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Sommaire

L’ingénierie dirigée par les modèles (IDM) est un paradigme du génie logiciel qui utilise les
modèles comme concepts de premier ordre à partir desquels la validation, le code, les tests
et la documentation sont dérivés. Ce paradigme met en jeu divers artefacts tels que les
modèles, les méta-modèles ou les programmes de transformation des modèles. Dans un
contexte industriel, ces artefacts sont de plus en plus complexes. En particulier, leur
maintenance demande beaucoup de temps et de ressources. Afin de réduire la complexité
des artefacts et le coût de leur maintenance, de nombreux chercheurs se sont intéressés au
refactoring de ces artefacts pour améliorer leur qualité.

Dans cette thèse, nous proposons d’étudier le refactoring dans l’IDM dans sa
globalité, par son application à ces différents artefacts. Dans un premier temps, nous
utilisons des patrons de conception spécifiques, comme une connaissance a priori, appliqués
aux transformations de modèles comme un véhicule pour le refactoring. Nous procédons
d’abord par une phase de détection des patrons de conception avec différentes formes et
différents niveaux de complétude. Les occurrences détectées forment ainsi des opportunités
de refactoring qui seront exploitées pour aboutir à des formes plus souhaitables et/ou plus
complètes de ces patrons de conceptions.

Dans le cas d’absence de connaissance a priori, comme les patrons de conception,
nous proposons une approche basée sur la programmation génétique, pour apprendre des
règles de transformations, capables de détecter des opportunités de refactoring et de les
corriger. Comme alternative à la connaissance disponible a priori, l’approche utilise des
exemples de paires d’artefacts d’avant et d’après le refactoring, pour ainsi apprendre les
règles de refactoring. Nous illustrons cette approche sur le refactoring de modèles.

Mots clefs : Refactoring ٠ Patrons de conception ٠ Ingénierie dirigée par les modèles ٠
Transformation de modèles ٠ apprentissage de règles ٠ Génie logiciel basé sur la 
recherche ٠ Approche basée sur l'exemples ٠ Programmation génétique.
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Summary

Model-Driven Engineering (MDE) is a software engineering paradigm that uses models as
first-class concepts from which validation, code, testing, and documentation are derived.
This paradigm involves various artifacts such as models, meta-models, or model
transformation programs. In an industrial context, these artifacts are increasingly complex.
In particular, their maintenance is time and resources consuming. In order to reduce the
complexity of artifacts and the cost of their maintenance, many researchers have been
interested in refactoring these artifacts to improve their quality.

In this thesis, we propose to study refactoring in MDE holistically, by its application
to these different artifacts. First, we use specific design patterns, as an example of prior
knowledge, applied to model transformations to enable refactoring. We first proceed with a
detecting phase of design patterns, with different forms and levels of completeness. The
detected occurrences thus form refactoring opportunities that will be exploited to implement
more desirable and/or more complete forms of these design patterns.

In the absence of prior knowledge, such as design patterns, we propose an approach
based on genetic programming, to learn transformation rules, capable of detecting
refactoring opportunities and correcting them. As an alternative to prior knowledge, our
approach uses examples of pairs of artifacts before and after refactoring, in order to learn
refactoring rules. We illustrate this approach on model refactoring.

Keywords: Refactoring ٠ Design pattern ٠ Model-driven engineering ٠ Model transformation ٠
Rules learning ٠ Search-based software engineering ٠ By-example approach ٠
Genetic programming
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Chapter 1

Introduction

1. Research Context

Model-Driven Engineering (MDE) is becoming increasingly popular in the software indus-
try (Mohagheghi et al, 2013). MDE is an approach to software engineering that uses first-rate
artifacts from which validation, code, testing and documentation are derived. These arti-
facts are generally models, meta-models or transformation/generation rules. In an industrial
context, these artifacts are increasingly complex, thus elevating the level of abstraction of
these artifacts is of tremendous value for various activities in MDE (Mengerink et al, 2017).
As a result, most of them are specific to particular fields. For example (Zarour et al, 2020)
present a classification of 30 domains-specific BPMN extensions. Over time, the number of
extensions is growing (Braun and Esswein, 2014). However, the diversity of MDE artifacts
requires the availability of a prior knowledge specific to each artifact in order to be able to
refactor them. In other words, the application of the refactoring of these artifacts requires
prior expertise.

Existing work on refactoring (Kerievsky, 2005) express this knowledge in the form of cat-
alogs of design patterns. These patterns reduce complexity and execution time, and improve
the flexibility and modularity of an MDE artifact. Therefore, identifying the implemented
design patterns in an existing artifact can greatly help the developer to better understand
the design and better document the artifact. Unfortunately, we are deprived of reusing this
valuable knowledge on existing MDE artifacts. Model transformation, for example, is still
handled in a superficial manner as analyzes on this artifact are still not available. The ab-
sence of analyzes of design patterns on the artifact transformation creates a gap between
the maintenance developer and design pattern knowledge. For the sake of reducing this gap,



approaches and tools are needed to analyze the current state of the artifacts and hence, open
opportunities to the existing expertise to be reused.

Design pattern detection is a field with all characteristics to cover this gap. The absence of
design pattern detection approaches is a strong argument for trying to adopt new techniques
for detecting these patterns. The non-existence of the pattern becomes also an opportunity
for implementing the pattern. To date, no approach has specifically worked on this case, due
to its difficulty. Also, if a pattern has not been entirely implemented, its partial identification
provides valuable information which could suggest its correct application or suggests its
improvement. Our research work consists of proposing solutions in order to reinforce the
absence of methods of pattern detection.

2. Problem Statement

The maintenance phase constitutes the most important phase in time (Lehman, 1980)
and cost (Schach, 1993), in the software life cycle. Refactoring is a maintenance process
that aims to improve the quality of a software by making modifications on its structure
while preserving its behavior (Fowler, 1999a). The main question to be answered in this
thesis is: “To what extent can we automate refactoring in MDE?” . Refactoring in
MDE means refactoring artifacts such as models, metamodels, model transformations, etc.
The complexity of these large-scale artifacts complicates their refactoring. To address this
problem, we have to face two scenarios depending on how prior knowledge, a.k.a. expertise,
is available.

The 1st scenario is the availability of explicit expertise. In this scenario, we
assume knowledge is represented in an explicit way, for example, but not limited to, in the
form of algorithms, formal design patterns or anti-patterns. In this case, the refactoring
approach can directly use the explicit knowledge in an automatic way.

The 2nd scenario is the non-availability of explicit expertise. In this scenario, the
knowledge may exist, but only in an implicit way that makes it unusable directly through
automation. Implicit knowledge can be found in the history of modifications that are made
on an artifact. It can also be found in examples of the before and after refactoring versions
of an artifact. Various other sources can contain implicit knowledge. However, the challenge
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in this scenario is to extract this knowledge to make it available in an explicit manner so
that the refactoring can be automated.

In this thesis, we deal with each scenario separately. Automatic supports, which facilitate
the success of these two scenarios, constitute the main objective of this thesis. At this point,
it is important to note that the interactions which result from the creation of these supports
must be optimal.

2.1. Scenario 1: Explicit Expertise Issues

Consider the case where refactoring expertise is explicitly available. It is prior knowledge
that expresses how to identify refactoring opportunities and how to apply the refactoring. It
is usually the result for extensive research and analysis in various applications. For example,
let us consider the refactoring of UML 1 Class diagram. The model has a class X that contains
an attribute X.a which exists in its parent class Y. We notice that there is no need for this
attribute in X as this class can directly use the attribute a from its parent class Y thanks to the
inheritance relationship. An explicit knowledge of how to detect the refactoring opportunity
in this model and how to refactor it, could be available as a refactoring rule. The rule
dictates to search for classes, by its left-hand side, for the classes X and Y, the inheritance
relation X−→Y, and the attributes X.a and Y.a. Finding such a match on a model represents
a refactoring opportunity. Then the rule then states to remove the attribute a from X. This
is the refactoring application.

When languages, in which the artifacts are expressed, are in general use, such as UML,
there is a critical mass of researchers/users whose work allowed to model, test, and validate
refactoring rules. However, other languages may be specific to particular domains. In this
case, refactoring techniques may exist but their knowledge remains specific to the modeling
language.

A good practice that appeared recently is the use of design patterns to make successful
refactoring of artifacts (Misbhauddin and Alshayeb, 2015). Overtime, catalogs of design
patterns (Gamma et al, 1994; Lano and Kolahdouz-Rahimi, 2014) were proposed for differ-
ent software artifacts. Several studies (Hegedűs et al, 2012; Lano et al, 2018) showed that
these patterns reduce complexity and execution time, as well as improve the flexibility and

1http://www.uml.org/
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modularity of the artifacts. Hence, design patterns constitute a prior knowledge of how an
artifact could be refactored (Kerievsky, 2005). Namely, appropriate know-how expertise.

Unfortunately, we are deprived of reusing this valuable know-how expertise on certain
MDE artifacts. The lack of necessary tools to inspect the status of design patterns in
an artifact creates a gap between the artifact, the maintenance developer, and this know-
how expertise. For source code and model many tools and approaches were proposed (Al-
Obeidallah et al, 2016a) to solve this problem. For other artifacts in MDE, lack of tools
and approaches is noticeable. With the existence of the urgent need for such material in
MDE (Bucchiarone et al, 2020), this gap becomes an obstacle.

Although Model transformation is the heart and soul of MDE (Sendall and Kozaczynski,
2003), it also suffers from the ability to use the limited explicit expertise available. To our
knowledge, no existing tool or approach targets the detection of design patterns for the case
of model transformation. Manual attempts were recently made in (Lano et al, 2018). Fur-
thermore, with the increasing scale and complexity of the used models in MDE, the developed
transformations are also increasing in scale and complexity, and are constantly evolving in
development projects. Hence, maintenance of the transformations architecture and design
becomes a burden (Meyers and Vangheluwe, 2011). Complications in the transformations
could paralyze the process of their development, and consequently, paralyze the entire MDE
paradigm. Therefore, it is of uttermost importance to provide means of detecting design pat-
terns for model transformations. The motivations cited above constitute a strong argument
for choosing the model transformation artifact as a case study for the first scenario.

2.2. Scenario 2: Implicit Expertise Issues

Consider the case where refactoring expertise is implicit. This means that there is no
explicit way of how to refactor a model. Let us consider the same refactoring example of the
previous UML Class diagram. But this time, we do not have the refactoring rule that shows
explicitly how to refactor this model. Instead, we only have a version of the model after
the refactoring was applied manually. This version could be given by some domain-specific
experts. For example, the after refactoring version only consists of the classes X, Y, the X−→Y

relationship, and attribute Y.a in Y.

4



The challenge here is to make the knowledge of how to identify refactoring opportuni-
ties and how to apply the refactoring, explicitly available. This knowledge preferably be
represented as a set of refactoring rules.

A good practice in this second scenario, consists of applying automatic learning from
examples in order to generate refactoring rules which detect patterns and correct them. In
our case, we use a set of refactoring examples of an artifact and we use supervised learning
to generate this knowledge (rules) (Varró, 2006). Examples are pairs of before and after
refactoring versions of an artifact (source artifact/artifact). They are used to remedy the
missing knowledge. A process of learning this knowledge will be carried out. The knowledge
should be able to identify refactoring opportunities and apply appropriate refactorings.

At this point, refactoring an artifact could be seen as a particular transformation of
the same artifact (Lúcio et al, 2014). It will, therefore, be a model transformation in the
case of model and metamodel artifacts and a higher-order transformation in the case of
transformation artifacts (Tisi et al, 2009). The idea has been successfully studied for learning
transformation rules from examples (Faunes et al, 2013; Baki and Sahraoui, 2016). However,
learning refactoring as transformation presents several difficulties to be overcome. First,
refactoring is an in-place transformation, which means, modifications to the model are usually
made directly on the source model without creating copies. Existing techniques to learn
model transformation from examples are intended to generate a completely new artifact.
Secondly, in the examples, not all components of the artifact source get affected by the
transformation, but only specific ones among them that constitute refactoring opportunities.
Thus, the learning process, while searching for patterns on the rules left-hand sides, concerns
all components of this artifact, but it is only allowed to apply actions, on the rules right-
hand sides, on very specific components of the artifacts. Because any action on the non-
opportunity components is considered as wrong actions. This hinders the learning progress.
Finally, the rules for refactoring transformation are highly complex, with many elements and
a complex logic of interdependence, which makes learning difficult.

The approaches related to this type of learning have all used models, with certain limita-
tions in terms of the types of rules generated or the types of examples used. Nowadays, none
of these approaches works specifically on refactoring because of its difficulty, which creates
a weak link in the state of the art of this type of learning.
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3. Proposed Research Contributions

The automation of refactoring depends mainly on the type of expertise at hand, and
how to approach it. We believe that “it is possible to automate refactoring in MDE
when the refactoring expertise is explicitly available and when it is not” . Hence,
we have taken as a major objective in this thesis: “Improving refactoring automation
in MDE” . Problems, objectives and contributions are organized around a core element to
describe more specifically what we want to achieve. This element is the way how the knowl-
edge is present. In the previous section we presented the two scenarios: When knowledge
is explicitly present and when it is implicit. The same structure is used to define two goals
related to the scenarios sequentially:

• Automating refactoring when the knowledge is explicit
• Automating refactoring when the knowledge is implicit

In the following, we go with each scenario/goal separately. For each one, objectives,
requirements and contributions are presented. The thesis summarize three primary contri-
butions. The three contributions are published in separate papers.

3.1. Scenario 1: Refactoring when Knowledge is Explicit

Lano et al. are interested in the maintenance of patterns architecture and design in model
transformations (Lano and Kolahdouz-Rahimi, 2014). They proposed to consider the identi-
fication of design patterns implemented in existing model transformations as a maintenance
solution. This is due to the fact that this identification can considerably help the devel-
oper to better understand the design and to better document the transformation (Tsantalis
et al, 2006). Moreover, the success of refactoring resides primarily in identifying the right
refactoring opportunities (Fowler, 1999a; Mens and Tourwé, 2004). An opportunity can be
seen in different ways (Mens and Tourwé, 2004; Al-Dallal, 2015). In this thesis, we consider
the identification of refactoring opportunities as the identification of design patterns/anti-
patterns (Gamma et al, 1994; Fowler, 1999a). An anti-pattern can be seen as a design
flaw (Brown et al, 1998).

Identifying refactoring opportunities may result in three outcomes: the complete, partial
or non-existence of an instance of the pattern. The non-existence of the pattern becomes an
opportunity to implement the pattern to improve the artifact quality. If a pattern has not
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been fully implemented, its partial identification provides valuable information to suggest
correct application or propose a variant since any pattern can be implemented according to
different variants (Prechelt and Krämer, 1998). After all, design pattern detection is a large,
heavy and known problem in its self (Yarahmadi and Hasheminejad, 2020). Therefore the
objective of the thesis for this scenario is to “propose an automatic approaches that
target the detection of design patterns in model transformations” . Solutions
with different properties are desirable which also reinforces the work on the transforma-
tion artifact. In the following, we quote the main requirements targeted in this thesis for
this objective. The proposed solutions must satisfy as many of these requirements as possible.

Automation #1.1. The first requirement that the proposed approach should satisfy, is to
offer an automatic solution to detect model transformation design patterns. The authors
in (Lano et al, 2018) tries to identify design patterns instances in ATL model transforma-
tion (Jouault et al, 2008). Besides that this work is among the few who tries to identify design
patterns in model transformation, the pattern identification was done manually. This shows
the weakness in the automation aspect. Hence, the urgent need for automatic solutions.
Variability #1.2. The approach should be able to detect different variants of the same de-
sign pattern. This is a significant prerequisite since any design pattern may be implemented
with plenty of variations (Fowler, 1999a; Tsantalis et al, 2006).
Incompleteness #1.3. Many design pattern detection approaches filter out real pattern
instances due to strict exact matches of generic pattern version (Dong et al, 2009). That
is because design patterns may be present in various forms as mentioned formerly. Some
design pattern candidates which might be real instances are incomplete forms compared to
the pattern generic version. We refer to these last as approximations (Dong et al, 2009). Each
design pattern has its approximations with different types. We require from the proposed
approach to detect different approximations of the same design pattern.
Adaptability #1.4. Anti-patterns are structures that do not differ much from design pat-
terns. Both are defined by static and dynamic aspects/elements (Stoianov and Şora, 2010).
In the latter, differentiation may appear. As far as we know, no existing work presents a
catalog of anti-patterns for model transformations. However, anti-patterns will surely be
presented in the near future. Hence, the need for approaches to detect them. In (Stoianov
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and Şora, 2010), the authors proposed a logic-based approach to detect design patterns and
anti-patterns in source code. Their approach uses Prolog as an inference engine. Taking this
as motivation, another targeting requirement in the thesis is the flexibility of the proposed
approaches in terms of being able to detect anti-patterns.
Wholeness #1.5. Model transformations are sets of rules linked by control schemes. Their
design patterns come on the same form where they are set of participants, that shall match
the transformation rules, and their scheduling. Identification of pattern participants in-
stances in the transformation is one step. Another important step is to preserve the correct
scheduling between the detected participants instances according to the pattern. We call
this the recovery phase. Well, the existence of these two steps is mandatory for the detection
of the hole pattern. Hence, considering the hole patterns during detection is required of any
proposed approach.

Contribution #1 In the first paper of the thesis, we satisfy the above require-
ments. Hence, we present, for first time, an approach to detect complete or partial
instances of design patterns in concrete model transformation implementations. It
is a model finding approach based on a rule engine, where we map model trans-
formations to an abstract representation and design patterns to rules that these
representations must satisfy. After identifying individual participants of a design
pattern, we verify that the scheduling scheme described in the pattern is satisfied
in the transformation. We compute an accuracy score at each detection step that
is finally aggregated and reported. We implemented a prototype where we encode
design patterns as rules and that automatically maps a complete model transfor-
mation implemented in a specific model transformation language to the abstract
representation.

The first Contribution tackled the first five requirements. The coming requirements are
considered as further steps that we would like to achieve in this thesis. Hence, the second
Contribution is there to face the coming requirements.
Genericity #1.6. As mentioned above, design patterns come with plenty of variants and
approximations. Hence, an important property of a detection strategy is the genericity with
respect to the patterns to detect. Most of the existing work requires to write specific code
for each pattern, being queries (Rasool et al, 2010), structural rules (Zanoni et al, 2015), or
pattern matching rules (Mayvan and Rasoolzadegan, 2017). Our first contribution was not
spared from this manual task. Presenting a generic solution that is fully independent of the
input pattern is an additional requirement.
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Efficiency #1.7. Offering an efficient algorithm to detect the patterns is also required.
There are dozens of detection approaches in object-oriented programs (Al-Obeidallah et al,
2016b). These approaches suffer from performance problems, because detecting complete
and incomplete occurrences is generally costly in time, due to the large search-space that
includes all possible combinations of artifact elements (Guéhéneuc et al, 2010). The authors
in (Kaczor et al, 2010) address these issues by using a string matching technique inspired by
pattern matching algorithms in bioinformatics. We take this work as inspiration to offer an
efficient algorithm that is based on string matching techniques.

Contribution #2 In the second paper of the thesis, We propose a generic tech-
nique to detect design pattern occurrences in model transformation implementa-
tions. By being generic, we do not need to re-write the detection code for each
design pattern, its variants, and its approximations. We rely on a bit-vector algo-
rithm that has proven to be efficient for string matching problems. We succeed to
exceed the first challenge by offering a string representation for model transformation
rules and another for design pattern participants. Thus, the detection consists of an
automated step that matches the participant strings of a pattern with rule strings
of transformation, and a manual step to complete the occurrences. In addition to
the performance, an advantage of using this approach is the fact both complete and
incomplete occurrences can be detected.

3.2. Scenario 2: Refactoring when Knowledge is Implicit

The best example of implicit knowledge is a set of refactoring examples that comes in
form of pairs of artifacts. Each pair contains the before and after refactoring versions of
the same artifact. We apply the learning approach to generate a set of rules that repre-
sent the explicit knowledge. The learning is in form of a generalization process that makes
the implicit knowledge as explicit. The idea of learning from examples has been widely ex-
posed (Kessentini et al, 2011). Yet, this field has always new challenges when we deal with
domain-specific artifacts/languages. However, The set of refactoring rules are in form of an
in-place transformation. In-place transformation is a transformation that reacts to the same
artifact. This means that refactoring becomes an transformation which tends to improve
the quality of the artifact by modifying its structure while preserving its behavior (Van Der
Straeten and D’Hondt, 2006). The refactoring rules/transformation is going to detect refac-
toring opportunities. Then, it proposes the refactorings that better match to the examples
of model refactoring.
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The objective of the thesis for the second scenario is to “propose an automatic ap-
proach that learn refactoring rules from refactoring examples” . As any software
engineering artifact, model transformation has a certain quality requirements (Mens and
Gorp, 2006). We define in the following seven quality requirements for this objective. The
approach proposed within the frame of this thesis should maintain these requirements.

Scalability #2.1. A naive approaches, to learn from example, would be to generate all
possible combinations of elements on the examples. This strategy fails whenever the examples
reached a certain size. This is because the search space grows exponentially depending on
the number of elements in the examples. Our approach should address this.
Normality #2.2. In model-driven engineering, refactoring is seen as an endogenous trans-
formation. When the transformations create model elements in one model based on proper-
ties of another model, it is called out-place (Mens and Gorp, 2006). When the manipulation
allowing to obtain the target model is carried out directly on the source model, the trans-
formation is called in-place. Just as most of maintenance tasks, refactoring is more suitable
to be an in-place transformation. Above the excess difficulties found in in-place transfor-
mation while learning, this last also require to learn default rules scheduling for executing
the learned rules. This is because, in in-place transformation, it is important to have a
scheduling. Changing the rules execution order may give different transformation results.
Limited input #2.3. In by example approaches, all the required knowledge settle in exam-
ples. For the sake of learning, many MTBE approaches use examples with explicit traces
that show the operations of refactorings (Baki and Sahraoui, 2016; García-Magariño et al,
2009). In (Langer et al, 2010) the authors use demonstrative editing actions that are made
by a user while learning. However, it is not easy to have such examples. Hence, we would like
to have a tolerant solution. We require that learning should be made on examples without
details of refactorings. As well, the approach must be able to learn even on a very small set
of example models. Although, this affects the quality of the rules.
Reusability #2.4. Certain approaches produce non-executable and abstract transforma-
tion rules. Hence, a manual phase becomes necessary to complete and translate manually
the rules into an executable language. This forbids the direct reusability of the learned rules.
We aim to learn executable rules. This avoids any manual phases.
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Learning N-to-M rules #2.5. MTBE approaches progress over time in learning complex
rules. The complexity appears in the number of source and target elements by rule. The
initiation of learning rules from examples was made by (Varró, 2006). His approach learned
rules of 1-1 type. This stands for one element in the left-hand side of the rule and one ele-
ment in the right-hand side of the rule (one-to-one). Today MTBE approaches, are able to
learn m-n rules (many-to-many) (Faunes et al, 2013). In order to challenge existing MTBE
approaches, we require to learn rules of n-m types. In addition, we are dealing with in-place
transformation rather than out-place transformation. When the transformation manipula-
tion comes directly on source model, the n and m numbers of the learned rules are going to
be bigger in comparison to the out-place transformation rules numbers.
Efficiency #2.6. Our last requirement is about the quality of the learned rules. This
appears on two things. The first thing is the ability to produce the correct target models.
This means that all expected refactorings are going to be correctly applied. The second
thing is the appearance of refactorings in the rules structure. This ensures that the resulting
model is produced with the least number of modifications, thus mimicking an efficient manual
refactoring application.

Contribution #3 The third paper of this thesis tackles the last contribution. We
consider rule learning to be an optimization problem and we solve it by applying
genetic programming (Langdon et al, 2008). Our algorithm searches for refactoring
rules that best match the examples provided. We hypothesize that companies/ex-
perts in the field can provide concrete examples of refactoring artifacts. The model
is considered a study artifact in the second scenario. Our third contribution, which
covers the scenario where knowledge is implicit, is summarized in: Learning refac-
toring rules by using genetic programming on examples.

4. Thesis Structure

The rest of this document is structured around five chapters and a conclusion.
Chapter II: mainly concerns the state of the art of refactoring. It begins by giving
the main definitions about the context. It then presents the state of the art of the
approaches which participate in the application of the refactoring of MDE artifacts,
mainly those which use the design patterns. Then, it discusses state of the art of
approaches that learn refactoring through the use of examples.
Chapter III: outlines the scenarios and proposed approaches.
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Chapter IV: presents the first article of design pattern detection. The approach
here is based on rules that represent the design patterns.
Chapter V: presents the second article of design pattern detection. The approach
uses string matching techniques while model transformations, as well as pattern par-
ticipants, are both represented as sequences of strings.
Chapter VI: presents the third article of this thesis. The proposed approach cov-
ers the automatic learning of refactoring, in form of model transformations able to
produce the refactoring of an artifact model.
Chapter VII: a conclusion broadly summarizes our work.
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Chapter 2

State of the Art

The main objective of the thesis is to improve refactoring automation in MDE. We organize
the state-of-the-art following the structure in Fig. 2.1. Each rectangle in the figure refers to
a section in this chapter, indicated by the section number.

Before discussing the related work on refactoring in MDE, we introduce the basic concepts
involved in our work in Section 1. Then, we separate this chapter according to the two
scenarios mentioned in the previous chapter: whether refactoring knowledge is explicit or
implicit. In the former case, we consider refactoring knowledge explicitly available through
design patterns. Thus, we discuss related work on design pattern detection in software
engineering in Section 2. Then, we cover the refactoring of two main artifacts in MDE
namely, models (Section 3) and model transformation (Section 4). Most of existing studies
focused mainly on model refactoring. We consider the studies not relying on any form of
design pattern in Section 3.1 and the studies that are based on design patterns and anti-
patterns for model refactoring in Section 3.2.

When refactoring knowledge is not explicitly available, we are interested in learning the
refactoring from examples. Examples represent the implicit knowledge. Refactoring in MDE
being seen as a model transformation (Balogh and Varró, 2009), we target, in Section 5,
approaches that derive model transformation from examples. These approaches can be
categorized in two groups, Model Transformation By-Example (MTBE) ( Section 5.2) and
Model Transformation By-Demonstration (MTBD) ( Section 5.3).



Figure 2.1. State of the Art Overview

1. Background and Definitions

This section introduces the main concepts in MDE, necessary to understand our contri-
butions.

1.1. Model-Driven Engineering

MDE is a paradigm that promises to reduce the complexity of software by intensive use
of models and their automatic transformations (France and Rumpe, 2007). The basic idea
of MDE is that software development can be simplified by the use of high-level abstraction
models (domain models) representing a system and by the application of automatic transfor-
mations producing low-level abstraction models (implementation of models) such as source
code and test sets (Kelly and Tolvanen, 2008).

1.2. Model

A model is an abstraction of a system built for a specific purpose. We then say the
model represents the system. A model is an abstraction in that it contains a limited set of
information about a system. It is built for a specific purpose and the information it contains
is chosen to be relevant to a specific use to which the model will be put (Muller, 2006).
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1.3. Metamodel

According to Kühne, the metamodel defines the linguistic types and their rela-
tions (Kühne, 2006). A metamodel is defined using a metamodeling language, such as
UML. In practice, we define metamodels using UML class diagrams, where classes represent
the type concepts, attributes represent their properties, and associations represent their
relations.

1.4. Modeling Languages

A modeling language is a formal language from which models can be instantiated. A mod-
eling language comprises a syntax and its semantics (Harel and Rumpe, 2004). The meta-
model defines the abstract syntax of the language. The concrete syntax can be represented
graphically, textually, or a combination of both. A modeling language can be dedicated to
a certain field or application domain, in which case it is called a domain-specific language
(DSL) (Kelly and Tolvanen, 2008). In contrast, general-purpose modeling languages are
applicable in any domain, such as UML and Petri nets.

1.5. Model Transformation

In MDE, model transformation is the automatic manipulation of a model according to
a specification defined at the metamodel level, as shown in, Fig. 2.2 (borrowed from (Lúcio
et al, 2014)). Model transformation is called out-place when it transforms a source model
into a destination model different from the source model. An example of out-place transfor-
mation is when we transform a UML activity diagram into its semantically equivalent Petri
nets (Syriani and Ergin, 2012). It is said to be in-place when it changes the source model
itself without producing a different target model. An example of in-place transformation is
when we refactor a domain-specific model (Toyoshima et al, 2015).

Model transformation is called exogenous when it is expressed between models conforming
to different languages. i.e. source and target models conform to different metamodels. When
the transformation affects models expressed in the same language, i.e. source and target
models conform to the same metamodel, it is called endogenous.

Transformation rules have a preponderant place in the model transformation mechanism.
According to Levendovski et al. (Levendovszky et al, 2002), these rules are assimilated to the
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Figure 2.2. Model Transformation (Lúcio et al, 2014)

notion of mapping. In 2008, Deguil (Deguil, 2008) proposed four types of model mappings:
“1-1” type mappings use relations which associate an element of a source model with one
and only one element of a target model. “1-m” type mappings associate an element of the
source model with several elements of the target model. Conversely, mappings of type “n-1”
associate several elements of the source model with a single element of the target model.
Finally, “n-m” type mappings associate several elements of the source model with several
elements of the target model.

1.6. Design Pattern

Some of the research contributions presented in this thesis involve the notion of design
patterns. A design pattern is a general reusable solution to a common problem in software
design. Design patterns capture some of the best solutions to design problems, at differ-
ent levels of abstraction, in forms designed to facilitate their reuse (Gamma et al, 1994).
They were introduced in the mid-1990s as a catalog of common solutions to common design
problems and are considered standards for ‘good’ software designs (Ramasamy et al, 2015).
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Since their appearance, the patterns have aroused a lot of interest. Some studies have
focused on the classification, comparison, and implementation of patterns. Others have
attempted to formally specify patterns and/or their application.

1.7. Design Patterns for Model

The patterns presented by Gamma et al. represent a solution for source code as well as
models. This is also because models are generally an abstraction of the source code. However,
researchers acknowledge that there can be context specific practical pattern solutions to
recurring real world design problems (Atwood, 2006).

van der Aalst and ter Hofstede collected a fairly complete set of workflow patterns (van der
Aalst and ter Hofstede, 2005). Based on these patterns they evaluated several workflow
products and detected considerable differences in their ability to capture control flows for non-
trivial workflow processes. The workflow language YAWL (van der Aalst and ter Hofstede,
2005), was proposed by the same authors.

Brambilla et al. (Brambilla et al, 2011) presented a gallery of social BPM design pat-
terns that represent reusable solutions to recurrent process socialization requirements, and
a model-to-model and mode-to-code transformation technology. These patterns are part of
a process design methodology, supported by a tool suite, for addressing the extension of
business processes with social features.

1.8. Design Patterns for Model Transformation

There is a large body of research on design patterns for models, and especially for UML
models. However, little attention has been paid to the design patterns for model transfor-
mations. In the mid-2000s, several works proposed design patterns for the transformation of
models. Indeed, in 2005, Agrawal et al.. (Agrawal et al, 2005) have defined design patterns for
the graph transformation described in a specific language of model transformations. Later
in 2008, Iacob et al.. (Iacob et al, 2008) have defined other design patterns for out-place
transformations. Simultaneously in 2009, Levendovszky et al.. (Levendovszky et al, 2009)
have proposed domain design patterns for model transformation and for different DSLs.

More recently (2014), Lano and Kolahdouz-Rahimi (Lano and Kolahdouz-Rahimi, 2014)
presented the most comprehensive study of design patterns of a model transformation and
defined a catalog of 20 patterns classified into five categories. They have shown that these
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patterns reduce complexity and execution time, and improve the flexibility and modularity
of model transformations. Although the objective and the conditions of application of each
pattern are rigorously described, they chose to define the solution part of the pattern using
a formal specification without proving details on how to implement them.

In 2016, Ergin et al.. (Ergin et al, 2016) proposed a modeling language, called DelTa, with
a graphical and textual representation (Ergin and Syriani, 2014), in order to facilitate the
understanding of the design patterns of Lano and Kolahdouz-Rahimi. Furthermore, DelTa
allows the automatic instantiation of design patterns in model transformation implementa-
tions. Ergin and Eugene also presented new design patterns (Ergin and Syriani, 2013), such
as the iterative modification of a model until reaching a fixed point, or the execution of a
modeling language by translating it to another modeling language for simulation.

A model transformation design pattern consists of participants and their scheduling
scheme. Participants represent rule templates that shall be implemented in a concrete model
transformation. The scheduling scheme defines the order in which the rules are applied when
a transformation is executed. We provide further details on model transformation design
patterns in the first two articles of this thesis.

2. Design Pattern Detection in Software Engineering

Design pattern detection has been mainly explored in object-oriented programs (Al-
Obeidallah et al, 2016a). Different methodologies, such as database queries-based, UML
structure, graph and matrix-based, metrics-based (Priya, 2014), string-matching-based and
ontology-based are used for the detection.

One promising solution is the use of rules as part of the detection process. (Kramer and
Prechelt, 1996) uses Prolog rules to recover structural design patterns. Design patterns are
described using a variation of Prolog predicates and information about program elements and
their roles are represented as Prolog facts. (Niere et al, 2002) present an approach that uses
an algorithm that exploits an abstract syntax graph (ASG) that represent the program. The
algorithm uses sets of graph transformation rules that represent Design patterns. (Arcelli
et al, 2009) defined sets of rules implemented inform of queries to identify design patterns.
Rules are characterized by weights indicating their importance in the detection of a specific
design pattern. (Rasool et al, 2010) present an approach that is based on annotations, regular
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expressions and database queries. They define the varying features of patterns and apply
rules to match these features with the source code elements. (Alnusair et al, 2014) present a
reverse-engineering approach that enhances program understanding through the automatic
recovery of design patterns from source code. The authors conclude that effective and flexible
detection of design patterns can be achieved without using hard-coded heuristics. (Martino
and Esposito, 2016) use ontologies to cover the semantical and behavioral parts of the design
patterns. Their approach extracts Prolog facts from both, formal pattern representation and
UML documentation of software artifacts. The sets of facts are analyzed and the recognition
rules are applied. (Al-Obeidallah et al, 2018) present a multiple phases approach for design
patterns recovery based on structural and method signature features. The approach uses
rules to match the method signature of the candidate design instances to that of the subject
program. After all, rule-based approaches are a very suitable solution for detecting model
transformation design patterns. Because rules can be useful not only for detecting pattern
participants, but also for ensuring the validity of the chaining of participant instances with
respect to the pattern scheduling.

In terms of performance, most existing design pattern detection techniques have per-
formance issues when the size of the input program increases. (Antoniol et al, 1998) and
(Guéhéneuc et al, 2004) tried to improve the efficiency of the detection by the use of metrics.
Their idea is to reduce the search space by removing entities that do not participate in a
design pattern according to expected metrics values. A similar problem in bioinformatics
is to localize different genes in long anonymous DNA sequences. Efficient solutions exist,
yet, they are designed for strings. Inspired by the bioinformatics solutions, (Kaczor et al,
2010) chose to represent the input programs, as well as design patterns, as strings. This
allows the use of bioinformatics algorithms. Their approach identifies design patterns in
source code. An efficient bit-vector algorithm that finds exact and approximate occurrences
of design patterns in a program was used. The approach takes as input design patterns
and generates their string encoding before starting the identification process. A new design
pattern or pattern variants could be treated without any human interaction or any update
on the approach. This makes it a completely generic approach.
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3. Model Refactoring

We now present the state-of-the-art regarding model refactoring in MDE.

3.1. Refactoring Without Design Pattern

Starting from the early 2000s, UML models were targeted as candidates for refactoring
according to Sunyé et al. (Astels, 2002; Boger et al, 2002; Sunyé et al, 2001). This was
particularly the case for class diagrams because many existing refactoring rules in object-
oriented programming were directly adapted to those diagrams.

In 2005, Van Kempen et al. (Van Kempen et al, 2005) used the CSP (Constraint Sat-
isfaction Problem) formalism to describe the refactorings of state-transition diagrams, and
showed how this formalism can be used to verify that refactoring effectively preserves behav-
ior. In the same year, Gheyiet et al.. (Rohit et al, 2005) suggested to specify the refactoring
of models using Alloy, a modeling language used for formal specification. It can be used to
demonstrate the preservation of the semantic properties of model refactorings.

Different formalisms have been proposed to understand and explore the refactoring
of models. Most of these approaches suggest declarative expression of these refactor-
ings (Pretschner and Prenninger, 2007; Straeten and D’Hondt, 2006). In 2006-2007, Bier-
mannet et al.. (Biermann et al, 2006) and Mens et al.. (Mens et al, 2007) used graph trans-
formation theory to specify the refactoring of models. They used their formal properties to
analyze and reason about these refactorings. In this period, Bouden (Saliha, 2006), studied
the preservation of traceability between model refactoring and code refactorings. She pro-
posed a catalog of 55 primitive and composite refactorings at the model level and defined for
each refactoring preconditions, post-conditions, and actions, expressed in pseudo code and
necessary to ensure the preservation of the model behavior.

3.2. Design Pattern-based Refactoring

In the following, we review several works that have been interested in design patterns as
refactoring opportunities and those that have been interested in automating their application
in model refactoring.
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3.2.1. Opportunities’ Detection

A model refactoring opportunity can be understood in several ways. In what follows, we
consider that the opportunities are patterns, anti-patterns or models of smells. There are
many known good and bad practices in software engineering that prove to benefit to or harm
software quality. In the area of software design and the quality of the source code/design
model, these best practices take generally the form of design patterns. On the other hand,
bad practices are commonly referred as anti-patterns or bad (model) smells. To define model
refactoring opportunities, many detection approaches have been proposed. We group them
into two main categories: those based on design patterns and those that aim to detect
anti-patterns (Brown et al, 1998) and models smells.

(1) Design Pattern-based Detection
One of the first works that motivated the idea of detecting design patterns was pro-
posed in 1996 by Brown (Brown, 1996). He took the first step towards automating
the detection of design patterns by applying reverse-engineering to code written in
Smalltalk to facilitate the detection of four patterns from the Gamma et al. cata-
log (Gamma et al, 1994).
Later in 2009, Bouhours et al.. (Bouhours et al, 2009) defined the concept of ‘Spoiled
Pattern’ to specify the problems of refactoring patterns. It is an abstraction of
an alternative solution that is less optimal than the design pattern itself (optimal
solution).
Ballis and Baruzzo (Ballis et al, 2008) have proposed a rule-based algorithm and a
general text language to identify all instances of a pattern in the graph of UML
models. This text language makes it possible to express patterns, anti-patterns,
smells and other design heuristics at the same time. Esposito and Martino (Martino
and Esposito, 2016) have seen that this work has certain limitations. They claimed
that the proposed textual language is incapable of describing the intents of patterns,
the scopes and the contexts of an application, and that the extension of this language
also is difficult. Thus, in 2015, they proposed an approach (Martino and Esposito,
2016) that covers these limitations.
Most of the existing design pattern detection approaches use an intermediate formal-
ism to represent their artifacts and patterns (Al-Obeidallah et al, 2016b; Misbhauddin
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and Alshayeb, 2015). Software code and design models are both transformed into this
intermediate representation. Hence, the detection of design patterns at the model
level can reuse the detection of design patterns at the code level. Indeed, most of
the existing design pattern detection approaches for software code consider that their
approaches are adequate solutions for models. For this, Section 2 covers the detection
approach for both code and model artifacts.

(2) Detection based on Anti-patterns and Smells
In 1998, Brown et al.. (Brown et al, 1998) introduced the concept of anti-patterns
for the first time by describing 40 design smells. 18 of them are development and
architecture anti-patterns. Among the latter, five treat the refactoring of models.
A year after, Flower et al. proposed 22 code smells (Fowler, 1999b). 10 of them
have received an extension and were discussed with regards to model refactoring,
although some of these smells could not be exclusively applied to UML models (such
as Long Method, Switch Statements, Comments) (Misbhauddin and Alshayeb, 2015).
In (Singh and Kaur, 2018), Singh and Kaur present a systematic literature review of
refactoring for code smells. They showed the current status, approaches, and tools
of refactoring with respect to code smells and anti-patterns.
Misbhauddin and Alshayeb in 2015 (Misbhauddin and Alshayeb, 2015) found that
most rule-based approaches define and detect smells in UML class diagrams (Akiyama
et al, 2011; Dao et al, 2006; Dobrzanski and Kuzniarz, 2006; Llano and Pooley, 2009;
Štolc and Polášek, 2010). Other approaches apply to sequence diagrams, component
diagrams, and use-case diagrams. Dobrzański and Kuźniarz claim that the majority
of work on the refactoring of UML models (Boger et al, 2002; Porres, 2003; Sunyé et al,
2001; Zhang et al, 2005) concerns non-executable design models. In their work (Do-
brzanski and Kuzniarz, 2006), they present a systematic approach to specifying the
refactoring of executable UML models and their associated bad smells. Their ap-
proach describes the smell of an intermediate model in UML sequence diagrams.
El-Attar and Miller worked on use-case models for which they identified 26 anti-
patterns (El-Attar and Miller, 2010). In addition, their work provided a query-based
approach capable of detecting these anti-patterns. El-Attar and Ali Khan provided
another approach (Khan and El-Attar, 2016) based on a model transformation that
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allows detecting instances of anti-patterns in a given use-case model and apply its
refactoring in a suitable way.
For sequence diagrams, one of the few works is one of Liu et al.. (Liu et al, 2006).
They proposed an approach to detect duplication by converting a two-dimensional
sequence diagram into a one-dimensional array, then the array into a suffix tree.
Then, an algorithm makes it possible to identify the common prefixes, from the suffix
tree, in the form of diagrams of the reusable sequences that will be, subsequently,
considered as refactoring candidates. Ren et al.. (Ren et al, 2003) also proposed an
approach for the detection of clones in sequence diagrams and their refactoring.

3.2.2. Refactoring Application

In 2003 France et al.. (France et al, 2003) proposed a pattern-based approach as a tool
to support the refactoring of UML models. In their approach, the specification of patterns
should include the specifications of the problem solution, as well as the specification of the
problem-to-solution transformations. However, their approach requires that a specification
of a transformation be previously written using a specific domain language and that it does
not allow the user to freely experience a transformation that has not the specific objective
of restructuring into a design pattern (Verebi, 2015).

In 2008, in order to improve the quality of design, Kim (Kim, 2008) proposed an approach
that uses design patterns to refactor software models. As in (France et al, 2003), the design
pattern is defined by three components: the specifications of the problem, the solution, and
the transformation. In this work, Kim followed the work of Schulz et al.. (Schulz et al, 1998)
and Cinneide (Cinnéide, 2001) to specify the problem targeted by the design patterns. This
is used to check the applicability of a pattern. Kim had also developed a prototype that
supports class diagram refactoring.

In 2009, Shahir et al.. (Shahir et al, 2009) proposed an approach based on design patterns
to transform/refactor models. The approach was demonstrated through a case study, where
five previously defined design patterns were applied to a model to ultimately lead to an
improved model of the software system. In 2015, Ben Ammar and Bhiri (Ammar and
Bhiri, 2015) proposed a pattern-based refactoring approach to introduce the association
relationships of UML models. In their work, they detail a refactoring pattern that allows

23



the introduction of an association relationship between two existing classes. The pattern is
applied to class diagrams and state machine diagrams to obtain high-quality UML models.

In 2017, Arcelli and Di Pompeo (Arcelli and Pompeo, 2017) introduced a preliminary
refactoring approach based on anti-patterns of software systems. The approach is driven by
the application of design patterns and focuses on the refactoring of software artifacts (i.e.,
models, code). It aims to eliminate possible performance anti-patterns by applying design
patterns. The authors describe a procedure that selects a design pattern to be applied ac-
cording to its rank (degree of classification) with respect to a score assigned to each design
pattern, quantifying the probability that the pattern removes the corresponding anti-pattern.
They also provide a preliminary validation of the approach, showing how the selection pro-
cedure works on three design patterns to remove empty sequences from the performance
anti-pattern.

3.3. Discussion

As shown at the beginning of this Section 3.1, very few approaches target model refac-
toring without considering design patterns. Researchers see that detecting refactoring op-
portunities is suitable by detecting design patterns/anti-patterns and bad smells.

Most detection approaches target the patterns of Gamma et al.. in object-oriented pro-
grams (Gamma et al, 1994). These approaches consider mainly structural patterns because
they can be detected by matching the structure of the code, expressed in a high level of
abstraction, to one of the patterns (Dong et al, 2008). To improve detection, some projects
combine several strategies as in (Rasool et al, 2010). The detection of behavior patterns has
also attracted interest from the research community. In De Lucia et al.. (De Lucia et al,
2010), the authors use model verification to improve the detection of behavior patterns. A
work similar to this one is that of (Guéhéneuc et al, 2004), The authors first identify the key
participants of the pattern using a machine learning technique. Then they check the other
participants of the model and the relationships between them.

Pattern-based approaches (Section 3.2.1 (1)) are very popular. They detect refactoring
opportunities by looking for design problems in the model and they suggest their corrections
in the form of design patterns.
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The other approaches (Section 3.2.1 (2)) identify both model smells and anti-patterns
using a declarative rule definition. These rules are defined manually to identify the symptoms
that characterize the smell. It should be noted that some approaches (Ballis et al, 2008) are
also able to identify the design patterns. As mentioned in (Misbhauddin and Alshayeb,
2015), most of these studies define and detect smells in UML class diagrams (Akiyama et al,
2011; Dao et al, 2006; Dobrzanski and Kuzniarz, 2006; Llano and Pooley, 2009; Štolc and
Polášek, 2010). Other approaches apply to sequence diagrams, component diagrams and use
case diagrams.

However, none of the mentioned approaches can refactor other artifacts than models. We
have studied these approaches with the hope of finding an approach that could be generalized
and adapted to refactor other MDE artifacts. Unfortunately, our observation did not reveal
any clear proposal for an approach that can be generalized to refactor other MDE artifacts.

4. Model Transformation Refactoring

In this section, we discuss the existing work on refactoring of model transformations.
The two main families of contributions are approaches based on heuristic search and those
driven by smells.

4.1. Search-based Refactoring

In 2012, Wimmer et al.. (Wimmer et al, 2012) proposed a dedicated catalog of refactorings
for model transformations. The objective of this catalog is to improve the quality of model
transformations. The refactorings were explored while analyzing examples of existing trans-
formations defined in ATL (Jouault et al, 2008). The application of a model transformation
refactoring based on this catalog is a semi-automatic process that requires the presence of a
user. In order to automate this process, in 2016 Alkhazi et al. (Alkhazi et al, 2016) provided
an approach to find the refactoring space for a model transformation. The approach is based
on a multi-objective optimization algorithm that recommends the best refactoring sequence
(ex: extraction rule, merge rules, etc.) optimizing a set of quality metrics based on ATL
(ex: number of rules, coupling, etc.). In (Alkhazi et al, 2020), they proposed a novel set of
quality attributes to evaluate refactored ATL programs.
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4.2. Smells-based Refactoring

In 2012–2013, Taentzer et al.. (Taentzer et al, 2012) and Tichy et al.. (Tichy et al, 2013)
presented their approaches in order to improve the quality of model transformations based
on graphs. Taentzer et al.. presented a set of refactoring patterns to reduce the effect of bad
performance smells that Tichy et al. were able to detect. Both approaches are based on the
transformation language Henshin.

In 2011, Tairas and Cabot (Tairas and Cabot, 2011) provided an evaluation of cloning
in OCL expressions as an initial step toward a broader understanding of cloning in DSLs.
Their evaluation covered ATL transformations because it contains OCL-like expressions. In
2016, Struber et al.. (Strüber et al, 2016a) presented an approach for the identification of
clone detection for graph-based model transformation languages. They consider Type I and
Type II clones (Koschke, 2006), which are regularly produced when the rules are produced
by copy and paste. It also contains an identification of five main needs for a clone detection
technique for graph-based model transformations. In the same year, Struber et al.. (Strüber
et al, 2016b) proposed a refactoring approach based on the fusion of rules for this same type
of transformation. In order to select groups of rules to unify, their approach uses clone
detection to identify overlapping parts of the rules and their clustering.

4.3. Discussion

A limited number of approaches were tailored to the refactoring of model transforma-
tions. None was found that use design patterns for refactoring, excepted for approaches that
correct smells. As explained previously, detecting design patterns can be seen as detect-
ing refactoring opportunities. To the best of our knowledge, our contributions (Mokaddem
et al, 2021, 2016) represent the first solutions of the detection of design patterns in model
transformations.

We believe that detecting refactoring opportunities through the detection of design pat-
terns can open new possibilities to improve the state of the art. This is why we explore this
avenue in the following chapters.
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5. Derivation of Model Manipulation Artifacts

Most of the existing work on the derivation of model refactoring solutions is based on
search-based techniques (Mens and Gorp, 2006). We present the significant contributions
in the following subsection. However, there are alternative techniques that were used to
derive other kinds of model manipulation artifacts. We discuss, in particular, in this section,
techniques that learn model transformations from examples and those that target model
transformation by demonstration.

5.1. Search-based Refactoring Derivation

In 2007, Bodhuin et al. (Bodhuin et al, 2007) present SORMASA, a tool that assists the
user by suggesting a set of model refactorings. It relies on a mono-objective evolutionary
algorithm aiming at increasing cohesion and reducing coupling of class models. Later, Jensen
and Cheng (Jensen and Cheng, 2010) present an approach that attempts to introduce de-
sign patterns in class diagrams by optimizing specific software design metrics. To ensure
the behavior preservation, Mansoor et al. (Mansoor et al, 2017) developed a multi-objective
evolutionary algorithm that searches for the best trade-off between quality attributes for
class and activity diagrams.

5.2. Learning Model Transformation from Example

Model transformation by example (MTBE) aim at inferring a model transformation from
a set of examples of this transformation. The examples are given in the form of pairs where
each has an input model and its corresponding transformed model. They are often ac-
companied by the transformation traces indicating the fine-grained correspondence between
fragments of the input and output models.

The transformation rules are automatically or semi-automatically extracted from the
provided examples (Saada et al, 2012) instead of writing them manually. Fig. 2.3 describes
this process.

5.2.1. Extraction of Transformation Rules

In 2006, Varró (Varró, 2006) proposed a first approach to MTBE. In his work, he derives
transformation rules from a set of prototypical examples of transformations with interrelated
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Figure 2.3. Description of the MTBE Process (updated from (García-Magariño et al, 2009))

models. Examples are provided by the user. This semi-automatic and iterative process
begins by analyzing the mappings between the source and target models of the examples
with their respective metamodels. The transformation rules are finally produced using an
ad-hoc algorithm. In 2007, Wimmer et al. proposed in (Wimmer et al, 2007) an approach
similar to that proposed by Varró in (Varró, 2006), with the difference that Wimmer produces
executable transformation rules written in ATL. The limitation of the two approaches is that
they can only derive “1-1” transformation rules. These kinds of rules can test the presence
or absence of elements in source models. However, this level of expressiveness is insufficient
for many common transformation problems (e.g., transformation from UML class diagram
to relational diagram).

In 2010, Kessentini et al. (Kessentini et al, 2010) proposed an approach to derive “1-m”
transformation rules from examples of transformations. The process of deriving transforma-
tion rules is established by producing “1-m” mappings between the elements of the source
metamodel and the elements of the target metamodel. The approach is based on a meta-
heuristic and hybrid research using the particle swarm optimization (PSO) combined with
the simulated annealing technique. In 2012, Saada et al. (Saada et al, 2012) succeeded in
having the same type of rule (“1-m”) by extending the work of Dolques et al. (Dolques
et al, 2010). Indeed, a transformation rule derivation process works in two stages. In the
first step, the approach by Dolques is used to learn the patterns of transformations from
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examples and traces of transformations. In the second step, the learned patterns are ana-
lyzed and those considered relevant are selected. The selected patterns are then translated
into transformation rules implemented in Jess (Java Expert System Shell) (Hill, 2003). Al-
though these approaches advanced the state of the art by inferring “1-m” rules, the absence
of transformation rules “n-m” for both approaches remains a limitation.

A group of approaches have overcome this limitation by successfully generating “n-m”
transformation rules. To this end, these approaches adopted different strategies. In 2008,
Strommer and Wimmer (Strommer and Wimmer, 2008) describe a model mapping language
and a metamodel mapping language, as well as reasoning algorithms to infer metamodel
mappings from model mappings. This work is considered as an extension to Wimmer’s et al.
approach (Wimmer et al, 2007). In 2009, Balogh et al. (Balogh and Varró, 2009) improved
Varró’s original work by using inductive logic programming (ILP) instead of the original ad-
hoc heuristic. As for Varró’s approach, it uses transformation mappings and produces “n-m”
transformation rules from Prolog clauses which are obtained by a semi-automatic process in
which the user must add logical assertions until the ILP inference engine can produce the
desired transformation rule. A limitation of this approach is that the user must interact with
the ILP inference engine.

In 2009, Garcia-Magariño et al. (García-Magariño et al, 2009) proposed an algorithm ca-
pable of creating “n-m” transformation rules from examples of interconnected models and
their metamodels. Transformation rules are created in a generic model transformation lan-
guage and are later converted to ATL for evaluation purposes.

In 2013, Faunes et al. (Faunes et al, 2013) proposed an approach based on genetic pro-
gramming to automatically learn the rules from prior transformations of pairs of source-target
models used as examples. The approach can produce “n-m” transformation rules, which is
a remarkable improvement over most other contributions. These transformation rules are
executable, which is not the case with the approach of Balogh et al. Derived transformation
rules, written in Jess, look for non-trivial patterns in the source models and instantiate non-
trivial patterns in the target models. Unlike previous approaches, this one does not need fine
traces of transformations. It is therefore applicable to a wide spectrum of transformation
problems. This approach was evaluated quantitatively and qualitatively on transformations
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of structural models. The results showed that the transformation rules produced are opera-
tional and correct. Unfortunately, this approach only deals with exogenous transformations,
falling short on endogenous transformation used, for example, for refactoring models.

In 2014, Baki et al. (Baki et al, 2014) adopted the same approach as Faunes et al. to
automatically learn the rules of model transformations through the use of genetic program-
ming. Their approaches had many similarities, except that Baki et al. was also able to learn
implicit and explicit control in these transformations. In a second work (Baki and Sahraoui,
2016) (in 2016), Baki and Sahraoui developed a new approach, where the evaluation process
was based on two strategies to reduce the size of the research space and to better explore it,
namely multi-step learning and adaptive search.

In 2017, Al-Jamimi and Ahmed (Al-Jamimi and Ahmed, 2017) use ILP to derive trans-
formation rules from given examples of analysis-design pairs. Their approach aims to use
the minimal inputs, the source and target models only, to derive “n-m” rules. But it does
require a manual task to refine the generated rules. The authors claim that the approach
could be used for refactoring. However, their paper does not shows how the approach reacts
to any form of refactoring.

5.2.2. Mappings and Other Forms of Transformations

In 2008, Kessentini et al. (Kessentini et al, 2008) propose another approach to model
transformations which, using examples of transformations and their traces, transforms a
source model into a target model. It uses an adapted version of the PSO algorithm, and it
differs from previous approaches because it does not produce transformation rules. Instead,
it directly derives the target model required by analogy with the existing examples.

In 2010, Dolques et al. (Dolques et al, 2010) proposed an MTBE approach that produced
sets of recurring “n-m” mappings organized in a Welsh lattice. It is based on relational
concept analysis (RCA) where the derivation process analyzes an example of a unique trans-
formation and its mappings, as well as the source and target metamodels. In addition to the
limitations, as mentioned by the authors, the two do not produce RTs. Thus, the need for
traces of transformations also constitutes a limit.
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Table 2.1. Model Transformation By-Example Approaches
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Kassentini et al.. [2008; 2012]
Deloques et al.. [2010]

Brosch et al.. [2009a; 2009b]
Sun et al.. [2009; 2011]

-

MTBE MTBD

5.3. Model Transformation By Demonstration

Instead of inferring MTBE rules, Model Transformation By Demonstration (MTBD)
asks users to demonstrate how a model transformation should behave by directly editing
(adding, deleting, updating, etc.) a given input model to simulate the model transformation
process step-by-step. An inference and recording engine captures all user operations in
a transformation task to infer a user’s intention. A transformation pattern is generated
from this inference to associate a precondition with the sequence of operations necessary
for carrying out the transformation. This pattern can be reused to automatically match a
precondition to a new instance of the metamodel and repeat the same operations to simulate
the transformation process. Unfortunately, MTBD requires a large number of patterns to
produce consistent results. In addition, it is not expressive enough to transform a complete
source model (Kessentini et al, 2010).

In 2009, Sun et al. (Sun and Gray, 2009) proposed a new perspective for the derivation
of transformations, namely, the MTBD. In this work, the objective is to generalize the
cases of model transformations. However, instead of using the examples, users are asked to
demonstrate how model transformation should behave. However, the fact that this approach
aims only to carry out an endogenous transformation represents an important limitation.
For this, in 2010, Langer et al. (Langer et al, 2010) proposed an approach very similar
to that of Sun et al. with improved management of exogenous transformations. The main
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limitation of the two approaches is that they do not produce transformation rules, but rather
transformation patterns. As with many approaches, the absence of rigorous validation makes
it difficult to assess the performance of this approach in realistic scenarios.

Recently (2017), Kehrer et al. (Kehrer et al, 2017) proposed an automatic specification
inference based on in-place transformation rules for complex models. Their approach uses
the inference of complex rules characterized by conditions of non-applicability of rules, multi-
object patterns and global invariants. They illustrate how their approach works by inferring
the refactoring operation on UML class diagrams. Their work has many limitations. As
an example, they considered a metamodel and a unique transformation rule based on this
metamodel. They also defined their own examples of transformation. In addition, some
internal details, such as how they identify the corresponding model elements, are generally
not known to experts in the field who will be called upon to use their approach.

5.4. Discussion

Existing MTBE approaches only partially solve the transformation rules derivation prob-
lem (see Table 2.1). Most of them require detailed mappings (traces of transformations) be-
tween the source and target models of the examples, which are difficult to provide in certain
situations. Others can hardly derive transformation rules that test many constructions in
the source model and/or produce many constructions in the target model. However, “n-m”
transformation rules, with their complexity, are a necessity in complex transformation prob-
lems. Finally, certain approaches produce, non-executable and abstract transformation rules
that must be completed and translated manually into an executable language.

By proposing an approach based on genetic programming (Mokaddem et al, 2018), we
have succeeded in overcoming these limitations. Faunes et al. (Faunes et al, 2013) was the
forerunner to this solution. Unlike current approaches, the two approaches does not need
traces of fine transformations to produce “n-m” transformation rules. They are therefore
applicable to a wide range of transformation problems. Since the learned transformation
rules are produced directly in a transformation language, they can be easily tested, improved,
and reused. The approaches have been successfully evaluated on well-known transformation
problems, which is not the case for many approaches.
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Faunes et al. (Faunes et al, 2013) focus only on exogenous transformation. The endoge-
nous transformation seems to be deliberately neglected which could create a limitation in
their work. According to the previous state of the art, apart from the contributions of
Sun (Sun and Gray, 2009), Langer (Langer et al, 2010) and Kehrer (Kehrer et al, 2017),
no other contribution claims to support the endogenous transformation. However, our third
contribution provide a solution to refactoring models by learning endogenous transformations
from examples.

33





Chapter 3

A Vision on Refactoring in MDE

This thesis aims at applying automatic refactoring to MDE artifacts. The majority of studies
to date offer specific solutions for the refactoring problem and only for certain MDE artifacts
without having a holistic view. In this thesis, we consider the problem as a whole, and we
propose refactoring solutions, depending on the context. In the remainder of this chapter,
we explain this idea for scenarios 1 and 2 described in Chapter 1.

We start with an overview of the general framework, and then relative to each scenario,
we present the proposed contributions within this framework. The details about each con-
tribution will be given in the subsequent chapters as articles.

Overview

The general framework of this thesis is illustrated in Fig. 3.1. It is structured according to
two scenarios of the refactoring problem: When the refactoring knowledge is explicitly

available (left side of Fig. 3.1) and when it is only implicit (right side of Fig. 3.1). In the
first scenario, we exploit this knowledge to automate (partially) the refactoring process. In
this thesis, we consider, as an example of available knowledge, design patterns. We specif-
ically use design patterns to detect refactoring opportunities. Hence, our specific research
contribution for the first scenario is the definition of detection strategies of design patterns
in MDE artifacts. For the second scenario, i.e., when the knowledge is not explicitly avail-
able, the goal is to recover such knowledge from refactoring examples. Hence, our research
contribution for the second scenario is to learn refactoring rules from refactoring examples.



Figure 3.1. Research General Overview

1. Design Pattern Detection (Scenario 1)

In the first scenario we are considering design patterns as an available explicit knowledge
of how to refactor an artifact. Design patterns detection generates refactoring opportuni-
ties. Hence, the purpose of this scenario. The detection of design patterns in models, and
especially in UML class diagrams, is a well-covered topic in research. However, this is not
the case for model transformations. Hence, to explore our idea with scenario 1, we decided
to focus on the detection of design patterns in model transformations. This detection aims
at determining to which extent instances of a design pattern are implemented in a trans-
formation. The implementation can be at three levels: completely implemented instances,
partially implemented instances, and non-implemented instances. Detecting these levels of
implementation allows determining refactoring opportunities in different ways. Firstly, de-
sign pattern instances come with different variants. Some variants are preferable to others
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with respect to some quality characteristics. Thus, detecting a variant of a complete instance
may suggest to refactor the corresponding code fragment to use another variant. Secondly
and more interestingly, the detection of a partial instance may reveal a design problem.
Therefore, it is desirable to refactor the corresponding code fragment to complete the im-
plementation of the detected instance. Finally, for the cases where instances are missing,
we consider them as opportunities to apply design patterns. Indeed, the refactoring can
be performed to introduce design pattern instances in the transformation. In our work, we
consider the detection of the two first implementation levels. The third level is out off the
scope of this thesis and will be addressed in a future work. We present in the following, two
contributions that target the detection of design patterns for complete and partial instances.

1.1. Rule based Detection

The first contribution of design patterns detection in model transformations, described in
Chapter 4, is based on rules. The detection of instances of a given design pattern is specified
as a set of rules. In the context of model transformations, a design pattern is defined as
set of rule templates (call them participants) and a scheduling scheme that specifies how
the instances of rule templates should be executed. Therefore, the detection of a design
pattern is performed in two steps, each implemented by detection rules, rules that detect the
pattern participants and rules that detect the scheduling scheme of the pattern. The pattern
participant rules detect all possible instances of the pattern participants. The scheduling
scheme rules, then, determine if the individual pattern participants form correct pattern
instances. The correct sets of instances are the one that respect the scheduling of the pattern.
In other words, the proposed approach detects first the pattern participants through the rules.
Then, it ensures that the control flow over these rules corresponds to the scheduling scheme
in the design pattern. This approach allows to detect partial and complete design pattern
instances together with their variants.

1.2. String Matching Detection

The second contribution, described in Chapter 5, uses a string matching technique to
search for partial and complete instances of design patterns in model transformations. Both
model transformations and design pattern participants are mapped of sequences of elements
represented as strings. The proposed approach uses a generic technique that is based on a
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bit-vector algorithm. The technique searches for the pattern participants and their variants
in the input transformations.

2. Refactoring by Learning (Scenario 2)

In the second scenario the explicit refactoring knowledge is not available. This happens
often in domain-specific languages for which a critical mass of researchers and/or practi-
tioners is not available to gather a well-established knowledge. Hence, we are limited to
refactoring examples that can be seen as an implicit refactoring knowledge. The goal here
is to abstract the refactoring knowledge from examples to make it explicitly available. The
knowledge abstraction is performed through a learning process. We illustrate this idea on the
case of model refactoring. In this case, examples that can be provided by domain experts,
for instance, are pairs of models. Each pair contains the model version before refactoring and
the version after a refactoring performed manually. The research challenge here is how to
infer the refactoring knowledge from these examples. Knowledge is inferred as a set of rules
that represent an in-place transformation. To this end, in Chapter 6, we define a genetic-
programming-based approach to conduct the learning. The approach is agnostic with respect
to the modeling language as it learns rules for different types of models. The learned rules
are executable and do not violate the conformance with the modeling language represented
by a metamodel.
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Towards Rule-Based Detection
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Résumé. La transformation de modèles est au cœur même du paradigme de l’Ingénierie
Dirigée par les Modèles. En tant que programmes modernes, ils sont complexes, difficiles
à écrire et à tester, et dans l’ensemble, difficiles à comprendre, à maintenir et à réutiliser.
Dans d’autres paradigmes, tels que la programmation orientée objet, les patrons de concep-
tion jouent un rôle important pour comprendre et réutiliser le code. De nombreux travaux
ont été proposés pour détecter des instances de patrons de conception complets à des fins de
compréhension et de documentation, mais également des instances de patrons de conception
partiels à des fins d’évaluation de la qualité et de refactoring. Récemment, un catalogue de
patrons de conception a été proposé pour les transformations de modèles. Dans cet article,
nous proposons de détecter ces patrons de conception dans des programmes de transforma-
tion de modèles déclaratifs. Notre approche détecte d’abord les règles qui peuvent jouer
un rôle dans un modèle de conception. Ensuite, il garantit que le flux de contrôle sur ces
règles correspond au schéma d’ordonnancement dans le patron de conception. Notre évalu-
ation préliminaire montre que notre mécanisme de détection est efficace pour les instances
complètes et partielles de patrons de conception.
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Abstract. Model transformations are at the very heart of the Model-
Driven Engineering paradigm. As modern programs, they are complex,
difficult to write and test, and overall, difficult to understand, maintain,
and reuse. In other paradigms, such as object-oriented programming,
design patterns play an important role for understanding and reusing
code. Many works have been proposed to detect complete design pattern
instances for understanding and documentation purposes, but also par-
tial design pattern instances for quality assessment and refactoring pur-
poses. Recently, a catalog of design patterns has been proposed for model
transformations. In this paper, we propose to detect these design patterns
in declarative model transformation programs. Our approach first detects
the rules that may play a role in a design pattern. Then, it ensures that
the control flow over these rules corresponds to the scheduling scheme in
the design pattern. Our preliminary evaluation shows that our detection
mechanism is effective for both complete and partial instances of design
patterns.

1 Introduction

Model-driven engineering (MDE) is a recent software development approach
that is rapidly growing in popularity [14]. At its core, it makes intensive use
of models as a means for automation and reuse. MDE developers use model
transformations to perform operations on models, such as: evolving, refactoring,
and simulating them [16]. Model transformations, which uses generally a rule-
based declarative paradigm [9], are still manually developed. Therefore, like any
hand-written software programs, model transformations must be well-designed
and implemented in order to be understandable by other developers, be re-used
in other projects, and reduce maintenance efforts.

In other paradigms, such as object-oriented programming (OOP), design pat-
terns play an important role in software design [13]. They are proven solutions
to recurring design problems that complement practices of developers. Design
patterns are described at a higher level of abstraction than the implementa-
tion language to ease communication and comprehension. They are considered
as micro-architecture building blocks from which more complex designs can be
built, thus promoting modularity and reuse. Recently, Lano et al. proposed a
thorough catalog of over 20 design patterns for model transformations [17]. They
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showed that these design patterns reduce complexity and execution time, as well
as improve the flexibility and modularity of model transformations. Although the
intent and application conditions of each pattern are described rigorously, they
chose to define the solution part of the design pattern using a formal notation. To
facilitate their understanding for model transformation engineers and to enable
the automatic instantiation of design patterns in model transformation imple-
mentations, Ergin et al. [10] proposed a dedicated modeling language DelTa with
both a graphical and a textual [12] notation.

With the increasing scale and complexity of utilizing models in MDE, the
model transformations developed are also increasing in scale and complexity.
Furthermore, as with any software product, model transformations are evolving
constantly in development projects. This tends to deteriorate their architecture
and design, which is a burden of maintenance tasks. Nevertheless, design pat-
terns expressed in DelTa impose structure thanks to the abstraction they use.
Therefore, the identification of design patterns implemented in an existing model
transformation can tremendously help the developer in understanding the design,
as well as document the transformation [22]. Even if a design pattern was not
implemented in its integrity in the model transformation, identifying some of its
participants provides valuable feedback to the developer: (1) a missed opportu-
nity to implement it in order to improve the quality, (2) a suggestion to correctly
implement it through refactoring, or (3) the presence of a modified version of
the design pattern, since any design pattern may be implemented with endless
variations [20]. Various design pattern detection mechanisms have proven to be
very efficient [2,4,7,22]. However, these techniques have been applied to impera-
tive OOP code. Detecting design patterns on model transformations comes with
many challenges because they are described (1) declaratively, (2) at the level of
meta-models dealing with types and relations rather than instances, and (3) with
non-deterministic execution of rules.

In this paper, we present an approach to detect complete or partial instances
of design patterns in concrete model transformation implementations. It is a
model finding approach based on a rule engine, where we map model transfor-
mations to an abstract representation and design patterns to rules that these
representations must satisfy. After identifying individual participants of a design
pattern, we verify that the scheduling scheme described in the pattern is sat-
isfied in the transformation. We compute an accuracy score at each detection
step that is finally aggregated and reported. We implemented a prototype where
we encode design patterns defined with the DelTa language as rules and that
automatically maps a complete model transformation implemented in a specific
model transformation language to the abstract representation. We report prelim-
inary results that show our detection mechanism is effective for both complete
and partial instances of design patterns.

In Sect. 2 we provide the necessary background on model transformation and
their design patterns. In Sect. 3 we describe our approach on an example. We
report the results on the effectiveness of our approach in Sect. 4. Finally, we
conclude in Sect. 5.
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2 Background

We first review background on model transformations and their design patterns,
and then discuss different techniques for detecting design patterns in programs.

2.1 Model Transformation

In MDE, a model transformation is the automatic manipulation of a model fol-
lowing a specification defined at the level of metamodels [16]. A model transfor-
mation can be outplace, when it produces a target model from a source model,
such as in a translation, or it can be inplace when it modifies a model and
the result is an updated version of the source model, such as in a simulation.
Typically, a model transformation is defined by a set of declarative rules to be
executed. A rule consists of a pre-condition and a post-condition pattern. The
pre-condition pattern determines the applicability of a rule: it is the pattern that
must be found in the input model to apply the rule. Optionally negative pat-
terns may be specified in the pre-condition to inhibit the application of the rule
if present. The post-condition imposes the pattern to be found after the rule is
applied. Patterns are made up of structural elements (i.e., model fragments) and
of constraints on their attributes. Rules follow a scheduling scheme that defines
the order in which they are applied when a transformation is executed. The
scheduling can be made explicit by the language with a control flow structure
partially ordering rules, such as in Henshin. In some languages, such as ATL,
rules are scheduled implicitly, depending on the causal dependence between the
post-condition of a rule and the pre-condition of another. Features that model
transformation languages support are listed in [9]. A comparison of existing
model transformation tools can be found in [18]. Possible scheduling schema of
model transformations are described in [21].

Fig. 1. Model transformation of entity relation in Henshin
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For example, consider the model transformation defined in the Henshin lan-
guage in Fig. 1. It contains three rules that are scheduled to execute in sequence,
as depicted on the bottom right. This is an excerpt of transformation that cre-
ates database tables and columns from a class diagram. The first rule in the top
left states that if a class is present then create a table and link it with a trace
element unless such a trace already exists for the class.

2.2 Model Transformation Design Patterns

A design pattern expresses a means of solving a common model transforma-
tion design problem: it describes the transformation structure (rules, condition
patterns, and scheduling) that constitute the solution idea. A design pattern
includes also a description of the problem which motivated the pattern, how
such problems can be detected, and the benefits and negative consequences to
consider when using the pattern.

In the mid-2000s, several works proposed design patterns for model trans-
formation. Agrawal et al. [8] defined design patterns for graph transformation
described in a specific model transformation language. Iacob et al. [15] defined
other design patterns for outplace transformations. Levendovszky et al. [19] pro-
posed domain-specific design patterns for model transformation and different
domain-specific languages.

More recently, Lano et al. [17] presented the most comprehensive model trans-
formation design pattern study and defined a catalog of 29 patterns classified
into five categories. For example, these include a design pattern to map objects
before links, to decompose a transformation into phases based on the target
model, the criteria to separate rules so they can be executed in parallel, to
ensure that elements created by a rule are unique, or to individually process all
nodes of a model recursively.

At the same time, Ergin and Syriani [11] presented similar design patterns,
as well as new ones, such as modifying a model iteratively until a fixed point is
reached, or the execution of a modeling language by translating it into another
modeling language that can be simulated.

2.3 DelTa to Describe the Structure of Design Patterns

Lano et al. [17] presented the structure design patterns using a formal language
TSPEC in the form of contracts with pre- and post-conditions that a concrete
model transformation implementing the pattern should satisfy. However, Ergin
and Syriani [12] engineered a domain-specific language, DelTa, dedicated to
represent the structure of model transformation design patterns. Because an
implementation is already available in EMF, we opted to use the DelTa imple-
mentations of Lano et al.’s design patterns.

DelTa is a language to define model transformation design patterns with its
own syntax and semantics. It is independent from existing model transformation
languages. In terms of abstraction, DelTa borrows concepts from various MTLs
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Fig. 2. Entities before relations design pattern

to create a more understandable and common language. Figure 2 represents a
model transformation design pattern in its graphical syntax as described in [10].

A DelTa model specifies the minimal rules (the large rectangles) and nec-
essary rule scheduling (the connections between them) that a concrete model
transformation implementing it should have. Rules consist of the minimal con-
straints and actions on elements of the metamodel that concrete transforma-
tion rules implementing them should specify. Constraints and actions refer to
variables that are typed as entities (rectangles like sEnt) or relations (arrows
between entities) of a metamodel, or traces (dotted lines). For example, in rule
entityMapping, there is a constraint stating that there must be an entity (sEnt).
Furthermore, the n0 symbol on rule elements indicates that trace and the entity
tEnt are part of a negative constraint. These two entities come from different
metamodels (src and trgt). In DelTa, we only reason about entities and rela-
tions, independently from specific metamodel types and relations. Entities are
represented using a UML class notation and their metamodel appears on the top
right. An “x” symbol on an element inside a rule means that this element should
not appear in the concrete transformation rule implementing the DelTa rule.

Color coding of entities and relations inside the rules indicates whether they
are part of the constraint or a type of action of the rule. White elements form
the minimal application pre-condition that a concrete transformation rule imple-
menting it should have. Gray elements are the minimal elements to be created in
the concrete transformation rule. For example, the tEnt and the trace between
it and sEnt must be created. Therefore, the rule entityMapping dictates that
the concrete transformation rule implementing it should look for an entity from
one metamodel and create a new entity from another metamodel, as well as a
trace between them. Elements in black are the minimal elements to be deleted
in the concrete transformation rule.

When a self loop symbol appears on the top left (as it is the case with both
rules in Fig. 2), the DelTa rule is exhaustive: the concrete transformation rule
implementing it should be applied on all of its matches. This may require to
have more than one rule implementing this DelTa rule, for example to match
different metamodel types.

In DelTa, the scheduling is depicted using a control flow notation. The
start node (filled ball) indicates the initial rule of the design pattern. Arrows
between rule blocks indicate a predence order: the concrete transformation rule
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implementing the entityMapping rule should be performed before the one imple-
menting the relationMapping rule. A dashed box containing rules specifies that
the order of execution of the rules it contains is irrelevant to the design pattern.
Entities, rules, and scheduling represent the participants of a model transfroma-
tion design pattern. In this paper, we use model transformation design patterns
expressed in DelTa from [10].

2.4 Design Patterns Detection in Software Engineering

To the best of our knowledge, there is no previous work that tackles the detection
of design patterns in model transformation. Most of the detection approaches
target the patterns of Gamma et al. in object-oriented programs [13]. These
approaches target primarily the structural patterns as these can be detected
by matching the structure of code to one of the pattern [3,22]. To improve the
detection, some projects combine multiple strategies as in [7]. The detection of
behavioral patterns also attracted the interest of the research community. In
De Lucia et al. [2], the authors use model checking to improve the detection of
behavioral patterns. A work similar to our is one in [5]. In this paper, the authors
first identify pattern key participants using a machine learning technique. Then,
they check for the other participants of the pattern and the relations between
them.

3 Design Pattern Detection for Model Transformation

We propose an approach to detect complete and partial instances of design pat-
terns in concrete model transformations. We consider design pattern detection
as a constraint satisfaction problem where a design pattern imposes a specific
structure that a concrete model transformation should contain, and we solve it
using a declarative strategy based on an inference rule engine.

3.1 Overview

As shown in Fig. 3, the detection of a design pattern is encoded as a set of rules.
These rules apply to a set of facts representing the model transformation. The
facts conform to fact templates : a generic abstract representation of transforma-
tion components relevant to design pattern detection. This abstract represen-
tation makes our approach independent from a specific model transformation
language. The mapping to of a concrete model transformation is performed by
a model-to-text transformation.

The detection process is performed in three automated steps. First, the
transformation is mapped to an abstract representation (i.e., facts) using a
higher-order transformation. Second, we identify which rules of the model trans-
formation can play the role of the participants of the design pattern. Third, once
the participant candidates are identified, we verify that their execution satisfies
the scheduling scheme specified in the design pattern.
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Fig. 3. Architecture overview of design pattern detection

In the remainder of this section, we describe how concrete model transforma-
tions are mapped to generic facts and then explain the two steps of the detection
process.

3.2 Mapping Model Transformations to Generic Facts

Fact Template. To describe model transformations, we defined a fact-based
language inspired by the Henshin transformation language [1]. The motivation
behind this decision is that design patterns, as defined in [17], deal mainly with
the manipulation (creation/modification/deletion) of model elements by rules as
well as with the rule execution scheduling. All these constructs can be described
by the Henshin concepts.

The main fact template to describe a transformation is Rule. A Rule is com-
posed of nodes, each corresponding to an action on a model element present in
the pre- or post-condition of a model transformation rule. Nodes are described
by the fact template Node. Nodes have several attributes to define the element
name and type they represent, a reference to the rule in which they appear,
and also an action. If the action slot is assigned “create”, “update” or “delete”,
then the node is part of the post-condition of the transformation rule. If it
is assigned “preserve” or “forbid”, then the node is part of the pre-condition
(positive or negative constraint, respectively) of the transformation rule. Nodes
may also be related with the Edge fact template when the action in one node
depends on another node, e.g., an element is created and its attributes are set
according to those of another element. For rule execution scheduling, we define
the fact template Sequence that specifies the precedence between two rules.

47



8 C.e. Mokaddem et al.

The precedence relationship may also involve control events such as the begin-
ning and the end of a loop.

Listing 1.1 shows fact templates for Rule, Node, and Sequence expressed
in the Jess language [6]. In Jess, each template has a name and a set of slot
definitions. When asserting a fact, the slots must be set with values. Some slots
are used to describe the fact properties such as Name in Rule and Action in
Node. Others are used to connect facts. For example, the slot RuleId in Node
is set with the Id of the Rule which the node belongs to. Similarly, SourceId
and TargetId in Sequence refer respectively to the Ids of the preceding and
following rules.

Listing 1.1. Fact Templates representing a model transformation language

1 (deftemplate Rule (slot Id)(slot Name))

2

3 (deftemplate Node (slot Id)(slot RuleId )(slot Action)

4 (slot Occurrences )( slot Name)(slot Type))

5

6 (deftemplate Sequence(slot SourceId )( slot TargetId ))

Fact. Listing 1.2 shows the Jess facts of a rule having two nodes.

Listing 1.2. Fact representing a concrete model transformation

1 (Rule (Id"R1")(Name"Class2TableMapping "))

2

3 (Node (Id"N1")( RuleId"R1")

4 (Action"preserve")( Occurrences "n")(Name"")(Type"Class"))

5

6 (Node (Id"N2")( RuleId"R1")

7 (Action"create")( Occurrences "n")(Name"")(Type"Table"))

To be effective for large transformations, we automate the mapping of a given
concrete model transformation to a set of facts. Therefore, we need to write a
fact generator for each model transformation language considered. To this end,
we use Acceleo1, a template-based model-to-text transformation tool in EMF.
These code generation templates encode the semantic equivalence between the
transformation language constructs and our fact templates. Listing 1.3 illustrates
an example for generating of a fact Rule from a Henshin rule. Although our
implementation currently supports Henshin, adapting to another model trans-
formation language simply requires to create a new Acceleo template for it.

Listing 1.3. Fact representing a concrete model transformation

1 [template public generateRule(rule:Rule , position:Integer )]

2 (Rule (Id \"["R" + position ]\") (Name \"[ rule.name /]\"))

3 [/ template]

1 https://eclipse.org/acceleo/.
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3.3 Encoding Design Patterns as Detection Rules

As mentioned in Sect. 2.2, the participants of a model transformation design
pattern are DelTa rules, the elements they contain in their constraint and actions,
and their scheduling scheme. The pattern Entities Before Relations in Fig. 2, for
instance, consists of two DelTa rules: entityMapping and relationMapping. It also
mandates that the former must be executed before the latter. Consequently, our
detection strategy starts by finding concrete model transformation rules that
match the ones in the DelTa model, and then verify if the scheduling specified
in the patterns holds for the concrete matched rules.

Listing 1.4. Rule encoding the complete entityMapping rule of Entities before Rela-
tions design pattern

1 (defrule CreateEntityMapping_Rule

2 (Rule (Id ?r_1)(Name ?r_2))

3 (Node (Id ?sEnt_1 )( RuleId ?r_1)( Action"preserve")

4 (Occurrence ?sEnt_4 )( Name ?sEnt_5 )(Type ?sEnt_6 ))

5 (Node (Id ?tEnt_1 )( RuleId ?r_1)( Action"forbid")

6 (Occurrence ?tEnt_4 )( Name ?tEnt_5 )(Type ?tEnt_6 ))

7 (Node (Id ?tEnt_2 )( RuleId ?r_1)( Action"create")

8 (Occurrence ?tEnt_4 )( Name ?tEnt_5 )(Type ?tEnt_6 ))

9 (Edge (Id ?ed_1)( RuleId ?r_1)( SourceId ?sEnt_1)

10 (TargetId ?tEnt_1 ))

11 (Edge (Id ?ed_2)( RuleId ?r_1)( SourceId ?sEnt_1)

12 (TargetId ?tEnt_2 ))

13 =>

14 (assert

15 (EbR_entityMapping

16 (Id (str-cat ?r_1 ?sEnt_1 ?tEnt_1 ?tEnt_2 ?Ed_1 ?Ed_2))

17 (RuleId ?r_1)

18 (sEnt_1Id ?sEnt_1)

19 (tEnt_1Id ?tEnt_1)

20 (tEd_1Id ?ed_1)

21 (tEnt_2Id ?tEnt_2)

22 (tEd_2Id ?ed_2)

23 (accuracy 1))

24 )

25 )

The detection of instances of a DelTa rule is encoded as a rule in Jess.
For example, Listing 1.4 rule detects complete instances of entityMapping. The
Jess rule first filters all transformation rule facts that have a “preserve” node
connected to a “forbid” node and to a “create” node. For each rule satisfying
these conditions, it asserts a fact EbR entityMapping. Another Jess rule will filter
the concrete rules that can play the role of relationMapping and asserts for each
match a fact EbR relationMapping. The encoding of DelTa rules into Jess rules
can be implemented with Acceleo templates.

Once the potential participants are detected, the next step is to ensure if the
execution schedule of the concrete rules corresponds to the one of the pattern.
In the case of the pattern Entities Before Relations, a Jess rule filters facts
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EbR entityMapping and EbR relationMapping, and a Sequence fact relating the
rules respectively involved in the participant facts.

3.4 Accuracy for Complete and Partial Instances

In the case of complete instance detection, all the conditions (participants and
scheduling) should be fully satisfied, i.e., accuracy equals 1.

When detecting partial instances, rules variants are defined for participants
and scheduling detection. These rules may omit one of the conditions and adjust
the value of fact accuracy accordingly. For example, in the detection of enti-
tyMapping participants, a variant rule can consider rules with “preserve” and
“create” nodes, but without a “forbid” node. This is depicted in Listing 1.5. The
accuracy is then adjusted to 0.66 for example. The scheduling verification rule,
calculate the global accuracy of the pattern instance from the accuracy values
of the participants facts and one of the scheduling itself.

Listing 1.5. Rule encoding a partial entityMapping rule of Entities before Relations
design pattern

1 (defrule CreateEntityMapping_Rule

2 (Rule (Id ?r_1)(Name ?r_2))

3 (Node (Id ?sEnt_1 )( RuleId ?r_1)( Action"preserve")

4 (Occurrence ?sEnt_4 )(Name ?sEnt_5 )(Type ?sEnt_6 ))

5 (not (Node (Id ?tEnt_1 )( RuleId ?r_1)( Action"forbid")

6 (Occurrence ?tEnt_4 )(Name ?tEnt_5 )(Type ?tEnt_6 ))

7 ...

8 =>

9 (assert

10 (EbR_entityMapping

11 (Id (str-cat ?r_1 ?sEnt_1 ?tEnt_1 ?tEnt_2 ?Ed_1 ?Ed_2))

12 (RuleId ?r_1)

13 (sEnt_1Id ?sEnt_1)

14 (tEnt_1Id"")

15 (tEd_1Id"")

16 (tEnt_2Id ?tEnt_2)

17 (tEd_2Id ?ed_2)

18 (accuracy 0.66))

19 )

20 )

4 Preliminary Evaluation

4.1 Setup

A preliminary evaluation of this work consists in selecting a subset of design pat-
terns and detect their instances on a sample of model transformations. The goal
here is to analyze qualitatively how our detection approach applies to concrete
transformations.
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We selected 13 Henshin transformations2 with different characteristics (see
Table 1). As we had to analyze manually the results, we opted for small-medium
transformations having 1 to 13 rules. We also paid attention to the control com-
plexity as most of the transformation design patterns deal with the rule execution
control. Indeed, some of the selected transformations use default implicit control
(no control specified), and others have up to 13 rule scheduling units with loops
and calls between the units. Additionally, we varied the complexity of the rules
with respect to the number of involved model elements, with an average number
of nodes per rule between 3 and 11.

Table 1. Selected transformations.

Model transformations #
ru
le
s

#
sc
h
-u
n
it

#
n
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d
es

#
re
la
ti
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s

#
ca
ll
s

#
lo
o
p

bank 3 0 12 12 0 0
bankmap 1 0 5 4 0 0

comb 2 1 22 38 1 1
diningphils 4 0 22 34 0 0

ecore2genmodel 8 6 55 59 12 2
gossipingGirls 2 0 7 9 0 0

grid-full 4 5 18 27 8 3
grid-sparse 3 4 11 16 6 2

java2statemachine 13 13 77 59 27 5
petriM 2 0 15 27 0 0

sierpinski 1 0 6 12 0 0
sort 1 1 3 2 1 1

entityRelationMapping 3 1 16 14 3 0

In this preliminary evaluation we experimented with the detection of three
patterns, selected from the catalog of [17]. Two of them deal with the rule mod-
ularization (Entities Before Relations and Construction and cleanup), and one
with optimization (Unique Instantiation).

Entities Before Relations. The goal of this pattern (Fig. 2), also called Map
Objects Before Links, is to create the entities and then their relations. As men-
tioned in Sect. 3.3, three rules are defined for the detection of this pattern:
(1) detection of entities creation, (2) detection of relations creation, and (3) prece-
dence checking between the two creations. In addition to the detection of complete
instances, we implemented the detection of one kind of partial instance, i.e., the
situation in which the transformation program have rules for creating the entities
before the creation of their relations, but does not check if an entity exists before
it creates a new one (see Sect. 3.4).

2 https://www.eclipse.org/henshin/examples.php.
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Construction and Cleanup. As shown in Fig. 4, this pattern consists in sepa-
rating rules which create model elements from those which delete elements [17].
Like for the previous patterns, the detection is done in three phases: (1) finding
element creation rules, (2) finding element deletion rules, and (3) precedence
checking between the two.

Fig. 4. Construction & cleanup - Structure in DelTa

Unique Instantiation. This pattern, sketched in Fig. 5, aims at avoiding mul-
tiple creations of the same model element. This may happen in two situations:
(1) two rules creating the same model element or (2) a rule creating a model
element, and that appears in a loop inside a rule execution schedule. We defined
detection rules for each situation, i.e., identifying element-creation rules, and
checking duplications and loops.

Fig. 5. Unique instantiation - structure in DelTa

4.2 Qualitative Analysis

Entities Before Relations. Surprisingly, our prototype did not find complete
instances of the pattern Entities Before Relations. To understand this, we man-
ually inspected the automatically detected partial instances. We noticed that,
in many cases, the EntityMapping participants were identified with an accu-
racy of 1. However, the relationMapping participants did not satisfy the con-
dition of the non-existence of a relation before its creation. All the detected
partial instances satisfied the execution schedule conditions with perfect accuracy.
Figure 1 illustrates two examples of partial instances found in the entityRelation-
Mapping e rules transformation. The rules ClassMapping and AttributeMapping
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are both complete instances of entityMapping. Conversely, in rule attributeRela-
tionMapping, the relation between “Class” and “Attribute” is mapped to a rela-
tion between “Table” and “Column” without ensuring that such a relation does
not already exist (not a “forbid” action). Although the scheduling is perfectly
accurate, i.e., both ClassMapping and AttributeMapping rules precede attribut-
eRelationMapping, the aggregated accuracy is lower than 1.

Construction and Cleanup. The prototype found many instances of the
design pattern Construction and cleanup. An interesting instance is one found
in the Java2StateMachine. In this transformation, only one rule has a “delete”
action (updateAction on the right of Fig. 6). All the other rules create elements.
This rule appears at the last step of the execution schedule (on the left of Fig. 6).
This is a non trivial instance to detect because of the modularization of the
execution schedule. In our detection program, we implemented a function that
reconstructs a flat schedule by resolving the schedule step references.

Fig. 6. An example of instance of the pattern Construction and Cleanup

Unique Instantiation. This is by far the most frequent pattern and many of
its instances were found in almost all the considered transformations. Some of
them have a high accuracy. An example of a complete instance was found in the
Ecore2GenModel high-order transformation. The createCustomizationUnit rule
creates an element, which is not created by other rules (Fig. 7a). Moreover, this
rule does not appear in a loop in the execution schedule (Fig. 7b).
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(a) Creation rule (b) Cleaning instance

Fig. 7. Unique instantiation instance detected in Ecore2Genmode transformation

5 Conclusion

In this paper, we propose an approach and a preliminary implementation for the
detection of complete and partial instances of design patterns in model transfor-
mations. Our approach follows a declarative strategy which consists in identify-
ing transformation rules that play the roles of design pattern participants and
then check if their execution sequence conforms to the schedule specified in the
pattern.

We conducted a preliminary evaluation which consisted in applying our detec-
tion rules on a set of transformations and in qualitatively analyzing the detection
results. Although the obtained results are encouraging, our evaluation revealed
some limitations. First, we define explicitly rules for detecting pattern vari-
ants [20]. The advantage of this strategy is that we identify acceptable variants
of a design pattern. The drawback is that our detection code is very verbose with
very similar rules. We plan in the future to have a generic detection of variants
by allowing weights to the pattern participants.

Another limitation of our approach resides in the limited number of con-
trol structures we handle. In our current implementation, we do not consider
alternatives structures. Thus for the pattern Unique Instantiation, if two rules
respectively in the two branches of the alternative create the same element, we
do not detect a valid instance. Handling more control structures is a part of our
future work.
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Résumé. La maintenance des artefacts logiciels fait partie des tâches les plus difficiles
auxquelles un ingénieur est confronté. Comme tout autre morceau de code, les transforma-
tions de modèles développées par les ingénieurs sont également soumises à une maintenance.
Pour faciliter la compréhension des programmes, les ingénieurs logiciels s’appuient sur de
nombreuses techniques, telles que la détection des patrons de conception. Par conséquent,
la détection des patrons de conception dans les implémentations de transformation de mod-
èles est d’une grande valeur pour les développeurs. Dans cet article, nous proposons une
technique générique pour détecter automatiquement les patrons de conception et leurs varia-
tions dans les implémentations de transformation de modèles. Il faut en entrée un ensemble
de règles de transformation de modèles et les participants d’un patron de conception de
transformation de modèles pour trouver les occurrences de ce dernier dans le premier. La
technique détecte également certains types de formes dégénérées du patron, indiquant ainsi
les opportunités potentielles d’améliorer l’implémentation de la transformation de modèles.
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1 Introduction

Model transformation is now the mainstream paradigm to manipulate models in
model-driven software engineering (MDE) [6]. Designing model transformations
is a tedious task. Moreover, like any other code artifact, model transformations
evolve and should be maintained. To assist developers in writing and maintaining
model transformations, several design patterns have been proposed [11, 22]. In
general, design patterns facilitate the comprehension and manipulation of software
programs [1]. In the special case of model transformations, they help improving
the quality of model transformation specifications and designs, as stated by Lano
et al. [22].

Detecting instances of a pattern in a transformation provides valuable informa-
tion to the developer, such as understanding high-level concepts used, and iden-

C. Mokaddem ( ) · H. Sahraoui · E. Syriani
Université de Montréal, Montréal, Canada
E-mail: {cemo.mokaddem,houari.sahraoui,eugene.syriani}@umontreal.ca

Abstract Maintaining software artifacts is a complex and time-consuming task.
Like any other program, model transformations are subject to maintenance. In a
maintenance process, much effort is dedicated to the comprehension of programs.
To this end, several techniques are used, such as feature location and design pat-
tern detection. In the particular case of model transformations, detecting design
patterns contributes to a better comprehension as they carry valuable information
on the transformation structure. In this paper, we propose a generic approach to
detect, semi-automatically, design patterns and their variations in model trans-
formations. Our approach encodes both design patterns and transformations as
strings and use a string-matching algorithm for the detection.
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tifying refactoring and reuse opportunities. However, as for general programs, de-
velopers do not always implement perfectly a pattern in model transformations.
Hence, design pattern detection should identify both complete and incomplete oc-
currences. Detecting various forms of a design pattern, including incomplete forms,
offers refactoring opportunities to improve transformations by completing a form
or by replacing one form by a more appropriate one.

Detecting design patterns in model transformations did not get much attention
so far from the modeling community. To the best of our knowledge, only our
previous work in [28] has attempted to automatically detect design patterns in
model transformations using manually-written detection rules. Preliminary results
showed that this is an effective technique to find complete and approximate design
pattern occurrences. However, this technique has performance limitations as it
relies on a rule inference engine that is time and memory consuming. Another
limitation of this technique is the need to specify a set of detection rules for each
pattern.

To find inspiration on how to detect patterns in transformations, we looked at
the active community of design pattern detection in object-oriented programs. As
reported in [1], there are dozens of detection approaches for this family of programs.
However, as mentioned in [13], these approaches also suffer from performance prob-
lems, because detecting complete and incomplete occurrences is generally costly
in time, due to the large search-space that includes all possible combinations of
classes. These approaches are also prone to return many false positives, imped-
ing program comprehension, and cluttering the maintainers’ cognitive capabilities.
To address the performance issues, the work by Kaczor et al. [20] uses a string
matching technique inspired by pattern matching algorithms in bioinformatics to
identify pattern occurrences in object-oriented programs. These algorithms allow
to efficiently process a large amount of data if the problem to solve can be encoded
as a string matching one.

In this paper, we propose a generic technique to detect design pattern oc-
currences in declarative model transformation implementations, without writing
detection code for each design pattern, its variants, and approximations. Like in
Kaczor et al., we rely on a bit-vector algorithm that has proven to be efficient
for string matching problems [30]. The challenge we faced is how to encode model
transformations, which are sets of rules linked by control schemes, as strings. The
same challenge arises also in the encoding of the patterns as strings. We succeed to
encode the participants of a patterns as strings, but had to complete our approach
by a manual step to combine the identified participant instances to form pattern
occurrences. Thus, the detection consists in an automated step that matches the
participant strings of a pattern with rule strings of transformation, and a manual
step to complete the occurrences. In addition to the performance, an advantage of
using this approach is the fact both complete and incomplete occurrences can be
detected.

We evaluated our approach for the detection of various forms of 10 design pat-
terns in 18 transformations, collected from open source repositories. We first man-
ually checked to which extent design patterns are used in these transformations.
Then, we evaluated the ability of our approach to detect the various instances
of the patterns. We also studied the co-occurrences of the different patterns. Our
results show that patterns are effectively used in transformations and that our ap-
proach is able to detect them, in less time than the rule-based approach. Moreover,
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Fig. 1: Excerpt of the Java2StateMachine transformation implemented in Henshin,
showing the createTransition rule

we found that patterns are not always used independently, but in combination with
other patterns.

The rest of the paper is structured as follows. In Section 2, we first introduce the
basic notions used in our work, and then, discuss the related work. Section 3 details
the different steps of our approach, whereas Section 4 describes the different forms
of patterns that can be detected by our approach. We provide an evaluation of the
detection approach in Section 5. Finally, we discuss the limits of our approach in
Section 6, and conclude in Section 7.

2 Background and Related Work

In this section, we briefly give some background on model transformations and cor-
responding design patterns and illustrate these concepts with a running example.
This example also allows us to highlight the challenges of design pattern detection
in model transformations. The rest of the section is dedicated to the discussion of
the related work on design pattern detection.

2.1 Model Transformation: an Illustrative Example

To help understanding the main concepts involved in our research, we use as
example the exogenous transformation Java2StateMachine, implemented in Hen-
shin [5]. This transformation was written for the Transformation Tool Contest of
2011 [19]. An excerpt of this transformation is depicted in Fig. 1.

We are specifically interested in rule-based model transformations. This kind
of transformation is typically defined with a set of declarative rules to be executed.
A rule consists of a pre-condition and a post-condition pattern. The pre-condition
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pattern determines the applicability of a rule and contains two types of condi-
tions, positive and negative. The positive application condition (PAC) represents
the pattern that must be found in the input model to apply the rule. Optionally,
negative application conditions (NAC) may be specified to inhibit the application
of the rule if these conditions are verified. The rule createTransition in Fig. 1-left
illustrates the elements involved in a transformation in Henshin. A rule is repre-
sented as a graph representing both the pre and post-conditions. Gray elements,
annotated with the “preserve” stereotype, indicate the PAC pattern whereas the
blue elements, annotated with the “forbid” stereotype, form the NAC conditions.
Henshin supports multiple NAC groups. In this rule, the Trace and Transition ob-
jects together with their adjacent associations are part of the same NAC group
identified as #default. The post-condition imposes the pattern to be found after
the rule is applied. In our rule, the green elements, annotated with the “create”
stereotype, must be created by the rule. It is also possible to delete elements
(represented by the color red and the stereotype “delete” (not present in our ex-
ample). In summary, patterns are made up of structural elements (i.e., model
fragments) and of constraints or actions on them. Therefore, roughly speaking,
the rule createTransition states that if a method call exists between a source class
and a target class, create a transition between the states corresponding to these
classes if a transition was not created already for this method call. To check for
the pre-existence of the transition (NAC), the transformation uses a traceability
auxiliary metamodel to keep a trace of all created transitions (as highlighted by
the Trace node). Rules in Henshin can be parameterized to bind elements across
rules or pass values. This rule has three input (in) parameters. baseClass is bound
to a class type that must be preserved, parent is bound to an expression statement
type that must be preserved and trigger is a string value. The latter is used in
attribute constraints or assignments. For example, if the value of the trigger pa-
rameter is the string "run", then the trigger value of the transition is --, otherwise
it will be assigned the parameter value. A rule may also declare local variables,
like srcName and trgName to refer to objects within the rule. For example, the source
of the created transition must be the state whose name is the same as the base
class name.

The rule createTransition is fired according to a scheduling scheme that defines
the order in which the rules are applied when a transformation is executed. In
Henshin, the scheduling can be specified explicitly through one or more control
flow structures to partially order the rule executions. In our example, a first control
structure specifies that state rules must be executed before transition rules (Fig. 1-
top-right. The second control structure, in the bottom-right of the figure, states
that the transition rule must be fired iteratively until all the transitions are created.
As it can be seen in our approach, the detection of design patterns is done semi-
automatically: (1) automated detection of patterns in the rules and (2) manual
verification of the compliance with the control scheme and attribute constraints.

2.2 Design Patterns for Model Transformations

A model transformation design pattern expresses a means of solving a common
model transformation design problem [22]. It describes the transformation struc-
ture (rules, condition patterns, and scheduling) that constitute the solution idea.
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A design pattern includes also a description of the problem which motivated the
pattern, how such problems can be detected, and the benefits and negative conse-
quences to consider when using the pattern.

Fig. 2: The Entity-before-Relation design pattern with explicit trace elements

The idea of proposing design patterns for model transformation gained popu-
larity by the late 2000s. Small sets of patterns were proposed by different research
teams such as ones in [16] and [17]. Later in [22], Lano et al. presented a larger
catalog of 24 design and specification patterns. To allow the representation of pat-
terns in a way that ease their usage in development processes, Ergin et al. [11]
defined a domain-specific language, DelTa. DelTa represents design pattern so-
lutions in a platform-independent model: independent from the model transfor-
mation language. Since we are interested in detecting design patterns in concrete
model transformations, we must transform the design pattern into a format that
will correspond to its implementation in a specific model transformation language.
Fig. 2 shows an example pattern from the catalog in [22] that was described in
DelTa, and adapted for Henshin. For example, in this representation specific to
Henshin, we explicitly represent a trace object with source and target links. In
DelTa, this is originally represented by a trace link, which is not possible to de-
fine in Henshin. This pattern states that, when transforming a model into another
model, rules mapping entities should be executed before ones mapping relations.

In DelTa, color coding is used to indicate the elements to be preserved (in
white), elements to be created (in gray), and elements to be deleted (in black)
in a transformation. A model transformation design pattern consists of partici-
pants and their scheduling. Participants represent rule templates that shall be
implemented in a concrete model transformation. In the pattern Entities before
Relations (E-R), there are two participants: entityMapping and relationMapping.
In a participant, entities and relations play a role. entityMapping indicates that
an entity sEnt has to be mapped if an entity tEnt was not previously created from
it. Negative application conditions (NAC) can exist in any participant. It indi-
cates the pattern that should not be found by the concrete transformation rule
implementing it. Elements considered by the NAC are labeled by n0 in DelTa.
The second participant relationMapping states that if two source entities sEnt and
sEnt2 were mapped into two target entities tEnt and tEnt2, a relation between sEnt

and sEnt2 can be mapped into a relation between tEnt and tEnt2, if this was not
done before. Note that both rule templates use the auxiliary type to keep track of
the previous mapping by means of the Trace element. As it can be seen in Fig. 2,
DelTa also allows to express the rule scheduling scheme in the form of edges
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between the rule templates. For the E-R pattern, the entityMapping participant
must preceed the relationMapping participant. We refer the reader to [11] for the
complete description of design patterns in DelTa.

2.3 Design Pattern Detection

Up to date, design patterns were primarily used for model transformation writ-
ing [11, 24]. To the best of our knowledge, few research contributions targeted
their detection. In a previous work, we proposed an approach to detect patterns in
transformations [28]. Design patterns are encoded into rules and transformations
into facts on which the rules are applied. Although the detection results were very
encouraging, this approach is not generic enough to be applicable to any pattern.
Indeed, while the mapping of transformations into fact sets is automated, the de-
tection rules for each pattern have to be written manually. The detection of design
pattern was also mentioned in [24]. In this study, the authors defined detection
criteria for each pattern to be applicable manually by the authors to check which
patterns are used in transformations. The criteria are given in natural language
at a high-level of abstraction.

Outside the model transformation community, there is a large body of work on
design pattern detection, especially in object-oriented programs [1]. The detection
strategies differ in many ways. One difference is the intermediate representation
of the code used to perform the detection. The most-used representation is the
Abstract Syntax Tree (AST) [25,40,47] or the Abstract Syntax Graph (ASG) [12,
32]. Some strategies map the code into high-level graph representation such as
UML [36,46]. Other representations include, among others, matrices [10,44], Prolog
assertions [21, 34], and strings [20].

Another difference between the strategies is the detection technique. Query-
based detection with mainly SQL is used, for example, in [4,38]. The authors use
SQL queries to represent and detect the design patterns. This methodology is lim-
ited to the structural patterns. Some techniques use a combination of metrics and
structural relations to find patterns [9,45]. Another alternative is to use ontologies
as in [2, 27].

One of the most important limitations of the above-mentioned techniques is
the lack performance when the input programs are very large. Attempts have
been made in [3] and [14] to improve the detection efficiency. Their idea is to re-
duce the search space by removing entities that obviously do not participate in an
occurrence of design pattern according to expected metrics values. The detection
performance issues are experienced in many domains. For example, in bioinformat-
ics, pattern detection is also used to locate different genes in long DNA sequences.
To this end, powerful solutions were adopted, such as vectorial algorithms [7, 30],
automata simulation [15], and dynamic programming alignment [31,41]. Yet, these
solutions cannot be applied directly to our problem since we are dealing with com-
plex structures and not strings. Inspired by these algorithms, Kaczor et al. [20]
chose to represent object-oriented programs, as well as design patterns, as strings.
This allowed the use of string-matching algorithms to detect pattern occurrences
with a good accuracy.

Finally, an important property of a detection strategy is the genericity with
respect to the patterns to detect. Most of the existing work requires to write a
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Fig. 3: Overall process of the approach

specific code for each pattern, being queries [38], structural rules [47], or pattern-
matching rules [26]. There are few strategies that provide the description of the
patterns as an input of the detection algorithm such as in [20, 44].

Overall, the aim of the approach proposed in this paper is to detect design
patterns in model transformations efficiently and without the need of writing spe-
cific detection code for each pattern. To address time and memory consumption
issues, we rely on a string-matching algorithm proven to be efficient for large ge-
nomic databases. Additionally, the fact that the patterns to detect are specified
as strings to match in these algorithms eliminates the need to write new code for
each pattern.

3 Design pattern detection by string matching

String matching techniques and algorithms are popular in bioinformatics, given
they are highly scalable in terms of input size and performance [30, 35]. Kaczor
et al. [20] showed the benefits of this approach by applying them to detect design
patterns in source code. In this paper, we adapt this technique to detect design
patterns in model transformation.

Fig. 3 shows an overview of our approach separated into three phases. A
key aspect of the string matching technique is to represent input artifacts as
string sequences. Given a model transformation implementation and a set of de-
sign patterns, our goal is to find instances of the design patterns in the trans-
formation. To automate the process, we consider a rule of the transformation
(e.g., createTransition in Fig. 1) and a participant of a given design pattern
(e.g., entityMapping in Fig. 2) as inputs. The first phase encodes both inputs as
strings following an identical encoding strategy. The choice of string representa-
tion will have a direct impact on the performance of the detection algorithm and
is, therefore, a crucial step.

The second phase detects the occurrence of the participant string in the rule
string using a string matching algorithm. A naive detection algorithm would tra-
verse all elements in both structures. Each element in one would be compared
with all elements in the other to find the matching element structurally and the
matching properties. To resolve this combinatorial problem, previous approaches
using a bit-vector algorithm (like in [20]) have shown to be an efficient solution
by bounding the number of vector operations independently from the length of
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Fig. 4: The createTransition rule as directed graph

the structures. We, therefore, employ a bit-vector algorithm to match the encoded
strings. This outputs all the instances of the participant string in the rule string.

After finding all instances of the participants of the design pattern in all the
rules of the model transformation separately, the last phase recovers the com-
plete design pattern instances inside the model transformation. While the first two
phases are automated in our approach, the recovery phase is performed manually
to consider the scheduling aspect of the transformation and the design pattern.

3.1 Encoding phase

The goal of the encoding phase is to represent a rule and a participant each in a
unique circular string to employ a bit-vector algorithm to match them. We first
transform the input artifacts into Eulerian directed graphs. Then, we derive the
optimal Eulerian circuit of each graph. Finally, we encode the circuit as a unique
circular string.

3.1.1 Rules and participants as Eulerian directed graphs

It is natural to represent model transformation rules as graphs. For example, the
graph transformation paradigm defines rules explicitly as graphs, such as in Hen-
shin (see Section 2.1). Other model transformation paradigms, like ATL [18], can
also be represented as graphs [39]. Therefore, without loss of generality, we consider
model transformation rules as directed graphs for this work. Following the Henshin
representation in Fig. 4, the rule graph consists of nodes and edges. Nodes and
edges are typed by metamodel types, e.g., ExpressionStatement or expression, and
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Fig. 5: The participant graph for the entityMapping participant of the E-R design
pattern

attributed with an action, e.g., preserve, create, delete, forbid. Nodes and edges
may be typed by special types, such as Trace, that are not found in the input/out-
put metamodel of the model transformation, but used as auxiliary structures to
facilitate the transformation.

Similarly, we represent design pattern participants as directed graphs. We fol-
low the notation used by DelTa, with the difference of explicitly representing NACs
like in Fig. 5. The nodes and edges in the participant graph are typed by the role
name, e.g., sEnt, and attributed with an action. DelTa also employs built-in roles,
such as Trace. We consider these nodes in our graph representation as fixed nodes
for detection purposes.

It is important to convert the directed graph into a unique string representation
of rules and participants. Furthermore, the strings must be circular so that a
participant string may match any part of the rule string (and vice versa). We
can achieve this by computing the minimum Eulerian circuit of each graph [20].
However, the directed graphs we obtain are not necessarily Eulerian, i.e., they do
not contain a Eulerian circuit: a cycle that uses every edge of the graph exactly
once. Following the method employed in [20] for class diagrams, we transform1 the
participant and rule graphs into unweighted directed Eulerian graphs. A graph is
Eulerian if and only if every node is balanced: has equal in- and out-degrees.
Therefore, we consistently add a dummy edge between unbalanced node. They
are represented by dashed arrows in Fig. 4 and 5. Furthermore, in the case of
an isolated node (like baseClass in Fig. 5), we add dummy edges to ensure its
degree is at least two. There are many ways of making a graph Eulerian. The only
requirement is to use the same strategy to make the rule and participant graphs
Eulerian.

3.1.2 Computing the rule and participant strings

Given that the rule and participant graphs are Eulerian, the optimal solution to
the Chinese postman problem gives a Eulerian circuit [42]. This circuit starts and
ends at the same node and traverses each edge exactly once: listing the nodes and
edges we obtain a Eulerian trail. The circuit can start from any node, though our
experiences have shown that starting with a node connected to a dummy edge may

1 The algorithm is similar to the one presented in [20] based on the transportation sim-
plex [8].
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Fig. 6: (a) Eulerian trail of a part of the EntitiesMapping participant. (b) The
corresponding participant string encoding. (c) Eulerian trail of a part of the
createTransition rule. (d) The corresponding rule string encoding.

reduce the performance. Then, we transcribe the trail into a string representation.
Note that, unlike edges, a node may appear more than once in the trail. This
string is circular, and a graph may have many possible Eulerian trails. However,
it is critical that the trail for the rules and participants are computed using the
same strategy. Thus, we chose one strategy to obtain a unique trail for both.
When traversing the graph, multiple trails are possible when a node has at least
two outgoing edges. This is where we opt for a strategy that prioritizes the order
in which to traverse edges. In our case, we give priority to non-dummy edges over
dummy edges. Then, we base the order depending on the action of the edge/node:
preserve, create, delete, forbid in this order. Finally, if a choice is available, we
follow the alphabetical order of the values (e.g., "source" is chosen before "target").
The exact strategy is not relevant as long as it is the same strategy used for both
rules and participants graphs to compute a unique Eurlerian circuit.

To represent the nodes and edges of the trail as string, we inspired ourselves
from the string representation used for class diagrams in [20]. However, their ap-
proach is too simple to tokenize model transformations: we need to not only rep-
resent the connectivity of the graph, but also encode semantics specific to model
transformations. Fig. 6 depicts the string encoding a Eulerian subgraph of a rule
and a participant. We encode each node into a string token following the format
[id, type, action, fixed] for participants and [id, type, action] for rules. We encode
edges into string tokens similarly but between parenthesis. We refer to these strings
as role token and element token respectively. id uniquely identifies the element.
type is the type of the element. For the participant string, we use the name of the
element as type, like sEnt. For the rule string, we use the name of the metamodel
element as type, like Transition. In case of fixed nodes and edges for the participant
string, like Trace, we set fixed = 1 otherwise 0. Fixing nodes enforces the detection
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mechanism to match exactly the same element type. For example in Fig. 4, the
Transition object should not match the Trace role because the transition is from
the same metamodel as its State objects neighbors. The action ∈ {c, d, p, f, } rep-
resents the create, delete, preserve, or forbid actions respectively. The underscore
is used for dummy edges, for which no action is required, as they are not part of
the original rule or participant. The graph is encoded by concatenating the tokens
of the source node of an edge, followed by the edge, and then by the target node
of the edge in the trail.

3.2 Detection phase

The goal of the detection is to find all instances of a design pattern participant,
encoded in the participant string, that are present in the rule string. Bit-vector
algorithms are known to be very efficient to approximate word matching in strings
[30]. This requires to encode the strings into bit vectors. Kaczor et al. [20] have
derived an iterative bit-vector processing algorithm to find exact and approximate
occurrences of an object-oriented design pattern in a class diagram. Like for object-
oriented patterns, this algorithm is also suitable for model transformations where
pattern participants are encoded into short strings that can be found in longer
strings representing transformation rules. However, the algorithm presented in [20]
only deals with classes and associations in structural patterns. Since rule-based
model transformation is a declarative paradigm, the original algorithm cannot be
applied directly. Therefore, we significantly modify it to tackle the complexity that
that model transformations and their design patterns provide.

3.2.1 Characteristic bit-vector

To employ a bit-vector algorithm, we represent the participant and rule strings into
vectors of bits. Let t be any a token appearing in an encoded string s = s1 . . . sn,
where n is the length of the trail. We define the characteristic vector of t, denoted
by �t = t1 . . . tn, as

ti =

{
1 if si = t
0 otherwise.

Conceptually, it represents the positions of the token in the participant and rule
strings. For example, in Fig. 6 (d), the characteristic vector of t1 and t4 are:

�[t1,ExprStmt,p] = 001 0000000︸ ︷︷ ︸
7

100 (i.e., two occurrences)

�(t4,target,c) = 00000︸ ︷︷ ︸
5

1 0000000︸ ︷︷ ︸
7

(i.e., one occurrence)

Characteristic vectors are sequences of bits on which we can apply standard
bit operations: bit-wise logical AND/OR operators and left/right shifts. A notable
property of the way we construct the participant and rule strings is that tokens
always appear in the same order modulo a shift. Thus, we consider that char-
acteristic vectors are circular. For a characteristic vector �t = t1t2 . . . tn−1tn, the
left/right shifts are defined by shifting the position of the bits circularly by one to
the left or the right as:

�t � 1 := t2 . . . tnt1 �t � 1 := tnt1 . . . tn−1

Left shift by 1 Right shift by 1
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3.2.2 Matching participants in rules

We rely on characteristic vectors to find the tokens of a transformation rule that
play the role of a design pattern participant. Our algorithm, iteratively reads
triplets of tokens 〈node, edge, node〉 in the participant string. It then identifies
all possible matching triplets in the rule string by performing conjunctions and
shifts. To ensure unification, we reuse tokens that are already matched in a triplet.
Algorithm 1 separates the algorithm into two steps described in the subsequent
algorithms.

Algorithm 1: DetectPatternInstances(participant, rule)

1 candidates ← FindCandidates(participant, rule)
2 maxSize = max |candidates[c]| ∀c ∈ candidates.keys()
3 matches ← ∅ // empty dictionary
4 foreach partTripl ∈ candidates.keys() do
5 pEdge, pBefore, pAfter ← partTripl.unpack()
6 matches[pEdge], matches[pBefore], matches[pAfter] ← Array(maxSize)

7 return Detect(candidates, 0, matches)

Algorithm 2: FindCandidates(participant, rule)

1 candidates ← ∅ // empty dictionary
2 foreach partToken ∈ participant.getEdges() do
3 tripl ← (partToken, partToken.before(), partToken.after())
4 candidates[tripl] ← ∅

5 foreach edgeTok ∈ rule.getEdges() do
6 if not Match(partToken, edgeTok) then continue
7 before ← ∅, after ← ∅ // ordered sets

8 �partToken � 1
9 foreach afterTok ∈ rule do

10 �conj1 ← �afterTok ∧ �partToken

11 if �conj1 �= �0 and Match(partToken.after(), afterTok) then
12 after ← after � {afterTok} // append

13 �conj1 	 2
14 foreach beforeTok ∈ rule do

15 �conj2 ← �beforeTok ∧ �conj1

16 if �conj2 �= �0 and Match(partToken.before(), beforeTok) then
17 before ← before � {beforeTok} // append

18 for i = 0 . . .Min(|before|, |after|) do // discarded if before or after are empty
19 candidates[tripl] ← candidates[tripl] ∪ {(edgeTok, before[i], after[i])}

20 return candidates

The first step is to find potential candidate rule tokens for each participant
token. Algorithm 2 takes as input a participant and a rule strings to output a
dictionary pairing each participant triplet to corresponding rule triplets. For ex-
ample, suppose we wish to find the candidates of the triplet 〈p3, p7, p1〉 in Fig. 6.
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We start by searching matches for the edge, i.e., partToken = p7 on line 6. The
Match function matches a token p of the participant string to a token t of the
rule string following these rules:

1. If p is a node then t must be a node. If p is an edge then t must be an edge.
2. t.action = p.action
3. If p.fixed = 1 then t.type = p.type

In this case, p7 matches t7 and t11. The shifts and conjunctions on lines 8–17 ensure
that the nodes before and after also match; otherwise the edge is discarded. The
following shows how Algorithm 2 finds the rule triplet 〈t3, t7, t1〉 to match our
participant triplet from the characteristic vectors:

�edgeTok = �t7 : �p7 � 1 = 001

7︷ ︸︸ ︷
0000000 100

�beforeTok = �t3 : �p3 � 2 = 0010001000100
�conj1 : ( �p7 � 1) ∧ ( �p3 � 2) = 0010000000100

�afterTok = �t1 : �p1 = 0010000000101
�conj2 : ( �p7 � 1) ∧ ( �p3 � 2) ∧ �p1 = 0010000000100

On the last equation, we see how �conj2 rules out the candidate matching triplet
〈t10, t11, t1〉. On lines 18–19 of Algorithm 2, we only consider candidates that
match the complete triplet of tokens.

Algorithm 3: Detect(candidates, index, matches)

1 if index > |candidates.keys()| then return matches
2 partTripl ← candidates.keys()[index]
3 pEdge, pBefore, pAfter ← partTripl.unpack()
4 if pEdge.isDummy() and index > 0 then
5 return Detect(candidates, index+1, matches) // skip this triplet

6 for i = 0 . . . |candidates[partTripl]| do
7 rulTripl ← candidates[partTripl].pop()
8 rEdge, rBefore, rAfter ← rulTripl.unpack()
9 if matches[pEdge][i] = ∅ or index = 0 then

10 matches[pEdge][i] ← rEdge

11 if matches[pBefore][i] = ∅ then
12 matches[pBefore][i] ← rBefore

13 if matches[pAfter][i] = ∅ and (not pEdge.isDummy() or index > 0) then
14 matches[pAfter][i] ← rAfter

15 if Valid(partTripl, (matches[pEdge][i], matches[pBefore][i], matches[pAfter][i]))
or index = 0 then

16 Detect(candidates, index+1, matches)

17 else ClearMatch(matches, i) // discard this match

18 return matches

The candidate matches that Algorithm 2 outputs only consider triplets of to-
kens. Therefore, we must ensure that the whole participant matches cohesively
among triplets. Algorithm 3 detects instances of each role of the participant. It
creates a set of matches where a match pairs every role token from the participant
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Fig. 7: Iterations of the Algorithm 3 showing matching nodes

string to an element token from the rule string. As shown on lines 4–6, Algorithm 1
initializes the data structure matches as dictionary where keys are individual roles
of all participant triplets and values are empty arrays. Algorithm 3 recursively
traverses each participant triplet and assigns the corresponding rule triplets. The
loop on line 6 can easily be run in parallel since it processes each match of the
participant independently. On lines 9–14, when assigning an element to a role,
we first check if we have already assigned an element to that role before looking
into the candidates output by Algorithm 2. This ensures the unification between
the triplets of the same participant. On line 4, if a participant triplet contains a
dummy edge, this triplet is skipped since it does not contribute to any role of the
participant. The only exception is if the dummy edge is part of the initial triplet
we are processing. In this case, we only assign the node before because the node
after will be processed by the next triplet.

To illustrate Algorithm 3, Fig. 7 shows how we construct the matches for the
participant string in (b) and the rule string in (d) of Fig. 6. Each row shows the
current values of the matches dictionary at each iteration of the recursive calls
(lines 5 and 16). The values of the iteration column correspond to the values of
the index variable. At iteration 1, the initial triplet 〈p1, p2, p3〉 contains a dummy
edge. Therefore, we only match p1. Algorithm 2 returns two possible candidates,
t1 and t9. They will be part of different matches in the match sets (line 2). Let
us first consider the case of t1. At iteration 2, we process the next participant
triplet to which we assign t3 and t5 to p3 and p5 respectively. At iteration 3, the
next triplet contains a dummy edge, so it is ignored. At iteration 4, we notice
that p3 and p1 are already assigned an element for the last triplet. On line 15, we
verify the integrity of this match making sure they are well-formed according to
Algorithm 2. Therefore, the function Valid verifies that the rule triplet matched
exists in the candidates dictionary. Since it is the case, this match is an occurrence
of the participant in the rule.

Let us now consider the second partial match where p1 is assigned to element
t9. The process is similar for iterations 2 and 3. At the last iteration, the integrity
check fails since there is no edge from t3 to t9 that matches p7. This match is
therefore discarded and line 17 only outputs the first match we described. The
function ClearMatch removes the values at index i in all the arrays in matches.
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3.3 Recovery phase

The detection phase outputs the rule elements matched to each role of a design
pattern participant. Therefore, we obtain the set of rules that correspond to each
participant. To reduce false positives, the recovery phase identifies the sets of
rules corresponding to all the participants of a design pattern. Furthermore, the
detection phase is based on the structure of individual participants.

To recover the complete design pattern instances, we must consider the global
description of the design pattern and not only one of the participants. For instance,
the scheduling scheme indicates whether the detected individual participants form
a valid instance of the design pattern. DelTa offers several scheduling schema to
order participants, such as sequencing, conditional bifurcation, choosing any par-
ticipant, or not enforcing an order. Some model transformation languages, like
Henshin, express rule ordering explicitly using similar schema. Others, like ATL,
keep the order of the rules implicit. Therefore, a deep knowledge of the semantics
of the transformation language is needed to decide whether the detected rules are
executed in the order prescribed by the design pattern. There are other compo-
nents, such as constraints and actions on attributes of rule elements or profiles/tags
in DelTa participants, that should also be considered to recover complete design
pattern instances. The mapping between the description of these additional el-
ements (scheduling and other components) and the concrete transformations is
not straightforward, because many options can be used for their implementations.
This is why in the current state of our research, we perform the recovery phase
manually.

To illustrate the recovery phase, let us consider the cas of the E-R pattern.
Suppose that, during the detection phase, we found two instances E1 and E2 of the
entityMapping participant, and two instances R1 and R2 of the relationMapping
participant. The pattern suggests that the former should precede the latter (see
Fig. 2). After analyzing the scheduling scheme of the model transformation, we
identify that E1 is executed before R1, but E2 is executed after R2. Therefore, we
conclude that the E-R pattern has only one valid instance E1-R1.

4 Detecting other design pattern specifications

Typically, the solution described by a design pattern is a generic template used as
a guideline to understand how to implement the design pattern. In practice, it hap-
pens often that we implement a design pattern in a different way than the template
solution. Therefore, a design pattern detection approach should consider not only
the exact template solution provided in the definition of the design pattern, but
should also detect other implementation variants that may be encountered in prac-
tice. Furthermore, existing model transformations may only partially implement a
design pattern. Our detection process in Fig. 3 takes as input the specification of
a design pattern participant. However, the participant does not necessarily need
to be the complete or exact participant defined in the solution template of the de-
sign pattern. It can be an approximation of that participant, that is missing some
roles or variant with an alternative structure that still preserves the the global
description of the design pattern. Another important aspect to consider is that
patterns may use other patterns in their implementation. Patterns can be speci-
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Fig. 8: Instance of a variant of the relationMapping participant

fied independently, but their detected occurrences can be checked with respect to
the conformity with the expected usage relationships. In the remainder of this sec-
tion, we characterize variants and approximations of model transformation design
patterns and show that we can reuse the exact same detection process presented
in Section 3 to detect them. Moreover, we illustrate some of the common usage
relations between the considered patterns.

4.1 Variants

Variants of a design pattern modify the template solution, but they must preserve
the pattern description. For example, the observer pattern in object-oriented de-
sign has one variant for the pull and another for the push approach. There is no
general way of deriving all possible variants of a design pattern.

Many model transformation design pattern propose possible variants (called
“variations” in [11, 22]). They can take various forms, such as using more roles in
a participant, changing the type of a relation, or changing the action of a role. For
example, for the E-R design pattern, the relation between the source and target
entities can be many-to-one instead of the relation mapping one source to one
target entity, as depicted in Fig. 2.

Consider the Henshin rule createLinks in Fig. 8. It implements a variant of the
participant relationMapping in the E-R design pattern. First, we note that the
single relation between sEnt and sEnt2 is implemented by means of a WLink object
with wMembers and wTarget associations. Secondly, we note that a single relation
between tEnt and tEnt2 is also implemented by means of a WLink object. Thirdly,
this object has an additional eStructuralFeature association that is not required
by the design pattern participant. This rule implements a typical variant of the
design pattern where a participant or role of the design pattern is implemented by
more than one element.
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Fig. 9: The latterPhase participant of the Top-Down design pattern

4.2 Approximations

Sometimes, a design pattern is not implemented in its entirety in a transforma-
tion [28]. Although the underlying implementation may match part of a design
pattern description, some roles of the participants may be missing. This typically
has a negative effect on the quality of the transformation, such as reuse, cohesion,
or coupling [22]. We consider an implementation as an approximation of a design
pattern if it is missing or misusing roles.

Consider the Top-Down design pattern that decomposes a transformation into
phases based on the target model composition structure [11]. It is composed of two
participants, formerPhase and latterPhase, sequenced in this order. The former-
Phase states that a rule shall create a tContainer entity in the target metamodel.
This entity shall be traced to the corresponding sContainer entity in the source
metamodel that contains an sComponent entity. The latterPhase (represented in
Fig. 9) states that a rule shall create a tComponent entity contained in tContainer.
This entity shall be traced to the corresponding sComponent entity in the source
metamodel.

Fig. 10 shows a Henshin rule stating that, if a GenClass is associated with an
EClass containing an EAttribute, then the GenClass should contain a GenFeature and
associate it to the EAttribute. Intuitively, we understand that it corresponds to
the latterPhase participant of the Top-Down design pattern. However, we note
differences between the two structures. To be a perfect match, the rule is missing
a relation from GenClass to the forbidden GenFeature to complete the NAC of lat-
terPhase. Furthermore, the participant requires using a Trace element to link the
created GenFeature to the EAttribute. According to our representation, Trace would
be a fixed role. However, this role is played by the ecoreFeature link and the Rel

element. Since the rule reuses an element from the metamodel to implement a
fixed role, they would not match. We consider this situation as a misuse of a role.
Therefore, for these two reasons, this rule is an approximation of the latterPhase

participant in the Top-Down design pattern.
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Fig. 10: Approximation of the latterPhase participant in Fig. 9

Design pattern participant variants or approximations can be derived manually
to ensure their conformance with the corresponding design pattern. Some types of
approximation can be derived automatically by, e.g., removing some roles. Some
variants can be derived automatically once the transformation language is fixed.
Kaczor et al. [20] define four different types of approximations for object-oriented
design patterns, though they acknowledge there are more. These can be summa-
rized in two major categories: when the role of a participant is missing or when a
role is misused. Our approach can automatically detect model transformation de-
sign pattern approximations that fall under the first category. Given the Eulerian
trail of a participant, we can automatically derive approximations by removing
elements of the trail. The bit-vector algorithm remains the same. Therefore, for
some approximations, we do not require to manually specify them (as opposed
to [28]). The second category of approximations covers cases when the use of a
role deviates from the original specification of the design pattern. Kaczor et al.
propose ways to modify their algorithm to handle these cases. In some cases, they
acknowledge that the approximation must be specified manually. Our detection
approach can recover variants and approximations of a design pattern as long as
they are explicitly defined. We apply the process in Fig. 3 where the input is a
variant.

4.3 Co-occurrence of design patterns

Looking at the design patterns catalog, we notice that the structure of the partici-
pants of some design patterns are present in participants of other design patterns.
This suggests that some design patterns are related with others. As outlined in
Fig. 11, we distinguish at least three types of relations. The relations we present
are the result of a critical analysis of all catalogued design patterns in [11, 22]
complemented with the notion of design pattern relations introduced in [24].

76



Title Suppressed Due to Excessive Length 19

Fig. 11: Relations between some design patterns

When analyzing existing model transformation implementations, we identified
variants of design patterns used in practice. As defined in Section 4.1, all vari-
ants of a design pattern share the same goal, but differ in the structure of their
participants. A predominantly used design pattern in practice is the Auxiliary
Metamodel. “This pattern proposes to create an auxiliary metamodel for tempo-
rary elements used in the transformation that do not belong to either the source
or target metamodels” [22]. We have noted two main variants. The Trace type is
a variant of this pattern that relies on an entity to keep a trace correspondence
between entities of different metamodels. This variant is mostly used in exogenous
transformations. However, for in-place transformations, we noted that developers
often rely on a specific entity (from the same or another metamodel) to temporar-
ily mark entities to be transformed, such as the rule in Fig. 12 taken from the
Ecore2GenModel transformation2. The generic solution of the Auxiliary Metamodel
pattern presents three possible variants of how it can be used when creating a new
correspondence to an existing entity, deleting the corresponding entity, or modify-
ing an attribute of the corresponding entity. We, therefore, obtain the six variants
mentioned in Fig. 11.

The Object Indexing pattern uniquely indexes an entity in a first participant
to enable its efficient lookup in a second participant. We identified that it comes
in two variants: one using flag to mark an entity to index and another using a
temporary marker pointing to the entity. The latter variant essentially uses the
Marker type variant of the Auxiliary Metamodel pattern to index an entity. For
this relation, if a pattern A uses a pattern B, we will often find the structure of a
participant of B subsumed in a participant of A. For example, the Visitor pattern
requires to mark an entity as already visited. This essentially uses an instance
of the Object Indexing pattern. Another example of this relation is that the E-R
pattern (see Fig. 2) presents an instance of the Trace type variant of the Auxiliary

2 https://www.eclipse.org/henshin/examples.php?example=ecore2genmodel
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Fig. 12: A rule using markers

Metamodel pattern. More precisely, the entityMapping participant uses the create
variant and the relationMapping uses the modify variant.

The third type of relation we identified is when a design pattern is often used
with another one. For example, the Construction & Cleanup pattern often creates
temporary entities at the beginning of the transformation and deletes them at the
end. Therefore, it is often used with the Auxiliary Metamodel pattern to achieve
its goal.

Although, the detection process does not consider explicitly usage relations
between patterns, the detected occurrences can be checked to ensure that patterns
are used correctly by other patterns. If not, these situations can be considered as
potential refactoring opportunities.

5 Evaluation

To evaluate the usefulness and the relevance of our approach, we defined the
following research questions:

RQ1: How are design patterns used in model transformations? The goal
of this question is to understand if design patterns are actually employed in
concrete transformations and in what form they are used (complete, variants,
approximations). This also serves as a motivation for our approach.

RQ2: How effective is our approach to detect design pattern variants
and approximations? With this question, we evaluate the ability of our
approach to detect complete and partial pattern occurrences, whether they are
standard patterns or variants.

RQ3: What design patterns are typically used in combination with each
other? This question allows us to identify relations between design patterns
and validate the co-occurrence premise that we describe in Section 4.3.

5.1 Setup

In our evaluation, the goal is to analyze quantitatively and qualitatively how our
detection approach applies to concrete transformations. We relied on model trans-
formations gathered from three sources as shown in Table 1. The selected trans-
formations are described by the number of rules they contain, as well as by the
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Henshin
Website

ecore2genmodel 8 55 59 4 6
ecore2rdb 2 38 49 13 25
ecore2uml 2 29 40 9 20

java2statemachine 13 77 59 2 15
wrap copy 3 20 19 4 9

classDiagram2relationSchema 3 16 14 5 6

ATL Zoo
book2publication 5 20 16 2 6

ATOM2RSS 17 73 59 2 6
RSS2ATOM 6 28 27 3 6

SecBPMN2-
to-UMLsec

GR2 classOperation 31 262 267 6 10
GR3 associations 35 640 687 15 20
GR4 dependency 28 393 440 12 15

GR5 abac 15 131 131 7 9
GR5 secureDependency 33 295 292 5 10

GR6 secureLinks 29 323 374 2 15
GR7 secureLinks2 30 426 510 11 16
GR7 secureLinks3 24 396 444 15 18
GR7 secureLinks4 17 240 261 6 18

Table 1: Selected model transformations

total number of Henshin nodes and relations respectively involved in these rules.
We also provide the minimum and maximum number of nodes per rules for each
transformation.

The first source we used is the Henshin website3. We selected six exogenous
transformations. To add more diversity to our transformation sample, we also
considered ATL transformations from the ATL Zoo4. Although the literature pro-
poses higher order transformations from ATL to graph transformation [33,39], we
were unable to reuse their tool support. Therefore, we limited ourselves to three
ATL transformations because we had to reimplement them manually in Henshin
following the guidelines of [33, 39]. Finally, the third source of transformations is
the ReMoDD project reported in [37]. This project contains 10 model transfor-
mations that map a secure business process model, expressed in SecBPMN2, to a
preliminary architectural UML model enriched with security policies, expressed in
UMLsec. The size characteristics of these transformations are much higher than
ones of the transformations from the two previous sources. It is worth mentioning
that the selected transformations from the above-mentioned sources are exogenous
transformations as most of the design patterns are present in exogenous trans-
formation by nature. We did not consider endogenous transformations in these
sources.

3 https://www.eclipse.org/henshin/examples.php
4 https://www.eclipse.org/atl/atlTransformations/
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Table 2: Selected Design patterns

Patterns Summary Benefits

Auxiliary
metamodel

This pattern proposes to create an auxiliary
metamodel for temporary elements used in the
transformation that do not belong to either
source or target metamodels.

Improves clarity, flexi-
bility, and modulariza-
tion

Construction
& cleanup

This pattern structures a transformation by
separating rules which construct model ele-
ments from those which delete elements.

Improves modularity

Entities before
relations

This pattern is used in exogenous transfor-
mations to encode a mapping between two
languages. It creates the elements in a lan-
guage corresponding to elements from another
language and establishes traceability links be-
tween the elements of source and target lan-
guages.

Improves debugging,
error localization, and
avoids circularity in
processing

Entity merging Two rules each create/update elements of the
same target entity type, using different source
entity types or elements.

Organizes instance
data integration

Entity splitting Two rules (with disjoint application condi-
tions) map (instances of) the same source en-
tity type to instances of different target enti-
ties.

Distinguishes cases in
source data

Fixed-point
iteration

Pattern for representing a “do-until” loop
structure. It solves the problem by modifying
the input model iteratively until a condition is
satisfied.

Organizes fixed-point
processing

Object
indexing

All objects of an entity are indexed by a pri-
mary key value, to permit efficient lookup of
objects by their key.

Reduces syntactic com-
plexity

Top-down
phased
construc-
tion

This pattern decomposes a transformation into
phases or stages, based on the target model
composition structure. These phases can be
carried out as separate subtransformations,
composed sequentially.

Organizes processing

Unique
instantia-
tion

This pattern makes sure the created elements
in a rule are unique and eliminates redundant
creation of the same element by reuse.

Avoids duplicating in-
stances

Visitor This pattern traverses all the nodes in a tree
and processes each entity individually.

Improves extensibility

We considered all 15 design patterns from [11] to detect their instances on
our sample of model transformations. However, we found no occurrences of five of
them in the transformations we consider. Thus, Table 2 presents the sample of 10
design patterns we selected with a brief description and benefits. This information
is extracted from the design pattern catalogs presented in [11, 22, 24]. The trans-
formation patterns we use come from different categories [22]. The first category
deals with rule modularization patterns. It includes the design patterns: Auxiliary
Metamodel, Construction & Cleanup, Entities before relations (also called Map
objects before links in [24]), Entity Merging, and Entity splitting. These patterns
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aim at organizing the dependencies and relationships between rules in a trans-
formation. Unique Instantiation and Object Indexing are two patterns from the
optimization category. They are used to improve the execution efficiency at the
rule or transformation level. According to Lano et al. [22], Unique Instantiation
and Auxiliary Metamodel can be seen as fundamental patterns which forms a sep-
arate category. From the classical/external patterns category, we selected Visitor.
The latter is heavily used in model-to-text transformations to navigate through a
model. Finally, we selected two patterns from the architecture category: Top-down
Phased Construction and Fixed-point Iteration. Both patterns are used to organize
systems of transformations at the inter-transformation level to improve modularity
and processing capabilities of systems. For more information about the selected
patterns, we refer the reader to [23], which presents a survey on how these pattern
are actually used in real transformations.

5.2 Design pattern usage in model transformation (RQ1)

To answer the first research question, we considered all the transformations de-
scribed in Table 1. We performed a manual inspection of these transformations to
detect all existing instances of the design patterns in Table 2. For each pattern,
one co-author identified its usage in all the transformations and the other two
validated the results. When manual detecting design patterns we first identify the
rules matching the patricipants of the design pattern, and then we verify that the
logic of the rule scheduling and attribute constraints conform to the constraints
of the pattern. We had to consider complete and approximate patterns, as well as
variants. The occurrences we found are presented in Table 3.

A quick glance at the results reveals that the SecBPMN2-to-UMLsec transfor-
mations contains higher numbers of pattern occurrences than those of the other
transformations. This is expected considering the size of these transformations.
Among the design the patterns, Auxiliary Metamodel is the most used. This was
expected as this is fundamental pattern that allow different rules to manipulate
the same objects in exogenous transformations. We distinguish between the three
variants of the pattern encompassing the Trace and Marker versions (see Fig. 11).
The Create variant is consistently used in all transformations because they are all
creating elements in the target model. The Modify variant is found when a rule
updates elements it matches. Since we found many instances of the Create variant,
we expected to find many instances of the Modify variant as well. That is because
the Modify variant preserves the existence of the elements created. Usually, the
Auxiliary Metamodel variants are used together. We found only few instances of
the Delete variant because not all transformations intend to remove elements. This
is expected as we are dealing with exogenous transformations.

The Construction & Cleanup pattern is based, in general, on the combination
of the create and delete variants of the Auxiliary Metamodel pattern. Most of
developers use the delete variant in a Construction & Cleanup process. Thus, the
instances we found for this pattern are almost the same as ones we found for the
Auxiliary Metamodel.

Entity Merging and Entity Splitting are mostly used in SecBPMN2-to-UMLsec
transformations. Similarly, we found a high number of instances of Entities before
Relations within the third source and very few in transformations of the other
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Table 3: Existing design pattern instances fetched by hand
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Fig. 13: Nature of design pattern occurrences in model transformations

sources. The same observations also hold for the Top-down Phased Construction
pattern.

Among the remaining patterns, Object Indexing does not seem to be used in the
majority of transformations. This is not surprising as this pattern is more useful
for endogenous transformations. We found instances of the Unique Instantiation
pattern in almost all transformations from Henshin and ATL. However, we found
none in SecBPMN2-to-UMLsec because, given the nature of its large transforma-
tions, the same element is created several times. Finally, we found a very limited
number of instances of Fixed-point iteration and Visitor patterns because they do
not fit the implementation of most of the transformations in our sample. Since
these two patterns are generally implemented by the whole transformation, and
not an isolated subset, we indicate their occurrence with an “X” in Table 3.

From the perspective of the pattern nature, most of the found occurrences are
different variants that implement the generic pattern. The other occurrences are
approximations. Fig. 13 summarizes the distribution of the nature of occurrences
found for each transformation. For each transformation rule involved in a design
pattern, we report if it implements a variant of the pattern (white) or an ap-
proximation (black). The Mix category (gray) means that we found both variants
and approximations occurrences of the same design pattern in the transformation.
Except for ecore2genmodel, java2statemachine, and RSS2ATOM, rules involved in
variants account for more 60%, reaching 100% for three transformations. We found
rules involved in both variants and approximations in only four transformations.

For RQ1, we can conclude that design patterns are used in transformations,
which concurs with the survey in [24]. Some of the patterns occur more frequently
than others. Variants are more frequent than approximations. Finally, transfor-
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mation rules can be involved in more than one occurrence and sometimes in both
variants and approximations. This result clearly motivates the need for design
pattern detection approaches able to detect variants and approximations.

5.3 Detecting design pattern variants and approximations (RQ2)

To answer the second research question, we applied our detection approach on all
the selected model transformations in two steps: first for variants, then for ap-
proximations. Table 4 presents the results of both steps. Note that we consider
two kinds of accuracy in the detection of patterns: one for the detection of partici-
pants and one for the recovery of the complete design pattern. In our experiments,
there are no false positives for the former. However, when taking into account the
constraints of the pattern (e.g., scheduling, attribute constraints), we manually
filtered participants and their scheduling leading to false positives.

5.3.1 Detecting design pattern variants

In a first step, we specified all design patterns and their different variants (de-
scribed in Section 4) as input. Note that the Auxiliary Metamodel pattern does
not involve rule scheduling. Hence, our approach, in its current state, is able to
detect it fully automatically without the need for a manual recovery phase. For
the other patterns, we combined automated detection of pattern participants with
the recovery phase, as explained in Section 3.3.

From RQ1, most of the design pattern instances we expect are variants. The
numbers on the left side of the slash in Table 4 show the results of detecting the
variants of each design pattern. Our approach has detected all the expected in-
stances of the design pattern variants and we found no false positive. The manual
recovery phase, in addition to the verification of the scheduling, allows us to elimi-
nate pattern participants for which the other participants to complete the pattern
occurrences are not present.

5.3.2 Detecting design pattern approximations

The remaining instances reported in Table 3 are approximations. Therefore, in the
second step, we performed the detection on the 18 transformations with the pattern
approximations of Section 4 as input. The results of detecting approximations are
presented in Table 4.

Like for the variants, we detected all the expected instances of design pattern
approximations. However, we found false positives for the Auxiliary Metamodel
pattern approximations. When examining these occurrences, we discovered that
they are resulting from the combination of two factors: (1) the specification of the
approximation of a design pattern is very similar to the specification of one of its
variants, and (2) the inability of our approach to express negative conditions in
the detection.

More specifically, the variants using Marker allow, among others, to tag el-
ements as already processed when executing a rule on a list of elements. For
example, in the rule on the top left of Fig. 14, a Chapter is marked after adding the
number of its pages in the Publication. In contrast, in some transformations, the
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Table 4: The variants and approximations of design pattern instances detected by
our approach. x/y denotes x variants and y approximations.
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Fig. 14: Trace as an approximation of Marker for Auxiliary metamodel pattern.

Trace variant is used for the same purpose, like in the rule on the bottom right of
Fig. 14. However, the Trace is not connected to a target element as defined by the
design pattern. Thus, we consider this use of a Trace as an approximation. This
approximation results in some false positives as shown in Fig. 15, because with
our detection approach, it is not possible to express the negative condition that
Trace should not be connected to a target element.

Fig. 15: Example of a false positive with the Trace vs Marker approximation.
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5.4 Pattern combinations (RQ3)

To answer the third research question, we analyzed the pattern instances detected
by our approach to assess whether uses dependencies between patterns depicted
in Fig. 11 actually exist in transformations. More specifically, we examined which
pattern participants are detected in each model transformation rule and checked
the scheduling to determine the co-occurrences.

To measure the consistency with which co-occurrences of patterns are found,
for each pair of patterns, we calculate the percentage of times the used pat-
tern instances appear with the using pattern instances. For a pair of patterns
〈userP, usedP 〉 from Fig. 11, let us consider the set P of pairs of pattern occur-
rences of respectively userP and usedP in a transformation Tk:

P = {(pik, pjk) | pik ∈ userP ∧ pjk ∈ usedP} (1)

For each pair in P , we consider that pik uses pjk if all the participants of
pjk appear simultaneously with the participants of pik in the same rules of Tk.
Furthermore, we distinguish between different usage levels depending on whether
pjk is an instance of a variant or an approximation of usedP . Thus, we assign a
usage level uselev(pik, pjk) between pjk and pjk as follows:

uselev(pik, pjk) =

⎧⎪⎨
⎪⎩
1 pik uses a variant instance pjk,

0.5 pik uses an approximation instance pjk,

0 pik does not use pjk.

(2)

Following these definitions, we calculate, for each transformation Tk in our
transformation set, the usage score usage(userP, usedP, Tk) as the average usage
level of pairs of instances of userP using instances of usedP . Note that, by the
pattern specification, an instance of userP may use more than one instance of
usedP . Then, the average is calculated with respect to the number of instances of
userP in Tk multiplied by the number mf(userP, usedP ) of instances of usedP
an instance of userP is expected to have. Formally:

usage(userP, usedP, Tk) =

∑
(pik,pjk)∈P uselev(pik, pjk)

|{pik | pik ∈ userP}| ×mf(userP, usedP )
(3)

Table 5 shows the usage scores between the user patterns (in columns) and the
used patterns (in rows) for the considered transformations. We only report a score
when the user patterns exist in the transformations. For the sake of conciseness,
we aggregated the scores of all the transformations of SecBPMN2-to-UMLsec.

A first observation is that in all but a few cases, we confirmed empirically the
use relationships of Fig. 11. For example, the instances of Entities before Relations
consistently use the instances of the two variants Trace Create and Trace Modify of
the Auxiliary Metamodel pattern, as indicated by a usage score of 100%. Similarly,
although less frequent, Entity Splitting and Entity Merging also use in 100% of
the cases Trace Create variant. We also obtained perfect usage scores (100%) for
three other user patterns. Construction & Cleanup always uses Create and Delete
for both Trace and Marker variants of the Auxiliary Metamodel pattern. Visitor
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Aux-MM
Trace-Delete 100% Java2StateMachine

Aux-MM
Trace-Modify

50% Ecore2GenModel
100% 100% Ecore2Rdb

100% Ecore2Uml
100% Java2StateMachine

100% 67% wrap-copy
100% classDiag2relationSche
100% Book2Publication
100% 100% ATOM2RSS
100% RSS2ATOM
100% 100% SecBPMN2-to-UMLsec

Aux-MM
Trace-Create

50% Ecore2GenModel
100% 100% Ecore2Rdb

100% 100% Ecore2Uml
100% 100% Java2StateMachine

100% 67% wrap-copy
100% classDiag2relationSche
100% Book2Publication
100% 100% ATOM2RSS
100% RSS2ATOM
100% 100% 100% 100% SecBPMN2-to-UMLsec

Aux-MM
Marker-Delete

100% Book2Publication
100% ATOM2RSS

Aux-MM
Marker-Modify

100% Book2Publication
100% 100% 100% ATOM2RSS

Aux-MM
Marker-Create

50% Java2StateMachine
100% 100% Book2Publication
100% 100% 100% 100% ATOM2RSS

Object indexing 100% 100% ATOM2RSS

Table 5: Usage scores for pairs of patterns
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and Fixed-point Iteration use the Marker Create and Marker Modify variants of
Marker type, as well as Object Indexing in all the detected instances.

The only two patterns for which we did not observe perfect scores for all the
cases are Top-down Phased Construction and Object Indexing. The former uses
the Create and Modify variants with scores of 100% in all the transformations but
two. In Ecore2GenModel, the developer implementing Top-down construction used
approximations of variants of the Auxilary Metamodel pattern, which explains the
scores of 50%. In the second transformation wrap-copy, the score is slightly better
(67%). We found that the developer used approximations of variants of this pattern
only in some cases.

For Object Indexing, the only transformation in which we had unexpected re-
sults is Java2StateMachine. This design pattern is expected to use the Marker Create
to index elements and Marker Modify to manipulate them in another rule. In the
case of create, the developer always used Trace as an approximation which led
to the score of 50%. The Modify variant was not used at all as the developer ex-
ploited another mechanism to access the indexed objects, i.e., rule invocation in
the scheduling with the indexed elements passed as parameters.

It is worth mentioning here that the user patterns may have different vari-
ants, and these variants may use different patterns. In our evaluation, we rely on
the detected variant of the user pattern to determine what are the expected used
patterns. For example, we noticed that in SecBPMN2-to-UMLsec transformations,
the variant implemented for Construction & Cleanup does not use Auxiliary Meta-
model. Thus, we did not report any score of that pattern for this transformation.

In summary, we can conclude that, for our transformation sample, the usage
relations between patterns, depicted in of Fig. 11, are generally respected by devel-
opers. Moreover, we believe that detecting missing or incomplete usage relations
may offer good refactoring opportunities to improve the transformations. In the
example of the Ecore2GenModel transformation mentioned earlier, Trace was used as
an approximation of Marker as part of Top-down Phased Construction, which led to
a score of 50%. The transformation can be refactored by changing Trace to Marker.

5.5 Threats to validity

The objective of our approach is to detect model transformation design patterns.
We implemented and evaluated our approach for Henshin where model transfor-
mations are specified as nested graphs. It is legitimate to question whether our
approach is applicable on transformations written in other rule-based languages.
To address at least partially this concern, we showed in our evaluation that some
ATL transformations can be mapped to graph-like representations, on which we
can apply our detection approach. Moreover, the transformations in our sample
are of medium size, so it does not allow us to have a thorough time performance
evaluation of our detection approach. Experiments with larger transformations are
needed to draw conclusions on performance.

For the representativeness of the explored design patterns, our evaluation used
most of the design patterns in the catalog of Ergin et al. [11]. We acknowledge,
however, that other design patterns may exist or can be defined in the future.
Moreover, considering the variety of model transformation languages, instances of
patterns may take various forms, which makes it challenging to specify all these
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forms as input to our approach. More specifically, some of the design patterns
considered in this work depend heavily on the transformation rule engine and
the way the rule execution control is performed. For instance, this is the case
of Auxiliary Metamodel which helps using objects across rules in the context of
Henshin.

Another threat to validity of our results is the way we define the approxima-
tions. Although our approach is able to detect approximations of fully specified
patterns in the case of missing elements, we had to specify explicitly the approxi-
mations in our evaluation.

Finally, the fact that the recovery phase is performed manually biases some-
how the evaluation of our approach accuracy during the evaluation. Potential false
positives can be discarded when aligning the participants and evaluating the sched-
ule. However, we believe that the accuracy with which our approach detects the
patterns participants alleviates the burden of assembling the pattern instances.
Yet, there is a burden on the manual recovery phase where we should check all
combinations of the detected participants for each pattern. In the future, we plan
to visualize the detected instances in the transformation directly to significantly
reduce the manual workload.

6 Discussion

Our experience with the model transformation design pattern detection approach
has raised benefits and limitations that we discuss in what follows.

6.1 Comparison with other techniques

The only other automated approach we are aware of that is able to detect de-
sign patterns in model transformation is our previous rule-based approach [28].
Although the rule-based approach does not need a manual recovery phase, every
design patterns must be manually encoded as rule facts. This means that every
variant and approximation of a design pattern must be manually encoded. In-
stead, our proposed string matching apporach is able to automatically detect the
participants of a design pattern, its variants, and its approximations.

To compare the time performance of both approaches, we chose the three
variants of the Auxiliary Metamodel design pattern because they do not specify
a scheduling or attribute constraints, thus they do not require a manual recovery
phase. We executed both approaches on the same set of model transformations
presented in Table 1. Both approaches were able to detect the same variants and
approximations. As shown in Fig. 16, the average detection time for each pattern
in a transformation is 39 ms for the string matching detection as compared to
177 ms for the rule-based detection. This represents a gain of around 80% in time
performance for the string matching approach, concurring the findings in [20].

6.2 Improving the performance

During our experiments, the detection procedure executed instantaneously, in the
order of milliseconds. Nevertheless, there is still room for improvement. We identi-
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Fig. 16: Execution time for string matching vs rule-based detection

fied useful heuristics to increase the time performance of the detection mechanism.
The order in which the triplets are read in Algorithm 2 influences the overall de-
tection time. In general, treating less frequent roles first reduces the number of
potential occurrences early in the detection process. For instance, a heuristic is to
favor fixed roles and roles that occur less often in the Eulerian path. Also, it is
preferable to avoid starting with a triplet containing a dummy edge because there
are numerous occurrences of this edge in the participant and rule strings.

Fig. 17: Alternative string representations of the entityMapping participant.

Fig. 17 shows two alternative participant strings of the same participant enti-
tyMapping. Although they will produce the same result, the representation in (b)
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will produce results in fewer iterations. That is because it starts with a fixed role
(Trace) and the first triplet does not contain a dummy edge. Also, there are typ-
ically fewer Trace elements in concrete model transformation rules than elements
from the input/output metamodel of the transformation.

There are different possibilities to automatically apply these heuristics in our
approach. For example, once we obtain a participant or rule string, we can post-
process it to apply the heuristics. Another possibility is to assign different weights
to specific nodes and edges in the Eulerian graph and solve the Chinese Postman
Problem using these weights.

6.3 Recovering the scheduling scheme

The catalog of model transformation design patterns can be partitioned into three
categories: (i) design patterns not relying on a scheduling scheme, (ii) design pat-
terns relying on a simple scheduling scheme, and (iii) design patterns heavily
relying on a complex scheduling scheme.

In category (i), the design patterns contain either only one or a set of unordered
participants to detect. This category comprises patterns like: Auxiliary Metamodel,
Entity Splitting, and Unique Instantiation. For these design patterns, our approach
detects their instances completely automatically. The recovery phase is not needed.

In category (ii), the complexity of the design patterns is in the roles of each
participants, rather than in their scheduling. This category comprises patterns like:
Entity before Relations, Transitive Closure, Object Indexing, Phased construction,
Entity Merging, and Construction & Cleanup. In most of these design patterns,
the participants must be ordered sequentially. Our approach detects individual
participants regardless of the complexity of the structure of its roles. Nevertheless,
the recovery phase simply has to check whether the order of the rules matching
the participants is satisfied.

Execution by Translation

(dsl,simLang)

initialElement1
setup

initialize

terminatingCondition

simLang

initialElement2
setup

simLang element
simLang

success
fail

coreElement
changeState

simulate

simLang

animate

coreElement
stateChanged

simLang

originalElement
update

dsl

Fig. 18: The Execution by Translation design pattern with implicit trace elements
(from [11]).
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In category (iii), the complexity of the design patterns is mainly in the schedul-
ing of the participants. This category comprises patterns like: Fixed-point Itera-
tion, Visitor, Simulating Universal Quantification, and Execution by Translation.
For these design patterns, the detection phase is very simple as we can see by the
structure of the roles in the participants of Fig. 18. However, most of the workload
is concentrated in the manual recovery phase. Nevertheless, this category com-
prises very few design patterns. Future research should therefore investigate how
to automate this phase. Such an automated process should address the few schedul-
ing scheme that design patterns rely on (conditional branching, parallelism, etc.).
Furthermore, it should cope with the many different scheduling schemes offered
by different model transformation languages. For example, on one hand, languages
like MoTif [43] offer explicit and advanced constructs such as recursion. On the
other hand, languages like ATL [18] often rely on implicit rule scheduling.

6.4 Detecting other components of a design pattern

Currently, we detect automatically structural features of participants, that is the
graph structure of the roles. The detection of other features is left for the manual
recovery phase. Consider the Execution by Translation pattern. According to [11],
the description of this design pattern assumes the entities of a metamodel (dsl) are
already mapped5 to entities of another intermediate metamodel (simLang). Then,
simLang is simulated and the corresponding entities in dsl are modified accordingly
to animate the simulation. Fig. 18 presents the generic solution of the pattern. The
initialize participant sets up the initial state of a model to start its simulation.
The terminatingCondition participant checks if a certain condition on the model
is satisfied to stop the simulation. If it is not satisfied, the simulate participant is
activated to modify entities according to a specific criterion. The animate partici-
pant finds the entities in dsl corresponding to the entities modified in simLang and
applies the necessary changes on them. The terminatingCondition participant is
checked again and the simulation goes on.

The generic solution of this design pattern shows participants with one or two
roles when, in practice, they could be played by a variable number of elements
and relations in a model transformation implementation, depending on the ap-
plication. Therefore, to reduce the false negative instances of design patterns to
detect, we should not only consider the generic solution, but also look at differ-
ent reification possibilities of the design pattern. In our detection approach, we
can specify variants of each participant by varying the number of roles to detect
most instances. Nevertheless, this also emphasizes the importance of the recovery
phase that must correctly interpret the detected participants. There is important
information about the design pattern that is not expressed in the generic solution.
In particular, the intention of the design pattern is typically defined in natural
language. Future work should investigate a procedure for capturing the intention
to enhance the detection.

A participant may be played by more than one rule. For example, initialize in
Fig. 18 can be implemented in multiple rules to initialize the state of the elements
needed for the simulation. On the contrary, some participants are optional, like

5 For example, through Entities before Relations or Auxiliary Metamodel.
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initialize. For example, for specific application, the model transformation may
not need to explicitly initialize the simulation because it relies on default values
from the metamodel.

Another observation concerns the use of tags in design patterns expressed in
DelTa. A tag expresses a condition on a role, e.g., stateChanged, or an action on
a role, e.g., changeState. They are abstract components that may be implemented
in three different ways in a model transformation implementation: (i) ignored, (ii)
with intermediate elements, or (iii) with non-structural elements. For (i), a typical
example where a tag can be ignored is the setup action. The implementation of this
tag can be implicit in the logic of the transformation, without explicitly having
an attribute of an element of a rule implementing the tag. For (ii), tags may be
implemented by intermediary entities and relations. For example, changeState and
stateChanged can be implemented by a marker or a link like in Fig. 14. In this
example, we also see the necessity of adding a NAC in the rule. Therefore, tags in
this category can be implemented by various elements depending on the semantic
of the model transformation. For (iii), tags can be implemented using other types
of elements, such as constraints and actions on attributes of elements in a rule. This
is typically the case when a transformation heavily uses helpers expressing OCL
constraints in ATL. When a design pattern falls in one of these three categories,
we rely on the recovery phase to detect occurrences of the pattern.

Finally, very few design patterns, like Unique Instantiation and Parallel Com-
position, rely on forbidden constraints. For example, in the former pattern, if a
role appears in a participant, then it cannot appear in another one. Currently, our
approach is not able to detect such constraints because string matching cannot
detect the absence of occurrences.

7 Conclusion

Detecting design patterns in model transformations can facilitate the comprehen-
sion and the maintenance of these transformation programs. In this paper, we
propose a generic two-steps approach to detect design patterns, their variations,
and their approximations in model transformation implementations. In the first
step, our approach takes as input a set of model transformation rules and the
participants of a design pattern, both converted into strings, and uses a string-
matching algorithm to automatically find occurrences of pattern participants in
the transformations. This automated step is completed by a manual step that con-
sists in assembling participant occurrences and checking for the control schemes
to form the pattern occurrences. The ability of our approach to detect approxima-
tions, i.e., incomplete pattern occurrences, may help to propose potential oppor-
tunities to improve the model transformation implementation. Other possibilities
of refactoring opportunities can be found when examining detected occurrences of
different design patterns used jointly in a transformation.

To evaluate our approach, we applied it on 18 transformations written in Hen-
shin to detect 10 design patterns. Our evaluation results showed that design pat-
terns are actually used in transformations, and that our approach is able to detect
their different forms, being variants or approximations. They also showed that, ex-
cept for a few cases, developers comply with the usage relations between patterns.
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To improve our work, we plan to investigate some research directions. First,
we will study other algorithms to increase the automation of the second step of
the detection process. To broaden the applicability of our approach to other trans-
formation languages, we expect to explore mapping strategies for each language
to encode transformations into strings that can be handled by the matching algo-
rithm. We also work on a recommending strategy to propose refactoring solutions
to incomplete pattern occurrences, similarly to the work in [29]. Finally, to better
assess the performance of our approach, we plan to test it on large transforma-
tions.
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13. Guéhéneuc, Y., Guyomarc’h, J., Sahraoui, H.A.: Improving design-pattern identification:
a new approach and an exploratory study. Softw. Qual. J. 18(1), 145–174 (2010). DOI
10.1007/s11219-009-9082-y. URL https://doi.org/10.1007/s11219-009-9082-y
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Résumé. Les modèles, comme d’autres artefacts de première classe tels que le code
source, sont maintenus et peuvent être refactorisés pour améliorer leur qualité et, par con-
séquent, l’un des artefacts dérivés. Compte tenu de la taille des modèles manipulés, un
support automatique est nécessaire pour les tâches de refactoring. Lorsque les règles de
refactoring sont connues, un tel support est simplement la mise en œuvre de ces règles dans
les éditeurs. Cependant, pour les langages de modélisation propriétaires et moins populaires,
les règles de refactoring sont généralement difficiles à définir. Néanmoins, leurs connaissances
sont souvent intégrées dans des exemples pratiques. Dans cet article, nous proposons une
approche pour recommander des règles de refactoring que nous apprenons automatiquement
à partir d’exemples de refactoring. L’évaluation de notre approche sur trois langages de
modélisation montre que, en général, les règles apprises sont exactes.
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ABSTRACT

Models, like other first-class artifacts such as source code, are main-

tained and may be refactored to improve their quality and, conse-

quently, one of the derived artifacts. Considering the size of the

manipulated models, automatic support is necessary for refactoring

tasks. When the refactoring rules are known, such a support is

simply the implementation of these rules in editors. However, for

less popular and proprietary modeling languages, refactoring rules

are generally difficult to define. Nevertheless, their knowledge is

often embedded in practical examples. In this paper, we propose an

approach to recommend refactoring rules that we lean automati-

cally from refactoring examples. The evaluation of our approach

on three modeling languages shows that, in general, the learned

rules are accurate.

CCS CONCEPTS

• Software and its engineering→Model-driven software en-

gineering; Search-based software engineering;

KEYWORDS
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1 INTRODUCTION

Model-driven engineering is increasingly popular in industry [23].

In industrial contexts, the complexity of models keeps on increasing

and are they are used in various development and maintenance

activities. Like other first-class artifacts such as source code, they

are maintained and refactored to improve their quality. Considering
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the size of the manipulated models, automatic support is necessary

to refactor these models.

Much work has been done on model refactoring [24]. Most of

the contributions can be classified into two families: (1) tools and

mechanisms to define and apply refactorings [17, 22, 25, 29, 31, 37],

and (2) specific refactoring rule definition [6, 11, 34]. When the

languages (metamodels), in which models are expressed, are of

general purpose such as UML, there is a critical mass of researchers

and users that allow to shape, test, and prove refactoring rules. This

is not the case for domain-specific languages (DSLs), where it is not

always possible to have such a critical mass to define refactoring

rules, due to the specific expertise needed. Thus knowledge is not

available to feed the refactoring tools.

When fully writing refactoring rules for DSLs is difficult, if not

impossible, a promising alternative is to learn them from examples.

This idea was successfully investigated for learning model trans-

formation rules from examples [1, 9]. As model refactoring can

be seen as a particular use of model transformation [18, 19], one

can adapt these learning algorithms for refactoring. However, this

adaption is difficult for two reasons. First, refactoring is an inplace

model transformation. Most of the existing by example techniques

are intended to generate a completely new model. Second, not the

entire source model is affected by the transformation. Only specific

situations in the model constitute refactoring opportunities.

In this paper, we propose an approach to recommend refactoring

rules learned from examples. Our approach can apply to different

scenarios. For example, a modeler starts performing refactoring on a

large model. Then, after some occurrences, she feeds in the changed

model fragments (before and after the changes) into our approach.

The learning process can then suggest rules that she can apply

(with or without modifications) to the rest of the model. Another

scenario is to collect different versions of models on which manual

refactoring had been applied in the past. Then, starting from these

model versions, our approach derive refactoring rules to potentially

apply on new models. In these scenarios, our approach does not

pretend to provide absolute correct refactoring rules. Instead, it

suggests the rules that best conform to the provided examples.

We view rule learning as an optimization problem and we solve it

using genetic programming. Our algorithm searches for refactoring

rules that best conform to the provided examples. Examples are

pairs of models (or model fragments) before and after the refactor-

ing. Our assumption is that it is easier for domain experts to provide

concrete examples of situations where a refactoring must be applied

and how to apply it, than defining fully-fledged, consistent, and

general refactoring rules.

To evaluate our approach, we applied it to three known meta-

models for which we have the sought refactoring rules beforehand
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Figure 1: Three examples to learn rules for the Pull-up field refactoring

(ground truth).These metamodels have different kinds of refactor-

ing with different complexities. Our results show that it is possible

to learn complex refactoring rules, but the accuracy of these rules

depends on the coverage of the provided examples.

In Section 2, we explain the challenges to learn refactoring trans-

formations from examples. In Section 3, we present our approach

based on genetic programming. In Section 4, we validate our solu-

tion by reporting an empirical experiment we conducted. In Sec-

tion 5, we discuss the application and limitations of our approach.

Finally, we review related work in Section 6 and conclude in Sec-

tion 7.

2 CHALLENGES IN LEARNING

REFACTORING TRANSFORMATIONS

2.1 Motivating example

Although there are well-documented refactoring patterns defined

for known formalisms, e.g., UML class diagrams (UMLCD) [10], it is

very difficult for a domain expert to express complete general refac-

toring rules for a DSL. Nevertheless, such non-software engineering

experts typically provide their refactoring knowledge by means of

examples. However, learning general rules from examples is not

trivial, since it is very sensitive to the coverage of the examples.

Consider the Pull-up field refactoring pattern in UMLCD. It is

usually described as “if two subclasses have the same field, move that

field to their super-class” [10]. To learn the rule for this refactoring

as a model transformation, the domain expert could provide the

example illustrated in Figure 1 (a). From this example, one could

easily deduce a single model transformation rule where the precon-

dition pattern, a.k.a. left-hand side (LHS), consists of a super-class

C1 with two sub-classes C2 and C3 having both an attribute A1.

This pattern is a generalization of the subset of the left model with

classes A, B and C and attributes x. The action part of the rule, a.k.a.

the right-hand side (RHS), consists of deleting A1 from C2 and C3,

and creating an attribute A1 in C1.

An important challenge with learning this rule from this example

is that the algorithm should detect the part that has been modified

so that it correctly identifies opportunities to apply this refactor-

ing on any input UMLCD model. Existing approaches learning

model transformation from examples cannot be reused for learning

refactoring rules. Some of them [1, 9] try to learn outplace transfor-

mations, where a new model is produced from another one. Others

[12, 32] try to only learn the sequence of refactoring rule application

given the rules and input model, from example. For a refactoring,

the model transformations to learn are inplace: it is the same model

that is modified [29]. For such transformations, the challenge is to

detect the transformation occurrence correctly in the model, rather

than focusing on the changes to perform. This is therefore a key

contribution of this article. In the previous example, the rule

must detect that two subclasses need to be present from the model

pair in Figure 1 (a). That is because a counterexample is also present

between classes F and G. This helps to reduce the search space for

finding the correct precondition to apply a refactoring.

Another challenge is that the rule deduced from solely this ex-

ample only works when there are two subclasses. If there are three

or more subclasses as in Figure 1 (b), applying this rule will only

remove x from two subclasses. A better model transformation for

this refactoring would consist of two rules. A first rule duplicates

an attribute in the super-class when this attribute exists in two

sub-classes. A second rule removes an attribute from a sub-class

when this attribute exists in the super-class. This is in fact the

transformation output by our algorithm. Nevertheless, this re-

vised transformation still has corner cases when it is erroneous.

For example, if the model to refactor is the one in the left part of

Figure 1 (c), this transformation will pull attribute x up to A even

if it should not be defined on all its subclasses (i.e., D). In this case,

the correct model transformation should pull the common attribute

to a new intermediate subclass, leading to the desired refactored

model illustrated on the right of Figure 1 (c).

This example illustrates that even for commonly known refac-

toring patterns in software engineering, manually expressing the

general model transformation that implements a refactoring pat-

tern is very difficult. It is even more difficult for domain-specific

experts who are not used to think algorithmically, such as in [6].
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It also shows how critical the appropriate choice of examples is to

learn the right refactoring rules.

2.2 Problem formulation

Before After

Metamodel

Figure 2: Refactoring learning as an optimization problem

Consider the situation where no explicit refactoring knowledge

is available. The only available information is the DSL described

by means of a metamodel and a set of examples each containing

a pair of models, i.e., before and after the refactoring, as depicted

in Figure 2. In this situation, learning refactoring rules can be seen

a search problem in which we explore the very large space of all

possible refactoring rule sets that can be written for the concerned

metamodel. To guide the search, candidate rule sets are evaluated

using the conformance of their behavior with the provided exam-

ples, i.e., applying the refactoring rules to the before models of

the example pairs and comparing the obtained models with the

corresponding after models.

3 LEARNING REFACTORING

TRANSFORMATIONS FROM EXAMPLES

In this section, we start by presenting the basics of genetic program-

ming. Then, we show how we adapt this algorithm to the problem

of refactoring rule learning.

3.1 Genetic programming

Genetic programming (GP) is an evolutionary algorithmwhose goal

is to automatically create computer programs, from examples of

inputs/outputs, to solve problems [28]. Figure 3 sketches its general

process. The algorithm starts by generating an initial population

of solutions (programs) of a given size. Then, it evaluates these

solutions by means of a fitness function. This function generally

measures the ability of a program to produce the expected out-

puts from the provided inputs. The next step of the algorithm is

to evolve the initial population through a given number of itera-

tions (generations) by combining three types of operations: elitism,

crossover, and mutation. Thus, for each generation, a fixed num-

ber of the top solutions are automatically reproduced in the new

population following the elitism principle. This principle ensures

that the best solutions are not lost during the evolution. Then, to

fill the remaining slots in the population, pairs of parent solutions

are selected following a strategy that favors the fittest solutions,

while still giving a chance to all the solutions. An example of such

strategies is the roulette-wheel selection that consists in assigning

a probability to each solution to be selected, proportionally to its

fitness. Each selected pair of parent solutions is used, with a certain

probability, to produce two child solutions, thanks to the crossover

operator. The child solutions (or parent solutions if the crossover is

not performed) are mutated with a given probability. When a stop

condition is satisfied (generally a fixed number of generations), GP

returns the best solution found.

Figure 3: Overview of the genetic programming process

The above-described algorithm is generic and can be applied to

derive any kind of program. To adapt the algorithm to a specific

problem, we shall define: (1) how to encode a program (in our case

a set of refactoring rules), (2) how to generate an initial population

of programs, (3) how to evaluate a program, and (4) how to produce

new programs from existing ones using genetic operators. The

remainder of this section details these specifics to learn refactoring

rules from examples.

3.2 Encoding refactoring rule sets

To learn the refactoring rules, we have a set ofm examples, where

each example i consists of a source model si and a target model ei .
The task is to find all refactoring rules that transform any model

si into ei . Therefore, a candidate solution is a set of refactoring

rules, which we call refactoring set in the following. We denote

each individual transformation by R = {r1, r2, . . . , rk } for k ∈

N, composed of k refactoring rules r to be executed. Note that a

set of rules R encodes a set of refactorings because the provided

example pairs may correspond to more than one refactoring pattern

application. The initial population is therefore composed of n sets

of refactoring rules.

1 (defrule PullUpField
2 ?c1 <- (Class(name ?A))
3 ?c2 <- (Class(name ?B))
4 ?c3 <- (Class(name ?C))
5 ?i1 <- (Inheritance(subclass ?B)(superclass ?A))
6 ?i2 <- (Inheritance(subclass ?C)(superclass ?A))
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7 ?a1 <- (Attribute(name ?attName)(class ?B))
8 ?a2 <- (Attribute(name ?attName)(class ?C))
9 (test (and (neq ?c1 ?c2)(neq ?c1 ?c3)(neq ?c2 ?c3)))
10 =>
11 (assert (Attribute(name ?attName)(classe ?A)))
12 (retract ?a1)
13 (retract ?a2))

Listing 1: A rule encoded in the Jess languagee

To encode a refactoring rule, we use the general purpose declar-

ative language Jess (Java Expert System Shell) [13]. We specify

a metamodel by a set of fact templates, by textually encoding

the metamodel elements, such as classes and inheritance relation-

ships for UMLCD. We encode models as facts, instances of the

fact templates, e.g., class(name Student) and inheritance(subclass

Student)(superclass Person). The example given in Listing 1 shows

a candidate rule for the Pull-up field refactoring1. The LHS of the

rule encodes a refacotring opportunity, i.e., a pattern to search for

in the source models (lines 2–9 in our example). The RHS of the

rule lists the sequence of operation to perform on the LHS pattern

instances (lines 11–13). The pattern to match includes three classes

(lines 2–4). Two of them should inherit from the third one (lines

5–6). The two subclasses should also have an identical attribute

(lines 7–8). When an instance of this pattern is found, the operation

to perform are: add an attribute in the superclass with the same

name as the ones of the subclasses (line 11) and remove the attribute

from the subclasses (lines 12–13). We can see that this rule will

correctly detect the refactoring in the example pair of Figure 1 (a).

3.3 Initial creation of refactoring sets

As shown in Figure 3, the first step is to create randomly an initial

population of n refactoring sets. Each refactoring set contains a

random number of rules within a parameterized interval. The LHS

of a rule is created by generating randomly a bounded number

of fragments based on the metamodel types. The state conditions

on the fragment are generated randomly based on the element

properties as described in [9].

Figure 4: FTG to create fragments of a excerpt of the Class

Diagram metamodel

To help creating consistent (strongly connected) patterns to

search for, we use a strategy based on the constraints imposed by

the metamodel structure. To this end, we build a fragment type

graph (FTG), a sort of automaton that defines the dynamics of the

pattern elements’ creation. Figure 4 shows an excerpt of an FTG

1 Note that this is a simplified rule, types cardinalities and other properties are also
taken into account.

corresponding to a simplified UMLCD metamodel. In such a graph,

nodes are either element types of the metamodel to instantiate or

the start/end nodes. When traversing this graph, the current node

indicates the metamodel element from which we can create the

next element. These nodes are connected by two types of edges. A

creation edge (depicted as a solid arrow) indicates that the target

node can be created after the source node is created. Both created

elements are connected according to the metamodel syntax. For

example, the edge between the Class and Attribute means when a

classC1 is created, the next step may be the creation of an attribute

A1. A1 is then considered as an attribute of C1. The second type

of edge is the back edge (dashed arrow). It indicates that from the

current element, we cannot further create a metamodel element

connected to it. For example, once we create the attribute A1, there
is no further element to create that can be connected to it. The back

edge outgoing from A1 sets C1 as the following element. When

a node is the source of many creation edges, one of the edges is

selected randomly. For example, after settingC1 as the current node,
it is possible to create a method M1 for C1, another attribute A2
for C1 or an inheritance relationship I1 with C1 as the superclass
or the subclass. In the latter case, the current instance I1 requires
the creation of a new class C2 to play the role of the superclass. C2
becomes the current instance and so on and so forth. When a node

has many back edges, then one of them is selected arbitrary. If we

select the edge whose target is the end node, the pattern creation

stops and this constitute the LHS of the rule.

To create the RHS of rules, we randomly select addition and

deletion operators with randomly defined elements.

3.4 Evaluating refactoring sets

We determine how well a set of refactoring rules R implements

the transformation of them examples provided using a global fit-

ness function F . As shown in Equation (1), it averages the fitness

functions fi (R) that calculate how “close” R is from producing the

expected result for each example.

F (R) =

∑m
i=1 fi (R)

m
(1)

Like other approaches that learn transformations [1, 2, 8, 9], to

evaluate fi (R), we apply R on the considered source model si of
the example pair i to produce a model pi that we compare with ei .
However, because we deal with inplace transformations, we must

ensure that R only modifies the concerned model elements and

preserves the others. To define fi , let us consider the following

four sets. A and D are the sets of elements added and deleted by R
respectively, when comparing si with pi . EA and ED are the sets

of elements expected to be added and deleted respectively, when

comparing si with ei . SD is the set of elements that should not

be deleted, when comparing si , pi and ei . Then, we compute the

following sets. CA = A ∩ EA and CD = D ∩ ED are the sets of

elements that have been correctly added and deleted respectively.

IA = A\EA and ID = D \ED are the sets of elements that have been

incorrectly added and deleted respectively. To avoid bias favoring

rules with higher number of elements, these sets are computed for

each type t ∈ Ti ,Ti being the set of types present in the metamodel

and instantiated in example i .

104



Recommending Model Refactoring Rules from Examples MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

The fitness function fi (R) includes for each type t two compo-

nents,modt (R) and prest (R) that calculate respectively the model

modification and preservation scores when applying R to si
2:

fi =
1

|Ti |
×

∑
t ∈Ti

α ×modt + β × prest (2)

modt (R) is the proportion of elements of type t added or deleted by
R among the expected ones. If no change is expected for a type t ,
thenmodt (R) = 1. Formally:

modt =

{
1, if |EAt | + |EDt | = 0
|CAt |+ |CDt |
|EAt |+ |EDt |

, otherwise
(3)

prest (R) is the proportion of elements in sit (elements of type t )
that are not supposed to change and that are actually preserved. It

is defined formally as:

prest =
1

2
×

((
1 −

|IAt |

|sit | + |IAt |

)
+

(
1 −

|IDt |

|SDi |

))
(4)

3.5 Deriving new refactoring sets

To generate the next population of rule sets, we start by selecting a

given number of the fittest ones and include them directly in the

generated population. This elitism strategy allows us to preserve the

best genetic material across generations. Then, to fill the remaining

slots, we perform the crossover and mutation operators on the rule

sets of this generation. More specifically, we select a pair of rule

sets following the roulette-wheel strategy. This assigns to each rule

set a probability to be selected proportionally to its fitness. When

two parent rule sets are selected three equiprobable scenarios can

be performed: crossover only, mutation only, or both. Whatever

the chosen scenario is, the crossover and mutation operations are

performed with a certain probability.

Crossover. The crossover operator produces two new rule sets

by combining the rules of the parent rule sets. Let us consider

the two rule sets Ra and Rb . If the crossover is chosen, we ap-

ply it with a certain probability as follows. Cut-points, x and y
are respectively selected to partition each set of rules into two:

Ra = {ra1, . . . , rax , rax+1, . . . , rak } and Rb = {rb1, . . . , rby , rby+1,
. . . , rbl }. The we recombine the partitions to produce two new rule

sets: Ra′ = {ra1, . . . , rax , rby+1, . . . , rbl } and Rb′ = {rb1, . . . , rby ,
rax+1, . . . , rak }.

Mutation. If mutation is chosen for a given rule set, one of four

mutation operators modifies the rules themselves. At the rule set

level, an operator adds/removes a randomly generated/selected rule

(as described in Section 3.3). At the rule level, an operator adds/re-

moves pattern elements in the LHS, while still conforming to the

FTG. Finally, two operators adds/removes modification operations

in the RHS: one for assertion and one for deletion operations (see

Section 3.2). To avoid any bias, all operators are selected with equal

probability. However, a great part of the problem complexity is to

search for the accurate refactoring opportunity before performing

2To make the notation less cluttered, we omit “(R)" in the various components of fi
equations.

the refactoring. Therefore, we assign the LHS mutation operator

twice as much probability as the others.

4 VALIDATION

We evaluate our approach along the following three research ques-

tions:

RQ1 Do the learned refactoring sets refactor models cor-

rectly? We first verify that all the refactorings have been

correctly applied, such that the discovered transformation

rules produce the correct target models.

RQ2 Do the expected refactorings appear in the learned

rules? We then validate that the transformation rules cor-

rectly implement the intended refactorings from the exam-

ples. This guarantees that we do not achieve the production

of the correct target model resulting from an arbitrary com-

bination of rules, but thanks to the correct refactoring rules.

RQ3 Are the results obtained attributable to our approach?

Since we rely on a probabilistic evolutionary approach, we

have to check if we consistently obtain similar results across

executions, and if these results are better than those of the

best solution found by a random exploration which considers

an equal number of solutions.

4.1 Experiment setting

This section details the evaluation setting. This includes the con-

sidered metamodels and their respective refactorings, the examples

used in the learning process, the parameters of the GP algorithm,

and the method used to answer the research questions.

4.1.1 Data collection. To test our approach, we use three meta-

models, for which the refactoring rules are known (ground truth)

and there are sufficient data sources to collect examples from. For

each metamodel, we collected examples as pairs of before and after

models available online or in the literature. Often, the model ex-

amples include multiple refactorings. Table 1 summarizes the data

used. For each metamodel, we list the refactoring types performed

in the examples, the number of refactoring-type occurrences found

in the examples, and number of models considered.

UML class diagrams (UMLCD). For UMLCD, we reverse engi-

neered partial models from two well-known open-source Java

projects: ArgoUML and Xerces-J. Since these projects have many

releases available, we selected model versions before and after refac-

toring. Using XSLT, we implemented templates to generate sets of

facts in Jess from the XML models.

From the given examples, we identified the four refactorings3

reported in Table 1 as cataloged in [10]. It is interesting to note

that some refactorings can overlap. For example, Clean up attribute

is also part of Pull up field. We anticipate that their respective

transformations will share a rule.

Workflow Petri Nets (WPN). WPN is a particular class of Petri

nets with a single source place, a single sink place, and all places

and transitions are on a path from the source to the sink. In [35],

the authors formalize three refactorings that improve the execution

of the WPN by removing redundant elements in a way that does

3It is not necessarily a refactoring per se, but a form of anomaly correction.
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Table 1: Selected metamodels, refactorings, and model examples

Metamodel Refactoring Description Occurrences Models

UMLCD

Pull up field Move an attribute shared by two classes to a superclass 3

5
Pull up method Declare the method in the superclass and keep the method definition in the current class 4
Pull up association Move an association shared by two classes to a superclass 1
Clean up attribute Delete an attribute of a sub-class if it is also defined in the superclass 4

WPN

Removing implicit place Remove a place that does not change the overall marking of the net 2

4
Removing EFC structures If a set of places all have arcs to the same set of transitions, introduce an intermediate

transition and place to direct the token flow from the set of places to the set of transitions
3

Removing TP-cross structures If a set of transitions all have arcs to the same set of places, introduce an intermediate place
and transition to direct the token flow from the set of transitions to the set of places

1

BPMN

Pull up incoming sequence flow If a sequence flow connects two tasks where one is in a process and the other in a sub-process,
the flow should connect the task to the sub-process directly

2

3
Pull up outgoing sequence flow Similar as above, but from the sub-process to the task 2
Replace sequence by message flow Replace a sequence flow between two classes in different pools by a message flow 2
Explicit data association If a sequence flow connects two tasks via an artifact, connect the two tasks directly with a

sequence flow and use a data association for the artifact
2

Symmetric modeling Every nested opening gateway must have its corresponding closing gateway in the same
order

1

not change the observable behavior of the net. The refactoring are

complex to implement as the authors provide several algorithms to

apply them. In [35], they also provide four examples of WPN.

Business Process Model and Notation (BPMN). BPMN is a widely

used formalism for business analysts to create, implement, and

monitor processes [26]. Several works have proposed refactoring

opportunities to improve the semantics and readability of BPMN

models. The work in [27] provides four good and bad practices re-

lated to task connectivity. We also considered an additional refactor-

ing called Symmetric modeling from [5]. We collected three models

from the OMG standard [26] to detect these refactoring opportuni-

ties.

4.1.2 Algorithm parameters. Like for any evolutionary algo-

rithm, one needs to specify the parameters to run our GP-based

approach. To tune these parameters, we ran our approach with

different configurations on different data sets. For the validation,

we retained the following configuration. We set the size of the ini-

tial populations to 30 candidate refactoring rule sets. This size is

constant for all evolutions of the population. We set both proba-

bilities of crossover and mutation to 0.9. Unlike classical genetic

algorithms, having a high mutation probability is not unusual for

GP algorithms (see for instance [30]). For the elitism, we injected

the top 3 refactoring rule sets into the next generation.

4.1.3 Methodology. To answer RQ1, we compare the produced

model pi with the expected model ei , relying on precision and

recall measures. In Equation (5), we define precision as the ratio

between number of correct modifications and the total number of

modifications, based on the sets defined in Section 3.

Precision =
1

|Ti |
×

∑
t ∈Ti

|CAt | + |CDt |

|CAt | + |CDt | + |IAt | + |IDt |
(5)

In Equation (6), we define the recall as the ratio between number

of correct modifications and total number of expectedmodifications,

which we defined asmod in Equation (3).

Recall =
1

|Ti |
×

∑
t ∈Ti

|CAt | + |CDt |

|EAt | + |EDt |
(6)

For RQ2, we focus on the quality of the refactoring rules obtained

with respect to the known refactoring rules. We manually inspect

the best set of refactoring rules obtained for each metamodel to

determine how close they are to the expected ones. We determine

if an obtained rule completely or partially matches the expected

one, or if it is not expected at all. We also check if some expected

rules were missing.

To answer RQ3, we performfive runs of our approach for UMLCD

with 10, 000 generations. We also use five runs of random gener-

ation, each having 30 000 rule sets (equivalent to 30 solutions per

generation × 10 000 generation). We generate the random rule sets

according to the initial population generation procedure. Then for

each run (GP and random), we select the solution with the best

fitness. We compare our approach with the random generation in

terms of precision and recall of the obtained rule sets.

4.2 Results and interpretation

4.2.1 RQ1: Correct refactored models. The left part of Table 2

presents the results of the fitness, precision, and recall scores that

report on the quality of the refactored models. For each metamodel,

we report the results of three executions as the learning process is

probabilistic by nature. The three executions use exactly the same

settings, including the same initial population. For UMLCD, we

observe perfect results on three executions for both precision and

recall when comparing the refactored models generated by the

learned rules with those given in the examples.

The precision in the case of WPN is also almost perfect. Except

for one execution where a slight modification was considered as

incorrect, all additions and deletions of model elements were appro-

priate. However, the recall is relatively low (between 74% and 84%),

meaning that some modifications where not performed as expected.

After analyzing the obtained models, this recall score can be ex-

plained by the following considerations. The WPN metamodel con-

tains few elements, essentially places, transitions, and arcs. Then,
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Table 2: Results of learned refactorings with GP

Metamodel Run Fitness Precision Recall
Rules obtained by GP

Expected rules
Exact Partial Unexpected

UMLCD

1 100% 100% 100% 3 1 0

2 100% 100% 100% 3 1 0 4

3 100% 100% 100% 3 1 0

WPN

1 88.7% 98.0% 77.2% 1 3 0

2 82.0% 100% 83.8% 2 1 1 3

3 82.0% 100% 74.5% 2 2 0

BPMN

1 98.8% 72.6% 89.3% 2 2 2

2 98.8% 72.6% 89.3% 2 1 3 5

3 99.4% 81.0% 94.8% 3 2 1

the sought refactoring are complex variations of instances of the

same few element types. For example, a refactoring rule removes

an unnecessary place depending on other places and transitions. To

learn such a rule, the provided before- and after-refactoring exam-

ples should include enough fragments differentiating this situation

from other similar situations where the refactoring is not necessary.

For the BPMN metamodel, we observe an opposite tendency, i.e.,

a better recall and a lower precision. The lower precision can be

explained by the fact that some additions and deletions were made

because the learned rules missed some conditions to have a more

precise pattern to search for.

4.2.2 RQ2: Correct refactoring rules. Producing the correct mod-

els using the learned rules does not mean that these rules are those

expected. For this research question, we investigate whether the

learned rules are correct with respect to the known and expected

refactorings. Note that a specific type of refactoring can be real-

ized by means of one or more refactoring rules. Thus we will not

have one-to-one comparisons between the learned and expect rules.

We rather decide if a learned rule has a correct contribution to a

refactoring alone or in conjunction with other rules.

The right part of Table 2 presents an overview of the rule sets

obtained by our approach compared to the expected one. For the

UMLCD metamodel, we were expecting four refactoring types (see

Table 1). We obtained the exact rule for the Clean up attribute. The

combinations of this rule with respectively two other rules imple-

ment exactly the Pull up field and Pull up method refactorings. We

have the same situation with Pull up association with the exception

that one condition was missing in one rule, i.e., checking that an in-

heritance relationship exists only for one of the two classes having

the association to pull up. This missing condition did not affect the

precision and recall in RQ1, because, there was no counterexample

in the provided models where a missing inheritance prevents from

performing the refactoring.

For the WPN metamodel, we were able to learn all three refactor-

ings. However, the GP consistently found, for the three executions,

one more rule. In one execution, this additional rule has nothing to

do with the expected refactorings. In the other cases, the additional

rules contribute partially to the refactorings together with the other

rules. The learned rules are not trivial. Figure 5 illustrates the rule

we obtained for the Removing TP-cross structure refactoring. It looks

for two transitions, each connected to the same two places and

Figure 5: Rule obtained by GP for the Removing TP-cross

structures refactoring

then replaces these arcs with a place and a transition to connect

the initial pair of transitions to the initial pair of places.

For the BPMN metamodel, the GP also generated more rules

than expected. But in this case, many of these rules were not con-

tributing to the expected refactoring: this explains the relatively

low precision score for RQ1. We accurately obtained the expected

rules for two refactorings, namely Symmetric modeling and Ex-

plicit data association. For the three other refactorings, the GP was

not able to derive the complete refactoring rules. As illustrated in

Table 2, it only partially matched some of the rules and missed

others. This situation illustrates the fact that the derived rules do

not necessarily have the exact same structure (pattern elements and

relations) as the rules we would have written by hand. Nevertheless,

the learning process produces rules that, overall correctly perform

the refactoring with respect to the provided examples.

4.2.3 RQ3: GP vs random. Before comparing the precision and

recall of the learned refactoring rule sets, we first look at the con-

vergence of the five GP executions. Figure 6 shows the curves

corresponding to the best fitness evolution during the respective

executions. These curves always converge towards a fitness score of

100% (as reported in Table 2) after a certain number of generations.

To compare with the random generation, we obtained perfect

precision and recall for all the five executions of GP. As Table 3

shows, the precision is below 51% and the recall is below 56% for the
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Figure 6: Evolution of fitness score forUMLCDover five runs

using our approach

five random executions. We can conclude that the results obtained

for UMLCD are attributable to our learning algorithm and not to

the number of explored solutions.

Table 3: Results of random generation for UMLCD

Run Fitness Precision Recall

1 85.3% 50.7% 55.4%

2 86.6% 26.9% 42.1%

3 86.3% 45.0% 49.8%

4 86.3% 42.0% 45.0%

5 86.6% 48.6% 48.8%

4.3 Threats to validity

The evaluation of our approach has shown that it can learn com-

plex refactorings in many cases. However, a threat to the validity

of these results is the generalization of these results to DSLs, as

mentioned in our motivations. Although experimenting with such

DSLs is important, the need of having known refactorings (ground

truth) and available model examples, limits our possibilities. Still,

we believe that the considered metamodels and refactorings are

complex enough and exhibit a good variety to represent an accept-

able setting for a preliminary evaluation.

The choice of the examples is another possible threat. We se-

lected examples that are almost prototypic. In real-life scenarios,

models can be modified for different purposes, so it is not always

possible to distinguish refactorings from other changes. However,

our setting matches the scenario where a modeler starts performing

the refactoring on some fragments and then gives the initial and

modified fragments to our learning algorithm.

Another validity threat is concerned with the stop criterion for

the GP algorithm. We ran our algorithm for a fixed amount of time

(hours) and then checked how many generations were needed to

find the best rule set. In a real-life scenario, waiting for such an

amount of time is not always feasible, especially if the modeler uses

our approach in an interactive way.

5 DISCUSSION AND LIMITATIONS

Like many other example-based approaches, the quality of the

learned rules strongly depends on the quality of the examples pro-

vided. As we have shown in the BPMN case, it is utterly important

to provide examples having enough variations to distinguish when

different, but close, situations may lead (examples) or not (coun-

terexamples) to a refactoring.

Related to this observation, we also noticed that the partially

matched rules were under or over-constrained. Many of these situ-

ations could have been avoided had we integrated negative condi-

tions. Our rule creation procedure generates conditions that check

for the presence of elements instantiating a pattern. However, in

some cases, one has to also check for the absence of elements. Inte-

grating negative conditions in the learning process will increase

the expressiveness of the learned rules.

In our current implementation, we are able to successfully detect

structural anomalies in the model to be refactored, i.e., related to

the presence of metamodel element instances and their connectiv-

ity. We have found cases in WPN, where the precondition of a rule

requires universal quantification (e.g., Removing TP-cross structures).

In a by-example approach, it is hard to generalize a rule from a finite

sample set of examples. As in Figure 5, the GP was only able to find

rules for two and three transitions, because the examples did not

contain situations with more transitions. However, the general rule

in [35] states that it applies to an arbitrary number of transitions.

This also comes from the limitation of the model transformation

paradigm that relies on existential quantification. It is, nevertheless,

possible in Jess to add queries and functions in the LHS to general-

ize the matching. Such queries can be implemented according to

navigation possibilities for a given metamodel, independently from

the sought refactorings. For example, in UMLCD, a primitive query

can consist of generating the set of the associations involving a

given class. During the learning, this set can be used to test the

absence of associations (size equals 0, for example). This approach

was successfully used in [1].

Other types of refactorings are not structural by nature. For in-

stance, in UMLCD, a pair of models example may exhibit shortening

an attribute with a very long name. The intent behind this semantic

anomaly correction is not only very hard to encode, but also hard

to derive from a by-example approach. As this refactoring is not

related to the model structure, generating the rule conditions (LHS)

is not possible in the current version. To handle this, string and

arithmetic operations must be used, as done in [1].

6 RELATEDWORK

In the literature, many tools have been proposed to refactor models

[17, 22, 25, 29, 31, 37]. Although they use model transformation to

refactor models, they do not learn refactorings automatically. In this

section, we discuss approaches that automate model refactoring

and approaches that derive model transformations from examples

or demonstrations.

6.1 Search-based model refactoring

Our approach is a search-based technique and, like very few others,

is dedicated to refactoring models [21]. Most search techniques rely

on evolutionary algorithms, especially genetic algorithms. In [12],
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the authors also propose to generate a sequence of refactoring by

measuring the similarities between provided examples. Instead, our

fitness function measures explicitly correct and incorrect modifica-

tions. SORMASA [3] is a tool that assists the user by suggesting a

set of model refactorings. It relies on a mono-objective evolution-

ary algorithm aiming at increasing cohesion and reducing coupling

of UMLCD models. In [14], the author present an approach that

attempts to introduce design patterns in UMLCD models by opti-

mizing specific software design metrics.

There are, nevertheless, some approaches that consider behavior

preservation. For example in [20], the authors implement a multi-

objective evolutionary algorithm to optimize the trade-off between

improving the quality related UML models.

6.2 Model transformations by demonstration

By demonstration approaches are used to derive inplace transfor-

mations automatically. In [4], the authors proposed an approach to

alleviate the complexity of developing model refactoring operations.

They derive semi-automatically endogenous model transformations

by analyzing user editing actions when refactoring models. They

collect all atomic operations performed by the user by comparing

the initial and final models. The operations are then saved in a dif-

ference model from which they propose a set of pre/postconditions

of the refactoring operations to the user for manual refinement.

Sun et al. [33] propose a similar approach for deriving similar trans-

formations. To collect the operations, they extend the modeling

environment to monitor the user editing actions. The recorded op-

erations are then analyzed to remove incoherent and unnecessary

ones. Using an inference engine, they express user intentions as

reusable transformation patterns. In [15], the authors proposed an

automatic inference of inplace transformations. Their approach can

infer advanced rule features, such as negative application condi-

tions, multi-object patterns, and global invariants.

6.3 Model transformation by examples

Several works have investigated how to learning model transfor-

mations from examples [7, 36, 38]. However, these approaches are

limited to exogenous and outplace model-to-model transformations.

Learning inplace transformations from examples is more complex

because we must preserve the unaffected elements of the model.

Faunes et al. [8, 9] used GP learn transformation rules from ex-

amples of outplace transformations. Two articles [1, 16] tried to

address more complex transformations. Although the latter did not

need to learn rules, the former employed a strategy based on divid-

ing the learning process in different steps, using adaptive mutation,

and using fine-grained transformation traces in the examples.

7 CONCLUSION

In this paper, we present an approach to recommend refactoring

rules learned from examples. The examples are pairs of models

representing the versions before and after the application of refac-

torings. The learning is performed using GP by evolving a popu-

lation of randomly generated sets of model transformation rules

guided by the conformance to the provided examples. As such our

approach does not pretend to find the absolute refactoring rules

for a given modeling language. It instead finds the rules that best

conform to the considered examples.

To evaluate our approach, we applied it on three metamodels

together with refactored model examples. This evaluation showed

that our approach can learn complex refactoring rules and that

the obtained results are not attributable to the number of explored

solution, but to our search strategy.

Although the obtained results are satisfactory, there is room for

improvement. First, expressiveness of the learned rules can be en-

hanced by considering new constructs such as negative conditions,

navigation primitives, and arithmetic and string operations. The

performance of our algorithm in terms of execution time deserves

to be improved. We plan to optimize the best set of rules found

by the GP to improve the efficiency of the rule engine. Finally, the

accuracy of our approach can be enhanced by considering more

sophisticated genetic operators and search strategies. For example,

adaptation mutation can be used to adapt the search strategy to the

characteristics of the current population, as in [1]. This includes

changing the mutation probability when no improvement is no-

ticed for many generations or if the diversity inside the populations

decreases. Another way of improving the search strategy is by ex-

perimenting with multi-objective GP algorithms. Themod and pres
scores can be implemented as two different objectives without the

need of defining weights to aggregate them. Minimizing the size of

the rules can be another objective to avoid rules with unnecessary

conditions. In the future, we also plan to test our approach on a

larger set of metamodel, including DSLs, for which it is difficult to

define refactoring rules.
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Chapter 7

Conclusion

Refactoring is a maintenance process that aims to improve the quality of software. The
thesis aims at determining to which extent refactoring be automated in MDE. We considered
two scenarios that depend on the availability of the refactoring knowledge. The first comes
when the knowledge is explicitly available. The second when it is not. Hence the knowledge
is implicit.

1. Contributions

We summarize our three contributions following the two situations of refactoring that we
identified.

1.1. Knowledge-based refactoring

We exploited design patterns as explicit knowledge that helps for refactoring automation.
Detecting design patterns opens different refactoring opportunities. Hence, we proposed
two techniques to facilitate design pattern detection in model transformations. We chose
model transformation as a target because of the lack of existing detection approaches on
this artifact. The detection aims at determining to which extent instances of a design
pattern are implemented in a transformation. We detected two levels of implementation of
design patterns: instances completely implementing a design pattern and instances partially
implementing a design pattern. Our techniques allowed detecting partial and complete design
pattern instances together with their variants. The first technique uses a set of rules to
specify the detection of instances of a given design pattern. The proposed approach first
detects the pattern participants through the rules. Then, it ensures that the control flow
over these rules corresponds to the scheduling scheme in the design pattern. The second



contribution uses a string matching technique for the detection. Model transformations and
design pattern participants are mapped to sequences of elements represented as strings. The
proposed approach uses a generic technique that is based on a bit-vector algorithm. The
advantage of the second approach, compared to the rule-based detection, is that it does
not require to enumerate the specification of all possible variations or partial versions of
the design pattern. Both contributions are validated on transformations expressed in the
Henshin language. The results showed the ability of both contributions to detect different
design patterns, their variants, and their approximations.

1.2. Example-based refactoring

When refactoring knowledge is not explicitly available, a.k.a. implicit knowledge, we
proposed to infer it from refactoring examples. In this context, we defined an approach to
learn refactoring rules from examples. We use an approach based on genetic programming
to perform the learning. The approach learns executable rules that do not violate the con-
formance to the metamodel, for different types of models. We considered three metamodels
to validate this contribution. The validation showed that our contribution can learn com-
plex refactoring rules and that the obtained results are not attributable to the number of
explored solutions, but to our research strategy. The obtained results provide compelling
evidence that it is possible to automate refactoring, even when knowledge is not available,
by exploiting examples.

The contributions confirm that it is possible to automate refactoring in MDE when refac-
toring knowledge is explicit or implicit. The design pattern detection contributions showed
how refactoring opportunities can be detected and how the patterns can be used as a refac-
toring solution. The learning-based contribution showed how refactoring knowledge can be
inferred from refactoring examples. This contribution searches for refactoring opportunities
and treats them in the same set of rules that represent the extracted explicit knowledge.

2. Limits and future work

In this section, we discuss the limitations of our work and open research directions related
to the frame of our thesis.
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2.1. With respect to the problem space

Our vision of refactoring in MDE involves three dimensions of variability: the availability
of knowledge and its nature, the artifacts to refactor, and the languages in which the artifacts
are expressed. For each dimension, we only considered in this thesis a few possibilities.

For the availability of refactoring knowledge, we considered the case where refactoring
knowledge exists in the form of design patterns. We did not study other forms of knowledge
that can be exploited to automate refactoring. In the future, we plan to explore other
alternatives, such as design smells or quality-based heuristics. Similarly, when the knowledge
is not explicitly available, we studied the use of input/output examples as a substitute. Here,
again, other sources of data can be exploited, such as modification histories or other artifact
instances from which we can infer templates.

Regarding the types of artifacts to refactor, we only considered models and model trans-
formations. In the future, we plan to investigate the refactoring of other artifacts such as
metamodels, modeling constraints, and concrete syntax.

Finally, for the representation languages, although the refactoring learning for models
is agnostic with respect to the model representations, we made the choice to consider only
Henshin transformations in our studies of knowledge-based refactoring. Our approach is
generalizable to graph-based model transformations, such MoTif (Syriani and Vangheluwe,
2013), GrGen.NET (Geiß and Kroll, 2007), eMoflon (Anjorin et al, 2011). However, other
model transformation approaches, such as ATL (Jouault et al, 2008) and QVT (Kurtev,
2007) require adapting the pattern detection to include, for example helpers in the case of
ATL.

2.2. With respect to the solution space

In this thesis, we used three techniques to implement the proposed contributions.
For the first contribution of design-pattern detection, the transformations are represented

as sets of facts in the Jess language, and transformation design patterns as sets of rules
executable by the Jess engine (Hill, 2003). We used Jess because it is a convenient language
to build research prototypes. However, this language is not common in the MDE community,
which makes it difficult to integrate our prototype with other tools in the MDE pipeline, such
as the Eclipse Modeling Framework(Steinberg et al, 2008). To address this limitation, we
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plan to adapt our approach to well-known model transformation languages, such as Henshin
or ATL.

In the second contribution, we represented both transformations and transformation
design patterns as strings. We used a string matching technique that is based on a bit-vector
algorithm. This technique has the advantages to be efficient and generalizable. However,
not all of the variants and approximations can be found with the common form of the
pattern specification. In the future, we plan to automatically generate specifications of the
most probable variants and approximations from the unique specification of the pattern.
Moreover, we will also explore other detection techniques that reduce the amount of input
information that should be provided.

For the third contribution, we rely on a genetic programming technique to learn rules
from examples. It would be interesting to explore other techniques, such as classical and
emerging machine learning algorithms, to learn more generalizable refactoring rules.
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