11	
12	Sonic hedgehog accelerates DNA replication to cause replication stress
13	promoting cancer initiation in medulloblastoma
14	
15	
16 17 18	Authors: Lukas Tamayo-Orrego ^{1,2,#} , David Gallo ^{4,&} , Frédéric Racicot ^{1,7,&} , Amandine Bemmo ¹ , Sushmetha Mohan ^{1,2} , Brandon Ho ⁴ , Samer Salameh ¹ , Trang Hoang ⁵ , Andrew P. Jackson ³ , Grant W. Brown ⁴ , and Frédéric Charron ^{1,2,6,7 *} .
19	
20 21	¹ Montreal Clinical Research Institute (IRCM), 110 Pine Ave West, Montreal, Quebec, Canada, H2W 1R7
22	² Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada, H3A 2B4
23 24	³ MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
25 26	⁴ Department of Biochemistry and Donnelly Centre for Cellular and Biomolecular Research. University of Toronto. Toronto, Ontario, Canada, M5S 3E1
27 28	⁵ Institute for Research in Immunology and Cancer (IRIC). University of Montreal, Montreal, Quebec, Canada, H3T 1J4
29 30	⁶ Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Quebec, Canada, H3A 2B2
31	⁷ Department of Medicine, University of Montreal, Montreal, Quebec, Canada, H3T 1J4
32	
33 34	# Current affiliation: MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh.
35	& These authors contributed equally to this work.
36 37 38 39 40 41	* Correspondence to: Frédéric Charron, Ph.D. Molecular Biology of Neural Development Montreal Clinical Research Institute (IRCM) 110 Pine Ave West, Montreal, Quebec, Canada, H2W 1R7 +1 514 987 5773 (telephone) +1 514 987 5774 (fax) Frederic.Charron@ircm.qc.ca
42	

44 Summary

The mechanisms generating cancer-initiating mutations are not well understood. Sonic hedgehog 45 (SHH) pathway activation is frequent in medulloblastoma (MB), with PTCH1 mutations being a 46 common initiating event. Here, we investigated the role of the developmental mitogen SHH in 47 initiating carcinogenesis in the cells of origin, granule cerebellar progenitors (GCPs). We 48 delineate a molecular mechanism for tumor initiation in MB. Exposure of GCPs to Shh causes a 49 distinct form of DNA replication stress, increasing both origin firing and fork velocity. Shh 50 promotes DNA helicase loading and activation, with increased Cdc7-dependent origin firing. S-51 phase duration is reduced and hyper-recombination occurs, causing copy-number neutral LOH, a 52 frequent event at the PTCH1/ptch1 locus. Moreover, Cdc7 inhibition to attenuate origin firing 53 reduces recombination and preneoplastic tumor formation in mice. Therefore, tissue-specific 54 replication stress induced by Shh promotes LOH, which in tumor-prone Ptch1^{+/-} GCPs results in 55 loss of this tumor suppressor, an early cancer initiating event. 56

57 58

61	Granule cell progenitors (GCPs) of the cerebellum produce the largest neuronal population in the
62	human brain ¹ and proliferate in response to Sonic hedgehog (Shh) ² . GCPs are also the cell of
63	origin of SHH-MB ³⁻⁵ , a common subtype of the most frequent malignant pediatric brain tumor ⁶ ,
64	most commonly caused by Shh pathway mutations ⁷ . Mutations in the SHH receptor <i>PTCH1</i> are
65	frequent genetic drivers of SHH-MB ⁸ , and PTCH1 is also mutated Gorlin syndrome, a cancer
66	predisposition disorder. PTCH1 is a tumor suppressor and acts to negatively regulate
67	intracellular downstream SHH signaling. Using MB-prone Ptch1 ^{+/-} mice, we previously found
68	that loss of heterozygosity (LOH) of the wild-type Ptch1 allele is the molecular event leading to
69	preneoplasia formation and MB initiation9; however, the cause and molecular mechanism
70	leading to PTCH1 LOH and MB remained to be defined.
71	
72	It has been proposed that oncogene or aberrant growth factor activation in precancerous lesions
73	induces replication stress and DNA damage ^{10,11} , fueling genomic instability and cancer growth ¹² .
74	While a link between oncogene activation and malignant growth has been established in many
75	cancer types, little is known about the molecular causes leading to the acquisition of tumor-
76	initiating mutations in normal tissues, an outstanding problem in the cancer field ¹³ . Working on a
77	unique system that allowed us to study GCPs in vivo and ex vivo, we tested whether the normal
78	proliferative effects of the developmental morphogen Shh can lead to genomic instability and
79	DNA lesions responsible for tumor initiation in the SHH-MB cell-of-origin.
80	
81	The present work therefore describes a hitherto unknown role for Shh as physiological inducer of

82 DNA replication stress and somatic recombination in neural progenitor cells. In contrast to

83	oncogene-induced replication stress ^{14,15} , we found that Shh-induced replication stress does not
84	lead to replication inhibition but is instead associated with a concomitant increase in both
85	replication origin firing and fork speed. Enhanced Shh-dependent origin firing is mediated by
86	helicase loading and activation, that promotes replication stress and recombination. The increase
87	in replication origins in Shh-exposed GCPs is dependent on Cdc7, a kinase regulating origin
88	firing, and reducing Shh-dependent origin firing via Cdc7 inhibition blocks Shh-replication stress
89	and MB initiation in tumor-prone mice.
90	
91	Results
92	Large-scale deletions and recombination events cause PTCH1 LOH in medulloblastoma
93	To investigate the mechanism of tumor initiation in SHH-MB, we first determined the nature of
94	the mutations that cause biallelic PTCH1 inactivation in human and mice. Most mutations in the
95	first <i>PTCH1</i> allele in human SHH-MBs are indels and SNVs. Reanalysis of a human MB cohort ⁸
96	indicated that 77% (43/56) of those cases additionally display loss of the wild-type allele as a
97	result of 9q deletions (29/56; 52%; copy loss-LOH) or 9q copy-neutral LOH (14/56; 25%) (Fig.
98	1a,b). Copy-neutral LOH (CN-LOH) involves the duplication of one chromosome segment or
99	whole chromosome along with the loss of the corresponding homologous region, and can be due
100	to chromosome segregation errors or recombination events ¹⁶ . Thus, we further analyzed CN-
101	LOH events in human SHH-MB to identify the cause of CN-LOH. All cases displayed large
102	regions of homozygosity (9q CN-LOH) comprising and neighboring the PTCH1 locus, while the
103	centromere and 9p arm of the chromosome retained heterozygosity, indicating that the CN-LOH
104	event responsible for the loss of the PTCH1 wild-type allele is homologous recombination (Fig.
105	1a).

As well, in advanced $Ptch1^{+/-}$ MBs in mice, we identified megabase-long segments of 107 homozygosity on chromosome 13 (Fig. 1c) causing CN-LOH, consistent with previous 108 reports^{17,18}. Since the chromosome containing the first *Ptch1* mutant allele is used as 109 recombination template, these changes result in biallelic loss of *Ptch1*, evidenced as complete 110 absence of *Ptch1* exon 1-2, the genomic region corresponding to the engineered *Ptch1* mutation 111 ¹⁹ (Fig. 1e). Consistent with CN-LOH, whole chromosome 13 arm losses or big deletions were 112 not detected, as assessed by comparative genome hybridization arrays and chromosome paints 113 (Fig. 1d-f). These findings indicate that the mutation events leading to *Ptch1* LOH in most (9/11; 114 82%) $Ptch1^{+/-}$ MBs and at least 25% of human MBs are somatic (mitotic) recombination events, 115 which result in copy-neutral LOH (Fig. 1a). 116

117

106

118 Sonic hedgehog causes DNA replication stress

DNA replication stress, a state of deregulated DNA replication²⁰, is a major cause of LOH and 119 CNVs^{21,22}. During the early stages of cancer development, oncogene-induced replication stress 120 (OI-RS) causes DNA breaks and genomic instability. This in turn promotes multistage 121 carcinogenesis by driving extensive LOH and inactivation of tumor suppressor genes^{10,11,23}. 122 Since Shh is a well-established mitogen for GCPs², we used primary GCPs to test whether Shh 123 causes DNA replication stress in the SHH-MB cell-of-origin. This is a plausible hypothesis in 124 light of our previous observation that Shh induces γ -H2AX and DNA breaks in GCPs ²⁴, and 125 based on previous studies showing that neuronal progenitors, including GCPs, require the 126 presence of essential S-phase checkpoint proteins to maintain genomic stability²⁵⁻²⁷. 127

128

129	We investigated whether physiological levels of Shh cause DNA replication stress during S-
130	phase by performing short BrdU pulses in wild-type GCPs cultured in the absence or presence of
131	Shh. Consistent with Shh inducing replication stress in S-phase, enhanced γ -H2AX levels were
132	seen in Shh-treated GCPs specifically in S-phase (Fig. 2a, Extended Data Fig. 1a). γ-H2AX foci
133	frequently co-localized with regions of DNA synthesis (Fig. 2b), and γ -H2AX progressively
134	accumulated with S-phase progression (Extended Data Fig. 1b), highlighting a relationship
135	between Shh-induced γ-H2AX foci and DNA synthesis. GCPs also display 53bp1 foci,
136	preferentially in S-phase in vitro and in vivo in GCPs that are actively responding to Shh (Fig.
137	2c,d and Extended Data Fig. 1c). Together, these data suggest that Shh induces replication stress
138	in GCPs. We then used CldU and IdU labeling regimes to determine the fate of Shh-dependent γ -
139	H2AX foci in G2 and post mitotically in GCPs that previously transited through S-phase. γ -
140	H2AX fluorescence levels and the number of γ -H2AX foci/cell were significantly lower in G2
141	compared to S-phase and continued to decrease post-mitotically in G0/1 cells (Extended Data
142	Fig. 1d-g); similarly, 53bp1 foci were resolved before G2 (Extended Data Fig. 1h). These results
143	established that the majority of Shh-induced DNA damage foci generated during DNA
144	replication (Fig. 2a) are resolved in S/G2.
145	
146	Although Shh is the most potent mitogen for GCPs, other growth factors such as Egf or Igf1 also

induce GCP proliferation². To investigate whether GCP proliferation alone is sufficient to induce replication stress foci, we stimulated GCPs with Igf1 or Shh. Interestingly, while 100 ng/ml Igf1 leads to similar proliferation levels as 10 nM Shh (Fig. 2e,f; Extended Data Fig. 1i), only Shh but not Igf1, induces γ -H2AX (Fig. 2g), indicating that proliferation itself is not sufficient to induce replication stress foci. This effect of Shh (compared to Igf1 and Ctl) was present even when γ -

152	H2AX levels were measured only in S-phase GCPs (Extended Data Fig. 1k), indicating that it is
153	not due to difference in the ability of the mitogens to drive proliferation. Additionally, other
154	(weaker) GCP mitogens (bFgf and Egf) did not induce γ-H2AX in GCPs (Extended Data Fig.
155	1i,j), further suggesting that replication stress is specific to Shh. Moreover, GCPs proliferating in
156	response to Shh in vivo in the EGL display more γ -H2AX than other highly proliferative tissues
157	such as the intestinal epithelium (Extended Data Fig. 2a-d). Together, these results indicate that
158	enhanced replication stress was not the result of proliferation per se but the specific consequence
159	of Shh-dependent DNA replication.
160	
161	Increased fork speed and origin firing distinguish Shh-induced replication stress
162	DNA replication stress is defined as any condition associated with accumulation of single-
163	stranded DNA (ssDNA) or slowing or stalling of replication fork progression ²⁰ . Shh-treated
164	GCPs display high levels of ssDNA in S-phase (chromatin-bound Rpa32, Fig. 2h), indicative of
165	replication stress. To investigate how Shh might cause replication stress, we performed DNA
166	combing in GCPs directly isolated from mouse cerebella and cultured ex-vivo for 24 h. (Fig. 3a).
167	Shh did not cause replication fork asymmetry or stalling as assessed by DNA combing (Fig.
168	3b,e). In contrast, Shh, but not Igf1, led to a marked, 40% increase in fork speed (Fig. 3c,e).
169	Additionally, Shh, but not Igf1, caused a 7.4-fold increase in active fork density, a proxy of
170	replication origin firing (Fig. 3d; see also Extended Data Fig. 4a and Fig 5c-g). This effect is not
171	simply the consequence of proliferation since Igf1, like Shh, induced a 2-fold increase in the
172	fraction of BrdU-positive cells but did not enhance origin firing (Fig. 2f). Consistent with these
173	effects on DNA replication, Shh accelerated S-phase progression to reduce the length of S-phase
174	(Fig. 3f,g). Since these effects on DNA replication are qualitatively different from the classical

175	definition of DNA replication stress, we term this Shh-induced replication stress (Shh-RS) (Fig.
176	3h,i). As far as we know, that Shh increases both origin firing and fork speed is a unique feature;
177	indeed, this seems to be an exception to the general rule that origin firing and fork speed are
178	anticorrelated ²⁸⁻³⁰ . Another feature distinguishing Shh-RS from classical and oncogene-induced
179	RS is the presence of 53bp1 foci in S-phase and not in G1 (Fig. 2c).
180	
181	We performed RNA sequencing to explore possible mechanisms governing Shh-dependent
182	changes on DNA replication (Extended Data Fig. 2e). Shh induces expression of essential
183	nucleotide metabolism genes (Extended Data Fig. 3a,b), and mass spectrometry revealed Shh-
184	dependent increases in NTP levels (Extended Data Fig. 3c), suggesting the possibility that Shh
185	increases dNTP levels to sustain a high fork speed, leading to DNA damage. If this is the case,
186	nucleotide supplementation in absence of Shh should lead to high DNA fork rates and increased
187	γ -H2AX. Notably, nucleosides increased γ -H2AX and accelerated S-phase in absence of Shh, but
188	did not augment DNA fork speed (Extended Data Fig. 3f-h). We found that nucleoside
189	supplementation was instead associated with a 2.1-fold increase in origin firing (Extended Data
190	Fig. 3i), suggesting that increased origin firing, rather than fork speed, could be responsible for
191	Shh-induced replication stress.
192	

Shh promotes Mcm loading at replication origins

Shh resulted in a larger (7.4 fold) increase in origin firing compared to nucleoside
 supplementation (Extended Data Fig. 4a), suggesting additional mechanisms mediating
 replication initiation by Shh. DNA replication is initiated by the binding of origin recognition
 protein complexes (Orc) to DNA sequences called replication origins³¹. This event is followed

198	by binding of the licensing factor Cdc6, which subsequently recruits Cdt1 and the Mcm2-7
199	heterohexameric complex onto chromatin ³² . This pre-replication complex (pre-RC) loading onto
200	chromatin during G1 is called <i>origin licensing</i> . Origin activation requires the association of
201	<u>C</u> dc45 and the <u>G</u> ins complex with <u>M</u> cm2-7 to form the CMG helicase, as well as key <u>M</u> cm2-7
202	phosphorylation events catalyzed by Cdc7 ^{33,34} for origin firing in S-phase. Our gene expression
203	studies revealed that Shh induces expression of pre-replicative complex, licensing factors, and
204	DNA helicase genes (Fig. 4a, Extended Data Fig. 4b-d). To investigate whether Shh regulates
205	origin licensing, we tested whether Shh also promotes loading of Mcm2-7 onto chromatin. In
206	asynchronous GCPs, Shh increased nuclear and chromatin-bound Mcm2 (Fig. 4b,c,e); other
207	Mcm subunits like Mcm7 are also recruited to chromatin in response to Shh (Fig. 4d), a result
208	expected from the fact that Mcm2-7 is recruited as a full hexamer and indicates that chromatin-
209	bound Mcm2 is a good readout of origin licensing in our system. Consistent with general DNA
210	replication principles ³¹ , Shh-dependent origin licensing happens during G1, and Shh-treated
211	GCPs enter S-phase with higher chromatin-bound Mcm2 (Fig. 4f-h, and Extended Data Fig. 4f-
212	g). However, pre-RCs are removed from chromatin as cells progress through S-phase, and there
213	is no difference in chromatin-bound Mcm2 between Ctl and Shh conditions in late S-phase (Fig.
214	4g), indicating that Shh does not cause re-licensing in S-phase. Altogether, these results
215	demonstrate that Shh promotes replication origin licensing (Fig. 4i), that could contribute to
216	increased origin density during S-phase.

218 Shh induces additional origin firing in a Cdc7-dependent manner

219 Many origins usually remain dormant during unperturbed S-phase progression; therefore, our 220 expectation was that increased origin activation would also occur, to account for increased

221	replication fork density. Hence, we tested if Shh also promotes helicase activation. Shh treatment
222	of GCPs induced expression of the key helicase activators Cdk2, Dbf4 and Cdc7 (Extended Data
223	Fig. 4e) and led to Mcm2 phosphorylation in a Cdc7-dependent manner (Fig. 5a and Extended
224	Data Fig. 5a), the critical event leading to helicase activation ³³ . Shh also induced chromatin
225	recruitment of Gins2 in a Cdc7-dependent manner, another indicator of helicase activation
226	(Extended Data Fig. 6b).
227	We next confirmed that these markers of helicase activation did indeed correspond to increased

number of active origins. First, we addressed whether the change in proportion of S-phase cells 228 229 could be a confounding factor for fork density measurements. However, normalization to Sphase fraction to control for proliferation rate still demonstrated that Shh increases fork density 230 (Fig. 5c-e). To confirm that increased origin density was directly associated with Mcm2 231 phosphorylation, we again assessed fork density in GCPs and found that Cdc7i blocked Shh-232 dependent increase in p-Mcm2 levels and elevation in origin density (Fig. 5a-e). This was seen at 233 low doses of Cdc7i, that did not affect S-phase fraction, fork speed (Extended Data Fig. 7a,b), or 234 baseline Mcm2 phosphorylation. 235

Furthermore, to corroborate this finding, we measured inter-origin distances (IODs) by DNA 236 237 combing in GCPs. Shorter IODs reflect increased origin density and are the gold-standard to evaluate origin activation. In keeping with the fork density measurements, we observed that Shh 238 led to a substantial reduction in IODs (Control: 132kb; Shh: 73kb; Fig 5f,g). Similarly, Cdc7i 239 240 blocked Shh dependent reduction in IODs, a result supported by a different Cdc7 inhibitor (Extended Data Fig. 6c). 241

Additionally, we reasoned that reducing Mcm2 levels should also limit the ability of Shh to 242 induce origin firing. We therefore used GCPs isolated from Mcm2 hypomorphic mice (here 243

termed $Mcm2^{+/-}$ in which Mcm2 levels are reduced to 60% of normal³⁵. Consistent with this prediction, Shh markedly reduced IODs in $Mcm2^{+/+}$ wildtype GCPs, and this Shh-dependent induction in origin firing was attenuated in $Mcm2^{+/-}$ GCPs (Fig. 5h). Together, our findings suggested a model in which Shh-enhanced origin firing was the result of both Mcm loading and origin licensing, and increased Cdc7 activation of origins (Fig. 5i). Hence, these experiments demonstrated that Shh induces origin firing, implicating the Cdc7-dependent activation of Mcm2 as a central event in Shh-induced replication initiation.

251

252 EdU-seq in GCPs reveals Shh-dependent replication initiation domains

The increase in activated origins in Shh-treated GCPs would predict additional genomic regions 253 being coopted as replication origins. Therefore, as an orthogonal method to single molecule 254 analyses, we mapped replication initiation zones genome-wide using EdU-seq^{36,37}. As expected, 255 we identified common initiation zones present in both Ctl- and Shh-treated GCPs (Fig. 6a). 256 Consistent with the DNA combing experiments, Shh-treated GCPs displayed higher numbers of 257 nascent DNA regions, which we term Shh-dependent initiation zones (Fig. 6a). In agreement 258 with a recent report³⁷, EdU peaks are enriched at poly A-T tracts and other repetitive sequences, 259 with most firing events in GCPs mapping to intergenic (70%) and intronic (27%) regions 260 (Extended Data Fig. 6d-f). Using replication timing data (Repli-seq³⁸), we found that Shh-treated 261 GCPs display a higher proportion of Edu-seq peaks in early replicating regions (Fig. 6b). Also, 262 among the 150 CNV regions identified in Ptch1^{+/-} MBs, 22 (13%) matched replication initiation 263 regions in Ctl-treated GCPs, while 50 (33%) of them matched origins in Shh-treated GCPs (Fig. 264 6c), suggesting a correlation between origin firing and genome structural changes in MB, 265 noteworthy as firing regions have been reported to be prone to breakage in mammalian cells³⁷. 266

267	Consistent with Cdc7 effects mediating Shh-dependent replication initiation, we also observed
268	using EdU-seq that Cdc7-inhibition attenuated Shh-dependent replication initiation (Fig. 6d and
269	Extended Data Fig. 6g). (Note that, as EdU-seq only maps a subset of origins/replication
270	initiation zones ³⁹ , the distances between initiation zones are larger than IODs measured by
271	combing.) In summary, the EdU-seq analysis demonstrated the recruitment of additional
272	genomic regions as sites of replication initiation in response to Shh.
273	
274	Shh-dependent origin firing is required for Shh-dependent replication stress
275	To establish whether Shh-dependent origin firing is required for Shh-induced replication stress,
276	we used Cdc7i at low doses that do not perturb cell cycle progression while blocking Shh-
277	dependent origin firing (Fig. 5 and Extended Data Fig .6a). Under these conditions, Cdc7i
278	blocked Shh-induced γ -H2AX and ssDNA accumulation (Fig. 7 a-d), consistent with increased
279	origin firing promoting DNA replication stress, establishing that increased origin firing is
280	upstream of Shh-dependent replication stress and not a consequence of it. Notably, this differs
281	from many instances of OI-RS where increased origin firing is a response to replication fork
282	stalling caused by oncogenes ^{14,15} (Fig. 3).
283	
284	Shh induces recombination in a Cdc7-dependent manner
285	We next investigated the consequences of Shh-induced replication stress for genomic instability
286	and specifically how genomic changes responsible for PTCH1 LOH in mouse and human SHH-
287	MBs might occur. Since copy-neutral LOH events leading to PTCH1 loss are the result of
288	somatic homologous recombination (Fig. 1a), we assessed whether Shh-dependent replication
289	stress leads to hyper-recombination. Supporting this hypothesis, Shh increases the expression of

290	essential homologous recombination (HR) genes but not non-homologous end-joining (NHEJ)
291	genes (Extended Data Fig. 7a-d). We observed that Shh increased total and chromatin-bound
292	Rad51 levels (Extended Data Fig. 7e,f), a key ssDNA binding factor in HR, in S-phase GCPs,
293	while 53bp1 foci (which promote NHEJ) were not increased (Extended Data Fig. 7g). This
294	suggested that ssDNA generated during Shh-induced replication stress in GCPs could be the
295	source of homology-directed repair events. Furthermore, using the sister chromatid exchange
296	(SCE) assay, a technique to assess the frequency of DNA recombination events, we found that
297	Shh promotes hyper-recombination in a Cdc7-dependent manner (Fig. 7e,f); in contrast, other
298	GCP mitogens did not induce SCEs (Fig. 7e and Extended Data Fig. 7h). Moreover, increased
299	HR was also evident using RaDR-GFP mice, which contain a truncated GFP reporter gene to
300	detect spontaneous recombination events originating from DNA breaks or broken replication
301	forks ⁴⁰ , confirming that Shh-RS is associated with increased recombination (Extended Data Fig
302	7i). We conclude that Shh-induced replication stress promotes HR events that could enhance
303	LOH in GCPs, implicating the developmental mitogen Shh as a cause of hyper-recombination.

DNA replication and recombination signatures in SHH-MB-α

As we implicated Cdc7 as a mediator of Shh-dependent genomic instability, we next assessed the relevance of this finding to clinical outcome in human medulloblastoma. In keeping with our mouse model, high *CDC7* expression is an indicator of poor prognosis (p=2.4e⁻⁴) across all four medulloblastoma groups (WNT, SHH, Group 3 and Group 4) and within SHH-MB (p=0.044) (Extended Data Fig. 8a,b). The four MB groups have recently been divided in 12 subtypes, where SHH-MBs have been categorized in 4 subtypes (SHH-MB- α , β , γ , δ)⁴¹. SHH-MB- α is the subtype with worst prognosis, *TP53* mutations, and the highest frequency of broad CNV

313	(including chromosome 9q alterations containing <i>PTCH1</i>) ⁴¹ . It is remarkable that $Ptch1^{+/-}$ mice
314	also acquire <i>Ptch1</i> LOH and spontaneous $p53$ mutations ^{9,42} and therefore constitute a model for
315	SHH-MB- α . Furthermore, we found that SHH-MB- α display high levels of <i>CDC7</i> and a
316	distinctive DNA replication and homologous recombination gene ontology signature (Extended
317	Data Fig. 8c-f) ⁴¹ , resembling the effects of Shh on GCPs. Recent proteomics-based classification
318	of MB identified 2 subtypes of SHH-MBs (SHHa and SHHb) ⁴³ wherein SHHa displays DNA
319	replication and DNA recombination proteomic and gene expression signatures compared to
320	SHHb (Extended Data Fig. 9a-b). Importantly, SHHa displays high MCM2 mRNA and protein
321	levels, and the key CDC7-dependent phosphorylation events leading to MCM2 activation (p-
322	Ser40, p-Ser139, and p-Ser26/27) are also upregulated in human SHHa (Extended Data Fig. 9c-
323	e). These phenotypes in subsets of human SHH-MB mirror the gene expression and phenotypic
324	effects induced by Shh in GCPs, suggesting direct relevance of our findings on Shh-replication
325	stress arising from origin licensing and activation. Thus, we propose that changes in gene
326	expression driven by Shh in GCPs generate DNA replication stress, hyper-recombination and
327	MB-causing mutations characterizing both human SHH-MB- α/a and murine <i>Ptch1</i> MB.
328	
329	<i>in vivo</i> Cdc7 inhibition prevents MB initiation in <i>Ptch1</i> ^{+/-} mice
330	Finally, we wished to establish the relevance of our findings to cancer-initiation in MB. Because
331	Cdc7i inhibition blocks Shh-dependent replication stress and recombination, we predicted that in

vivo Cdc7 inhibition should decrease the likelihood of *Ptch1* LOH events. Since *Ptch1* LOH is

the MB-initiating event preceding preneoplasia⁹, we hypothesized that *in vivo* Cdc7 inhibition

during Shh-dependent GCP proliferation, when GCPs are at risk of *Ptch1* LOH, should decrease

preneoplasia incidence. We therefore treated tumor-prone $Ptch1^{+/-}$ mice from postnatal day 1

336	(P1) to P16 with 2 mg/kg/day TAK-931, a validated Cdc7 inhibitor (Cdc7i) used in clinical trials
337	⁴⁴ , or vehicle (Fig. 8a). We used low Cdc7i doses (20 times lower than the ones used <i>in vivo</i> to
338	block the growth of other tumor types ⁴⁴ so as not to block cell proliferation while reducing the
339	level of helicase activation. Under these conditions, Cdc7i did not affect mouse growth and at P7
340	had no effect on EGL thickness, a direct correlate of total GCP number (Fig 8b,c and Extended
341	Data Fig. 10a-e). As well, GCP proliferation in P7 cerebella was unaltered, as measured using
342	three proliferation markers (Ki67, phospho-histone H3 and BrdU; Extended Data Fig. 10f-i).
343	Cdc7i did not alter cerebellar development since cerebellum mid-sagittal area and IGL area and
344	perimeter were normal at P16 (Extended Data Fig. 10c,d), further supporting Cdc7i at this dose
345	not affecting GCP proliferation. Furthermore, Cdc7i did not affect cerebellar balance function as
346	assessed by the rotarod test (Fig. 8e).
347	In contrast, using in vivo DNA combing, we found that Cdc7i reduced origin firing in vivo (Fig.
348	8i). Also as expected from in vitro results (Fig. 5a), Cdc7i reduced helicase activation (p-Mcm2),
349	and the rate of DNA synthesis (BrdU fluorescence intensity/cell) (Fig. 8f-h and Extended Data
350	Fig. 10j,k), but not the number of BrdU+ cells (Extended Data Fig. 10h). Strikingly, Cdc7i also
351	reduced recombination rate in vivo (Fig. 8j), and Cdc7 inhibition for 2 weeks led to a five-fold
352	reduction in preneoplasia incidence. This was reduced from 63% (9/14) to 12.5% (2/16), and the
353	number of preneoplastic lesions per cerebellum was decreased compared to vehicle-treated
354	animals (Figure 8k-m). These results therefore supported our model that reduction of Shh-
355	dependent DNA replication stress in tumor-prone <i>Ptch1</i> ^{+/-} GCPs before cancer initiation is
356	capable of preventing medulloblastoma-initiating mutations.

- 358 Discussion

359	Recent work has shown that mutations resulting from cell division account for two thirds of the
360	mutations in human cancers ¹³ , indicating that DNA replication errors are a major source of
361	cancer-causing mutations. Therefore, investigating ways to render DNA replication 'safer' in
362	tumor-initiating cells becomes an attractive aim for cancer biology ¹³ . However, current
363	knowledge on DNA replication in metazoans is primarily based on studies performed using
364	Xenopus egg extracts, drosophila embryos and immortalized cell lines ⁴⁵ , none of which is the
365	cell of origin of cancer. Although several studies have determined how oncogenic signaling leads
366	to chromosomal instability at precancerous stages or in cell lines expressing oncogenes ^{23,46} ,
367	fewer have investigated how oncogenic signaling leads to genomic instability in primary cells,
368	and many of them are restricted to hematopoietic stem cells ⁴⁷ . Moreover, very few studies have
369	investigated how DNA replication-associated processes affect the function of primary or stem
370	cells ⁴⁸ , and little is known about how DNA replication stress causes genomic instability in
371	primary cell populations at risk of transformation.
372	
373	Here we show that Shh, a developmental mitogen, alters DNA replication dynamics in GCPs, the
374	SHH-MB cells of origin. This leads to DNA replication stress and elevated homologous
375	recombination. Although Shh caused ssDNA accumulation, it did not cause fork stalling or
376	asymmetry, establishing that previously demonstrated Shh-induced DNA breaks ²⁴ are not the
377	consequence of replication inhibition. Indeed surprisingly, we discovered that Shh in fact induces
378	both increased replication fork speed and origin firing. Several classical oncogenes are known to
379	induce origin firing ¹⁵ , however depleting replication substrates and leading to fork
380	slowing/stalling ^{49 15} . Shh-RS is associated with faster DNA replication and shortened S-phase, in
381	contrast to OI-RS where S-phase checkpoint activation, S-phase lengthening and arrest may

382	occur ⁵⁰ . As well, unlike OI-RS, Shh-RS is not associated with the presence of persisting
383	replication intermediates such as ultrafine anaphase bridges or 53bp1 foci in G1 (which are the
384	outcome of replication inhibition after mitosis). Therefore Shh-RS and OI-RS appear
385	qualitatively different (Fig. 3h,i).
386	
387	There is a well-documented negative correlation between fork rate and origin firing ^{28,29} , also
388	observed in the RS phenotype caused by PARP inhibition ⁵¹ . This correlation is likely the result
389	of limited availability of DNA substrates, such as dNTPs and replication factors ^{28,29,52-55} .
390	Therefore, cells adjust the number of active origins in accordance to fork speed to complete S-
391	phase in a timely fashion ^{30,56} . Hence, for Shh to cause such a marked reduction in S-phase time,
392	a simultaneous increase in origin firing and fork speed is necessary. The strong transcriptional
393	effects of Shh increasing nucleotide metabolism and replication proteins could ensure this S-
394	phase acceleration. That GCPs physiologically exposed to Shh coopt flexible or dormant origins
395	to achieve such fast replication is also intriguing. We propose that Shh-induced replication stress
396	is a trade-off of this Shh-dependent acceleration of S-phase required for the rapid production of
397	the largest neuronal population in the brain.
398	
399	As both Shh-RS and Shh-induced origin firing are blocked by Cdc7i, we favor a model where
400	increased origin firing is due to Shh increasing Cdc7 activity, with elevated origin firing then
401	being a major source of Shh-RS (Fig. 8i). Supporting this notion, increased Mcm2-
402	phosphorylation is observed, with the Mcm helicase and Cdc45 being the best characterized
403	Cdc7 substrates, and a major function of Cdc7 being regulation of origin firing ⁵⁷ . Furthermore,
404	in keeping with this model, Shh-origin activation was dependent on availability of Mcms, being

405attenuated in $Mcm2^{+/-}$ GCPs. However, Cdc7 phosphorylates other substrates in other cellular406processes^{57,58}; thus, other Cdc7 targets may also contribute to Shh-RS. As well, increased fork407velocity was independent of Cdc7, suggesting that additional pathways may also contribute to408Shh-RS.

409

Shh-dependent replication stress is associated with elevated homologous recombination. This 410 could arise from accelerated S-phase and high density of replication forks. This would reduce the 411 time available to deal with replication of difficult genomic regions, and/or repair of endogenous 412 413 DNA lesions, that are then instead dealt with by increased homologous recombination events (Fig. 8i). Such increased somatic recombination provides a mechanism that will promote LOH in 414 GCPs, the cell of origin of Shh-MB, particularly CN-LOH events. We were able to test this 415 possibility in a preclinical MB model, given the dependency of Shh-RS on Cdc7 activity, 416 harnessing the availability of a well characterized Cdc7 inhibitor. This resulted in reduced Shh-417 induced somatic recombination, alongside decreased preneoplastic cerebellar lesions. This 418 therefore provides a 'proof of principle' demonstrating that attenuating DNA-replication-stress in 419 primary cells at risk of transformation abrogates tumor-initiation. This work also extends the 420 developmental functions of Shh^{59,60}, to consider its consequence as a developmental mitogen on 421 DNA replication and genome stability and suggests an approach that may be applicable in some 422 clinical contexts to render DNA replication potentially safer to prevent cancer initiation. 423

424

Acknowledgments: We thank A. Helness, S. Terouz, E. Massicotte, F. Depault, J. Cardin, and J.
Barthe for expert assistance; A. Dumont and M. Rondeau for RNAseq library preparation and O.
Neyret for EdU-seq library preparation. We thank O. Jumanca and the IRCM animal facility staff

428	for animal handling. We thank E. Drobetsky for critical reading of the manuscript. We thank the
429	International Cancer Genome Consortium (ICGC) for providing access to human MB data. L.T-
430	O. was supported by the Caldas (Colciencias) and the Djavad Mowafaghian Foundation
431	fellowships and is now supported by an EMBO-LTF (ALTF-739-2019). D.G. was supported by
432	a post-graduate scholarship from the Natural Sciences and Engineering Research Council of
433	Canada. Funding: This work was supported by the Canadian Institutes of Health Research
434	(FDN334023 to F.C.), the Fonds de Recherche du Québec-Santé (to F.C.), the Canada
435	Foundation for Innovation (33768 to F.C.), the Canadian Cancer Society Research Institute
436	(Impact grant 702310 to G.W.B.), the Medical Research Council, UK (MRC, MC_UU_00007/5
437	to A.P.J.), and the European Union's Horizon 2020 research and innovation programme ERC
438	Advanced Grant (no. 788093 to A.P.J.). F.C. holds the Canada Research Chair in Developmental
439	Neurobiology.
440	
441	Author contributions: L.T-O. and F.C. conceived the study. L.T-O., D.G., F.R., S.M., S.S and
441 442	Author contributions: L.T-O. and F.C. conceived the study. L.T-O., D.G., F.R., S.M., S.S and B.H. performed experiments. A.B. performed in silico analyses. T.H. provided reagents and
441 442 443	Author contributions: L.T-O. and F.C. conceived the study. L.T-O., D.G., F.R., S.M., S.S and B.H. performed experiments. A.B. performed in silico analyses. T.H. provided reagents and advice. D.G. and L.T-O. analyzed data. A.P.J. provided critical advice on manuscript and
441442443444	Author contributions: L.T-O. and F.C. conceived the study. L.T-O., D.G., F.R., S.M., S.S and B.H. performed experiments. A.B. performed in silico analyses. T.H. provided reagents and advice. D.G. and L.T-O. analyzed data. A.P.J. provided critical advice on manuscript and supported parts of the work, as well as the first author during revision. L.T-O., G.W.B, A.P.J.,
 441 442 443 444 445 	Author contributions: L.T-O. and F.C. conceived the study. L.T-O., D.G., F.R., S.M., S.S and B.H. performed experiments. A.B. performed in silico analyses. T.H. provided reagents and advice. D.G. and L.T-O. analyzed data. A.P.J. provided critical advice on manuscript and supported parts of the work, as well as the first author during revision. L.T-O., G.W.B, A.P.J., and F.C. wrote the manuscript. Competing interests: Authors declare no competing interests.
 441 442 443 444 445 446 	Author contributions: L.T-O. and F.C. conceived the study. L.T-O., D.G., F.R., S.M., S.S and B.H. performed experiments. A.B. performed in silico analyses. T.H. provided reagents and advice. D.G. and L.T-O. analyzed data. A.P.J. provided critical advice on manuscript and supported parts of the work, as well as the first author during revision. L.T-O., G.W.B, A.P.J., and F.C. wrote the manuscript. Competing interests: Authors declare no competing interests.

References

- Azevedo, F. A. *et al.* Equal numbers of neuronal and nonneuronal cells make the human
 brain an isometrically scaled-up primate brain. *The Journal of comparative neurology* **513**, 532-541, doi:10.1002/cne.21974 (2009).
- 454 2 Wechsler-Reya, R. J. & Scott, M. P. Control of neuronal precursor proliferation in the 455 cerebellum by Sonic Hedgehog. *Neuron* **22**, 103-114 (1999).
- 456 3 Oliver, T. G. *et al.* Loss of patched and disruption of granule cell development in a pre457 neoplastic stage of medulloblastoma. *Development* 132, 2425-2439,
 458 doi:10.1242/dev.01793 (2005).
- 4 Yang, Z. J. *et al.* Medulloblastoma can be initiated by deletion of Patched in lineagerestricted progenitors or stem cells. *Cancer cell* 14, 135-145,
 doi:10.1016/j.ccr.2008.07.003 (2008).
- 4625Schuller, U. *et al.* Acquisition of granule neuron precursor identity is a critical463determinant of progenitor cell competence to form Shh-induced medulloblastoma.464Cancer cell 14, 123-134, doi:10.1016/j.ccr.2008.07.005 (2008).
- Kool, M. *et al.* Molecular subgroups of medulloblastoma: an international meta-analysis
 of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and
 Group 4 medulloblastomas. *Acta neuropathologica* 123, 473-484, doi:10.1007/s00401012-0958-8 (2012).
- 4697Northcott, P. A. *et al.* Medulloblastomics: the end of the beginning. Nature reviews.470Cancer 12, 818-834, doi:10.1038/nrc3410 (2012).
- 4718Northcott, P. A. *et al.* The whole-genome landscape of medulloblastoma subtypes.472Nature 547, 311-317, doi:10.1038/nature22973 (2017).
- 4739Tamayo-Orrego, L. *et al.* Evasion of Cell Senescence Leads to Medulloblastoma474Progression. Cell reports 14, 2925-2937, doi:10.1016/j.celrep.2016.02.061 (2016).
- 47510Bartkova, J. *et al.* DNA damage response as a candidate anti-cancer barrier in early476human tumorigenesis. *Nature* **434**, 864-870, doi:10.1038/nature03482 (2005).
- 477 11 Gorgoulis, V. G. *et al.* Activation of the DNA damage checkpoint and genomic
 478 instability in human precancerous lesions. *Nature* 434, 907-913, doi:10.1038/nature03485
 479 (2005).
- 12 Negrini, S., Gorgoulis, V. G. & Halazonetis, T. D. Genomic instability--an evolving
 hallmark of cancer. *Nature reviews. Molecular cell biology* 11, 220-228,
 doi:10.1038/nrm2858 (2010).
- 48313Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer
etiology, and cancer prevention. Science 355, 1330-1334, doi:10.1126/science.aaf9011
(2017).
- 48614Macheret, M. & Halazonetis, T. D. DNA replication stress as a hallmark of cancer.487Annual review of pathology 10, 425-448, doi:10.1146/annurev-pathol-012414-040424488(2015).
- Hills, S. A. & Diffley, J. F. DNA replication and oncogene-induced replicative stress.
 Current biology : CB 24, R435-444, doi:10.1016/j.cub.2014.04.012 (2014).
- Lasko, D., Cavenee, W. & Nordenskjold, M. Loss of constitutional heterozygosity in
 human cancer. *Annu Rev Genet* 25, 281-314, doi:10.1146/annurev.ge.25.120191.001433
 (1991).

494	17	Pazzaglia, S. <i>et al.</i> Two-hit model for progression of medulloblastoma preneoplasia in
495		Patched heterozygous mice. Oncogene 25, 5575-5580, doi:10.1038/sj.onc.1209544
496		(2006).
497	18	Ishida, Y. et al. Genomic and gene expression signatures of radiation in
498		medulloblastomas after low-dose irradiation in Ptch1 heterozygous mice. Carcinogenesis
499		31 , 1694-1701, doi:10.1093/carcin/bgq145 (2010).
500	19	Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates
501		and medulloblastoma in mouse patched mutants. Science 277, 1109-1113 (1997).
502	20	Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. <i>Nature</i>
503		<i>cell biology</i> 16 , 2-9, doi:10.1038/ncb2897 (2014).
504	21	Zheng, D. Q., Zhang, K., Wu, X. C., Mieczkowski, P. A. & Petes, T. D. Global analysis
505		of genomic instability caused by DNA replication stress in Saccharomyces cerevisiae.
506		Proceedings of the National Academy of Sciences of the United States of America 113,
507		E8114-E8121, doi:10.1073/pnas.1618129113 (2016).
508	22	Arlt, M. F. et al. Replication stress induces genome-wide copy number changes in human
509		cells that resemble polymorphic and pathogenic variants. Am J Hum Genet 84, 339-350,
510		doi:10.1016/j.ajhg.2009.01.024 (2009).
511	23	Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered
512		by DNA hyper-replication. Nature 444, 638-642, doi:10.1038/nature05327 (2006).
513	24	Mille, F. et al. The Shh receptor Boc promotes progression of early medulloblastoma to
514		advanced tumors. Developmental cell 31, 34-47, doi:10.1016/j.devcel.2014.08.010
515		(2014).
516	25	Lee, Y. et al. ATR maintains select progenitors during nervous system development. The
517		EMBO journal 31, 1177-1189, doi:10.1038/emboj.2011.493 (2012).
518	26	Lee, Y. et al. Neurogenesis requires TopBP1 to prevent catastrophic replicative DNA
519		damage in early progenitors. Nature neuroscience 15, 819-826, doi:10.1038/nn.3097
520		(2012).
521	27	Lang, P. Y. et al. ATR maintains chromosomal integrity during postnatal cerebellar
522		neurogenesis and is required for medulloblastoma formation. Development 143, 4038-
523		4052, doi:10.1242/dev.139022 (2016).
524	28	Zhong, Y. et al. The level of origin firing inversely affects the rate of replication fork
525		progression. The Journal of cell biology 201, 373-383, doi:10.1083/jcb.201208060
526		(2013).
527	29	Conti, C. et al. Replication fork velocities at adjacent replication origins are coordinately
528		modified during DNA replication in human cells. <i>Molecular biology of the cell</i> 18, 3059-
529		3067, doi:10.1091/mbc.E06-08-0689 (2007).
530	30	Courbet, S. et al. Replication fork movement sets chromatin loop size and origin choice
531		in mammalian cells. <i>Nature</i> 455 , 557-560, doi:10.1038/nature07233 (2008).
532	31	O'Donnell, M., Langston, L. & Stillman, B. Principles and concepts of DNA replication
533		in bacteria, archaea, and eukarya. Cold Spring Harbor perspectives in biology 5,
534		doi:10.1101/cshperspect.a010108 (2013).
535	32	Bell, S. P. & Kaguni, J. M. Helicase loading at chromosomal origins of replication. Cold
536		Spring Harbor perspectives in biology 5, doi:10.1101/cshperspect.a010124 (2013).
537	33	Montagnoli, A. et al. Identification of Mcm2 phosphorylation sites by S-phase-regulating
538		kinases. The Journal of biological chemistry 281, 10281-10290,
539		doi:10.1074/jbc.M512921200 (2006).

34 Ilves, I., Petojevic, T., Pesavento, J. J. & Botchan, M. R. Activation of the MCM2-7 540 helicase by association with Cdc45 and GINS proteins. Molecular cell 37, 247-258, 541 doi:10.1016/j.molcel.2009.12.030 (2010). 542 35 Pruitt, S. C., Bailey, K. J. & Freeland, A. Reduced Mcm2 expression results in severe 543 stem/progenitor cell deficiency and cancer. Stem cells 25, 3121-3132, 544 doi:10.1634/stemcells.2007-0483 (2007). 545 36 Macheret, M. & Halazonetis, T. D. Intragenic origins due to short G1 phases underlie 546 oncogene-induced DNA replication stress. Nature 555, 112-116, 547 doi:10.1038/nature25507 (2018). 548 37 Tubbs, A. et al. Dual Roles of Poly(dA:dT) Tracts in Replication Initiation and Fork 549 Collapse. Cell 174, 1127-1142 e1119, doi:10.1016/j.cell.2018.07.011 (2018). 550 38 Hiratani, I. et al. Global reorganization of replication domains during embryonic stem 551 cell differentiation. *PLoS Biol* **6**, e245, doi:10.1371/journal.pbio.0060245 (2008). 552 39 Macheret, M. & Halazonetis, T. D. Monitoring early S-phase origin firing and replication 553 fork movement by sequencing nascent DNA from synchronized cells. Nat Protoc 14, 51-554 67, doi:10.1038/s41596-018-0081-y (2019). 555 Sukup-Jackson, M. R. et al. Rosa26-GFP direct repeat (RaDR-GFP) mice reveal tissue-40 556 and age-dependence of homologous recombination in mammals in vivo. PLoS Genet 10, 557 e1004299, doi:10.1371/journal.pgen.1004299 (2014). 558 Cavalli, F. M. G. et al. Intertumoral Heterogeneity within Medulloblastoma Subgroups. 559 41 Cancer cell 31, 737-754 e736, doi:10.1016/j.ccell.2017.05.005 (2017). 560 42 Tamayo-Orrego, L., Swikert, S. M. & Charron, F. Evasion of cell senescence in SHH 561 medulloblastoma. Cell cycle, 1-6, doi:10.1080/15384101.2016.1189044 (2016). 562 43 Archer, T. C. et al. Proteomics, Post-translational Modifications, and Integrative 563 Analyses Reveal Molecular Heterogeneity within Medulloblastoma Subgroups. Cancer 564 cell 34, 396-410 e398, doi:10.1016/j.ccell.2018.08.004 (2018). 565 44 Iwai, K. et al. Molecular mechanism and potential target indication of TAK-931, a novel 566 CDC7-selective inhibitor. Sci Adv 5, eaav3660, doi:10.1126/sciadv.aav3660 (2019). 567 45 Siddiqui, K., On, K. F. & Diffley, J. F. Regulating DNA replication in eukarya. Cold 568 Spring Harbor perspectives in biology 5, doi:10.1101/cshperspect.a012930 (2013). 569 46 Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier 570 imposed by DNA damage checkpoints. Nature 444, 633-637, doi:10.1038/nature05268 571 572 (2006).47 Viale, A. et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of 573 leukaemia stem cells. Nature 457, 51-56, doi:10.1038/nature07618 (2009). 574 Walter, D. et al. Exit from dormancy provokes DNA-damage-induced attrition in 48 575 haematopoietic stem cells. Nature 520, 549-552, doi:10.1038/nature14131 (2015). 576 49 Bester, A. C. et al. Nucleotide deficiency promotes genomic instability in early stages of 577 cancer development. Cell 145, 435-446, doi:10.1016/j.cell.2011.03.044 (2011). 578 50 Bartek, J., Lukas, C. & Lukas, J. Checking on DNA damage in S phase. Nature reviews. 579 Molecular cell biology 5, 792-804, doi:10.1038/nrm1493 (2004). 580 51 Maya-Mendoza, A. et al. High speed of fork progression induces DNA replication stress 581 and genomic instability. Nature 559, 279-284, doi:10.1038/s41586-018-0261-5 (2018). 582 52 Anglana, M., Apiou, F., Bensimon, A. & Debatisse, M. Dynamics of DNA replication in 583 mammalian somatic cells: nucleotide pool modulates origin choice and interorigin 584 spacing. Cell 114, 385-394 (2003). 585

586	53	Mantiero, D., Mackenzie, A., Donaldson, A. & Zegerman, P. Limiting replication
587		initiation factors execute the temporal programme of origin firing in budding yeast. The
588		<i>EMBO journal</i> 30 , 4805-4814, doi:10.1038/emboj.2011.404 (2011).
589	54	Barlow, J. H. et al. Identification of early replicating fragile sites that contribute to
590		genome instability. Cell 152, 620-632, doi:10.1016/j.cell.2013.01.006 (2013).
591	55	Poli, J. et al. dNTP pools determine fork progression and origin usage under replication
592		stress. The EMBO journal 31 , 883-894, doi:10.1038/emboj.2011.470 (2012).
593	56	Gilbert, D. M. Replication origin plasticity, Taylor-made: inhibition vs recruitment of
594		origins under conditions of replication stress. Chromosoma 116, 341-347,
595		doi:10.1007/s00412-007-0105-9 (2007).
596	57	Forsburg, S. L. Eukaryotic MCM proteins: beyond replication initiation. <i>Microbiol Mol</i>
597		<i>Biol Rev</i> 68 , 109-131 (2004).
598	58	Takahashi, T. S., Basu, A., Bermudez, V., Hurwitz, J. & Walter, J. C. Cdc7-Drf1 kinase
599		links chromosome cohesion to the initiation of DNA replication in Xenopus egg extracts.
600		Genes & development 22, 1894-1905, doi:10.1101/gad.1683308 (2008).
601	59	Jiang, J. & Hui, C. C. Hedgehog signaling in development and cancer. Developmental
602		<i>cell</i> 15 , 801-812, doi:10.1016/j.devcel.2008.11.010 (2008).
603	60	Briscoe, J. & Therond, P. P. The mechanisms of Hedgehog signalling and its roles in
604		development and disease. Nature reviews. Molecular cell biology 14, 416-429,
605		doi:10.1038/nrm3598 (2013).
606		
607		
608		
609		
610		
611		
612		
613		
614		
615		
015		

616	Fig. 1. CNVs and copy neutral LOH are the source of <i>PTCH1</i> wild-type allele inactivation.
617	a, Example of copy-neutral-LOH (CN-LOH) in human SHH-MB responsible for inactivation of
618	the PTCH1 wild-type allele. Top plot shows absolute copy number and lower plot displays
619	allele-specific copy number; left plots display all chromosomes while the right ones display
620	chromosome 9 (a,b). Schematic shows the homologous recombination event that leads to CN-
621	LOH. After DNA replication and a recombination event between the two homologous
622	chromosomes, the LOH event is produced in mitosis depending on how sister chromatids are
623	segregated. b, Schematic and example of CNV-LOH in SHH-MB responsible for inactivation of
624	the PTCH1 wild-type allele. Schematic shows the CNV (deletion) LOH event. c, Minimal
625	segment of LOH on mouse chromosome 13 from 9 <i>Ptch1</i> ^{+/-} advanced MBs based on SNP
626	analysis; 7/9 samples display chromosome 13 LOH (absence of SNPs). d, CNV represented as
627	segments of gain or loss (SGOL score) in advanced <i>Ptch1</i> ^{+/-} MBs show high level of deletion at
628	the <i>Ptch1</i> locus without broad chromosome 13 deletions. e , qPCR on genomic DNA from 3
629	advanced <i>Ptch1</i> ^{+/-} MBs demonstrated biallelic loss of the wild-type <i>Ptch1</i> allele; the primers
630	recognize the gene region (Exon1-2) targeted in the engineered mutant allele and are therefore
631	specific for the <i>Ptch1</i> wild-type allele ⁹ , detecting <i>Ptch1</i> LOH; shown are mean <i>Ptch1</i> allele
632	levels; each point represents one animal. f, Metaphases labelled with Chromosome 11 (red) and
633	13 (green) paint FISH probes from the same 3 <i>Ptch1</i> ^{+/-} advanced MBs displaying <i>Ptch1</i> LOH (e)
634	show absence of whole chromosome 13 losses or big deletions, consistent with CN-LOH. Scale
635	bar, 5μ m; each (M1-M3) tumor was stained independently once and 30 metaphases/tumor
636	analyzed.
637	

Fig. 2. Shh causes DNA replication stress. a, γ-H2AX levels in BrdU-positive (BrdU+) and
 BrdU-negative (BrdU-) GCPs; one-way anova, median and Tukey distribution, n= 248 cells for

640	Ctl samples and n= 203 cells for Shh samples; data from 3 independent experiments. b , BrdU
641	and γ -H2AX immunostaining; histograms show mean fluorescence along a cross-section of a
642	GCP (white line); n=3 experiments. Throughout the paper, γ -H2AX levels were obtained by
643	measuring the average nuclear fluorescence intensity. c, 53bp1 immunofluorescence and
644	proportion of 53bp1-positive GCPs in BrdU- and BrdU+ cells; n= 422 cells (378 BrdU- and 44
645	BrdU+) from 3 independent experiments; two-sided Fisher's exact test; arrowheads indicate
646	53bp1 foci. d , Number of 53bp1 foci in BrdU- and BrdU+ GCPs; median±interquartile range,
647	two sided Mann-Whitney test , $n= 122$ BrdU+ cells and $n= 39$ BrdU- cells from 3 independent
648	experiments; cells without foci were not analyzed in d since they are better represented in c. e,
649	BrdU and γ -H2AX immunofluorescence of GCPs treated with vehicle (Ctl), 100ng/ml Igf1, or
650	10nM Shh; n=3 experiments. f , Quantification of BrdU incorporation (mean \pm 95% CI), n= 25
651	images for Ctl, n= 29 images for Igf1, and n= 20 images for Shh samples, representative of 3
652	independent experiments. g, Quantification of γ -H2AX levels in Ctl-, Igf1- and Shh-treated
653	GCPs; median and Tukey distribution; one-way anova (f,g); n= 146 Ctl cells, n= 249 Igf-treated
654	cells, and n= 359 Shh-treated cells from 3 experiments (e-g). h, Quantification and representative
655	images of chromatin-bound Rpa32 in S-phase (BrdU+) GCPs, two-sided t-test, mean± 95% CI;
656	n= 93 Ctl S-phase cells, and n= 110 Shh S-phase cells from 3 experiments; scale bars, 5 μ m
657	(b,c,e,h).

Fig. 3. Shh alters DNA replication dynamics. a, Schematic of GCP isolation, ex-vivo culture
for 24 hr., DNA combing experiments and variables measured. b, Quantification of replication
fork asymmetry in Ctl-, Igf1- and Shh-treated GCPs; median with Tukey distribution, KruskalWallis test, n= 330 bi-directional forks for Ctl, n=227 bidirectional forks for Igf1, and n= 185

663	bidirectional forks for Shh samples. Data from 3 independent experiments. c, DNA replication
664	fork speed (kbp/min) in Ctl-, Igf- and Shh-treated GCPs; median (M) and number (n) of fibers
665	indicated; median and inter-quartile range, Kruskal-Wallis test, n=1064 forks for Ctl samples,
666	582 forks for Igf1 samples, and 609 forks for Shh samples; obtained from 3 experiments. d,
667	DNA fork density (Forks/Mbp DNA) in Ctl-, Igf- and Shh-treated GCPs; 207Mb, 203Mb and
668	230Mb of combed DNA measured for Ctl, Igf1 and Shh conditions respectively, obtained from 2
669	independent experiments. e, Representative images of replication forks analyzed, n=3
670	experiments. f,g, Experimental outline (f) and results (g) of S-phase time (hr.) measurements in
671	Ctl- and Shh-treated GCPs; mean±sem. (n=4 experiments), two-sided t-test. h, Representation of
672	the DNA replication changes induced by Shh in comparison to oncogenes. i, Comparison
673	between Shh-induced replication stress (Shh-RS) and oncogene-induced replication stress (OI-
674	RS).
675	
676 677	Fig. 4. Shh promotes pre-replication complex assembly. a, GSEA plot for the pre-replicative
678	complex in Shh- vs. Ctl-treated GCPs; n=3 samples/group. b,c, Nuclear (Nucl.) and chromatin-
679	bound (Chrom.) Mcm2 levels in Ctl- and Shh-treated GCPs assessed by immunofluorescence,
680	n=190 Ctl cells and n=207 Shh cells (nuclear images); n=176 Ctl cells and n=207 Shh cells
681	(Chromatin faction) from 3 independent experiments; mean±95% CI, two-sided t-test. Scale bar,
682	5µm. d, Chromatin-bound Mcm7 levels in Ctl- and Shh-treated GCPs; mean±95% CI two-sided
683	t-test, n= 346 cells for Ctl samples and n=363 cells for Shh samples, from 3 experiments. e,
684	Western blot (WB) from Ctl-, Igf- and Shh-treated GCPs subjected to cell fractionation and
685	blotted for Mcm2, ß-tubulin and histone H2B; TCE, total cell extract; S2, cytosol; P2,
686	membrane; S3, nuclear soluble; P3, chromatin. Mean Mcm2 levels relative to H2B in P3 are

687	indicated, two sided t-test; n=3 experiments. f , Chromatin-bound Mcm2 in G0/G1 and S-phase
688	(BrdU+) in Ctl- and Shh-treated GCPs; mean±95%CI, two-tailed t-test; n= 166 cells for Ctl and
689	n=186 cells for Shh samples (G0/1) and n= 46 cells for Ctl and n= 109 cells for Shh samples (S-
690	phase) from 3 independent experiments. g, Chromatin-bound Mcm2 in early and late S-phase in
691	Ctl- and Shh-treated GCPs; representative data of n=3 experiments, mean±95%CI, two-sided t-
692	test; n>40 S-phase cells for Ctl samples and n>90 S-phase cells for Shh samples, from 2
693	independent experiments. h, Representative images of chromatin-bound Mcm2 of GCPs in
694	different cell cycle stages; n \geq 4 experiments; scale bars, 2µm. i , Model showing the effect of Shh
695	promoting helicase loading.
696	
697	
698	Fig. 5. Shh induces helicase activation and origin firing. a,b, pMcm2 s40/41 and Mcm2 WB
699	(a) and quantification (b) from GCPs treated with Ctl, Cdc7i (PHA767491, 1μ M), Shh or
700	Shh+Cdc7; mean±sem., anova test; n= 4 blots for Ctl and Shh samples, n= 2 blots for Cdc7i, n=
701	3 blots for Shh+Cdc7i condition. c, Experimental outline of fork density measurements (d);
702	bottom images show the total DNA stain (ssDNA) corresponding to images shown in e. d, Fork
703	density (forks/Mbp) in Ctl-, Cdc7i-, Shh- and Shh+Cdc7i-treated GCPs (759Mb, 1028Mb,
704	650Mb and 924Mb of combed DNA respectively, analyzed from two experiments). e,
705	Representative images of fork density measurements shown in d; scale bar, 50 μ m (c,e). f,g,
706	Representative images of inter-origin distance (IOD) (f) and quantitation (g) in Ctl-, Cdc7i-, Shh-
707	and Shh+Cdc7i-treated GCPs; Kruskal-Wallis test, median with Tukey distribution; n= 86, 30,
708	
	153 and 75 fibers for the respective Ctl-, Cdc7i-, Shh- and Shh+Cdc7i-treated samples; data from

710	without or with Shh; one-way anova, median with Tukey distribution. The "n" of DNA fibers
711	scored was: $Mcm2^{+/+} Ctl$, n=40; $Mcm2^{+/+} + Shh$, n= 56; $Mcm2^{+/-} Ctl$, n= 57; $Mcm2^{+/-} + Shh$, n=
712	78; data from 2 independent experiments. Median IODs indicated below graphs (g,h). Cdc7i was
713	added during the last 4hr of the experiments (a-g). i, Model summarizing Shh effects on
714	replication initiation.
715	
716	
717	Figure 6. Shh-dependent replication initiation domains revealed by EdU-seq. a, Examples
718	of Edu-seq tracks in Ctl- and Shh-treated GCPs. Input is the first row of each replicate. Left
719	graphs depict common replication initiation zones and right graphs illustrate Shh-dependent
720	initiation zones; n=2 experiments. b , Percentage of EdU-seq peaks localized to early replicating
721	regions in Ctl- and Shh-treated GCPs. c , Number of CNVs in $Ptch1^{+/-}$ MBs that overlap (or not)
722	with EdU-seq peak-containing regions in Ctl- and Shh-treated GCPs; two-sided Fisher's exact
723	test; n=942 peaks for Ctl samples, and n= 4321 peaks for Shh samples, from two independent
724	experiments were analyzed (b-c). d, EdU-seq tracks of Ctl-, Shh-, and Shh+Cdc7i-treated GCPs;
725	n=2 experiments.
726	
727 728	
729	Fig. 7. Origin firing is required for Shh-dependent replication stress and recombination. a,
730	Images of γ -H2AX immunostaining in Ctl-, Cdc7i-, Shh- and Shh+Cdc7i-treated GCPs; right
731	side panels show merge γ -H2AX, BrdU and Dapi images; n=3 experiments. b , Quantification of
732	γ -H2AX images presented in d, n=612 cells for Ctl, n= 52 cells for Cdc7i, n= 680 cells for Shh,

n= 748 cells for Shh+Cdc7i, from 3 independent experiments; median, boxplots with Tukey

734	distribution; one-way anova with Tukey post-test. c , Chromatin-bound Rpa32 (ssDNA) in S-
735	phase (BrdU+ cells) in Ctl-, Igf1-, Cdc7i-, Shh- and Shh+Cdc7i-treated GCPs; the number of S-
736	phase cells was: n= 65 in Ctl, n=45 in Igf1, n= 43 in Cdc7i, n= 66 in Shh, n= 48 in Shh+Cdc7i
737	S-phase cells from 2 representative experiments; mean±95%CI, one way anova, Tukey post-test
738	(b,c). d, Representative images of c. e, Experimental outline and quantification of sister
739	chromatid exchanges (SCEs)/metaphase in Ctl-, Igf1-, Shh- and Shh+Cdc7i-treated GCPs; the
740	numbers of metaphases analyzed were: $n=90$ in Ctl, $n=98$ in Igf1, $n=87$ in Shh, and $n=54$ in
741	Shh+Cdc7i; data from of 3 independent experiments; median and Tukey distribution; Kruskal-
742	Wallis test. f, Images of metaphases labeled with the SCE assay in Ctl-, Igf1-, Shh- and
743	Shh+Cdc7i-treated GCPs; n=3 experiments. Scale bars (a,d,f), 5µm. In a-d, Cdc7i was added
744	during the last 4hr of the experiment.

747	Fig. 8. In vivo Cdc7 inhibition reduces origin firing and hyper-recombination, preventing
748	medulloblastoma initiation. a, Experimental design. Ctl- and Cdc7i (TAK-931)-treated
749	<i>Ptch1</i> ^{+/-} mice were analyzed at postnatal day 7 (P7) and P16. b , Mouse body weight at P12 in
750	Ctl- and Cdc7i-treated pups; n =14 mice in Ctl group and n=22 mice in Cdc7i group; mean±sem,
751	two-sided t-test. c-d , Cerebellum area (mm ²) at midline (c) and representative images (d) in Ctl-
752	and Cdc7i-treated P16 mice; mean±sem, two-sided t-test, n=6 mice/group. e, Latency to fall on
753	rotarod test; mean±sem, two tailed t-test, n=9 mice/group. f, p-Mcm2 levels in the outer EGL of
754	Ctl- and Cdc7i-treated mice; mean±sem, two-sided t-test, n=5 mice/group. g, BrdU fluorescence
755	intensity in Ctl- and Cdc7i-treated mice, mean±sem; two-tailed t-test, n=5 animals/group. h,
756	Representative images of BrdU and p-Mcm2 staining, n=5 animals; scale bar, 3µm. i, Outline of

757	in vivo DNA combing and fork density quantification of Ctl- and Cdc7i-treated mice for 6
758	consecutive days and analyzed at P7, n=3 animals/group; two-sided t-test, mean±sem. j ,
759	Experimental outline of in vivo recombination assay and number of SCEs/metaphase in vivo in
760	Ctl- and Cdc7i-treated mice at P7; median with range, Mann-Whitney test; n= 57 metaphases in
761	Ctl and n=69 metaphases in Cdc7i-treated mice, analyzed from 3 experiments. Representative
762	images shown on the right; scale bar, 2µm. k, Preneoplastic lesion incidence at P16 in Ctl- and
763	Cdc7i-treated mice; two-sided Fisher's exact test. I, Number of preneoplastic lesions per
764	cerebellum in Ctl- and Cdc7i-treated mice; mean±sem, two-sided t-test; n=11 Ctl mice, and n=
765	14 Cdc7-treated mice (k,l). m, Examples of H&E P16 cerebellum sections of Ctl- and Cdc7i-
766	treated mice shown in l,k. Scale bar, 500 μ m. n , Model of Shh-dependent replication stress and
767	medulloblastoma initiation I: Physiological levels of Shh increase both active origin number and
768	fork speed, resulting in accelerated S-phase. This however leads to increased replication stress,
769	likely due to reduced time to solve challenges to DNA replication, increasing recombination
770	events. II: In wild-type GCPs Shh-replication stress and increased recombination rates alone are
771	not sufficient to cause biallelic inactivation of <i>Ptch1</i> . III: However, in In <i>Ptch1</i> ^{+/-} GCPs, Shh-
772	driven recombination events causing Ptch1 LOH are sufficient to cause tumor suppressor
773	inactivation (<i>Ptch1^{-/-}</i>), leading to constitutive, ligand-independent, hedgehog pathway activation
774	that perpetuates mitogenic stimulation resulting in clonal expansion of the <i>Ptch1</i> ^{-/-} GCPs; this in
775	turn causes preneoplasia. Continued replication stress at preneoplastic stages would further
776	promote genome instability and progression to advanced tumors.
777	

778 Methods

779 **Ethics statements**

This study complies with the Canadian Council on Animal Care guidelines. The animal protocol
 FC2016-03 was approved by the IRCM animal care committee.

782

783 Statistics & Reproducibility

The statistical tests, number of samples, error bars and statistical measure displayed on the
graphs is indicated in the figure legend of each panel. Unless otherwise indicated, every
experiment was replicated three of more times. No statistical method was used to predetermine
sample size. No data were excluded from the analyses. The experiments were not randomized.
When possible, investigators were blinded to allocation during experiments and outcome
assessment. Statistical tests were performed on Prism (Graphpad) or R. Further information on
research design is available in the Nature Research Reporting Summary linked to this article.

792

793 GCP isolation and culture

Postnatal day 7 (P7) GCPs were isolated as previously described ⁶¹.

For most experiments, GCPs were grown in serum-free Neurobasal media supplemented with

- B27, Glutamax and Sodium Pyruvate for 24hrs. Murine Igf1 (PreproTech, Cat. No. 250-19) was
- used at 100ng/ml, and Shh (R&D Systems, Cat. No. 1845-SH) at 10nM.

798

799 Immunofluorescence (IF)

800	For dissociated cells, GCPs were fixed in 4% PFA by adding 8% PFA in 1X PBS to the same
801	volume of media for 15min. Immunofluorescence was performed as previously described ^{24,61} .
802	To visualize chromatin-bound proteins, GCPs were incubated for 5min at 4°C, before fixation,
803	in extraction buffer containing 25mM Hepes, pH 7.5, 50mM NaCl, 1mM EDTA, 3mM
804	magnesium chloride, 300mM glucose and 0.5% Triton X-100 62 . After blocking in 10% goat or
805	donkey serum containing 0.1% Triton, cells were incubated in primary antibodies overnight at
806	4°C. The following antibodies were used: Rat anti-BrdU (Abcam, Cat. No. ab6326), 1:2000.
807	Mouse anti-BrdU clone B44 (BD, Cat. No. 347580), 1:200. Anti-RPA32 (Abcam, Cat. No.
808	16855), 1:100. Anti-γ-H2AX (CST, Cat. No. 9718S), 1:2000. Anti-γ-H2AX clone JBW301
809	(Millipore, Cat. No. 05-636), 1:1000. Anti-γ-H2AX-AF647 (Biolegend Cat. No. 613408), 1:200.
810	Anti p-MCM2 S40/S41 (Bethyl, Cat. No. A300-788-M), 1:200. Anti-MCM2 (Abcam Cat. No.
811	ab4461) 1:2000. Anti-53BP1 (Novus, Cat. No. NB100-304), 1:4000. Anti-Rad51 (Abcam, Cat.
812	No. ab133534), 1:1000. 53BP1 and Rad51 immunostainings required antigen retrieval for
813	15min at 98°C in sodium citrate buffer (10mM sodium citrate pH6.0, 0.05% Tween20) before
814	the blocking step. All secondary antibodies were used at a 1:1000 dilution. Image acquisition
815	was performed on a LSM700 (Zeiss), a LSM800 Airy Scan (Zeiss), or a SP8 (Leica) confocal
816	microscope.

DNA combing

For each experimental condition (e.g. control, Igf1, Shh, nucleosides), 1.2x10⁷ P7 GCPs were
cultured in 60mm dishes in replicate for 24 hours. Cells were pulsed with 25mM CldU (Sigma,
Cat. No. C6891) for 20min, washed with pre-warmed PBS and then pulsed with 125mM IdU
(Sigma, Cat. No. I7125) for 20min. GCPs were harvested by pipetting. 5x10⁶ GCPs were used to

823	cast 3 agarose (Bioshop, AGA101) plugs per replicate and processed for DNA combing
824	according to a previously described protocol ⁶³ omitting the SCE buffer plug digestion steps. IdU
825	was detected using Mouse anti-BrdU clone B44 (BD, Cat. No. 347580) and CldU was detected
826	using Rat anti-BrdU (Abcam, Cat. No. ab6326). Images were acquired using a widefield
827	microscope (Leica DM4000 or Zeiss Axiophot) using a 63X or 40X lens. The elongation rate
828	(μ m to kbp conversion) was obtained after bacteriophage lambda DNA combing, as previously
829	described ⁶³ . Measurements were performed using ImageJ. Fork density was calculated by
830	counting the number of labeled DNA replication forks per mega-base pair of DNA (Mbp), which
831	was measured using anti ssDNA antibody (MAB 3034) staining; all ssDNA fibers were
832	measured independent of whether they contained labelled forks. Fork density was normalized to
833	S-phase (Fig. 5d) by dividing fork density values by the S-phase fraction. For DNA fork speed,
834	the length of the IdU tracks next to CldU tracks was measured and divided by the IdU incubation
835	time (20min). DNA fork asymmetry is expressed as % asymmetry=((long IdU - short IdU)-
836	1)*100. IODs correspond to "eye-to-eye" distances (expressed in kbp), as exemplified in Fig.
837	5f-h.
838	
839	Cell fractionation
840	Cell fractionation was performed according to a modified protocol ⁶⁴ . 1.2x10 ⁷ P7 GCPs were
841	used per condition. Protein lysates were loaded on pre-casted TGX gels for SDS-PAGE and
842	western blotting. Anti-histone H2B (Abcam, Cat. No. ab1790), 1:25,000. Anti-B-tubulin,
843	1:10,000. Anti-Mcm2 (Abcam Cat. No. ab4461) 1:10,000.

845 GCP metaphase preparations

846	A protocol ⁶⁵ was adapted for GCPs. Cells were grown on PDL-coated coverslips at a density of
847	$2x10^{5}$ /coverslip in 500µl Neurobasal media in 24-well plates. Cells were treated with 0.02μ g/ml
848	Colcemid (added in 50µl media) for 1h at 37C. 350µl of media were removed and 2ml pre-
849	warmed 75mM KCl were added slowly (in 500μ l volumes) to the remaining media. Cells were
850	placed at 37°C for 15min. Three drops of freshly prepared 3:1 methanol/acetic acid (fixative)
851	were added to each well using a Pasteur pipette. After a 2min prefixation, the solution was
852	removed and 500μ l fixative were added to each well for 5min. The fixation was repeated two
853	more times and the coverslips were allowed to air dry at RT for 15min. Metaphases were used
854	for chromosome paint FISH or the SCE assay.
855	
856	Sister chromatid exchange (SCE) assay
857	GCPs were grown in 5μ M BrdU for 24h in presence of Shh to label the chromatids equally.
858	After a 5min wash in Neurobasal at 37°C to remove the BrdU, cells were incubated for 24
859	additional hours in presence of vehicle, Igf1, Shh or Shh+500nM PHA767491 (Cdc7i).
860	Metaphases were prepared as indicated above and BrdU was detected according to ⁶⁶ .
861	
862	Chromosome paint FISH
863	Mouse chromosome 13 (XMP 13, Cat. No. D-1413-050-FI) and chromosome 11 (XMP 11, Cat.
864	No. D-1411-050-OR) paint FISH probes were purchased from Metasystems. Hybridizations
865	were performed according to manufacturer's instructions.
866	

867 S-phase time measurements

868	S-phase time measurements were performed using sequential pulses of thymidine analogs ⁶⁷ in
869	order to extrapolate the percentage of cells in S-phase by measuring the Leave or Quit fraction,
870	the fraction of cells that exit S-phase in a determined time window according to the formula Ts=
871	Ti*Scells/Lcells, were Ti represents the time (hrs) between pulses, Scells are cells in S-phase and
872	Leells are the Leave fraction. GCPs were pulsed with $25\mu M$ CldU for 2hr and during the last
873	$30 min$ of that period a $30 min$ pulse of $125 \mu M$ IdU was added and cells were fixed in 4% PFA.
874	Rat anti-BrdU (Abcam, Cat. No. ab6326) was used to recognize CldU-positive cells (Lcells),
875	while mouse anti-BrdU clone B44 (BD, Cat. No. 347580) was used to label IdU-positive cells
876	(Scells).
877	
878	Nucleoside supplementation
879	Intermediate dilutions were prepared at a 50mM concentration. Thymidine and cytidine were
880	dissolved in H ₂ O, while adenosine and guanosine were dissolved in 20mM NaOH. The solutions
881	were mixed in equal proportions to obtain a final stock solution containing 2.5mM of each
882	nucleoside; this solution was further diluted in the culture media to $5\mu M$.
883	
884	In vivo Cdc7 inhibition
885	Newborn <i>Ptch1</i> ^{+/-} mice were treated daily from postnatal day 1 (P1) to postnatal day 16 (P16)
886	with 2mg/kg TAK-931(Cdc7i) by intraperitoneal injections; the injection volume was 10µl.
887	Control mice were injected daily with a vehicle solution containing 1.25% DMSO in water. The
888	side of the injection was alternated every day. To avoid litter effects, each litter always contained
889	animals being treated with vehicle and animals assigned to Cdc7i. At P16, mice were

890	anesthetized and perfused with saline and 4% PFA. Cerebella were dissected, sectioned and
891	stained with Hematoxylin & Eosin.
892	
893	In vivo DNA combing
894	Postnatal 7 (P7) pups that had been treated for seven days with vehicle or TAK-931 were given
895	an intraperitoneal (IP) dose of 100mg/kg CldU for 20 min followed by a 100mg/kg pulse of IdU
896	for 20min. All mice were sacrificed at the same time and GCPs were quickly isolated, directly
897	embedded in agarose plugs and processed for DNA combing as explained above.
898	
899	In vivo recombination assay
900	Ctl- or Cdc7i-treated postnatal day 7 (P7) pups were given intraperitoneal injections with
901	50mg/Kg BrdU every hour for 7 hr. Three hours after the last BrdU injection a dose of 2mg/kg
902	TAK-931 or vehicle was administered to extend the treatment regime for an additional day (pups
903	were left with their mother), and GCPs were isolated at P8, plated on PDL-coated coverslips for
904	one hour, and the metaphases prepared as explained above.
905	
906	RNA sequencing (RNAseq) and analysis
907	3x10 ⁶ GCPs/well were grown in 6-well plates and treated for 24h with 1:1000 DMSO (Control),
908	Igf1 and Shh in triplicate. Total RNA was extracted using the RNeasy Plus Mini Kit (Qiagen,
909	Cat. No. 74134). 400-450ng total RNA were used for RNAseq. Enrichment of transcriptomic
910	RNA was achieved by ribosomal RNA depletion using the Ribo-Zero Gold H/M/R rRNA
911	removal kit from Epicentre (Illumina). Stranded RNA-Seq (chemical fragmentation, cDNA-
912	dsDNA, library) was performed using the KAPA Stranded RNA-Seq Library Preparation Kit
909 910 911 912	Cat. No. 74134). 400-450ng total RNA were used for RNAseq. Enrichment of transcriptomic RNA was achieved by ribosomal RNA depletion using the Ribo-Zero Gold H/M/R rRNA removal kit from Epicentre (Illumina). Stranded RNA-Seq (chemical fragmentation, cDNA- dsDNA, library) was performed using the KAPA Stranded RNA-Seq Library Preparation Kit

913	(Illumina Platforms). Library quality control and quantitation were performed using the Agilent
914	High Sensitivity DNA kit on a Bioanalyzer and the NEBNext Library Quant Kit for Illumina.
915	Paired-End 50 reads were sequenced on a HiSeq 2500 with v4 chemistry (Illumina).
916	Quality control of read sequences was performed using the FastQC algorithm. Adaptor
917	sequences and low quality score bases (Phred score < 30) were first trimmed using Trimmomatic
918	v. 0.22 68 , and reads smaller than 32-bp long were discarded. The resulting reads were mapped to
919	the mouse genome assembly mm10 using STAR ⁶⁹ . Only concordant mapped reads were
920	subsequently used. HTSeq $0.6.1p1^{70}$ was used to obtain gene mapping-read counts based on
921	Ensembl (release 86) gene annotation downloaded from the UCSC genome browser ⁷¹ .
922	Transcript isoforms from single genes were merged using cufflink ⁷² , resulting in 48526
923	annotated genes. We further selected genes expressed above a nominal background level, defined
924	as more than 10 mapping reads in at least 2 replicates of either sample. This results in x
925	expressed genes. The R Bioconductor package DESeq2 ⁷³ was used to normalize gene expression
926	levels and to investigate the differential expression of genes between groups. A q-value < 0.05
927	and a minimum expression fold-change of 2 were considered to select significantly differentially
928	expressed genes. Source data for the RNAseq analyses shown in Extended Data Fig. 2, Extended
929	Data Fig. 3, Extended Data Fig. 4, and Extended Data Fig. 7 can be found in Supplementary
930	Table 1.

932 EdU-seq

GCPs were pulsed with 100µM EdU (Sigma, Cat No. 900584) for 15min, washed in warm PBS
for 3 min, harvested and processed as described³⁷. Azide-PEG3-Biotin Conjugate was obtained
from Sigma (Cat. No. Sigma 762024). We used 1.5x10⁷ GCPs/condition and two different

936	experiments were performed as replicates. Inputs correspond to biotinylated DNA before the
937	streptavidin capture of EdU-substituted DNA. Libraries were prepared using the Kappa
938	HyperPrep Kit according to manufacturer instructions, using 12 amplification cycles. Library
939	quality control and sequencing were performed as described for RNAseq. The resulting reads
940	were aligned to the mm10 mouse reference genome using Bowtie v2.3.1 ^{74} with the following
941	parameters: -qfrno-mixedno-unal -local. The output sam files were filtered using samtools
942	⁷⁵ to remove alignments containing three or more mismatches. Two concurrent analyses were
943	performed to identify enriched regions. (1) Each sample replicate was compared to sequenced
944	input DNA using MACS v2.1.1.20160309 ⁷⁶ callpeak function with the parameters "-f BAMPE
945	-g mmbroad -nomodel -B -q 0.05". Replication initiation zones were defined by clustering
946	enriched regions that are 120kb of each other using the tool bedtools cluster ⁷⁷ with the
947	parameters "bedtools cluster $-i$ $-d$ 120000 ". (2) Each sample replicate was compared to
948	sequenced input DNA using MACS v2.1.1.20160309 callpeak function with the parameters "-f
949	BAMPE -g mmbroad -nomodel -B -q 1". Regions with at least 3-fold enrichment against the
950	input DNA were kept for the subsequent analyses. Replication initiation zones were defined by
951	clustering enriched regions 50kb of each other using bedtools cluster with the parameters
952	"bedtools cluster –i –d 50000 ".

954 DNA copy number variation (CNV) analysis of *Ptch1*^{+/-} advanced medulloblastomas 955 We used normalized log2 ratio (sample/reference) of the aCGH array dataset GSE19381 956 (samples GSM480969, GSM480970 and GSM480971) from GEO. The R package cghMCR was 957 used to quantify segments of DNA copy across the samples.

9 Analysis of *PTCH1* LOH in human MBs

We downloaded human MB whole genome sequences⁸ from the ICGC dataset
 EGAD00001003127 (EGAS00001001953) and analyzed copy number and allele-specific copy
 number using FACETS⁷⁸.

963

964 Mass spectrometry

1.5x10⁷ GCPs per condition (Ctl, Igf1, Shh) were grown for 24 in triplicate in 60mm dishes. 965 Cells were washed in cold 150 mM ammonium formate solution pH of 7.4 and then extracted in 966 600 uL 31.6% MeOH/36.3% acetonitrile in H₂O (v/v). Cells were lysed and homogenized by 967 bead-beating for 2 minutes at 30Hz using a 5 mm metal bead in a TissueLyser II (Qiagen). Cell 968 extracts were partitioned into aqueous and organic layers following dimethyl chloride treatment 969 and centrifugation. Aqueous supernatants were dried by vacuum centrifugation at -4°C 970 (Labconco, Kansas City MO, USA). Pellets were subsequently resuspended in 25 µl H₂O as the 971 injection buffer. 972

973

For semi-quantitative targeted metabolite analysis of mono-, di-, and tri-phosphate nucleoside, 974 samples were injected onto an Agilent 6430 Triple Quadrupole (Agilent Technologies, Santa 975 Clara, CA, USA). Chromatography was achieved using a 1290 Infinity ultra-performance LC 976 system (Agilent Technologies, Santa Clara, CA, USA) consisting of vacuum degasser, 977 978 autosampler and a binary pump. Separation was performed on a Scherzo SM-C18 column 3 μ m, 3.0×150mm (Imtakt Corp, JAPAN) maintained at 10°C. The chromatographic gradient started at 979 100% mobile phase A (5 mM ammonium acetate in water) with a 5 min gradient to 100% B (200 980 981 mM ammonium acetate in 20% ACN/80% water) at a flow rate of 0.4 ml/min. This was followed

	by a 5 min noid time at 100% mobile phase B and a subsequent re-equinoration time (6 min)
983	before next injection. 5 uL of sample volume was injected for analysis. Sample temperature was
984	maintained at 4°C before injection.
985	
986	The mass spectrometer was equipped with an electrospray ionization (ESI) source and samples
987	were analyzed in positive mode. Multiple reaction monitoring (MRM) transitions were optimized
988	on standards for each metabolite quantitated. Gas temperature and flow were set at 350°C and 10
989	l/min respectively, nebulizer pressure was set at 40 psi and capillary voltage was set at 3500V.
990	Relative concentrations were determined by integrating the area under the curve for the
991	quantifying MRM transition and compared to external calibration curves. Data were analyzed
992	using MassHunter Quant (Agilent Technologies, Santa Clara, CA, USA).
993	
001	
994	Data availability
994 995	Data availability Deep-sequencing data supporting the findings of this study have been deposited in the Gene
994 995 996	Data availability Deep-sequencing data supporting the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under accession codes GSE147409 (EdU-seq) and GSE147410
994 995 996 997	Data availability Deep-sequencing data supporting the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under accession codes GSE147409 (EdU-seq) and GSE147410 (RNA-seq).
994 995 996 997 998	Data availability Deep-sequencing data supporting the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under accession codes GSE147409 (EdU-seq) and GSE147410 (RNA-seq). Human LOH data in SHH-MB were derived from dataset EGAD00001003127 obtained with
994 995 996 997 998 999	Data availability Deep-sequencing data supporting the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under accession codes GSE147409 (EdU-seq) and GSE147410 (RNA-seq). Human LOH data in SHH-MB were derived from dataset EGAD00001003127 obtained with authorization from the ICGC Consortium: https://icgc.org/ . Mouse CNV data was downloaded
994 995 996 997 998 999 1000	Data availability Deep-sequencing data supporting the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under accession codes GSE147409 (EdU-seq) and GSE147410 (RNA-seq). Human LOH data in SHH-MB were derived from dataset EGAD00001003127 obtained with authorization from the ICGC Consortium: https://icgc.org/ . Mouse CNV data was downloaded from GSE19381. Source data for Fig. 1-8, Extended Data Fig. 1-10, and Uncropped Gels have
994 995 996 997 998 999 1000 1001	Data availabilityDeep-sequencing data supporting the findings of this study have been deposited in the GeneExpression Omnibus (GEO) under accession codes GSE147409 (EdU-seq) and GSE147410(RNA-seq).Human LOH data in SHH-MB were derived from dataset EGAD00001003127 obtained withauthorization from the ICGC Consortium: https://icgc.org/ . Mouse CNV data was downloadedfrom GSE19381. Source data for Fig. 1-8, Extended Data Fig. 1-10, and Uncropped Gels havebeen provided as Source Data Files. All other data supporting the findings of this study are
 994 995 996 997 998 999 1000 1001 1002 	Data availabilityDeep-sequencing data supporting the findings of this study have been deposited in the GeneExpression Omnibus (GEO) under accession codes GSE147409 (EdU-seq) and GSE147410(RNA-seq).Human LOH data in SHH-MB were derived from dataset EGAD00001003127 obtained withauthorization from the ICGC Consortium: https://icgc.org/ . Mouse CNV data was downloadedfrom GSE19381. Source data for Fig. 1-8, Extended Data Fig. 1-10, and Uncropped Gels havebeen provided as Source Data Files. All other data supporting the findings of this study areavailable from the corresponding author on reasonable request.
 994 995 996 997 998 999 1000 1001 1002 1003 	Data availability Deep-sequencing data supporting the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under accession codes GSE147409 (EdU-seq) and GSE147410 (RNA-seq). Human LOH data in SHH-MB were derived from dataset EGAD00001003127 obtained with authorization from the ICGC Consortium: <u>https://icgc.org/</u> . Mouse CNV data was downloaded from GSE19381. Source data for Fig. 1-8, Extended Data Fig. 1-10, and Uncropped Gels have been provided as Source Data Files. All other data supporting the findings of this study are available from the corresponding author on reasonable request.

1005			
1006	61	Izzi, L. et al. Boc and Gas1 each form distinct Shh receptor complexes with Ptch1 and	
1007		are required for Shh-mediated cell proliferation. <i>Developmental cell</i> 20 , 788-801,	
1008		doi:10.1016/j.devcel.2011.04.017 (2011).	
1009	62	Lukas, C., Falck, J., Bartkova, J., Bartek, J. & Lukas, J. Distinct spatiotemporal dynamics	
1010		of mammalian checkpoint regulators induced by DNA damage. <i>Nature cell biology</i> 5,	
1011		255-260, doi:10.1038/ncb945 (2003).	
1012	63	Gallo, D., Wang, G., Yip, C. M. & Brown, G. W. Analysis of Replicating Yeast	
1013		Chromosomes by DNA Combing. Cold Spring Harb Protoc 2016, pdb prot085118,	
1014		doi:10.1101/pdb.prot085118 (2016).	
1015	64	Mendez, J. & Stillman, B. Chromatin association of human origin recognition complex,	
1016		cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of	
1017		prereplication complexes in late mitosis. <i>Molecular and cellular biology</i> 20 , 8602-8612	
1018		(2000).	
1019	65	Bayani, J. & Squire, J. A. Preparation of cytogenetic specimens from tissue samples.	
1020		Curr Protoc Cell Biol Chapter 22, Unit 22 22, doi:10.1002/0471143030.cb2202s23	
1021		(2004).	
1022	66	Hoch, N. C. <i>et al.</i> XRCC1 mutation is associated with PARP1 hyperactivation and	
1023		cerebellar ataxia. <i>Nature</i> 541 , 87-91, doi:10.1038/nature20790 (2017).	
1024	67	Martynoga, B., Morrison, H., Price, D. J. & Mason, J. O. Foxg1 is required for	
1025		specification of ventral telencephalon and region-specific regulation of dorsal	
1026		telencephalic precursor proliferation and apoptosis. Dev Biol 283, 113-127,	
1027		doi:10.1016/j.ydbio.2005.04.005 (2005).	
1028	68	Lohse, M. et al. RobiNA: a user-friendly, integrated software solution for RNA-Seq-	
1029		based transcriptomics. Nucleic acids research 40, W622-627, doi:10.1093/nar/gks540	
1030		(2012).	
1031	69	Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21,	
1032		doi:10.1093/bioinformatics/bts635 (2013).	
1033	70	Anders, S., Pyl, P. T. & Huber, W. HTSeqa Python framework to work with high-	
1034		throughput sequencing data. Bioinformatics 31, 166-169,	
1035		doi:10.1093/bioinformatics/btu638 (2015).	
1036	71	Dreszer, T. R. et al. The UCSC Genome Browser database: extensions and updates 2011.	
1037		Nucleic acids research 40, D918-923, doi:10.1093/nar/gkr1055 (2012).	
1038	72	Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals	
1039		unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol	
1040		28 , 511-515, doi:10.1038/nbt.1621 (2010).	
1041	73	Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion	
1042		for RNA-seq data with DESeq2. Genome biology 15, 550, doi:10.1186/s13059-014-	
1043		0550-8 (2014).	
1044	74	Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods	
1045		9 , 357-359, doi:10.1038/nmeth.1923 (2012).	
1046	75	Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25,	
1047		2078-2079, doi:10.1093/bioinformatics/btp352 (2009).	
1048	76	Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137,	
1049		doi:10.1186/gb-2008-9-9-r137 (2008).	

1050 1051	77	Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. <i>Bioinformatics</i> 26 , 841-842, doi:10.1093/bioinformatics/btq033
1052		(2010).
1053	78	Shen, R. & Seshan, V. E. FACETS: allele-specific copy number and clonal heterogeneity
1054		analysis tool for high-throughput DNA sequencing. Nucleic acids research 44, e131,
1055		doi:10.1093/nar/gkw520 (2016).
1056		
1057		

	Shh-RS	OI-RS
Origin firing	High	Low or High ^{1,2,3}
Fork speed	Fast	Slow/stalling ^{1,2,3}
dNTPs	High	Low ⁴
Ultrafine anaphase bridges (UFBs)	Not present	Present ⁵
53bp1 foci	S-phase	G1 ⁶

1. Macheret and Halazonetis, 2015 2. Bartkova et al., 2006; Di Mico et al., 2006 4. Bester et al., 2011 5. Chan et al., 2009

3. Dominguez-Sola et al., 2007

6. Lukas et al., 2011

Normalized enrichment score (Proteomics) а SHHa SHHb 10 **GO DNA Replication** 5 **Reactome Replication** 0 GO DNA Recombination -5 GO DNA Dependent DNA replication **KEGG DNA Replication** -10 GO DNA Stand elongation GO DNA Replication Initiation b C d GO DNA Recombination MCM2 Protein MCM2 mRNA mRNA Protein 3 2 SHHa 15 Normalized enrichment score 10 SHHb 2 Rel. peptide abundance Rel. mRNA abundance 10 1 5 1 5 0 0 0 0 -1 -5 -5 -1 -2 -10 10 -15 -2 -3 MCM2 p-Ser40 MCM2 p-Ser139 MCM2 p-Ser26/27 e

