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Résumé 

Introduction: La chirurgie de pontage coronarien requiert, dans la grande majorité des cas, 

l’utilisation de l’artère mammaire interne en combinaison avec un ou des greffons provenant de 

la grande veine saphène. Malgré le taux de perméabilité inférieur aux artères, la veine saphène 

reste un choix populaire de conduit en raison de son accessibilité et de sa longueur. De ce fait, le 

greffon veineux devient la cible de multiples approches et le sujet de nombreuses études visant 

à optimiser sa perméabilité. Celles-ci incluent le raffinement des techniques de prélèvement, les 

solutions de préservations, les agents pharmacologiques ainsi que la thérapie génique. Il est 

davantage intéressant de combiner les approches afin de joindre leurs bénéfices, comme, par 

exemple, ajouter un agent pharmacologique à une solution de préservation. Un agent potentiel 

serait le Celastrol, connu pour être un inhibiteur du HSP90 et possède des propriétés anti-

oxydantes et anti-inflammatoires.  

Méthodologie: Des cellules endothéliales humaines provenant de la veine ombilicale (HUVEC) 

sont pré-conditionnées à de multiples concentrations de Celastrol (10-10M, 10-8M and 10-6M) 

pendant une heure avant d’être soumises aux conditions de stress. Pour reproduire les conditions 

per-opératoires de prélèvement, les cellules endothéliales ont été préservées dans du salin (NS) 

héparinisé. Pour mimer le stress secondaire à l’ischémie/reperfusion, les cellules ont aussi été 

soumises à diverses concentrations de H2O2. Une analyse de la viabilité cellulaire fut conduite par 

le test de LIVE/DEAD. La capacité de ré-endothélialisation est étudiée grâce à l’épreuve de scratch 

test. Les voies intracellulaires de survie telles que le RISK pathway (Akt, ERK1/2), le Heat shock 

response (HSP70) et la réponse anti-oxydante (via l’activité de HO-1) ont été examinées par 

immunoblot. 

Résultats: Les résultats démontrent que la préservation des cellules endothéliales dans du NS 

héparinisé est associée à une augmentation de la mortalité comparativement au milieu de 

culture (20.4% vs 1.9%, p=0.004). Toutefois, un traitement au Celastrol n’affecte pas 

significativement la survie des cellules endothéliales dans le NS héparinisé. Le stress oxydatif 

induit aussi une augmentation de la mortalité, et ce à dose-dépendante. Suivant un court stress 
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oxydatif (H2O2 4 mM), un pré-traitement au Celastrol 10-10M est associé à une meilleure viabilité 

comparativement au véhicule (76.6% vs 66.1%, p=0.005). Lorsque soumises à un stress oxydatif 

prolongé (H2O2 0.5 mM pendant 24h), les HUVEC pré-traitées au Celastrol à 10-8M et 10-10M 

démontrent une amélioration significative de la viabilité, 93.7% vs 76.9% (p=0.001) et 93.6% vs 

76.9% (p=0.002) respectivement. Quant à la ré-endothélialisation, un traitement au Celastrol 10-

6M est associé à une fermeture plus rapide et complète comparativement au véhicule. Un court 

traitement au Celastrol active précocement les kinases de la voie de RISK (Akt et ERK). Le 

traitement induit aussi l’expression de HSP70 et HO-1 qui reste soutenue jusqu’à 48 heures post-

traitement.  

Conclusion: 

Le Celastrol active plusieurs voies de protection intracellulaire tels que le RISK pathway, le Heat 

Shock Response et la réponse antioxydante via l’activité de HO-1. En corrélation avec cette 

réponse, il améliore la survie des cellules endothéliales dans un milieu oxydatif. Le Celastrol 

promeut aussi une ré-endothélialisation plus complète et rapide. Cette étude met en valeur les 

bénéfices potentiels du Celastrol sur les cellules endothéliales. Afin d’optimiser la protection du 

greffon, le Celastrol pourrait donc être considéré comme agent adjuvant à une solution de 

préservation. 

Mots-clés : endothélium, celastrol, pré-traitement pharmacologique, fonction endothéliale, 

greffon veineux, défaillance du greffon, chirurgie cardiaque, solution de préservation 

 



 

Abstract 

Introduction: Coronary artery bypass grafts are most commonly performed using saphenous vein 

grafts to complement the internal thoracic artery. The saphenous vein will remain popular 

despite its lower patency rate because it is easily accessible and lengthy enough to perform 

multiple bypasses. Therefore, several approaches have been studied, with the common goal of 

finding the optimal conditions that reduce graft failure. They include novel harvest techniques, 

new preservation preparations, innovative genetic therapies and experimental drugs. We believe 

a pharmacological pre-conditioning with an anti-oxidative and anti-inflammatory drug during the 

crucial time of harvest may spark beneficial survival response from the endothelial cells. One 

particular compound is Celastrol, an HSP90 inhibitor, which displays those antioxidant and anti-

inflammatory properties. 

Methods: Human umbilical vein endothelial cells (HUVEC) were pretreated with various 

concentrations of Celastrol (10-10M, 10-8M and 10-6M). In order to reproduce oxidative stress 

found in ischemia/reperfusion, cells were exposed to hydrogen peroxide for a short and extended 

period (1h and 24h). To mimic storage condition encountered in clinical settings, cells were also 

exposed in heparinized normal saline. The viability was assessed by LIVE/DEAD assay. As for 

migrative and proliferative properties, scratch tests were performed. Finally, various protective 

intracellular pathways were evaluated by Western blot. 

Results: This study shows that pre-treatment with Celastrol promotes survival in HUVEC 

submitted to oxidative stress. Notable improvement in cellular viability was detected as early as 

1 hour after oxidative stress (H2O2 4 mM), 76.6% vs 66.1% (p=0.005). Significant survival benefits 

are also reported after prolonged oxidative stress (H2O2 0.5 mM for 24 hours); viability was 93.7% 

vs 76.9% (p=0.001) for Cel 10- 8 M and 96.6% vs 76.9% (p=0.002) for Celastrol 10-10M when 

compared to the vehicle. Celastrol, however, did not significantly affect viability of HUVEC stored 

in heparinized normal saline.  Celastrol at 10-6 M promotes faster and more complete wound 

closure compared to the vehicle or to lower dosages. Celastrol triggers early activation of the 

RISK pathway, inducing activation of both Akt and ERK1/2 within the first 15 minutes of 
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treatment. Celastrol also induces the expression of HSP70 and HO-1, effectors of the Heat Shock 

Response and the anti-oxidative response respectively.  

Conclusion: Pre-treatment by Celastrol provides survival benefits in endothelial cells under 

oxidative stress. It also stimulates endothelial cell proliferation and migration, promoting faster 

and more complete re-endothelialisation. Celastrol can potentially be used as an additive to 

storage solutions to limit endothelial injury and promote graft protection. 

Keywords: endothelium, endothelium dysfunction, vein graft failure, vein graft, coronary artery 

bypass grafting, Celastrol, pharmacological pre-treatment, preservation solution 
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Chapter 1 – Introduction 

1.1 Coronary artery bypass grafting and choices of grafts 

The coronary artery bypass grafting (CABG) is the most frequently performed cardiac surgery, 

not surprisingly as coronary artery disease remains the number one cause of death worldwide, 

according to the World Health Organization.[1] CABG has shown to be effective at relieving 

anginal symptoms, improving functional status and quality of life measures.[2-5] Despite 

increasing numbers of percutaneous coronary interventions (PCI), the undeniable survival 

benefits of CABG cement its status as the preferred treatment for patients with high 

cardiovascular risk such as diabetic patients, those with complex and extensive coronary disease, 

or those with ventricular dysfunction.[6-14] 

 

1.1.1 Arterial Grafts 

Generally, CABG requires the use of both arterial and venous grafts harvested from the patient 

during the same procedure. The available choices of arterial grafts are the internal mammary 

artery (IMA), radial artery (RA) and gastroepiploic artery (GEA), listed in order of frequency of 

use. IMA shows the best patency rate of 85-95% at 10 years [15]. RA has a patency rate of 88% 

at 5 years, whereas GEA, 85% at 5 years and 66% at 10 years [16, 17]. IMA are known to be the 

gold standard graft and thus, is used in over 95% of CABG cases [3, 9, 18].  

IMA has intrinsic characteristics that confer its superior patency rate. First, it has low collagen 

content, which grants its elastic properties. Compared to the RA, the IMA responds better to 

nitric oxide (NO), shows less reactivity to vasoconstrictive agents (i.e., KCl, norepinephrine, 

phenylephrine) and have a thinner muscular component, making it resistant to vasospasms [19-

21]. The IMA endothelium few fenestrations, limiting cellular migration and lipoproteins entry 

into the subendothelial space. It exhibits antithrombotic molecules such as heparin sulfate and 

higher NO production. All those features are protective against the development of 
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atherosclerosis [22, 23]. Furthermore, IMA avoids ischemia as it is typically harvested and 

anastomosed in situ. 

One major drawback of arterial grafts is their limited availability. The left IMA is unquestionably 

used to revascularize the most significant vessel, predominantly the left anterior descending 

artery (LAD). In multivessel disease, there is still debate about the choice of second graft. The use 

of both IMA is supported by the theoretical advantage of offering gold standard quality grafts to 

two coronary territories. However, the largest clinical study comparing bilateral internal 

mammary artery (BIMA) revascularization to single mammary artery revascularization showed 

an increased rate of sternal wound infection and modest to no clinical benefits [24, 25]. While 

the RA was compared to the right internal mammary artery (RIMA) with similar clinical results, 

its popularity remains limited because of its propensity to spasm, especially during the 

perioperative period [19, 26]. Additional skepticism stems from aesthetic motives, risk of nerve 

injury in the arm, the morbidity associated with upper limb infection, hematoma or ischemia [27]. 

The GEA is rarely used. Its harvest requires a bigger incision, with entry into the abdominal cavity 

and secondary increased risk of contamination. It also requires technical expertise not widely 

trained and mastered [28]. As for prosthetic grafts, its use is limited in CABG due to its poor long-

term patency rates and thus, considered as a last resort option [29]. 

 

1.1.2 Venous grafts 

Since 1967, when Favarolo first successfully reconstructed a conduit with a segment of a 

saphenous vein to revascularize the right coronary artery, saphenous vein grafts (SVG) quickly 

became the ideal complement to the left IMA for the revascularization in multivessel disease 

[30]. It provides a longer segment to be used for multiple grafting. Its harvest is comparatively 

less complex and time-consuming, potentially shortening operative time and is particularly 

advantageous in cases of emergency [31]. When concerns about competitive flow arise, SVG also 

becomes an interesting alternative. While arterial grafts are living grafts reacting to the reduction 

of flow, SVG acts as a large conduit with minimal regulation and resistance [32]. Those are 

reasons why venous grafts, despite their lower performance, remain the most frequently used 
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conduit in combination with the IMA [33]. The biggest caveat to SVG is its patency rates, reported 

to be 85-90% at 1 year, 80% at 5 years and 50-60% at 10 years, which measures poorly to its 

arterial counterparts [15, 32]. Inherent elements of SVG contribute to the poor patency rate. It 

has a media composed mostly of concentric collagen and multiple layers of longitudinal and 

circumferentially oriented smooth muscle cells (SMC). This characteristic confers mechanical 

stiffness, particularly at non-physiological pressures (≥ 50mmHg), a factor implicated in triggering 

hyperplasia.[34] SVG is also susceptible to accelerated atherosclerosis due to its higher collagen 

content, abundant fibroblast growth factor receptors, increased intercellular junction 

permeability, rapid lipid uptake, lower redox responses as well as lower NO sensitivity and 

production [23, 35-37]. As the use of SVG will likely prevail, extensive research has focused on 

ways to target vein graft failure (VGF). A detailed description of VGF physiopathology and a 

review of those advancements are discussed in the next sections.  

 

1.2 Endothelial Physiology 

The endothelium constitutes a single layer of endothelial cells lining the whole vasculature. It is 

a large interface responsible for the nutrients and gas exchange between the intravascular space 

and the surrounding tissue. It is central in preserving vascular homeostasis, playing an essential 

role in moderating the vascular tone, initiating and regulating the inflammatory response as well 

as maintaining the thrombotic/antithrombotic balance. Endothelial dysfunction results from the 

imbalance of those functions and plays a critical role in cardiovascular diseases [38]. 

 

1.2.1 Vasoactive regulation 

The regulation of vascular tone is dependent on the presence and integrity of the endothelium. 

Endothelial cells (EC) constitutively produce NO which is the primary regulator of the vascular 

basal tone. NO diffuses and reaches the smooth muscle layer where it activates the soluble 

guanylate cyclase to produce cGMP, activating downstream pathways resulting in SMC relaxation 

[38, 39]. Beside vasodilatation, NO also has anti-inflammatory properties by inhibiting platelet 
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aggregation, cytokines productions as well as reducing endothelial permeability, leukocyte 

adhesion and migration [40]. 

NO production is stimulated by various triggers such as acetylcholine, bradykinin, histamine, 

arachidonic acid derivatives, β-adrenoceptor agonists and serotonin, among others [40]. NO is 

synthesized by the nitric oxide synthase (NOS) enzyme family, using NADPH, O2 and L-arginine as 

substrates and flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN) 

tetrahydrobiopterin, heme, Ca2+/calmodulin acting as cofactors. There are 3 types of NOS, named 

after the cell type from which they were first isolated and cloned: eNOS (endothelial), nNOS 

(neuronal) and iNOS (inducible form) [41]. eNOS is the predominant endothelial isoform.[40] It 

maintains a basal production of NO [42]. Oxidized low-density-lipoprotein (LDL) reduces 

expression of eNOS, whereas increased transcription follows the presence of vascular endothelial 

growth factor (VEGF), insulin, fibroblast growth factor (FGF) or hypoxia [39]. iNOS is normally not 

expressed, as it is an inducible form of NOS. Pro-inflammatory cytokines (IL-1, TNF-a  and IFg) or 

oxidative environment stimulate transcription of iNOS through the Nuclear Factor kappa-light-

chain-enhancer of activated B cells (NF-kB) [43]. 

Shear stress provokes a rapid enzymatic activation and transcription of eNOS. Aside from the 

resulting vasodilatory response, shear stress stimulates the release of antithrombotic agents and 

factors that reduces leukocyte migration as well as SMC proliferation. A steady laminar flow 

provides protection against atherosclerosis by inducing the release of both NO and prostacyclin 

(PGI2) [44]. PGI2 is produced by cyclooxygenases and induces SMC vasorelaxation via activation 

of adenylate cyclase and production of cyclic adenosine monophosphate (cAMP). PGI2 also plays 

a role in the resting vascular tone and increases in response to thrombin, histamine, serotonin 

and arachidonic acid derivatives [45]. Additional to the release of vasodilatory factors, shear 

stress provokes EC conformal changes. They adopt an elongated form along the direction of 

blood flow to alleviate mechanical stress [39]. 

Endothelium-dependent vasoconstriction is mediated by endothelin (ET). ET is continuously 

synthesized de novo, modulated by shear stress, hypoxia, thrombin and angiotensin II among 

others [46]. EC releases pre-endothelin in the non-luminal extracellular space where it is 



31 

converted to functional ET by endothelin-converting enzymes (ECE). There are 3 isoforms of ET: 

ET-1, ET-2 and ET-3. Additional to its vasoconstrictive property, ET-1 also has a mitogenic effect 

on SMC. ET exert their effects upon binding with endothelin receptors ETA and ETB. ETA has an 

affinity for ET-1 and ET-2 and induces SMC contraction through phospholipase C activation. ETB 

has an affinity for all ET isotypes. Activation of ETB causes a counterregulatory response by 

stimulating the release of NO/PGI2. The existence of other endothelial-derived vasoconstrictive 

agents is not known. Many factors, however, have vasoconstrictive effects (i.e., superoxide 

anion, vasoconstrictive prostaglandins PGF2 and PGH2, TxA2) [39, 46]. 

 

 

Endothelium-derived vasoactive substances (5-HT, serotonin; Ache, Achetycholin; ADP, adenosine phosphate; AI, 

angiotensin 1; AII, angiotensin II; ACE, angiotensin converting enzyme; AT1, angiotensin type 1 receptor; B2, 

bradykinin receptor; Bk; bradykinin; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine 

monophosphate; EDHF, endothelium-derived hyperpolarizing factor; eNOS, endothelial nitric oxide synthase; bET-

1, precursor of endothelin 1; ET-1, endothelin 1; ETA: endothelin receptor type A; ETB: endothelin receptor type B; 

NO, nitric oxide; PGI2, prostaglandin I 2; PGH2, prostaglandin H 2; ROS, reactive oxygen species; TX, thromboxane 

receptor; TxA2, thromboxane A2) [47] 

Figure 1. –  Endothelium-derived vasoactive substances  
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1.2.2 Inflammatory response and leukocyte recruitment 

Inflammation is a protective mechanism necessary for defense and repair of damaged or infected 

tissue. There are 3 components in the inflammation response: a vasodilatory process, which 

results in a rise of blood flow; an increase in vessel permeability and exudation of protein-rich 

fluids; and the recruitment and activation of leukocytes at the damaged site. The endothelium 

initiates and tightly coordinates these 3 responses [38].  

There are 2 types of EC activation. Type 1 is a rapid and transient response. It starts and lasts 

within minutes. It is typically mediated by ligands that bind to G-protein-coupled receptors which 

leads to an increase in intracellular Ca2+, an example of this being the action of histamine [38]. 

The formation of the Ca2+/calmodulin complex is required for the activation of eNOS.[48] A 

calcium-mediated activation of phospholipase A2 allows cleavage of membrane 

phosphatidylcholine into arachidonic acid, which is converted into PGI2 by cyclooxygenases [49]. 

Ca2+ also allows contraction of actin filaments leading to the opening of intercellular gaps, 

resulting in an increase in vascular permeability and leakage of protein-rich plasma into the 

extravascular space [50].  

Type 2 is a more sustained inflammatory response. It is mediated by TNF-a and IL-1, which initiate 

a cascade of kinases leading to activation of NF-kB and activator protein 1 (AP-1) [38]. Both 

transcription factors modulate the expression of proinflammatory cytokines such as TNF-a, IL-1, 

IL-8 and MCP-1. TNF-a and IL-1 have autocrine and paracrine effects on EC, ensuring positive 

feedback to the inflammatory response [39]. IL-8 and MCP-1 are chemoattractant to neutrophils 

and monocytes/macrophages, respectively [51, 52]. EC also secretes the platelet-activating 

factor (PAF), necessary for platelet aggregation as well as neutrophil adhesion [53]. A modulation 

of adhesion molecules expression controls the transition from neutrophilic to mononuclear 

infiltration. The duration of the type 2 response lasts as long as there are cytokines[38]. 

The migration of lymphocytes, monocytes and neutrophils from the intravascular space towards 

the tissue is possible owing to the presence of adhesion molecules. Selectins initiate the process 
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by allowing tethering of the lymphocyte to the EC. The lymphocyte is seen “rolling” to the 

inflammation site. There are 3 types of selectins: L-selectins, E-selectin and P-selectin [54]. L-

selectin is constitutively expressed on most leukocytes and binds to glycoproteins (i.e., GlyCAM-

1, MAdCAM-1, CD34) [39]. Attachment requires the induction of L-selectin ligands on the 

surfaces of platelets and EC. E-selectin is specific to EC. Its expression is induced by IL-1, TNF-a 

and LPS. It is found in both platelets and EC. P-selectin is stored in Weibel-Palade bodies (WPB), 

storage granules within endothelial cells, and released upon activation by cytokines. It interacts 

with its ligand, PSGL-1 found on leukocytes, and mediates their activation [54].  

EC stimulates leukocytes by anchoring and presenting chemokines on its proteoglycan-rich 

glycocalyx. The stimulated leukocyte initiates a conformation change of its integrins, rendering 

them capable of binding to immunoglobulins on the endothelial surface [39]. Integrins are 

transmembrane glycoproteins that control intercellular and cell-matrix interactions. Leukocyte-

EC interaction is mediated by 3 integrins: LFA-1 being the predominant integrin for lymphocyte 

migration, Mac1 responsible for neutrophil adhesion and VLA4 expressed on monocytes [39, 55]. 

EC, on the other side, expresses adhesion molecules ICAM-1, ICAM-2, VCAM-1 and e-selectin. 

The complementary ligand for Mac-1 is ICAM-1, minimally expressed during normal conditions, 

but markedly induced by cytokine activation. LFA-1 also binds to ICAM-1 and ICAM-2 whereas 

VLA-4 binds selectively to VCAM-1. Firm adhesion requires the binding of integrins [55]. The 

migration of leukocytes through the endothelium involves the interaction of Mac-1 and LFA-1 

with ICAM-1. Monocytes use the interaction between VLA-4 and VCAM-1. The migration through 

gaps between the EC is a complex process called diapedesis and requires a cycle of adhesion and 

detachment [38, 39]. Anchoring of neutrophils causes a rise of intracellular calcium leading to EC 

contraction and disruption of junctional complexes. Concomitantly, attachment of leukocytes 

disrupts the VE-cadherin-catenin complex opening up cell junctions. All of this contributes to 

widening the intercellular space for leukocyte migration [39]. PECAM-1 is an immunoglobulin 

expressed on the surface of platelets, EC, monocytes and neutrophils. It is more concentrated at 

the intercellular junctions of EC but is evenly distributed on the neutrophil surface. The 

contributive role of PECAM-1 is to guide leukocyte migration [56]. 
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Adhesion molecules and leukocyte adhesion process (ESAM, endothelial cell-selective adhesion molecule; ICAM1, 

intercellular cell adhesion molecule 1; JAM, junctional adhesion molecule; LFA1, lymphocyte function-associated 

antigen-1; MAC1, macrophage-1 antigen; MADCAM1, mucosal addressin cell adhesion molecule 1; PECAM1, platelet 

endothelial cell adhesion molecule 1; PI3K, phosphoinositide 3-kinase; PSGL1, P-selectin glycoprotein ligand-1; SRC, 

selective neural cell adhesion molecule; Vav, the Vav protein family; VLA4, integrin receptor for VCAM-1;) [54] 

Figure 2. –  Leukocyte adhesion process  

1.2.3 Regulation of the coagulation cascade by the endothelium 

In a normal state, the endothelium maintains the balance in favor of thrombolysis and 

anticoagulation. The endothelial surface displays ectonucleotidases, enzymes capable of 

hydrolyzing adenosine triphosphate (ATP) and adenosine diphosphate (ADP), therefore having 

an anti-aggregating effect [39]. The surface is also rich in heparan sulfate proteoglycans, a 

heparin-like molecule that binds antithrombin III and inactivates thrombin. EC expresses 

thrombomodulin, a membrane protein that regulates the activity of the protein C/S complex. 

Protein C has anticoagulant properties through the inactivation of factors Va and VIIIa. 

Furthermore, the production of PGI2 and NO contribute to the inhibition of platelet activation 

and aggregation [38]. Additionally, EC releases low concentrations of tissue factor pathway 

inhibitor (TFPI), the primary inhibitor of the coagulation cascade through inactivation of factor 

Xa and tissue factor-factor VIIa complex [57]. EC also produces tissue plasminogen activator (t-

PA) and urokinase, fibrinolytic agents. t-PA converts plasminogen into plasmin, allowing 
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degradation of the thrombus. EC counteracts t-PA with the production of plasminogen activator 

inhibitor (PAI-1), thereby tightly regulating the balance of fibrinolysis [58]. 

Following vessel injury or stimulation by cytokines, the equilibrium is tipped in favor of a 

prothrombotic state. Damages on the endothelial surface trigger the platelet activation. 

Following activation by cytokines, LPS or thrombin, ECs synthesize and express tissue factor on 

their surface. Tissue factor is the starting key of the extrinsic pathway. The end product of the 

coagulation cascade is the formation of thrombin (factor IIa). Thrombin converts fibrinogen to 

fibrin, which allows the creation of the clot matrix [58, 59]. Thrombin prompts the production of 

the platelet-activating factor (PAF) and encourages further cytokines release. PAF is a potent 

platelet activator and promotes adhesion of platelet to EC. Thrombin also stimulates the release 

of von Willebrand factor (vWF) and P-selectin from WPB, promoting further platelet activation 

and aggregation [39]. vWF stabilizes factor VIII and is required for platelet binding [60]. 

 

Antithrombotic properties of the normal endothelial (ADP, adenosine diphosphate; ATIII, antithrombin III; NO, nitric 

oxide; PGI2, prostaglandin I 2; Xa, activated factor X) [61] 

Figure 3. –  Antithrombotic properties of the normal endothelial  

 

1.2.4 Angiogenesis and proliferation 

Angiogenesis is the formation of new capillaries. Arteriogenesis refers to the growth and 

maturation of a vessel [62]. EC proliferation is generally limited to the fetal period and the wound 
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healing process. It is particularly important for the development of solid tumors and is a major 

target in cancer therapy [63]. Triggers of angiogenesis can be inflammation, tissue growth, 

genetic mutations or hypoxia. 

Failure of the inflammatory response to resolve induces T cells and phagocytes to produce and 

release angiogenic factors to increase blood flow to the affected site. In this situation, the 

angiogenic process is achieved by the action of the vascular endothelial growth factor (VEGF), 

which binds to its receptor (VEGFR), fibroblast growth factor (b-FGF) which binds to FGFR-1 and 

angiopoietin-1 and angiopoietin-2 which bind to tyrosine kinase receptor 2 (TIE2). Three 

pathways are typically activated: ERK1/2, PI3K/Akt and the Ca2+-PLCg complex. The effect is 

survival, growth and migration of EC [38]. 

Hypoxia induces the hypoxia inducible factor (HIF-1), which activates the transcription of genes 

implicated in glycolysis (i.e.; glycolytic enzymes, GLUT-1), erythropoiesis (i.e., erythropoietin, 

transferrin) and angiogenesis (i.e. VEGF) [62]. HIF-1 is considered the main pathway behind the 

adaptative response to hypoxic stress. The complete maturation of the vessels involves the 

formation of a new basal membrane and recruitment of pericytes and SMC. Platelet derived 

growth factor (PDGF) is a SMC chemoattractant [39]. As for Angiopoietin 1, it is responsible for 

the remodeling and maturation of the vessel [62].  

 

1.3 From harvest to vein graft failure 

1.3.1 Early injury, ischemia and endothelial dysfunction 

Routine vein graft preparation requires considerable manipulation and stretching, leading to 

endothelial injury and loss [64]. The use of marking pen for orientation has proven to be toxic 

and most preservation solutions cause endothelial dysfunction [65, 66]. Additionally, the use of 

a pressure-syringe for irrigation and distention exerts supraphysiologic pressures, up to 

300mmHg, that induce structural and functional damage to the endothelium and SMC [67, 68]. 

This explains why samples of harvested SVG are often found to be dilated, flaccid and decreased 

in reactivity to vasoactive substances [69]. Loss of endothelium exposes the subendothelial 
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matrix and tissue factor and activates the platelets and coagulation cascade [32]. Although an 

overwhelming pro-coagulant response to injury can lead to an acute graft occlusion, most events 

are driven by surgical techniques (i.e., restrictive anastomoses, kinking, graft orientation and 

arrangements) and underlying coronary disease characteristics (i.e., small target vessels, poor 

distal runoff, diffuse CAD, heavily calcified target) [32, 70-72]. Early graft occlusions occur in 5-

12% of cases [15, 35, 73-75].  

Endothelial injury and dysfunction are characterized by impaired production of anticoagulant and 

vasodilatory factors such as NO, prostaglandins and tissue plasminogen activator (t-PA). At the 

same time, activated platelets continue secreting prothrombotic and vasoactive factors such as 

TxA2, PAF, ADP and ATP [67]. This imbalance of vasoactive substances promotes 

vasoconstriction, thrombosis and inflammatory response. Interestingly, in a study on canine 

saphenous grafts, venous rings denuded of endothelium maintained a vasoactive activity through 

prostaglandins produced by the SMC [76]. It suggests that PGI2 may play a more important role 

in vaso-activity of veins than arteries. Vein graft samples demonstrate upregulated expression of 

pro-inflammatory mediators (NF-kB, TNFa), cytokines (IL-1) and adhesion molecules (ICAM) [69]. 

Concomitantly, platelets express adhesion molecules on their surface (P-selectin), vWF and CD40 

ligand. It leads to neutrophil recruitment and adhesion [77, 78]. Activation of local 

polymorphonuclear cells (PMN) causes the release of oxygen-derived free radicals, proteases and 

cytokines (TNF, IL-1, IL-6 and IL-8) and perpetuate inflammation [67]. The subendothelial space 

becomes edematous and infiltrated with leukocytes [79, 80]. Increasing levels of reactive oxygen 

species (ROS) from the inflammation and vascular injury further exacerbate graft dysfunction 

[81]. 

Moreover, vein grafts are often stripped from their adventitia and vasa vasorum, which are 

important for oxygen and nutrients delivery [33, 35]. Vein grafts sustain ischemia until grafting. 

Once grafted, the arterial pressure causes additional damage to the venous conduit. The higher 

pressure further damages the endothelium while flooding blood increases ROS formation, 

leading to ischemia-reperfusion injury [64, 67]. 
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1.3.2 Exposure to arterial pressure and remodeling 

Veins are poorly adapted to the higher arterial pressure. Saphenous vein (SV) has a much larger 

diameter and relatively thinner wall when compared to IMA, resulting in much greater internal 

wall stress.[34] Early on, SVG initiates the remodeling process, often called ‘arterialization’ [79]. 

The process results in matrix reorganization and development of a neointima in response to the 

arterial blood flow. Shear stress on the wall triggers the migration of SMC to the media. Activated 

platelets and injured endothelium secrete PDGF, b-FGF, VEGF, IGF-1 and TGF, promoting SMC 

proliferation [67, 70]. ROS are also powerful stimuli for SMC proliferation [80, 81]. Matrix 

metalloproteinases (MMP), predominantly MMP2 and MMP9, stimulate SMC migration and 

proliferation and participate in the matrix turnover [79, 82]. Imaging assessments of vein grafts 

in lower extremity bypasses found that the lumen diameter nonuniformly increases by 25% on 

average and wall thickness by 35% [80]. Within 2 weeks, the endothelium is mostly restored in 

studies on animal models. Duration for complete re-endothelialization remains unknown for 

humans and highly depends on the quality and the length of the graft used. Progenitor cells from 

the bone marrow and the adventitia contribute to the process [79]. Reestablishment of a fully 

functional endothelium marks the last stage of vein graft remodeling. At 30 days, the neointimal 

hyperplasia is mostly established [32]. Indeed, mature SVG end up displaying endothelium-

dependent relaxation [80, 83]. The early remodeling response is a determinant of long-term 

function and patency of grafts. Owens et al. found that poor remodelers, grafts with 

inappropriate and insufficient remodeling, have a 13-fold increase in the risk of failure at 2 years 

compared to robust remodelers [80]. Intimal hyperplasia (IH) is in fact, a self-limited process that 

stabilizes and does not compromise luminal flow [35]. It is suggested that focal areas of stenosis 

may be due to an inappropriate hyperproliferative response superimposed on a restrictive 

pattern of insufficient outward remodeling [80]. Due to this ununiform response, IH is 

responsible for most graft failures during the first year of surgery. 
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1.3.3 Atherosclerosis and late graft failure 

Most late graft failures result from unstable atherosclerotic plaques. Veins are prone to 

accelerated atherosclerosis, which differs from spontaneous atherosclerosis by being diffuse and 

more concentric appearance as well as having denser cellularity and varying degrees of lipid and 

mononuclear infiltration compared to arterial vessels [35]. The higher collagen content, a greater 

concentration of dermatan sulfate, a glycosaminoglycan with higher affinity for lipoproteins (LDL 

and VLDL), as well as high intercellular permeability all contribute to accelerating the 

atherosclerotic process [32, 36]. Plaques within SVG have a large necrotic core, are rich in 

inflammatory and foam cells, and are poorly calcified with a thinner cap. Those plaques are more 

susceptible to rupture [31]. Virtually all SVG show atherosclerotic plaques formation at 1 year 

[23, 83]. Development of atherosclerosis in SVG is associated with the same risk factors as native 

coronary arteries, highlighting the importance of maintaining an adequate lifestyle and following 

an optimized pharmacotherapy following surgical revascularization [84]. 

 

 

 

Development of vein graft failure [79] 

Figure 4. –   Development of vein graft failure 
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1.4 Strategies of VGF prevention 

The severity of vein graft disease correlates with worse survival, higher MI and more frequent 

repeat revascularization [85, 86]. The early remodeling response is determinant and predictive 

of the long-term evolution of graft disease. The early recovery of a physiologically functional 

endothelium is pivotal [71]. Consequently, approaches focusing on minimizing initial injury and 

promoting the prompt restoration of endothelial function will likely have an impact on later 

development of VGF. Exploring therapies for vein graft failures has been an extensive area of 

research and still, to this day, stems from continuous innovative ideas. The strategies can broadly 

be grouped as either improvement in techniques of harvest and revascularization, optimized 

preservation solutions, pharmacotherapy or gene therapy. 

 

Table 1. Strategies for prevention of vein graft failure 

 

1.4.1 Technical approaches 

1.4.1.1 Revascularization strategy 

Surgeons play an essential role in the fate of their grafts. Conscientious harvest techniques are 

as important as planning the revascularization procedure. Choosing the proper conduits as well 

as the appropriate target is the basis of a successful surgical revascularization [87]. The target 

site should take into consideration the location, presence and severity of the disease. Non-

Technical approaches

•Optimal 
revascularisation 
strategy

•External stenting
•No Touch Technique
•Endoscopic harvesting
•Pressure controlled 
valve/distention

Preservation solutions

•Heparinised NS
•Autologous whole 
blood

•Buffered solutions 
(see Table 2)

Pharmacotherapy

•Statins
•Anti-platelet therapy
•Fibrinolytics and 
coagulotherapy

•Direct-delivery 
intended compounds

Others

•Glues
•Carbon monoxide
•Gene therapy (see 
Table 3)
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restrictive anastomoses on an appropriately sized vessels (≥2mm) lower the risk of graft failure 

[88]. A larger runoff area is associated with higher outflow potential and is associated with a 

lower risk of VGF [89]. Careful measurement of the graft for proper length, to avoid kinking or 

tension, is also necessary. 

 

1.4.1.2 Pressure-controlled vein distention 

A pressure-syringe is used for flushing and distending the vein to overcome vasospasm during 

harvest. Pressure can reach up to 400mmHg and can cause extensive endothelial denudation. 

[67, 68, 90] Vein distention is found to trigger various markers of inflammation [90]. In a study 

looking at veins samples from 21 patients, a pressure-controlled bulldog clamp was used to 

maintain intraluminal pressure under 80 mmHg. The protected vein segments showed less 

intimal loss and damage than the unprotected segments where mean pressure was measured up 

to 260mmHg [91]. Li et al. looked at porcine and human saphenous veins harvested with a 

pressure-release valve (PRV), which limits pressure to 140mmHg. Distention with the PRV 

reduced de-endothelialization and intimal thickening and preserved endothelial-dependent 

relaxation compared to regular distended veins [92]. While the use of a PVR is not widely 

adopted, there is a consensus that cautious flushing and minimal distention of grafts is 

warranted. 

 

1.4.1.3 Endoscopic harvest 

Endoscopic harvest is subject to extensive debate. While the technique requires longer harvest 

time, specialized material and expertise, faster wound healing and better aesthetic results 

support its use [93]. The technique is associated with less leg wound complications, particularly 

in patients affected by diabetes and obesity [94, 95]. However, reported clinical outcomes are 

mixed. A meta-analysis of 11 studies comparing endoscopic to the standard open technique, 

which includes over 18 000 patients, found that graft patency was superior with the open SVG 

harvest technique [open 82.3% vs. endoscopic 75.1%; OR 0.61 (95% CI, 0.43-0.87), p=0.01]. MI 
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incidence and mortality were not significantly different.[96] Reduced patency rate may be related 

to the significant traction-induced trauma. Histologic findings report stretched grafts devoid of 

adventitia as well as endothelial injury and loss [97-99]. The VICO clinical trial showed that the 

open approach demonstrated marginally better endothelial integrity compared to the 

endoscopic approach. However, the differences in clinical outcomes with regards to major 

adverse cardiac events did not reach significance. The study also supports that high-level 

experience with the endoscopic technique is needed for optimal results [98, 100]. Operator-

dependent factors, types of devices and patient selection biases make the comparison of both 

techniques often difficult. Therefore, endoscopic harvest should be performed only in 

experienced hands and in selected patients. 

 

1.4.1.4 No-Touch technique 

The No-Touch technique (NTT) consists of harvesting the vein with the surrounding tissue and 

avoids vein distention or trauma. It allows preservation of the adventitia and vasa vasorum, 

rendering a better resistance to ischemia and vasospasms to the graft. Limiting manipulation also 

minimizes endothelial injury. NTT grafts showed a lower expression of KLF4, an indicator of SMC 

proliferation and differentiation [101]. Multiple studies have reported superior patency rates 

with the NTT. Souza et al. reported long-term graft patency that was significantly better for the 

NTT [conventional 76% vs. NTT 90%, p=0.01] at 8 years follow-up [102]. Kim et al. reported 

angiographic results from 368 patients, 103 of which benefitted from the NTT. NTT veins showed 

a better patency rate at 1 year [NTT 97.4% vs. conventional 92.4%; p=0.024], although it did not 

affect clinical outcomes [103].  Harvest of the surrounding tissue potentially leads to increased 

risk of saphenous nerve injury and leg infection. However, the PATENT SVG trial did not report a 

higher incidence of leg swelling and discomfort, nor infectious complications at 1 year [101].  
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1.4.1.4 External stenting 

External stents are metallic, tissue or biodegradable sheaths wrapped around vein grafts at the 

time of surgery. Besides providing structural support to the vein, it provides an environment for 

neo-adventitial development and microvasculature growth. Regeneration of a new vasa vasorum 

within a week following implantation may allow the graft to respond adequately to wall stress. It 

is shown that inflammatory cells tend to infiltrate the space between the stent and the graft, 

promoting outward migration of SMC [104]. The VEST trials reported performances of external 

stents on operative patients. Stented grafts did not show changes in flow dynamics [105]. The 

studies have consistently demonstrated reduced intimal hyperplasia and lumen irregularities and 

conduit ectasia. Yet, VGF rates are comparable between stented and non-stented grafts at short 

(1 year) and long-term follow-up (up to 5 years) [106-108]. Evidences show that fixations with 

sutures are preferable to metallic clip [106]. Most studies on external stents involve a limited 

number of patients. External stents use remains mostly experimental at this point. 

 

1.4.2 Preservation solutions 

Preservation solutions are used to conserve and protect vascular conduits from desiccation until 

grafting. They can also serve as a vessel for drug delivery. They can be categorized into 

heparinized saline, autologous whole blood and buffered solutions. In a survey conducted among 

cardiovascular surgeons in top-ranked hospitals around the United States, 40% uses a pH-

buffered solution, 28% uses saline and 27% uses autologous blood. The solution is heparinized in 

89% of the cases and kept at room temperature in 74% of the time [109]. This variable practice 

is partly due to the lack of clinical data from randomized clinical trials. Most evidences come from 

in vitro experiments, animal studies and posthoc analysis. 

 

1.4.2.1 Saline solutions and its harmful effects 

Normal saline (NS) is an isotonic crystalloid, universally used for volume resuscitation. Its 

osmolality is 308mOsm/L. It contains 9g of NaCl per liter of water (Na concentration of 154mEq 
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and 154mEq for Cl). The pH is acid and varies between 4.5 to 7 [110]. NS repeatedly shows to be 

a deleterious solution for veins grafts. Storage in saline significantly impairs endothelium-

dependent vasodilatory function [111, 112]. NS has an acidic pH. It is not buffered and thus, 

prone to acidification by ambient carbon dioxide. Wise et al. suggested that endothelial function 

is dependent on pH, with dysfunction occurring when pH is below 6 [112]. Harskamp et al. looked 

retrospectively at the 3000 patients from the PREVENT IV study (45% had SVG preserved in NS, 

32% in autologous whole blood (AWB) and 17% in buffered saline). The VGF rate at the one-year 

angiographic follow-up was lower in the buffered saline group compared to NS (OR 0.59 [95% CI, 

0.45-0.78; P<0.001]) and AWB [OR 0.62 95% CI, 0.46-0.83; P=0.001]. The composite endpoints of 

all-cause mortality, MI and revascularization were also lower in the buffered saline group 

compared to NS and blood (HR 0.81 [95% 0.64-1.02; p=0.08]) [113]. 

 

1.4.2.2 Autologous whole blood (AWB) 

AWB is retrieved from the patient during the procedure, and heparin is added. The theoretical 

principles supporting the use of AWB are the capacity to deliver oxygen and the profile of a 

medium closest to physiologic conditions. Interestingly, however AWB is found to have a lower 

partial pressure of oxygen (PO2) than NS [114]. This is because blood has, through the Bohr effect, 

an oxygen affinity dependent on pH. During the preservation period, the acidotic blood (pH 7.35) 

induces cellular anaerobic metabolism, which increases the consumption of oxygen and reduces 

its extracellular release and thereby the PO2. This hypoxic environment induces expression of 

HIF-1a [114]. This transcription factor has been implicated in angiogenesis, apoptosis, cellular 

proliferation, survival and glucose metabolism [115]. Preservation in AWB was also found to 

induce higher expression of the antioxidant enzyme glutathione peroxidase, providing better 

protection against oxidative stress [114]. On a canine model, femoral veins were stored in 

heparinized saline or heparinized AWB for 1 hour. The morphological analysis showed superior 

preservation of endothelial cells and re-endothelialization of the grafts following AWB storage 

[116]. Wilbring et al. reported that SVG kept in AWB for 30 minutes retain greater contractility 

and endothelial functions. They also conserve higher cellular energy compounds.[117] On the 
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other hand, both AWB and NS were found to reduce vascular reactivity [118]. Clinical outcomes 

can be found in a sub-study of the PREVENT IV trial. VGF was reported to be 32.2% with AWB 

storage, compared to 44.4% in NS and 16.8% in buffered solutions [113]. Taking into 

consideration all the studies, AWB was either equal or superior to NS, but still inferior to buffered 

solution use [119, 120]. 

 

1.4.2.3 Buffered Saline solutions 

Buffered solutions contain a weak acid and its conjugate base, which keep pH constant at 

different experimental and clinical conditions. They include a vast array of formulations whose 

components vary according to their clinical application. More evidences show their superiority 

for vein grafts preservation compared to NS and autologous blood.  

 

1.4.2.4 Ringer’s solution 

Ringer’s solution is an isotonic buffered solution. Its ionic concentration is closer to physiologic 

plasma than NS. It contains Na (130mM), Cl (109mM), K (4mM), Ca (1.5mM) and sodium 

bicarbonate as the buffer. When the solution contains sodium lactate, it is called Ringer’s lactate, 

a crystalloid used clinically as a fluid replacement. The osmolarity is 273 mOsm/L and pH 6.5 

[121]. Ronbos et al. studied SVG segments treated with a solution of Ringer’s Lactate and an 

added vasodilator, either papaverine or trinitrate/verapamil, and found the combination of 

verapamil and trinitrate to preserve the endothelium optimally [122]. No study was found to 

compared Ringer’s solution to other preservation media. 

 

1.4.2.5 PlasmaLyte 

PlasmaLyte reproduces plasmatic concentrations of Na, K, Cl, K, Mg with slight variations 

depending on the manufacturer. The solution is devoid of calcium as is thus compatible with 

blood components. Some formulations contain metabolizable bases that replace bicarbonate 

such as acetate, gluconate or lactate [123]. Sanchez et al. described a preserved vasorelaxation 
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response in canine SVG kept in PlasmaLyte. Similar results were found on human veins when 

stored at 37o C, but not at room temperature [124]. In a porcine model, an optimized vein 

preparation using pressure-regulated distention, non-toxic vein marker and Plasmalyte limited 

disruption of the endothelial layer, impairment of vasoactive responses and cellular metabolic 

dysfunctions when compared to the traditional method of vein preparation (standardized 

distention, use of toxic ink marker and heparinized saline solution) [125]. PlasmaLyte appeared 

as effective as other buffered media (University of Wisconsin, CelsiorÒ and GALA) in preserving 

cellular functional integrity but is far more cost-effective [112]. 

 

1.4.2.6 The St-Thomas solution 

The St-Thomas solution was the first cardioplegic solution, developed in the 1970s. It is the still 

most used cardioplegic solution among cardiac surgeons. It is composed of NaCl 110mM, NaHCO3 

(10 mM), KCl (16 mM), MgCl2 (16mM) and CaCl2 (1.2mM) with a pH of 7.8 [126]. The rapid onset 

and efficacious cardiac arrest support its popular use to this day. The one caveat is that repeated 

dosages need to be administered every 15 to 20 minutes to maintain cardioplegia, which makes 

it inconvenient if a long cardiac arrest is needed. Only one study reported the greatest constrictor 

response after storage in St-Thomas solution, compared to other buffered solutions, while 

relaxation responses were similar [118].  

 

1.4.2.7 Organ preservation solutions 

The University of Wisconsin solution (UW) was initially developed for liver grafts preservation in 

the 1980s before expanding its use to kidneys, pancreas and heart preservation. It is composed 

of Na (25mM), K (125 mM), MgSO4 (5 mM), KH2PO4 (25mM), a colloid carrier HES (hydroxyethyl 

starch) (50g/L), penicillin 200,000U/L, insulin 40 IU/L, dexamethasone (16mg/L), glutathione 

(GSH) as oxygen radical scavenger, allopurinol 1mM and adenosine 5mM, raffinose (30 mM) and 

lactobionate (100mM). The pH is 7.4 [127-129]. Wise et al. reported improved contractile 

responses and preserved endothelial-dependent relaxation in human SVG preserved with UWS 
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compared to NS and AWB [112]. Following cold UWS storage for 2 to 3 hours, grafts 

demonstrated recuperation of both its contractility and vasorelaxation capacity. Vasoreactivity 

was well preserved even after 24 hours of conservation, declining steadily between 24 and 96 

hours of conservation time [130]. UWS was superior in preserving vasoactive properties when 

compared to a Histidine-Tryptophan-Ketoglutarate (HTK) solution (see below), particularly during 

long periods of storage [130]. 

CelsiorÒ was initially developed as a cardiac preservation solution in the early 1990s. It contains 

glutathione (3 mM), lactobionate (80 mM) and potassium (15 mM) [131]. The ionic components 

are Na (100 mM), Cl (28 mM), Ca (0.25 mM) and Mg (13 mM). It has an osmolality of 320 mOsm/L 

and a pH of 7.3 [132]. Wise et al. reported improved contractile responses and preserved 

endothelial-dependent relaxation in human SVG preserved with CelsiorÒ compared to NS and 

AWB [112]. 

HTK preparations are intended for donor organs’ perfusion and flushing. Its constitution relies on 

the principle of inactivating organ function by the withdrawal of extracellular sodium and calcium 

while offering extreme buffering of the extracellular space. It contains mannitol as an osmotic, 

histidine (198 mM) as a buffer, tryptophan (2 mM) as a membrane stabilizer and ketoglutarate 

(1 mM) as an energy substrate. HTK has a higher buffer capacity than UW. Because it does not 

contain HES, it is not as viscous as UW and can be used to flush organs [132]. HTK solutions 

contain relatively similar concentrations of histidine, tryptophan and ketoglutarate with 

differences met in the added components. TiProtecÒ and CustodiolÒ are marketed HTK 

formulations currently used in cardiac surgery.  

TiProtecÒ is a vascular storage solution that has been developed for cold storage. It contains Na 

16 mM, K 93 mM, Cl 103 mM, Ca 0.05 mM, Mg 6 mM. Glucose (10 mM) and Sucrose (37 mM). It 

has glycine and alanine to prevent hypoxic injury and an iron chelator, deferoxamine, for 

protection against cold-induced iron-dependent cell injury. Its pH is 7 and osmolality is 305 

mOsm/L [132, 133]. Wilbring et al. reported superior vasoactive functions in SVG segments 

preserved in TiProtecÒ compared to NS [111]. 
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CustodiolÒ is a cardioplegic solution. It contains Na (15 mM), Ca (0.02 mM), K (9mM), Cl (50 

mM), Mg (4 mM) and mannitol (30 mM). The pH is 7.0 and osmolality 310 mOsm/L.  It is an 

attractive solution for minimally invasive cardiac surgery and complex cases. A single dose 

provides an extended period of myocardial arrest and protection. However, it has not shown 

superior clinical outcomes compared to conventional cardioplegia [134]. Aavik et al. stored 

venous allografts in different cold buffered solutions for extended periods of time, up to 35 days, 

before looking at the generated histologic changes. CustodiolÒ induced the least damages on 

the structure of the graft and the intima [135]. 

DuraGraftÒ 

It is a pH and ion-balanced solution designed and marketed for vascular graft preservation. It 

contains antioxidants (glutathione, L-ascorbic acid), L-arginine, which allows the synthesis of NO 

as well as glucose and high-energy phosphates to support anaerobic metabolism. DuraGraftÒ is 

also known as GALA, which stands for glutathione, ascorbic acid and L-arginine [136]. After a 

storage time of 60 to 300 minutes, human vein grafts showed greater preservation of endothelial 

viability, calcium mobilization and NO generation compared to NS, AWB and Hank’s buffered 

saline solution (HBSS) [137]. Other data suggest maintenance of the functional integrity of SVG 

in GALA [112]. There are currently 2 ongoing clinical trials studying outcomes of patients receiving 

isolated CABG with the use of DuraGraftÒ as a preservation solution for SVG segments [138, 

139]. 
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 Use Ionic 
composition 

(mmol/L) 

pH Osmolarity 
(mOsm/L) 

Additional 
compounds 

NS Fluid 
resuscitation 

Na 154  
Cl 154 

4.5-7.0 308 Heparin 

AWB Oxygen and 
nutrients 
delivery 

Patient’s 
plasmatic ionic 
concentrations 

7.35-7.40 275-295 Heparin 

Buffered solutions 
 
Ringer’s Solution Fluid 

resuscitation 
 

Na (130) 
CL (109) 
K (4) 
Ca (15) 

6.5 273 Sodium bicarbonate 
as buffer 
When lactate is 
present, solution is 
named Ringer’s 
Lactate 

Plasmalyte Plasmatic 
concentration 
of Na, K, Cl, Mg 
*No calcium 

7.4 280-310 - 

UWS Organ 
preservation 
 

Na (30) 
K (120) 
MgSO4 (5) 
HaPO4 
HPO4 

7.4 320 HES, glutathione, 
adenosine, 
allopurinol, raffinose, 
lactobionate 

Celsior Na (100) 
Cl (28) 
Ca (0.025) 
Mg (13) 

7.3 320 Glutathione, 
lactobionate 

HTK TiProtec Na (16) 
Cl (103) 
K (93) 
Ca (0.05) 
Mg (6) 

7.0 305 Histidine, 
tryptophan, 
ketoglutarate, 
Glucose, Sucrose, 
Glycine, alanine, 
deferoxamine 

Custodiol Cardioplegia 
 

Na (15) 
K (9) 
Ca (0.02) 
Mg (4) 

7.0 310 Histidine, 
tryptophan, 
ketoglutarate,  
Mannitol 

St-Thomas solution Na (110) 
NaHCO3 (10) 
KCl (16) 
MgCl2 (16) 
CaCl2 (1.2) 

7.8 303 - 

DuraGraft Vascular Graft 
Preservation 

pH and ion-balanced† Similar to 
plasma† 

Glutathione, ascorbic 
acid, L-arginin 

†According to manufacturer’s website (https://www.somahlution.com/products-duragraft/) 

Table 2. Preservation solution composition 
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1.4.3 Gene Therapy 

The growing interest in genetic therapy started in the early 1990s. Gene therapies combine 

approaches that influence and control the content or expression of genetic material. It is done 

by delivering an active transcriptional unit to a cell by a vector. Vectors are either viral or non-

viral. Non-viral vectors encompass naked plasmid DNA, oligodeoxynucleotides, small interfering 

RNA (siRNA) and polymeric nanoparticles. While they provide relative safety as they are devoid 

of viral genetic material and induce less host immune response, their transducing efficiency is 

inferior to viral vectors [140, 141]. Viral vectors include retrovirus, lentivirus, adenovirus and 

adeno-associated virus [141]. Viruses have long evolved and adapted to become potent vectors. 

However, they can cause direct cytotoxicity and trigger a stronger immune response.  

In choosing the ideal vector, specific clinical circumstances of application are important to 

consider. In the context of CABG, the particular operative setting opens a window during which 

gene therapy can be performed. Once harvested, the SVG is preserved in a solution for a period 

of 15 to 45 minutes before being grafted. The chosen vector should be efficient enough to deliver 

the transgene into the graft during that brief period. As an example, the PREVENT trial protocol 

detailed an ex vivo administration of medication through a controlled-pressure delivery system 

for 10 minutes before grafting [142]. Additionally, the vector should be easy to store and handle. 

It also needs to be safe to endothelial cells and SMC, generate little to no inflammatory response 

and confers a desirably lasting effect on the targeted gene [142]. An ex vivo therapy allows local 

treatment of the target tissue and minimizes systemic exposure. Adenoviral vectors have 

emerged as the agent most suitable under these criteria, specifically adenovirus type 5 [143-145]. 

The transgene may be of human origin or exogenous (e.g. viral or bacterial). It can be a new 

transcriptional unit or a sequence that affect the expression of a native gene. Expression of the 

transgene depends on cell transcription and translation activity. Generally, transgenes are 

transient unless they cross the nuclear membrane and integrate themselves into the genome or 

adopt an episomal form, a stable cytoplasmic form of DNA which can provide long-term 

expression [144].  
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On the other hand, inhibition of a gene can be done through the use of oligonucleotides. They 

are short antisense sequences, 15 to 20 bases in length, and specific to a target mRNA. Binding 

of oligonucleotides to mRNA results in enzymatic degradation of mRNA, preventing translation 

of RNA into proteins. Transcription factors decoys are oligonucleotides that mimic binding sites 

of the transcription factor. One major advantage of oligonucleotides is their small size, which 

makes them easier to deliver to cells [144]. E2F decoy oligonucleotides were used to prevent E2F-

mediated transcription of pro-proliferative genes. E2F is a family of transcription factors that 

plays a role in cellular proliferation and differentiation. It is also a regulator of cell death [146]. 

Despite promising phase I and phase II trials, the clinical application of the decoy in phase III trials 

failed to demonstrate improvement in rates of vein graft failure as well as major cardiovascular 

outcomes in peripheral and cardiac revascularization [142, 147-149]. 

Understanding of the pathophysiology of a disease is essential in choosing a therapeutic target. 

VGF mechanisms detailed earlier help us recognize 3 stages: early thrombosis, IH and 

atherosclerosis. Early graft failure is mainly influenced by technical errors and underlying vascular 

pathology. It also occurs too soon for a transduced gene to take effect. Development of 

atherosclerosis, on the other hand, is a multifactorial process, thus making it a challenging target 

for gene therapy [150]. Therefore, the majority of strategies for the prevention of vein graft 

failure focus on tempering SMC migration and proliferation to slow the progression of intimal 

hyperplasia (IH) [143]. Table 3 summarizes a comprehensive list of gene therapies/targets 

explored and experimented from the literature.  

By attenuating growth factors such as TGF-b or Egr-1, SMC proliferation is limited and so is IH. 

On the other hand, inducing endothelial growth factors (VEGF, PDGF) promotes faster re-

endothelialization, earlier recovery of vascular protective functions, as well as limiting neointimal 

growth. Higher production of NO through the induced expression of NOS (iNOS, eNOS and nNOS) 

has an anti-aggregatory effect on platelet, limits leukocyte migration and adhesion and promotes 

vasorelaxation. Limiting inflammation, either by inhibiting adhesion molecules (E-selectins, 

VCAM, ICAM), inhibiting monocyte chemoattractant chemokine (MCP-1) or suppressing the 

expression of pro-inflammatory transcription factor NF-kB have all shown to reduce IH. As matrix 

degradation and remodeling by MMP plays a crucial role in SMC migration and proliferation, 
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adjusting the balance of MMPs and TIMPs activity in favors of a reduced matrix remodeling was 

associated with less IH. Other transcription factors involved in cellular replication were also 

targeted. The complex PTEN/PI3K (phosphatase and tensin homolog/ phosphatidylinositol 3-

kinase) is a tumor suppressor gene involved in the regulation of the cell cycle [151]. They were 

found to be an important regulator of vascular SMC migration and proliferation [152, 153]. 

Inhibition of Gbg protein, a G-protein associated with SMC proliferation, was also found to reduce 

IH in dogs. Suppression of PCNA (proliferating cell nuclear antigen) and cyclin-2 kinase, which are 

critical for progression into mitosis, showed a decreased in the neointimal formation and medial 

hypertrophy. E2F is a group of genes encoding a family of transcription factors involved in the 

cell cycle and synthesis of DNA. E2F decoy has been extensively studied in vivo both in animals 

and humans. The PREVENT studies marked the only large-scale clinical trial of the use of gene 

therapy to address graft failure [142, 147-149]. Although clinical benefits have yet been 

observed, we know that gene therapy in the context of vein grafts manipulations is a feasible and 

safe approach. 
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 Gene  Vector/expression Gene function Model Action 

NO production NOS eNOS[154] Inducible NO production 
 

Goat ¯IH 
eNOS[155] Inducible 

Plasmid 
encapsulated in 
virus of Japan-
liposomes 

Canine 
femoral vein 

¯IH 

eNOS[156] Adenovirus 
Inducible 

Human SVG Increase NO release 

iNOS [157] Increased 
expression through 
cDNA 

Rabbit ¯IH 

iNOS[158] Adenovirus 
Inducible 

Porcine  ¯IH 

nNOS[159] Adenovirus 
Inducible 

Rabbit  ¯Adhesion molecule 
expression 
¯Inflammatory cell 
infiltration 
¯IH 
¯Vascular 
superoxide 
production 

Vasodilatory PGI2/COX-1 PGI2/COX-
1[160] 

Adenovirus 
Inducible 

COX-1: production PGI2  
PGI2: vasorelaxation, 
inhibition of platelets and 
reduction in monocytes 
attachment  

Rabbit Blood flow and 
lumen size 

Inflammation MCP-1 MCP-1[161] Adenovirus 
Inhibitory 

Monocyte 
chemoattractant protein 
when coupled with CCR-2  

Canine ¯IH 

MCP-1[162] Electroporation of 
plasmids 
Inhibitory 

Murine ¯IH 
¯SMC proliferation 

MCP-1[161] Adenovirus 
Inhibitory 

Canine  ¯IH 
 

CCR-2 CCR-2[163] siRNA Forms an active complex 
with MCP-1  

hypercholest
erolemic 
Leiden mice 

¯SMC migration and 
proliferation 
graft thickening 

NF-kB NF-kB[164] Oligonucleotide 
Inhibitory 
 

Transcription factor 
responsible for mediating 
inflammation 

Rabbit  ¯IH 
NF-kB[165] Canine ¯IH 

Elastase Elastase [166] Inhibitory 
Hemagglutinating 
virus of Japan  

Leukocyte infiltration and 
serine elastase activity lead 
to SMC proliferation. 

Jugular vein 
graft 
interposition 
in rabbits 

Reducing early 
inflammation 
response 
Decrease in 
neointimal elastin 
deposition: more 
resistant to 
atherosclerosis 

Adhesion 

molecules 

 Adhesion 
molecules (E-
selectins, 
VCAM-1, 
ICAM-1)[167, 
168] 
 

siRNA 
inhibitory 

Monocytes and endothelial 
cells interactions and 
recruitment 

HUVEC on a 
developed 
perfusion 
model 

Induce SMC 
apoptosis 

Coagulation 

thrombolysis 

PAI-1 PAI-1[169] Adenoviral 
Inhibitory 

Inhibition of plasmin 
generation 

Murine ¯Wound healing 
¯IH 

Thrombom
odulin 

Thrombomod
ulin/ 
endothelial 
cell protein C 
receptor 
(EPCR) 

Adenovirus 
Inducible 

Upon binding to 
thrombomodulin, 
thrombin incapable of 
cleaving fibrinogen or 
thrombin receptors and 
acquires the ability to 

Rabbit  IH not affected. 
Inhibition of local 
thrombin activity. 
 



54 

activate protein C which, in 
turn, degrades factor Va 
and VIIIa. 

t-PA t-PA[170] Adenovirus 
Inducible 

Converts plasminogen into 
plasmin which allows 
thrombolysis  

Porcine Graft blood flow 
¯Flow-restricting 
thrombi 

Matrix 
modulator 

TIMP TIMP-1[171] Adenovirus 
Inducible 

Regulate breakdown of the 
local matrix by inhibiting 
MMP activity.  
Migration of SMC requires 
active breakdown of local 
matrix surrounding the cell.  

 ¯ vein graft 
thickening 

TIMP-1[172] Human SVG ¯IH 
¯SMC migration 

TIMP-2[173] Murine ¯ MMP activity 
¯ vein diameter and 
remodeling 

TIMP-2[174] Human SVG ¯IH 
TIMP-3[175] Human SVG 

Pig SVG 
¯IH 

MMP MMP-2 and 
MMP-9[176] 

SiRNA 
Inhibitory 

Degradation of matrix 
facilitating SMC migration 
and proliferation  

Cultured 
human SMC 

¯ invasive capability 
of SMC in Matrigel 

Tumor 
suppressor 
gene and cell 
cycle mediators 

Rb Rb[177] Adenovirus 
Inducible 

Retinoblastoma protein is a 
tumor suppressor gene 

Rabbit ¯IH 
 

PCNA PCNA  
Cdc2[178] 

Oligonucleotides 
Inhibitory 

PCNA and Cdc2 are critical 
in modulating cell cycle 
leading to progression to 
mitosis 

Rabbit ¯ IH and medial 
hypertrophy 
¯ susceptibility to 
develop 
atherosclerosis 

PTEN/P13K PTEN/PI3K[15
3] 

Adenovirus 
inhibitory 

Tumor suppressor gene 
: regulators of vascular SMC 
proliferation, migration, 
and cell death 

Canine ¯IH 

PTEN/PI3K[15
2] 

Adenovirus 
inducible 

Rabbit ¯IH 

E2F E2F[179] Oligonucleotide 
inhibitory 
 

E2F induces expression of 
critical cell cycle genes 
(PCNA, cdc2, c-myc) 
leading to progression to 
mitosis 

Rat ¯ IH 
E2F[180] Rabbit ¯ IH 

¯ atherosclerosis 

Growth factor / 

proliferation 

Fibromodul
in 

Fibromodulin
[181] 

Adenovirus 
Inducible 

TGF-b antagonist activity Human vein 
grafts 

¯IH 

Activin A Activin A 
[182] 

Adenovirus 
Inhibitory 

Family of TGF-b Rat ¯IH 

TBF TGFb[183] Oligonucleotides 
Inhibitory 

Profibrotic and pro-
proliferative effect on SMC 

Rat ¯IH 
¯collagen synthesis 

VEGF VEGF-D[184] Adenovirus 
Inducible 

vasculo-protective; 
associated with reduced 
restenosis; 
limit IH progression 
through enhancement of 
endothelial recovery  

Rabbit ¯IH 

PDEGFR 
 

PD-ECGF[185] 
 

Plasmid vector 
Inducible 

inhibits SMC migration and 
proliferation and 
proliferation 

Rat ¯IH 

PDEGFR-b  
[186] 

Plasmid 
Inducible 

Rabbit  ¯IH 

miR-221/miR-
222[187] 

miRNA 
Inhibitory 

proliferative, pro-
migratory and anti-
apoptotic effects on SMCs 

Rat ¯IH 

HSV-1 herpes virus 
(HSV-1)[188] 

Mutated HSV-1 Mutant HSV-1 selectively 
targets proliferative cells   ¯SMC proliferation 

and IH 
Egr-1 Egr-1 [189] Decoy 

Inhibitory 
Early growth response 
gene 

rabbit ¯SMC proliferation 
¯IH 

Gbg protein Gbg 
protein[190] 

Adenovirus 
Inhibitory 

G protein associated with 
SMC proliferation 

canine ¯IH 

CREB[191] CREB[191] Oligonucleotides 
Inhibitory 

Transcription factor 
associated with activation 
of IH 

murine ¯IH 
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Table 3. Gene Therapies for VGF protection 

1.4.4 Current pharmacological approach to prevent vein graft failure 

Current pharmacological treatments addressing VGF can be divided into 2 categories, those that 

are administered systemically over a long period and those administered locally and directly on 

the vein graft. Currently, only systemic-administered medications are clinically used. They include 

antiplatelet therapy and statins. Those drugs have long cemented their role in the prevention of 

graft failure with parallel benefits in reducing cardiovascular mortality and morbidity. On the 

other hand, preventing VGF by direct drug delivery is still under development. None have reached 

clinical application.  

 

1.4.4.1 Antiplatelet therapy 

Platelet activation and thrombin formation are the starting events leading to VGF. Injured grafts 

or vessels are particularly at risk for platelet aggregation and stenosis. Clinical trials showed a 

reduction in the rate of graft occlusion when patients are started early on aspirin in the 

postoperative period [192-195]. Starting aspirin later, between 3 to 5 days after surgery, did not 

prove to be efficient at improving graft patency at 1-year follow-up [195, 196]. This emphasizes 

the fact that the pathologic process leading to VGF starts early and so should the administration 

of an antiplatelet drug.  

Aspirin inhibits COX-1 and COX-2, enzymes that catalyze the conversion of arachidonic acid to 

prostaglandin H2, the precursor of TXA2 [197]. TXA2 induces platelet aggregation and 

vasoconstriction, which largely contributes to the vessel thrombosis [198]. The ACC/AHA 

guidelines suggest starting aspirin (ASA) 100-325mg daily as soon as 6 hours after a CABG 

procedure, based on results of the studies mentioned above [199]. Life-long treatment with ASA 

is recommended for all patients following revascularization procedures in both the European 

Society of Cardiology (ESC) guidelines and the American Heart Association (AHA) [199, 200]. 
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Dual antiplatelet therapy (DAPT) consists of adding another antiplatelet therapy to aspirin (ASA), 

usually a P2Y12 receptor inhibitor (i.e., clopidogrel, ticagrelor, prasugrel, ticlopidine). Ex vivo 

experimental models show that their combination enhanced their antithrombotic effect 

compared to their individual efficacy [201]. Among patients presenting with non-ST-elevation 

acute coronary syndromes in the CURE trial there were lower death and cardiovascular 

complications with the combined therapy at 12 months. However, it should be considered that 

the addition of a P2Y12 receptor inhibitor also comes with an increased risk of bleeding [199, 

202]. DAPT strategy is therefore recommended in patients considered at risk for thrombosis, such 

as those presenting with acute coronary syndrome (ACS) or who had a recent PCI [203]. 

 

1.4.4.2 Antithrombotic therapy 

Using an anti-thrombotic therapy seems intuitive in the context of the early thrombotic risk. A 

late meta-analysis by Fremes et al. reported results from 6 small trials that showed favorable 

graft patency with the use of anticoagulation therapy additional to ASA.[204] By contrast, in the 

most recent and larger Post-CABG trial, angiographic assessments performed between 4 and 5 

years after CABG surgery in 1352 patients did not show significant improvement in terms of graft 

disease progression among those treated with warfarin compared to the placebo group [205].  

A small trial looking at the use of fibrinolytic reported that the added administration of t-PA 

during the early operative period on top of the conventional treatment (ASA and clopidogrel) did 

not change the degree of stenosis at the 3-month angiographic follow-up [206]. 

Systemic anticoagulation by heparin or bivalirudin is required during the revascularization 

procedure to prevent clot formation during flow-limiting steps (i.e. stasis due to occlusion of graft 

for anastomotic purposes or hemostasis within the resting heart) and within the extracorporeal 

circuit, but not to prevent graft failure [207].  

In conclusion, antithrombotic therapy showed limited success in preventing graft disease post-

CABG. Therefore, the use of antithrombotic therapy post CABG is not supported by current 

guidelines [199]. 
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1.4.4.3 Statins 

Statins are HMG-CoA reductase inhibitors, an enzyme playing a central role in endogenous 

cholesterol production [208]. Its discovery dates back in the early 70s when research has already 

documented the function of HMG-CoA reductase. Akira Endo, a Japanese biochemist suggested 

the idea that an inhibitor of HMG-CoA reductase must exist in microorganisms to produce 

mevalonate, an organic compound produced by HMG-CoA from Acetyl-CoA and acts as a 

precursor of many substances required for building their cytoskeleton [208, 209]. The first 

molecule identified was mevastatin, produced by Penicillium citrinum, but it never made it to the 

market due to its numerous adverse effects [209]. It was in 1975 that the first commercialized 

compound, lovastatin, was released. Since then, statins have become one of the most prevalent 

drugs used worldwide.  

Statins are well known to be effective at reducing LDL [210]. The current AHA guidelines 

recommend statins as secondary prevention in all patients with diagnosed CVD [211]. They also 

recommend as primary prevention of cardiovascular disease in a population with elevated LDL, 

those with documented CVD despite their LDL levels and those considered to be at intermediate 

or higher risk of developing CVD [212]. It is supported by the fact that statin use reduces all-cause 

mortality and cardiovascular mortality as well as cardiovascular complications in these 

populations [213, 214]. In cardiac surgery, all patients are required to continue their statin 

therapy indefinitely [215]. The POST-CABG trial showed that aggressive LDL-lowering treatment 

significantly prevented progression of atherosclerosis and reduced the incidence of repeat 

revascularization compared to conservative treatment [205]. A sub-study of POST-CABG found 

that intensive treatment had a protective effect on the incidence of SVG stenosis, independent 

of the LDL-lowering effect [216]. A more recent trial by Kulik et al. came to the same conclusion; 

despite lower lipid levels with the higher dosage of atorvastatin, both intensive and conservative 

treatments similarly prevented vein graft disease [217]. Perioperative treatment with 

rosuvastatin is found to significantly reduce C-reactive protein, an inflammatory marker [218]. 

This later supports the now established knowledge of statins’ pleiotropic effects. Beyond its lipid-
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lowering capacity, statins benefits range from induction of eNOS expression, prevention 

vasospasm and acute thrombosis through inhibition of ET1 activity, inhibition of platelet 

aggregation, attenuation of SMC proliferation with suppression of IH, reduction of chemokine 

receptor and inflammatory gene expression to increase in endogenous antioxidants and 

improved redox defenses [208]. It is suggested that those effects stem from the implication of 

the Rho/ROCKs pathway [208, 219]. 

 

1.4.5 Direct delivery-intended compounds 

The methods of direct administration of drugs to a vascular graft can be broadly categorized into 

periadventitial delivery or direct exposure during the preservation period. Periadventitial 

delivery is possible thanks to the development of biocompatible material. Developed since the 

early 2000s, they include the use of hydrogels, polymer wraps and nanoparticles. Hydrogels are 

the most commonly used. Its properties are adjustable depending on the concentration, the 

structure and the molecular weight of the polymer [220]. Some compounds that have been 

coupled to such gels are paclitaxel and nitric oxide-releasing agent [221, 222]. Significant 

disadvantages of hydrogel usage is the early diffusion of drugs into the surrounding tissues, 

generating high drug concentration and increasing the risk of toxicity. Hydrogel degradation is 

dependent on the environment, and thus the net release effect is poorly controllable. Wraps are 

polymer film loaded with drug and are deemed more durable. Nanoparticles helps improved 

delivery efficacy while reducing potential inflammatory process generated by polymer films or 

gels [220]. Finally, drugs can also be mixed into preserving solutions.  

Rapamycin, also known as Sirolimus, was initially an antifungal but is now used in various clinical 

settings such as in cancer therapy, tuberous sclerosis complex or lupus, among others. Rapamycin 

limits proliferation by targeting the mTOR signaling pathway which is implicated in cell growth 

and metabolism [223]. Rapamycin is currently used as a coating drug for intracoronary stents. 

Rapamycin in nanoparticle form has been tested on rabbit jugular vein interposition and found 

to reduce intimal hyperplasia [224]. Rapamycin infused-wraps were studied in a model of arterial 

injury on rats and founds also to reduce IH [225]. 
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Resolvins are a family of mediators derived from omega-3 fatty acids that promote resolution of 

the inflammatory response. They reduce the expression of adhesion molecules (i.e., ICAM-1, 

VCAM-1) and inflammatory cytokines (i.e., TNFa, IL-1b, MCP-1, IL-6). A pre-treatment with 

resolvins decreases activation of SMC isolated from human SVG. They seem to have a cytostatic 

effect on SMC rather than a cytotoxic one [226]. Perivascular delivery to a model of an injured 

artery in rats showed similar findings in addition to reducing oxidative stress [227]. 

Suramin is an anti-parasitic drug and acts as an antagonist of PDGF receptor. Locally applied 

suramin gel reduces neointimal thickness in mouse veins submitted to balloon-induced 

mechanical injury. Suramin is reported to limit migration and proliferation of SMC [228]. Suramin 

was also reported to reduce proteoglycan synthesis from human SMC. Modified proteoglycans 

allow retention of lipoproteins and following the development of atherosclerosis [229].  

NO is recognized as a marker of endothelial health. It has counteractive effects on the 

development of vein graft failure. NO-releasing nanoparticles have been used on a model of 

arterial injury in rats’ carotid and found to decrease inflammation and IH [230]. Kown et al. 

documented a higher production of NO by rabbit vein grafts treated with L-arginine polymer 

compared to treatment with a buffered saline solution. Production of NO was dose-dependent 

to the concentration of L-arginine. Neointimal progression on histologic assessment at 4 weeks 

also slowed down [231]. 

Drugs can be mixed in preserving solutions. The advantage of this method is the lower if not 

absent risk of systemic toxicity as there is no direct administration of the drug to the patient. One 

disadvantage remains the short and variable period of storage. Hence, the compound needs to 

have a rapid onset and lasting action. In this application, a few drugs have been tested. Leoligin 

is an extracted compound from Edelweiss (Leontopodium alpinum Cass.), a plant found in 

mountainous regions and used in folk medicine to treat diarrhea, fever and abdominal cramps. 

The drug has been studied and associated with a wide variety of effects such as lipid-lowering, 

antioxidant, antihypertensive, anti-inflammatory and antithrombotic. Reisinger et al. 

demonstrated leoligin-associated inhibition of IH in human SVG cultures [232]. Resveratrol is a 

polyphenol present in wine and provides cardiovascular benefits through vasodilatory, 



60 

antioxidant and inflammatory effects. Kaplan et al. demonstrated a reduction in expression of 

ICAM-1 and VCAM-1 associated with a decrease in neutrophil adhesion on SVG stored in AWB 

with Resveratrol compared to storage in AWB alone [233]. Vascular reactivity experiments on 

human SVG and ITA also revealed improvement in endothelium-dependent relaxation [234]. 

Ronbos et al. studied SVG segments treated with a solution of Ringer’s Lactate with a vasodilator, 

either papaverine or trinitrate/verapamil. They found the combination of verapamil and trinitrate 

to preserve the endothelium optimally [122]. The use of antiproliferative agents such as 

cytochalasin D, paclitaxel or rapamycin on porcine SVG did not show reduction in neointima 

development or wall thickness after 12 weeks [235]. Oxidative stress is implicated in the 

development of IH. One team assessed the use of intraoperative treatment with polyethylene 

glycol infused with superoxide dismutase (PEG-SOD) on rabbit vein grafts and found reduced IH 

at 28 days [236]. Carbon monoxide (CO) has also been reported to reduce IH. Nakao et al. used 

a model of an arterialized graft by transplanting an inferior vena cava as an interposition graft in 

a rat abdominal aorta. Grafts were preserved in a carbon-monoxide-saturated Lactate Ringer. 

The study showed that EC death is significantly reduced with CO treatment. The proposed 

underlying mechanism is CO ability to inhibit ICAM-1 expression [237].  

 

1.4.5.1 Combining pharmacotherapy and optimized preservation solutions  

One important message to retain from the prior studies is that local therapy at a focal time is a 

feasible strategy. Contrary to surgical techniques, preparing preservation solutions are relatively 

simple and reproducible. It is not operator-dependent and does not require expertise nor 

specialized equipment. The preservation period is a valuable timeframe when adding 

pharmacologic treatments is possible. Such a strategy allows to act during a determinant time 

when the graft is most susceptible to injury. The challenge is finding the right compound. Suitable 

drugs need to be compatible with the preservation solution and deemed safe for endothelial 

cells. It must be able to activate vital protective responses early and effectively. The drug should 

also be capable of activating long-term cellular pathways for lasting benefits. An anti-



61 

inflammatory profile, a redox potential or regenerative endothelial properties are some of the 

characteristics we should look at. 

 

1.5 Celastrol 

Tripterygium wilfordii (TW), also referred to as “Thunder of God Vine”, is a poisonous plant whose 

roots contain several therapeutic compounds such as terpenoids, alkaloids and steroids. One of 

the most abundant and active components is Celastrol. It is commonly used in Chinese medicine 

as an anti-inflammatory treatment against immunologic diseases such as rheumatoid arthritis. 

Celastrol belongs to the triterpene quinine methides family, which are compounds made up of 

five cyclic rings. Celastrol has seen a recent surge of scientific interest in the fields of cancer, 

inflammatory disease and anti-obesity research [238]. It was also investigated in the fields of 

neurodegenerative diseases and cardiovascular protection [239-241]. Celastrol is a known HSP90 

inhibitor, which is a central mechanism leading to its known effects [242]. HSP90 is present in all 

cells and interact with hundreds of different proteins. The end-result of HSP90 inhibition on those 

proteins is dependent on the cell type and its baseline status [243]. 

 

 

Chemical structure of Celastrol [244] 

Figure 5. –  Chemical structure of Celastrol 
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1.5.1 Anti-inflammatory properties  

Celastrol exerts its anti-inflammatory and immunomodulatory effects through inhibition of NF-

kB. NF-kB is a transcription factor that forms a complex with its inhibitory protein Ik-Ba in the 

cytosol. Activation of various membranous receptors allows activation of IKK, which 

phosphorylates Ik-Ba, dissociating it from NF-kB. Once released, NF-kB translocates to the 

nucleus, where it modulates the transcription of genes involved in the inflammatory response 

[245]. Celastrol blocks the activity of IKK, thus preventing phosphorylation of IkBa [246]. 

Additionally, Celastrol is found to inhibit several transcription factors (TF) involved in the 

inflammatory response (see Figure 6). Consequently, Celastrol manages to suppress the 

production of various pro-inflammatory cytokines (i.e., TNF, IL-2, IL-6, IL-8, IL-1b, IFN-g) [241]. 

Celastrol has also shown to inhibit the expression of adhesion molecules such as E-selectin, VCAM 

and ICAM-1 on activated endothelial cells [247]. Many autoimmune diseases such as polyarthritis 

rheumatoid (PAR)are the result of the excessive production of pro-inflammatory cytokine and 

thus, can be a potential target for the drug. Many small clinical trials have tested the use of 

Celastrol in PAR patients. A meta-analysis of 14 of these studies revealed that Celastrol reduces 

PAR symptoms, but is not superior compared to the current treatment [248]. Its application has 

also been studied in many other inflammatory diseases such as asthma, inflammatory bowel 

disease (IBD), systemic lupus erythematosus (SLE) and psoriasis. A few small clinical trials 

explored treatments of TW extract in patients with Crohn’s disease. They reported reduced 

inflammatory markers and activity index comparable to standard treatment with azathioprine or 

mesalazin. TW extract reached similar efficacy as disease-modifying anti-rheumatic drugs 

(DMARDs). However, it shows a high prevalence of adverse effects, mostly of gastrointestinal 

origin, such as diarrhea, nausea abdominal pain, dyspepsia. Adverse effects can reach an 

upsetting 50% of treated patients in clinical studies. [249] It should be noted that TW extract can 

contain up to 70 different active components, which does not translate to specific effects due to 

Celastrol [248]. Also, the major limitations of those studies are their small and heterogeneous 

study population, the lack of long-term follow-up as well as objective radiological assessments. 

The poor tolerability of systemic administration of Celastrol remains a significant constraint to 

designing larger trials. One area of interest is studying the chemical structure of the compound 
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and its related structure/activity relationships to redesign similarly inspired molecules with lower 

toxicity, higher tolerability and perhaps, even better efficiency [238, 239]. 

 

1.5.2 Molecular targets for anti-cancer therapies 

Cancer is a complex process implicating multiple genetic alterations to the cell, which confer its 

dysregulated proliferation and invasion properties. Celastrol acts as an anti-neoplastic agent by 

tempering various molecular pathways involved in neoplastic cell survival, proliferation and 

metastasis. It has been studied in multiple cancerous cell lines such as myelogenous leukemia, 

multiple myeloma, cervical cancer, hepatocellular cancer, prostate cancer, melanoma, breast 

cancer, ovarian cancer, osteosarcoma, nasopharyngeal carcinoma and others [238]. 

One of the ways Celastrol interferes with cancer progression is through inducing apoptosis. The 

intrinsic apoptotic pathway, or mitochondrial pathway, is activated following intracellular 

damage and oncogenic stress. It involves activation of caspase-3 and caspase-9 by cytochrome c. 

The resistance to apoptosis characterizes and promotes the survival of cancer cells [250]. 

Celastrol was found to be able to activate of caspase-3, caspase-7, caspase-8 and caspase-9 [251].  

It also up-regulates the expression of pro-apoptotic BAX and down-regulates the anti-apoptotic 

Bcl-2 gene [252]. On the other hand, the extrinsic apoptotic pathway is activated by death 

receptors in response to external stimuli [250]. Celastrol enhances protein expression of death 

receptors (i.e. DR4 and DR5) which deliver downstream apoptotic signals [253, 254]. Celastrol 

was also impeding other pro-survival pathways such as the proteasome complex, the 

PI3K/Akt/mTOR, PI3K/AKT/NF-kB or PI3K/Akt/JNK pathways in a wide variety of tumor cell types 

[251, 255-257]. The suppression of autophagy, cellular catabolic response to starvation or stress, 

has been linked to cancer growth. Celastrol induces autophagy through the action of HIF-1a, a 

TF playing a central role in the cellular response against hypoxic stress [258]. Under inflammatory 

conditions, Celastrol promotes translocation of Nur77, an apoptosis-inducible nuclear receptor, 

from the nucleus to the mitochondria rendering them sensitive to autophagy [259]. 
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Celastrol gains anti-proliferative properties through the ability to induce cell cycle arrest. It can 

decrease cyclin D1 and cyclin E levels, proteins required for progression of the cell cycle [260]. It 

also inhibits activation of STAT3, a cytokine-activated TF associated with oncogenesis. This causes 

cell arrest at the sub-G1 phase [260]. NF-kB is upregulated in various cancers. It promotes the 

expression of pro-inflammatory cytokines and growth factors that contribute to cancer 

development. Thus, the inhibition of NF-kB previously discussed also prevents cancer growth 

[261]. 

Celastrol also exerts anti-metastatic properties. It decreases VEGFR-1 and VEGFR-2 density, 

reducing endothelial sensitivity to VEGF and thereby limiting endothelial proliferation and 

angiogenesis [262]. The suppression of angiogenesis impedes the tumor’s growth and survival. 

Celastrol hinders cell migration through suppression of MMP-9 expression [263]. It is also seen 

to downregulate CIP2A protein, an oncoprotein able to promote cancer cell proliferation, 

resistance to apoptosis tumor invasion capacity [264].  

Finally, Celastrol potentiates the effect of some chemotherapeutic agents, synergistically 

enhancing apoptotic effects of bortezomib, thalidomide, vinblastine or paclitaxel, just to name a 

few. It can also enhance radiation-induced damages and suppression of cancerous cell 

proliferation [265]. The numerous pathways linked to Celastrol illustrates its complex yet 

incomplete understanding of the mechanism in suppressing neoplasia.  
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Targeted pathways inhibited by Celastrol (red Ʇ). (ERK, extracellular signal-regulated kinase; IKK, IkB kinase; JNK, c-

Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; NEMO, NF-kB essential modulator; NF-kB, nuclear 

factor-kappa B; P, phosphorylated; PAMP, pathogen-associated molecular patterns; STAT3, signal transducer and 

activator of transcription 3). [241] 

Figure 6. –  Celastrol anti-inflammatory response 

 

1.5.3 Antioxidative properties 

Celastrol increases Nuclear factor erythroid-related factor 2 (Nrf2) activity in human umbilical 

vein endothelial cells (HUVEC) [266]. A Celastrol-induced production of endogenous ROS is the 

proposed mechanism behind Nrf2 activation. Studies have found that treatment with Celastrol 

led to increased ROS levels in human keratinocytes and rat cardiomyoblasts [266, 267]. The 

regulated production of endogenous ROS allows the modulation of various intracellular signaling 

pathways, including the MAPK, the PI3K-Akt, the NF-kB or the Keap1-Nrf2-ARE signaling pathway 

[268]. The Keap1-Nrf2-ARE pathway is implicated in the protective response against oxidative 

stress. In normal condition, Nrf2 is a transcription factor sequestered by Keap1, a protein 
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anchored to the cytoskeleton, and remains in the cytoplasm. Coupling with Keap1 enhances the 

ubiquitination and proteolysis of Nrf2. Oxidative stress conditions promote the dissociation of 

Nrf2 from Keap1. Nrf2 can then translocate to the nucleus and allow transcription of the 

antioxidant response elements (ARE), namely heme oxygenase-1 (HO-1), glutathione (S) 

transferase (GST) and NADP(H) quinine oxidoreductase (NQO-1) (See Figure 7) [257, 269].  

 

 

Activation of Nrf2. (ARE, antioxidant response elements; CBP, cAMP-response-element-binding protein; Keap1, 

Kelch-like ECH-associated protein; Nrf2, Nuclear factor erythroid-related factor 2; Ub, ubiquination; p, 

phosphorylated) [269] 

Figure 7. –  Activation of Nrf2 

Heme oxygenases (HO) are enzymes responsible for the initial rate-limiting step of heme 

breakdown [270]. Heme is an organic molecule composed of four pyrrole rings and a central iron 

ion (Fe2+). Heme biosynthesis is complex and requires the precursor 5-aminolevalinic acid (ALA), 

O2 and Fe2+. Heme is present in all cells and important for the proper functioning of many 

enzymes such as catalases, cyclooxygenases and nitric oxide synthases. It is also essential for the 

formation of hemoglobin, myoglobin and cytochrome complexes [271, 272]. In addition, heme 

participates in many biological processes such as erythropoiesis, cell growth and 

differentiation[271].  
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Excess heme is damaging to cells and tissue. Heme catalyzes the formation of ROS and is pro-

inflammatory [272]. Exposure of EC to heme promotes the expression of adhesion molecules 

(i.e., ICAM-1, VCAM-1 and e-selectin) [273]. There are mechanisms responsible for heme 

neutralization. Hemopexin is an intravascular protein binding free heme for transport or 

clearance and has been shown to protect against cytotoxicity in vitro [274]. Ultimately, heme is 

degraded by HO [275]. 

HO exist in 3 isoforms: HO-1, HO-2 and HO-3. HO-3 is a pseudogene derived from HO-2 and has 

negligible activity [276]. HO-2 is constitutively expressed in all cells and confers some level heme 

degradation, although it is not induced by external stressors and thus, is not responsible for 

activating the protective mechanisms [277]. Although HO-2 does not respond to stress-induced 

transcriptional activation, both HO-2 and HO-1 catalyze the same biochemical reaction, which is 

the degradation of heme into 3 components: CO, biliverdin and free iron [278]. 

HO-1 is highly expressed in the spleen and tissues implicated in red blood cell degradation. In 

most tissues, however, HO-1 is expressed at low levels in normal conditions and is induced 

following various forms of insults (i.e., inflammation, lipopolysaccharides, hydrogen peroxide, 

ischemia, hypoxia, hyperoxia, hyperthermia or radiation) [270, 277, 278]. HO-1 is also known as 

HSP32, due to its molecular weight, 32 kDa. Although HO does not share amino acid homology 

with heat shock proteins (HSP) nor does it have chaperone activity, it belongs to a family of so-

called stress proteins and responds to hyperthermia [278]. HO-1 is mostly localized in the 

endoplasmic reticulum, more specifically within caveolae [278, 279]. It is also found, to a lesser 

extent, around mitochondria and within the nuclear region. Transcriptional regulation of the HO-

1 encoding gene, Hmox-1, is achieved by targeting the stress-responsive elements (StRE) in the 

promoter region. StRE are targeted by Bach1, Nrf2, NF-kB and AP-1 [280]. Bach1 has a negative 

effect on the transcription of HO-1 by binding maf proteins and competing with NrF-2 binding. 

Bach1 effect dominates and is responsible for the low levels of HO-1 in normal conditions [281]. 

MAPK and PI3/Akt also participate in HMOX regulation [279, 280, 282, 283]. Phosphorylation of 

HO-1 by Akt led to changes in its activity in vitro suggesting the implication of PI3/Akt pathways 

in both transcriptional and post-transcriptional regulation of HO-1[283]. 
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HO-1 exerts its antioxidant effect by eliminating the pro-inflammatory and pro-oxidative heme 

and by releasing antioxidative by-products. (see Figure 8) [284]. Free heme contains a Fe2+ atom 

than can react with hydrogen peroxide (H2O2) to produce hydroxyl radicals. The degradation of 

heme releases Fe2+ which is then sequestered by ferritin, relieving its pro-oxidative effect [285]. 

Ferritin is a cytoprotective and antioxidant agent for endothelial cells [286]. Biliverdin is 

cytoprotective against oxidative stress induced by H2O2 in cell culture media of EC, VSMC and 

cardiomyocytes.  As for CO, it has vasodilatory, immunomodulatory and cytoprotective effects 

[280, 287, 288]. CO is also linked to stimulation of cellular proliferation. All bilirubin, ferritin and 

CO have antioxidant properties [277]. Many polyphenols are classified as antioxidants or anti-

inflammatory owing to their capacity to induce HO-1 (i.e., curcumin, resveratrol, carnosol) [283, 

289]. HO-1 polymorphisms associated with reduced expression and/or activity are found to 

correlate with increased cardiovascular risks [290]. Taha et al. demonstrated that the most active 

promoter profile was associated with cytoprotective, pro-angiogenic and anti-inflammatory 

effects on human EC [291]. Some therapeutic agents induce HO-1 such as rapamycin, paclitaxel, 

nitric oxide, aspirin and some statins. All these drugs have one common denominator; they are 

all current therapy for cardiovascular diseases.  

 

 

HO-1 enzymatic activity [284] 

Figure 8. –  HO-1 enzymatic activity 
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While the antioxidant effect conducted by the Nrf2/HO-1 pathway can take hours to initiate, 

Celastrol may be able to rapidly respond to oxidative stress by inhibiting NADPH oxidase (NOX) 

isoforms [292]. NOX are enzyme complex in contact with the extracellular space. It catalyzes the 

production of superoxide free radicals by transferring an electron to oxygen from NADPH 

(nicotinide adenine dinucleotide phosphate), which results in the production of O2
- [293]. 

Celastrol impedes the activity of NOX1, NOX2, NOX4 and NOX5 on human neutrophils within 

minutes of exposure [292]. Endothelial NOX2 is reported to contribute to angiotensin 2-induced 

endothelial dysfunction [294]. 

 

1.5.4 Other fields of application 

Celastrol made headlines in 2015 after research found that it may help with the treatment of 

obesity. Celastrol suppresses food intake and leads to significant weight loss in obese mice 

through an increase in leptin sensitivity [295]. Celastrol also limited renal injury in diabetic rats 

through the NF-kB pathway [296]. In the field of neurodegenerative diseases, Celastrol was 

credited for slowing disease progression. Celastrol dampened neuronal loss and depletion of 

dopamine levels in a model of Parkinson’s disease in drosophila. In a rat model of Alzheimer’s 

disease, it reduces amyloid b production and deposition. It delays disease onset and slow 

neuronal loss in mice affected by amyotrophic lateral sclerosis [265]. 

 

1.5.5 Cardiovascular effects of Celastrol 

In an experimental model of atherosclerosis, systemic administration of Celastrol in nano-

micelles was associated with a decrease in the size of atherosclerotic plaques as well as a 

reduction in the inflammatory immune cell populations within them [297]. Celastrol lowers blood 

pressure in a model of hypertension in rats through the inhibition of Ang II-induced SMC 

activation. It was reported that treatment with Celastrol decreases vascular and cardiac 

remodeling [298]. 
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Our group previously showed that Celastrol conferred a better survival against hypoxic stress in 

rat cardiomyocytes in vitro. In a rat model of myocardial infarct, Celastrol limited infarct size and 

ventricular remodeling 14 days after the ischemic event [267]. More recent findings link the 

survival benefits of Celastrol with its HSP90-inhibitory activity. Following ischemia-reperfusion, 

Celastrol improved rat cardiomyocytes’ survival which was associated with an increase in cardiac 

functional indexes, reduction in infarct size and tissue injury in ex vivo heart perfusion 

experiments. Celastrol inhibitory effect on HSP90 led to increased cardioprotective mechanism 

through induced expression of HSP70 and HSP32 (Figure 9) as well as activation of the RISK 

pathway (through phosphorylation of Akt and ERK1/2). Interestingly, chemical modifications of 

Celastrol let to analogous molecules which also exhibit HSP 90 inhibition but were not as effective 

in inducing the Heat Shock elements (HSE) and the ARE [239].  

One might question how Celastrol has such different effects on different types of cells. Like 

previously mentioned, Celastrol is used as an anti-tumor drug due to its antiproliferative, anti-

angiogenic and apoptotic effects. While HSP90 inhibition leads to improved survival on 

cardiomyocytes, it also leads to arrest in proliferation in leukemia cells [299] or promotes 

glioblastoma cell death [300] and pancreatic cancer cells [301]. Extended discussion about 

differences in neoplastic cells’ intracellular mechanisms compared to normal cells goes beyond 

the scope of this study, but they likely explain for the diverging effects of Celastrol reported in 

the literature. It is also worth to mention that the concentrations and the periods of treatment 

with Celastrol differ in studies which can also lead to different effects. 

So far, it is believed that Celastrol can exert cytoprotective effect on healthy cardiomyocytes. Our 

group findings support Celastrol as the most potent HSP90 inhibitor for cardio-protection yet. On 

the same line of thought, this study aims to uncover if similar mechanisms exist on endothelial 

cells and if those could lead to similar response to oxidative stress and survival. We believe that 

ROS play a major role in driving the early response and is responsible of much of the endothelial 

injury and death. Using Celastrol as a local treatment for vascular grafts would avoid systemic 

administration, thus preventing higher dosage and systemic toxicity. It would then be important 

to determine if the treatment can generate the desire effects within the limited time frame of 
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graft preparation. This project wants to determine if there are any beneficial effects of Celastrol 

on human endothelial cells (HUVEC) in vitro. 

 

Celastrol inhibits HSP90 causing the release of Heat Shock Factor 1 (HSF1). Celastrol also induces the Nrf2 activity by 

endogenous production of ROS. Both nuclear factors, Nrf2 and HSF1, allows transcription of HSP70, effector of the 

Heat Shock response, and HSP32, protective against oxidative stress (ARE, antioxidant response element; HSE, heat 

shock elements, HSE; HSP90, heat shock protein 90; HSP32, heat shock protein 32 or heme-oxygenase-1, Keap1, 

Kelch-like ECH-associated protein; Nrf2; Nuclear factor erythroid-related factor 2). [302] 

Figure 9. –  Celastrol inhibitory activity on HSP90 and downstream effect on expression of HSP70 

and HSP32 





 

Chapter 2 – Hypothesis and Objectives 

2.1 Hypothesis 

Celastrol pre-conditioning can improve endothelial cell survival during oxidative stress and 

storage in normal saline, a common graft storage solution. 

Celastrol pre-treatment can promote faster re-endothelialization. 

Celastrol is capable of triggering survival pathways such as the RISK pathway and the Heat Shock 

Response. 

Celastrol activation of HO-1 is contributive to the cellular acquired resistance against oxidative 

stress. 

2.2 Objectives 

In vitro assessment of the effects of Celastrol on human umbilical vein endothelial cells: 

1. Following short oxidative stress (reproducing early period after reperfusion) 

2. Following long-term oxidative stress (reproducing the delay response with prolonged 

reperfusion injury) 

3. Following storage under heparinized normal saline (reproducing clinical condition of graft 

preservation). 

4. On their proliferation and migration potential: indicative of their potential to re-

endothelialized 

Assessment of the pathways implicated in the actions of Celastrol: 

1. RISK pathway: Akt and ERK1/2 

2. HO-1 expression 

3. Expression of HSP70 from the heat shock response  
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Chapter 3 – Materials and Methods 

3.1 Celastrol 

Celastrol (Cayman Chemical, Ann Arbor, MI) is a commercially available compound. Stock 

solutions were prepared in dimethyl sulfoxide (DMSO, 99.9%) (Sigma-Aldrich, Canada Oakville, 

ON) at a concentration of 10-3mM and stored at -20oC.  

 

3.2 Cell Culture 

Human umbilical vein endothelial cells (HUVEC) were obtained from the American Type Culture 

Collection (ATCC). Every surface for treatment or culture purposes are coated with sterile gelatin 

A 1% in phosphate buffered saline (PBS) for 2 hours before seeding. HUVEC are cultured in M200 

medium (Life technologies. #cat: M200-500) containing FBS 5% (Life technologies. #cat: 12483-

020), 1% Low serum growth supplement (Life technologies. #cat: S-003-10) and 1% 

penicillin/streptomycin (Life technologies. # 15140-122). For the sake of simplification, we would 

call that solution EGM 5%, or endothelial growth medium (EGM). Cells are incubated at 37oC in a 

5% CO2 humidified incubator. Medium is replaced every 2 to 3 days. HUVEC are passaged once 

they reach at least 90% confluence on culture plates, usually every 5 days. 500 000 cells are 

seeded in 25cm2 flask and confluence is reached with around 2 million cells. Cells in their 4th to 

8th passage were used in this study. 

 

3.3 Stress and treatment preparations. 

For the experimental conditions, 96-well plate (Eppendorf, Mississauga, ON) gets pre-coated with 

Gelatin A 1%/PBS. 5000 cells are seeded per wells in EGM 5% and incubated for 24 hours before 

the experimental conditions. 

All treatments require the dilution of Celastrol aliquots (10-3M) in M200 (Life Technologies. #cat: 

M200-500) supplemented by 1% FBS (Life technologies. # cat: 12483-020) (EBM 1%). Dosages 
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between 10-10M and 10-6M were prepared. Every treatment lasts one hour. Following the 

treatment, cells are carefully washed 3 times with EBM 1%. 

Oxidative stress is replicated by diluting hydrogen peroxide 30% (Fisher Scientific) in EBM 1%. 

Concentrations between 0.3mM and 0.5mM are prepared for the prolonged stress condition (24 

hours) and between 1 mM and 6 mM for the short stress (1 hour). 

Heparin 25U/mL is added to normal saline (Sandoz Canada) in order to reproduce the 

preservation solution used in the operating room. Duration of storage in heparinized saline was 

3 hours. 

 

3.4 Viability testing 

Following any prior stress condition or treatment, HUVEC are washed with EBM 1% 3 times. 

Viability testing is done by using the LIVE/DEAD kit (Life Technologies) according to the 

manufacturer’s recommendations. The LIVE/DEAD assay discriminates live cells stained green-

fluorescent by calcein-AM which indicates intracellular esterase activity from dead cells, stained 

red-fluorescent by ethidium homodimer-1, which indicates loss of plasma membrane integrity 

(see Figure 13). The total number of cells is determined by nuclei staining by Hoechst 33342 (Life 

technologies, 1:10 000). Images were captured using the Operetta system, a high content 

screening system, and analyzed using the Harmony High-Content Imaging and Analysis software 

ver. 4.1 (Perkin Elmer, Waltham, MA). Living cells emit a green fluorescent dye, whereas dead 

cells emit a red fluorescent dye. The total number of cells are determined by Hoechst 33342 

staining and is used to correlate with the sum of dead and alive cells recorded. Viability is 

reported as the percentage of living cells over the total of cells, dead and alive. 

 

3.5 Scratch tests 

HUVEC are seeded on gelatin A 1%/PBS pre-coated 96-wells for scratch (Essen, #4379); 15 000 

cells per wells. They are incubated in EGM 5% for 24 hours at 37oC. Cells are then exposed to the 
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treatment preparations previously described. After 1 hour of stimulation, wells are washed 3 

times with EBM 1% before adding 100uL of EBM 1% per well. A scratch is standardly made with 

the WoundMaker (Essen, cat: #4493) according to the manufacturer protocol. The 96-wells plate 

is then incubated in the IncuCyte Zoom machine (Essen) at 37oC, where picture is taken at 10x 

every hour. Wound closure analysis is accomplished using the IncuCyte Zoom Scratch Wound 

software. 

 

3.5 Protein Analysis 

For Western blot analysis, p-Akt (Cell signaling technology # cat: 9271, rabbit, 1:2000), Akt (Cell 

signalling technology # cat : 9272, rabbit, 1:4000), p-ERK1/2 (Cell signaling technology # cat: 9102, 

mouse, 1:2000), ERK1/2 (Cell signaling technology # cat: 9106, mice, 1:4000), HSP70 (Enzo life 

science # cat: ADI-SPA-810, mouse, 1:1000), and HO-1 (Enzo Life science # cat: ADI-SPA-950, 

rabbit, 1:2000) primary antibodies were used. Goat anti-mouse HRP (Santa Cruz biotechnology 

#cat: sc-2005, 1:3000) and goat anti-rabbit HRP (Santa Cruz biotechnology #cat: sc-2004, 1:3000) 

were used at secondary antibodies. 

HUVEC are seeded in pre-coated 6-cm plates (Sarstedt, Montreal, Quebec) at a density of 400,000 

cells/plate. After seeding, HUVEC are kept at least 24 hours before the stimulation conditions. 

Following the treatment, plates are washed 3 times with EBM1 % before all trace of medium is 

aspirated. The dry plates are then kept at -80oC until extraction.  

Protein extraction is performed by incubating plates in lysis buffer (preparation: 50mM Hepes, 

1% NP-40, 4mM EDTA, 1mM Na3VO4, 10mM NaF, 1mM phenylmethanesulfonyl fluoride and 

1mM Na pyrophosphate in 10 mL of distilled water) for 30 minutes on ice. Lysed cells are 

collected and centrifuged in a refrigerated (4°C) microcentrifuge for 10 minutes at 13 000 RPM 

at 4oC. The supernatant is then transferred in Eppendorf tubes, where protein dosage is 

performed by Bradford protein assay. Protein extracts are prepared by adding a loading buffer 

(Bioland Scientific 6X Laemmli SDS sample buffer) for a 5:1 ratio and 5 uL of b-mercaptoethanol. 

Samples were then heated at 95oC for 5 minutes before being stored at -20 oC. 
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8% and 10% Separating gels (preparation: 30% acryl-bisacrylamide mix, 1.5M Tris pH 8.8, 10% 

SDS, 10% ammonium persulfate and TEMED were mixed in 10 mL of distilled water) were used. 

Stacking gels are prepared using 30% acryl-bisacrylamide mix, 1.5M Tris pH 6.8, 10% SDS, 10% 

ammonium persulfate and TEMED mixed in 10 mL of distilled water. 

Protein migration is performed over 90 to 120 minutes at 120V in running buffer (SDS, Tris, 

glycine). Proteins are transfered onto polyvinylidene (PVDF) membrane is performed overnight 

at 30V in a refrigerated chamber (4oC). Membranes are then blocked using 5% milk (no fat) in 

PBS. Membranes are incubated with primary antibodies (mixed in 5% milk-PBS) overnight at 4oC 

on a shaker. Membranes are washed with PBS containing 0.1% Tween20 before incubation with 

secondary antibodies for 1 hour on a shaker. Concentrations of antibodies follow manufacturer’s 

recommendations. Membranes are washed again in PBS- 0.1% Tween20 before incubation with 

ECL 1X solution (following the proportion solution A and B provided by the manufacturer) for 1-

2 minutes. 

Following exposure in a darkroom, quantitative analysis was performed with NIH Image J 

software version 1.52 (https://imagej.nih.gov/ij/).  

 

3.6 Statistical analysis 

All experiments were performed at least three times, using triplicate samples for each data point. 

Data is presented as means and standard error of the mean. Exploratory analyses (N less than 5) 

on viability and protein expression were performed using one-way ANOVA followed by the two-

tailed t-test performed on Microsoft® Excel® for Mac version 16.37.  

For viability and cell number analyses, one-way ANOVA followed by a Dunnett’s multiple 

comparisons test or a two-way ANOVA followed by Boniferroni’s multiple comparisons test was 

performed. 

For scratch test, results were converted to an area under the curve, which was then analyzed by 

one-way ANOVA followed by a Dunnett’s multiple comparisons test. The analysis was performed 
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on GraphPad Prism version 8.4.3. An equivalence test (TOST) was performed by 2 one-side t-test 

and run on XLSTAT version 2020.3.1.1006 by Addinsoft.  

For all analyses, P≤ 0.05 was considered significant. 

 

 





 

Chapter 4 – Results 

 

4.1 Viability of Endothelial Cells following exposure to heparinized NS 

 

Venous grafts are commonly stored in heparinized NS during the surgery. In order to reproduce 

the clinical environment in vitro, HUVEC are exposed to heparinized NS in order to assess the 

impact of the solution on their survival. The period of storage was 3 hours as shorter times did 

not induce enough mortality to highlight the effect of Celastrol. In clinical settings however, grafts 

are usually kept for much shorter periods. 

Figure 10  shows the ratio of viable and dead cells after storage in NS and how a pre-treatment 

with Celastrol affect their viability. In the EBM 1% group, which in the negative control group, 

minimal mortality is expected since no stress was stimulated. Indeed, there is a reported 

1.90±0.01% mortality. Storage in heparinized normal saline is shown to be significantly more 

cytotoxic than EBM 1%, where mortality reaches 17.8 ± 3.3 % (p=0.009). Pre-conditioning with 

Celastrol 10-6M decreases the mortality rate to 11.9 ± 1.9 %, although that difference did not 

reach significance (p=0.09). The lower concentrations of Cel 10-8M and 10-10M revealed a 

mortality of 20.1% and 17.6% respectively, which were also not statistically different from the 

non-treatment group. These results raise the possibility of a dose-dependent response where the 

highest Celastrol concentration seems to reveal some level of benefit. 
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4.1.1 Viability after preservation in heparinized saline  

 

Once HUVECs are treated with Celastrol at 10-10M, 10-8M and 10-6M for 1 hour, they were stored in heparinized 

normal saline (NS) for 3 hours (n=3). In the EBM 1% group, HUVEC were kept in a culture medium low in glucose and 

devoid of growth factor and serve as the control group. This group was a negative control group. Thus, it was not 

exposed to NS nor to Celastrol. In the vehicle group (DMSO devoid of Celastrol), HUVEC were not treated with 

Celastrol and were exposed to NS for 3 hours. (HUVEC, human umbilical vein endothelial cells; EBM 1%, endothelial 

basal medium with FBS 1%; CTRL, control; Cel, Celastrol) 

† Significant increase in mortality in HUVEC exposed to NS (vehicle) compared to EBM 1% : 1.9 vs 17.8% (p=0.009). 

Figure 10. –  HUVEC survival after prolonged storage in heparinized normal saline and effects of a 

Celastrol pre-treatment on their survival 
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4.2 Viability under oxidative stress 

 

4.2.1 Response to increasing oxidative stress and determination of H2O2 

experimental concentration for the 1-hour stress experiments 

 

In order to reproduce the oxidative stress condition following reperfusion, HUVEC are exposed to 

different concentrations of H2O2. Figure 11 shows the viability testing done after exposure to 

different concentrations of H2O2 for 1 hour. This preliminary step aims to determine the condition 

generating the most noticeable treatment response on mortality. 4 mM is the concentration 

where we begin to see a noticeable difference in terms of induced mortality. Therefore, we 

limited further testing for H2O2 3 mM and 4 mM. Lower concentrations lead to lower mortality 

and are likely going to accentuate experimental variability and inconsistency as seen for dosages 

1 mM and 2 mM. Under a higher concentration of H2O2 (5mM and 6mM), mortality increases in 

a dose-dependent manner which was also associated with a decline in Celastrol’s recorded 

effectiveness. In both the 5 mM and 6 mM groups, Celastrol’s effect, if any, seemed blunted by 

the overwhelming mortality generated. It was observed that wells exposed to H2O2 5 mM and 6 

mM succumbed to higher mortality than what is reported by the numbers. In fact, visually, 

mortality approached 100% in all wells stressed with doses higher than 5 mM. Thus, it was 

deemed futile to repeat conditions of 5mM and 6mM. We reported results from the 

concentration H2O2 4 mM where effect was most highlighted (Figure 13). Results for the 

concentration H2O2 3 mM can be consulted in the Appendix (Figure 1). 
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This figure shows HUVEC survival in various concentrations of H2O2 and variable concentrations of Celastrol 

treatment. Cells were exposed to 1 hour of oxidative stress at different concentrations. Both the EGM 5% and EBM 

1% groups were not submitted to oxidative stress. EGM 5% is the standard medium for culture, containing 5% FBS 

and growth factors. EBM 1% is devoid of growth factors and contains only 1% FBS. EBM 1% is the base medium used 

for H2O2 preparations and therefore serve as the control group. Both culture media are reported here for the purpose 

of showing that lack of growth factors and low FBS stress HUVEC and viability measures should be analyzed in 

consideration of that. No error bar is shown as this test was done once (n=1). (HUVEC, human umbilical vein 

endothelial cells; EGM 5%, endothelial growth medium with FBS 5%; EBM 1%, endothelial basal medium with FBS 

1%; CTRL, control; Cel, Celastrol; Veh, vehicle) 

Figure 11. –  HUVEC viability after increasing oxidative stress (1h) and response with Celastrol 

treatment 
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4.2.2 Viability following oxidative stress (short period) 

 

Figure 12 is a photo taken from one of the experiments described in 4.2.1. It shows that the 

vehicle groups experience significant death and cell loss compared to groups treated with 

Celastrol. The compilation of 5 experiments are reported in Figure 13. 

 

Picture was taken from a 96-wells plate by the Operetta system. Each well (a rectangle) is seeded with 5000 cells. 

The viability assessment was done by LIVE/DEAD assay, which allows marking of living cells in fluorescent green by 

calcein AM and dead cells in fluorescent red by ethidium homodimer. The Operetta system is set to take 5 pictures 

in each well, covering the center and 4 cardinal areas. Every row represents the oxidative stress concentration in 

which the cells were submitted. The wells in row EBM 1% were not submitted to oxidative stress and, therefore serve 

as the control group for the stress conditions. The columns show the treatment received. The wells in the column 

marked as Vehicle were not treated with Celastrol and only received the vehicle, DMSO. All the Celastrol-treated 

wells received the treatment for 1 hour before exposure to the oxidative stress.  

Upon visual inspection, oxidative stress influenced the number of living cells present in the wells. Additionally, there 

seems to be more living cells in wells treated with Celastrol. (EBM 1%, endothelial basal medium with FBS 1%; CTRL, 

control; Cel, Celastrol). 
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Figure 12. –  LIVE/DEAD assay following short oxidative stress and treatment with Celastrol 

 

This figure shows the compilation of 5 experiments exposing HUVEC to H2O2 4 mM. The EBM 1% group was not 

exposed to Celastrol nor H2O2 and served as the control group. The 4 mM group did not receive Celastrol but was 

exposed to 4mM H2O2 for 1 hour. All groups pre-treated with Celastrol for 1 hour prior to stress. 

†Exposure to 1 hour of H2O2 4 mM significantly increase mortality compared to EBM 1%; 0.9 vs 33.9% (p<0.0001) 

‡ HUVEC pre-treated with Cel 10-10M showed higher viability compared to the stress condition, 76.6% vs. 66.1% 

(p=0.035). (HUVEC, human umbilical vein endothelial cells; EBM 1%, endothelial basal medium with FBS 1%; CTRL, 

control; Cel, Celastrol)  

Figure 13. –  Effects of Celastrol on HUVEC survival following short oxidative stress 
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and 76.6% (p=0.005) viability respectively. However, Cel 10-10M is the only concentration that 

significantly improves the survival of HUVEC. Opposite to the findings for heparinized NS, no dose-

response is found in the case of a short oxidative stress. In this case, a lower concentration seems 

to be the most effective. 

As observed in Figure 12, the number of cells within wells exposed to oxidative stress seems 

significantly reduced. It is noted that dead HUVEC tend to detach from the wells. Floating dead 

cells are inevitably discarded during washes and do not account in the total number of dead cells. 

The effect was observed in a more dramatic manner the higher the mortality. This is why a 

concomitant look at the total number of cells is relevant in order to draw a more complete picture 

of cell survival. Figure 14 shows the total number of cells detected by Hoescht 33342 staining, 

done concomitantly with the LIVE/DEAD assay. The CTRL groups did not undergo oxidative stress. 

In the CTRL vehicle group, 397 ± 18 cells are counted. There is a consistent trend towards an 

increase in the number of cells in wells treated with Celastrol compared to the vehicle groups in 

the same stress condition. At 4 mM H2O2, Celastrol 10-6M is the only dose associated with a 

significantly higher cellular count: 414 ± 31 cells compared to 261 ± 44 for the vehicle (p=0.02).  
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This figure shows the total number of cells detected as per Hoescht 33342 staining. The CTRL groups were not 

exposed to oxidative stress. Treated groups received Celastrol for 1 hour prior to oxidative stress. The vehicle groups 

received DMSO only. (n=5) 

† The number of cells in the wells are inversely dependant on the degree of oxidative stress. Compared to the control 

group, there is a decline of 17.6% (p=0.03) and 34.3% (p=0.05) for the 3mM and 4mM conditions respectively. 

‡ In HUVECs exposed to H2O2 4 mM, Celastrol 10-6M is associated with a significantly higher cellular count 

when compared to control (p<0.05 for all comparisons). 

(HUVEC, human umbilical vein endothelial cells; CTRL, control; Cel, Celastrol) 

 

Figure 14. –  Effects of oxidative stress and Celastrol on the total number of HUVEC 
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4.2.3 Viability following prolonged oxidative stress (24h) 

 

Unfortunately, following anastomosis of a graft, oxidative stress likely continues beyond the one-

hour mark. Specific duration of that stress is hard to evaluate in clinical settings, but we believe 

that the first 24 hours are crucial in dictating the later evolution of the graft. Therefore, evaluating 

the influence of a Celastrol treatment on HUVEC during the first 24 hours of reperfusion is our 

next step. 

Following multiple trouble-shootings, we isolated H2O2 doses between 0.3 mM and 0.5 mM for 

long-term oxidative stress testing (24 hours). We decided to test the 3 dosages due to noticeable 

variability in terms of mortality; for the same dose, different lineage showed markedly different 

mortality rates. Figure 15 is an example of this variability. It shows a snapshot at one of our 

experiments which seems to show significant cell death in all wells exposed to 0.5 mM. It was 

observed that it is, at least partly, related to the number of cell passages. Further experiments 

actually shows that 0.5mM that shoes the most consistent death rate and response, which 

compilation is showed in Figure 16. The figure distinguishes 5 mM as the condition where the 

most substantial benefit of Celastrol was detected.  

Figure 16 shows that prolonged oxidative stress (0.5mM for 24 hours) significantly reduces 

viability in HUVEC: 76.9% vs 94.9% (p=0.001). HUVEC pre-treated with Cel 10-6M did not show a 

significant benefit in terms of survival compared to the stress condition, 78.2% vs 76.9% (p=0.9). 

However, 1 outlier experimental result contributed to the greater error interval and a decreased 

viability percentage in the compiled result. Excluding data from that experiment resulted in an 

analysis showing significant improvement of viability with the Cel 10-6M treatment. (see Figure 2 

in Appendix). Interestingly, HUVEC pre-treated with Cel 10-8M and Cel 10-10M showed a 

significantly higher viability compared to the stress condition, 93.7% vs 76.9% (p=0.001) and 

96.6% vs 76.9% (p=0.002) respectively. 
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Picture was taken from a 96-wells plate. Each well (represented by a square) is seeded with 5000 cells. The viability 

assessment was done by LIVE/DEAD assay, which allows marking of living cells in fluorescent green by calcein AM 

and dead cells in fluorescent red by ethidium homodimer.  The Operetta system is set to take 5 pictures in each well, 

covering the center and 4 cardinal areas. Every row represents the oxidative stress concentration in which the cells 

were submitted. EBM 1% is the base solution in which various concentrations of H2O2 (0.3 mM, 0.4 mM and 0.5 mM) 

were prepared. Therefore, the wells in row EBM 1% were not submitted to oxidative stress. The columns show the 

treatment received. The columns marked as CTRL were not treated with Celastrol and only received the vehicle, 

DMSO. All the wells received a pre-treatment with Celastrol for 1 hour before being submitted to the oxidative stress.  

This is a snapshot from one of the first experiments on HUVEC. In this experiment, 0.5 mM seems to be particularly 

lethal to HUVEC. Upon visual examination, there seems to be arguably more living cells in wells treated with Cel 10-

8M. It should be noted that the same conditions in younger lineages often showed less mortality for the H2O2 5 mM 

condition and results in visually different pictures. This figure was chosen to show the most apparent dose-response 

to oxidative stress. (EBM 1%, endothelial basal medium with FBS 1%; CTRL, control; Cel, Celastrol) 

Figure 15. –  LIVE/DEAD assessment following a prolonged oxidative stress 
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This figure shows the compilation of 3 experiments exposing HUVEC to H2O2 0.5 mM for 24 hours. The Vehicle group 

was not treated to Celastrol and served as the control group. Treatment with Celastrol lasted 1 hour and was done 

prior to stress. The EBM 1% group was not exposed to Celastrol nor H2O2 and served as the control group. (HUVEC, 

human umbilical vein endothelial cells; EBM 1%, endothelial basal medium with 1% FBS; Cel, Celastrol) 

†Prolonged oxidative stress (0.5mM for 24 hours) significantly reduces viability in HUVEC: 76.9% vs. 94.9% (p=0.001) 

‡ HUVEC pre-treated with Cel 10-8M and Cel 10-10M showed higher viability compared to the stress condition, 93.7% 

vs. 76.9% (p=0.001) and 96.6% vs. 76.9% (p=0.002), respectively. 

Figure 16. –  HUVEC viability under prolonged oxidative stress (0.5 mM) and effects of Celastrol 

treatment 
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4.3 Proliferative potential of pretreated endothelial cells 

Re-endothelialization is the result of proliferation and migration of EC. In order to assess the 

capacity of HUVEC to reendothelialize a denuded surface, scratch tests were performed. 

4.3.1 Scratch Tests 

 

 

This figure shows wound closure as assessed by the scratch test. The EGM group accounts for HUVEC cultured in a 

growth medium. As a pro-proliferative environment, EGM serves as the positive control group. The vehicle group 

received the vehicle (DMSO) in a medium devoid of growth factors (EBM 1%) and serves as the negative control 

group. All Celastrol dilutions were also prepared in EBM 1%. The percentage of wound closure during a period of 24 

hours was reported based on the area covered by HUVEC assessed every 2 hours. A complete wound closure would 

reach 100%. Of note, 2 different periods were recorded (24 hours and 26 hours) due to technical changes in the 

machine setting. (EBM, endothelial basal medium; EGM, Endothelial growth medium; HUVEC, human umbilical vein 

endothelial cells) 

Figure 17. –  Effects of Celastrol on re-endothelialization: percentage of wound healing 
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Figure 17 shows the percentage of wound closure by HUVECS pretreated with different 

concentrations of Celastrol in our first series of experiments. It depicts the most well-defined 

response and most representative of our final compiled results (Figure 19). The positive control 

group was kept in the growth culture medium (EGM), a pro-proliferative environment, and 

therefore expected to reach the most complete closure. 50% closure is observed between 6 and 

8 hours in EGM and reached a plateau over 90% closure after 12 hours. Near-complete closure 

was reached in EGM groups at 24 hours. Closure for the groups treated with concentrations lower 

than 10-6 M is reported to be between 40 and 60% at 24 hours. Slower closure was expected in 

vehicle compared to EGM as HUVEC were kept in EBM 1%, which is devoid of growth factors. 

All experiments are reported on area under the curve (AUC) in Figure 18. It shows that Cel 10-6 M 

is the only dose that significantly promotes wound closure (p=0.009) compared to the vehicle. 

However, equivalence test did not show equivalent closure rate between the growth medium and 

Cel 10-6 M. Lower Celastrol concentrations were not associated with differences in wound closure 

compared to vehicle. 
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5 experiments were pooled and analysis is conducted based on the area under the curve. (AUC, area under the curve; 

HUVEC, human umbilical vein endothelial cells; EGM, endothelial growth medium) 

Figure 18. –  Effects of Celastrol on re-endothelialization 

 

4.4 RISK pathway 

In this section, we assessed the effect of Celastrol on rapid response kinases. As an HSP90 

inhibitor, Celastrol is known to affect Akt activity and in the early period of the treatment. 

Therefore, we assessed Akt phosphorylation (activated form of Akt) in the during Celastrol 

treatment (1 hour) and also its response early after the end of the treatment (90 minutes). 

4.4.1 Celastrol induces early Akt activation  
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(EGM 5%) for an additional 30 minutes, which marks the 90min timepoint. (N=3) (HUVEC, human umbilical vein 

endothelial cells; Akt, protein kinase B; p-Akt, phosphorylated protein kinase B; min, minute) 

*At 15 minutes, there is a significant increase in the ratio p-Akt/Akt, 1.7-fold the control condition (p<0.00001). 

Figure 19. –  Kinetics of Akt activation following Celastrol treatment 

 

Figure 19 shows the kinetic of Akt activation (ratio of phosphorylated Akt on total Akt). Timeline=0 

marks the moment right before the start of the treatment and serves as the reference point. 

HUVEC are treated with Celastrol 10-6M for 1 hour, which corresponds to the period between 

time=0 and the 60 minutes mark. At 15 minutes, there is a significant increase in the ratio p-

Akt/Akt: 1.7-fold of time 0 condition (p<0.00001). Increased phosphorylation of Akt continues 

throughout the treatment and remains elevated even 30 minutes after the withdrawal of the 

drug. After 60 minutes, p-Akt/Akt starts to decline. Despite the noticeable increase in Akt 

activation between 30 and 90 minutes, as evidenced by the corresponding gels, statistical tests 

did not reveal significance because of the high standard deviation. It was due to one of the 3 

experiments showing a much higher ratio of Akt activation (3 times the ratio found in the 

remaining 2 experiments). The trend, however, remains similar. (see Figure 4 in Appendix) 
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4.4.2 Celastrol induces early activation of ERK1/2  

As an HSP90 inhibitor, Celastrol is also known to affect ERK1/2 activity and in the early period of 

the treatment. We assessed ERK1/2 phosphorylation (activated form of ERK1/2) in the during 

Celastrol treatment (1 hour) and also its response early after the end of the treatment (90 

minutes). 

 

  

HUVEC are treated with a concentration of Celastrol 10-6M for 1 hour. Following the treatment, HUVECs are allowed 

recuperation time in their standard growth medium (EGM 5%) for an additional 30 minutes, which marks the 90min 

mark. (N=3) (HUVEC, human umbilical vein endothelial cells; Erk, extracellular signal-regulated kinase; p-Erk, 

phosphorylated extracellular signal-regulated kinase; min, minute) 

†There is a significant increase in Erk1/2 activation at 30 and 60 minutes timepoint. 
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Figure 20. –  Kinetics of ERK1/2 activation following Celastrol treatment 

 

Figure 20 presents the kinetic of ERK1/2 activation during and following a 1-hour treatment of Cel 

10-6 M. An initial drop of p-Erk is noted at 5 minutes, followed by an increase in ERK1/2 activation 

(p-ERK1/2) starting at 15 minutes. p-Erk/ERK remains elevated compared to baseline even after 

the end of the treatment, at 90 minutes. A significant increase in p-Erk/ERK is reported for the 

30- and 60-minutes time points. 

 

  



98 

4.5 Activation of the Heat Shock Response 

Celastrol inhibitory effect on HSP90 also influences expression of Heat Shock Response main 

effector protein, HSP70. The kinetic of HSP70 expression is depicted in Figure 21 following 

treatment with Cel 10-6M. As nuclear response shows up much later then kinase activation, kinetic 

assessments were performed up to 48 hours following the initial treatment. 

 

4.5.1 Celastrol induces a sustained expression of HSP70 

 

Figure 21 shows the protein expression following treatment with Celastrol 10-6M for 1 hour. The 

increase in HSP70 expression is seen starting at the 60-minute mark. The increased expression 

becomes statistically significant at the 60 min + 4h recuperation timepoint and remains so up to 

48 hours after the end of the treatment. The peak expression is recorded at 60min + O/N 

recuperation and is 5.60-fold the baseline (t=0). The expression then declined between 24 and 48 

hours but remained 4.10-fold the baseline at 48 hours. 
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HUVEC were treated with Celastrol 1uM for 1 hour, followed by a recuperation period in EGM 5% over 48 hours. 

Therefore, HUVEC was exposed to Celastrol only in the first 60 minutes. HSP70 expression was assessed at 4 hours, 

overnight or 16 hours, 24 hours and 48 hours during that recuperation period. (HUVEC, human umbilical vein 

endothelial cells; rec, recuperation; min, minute; O/N, overnight; HSP70, heat shock protein 70; GADPH, 

glyceraldehyde 3-phosphate dehydrogenase; t=0, 0 minute or time prior to treatment) 

*There is a statistically significant increase in HSP70 expression detected after 60 minutes. 

Figure 21. –  Effects of Celastrol on HSP70 expression 
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4.6. Antioxidative pathway: induction of HO-1 expression 

As reported from prior discoveries, Celastrol also induces HO-1 expression, leading to anti-

oxidative response. The kinetic of HO-1 expression was followed until 48 hours after the end 

of the treatment and is depicted in Figure 22. 

. 

4.6.1 One short Celastrol treatment promotes sustained expression of HO-1 

 

HUVEC were treated with Celastrol 1uM for 1 hour followed by a recuperation period in EGM 5% over a span of 48 

hours. Therefore, HUVEC was exposed to Celastrol only in the first 60 minutes. HO-1 expression was assessed at 4 

hours, overnight or 16 hours, 24 hours and 48 hours during that recuperation period. (HUVEC, human umbilical vein 

endothelial cells; rec, recuperation; min, minute; O/N, overnight; HO-1, heme oxygenase 1; GADPH, glyceraldehyde 

3-phosphate dehydrogenase; t=0, 0 minute or time prior to treatment) 
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Figure 22. –  Effects of Celastrol on HO-1 expression 

 

Figure 22 shows a significant increase in HO-1 expression starting at 4 hours after treatment. HO-

1 expression continues to rise up to 6.4-fold from baseline at 16 hours (O/N recuperation) before 

declining. This figure represents the compilation of 2 experiments. A third experiment was 

excluded for analytical purposes. Due to the skewed results of that third experiment, a statistical 

analysis was not performed. It should be noted, however, that the trend is similar in all 3 

experiments. A compilation of the 3 experiments can be found in the Appendix (Figure 5). 
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Chapitre 5 – Discussion 

The significant findings in this study are: 

1) Celastrol does not confer survival benefits in endothelial cells submitted to storage in 

normal saline 

2) Celastrol confers survival benefits in endothelial cells submitted to oxidative stress. 

3) Celastrol accelerates and improves re-endothelialization 

4) These observed effects are associated with Celastrol-induced activation of the Reperfusion 

Injury Salvage kinase pathway, the Heat Shock Response, and expression of the 

antioxidant enzyme, HO-1 

 

First and foremost, determining the effective Celastrol concentrations requires taking into 

consideration the narrow therapeutic window of the compound [249] Celastrol treatment has 

been largely used in clinical and experimental settings with dosages 0.1 to 10µM in vitro [267, 

303-306]. Similarly, Yu et al. determined toxic doses of Celastrol on human neutrophils to be 

above 10 μM [307]. Our group previously published protective effects on cardiomyoblasts with 

Celastrol 0.1umol/L [239, 267]. From those evidences, Celastrol at concentrations between 10-

10M and 10-6M were used. DMSO was used as the vehicle at a concentration less than 1% v/v, 

which is considered to be far from its toxic level [308].  

Second, we tested HUVEC viability under oxidative stress and in NS storage. These in vitro 

conditions reflect the clinical practice of using heparinized NS as the preservation solution for vein 

grafts and the environment rich in ROS encountered during reperfusion.  

Storage in heparinized NS in clinical settings rarely exceeds 1 hour [109]. However, detection of 

significant mortality was seen only from the third hour of storage, which becomes the condition 

for the viability assessment. After 3 hours in heparinized NS, Cel 10-6 M marginally improved 

survival. That difference was not statistically significant. It is unknown if a longer storage period 

would reveal more appreciable differences. Investigation of more extended exposure was futile 

in this context because it does not represent clinical practice. In retrospect, a different 
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experimental setting could have been planned: starting preservation in heparinized NS for 1 hour 

followed by a period of recovery in the culture medium. It would allow documentation of the 

response in the hours or even days following a single short NS exposure. Nevertheless, these 

results reveal that Celastrol does not improve significantly the survival of HUVEC in NS. NS use 

during CABG procedure remains quite common in practice (30%) despite evidences in the 

literature showing that NS is possibly the worst option for graft preservation [113]. Coupled with 

evidences in this study, NS should no longer be used as a preservation solution for graft 

preservation. According to current clinical evidences, the first change that should be 

implemented in the operating room to optimize graft patency is the use buffered solutions. In 

current practice however, only 40% of cardiothoracic surgeons in the United States are using pH-

buffered solutions [109]. While accessibility and cost favor NS use, surgeons’ personal preference 

or familiarity remain important factors that influence their choice. Until a rigorous randomized 

clinical trial is conducted, practice will likely remain divided in the use of preservation solutions. 

Additional testing is needed to find if additional of Celastrol into a buffered solution can further 

improve graft patency. 

For viability testing post-oxidative stress, a significant survival benefit was observed for the 

treatment Cel 10-10M following a 1-hour oxidative stress. Survival benefits were also reported for 

concentrations of Cel 10-10M and Cel 10-8M following a 24-hours oxidative stress.  

EBM 1% was used as the negative control group because it is the base medium used for 

preparations of treatment and stress conditions. HUVEC are cultured in EGM 5%, which contains 

EBM and additional growth factors as well as 5% FBS. EGM 5% is avoided in the stress and 

treatment conditions because the added growth factors may trigger competing or similar cellular 

responses and may hinder the studied endpoints. Using EBM 1% limits contaminating effects of 

the growth factors. However, the longer the HUVEC are incubated in a low-FBS medium devoid 

of growth factors, the more susceptible they are to die. The reported mortality was 0.9% for 1 

hour compared to 5.1% for 24 hours (see Figure 14 and 17). Comparatively, mortality in the 

standard culture medium, EGM 5%, is consistently less than 1% (see Figure 12). In longer 

incubation (24 hours), EBM 1% contribution to the mortality percentage should be considered. 
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One caveat in the viability studies is the capacity of some dead HUVEC to detach from the wells. 

The floating cells are lost after the washes. In fact, drug-induced apoptosis of HUVEC was found 

to be associated with progressive detachment of dead cells [309]. The effect is more pronounced 

the higher the induced mortality. Consequently, the absolute mortality rate may be 

underreported. This is why the number of cells stained with Hoescht 33342 was also reported to 

highlight this effect and also to complement our viability analysis. It should be mentioned that 

Hoescht 33342 stains both living and dead cells. However, more mortality will likely correlate with 

fewer cells remaining in the wells.  In the results, the number of cells is inversely proportional to 

the degree of oxidative stress (Figure 15). Interestingly, more cells were counted in the Celastrol-

treated wells compared to the vehicle. It should be mentioned that the total number of cells 

stained by Hoescht-33342 compared to the sum of LIVE and DEAD cells correlated. For the short 

oxidative stress condition (1 hour), the higher number of cells is unlikely to be the result of cellular 

proliferation as the time between the stress and analysis is too short. Consequently, analysis of 

Hoescht 33342 staining will not be relevant to complement viability analysis in longer 

experimental conditions such as the 24-hour exposure to oxidative stress. For longer periods, 

Hoescht 33342 would stain both surviving cells and those resulting from proliferation. Therefore, 

Hoescht staining was not considered in the viability analysis for the 24-hour oxidative stress 

conditions. 

Considering all analysis, the main finding remains that a short pre-treatment with Celastrol 

confers survival benefits in HUVEC exposed to oxidative stress. These benefits are seen as early 

as 1-hour and are still present after prolonged stress (24h). The optimal dosage of Celastrol 

required for optimal viability is between 10-10M and 10-8M. A higher concentration (Cel 10-6M) 

did not result in better survival in the oxidative environment compared to that observed in NS. 

We believed that part of the survival response is orchestrated by Nrf2 through the presence of 

ROS. In NS, Celastrol would be the main cause of endogenous ROS production. In an established 

oxidative environment, a higher Celastrol concentration may induce a higher oxidative which 

becomes cytotoxic. 

As the third step, scratch tests were performed. Since some mechanical damage and loss on the 

endothelium is inevitable during harvest, we focused on the potential of reendothelialization. 
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Because complete coverage and recuperation of a functional endothelium is crucial in recovering 

graft homeostasis, the earlier the graft is reendothelialized, the earlier it will gain proper 

homeostais and limit ongoing damages. Scratch tests aim to reproduce the denuded 

subendothelial surface following a mechanical injury during graft preparation. To assess the 

capacity of HUVEC to reendothelialize, which is a process involving both cell proliferation and 

migration, scratch test analysis is chosen over tests exclusively accessing proliferation (i.e., BrDu). 

Scratch tests are a simple and reliable method to assess endothelial cell migration and wound 

healing capacity.[310] It is a particularly interesting and relevant model because it reproduces the 

mechanical denudation encountered during harvest. However, it cannot replicate the additional 

mechanical stretch caused by manipulation or pressure caused by flushing the grafts. The scratch 

test does allow a standard and reproduceable mechanical denudation. Results show that the 

proliferation rate is highest within the first 12 hours after which a plateau is reached. EGM 5% 

shows near-complete wound closure at 24 hours, 96.0%. Cel 10-6 M has an average closure of 

91.2% compared to 50.6% for the vehicle at 24 hours. Lower dosages report final wound closure 

between 46 and 70%. Comparing AUC shows Cel 10-6 M to significantly improve wound closure 

(p=0.009). However, the equivalence test did not confirm similar closure rate between Cel 10-6 M 

and EGM 5%. 

Stemming from these results, the optimal dosage from both survival and proliferative standpoint 

may be somewhere between Cel 10-8 M and Cel 10-6 M. Interestingly, Pang et al. reported 

contradictory findings to ours. Celastrol treatment, in their case, resulted in reduced viability in 

HUVEC and inhibition of VEGF-induced migration and capillary structure formation.[305, 311] 

Their results correlate with other studies finding similar inhibitory effects on angiogenesis 

potential and supporting Celastrol’s activity against cancer growth and development [303, 312, 

313]. We believe dosage and period of treatment to be critical in inducing the desired effects 

from Celastrol. Pang et al. submitted their endothelial cells to prolonged periods of treatment. 

For example, HUVEC were incubated in Celastrol 1 µmol/L, our highest treatment dosage, for 8 

to 10 hours in their wound-healing assay, which is far longer than our short treatment. The use 

of Celastrol at twice our highest concentration, 2 µmol/L, inhibited micro-vessels sprouting. 

Protein analysis was performed following 4 hours of Celastrol treatment at concentrations of 0, 
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0.5, 1, 2 and 5 µmol/L. While p-Akt was increased with Celastrol concentrations below 1 µmol/L, 

concentrations ≥ 1 µmol/L were associated with reduced phosphorylation of Akt [305]. 

Expectedly, higher doses and longer incubation with Celastrol will increase the risk of cytotoxicity 

to the cells, which explain its harmful effects on cancer cells and cytoprotective effects seen with 

lower and shorter treatments like ours.  

As the fourth step, we assessed intracellular pathways potentially involved in Celastrol treatment. 

As a HSP90 inhibitor, a few of its client proteins could be affected. They include stress-induced 

kinases such as Akt and ERK1/2. Celastrol was found to modulate Akt activity in different cell lines 

(i.e., cardiomyocytes, endothelial cells, cancer cells among others), which can be either inducible 

or suppressive to the PI3K/Akt pathway [256, 258, 267, 314]. Looking at Akt activation kinetics 

during Celastrol treatment at 10-6 M (Figure 20), there is an early rise of Akt phosphorylation 

between 15 and 30 minutes, which peaked at 30 minutes before decreasing after 60 minutes. 

Phosphorylated Akt remained high compared to basal activation (4.9 folds of the control at 90 

minutes). This early Akt activation may be accountable for the early survival outcomes seen from 

treated HUVEC.  

Akt, also known as protein kinase B, is a kinase linked to downstream effectors involved in cell 

growth, proliferation, metabolic activity and resistance to apoptosis [315]. Shear stress, ROS, GF 

(i.e., VEGF-α, insulin, insulin-like growth factors, erythropoietin, PDGF and βFGF)  are some of the 

upstream regulators of Akt [316]. Activation of Akt requires its translocation to the plasma 

membrane where PI3K, also known as phosphoinositide-dependent kinase 1 (PDK1), 

phosphorylates its threonine residue (Thr308) [317]. Phosphorylated Akt (p-Akt) detaches itself 

from the membrane and migrates into the cytosol and nucleus where it can exert its enzymatic 

activity. p-Akt can phosphorylate eNOS, promoting angiogenesis and vasorelaxation, but for 

most, the downstream effectors of p-Akt are involved in survival response, proliferation, 

metabolic homeostasis and cell growth (see Figure 6 in Appendix) [315]. The ability of p-Akt to 

optimize cell survival comes from its capacity to block apoptosis. It does so by phosphorylating 

caspase-9, thereby inhibiting the cytochrome-c/Apaf-1/caspase-9 apoptotic pathway. It also 

phosphorylates BAD, which forms a complex with Bcl-2 and Bcl-X, and, by doing so, releases Bcl-

2 and Bcl-X to promote their anti-apoptotic effects [316]. p-Akt inhibits tuberous sclerosis 1 



107 

protein (TSC1) by phosphorylating it, which leads to the activation of the mammalian target of 

rapamycin complex 1 (mTORC1) whose substrates are involved in cell proliferation. Akt can also 

inactivate GSK3b, increasing Cyclin D1 and promoting G1/S cycle progression [258]. In short, the 

Akt activation seen in our results can be linked to the improvement in survival and proliferation 

observed in HUVEC.  

Another family of kinases affected by Celastrol is ERK1/2. Li et al. reported Celastrol-induced 

activation of ERK1/2, resulting in improved viability, diminished inflammatory response and 

enhanced antioxidant enzymatic activity in HUVEC submitted to angiotensin II stimulation for 24 

hours [294]. In our study, there is a notable ERK1/2 activation at 30 minutes of treatment with 

Celastrol 10-6M (Figure 21). ERK1/2 phosphorylation starts as early as p-Akt but, contrary to Akt, 

continues to rise after 60 minutes. 

The activation of ERK1/2, a member of the mitogen-activated protein kinase (MAPK) pathway, 

has been implicated in EC’s survival response and proliferation [318, 319]. MAPK has 4 distinct 

members: extracellular signal-regulated kinase (ERK1/2), p38 proteins, c-Jun N-terminal kinases 

(JNKs) and ERK5. These MAPK are activated by MAPK kinases (known as MEK): MEK1/2, MKK3/6, 

MKK4/7 and MEK5, respectively. ERK1/2 ensures cell cycle progression through the inactivation 

of Cdc2 inhibitory kinase (MYT1) [318]. Cdc2, or cyclin-dependent kinase 1, is necessary for cell 

cycle progression.[320] ERK1/2 also activates activator protein 1 (AP-1), a transcription factor 

with a wide range of nuclear targets involving cell growth, differentiation and apoptosis. ERK1/2 

also increases expression of several of the pro-survival Bcl-2 proteins family, notably MCL-1 

(induced myeloid leukemia cell differentiation protein), an apoptosis inhibitor [318]. 

Comparatively, p38 and JNK activation can either induce apoptosis or promote survival depending 

on the cell type, the intensity and duration of the stimulus as well as the crosstalk between both 

pathways [321].   

The simultaneous activation of pro-survival kinases, Akt and ERK1/2, upon external stressor 

characterizes the activation of the Reperfusion Injury Salvage Kinases Pathway or RISK pathway. 

The RISK pathway is a group of kinases extensively studied in the mechanism of cardio-protection, 

specifically in the context of pre and post-conditioning [322]. RISK is activated by various factors 
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such as insulin, urocortin, atorvastatin, opioid receptor agonists among others. Its activation is 

associated with the decrease in infarct size and reduced markers of injury (i.e., troponin) following 

an acute ischemic event. Importantly, it is known that a short-term activation is protective. In 

contrast, chronic activation would be considered harmful due to the growth-inducing effect and 

is associated with cardiac hypertrophy [322]. Many of the kinases’ downstream effectors 

converge to the mitochondria, where they inhibit the mitochondrial permeability transition pores 

(mPTP) opening, therefore preventing apoptosis [322, 323]. In essence, the ability to modulate 

these pro-survival kinases provides an approach to limit ischemic-reperfusion-injury-induced cell 

death and  explains Celastrol survival benefits on HUVEC in oxidative stress. 

It is noteworthy to mention that Celastrol has opposing effects in studies on cancer therapy or 

inflammatory diseases. Celastrol inhibits Akt pathway leading to the suppression of cellular 

proliferation and invasion of many neoplastic cell lines (i.e., osteosarcoma, cholangiocarcinoma, 

colorectal, prostate cancer cells, breast cancer) [251, 265, 305, 314]. How Celastrol promotes 

survival in hypoxic cardiomyocytes or stressed endothelial cells yet induces tumor cell apoptosis 

can be explained by a few elements. As mentioned earlier, it is hypothesized that timing and 

duration of treatment play a central role in guiding the cellular response to external stimuli. 

Chronic activation of kinases gives rise to an overwhelming proliferation response, which can lead 

to cardiac hypertrophy or significant vascular remodeling or atherosclerosis [315, 324-326]. This 

unopposed stimulation may also contribute to tumorous cell survival and proliferation. 

Dysregulation of Akt is associated with loss of the cell cycle control and desensitization to the 

apoptotic stimuli and is commonly identified in tumor cells [327]. Celastrol treatment can 

suppress this prominent and constant kinase activation as an HSP90 inhibitor [302]. There are 3 

types of HSP90 inhibitors which are classified depending on which HSP90 cofactor they target. 

Celastrol targets cofactor Cdc37. Occupancy of HSP90 pocket by Celastrol alters the stabilization 

of the complex HSP90-Cdc37 and its client proteins, among which are Akt, ERK, Cdk4, Raf and 

EGFR [242, 328, 329]. Destabilized client proteins become targets of ubiquitination and 

proteasome degradation [329]. Hence, although Celastrol induces the phosphorylation of Akt 

acutely, prolonged treatment can deplete Akt stores by the sustained inhibition of HSP90 and 

destabilization of HSP90-Cdc37-client proteins, Akt and ERK. Findings by Han et al. on a 
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hepatocarcinoma cell line, HepG2, supports this theory. Celastrol treatment did induces Akt 

phosphorylation at 6 hours, but a 24-hour treatment induced a significant depletion of total Akt 

protein and a consequent reduction in p-Akt [258]. In untreated cells, more than 30% of Akt is 

found in a complex with HSP90-Cdc37 [329]. Following HSP90 inhibitor drug treatment for 24 

hours, Akt half-life is seen declining from 36 to 12 hours and protein expression dropping by 80%. 

The decline is seen as early as after 6 hours of treatment and is time and concentration 

dependent. Similarly, prolonged Celastrol treatment is found to also inhibit ERK1/2 in tumoral 

cells [329]. Two weeks of Celastrol administration inhibited ERK1/2 phosphorylation and tumor 

growth in human colorectal cancer cells [330]. Three weeks of Celastrol treatment in a mice model 

of hepatocellular carcinoma was shown to have antiproliferative effect by repressing both ERK 

and Akt phosphorylation [331]. In addition to the effects of the treatment duration and 

concentration, the intracellular mechanisms found in neoplastic cells are drastically different 

from normal cells. It is possible that the cytoprotective effect on healthy endothelial cells may not 

be reproduceable on neoplastic cells with very different cellular response. 

In this study, endothelial cells exhibited activation of pro-survival kinases after a short treatment 

of Celastrol. This short period of conditioning is sufficient to induce survival benefits while 

avoiding kinases depletion by continuous HSP90 inhibition or chronic kinase activation. 

Ultimately, that narrow window of opportunity during graft preparation, earlier identified as a 

potential limitation in the pre-treatment efficacy, becomes the perfect setting for a one-time 

burst treatment and Celastrol becomes the ideal candidate. 

A single 1-hour exposure to Celastrol was sufficient to produce survival benefits detected even 

after 24 hours of oxidative stress and strong enough to elicit near-complete reendothelialization 

within a day of the treatment. The beneficial effects are persisting well after the end of treatment 

hint at the probable involvement of downstream effectors from a transcriptional level.  

Through HSP90 inhibition, Celastrol also induces the HSR [332]. HSF-1, or heat shock factor 1, is a 

transcription factor that is complexed with HSP90 and inhibited by this later in normal conditions. 

When stress ensues (i.e., hypoxia, oxidative stress, heat), unfolded proteins compete with HSP90 

complex and provoke the release of HSF-1 which translocates to the nucleus and binds to the heat 
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shock response elements (HSRE). These elements lead to the transcription of heat shock proteins 

(HSP). They are a family of chaperones highly expressed in response to stress. Their role in limiting 

cell damage facilitates cell recovery and survival [333]. HSP70 is one of the most widely studied 

HSP. Its chaperone activity includes folding proteins, dissembling protein complexes, preventing 

aggregation of misfolded proteins, refolding misfolded proteins to clearing aberrant proteins and 

proteins aggregates. It plays a critical role in protecting cells from pathological conditions induced 

by misfolded or aberrant proteins [334]. Figure 22 shows kinetic of activation of HSP70 in HUVEC 

following a 1-hour treatment with Celastrol. An increased in HSP70 expression is seen at 60 

minutes and rises steadily until it peaks at 24 hours. 60 minutes marks the end of the Celastrol 

treatment and initiation of the oxidative stress in our experiments. At that point, the cells have 

already initiated HSP70 expression and thus protective mechanism was already in place when 

external stress was introduced. A survival benefit was, in fact, already seen after a 1-hour 

exposure to H2O2. At 24 hours, HSP70 expression is highest. This is the time point when survival 

benefits were documented after a 24-hour oxidative stress. HSP70 expression declined gradually 

between 24 and 48 hours, although it remains highly expressed even after 48 hours (4.4 folds of 

that at t=0). In summary, Celastrol can trigger the Heat Shock Response before the actual stress 

and that precedent response is associated with improved survival. 

In contrast, the increase in the HO-1 expression was detected much later, at the 4-hour mark 

(Figure 22). Therefore, it is unlikely that HO-1 participated in the protective effects seen after 1-

hour oxidative stress (Figure 14). However, HO-1 may have contributed to the adaptive response 

observed at 24-hour oxidative stress (Figure 17). HO-1, as previously mentioned, is an enzyme 

catalyzing the degradation of heme from which 3 by-products resulted. The removal of toxic heme 

and the antioxidant effects from CO, bilirubin and ferritin all contribute to relieving the oxidative 

burden on endothelial cells [284, 285]. In fact, reduced expression of HO-1 was observed in 

patients with CAD [335]. There was also a correlation between genotypes associated with lower 

capacity of HO-1 induction and severity of CAD [290]. Physiologic cyclic strain stimulates HO-1 

expression and activation on human aortic endothelial cells and HUVEC. Similar to our findings, 

the increase in HO-1 expression was detected 4 hours intro the stimulated cyclic strain and is 
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highest at 24 hours. The HO-1 induction through the mobilization of NrF-2 resulted in improved 

viability in those EC [336]. 

Celastrol-induced overexpression of both HSP70 and HO-1confers the lasting survival advantage 

seen after a prolonged oxidative stress. The expression of both protective proteins takes 24 hours 

to reach its peak, which correlates with the time of our viability assessment. The proposed 

mechanism behind Celastrol effect and its interaction with HSP70 and HO-1 is well illustrated in 

Figure 9. 

Limitations of the study 

One limitation on the viability studies is the partial cellular detachment of dead HUVEC. This 

limitation might have led to an underestimated mortality on the grafts and a blunted effect of 

Celastrol during analysis. However, analysis of Hoescht staining led to conclusions in sync with 

the LIVE/DEAD assays. This only means that Celastrol can induce an even more impressive survival 

benefit likely humbled by our results. Because the LIVE/DEAD assay was limited by the number of 

cells in the wells, and some might have been lost through washes, we might have considered 

using flow cytometry as an additional mean to confirm our findings. However, our results were 

consistent and convincing enough for to drive present conclusions. 

One major limitation the study is the in vitro nature of the experiments. In vitro experiments allow 

to isolate specific conditions, but certainly cannot mimic the complex environment found in vivo. 

Complementary data on ex vivo or in vivo are necessary to assess the net effect of Celastrol within 

a living environment. This is our next step towards the translational application of the current 

findings. 

Finally, signaling pathways were assessed with our highest dose, Cel 10-6 M, which was believed 

to be able to best highlight the intracellular pathways. The optimal concentration in the viability 

assessment and the scratch tests differs, however. The viability findings point towards a 

concentration between Cel 10-8 M and 10-10M as the optimal condition for survival in oxidative 

stress and Cel 10-6 M for reendothelialization. In choosing dosing intervals, we decided to test 

concentrations at 102 increments to cover more testing grounds. Following those results, 

additional testing for Cel 10-7 M should probably be conducted. In choosing between marginal 



112 

proliferative effect (for any concentrations lower than Cel 10-6 M) versus no significant survival 

benefits (for Cel 10-6 M), the debate is still open. 
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Chapter 5 – Conclusion 

Evidences in the literature show that endothelial integrity is critical for the evolution of vein graft 

failure. Less damage and loss as well as faster recovery correlate with better outcomes in terms 

of graft patency and remodeling. Most of the damages occur in the very first few hours to days 

and the early response to the injury dictates how the graft will evolve. Targeting that key moment 

to reverse part of the harmful effects can be an efficient strategy to prevent graft failure. 

Celastrol is a compound capable of triggering adaptive pathways in endothelial cells. This study 

shows that Celastrol activates the RISK pathways early. It also shows that, within 1 hour, Celastrol 

also triggers the HSR as well as an anti-oxidative response through induction of their respective 

effector proteins (HSP70 and HO-1). This forerunner activation prepares the cells to the following 

stress event, which reflects an improved survival potential. Celastrol treatment also promotes 

faster and more complete reendothelialization. Together, these results strongly support Celastrol 

as a successful pre-conditioning agent for endothelial cells. In the context of vascular graft 

preservation, where the window of opportunity is narrow, it is recognized as a potential candidate 

drug for endothelium preservation and protection.  

Before clinical application however, one important point to remember is Celastrol’s therapeutic 

window. Although the proposed treatment is beneficial to endothelial cells, the specific dosage 

and treatment period are critical as higher concentrations (≥ 1uM) and longer periods (≥1 hour) 

do not guarantee similar responses and may even have opposing effects. Also, this study showed 

that optimal dosage differs depending on the wanted effect. The specific treatment condition 

required is still a limitation to the clinical use of Celastrol. Fortunately, a lot of work has been 

devoted to finding new compounds or creating analogous molecules with the similar or improved 

therapeutic profile. Although many were proposed as a potential replacement, none has gone 

through extensive investigations as Celastrol.  





 





 

References 

1. Collaborators, G.B.D.C.o.D., Global, regional, and national age-sex-specific mortality for 
282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for 
the Global Burden of Disease Study 2017. Lancet, 2018. 392(10159): p. 1736-1788. 

2. Hueb, W., et al., The medicine, angioplasty, or surgery study (MASS-II): a randomized, 
controlled clinical trial of three therapeutic strategies for multivessel coronary artery 
disease: one-year results. J Am Coll Cardiol, 2004. 43(10): p. 1743-51. 

3. Lamy, A., et al., Effects of off-pump and on-pump coronary-artery bypass grafting at 1 
year. N Engl J Med, 2013. 368(13): p. 1179-88. 

4. So, S.I., Coronary artery bypass surgery versus percutaneous coronary intervention with 
stent implantation in patients with multivessel coronary artery disease (the Stent or 
Surgery trial): a randomised controlled trial. Lancet, 2002. 360(9338): p. 965-70. 

5. Serruys, P.W., et al., Five-year outcomes after coronary stenting versus bypass surgery for 
the treatment of multivessel disease: the final analysis of the Arterial Revascularization 
Therapies Study (ARTS) randomized trial. J Am Coll Cardiol, 2005. 46(4): p. 575-81. 

6. Varnauskas, E., Twelve-year follow-up of survival in the randomized European Coronary 
Surgery Study. N Engl J Med, 1988. 319(6): p. 332-7. 

7. Group, B.D.S., et al., A randomized trial of therapies for type 2 diabetes and coronary 
artery disease. N Engl J Med, 2009. 360(24): p. 2503-15. 

8. Kapur, A., et al., Randomized comparison of percutaneous coronary intervention with 
coronary artery bypass grafting in diabetic patients. 1-year results of the CARDia 
(Coronary Artery Revascularization in Diabetes) trial. J Am Coll Cardiol, 2010. 55(5): p. 432-
40. 

9. Farkouh, M.E., et al., Long-Term Survival Following Multivessel Revascularization in 
Patients With Diabetes: The FREEDOM Follow-On Study. J Am Coll Cardiol, 2019. 73(6): p. 
629-638. 

10. Velazquez, E.J., et al., Coronary-artery bypass surgery in patients with left ventricular 
dysfunction. N Engl J Med, 2011. 364(17): p. 1607-16. 

11. Thuijs, D., et al., Percutaneous coronary intervention versus coronary artery bypass 
grafting in patients with three-vessel or left main coronary artery disease: 10-year follow-
up of the multicentre randomised controlled SYNTAX trial. Lancet, 2019. 394(10206): p. 
1325-1334. 

12. Hillis, L.D., et al., 2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery. A 
report of the American College of Cardiology Foundation/American Heart Association Task 
Force on Practice Guidelines. Developed in collaboration with the American Association 
for Thoracic Surgery, Society of Cardiovascular Anesthesiologists, and Society of Thoracic 
Surgeons. J Am Coll Cardiol, 2011. 58(24): p. e123-210. 

13. Teo, K.K., et al., Canadian Cardiovascular Society/Canadian Association of Interventional 
Cardiology/Canadian Society of Cardiac Surgery position statement on revascularization-
-multivessel coronary artery disease. Can J Cardiol, 2014. 30(12): p. 1482-91. 



118 

14. Neumann, F.J., et al., [2018 ESC/EACTS Guidelines on myocardial revascularization. The 
Task Force on myocardial revascularization of the European Society of Cardiology (ESC) 
and European Association for Cardio-Thoracic Surgery (EACTS)]. G Ital Cardiol (Rome), 
2019. 20(7-8 Suppl 1): p. 1S-61S. 

15. Goldman, S., et al., Long-term patency of saphenous vein and left internal mammary 
artery grafts after coronary artery bypass surgery: results from a Department of Veterans 
Affairs Cooperative Study. J Am Coll Cardiol, 2004. 44(11): p. 2149-56. 

16. Deb, S., et al., Radial artery and saphenous vein patency more than 5 years after coronary 
artery bypass surgery: results from RAPS (Radial Artery Patency Study). J Am Coll Cardiol, 
2012. 60(1): p. 28-35. 

17. Suma, H., et al., Twenty years experience with the gastroepiploic artery graft for CABG. 
Circulation, 2007. 116(11 Suppl): p. I188-91. 

18. Stone, G.W., et al., Everolimus-Eluting Stents or Bypass Surgery for Left Main Coronary 
Artery Disease. N Engl J Med, 2016. 375(23): p. 2223-2235. 

19. Chamiot-Clerc, P., et al., Comparative reactivity and mechanical properties of human 
isolated internal mammary and radial arteries. Cardiovasc Res, 1998. 37(3): p. 811-9. 

20. Acar, C., et al., Comparative anatomy and histology of the radial artery and the internal 
thoracic artery. Implication for coronary artery bypass. Surg Radiol Anat, 1991. 13(4): p. 
283-8. 

21. He, G.W. and C.Q. Yang, Comparative study on calcium channel antagonists in the human 
radial artery: clinical implications. J Thorac Cardiovasc Surg, 2000. 119(1): p. 94-100. 

22. He, G.W., Arterial grafts for coronary artery bypass grafting: biological characteristics, 
functional classification, and clinical choice. Ann Thorac Surg, 1999. 67(1): p. 277-84. 

23. Otsuka, F., et al., Why is the mammary artery so special and what protects it from 
atherosclerosis? Ann Cardiothorac Surg, 2013. 2(4): p. 519-26. 

24. Taggart, D.P., et al., Randomized Trial of Bilateral versus Single Internal-Thoracic-Artery 
Grafts. N Engl J Med, 2016. 375(26): p. 2540-9. 

25. Taggart, D.P., et al., Bilateral versus Single Internal-Thoracic-Artery Grafts at 10 Years. N 
Engl J Med, 2019. 380(5): p. 437-446. 

26. Gaudino, M., et al., Radial Artery Versus Right Internal Thoracic Artery Versus Saphenous 
Vein as the Second Conduit for Coronary Artery Bypass Surgery: A Network Meta-Analysis 
of Clinical Outcomes. J Am Heart Assoc, 2019. 8(2): p. e010839. 

27. Sajja, L.R., et al., Role of radial artery graft in coronary artery bypass grafting. Ann Thorac 
Surg, 2005. 79(6): p. 2180-8. 

28. Suma, H., Gastroepiploic artery graft in coronary artery bypass grafting. Ann Cardiothorac 
Surg, 2013. 2(4): p. 493-8. 

29. Desai, M., A.M. Seifalian, and G. Hamilton, Role of prosthetic conduits in coronary artery 
bypass grafting. Eur J Cardiothorac Surg, 2011. 40(2): p. 394-8. 

30. Bakaeen, F.G., et al., The father of coronary artery bypass grafting: Rene Favaloro and the 
50th anniversary of coronary artery bypass grafting. J Thorac Cardiovasc Surg, 2018. 
155(6): p. 2324-2328. 

31. Cuminetti, G., et al., Contemporary use of arterial and venous conduits in coronary artery 
bypass grafting: anatomical, functional and clinical aspects. Neth Heart J, 2017. 25(1): p. 
4-13. 



119 

32. Gaudino, M., et al., Mechanisms, Consequences, and Prevention of Coronary Graft Failure. 
Circulation, 2017. 136(18): p. 1749-1764. 

33. Raja, S.G., et al., Saphenous vein grafts: to use or not to use? Heart Lung Circ, 2004. 13(4): 
p. 403-9. 

34. Canham, P.B., H.M. Finlay, and D.R. Boughner, Contrasting structure of the saphenous 
vein and internal mammary artery used as coronary bypass vessels. Cardiovasc Res, 1997. 
34(3): p. 557-67. 

35. Davies, M.G. and P.O. Hagen, Pathophysiology of vein graft failure: a review. Eur J Vasc 
Endovasc Surg, 1995. 9(1): p. 7-18. 

36. Sisto, T., et al., Biochemical composition of human internal mammary artery and 
saphenous vein. J Vasc Surg, 1990. 11(3): p. 418-22. 

37. Shrestha, B., et al., Differential arterial and venous endothelial redox responses to 
oxidative stress. Microcirculation, 2018. 25(7): p. e12486. 

38. Pober, J.S. and W.C. Sessa, Evolving functions of endothelial cells in inflammation. Nat Rev 
Immunol, 2007. 7(10): p. 803-15. 

39. Michiels, C., Endothelial cell functions. J Cell Physiol, 2003. 196(3): p. 430-43. 
40. Tousoulis, D., et al., The role of nitric oxide on endothelial function. Curr Vasc Pharmacol, 

2012. 10(1): p. 4-18. 
41. Forstermann, U. and W.C. Sessa, Nitric oxide synthases: regulation and function. Eur Heart 

J, 2012. 33(7): p. 829-37, 837a-837d. 
42. Fleming, I. and R. Busse, Signal transduction of eNOS activation. Cardiovasc Res, 1999. 

43(3): p. 532-41. 
43. Lowenstein, C.J. and E. Padalko, iNOS (NOS2) at a glance. J Cell Sci, 2004. 117(Pt 14): p. 

2865-7. 
44. Godo, S. and H. Shimokawa, Endothelial Functions. Arterioscler Thromb Vasc Biol, 2017. 

37(9): p. e108-e114. 
45. Dorris, S.L. and R.S. Peebles, Jr., PGI2 as a regulator of inflammatory diseases. Mediators 

Inflamm, 2012. 2012: p. 926968. 
46. Davenport, A.P., et al., Endothelin. Pharmacol Rev, 2016. 68(2): p. 357-418. 
47. Gutierrez, E., et al., Endothelial dysfunction over the course of coronary artery disease. Eur 

Heart J, 2013. 34(41): p. 3175-81. 
48. Sessa, W.C., eNOS at a glance. J Cell Sci, 2004. 117(Pt 12): p. 2427-9. 
49. Burke, J.E. and E.A. Dennis, Phospholipase A2 structure/function, mechanism, and 

signaling. J Lipid Res, 2009. 50 Suppl: p. S237-42. 
50. Dalal, P.J., W.A. Muller, and D.P. Sullivan, Endothelial Cell Calcium Signaling during Barrier 

Function and Inflammation. Am J Pathol, 2020. 190(3): p. 535-542. 
51. Utgaard, J.O., et al., Rapid secretion of prestored interleukin 8 from Weibel-Palade bodies 

of microvascular endothelial cells. J Exp Med, 1998. 188(9): p. 1751-6. 
52. Deshmane, S.L., et al., Monocyte chemoattractant protein-1 (MCP-1): an overview. J 

Interferon Cytokine Res, 2009. 29(6): p. 313-26. 
53. Montrucchio, G., G. Alloatti, and G. Camussi, Role of platelet-activating factor in 

cardiovascular pathophysiology. Physiol Rev, 2000. 80(4): p. 1669-99. 
54. Ley, K., et al., Getting to the site of inflammation: the leukocyte adhesion cascade 

updated. Nat Rev Immunol, 2007. 7(9): p. 678-89. 



120 

55. Granger, D.N. and P. Kubes, The microcirculation and inflammation: modulation of 
leukocyte-endothelial cell adhesion. J Leukoc Biol, 1994. 55(5): p. 662-75. 

56. Woodfin, A., M.B. Voisin, and S. Nourshargh, PECAM-1: a multi-functional molecule in 
inflammation and vascular biology. Arterioscler Thromb Vasc Biol, 2007. 27(12): p. 2514-
23. 

57. Wood, J.P., et al., Biology of tissue factor pathway inhibitor. Blood, 2014. 123(19): p. 2934-
43. 

58. Wu, K.K. and P. Thiagarajan, Role of endothelium in thrombosis and hemostasis. Annu Rev 
Med, 1996. 47: p. 315-31. 

59. Palta, S., R. Saroa, and A. Palta, Overview of the coagulation system. Indian J Anaesth, 
2014. 58(5): p. 515-23. 

60. Peyvandi, F., I. Garagiola, and L. Baronciani, Role of von Willebrand factor in the 
haemostasis. Blood Transfus, 2011. 9 Suppl 2: p. s3-8. 

61. Badimon, L., T. Padro, and G. Vilahur, Atherosclerosis, platelets and thrombosis in acute 
ischaemic heart disease. Eur Heart J Acute Cardiovasc Care, 2012. 1(1): p. 60-74. 

62. Simons, M., Angiogenesis: where do we stand now? Circulation, 2005. 111(12): p. 1556-
66. 

63. Nishida, N., et al., Angiogenesis in cancer. Vasc Health Risk Manag, 2006. 2(3): p. 213-9. 
64. Weiss, D.R., et al., Extensive deendothelialization and thrombogenicity in routinely 

prepared vein grafts for coronary bypass operations: facts and remedy. Int J Clin Exp Med, 
2009. 2(2): p. 95-113. 

65. Eagle, S., et al., Surgical skin markers impair human saphenous vein graft smooth muscle 
and endothelial function. Am Surg, 2011. 77(7): p. 922-8. 

66. Woodward, L.C., C. Antoniades, and D.P. Taggart, Intraoperative Vein Graft Preservation: 
What Is the Solution? Ann Thorac Surg, 2016. 102(5): p. 1736-1746. 

67. Thatte, H.S. and S.F. Khuri, The coronary artery bypass conduit: I. Intraoperative 
endothelial injury and its implication on graft patency. Ann Thorac Surg, 2001. 72(6): p. 
S2245-52; discussion S2267-70. 

68. Sur, S., J.T. Sugimoto, and D.K. Agrawal, Coronary artery bypass graft: why is the 
saphenous vein prone to intimal hyperplasia? Can J Physiol Pharmacol, 2014. 92(7): p. 
531-45. 

69. Hinokiyama, K., et al., Vein graft harvesting induces inflammation and impairs vessel 
reactivity. Ann Thorac Surg, 2006. 82(4): p. 1458-64. 

70. Parang, P. and R. Arora, Coronary vein graft disease: pathogenesis and prevention. Can J 
Cardiol, 2009. 25(2): p. e57-62. 

71. Perek, B., et al., Predictive factors of late venous aortocoronary graft failure: 
ultrastructural studies. PLoS One, 2013. 8(8): p. e70628. 

72. Tinica, G., et al., Long-term graft patency after coronary artery bypass grafting: Effects of 
surgical technique. Exp Ther Med, 2019. 17(1): p. 359-367. 

73. Fitzgibbon, G.M., et al., Coronary bypass graft fate and patient outcome: angiographic 
follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 
years. J Am Coll Cardiol, 1996. 28(3): p. 616-26. 



121 

74. Goldman, S., et al., Starting aspirin therapy after operation. Effects on early graft patency. 
Department of Veterans Affairs Cooperative Study Group. Circulation, 1991. 84(2): p. 520-
6. 

75. Alderman, E.L., et al., Analyses of coronary graft patency after aprotinin use: results from 
the International Multicenter Aprotinin Graft Patency Experience (IMAGE) trial. J Thorac 
Cardiovasc Surg, 1998. 116(5): p. 716-30. 

76. Illiano, S., et al., Regulation of nitric oxide-like activity by prostanoids in smooth muscle of 
the canine saphenous vein. Br J Pharmacol, 1996. 117(2): p. 360-4. 

77. Schlitt, A., et al., Neutrophil adherence to activated saphenous vein and mammary 
endothelium after graft preparation. Ann Thorac Surg, 2006. 81(4): p. 1262-8. 

78. Boyle, E.M., Jr., et al., Endothelial cell injury in cardiovascular surgery: ischemia-
reperfusion. Ann Thorac Surg, 1996. 62(6): p. 1868-75. 

79. de Vries, M.R., et al., Vein graft failure: from pathophysiology to clinical outcomes. Nat 
Rev Cardiol, 2016. 13(8): p. 451-70. 

80. Owens, C.D., et al., Vein graft failure. J Vasc Surg, 2015. 61(1): p. 203-16. 
81. Osgood, M.J., et al., Surgical vein graft preparation promotes cellular dysfunction, 

oxidative stress, and intimal hyperplasia in human saphenous vein. J Vasc Surg, 2014. 
60(1): p. 202-11. 

82. Wang, X. and R.A. Khalil, Matrix Metalloproteinases, Vascular Remodeling, and Vascular 
Disease. Adv Pharmacol, 2018. 81: p. 241-330. 

83. Bikdeli, B., et al., Histopathologic insight into saphenous vein bypass graft disease. 
Cardiology, 2012. 123(4): p. 208-15. 

84. Gao, J., Y. Liu, and Y.M. Li, Review of risk factors, treatment, and prevention of saphenous 
vein graft disease after coronary artery bypass grafting. J Int Med Res, 2018. 46(12): p. 
4907-4919. 

85. Lopes, R.D., et al., Relationship between vein graft failure and subsequent clinical 
outcomes after coronary artery bypass surgery. Circulation, 2012. 125(6): p. 749-56. 

86. Halabi, A.R., et al., Relation of early saphenous vein graft failure to outcomes following 
coronary artery bypass surgery. Am J Cardiol, 2005. 96(9): p. 1254-9. 

87. Aldea, G.S., et al., The Society of Thoracic Surgeons Clinical Practice Guidelines on Arterial 
Conduits for Coronary Artery Bypass Grafting. Ann Thorac Surg, 2016. 101(2): p. 801-9. 

88. Desai, N.D., et al., Impact of patient and target-vessel characteristics on arterial and 
venous bypass graft patency: insight from a randomized trial. Circulation, 2007. 115(6): p. 
684-91. 

89. Sarzaeem, M.R., et al., Scoring system for predicting saphenous vein graft patency in 
coronary artery bypass grafting. Tex Heart Inst J, 2010. 37(5): p. 525-30. 

90. Khaleel, M.S., et al., High-pressure distention of the saphenous vein during preparation 
results in increased markers of inflammation: a potential mechanism for graft failure. Ann 
Thorac Surg, 2012. 93(2): p. 552-8. 

91. Hausmann, H., H.J. Merker, and R. Hetzer, Pressure controlled preparation of the 
saphenous vein with papaverine for aortocoronary venous bypass. J Card Surg, 1996. 
11(2): p. 155-62. 

92. Li, F.D., et al., Pressure control during preparation of saphenous veins. JAMA Surg, 2014. 
149(7): p. 655-62. 



122 

93. Hayward, T.Z., 3rd, et al., Endoscopic versus open saphenous vein harvest: the effect on 
postoperative outcomes. Ann Thorac Surg, 1999. 68(6): p. 2107-10; discussion 2110-1. 

94. Kan, C.D., C.Y. Luo, and Y.J. Yang, Endoscopic saphenous vein harvest decreases leg wound 
complication in coronary artery bypass grafting patients. J Card Surg, 1999. 14(3): p. 157-
62; discussion 163. 

95. Carpino, P.A., et al., Clinical benefits of endoscopic vein harvesting in patients with risk 
factors for saphenectomy wound infections undergoing coronary artery bypass grafting. J 
Thorac Cardiovasc Surg, 2000. 119(1): p. 69-75. 

96. Kodia, K., et al., Graft patency after open versus endoscopic saphenous vein harvest in 
coronary artery bypass grafting surgery: a systematic review and meta-analysis. Ann 
Cardiothorac Surg, 2018. 7(5): p. 586-597. 

97. Rousou, L.J., et al., Saphenous vein conduits harvested by endoscopic technique exhibit 
structural and functional damage. Ann Thorac Surg, 2009. 87(1): p. 62-70. 

98. Kiani, S., et al., Endoscopic venous harvesting by inexperienced operators compromises 
venous graft remodeling. Ann Thorac Surg, 2012. 93(1): p. 11-7; discussion 17-8. 

99. Hashmi, S.F., et al., Histological and immunohistochemical evaluation of human 
saphenous vein harvested by endoscopic and open conventional methods. Interact 
Cardiovasc Thorac Surg, 2015. 20(2): p. 178-85. 

100. Krishnamoorthy, B., et al., Study Comparing Vein Integrity and Clinical Outcomes in Open 
Vein Harvesting and 2 Types of Endoscopic Vein Harvesting for Coronary Artery Bypass 
Grafting: The VICO Randomized Clinical Trial (Vein Integrity and Clinical Outcomes). 
Circulation, 2017. 136(18): p. 1688-1702. 

101. Verma, S., et al., Pedicled no-touch saphenous vein graft harvest limits vascular smooth 
muscle cell activation: the PATENT saphenous vein graft study. Eur J Cardiothorac Surg, 
2014. 45(4): p. 717-25. 

102. Souza, D.S., et al., Harvesting the saphenous vein with surrounding tissue for CABG 
provides long-term graft patency comparable to the left internal thoracic artery: results 
of a randomized longitudinal trial. J Thorac Cardiovasc Surg, 2006. 132(2): p. 373-8. 

103. Kim, Y.H., et al., No-Touch Saphenous Vein Harvesting May Improve Further the Patency 
of Saphenous Vein Composite Grafts: Early Outcomes and 1-Year Angiographic Results. 
Ann Thorac Surg, 2017. 103(5): p. 1489-1497. 

104. Jeremy, J.Y., et al., On the biology of saphenous vein grafts fitted with external synthetic 
sheaths and stents. Biomaterials, 2007. 28(6): p. 895-908. 

105. Amin, S., et al., Influence of external stenting on venous graft flow parameters in coronary 
artery bypass grafting: a randomized study. Interact Cardiovasc Thorac Surg, 2018. 26(6): 
p. 926-931. 

106. Taggart, D.P., et al., Long-term performance of an external stent for saphenous vein grafts: 
the VEST IV trial. J Cardiothorac Surg, 2018. 13(1): p. 117. 

107. Taggart, D.P., et al., A Randomized Trial of External Stenting for Saphenous Vein Grafts in 
Coronary Artery Bypass Grafting. Ann Thorac Surg, 2015. 99(6): p. 2039-45. 

108. Meirson, T., et al., Flow patterns in externally stented saphenous vein grafts and 
development of intimal hyperplasia. J Thorac Cardiovasc Surg, 2015. 150(4): p. 871-8. 



123 

109. Williams, J.B., et al., The Preservation and Handling of Vein Grafts in Current Surgical 
Practice: Findings of a Survey Among Cardiovascular Surgeons of Top-Ranked US 
Hospitals. JAMA Surg, 2015. 150(7): p. 681-3. 

110. Tonog P, L.A., Normal Saline, in StatPearls, S. Publishing, Editor. 2020, StatPearls 
Publishing: Treasure Island (FL). 

111. Wilbring, M., et al., Even short-time storage in physiological saline solution impairs 
endothelial vascular function of saphenous vein grafts. Eur J Cardiothorac Surg, 2011. 
40(4): p. 811-5. 

112. Wise, E.S., et al., Preservation solution impacts physiologic function and cellular viability 
of human saphenous vein graft. Surgery, 2015. 158(2): p. 537-46. 

113. Harskamp, R.E., et al., Vein graft preservation solutions, patency, and outcomes after 
coronary artery bypass graft surgery: follow-up from the PREVENT IV randomized clinical 
trial. JAMA Surg, 2014. 149(8): p. 798-805. 

114. Chen, S.W., et al., Microenvironment of saphenous vein graft preservation prior to 
coronary artery bypass grafting. Interact Cardiovasc Thorac Surg, 2019. 28(1): p. 71-78. 

115. Ke, Q. and M. Costa, Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol, 2006. 70(5): p. 
1469-80. 

116. Ishikawa, M., T. Sasajima, and Y. Kubo, Re-endothelialisation in autogenous vein grafts. 
Eur J Vasc Endovasc Surg, 1996. 11(1): p. 105-11. 

117. Wilbring, M., et al., Heparinized blood better preserves cellular energy charge and vascular 
functions of intraoperatively stored saphenous vein grafts in comparison to isotonic 
sodium-chloride-solution. Clin Hemorheol Microcirc, 2013. 55(4): p. 445-55. 

118. Chester, A.H., et al., Effect of peri-operative storage solution on the vascular reactivity of 
the human saphenous vein. Eur J Cardiothorac Surg, 1993. 7(8): p. 399-404. 

119. Winkler, B., et al., Graft preservation solutions in cardiovascular surgery. Interact 
Cardiovasc Thorac Surg, 2016. 23(2): p. 300-9. 

120. Tsakok, M., S. Montgomery-Taylor, and T. Tsakok, Storage of saphenous vein grafts prior 
to coronary artery bypass grafting: is autologous whole blood more effective than saline 
in preserving graft function? Interact Cardiovasc Thorac Surg, 2012. 15(4): p. 720-5. 

121. Singh, S. and D. Davis, Ringer’s Lactate, in StatPearls. 
122. Roubos, N., et al., Improved preservation of saphenous vein grafts by the use of glyceryl 

trinitrate-verapamil solution during harvesting. Circulation, 1995. 92(9 Suppl): p. II31-6. 
123. Rizoli, S., PlasmaLyte. J Trauma, 2011. 70(5 Suppl): p. S17-8. 
124. Sanchez, A.M., et al., Comparison of saphenous vein graft relaxation between Plasma-Lyte 

solution and normal saline solution. J Thorac Cardiovasc Surg, 1994. 107(6): p. 1445-53. 
125. Cheung-Flynn, J., et al., Limiting Injury During Saphenous Vein Graft Preparation For 

Coronary Arterial Bypass Prevents Metabolic Decompensation. Sci Rep, 2017. 7(1): p. 
14179. 

126. Jynge, P., et al., The St. Thomas' hospital cardioplegic solution: a characterization in two 
species. Scand J Thorac Cardiovasc Surg Suppl, 1981. 30: p. 1-28. 

127. Southard, J.H. and F.O. Belzer, Organ preservation. Annu Rev Med, 1995. 46: p. 235-47. 
128. Muhlbacher, F., F. Langer, and C. Mittermayer, Preservation solutions for transplantation. 

Transplant Proc, 1999. 31(5): p. 2069-70. 



124 

129. Southard, J.J.B.F.O., The University of Wisconsin Organ Preservation Solution: 
Components, Comparisons, and Modifications. Transplantation Reviews, 1993. 7(4). 

130. Bas, M., et al., Preservation of Endothelial and Smooth Muscle Function of Human 
Saphenous Vein Transplants. Exp Clin Transplant, 2016. 14(1): p. 86-92. 

131. Remadi, J.P., et al., Myocardial preservation using Celsior solution in cardiac 
transplantation: early results and 5-year follow-up of a multicenter prospective study of 
70 cardiac transplantations. Ann Thorac Surg, 2002. 73(5): p. 1495-9. 

132. Papas, K.K. and H. De Leon, Pancreas and islet preservation, in Transplantation, 
Bioengineering, and Regeneration of the Endocrine Pancreas, G. Orlando, Editor. 2020, 
Elsevier Inc: United States. p. 503-527. 

133. Pless-Petig, G., S. Knoop, and U. Rauen, Serum- and albumin-free cryopreservation of 
endothelial monolayers with a new solution. Organogenesis, 2018. 14(2): p. 107-121. 

134. Edelman, J.J., et al., Custodiol for myocardial protection and preservation: a systematic 
review. Ann Cardiothorac Surg, 2013. 2(6): p. 717-28. 

135. Aavik, A., et al., Cold-Stored Venous Allografts In Different Preserving Solutions: A Study 
On Changes In Vein Wall Morphology. Scand J Surg, 2019. 108(1): p. 67-75. 

136. Somahlution, DuraGraft. 2018, Somahlution: Fl, USA. p. www.somahlution.com. 
137. Thatte, H.S., et al., Multi-photon microscopic evaluation of saphenous vein endothelium 

and its preservation with a new solution, GALA. Ann Thorac Surg, 2003. 75(4): p. 1145-52; 
discussion 1152. 

138. Caliskan, E., et al., A novel endothelial damage inhibitor for the treatment of vascular 
conduits in coronary artery bypass grafting: protocol and rationale for the European, 
multicentre, prospective, observational DuraGraft registry. J Cardiothorac Surg, 2019. 
14(1): p. 174. 

139. Ben Ali, W., et al., DuraGraft vascular conduit preservation solution in patients undergoing 
coronary artery bypass grafting: rationale and design of a within-patient randomised 
multicentre trial. Open Heart, 2018. 5(1): p. e000780. 

140. Wiedemann, D., et al., Perivascular administration of drugs and genes as a means of 
reducing vein graft failure. Curr Opin Pharmacol, 2012. 12(2): p. 203-16. 

141. Southerland, K.W., et al., Gene therapy for the prevention of vein graft disease. Transl Res, 
2013. 161(4): p. 321-38. 

142. Alexander, J.H., et al., Efficacy and safety of edifoligide, an E2F transcription factor decoy, 
for prevention of vein graft failure following coronary artery bypass graft surgery: 
PREVENT IV: a randomized controlled trial. JAMA, 2005. 294(19): p. 2446-54. 

143. Wan, S., et al., Vein graft failure: current clinical practice and potential for gene 
therapeutics. Gene Ther, 2012. 19(6): p. 630-6. 

144. Conte, M.S., et al., Genetic interventions for vein bypass graft disease: a review. J Vasc 
Surg, 2002. 36(5): p. 1040-52. 

145. Baker, A.H., A.P. Yim, and S. Wan, Opportunities for gene therapy in preventing vein graft 
failure after coronary artery bypass surgery. Diabetes Obes Metab, 2006. 8(2): p. 119-24. 

146. Dimova, D.K. and N.J. Dyson, The E2F transcriptional network: old acquaintances with new 
faces. Oncogene, 2005. 24(17): p. 2810-26. 



125 

147. Lopes, R.D., et al., Edifoligide and long-term outcomes after coronary artery bypass 
grafting: PRoject of Ex-vivo Vein graft ENgineering via Transfection IV (PREVENT IV) 5-year 
results. Am Heart J, 2012. 164(3): p. 379-386 e1. 

148. Conte, M.S., et al., Results of PREVENT III: a multicenter, randomized trial of edifoligide 
for the prevention of vein graft failure in lower extremity bypass surgery. J Vasc Surg, 2006. 
43(4): p. 742-751; discussion 751. 

149. Mann, M.J., et al., Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy: 
the PREVENT single-centre, randomised, controlled trial. Lancet, 1999. 354(9189): p. 
1493-8. 

150. Singh, R.B., et al., Pathogenesis of atherosclerosis: A multifactorial process. Exp Clin 
Cardiol, 2002. 7(1): p. 40-53. 

151. Chu, E.C. and A.S. Tarnawski, PTEN regulatory functions in tumor suppression and cell 
biology. Med Sci Monit, 2004. 10(10): p. RA235-41. 

152. Huang, J. and C.D. Kontos, Inhibition of vascular smooth muscle cell proliferation, 
migration, and survival by the tumor suppressor protein PTEN. Arterioscler Thromb Vasc 
Biol, 2002. 22(5): p. 745-51. 

153. Hata, J.A., et al., Modulation of phosphatidylinositol 3-kinase signaling reduces intimal 
hyperplasia in aortocoronary saphenous vein grafts. J Thorac Cardiovasc Surg, 2005. 
129(6): p. 1405-13. 

154. Wu, S., et al., Adenovirus mediated endothelial nitric oxide synthase gene transfer 
prevents restenosis of vein grafts. ASAIO J, 2004. 50(3): p. 272-7. 

155. Matsumoto, T., et al., Hemagglutinating virus of Japan-liposome-mediated gene transfer 
of endothelial cell nitric oxide synthase inhibits intimal hyperplasia of canine vein grafts 
under conditions of poor runoff. J Vasc Surg, 1998. 27(1): p. 135-44. 

156. Cable, D.G., et al., Recombinant endothelial nitric oxide synthase-transduced human 
saphenous veins: gene therapy to augment nitric oxide production in bypass conduits. 
Circulation, 1997. 96(9 Suppl): p. II-173-8. 

157. Meng, Q.H., et al., Inhibition of neointimal hyperplasia in a rabbit vein graft model 
following non-viral transfection with human iNOS cDNA. Gene Ther, 2013. 20(10): p. 979-
86. 

158. Kibbe, M.R., et al., Adenovirus-mediated gene transfer of human inducible nitric oxide 
synthase in porcine vein grafts inhibits intimal hyperplasia. J Vasc Surg, 2001. 34(1): p. 
156-65. 

159. West, N.E., et al., Nitric oxide synthase (nNOS) gene transfer modifies venous bypass graft 
remodeling: effects on vascular smooth muscle cell differentiation and superoxide 
production. Circulation, 2001. 104(13): p. 1526-32. 

160. Eichstaedt, H.C., et al., Gene transfer of COX-1 improves lumen size and blood flow in 
carotid bypass grafts. J Surg Res, 2010. 161(1): p. 162-7. 

161. Tatewaki, H., et al., Blockade of monocyte chemoattractant protein-1 by adenoviral gene 
transfer inhibits experimental vein graft neointimal formation. J Vasc Surg, 2007. 45(6): p. 
1236-43. 

162. Schepers, A., et al., Anti-MCP-1 gene therapy inhibits vascular smooth muscle cells 
proliferation and attenuates vein graft thickening both in vitro and in vivo. Arterioscler 
Thromb Vasc Biol, 2006. 26(9): p. 2063-9. 



126 

163. Eefting, D., et al., Local lentiviral short hairpin RNA silencing of CCR2 inhibits vein graft 
thickening in hypercholesterolemic apolipoprotein E3-Leiden mice. J Vasc Surg, 2009. 
50(1): p. 152-60. 

164. Miyake, T., et al., Inhibitory effects of NFkappaB decoy oligodeoxynucleotides on 
neointimal hyperplasia in a rabbit vein graft model. J Mol Cell Cardiol, 2006. 41(3): p. 431-
40. 

165. Shintani, T., et al., Intraoperative transfection of vein grafts with the NFkappaB decoy in a 
canine aortocoronary bypass model: a strategy to attenuate intimal hyperplasia. Ann 
Thorac Surg, 2002. 74(4): p. 1132-7; discussion 1137-8. 

166. O'Blenes, S.B., et al., Gene transfer of the serine elastase inhibitor elafin protects against 
vein graft degeneration. Circulation, 2000. 102(19 Suppl 3): p. III289-95. 

167. Walker, T., et al., Effective silencing of adhesion molecules on venous endothelial cells for 
protection of venous bypass grafts. Eur J Cardiothorac Surg, 2011. 40(5): p. 1241-7. 

168. Walker, T., et al., Inhibition of adhesion molecule expression on human venous endothelial 
cells by non-viral siRNA transfection. J Cell Mol Med, 2007. 11(1): p. 139-47. 

169. Carmeliet, P., et al., Inhibitory role of plasminogen activator inhibitor-1 in arterial wound 
healing and neointima formation: a gene targeting and gene transfer study in mice. 
Circulation, 1997. 96(9): p. 3180-91. 

170. Thomas, A.C., M.J. Wyatt, and A.C. Newby, Reduction of early vein graft thrombosis by 
tissue plasminogen activator gene transfer. Thromb Haemost, 2009. 102(1): p. 145-52. 

171. Eefting, D., et al., In vivo suppression of vein graft disease by nonviral, electroporation-
mediated, gene transfer of tissue inhibitor of metalloproteinase-1 linked to the amino 
terminal fragment of urokinase (TIMP-1.ATF), a cell-surface directed matrix 
metalloproteinase inhibitor. J Vasc Surg, 2010. 51(2): p. 429-37. 

172. George, S.J., et al., Adenovirus-mediated gene transfer of the human TIMP-1 gene inhibits 
smooth muscle cell migration and neointimal formation in human saphenous vein. Hum 
Gene Ther, 1998. 9(6): p. 867-77. 

173. Hu, Y., et al., Local gene transfer of tissue inhibitor of metalloproteinase-2 influences vein 
graft remodeling in a mouse model. Arterioscler Thromb Vasc Biol, 2001. 21(8): p. 1275-
80. 

174. George, S.J., et al., Gene transfer of tissue inhibitor of metalloproteinase-2 inhibits 
metalloproteinase activity and neointima formation in human saphenous veins. Gene 
Ther, 1998. 5(11): p. 1552-60. 

175. George, S.J., et al., Inhibition of late vein graft neointima formation in human and porcine 
models by adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-3. 
Circulation, 2000. 101(3): p. 296-304. 

176. Turner, N.A., et al., Selective gene silencing of either MMP-2 or MMP-9 inhibits invasion 
of human saphenous vein smooth muscle cells. Atherosclerosis, 2007. 193(1): p. 36-43. 

177. Schwartz, L.B., et al., Adenoviral-mediated gene transfer of a constitutively active form of 
the retinoblastoma gene product attenuates neointimal thickening in experimental vein 
grafts. J Vasc Surg, 1999. 29(5): p. 874-81; discussion 882-3. 

178. Mann, M.J., et al., Genetic engineering of vein grafts resistant to atherosclerosis. Proc Natl 
Acad Sci U S A, 1995. 92(10): p. 4502-6. 



127 

179. Morishita, R., et al., A gene therapy strategy using a transcription factor decoy of the E2F 
binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci U S A, 1995. 
92(13): p. 5855-9. 

180. Ehsan, A., et al., Long-term stabilization of vein graft wall architecture and prolonged 
resistance to experimental atherosclerosis after E2F decoy oligonucleotide gene therapy. 
J Thorac Cardiovasc Surg, 2001. 121(4): p. 714-22. 

181. Ranjzad, P., H.K. Salem, and P.A. Kingston, Adenovirus-mediated gene transfer of 
fibromodulin inhibits neointimal hyperplasia in an organ culture model of human 
saphenous vein graft disease. Gene Ther, 2009. 16(9): p. 1154-62. 

182. Kloppenburg, G.T., et al., Adenoviral activin A expression prevents vein graft intimal 
hyperplasia in a rat model. Interact Cardiovasc Thorac Surg, 2009. 8(1): p. 31-4. 

183. Yamamoto, K., et al., Ribozyme oligonucleotides against transforming growth factor-beta 
inhibited neointimal formation after vascular injury in rat model: potential application of 
ribozyme strategy to treat cardiovascular disease. Circulation, 2000. 102(11): p. 1308-14. 

184. Rutanen, J., et al., Gene transfer using the mature form of VEGF-D reduces neointimal 
thickening through nitric oxide-dependent mechanism. Gene Ther, 2005. 12(12): p. 980-
7. 

185. Handa, M., et al., Adventitial delivery of platelet-derived endothelial cell growth factor 
gene prevented intimal hyperplasia of vein graft. J Vasc Surg, 2008. 48(6): p. 1566-74. 

186. Noiseux, N., et al., Bolus endovascular PDGFR-beta antisense treatment suppressed 
intimal hyperplasia in a rat carotid injury model. Circulation, 2000. 102(11): p. 1330-6. 

187. Wang, X.W., et al., MicroRNA-221 sponge therapy attenuates neointimal hyperplasia and 
improves blood flows in vein grafts. Int J Cardiol, 2016. 208: p. 79-86. 

188. Skelly, C.L., et al., Prevention of restenosis by a herpes simplex virus mutant capable of 
controlled long-term expression in vascular tissue in vivo. Gene Ther, 2001. 8(24): p. 1840-
6. 

189. Wang, X., et al., Early growth response gene-1 decoy oligonucleotides inhibit vascular 
smooth muscle cell proliferation and neointimal hyperplasia of autogenous vein graft in 
rabbits. Interact Cardiovasc Thorac Surg, 2015. 21(1): p. 50-4. 

190. Petrofski, J.A., et al., A Gbetagamma inhibitor reduces intimal hyperplasia in 
aortocoronary saphenous vein grafts. J Thorac Cardiovasc Surg, 2005. 130(6): p. 1683-90. 

191. Uchida, D., et al., Development of gene therapy with a cyclic adenosine monophosphate 
response element decoy oligodeoxynucleotide to prevent vascular intimal hyperplasia. J 
Vasc Surg, 2020. 71(1): p. 229-241. 

192. Chesebro, J.H., et al., A platelet-inhibitor-drug trial in coronary-artery bypass operations: 
benefit of perioperative dipyridamole and aspirin therapy on early postoperative vein-
graft patency. N Engl J Med, 1982. 307(2): p. 73-8. 

193. Chesebro, J.H., et al., Effect of dipyridamole and aspirin on late vein-graft patency after 
coronary bypass operations. N Engl J Med, 1984. 310(4): p. 209-14. 

194. Goldman, S., et al., Saphenous vein graft patency 1 year after coronary artery bypass 
surgery and effects of antiplatelet therapy. Results of a Veterans Administration 
Cooperative Study. Circulation, 1989. 80(5): p. 1190-7. 

195. Gitler, B. and E.S. Gitler, Efficacy of antiplatelet drugs in the maintenance of aortocoronary 
vein bypass graft patency. Am Heart J, 1983. 106(3): p. 563-70. 



128 

196. Sharma, G.V., et al., The effect of antiplatelet therapy on saphenous vein coronary artery 
bypass graft patency. Circulation, 1983. 68(3 Pt 2): p. II218-21. 

197. Eikelboom, J.W., et al., Antiplatelet drugs: Antithrombotic Therapy and Prevention of 
Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice 
Guidelines. Chest, 2012. 141(2 Suppl): p. e89S-e119S. 

198. Rucker, D. and A.S. Dhamoon, Physiology, Thromboxane A2, in StatPearls. 2020: Treasure 
Island (FL). 

199. Kulik, A., et al., Secondary prevention after coronary artery bypass graft surgery: a 
scientific statement from the American Heart Association. Circulation, 2015. 131(10): p. 
927-64. 

200. Windecker, S., et al., [2014 ESC/EACTS Guidelines on myocardial revascularization]. 
Kardiol Pol, 2014. 72(12): p. 1253-379. 

201. Alexopoulos, D., p2y12 receptor inhibitors in acute coronary syndromes: from the research 
laboratory to the clinic and vice versa. Cardiology, 2014. 127(4): p. 211-9. 

202. Yusuf, S., et al., Effects of clopidogrel in addition to aspirin in patients with acute coronary 
syndromes without ST-segment elevation. N Engl J Med, 2001. 345(7): p. 494-502. 

203. Sousa-Uva, M., et al., 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur J 
Cardiothorac Surg, 2019. 55(1): p. 4-90. 

204. Fremes, S.E., et al., Optimal antithrombotic therapy following aortocoronary bypass: a 
meta-analysis. Eur J Cardiothorac Surg, 1993. 7(4): p. 169-80. 

205. Post Coronary Artery Bypass Graft Trial, I., The effect of aggressive lowering of low-density 
lipoprotein cholesterol levels and low-dose anticoagulation on obstructive changes in 
saphenous-vein coronary-artery bypass grafts. N Engl J Med, 1997. 336(3): p. 153-62. 

206. Li, R., et al., Preventing graft restenosis after coronary artery bypass grafting with tissue-
type plasminogen activator. Eur J Med Res, 2017. 22(1): p. 18. 

207. Shore-Lesserson, L., et al., STS/SCA/AmSECT Clinical Practice Guidelines: Anticoagulation 
during Cardiopulmonary Bypass. J Extra Corpor Technol, 2018. 50(1): p. 5-18. 

208. Margaritis, M., K.M. Channon, and C. Antoniades, Statins and vein graft failure in coronary 
bypass surgery. Curr Opin Pharmacol, 2012. 12(2): p. 172-80. 

209. Endo, A., A historical perspective on the discovery of statins. Proc Jpn Acad Ser B Phys Biol 
Sci, 2010. 86(5): p. 484-93. 

210. Silverman, M.G., et al., Association Between Lowering LDL-C and Cardiovascular Risk 
Reduction Among Different Therapeutic Interventions: A Systematic Review and Meta-
analysis. JAMA, 2016. 316(12): p. 1289-97. 

211. Grundy, S.M., et al., 2018 
AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the 
Management of Blood Cholesterol: A Report of the American College of 
Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. 
Circulation, 2019. 139(25): p. e1082-e1143. 

212. Arnett, D.K., et al., 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular 
Disease: Executive Summary: A Report of the American College of Cardiology/American 
Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol, 2019. 
74(10): p. 1376-1414. 



129 

213. Chou, R., et al., in Statin Use for the Prevention of Cardiovascular Disease in Adults: A 
Systematic Review for the U.S. Preventive Services Task Force. 2016: Rockville (MD). 

214. Taylor, F., et al., Statins for the primary prevention of cardiovascular disease. Cochrane 
Database Syst Rev, 2013(1): p. CD004816. 

215. Kolh, P., et al., 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force 
on Myocardial Revascularization of the European Society of Cardiology (ESC) and the 
European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special 
contribution of the European Association of Percutaneous Cardiovascular Interventions 
(EAPCI). Eur J Cardiothorac Surg, 2014. 46(4): p. 517-92. 

216. Domanski, M., et al., Pleiotropic effect of lovastatin, with and without cholestyramine, in 
the post coronary artery bypass graft (Post CABG) trial. Am J Cardiol, 2008. 102(8): p. 
1023-7. 

217. Kulik, A., et al., Intensive versus moderate statin therapy and early graft occlusion after 
coronary bypass surgery: The Aggressive Cholesterol Therapy to Inhibit Vein Graft Events 
randomized clinical trial. J Thorac Cardiovasc Surg, 2019. 157(1): p. 151-161 e1. 

218. Zheng, Z., et al., Perioperative Rosuvastatin in Cardiac Surgery. N Engl J Med, 2016. 
374(18): p. 1744-53. 

219. Amano, M., M. Nakayama, and K. Kaibuchi, Rho-kinase/ROCK: A key regulator of the 
cytoskeleton and cell polarity. Cytoskeleton (Hoboken), 2010. 67(9): p. 545-54. 

220. Chaudhary, M.A., et al., Periadventitial drug delivery for the prevention of intimal 
hyperplasia following open surgery. J Control Release, 2016. 233: p. 174-80. 

221. Masaki, T., et al., Inhibition of neointimal hyperplasia in vascular grafts by sustained 
perivascular delivery of paclitaxel. Kidney Int, 2004. 66(5): p. 2061-9. 

222. Kang, M.L., et al., Hydrogel cross-linking-programmed release of nitric oxide regulates 
source-dependent angiogenic behaviors of human mesenchymal stem cell. Sci Adv, 2020. 
6(9): p. eaay5413. 

223. Li, J., S.G. Kim, and J. Blenis, Rapamycin: one drug, many effects. Cell Metab, 2014. 19(3): 
p. 373-9. 

224. Liu, K., et al., Pretreatment with intraluminal rapamycin nanoparticle perfusion inhibits 
neointimal hyperplasia in a rabbit vein graft model. Int J Nanomedicine, 2010. 5: p. 853-
60. 

225. Yu, X., et al., A rapamycin-releasing perivascular polymeric sheath produces highly 
effective inhibition of intimal hyperplasia. J Control Release, 2014. 191: p. 47-53. 

226. Miyahara, T., et al., D-series resolvin attenuates vascular smooth muscle cell activation 
and neointimal hyperplasia following vascular injury. FASEB J, 2013. 27(6): p. 2220-32. 

227. Wu, B., et al., Perivascular delivery of resolvin D1 inhibits neointimal hyperplasia in a rat 
model of arterial injury. J Vasc Surg, 2017. 65(1): p. 207-217 e3. 

228. Hu, Y., et al., Inhibition of neointima hyperplasia of mouse vein grafts by locally applied 
suramin. Circulation, 1999. 100(8): p. 861-8. 

229. Little, P.J., et al., Suramin inhibits PDGF-stimulated receptor phosphorylation, 
proteoglycan synthesis and glycosaminoglycan hyperelongation in human vascular 
smooth muscle cells. J Pharm Pharmacol, 2013. 65(7): p. 1055-63. 

230. Kapadia, M.R., et al., Nitric oxide and nanotechnology: a novel approach to inhibit 
neointimal hyperplasia. J Vasc Surg, 2008. 47(1): p. 173-82. 



130 

231. Kown, M.H., et al., L-arginine polymers inhibit the development of vein graft neointimal 
hyperplasia. J Thorac Cardiovasc Surg, 2001. 121(5): p. 971-80. 

232. Reisinger, U., et al., Leoligin, the major lignan from Edelweiss, inhibits intimal hyperplasia 
of venous bypass grafts. Cardiovasc Res, 2009. 82(3): p. 542-9. 

233. Kaplan, S., et al., Effects of resveratrol in storage solution on adhesion molecule expression 
and nitric oxide synthesis in vein grafts. Ann Thorac Surg, 2005. 80(5): p. 1773-8. 

234. Rakici, O., et al., Effects of resveratrol on vascular tone and endothelial function of human 
saphenous vein and internal mammary artery. Int J Cardiol, 2005. 105(2): p. 209-15. 

235. Murphy, G.J., et al., Short- and long-term effects of cytochalasin D, paclitaxel and 
rapamycin on wall thickening in experimental porcine vein grafts. Cardiovasc Res, 2007. 
73(3): p. 607-17. 

236. Huynh, T.T., et al., Reduction of lipid peroxidation with intraoperative superoxide 
dismutase treatment decreases intimal hyperplasia in experimental vein grafts. J Surg Res, 
1999. 84(2): p. 223-32. 

237. Nakao, A., et al., Ex vivo carbon monoxide delivery inhibits intimal hyperplasia in 
arterialized vein grafts. Cardiovasc Res, 2011. 89(2): p. 457-63. 

238. Hou, W., B. Liu, and H. Xu, Celastrol: Progresses in structure-modifications, structure-
activity relationships, pharmacology and toxicology. Eur J Med Chem, 2020. 189: p. 
112081. 

239. Aceros, H., et al., Celastrol-type HSP90 modulators allow for potent cardioprotective 
effects. Life Sci, 2019. 227: p. 8-19. 

240. Allison, A.C., et al., Celastrol, a potent antioxidant and anti-inflammatory drug, as a 
possible treatment for Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry, 
2001. 25(7): p. 1341-57. 

241. Venkatesha, S.H., et al., Control of autoimmune inflammation by celastrol, a natural 
triterpenoid. Pathog Dis, 2016. 74(6). 

242. Zhang, T., et al., Characterization of celastrol to inhibit hsp90 and cdc37 interaction. J Biol 
Chem, 2009. 284(51): p. 35381-9. 

243. Echeverria, P.C., et al., An interaction network predicted from public data as a discovery 
tool: application to the Hsp90 molecular chaperone machine. PLoS One, 2011. 6(10): p. 
e26044. 

244. Moreira, H., A. Szyjka, and K. Gasiorowski, Chemopreventive activity of celastrol in drug-
resistant human colon carcinoma cell cultures. Oncotarget, 2018. 9(30): p. 21211-21223. 

245. Lawrence, T., The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb 
Perspect Biol, 2009. 1(6): p. a001651. 

246. Lee, J.H., et al., Inhibition of NF-kappa B activation through targeting I kappa B kinase by 
celastrol, a quinone methide triterpenoid. Biochem Pharmacol, 2006. 72(10): p. 1311-21. 

247. Zhang, D.H., et al., Tripterine inhibits the expression of adhesion molecules in activated 
endothelial cells. J Leukoc Biol, 2006. 80(2): p. 309-19. 

248. Zhou, Y.Y., et al., The Effectiveness and Safety of Tripterygium wilfordii Hook. F Extracts in 
Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Front Pharmacol, 2018. 9: 
p. 356. 

249. Cascao, R., J.E. Fonseca, and L.F. Moita, Celastrol: A Spectrum of Treatment Opportunities 
in Chronic Diseases. Front Med (Lausanne), 2017. 4: p. 69. 



131 

250. Fulda, S. and K.M. Debatin, Extrinsic versus intrinsic apoptosis pathways in anticancer 
chemotherapy. Oncogene, 2006. 25(34): p. 4798-811. 

251. Kannaiyan, R., et al., Celastrol inhibits tumor cell proliferation and promotes apoptosis 
through the activation of c-Jun N-terminal kinase and suppression of PI3 K/Akt signaling 
pathways. Apoptosis, 2011. 16(10): p. 1028-41. 

252. Mou, H., et al., Celastrol induces apoptosis in non-small-cell lung cancer A549 cells through 
activation of mitochondria- and Fas/FasL-mediated pathways. Toxicol In Vitro, 2011. 
25(5): p. 1027-32. 

253. Wang, S. and W.S. El-Deiry, TRAIL and apoptosis induction by TNF-family death receptors. 
Oncogene, 2003. 22(53): p. 8628-33. 

254. Zhu, H., et al., Up-regulation of death receptor 4 and 5 by celastrol enhances the anti-
cancer activity of TRAIL/Apo-2L. Cancer Lett, 2010. 297(2): p. 155-64. 

255. Li, X., et al., Celastrol induces ubiquitin-dependent degradation of mTOR in breast cancer 
cells. Onco Targets Ther, 2018. 11: p. 8977-8985. 

256. Liu, X., et al., Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR 
signaling pathways in glioma cells. J Exp Clin Cancer Res, 2019. 38(1): p. 184. 

257. Kashyap, D., et al., Molecular targets of celastrol in cancer: Recent trends and 
advancements. Crit Rev Oncol Hematol, 2018. 128: p. 70-81. 

258. Han, X., et al., Celastrol stimulates hypoxia-inducible factor-1 activity in tumor cells by 
initiating the ROS/Akt/p70S6K signaling pathway and enhancing hypoxia-inducible factor-
1alpha protein synthesis. PLoS One, 2014. 9(11): p. e112470. 

259. Hu, M., et al., Celastrol-Induced Nur77 Interaction with TRAF2 Alleviates Inflammation by 
Promoting Mitochondrial Ubiquitination and Autophagy. Mol Cell, 2017. 66(1): p. 141-153 
e6. 

260. Kannaiyan, R., et al., Celastrol inhibits proliferation and induces chemosensitization 
through down-regulation of NF-kappaB and STAT3 regulated gene products in multiple 
myeloma cells. Br J Pharmacol, 2011. 164(5): p. 1506-21. 

261. Xia, Y., S. Shen, and I.M. Verma, NF-kappaB, an active player in human cancers. Cancer 
Immunol Res, 2014. 2(9): p. 823-30. 

262. Huang, Y., et al., Celastrol inhibits the growth of human glioma xenografts in nude mice 
through suppressing VEGFR expression. Cancer Lett, 2008. 264(1): p. 101-6. 

263. Mi, C., et al., Celastrol induces the apoptosis of breast cancer cells and inhibits their 
invasion via downregulation of MMP-9. Oncol Rep, 2014. 32(6): p. 2527-32. 

264. Wu, J., et al., Celastrol inhibits chondrosarcoma proliferation, migration and invasion 
through suppression CIP2A/c-MYC signaling pathway. J Pharmacol Sci, 2017. 134(1): p. 
22-28. 

265. Kannaiyan, R., M.K. Shanmugam, and G. Sethi, Molecular targets of celastrol derived from 
Thunder of God Vine: potential role in the treatment of inflammatory disorders and 
cancer. Cancer Lett, 2011. 303(1): p. 9-20. 

266. Seo, W.Y., et al., Celastrol induces expression of heme oxygenase-1 through ROS/Nrf2/ARE 
signaling in the HaCaT cells. Biochem Biophys Res Commun, 2011. 407(3): p. 535-40. 

267. Der Sarkissian, S., et al., Celastrol protects ischaemic myocardium through a heat shock 
response with up-regulation of haeme oxygenase-1. Br J Pharmacol, 2014. 171(23): p. 
5265-79. 



132 

268. Zhang, J., et al., ROS and ROS-Mediated Cellular Signaling. Oxid Med Cell Longev, 2016. 
2016: p. 4350965. 

269. Loboda, A., et al., Role of Nrf2/HO-1 system in development, oxidative stress response and 
diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci, 2016. 73(17): p. 3221-
47. 

270. Fraser, S.T., et al., Heme Oxygenase-1: A Critical Link between Iron Metabolism, 
Erythropoiesis, and Development. Adv Hematol, 2011. 2011: p. 473709. 

271. Mense, S.M. and L. Zhang, Heme: a versatile signaling molecule controlling the activities 
of diverse regulators ranging from transcription factors to MAP kinases. Cell Res, 2006. 
16(8): p. 681-92. 

272. Poulos, T.L., Heme enzyme structure and function. Chem Rev, 2014. 114(7): p. 3919-62. 
273. Wagener, F.A., et al., Heme induces the expression of adhesion molecules ICAM-1, VCAM-

1, and E selectin in vascular endothelial cells. Proc Soc Exp Biol Med, 1997. 216(3): p. 456-
63. 

274. Hvidberg, V., et al., Identification of the receptor scavenging hemopexin-heme complexes. 
Blood, 2005. 106(7): p. 2572-9. 

275. Soares, M.P., et al., Heme oxygenase-1 modulates the expression of adhesion molecules 
associated with endothelial cell activation. J Immunol, 2004. 172(6): p. 3553-63. 

276. Hayashi, S., et al., Characterization of rat heme oxygenase-3 gene. Implication of 
processed pseudogenes derived from heme oxygenase-2 gene. Gene, 2004. 336(2): p. 241-
50. 

277. Morse, D. and A.M. Choi, Heme oxygenase-1: the "emerging molecule" has arrived. Am J 
Respir Cell Mol Biol, 2002. 27(1): p. 8-16. 

278. Ryter, S.W., J. Alam, and A.M. Choi, Heme oxygenase-1/carbon monoxide: from basic 
science to therapeutic applications. Physiol Rev, 2006. 86(2): p. 583-650. 

279. Dunn, L.L., et al., New insights into intracellular locations and functions of heme 
oxygenase-1. Antioxid Redox Signal, 2014. 20(11): p. 1723-42. 

280. Marcantoni, E., et al., Novel insights into the vasoprotective role of heme oxygenase-1. Int 
J Hypertens, 2012. 2012: p. 127910. 

281. Reichard, J.F., G.T. Motz, and A. Puga, Heme oxygenase-1 induction by NRF2 requires 
inactivation of the transcriptional repressor BACH1. Nucleic Acids Res, 2007. 35(21): p. 
7074-86. 

282. Salinas, M., et al., Protein kinase Akt/PKB phosphorylates heme oxygenase-1 in vitro and 
in vivo. FEBS Lett, 2004. 578(1-2): p. 90-4. 

283. Martin, D., et al., Regulation of heme oxygenase-1 expression through the 
phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response 
to the antioxidant phytochemical carnosol. J Biol Chem, 2004. 279(10): p. 8919-29. 

284. Araujo, J.A., M. Zhang, and F. Yin, Heme oxygenase-1, oxidation, inflammation, and 
atherosclerosis. Front Pharmacol, 2012. 3: p. 119. 

285. Gozzelino, R., V. Jeney, and M.P. Soares, Mechanisms of cell protection by heme 
oxygenase-1. Annu Rev Pharmacol Toxicol, 2010. 50: p. 323-54. 

286. Balla, J., et al., Heme, heme oxygenase and ferritin in vascular endothelial cell injury. Mol 
Nutr Food Res, 2005. 49(11): p. 1030-43. 



133 

287. Ryter, S.W. and A.M. Choi, Targeting heme oxygenase-1 and carbon monoxide for 
therapeutic modulation of inflammation. Transl Res, 2016. 167(1): p. 7-34. 

288. Kirkby, K.A. and C.A. Adin, Products of heme oxygenase and their potential therapeutic 
applications. Am J Physiol Renal Physiol, 2006. 290(3): p. F563-71. 

289. Chen, C.Y., et al., Resveratrol upregulates heme oxygenase-1 expression via activation of 
NF-E2-related factor 2 in PC12 cells. Biochem Biophys Res Commun, 2005. 331(4): p. 993-
1000. 

290. Brydun, A., et al., Reduced expression of heme oxygenase-1 in patients with coronary 
atherosclerosis. Hypertens Res, 2007. 30(4): p. 341-8. 

291. Taha, H., et al., Role of heme oxygenase-1 in human endothelial cells: lesson from the 
promoter allelic variants. Arterioscler Thromb Vasc Biol, 2010. 30(8): p. 1634-41. 

292. Jaquet, V., et al., NADPH oxidase (NOX) isoforms are inhibited by celastrol with a dual 
mode of action. Br J Pharmacol, 2011. 164(2b): p. 507-20. 

293. Murdoch, C.E., et al., Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced 
hypertension and vasomotor dysfunction. Basic Res Cardiol, 2011. 106(4): p. 527-38. 

294. Li, M., et al., Celastrol attenuates angiotensin II mediated human umbilical vein 
endothelial cells damage through activation of Nrf2/ERK1/2/Nox2 signal pathway. Eur J 
Pharmacol, 2017. 797: p. 124-133. 

295. Liu, J., et al., Treatment of obesity with celastrol. Cell, 2015. 161(5): p. 999-1011. 
296. Zhang, M., et al., Celastrol attenuates renal injury in diabetic rats via MAPK/NF-kappaB 

pathway. Phytother Res, 2019. 33(4): p. 1191-1198. 
297. Allen, S.D., et al., Celastrol-loaded PEG-b-PPS nanocarriers as an anti-inflammatory 

treatment for atherosclerosis. Biomater Sci, 2019. 7(2): p. 657-668. 
298. Yu, X., et al., Celastrol attenuates hypertension-induced inflammation and oxidative stress 

in vascular smooth muscle cells via induction of heme oxygenase-1. Am J Hypertens, 2010. 
23(8): p. 895-903. 

299. Peng, B., et al., HSP90 inhibitor, celastrol, arrests human monocytic leukemia cell U937 at 
G0/G1 in thiol-containing agents reversible way. Mol Cancer, 2010. 9: p. 79. 

300. Boridy, S., et al., Celastrol targets proteostasis and acts synergistically with a heat-shock 
protein 90 inhibitor to kill human glioblastoma cells. Cell Death Dis, 2014. 5: p. e1216. 

301. Zhang, T., et al., A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against 
pancreatic cancer cells. Mol Cancer Ther, 2008. 7(1): p. 162-70. 

302. Der Sarkissian, S., et al., Heat shock protein 90 inhibition and multi-target approach to 
maximize cardioprotection in ischaemic injury. Br J Pharmacol, 2020. 

303. Chen, S.R., et al., A Mechanistic Overview of Triptolide and Celastrol, Natural Products 
from Tripterygium wilfordii Hook F. Front Pharmacol, 2018. 9: p. 104. 

304. Xu, L.N., et al., Celastrol Inhibits the Growth of Ovarian Cancer Cells in vitro and in vivo. 
Front Oncol, 2019. 9: p. 2. 

305. Pang, X., et al., Celastrol suppresses angiogenesis-mediated tumor growth through 
inhibition of AKT/mammalian target of rapamycin pathway. Cancer Res, 2010. 70(5): p. 
1951-9. 

306. Jiang, Q.W., et al., Synergistic anticancer effects of triptolide and celastrol, two main 
compounds from thunder god vine. Oncotarget, 2015. 6(32): p. 32790-804. 



134 

307. Yu, Y., et al., Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap 
formation. Curr Mol Med, 2015. 15(4): p. 401-10. 

308. Kloverpris, H., et al., Dimethyl sulfoxide (DMSO) exposure to human peripheral blood 
mononuclear cells (PBMCs) abolish T cell responses only in high concentrations and 
following coincubation for more than two hours. J Immunol Methods, 2010. 356(1-2): p. 
70-8. 

309. Solovyan, V.T. and J. Keski-Oja, Apoptosis of human endothelial cells is accompanied by 
proteolytic processing of latent TGF-beta binding proteins and activation of TGF-beta. Cell 
Death Differ, 2005. 12(7): p. 815-26. 

310. Yue, P.Y., et al., A simplified method for quantifying cell migration/wound healing in 96-
well plates. J Biomol Screen, 2010. 15(4): p. 427-33. 

311. Pang, X., et al., Correction: Celastrol Suppresses Angiogenesis-Mediated Tumor Growth 
through Inhibition of AKT/Mammalian Target of Rapamycin Pathway. Cancer Res, 2019. 
79(3): p. 685. 

312. Ni, H., et al., Celastrol inhibits lipopolysaccharide-induced angiogenesis by suppressing 
TLR4-triggered nuclear factor-kappa B activation. Acta Haematol, 2014. 131(2): p. 102-
11. 

313. Huang, L., et al., Inhibitory action of Celastrol on hypoxia-mediated angiogenesis and 
metastasis via the HIF-1alpha pathway. Int J Mol Med, 2011. 27(3): p. 407-15. 

314. Zhu, B. and Y. Wei, Antitumor activity of celastrol by inhibition of proliferation, invasion, 
and migration in cholangiocarcinoma via PTEN/PI3K/Akt pathway. Cancer Med, 2020. 
9(2): p. 783-796. 

315. Manning, B.D. and A. Toker, AKT/PKB Signaling: Navigating the Network. Cell, 2017. 
169(3): p. 381-405. 

316. Abeyrathna, P. and Y. Su, The critical role of Akt in cardiovascular function. Vascul 
Pharmacol, 2015. 74: p. 38-48. 

317. Hemmings, B.A. and D.F. Restuccia, PI3K-PKB/Akt pathway. Cold Spring Harb Perspect 
Biol, 2012. 4(9): p. a011189. 

318. Charreau, B., Signaling of endothelial cytoprotection in transplantation. Hum Immunol, 
2012. 73(12): p. 1245-52. 

319. Mason, J.C., Cytoprotective pathways in the vascular endothelium. Do they represent a 
viable therapeutic target? Vascul Pharmacol, 2016. 86: p. 41-52. 

320. Malumbres, M., Cyclin-dependent kinases. Genome Biol, 2014. 15(6): p. 122. 
321. Wagner, E.F. and A.R. Nebreda, Signal integration by JNK and p38 MAPK pathways in 

cancer development. Nat Rev Cancer, 2009. 9(8): p. 537-49. 
322. Rossello, X. and D.M. Yellon, The RISK pathway and beyond. Basic Res Cardiol, 2018. 

113(1): p. 2. 
323. Davidson, S.M., et al., Signalling via the reperfusion injury signalling kinase (RISK) pathway 

links closure of the mitochondrial permeability transition pore to cardioprotection. Int J 
Biochem Cell Biol, 2006. 38(3): p. 414-9. 

324. Walsh, K., Akt signaling and growth of the heart. Circulation, 2006. 113(17): p. 2032-4. 
325. Hua, Y., et al., Chronic Akt activation accentuates aging-induced cardiac hypertrophy and 

myocardial contractile dysfunction: role of autophagy. Basic Res Cardiol, 2011. 106(6): p. 
1173-91. 



135 

326. Ogawa, A., et al., Thrombin-mediated activation of Akt signaling contributes to pulmonary 
vascular remodeling in pulmonary hypertension. Physiol Rep, 2013. 1(7): p. e00190. 

327. Franke, T.F., PI3K/Akt: getting it right matters. Oncogene, 2008. 27(50): p. 6473-88. 
328. Li, T., et al., Targeting the Hsp90-Cdc37-client protein interaction to disrupt Hsp90 

chaperone machinery. J Hematol Oncol, 2018. 11(1): p. 59. 
329. Basso, A.D., et al., Akt forms an intracellular complex with heat shock protein 90 (Hsp90) 

and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem, 2002. 277(42): 
p. 39858-66. 

330. Xiao-Pei, H., et al., Systematic identification of Celastrol-binding proteins reveals that 
Shoc2 is inhibited by Celastrol. Biosci Rep, 2018. 38(6). 

331. Junjie Hu, X.L., Junxuan Zhou, Cong Zhang, Guohua Zheng, Zhenpeng Qiu, Celastrol delays 
hepatic steatosis and carcinogenesis in a rapid AKT/c-Met-transfected hepatocellular 
carcinoma model via suppressing 

fatty acid synthase expression and AKT/ERK 

phosphorylation. RSC Adv., 2018. 8(25). 
332. Trott, A., et al., Activation of heat shock and antioxidant responses by the natural product 

celastrol: transcriptional signatures of a thiol-targeted molecule. Mol Biol Cell, 2008. 
19(3): p. 1104-12. 

333. Beere, H.M., "The stress of dying": the role of heat shock proteins in the regulation of 
apoptosis. J Cell Sci, 2004. 117(Pt 13): p. 2641-51. 

334. Rosenzweig, R., et al., The Hsp70 chaperone network. Nat Rev Mol Cell Biol, 2019. 20(11): 
p. 665-680. 

335. Fredenburgh, L.E., A.A. Merz, and S. Cheng, Haeme oxygenase signalling pathway: 
implications for cardiovascular disease. Eur Heart J, 2015. 36(24): p. 1512-8. 

336. Liu, X.M., K.J. Peyton, and W. Durante, Physiological cyclic strain promotes endothelial cell 
survival via the induction of heme oxygenase-1. Am J Physiol Heart Circ Physiol, 2013. 
304(12): p. H1634-43. 

 





 

 

 

 

 

 

Appendix  

  



138 

 

 

This figure shows the compilation of 5 experiments exposing HUVEC to H2O2 3 mM. The EBM 1% group was not 

exposed to Celastrol nor H2O2 and served as the control group. The 3 mM group did not receive Celastrol but was 

exposed to 3 mM H2O2 for 1 hour. All groups pre-treated with Celastrol for 1 hour prior to stress. 

†Exposure to 1 hour of H2O2 3 mM significantly increase mortality compared to EBM 1%; 1.9 vs 15.7% (p=0.0003) 

 

Figure 1 Effects of Celastrol on HUVEC viability after being exposed to 1 hour of oxidative 

stress (H2O2 3mM) 
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This figure shows the compilation of 2 experiments exposing HUVEC to H2O2 0.5 mM for a period of 24 hours. The 

Vehicle group was not treated to Celastrol and serves as the control group. Treatment with Celastrol lasted 1 hour 

and was done prior to stress. 1 of the initial experiment showed outlier values for the Cel 10-6M which was 

considered in the main analysis. This graphic shows that without the outlier, benefits were detected in all wells 

treated with Celastrol. 

† Prolonged oxidative stress (H2O2 5 mM) significantly reduces viability: 72.5% compared to 94.1% (p<0.0001)  

‡ HUVEC pre-treated with Cel 10-6M showed a higher viability compared to the stress condition, 93.3% vs 72.5% 

(p=0.0007). HUVEC pre-treated with Cel 10-8M showed a higher viability compared to the stress condition, 95.6% vs 

72.5% (p=0.0004). HUVEC pre-treated with Cel 10-10M showed a higher viability compared to the stress condition, 

94.9% vs 72.5% (p=0.0004). 

Figure 2 
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This figure shows the compilation of 5 experiments exposing HUVEC to H2O2 0.3 and 0.4 mM for a period of 24 hours. 

The Vehicle group was not treated to Celastrol and serves as the control group. Treatment with Celastrol lasted 1 

hour and was done prior to stress. The increased viability in the treated groups did not show significance. 

Figure 3 
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Experiment 2 shows a ratio p-AKT / AKT total 3 times of that of experiment 1 which resulted in high standard 

deviation and a non-statistical difference (p>0.05). Concordant increase in p-Akt is noted starting at 15 minutes and 

persists up until 90 minutes. 

Figure 4 
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Compilation of 3 experiments. HUVEC were treated with Celastrol 1uM for 1 hour followed by a recuperation period 

in EGM 5% over a span of 48 hours. Therefore, HUVEC was exposed to Celastrol only in the first 60 minutes. HO-1 

expression was assessed at 4 hours, overnight or 16 hours, 24 hours and 48 hours during that recuperation period. 

(HUVEC, human umbilical vein endothelial cells; rec, recuperation; min, minute; O/N, overnight; HO-1, heme 

oxygenase 1; GADPH, glyceraldehyde 3-phosphate dehydrogenase; t=0, 0 minute or time prior to treatment)  

 

Figure 5 
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Figure 6 PI3/Akt signalling network [315] 

 

 

 


