR<1). Two SNPs remain 

significant after correction by false discovery rate (FDR); rs9343525 in CNR1 (pcorrected=0.042, 

OR=0.73) and rs507961 in MGLL (pcorrected=0.043, OR=0.78). Logistic regression showed that both 

rs9353525 (CNR1) and rs507961 (MGLL) remained significantly associated with positive AUDIT 

screens (p<0.01; OR<1), after correction for multiple covariables and interaction of covariable x 

SNP. This result was not replicated in the SYS cohort. The GMDR model revealed a significant 

three-SNP interaction (p= 0.006) involving rs484061 (MGLL), rs4963307 (DAGLA) and rs7766029 

(CNR1) predicted case-control status, after correcting for multiple covariables in the IMAGEN 

sample. A binomial logistic regression of the combination of these three SNPs by phenotype in 

the SYS cohort showed a result in the same direction as seen in the IMAGEN cohort (BETA=0.501, 

p=0.06). While preliminary, the present study suggests that the eCB system may play a role in the 

development of AUD in adolescents.  

 



 

59 

Introduction 

Substance use disorders are a growing concern across the world, with an estimated 31 

million users worldwide suffering from drug use disorders. After alcohol and tobacco, cannabis 

ranks as the most used drug worldwide(198). Moreover, those who use cannabis are more than 

five times more likely to have an alcohol use disorder (AUD) (65). Considering that the 

endocannabinoid (eCB) system is responsible for the physiological consequence and subjective 

“high” of cannabis, much attention has been paid to the eCBs role in the development of various 

substance use disorders. Cannabinoid receptors and related enzymes are expressed in many of 

the reward centers of the brain; nucleus accumbens (NAc), ventral tegmental area (VTA), 

amygdala, and basal nucleus of the stria terminalis (BNST)(6)(41). These eCB levels are affected 

by ethanol(52), and the eCB system plays a role in the development of AUD and other substance 

use disorders in humans(41). Basavarajappa and colleagues (53) demonstrated that that acute 

ethanol use has been associated with an increase in eCB signaling, while others have reported 

that alcohol use decreases eCB signaling(54)(55). Moreover, as is the case with other drugs of 

abuse, eCBs mediate the reward signals associated with alcohol use(56). Overall, the underlying 

evidence shows that the eCB system is modulated by ethanol use, and this same system may play 

an independent role in AUD(199). 

  The first eCB receptor isolated, of which tetrahydrocannabinol (THC) is also a ligand, is the 

cannabinoid receptor one (CB1)(8)(200). Binding to this receptor and a second cannabinoid 

receptor (CB2) are the two main eCB agonists anandamide (AEA) and 2-arachidonoylglycerol (2-

AG). These agonists - which are not stored in vesicles - are produced through an enzymatic 

cascade in a Ca22++ dependent manner, and then are rapidly degraded by specific enzymes (fatty 

acid amide hydrolase (FAAH), and monoacylglycerol lipase (MAGL)). N-

acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD), plays a crucial role in the 

synthesis of AEA, which then binds to CB1. 2-AG is synthesized by diaglycerol lipase (DAGL).  

It has been shown that polymorphisms in the CNR1 gene, the gene coding for the CB1 

receptor protein, are associated with a range of diseases, psychiatric disorders and substance use 

(115)(116)(117). Many studies have assessed the various aspects of the eCB genes and their 
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relationship with substance use disorders and risk-taking behaviour. The single nucleotide 

polymorphism (SNP) rs1049353, in the CNR1 gene has been associated with severe alcoholism 

(minor A allele)(118), heroin addiction (major G allele)(120), and impulsivity(119). Furthermore, 

haplotype blocks within the CNR1 gene have been associated with addiction and addictive 

behaviour(121)(123). Polymorphisms in the FAAH gene have also been associated with problem 

drug use and addiction(126)(129). In contrast, there have been relatively few studies examining 

the MGLL gene, the gene coding for the MAGL enzyme, and the DAGL in association to drug 

dependence (130)(131)(132). Among these, only one study has found a positive association 

between SNPs of the MGLL gene and drug dependence(132), while no studies have reported a 

significant association between DAGL and any form of drug abuse. Moreover, many of the original 

findings reporting an association between SNPs located in genes of the eCB and various drug 

abuse behaviours have not been replicated(41),(201), suggesting the possibility of false positive 

results in these candidate gene approaches. Nevertheless, while there are conflicting results 

among studies, the candidate gene literature suggests that genes related eCB proteins may play 

a role in the development of substance use problems.  

 While candidate gene findings in psychiatric genetics have been widely criticized for 

replication failure, particularly with respect to GWAS and meta-analysis(163), candidate gene 

approaches in addiction research have identified genetic markers that have been confirmed in 

GWAS and meta-analysis(114). This is perhaps related to particularly heritable nature of addictive 

behaviours compared to other psychiatric conditions, or to the fact that candidate gene 

approaches can be directly informed by pharmacogenetic studies on how drugs of abuse interact 

with the brain’s neurochemistry. Others have argued(164), the failure to replicate candidate gene 

findings through GWAS and meta-analysis do not necessarily suggest the findings are false. The 

candidate gene findings may represent particular endophenotypes of sub-populations, which 

may account for a portion, albeit small, of genetic influence on the phenotype in question. Thus, 

other groups have utilized novel methodologies, such as gene-set approaches, to analyze 

hypothesis-based questions in psychiatric genetics and addiction medicine. Recently, one group 

– utilizing said gene-set approaches found that MGLL and the SNP rs604300 interact with 

childhood sexual abuse to predict cannabis dependence symptoms(132). Considering our 
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relatively limited understanding of the roles of the various endocannabinoid genes in the 

pathogenesis of addictive behaviours, and the lack of robust findings at the individual SNP, or 

GWAS levels, gene-set and system-based approaches remain of interest (132),(202). Thus, the 

current study employs a gene-set based approach in an attempt to shed light on the role of the 

eCB system in the pathogenesis of addictive behaviours.    

Given the effect of alcohol on the eCB system(52) and the purported relationship between 

eCB SNPs and the risk for substance use disorder, we assessed the association between eCB 

genetics and alcohol abuse behaviours in the IMAGEN cohort(168). The IMAGEN cohort is a 

European cohort of 2087 adolescents, recruited in France, UK, Ireland and Germany. 

Endocannabinoid genetic influence was studied through a candidate gene approach. Multiple 

SNPs in eCB genes that have been previously examined (CNR1, FAAH, MAGL, DAGLA) as well as 

genes that have not yet been investigated (NAPEPLD) were analyzed in the context of alcohol use 

disorder (AUD). To understand this relationship a three-tiered approach was used. First, a set-

based test (203) is utilized to study, at the gene-level, the link between the eCB system and 

alcohol abuse behaviour. Through this approach we also identify SNPs that are significantly and 

independently associated to positive AUD screening, and these SNPs are selected for further 

study using a case/control analysis and subsequent logistic regression. Finally, while some studies 

have investigated the interaction between two eCB genes and addictive behaviour (127),(204), 

none have examined  the eCB system as a whole. Considering the complex interplay between the 

multiple eCB ligands (AEA and 2-AG among others) and various receptors (CB1, CB2, etc.) in their 

relationship to addictions (41), we hypothesize that a single genetic marker association study 

could not account adequately for the multifaceted role the eCB system plays in risk for AUD. A 

new wave of candidate gene studies have explored more complex gene-gene interactions, using 

various methods of multifactor dimensionality reductions analyses to yield promising results such 

as predicting outcomes in breast cancer treatment(205), in determining genetic biomarkers to 

predict antidepressant response (206), and further understanding the genetic influences of 

nicotine addiction(207).  Here, we utilized Generalized Multifactor Dimensionality Reduction 

(GMDR) to understand the effects that the multiple eCB genes may have on each other and their 

combined influence on alcoholic behavior in adolescence. To replicate the results, genetic and 
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alcohol use data were used from the Saguenay Youth Study (SYS), a two-generational study 

comprised of 1029 French-Canadian adolescents and their parents.  

Materials and methods 

Participants 

The IMAGEN study is a longitudinal imaging genetics study of 2087 healthy adolescents, 

mostly of European descent. Detailed descriptions of this study, genotyping procedures, and data 

collection have previously been published(168). The IMAGEN cohort has been repeatedly 

assessed on substance use outcomes at 14, 16 and 18 years of age. The multicentric IMAGEN 

project had obtained ethical approval by the local ethics committees (at their respective sites) 

and written informed consent from all participants and their legal guardians. The parents and 

adolescents provided written informed consent and assent, respectively. All datasets were de-

identified by using codes for individuals. See Schumann et al.(168), for a more detailed description 

of the IMAGEN cohort.  

The current study used data for all 2087 individuals who completed the IMAGEN 

assessment battery at 14, 16 and 18 years of age, and who contributed their genetic data at 14 

years of age. Of those followed at 16 or 18 years of age, 3 individuals had unassigned sex according 

to sex determination analysis in PLINK1.9(169) and were thus excluded from the genetic analyses. 

Moreover, eleven individuals did not answer the Alcohol Use Disorder Identification Test (AUDIT) 

at any time point and were thus removed from the genetic analyses. Eleven pairs of siblings were 

a part of the IMAGEN database, and thus one sibling from each pair was removed from the study, 

according to the methods published (175). European ancestry was determined using Admixture 

(http://www.genetics.ucla.edu/software/admixture) using HapMap III (171) as a reference 

population. Eleven individuals, with non-European ancestry were removed prior to analysis. Thus, 

in this study there was a total of 1043 female and 1008 males. A summary of the individuals can 

be seen in Tables 1 and S1.  
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Phenotype evaluated 

Alcohol misuse 

AUDIT, is a self-report questionnaire, developed by the World Health Organization, and 

validated(179), to screen for heavy drinking, and current alcohol dependence. Individuals were 

considered to screen positive for risk for AUD and were included in the case group, if they scored 

8 or more on the AUDIT (case-control status). While other studies focusing on adolescent alcohol 

abuse used a less stringent cut-off (180)(181)(182), the more stringent cut-off of 8 was chosen as 

this is the cut-off with the strongest sensitivity, and a favorable specificity across all studies(184). 

Four AUD scores were derived: “Any AUD” representing having screened positive for AUD at any 

timepoint from 14-18 years of age, and then individual dichotomized scores for each of the time 

points, 14, 16 and 18 years. For details about choice of cut-off, see supplementary methods.   

Covariates 

Covariables include sex, the first six genetic principal components, parental alcohol abuse, 

and parental education as co-variables. Parental education was taken from parent-report 

questionnaire using the educational categories specified in the European School Survey Project 

on Alcohol and Other Drugs (ESPAD+) questionnaire. Risk for AUD in parents was measured using 

the AUDIT obtained at the first two time points in IMAGEN. If ESPAD+ and AUDIT information 

were missing at the 18-year-old time point, the most complete and recent information was used 

at this time point. If a parent had signaled a positive AUDIT at any time, they were flagged as such. 

Moreover, if parental information was missing, individuals were not included in the logistic 

regression.  

Pipeline of SNP Selection 

The genotyping was run using the Illumina Quad 610 chip and 660Wq at the "Centre 

National de Genotypage" (Paris, France). Only autosomal SNPs were kept for this study. SNPs with 

a minor allele frequency (MAF) of less than 5%, a missing SNP rate of 10% or SNPs that did not 

respect Hardy Weinberg Equilibrium (HWE) (<1x10-6) were also removed from this study. All 

available SNPs in the genes of interest (CNR1, NAPE, FAAH, MGLL, DAGLA) within ±10kb (to 
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include promoter and flanker regions) were then selected. Gene length, and location were 

obtained using the UCSC Genome Browser). The SNP coordinates were updated from hg18 to 

hg19 using Illumina information and the liftover tool from the genome browser. 

(http://genome.ucsc.edu/cgi-bin/hgLiftOver). Nevertheless, SNP information was scarce on the 

CNR2, as such, the gene was not included in this study. A summary of the locations and details of 

each SNP (gene, chromosome, base pair, function and etc …) can be seen in Table S2. 

Statistical analysis 

Sixty-nine SNPs appearing across five cannabinoid-related genes were analyzed for their 

relation to problematic alcohol consumption. As a primary analysis, we first conduct three set-

based tests using parameters of varying stringencies, to study the relationship between 5 

endocannabinoid gene-sets (CNR1, NAPEPLE, FAAH, MGLL, DAGLA). The parameters that were 

adjusted between the tests were p-value for significant variants between tests, r2 of variant pairs, 

and maximum set size. Data in all three set-based tests underwent 10,000 label-swapped 

permutation as well, using the --perm function in PLINK1.9. The first test was the default test in 

PLINK1.9, with a p-value of 0.05, r2 of 0.5, and a set-max of 5, the second test had a p-value of 

0.05, r2 of 0.3, and set-max of 3, while test 3 had a p of 0.01, r2 of 0.1 and set-max of 2. Tests 2 

and 3 were more stringent, and were run to challenge the data, to ensure robustness of our 

results. Statistical significance for set-based test was determined using a Bonferroni corrected 

empirical p-values of p<0.01 (0.05/5 genes). Burden and optimized sequence kernel association 

tests (SKAT, R package) (208) were used to analyze the joint effects of SNPs (in gene sets). These 

analyses were performed on three groups of variants: a) Set 1, b) Set 2, c) Set 3 defined with gene 

set PLINK analyses. We resampled 10 000 times to compute empirical p-values (p-values were 

adjusted controlling for family-wise error rate) for the analyses (with “bootstrap” option). 

Next, to determine SNP level odds ratios (OR) case-control analysis was run on the SNPs 

that were nominally significant and independent after set-based analysis, using Fisher’s exact 

test. In the case-control analysis false discovery rate (FDR) was used to correct for multiple tests. 

To test the robustness of these findings after controlling for various relevant covariates, a logistic 

regression was performed which included only the SNPs that remained significant after correction 

for multiple tests, sex, the first six ancestry components, parental AUDIT flag, and parental 
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education were included in the logistic model. In post-hoc analysis, for SNPs that significantly 

predicted case-control status, after controlling for covariates, we control for potential 

confounding of interaction(187), and include the interaction of the covariate of no interest by 

SNP (see supplementary methods for descriptions of the covariables and Figure S1 for results of 

principal component analysis). The set-based test, Fisher exact test, and logistic analyses were all 

carried out using PLINK program(169). 

Generalized multifactor dimensionality reduction (GMDR)  

In order to test the replicability of these findings across a different analytic strategy, GMDR 

was employed to analyze the SNP x SNP interaction with phenotype. GMDR (v1.0) is a free open 

source tool for identification of interactions, developed by Guo-Bo Chen (196). This program was 

used to screen for the best interaction combinations among the 69 SNPs and the phenotype of 

interest. Permutation with 10 000 shuffles providing empirical p-values to measure the 

significance of an identified model was used. For these analyses, logistic regression with the same 

covariables as described above were performed. For more information on the GMDR method see 

Lou et al, 2007 (196).  

SYS replication cohort 

Genetic and alcohol-use data from the Saguenay Youth Study (SYS) were used to replicate 

the findings. The SYS is a two-generational study comprised of 1029 adolescents and 962 

parents(173). For descriptive characteristics of the participants included in the replication see 

Tables S3, and Table 1. All individuals were genotyped using whole blood samples from which 

DNA was extracted. The genotyping was performed at “Centre Nationale de Génotypage” for 

610Kq (No. arrays=599) and at the Genome Analysis Centre of Helmholtz Zentrum München 

(Munich,Germany) for HOE-V12 (No.arrays=1,395). Genetic information was imputed following 

previously published methods(173) and after that, the 69 SNPs studied were extracted. Detailed 

descriptions of the cohort, genotyping and data collection have previously been 

published(176)(177).  

Participants were recruited over a 10-year period. Once recruited, adolescents provided 

genetic material and underwent a detailed assessment in several domains. Alcohol-use data for 
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the SYS cohort were obtained via a self-report questionnaire developed specifically for the SYS to 

assess mental health and substance use based on validated protocols (185). The items from this 

questionnaire that were deemed to overlap sufficiently with AUDIT questions are listed in Table 

S4. Of 1029 adolescents in the SYS cohort, 772 adolescents aged 14 years and older had 

completed both the SUD assessment and provided genetic information and were therefore 

included in this study.  

In the replication of the case-control study, we studied the 7 SNPs found in the set-based 

test. Description of SNPs can be found in Table S5. Two statistical models were used to study the 

replication group. To study the native continuous phenotype, a model based on the quasi-poisson 

distribution was used. The participants were also separated into 4 different drinking groups, 

based on scoring distribution. A binomial logistic model was then used separating the participants 

into controls (groups 0 - 1; low alcohol use) and cases (groups 2-4; high alcohol use). Both models 

considered sex, age as covariables and family ID as random effect. Statistical analyses were 

performed using R, with the glmmTMB library, version 3.5.3 (https://www.R-project.org/).  

Results 

Set-based tests: identifying candidate SNP 

The three set-based tests were run, with varying results (Table S6). In the first set-based 

test, 9 SNPS returned with nominal p values of <0.05, of which 7 also passed linkage disequilibrium 

(LD) criterion. Through the first set-test criterion, only the CNR1 gene-set had a significant 

empirical p-value (p=0.022), but this was not significant after correction for multiple tests. Within 

this set, only rs9353525 was significantly and independently related to dichotomized AUDIT 

scores. In the second set-based test, the same 9 SNPS returned with nominal p values of <0.05, 

of which 5 SNPs passed the LD criterion. Nonetheless, no gene sets were significantly associated 

to case control status (p>0.05). Finally, 4 SNPs returned with a p value <0.01 in the third test, with 

2 SNPs passing LD criterion. No genes remained significant after correction for multiple testing 

(pFDR>0.05). As mentioned above, the 7 SNPs that had marginal p values of <0.01 in the first set-

based test, and that passed LD criterion (r2<0.5) were extracted and only these were analyzed in 
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the case-control analysis and logistic regression analysis. SKAT demonstrated similar results for 

the CNR1 gene (Table S7) 

Case-control analysis and sensitivity analysis 

In the case-control analysis of the IMAGEN cohort, which considered cases as individuals 

who scored eight or more on AUDIT at any time point (ALL), all 7 SNPs analyzed were significant 

(p<0.05) [Table 2]. All of the minor alleles were protective against having a case control status 

(OR<1). Two SNPs remained significant after correction by FDR; rs9343525 in CNR1 (pFDR=0.043, 

OR=0.73) and rs507961 in MGLL (pFDR=0.043, OR=0.78). A multivariate logistic regression analysis 

was done for the two SNPs that were significant after FDR correction in the Fisher test [Table 3]. 

As a first post-hoc analysis logistic models were done for significant SNPs, at each time point (14, 

16 and 18), as well as for any positive screen (ALL) for case-control status. After controlling for 

the effects of the first six principal components, sex, parental AUDIT scores (at any time) and 

parental education, both rs9353525 and rs507961 were still significantly associated with positive 

AUDIT screen in the ALL analysis [Table 3] (p<0.01), with both SNPs minor allele acting as 

protective factors (OR<1). In our post-hoc analysis, we find a significant interaction between 

rs9353525 and PC1 and PC6, as well as a significant interaction of rs507961 and PC3, suggesting 

that the genetic background, captured by the principal components, may modify the genetic 

effects of the SNPs on AUDIT scores. For complete results of logistic regression see Table S9, and 

see supplementary table S10 for results of post-hoc interaction analyses. Finally, we conducted 

post hoc analyses to study the association between AUDIT scores and SNPs of interest at each 

IMAGEN time point (14, 16, and 18 alone). After correction for multiple testing, none of the post-

hoc analysis demonstrated significant results (see supplementary results for detailed results). 

In the replication cohort, rs484061 was significantly associated with problematic alcohol 

use (p=7.47*10-6) in the binomial model. None of the other SNPs in the replication analysis had 

a significant result, after correction for multiple tests [Table S8].    

GMDR: SNP x SNP interactions  

A GMDR model was used to screen for the most robust interaction of combinations for 

the 69 SNPs in the candidate genes and case control status. For the one and two-SNP models, no 
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significance was found p>0.05. However, we found a significant three-SNP model (p =0.006) 

involving rs484061 (MGLL, intron), rs4963307 (DAGLA, intron) and rs7766029 (CNR1, 

downstream-gene) with AUDIT positive screens. An interaction between rs484061, rs4963307 

and rs7766029 was significantly associated with case-control status, with a combination of 

G/A;G/A;C/C or G/G;G/G;C/C conferring protection against problem drinking in the cohort 

(p=0.004 and p=0.02 respectively Table S11). The cross-validation consistency of this three-locus 

model was 19/20. The testing accuracy of the three SNP model (54%) was greater than the testing 

accuracy of either the one SNP(49%) or two SNP models (50%) (Table 4);(Figure 1). This result was 

verified by re-analyzing the model using 10 different random seeds and this model remained 

significant for each seed. An analysis of the same three SNP combination in the SYS cohort, 

binomial logistic model, showed a result in the same direction as seen in the IMAGEN cohort 

(β=0.50, p=0.06), and the distribution of at risk and protective combinations of SNP with 

phenotype is comparable to that of the IMAGEN population [Tables S11 and S12].  

Discussion  

Although no gene-sets were significantly predictive of binary AUDIT scores, after 

correction for multiple tests, our case/control analysis suggest that two SNPs, rs507961 (MGLL) 

and rs9343525 (CNR1) are associated with problem drinking and remained significantly 

associated after correction for multiple tests. The SNPs remained significantly associated to case-

control status in logistic regression, while considering multiple covariables, and the interaction of 

these covariables and the SNPs in question. The results of our logistic regression were not 

replicated in the replication cohort. To our knowledge, one study (132) had investigated rs507961 

in MGLL in relation to substance use disorders, however the association did not remain significant 

after correction for multiple tests. While rs507961 is intronic in MGLL, this SNP plays a role in 

histone regulation of this gene in the brain (Table S13). The robustness of our result confers 

evidence that carrying the minor T allele may in fact confer protection against problem drinking. 

Moreover, no study has investigated  the relationship between rs484061, another MGLL SNP and 

substance use disorders. The recurrence of rs484061 in both the GMDR model and case-control 

analyses suggests that being a carrier of this SNP protects against risk for AUD. While rs484061 

was significantly associated to positive AUDIT screens  in the case-control analysis of the IMAGEN 
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cohort (p=0.009, pFDR=0.055) and replicated in SYS(p=7.47*10-6), it was significantly associated 

to lower alcohol use. Our results suggest a role for MGLL in AUD but work in larger cohorts is 

needed to confirm this result.  

The second SNP that remained significant after correction for multiple tests in our case-

control analysis was rs9353525. It is localized in an intergenic region less than 10Kb of the 3’ 

region of CNR1. In an attempt to understand the biological role that this SNP plays in the 

regulation of CNR1 expression, we scanned the various available databases for potential roles, 

however this SNP is relatively understudied. While this SNP was not associated with higher rates 

of alcohol use in the SYS cohort, this SNP is in strong linkage disequilibrium with rs806368 (at 78% 

for allele T with G respectively for rs806368 and rs9353525). The rs806368 has been associated 

to alcohol, dependence in other studies(209). We also investigated rs806368 in our cohort, using 

the same case-control analysis as for our other SNPs, and the major allele is associated with 

likelihood of reporting a clinically significant AUDIT score at any timepoint in the IMAGEN cohort 

(p=0.007 OR=1.28). Moreover, this result remains significant after controlling for the various 

covariates described above in the IMAGEN cohort (p=0.007; see Tables S14 and S15). Taken 

together, these results suggest that the haplotype block containing both of the major alleles of 

rs9353525 and rs806368 plays a role in the development of AUD in adolescents.  

A GMDR model was used to screen for the gene x gene interaction that would be most 

associated to problem drinking, across genes showing a signal in previous analyses. We found a 

significant interaction involving rs484061 (MGLL), rs4963307 (DAGLA) and rs7766029 (CNR1), that 

predicted clinically significant AUDIT scores after correction for covariates. Each of these three 

SNPs are associated to loci, which are key regulators of gene expression (Tables S13 and S16). This 

observation was supported by the consistency of the result in the GMDR, across IMAGEN and SYS 

GMDR results (p=0.06) (Table S8). The similar distribution pattern of problem drinkers within the 

SYS cohort suggests that the marginal result in the SYS cohort is probably due to a lack of statistical 

power. The SYS cohort comprises a relatively young sample (mean age = 15 years old), as 

compared to the IMAGEN cohort which includes data from individuals when they are 14, 16 and  

18 years of age.  As such, many of the participants in the SYS cohort have not had their first contact 

with alcohol, and therefore might not have developed heavy patterns of drinking.  This marginal 



 

70 

effect should be investigated using data from this sample as it ages, to explore whether the effect 

becomes larger and more significant when substance use behaviours are assessed during the 

typical age when substance use disorders have their onset   

Endocannabinoid interactions in the brain and emotional regulation  

The GMDR analysis suggests that a certain combination of SNPs along the CNR1-DAGLA-

MGLL genes protect against or pose a risk for alcoholism, by presumably modulating DAGLA and 

or MGLL expression and subsequently 2-AG levels. The DAGLA protein (encoded by DAGLA) 

catalyzes the formation of 2-AG, which then acts as an agonist of CB1. 2-AG is then promptly 

degraded by MAGL (encoded by MGLL). 2-AG has been shown to play a key role in the regulation 

of the hypothalamic-pituitary-adrenal (HPA) stress response axis (210), which is altered in alcohol 

addiction (211). In response to increased corticosterone, 2-AG levels increase in the medial 

prefrontal cortex and paraventricular nucleus of the hypothalamus, and acts as a negative 

feedback signal to inhibit the HPA axis and terminate the acute stress response (210). While 2-AG 

levels increase in situations of chronic stress, it is theorized to play a role in stress habituation 

(210). Along the same line, 2-AG has also been shown to play a role in the reduction of stress 

induced-anxiety in a role mediated through the actions of MAGL and DAGLA (210). MAGL 

antagonists have been shown to have a strong anxiolytic effect in rodents (212),(213). Knockout 

studies have shown that DAGLA (-/-) mice, which have large reductions in brain 2-AG levels, have 

increased anxiety-like symptoms (214),(215). Moreover, the anxiety-like state seen in animal 

models of alcohol dependence and withdrawal symptoms are mediated by corticosterone-

releasing factor release in the central nucleus of the amygdala (CeA)(36). A recent study in alcohol 

dependent rodents found that 2-AG levels were decreased in the CeA of these animal models, 

and that inhibition of MAGL – increasing 2-AG levels – ameliorated abstinence-related anxiety 

and excessive alcohol intake (216). Mice exposed to chronic mild stress have reduced levels of 

DAGLA expression and reduced DAGLA expression in this same study was significantly associated 

to increased preference for alcohol(133). The study by Ishiguro and colleagues, was also the first 

to link SNPs in the DAGLA gene and alcoholism in humans(133). Our study supports the hypothesis 

that suggests that the eCB system plays a role in the development and/or maintenance of AUD in 

adolescents. Previous findings suggest that this vulnerability might be achieved by affecting 
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sensitivity to anxiety-like symptoms and influencing reward sensitivity to alcohol intake and 

warrants further study.  

While the results of this study suggest a relationship between eCB genes and AUD, we 

must acknowledge that the results of this study are preliminary and modest. First, many 

researchers have called hypothesis-based candidate gene approaches into question 

(163),(217),(218). This is due to the fact that, while very large GWAS studies consistently report 

that individual SNPs exert very small effects on complex phenotypes such as addiction, most 

published studies in the field report significant results, even with relatively small sample 

sizes(163). Considering that these small candidate gene studies may be underpowered (219),(220) 

(including ours), the significant results reported in the past are most likely false positive(163). It 

is also possible that this might be the case in the current study, however, the use of a replication 

sample provides a context in which to interpret the findings and make conclusions about 

generalisability of the findings.  According to the results of the SYS replication analysis, there is a 

85% chance that the findings reported herein will be replicated in another dataset of similar size.   

Moreover, we are were unable to replicate many of the previously reported findings in 

relation to substance use and eCB genes. This is because our set-based test eliminated many of 

the previously reported SNPs as they were non-independent according to our criteria. Moreover, 

some SNPs that are previously reported, mainly rs2023239 (56),(204), and rs6454674 

(209),(221),(222) are not assessed in the assay chips used in the present study or were too 

infrequent in our cohort for analysis. This was also the case for SNPs within CNR2 that have been 

previously evaluated for their relationships with substance use. Considering that our findings 

were most robust within the analysis considering all timepoints, we cannot be certain what role 

these SNPs play in the development of AUD (initiation of drinking, susceptibility to binge drinking, 

proneness towards harmful alcohol use or maintenance of abuse habits etc.). Our findings suggest 

a more robust relationship at later time points, potentially related to the power that increased 

prevalence of AUD at the older age affords in a statistical analysis. However, it will also be 

important to investigate whether these genetic markers are linked to maintenance of drinking in 

your adults, relative to early initiation behaviours, using larger longitudinal cohorts, when they 

become available. Finally, there are limitations with the cohort used for this study. Considering 
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that our cohort is population-based sample of adolescents, the number of problem drinkers is 

relatively low. Moreover, as the cohorts aged, they reduced in size due to participants leaving the 

study, diminishing the power of the analyses. Finally, while the results of our replication study 

were in line with the results of the IMAGEN analysis, our main findings were not significant 

according to classic standards (p=0.05).  

Nevertheless, the present suggest an interaction amongst various candidate genes 

relevant to the eCB system in predicting AUD - specifically the CNR1-MGLL-DAGL loop and their 

relationship to 2-AG. Further studies are required to further explore the generalisability of these 

findings and to understand the psychiatric implications of the results.  
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Tables in article 

Tableau 1. –  Table 1 (article 1). 

Cohort IMAGEN SYS 

N (female %) 2051 (50.8%) 772 (52.07%) 

N Family 2051 401 

Age (SD) 14 to 18 yearsc 15 years (1.85) 

AUDITa 
Control 1476 - 

Case 575 - 

GRIPb 
Control - 724 

Case - 48 

Table 1. Description of subjects in IMAGEN and SYS. a: IMAGEN subjects are classified by status 
with AUDIT score, case is > or = to 8 and control < 8 ; a: SYS subjects are classified by status with 
GRIP score, case > or = to 2 and control < 2.c: IMAGEN cohort is a longitudinal cohort, so it's not 
possible to calculate the standard deviation (SD). 
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Tableau 2. –  Table 2 (article 1). 

SNP A1 A2 Freq AC Freq AU OR Pvalue FDR Pvalue 

rs782446 C A 0.224 0.258 0.830 0.0242 0.0811 

rs484061 G A 0.464 0.509 0.833 0.00912 0.0552 

rs604300 A G 0.091 0.114 0.774 0.0327 0.0847 

rs507961 T C 0.197 0.238 0.784 0.00471 0.0427 

rs9353525 A G 0.103 0.136 0.729 0.00400 0.0427 

rs4729873 G A 0.330 0.367 0.849 0.0268 0.0811 

rs10488693 T C 0.058 0.077 0.727 0.0262 0.0811 

Table 2. Table of results for Case/Control analysis ALL. A1= minor allele. A2= major allele. Freq 
AC= Frequency of minor allele in cases. Freq AU = frequency of minor allele in controls. OR= Odds 
ratio. FDR Pvalue = p value after False Discovery Rate correction 
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Tableau 3. –  Table 3 (article 1). 

Phenotype SNP A1 NMISS BETA OR STAT p 

AUDIT ALL 
rs507961 T 2030 -0.270 0.764 -3.064 0.002 

rs9353525 A 2026 -0.301 0.740 -2.605 0.009 

AUDIT for 14 
rs507961 T 2024 -0.243 0.784 -1.098 0.27 

rs9353525 A 2020 -0.216 0.806 -0.776 0.44 

AUDIT for 16 
rs507961 T 1535 -0.190 0.827 -1.486 0.14 

rs9353525 A 1532 -0.461 0.630 -2.489 0.01 

AUDIT for 18 
rs507961 T 1243 -0.304 0.738 -2.588 0.01 

rs9353525 A 1240 -0.320 0.726 -2.053 0.04 

Table 3. Table of results for logistic model with AUDIT and rs9353525 and rs507961. A1=Minor 
Allele. NMISS= Number of Non Missing individuals. OR= Odds Ratio. Stat= Coefficient t-statistic.  

 

 

 

 

 

 

 

 



 

77 

 

 

Tableau 4. –  Table 4 (article 1). 

Model 
Training 

Accuracy 

Testing 

Accuracy 

Sign 

test(p) 

CV 

Consistency 

[ rs806368 ] 0.53 0.49 8 (0.94) 15/20 

[ rs806368, rs10488693 ] 0.55 0.50 12 (0.17) 15/20 

[ rs484061, rs4963307, 

rs7766029 ] 

0.58 0.541 16 (0.006) 19/20 

Table 4. Table of results for the best combinations defined by GMDR for 69 SNPs for AUDIT. Model 
= SNPs included in the model. Sign test = Sign test result with p-value in parentheses. CV 
Consistency = cross validation consistency 
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Figures in Article 

Figure 1. –  Figure 1 (article 1) . 

 

Figure 1 Illustration for the best combination defined by GMDR for 69 SNPs for AUDIT. The allele 
code is defined by minor allele numbers of rs484061(allele G), rs4963307(allele A) and rs7766029 
(allele T). The numbers above the histogram bar, indicate the sum of ‘positive’ (above the 
averaged score= 0) and ‘negative’ (below the averaged score= 0) scores by the combination of 
genotypes. Also, the dark grey indicates a high-risk combination of the genotypes with alcoholism 
and light gray for low risk. It defined by sum of positive and negative score, when it's < 0 for low-
risk and > 0 for high-risk. 
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Abstract 

Background: It has not yet been determined if the commonly reported cannabis-psychosis 

association is limited to individuals with pre-existing genetic risk for psychotic disorders. 

Methods: We examined whether the relationship between polygenic risk score for schizophrenia 

(PRS-Sz) and psychotic like experiences (PLE) is mediated or moderated by lifetime cannabis use 

at 16 years of age in 1740 of the individuals of the European IMAGEN cohort. Sensitivity analyses 

including covariates were conducted and results were replicated using data from 1223 individuals 

in the Dutch Utrecht cannabis cohort. Two PRS-Sz are studied in main analyses. The first, with a 

training set p-value threshold (Pt) of 0.05, which best predicts schizophrenia risk, and the second 

(Pt=0.5), which best predicted cannabis use in the IMAGEN cohort.  

Results: PRS-Sz at both Pt (0.5, 0.05) significantly predicted cannabis use (optimal Pt=0.5; 

p=0.0026) and PLE (optimal Pt=0.5; p=0.011), in the IMAGEN cohort. In the full model, considering 

PRS-Sz and covariates, cannabis use also significantly associated with PLE in IMAGEN (optimal 

Pt=0.5; p= 0.035). Results remained consistent in the replication cohort and through sensitivity 

analyses. Nevertheless, there was no evidence of a mediation or moderation effects.  

Conclusions: These results suggest that cannabis use remains a risk factor for psychotic-like 

experiences, over and above genetic vulnerability for schizophrenia. This research does not 

support the notion that the cannabis-psychosis link is limited to individuals who are predisposed 

to psychosis and suggests a need for research focusing on cannabis-related processes in psychosis 

that cannot be explained by genetic vulnerability. 
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Introduction 

Cannabis use is a well-studied risk factor for psychosis, schizophrenia spectrum disorders, 

and psychopathology in general. Meta-analysis and systematic reviews have consistently shown 

that there is a higher incidence of psychotic outcomes among cannabis users (74)(75) and that 

this relationship is dose dependent (76). Using cannabis during adolescence further increases risk 

for psychosis (72)(223), earlier onset of psychotic symptoms (79) and worsened prognosis (80). 

While the epidemiological evidence, along with some experimental evidence(224), suggest a 

causal link between cannabis use and psychosis, the nature of this relationship remains the focus 

of fierce debate (225)(226). Generally, three different hypotheses are used to explain the 

mechanisms of the cannabis-schizophrenia association: (1) the relationship is fully causal, i.e 

cannabis use causes schizophrenia, (2) the relationship may be partially confounded by shared 

genetic and environmental confounders and/or reverse causation, (3) this link is entirely non-

causal (146)(145).  

Considering that part of the etiology of cannabis use and psychosis can be explained 

through heritable processes (227)(228), recent large scale genome wide association studies 

(GWAS) have demonstrated that multiple single nucleotide polymorphisms (SNP) are associated 

with risk for schizophrenia (139), and predict cannabis use behaviours(144)(229). Researchers can 

summarize the genetic risk for a disease through polygenic risk score (PRS) calculations, derived 

from the summary statistics generated in these large-scale GWAS studies. Although most PRS for 

psychiatric diseases can currently only account for a small portion of the variance of disease 

(approximately <10% (140)), PRS can inform of shared genetic etiology among complex traits, and 

can also be used to estimate the genetic risk to a trait at the individual level (135). In view of the 

purported cannabis-psychosis link, researchers have examined the link between schizophrenia  

PRS (PRS-Sz) and cannabis use. PRS-Sz has been consistently associated to varying levels of 

cannabis use across numerous cohorts (146) (147) (Carey et al., 2016 )(149) (151) (154). 

Consequently, some have concluded that the relationship between PRS-Sz and cannabis use 

represents a pathway from genetic risk for schizophrenia to cannabis use (149), or that sensitivity 

to exposure to cannabis use is moderated by PRS-Sz (151). In contrast, one highly powered study 

reported that PRS-Sz was not associated to cannabis use disorder in healthy controls, or patients 
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with psychiatric disorders other than schizophrenia  (230). Furthermore, they report that the 

association between prior cannabis use disorder and later development for schizophrenia was 

not altered after adjustment for PRS-Sz and PRS of other psychiatric disorders(230); suggesting 

that the association between cannabis use and development of schizophrenia is not explained by 

common genetic vulnerability (230). Nevertheless, the results of most studies utilizing PRS-Sz, 

along with experiments employing discordant relative designs(161) and studies using mendelian-

randomization techniques (144)(162) support the second hypothesis – mainly that the 

relationship between schizophrenia and cannabis use is confounded by shared genetic 

vulnerability and reverse causation. 

The relationship between cannabis use and psychosis development is particularly 

interesting in the adolescent “clinical high-risk for psychosis”(81) population. These individuals 

are at a high risk for psychosis in the presence of sub-clinical psychotic symptoms, functional 

decline and/or genetic risk(81). As such, research on the developmental origins of psychosis risk 

have focused on the emergence of psychotic-like experiences (PLE) during the adolescent period 

and how cannabis might influence such trajectories.  

PLE are highly prevalent sub-clinical psychotic symptoms (85), reported in about 7% of 

individuals (Linscott and Van os 2013;Bourgin et al. 2020). Similar to the current models of 

symptomatology in patients along the psychotic spectrum these sub-clinical symptoms have been 

further subdivided into various dimensions, such as positive, negative and affective 

symptoms(100). While these sub-clinical experiences are transitory in about 80% of individuals, 

PLE are persistent in 20% of individuals (Van Os 2016).  Moreover, the presence of PLEs in 

community samples is associated with increased odds for any mental disorder (OR=3.08 CI95= 

2.26-4.21), and psychotic disorders (OR=3.96, CI 2.03-7.73) (Healy et al. 2019).   

Considering the close relationship of psychotic-like experiences to psychotic disorders, 

many have tested the hypothesis that cannabis use also increases one’s risk for PLE (see Ragazzi 

et al. 2016 for systematic-review). One study found that cannabis use is significantly associated 

with the positive PLE (beta=0.061, p<1X10-4), even after controlling for numerous confounding 

factors(van Gastel et al. 2012).  Another study found that the relationship between PLE and 
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cannabis use is increased in the heaviest of cannabis consumers (schubart); in those who spend 

>25 €/week on cannabis (i.e heaviest users), there was an increased odds for various domains of 

PLE such as, negative symptoms (OR 3.4, CI 2.9-4.1), positive symptoms (OR 3.0 CI 2.4-3.6), and 

depressive symptoms (OR 2.8, CI 2.3-3.3)(Schubart). Furthermore, cannabis use has also been 

shown to temporally precede PLE in adolescent cohorts (107), but psychotic-like experiences in 

childhood do not predict cannabis use(108). Overall, the study of PLE in cohorts of cannabis users, 

may be an interesting avenue to understand the nature and potential directionality of the 

cannabis-psychosis relationship. 

PRS-Sz are also related to PLE. While initial studies reported no relationship between PRS-

Sz and PLE (155)(156), more recent studies – with greater power – have found that PRS-Sz is 

associated to PLE (157)(158)(159)(160). But, there remains contradictory evidence in this field. 

For example some have reported that PRS-Sz is related to the negative and affective symptom 

domains (157)(158), but not positive symptoms (hallucinations, paranoia, thought disturbance), 

whereas others have reported an association between PRS-Sz and positive symptoms (159)(160). 

Thus, while the relationship between polygenic risk for schizophrenia and cannabis use 

has been consistently described in the literature, and the link between cannabis use and 

psychotic-like symptoms is shown to be significant, the relationship between all three factors 

(polygenic risk, cannabis use, and PLE) is not yet fully understood. While other studies have 

attempted to find environmental factors that mediate the relationship between PRS-Sz and 

cannabis use (149), to our knowledge no study has examined if cannabis use mediates the 

relationship between PRS-Sz and PLE. Thus, considering that PRS-Sz may be directly or indirectly 

linked to cannabis use, the current study aims to investigate whether or not the pathway from 

genetic vulnerability to psychosis symptoms, is at least partially mediated by an indirect pathway 

through cannabis use.  

In addition to the mediation hypothesis, we also test a moderation hypothesis, in which 

cannabis use might exacerbate genetic vulnerability to schizophrenia, and in turn increase the 

frequency of PLE. Clarifying the moderating role of genetic vulnerability on the relationship 

between cannabis and psychosis would also help to inform public health messaging guidelines for 
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recreational cannabis in which individuals with certain risk profile could be advised accordingly.  

These two hypotheses will be contrasted against a null hypothesis, which postulates that despite 

any potential common genetic vulnerability to cannabis use and psychosis risk, the relationship 

between cannabis use and psychosis risk holds, and is independent of (or in addition to) a 

common genetic vulnerability (i.e., cannot be explained by common genetic vulnerability). To test 

all hypotheses, we use a developmentally informed approach that focuses on temporal 

precedence to confirm mediation between variables. The current study uses data from two 

independent European cohorts: We use data from the IMAGEN (168) study, a longitudinal study 

of over 2000 European adolescents, as a discovery sample, and aim to replicate those results in 

an independent European sample, the Utrecht cannabis cohort (104). The use of the IMAGEN 

cohort is ideal considering that it allows for a longitudinal view of cannabis use and psychotic like 

experience development, during the critical years of adolescence. Furthermore, this cohort is 

relatively well powered to detect mediation effects, as similarly sized cohorts have attempted to 

discern such effects using similar phenotypes (149). This is compared with the Utrecht cannabis 

cohort, which is a cohort that has been enriched for PLE and heavy cannabis use; heavy cannabis 

use being a particularly strong risk factor for development of psychosis and PLE.  

Methods 

Participants 

IMAGEN sample 

The IMAGEN study is a longitudinal imaging genetics study of over 2000 healthy 

adolescents, mostly of European descent. Detailed descriptions of this study, genotyping 

procedures, and data collection have previously been published (168). The current study uses 

data for the 2087 who contributed their genetic data. The multicentric IMAGEN project had 

obtained ethical approval by the local ethics committees (at their respective sites) and written 

informed consent from all participants and their legal guardians. The parents and adolescents 

provided written informed consent and assent, respectively at 14 and 16, and then participants 

gave full consent at 18 and 21 years of age.  
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Utrecht cannabis cohort 

Data from the Utrecht cannabis Cohort comes from a subset (N=1223) of a large 

(N=17,698) cohort of young Dutch participants, for which genetic, cannabis use and PLE data was 

available. Detailed descriptions of recruitment methods, genotyping procedures, and data 

collection was previously published (104)(Boks et al., 2020). Participants gave online informed 

consent, and the study received approval by the University Medical Centre Utrecht medical 

ethical commission. Of note is the enrichment for the extremes in PLE and cannabis use data in 

the Utrecht cannabis cohort. To increase power for gene x environment interactions in previous 

studies(Boks et al., 2007), data from individuals from the general population was combined with 

data of participants selected from the top or bottom quintile of total PLE scores, who are either 

non-users(<2 lifetime exposures to cannabis) or heavy users (i.e. current expenditure for personal 

cannabis use exceeded €10 weekly).  

Phenotype measures 

Cannabis use measures 

IMAGEN participants were repeatedly assessed for cannabis use at 14, 16, 18 and 21 years 

of age using questions taken from the European School Survey of Alcohol and other Drugs (ESPAD) 

questionnaire. The ESPAD is a self-report questionnaire that measures use of various drugs of 

abuse, including cannabis(Hibell et al., 1997)(Hibell et al., 2004). With very few participants 

reporting cannabis use at 14 years of age, we focus our analyses on data that were collected at 

the 16-year-old assessment, using responses to the question “On how many occasions in your 

whole lifetime have you used marijuana (grass, pot) or hashish (hash, hash oil)?”. Answers are 

scored on a scale ranging from 0-6: ‘0’ = 0, ‘1-2 times’=1, ‘3-5 times’=2, ‘6-9 times’=3, ‘10-19 

times’=4, ’20-39 times’=5, ‘40 or more times’=6.  In the Utrecht cannabis Cohort, lifetime cannabis 

use data was reported according to the following categories never = 0, ‘1 time’ = 1, ‘2 times’ = 2, 

‘5-9 times’ = 3, ‘>10 times’ =4. Cannabis use data was dichotomized into “case/control”, where 

>=10 lifetime uses are considered cases. This dichotomization allows for direct comparison of the 

IMAGEN cohort to the Utrecht cohort.  
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Psychotic-like experience measures 

PLE data for both cohorts was drawn from the Community Assessment of Psychic 

Experiences - 42 (CAPE) questionnaire(99). CAPE-42 is a widely used self-report questionnaire 

that reliably measures lifetime psychotic-like experiences(189). The CAPE-42 has three subscales 

that measure positive, negative and depressive symptom dimensions. The CAPE-42 measures 

frequency of symptoms, along with distress caused by symptoms. In the primary analyses, we use 

the sum total of frequency scores, while we look at the various sub-dimensions in secondary 

analysis.  Due to the skewed distribution of scores, the log-transformed sum score of each 

individual dimension and total score of the frequency of symptoms was used. We used CAPE-42 

data from the 18-year-old follow up for IMAGEN cohort.  

Genetic Data 

IMAGEN 

The genotyping was conducted using the Illumina Quad 610 chip and 660Wq at the 

"Centre National de Genotypage" (Paris, France). Only autosomal SNPs are kept for this study. 

Following quality control steps, genetic data remained for 1740 individuals. Baseline quality 

control steps and principal component analysis to control for ancestry are described in 

supplementary materials.   

Utrecht 

 The genotyping in this cohort was conducted using either the Illumina® 

HumanOmniExpress (733,202 SNPs; 576 individuals) or the Illumina® Human610-Quad Beadchip 

(620,901 SNPs; 768 individuals). As with the IMAGEN sample, quality control steps and principal 

component analysis for ancestry are described in supplementary materials.  

Analysis 

Polygenic risk scores (PRS) 

Polygenic Risk Scores for schizophrenia (PRS-Sz) were constructed for each of the IMAGEN 

and Utrecht cannabis individuals, who passed genetic quality control. PRS-Sz were built using data 
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from the most recent schizophrenia GWAS based on 40675 cases and 64643 controls (139) as a 

training set (for description of base set see supplementary materials).  Polygenic risk scores were 

built in PRSice2 (194), following quality control protocols described in supplementary materials. 

First, for each individual, a PRS-Sz was built using the p-value threshold (Pt) of <0.05, as this was 

the Pt that optimally captures phenotypic variance in schizophrenia (142). Next, a PRS-Sz for each 

individual using 12 different p-value thresholds (Pt) [5x10-8,5X10-7,5X10-6,5X10-5,5X10-4,5X10-

3,5X10-2,0.1,0.2,0.3,0.4,0.5], was calculated to capture the PRS which explains the most variance 

(Nagelkerke’s R2) in the logistic regression between PRS-Sz and cannabis use (binary measure). 

We report the R2 of the PRS, which is the R2 of the full model subtracted by the variance explained 

by the covariates of interest. To control for type-1 error, we obtained an empirical p-value for the 

“best” PRS-Sz using 10,000 label swapped permutations in PRSice2 (194). We aligned our analyses 

closely to the replication study, using the same protocol to create PRS, and by using the same 

dichotomised phenotype measurements, in both IMAGEN and Utrecht cannabis cohorts.  

However, we added age (in years) as a covariate measure in the Utrecht cannabis cohort 

regressions, as this study is cross sectional and includes participants with a wide age range. To 

ease interpretability of results we scale the PRS, using the scale function in R(195). Using the same 

methods, we created a PRS for cannabis use (PRS-Can), using publicly available data from the 

GWAS studying lifetime cannabis use (144) (a detailed description of the base set can be found in 

supplementary materials). We use the PRS with a Pt of 0.05 for sensitivity analysis, as this is the 

PRS that best predicts cannabis use in our cohort (see supplementary materials for a more 

detailed description).       

Regression analysis 

Multiple multinomial linear and logistic regressions were used to assess the relationships 

between PRS-Sz, cannabis use and PLEs. For primary analyses, the PRS-Sz for the Pt with the 

highest  Nagelkerke’s R2, as well as the PRS with Pt <0.05 are used as independent variables (IV). 

First, the relationship between PRS-Sz and total CAPE score (log-transformed) was examined. In 

this model sex as well as the first six principal components (which explain >90% of the variance in 

the IMAGEN cohort) were used as covariates, as previously published(175) 
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This model was then replicated using the Utrecht cannabis data, adding age as a covariate. 

Regression models were constructed using R (195). We correct for the use of two p-value 

thresholds and therefore consider a p-value of 0.025 (0.05/2) as significant. The association 

between PRS-Sz and the various sub-domains of the CAPE-42 questionnaire were analyzed in 

secondary analyses. Variance explained by the independent variables and covariates was 

calculated in the regression analyses as R2 (or Nagelkerke’s R2 for dichotomous dependent 

variables).   

For sensitivity analysis, we used PRS-Sz derived using more stringent Pt (5X10-8, 5X10-5) as 

independent variables. Moreover, we used the PRS for cannabis use as a covariate in regression 

analyses. The PRS-Can was included as a covariate only for the IMAGEN dataset, as the Utrecht 

cannabis cohort was included in lifetime cannabis use GWAS cohort (144).  

Mediation and moderation analysis  

Using the R package ‘mediation’ (197), mediation analysis was used to examine if cannabis 

use mediates the relationship between PRS-Sz and PLE. As alluded to above, our hypothesis, is 

that cannabis use (M) mediates the relationship between PRS-Sz (independent variable; IV) and 

PLE (dependent variable; DV). In all mediation analyses, sex and first 6 PC are used as covariates. 

A non-parametric bootstrap (n=10000) is used to estimate the sampling distribution of the 

indirect effect. If the confidence interval(CI) of the effect does not cross zero, the indirect effect 

or average causal mediation effect (ACME) is significant. Mediation analysis is only executed using 

the IMAGEN data as this dataset is the only sample that assessed cannabis use some years before 

the PLE assessment and therefore the only dataset that can provide a true estimate of a 

longitudinal relationship. Finally, to examine if cannabis use moderates the relationship between 

IV and DV, we use the R package ‘MeMoBootR’ (232), which allows for “a complete two-way 

moderation analysis with one moderator, similar to model 1 in PROCESS by A. Hayes (2013)”. 
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Results 

Sample characteristics 

Characteristics of participants who passed genetic QC and responded to cannabis use and 

PLE questionnaire data are detailed in supplementary Table S2. Data from a total of 1740 

individuals were used to calculate PRS-Sz in IMAGEN, and 1223 individuals in Utrecht cannabis 

cohort. In both IMAGEN and Utrecht Cannabis cohort samples, males report higher cannabis use 

than females(p<0.001). The total frequency of CAPE-42 symptoms reported is significantly greater 

in males(p<0.001) in the IMAGEN cohort. There was no difference in the reported total CAPE-42 

symptoms between males and females in the Utrecht cannabis cohort (Table S2). Female 

participants in both cohorts report significantly higher scores in the depression symptom sub-

scale of the CAPE-42(p<0.001). Finally, the mean age of the Utrecht cannabis cohort is 20.5 years.  

Association of PRS-Sz and cannabis use 

After accounting for covariates, the PRS-Sz using a Pt of 0.05 predicted cannabis use in 

both cohorts (βIMAGEN=0.062, p=0.022, R2=0.007; βUtrecht cannabis=0.084, p=7.31x10-7, R2=0.024, Table 

1). The Pt that best predicted cannabis use status in the IMAGEN cohort was Pt=0.5 (βIMAGEN=0.062 

p=0.0026, pempirical=0.01, R2= 0.013, Table 1). This result was replicated in the Utrecht cannabis 

cohort (βUtrecht cannabis=0.076, p=9.62X10-9, R2=0.032, Table 1). The results for the regression model, 

including covariates, is shown in supplementary Table S3. The explained variance and p-value are 

shown in Figure 2 and detailed for each Pt in supplementary Table S4.  

Association of PRS-Sz with PLE 

PRS-Sz also predicted PLE in both cohorts (Table 2), when accounting for sex and PC as 

covariates. PRS-Sz(Pt =0.5) was significantly associated to CAPE-42 scores in both cohorts 

(βIMAGEN=0.014 p=0.011, βUtrecht cannabis=0.0048, p=<0.0001). The PRS-Sz (Pt=0.05) was nominally 

significant in the IMAGEN cohort, and remained significantly associated to CAPE-42 score, after 

correction for multiple tests in the Utrecht cannabis cohort (βUtrecht cannabis=0.0053, p=<0.0001). 

The results for the full regression model, including covariates is shown in supplementary Table 

S5. 



 

91 

The relationship between both of the retained PRS-Sz and the different subdomains in the 

CAPE-42 questionnaire was studied. In the IMAGEN cohort, PRS-Sz at both Pt were significantly 

associated to the depression subscale (Pt =0.05; βIMAGEN= 0.02 p=0.0046, Pt =0.5; βIMAGEN= 0.022, 

p=0.0015). Only the PRS-Sz (Pt =0.5) predicted negative symptoms in the IMAGEN cohort (β= 

0.016, p=0.024). On the other hand, in the Utrecht cannabis cohort, both PRS-Sz were significantly 

associated to all three sub-domains (supplementary Tables S6, S7, S8), but the strongest result 

was that for the negative symptom sub-scale(p<0.0001). 

Sensitivity analysis 

In the IMAGEN cohort, the relationship between PRS-Sz (Pt=5X10-5) and CAPE-42, as well 

as the relationship between PRS-Sz (Pt=5X10-5) and lifetime cannabis use, were significant, when 

considering the same covariates as the main analyses (p<0.05; see suppl. Table S9). The PRS-Sz 

using a Pt of 1X10-8, was not predicative of either cannabis use or PLE (p>0.05, see suppl. Table 

S9). The lifetime cannabis use PRS (PRS-Can) did not predict dichotomous cannabis use measures 

at 16 years of age, or CAPE scores at 18 years of age (p>0.5). Nevertheless, the PRS-Can (Pt=0.05) 

did significantly predict cannabis use at 18 and 21 years of age in the IMAGEN cohort (β18 

years=0.052, p=0.036, R2= 0.005; β21 years=0.065, p=0.004, R2=0.01), and was therefore included as 

a covariate in our sensitivity analysis regression. After including PRS-Can (Pt=0.05) as a covariable 

in a linear regression examining the relationship between PLE (dependent variable) and PRS-Sz 

(Pt=0.5) and cannabis use (independent variables) and all other covariables described above, both 

independent variables remained significant (βPRS= 0.014 p= 0.013, βCannabis Use= 0.038, p= 0.037). 

Moreover, the relationship between PRS-Sz (Pt=0.5) (independent variable) and cannabis use 

(dependent variable) remained significant, after inclusion of PRS-Can into the regression (β= 

0.025 p= 0.0022, supplementary Table S10).     

Moderation and mediation analysis 

In both mediation analyses (Pt =0.05 and 0.5), the average direct effects of PRS-Sz on PLE 

are significant (p<0.01). Although cannabis use at 16 years old was independently predictive of 

PLE at 18 years of age, and PRS-Sz predicted cannabis use, the average causal indirect pathway 

(i.e the mediation pathway) from PRS-Sz to PLE through cannabis was not significant (Figure 3; 
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supplementary Table S11), suggesting that cannabis use does not mediate the relationship of PRS-

Sz to PLE in adolescents. In the full model, in both cohorts, cannabis use predicted total PLE, after 

accounting for PRS-Sz (at both Pt) and various covariates (Figure 4; supplementary Table S12). In 

our moderation model, the interaction between cannabis use and PRS-Sz was also not significant 

(p>0.05; Table 3), suggesting that both cannabis use and PRS-Sz independently predict PLE. 

Discussion 

In this study, we examine whether polygenic risk for schizophrenia predicts cannabis use, 

and higher levels of psychotic like experiences, in two independent European cohorts. 

Furthermore, we explore potential hypotheses, through mediation and moderation analyses. Our 

results, demonstrate that cannabis use can be reliably predicted by PRS-Sz, strengthening the 

existing literature (146)(147)(148)(149). We are not the first to study the relationship between 

PRS-Sz and cannabis use in the IMAGEN cohort. French et al. previously demonstrated that 

cannabis use at 14 years of age interacted with PRS-Sz in decreasing cortical thickness from 14.5 

to 18.5 years old, using the IMAGEN dataset(233). Here we extend these findings by showing that 

the PRS-Sz predicts PLE. This too is in line with other work, using a variety in PLEs assessments in 

various sub-domains (157)(158)(159)(160). The current study confirms that PRS-SZ and cannabis 

use are linked to risk for PLE overall and in the depressive and negative domains in both samples 

and also predict positive symptoms in the older Utrecht cannabis cohort.  

Considering the abundance of observational evidence showing temporal precedence of 

cannabis use in risk for psychosis, a reasonable alternative to a causal hypothesis is the proposal 

that cannabis use and PLE are explained through common genetic risk. However, our findings do 

not support this explanation, despite showing that PRS-SZ is correlated with both PLE and 

cannabis outcomes in both cohorts. This is in line with recent work that reported that various 

classes of cannabis use were associated to increased risk for psychotic experiences, even after 

adjusting for family history of schizophrenia (108) and other work adjusting for PRS-Sz(149). To 

our knowledge this is the first study to examine if cannabis use mediates the relationship between 

PRS-Sz and PLE. Through longitudinal and cross-sectional designs, our analyses did not find any 

evidence to support mediation or moderation hypotheses that explain the relationship between 
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lifetime cannabis use and PLE. Consequently, these null findings suggest that despite the common 

genetic vulnerability of psychotic experiences, cannabis use and schizophrenia (144)(150), both 

PRS-Sz and cannabis use independently increase one’s risk for PLE, leaving room for alternative 

explanations of the cannabis-psychosis relationship.  

Two recent studies employed Mendelian Randomization (MR) to investigate a causal links 

between cannabis use and schizophrenia (162)(234). In both of these works there was weak 

evidence to support the causal hypothesis in the direction schizophrenia to cannabis use, while 

the reverse relationship was strong (162)(234). While these studies are limited by the power of 

the respective GWAS studies used, recent work has called into question causal inferences made 

in MR studies of complex traits(235), and suggest the use of a latent causal variable (LCV) instead. 

In latent causal variable models, genetic correlation between “two traits is mediated by a latent 

variable which has a causal effect on each trait” (235). Accordingly, a recent study examined the 

causal link between schizophrenia and lifetime cannabis use employing LCV and found no 

evidence for a causal genetic link between the two (236).  Taken together, these reports do not 

preclude the possibility of a causal mechanism linking cannabis use to psychosis. Instead, they – 

along with the results presented above – suggest that psychosis or psychosis risk, and cannabis 

use may be linked through another environmental mediator rather than being linked through a 

common genetic predisposition.  

The findings of the current study suggest that the variance in cannabis use that is most 

linked to PLEs is that which is not accounted for by PRS-Sz.  This is interesting and suggests that 

future studies could focus on environmental factors influencing cannabis behaviours, such as the 

type of cannabis used, or available in a given population, the effects of advertisements endorsed 

by the cannabis industry, differing legalization frameworks, and cannabis potency, when 

attempting to understand the link between cannabis and psychosis.      

In secondary analysis of the current study, PRS-Sz was associated with depressive and 

negative sub-domains of the CAPE-42 in the adolescent cohort, while in the older Utrecht 

cannabis cohort PRS-Sz was associated to all three sub-domains.  results are in line with previous 

reports that found no association between PLE-Sz and positive symptoms in adolescent 
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populations (155)(157)(158). In contrast, one study has reported an association between PRS-Sz 

and positive PLE symptoms in their adolescent cohort (159), however only when considering non-

zero responders, i.e. those who have already manifested positive symptoms. Moreover, the 

association between PLE-Sz and the positive symptom domain in the Utrecht cannabis cohort 

supports recent evidence (150) which suggests that genetic overlap between positive and 

negative psychotic experiences and schizophrenia might be stronger in adulthood than in 

adolescence (150). As previously suggested by Jones (157), these results imply that genetic risk 

for schizophrenia is in fact associated to positive PLE, but that this risk may be expressed in young 

adulthood rather than adolescence. On the other hand, other environmental risk factors – such 

as cannabis use – may be what cause these same positive symptoms in adolescents.  

Limitations 

While the findings of this study are consistent with previous independent works, this study 

is not without limitations and results should be interpreted accordingly. First, polygenic risk scores 

can only explain very small portions of the variances of the phenotypes they study (140). In this 

study, PRS-Sz explained up to 3.2% of the variance of cannabis use and 2.1% of variance of PLE, 

when accounting for confounders.  PRS also only incorporates data from common genetic 

variants; as such a significant portion of the genetic effects may not be captured through the PRS, 

such as the effects of rare variants and copy number variants, which also may play a role in the 

pathogenesis of schizophrenia (237). In addition, the IMAGEN data set had many missing data 

points, which could bias our results. Next, considering the self-report nature of our phenotypic 

measures, our results may be at risk for measurement error, due to underreporting of symptoms, 

leading to weakened power.  Moreover, we use the PRS-Sz – which was built to predict outcomes 

of clinical schizophrenia in adults – to predict psychotic-like experiences in adolescent and young 

adult populations. While the PRS-Sz has been used to reliably predict PLEs (157)(158)(159)(160), 

the most discriminant SNPs for PLE may have not been captured by our PRS. However considering 

the genetic overlap between schizophrenia and PLE (150), our significant result remains 

informative. Finally, the focus on lifetime cannabis use as well as the use of a binary measure of 

cannabis use, did not allow for the proper investigation of dose-response relationships in the 
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IMAGEN study. This is an important consideration, as heavy cannabis use with high THC content 

poses a particular risk for psychosis(76).  

Conclusion  

In conclusion, although the current study could not confirm a mediated pathway between 

schizophrenia risk and PLE through cannabis use, the results contribute to the literature by 

showing the positive relationship between cannabis and future psychotic-like symptoms, while 

controlling for genetic vulnerability. This result is of public health importance. While cannabis 

producers would like to claim that cannabis use is only contra-indicated for individuals with a 

personal or family history of psychosis, the current findings suggest that cannabis use remains a 

risk factor for psychotic-like experiences, over and above known genetic vulnerability for 

schizophrenia. Moreover, there was no evidence that genetically vulnerable individuals were 

more susceptible to the psychosis-related outcomes of adolescent onset cannabis use.  As 

suggested by other authors (157), identifying a causal mechanism in the pathway from cannabis 

use to psychosis is extremely important for the development of targeted preventative 

interventions aimed at reducing cannabis use and/or schizophrenia risk.   
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Tables in publication 

Tableau 5. –  Table 1 (article 2). 

IMAGEN  

(N=1407) 

p-value threshold β std.error R2 p value 

 
p ≤ 0.05 0.062 0.027 0.0074 0.022 

 
p ≤ 0.5 0.062 0.021 0. 0127 0.0026 

Utrecht cannabis  

(N=1223) 

     

 
p ≤ 0.05 0.084 0.017 0.024 7.31x10-7 

 
p ≤ 0.5 0.39 0.069 0.032 9.62x10-9 

Table 1. Predictive value of PRS-Sz on cannabis use. This table shows results for the most 
predicative polygenic risk score on cannabis use (case/control status). Also presented are results 
for PRS-Sz with a Pt of <0.05, as this Pt best explains schizophrenia risk. R2 variance explained is 
the Nagelkerke’s R2. We include the first 6 PC and sex as covariates for all analyses and age is 
included for all analyses of the Utrecht cannabis cohort. β= main effect size, std.error = standard 
error  
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Tableau 6. –  Table 2 (article 2) .. 

  
β std.error p value R2 adjusted R2 

IMAGEN  

(N=1156) 

      

 
p ≤ 0.05 0.011 0.005 0.0357 0.016 0.009 

 
p ≤ 0.5 0.014 0.005 0.011 0.018 0.011 

Utrecht cannabis  

(N=1223) 

     

 
p ≤ 0.05 0.005 0.002 2.64 × 10−4 0.017 0.009 

 
p ≤ 0.5 0.005 0.001 1.63 × 10−5 0.021 0.014 

Table 2. Predictive value of PRS-Sz on psychotic like experiences (PLE). This table shows results 
for the most predicative polygenic risk score on PLE. Also presented are results for PRS-Sz with a 
Pt of <0.05, as this Pt best explains schizophrenia risk. We include the first 6 PC and sex as 
covariates for all analyses and age is included for all analyses of the Utrecht cannabis cohort. β= 
main effect size, std.error = standard error  
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Tableau 7. –  Table 3 (article 2).  

IMAGEN  

(N=1061) 

      
β std error p value R2 adjusted R2 

 
Pt=0.05         0.024 0.015 

 

  
PRS-Sz 0.004 0.002 0.025   

  

 
  Cannabis Use 0.045 0.019 0.016     

 

  
PRSSz:CannabisUse -0.006 0.006 0.251   

  

 
Pt=0.5         0.027 0.018 

 

  
PRS-Sz 0.004 0.001 0.005   

  

 
  Cannabis Use 0.046 0.019 0.015     

 

  
PRSSz:CannabisUse -0.006 0.004 0.146   

  

Utrecht cannabis  

(N=1223) 

                

 
Pt=0.05         0.039 0.03 

 

 
  PRS-Sz 0.005 0.002 0.01     

 

  
Cannabis Use 0.067 0.013 1.34x10-7   

  

 
  PRSSz:CanUse -0.002 0.003 0.552     

 

 
Pt=0.5         0.042 0.033 

 

 
  PRS-Sz 0.004 0.001 0.003     

 

  
Cannabis Use 0.065 0.013 3.16x10-7   

  

 
  PRSSz:CanUse -0.001 0.002 0.517     

 

Table 3. Moderation Analysis. This table shows results for the moderation analysis.  Cannabis use 
(case/control) and PRS-Sz both predict total PLE in both cohorts at both Pt, but their interaction 
is insignificant. PRSSz:CanUse is the interaction term. We include the first 6 PC and sex as 
covariates for all analyses and age is included for all analyses of the Utrecht cannabis cohort. β= 
effect size, std.error = standard error  
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Figures in publication  

Figure 2. –  Figure 1 (article 2). 

 

Figure 1. Predictive value of SCZ polygenic risk scores (PRS) on cannabis use. Left hand y-axis, 
Explained variance (R2 as %). Right hand y-axis, –log(p-value) of regression between PRS-Sz and 
cannabis use. X-axis, various pt used for regression, and number of SNP included in PRS. (a) 
IMAGEN cohort. pt that best explains cannabis use pt=0.5 (βIMAGEN=0.062 p=0.0026, pempirical=0.01, 
R2= 0.013). (b) Utrecht cannabis cohort. pt that best explains cannabis use pt=0.5 (βUtrecht 

cannabis=0.076, p=9.62X10-9, R2=0.032).    

 

 

 

 

 

 

 

 

 

 

 

a. b.
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Figure 3. –  Figure 2 (article 2). 

 

Figure 2. Results of mediation analysis. Independent variable= Polygenic risk score for 
schizophrenia (PRS-Sz), Dependent variable=logTotal of  CAPE-42. Mediator = Cannabis use. As 
shown, the effect of PRS-Sz on psychotic like experiences as measured by the CAPE-42  
questionaire was not mediated by cannabis use. The effect of PRS-Sz was significantly associated 
to cannabis us in both models as was cannabis use effect size onto CAPE-42 scores. The direct 
effect was significant. Unstandardized indirect effects were computed for each  Of the 10000 
bootstrapped samples, and the 95% confidence interval was computed by determining the 
indirect effects at the  2.5th and 97.5th percentiles.  *=p<0.05 **=p<0.01 

 

 

 

 

 

 

PRS-Sz (0.5)

Cannabis Use
(Case/Control)

logTotal CAPE-42

PRS-Sz (0.05)

Cannabis Use
(Case/Control)

logTotal CAPE-42

β= 0.0268[0.08933]** β =0.038[0.018]*

Direct Effect: B=0.013765 [0.010441]**
Indirect Effect: B= 0.000433 [0.000598]

β= 0.20267[0.08833]* β =0.040[0.018]*
Direct Effect: B=0.01111 [0.010477]

Indirect Effect: B= 0.00091 [0.001278]
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Conclusion 

Interpretation and limitations of the presented studies  

Through the use of various genetic and statistical approaches, I studied the relationship 

between genetic markers, psychopathology, cannabis and the endogenous cannabinoid system.  

In study one, we report that genetic markers of the endocannabinoid system are related 

to alcohol use disorder patterns in a cohort of European adolescents. These results are not 

replicated reliably in an independent cohort. Additionally, we report evidence that the interaction 

of SNPs across the endocannabinoid system (specifically CNR1-MGLL-DAGLA genes) is 

significantly associated to scoring 7 or more on the AUDIT questionnaire. This finding is interesting 

considering that experimental research, in rodents, has shown that the CB1-MAGL-DAGL 

“system” plays a role in the physiological response to excessive alcohol consumption by 

modulating 2-AG levels.  

Studies have shown that 2-AG levels are increased to modulate the HPA axis in situations 

of chronic stress (210). Moreover, these increased levels of 2-AG have been shown to play a role 

in the reduction of stress induced anxiety response in rodents (210). The anxiety-like alcohol 

withdrawal symptoms seen in rodent models of alcohol dependence are mediated by the HPA 

axis, specifically corticotropin releasing factor levels in the central nucleus of the amygdala (36). 

Hence, in models of alcohol dependence, it was demonstrated that 2-AG levels were decreased 

in the CeA, and that increasing levels of 2-AG – through inhibition of MAGL – reduced abstinence 

related anxiety behaviours and excessive alcohol consumption(238). Other work also 

demonstrated an explicit role for DAGL in these models of chronic stress and alcohol 

consumption. Rodents exposed to chronic stress have reduced DAGLA gene expression, and this 

reduction of DAGLA was associated to increased preference for alcohol(133). Overall, this 

experimental evidence would suggest that the CB1-MAGL-DAGL “system”, through its regulation 

of 2-AG levels, could be involved in the maintenance stage of alcohol dependence (37)(38) by 

mediating anxiety levels during periods of withdrawal and drug seeking. As such, the results of 

study one may be seen as possible evidence in humans for the involvement of this system. 
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Nevertheless, this conclusion must be contrasted with the notion that the GMDR results was not 

replicated in the SYS cohort and may therefore be due to type-I error. 

The results of this study must be interpreted in light of the limitations of the study. First, 

we must consider the study design. As a traditional candidate gene study, this study is at high risk 

for type-I error, due to the small effect size of common genetic variants and the power typically 

required to detect these effects (163). It could also be argued that our statistical correction used 

for multiple testing was not stringent enough. Moreover, we were unable to reproduce our 

findings in our replication cohort or the findings of older studies examining similar phenotypes. 

This is probably due to the fact that our set-based test eliminated many of the SNPs that have 

been previously reported. Also, other SNPs that have been previously studied were also not 

genotyped in our assay chips. The cohort used for both the original study and the replication 

sample, may have also been underpowered to detect reliably significant genetic effects. 

Considering that these are adolescent cohorts, the number of “cases” was quite small. Finally, to 

our knowledge there has been no reliable GWAS study to date that has identified an 

endocannabinoid related gene as significantly associated to alcohol or substance abuse 

behaviour.  Taken together, while the animal and candidate gene literature suggest that the 

endocannabinoid system plays a role in the pathogenesis of alcohol use disorder, our results must 

be seen as inconclusive, or preliminary at best.    

In study two we report that lifetime cannabis use does not mediate or moderate the 

relationship between PRS-Sz and PLE. Through multiple multinomial linear and logistic 

regressions, we also demonstrate that cannabis use and PRS-Sz independently predict PLE, 

suggesting that cannabis use is a risk factor for psychotic-like experiences, even when controlling 

for genetic risk for schizophrenia. This result is quite robust considering that the results of the 

sensitivity analyses and the replication of results in an independent cohort. Moreover, these 

results are in line with previously reported findings.  

Our work is particularly interesting as we are the first study to report the study of cannabis 

use as an environmental mediator along the pathway of PRS-Sz and PLE, although one other group 

has studied other environmental mediators of the relationship between PRS-Sz and PLE (149). 
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These results are also of public health importance, because although cannabis producers would 

like to suggest that cannabis use is specifically contra-indicated for those with a genetic risk for 

schizophrenia, the current findings suggest that cannabis use remains a risk factor for psychotic 

experiences, over and above known genetic vulnerability for schizophrenia. This is noteworthy 

because it suggests an additive effect of cannabis use; cannabis use still predicts future psychotic-

like symptoms, while not mediating the pathway between genetic risk for psychosis and 

psychosis. This conclusion is in line with a discordant relative study, examining the relationship 

between cannabis use and psychotic-like experiences(239). In this cross-sectional study of over 

2000 pairs of twin and non-twin sibling pairs, Karcher and colleagues report that PLE were 

significantly associated to frequent cannabis use (β = 0.11; 95% CI, 0.08-0.14), cannabis use 

disorder(β = 0.13; 95% CI, 0.09-0.16), and current cannabis use  (β = 0.07; 95% CI, 0.04-0.10) 

(239). While much of the relationship between cannabis use and PLE is explained by genetic 

influence (between 69.2% to 84.1% of the variance of this association), some of the association 

can only be explained by “person-specific” pathways (239).  Therefore, cannabis use may be 

partially causally linked to the psychosis continuum in a pathway that is mediated by other 

environmental risk-factors. As such, future studies focusing on factors influencing cannabis 

behaviours such as cannabis availability, type of cannabis used, effects of advertisements 

endorsed by the cannabis industry, and cannabis potency, could potentially reveal causal 

pathways in the relationship between cannabis use and psychosis.  

The results of the secondary analysis, examining the various domains of the CAPE-42 

questionnaire are also of note. While PRS-Sz was associated to depressive and negative domains 

in the adolescent IMAGEN cohort, all three domains were significantly predicted by PRS-Sz in the 

older Utrecht cannabis cohort. This would imply that the genetic propensity to schizophrenia may 

first be expressed as negative or affective symptoms in younger adolescents, while it is associated 

to positive symptoms in young adulthood. Therefore, while positive symptoms are prevalent 

during adolescence, our results suggest that other environmental factors – such as cannabis 

consumption – may be the driving force behind these symptoms. This is a logical conclusion, 

considering that cannabis consumption is related to earlier expression of positive psychotic 

symptoms(79).   
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While study two utilized a more robust methodology, and is in line with previously 

reported works, it too is not without limitations. First, is the use the PRS-Sz as a predictor for 

cannabis use and PLE outcomes. This could understandably lead to a construction of a PRS which 

does not capture SNPs that are most informative for cannabis use and PLE outcomes. 

Nonetheless, considering the genetic overlap between cannabis use, schizophrenia and 

PLE(144)(150), and our use of the PRS for cannabis use as a covariate in sensitivity analyses, our 

results remain informative. We must also consider the fact that the cannabis use measure does 

not account for severity of use, or dose. This is a vital consideration, due to the important role of 

dose in the cannabis-schizophrenia relationship, as well as the meta-analysis results which 

suggest that the relationship between cannabis use in the clinical high risk for psychosis 

population is accounted for through heavy cannabis consumption rather than lifetime use 

measurements(76)(84). Although the decision to use the >10 cut-off allowed for direct 

comparison between the IMAGEN and Utrecht cannabis cohort, this study could have been more 

informative with a more precise measure of severity of cannabis use. Moreover, the use of a 

binary measure such as the one used in the above study could potentially lead to a loss of 

information about individual differences (for example, the potential effects of ten lifetime 

cannabis consumptions versus twenty uses).  

The study of PRS in clinical psychiatry is exciting, as it represents a novel way of calculating 

an individual’s lifetime genetic risk for a certain disease or disorder. Nevertheless, as mentioned 

above, to date, PRS represent at best 10% of the variance of complex traits(140).  As such, PRS 

could be not used as clinical tools on their own, rather as an additional factor to be considered 

among other reliable risk factors(240). This highlights an important limitation of this study: 

models that only consider PRS are incomplete. In this study, the PRS-Sz explained up to 3.2% of 

the variance of cannabis use and 2.1% variance of PLE, when accounting for confounders. 

Therefore, while the results were statistically significant, they are probably not clinically 

significant. While we should not have expected a much larger explanation of the variance, these 

low R2 could be explained by the fact the studied populations are more representative of the 

general population than clinical populations; the frequency of PLE symptoms and number of 

cannabis users is smaller than that of a clinical or “at-risk” population. Thus, the results of the 
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above study should not be used to make assumptions about clinical populations or the clinical 

significance of the relationship between PRS-Sz, cannabis use and psychotic-like experiences; 

these results only support the notion that the cannabis-psychosis spectrum relationship goes 

beyond one’s genetic propensity to schizophrenia, and that further study in clinical samples is 

required. This logic should also be applied to the results of study one. The very low number of 

participants reporting “clinically significant” alcohol use may have reduced the statistical power 

of the study. Moreover, the fact that the populations studied are non-clinical reduces our ability 

to draw meaningful conclusions on the clinical significance of our results.  

Although the advent of polygenic risk scoring research has led some to envision its use in 

clinical practice, an important number of ethical considerations could be addressed in any 

discussion pertaining to the use of PRS in clinical work. I believe that it is relevant to discuss two 

of these ethical issues, as they relate to both of the studies described in this master’s thesis. First, 

we must consider the clear disparities in the predictive value of current polygenic-risk scores 

across different populations; mainly between European and non-European 

populations(241)(242). As many have previously shown, current polygenic risk scores invariably 

predict individual risk more accurately in European populations than non-European 

populations(142)(243)(244)(245). The reason for this is simple, to date most GWAS studies (on 

which all PRS are constructed) are based on population samples that are predominantly 

Eurocentric(241). And so, a widespread application of PRS would disproportionally advantage 

those of European genetic descent, while it would leave other populations – which already endure 

large disparities with regards to healthcare – behind (see (241) for a more detailed discussion on 

the subject). This is extremely relevant to the above-described works, considering that we only 

included individuals of European descent in these studies. While it would have been statistically 

unsound to have included non-Europeans in the current works (a total of 11 individuals of non-

European descent are found among the 2000+ participants in the IMAGEN study), we are 

cognisant of the implications of this decision; specifically, that our results are not applicable to 

any populations of non-European ancestry. We also recognize that a continued effort should be 

made to remediate the underrepresentation of non-Europeans in genetic research, to be able to 

“realize the full and equitable potential of PRS” (241).  
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The second consideration is the particularity of PRS results in psychiatry, and the 

complexity of communicating these results in clinic. In their thought-provoking review on the 

subject, Palk and colleagues(246) highlight that while many of the ethical issues which arise in 

cases of genetic testing in general overlap with those in psychiatric practices, “psychiatric PRS 

testing arguably intensifies these concerns due to the fact that is likely that the disorders it would 

mostly be used to predict risk for, would be those with the highest heritability, such as 

schizophrenia and bipolar disorder, both of which are subject to high levels of 

stigmatisation(247)” (246). As such, individuals (and particularly adolescents) receiving results of 

a genetic test indicating high polygenic risk for severe psychiatric disorders, may be at a high risk 

for internalized stigma and the consequences associated with negative self-labelling(246). 

Considering the complexity of understanding a polygenic risk result, and the nature of 

psychopathology in general, the communication of a high polygenic risk score to a patient is a 

challenge in it of itself. While the goal of communicating such a result would be to “prevent onset 

or mitigate severity” of the disorder, a misunderstanding of a result could be detrimental (246). 

For example, misinterpretation of the biological result, may lead to deterministic assumptions in 

which the role of polygenic risk factors is overemphasized at the expense of psycho-social and 

environmental factors(246). This is an important consideration because deterministic 

interpretations have been associated to a “sense of fatalism, decreased agency or being ‘at the 

mercy of one’s genes’ or biology”(248)(246). Moreover, Palk and colleagues explain that a 

nuanced, and clear explanation of a high polygenic risk score, may increase motivation to 

implement behavioural changes that may reduce one’s risk to developing the disorder in question 

(246). These considerations, while clearly non-exhaustive, highlight some of the challenges that 

clinicians may face when implementing polygenic risk scoring into psychiatric practice.   

Current state of psychiatric genetics research 

A field made accessible by the Psychiatric Genomics Consortium 

Understanding the heritable nature of psychiatric disorders has long been a primary goal 

of psychiatric research. While the field was limited to family based, or twin-set cohorts until 

relatively recently, the last 30 years has seen an explosion in the field of psychiatric genetics. In 
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the early years of psychiatric genetics research, most studies focused on candidate gene 

approaches. This was in part due to costs of genome-wide sequencing, and the difficulty of 

recruiting cohorts with enough power to detect genome-wide significant effects (1X10-8). As the 

first meta-analysis of the early candidate gene studies were published, researchers quickly 

realized that many of the exciting results, were in fact false positives(163). This was highlighted 

in the seminal paper by Duncan and Keller, criticizing candidate gene studies in psychiatry(163). 

Interestingly, a recent meta-analysis of candidate gene studies published after the publication of 

the Duncan and Keller paper, found that the results of the new candidate gene studies were in 

fact motivated by GWAS findings, and did not “provide much insight into the pathology of 

schizophrenia in addition to GWAS” (249). This publication, along with others, created a 

movement within the psychiatric genetics field that rendered traditional candidate gene studies 

obsolete(250). Thus, to reduce the bias introduced in the field by small scale tradition candidate 

gene approaches, researchers were asked to focus their efforts studying SNP that were significant 

in reliable GWAS studies.   

The eventual shift to GWAS studies in psychiatric genetics was is in large part due to the 

collective efforts of the Psychiatric Genomics Consortium (PGC); a group of 800 investigators from 

150+ institutions that aim to “convert family history risk factor into biologically, clinically, and 

therapeutically meaningful insights”(251). Considering the minimal effect sizes that common 

genetic polymorphisms had on the development of these complex psychiatric disorders, large 

adequately powered cohorts were required. Thus, through the creation of PGC in 2009, an open-

access framework was established; summary statistic data from PGC GWAS studies would be 

accessible to researchers across the world, and genotype data would be sent to qualified 

scientists(251). The “open-science” perspective of the PGC has effectively created a boom in the 

field of psychiatric genetics, with 24 main studies, and 51 secondary analyses being published by 

the group in its first 8 years, notwithstanding the 150+ articles published by external researchers 

using PGC data(251). 

To demonstrate the impact that the PGC efforts have had on the understanding of the 

etiology of psychiatric disease, let us briefly summarize the findings of the schizophrenia working 

group. Among the most cited of the PGC papers is the 2014 schizophrenia GWAS (142). This study, 
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which included data from 36,989 cases and 113,075 controls, identified 128 SNPs at genome wide 

level significance (p< 1X10-8) mapping onto 108 independent genetic loci that are associated with 

schizophrenia. Notably, among the SNPs identified are alleles located in the DRD2 (a target of all 

antipsychotics), and multiple genes associated with glutamatergic neurotransmission(142). 

Moreover, most SNPs were not associated to nonsynonymous exomic polymorphisms, suggesting 

that most schizophrenia associated SNPs are more likely to alter gene expression rather than 

affecting protein structure(142). Interestingly, this study also identified that schizophrenia SNP 

sets are enriched in gene enhancer regions that are associated to immune function, providing 

genetic evidence for the immune dysregulation hypothesis of schizophrenia (142)(252). Building 

on this study, the most recent identified 179 GWAS significant SNPs across 143 independent loci, 

of which 93 were identified in the 2014 PGC study(139). By integrating novel fine-mapping 

techniques, Pardiñas and colleagues were able to identify candidate causal genes for 

schizophrenia(108). The identification of said “causal” genes, represent potential therapeutic 

targets for the treatment or prevention of schizophrenia. 

Another interesting application of PGC data, is the elucidation of shared genetic influence 

across psychiatric disorders and traits. Although mainstream conceptions of the nosology of 

psychiatric diseases (including the Diagnostic and Statistical Manual of Mental Disorders 5[DSM-

5](34) and ICD(253)) currently classify psychiatric disorders into several distinct categories, there 

has been a push – supported by research across disciplines – to apply a transdiagnostic 

approach(254). Part of the support for this re-conceptualization of psychiatric disease is based on 

genetic and familial studies, which have demonstrated that heritable components of psychiatric 

disease overlap between disorders (255)(256).  

Thus, the most recent GWAS from the PGC cross-disorder group has recently reported – 

in a meta-analysis including 232,964 cases and 494,162 controls – that genetic correlation analysis 

can identify three distinct groups of interrelated psychiatric disorders(257). Group one includes 

bipolar disorder (BD), major depressive disorder (MDD) and schizophrenia (SZ). The second group 

includes anorexia nervosa (AN), obsessive compulsive disorder (OCD) and Tourette’s Syndrome 

(TS). Finally, group three includes autism spectrum disorder (ASD), attention-deficit and 

hyperactivity disorder (ADHD) and also Tourette’s Syndrome (TS)(257). Groups have used the 
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cross-disorder GWAS data studies to perform network and pathway analyses, which have 

identified plausible biological pathways that have given insights into the etiology of psychiatric 

disease(256). Moreover, using the summary statistics from these studies, authors have created 

PRS for these disorders, which can be used to study genomic overlap between traits and 

disorders(256). Of note, are the studies demonstrating the genomic overlap between cannabis 

use, schizophrenia and PLE(144)(159)(150). 

An increasing trend in psychiatry, and epidemiological research in general, has been to 

examine potential causal mediators of relationships between related phenotypes or disorders. As 

such, several studies, incorporating genomic datasets, have applied a variety of mediation 

strategies to study the direct and indirect genetic effects on phenotypes of interest. These 

genomic strategies include the Mendelian Randomization (MR) strategies, which use genetic 

variants as instrumental variables to study the relationships between exposure and outcome 

variables(258). These studies can infer causality if three assumptions are respected(258): 

(1) the genomic variable is associated to the phenotype of interest 

(2) confounders of the exposure x outcome relationship are not associated to the genomic 

variables 

(3) The genomic variable is not associated to the outcome variable considering the exposure 

variable and confounders. 

With the improved computing power of most standard lab computers, and the open-source 

nature of psychiatric GWAS, made available by the PGC, independent researchers have been able 

to utilize various MR methodologies to infer causal relationships between psychiatric disease and 

phenotypes of interest. Among the multiple methodologies in the MR field, are two-sample MR 

studies. A two sample MR study models data from two independent GWAS studies as distinct 

instrumental variables (instrumental risk factor and instrumental outcome), allowing for the 

analysis of the causal relationship between the two (259). These studies rely on two additional 

assumptions: both samples need to be from the same genetic population, and participants cannot 

overlap between the groups(259).  
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Three studies have used two-sample MR to study the relationship between schizophrenia and 

cannabis use(162)(144)(234). The studies use different cannabis use measures (lifetime cannabis 

use (162) vs ever use of cannabis(144)(234)), and have reported differing results. While Gage et 

al. (162) and Pasman et al. (144) reported that there is stronger evidence to support a causal link 

from schizophrenia risk to cannabis use (i.e those who are at risk for developing schizophrenia 

will use cannabis), Vaucher et al. (234) only reports a causal link between cannabis use to 

schizophrenia (i.e that cannabis use may cause schizophrenia). It must be noted however that 

Vaucher’s group did not analyze the reverse relationship. As alluded to in the introduction, these 

MR results support the second hypothesis, i.e that the cannabis-schizophrenia association is at 

least partly confounded by reverse-causality(145).  

Recently some have criticized the causal inference made by MR studies, due to the 

confounding effects of pleiotropic mechanisms. Genetic pleiotropy refers to the notion that 

certain genetic markers or variants have effects of more than one phenotype. We can separate 

pleiotropic mechanisms into two distinct groups: horizontal pleiotropy and vertical pleiotropy. 

Horizontal pleiotropy (or biological pleiotropy) occurs when a variant or gene produces biological 

effects on multiple phenotypes(260). Vertical pleiotropy is when a gene or variant has causal 

influence on one trait, which in turn has a causal effect on a second trait(260). While MR depends 

on vertical pleiotropy, as genetic markers can influence downstream mechanisms, the presence 

of horizontal pleiotropy will cause a violation of the assumptions described above; the effects of 

genetic variants on the outcome would not exclusively be through the risk factor variable(259). 

Although multiple statistical techniques have been developed to account for horizontal 

pleiotropy, such as MR egger regression(261), the causal conclusions of MR studies may still be 

still be erroneous(235). As such, a novel methodology recently proposed – latent causal variable 

(LCV) models – claims to overcome the disadvantages of MR (235). In this method, “genetic 

correlation between two traits is mediated by a latent variable having a causal effect on each 

trait”(235). Accordingly, the causal link between schizophrenia and lifetime cannabis use was 

studied using LCV(262). This study found no evidence for a causal link between schizophrenia and 

lifetime cannabis use through an unobserved variable (262). Applying the authors findings to the 

question of the cannabis-schizophrenia association, we can conclude that the genetic correlation 
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commonly reported between cannabis use and schizophrenia are more likely to arise from 

horizontal pleiotropy than a causal pathway; common genetic variants influence the development 

of both disorders. Furthermore, as argued above, these reports, along with the findings reported 

in article 2, do not preclude the possibility of a causal mechanism linking cannabis use and 

psychosis. Rather, they suggest that the relationship between psychosis risk and cannabis use 

may be linked via another environmental mediator, instead of being linked through common 

genetic mechanisms. As such, these results call for the search of possible environmental and 

psychological mediators of the link between cannabis use and psychosis, such as personality 

traits, social isolation and the influence peer groups.    

A roadmap for future studies 

Hypothesis-based methods in the era of modern psychiatric genomics: 

Biologically informed polygenic risk scores 

Bearing in mind the findings from study one, in the context of the rodent literature, it is 

reasonable to hypothesize that a gene by environment interaction of endocannabinoid related 

genetic markers on anxiety will have an effect on alcohol behaviour in humans. But the lack of 

reliable endocannabinoid related GWAS results in cohorts of alcohol users (or general substance 

abusers) makes the study of this hypothesis difficult, in the era of modern psychiatric genomics. 

One conceivable solution would be the application of “biologically informed” polygenic risk scores 

recently proposed and effectively verified by Dass and colleagues(263). In this method, one would 

create a “polygenic risk score” that is based on gene networks expressed in biologically relevant 

brain tissues, rather than a PRS constructed from statistically significant SNPs from GWAS studies 

(263). In their work, Daas and collegues show that a biologically informed polygenic risk scores 

(ePRS) can outperform traditional PRS in the prediction of certain endophenotypes. Particularly, 

they demonstrate that the ePRS for gene networks associated to insulin receptor expression in 

the mesolimbic areas (striatum and prefrontal cortex) or the hippocampus, predict impulsivity 

endophenotypes, addiction, and Alzheimer’s disease better than the respective traditional PRS. 

This is interesting considering that the insulin receptor, and insulin metabolism, is involved in the 

processes of reward(264), impulsivity(265), mood(266), cognition(267), and memory(268). The 
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SNPs used in the ePRS were not statistically significant in the GWAS for their respective diseases, 

and none of the SNPs could predict the outcomes studied alone(263). The authors therefore 

argue that their ePRS represents the effects of gene networks rather than the aggregated effects 

of individual, seemingly unrelated SNPs(263). Applying this logic, I propose a study – or collection 

of studies – that would look at the relationship between the ePRS representing the gene network 

associated to the expression of CNR1 – MGLL – DAGLA  in the central nucleus of the amygdala 

and alcohol abuse outcomes in a cohort of adolescent individuals. Moreover, we could examine 

if the anxiety scores, biological markers of chronic stress, and other affective phenotypes could 

mediate this relationship. Thus, through the application of novel psychiatric genomic techniques, 

we could continue to answer biologically informed hypothesis-based questions in this field.  

Translating psychiatric genomics research to clinical settings  

Two stimulating articles, outlining the clinical utility of polygenic risk scoring, have recently 

been published by the group of Naomi Wray and Graham Murray in JAMA Psychiatry(140)(269). 

In these articles, the authors describe current and future clinical applications of polygenic risk 

scoring, and also outline the limitations of these methods. They describe the possibility of using 

PRS for the stratification of individuals as a part of populational screening programs, and the 

utility of using PRS in the guidance of clinical decision making(269). The authors argue that one 

potential application of PRS in clinical psychiatry could be in the diagnosis of young help seeking 

individuals(140). Considering that the early phases of severe psychiatric diseases are often 

characterized by a continuum of unspecific affective symptoms tools that could differentiate 

between disorders would be of great clinical value, but due to the high genetic correlation 

between psychiatric disorders(255)(256)(257), PRS cannot currently contribute to the differential 

diagnosis of disease(140). Rather, PRS could be useful in the early identification of severe illness 

trajectories, by identifying individuals with a high polygenic risk load instead of diagnosing a 

particular disease(140). This is a useful application, as it would help clinicians in their orientation 

of at-risk individuals, i.e. sending high PRS patients to a mental health prevention program versus 

usual care(140). Along these lines, one relevant future study would be to examine if the PRS from 

the main PGC GWAS studies could predict general psychopathology and mental health outcomes 

in clinical cohorts, such as future hospitalizations, global functioning, and suicidality. This could 
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be achieved by creating a risk calculator with multiple known risk factors for general mental illness 

(including substance abuse measures) and including PRS into the calculation. Similar studies have 

already been attempted in clinical-high risk for psychosis cohorts, using the PRS-Sz, with relative 

success(270). The results of the second study presented in this thesis provide evidence that the 

inclusion of PRS-Sz within a clinical risk calculator is logical. Our results suggest that the risk 

conferred by PRS-Sz and cannabis use onto PLE are the result of an additive effect rather than 

that of an interaction effect. Thus, any future study examining the utility of a clinical risk calculator 

for the prediction of PLE could include cannabis use as well as PRS-Sz, among other known 

independent risk factors for conversion to psychosis. Another interesting avenue is the use of PRS 

in the prediction of treatment response, and while cohorts currently exist for the detection of 

genomic predictors (including PRS) of treatment response to lithium(271), and anti-depressant 

medications(272)(273), Murray and colleagues note that the current limitation of these studies is 

lack of populational power, rather than fundamental issues with PRS(140). Overall, the literature 

shows that PRS show promise as a reliable tool for the prediction of various psychiatric 

phenotypes, when combined with other reliable predictive measures. Nevertheless, at the time 

of the composition of this work, polygenic risk score tools are not ready to be deployed in 

psychiatric clinical practice just yet. Moreover, they ought to be used judiciously and always in 

consideration of the ethical challenges facing their application and interpretation.  
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Annex A – Supplementary data article 1 

Endocannabinoid Gene x Gene Interaction Association to Alcohol Use Disorder in two 

Adolescent Cohorts. 

Laurent Elkrief 1,2, Sean Spinney 2, 3, Daniel E. Vosberg 4, Tobias Banaschewski M.D., Ph.D.5; Arun L.W. Bokde 
Ph.D.6; Erin Burke Quinlan PhD7; Sylvane Desrivières Ph.D.7; Herta Flor Ph.D.8,9; Hugh Garavan Ph.D.10; Penny 
Gowland Ph.D.11; Andreas Heinz M.D., Ph.D.12; Rüdiger Brühl Ph.D.13; Jean-Luc Martinot M.D., Ph.D.14, Marie-
Laure Paillère Martinot M.D., Ph.D.15; Frauke Nees Ph.D.5,8; Dimitri Papadopoulos Orfanos Ph.D.16; Luise Poustka 
M.D.17 ; Sarah Hohmann M.D.5; Sabina Millenet Dipl.-Psych.5; Juliane H. Fröhner MSc18; Michael N. Smolka 
M.D.18; Henrik Walter M.D., Ph.D.12; Robert Whelan Ph.D.19; Gunter Schumann M.D.7, 20; Zdenka Pausova21, Tomáš 
Paus 4, 22,  Guillaume Huguet 2,3†, Patricia Conrod 2,3,23*†, and the IMAGEN consortium.   

Supplementary Methods  

Phenotype Evaluated  

While other studies focusing on adolescent alcohol abuse used a less stringent cutoff (1)(2)(3), 

the more stringent cut-off of 8 was chosen as this was more widely validated across different 

studies (see (4) for a review). Questionnaires were given to individuals, at 14, 16 and 18 years old. 

While there were missing data at various times for some participants, for the purpose of this 

analysis, if an individual’s genetic data and AUDIT data were given at one time point, the individual 

was included in this study.  

Set-Based Test  

To determine the relevant SNPs for our analysis, a Set-Based test was performed using PLINK1.9. 

For a detailed explanation of how the analysis works, see the PLINK 1.9 manual (https://www.cog-

genomics.org/plink/1.9/assoc#set). In this project, three set-based tests were carried using 

parameters of varying stringencies. The parameters that were adjusted between the tests were 

p-value for significant variants between tests, r2 of variant pairs, and maximum set size. Data in all 

three set-based test underwent 10, 000 label-swapped permutation as well, using the --perm 

function in PLINK1.9. The first done, was the default test in PLINK1.9, with a p-value of 0.05, r2 of 

0.5, and a set-max of 5, the second test had a p-value of 0.05, r2 of 0.3, and set-max of 3, while 

test 3 had a p of 0.01, r2 of 0.1 and set-max of 2. Tests 2 and 3 were more stringent, and were run 

to challenge the data, to ensure robustness of our results. The three set-based tests were run, 
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with varying results (Suppl. Table1). Sixty nine SNPs appearing across five cannabinoid-related 

genes were analyzed for their relation to AUDIT scores. In the first set-based test, 9 SNPS returned 

with nominal p values of <0.05, of which 7 also passed linkage disequilibrium (LD) criterion. 

Through the first set-test criterion, only the CNR1 gene-set was significantly associated to an 

AUDIT score of eight or more (p=0.022). Within this set, only rs9353525 that was significantly and 

independently related to SUD. In the second set-based test, the same 9 SNPS returned with 

nominal p values of <0.05, of which, 5 SNPs passed the LD criterion. Again, only CNR1 was 

significantly associated to an AUDIT score of greater than seven (p=0.03). Finally, 4 SNPs returned 

with a nominal p value <0.01, in the third test, with 2 SNPs passing LD criterion. No genes 

remained significant after the third set-based test. As mentioned above, the 7 SNPs that had 

nominal p values of <0.05, in the first set-based test, and that passed LD criterion (r2<0.5) were 

extracted and only these were analyzed in the case-control, model analysis and logistic regression 

[For summary of set-based test, see Suppl. Table 6].  

Case-Control Analysis  

Our first case/control association analysis was done using Fisher’s exact test, through PLINK1.9. 

SNPs selected for this analysis were those that were both significant and independent in the first 

set-based tests. Cases were considered if an AUDIT score of eight or more was reported. Four 

case-control analyses were run. In the first, cases were considered if an AUDIT of eight was 

reached at any time point (ALL); if individuals scored greater than seven at multiple time points, 

the duplicate data were removed. The other analyses were done at each time point; one for age 

14, one for 16 and one for 18. Analysis were adjusted for multiple tests with false discovery rate 

correction, using the --adjust function in the PLINK1.9 program, and false discovery rate (FDR) 

values are reported.  

Genetic Analysis of Population Stratification  

A principal components analysis based on the variance-standardized relationship matrix 

and displayed the 20 first genetic dimensions and associated-eigenvalues (supplemental figure 1) 

was performed. To avoid confounding factors related to ancestry the 6 first ancestry components 

were used as covariables in the logistic regression. 
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Covariables  

A logistic regression was done on the SNPs that remained significant after correction for 

multiple tests. Our regressions had sex, the first six components of the MDS plot, parental alcohol 

abuse, and parental education as co-variables. Parental education was taken from self-report 

answers within the European School Survey Project on Alcohol and Other Drugs (ESPAD+) 

questionnaire administered at the first (fourteen years old) and second time point (sixteen years 

old) in IMAGEN. Alcohol abuse in parents was measured using the AUDIT information obtained at 

the first two time points in IMAGEN. If ESPAD+ and AUDIT information were missing at the 18 

year old time point, the most complete and recent information was used at this time point. For 

our analyses that considered AUDIT information without a regard to time, the information used 

in the 14 and 16 year questionnaires were mixed, so that if a parent had signalled a DRINKING 

issue on AUDIT at any time, they were flagged as such. Moreover if parental information was 

missing, individuals were not included in the logistic regression.  

Seattle Seq Annotations of SNPs 

We used SeattleSeq (http://snp.gs.washington.edu/SeattleSeqAnnotation137/) to 

annotated SNPs in this study (Supplementary table 2). 

The following annotations used in supplementary table 2 (information extract of 

SeattleSeq website) :  

--- Name SNPs 

--- chromosome (input from the user) 

--- position (hg18) (input from user, location on the chromosome, hg18, 1-based) 

--- position (hg19) (input from user, location on the chromosome, hg19, 1-based) 

--- Major allele (Major allele frequency refers to the frequency at in an IMAGEN) 

--- Minor allele (Minor allele frequency refers to the frequency at in an IMAGEN) 

--- chimp. Allele (column chimpAllele: UCSC alignments) 

--- Gene region (Name gene observed for SNPs) 

--- FunctionGVS (GVS class of variation function, using only hg19 and your submitted alleles; see 
description) 
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--- Function in protein (Description of genetic variation for amino acids in protein) 

--- PolyPhen Prediction (column polyPhen: amino acid substitution impacts) 

--- Grantham Score (column granthamScore: the Grantham score of any amino acid changes, as 
per Grantham (1974) Science, Table 2) 

--- Conservation Score phastCons (column scorePhastCons: UCSC, 46 placental mammalian 
species, range of 0 to 1, with 1 being the most conserved) 

--- Conservation Score GERP (column consScoreGERP: rejected-substitution score from the 
program GERP, Stanford University, range of -12.3 to 6.17, with 6.17 being the most conserved) 

--- CADD C Score (column scoreCADD: phred-like Combined Annotation Dependent Depletion 
scores from Kircher et al., University of Washington, range 0 though 99) 

--- HapMap Frequencies (3 columns AfricanHapMapFreq, EuropeanHapMapFreq, 
AsianHapMapFreq: African, European, and Asian, in percent) 

--- Has Genotypes (column hasGenotypes: whether dbSNP has genotypes available for the 
variation) 

--- dbSNP Validation (column dbSNPValidation: dbSNP validation status codes, dealing with e.g. 
whether the variation has been seen at least twice) 

--- Repeats (2 columns repeatMasker and tandemRepeat) 

--- Clinical Association (column clinicalAssociation: links to NCBI pages and PubMed) 

--- Distance to Nearest Splice Site (column distanceToSplice: how close the variation is to a splice 
site) 

--- CpG Islands (column cpgIslands: whether in a region where CpGs are present at a high level, 
from the UCSC genome annotation database) 

--- NHLBI ESP Allele Counts (column genomesESP: the allele counts observed in the Exome 
Sequencing Project, optionally split by two ancestries) 

--- ExAC Allele Counts (column genomesExAC: the allele counts of the Exome Aggregation 
Consortium, optionally split by 7 populations) 

Supplementary Results  

We performed case-control analysis of the IMAGEN cohort, where cases are considered if 

an individual scored eight or more on AUDIT at 14, 16, or 18 years of age. At age 14, none of the 

7 SNPs were significantly associated with AUD (p>0.05) [Table S7]. At age 16, one SNP was 

significantly associated to case-control status; rs9343535 (p=0.012, OR=0.656) however it did not 

remain significant after FDR correction [Table S7]. Finally, at age 18, 4 SNPs were significantly 
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associated to case-control status group membership: rs782446 in MGLL (p=0.04, OR=0.813), 

rs484061 in MGLL (p=0.014, OR=0.814), rs507961 in MGLL (p=0.004, OR=0.742), rs9353525 in 

CNR1 (p=0.025, OR=0.748). After correction for multiple tests, none remained significant [Table 

S7].   

 Logistic models were done for both SNPs, at each time point, as well as for any positive 

screen for AUD (ALL) analysis. After controlling for the effects of the first six principal components, 

sex, parental AUDIT scores (at any time) and parental education, both rs9353525 and rs507961 

were still significantly associated with positive AUDIT screen in the ALL analysis [Table 3] (p<0.01), 

with both SNPs minor allele acting as protective factors (OR<1). For complete results of logistic 

regression see Table S9.  

Supplementary Tables 

Tableau 8. –  Suppl. Table S1 (article 1).  

Age Sex Control (AUDIT <8) Case  (AUDIT >=8) Total   

14 
Male 973 32 1005  

Female 997 42 1039  
Total 1970 74 2044  

16 
Male 638 145 783  

Female 744 91 835  
Total 1382 236 1618  

18 
Male 442 231 673  

Female 585 172 757  
Total 1027 403 1430  

All 
Male 683 325 1008  

Female 793 250 1043  
Total 1476 575 2051  

Supplementary Table S1: Description of subjects in IMAGEN. Subjects are classified by status 
(AUDIT score > or = to 8 or control), sex and age.  
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Tableau 9. –  Suppl. Table S2 (article 1).  

Fichier trop grand –  à intégré lors du dépôt finale 

Tableau 10. –  Suppl. Table S3 (article 1).  

Information SYS Cohort 
N (% female) 772 (52.07%) 

Pedigree by numbres of childrens 

All 401 
1 86 
2 266 

>= 3 49 

Age months 

Mean 180.1930052 
SD 22.25195432 

Min 144 
Max 228 

Phenotype (% samples) 

0 381 (49.35%) 
1 343 (44.43%) 
2 38 (4.92%) 
3 6 (0.78%) 
4 4 (0.52%) 

Supplementary Table S3: Description of subjects in SYS cohort.  
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Tableau 11. –  Suppl. Table S4 (article 1).  

AUDIT   GRIP       

    
    

1. How often do you have a drink 
containing alcohol? 

  1 Have you tried alcohol in your life ? 
 

Yes or No 

    2 How often do you consume alcohol? 
 

1=Alittlefromtimetotime 
2=Alittledaytoday 
3=Muchfromtimetotime 
4=MuchDayToDay (h16) 

2. How many drinks containing alcohol 
do you have on a typical day when you 
are drinking? 

    
   

3. How often do you have six or more 
drinks on one occasion? 

  3 In the last year, have you had 6 or more 
drinks? 

 
Yes or No 

4. How often during the last year have 
you found that you were not able to 
stop drinking once you had started? 

  4 Have you already tried decreasing your alcohol 
consumption? 

Yes or No 

    5 Have you already had throughs of decreasing alcohol 
conusmption? 

Yes or No 

    6 Have you already asked for help because of your alcohol 
use? 

Yes or No 

5.How often during the last year have 
you failed to do what was normally 
expected from you because of drinking? 

  7 Have you missed school to go drink or because you were 
hungover? 

Yes or No 

6.How often during the last year have 
you needed a first drink in the morning 
to get yourself going after a heavy 
drinking session? 

    
   

7.How often during the last year have 
you had a feeling of guilt or remorse 
after drinking? 

  8 Have you felt guilty because of your alcohol consumption ? Yes or No 

8.How often during the last year have 
you been unable to remember what 
happened the night before because you 
had been drinking? 

    
   

9. Have you or someone else been 
injured as a result of your drinking? 

  9 Have you ever driven under the influence of 
alcohol? 

 
1=Often2=Some Times 3=Once Or 
Twice4=Never or I Do Not Drive 

    10 Have you ever been in trouble with the law or police 
because you were drunk or drank alcohol? 

Yes or No 

10.Has a relative or friend or a doctor or 
another health worker been concerned 
about your drinking or suggested you 
cut down? 

  11 Have you ever gotten into an argument or fight with family 
and/or friends because of your drinking? 

Yes or No 

Supplementary Table S4: Comparing the AUDIT and GRIP questionnaires. Questions from the 
GRIP questionnaire were selected for comparativeness to the AUDIT. Questions 1,3-8, 1  
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Tableau 12. –  Suppl. Table S5 (article 1).  

SNP A1 SYS A2 SYS MAF 
rs782446 C A 0.2613 
rs484061 A G 0.4955 
rs604300 A G 0.1049 
rs507961 T C 0.1989 

rs9353525 A G 0.1223 
rs7766029 T C 0.496 
rs4729873 G A 0.3654 
rs4963307 G A 0.4914 

rs10488693 T C 0.05227 
Supplementary Table S5: Description of SNPs in SYS cohort. A1=Minor allele. A2=Major Allele. 
MAF=Minor Allele Frequency. 
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Tableau 13. –  Suppl. Table S6 (article 1).  

Tests Genes NSNP NSIG ISIG pvalue  SNPs 

Set1 

CNR1 16 2 1 0.022 rs9353525 
NAPEPLD 3 1 1 0.07557 rs4729873 

FAAH 5 0 0 1 - 

MGLL 31 5 4 0.1487 rs507961 | rs484061 | rs782446 
| rs604300 

DAGLA 14 1 1 0.2023 rs10488693 

Set2 

CNR1 16 2 1 0.02995 rs9353525 
NAPEPLD 3 1 1 0.07587 rs4729873 

FAAH 5 0 0 1 - 
MGLL 31 5 2 0.0689 rs507961 | rs484061 

DAGLA 14 1 1 0.2033 rs10488693 

Set3 

CNR1 16 2 1 0.05276 rs9353525 
NAPEPLD 3 0 0 1 - 

FAAH 5 0 0 1 - 
MGLL 31 2 1 0.09677 rs507961 

DAGLA 14 0 0 1 - 
Supplementary Table S6: Table of results for set genes analysis with AUDIT in IMAGEN. Set1 
test was done using the default parameters in PLINK (p-value of 0.05, r2 of 0.5, and a set-max 
of 5)  Parameters for set2 were p-value of 0.05, r2 of 0.3, and set-max of 3, while set3 had a p 
of 0.01, r2 of 0.1 and set-max of 2. “NSNP” = number of SNPs analyzed. “NSIG” = number of 
significant SNPs (significance as defined by set test rules). SNPs. “ISIG” = Number of significant 
and independent (LD criterion of test). “pvalue” = p value of the gene set. “SNPs” = name of 
independent and significant SNPs.  
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Tableau 14. –  Suppl. Table S7 (article 1).  

Age  Name SNP Allele 1 Allele 2 Freq Allele 1 Freq Allele 2 Odd-Ratio Pvalue FDR 
Pvalue 

14 

rs782446 C A 0.2095 0.25 0.7949 0.2874 1 
rs484061 G A 0.4324 0.4985 0.7666 0.1315 1 
rs604300 A G 0.08108 0.1085 0.7247 0.3445 1 
rs507961 T C 0.1824 0.2282 0.7548 0.2296 1 

rs9353525 A G 0.1081 0.1274 0.8301 0.614 1 
rs4729873 G A 0.3378 0.3572 0.9181 0.6628 1 

rs10488693 T C 0.0473 0.07263 0.6339 0.3278 1 

16 

rs782446 C A 0.2288 0.2475 0.9023 0.4174 1 
rs484061 G A 0.4597 0.4902 0.8849 0.2319 0.8417 
rs604300 A G 0.08085 0.1104 0.7086 0.062 0.417 
rs507961 T C 0.1992 0.2297 0.8338 0.1525 0.6921 

rs9353525 A G 0.08936 0.1301 0.6563 0.01244 0.2258 
rs4729873 G A 0.3199 0.3645 0.8202 0.06893 0.417 

rs10488693 T C 0.06992 0.07344 0.9483 0.8484 0.173 

18 

rs782446 C A 0.2196 0.2571 0.8133 0.03812 0.2668 
rs484061 G A 0.4541 0.5054 0.8142 0.01419 0.1288 
rs604300 A G 0.09701 0.1127 0.846 0.2549 0.6608 
rs507961 T C 0.1873 0.2371 0.7418 0.003796 0.0689 

rs9353525 A G 0.107 0.138 0.7479 0.02566 0.1552 
rs4729873 G A 0.33 0.3683 0.8449 0.0564 0.2047 

rs10488693 T C 0.05707 0.07157 0.7852 0.1849 0.5593 
Supplementary table S7: Description of fisher test for differents age in IMAGEN. 
Freq = frequency.   
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Tableau 15. –  Suppl. Table S8 (article 1).  

Interaction Variables 
Quasi poisson Binary 

BETA Std.Error DF t-value p-value BETA Std.Error DF t-value p-value 

Combo 

Intercept -5.593 0.331 400 -16.914 8.47E-49 -29.455 1.661 400 -17.734 2.45E-52 

Combo(1) 0.078 0.076 368 1.02 3.08E-01 0.501 0.27 368 1.857 6.42E-02 

Sex(2) 0.03 0.074 368 0.399 6.90E-01 -0.269 0.304 368 -0.883 3.78E-01 

Age(months) 0.027 0.002 368 16.011 3.69E-44 0.124 0.008 368 16.25 3.83E-45 

rs782446 (C) 

Intercept -5.531 0.325 400 -17.004 3.46E-49 -27.715 1.605 400 -17.27 2.48E-50 

rs782446 -0.009 0.061 368 -0.142 8.87E-01 -0.69 0.29 368 -2.382 1.77E-02 

Sex(2) 0.025 0.074 368 0.34 7.34E-01 -0.365 0.314 368 -1.162 2.46E-01 

Age(months) 0.027 0.002 368 16.035 2.95E-44 0.119 0.008 368 15.803 2.63E-43 

rs484061 (G) 

(Intercept) -5.484 0.324 400 -16.906 9.10E-49 -29.374 1.669 400 -17.598 9.53E-52 

rs484061 -0.082 0.054 368 -1.529 1.27E-01 -1.097 0.241 368 -4.545 7.47E-06 

Sex(2) 0.032 0.074 368 0.429 6.68E-01 -0.192 0.313 368 -0.613 5.40E-01 

Age(months) 0.027 0.002 368 16.117 1.35E-44 0.129 0.008 368 16.084 1.84E-44 

rs604300 (A) 

(Intercept) -5.547 0.325 400 -17.063 1.93E-49 -28.723 1.57 400 -18.297 8.96E-55 

rs604300 0.044 0.1 368 0.436 6.63E-01 -0.448 0.373 368 -1.2 2.31E-01 

Sex(2) 0.025 0.074 368 0.338 7.36E-01 -0.244 0.305 368 -0.798 4.25E-01 

Age(months) 0.027 0.002 368 16.022 3.31E-44 0.122 0.007 368 16.53 2.66E-46 

rs507961 (T) 

(Intercept) -5.532 0.325 400 -17.013 3.18E-49 -29.77 1.596 400 -18.654 2.52E-56 

rs507961 -0.007 0.07 368 -0.095 9.24E-01 0.614 0.296 368 2.072 3.89E-02 

Sex(2) 0.025 0.074 368 0.34 7.34E-01 -0.245 0.3 368 -0.818 4.14E-01 

Age(months) 0.027 0.002 368 16.026 3.19E-44 0.125 0.007 368 16.945 5.10E-48 

rs9353525 (A) 

(Intercept) -5.532 0.324 400 -17.083 1.58E-49 -28.561 1.552 400 -18.398 3.27E-55 

rs9353525 -0.08 0.078 368 -1.027 3.05E-01 0.699 0.295 368 2.37 1.83E-02 

Sex(2) 0.021 0.074 368 0.278 7.82E-01 -0.283 0.301 368 -0.937 3.49E-01 

Age(months) 0.027 0.002 368 16.031 3.04E-44 0.12 0.007 368 16.426 7.19E-46 

rs4729873 (G) 

(Intercept) -5.543 0.326 400 -17.028 2.73E-49 -29.14 1.573 400 -18.525 9.16E-56 

rs4729873 0.01 0.056 368 0.172 8.63E-01 -0.294 0.217 368 -1.354 1.77E-01 

Sex(2) 0.024 0.074 368 0.328 7.43E-01 -0.165 0.308 368 -0.535 5.93E-01 

Age(months) 0.027 0.002 368 16.042 2.76E-44 0.124 0.007 368 16.695 5.55E-47 

rs7766029 (T) 

(Intercept) -5.615 0.329 400 -17.08 1.63E-49 -28.905 1.576 400 -18.339 5.85E-55 

rs7766029 0.088 0.052 368 1.684 9.31E-02 0.822 0.268 368 3.066 2.33E-03 

Sex(2) 0.03 0.074 368 0.401 6.89E-01 -0.286 0.299 368 -0.956 3.40E-01 

Age(months) 0.027 0.002 368 15.96 5.97E-44 0.118 0.007 368 15.921 8.67E-44 

rs4963307 (G) 

(Intercept) -5.537 0.328 400 -16.898 9.83E-49 -28.675 1.577 400 -18.178 2.92E-54 

rs4963307 0.001 0.055 368 0.019 9.85E-01 0.111 0.294 368 0.377 7.06E-01 

Sex(2) 0.025 0.074 368 0.34 7.34E-01 -0.277 0.305 368 -0.91 3.63E-01 

Age(months) 0.027 0.002 368 16.038 2.86E-44 0.121 0.007 368 16.495 3.72E-46 

Supplementary table S8: Summary of replication test statistics in SYS cohort. Combo = Result of GMDR 3 SNP 
model x phenotype. DF= Degrees of Freedom. The combo defined two groups for all combinations observed in 
GMDR, one group for low risk coding with 0 and the second group high risk with 1 
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Tableau 16. –  Suppl. Table S9 (article 1).  

Age SNP Covariables BETA Odd-Ratio STAT Pvalue 

ALL 

rs
50

79
61

 (N
=2

03
0)

 
SNP -0.2696 0.76368491 -3.064 0.002188 
PC1 5.087 161.903422 1.901 0.05732 
PC2 3.148 23.2894391 1.201 0.2296 
PC3 1.726 5.61813636 0.658 0.5107 
PC4 9.703 16366.6335 3.820 0.0001333 
PC5 11.37 86681.8675 4.690 2.73E-06 
PC6 -6.93 0.000978 -1.005 0.3147 

Alcohol abuse history in family 0.364 1.43907421 2.414 0.0158 
Education of mother -0.02348 0.97679351 -0.672 0.5018 
Education of father -0.01814 0.98202354 -0.567 0.5706 

Gender 0.3802 1.46257708 3.747 0.0001787 

rs
93

53
52

5 
(N

=2
02

6)
 

SNP -0.3015 0.73970783 -2.605 0.009178 
PC1 4.581 97.6119574 1.707 0.08774 
PC2 2.497 12.1460012 0.935 0.35 
PC3 1.556 4.73982398 0.593 0.553 
PC4 9.934 20619.6545 3.906 9.37E-05 
PC5 11.18 71682.3621 4.594 4.35E-06 
PC6 -7.443 0.00058553 -1.078 0.281 

Alcohol abuse history in family 0.3605 1.43404626 2.393 0.01673 
Education of mother -0.02567 0.97465667 -0.733 0.4635 
Education of father -0.01165 0.9884176 -0.363 0.7168 

Gender 0.3638 1.43878643 3.586 0.0003359 

14 rs
50

79
61

 (N
=2

02
4)

 

SNP -0.2436 0.7838 -1.102 0.2705 
PC1 7.909 2723 0.8821 0.3777 
PC2 -4.481 0.01132 -0.8342 0.4042 
PC3 7.155 1281 1.135 0.2562 
PC4 1.662 5.272 0.272 0.7856 
PC5 1.339 3.816 0.2165 0.8286 
PC6 -9.929 4.88E-05 -0.6029 0.5465 

Alcohol abuse history in family 0.3631 1.438 1.473 0.1407 
Education of mother 0.9061 2.475 2.874 0.004047 
Education of father 0.1455 1.157 1.747 0.08064 

Gender 0.1332 1.142 1.739 0.0821 

rs
93

53
52

5 
 

(N
=2

02
0)

 SNP -0.2148 0.8067 -0.7725 0.4398 
PC1 7.482 1775 0.8323 0.4052 
PC2 -5.02 0.006602 -0.9217 0.3567 
PC3 7.032 1132 1.126 0.2602 
PC4 1.762 5.822 0.2887 0.7728 
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PC5 1.24 3.455 0.1999 0.8416 
PC6 -10.19 3.77E-05 -0.6173 0.5370 

Alcohol abuse history in family 0.3574 1.43 1.45 0.1471 
Education of mother 0.8877 2.43 2.816 0.0049 
Education of father 0.1482 1.16 1.78 0.0750 

Gender 0.1345 1.144 1.752 0.0797 

16 

rs
50

79
61

 (N
=1

53
5)

 

SNP -0.1902 0.82679376 -1.486 0.1374 
PC1 4.505 90.468344 0.9124 0.3616 
PC2 13.32 609259.765 1.641 0.1007 
PC3 -6.465 0.00155699 -1.125 0.2607 
PC4 3.895 49.1560534 0.8842 0.3766 
PC5 6.622 751.446488 1.501 0.1334 
PC6 3.451 31.5319085 0.3453 0.7298 

Alcohol abuse history in family -0.5608 0.57075228 -3.775 0.0002 
Education of mother 0.3117 1.36574491 1.234 0.2170 
Education of father 0.04655 1.04765046 0.9311 0.3518 

Gender -0.03174 0.96875843 -0.6799 0.4966 

rs
93

53
52

5 
(N

=1
53

2)
 

SNP -0.4612 0.63052656 -2.489 0.0128 
PC1 4.506 90.5588576 0.9033 0.3664 
PC2 12.82 369534.727 1.517 0.1292 
PC3 -6.861 0.00104787 -1.167 0.2433 
PC4 3.321 27.6880247 0.742 0.4581 
PC5 6.452 633.968964 1.434 0.1515 
PC6 2.5 12.182494 0.2484 0.8038 

Alcohol abuse history in family -0.5414 0.58193298 -3.64 0.0003 
Education of mother 0.3031 1.35404986 1.198 0.2307 
Education of father 0.04648 1.04757713 0.9236 0.3557 

Gender -0.02175 0.97848483 -0.4627 0.6436 

18 

rs
50

79
61

 (N
=1

24
3)

 

SNP -0.3041 0.73778708 -2.588 0.009645 
PC1 0.1963 1.21689192 0.049 0.9607 
PC2 4.757 116.396213 1.256 0.2089 
PC3 4.724 112.617824 1.197 0.2313 
PC4 12.72 334368.849 3.693 0.0002215 
PC5 20.18 580848196 6.179 6.44E-10 
PC6 6.209 497.203799 0.674 0.5001 

Alcohol abuse history in family 0.1232 1.13111062 0.532 0.595 
Education of mother -0.06384 0.93815509 -1.380 0.1675 
Education of father 0.0163 1.01643357 0.387 0.6986 

Gender 0.5777 1.78193526 4.331 1.49E-05 

rs
93

5
35

25
 

(N
=1

2
40

)  SNP -0.3213 0.72520566 -2.059 0.03949 
PC1 0.01436 1.0144636 0.003592 0.9971 
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PC2 4.564 95.9665794 1.204 0.2284 
PC3 3.921 50.4508704 1.003 0.3160 
PC4 12.61 299539.028 3.652 0.0003 
PC5 20.44 753319501 6.249 0.0000 
PC6 5.929 375.778547 0.6428 0.5204 

Alcohol abuse history in family -0.5436 0.58065413 -4.094 0.0000 
Education of mother 0.09048 1.09469961 0.3899 0.6966 
Education of father -0.06477 0.93728301 -1.398 0.1621 

Gender 0.02071 1.02092594 0.4912 0.6233 
Supplementary table S9:  Logistic regression of rs507961 and rs9353525 by phenotype in 
IMAGEN. (STAT = coefficient t-statistic). PC1-PC6, First six ancestry components.    
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Tableau 17. –  Suppl. Table S10 (article 1).  

Condition SNP Covariables BETA Odd-Ratio STAT Pvalue 

ALL 

rs
50

79
61

 (N
=2

03
0)

 

ADD 2030 0.7508 -3.217 0.001294 

Sex 2030 0.6798 -3.8 0.0001444 

PC1 2030 114.7 1.763 0.07798 

PC2 2030 18.97 1.082 0.2791 

PC3 2030 0.119 -0.6629 0.5074 

PC4 2030 18410 3.838 0.0001241 

PC5 2030 90900 4.66 3.16E-06 

PC6 2030 0.0006935 -1.055 0.2913 

FlagAllTimes 2030 1.438 2.411 0.01593 

EduMom 2030 0.978 -0.636 0.5248 

EduDad 2030 0.9803 -0.6208 0.5348 

ADDxPC3 2030 44410 2.043 0.04108 

rs
93

53
52

5 
(N

=2
02

6)
, I

nt
er

ac
tio

n 
1 

ADD 2026 0.6716 -3.024 0.002496 

Sex 2026 0.6937 -3.6 0.0003176 

PC1 2026 8.169 0.7632 0.4454 

PC2 2026 0.4376 -0.2674 0.7892 

PC3 2026 4.403 0.5529 0.5803 

PC4 2026 29440 3.987 6.69E-05 

PC5 2026 64400 4.454 8.42E-06 

PC6 2026 0.0005432 -1.087 0.2771 

FlagAllTimes 2026 1.441 2.423 0.0154 

EduMom 2026 0.9731 -0.7749 0.4384 

EduDad 2026 0.9897 -0.3204 0.7487 

ADDxPC1 2026 2.21E+14 2.111 0.03474 

rs
93

53
52

5 
(N

=2
02

6)
, I

nt
er

ac
tio

n 
2  

ADD 2026 0.7553 -2.394 0.01665 

Sex 2026 0.6957 -3.569 0.0003577 

PC1 2026 107.4 1.74 0.08192 

PC2 2026 15.71 1.03 0.303 

PC3 2026 5.207 0.6293 0.5292 

PC4 2026 24420 3.966 7.30E-05 

PC5 2026 76930 4.608 4.06E-06 

PC6 2026 2.39E-08 -2.261 0.02378 

FlagAllTimes 2026 1.428 2.358 0.01835 

EduMom 2026 0.9754 -0.7102 0.4776 

EduDad 2026 0.988 -0.3755 0.7073 

ADDxPC6 2026 7.70E+18 2.854 0.004314 
Supplementary table S10:  Logistic regression of rs507961 and rs9353525 with significant 
interaction of covarite of no interest by phenotype in IMAGEN. (STAT = coefficient t-statistic). 
PC1-PC6, First six ancestry components.    
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Tableau 18. –  Suppl. Table S11 (article 1). 

Covariants 
Combo 110 Combo 220 

BETA SE t value p BETA SE t value p 
Intercept -1.211 0.648 -1.867 6.18E-02 -1.251 0.645 -1.939 5.25E-02 
Combo -0.691 0.241 -2.871 4.09E-03 -1.455 0.612 -2.378 1.74E-02 
Sex -0.375 0.102 -3.689 2.25E-04 -0.37 0.102 -3.644 2.68E-04 
PC1 4.379 2.712 1.615 1.06E-01 4.553 2.707 1.682 9.25E-02 
PC2 3.615 2.697 1.34 1.80E-01 3.533 2.692 1.313 1.89E-01 
PC3 2.255 2.665 0.846 3.98E-01 2.22 2.655 0.836 4.03E-01 
PC4 11.269 2.699 4.176 2.97E-05 11.408 2.695 4.232 2.31E-05 
PC5 11.999 2.481 4.836 1.32E-06 11.831 2.482 4.767 1.87E-06 
PC6 -7.407 6.865 -1.079 2.81E-01 -6.976 6.859 -1.017 3.09E-01 
EduMom1 13.631 324.745 0.042 9.67E-01 13.709 324.745 0.042 9.66E-01 
EduMom2 13.663 324.745 0.042 9.66E-01 13.748 324.745 0.042 9.66E-01 
EduMom3 13.559 324.745 0.042 9.67E-01 13.624 324.745 0.042 9.67E-01 
EduMom4 13.584 324.745 0.042 9.67E-01 13.659 324.745 0.042 9.66E-01 
EduMom5 13.653 324.745 0.042 9.66E-01 13.746 324.745 0.042 9.66E-01 
EduMom6 13.509 324.745 0.042 9.67E-01 13.62 324.745 0.042 9.67E-01 
EduMom7 12.487 324.745 0.038 9.69E-01 12.535 324.745 0.039 9.69E-01 
EduMom8 13.655 324.744 0.042 9.66E-01 13.701 324.744 0.042 9.66E-01 
EduDad1 -13.148 324.744 -0.04 9.68E-01 -13.237 324.744 -0.041 9.67E-01 
EduDad2 -13.04 324.744 -0.04 9.68E-01 -13.092 324.744 -0.04 9.68E-01 
EduDad3 -13.246 324.744 -0.041 9.67E-01 -13.295 324.744 -0.041 9.67E-01 
EduDad4 -13.035 324.744 -0.04 9.68E-01 -13.116 324.744 -0.04 9.68E-01 
EduDad5 -13.47 324.744 -0.041 9.67E-01 -13.526 324.744 -0.042 9.67E-01 
EduDad6 -12.954 324.744 -0.04 9.68E-01 -13.023 324.744 -0.04 9.68E-01 
EduDad7 -13.907 324.745 -0.043 9.66E-01 -14.056 324.745 -0.043 9.65E-01 
EduDad8 -13.583 324.744 -0.042 9.67E-01 -13.668 324.744 -0.042 9.66E-01 

Supplementary table S11: Description of 2 significant model with risk SNPs combo in IMAGEN. 
The combo code is defined by minor allele numbers of rs484061(allele G), rs4963307(allele A) and 
rs7766029 (allele T) in this order. 
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Tableau 19. –  Suppl. Table S12 (article 1). 

Code Combo Combo SNPs SYS cohorts N(%) IMAGEN cohorts N(%) 
000 Low combo 9(0.01) 42(0.02) 
001 High combo 20(0.03) 70(0.03) 
002 Low combo 13(0.02) 29(0.01) 
010 High combo 28(0.04) 68(0.03) 
011 High combo 52(0.07) 130(0.06) 
012 High combo 26(0.03) 57(0.03) 
020 High combo 13(0.02) 38(0.02) 
021 High combo 28(0.04) 66(0.03) 
022 High combo 12(0.02) 27(0.01) 
100 High combo 22(0.03) 71(0.03) 
101 High combo 48(0.06) 122(0.06) 
102 High combo 15(0.02) 64(0.03) 
110 Low combo 56(0.07) 132(0.06) 
111 High combo 91(0.12) 236(0.12) 
112 Low combo 49(0.06) 131(0.06) 
120 Low combo 30(0.04) 65(0.03) 
121 High combo 54(0.07) 136(0.07) 
122 Low combo 24(0.03) 54(0.03) 
200 Low combo 7(0.01) 35(0.02) 
201 Low combo 20(0.03) 65(0.03) 
202 High combo 15(0.02) 31(0.02) 
210 High combo 24(0.03) 79(0.04) 
211 Low combo 43(0.06) 126(0.06) 
212 Low combo 25(0.03) 59(0.03) 
220 Low combo 10(0.01) 33(0.02) 
221 High combo 17(0.02) 61(0.03) 
222 Low combo 21(0.03) 23(0.01) 
All 

observation - 772 2050 

Supplementary Table S12: Table description of combo SNPs for low risk (low combo) and high 
risk (high combo) for alcoholism. The combo code is defined by minor allele numbers of 
rs484061(allele G), rs4963307(allele A) and rs7766029 (allele T) in this order. 
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Tableau 20. –  Suppl. Table S13 (article 1).   

Name 
SNP Description 

Chromatin states (Core 15-state 
model) 

Chromatin states (25-state model using 12 
imputed marks) H3K4me1 H3K4me3 H3K27ac H3K9ac 

DNas
e 

rs48406
1 Brain Hippocampus Middle 7_Enh 15_EnhAF 

H3K4me1_
Enh   

H3K27ac_
Enh     

rs48406
1 Brain Substantia Nigra 7_Enh 15_EnhAF 

H3K4me1_
Enh   

H3K27ac_
Enh 

H3K9ac_
Pro   

rs48406
1 Brain Anterior Caudate   17_EnhW2 

H3K4me1_
Enh   

H3K27ac_
Enh     

rs48406
1 Brain Cingulate Gyrus 7_Enh 15_EnhAF 

H3K4me1_
Enh   

H3K27ac_
Enh     

rs48406
1 Brain Inferior Temporal Lobe 7_Enh 15_EnhAF 

H3K4me1_
Enh 

H3K4me3_
Pro 

H3K27ac_
Enh 

H3K9ac_
Pro   

rs48406
1 Brain Angular Gyrus 7_Enh 15_EnhAF 

H3K4me1_
Enh 

H3K4me3_
Pro 

H3K27ac_
Enh 

H3K9ac_
Pro   

rs48406
1 

Brain_Dorsolateral_Prefrontal
_Cortex 7_Enh 15_EnhAF 

H3K4me1_
Enh   

H3K27ac_
Enh 

H3K9ac_
Pro   

rs48406
1 Brain Germinal Matrix   17_EnhW2           

rs48406
1 Fetal Brain Female     

H3K4me1_
Enh         

rs48406
1 Fetal Brain Male 7_Enh   

H3K4me1_
Enh         

rs49633
07 Brain Hippocampus Middle 7_Enh 12_TxEnhW 

H3K4me1_
Enh   

H3K27ac_
Enh     

rs49633
07 Brain Substantia Nigra   17_EnhW2     

H3K27ac_
Enh     

rs49633
07 Brain Anterior Caudate 7_Enh 15_EnhAF 

H3K4me1_
Enh   

H3K27ac_
Enh 

H3K9ac_
Pro   

rs49633
07 Brain Cingulate Gyrus 7_Enh 12_TxEnhW 

H3K4me1_
Enh   

H3K27ac_
Enh 

H3K9ac_
Pro   

rs49633
07 Brain Inferior Temporal Lobe   17_EnhW2 

H3K4me1_
Enh   

H3K27ac_
Enh 

H3K9ac_
Pro   

rs49633
07 Brain Angular Gyrus   17_EnhW2 

H3K4me1_
Enh   

H3K27ac_
Enh 

H3K9ac_
Pro   

rs49633
07 

Brain_Dorsolateral_Prefrontal
_Cortex   17_EnhW2 

H3K4me1_
Enh   

H3K27ac_
Enh     

rs49633
07 Brain Germinal Matrix               

rs49633
07 Fetal Brain Female     

H3K4me1_
Enh         

rs49633
07 Fetal Brain Male     

H3K4me1_
Enh         

rs77660
29 Brain Hippocampus Middle               

rs77660
29 Brain Substantia Nigra               

rs77660
29 Brain Anterior Caudate               

rs77660
29 Brain Cingulate Gyrus               

rs77660
29 Brain Inferior Temporal Lobe               

rs77660
29 Brain Angular Gyrus               

rs77660
29 

Brain_Dorsolateral_Prefrontal
_Cortex               

rs77660
29 Brain Germinal Matrix               

rs77660
29 Fetal Brain Female               

rs77660
29 Fetal Brain Male               

rs50796
1 Brain Hippocampus Middle 7_Enh 15_EnhAF 

H3K4me1_
Enh   

H3K27ac_
Enh     

rs50796
1 Brain Substantia Nigra 7_Enh 15_EnhAF 

H3K4me1_
Enh   

H3K27ac_
Enh 

H3K9ac_
Pro   

rs50796
1 Brain Anterior Caudate 7_Enh 15_EnhAF 

H3K4me1_
Enh   

H3K27ac_
Enh     

rs50796
1 Brain Cingulate Gyrus 7_Enh 15_EnhAF 

H3K4me1_
Enh   

H3K27ac_
Enh 

H3K9ac_
Pro   

rs50796
1 Brain Inferior Temporal Lobe   15_EnhAF 

H3K4me1_
Enh   

H3K27ac_
Enh 

H3K9ac_
Pro   

rs50796
1 Brain Angular Gyrus 7_Enh 15_EnhAF 

H3K4me1_
Enh   

H3K27ac_
Enh 

H3K9ac_
Pro   

rs50796
1 

Brain_Dorsolateral_Prefrontal
_Cortex 7_Enh 10_TxEnh5 

H3K4me1_
Enh   

H3K27ac_
Enh 

H3K9ac_
Pro   

rs50796
1 Brain Germinal Matrix 7_Enh 15_EnhAF 

H3K4me1_
Enh         
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rs50796
1 Fetal Brain Female   15_EnhAF 

H3K4me1_
Enh         

rs50796
1 Fetal Brain Male   15_EnhAF 

H3K4me1_
Enh         

rs93535
25 Brain Hippocampus Middle               

rs93535
25 Brain Substantia Nigra               

rs93535
25 Brain Anterior Caudate     

H3K4me1_
Enh   

H3K27ac_
Enh     

rs93535
25 Brain Cingulate Gyrus               

rs93535
25 Brain Inferior Temporal Lobe               

rs93535
25 Brain Angular Gyrus               

rs93535
25 

Brain_Dorsolateral_Prefrontal
_Cortex               

rs93535
25 Brain Germinal Matrix               

rs93535
25 Fetal Brain Female             

DNas
e 

rs93535
25 Fetal Brain Male     

H3K4me1_
Enh       

DNas
e 

Supplementary table S13 :  Regulatory chromatin states from DNAse and histone ChIP-
Seq in brain for SNPs in this study (Roadmap Epigenomics Consortium, 2015 in 
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php)(Black = missing data)  
 

Tableau 21. –  Suppl. Table S14 (article 1).  

Name SNP Chromosome BP A1 A2 Freq AC Freq AU Odd-Ratio Pvalue 

rs806368 6 88906819 C T 0.1794 0.2174 0.7871 0.006816 

Supplementary Table  S14: Table of results for Fisher test of rs806368 (ALL) in IMAGEN.  A1= 
minor allele. A2= major allele. Freq AC= Frequency of minor allele in cases. Freq AU = 
frequency of minor allele in controls. OR= Odds ratio 

 

Tableau 22. –  Suppl. Table S15 (article 1).  

SNP Covariables Odd-Ratio STAT Pvalue 

rs
80

63
68

 (N
=2

02
7)

 

SNP 0.7953	 -2.499	 0.01246 
PC1 138.9 1.838 0.066 
PC2 22.09 1.173 0.2409 
PC3 4.893 0.607 0.5436 
PC4 1.65E+04 3.825 0.000131 
PC5 8.24E+04 4.664 3.10E-06 
PC6 0.001044 -0.996 0.3193 

Alcohol abuse history in family 1.419 2.323 0.0202 
Education of mother 0.9773 -0.657 0.5113 
Education of father 0.9846 -0.484 0.6286 

Gender 0.69 -3.665 0.0002471 
Supplementary Table  S15: Table of results for logistic model with AUDIT and rs806368 N= 
Number of Non Missing individuals in IMAGEN. OR= Odds Ratio. Stat= Coefficient t-statistic. 
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Tableau 23. –  Suppl. Table S16 (article 1). 

Name SNP Position Weight Matrix ID(Library from Kheradpour and 
Kellis, 2013) 

rs7766029 TCF4_known2 
rs484061 AP-1_disc8 
rs484061 Dlx3 
rs484061 Hoxb6 
rs484061 STAT_known13 
Supplementary Table S16: Description of regulatory motifs altered for SNPs associated to 
GMDR model 

Supplementary Figures 

Figure 4. –  Suppl. Figure S1 (article 1). 

 

Supplementary Figure S1.  Principal Component Analysis of Ancestry IMAGEN. Illustrations to 
ancestries information in Imagen. A) Distribution of Eigenvalues by principal components 
calculated on genetic distances in Imagen. B) Multidimensional scaling plots of the two first 
principal components. 
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Annex B - Supplementary data Article 2 

Independent contribution of polygenic risk for schizophrenia and cannabis use in predicting 

psychotic-like experiences in young adulthood:  Testing gene x environment moderation and 

mediation. 

Laurent Elkrief 1*, Bochao Lin3, Mohammad H Afzali1,3, Tobias Banaschewski4; Arun L.W. Bokde5; Erin Burke 
Quinlan6; Sylvane Desrivières6; Herta Flor7,8; Hugh Garavan9; Penny Gowland 10; Andreas Heinz M.D., Ph.D.11; 
Bernd Ittermann 12; Jean-Luc Martinot 13, Marie-Laure Paillère Martinot 14; Frauke Nees 4, 7; Dimitri Papadopoulos 
Orfanos Ph.D.9; Tomáš Paus 15; Luise Poustka16 ; Sarah Hohmann4; Sabina Millenet4; Juliane H. Fröhner17; Michael 
N. Smolka17; Henrik Walter11; Robert Whelan 18; Gunter Schumann6, 19; Jurjen Luykx 2,20,21; Marco P. Boks21;  Patricia 
J. Conrod 1,3, and the IMAGEN consortium.   

Supplemental material  

Imagen Dataset  

The IMAGEN study is a longitudinal imaging genetics study of 2087 healthy adolescents, mostly 

of European descent. Detailed descriptions of this study, genotyping procedures, and data 

collection have previously been published[1]. The current study uses data for all 2087 individuals 

who completed the IMAGEN assessment battery at 16, and 18 and who contributed their genetic 

data at 14 years of age. The multicentric IMAGEN project had obtained ethical approval by the 

local ethics committees (at their respective sites) and written informed consent from all 

participants and their legal guardians. The data to be used in this study are genetic, biological sex, 

behavioural measures (cannabis use), and psychotic-like experiences measures (CAPE 

questionnaire). The parents and adolescents provided written informed consent and assent, 

respectively at 14 and 16, and then participants gave full consent at 18 and 21 years of age. 

IMAGEN participants at 14, 16, 18 and 21 years of age were repeatedly assessed on cannabis use 

outcomes using the ESPAD questionnaire, and on psychotic like experiences using the CAPE 

questionnaire at 18 and 21 years of age. These questionnaires are completed by participants at 

home via the Psytools portal. Data is then de-identified through a two-step procedure were 

participants genetic and neuroimaging data are linked to the cognitive psytools data using two 

“pseudocodes” to ensure personal and test center anonymity [1].  
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Utrecht Cannabis Cohort 

This study recruited over 20,000 Dutch-speaking adolescents and young adults. Recruitment 

strategies are described in more detail in [2]. Participants answered questions on cannabis use 

history, along with the Community Assessment of Psychic Experiences questionnaire and 

provided their age, educational level and contact details. Data was collected from June 2006 to 

February 2009, which resulted in 21 838 participants. The assessment included two verification 

questions to protect against random answers, if participants failed to answer these questions 

they were excluded.   After exclusion 17 698 participants remained (81% of 21 838). The study 

was approved by the University Medical Centre Utrecht medical ethical commission and all 

participants gave online informed consent. Of these 17698 participants, 1259 provided genetic 

information, via two waves.  

Quality control 

IMAGEN 

SNPs with a minor allele frequency (MAF) of less than 2%, a genotyping rate of 2% or SNPs that 

did not respect Hardy Weinberg Equilibrium (HWE) (<1x10^-6^-6) were removed from analysis. 

Individuals with disproportionate levels of individual missingness (<2%), ambiguous sex, evidence 

of cryptic relatedness (>0.125), excessive heterozygosity were removed. The SNP coordinates 

were updated from hg18 to hg19 using Illumina information and the liftover tool from the 

genome browser. (http://genome.ucsc.edu/cgi-bin/hgLiftOver). After the first steps of quality control, 

1950 individuals remained. The data of the IMAGEN cohort were then combined with data from 

HapMap III, and principal component analysis was performed in PLINK1.9[3] to determine 

ancestry information. We removed individuals who did not fall within 3SD of the mean of the first 

2 principal components of the CEU + TSI populations from HapMapIII[4]. In all, 1740 individuals 

remained for polygenic risk score and regression analysis.  

Utrecht Cannabis Cohort 

DNA was extracted from whole blood of two 10 ml EDTA tubes obtained using venipuncture. For 

logistic reasons, genotype data for individuals of Dutch ancestry were generated on two different 
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array platforms; 576 individuals on Illumina® HumanOmniExpress (733,202 SNPs) and 768 

individuals on the Illumina® Human610-Quad Beadchip (620,901 SNPs).  

Base Data Set  

CLOSUK + PGS (Pardiñas et al. 2018)    

To build polygenic risk score for schizophrenia (PRS-Sz) we use a most recent and largest 

schizophrenia GWAS to date [5] as a training set. The summary statistics used for PRS construction 

came from a meta-analysis of the CLOZUK sample (treatment resistant schizophrenia) and 

independent psychiatric genomics consortium (PGC) datasets (schizophrenia) (total 40,675 cases 

and 64,643 control). The CLOZUK sample was demonstrably similar to previous PGC schizophrenia 

sample[5]. The entirety of the sample (meta-analysis results) was included for construction of 

PRS, as it was determined that the CLOZUK + PGC sample was independent and non-overlapping 

to the IMAGEN and CannabisQuest samples.  

Cannabis Use (Pasman et al., 2018) 

We use the publicly available GWAS meta-analysis results of from the International Cannabis 

Consortium (ICC) for the creation of the cannabis use polygenic risk score. The ICC GWAS 

separated cases and controls as a binary lifetime measure of cannabis use, “yes” or “no”. The 

CannabisQuest cohort data contributed to this GWAS, and as such, a cannabis use PRS was not 

constructed for the CannabisQuest cohort: a leave-one out dataset was not available. Although 

data from a 23andMe cohort is available online for use with the ICC cannabis cohort (PGC), we 

did not have data use agreements in place, and thus the did not include this data into our PGC 

calculations. Overall, data for PRS construction was from 162 082 individuals.       

Polygenic Risk Score 

Polygenic Risk Scores for schizophrenia (PRS-Sz) were constructed for each IMAGEN and Utrecht 

individuals based on data from the most recent schizophrenia GWAS based on 40 675 cases and 

64 643 controls [5] as a training set.  Prior to PRS building, SNPs from the base set were removed 

if they had an MAF <0.01, and SNP with imputation quality < 0.8. Overlapping SNPs between the 

GWAS summary statistics (base dataset), 1000 reference Genome (reference dataset), and our 
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dataset (target dataset; IMAGEN or CannabisQuest) were selected. Then 1) insertion or deletion, 

ambiguous SNPs, 2) SNPs with minor allele frequency (MAF)<0.01 and SNP with imputation 

quality (R2) < 0.8 in both training dataset and target dataset 3) SNPs located in complex-LD regions 

(supplementary table 1) were excluded[6]. Odds ratios for autosomal SNPs reported in the 

summary statistics were log-converted to beta values. Linkage disequilibrium-based clumping, 

using the PRSice default setting (i.e. clumb index of 250kb, r2 0.1, clump-p 0.1) was used to 

identify a set of independent. PRS scores for 12 different p-value thresholds are calculated (Pt 

levels) for each individual as a sum of each effect size for included SNPs. PRS were calculated using 

PRSice with for 12 GWAS p-value thresholds: 5 x 10-8, 5 x 10-7, 5 x 10-6, 5 x 10-5, 5 x 10-4, 5 x 10-

3, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. The covariates gender, age, and first ten principal 

components were included in analyses. 

The PRS for cannabis use (PRS-CanUse) was constructed similarly to previously published 

methods [7]. While the Johnson group used PLINK1.9[3] clump and score procedures, we created 

PRS using comparable methods in PRSice2[8]. Clumping was however with respect to 1000 

Genome Phase 3 european samples, as it was done in the Johnson work. Moreover a 500kb 

physicial distance and LD threshold of r2>=0.25 were used. We calculated PRS for 12 GWAS p-

value thresholds: 5 x 10-8, 5 x 10-7, 5 x 10-6, 5 x 10-5, 5 x 10-4, 5 x 10-3, 0.05, 0.1, 0.2, 0.3, 0.4 

and 0.5. Considering that PRS-Can use was not predictive of cannabis use at 16 years of age, we 

calculated PRS for cannabis users at 18 years of age in the IMAGEN cohort. The PRS most 

predictive of case/control (>10 lifetime cannabis uses), was Pt = 0.05, and this PRS was therefore 

used as a covariable in sensitivity analyses.    
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Supplementary Figures and Tables 

 

Figure 5. –  Suppl. Figure S1 (article 2).  

a) b)  
Figure S1. Principle component analysis. A comparison of the IMAGEN dataset including non-
europeans individuals (a., N=1950) to the final IMAGEN dataset after removal of individuals who 
are not within 3SD of the mean of the first two principal components of the CEU+TSI populations 
of HapMap III  (b., N=1740).   

Abbreviations: ASW (n=49): African ancestry in Southwest USA; LWK (n=90): Luhya in Webuye, 
Kenya; MKK (n=143): Maasai in Kinyawa, Kenya; YRI (n=116): Yoruba in Ibadan, Nigeria; CHB 
(n=84): Han Chinese in Beijing, China; CHD (n=85): Chinese in Metropolitan Denver, Colorado; JPT 
(n=86): Japanese in Tokyo, Japan; GIH (n=88): Gujarati Indians in Houston, Texas; MEX (n=52): 
Mexican ancestry in Los Angeles, CA, United States; CEU (n=112): Utah residents with Northern 
and Western European ancestry from the CEPH collection; TSI (n=88): Toscani in Italia. Data = 
IMAGEN dataset   
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Tableau 24. –  Suppl. Table S1 (article 2).  

Chromosome Base pair start Base pair end 
6 25392021 33392022 
8 111930824 114930824 
11 46043424 57243424 
1 48287980 52287979 
2 86088342 101041482 
2 134666268 138166268 
2 183174494 190174494 
3 47524996 50024996 
3 83417310 86917310 
3 88917310 96017310 
5 44464243 50464243 
5 97972100 100472101 
5 128972101 131972101 
5 135472101 138472101 
6 56892041 63942041 
6 139958307 142458307 
7 55225791 66555850 
8 7962590 11962591 
8 42880843 49837447 
10 36959994 43679994 
11 87860352 90860352 
12 33108733 41713733 
12 111037280 113537280 
20 32536339 35066586 

Suppl. Table S1 - Complex-LD regions removed prior to PRS construction 
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Tableau 25. –  Suppl. Table S2 (article 2).  

    Female (N=880) Male (N=860) Total (N=1740) p value 

IMAGEN 
 

  
  

Cannabis Use 
      

Case/Control 
      

 
0 

 
669 (92.7%) 588 (85.8%) 1257 (89.3%) < 0.001 

 
1 

 
53 (7.3%) 97 (14.2%) 150 (10.7%) 

 

 
Missing 

 
158 175 333 

 

CAPE42 
      

Positive Dimension 
     

 
Mean (SD) 

 
24.79 (4.22) 24.82 (4.52) 24.8 (4.36) 0.8 

 
Min - Max 

 
19 - 54 19 - 55 19 - 55 

 

 
Missing 

 
269 315 584 

 

Depressive Dimension 
     

 
Mean (SD) 

 
14.3 (3.81) 12.77 (3.1) 13.58 (3.57) < 0.001 

 
Min - Max 

 
8 – 30 8 – 28 8 – 30 

 

 
Missing 

 
269 315 584 

 

Negative Dimension 
     

 
Mean (SD) 

 
22.46 (5.61) 22.05 (5.61) 22.265 (5.61) 0.2 

 
Min - Max 

 
14 - 45 14 - 44 14 – 45 

 

 
Missing 

 
269 315 584 

 

Total CAPE-42 
      

 
Mean (SD) 

 
61.54 (11.65) 59.64 (11.32) 60.65 (11.53) 0.005 

 
Min - Max 

 
41 - 115 41 - 121 41 - 121 

 

 
Missing 

 
269 315 584 

 

       
Utrecht cannabis 

     

Age 
      

 
Mean (SD) 

 
20.34 (2.39) 20.58 (2.46) 20.45 (2.42) 0.08 

 
Min - Max 

 
16 - 40 16 - 39 16 – 40 

 

 
Missing 

 
0 0 0 

 

Cannabis Use 
      

Case/Control 
      

 
0 

 
516 (78.4%) 227 (40.2%) 743 (60.8%) < 0.001 

 
1 

 
142 (21.6%) 338 (59.8%) 480 (39.2%) 

 

 
Missing 

 
0 0 0 

 

CAPE42 
      

Positive Dimension 
     

 
Mean (SD) 

 
28.24 (8.32) 28.01 (5.41) 28.13 (7.12) 0.6 

 
Min - Max 

 
20 – 175 20 – 49 20 - 175 

 

 
Missing 

 
0 0 0 

 

Depressive Dimension 
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Mean (SD) 

 
14.45 (3.67) 13.09 (3.32) 13.82 (3.58) < 0.001 

 
Min - Max 

 
8 - 40 8 – 28 8 - 40 

 

 
Missing 

 
0 0 0 

 

Negative Dimension 
     

 
Mean (SD) 

 
25.42 (6.61) 25.93 (6.93) 25.65 (6.76) 0.2 

 
Min - Max 

 
15 - 58 15 - 47 15 - 58 

 

 
Missing 

 
0 0 0 

 

Total CAPE-42 
      

 
Mean (SD) 

 
67.77 (14.31) 67.03 (13.59) 67.43 (13.98) 0.4 

 
Min - Max 

 
23 - 146 43 - 110 23 – 146 

 

 
Missing 

 
0 0 0 

 

Supplementary Table S2. Summary statistics. T-test are performed to determine difference of 
means between male and female subjects. Missing = number of individuals with missing 
phenotype data.  

 

Tableau 26. –  Suppl. Table S3(article 2).  

IMAGEN p-value threshold 
 

β std.error p 
 

p ≤ 5e−2 
    

  
PRS-Sz 0.203 0.088 0.022 

  
SEX -0.780 0.183 2.10x10-05 

  
PC1 0.072 0.118 0.545 

  
PC2 -0.062 0.091 0.495 

  
PC3 0.045 0.120 0.708 

  
PC4 0.217 0.120 0.070 

  
PC5 -0.075 0.090 0.408 

  
PC6 -0.285 0.160 0.075 

 
p ≤ 0.5 

    

  
PRS-Sz 0.269 0.089 0.003 

  
SEX -0.768 0.184 2.90 x10-05 

  
PC1 0.084 0.119 0.479 

  
PC2 -0.061 0.091 0.499 

  
PC3 0.056 0.121 0.640 

  
PC4 0.219 0.120 0.069 

  
PC5 -0.072 0.091 0.426 

  
PC6 -0.282 0.160 0.078 

Utrecht cannabis 
    

 
p ≤ 5e−2 

    

  
PRS-Sz 0.084 0.017 7.31x10-7 
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SEX -1.725 0.131 2.00x10-16 

  
Age 0.046 0.027 0.082 

  
PC1 -7.989 8.150 0.327 

  
PC2 -4.728 8.334 0.571 

  
PC3 -5.698 8.319 0.493 

  
PC4 -6.840 8.393 0.415 

  
PC5 -12.125 8.380 0.148 

  
PC6 -5.500 8.254 0.505 

 
p ≤ 0.5 PRS-Sz 0.393 0.069 9.62x10-9 

  
SEX -1.725 0.131 2.00x10-16 

  
Age 0.046 0.027 0.082 

  
PC1 -7.989 8.150 0.327 

  
PC2 -4.728 8.334 0.571 

  
PC3 -5.698 8.319 0.493 

  
PC4 -6.840 8.393 0.415 

  
PC5 -12.125 8.380 0.148 

  
PC6 -5.500 8.254 0.505 

Supplementary Table S3. Predictive value of PRS-Sz on cannabis use. This table shows results for 
the most predicative polygenic risk score on cannabis use. Also presented are results for PRS-Sz 
with a Pt of <0.05, as this Pt best explains schizophrenia risk. We include the first 6 PC and Sex as 
covariates for all analyses and age is included for all analyses of the CannabisQuest cohort. β= 
Beta, std.error = standard error, p = p value. PRS-Sz = polygenic risk score for schizophrenia. pt=p-
value threshold.      
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Tableau 27. –  Suppl. Table S4(article 2).  

IMAGEN 
    

 
p threshold Nagelkerke R2 p value CNT 

 
5x10-8 0.019 0.715 146 

 
5x10-7 0.015 0.747 221 

 
5x10-6 0.000 0.989 431 

 
5x10-5 0.719 0.024 865 

 
5x10-4 0.771 0.019 2k 

 
0.005 0.819 0.016 5k 

 
0.05 0.738 0.022 17k 

 
0.1 0.694 0.026 25k 

 
0.2 0.975 0.009 38k 

 
0.3 1.155 0.004 47k 

 
0.4 1.191 0.004 55k 

 
0.5 1.279 0.003 61k 

 
1 1.191 0.004 82k 

Utrecht cannabis 
    

 
5x10-8 0.105 0.291 189 

 
5x10-7 0.040 0.515 273 

 
5x10-6 0.043 0.500 497 

 
5x10-5 0.321 0.065 948 

 
5x10-4 0.351 0.054 2k 

 
0.005 1.174 4.53 x10-4 6k 

 
0.05 2.376 7.31 x10-7 18k 

 
0.1 2.185 1.98 x10-6 27k 

 
0.2 2.987 3.25 x10-8 39k 

 
0.3 2.962 3.63 x10-8 49k 

 
0.4 2.997 3.02 x10-8 57k 

 
0.5 3.223 9.62 x10-9 64k 

 
1 3.144 1.40 x10-8 86k 

Supplementary Table S4. Predictive value of various PRS-Sz on cannabis use. Above are results 
from the logistic regression measuring predictive value of PRS-Sz (independent variable) and case-
control cannabis use (dependent variable). We include the first 6 PC and Sex as covariates for all 
analyses and age is included for all analyses of the CannabisQuest cohort. Nagelkerke R2 is used 
to calculate variance. CNT is number of SNPs included in the PRS. p threshold = p-value threshold.       
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Tableau 28. –  Suppl. Table S5 (article 2).  

    
 

β std.error p.value 

IMAGEN (N=1156) p-value threshold 
    

 
p ≤ 5e−2 

    

  
PRS-Sz 0.011 0.005 3.57 × 10−2 

  
SEX 0.030 0.010 3.85 × 10−3 

  
PC1 0.005 0.007 4.96 × 10−1 

  
PC2 -0.004 0.005 4.47 × 10−1 

  
PC3 -0.010 0.007 1.46 × 10−1 

  
PC4 -0.006 0.007 3.54 × 10−1 

  
PC5 -0.003 0.005 6.19 × 10−1 

  
PC6 0.006 0.010 5.54 × 10−1 

 
p ≤ 0.5 

    

  
PRS-Sz 0.013 0.005 1.11 × 10−2 

  
SEX 0.031 0.010 3.25 × 10−3 

  
PC1 0.006 0.007 4.37 × 10−1 

  
PC2 -0.004 0.005 4.50 × 10−1 

  
PC3 -0.010 0.007 1.60 × 10−1 

  
PC4 -0.006 0.007 3.72 × 10−1 

  
PC5 -0.003 0.005 6.32 × 10−1 

  
PC6 0.006 0.010 5.49 × 10−1 

Utrecht cannabis (N=1213) p-value threshold 
    

 
p ≤ 5e−2 

    

  
PRS-Sz 0.005 0.001 2.64 × 10−4 

  
SEX 0.010 0.011 3.79 × 10−1 

  
age -0.001 0.002 6.43 × 10−1 

  
PC1 1.037 0.715 1.47 × 10−1 

  
PC2 1.361 0.728 6.19 × 10−2 

  
PC3 0.035 0.733 9.62 × 10−1 

  
PC4 -0.693 0.732 3.44 × 10−1 

  
PC5 -0.512 0.732 4.85 × 10−1 

  
PC6 -0.296 0.732 6.86 × 10−1 

 
p ≤ 0.5 

    

  
PRS-Sz 0.005 0.001 1.63 × 10−5 

  
SEX 0.011 0.011 3.23 × 10−1 

  
age -0.001 0.002 5.94 × 10−1 

  
PC1 1.179 0.716 1.00 × 10−1 

  
PC2 1.335 0.726 6.63 × 10−2 

  
PC3 0.004 0.732 9.95 × 10−1 

  
PC4 -0.663 0.731 3.64 × 10−1 

  
PC5 -0.502 0.731 4.92 × 10−1 

  
PC6 -0.373 0.730 6.09 × 10−1 
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Supplementary Table S5. Predictive value of PRS-Sz on psychotic-like experiences. This table 
shows results for the most predicative polygenic risk score on CAPE-42 total responses. Also 
presented are results for PRS-Sz with a Pt of <0.05, as this Pt best explains schizophrenia risk. We 
include the first 6 PC and sex as covariates for all analyses and age is included for all analyses of 
the CannabisQuest cohort. β= Beta, std.error = standard error, p = p value. PRS-Sz = polygenic risk 
score for schizophrenia. pt=p-value threshold.          

 

Tableau 29. –  Suppl. Table S6 (article 2).  

IMAGEN 
    

p-value threshold 
 

β std.error p.value 

p ≤ 5e−2 
    

 
PRS-Sz 0.020 0.007 4.58 × 10−3 

 
SEX 0.106 0.014 5.67 × 10−14 

 
PC1 0.005 0.010 5.99 × 10−1 

 
PC2 -0.004 0.007 5.98 × 10−1 

 
PC3 -0.005 0.009 5.71 × 10−1 

 
PC4 -0.008 0.009 4.04 × 10−1 

 
PC5 -0.008 0.007 2.53 × 10−1 

 
PC6 -0.010 0.013 4.42 × 10−1 

     
p ≤ 0.5 

    

 
PRS-Sz 0.022 0.007 1.53 × 10−3 

 
SEX 0.107 0.014 3.29 × 10−14 

 
PC1 0.006 0.010 5.29 × 10−1 

 
PC2 -0.004 0.007 6.11 × 10−1 

 
PC3 -0.005 0.009 6.06 × 10−1 

 
PC4 -0.007 0.009 4.25 × 10−1 

 
PC5 -0.008 0.007 2.63 × 10−1 

 
PC6 -0.010 0.013 4.49 × 10−1 

     
Utrecht cannabis 

    

p ≤ 5e−2 
   

 
PRS-Sz 0.006 0.002 9.15 × 10−4 

 
SEX 0.101 0.013 1.06 × 10−13 

 
AGE 0.004 0.003 1.11 × 10−1 

 
PC1 0.128 0.839 8.79 × 10−1 



 

171 

 
PC2 1.583 0.854 6.39 × 10−2 

 
PC3 -0.742 0.860 3.88 × 10−1 

 
PC4 -1.077 0.859 2.10 × 10−1 

 
PC5 -0.955 0.859 2.67 × 10−1 

 
PC6 -0.129 0.858 8.81 × 10−1 

p ≤ 0.5 
    

 
PRS-Sz 0.005 0.001 4.50 × 10−4 

 
SEX 0.102 0.013 5.67 × 10−14 

 
AGE 0.004 0.003 1.26 × 10−1 

 
PC1 0.230 0.841 7.85 × 10−1 

 
PC2 1.549 0.853 6.97 × 10−2 

 
PC3 -0.754 0.860 3.80 × 10−1 

 
PC4 -1.048 0.858 2.22 × 10−1 

 
PC5 -0.951 0.858 2.68 × 10−1 

 
PC6 -0.215 0.857 8.02 × 10-1 

Supplementary Table S6. Predictive value of PRS-Sz on depressive sub-scale of CAPE-42. This 
table shows results for the most predicative polygenic risk score on CAPE-42 the depression sub-
scale responses. Also presented are results for PRS-Sz with a Pt of <0.05, as this Pt best explains 
schizophrenia risk. We include the first 6 PC and sex as covariates for all analyses and age is 
included for all analyses of the CannabisQuest cohort. β= Beta, std.error = standard error, p = p value. 
PRS-Sz = polygenic risk score for schizophrenia. pt=p-value threshold.          

 

 

 

 

 

 

 

 

Tableau 30. –  Suppl. Table S7 (article 2).  
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IMAGEN 
    

p-value threshold 
 

β std.error p.value 

p ≤ 5e−2 
    

 
PRS-Sz 0.003 0.005 4.76 × 10−1 

 
SEX -0.002 0.009 8.64 × 10−1 

 
PC1 -0.001 0.007 9.13 × 10−1 

 
PC2 -0.003 0.005 5.59 × 10−1 

 
PC3 -0.019 0.006 3.17 × 10−3 

 
PC4 0.002 0.006 7.58 × 10−1 

 
PC5 0.003 0.005 4.90 × 10−1 

 
PC6 0.027 0.008 1.41 × 10−3 

     
p ≤ 0.5 PRS-Sz 0.005 0.005 3.02 × 10−1 
 

SEX -0.001 0.009 8.78 × 10−1 
 

PC1 0.000 0.007 9.53 × 10−1 
 

PC2 -0.003 0.005 5.54 × 10−1 
 

PC3 -0.018 0.006 3.45 × 10−3 
 

PC4 0.002 0.006 7.45 × 10−1 
 

PC5 0.003 0.005 4.85 × 10−1 
 

PC6 0.027 0.008 1.40 × 10−3 
     
Utrecht cannabis 

    

p ≤ 5e−2 
    

 
PRS-Sz 0.004 0.001 5.66 × 10−3 

 
SEX -0.001 0.011 9.34 × 10−1 

 
AGE -0.007 0.002 2.57 × 10−3 

 
PC1 0.523 0.704 4.58 × 10−1 

 
PC2 1.002 0.717 1.63 × 10−1 

 
PC3 -0.207 0.722 7.74 × 10−1 

 
PC4 -0.877 0.721 2.24 × 10−1 

 
PC5 -0.313 0.721 6.64 × 10−1 

 
PC6 -0.147 0.720 8.38 × 10−1 

p ≤ 0.5 
    

 
PRS-Sz 0.003 0.001 2.73 × 10−3 

 
SEX 0.000 0.011 9.92 × 10−1 

 
AGE -0.007 0.002 2.14 × 10−3 

 
PC1 0.601 0.706 3.95 × 10−1 

 
PC2 0.978 0.716 1.72 × 10−1 

 
PC3 -0.218 0.722 7.62 × 10−1 

 
PC4 -0.856 0.720 2.35 × 10−1 

 
PC5 -0.310 0.721 6.67 × 10−1 

 
PC6 -0.207 0.719 7.73 × 10−1 

Supplementary Table S7. Predictive value of PRS-Sz on positive sub-scale of CAPE-42. This table 
shows results for the most predicative polygenic risk score on CAPE-42 the positive sub-scale 
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responses. Also presented are results for PRS-Sz with a Pt of <0.05, as this Pt best explains 
schizophrenia risk. We include the first 6 PC and sex as covariates for all analyses and age is 
included for all analyses of the CannabisQuest cohort. β= Beta, std.error = standard error, p = p value. 
PRS-Sz = polygenic risk score for schizophrenia. pt=p-value threshold. 

 

Tableau 31. –  Suppl. Table S8 (article 2).  

IMAGEN 
    

p value threshold 
 

β std.error p.value 
p ≤ 5e−2 

    
 

PRS-Sz 0.014 0.007 5.90 × 10−2  
SEX 0.020 0.014 1.53 × 10−1  
PC1 0.012 0.010 2.35 × 10−1  
PC2 -0.004 0.007 5.47 × 10−1  
PC3 -0.003 0.010 7.40 × 10−1  
PC4 -0.015 0.009 1.14 × 10−1  
PC5 -0.007 0.007 3.70 × 10−1  
PC6 -0.009 0.013 4.79 × 10−1      

p ≤ 0.5 
    

 
PRS-Sz 0.016 0.007 2.36 × 10−2  
SEX 0.021 0.014 1.40 × 10−1  
PC1 0.013 0.010 2.04 × 10−1  
PC2 -0.004 0.007 5.51 × 10−1  
PC3 -0.003 0.010 7.72 × 10−1  
PC4 -0.015 0.009 1.21 × 10−1  
PC5 -0.006 0.007 3.79 × 10−1  
PC6 -0.009 0.013 4.83 × 10−1           

Utrecht Cannabis 
   

p ≤ 5e−2 
    

 
PRS-Sz 0.007 0.002 8.85 × 10−5  
SEX -0.015 0.015 2.90 × 10−1  
AGE 0.004 0.003 1.86 × 10−1  
PC1 1.556 0.911 8.79 × 10−2  
PC2 1.244 0.927 1.80 × 10−1  
PC3 0.260 0.934 7.81 × 10−1  
PC4 -0.619 0.932 5.07 × 10−1  
PC5 -0.658 0.933 4.81 × 10−1  
PC6 0.011 0.932 9.91 × 10−1      

p ≤ 0.5 
    

 
PRS-Sz 0.006 0.001 1.12 × 10−5  
SEX -0.014 0.015 3.41 × 10−1  
AGE 0.004 0.003 2.11 × 10−1  
PC1 1.718 0.913 6.00 × 10−2  
PC2 1.204 0.926 1.93 × 10−1  
PC3 0.231 0.933 8.04 × 10−1  
PC4 -0.579 0.931 5.34 × 10−1  
PC5 -0.649 0.931 4.86 × 10−1  
PC6 -0.097 0.930 9.17 × 10−1 

Supplementary Table S8. Predictive value of PRS-Sz on negative sub-scale of CAPE-42. This table 
shows results for the most predicative polygenic risk score on CAPE-42 the negative sub-scale 
responses. Also presented are results for PRS-Sz with a Pt of <0.05, as this Pt best explains 
schizophrenia risk. We include the first 6 PC and sex as covariates for all analyses and age is 
included for all analyses of the CannabisQuest cohort. β= Beta, std.error = standard error, p = p value. 
PRS-Sz = polygenic risk score for schizophrenia. pt=p-value threshold.          

 

Tableau 32. –  Suppl. Table S9 (article 2).  

Dependent Variable p-value threshold β std.error p.value 
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Lifetime cannabis use (case/control)         
 

p ≤ 5e−8 0.032 0.088 0.715 

  p ≤ 5e-5 0.201 0.089 0.024 

Total Cape-42 - frequency 
    

 
p ≤ 5e−8 0.001 0.005 0.801 

 
p ≤ 5e-5 0.012 0.005 0.021 

Supplementary Table S9. Predictive value of various stringent PRS-Sz on cannabis use and CAPE-42 total 
scores. This table shows results for the logistic and linear regressions of various schizophrenia 
polygenic risk score on cannabis use (case/control status) and CAPE-42 responses. We include the 
first 6 PC and sex as covariates for all analyses. β= Beta, std.error = standard error, p = p value.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tableau 33. –  Suppl. Table S10 (article 2).  

Dependent Variable Independent Variable β std.error p.value 

Total Cape-42 - frequency         
 

PRS-Sz (pt=0.5) 0.014 0.006 0.013 

  PRS-CanUse (pt=0.05) 0.003 0.005 0.622 
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Lifetime cannabis use (case/control) 0.038 0.018 0.037 

Lifetime cannabis use (case/control) 
    

 
PRS-Sz (pt=0.5) 0.268 0.089 0.002 

 
PRS-CanUse (pt=0.05) 0.090 0.089 0.313 

Supplementary Table S10. Predictive value of PRS-Sz (Pt=0.5) on cannabis use and CAPE-42 total 
scores, when considering the polygenic-risk score for cannabis use as a covariate. This table shows 
results for the logistic and linear regressions of the schizophrenia polygenic risk score (Pt=0.5) on 
cannabis use (case/control status) and CAPE-42 responses. We include the first 6 PC and sex as 
covariates and the polygenic risk score for cannabis use (Pt=0.05) for all analyses. PRS-Sz = 
polygenic risk score for schizophrenia. PRS-CanUse = polygenic risk score for cannabis use. pt=p-
value threshold. β= Beta, std.error = standard error, p = p value.      

 

Tableau 34. –  Suppl. Table S11 (article 2).  

Models (Pt<0.5)  Model Parameters Estimate 95% CI Lower 95% CI Upper p-value 

X: PRS-SZ ACME 0.0004 -0.0002 0.0010 0.0952 

M: Cannabis Use (Case/Control) ADE 0.0138 0.0033 0.0242 0.0096 

Y:PLE Total Effect 0.0142 0.0046 0.0238 0.0060 

  Prop. Mediated 0.0305 -0.0151 0.0762 0.1006 

Models (Pt<0.05)  
    

  

X: PRS-SZ ACME 0.0009 -0.0004 0.0022 0.1790 

M: Cannabis Use (Case/Control) ADE 0.0111 0.0006 0.0216 0.0370 

Y:PLE Total Effect 0.0120 0.0015 0.0225 0.0250 

  Prop. Mediated 0.0757 -0.0579 0.2093 0.1970 

ACME: Average Causal Mediation Effects, ADE: Average Direct Effects.  

N=1061; Simulation=10000 (non-parametric confidence intervals) 

Supplementary TableS11. Results of mediation analysis. Independent variable= Polygenic risk 
score for schizophrenia (PRS-Sz), Dependent variable=logTotal of Cape-42. Mediator = Cannabis 
use. As shown, the effect of PRS-Sz on psychotic like experiences as measured by the CAPE-42  
questionaire was not mediated by cannabis use. The effect of PRS-Sz was significantly associated 
to cannabis us in both models as was cannabis use effect size onto CAPE-42 scores. The direct 
effect was significant. Unstandardized indirect effects were computed for each  Of the 10000 
bootstrapped samples, and the 95% confidence interval was computed by determining the 
indirect effects at the  2.5th and 97.5th percentiles.  

 

Tableau 35. –  Suppl. Table S12 (article 2).  

   
β std.error p.value 

IMAGEN Pt<0.05 
    

  
PRS-Sz 0.011 0.006 4.82 × 10−2 
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Cannabis Use 0.040 0.018 2.68 × 10−2 

  
SEX 0.035 0.011 1.36 × 10−3 

  
PC1 0.005 0.008 4.81 × 10−1 

  
PC2 -0.003 0.006 5.51 × 10−1 

  
PC3 -0.009 0.007 2.01 × 10−1 

  
PC4 -0.006 0.007 3.84 × 10−1 

  
PC5 -0.002 0.006 6.83 × 10−1 

  
PC6 0.010 0.010 3.25 × 10−1 

       
Pt<0.5 

    

  
PRS-Sz 0.014 0.006 1.30 × 10−2 

  
Cannabis Use 0.038 0.018 3.52 × 10−2 

  
SEX 0.036 0.011 1.18 × 10−3 

  
PC1 0.006 0.008 4.22 × 10−1 

  
PC2 -0.003 0.006 5.40 × 10−1 

  
PC3 -0.009 0.007 2.13 × 10−1 

  
PC4 -0.006 0.007 4.04 × 10−1 

  
PC5 -0.002 0.006 6.99 × 10−1 

  
PC6 0.010 0.010 3.15 × 10−1 

      
Utrecht cannabis 

     

 
Pt<0.05 

    

  
PRS-Sz 0.004 0.001 3.82 × 10−3 

  
Cannabis Use 0.067 0.013 1.43 × 10−7 

  
age -0.002 0.002 4.63 × 10−1 

  
SEX 0.035 0.012 3.92 × 10−3 

  
PC1 1.148 0.708 1.05 × 10−1 

  
PC2 1.425 0.720 4.82 × 10−2 

  
PC3 0.114 0.725 8.75 × 10−1 

  
PC4 -0.597 0.724 4.10 × 10−1 

  
PC5 -0.351 0.725 6.29 × 10−1 

  
PC6 -0.225 0.724 7.56 × 10−1 

       
Pt<0.5 

    

  
PRS-Sz 0.004 0.001 5.70 × 10−4 

  
Cannabis Use 0.065 0.013 3.57 × 10−7 

  
age -0.002 0.002 4.34 × 10−1 

  
SEX 0.036 0.012 3.64 × 10−3 

  
PC1 1.259 0.709 7.61 × 10−2 

  
PC2 1.402 0.719 5.14 × 10−2 

  
PC3 0.087 0.724 9.04 × 10−1 

  
PC4 -0.575 0.723 4.26 × 10−1 

  
PC5 -0.348 0.724 6.31 × 10−1 

  
PC6 -0.289 0.722 6.90 × 10−1 

Supplementary Table S12. Predictive value of PRS-Sz and cannabis use on CAPE-42. This table 
shows results for the various PRS-Sz on CAPE-42 while considering lifetime cannabis use 
(case/control status) as an independent covariable. We include the first 6 PC and sex as covariates 
for all analyses and age is included for all analyses of the CannabisQuest cohort. PRS-Sz = 
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polygenic risk score for schizophrenia. pt=p-value threshold. β= Beta, std.error = standard error, 
p = p value.         
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