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Abstract

We study the problem of locating multiple public goods for a group of agents
with single-peaked preferences over an interval. An alternative specifies for each
public good a location. In Miyagawa (1998) each agent consumes only his most
preferred public good without rivalry. We extend preferences lexicographically
and characterize the class of rules satisfying Pareto-optimality and replacement-
domination. We show that for three public goods, this results in a very similar
characterization to Miyagawa (2001a): only the two rules which either always
chooses the left-most Pareto-optimal alternative or always chooses the right-
most Pareto-optimal alternative satisfy these properties. This is in contrast to
Ehlers (2002) who showed that for two goods the corresponding characterization
is substantially different to Miyagawa (2001a).
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1 Introduction

We consider the problem of choosing multiple locations in an interval for an exoge-
nously given number of identical public facilities. Each agent has a “single-peaked”
preference relation over the interval and is allowed to select which public facility to
use. An agent’s preference relation is “single-peaked” if up to a certain point, his
“peak”, his welfare is strictly increasing, and it is strictly decreasing beyond that
point. For example, a certain number of bus stops have to be located along a street.
Other examples are gymnasiums, libraries, schools, telephone booths, and broadcast-
ing news during a day. The planner faces the problem of choosing for each preference
profile a list of locations.!

An economy is completely described by the set of feasible locations, the set of
agents, their preferences, and the number of public goods. A solution is a systematic
way to assign to each economy and each public facility a location. Moulin (1980)
introduces this problem in the special case of one good chosen from a one-dimensional
continuum and considers strategic issues.

The literature that follows extends his work in several directions.? However, until
Miyagawa (1998) there was no axiomatic study of the problem of locating multiple
public goods. Hotelling (1929) considers two competing businesses choosing where to
locate on a street. He assumes that the businesses are identical and each individual
patronizes only the one that is closest to where he lives. In Miyagawa (1998) an
alternative specifies for each of the two public goods a location. Such a list is an

option set and each agent compares two option sets by comparing their best elements

Tn the latter example the planner has to choose a time schedule.
2Danilov (1994) and Schummer and Vohra (2002) allow the set of feasible locations to be a tree,

and Border and Jordan (1983), and Zhou (1991) model it as a multi-dimensional continuum.



according to his preference relation over locations. We call this extension of single-
peaked preferences from the set of possible locations to the set of alternatives its
max-extension.

We contrast the max-extension with a different extension of preferences. The town
government has to locate two public facilities, say two libraries, on a street. The
libraries, though identical, only have one copy of each book. Then a certain book
may have been already lent out and an individual that wants to borrow this book
may have to drive to his second choice library. In most cases each individual visits
his most preferred library, but sometimes both. Another example is the provision of
telephone booths. Given two alternatives, first an agent compares the most preferred
locations of each of the two alternatives, and if there is a tie, then he compares the
other locations. We call this extension of single-peaked preferences the lexicographic-
extension. Primarily, each agent uses the facility at his most preferred location, but
he might be forced to consume the facility at his second choice location because the
other facility is out of use.

As a basic requirement we impose Pareto-optimality meaning that the rule chooses
for each preference profile an efficient alternative. In our model, Pareto-optimality is
weaker than in Miyagawa (1998). If the smallest and the greatest peak of a preference
profile are distinct, then each alternative which is efficient for the max-extension is
also efficient for the lexicographic-extension.

We study the following notion of fairness. If the environment of an economy
changes, then the welfare of all agents who are not responsible for this change are
affected in the same direction: either all weakly gain or all weakly lose. As a variable
parameter of an economy which may change over time, we consider preferences. Sol-
idarity applied to such situations says that when the preference relation of an agent
changes, then the welfare of all other agents are affected in the same direction. This
replacement principle is called welfare-domination under preference-replacement, or

simply replacement-domination. Moulin (1987) introduces replacement-domination



in the context of binary choice with quasi-linear preferences. He calls it “agreement” .

For two pure public goods and the max-extension, Miyagawa (2001) shows that
there are only two rules satisfying Pareto-optimality and replacement-domination.
Ehlers (2002) shows for two public goods that each rule satisfying Pareto-optimality
and replacement-domination is described by means of a continuous and single-peaked
binary relation over the set of locations. For each preference profile such a rule chooses
one location to be a most preferred peak in the peak profile according to the fixed
single-peaked relation. The second location is indifferent to this peak according to
the fixed single-peaked relation such that, if Pareto-optimality is not violated, the
locations belong to opposite sides of the peak of the fixed relation. These rules are
called single-peaked preference rules and are characterized by Pareto-optimality and
replacement-domination.

Our main result shows that for the provision of three public goods, the result of
Ehlers (2002) does not extend. For three public goods and the lexicographic extension,
only two rules satisfy Pareto-optimality and replacement-domination, the smallest-
peak rule and the greatest-peak rule. The smallest-peak rule chooses all three locations
to be the smallest reported peak. The greatest-peak rule chooses all three locations
to be the greatest reported peak. By locating one more facility, the single-peaked
preference rules are restricted to only two rules. This result is similar to that of
Miyagawa (2001a).

For different models of public good economies the rules satisfying Pareto-optimality
and replacement-domination have been identified. For the provision of one public
good, Thomson (1993), and Ehlers and Klaus (2001) characterize the class of rules
satisfying these properties on closed intervals. Each of these rules is determined by a
unique point, called the target point. A target rule chooses for each preference pro-
file the efficient location that is closest to the target point. Vohra (1999) and Klaus

(2001) characterize the same class of rules on tree networks. Klaus and Protopapas

3A review of the literature is by Thomson (1999).



(2020) characterize target correspondences for multi-valued location of one public
good in an interval. For two pure public goods and the max-extension, Umezawa
(2012) shows the incompatibility of Pareto-optimality and replacement-domination
for tree networks. Gordon (2007a,b) shows an incompatibility for the location of one
public good on a cycle. Harless (2015) considers small changes for one public good
economies.

Another solidarity property is population-monotonicity which requires that the
welfares of all agents are affected in the same direction when the population changes.
For one public good, Ching and Thomson (1999) and Klaus (2001) characterize the
class of target rules by Pareto-optimality and population-monotonicity. Gordon
(2007a,b) consider cycles and a more general framework. For the location of two
public goods and the max-extension of preferences (and the lexicographic extension,
respectively), Miyagawa (2001b) (and Ehlers (2003), respectively) identifies a certain
class of rules and shows that these rules are characterized by Pareto-optimality and
population-monotonicity. Ehlers (2001) and Heo (2012) consider other properties for
the location of two public goods and the max-extension.

The implications of other properties and settings of multiple public goods have
been studied. Barbera and Bevia (2002, 2006) and Ju (2008) consider the location of
public facilities when the agents are not free to choose the good they consume. Jackson
and Nicol6 (2004) and Bogomolnaia and Nicol6 (2005) and Jackson and Nicold (2005)
allow for congestion. Bochet and Gordon (2012) and Bochet, Gordon and Saran
(2013) consider the location multiple pure goods without congestion. Reffgen and
Svensson (2012) and Alcalde-Unzu and Vorsatz (2018) consider other issues.

The organization of the paper is as follows. Section 2 introduces the general model
and the axioms. Section 3 defines the max-extension and presents the main result
of Miyagawa (2001a). Section 4 shows our main result for three public goods and
the lexicographic-extension. Section 5 compares our result with Ehlers (2002). The

Appendix contains the proof of our main result.



2 The Model

We follow Ehlers (2002). Let N = {1,...,n}, n € N, be the set of agents. Each
agent ¢ € N is equipped with a single-peaked and continuous preference relation R;
over [0, 1]. By I; we denote the indifference relation associated with R;, and by P, the
corresponding strict preference relation. Single-peakedness means that there exists a
location, called the peak of R; and denoted by p(R;), such that for all x,y € [0, 1], if
x <y <p(R;) orz>y>p(R;), then yPiz. By R we denote the set of all single-
peaked preferences over [0,1], and by RY the set of (preference) profiles R = (R;)ien
such that for all i € N, R; € R. Given S C N, Rg denotes the restriction (R;)cs
of R € RN to S. Given R € RY, p(R) denotes the smallest peak in the profile
(p(R;))ien, and p(R) the greatest peak in the profile (p(R;))ien-

There is a fixed number, denoted by m € N, of identical public facilities. This
number is exogenously given. Note that we do not exclude the case m = 1. For each
of the facilities we have to select a location in the interval [0,1]. Let M ={1,...,m}.
The order in which we locate the facilities is irrelevant as each agent has the freedom
to choose the public good he prefers. An alternative is a m-tuple z = (x1,...,x,)
such that 0 < 2y < a9 < -+ < 2, < 1. Let [0,1]™ denote the set of all alternatives.
We allow the possibility that for some k, k" € M, x;, = x3.

A (decision) rule is a mapping ¢ that associates with each R € RY an alternative,
denoted by ¢(R) = (p1(R), ..., pm(R)). In other words a rule selects for each profile
and each facility a location.

We extend preferences from the set of locations to the set of alternatives lexico-
graphically. Each agent compares two alternatives via the lexicographic preference

relation over [0, 1] induced by his single-peaked preference relation over [0,1].

Lexicographic-Extension of Preferences: Let: € N and R; € R. Given two al-
ternatives z,y € |0, l]M and two permutations 7, p of M such that x-1)Rix-2)R; . . . RiTr(m)

and Yy, Riyp2)Bi - - - RilYip(m), T 18 lexicographically strictly preferred to y if and only if



there exists h € M such that for all & < h, x4 Liypx) and z-,) Biy,n). Furthermore,

x 18 lexicographically indifferent to y if and only if for all k € M, x4y Liyp()-

Abusing notation, we use the same symbols to denote preferences over possible
locations and lexicographic preferences over alternatives. When we extend preferences
lexicographically, weak upper contour sets are neither closed nor open, and non-
convex. Furthermore, indifference sets only contain a finite number of alternatives.

Pareto-optimality says that for each preference profile the chosen alternative can-
not be changed in such a way that no agent is worse off and some agent is better
off relative to his lexicographic preference relation. Given S C N and R € RY, let
E(Rg) denote the set of Pareto-optimal (or efficient) alternatives for Rg. Formally,
E(Rs) = {y € [0,1]M |for all z € [0, 1]M if for some i € S, xPy, then for some j € S,
yPjx}.

Pareto-Optimality: For all R € RY: o(R) € E(R).

When m > 2, for Pareto-optimality to hold it is not sufficient that for each public
good the selected location belongs to [p(R), p(R)]. For every chosen alternative it
is necessary that each closed interval having as two endpoints two selected locations

contains at least one peak. The straightforward proof is left to the reader.

Lemma 2.1 Let ¢ be a rule. Then ¢ satisfies Pareto-optimality if and only if for
all R € RN the following holds: (i) for all k € M, ¢r(R) € [p(R),B(R)], and (ii) for
all k € {1,...,m — 1}, there exists i € N such that p(R;) € [pr(R), vr+1(R)].

By Lemma 2.1, the set of efficient alternatives depends only on the peaks of the
profile. Finally, we prove that for any two efficient alternatives, if all agents are

indifferent between them, then the two alternatives are the same.

Lemma 2.2 Forall S C N, all R€ RY, and all 2,y € E(Ryg), if for alli € S, x1y,
then x = v.



Proof. Let j € S be such that p(R;) = min;eg p(R;). Since z,y € E(Rg), p(R;) <
vy <9 <o <y and p(R;) < yp <o < oo - <y, Because x1;y, it follows that

for all k € M, z; = yx. Hence, x = y. O

2.1 Replacement-Domination

The solidarity property we discuss is welfare-domination under preference-replace-
ment, or for short replacement-domination, introduced by Moulin (1987). It requires
that when the preference relation of some agent changes, the welfare of all other

agents are affected in the same direction.

Replacement-Domination: For all j € N and all R, R € R" such that Ry =
Rn\jy: either [for all i € N\{j}, p(R)Rip(R)] or [for all i € N\{j}, o(R)Rip(R)].

We state some implications of Pareto-optimality and replacement-domination.
These implications are very general and not specific to our model. They hold also in
the public good models of Thomson (1993) and Vohra (1999), and when we use the
max-extension (defined below) in our model.

First, if the preference relation of some agent changes and the choices of the rule
at the initial and new profile are Pareto-optimal for the profile consisting of the

remaining agents’ preferences, then the same alternative is chosen for both profiles.

Lemma 2.3 Let p be a rule satisfying Pareto-optimality and replacement-domination.
Let j € N and R, R € RY be such that Ry\(jp = Ry If ©(R), o(R) € E(Rnjy).
then o(R) = ¢(R).

Proof. By replacement-domination, [for all i € N\{j}, ¢(R)R;¢(R)] or [for all

i € N\{j}, ¢(R)Rip(R)]. Since ¢(R),o(R) € E(Rn\(;), it follows that for all

i€ N\{j}, o(R)L;o(R). Hence, by Lemma 2.2, o(R) = ¢(R). O



Second, if the preference relation of some agent changes and all Pareto-optimal
alternatives at the new profile are also efficient for the profile consisting of the remain-
ing agents’ preferences, then all these agents weakly prefer the alternative chosen by

the rule for the new profile to the initially chosen alternative.

Lemma 2.4 Let p be a rule satisfying Pareto-optimality and replacement-domination.
Let j € N and R, R € RY be such that Ry\(jy = Rnvgy- If E(R) = E(Ry\(;1). then
for alli € N\{j}, o(R)Rip(R).

Proof. By replacement-domination, either [for all i € N\{j}, ¢(R)R;p(R)] or [for

all i € N\{j}, o(R)R;p(R)]. Suppose that the assertion of Lemma 2.4 does not

hold. Thus, for all i € N\{j}, p(R)Rip(R), and for some t € N\{j}, ¢(R)P.p(R).

Because E(R) = E(Rn\3), p(R) € E(Rn\gj3)- The previous two facts constitute a

contradiction. O

3 The Max-Extension

Preferences are defined over [0,1]. When m > 2 the set of alternatives and the set
of locations are distinct. Agents consume the pure public goods without rivalry and
each agent uses only the good located at his best point. An example is the location of
bus stops. Using this motivation, Miyagawa (1998) extends preferences from locations
to alternatives as follows. Given two alternatives, an agent strictly prefers the first
alternative to the second if he strictly prefers the best location of the first alternative
to the best location of the second relative to his single-peaked preference relation over
locations. Each alternative is an option set from which agents can freely select, and
assume that each agent compares two alternatives by comparing the locations that

he prefers.

Max-Extension of Preferences, R;"**: Leti € N and R; € R. Given two alter-

natives x,y € [0, 1™, x is mazimally strictly preferred to y, xP"*@y, if and only if

9



for some k € M and all k € M, x; Py,. Furthermore, x is mazimally indifferent to

y, Iy, if and only if for some k,k € M and all k € M, xRy, and yp Rz,

When we extend preferences maximally, weak upper contour sets are closed but
not convex.

The first requirement says that for each preference profile the chosen alternative
cannot be changed in such a way that no agent is worse off and some agent is bet-
ter off. Given N € P and R € RY, let E(R™) denote the set of Pareto-optimal
(or efficient) alternatives for R when preferences are extended maximally. Formally,
E(R™) = {y € [0,1]M | for all z € [0,1], if for some i € N, 2Py, then for some

j € N, yPyo),
Pareto-Optimality: For all N € P and all R € RY, p(R) € E(R™™).

When m > 2, for Pareto-optimality it is necessary but not sufficient that for each
public good the selected location belongs to [p(R),p(R)]. When m = 1 for Pareto-
optimality it is also sufficient that for each profile the chosen location belongs to the

peaks interval of that profile.

Remark 3.1 For all R € RY, let E(R™*) denote the set of Pareto-optimal alter-
natives in [0, 1]" when we extend preferences maximally. It is easy to see that for
all z € [0,1]M, 2z € E(R™*) if and only if (i) z1,22 € [p(R),p(R)] and (ii) for some
i,7 € N, p(R;),p(R;) € [x1,22], 21 P2, and xoPjxy. For the lexicographic-extension
of preferences, Pareto-optimality is weaker than for the max-extension. For all R €
RY such that p(R) < p(R), E(R™") C E(R). Generally the set E(R) is considerably
larger than E(R™). For example, let R € RY be such that {p(R;)|i € N} = {0,1}.
Then E(R™*) ={(0,1)} C ([0,1] x {1}) U ({0} x [0,1]) = E(R). <

iGiven i € N, R; € R, and z € [0,1], the set B(z, R;) = {y € [0, JM |yR™*x} is the weak

upper contour set of x at R]"**.

10



Below let M = {1,2}. The following two rules satisfy replacement-domination.
One is the rule that chooses for each profile the two smallest distinct peaks, and the

other is the rule that chooses for each profile the two greatest distinct peaks.

Left-Peaks Rule, ¢": For all N € P and all R € RY, if p(R) = p(R), then
oM(R) = (p(R),p(R)), and otherwise, o¥(R) = (p(R),min{p(R;)|j € N and p(R) <
p(R;)}).

Right-Peaks Rule, ¢“: For all N € P and all R € RY, if p(R) = B(R), then
0%(R) = (p(R),p(R)), and otherwise, 0“(R) = (max{p(R;)|j € N and p(R,;) <
p(R)}.B(R)).

It turns out that for populations with at least four agents these two rules are the
only ones satisfying in addition Pareto-optimality. Let V(N) C R denote the set of
all preference profiles R € RY such that p(R) < p(R).

Theorem 3.2 (Miyagawa, 2001a) Let M = {1,2} and |N| > 4. On the domain
V(N) the left-peaks rule and the right-peaks rule are the only rules satisfying Pareto-

optimality and replacement-domination for the max-extension of preferences.

Finally we discuss the location of three public facilities. The above result of Miya-
gawa (2001a) generalizes to these cases as follows:®> If |[N| > 5, then a rule satisfies
Pareto-optimality and replacement-domination with respect to the max-extension if
and only if either for all profiles the three different smallest peaks are chosen, or for

all profiles the three different greatest peaks are chosen.

5Personal communication with E. Miyagawa at the Fourth International Meeting of the Society

for Social Choice and Welfare, 1998, Vancouver, BC, Can.
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4 Lexicographic Extension: Three Public Goods

Below we consider the provision of three public goods, i.e., M = {1, 2, 3}.

In our model the left-peaks rule and the right-peaks rule “correspond” to the
smallest peak rule and the greatest-peak rule. The smallest-peak rule always locates
all public goods at the smallest peak, and the greatest-peak rule always at the great-

est peak. Both of these rules satisfy Pareto-optimality and replacement-domination.

Smallest-Peak Rule, ¢: For all R € RY and all k € M, ¢, (R) = p(R).

Greatest-Peak Rule, ¢: For all R € RY and all k € M, ¢,(R) = p(R).

Theorem 4.1 Let M = {1,2,3} and |N| > 5. Then the smallest-peak rule and the
greatest-peak rule are the only rules satisfying Pareto-optimality and replacement-

domination for the lexicographic extension of preferences.

Remark 4.2 Our two rules and Miyagawa’s rules have the following features in com-
mon. For all preference profiles, the left-peaks rule chooses the unique left-most
Pareto-optimal alternative relative to the max-extension, and the smallest-peak rule
chooses the unique left-most Pareto-optimal alternative relative to the lexicographic-
extension. By this we mean that for all R € RY, for all z € E(R™)\{x*(R)},
Li(R) < z; and Ly(R) < w9, and for all y € E(R)\{¢(R)}, ¢,(R) < yi and
Qz(R) < 1yo. Similarly, the right-peaks rule and the greatest-peak rule choose al-
ways the unique right-most Pareto-optimal alternative relative to each extension. All

these rules choose only the extreme Pareto-optimal alternatives. <

The Appendix contains the proof of Theorem 4.1.6
In Theorem 4.1 it is not possible to weaken Pareto-optimality to unanimity. The

latter property requires that when all agents have the same preference, the rule locates

6Tt is an open question whether in Theorem 4.1 the restriction n > 5 is tight or not.
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all three public goods at the common peak. The following example establishes the

previous fact.

Example 4.3 Let ¢ € [0,1]. Forall R € R and allm € M, ¢,,,(R) = med(p(R), ¢, p(R)).

The rule ¢ satisfies unanimity and replacement-domination, but not Pareto-optimality. o

The above example is simply the same “target rule” (Thomson, 1993; Vohra, 1999)

applied to all three locations of the public goods.

5 Discussion

For two public goods and the lexicographic extension, Ehlers (2002) showed that
each rule satisfying Pareto-optimality and replacement-domination is described by a
continuous and single-peaked binary relation over [0,1]. Before we formally define
these rules, we introduce an equivalent representation of a single-peaked preference
relation over [0, 1].

Let Ry € R. Then 0Rg1 or 1F,0. Suppose that 0Ryl. Since R, is continuous,
for some b € [p(Ryo), 1], 0pb. For all = € [0,8], let f(z) € [0,b] be such that x1f(z)
and the following holds: (i) when = < p(Ry), f(x) > p(Ro), and (ii) when x > p(Ry),
f(z) < p(Ry). Because Ry is continuous, it follows that f is continuous. Therefore,
with Ry we associate a unique function f : [0,b] — [0, b] such that f is continuous,
f = [ (this follows from Ry being a preference relation), and f is strictly decreasing
(this follows from single-peakedness of Ry). In particular, f possesses as a unique fixed
point p(Ry), i.e. f(p(Ry)) = p(Ry).” Furthermore, associated with such a function is
a unique single-peaked preference relation on [0,1].

Let f:[0,b] — [0,b] (or, alternatively, f : [b, 1] — [b, 1]) be a continuous strictly
decreasing function such that f(0) = b (f(b) = 1) and f = f~! (f is symmetric).

Denote by a its unique fixed point and by F the set of all such functions.

If 1P,0, then we associate with Ry a function f : [b, 1] — [b, 1] where bIy1.

13



Single-Peaked Preference Rules, ¢/: Given f € F (where f(p(Ry)) = p(Ry)),
the single-peaked preference rule ¢/ based on f is defined as follows. For all R € RY
such that p(R;, ) < --- < p(Ri,),

o if p(Ro) ¢ [p(12),p(R)], then

(p(Ri,), f(p(R;,)))  when f(p(R;,)) < p(Ri,),
(f(p(Ri, ), p(R;,,)) otherwise.

The main result of Ehlers (2002) shows that for two public goods, if NV contains at
least 3 agents, then every decision rule satisfying Pareto-optimality and replacement-

domination is a single-peaked preference rule.

Theorem 5.1 (Ehlers, 2002, Theorem 3.3) Let M = {1,2} and |[N| > 3. Then
the single-peaked preference rules are the only rules satisfying Pareto-optimality and

replacement-domination for the lexicographic-extension of preferences.

For two public goods, ¢ is the single-peaked preference rule when the peak of the
social planner is at 0, and ¢ is the rule when the peak of the social planner is at 1. The
corresponding functions i,f € F are given by f : [0,0] — [0,0] and fo1] —[1,1].
Then for two public goods, ¢ = ¢L and ¢ = <Z>?.

As we have shown the above theorem does not generalize to the provision of three
public goods. In that case, if N contains at least five agents, then Pareto-optimality
and replacement-domination admit only the smallest peak rule and the greatest-peak

rule. By providing one more good, the single-peaked preference rules are restricted

to only two rules.
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6 Appendix

Throughout let n > 5, m = 3, and ¢ be a rule satisfying Pareto-optimality and
replacement-domination.

The following lemma follows from successive applications of Lemma 2.3.

Lemma 6.1 Let R € RY be such that |{p(R;)|i € N}| < 4. For all R € RY, if
{p(Ri)|i € N} ={p(Ri)|i € N}, then o(R) = ¢(R).

We show in two lemmas that for any preference profile, the open interval having

as endpoints the smallest and the greatest assigned location contains no peak.

Lemma 6.2 For all R € RY and alli € N, p(R;) ¢]o1(R), pa( R)[U]pa(R), o3(R)][.

Proof. Suppose that for some R € RY and some j € N, p(R;) € J¢1(R), p2(R)[U
lp2(R), p3(R)[. Without loss of generality, we suppose that

p(R;) € Joi(R), p2(R)]. (1)

Because n > 5, there exists t € N\{j} such that p(Rm ) = p(R), D(Rnq) = D(R),
and ¢(R) € E(Rv\yy). Let R" € RY be such that Ry = Rv\y and p(R)) =
w3(R). We show that ¢(R') = ¢(R). By replacement-domination, there are two
cases.

If for all i € N\{t}, ¢(R)R;p(R'), then either [p3(R’) < p3(R) and p(R’) €
E(Rn\{+y) which implies together with Lemma 2.3, p(R') = ¢(R),] or [p3(R') =
03(R), p2(R') < pa(R) and p(R') € E(Rn\gy) which implies together with Lemma
2.3, p(R') = (R)].

If for all i € N\{t}, p(R')Rip(R), then ¢;(R') < ¢i(R) and ¢3(R) < w3(R).
Suppose that ¢(R) # ¢(R). Then 1(R) < ¢1(R) or ps(R) < gs(R). By (1),
v1(R) < ¢1(R) implies po(R') < o R) and @3(R) < ¢3(R'). By our choice
of t, p(R) € E(Rnyy). Thus, for some [ € N\{t}, p(R;) € [p2(R),¢s(R)] and

15



©(R)Pip(R'), which contradicts replacement-domination. Thus, this case cannot oc-
cur. When p3(R) < p3(R’), similar arguments yield a contradiction to replacement-
domination.

Without loss of generality, we suppose that p(R}) = p(R'), p(R;) = p3(R’). Let
[ ¢{1,2,5}. Let R” € R be such that Ry = By and p(RY) = 1 (R'). Using
the above arguments it follows that p(R") = ¢(R’).

Let R € RY be such that Ry = R/, Ry = RY, and for all i € N\{1,2}, R; = R.
Successive applications of Lemma 2.3 imply ¢(R) = @(R"). Let x € Jo1(R), p(Rs)|
be such that zP3py(R). Let R* € RY be such that R]mv\{4} = R4y and p(RY) = z.
We show that p(R*) = ¢(R).

If (R*) € E(Rn\(41), then Lemma 2.3 implies p(R”) = ¢(R). Suppose that
©(R*) ¢ E(Rn\(y). Hence, by Pareto-optimality, p(R}) € [p1(RY),p2(R")] C
Ip(R1), p(Rs)[ or p(R§) € [p2(R7), @3(R7)] C |p(11), p(Lts)[. In both cases, by our
choice of p(R%), p(R*)Ps¢(R). Then by replacement-domination, for all i € N\{4},
o(F")Rip(R). Hence, po(B") = @s(R) and go(R7) < p(Rs) < @a(R). Thus,
©(R)Pyyp(R*), which contradicts replacement-domination.

Hence, ¢(R*) = p(R). To summarize,

p1(R") = p(R), p(Rs) € Jo1(R"), p2(R")[, and 3(R") = p(R). (2)

Note that p(R%) = p(R%) and |{p(R¥)|i € N}| < 4. By Lemma 6.1, we may
assume that

o R Py p(RY). (3)

Let R* € RY be such that R]mv\{l} = R?\/\{l} and Rf = R%. By Lemma 2.4, for all

i€ N\{1},
p(R7)Rip(R"). (4)

Thus, @3(R*) = @3(R*). We show that the following.

Claim 0: p1(R*) = ]_Q(Rm) =z
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Proof of Claim 0: Suppose that

z < o1 (R"). (5)

Let R}, € R be such that ¢, (R*)Plpi(R*), p1(R*)Plps(R*) and p(R,) = z. By

Lemma 6.1, we have both gp(Rﬁl,R]mV\{4}) = ¢(R"*) and gp(Rﬁl,Rfv\M}) = p(R*). By
construction, gp(Rﬁl,R]mv\{4})Pig0(Rﬁl,R]mV\{4}). Since E(R*) = E(Rfv\{l}) and both

E(R), Rf\,\{4}) = E(R*) and E(R/, Rfv\{4}) = F(R"), this is a contradiction to Lemma,
2.4. o

Since p1(R*) = p(R*) = = = p(f]), (3) and (4) imply, ©2(R*) = @o(R*). To

summarize,
p1(R7) =z, p2(R") = p5(R"), and p3(R") = B(R). (6)
Let R* € RY be such that f?fv\{z} = R]mv\{z} and }?5 = R?. By Lemma 2.4, for

all i € N\{2}, p(R*)R*¢(R*). Thus, oi(R") = p(R). By (2) and using the same
argument as in Claim 0, we obtain gpg(}%m) = ]_Q(Rm) = p(Rs3). By Pareto-optimality,
0o (R*) € [p(R*),p(R*)]. We show that without loss of generality we may assume

that

~

pa(R") # . (7)
If po(R*) = x, then

A —

e1(R) = p(R), p2( k") = x, and @3(R") = p(Ry). (8)

Let y = 1(x+p(R3)) and consider the profiles RY and RY which we define in the same
way as R* and R®. Using the same arguments as for R* and }%m, (2) holds for RY,
and the first and last equality of (8) hold for Rv. If @g(éy) =y, then the previous
fact and (8) together with Lemma 6.1 contradict replacement-domination. Hence,
gpg(f%y) # y and instead of = we use y for the definitions of R*, R*, and R*.

We assume that (7) holds. Then

~ —

p1(R) = p(R), p2(R*) # x, and p3(R*) = p(Ry). (9)
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Let o : N — N be the permutation such that for all i € N\{1,2}, o(i) =i, o(1) = 2,
and ¢(2) = 1. By Lemma 6.1, ¢(c(R*)) = p(R*).® By the previous fact, (6), and (9),
o(a(R*))Pro(R*) and o(R*)Pfo(o(R*)). Since U(Rm)]\/\{l} = }%fv\{l}, the previous

relations contradict replacement-domination. 0]
Lemma 6.3 For all R € RY and alli € N, p(R;) ¢ |o1(R), p3(R)[.

Proof. Suppose that for some R € RY and some j € N, p(R;) € |o1(R), p3(R)|.
By Lemma 6.2, p(R;) = @2(R). Without loss of generality, we suppose that p(R;) =
p(R) and p(Ry) = B(R). Let R € RN be such that Ry ;3 = Ry and for all
i € N\{1,2,7}, R; = R;. Successive applications of Lemma 2.4 yield ¢(R) = ¢(R).
Let R' € RY be such that RJI\/\{2} = RN\{Q} and R% = Rj, and R? € RY be such that
R?\/\{l} = R}V\{l} and R? = R,. Using the same arguments as in the proof of Claim 0

we can show that

p1(RY) < ga(RY) = p3(R') = p(IY),

and

p(R;) = ¢1(R?) = oo R?) < 3(R?) = p(R)).
By Lemma 6.1 and the two previous facts, the same argument as at the end of the

proof of Lemma 6.2 yields a contradiction to replacement-domination. O

Next, we show that for any preference profile the assigned locations of all public

goods are equal.
Lemma 6.4 For all R € RY, |[{px(R) |k € M}| = 1.

Proof. Suppose that for some R € RY, {¢n(R) |k € M}| > 2. Then (R) <
©3(R) and by Pareto-optimality, for some j € N, p(R;) € [¢1(R), p3(R)]. By Lemma
6.3, p(R;) = ¢1(R) or p(R;) = w3(R). Without loss of generality, we suppose that
p(Ry) = p(R) and p(R;) = p(R2). We consider five cases.

8For any profile R € RV, let o(R) = (Ry(i))ien denote the profile R renamed according to o.
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Case 1: For some j € N, p(R) < p1(R) < p2(R) = p3(R) = p(R;) < p(R) and for

alli € N, p(R;) # ¢1(R).

Let R € RY be such that R{LQJ’} = Rp2,y and for all ¢ € N\{1,2,j}, R; = Ry.
Successive applications of Lemma 2.3 yield p(R) = ¢(R). Given x € J¢1(R), p2(R)],
let R* € RY be such that R]mv\{j} = Ry and p(Rf) = x. We prove the following

claim.

Claim 1: For all x € Jp1(R), p2(R)[, {k € M | pr(R*) = 2} > 2.
Proof of Claim 1: Let x € Jp1(R), p2(R)[. By Lemmas 6.2 and 6.3, p3(R”) < x or
p1(R) > .

If p3(R*) < x, then @(R)Pyp(R®). Thus, by replacement-domination, ¢,(R*) >
¢1(R). Hence, by Pareto-optimality, |{k € M | px(R*) = x}| > 2.

If 1 (R*) > x, then o(R)Pip(R*). Thus, by replacement-domination, @3(R*) <

©3(R). Hence, by Pareto-optimality, |{k € M | ¢, (R*) = x}| > 2. o

Claim 1 and replacement-domination imply that for all = € |1 (R), p2(R)],

©1(R7), p2(R"), p3(R*) € Je1(R), p3(R)]. (10)

Claim 2: For some y € Jp1(R), 02(R)[, p1(RY) < pa(RY) = @3(RY) = y.

Proof of Claim 2: Suppose that for all = € |p;(R), p2(R)],

e1(R*) > x. (11)

By Claim 1 and replacement-domination, for some & € |o1(R), po(R)|[, p3(R*) <
o). Let 7 = Hpa(B) + galR)). By (11), o(B%)Pip( ) and p(R¥) Py ().

which contradicts replacement-domination. o

Claim 2 guarantees the existence of y. Let z = ¢ (RY). By (10), z > ¢1(R).
Consider ¢(RY) and p(R?). By Claim 1, |[{k € M |p(R*) = z}| > 2. Thus,
o(R*)Pip(RY). By replacement-domination, o(R*)Ryp(RY). Hence,

01(R?) = pa(R?) = 2 < y < p3(R?). (12)
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Let w = $(y+ ¢3(R?)). Consider ¢(RY) and ¢(R"). By Claim 1, [{k € M | ¢r(R") =
w}| > 2. Thus, p(RY)Pyp(RY). By replacement-domination, o(R¥)Ryp(RY). Hence,

p1(R") <z < pa(R") = p3(R") = w. (13)

By our choice of w, (12), and (13), it follows that o(RY)Pyp(R?) and ¢(R*)Pyp(RY),

which contradicts replacement-domination. Hence, Case 1 cannot occur.

Case 2: For some j € N, p(R) < ¢1(R) = ¢2(R) = p(R;) < p3(R) < p(R) and for
alli € N, p(R;) # ¢3(R).

Case 2 is analogous to Case 1.

Case 3: 3(R) € [p1(R), p3(R)][.

By Lemmas 6.2 and 6.3, for all i € N, p(R;) € [p(R), p1(R)] U [w3(R),p(R)].
Thus, by Pareto-optimality, for some j,l € N, p(R;) = ¢1(R) and p(R;) = ¢3(R). Let
R € RY be such that Ry = R;, Ry = Ry, and for all i € N\{1,2}, R; = R;. Successive
applications of Lemmas 2.3 and 6.1 yield ¢(R) = ¢(R). Let R' € RY be such that
R?\/\{s} = Ry and p(R;) = ¢o(R). By Lemmas 6.2 and 6.3, ¢;(R') > p(R})
or p3(R') < p(R;). Without loss of generality, we suppose that ¢3(R’) < p(R}).

By replacement-domination, ¢1(R’) > p(R’). Since Cases 1 and 2 cannot occur, we

obtain

p1(R) = p2(R) = p3(R') = p(Ry). (14)
Let R € RY be such that Ry\(3 = Rz and p(Rs) = s(p2(R) + 3(R)). By
Lemmas 6.2 and 6.3, ¢1(R) > p(Rs) or ws(R) < p(Rs). By replacement-domination
and (14), @3(R) < p(R3) and ¢1(R) < y(R). Since Cases 1 and 2 cannot occur,
Pareto-optimality and replacement-domination imply

01(R) = p(R) < o(R) = p3(R) = p(R3). (15)

Let R € RN be such that RN\{g} = R\ (3) and p(R3) = 2(¢1(R)+p2(R)). Symmetric
arguments as above yield

~ ~ ~ ~ ~

p(R3) = p1(R) = p2(R) < p3(R) = p(R). (16)
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By (15) and (16), ¢(R)Pip(R) and ¢(R)Pyp(R), which contradicts replacement-

domination. Hence, Case 3 cannot occur.

Case 4: |[{¢y(R) |k € M}| = 2 and for some j,l € N, p(R;) = ¢1(R) and p(R;) =
e3(R).

Without loss of generality, we suppose that p(R;) = ¢1(R) = p2(R) and p(R;) =
¢3(R). Let R € RY be such that Ry = R;, Ry = R;, and for all i € N\{1,2},
R; = R;. Successive applications of Lemmas 2.3 and 6.1 yield p(R) = o(R).

Let R € R™ be such that R?\/\{s} = Rms and p(R}) = S(p1(R) + ¢3(R)).
By Lemmas 6.2 and 6.3, ¢1(R') > p(R}) or p3(R) < p(R}). Without loss of gen-
erality, we suppose that ¢3(R') < p(R}). If [{pr(R')|k € M}| = 1, then choose
p(Rs) € Jei(R). ps(R)\{3(¢1(R) + ¢3(R))}. Since Cases 1, 2, and 3 cannot oc-
cur, replacement-domination implies ¢1(R') = p(R’) and ¢2(R’) = ¢3(R') = p(R}).
Let R” € RY™ be such that RX,\H} = R’N\{4} and p(R]) = 3(p1(R') + 3(R’)). By
replacement-domination, for all i € N\{4}, o(R")Rio(R"). If {ox(R") |k € M}| =1,
then choose p(R}) € Je1(R'), ¢3(R)\{3(p1(R) + ¢3(R'))}. Because Cases 1, 2,
and 3 cannot occur, replacement-domination implies p;(R") = ¢o(R") = p(R}) and
p3(R") = p(RY). Let R € RY be such that Ry\(3y = Rz and Ry = RY. By
Lemma 2.3, ¢(R) = ¢(R"). Thus, p(R) < p(Ra) = p1(R) = ¢2(R) < p3(R) < B(R)
and for all i € N, p(R;) # ¢3(R). By Case 2, this cannot occur. Hence, Case 4

cannot occur.

Case 5: Otherwise.

As we are not in Case 3, we have [{pr(R) |k € M}| = 2. Thus, ¢1(R) = p2(R) or
va(R) = @3(R). Without loss of generality, ¢;(R) = po(R). By Pareto-optimality,
for some j € N, p(R;) = ¢1(R).

Because n > 5, there exists t € N\{j} such that p(Rn\{1}) = p(R), P(Rn\{1y) =
p(R), and ¢(R) € E(Rn\g). Let R € RY be such that Ry = Bwyy and
p(R}) = ¢3(R). Using the same arguments as at the beginning of the proof of Lemma
6.2, it follows that ¢(R') = p(R).
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But for profile R' we have {¢r(R') [k € M}| = 2, p(R}) = ¢1(R') and p(R;) =

p3(R'). Then we are in Case 4, a contradiction. O

The final lemma completes the proof of Theorem 4.1.
Lemma 6.5 ¢ € {¢,¢}.

Proof. First, suppose that for some R € RY and k € M, ¢i(R) € |p(R),p(R)[. By

Lemma 6.4 and Pareto-optimality, for some j € N,

P1(R) = p2(R) = p3(R) = p(R;).

Without loss of generality, we suppose that p(R;) = p(R) and p(R;) = B(R). Let R €
RN be such that Ry oy = Ry and for all ¢ € N\{1,2,j}, R; = R;. Successive
applications of Lemma 2.3 yield ¢(R) = ¢(R). Let R’ € R be such that R’N\{j} =
Ry\gy and R} = Ry. By Lemma 6.4, either [for all k € M, ,(R') = p(R')] or [for all
ke M, ¢n(R) =p(R)]. Both cases yield a contradiction to replacement-domination.

Hence, for all R € RV,

{o(R) [k € M} € {{p(R)}, {P(R)}}. (17)

Let R° € RY be such that p(RS) = 0 and for all i € N\{1}, p(R?) = 1. By (17),
without loss of generality, we suppose that for all k € M, ¢ (R°) = 0. We show that
p =97
Let R € RY. We show that ¢(R) = ¢(R). Let R € R be such that p(R;) = p(R)
and for all i € N\{1}, p(R;) = p(R). By (17) and successive applications of Lemmas
2.3 and 6.1 yield
o(R) = ¢ (R). (18)
Let R € RY be such that RN\{l} = RN\{l} and R, = R{. Successive applications of

Lemma 2.3, replacement-domination, and (17) yield

p(R) = o(R°). (19)
9When for all k € M, px(R°) =1 we would show that ¢ = ¢.
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Let R' € RY be such that R?\/\{z} = RN\{Q} and R, = Ry. By replacement-domination
and (17),
p(R) = (R). (20)
If p(R}) = 0, then Lemma 6.1 implies ¢(R') = ¢(R). Thus, by (18), for all k € M,
¢r(R) = p(R). Hence, ¢(R) = ¢(R), the desired conclusion.
If p(R}) > 0, then by Lemma 6.1, we may assume that OP{p(R’). Let R € RN
be such that le(/\u} = R’N\{l} and R! = Rg By replacement-domination, (17),
(19), (20), and our choice of R}, for all k € M, ¢p(R") = ]_D(R”). By Lemma 6.1,
©(R") = ¢(R). Thus, by (18), for all k € M, ¢(R) = p(R). Hence, p(R) = ¢(R),

the desired conclusion. O
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