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Résumé

Cette thèse présente une étude des applications des groupes de réflexion finis aux problèmes
liés aux réseaux bidimensionnels et aux polytopes tridimensionnels. Plusieurs familles de
fonctions orbitales, appelées fonctions orbitales de Weyl, sont associées aux groupes de ré-
flexion cristallographique. Les propriétés exceptionnelles de ces fonctions, telles que l’or-
thogonalité continue et discrète, permettent une analyse de type Fourier sur le domaine
fondamental d’un groupe de Weyl affine correspondant. Dans cette considération, les fonc-
tions d’orbite de Weyl constituent des outils efficaces pour les transformées discrètes de type
Fourier correspondantes connues sous le nom de transformées de Fourier–Weyl. Cette re-
cherche limite notre attention aux fonctions d’orbite de Weyl symétriques et antisymétriques
à deux variables du groupe de réflexion cristallographique A2. L’objectif principal est de
décomposer deux types de transformations de Fourier–Weyl du réseau de poids correspon-
dant en transformées plus petites en utilisant la technique de division centrale. Pour les cas
non cristallographiques, nous définissons les indices de degré pair et impair pour les orbites
des groupes de réflexion non cristallographique avec une symétrie quintuple en utilisant un
remplacement de représentation-orbite. De plus, nous formulons l’algorithme qui permet
de déterminer les structures de polytopes imbriquées. Par ailleurs, compte tenu de la per-
tinence de la symétrie icosaédrique pour la description de diverses molécules sphériques et
virus, nous étudions la brisure de symétrie des polytopes doubles de type non cristallogra-
phique et des structures tubulaires associées. De plus, nous appliquons une procédure de
stellation à la famille des polytopes considérés. Puisque cette recherche se concentre en
partie sur les fullerènes icosaédriques, nous présentons la construction des nanotubes de car-
bone correspondants. De plus, l’approche considérée pour les cas non cristallographiques est
appliquée aux structures cristallographiques. Nous considérons un mécanisme de brisure de
symétrie appliqué aux polytopes obtenus en utilisant les groupes Weyl tridimensionnels pour
déterminer leurs extensions structurelles possibles en nanotubes.

Mots clès : groupe de Coxeter, fonction d’orbite de Weyl, transformée de Fourier discrète,
polytope imbriqué, polytope convexe, décomposition d’orbite, brisure de symétrie,
fullerène, nanotube
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Abstract

This thesis presents a study of applications of finite reflection groups to the problems re-
lated to two-dimensional lattices and three-dimensional polytopes. Several families of orbit
functions, known as Weyl orbit functions, are associated with the crystallographic reflec-
tion groups. The exceptional properties of these functions, such as continuous and discrete
orthogonality, permit Fourier-like analysis on the fundamental domain of a corresponding
affine Weyl group. In this consideration, Weyl orbit functions constitute efficient tools for
corresponding Fourier-like discrete transforms known as Fourier–Weyl transforms. This re-
search restricts our attention to the two-variable symmetric and antisymmetric Weyl orbit
functions of the crystallographic reflection group A2. The main goal is to decompose two
types of the corresponding weight lattice Fourier-Weyl transforms into smaller transforms
using the central splitting technique. For the non-crystallographic cases, we define the even-
and odd-degree indices for orbits of the non-crystallographic reflection groups with 5-fold
symmetry by using a representation-orbit replacement. Besides, we formulate the algorithm
that allows determining the structures of nested polytopes. Moreover, in light of the rel-
evance of the icosahedral symmetry to the description of various spherical molecules and
viruses, we study symmetry breaking of the dual polytopes of non-crystallographic type
and related tube-like structures. As well, we apply a stellation procedure to the family of
considered polytopes. Since this research partly focuses on the icosahedral fullerenes, we
present the construction of the corresponding carbon nanotubes. Furthermore, the approach
considered for the non-crystallographic cases is applied to crystallographic structures. We
consider a symmetry-breaking mechanism applied to the polytopes obtained using the three-
dimensional Weyl groups to determine their possible structural extensions into nanotubes.

Keywords: Coxeter group, Weyl orbit function, discrete Fourier transform, nested
polytope, convex polytope, orbit decomposition, symmetry breaking, fullerene, nanotube
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M and Ĩ[f ](1)

M

are tabulated for M = 10, 12, 14, 16 and 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1 The sizes of orbits Oλ(Hn) of the non-crystallographic groups Hn, n ∈ {2, 3, 4}
provided for each type of dominant point λ with the coefficients a, b, c, d ∈ R>0. . 88

3.2 The Cartan matrices and their inverses for the non-crystallographic groups H2,
H3 and H4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3 The embedding index γ provided for the non-crystallographic groups Hn, n ∈
{2, 3, 4} and their maximal subgroups G′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.4 Dominant points for lower orbits obtained by subtraction of the simple roots
α1, α2, α3 of H3 are listed for any type of a dominant point of the initial orbit:
(a, 0, 0), (0, a, 0), (0, 0, a), (a, a, 0), (0, a, a), (a, 0, a). The coefficients are provided
by the values a ∈ {1, 2, . . . , 9}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.1 The two-dimensional subgroups of the Coxeter group H3. . . . . . . . . . . . . . . . . . . . . . . 112

4.2 Scaling coefficients ck, k ∈ {1, 2, 3} for the vectors of the ω−basis. . . . . . . . . . . . . . . 113

4.3 The orbits of a polytope VH3(λ) are presented for each type of dominant point λ.
The scaled orbits (a′, 0, 0), (0, b′, 0) and (0, 0, c′) are presented by means of the
corresponding decorated Coxeter–Dynkin diagrams. The generic orbits within the
structure of a VH3(λ)−polytope are marked by X. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4 The seed points λ of DH3(λ) and λ′ of its dual VH3(λ). The first column indicates
a dominant point λ in the coordinate form, the second column provides λ as a
linear combination of the fundamental weights ωk, and the third column provides
λ′ as the vectors ω′k, k ∈ {1, 2, 3}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.5 The faces v2 of VH3(λ) are presented for each type of dominant point λ (see
Figure 4.7). The faces v0 are generated by the corresponding reflections applied

13



to λ′ indicated in Table 4.4. The approximate lengths of the edges v1 are denoted
by a, b, c, and the relative angles are denoted by α, β, γ. . . . . . . . . . . . . . . . . . . . . . . . 123

4.6 The types and the numbers of faces dk and v2−k of DH3(a, 0, 0) and VH3(a, 0, 0),
respectively, are provided for each decorated Coxeter–Dynkin diagram of H3.
The polygon-polygon notation corresponds to the types of edges shared by the
two-dimensional faces of a polytope. The number of faces N(dk) and N(v2−k) is
denoted by N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.7 Decorations of the Coxeter–Dynkin diagram of H3 are presented for dominant
points λ, namely (0, b, 0), (a, b, 0), (a, 0, c), (0, b, c) and (a, b, c). The faces dk and
v2−k, k ∈ {0, 1, 2} correspond to the faces of D(λ) and V(λ). The polygon-polygon
notation corresponds to the types of edges shared by the two-dimensional faces of
a polytope. The number of faces N(dk) and N(v2−k) is denoted by N . . . . . . . . . . 125

4.8 The numerical values of the squared radii R2
H3(λ′) of the orbits OH3(λ′) of

VH3(λ)−polytopes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.9 The numbers of orbits and ‘pancakes’ are provided for each two-dimensional

subgroup G′ ⊂ H3 by the orbit decompositions of VH3(λ)−polytopes. The
dominant points λ with a = b = c are considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.10 The symmetries and number of faces of the fullerenes C20, C24, C26, C28:m, C30:m

are presented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.1 The Cartan matrices and their inverses are listed for the crystallographic reflection
groups A3, B3 and C3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.2 The two-dimensional subgroups of the crystallographic groups A3, B3 and C3 and
the corresponding mixed bases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.3 Scaling coefficients ck, k ∈ {1, 2, 3} for the vectors of the ω−basis of the A3, B3

and C3 groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.4 Decorations of the Coxeter–Dynkin diagram of A3 are presented for dominant

points λ, namely (0, b, 0), (a, b, 0), (a, 0, c), (0, b, c) and (a, b, c). The faces dk and
v2−k, k ∈ {0, 1, 2} correspond to the faces of D(λ) and V(λ). The polygon-polygon
notation corresponds to the types of edges shared by the two-dimensional faces of
a polytope. The number of faces N(dk) and N(v2−k) is denoted by N . . . . . . . . . . 157

5.5 Decorations of the Coxeter–Dynkin diagrams of B3 and C3 are presented for
dominant points λ, namely (0, b, 0), (a, b, 0), (a, 0, c), (0, b, c) and (a, b, c). The
faces dk and v2−k, k ∈ {0, 1, 2} correspond to the faces of D(λ) and V(λ),

14



respectively. The polygon-polygon notation corresponds to the types of edges
shared by the two-dimensional faces of a polytope. The number of faces N(dk)
and N(v2−k) is denoted by N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.6 The sizes of two-dimensional orbits of the crystallographic reflection groups A2,
B2, C2 and A1×A1 are provided for each type of dominant point λ with a,b ∈ R>0.162

5.7 The numbers of orbits and ‘pancakes’ are provided for VA3(λ)−polytopes. The
dominant points λ with the coordinates a = b = c are considered. . . . . . . . . . . . . . . 165

5.8 The numbers of orbits and ‘pancakes’ are provided for VB3(λ)−polytopes. The
dominant points λ with the coordinates a = b = c are considered. . . . . . . . . . . . . . . . 168

5.9 The numbers of orbits and ‘pancakes’ are provided for VC3(λ)−polytopes. The
dominant points λ with the coordinates a = b = c are considered. . . . . . . . . . . . . . . . 171

B.1 The orbit decomposition of the polytope VH3(1, 0, 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
B.2 The orbit decomposition of the polytope VH3(0, 0, 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
B.3 The orbit decomposition of the polytope VH3(0, 1, 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
B.4 The orbit decomposition of the polytope VH3(1, 1, 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
B.5 The orbit decomposition of the polytope VH3(0, 1, 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
B.6 The orbit decomposition of the polytope VH3(1, 0, 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
B.7 The orbit decomposition of the polytope VH3(1, 1, 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

15





List of figures

1.1 Crystallographic root systems of rank 1 and 2 and the non-crystallographic root
system H2 are presented. The labels correspond to the positive roots of the
considered root systems. The simple roots are labeled by α1 and α2. . . . . . . . . . . . . 35

1.2 The root systems of crystallographic reflection groups of rank 3 are presented.
The simple roots are labeled by αk, k ∈ {1, 2, 3}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.3 The complete classification of all connected Coxeter diagrams. . . . . . . . . . . . . . . . . . . 40

1.4 The complete classification of all connected Dynkin diagrams. . . . . . . . . . . . . . . . . . . . 40

1.5 The fundamental region of the Weyl group A3 is shown. The vectors ω1, ω2 and
ω3 correspond to the fundamental weights of A3. For M = 2, 3 and 5, the points
of the grid FM are depicted by black color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.6 The structure of the triplet is presented. (a) For simplicity, the bonds of tetrahedral
atoms are depicted by orange edges; (b) The angles depicted by blue, orange, pink
and green colors correspond to the values 109.47◦, 101.02◦, 100.67◦ and 117.58◦,
respectively.
(c) The top-view of the triplet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.1 (a) The magnified fundamental region 6FQ is depicted as the equilateral triangle
which contains 28 points corresponding to the elements of the weight set Λ6.
The weight sets Λ(0)

6 , Λ(1)
6 and Λ(2)

6 are depicted by 10 light blue, 9 yellow and 9
magenta points, respectively. Omitting the dotted nodes on the boundary, the
weight set Λ̃6 contains 10 points. The weight sets Λ̃(0)

6 , Λ̃(1)
6 and Λ̃(2)

6 contain 4
light blue, 3 yellow and 3 magenta points. The blue numbers correspond to the
values of the discrete h−function. (b) The fundamental domain FQ of A2, depicted
by the equilateral triangle, contains 10 yellow nodes in the kite-shaped domain FP
that form the point set F (0)

6 . Excluding the point in center of FQ, the sets F (1)
6 and

F
(2)
6 are depicted as 9 yellow nodes. The yellow nodes without the dotted ones on

the boundary of FQ correspond to the set F̃ (0)
6 . Omitting the central point of FQ

and the points on its boundary, 3 yellow nodes correspond to the point set F̃ (1)
6 ,

17



F̃
(2)
6 . The blue and red numbers correspond to the values of the discrete ε− and
d−functions, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2 The fundamental region FQ is depicted by the blue triangle. The simple roots and
fundamental weights are marked by αi, ωi, i ∈ {1, 2}. The reflections ri orthogonal
to αi pass through the origin. The points x+ω1 and x+ω2 are obtained by shifting
of x ∈ FQ by the vectors ω1 and ω2. The affine reflections rαi are orthogonal to
αi, and they pass through 1

2αi; the affine reflection r0 passes through the middle
of the highest root ξ. The points reflected back into FQ coincide with the points
obtained by the action of the elements γi of the cyclic group Γ.. . . . . . . . . . . . . . . . . . 61

2.3 The model function f plotted over the region FP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.4 The interpolating functions I[f ](0)

M are forM = 10,14,18 plotted over the region FP .
The sampling point sets F (0)

M of the interpolation are marked by the blue dots. . 70
2.5 The interpolating functions I[f ](1)

M are forM = 10,14,18 plotted over the region FP .
The sampling point sets F (1)

M of the interpolation are marked by the blue dots. . 71
2.6 The interpolating functions Ĩ[f ](0)
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Introduction

The purpose of this work is to study the role of finite reflection groups in Fourier analysis rela-
ted to the two-dimensional digital data processing, symmetry breaking of three-dimensional
polytopes and their structural extension into nanotubes, as well as the construction of stel-
lated and nested polytopes of non-crystallographic type.

Finite reflection groups, which are widely known as Coxeter groups (Coxeter [31]), are
relevant to the description of many structural phenomena found in nature. The classification
of such groups was one of the major achievements of the 20th century. The finite Coxeter
groups are generated by the set of reflections across the reflecting hyperplanes that are
orthogonal to the simple roots and passing through the origin (Humphreys [67]; Kane [72]).
There are two types of finite Coxeter groups: crystallographic groups (Weyl groups) and non-
crystallographic ones. The terminology and pertinent information about crystallographic
root systems stem from Lie theory, and any finite Weyl group is uniquely associated with a Lie
algebra (Bourbaki [17]; Humphreys [66]). Although there are infinitely many finite reflection
groups of non-crystallographic type that are not related to Lie theory (Humphreys [67]). In
this work, we focus only on those that possess 5-fold symmetry: the dihedral group H2 of
order 10, the icosahedral group H3 of order 120 and the H4 group of order 14400 (Chen et
al. [28]).

The symmetries of non-crystallographic finite reflection groups are relevant to the des-
cription of aperiodic point sets and quasi-crystals (Moody and Patera [104]; Baake and
Grimm [10]), as well as polytope structures (Atiyah and Sutcliffe [7]). In recent years, due
to the broad interest in mathematical virology and biophysics, the icosahedral symmetry
of the non-crystallographic group H3 has been extensively utilized to provide a blueprint
of the structural assembly of spherical viruses (Dechant et al. [36, 37]; Twarock [142];
Twarock and Luque [143]; Zappa [149]; Salthouse et al. [130]). The relevance of the ico-
sahedral symmetry to the description of density maps of macromolecules has been explored
in (Terwilliger [138]). In physics and chemistry, the H3−symmetry is used to determine the
architecture of various icosahedral molecules, such as fullerenes (Fowler and Manolopoulos
[52]) and carbon multi-shell nanostructures (Diudea et al. [45]). Moreover, the connections



between the structures of fullerene molecules and icosahedral viruses have been investigated
in (Dechant et al. [38]).

The discovery of the icosahedral fullerene C60 (Kroto et al. [84]) and graphene (Geim
and Novoselov [53]) have influenced the progress in carbon nanotechnology and led to the
further development of new carbon nanomaterials, such as carbon nanofibers (Tzeng et al.
[144]; Yadav et al. [146]) and carbon-based nanocomposites (Lin et al. [92]). Due to their
remarkable mechanical, physical and chemical properties (Balandin [11]; Eletskii and Smir-
nov [49]; Eletskii [50]; Knupfer [82]), the carbon nanostructures remain promising materials
for numerous specialized applications, including carbon-based supercapacitors (Dirican et al.
[44]), nanomedical biosensors (Devi et al. [43]), nanobiomaterials for hard tissue engineering
(Ravanbakhsh et al. [129]) and drug delivery (Bianco et al. [12]).

The structural extension of the molecule C60 into carbon nanotubes using a group theo-
retical approach has been described in detail in (Bodner et al. [13, 14, 15]). The structure
of the fullerene C60 is provided by the truncated icosahedron, whose orbit is obtained by
the action of the H3 group on a dominant point (a, b, 0), for a, b > 0 and a = b. Recently,
the structures of two polytopes, whose orbits also have 60 vertices, namely those obtained
by the action of the icosahedral group on the points (a, 0, c) and (0, b, c), for a, b, c > 0
and a = b = c, have been investigated to determine their possible extension into nanotubes
(Bourret and Grabowiecka [18]). Inspired by the work done for C60, we study a symmetry-
breaking technique applied to the family of dual polytopes with the H3−symmetry.

The crystallographic reflection groups found numerous applications in mathematics and
theoretical physics. However, we focus only on the relevance of such groups to the Fourier
analysis. There are three families of Weyl orbit functions associated with the Weyl groups,
i.e., C−, S− and E−functions, that constitute efficient tools for the Fourier transforms.
The Weyl orbit functions have been formulated for semisimple Lie algebras (Klimyk and
Patera [78], [79], [80]), and their seven hybrid versions have been studied in detail (Moody
et al. [99]; Hrivnák et al. [59]; Hrivnák and Juránek [60]). The orthogonality property of
Weyl orbit functions is crucial, as it permits the Fourier-like analysis on the fundamental
region of the infinite extension of a considered Weyl group.

The uniform tori discretization of semisimple Lie groups (Moody and Patera [101, 102,
105]; Hrivnák and Patera [63]; Hrivnák et al. [59]) led to the discrete Fourier trans-
forms on lattices. The continuous and discrete two-variable cosine and sine transforms to-
gether with their continuous interpolations have been formulated in (Patera and Zaratsyan
[117, 118, 119]). Later, the family of C−, S− and E−transforms has been extensively stu-
died for simple and semisimple Lie groups in (Moody et al. [98]). Such transforms allow the
data sampled on the lattice points comprised within the fundamental region to be Fourier-
analyzed. Since then, the discrete Fourier calculus of (anti)symmetric Weyl orbit functions
has been formulated on the points of the refined dual root (Hrivnák and Motlochová [62];
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Czyżycki et al. [34]), weight (Hrivnák and Walton [65]), and dual weight lattices (Hrivnák
and Patera [63]; Hrivnák et al. [59]). In this work, we focus on the central splitting of
the original weight Fourier-Weyl transforms into smaller weight lattice splitting transforms
governed by the number of the elements of the center of the Weyl group A2. In this consi-
deration, the central splitting decomposition of the original transform can be considered as
a first step to the recursive two-dimensional digital data processing.

This work comprises Chapters 1–5, and it is organized as follows. In Chapter 1, we
recall some useful information about the finite Coxeter groups and the corresponding crys-
tallographic and non-crystallographic root systems, as well as the Weyl orbit functions and
their pertinent properties. Chapters 2 and 3 correspond to the articles (Hrivnák et al. [1])
and (Myronova et al. [2]), respectively. Chapter 4, together with Appendices A and B,
corresponds to the article (Myronova [3]). Chapter 5, together with Appendices C and D,
corresponds to a paper currently in preparation. More precisely,

• In Chapter 2, using the central splitting mechanism (Moody and Patera [105]), we
extend the family of the discrete Fourier-like transforms based on the (anti)symmetric
Weyl orbit functions of the crystallographic reflection group A2. The two-variable
(anti)symmetric Weyl orbit functions constitute the kernels of the considered discrete
Fourier–Weyl transforms. Since the crystallographic group A2 has three elements of
the center, any function f sampled on the points of the weight lattice comprised
within the fundamental region decomposes into a sum of three components f0, f1

and f2 each associated to one congruence class of the weight lattice labels. There-
fore, employing the central splitting decomposition, we reduce the original weight
lattice Fourier-Weyl transforms into the smaller weight lattice splitting transforms
that provide the framework for more efficient digital data processing.
In the interest of open science and reproducibility, in Appendix E, we share the code
used to produce the figures in Example 6 (Interpolation by splitting transforms).

• In Chapter 3, using the definition of indices of irreducible representations of simple
Lie algebras (Patera et al. [116]; Okubo and Patera [110, 111]) as a foundation
to our approach, we determine the even- and odd-order indices of orbits of the non-
crystallographic groups Hn, n ∈ {2, 3, 4}. Replacing irreducible representations by
orbits of non-crystallographic type, we examine the higher-order indices together with
the indices of the tensor product decompositions. Using the branching rules described
in (Grabowiecka et al. [54]), we determine the embedding index for each considered
non-crystallographic group. In addition, similarly to the weight systems of represen-
tations (Bremner [20]; Bremner et al. [21]), we formulate the algorithm allowing to
find the orbits of smaller radii that are contained within the structure of initial po-
lytope, i.e., provides the structures of nested polytopes of non-crystallographic type.
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• In Chapter 4, we examine the structural extension of the non-crystallographic dual
polyhedra VH3(λ) to carbon nanotubes and tube-like structures. The choice of the
considered polytopes is motivated by the structures of various spherical icosahedral
viruses and fullerenes. Using the approach proposed in (Bodner et al. [13, 14, 15]),
we apply a symmetry-breaking mechanism to the family of dual polyhedra of the
finite Coxeter group H3. Using the reduction of the icosahedral symmetry to its
two-dimensional subgroups H2, A2 and A1 ×A1, we decompose the orbit points cor-
responding to the vertices of a polytope into the two-dimensional circular/polygonal
orbits known as the ‘pancake’-structure of a polytope. We expand the structure
of each considered polytope into a nanotube by duplicating the two-dimensional
orbits involved in the symmetry-breaking procedure and inserting them into the
‘pancake’-structure while preserving the spacing between them. Since a polytope
of the VH3(λ)−family may contain up to three orbits within its structure, we intro-
duce the construction of stellated polytopes by scaling the radii of such orbits.

• In Chapter 5, we consider the orbit decompositions of the families of dual polytopes
of crystallographic type, i.e., the polytopes obtained by the action of the Weyl groups
A3, B3 and C3 on a single point in the three-dimensional real Euclidean space. Since
the actions of the B3 and C3 groups on seed points in R3 yield the same polytopes, we
demonstrate the ‘pancake’-structures for the polytopes obtained only by the actions
of the A3 and B3 groups (see Appendices C and D, respectively). As well, for some
of the considered cases, we present examples of related nanotubes.

In this thesis, all the calculations have been performed using Wolfram Mathematica. All
figures have been produced using Wolfram Mathematica and GeoGebra.
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Chapter 1

Preliminaries

1.1. Root systems
Let E be a real n-dimensional Euclidean space over R endowed with the standard scalar

product denoted by 〈·, ·〉. For any non-zero vector α ∈ E, a reflection rα across the reflecting
hyperplane Pα = {β ∈ E | 〈β, α〉 = 0} passing through the origin and orthogonal to α

determines a linear transformation

rα(β) = β − 2〈β, α〉
〈α, α〉

α. (1.1.1)

A reflection rα fixes the corresponding mirror Pα point-wise, and its action sends any
vector orthogonal to Pα to its negative. A reflection rα has the following properties:

(i) rα is orthogonal, and it preserves the scalar product as 〈x, y〉 = 〈rαx, rαy〉, for any
x, y ∈ E;

(ii) non-zero vectors proportional to α yield the same reflection, i.e., rα = rcα, c 6= 0;
(iii) for a zero-vector, it holds that rα0 = 0.
It is convenient to introduce the notation for the scalar product (·, ·), that is linear only

in first variable,
(β, α) = 2〈β, α〉

〈α, α〉
. (1.1.2)

Hence, reflection formula (1.1.1) takes the simplified form

rα(β) = β − (β, α)α. (1.1.3)

Let Φ = {αj | j = 1, 2, . . . , n} be a subset of a real Euclidean space E. A subset Φ is
called a root system if it satisfies the following conditions:

(1) Φ is finite, spans E and 0 /∈ Φ;
(2) if α ∈ Φ, then the only multiples of α in Φ are ±α;
(3) if α ∈ Φ and rα permutes the elements of Φ, then Φ is invariant under a reflection rα.



The root systems of crystallographic type satisfy an extra condition:
(4) if α, β ∈ Φ, then (β, α) ∈ Z.
The elements of a root system Φ are called roots. From the conditions (2) and (3), it

follows that Φ = −Φ. If (2) is omitted, then Φ becomes a reduced root system.
A subset ∆ of a root system Φ is called a base, if it satisfies the properties:
(i) ∆ forms a basis in E;

(ii) each root β can be expressed as a linear combination of the elements α ∈ ∆ with all
non-negative or all non-positive integers as coefficients kα,

β =
∑
α∈∆

kαα. (1.1.4)

A base ∆ comprises the elements {α1, . . . , αn} that are called the simple roots. Such
elements are orthogonal to the reflecting hyperplanes, and they form the α−basis of a root
system Φ. Since ∆ is not unique, the invariant information contained in the simple roots is
better explained using the Coxeter–Dynkin diagrams (Section 1.3).

A root system is called irreducible if it cannot be written as a union of two subsets, such
that each root from the first set is orthogonal to each root of the second set. Otherwise, the
root system is called reducible.

Let Φ be an irreducible root system of crystallographic type. In this case, the simple
roots are at most of two different lengths, and they are called long and short roots. If all
roots have equal lengths, they are conventionally called long roots. The latter also applies
to non-crystallographic roots systems. For any long root α ∈ Φ, the standard normalization
〈αlong, αlong〉 = 2 is utilized.

The height of the root β is provided by the formula

ht(β) =
∑
α∈∆

kα. (1.1.5)

From formula (1.1.5), if all kα ≥ 0 (kα ≤ 0), then a root β is called a positive (negative)
root. However, if all kα > 0, then β is called the highest root. Every root system, that
contains the roots of two different lengths, has the unique highest long root ξ and the unique
highest short root ξs.

Let Φ+ and Φ− be a collections of positive and negative roots, respectively, such that
Φ− = −Φ+. For any non-zero vector γ ∈ E, a set of roots lying on the “positive” side of a
reflecting hyperplane orthogonal to γ is denoted by

Φ+(γ) = {α ∈ Φ | 〈γ, α〉 > 0}. (1.1.6)

A vector γ is called regular, if γ ∈ E − ⋃α∈Φ Pα, and it is called singular, otherwise. If γ is
regular, i.e., it is not lying on a reflecting hyperplane, then a root system Φ is provided by
the union Φ+(γ) ∪ Φ−(γ). Furthermore, if α = β1 + β2 for any βi ∈ Φ+(γ), i ∈ {1, 2}, then

34



α ∈ Φ+(γ) is called decomposable, and it is indecomposable otherwise. If β ∈ Φ+, then it
can be expressed as a linear combination of the simple roots {α1, . . . , αn}, for αi ∈ ∆, that
are not necessarily distinct.

Since reflecting hyperplanes Pα partition E into a finite number of regions, the compo-
nents E − ⋃α Pα are called the Weyl chambers of E. We denote the Weyl chambers by D,
as in this consideration, each regular γ ∈ E belongs to only one Weyl chamber. For α ∈ ∆,
the open convex set D+, that contains all γ ∈ E satisfying the condition 〈α, γ〉 > 0, is called
the fundamental Weyl chamber relative to ∆.

Let n = dimE be the rank of a root system. For n = 1, there exists only one root system
denoted as A1. However, for n = 2, there are four irreducible (A2, B2 ∼= C2, G2) and one
reducible (A1 × A1) crystallographic, as well as the infinite family of non-crystallographic
root systems. The one- and two-dimensional root systems are shown in Figure 1.1. For
n = 3, the crystallographic root systems A3, B3 and C3 are depicted in Figures 1.2, and the
positive roots Φ+ of the root system of H3 are shown in Figure 4.3.

A1

A1 × A1 A2 B2

C2 G2 H2

Fig. 1.1. Crystallographic root systems of rank 1 and 2 and the non-crystallographic root
system H2 are presented. The labels correspond to the positive roots of the considered root
systems. The simple roots are labeled by α1 and α2.
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A3 B3 C3

Fig. 1.2. The root systems of crystallographic reflection groups of rank 3 are presented.
The simple roots are labeled by αk, k ∈ {1, 2, 3}.

1.2. Finite reflection groups
For any reflection rαi defined by (1.1.1), we introduce the notation rαi := ri. For simple

roots αi, αj ∈ ∆, we consider the positive integers,

m(αi, αj) := mij, i, j ∈ {1, . . . , n}, (1.2.1)

which provide the entries of the Coxeter matrix denoted by Mij. The values of mij are
related to the angles between the simple roots as

θij = ∠(αi, αj) = π(1−m−1
ij ), i, j ∈ {1, . . . , n}. (1.2.2)

Then, the angles between the reflecting hyperplanes corresponding to ri and rj are given by
the values πm−1

ij .
Let ∆ = {α1, . . . , αn} be a base of a root system Φ. A reflection group G is a subgroup

of the general linear group GL(E) generated by the set of reflections {r1, . . . , rn} as

G = {ri | αi ∈ ∆}, i ∈ {1, . . . , n}. (1.2.3)

A reflection group G is also a Coxeter group, and its generators satisfy the following
relations

(rirj)mij = 1, i, j ∈ {1, . . . , n}, (1.2.4)

where mij denotes the order of rirj in G, if it satisfies the conditions:
(i) mii = 1 (so that r2

i = 1);
(ii) mij = mji ≥ 2, for i 6= j.
There are three families of Coxeter groups: finite, affine and hyperbolic. In general,

the finite reflection groups are also the finite Coxeter groups. However, the finite reflection

36



G |Φ| |G| G |Φ| |G|

An, n ≥ 1 n(n+ 1) (n+ 1)! F4 48 27 · 32

Bn, n ≥ 2 2n2 n! · 2n E6 72 27 · 34 · 5
Cn, n ≥ 2 2n2 n! · 2n E7 126 210 ·34 ·5 ·7
Dn, n ≥ 4 2n2 − 2n n! · 2n−1 E8 240 214 ·35 ·52 ·7
G2 12 12

I2(m), m ≥ 3 2m 2m H3 30 120
H2 10 10 H4 120 1202

Table 1.1. The numbers of elements of Φ and the orders of finite reflection groups G are
presented.

groups arising from the crystallographic root systems are also known as the Weyl groups
from a Lie theoretic perspective, and we denote them byW . Unlike the non-crystallographic
cases, the Weyl groups have associated Lie algebras.

The classification of finite reflection groups relative to irreducible root systems has been
done for all crystallographic groups in (Bourbaki [17]; Humphreys [67]), and for the non-
crystallographic cases with 5-fold symmetry have been described in (Chen et al. [28]). For
the finite reflection groups, the numbers of roots |Φ| and the orders of finite reflection groups
|G| are listed in Table 1.1.

There are three non-crystallographic reflection groups with 5-fold symmetry, namely H2,
H3 and H4. However, the dihedral group I2(m), m ≥ 3, determines an infinite number of
finite reflection groups. For instance, the crystallographic reflection groups A2, B2 ∼= C2, G2

are provided by the values m = 3, 4, 6, respectively. For m = 5, the corresponding reflection
group is H2. For m ≥ 7, the reflection groups are of non-crystallographic type.

1.3. Coxeter graphs and Dynkin diagrams
Let ∆ = {α1, . . . , αn} be a set of the simple roots with a fixed ordering. A Cartan matrix

corresponding to a finite reflection group G generated by {r1, . . . , rn} is denoted by

CG = (C(G))ij =
(

2〈αi, αj〉
〈αj, αj〉

)
= (cij), i, j ∈ {1, . . . , n}, (1.3.1)

where its entries cij satisfiy the following properties:
(i) if i = j, then cij = 2;

(ii) if i 6= j, then cij ≤ 0;
(iii) cij = 0 implies cji = 0.
Cartan matrices are independent from a choice of ∆; however, the ordering of the sim-

ple roots is important. For the crystallographic root systems, the elements of a Cartan
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matrix are called Cartan integers. However, the entries of the Cartan matrices of the non-
crystallographic reflection groups H2, H3 and H4 are not necessarily integers, and they can
take values from the extension ring Z[τ ] := {a+ τb |a, b ∈ Z}, where τ = 1+

√
5

2 is the positive
root of x2 = x+ 1 called the golden ratio.

Let us consider a root system Φ with a base ∆ = {α1, . . . , αn}. Then, the Coxeter graph
of Φ is a finite undirected graph with

• n vertices, which are in one-to-one correspondence with the elements of ∆, depicted
by white nodes;
• edges connecting two distinct vertices corresponding to αi and αj, if mij > 2.

Furthermore, if mij = 2, then an edge between two vertices is omitted, indicating that
the corresponding simple roots are orthogonal. For mij > 3, an edge is labelled by mij. By
convention, since an edge corresponding to mij = 3 occurs often, we do not label it. Thus,
a Coxeter graph is equivalent to a Coxeter matrix, and it encodes information about the
angles between the simple roots. A Coxeter graph is also referred to as a Coxeter diagram or
a Coxeter–Dynkin diagram. For irreducible root systems, the connected Coxeter diagrams
are presented in Figure 1.3.

For root systems, which contain the roots with equal lengths, it is convenient to use a
Coxeter diagram to recover the corresponding Cartan integers. However, for crystallographic
root systems, which contain the roots with two different lengths, Coxeter diagrams fail to
provide correct values cij. Therefore, it is convenient to consider a modification of the
Coxeter graph called a Dynkin diagram, which can encode not only the angles between the
simple roots, but also their relative lengths. Since the latter determines a root system up to
isomorphism, it can be used interchangeably with a corresponding Cartan matrix.

Let us consider a crystallographic root system Φ with a base ∆ = {α1, . . . , αn}. Then,
the Dynkin diagram is a graph with

• n vertices, which are in one-to-one correspondence with the elements of ∆, depicted
by white (black) nodes in the case of long (short) simple roots;
• edges connecting two distinct vertices corresponding to αi and αj, if cij 6= 0 (1.3.1);
the number of edges between any two nodes is determined by

(αi, αj)(αj, αi) = 4 cos2 θij,

where θij is provided by (1.2.2).
Let us recall that crystallographic root systems satisfy an extra condition (αi, αj) ∈ Z.

Since 0 ≤ cos2 θij ≤ 1, we have that (αi, αj)(αj, αi) ∈ {0, 1, 2, 3, 4}. However, as the simple
roots αi and αj are linearly independent, the relation cos θij = ±1 providing the angles
θij ∈ {0, π} between the simple roots is omitted. Therefore,

(αi, αj)(αj, αi) ∈ {0, 1, 2, 3}.
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〈αi, αj〉 〈αj, αi〉 θij ‖αi‖2 / ‖αj‖2

0 0 π/2 undetermined
−1 −1 2π/3 1
−1 −2 3π/4 2
−1 −3 5π/6 3

Table 1.2. Relations for the simple root of the crystallographic root systems.

Let us recall that for any two vectors α, β ∈ E, the standard scalar product is given by

〈α, β〉 = ‖α‖ ‖β‖ cos θαβ.

Then, the scalar product (1.1.2) can be explicitly written as

(αi, αj) = 2〈αi, αj〉
〈αj, αj〉

= 2‖αi‖
‖αj‖

cos θij. (1.3.2)

From property (ii) of a Cartan matrix (1.3.1), we notice that 〈αi, αj〉 < 0 and 〈αj, αi〉 < 0.
Therefore, the angle between two distinct simple roots αi and αj is not acute, which implies
that cos θij ≤ 0. The corresponding angles together with the length ratios are provided in
Table 1.2.

Similarly to Coxeter diagrams, the absence of a link between the nodes indicates that
the corresponding simple roots are orthogonal. A single, double and triple links corresponds
to the angles 2π/3, 3π/4, 5π/6 between the simple roots αi and αj, or the angles π/3, π/4,
π/6 between the corresponding reflecting hyperplanes Pαi and Pαj , respectively. For the
crystallographic root systems An, Bn, Cn, Dn and the exceptional cases G2, F4, E6, E7, E8,
the Dynkin diagrams are presented in Figure. 1.4.

1.4. Dual bases and corresponding lattices
Let Φ be a root system with a base ∆. The elements of the set Ω = {ωi | i = 1, . . . , n},

are called the fundamental weights (relative to ∆), and they form the ω−basis,

(ωi, αj) = 2〈ωi, αj〉
〈αj, αj〉

= δij. (1.4.1)

where δij denotes the Kronecker delta.
The lengths of the fundamental weights and the relative angles between them are provided

by a quadratic form matrix (Bremner et al. [21]) as

Cq
G = (C(G))qij = (〈ωi, ωj〉), i, j ∈ {1, . . . , n}. (1.4.2)
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An, n ≥ 1 : I2(m), m ≥ 3 :
m

Bn, n ≥ 2 :
4

H2 :
5

Dn, n ≥ 4 : H3 :
5

E6 : H4 :
5

E7 :

E8 :

F4 :
4

G2 :
6

Fig. 1.3. The complete classification of all connected Coxeter diagrams.

An, n ≥ 1 :

Bn, n ≥ 2 :

Cn, n ≥ 3 :

Dn, n ≥ 4 :

E6 :

E7 :

E8 :

F4 :

G2 :

Fig. 1.4. The complete classification of all connected Dynkin diagrams.
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For root systems with equal root lengths, the matrix (1.4.2) coincides with the inverse of a
Cartan matrix denoted by C−1

G ,

Cq
G = C−1

G = (C(G))−1
ij .

The link between α− and ω−bases is provided by a Cartan matrix (1.3.1) and its in-
verse as

αi =
n∑
j=1

CGωj, ωi =
n∑
j=1

C−1
G αj, i, j ∈ {1, . . . , n}.

Using formulas (1.1.3) and (1.4.3), the action of a reflection ri on ωj is provided by

ri(ωj) = ωj −
2〈αi, ωj〉
〈αi, αi〉

αi = ωj − δijαi, i, j ∈ {1, . . . , n}.

Let Φ∨ be a root system in E, whose crystallographic group is canonically isomorphic
to W . Then, Φ∨ = {α∨1 , . . . , α∨n} is the inverse of Φ = {α1, . . . , αn} called a coroot system.
For any αi ∈ Φ, a dual root (coroot) α∨i is determined by

α∨i = 2αi
〈αi, αi〉

, i ∈ {1, . . . , n}.

Similarly to a coroot, dual weights (coweights) are expressed as

ω∨i = 2ωi
〈αi, αi〉

, i ∈ {1, . . . , n}.

The duality relations between (co)root and (co)weight bases are provided by
2〈αi, ωj〉
〈αi, αi〉

≡ 〈α∨i , ωj〉 = δij,
2〈αi, ωj〉
〈αj, αj〉

≡ 〈αi, ω∨j 〉 = δij, i, j ∈ {1, . . . , n}. (1.4.3)

The set of all linear combinations of the simple roots (coroots) forms a root (coroot)
lattice in E as

Q = Zα1 + · · ·+ Zαn, Q∨ = Zα∨1 + · · ·+ Zα∨n .

The set of all linear combinations of the fundamental weights (coweights) forms a weight
(coweight) lattice in E as

P = Zω1 + · · ·+ Zωn, P∨ = Zω∨1 + · · ·+ Zω∨n .

The relations between the lattices and the bases of (co)roots and (co)weights are deter-
mined by the following diagram

{α1, . . . , αn} ⊂ Q Q∨ ⊃ {α∨1 , . . . , α∨n}
∩ × ∩

{ω1, . . . , ωn} ⊂ P P∨ ⊃ {ω∨1 , . . . , ω∨n}

The symbol “×” indicates that the lattices Q and P∨, as well as the lattices Q∨ and P ,
are Z–dual to each other, as required by relations (1.4.3).
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1.5. Affine Weyl group and fundamental region
Let us consider crystallographic reflection groups. Let us recall that for any root sys-

tem Φ, whose roots have equal lengths, there is a unique highest long root denoted by ξ.
The highest root ξ and the highest coroot, denoted by η, are defined by linear combinations
of the simple roots αi ∈ ∆, i ∈ {1, . . . , n} and coroots α∨j ∈ ∆∨, j ∈ {1, . . . , n}, respectively,

ξ = m1α1 + · · ·+mnαn, η = m∨1α
∨
1 + · · ·+m∨nα

∨
n ,

where mi and m∨i are called marks and dual marks (comarks), respectively.
Let ∆ = {α1, . . . , αn} be a set of simple roots of a crystallographic root system, and let

W be a corresponding Weyl group. For the highest root ξ, the reflection across the reflecting
hyperplane Pξ = {x ∈ E | 〈x, ξ〉 = 0} passing through the origin is given by the formula,

rξx = x− 2〈x, ξ〉
〈ξ, ξ〉

ξ.

The affine reflection across the reflecting hyperplane Pξ passing through ξ/2 is provided by

r0x = rξx+ 2ξ
〈ξ, ξ〉

.

The affine Weyl group, which is denoted by W aff, is generated by reflections ri, i ∈
{0, 1, . . . , n}. Equivalently,W aff is defined as the semidirect product of the group of shifts Q∨

and Weyl group W ,
W aff = Q∨ oW.

The fundamental region of W aff, which is denoted by F , is provided by the convex hull
of the points

{
0, ω

∨
1

m1
, . . . , ω

∨
n

mn

}
,

F =
{

n∑
i=1

aiω
∨
i | a0 +

n∑
i=1

aimi = 1, a0, . . . , an ∈ R≥0
}

=
{
x ∈ E | 〈x, α〉 ≥ 0, ∀α ∈ ∆, 〈x, ξ〉 ≤ 1

}
,

and it has the property that W affF = E.
The points contained within the fundamental region F satisfy the following properties:
(i) For any x ∈ E, there exists x′ ∈ F , w ∈ W , q∨ ∈ Q∨, such that the relation

x = wx′ + q∨ holds.
(ii) For any x, x′ ∈ F , such that x′ = waffx, where waff ∈ W aff, it holds that x = x′.

(iii) For any point x = a1ω1 + · · ·+ anωn ∈ F , such that a0 + a1ω1 + · · ·+ αnωn = 1, the
stabilizer of a point x is given by

StabW aff(x) =
{
waff ∈ W aff | waffx = x

}
. (1.5.1)
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For x ∈ int(F ), i.e., ai > 0, i ∈ {1, . . . , n}, we have that StabW aff(x) = 1. Otherwise,
the isotropy group StabW aff(x) is generated by ri, for which ai = 0, i = {1, . . . , n}.

The dual affine Weyl group, which is denoted by Ŵ aff, is generated by reflections ri,
i ∈ {1, . . . , n} and a reflection r∨0 ,

r∨0 x = rηx+ 2η
〈η, η〉

, r∨η x = x− 2〈x, η〉
〈η, η〉

, x ∈ E.

Equivalently, Ŵ aff is defined as the semidirect product of the group of shifts Q and Weyl
group W ,

Ŵ aff = QoW.

The fundamental region of Ŵ aff, which is denoted by F∨, is provided by the convex hull
of the points

{
0, ω1

m∨1
, . . . , ωn

m∨n

}
as

F∨ =
{

n∑
i=1

biωi | b0 +
n∑
i=1

bim
∨
i = 1, b0, . . . , bn ∈ R≥0

}

=
{
x ∈ E | 〈x, α∨〉 ≥ 0, ∀α∨ ∈ ∆∨, 〈x, η〉 ≤ 1

}
,

and it has the property that Ŵ affF∨ = E.
The properties of the fundamental region F∨ are similar to the properties of F , and they

can be found in (Hrivnák and Patera [63]).

1.6. Grids FM and ΛM

The grids FM and ΛM are pertinent for the definition of the Weyl-orbit functions and the
corresponding discrete Fourier-Weyl transforms, as they provide the sampling point sets and
label sets, respectively (see Chapter 2). In this case, M is considered as the scaling factor.

For any fixed M ∈ N, the order of the W−invariant quotient group 1
M
P∨/Q∨ is given by∣∣∣∣ 1

M
P∨/Q∨

∣∣∣∣ = cMn,

where
c = |P/Q| = |P∨/Q∨| = det CG. (1.6.1)

The grid FM comprises cosets from the W−invariant group 1
M
P∨/Q∨, which have repre-

sentative elements in F . More precisely,

FM ≡
1
M
P∨/Q∨ ∩ F.

The points of FM can be written explicitly as

FM =
{

n∑
i=1

sn
M
ω∨n | s0 +

n∑
i=1

snmn = M, s0, s1, . . . , sn ∈ Z≥0
}
. (1.6.2)
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M = 2 M = 3 M = 5

Fig. 1.5. The fundamental region of the Weyl group A3 is shown. The vectors ω1, ω2 and
ω3 correspond to the fundamental weights of A3. For M = 2, 3 and 5, the points of the grid
FM are depicted by black color.

Excluding the points of the grid FM found on the boundary of the fundamental region F ,
we obtain the points corresponding to the interior of F . Thus,

F̃M ≡
1
M
P∨/Q∨ ∩ int(F ).

The points of F̃M are explicitly written as

F̃M =
{

n∑
i=1

s′n
M
ω∨n | s′0 +

n∑
i=1

s′nmn = M, s′0, s
′
1, . . . , s

′
n ∈ N

}
. (1.6.3)

The grid ΛM is defined as cosets from the W−invariant group P/MQ, which have rep-
resentative elements in MF∨,

ΛM ≡ P/MQ ∩MF∨.

The points of ΛM can be explicitly written as

ΛM =
{ n∑
i=1

λnωn | λ0 +
n∑
i=1

λnm
∨
n = M,λ0, . . . , λn ∈ Z≥0

}
. (1.6.4)

Excluding the points of the grid ΛM found on the boundary of the magnified fundamental
region MF∨, we obtain the points corresponding to the interior of MF∨. Thus,

Λ̃M ≡ P/MQ ∩ int(MF∨).

The points of Λ̃M are explicitly written as

Λ̃M =
{ n∑
i=1

λ′nωn | λ′0 +
n∑
i=1

λ′nm
∨
n = M,λ′0, . . . , λ

′
n ∈ N

}
. (1.6.5)

For irreducible crystallographic groups, the n-tuple of marks (m1, . . . ,mn) is a permu-
tation of the n-tuple of comarks (m∨1 , . . . ,m∨n). Therefore, the cardinalities of (1.6.2) and
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(1.6.4), as well as (1.6.3) and (1.6.5), are equal,

|FM | = |ΛM |, |F̃M | = |Λ̃M |.

The formulas providing the numbers of points of FM and F̃M have been derived for
irreducible crystallographic groups in (Hrivnák and Patera [63]). For example, for the crys-
tallographic group A3, whose dual root and dual weight lattices coincide, the fundamental
region F is given by the convex hull of the points {0, ω1, ω2, ω3}. The grids FM contained
within the fundamental region F are presented for M = 2, 3 and 5 in Figure 1.5.

1.7. Orbits of finite reflection groups
For any finite reflection group G, let λ ∈ E be a vector in the ω−basis, such that

λ =
n∑
i=1

aiωi ≡ (a1, a2, . . . , an), ai ∈ Z≥0. (1.7.1)

Then, we have that λ ∈ D+, and λ is a called a dominant weight. However, for ai ∈ Z>0,
i ∈ {1, . . . , n}, the vector λ is strictly positive, and it does not lie on the boundary of D+.

An orbit of points of a finite Coxeter group arises from the action of its elements on
λ ∈ E as

OG(λ) = {gλ | g ∈ G} . (1.7.2)

Therefore, λ is also called a dominant (seed) point, and it is used to characterize each
orbit of a finite reflection group G. Note that in Chapter 3, the notation Oλ(G) is also
utilized to denote an orbit of G.

In the geometric interpretation, the points of an orbit are recognized as the vertices of
a polytope in E. The number of orbit points can be determined by using a corresponding
Coxeter/Dynkin diagram (Campagne et al. [29]). The coordinates of the dominant weight
λ mark the nodes of a corresponding Coxeter/Dynkin diagram. The nodes that are marked
by zeros indicate the reflections corresponding to a subgroup G′ ⊂ G.

Therefore, the number of elements of an orbit with a dominant point λ is equal to

|OG(λ)| = |G|
|G′|

= |G|
|StabG(λ)| ,

where the stabilizer of a point λ is determined by

StabG(λ) = {gλ = λ | g ∈ G}. (1.7.3)

If λ is strictly positive, then |OG(λ)| = |G|. For every G, the size of a corresponding
orbit with λ = 0 is given by |OG(0)| = 1, since, in this case, |G| = |G′|. The orders of the
crystallographic and non-crystallographic reflection groups are listed in Table 1.1.
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1.8. Weyl orbit functions
There are three families of Weyl-orbit functions that have been defined for crystallo-

graphic root systems with one root length. The two families of (anti)symmetric multivariate
exponential Weyl orbit functions, called C− and S−functions, have been formulated and
studied in detail in (Klimyk and Patera [78, 79]). Since this study focuses only on the
C−and S−functions, the pertinent information about the third family, known as even orbit
functions or E−functions, can be found in (Klimyk and Patera [80]). The discretized ver-
sions of such functions and their properties have been investigated in (Hrivnák and Patera
[63]; Hrivnák et al. [59]). For crystallographic root systems that comprise the roots with
two different lengths, the two families of orbit functions, called Ss−, Sl−functions, have
been extensively studied [for instance, see (Hrivnák et al. [59])], where the notations l and
s correspond to the long and short roots of a root system.

For any label b ∈ E and any point x ∈ E, the complex-valued smooth C− and
S−functions are provided by the sum of exponential terms as

Φb(x) =
∑
w∈W

e2πi〈wb,x〉,

ϕb(x) =
∑
w∈W

det(w)e2πi〈wb,x〉,

where det(w) denotes the determinant of w. More precisely, det(w) = (−1)k whenever w
can be expressed as a product of k reflections, and det(w) = 1, otherwise (Humphreys [67]).

For C−functions, all terms have positive sign, and such functions are called symmetric
orbit functions. For S−functions, the sing of each contributing term depends on det(w) =
{±1}, and such functions are called antisymmetric orbit functions. Let us recall the crucial
properties of (anti)symmetric orbit functions:

• Invariance
Since the scalar product 〈·, ·〉 in E is invariant with respect to a crystallographic
reflection groupW , i.e., 〈wx,wy〉 = 〈x, y〉, for w ∈ W and x, y ∈ E, the corresponding
C− and S−functions are (anti)symmetric under the action of any element w ∈ W ,

Φwb(x) = Φb(wx) = Φb(x),

ϕwb(x) = ϕb(wx) = det(w)ϕb(x).

The discretized C− and S−functions are invariant under the translation by any
coroot-lattice vector q∨ ∈ Q∨ as

Φb(x+ q∨) = Φb(x),

ϕb(x+ q∨) = ϕb(x).
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• Duality and scaling symmetry
The duality of C− and S−functions is expressed as

Φb(x) = Φx(b), ϕb(x) = ϕx(b).

For any real-valued parameter t ∈ R, the scaling symmetry is given by the relations,

Φb(tx) = Φtb(x), ϕb(tx) = ϕtb(x).

• Orthogonality
The continuous orthogonality of C− and S−functions has been defined in (Klimyk
and Patera [78, 79]; Moody and Patera [105]), and the discrete orthogonality has
been studied in detail in (Hrivnák and Patera [63]) The discrete orthogonality of
Ss− and Sl−functions has been investigated in (Hrivnák et al. [59]). In this study,
the discrete orthogonality of C− and S−functions is described in detail for the crys-
tallographic refection group A2 in Chapter 2.

1.9. Applications of finite reflection groups in the mod-
elling of nanostructures

This section aims to discuss the applications of finite reflection groups in modelling
various structures, such as fullerenes, viruses, biomolecules, and de novo-designed structures.
As well, we briefly cover the real-world applications of the mentioned structures.

The discovery of the fullerene C60 (Kroto et al. [84]) has immediately attracted the
great attention of research communities worldwide, stimulating numerous experimental and
theoretical studies. The fullerene C60 is a hollow spherical molecule entirely composed of
carbon. More precisely, it has a structure provided by the truncated icosahedron with the
carbon atoms located at each vertex. Thus, the structure of C60 contains twenty hexagonal
and twelve pentagonal faces. Each hexagonal face is adjacent to three hexagonal and three
pentagonal faces. The molecule C60 has two types of bonds along the polygon-polygon edges:
double bonds provided by an edge shared by two hexagonal faces and single bonds formed
between pentagonal and hexagonal faces. This means that the fullerene molecules do not
have free valencies, and hence, they act as insulators in their pure state (Degiorgi [40]).

During the past decades, more fullerene molecules were discovered to exist in nature
(Diederich and Whetten [42]; Taylor and Walton [137]; Fowler and Manolopoulos [52]).
The fullerenes can vary in size, and they are shaped as hollow spheroids, ellipsoids and
tubes. The structures of the latter can be achieved by cutting a graphene layer (Geim and
Novoselov [53]), rolling it into a cylindrical tube, and closing both ends with two hemispheres
obtained by cutting the fullerene molecule in half. The resulting structures are called carbon
nanotubes (Dresselhaus et al. [46, 47]). However, depending on the potential applications,
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it may not be necessary to close a nanotube’s ends (Gupta et al. [56]; Rols et al. [128]).
Moreover, multi-shell nanostructures, such as nested fullerenes (fullerene onions) and multi-
wall nanotubes, have been also considered (Mar et al. [96]; Andrews et al. [6]).

The promising applications of the fullerene molecules, especially in electronics and
medicine, have served as the stepping stone to the field of carbon-based nanotechnology.
During the past decades, the biological applications of fullerene molecules, particularly those
related to cancer and anti-viral treatment, have been thoroughly investigated. For exam-
ple, due to the hollow-cage structure, the fullerenes can be used as traps or containers for
other atoms or molecules, becoming suitable candidates for drug delivery (Bianco et al. [12];
Kazemzadeh and Mozafari [73]). On the other hand, the carbon nanotubes, which can
vary in length and diameter, exhibit significant electrical and mechanical properties, making
them appropriate for developing electrochemical biosensors (Yang et al. [147]), hard tissue
engineering (Ravanbakhsh et al. [129]), and other pertinent applications (Popov [121]).

Due to the increasing interest in the mathematical modelling of carbon nanotubes, the
group-theoretical approach to constructing such molecules has been developed in (Bodner et
al. [13, 14, 15]). The main idea of such an approach is based on a symmetry-breaking mech-
anism. In this case, we utilize the symmetry reduction of the icosahedral group H3 to the
symmetries of its two-dimensional subgroups G′. This reduction permits us to consider the
points of three-dimensional orbit corresponding to the vertices of the truncated icosahedron
as a sum of two-dimensional orbits provided by the symmetries of the subgroupsG′. The orbit
decomposition provides the so-called ‘pancake’-structure of a polytope. Then, the fullerene
can be cut in half in such a way that the top and bottom caps contain the same number of
two-dimensional faces. Adding more circular/polygonal orbits in the ‘middle’ of the decom-
position results in the structures of larger fullerene molecules and closed carbon nanotubes
of types armchair (Bodner et al. [13]), zig-zag (Bodner et al. [14]) and chiral (Bodner et
al. [15]). For the first two types of nanotubes, an appropriate number of circular/polygonal
orbits should be inserted between the fullerene’s top and bottom caps to construct a larger
fullerene molecule. However, many complete loops of a spiral of hexagons need to be inserted
for the chiral case, making the structural extension of C60 quite challenging. Recently, sym-
metry breaking of the other two polytopes with icosahedral symmetry containing 60 vertices
within their structures has been investigated in (Bourret and Grabowiecka [18]).

Symmetry breaking plays an essential role in the field of mathematical virology. Virus
particles are molecular machines that constantly optimize their structures to infect a host
faster and more efficiently. The virus structure contains a viral genome (nucleic acid, i.e.,
either single- or double-stranded RNA or DNA) and a viral capsid, which protects the viral
genome. For the vast majority of viruses, the viral capsids possess helical or icosahedral
symmetry. A viral capsid is assembled from building subunits called capsomers. In order
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(a) (b)

(c)

Fig. 1.6. The structure of the triplet is presented. (a) For simplicity, the bonds of tetrahe-
dral atoms are depicted by orange edges; (b) The angles depicted by blue, orange, pink and
green colors correspond to the values 109.47◦, 101.02◦, 100.67◦ and 117.58◦, respectively.
(c) The top-view of the triplet.

to describe non-quasi equivalent capsid architectures, the viral tiling theory has been de-
veloped in (Twarock [140]). The viral tiling theory allows constructing Penrose-like tilings
on the surface of a sphere, which help to describe the assembly models of various viruses
[for instance, see (Keef et al. [75])] In this case, each tile represents diverse types of inter-
actions between the proteins forming a viral capsid. As the capsid architecture impacts the
packaging of a viral genome, the multi-shell nanostructures, such as fullerene onions, have
been employed to predict the organization of viral components (Dechant et al. [38]). Since
all viruses are dynamic infectious agents that evolve, perform packaging of viral genome, as
well as protecting and releasing it inside a host cell, a better understanding of symmetry
breaking of the three-dimensional polytopes with icosahedral symmetry is crucial for the
further developments in mathematical virology (Dechant and Twarock [39]).
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In this thesis (see Chapters 4 and 5), a symmetry-breaking mechanism is applied to the
family of the dual polytopes of the icosahedral group H3 and crystallographic groups A3,
B3(C3). Each family contains seven polytopes, which are provided by a particular type of
seed point. The procedure developed for C60 (Bodner et al. [13, 14, 15]) is then applied to
each considered polytope, allowing the construction of various types of nanotubes. Although
some structures are purely abstract and cannot be ‘fullerenes’ as such, a symmetry-breaking
technique still allows studying these objects in full mathematical generality so that potential
future structures are included. If ever such structures would be found to exist in nature
or manufactured, a promising area of research would be the investigation of their physical
and chemical properties, as well as their potential applications. Moreover, the nanotubes
presented in this thesis could be potentially useful for the description of the architecture of
tube-shaped viruses (Twarock [141]).

Even though the approaches based on finite reflection groups are beneficial for modelling
the (non)crystallographic structures, their applications become very limited when construct-
ing hierarchical, modular and almost-symmetric structures. Indeed, it is a challenging task
to model, for example, the crystalline modular structures described in (Bulienkov [25]). For
example, in Figure 1.6, we present the triplet depicted in Figure 6(h) of (Bulienkov [25])
that has been modelled by hand using GeoGebra software. This triplet contains 20 vertices
and 28 edges with the same lengths. In this structure, there are four different angles be-
tween the edges (see Figure 1.6(b)). As we can observe from Figure 1.6(c), the structure of
the triplet viewed from the top exhibits 3-fold symmetry. However, this structure contains
several non-planar hexagons, and it cannot be obtained using only finite reflection groups.
Therefore, modelling such crystalline structures using group theoretical methods remains
a very challenging problem. Understanding the assembly of such structures would signifi-
cantly impact many scientific fields, including molecular biology, biomedicine, virology, and
nanotechnology.
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Résumé. Deux types de transformées de Fourier-Weyl en treillis de poids discrets biva-
riés sont liés par la décomposition en division centrale. Les fonctions orbitales symétriques
et antisymétriques de Weyl à deux variables du groupe de réflexion cristallographique A2

constituent les noyaux des transformées considérées. La division centrale de toute fonction
transportant des données en une somme de composantes, qui dépendent du nombre d’élé-
ments du centre de A2, est utilisée pour réduire la transformée de Fourier-Weyl du réseau
de poids d’origine en différentes transformées de division de réseau de poids. Les éléments
de réseau de poids se croisant avec un tiers de la région fondamentale du groupe affine de
Weyl déterminent l’ensemble de points des transformées de division. Les décompositions
matricielles unitaires des transformées de Fourier-Weyl du réseau de poids normalisé sont
présentées. Le comportement d’interpolation et les matrices de transformées unitaires des
transformées de Fourier-Weyl séparant le réseau de poids sont également illustrés.
Mots clés : fonction orbitale de Weyl, transformée de Fourier discrète, classe de congruence,
treillis de poids, division central

Abstract. Two types of bivariate discrete weight lattice Fourier–Weyl transforms are
related by the central splitting decomposition. The two-variable symmetric and antisym-
metric Weyl orbit functions of the crystallographic reflection group A2 constitute the kernels
of the considered transforms. The central splitting of any function carrying the data into
a sum of components governed by the number of elements of the center of A2 is employed
to reduce the original weight lattice Fourier–Weyl transform into the corresponding weight
lattice splitting transforms. The weight lattice elements intersecting with one-third of the
fundamental region of the affine Weyl group determine the point set of the splitting trans-
forms. The unitary matrix decompositions of the normalized weight lattice Fourier–Weyl
transforms are presented. The interpolating behavior and the unitary transform matrices of
the weight lattice splitting Fourier–Weyl transforms are exemplified.
Keywords: Weyl orbit function, discrete Fourier transform, congruence class, weight lat-
tice, central splitting

2.1. Introduction
The purpose of this article is to construct a decomposition of the discrete weight lattice

Fourier–Weyl transforms (Hrivnák and Patera [63]; Patera and Zaratsyan [118]) associated
with the crystallographic reflection group A2 into the corresponding splitting transforms.
The decomposition is achieved via the central splitting (Moody and Patera, [105]) of a given
function that is sampled on points from the triangular fragment of the rescaled A2 weight
lattice. The unitary matrix decompositions of the normalized weight lattice Fourier–Weyl
transforms serve as the first steps for development of fast recursive evaluation algorithms
(Britanak et al. [24]).

The discrete Fourier transforms on lattices became possible after the uniform tori dis-
cretization of semisimple Lie groups was developed for cosine functions (Moody and Patera
[101, 102]) and expanded to sine functions (Moody and Patera [105]). This approach pro-
vided the foundation for the Fourier calculus of (anti)symmetric orbit functions that have
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been developed on the points of the refined weight (Hrivnák and Walton [65]) dual weight
(Hrivnák and Patera [63]; Hrivnák et al. [59]) and dual root lattices (Hrivnák and Mot-
lochová [62]; Czyżycki et al. [34]). The three families of the Weyl orbit C−, S− and
E−functions (Klimyk and Patera [78, 79, 80]) together with their seven hybrid versions
(Moody et al. [99]; Hrivnák et al. [59]; Hrivnák and Juránek [60]), which constitute the
kernels of the discrete Fourier–Weyl transforms, have been formulated and described in full
generality. The periodicity, (anti)symmetry and boundary properties of the (anti)symmetric
Weyl orbit functions labeled by dominant weights from the weight lattices provide a frame-
work for the generalized discrete cosine and sine transforms pertinent to digital data pro-
cessing. For the crystallographic reflection group A2, since the fundamental domain of the
affine Weyl group has a shape of an equilateral triangle, the unique boundary behavior of
the two-variable complex-valued Weyl orbit functions is imposed by the Dirichlet and Neu-
mann boundary conditions (Klimyk and Patera [78, 79]). As finite sums of the multivariate
exponential functions, the Weyl orbit functions are usually sampled on points of the rescaled
(dual) weight lattice comprised within the fundamental region and labeled by weights from
the magnified fundamental domain (Hrivnák and Patera [63]; Hrivnák et al. [59]). The de-
compositions of these weight lattice transforms to the related root-lattice-based transforms
are founded on the idea of the central splitting.

The central splitting of any generic linear combination of the Weyl orbit functions (Moody
and Patera [105], Section 7) is applied to discretized functions that are expressed as combi-
nations of orbit functions via the weight lattice Fourier–Weyl transforms. Depending on the
order of the center of the associated compact Lie group (Hrivnák and Patera [63], Moody
and Patera [105]), a shortcut to a data-decomposition is provided by the central splitting of
any function f , that is sampled on the weight lattice points contained in the A2 fundamental
region, into a sum of three decomposition functions f0, f1 and f2. This consideration stems
from the fact that the Fourier–Weyl transforms of each f−component depend only on one
congruence class of the weight lattice labels which characterize the corresponding Weyl orbit
functions (Moody and Patera [105]). Due to the interlaced additional argument symmetry of
the decomposition functions f0, f1 and f2 under the action of the extended affine Weyl group,
their values are determined on the points of the refined weight lattice comprised within the
corresponding kite-shaped fundamental domain. As a result, the reduction of the weight
lattice transform is achieved, and the original decomposition of the function f splits into
three smaller problems that are tackled faster and more efficiently. Since the root and dual
root lattices as well as the weight and dual weight lattices of the root system A2 coincide,
the splitting Fourier–Weyl transforms that process the component functions are deduced
from the dual-root lattice transforms. In particular, it appears that the crucial exact forms
for the A2 splitting transforms are obtained by reversing the roles of the points and labels
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inherent in the generalized dual root lattice transforms (Czyżycki et al. [34]; Hrivnák and
Motlochová [62]).

The Fourier–Weyl transforms provide efficient tools for the corresponding Fourier meth-
ods (Li et al. [90]) and the associated multivariate Chebyshev polynomial methods (Moody
et al. [99]). For two-variable Weyl orbit functions, the discrete and continuous cosine trans-
forms, together with their continuous interpolations, are formulated in (Patera and Zaratsyan
[117, 118]) and later extended to sine transforms in (Patera and Zaratsyan [119]). Fur-
thermore, the interpolation applications of extended Weyl orbit functions have been recently
tested for the discrete armchair honeycomb lattice transforms (Hrivnák and Motlochová
[61]). In light of the relevance of such applications to digital data processing, in this paper,
the developed A2 splitting transforms are examined for their interpolation properties. In
general, the discrete and continuous Fourier transforms are fundamental to numerous areas
of science and technology involving data processing. Their pertinent applications span var-
ious domains, such as signal processing (Flamant et al. [51]; Püschel and Moura [125]),
pattern recognition (Zheng et al. [153]), encryption (Liu et al. [93]), image and video com-
pression/decompression (Rasheed et al. [127]), magnetic resonance imaging (Irarrazaval et
al. [69]), ultrasound imaging (Lahav et al. [86]) and watermarking (Hernández et al. [58],
Kahlessenane et al. [71]). Ever since the discovery of the fast Fourier transforms (Cooley
and Tukey [30]), attempts to modify and improve the evaluation algorithms have been con-
tinuously undertaken (Plonka and Tasche [120]; Püschel and Moura [124]; Püschel [123]).
Since the most ubiquitous recursive algorithms contain as their embedded steps the decom-
positions directly related to the central splitting idea (Britanak et al. [24]), the developed
decomposition directly contributes to formulation of similar recursive evaluation algorithms
on the equilateral triangle. Moreover, the decomposition techniques derived for the A2 case
represent a foundation for further generalizations of recursive formalisms to analogous 2D
and 3D cases.

The paper is organized as follows. In Section 2.2, pertinent information concerning the A2

root and weight lattices together with the induced crystallographic reflection group A2 and its
infinite extensions is recalled. The sets of points and weights of the weight lattice and splitting
transforms are introduced. In Section 2.3, the definition of two families of (anti)symmetric
orbit functions and their discrete orthogonality relations are provided, the weight lattice
Fourier–Weyl transforms and their splitting versions are presented. In Section 2.4, the central
splitting of the discrete weight lattice transforms is described in detail. The corresponding
decomposition of the unitary matrices associated with the normalized discrete Fourier–Weyl
transforms is deduced. Comments and follow-up questions are covered in the last section.
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2.2. Splitting weight and point sets
2.2.1. Root and weight lattices

The fundamental concepts and pertinent properties of the simple Lie algebra A2 and
its root system are provided in (Bourbaki [17]; Humphreys [66]). The simple roots α1

and α2 of A2 form a non-orthogonal α−basis in the two-dimensional Euclidean space R2.
The geometric properties of the simple roots of A2, such as their lengths and the relative
angle between them, are provided by the standard scalar product 〈 , 〉:

〈α1, α1〉 = 〈α2, α2〉 = 2, 〈α1, α2〉 = −1. (2.2.1)

In addition, it is essential to introduce the basis of fundamental weights that is known
as ω−basis. The ω−basis comprises the vectors ω1 and ω2, and the duality between α− and
ω−bases is provided by the relation

〈ωi, αj〉 = δij , i, j ∈ {1, 2}. (2.2.2)

The transformation between α− and ω−basis is provided by the Cartan matrix as

α = Cω, ω = C−1α. (2.2.3)

The Cartan matrix of A2 and its inverse have the form

C =
 2 −1
−1 2

 , C−1 = 1
3

2 1
1 2

 . (2.2.4)

The vectors of the α−basis can be explicitly written in terms of ω1 and ω2 as

α1 = 2ω1 − ω2, α2 = −ω1 + 2ω2.

For the A2 root system, the notions of the dual weights ω∨k (Hrivnák and Patera [63];
Hrivnák and Motlochová[62]) together with the dual roots α∨k , k ∈ {1, 2} coincide with the
weights and roots, respectively,

ω∨k = ωk, α∨k = αk. (2.2.5)

Using the inverse transform, the vectors of the ω−basis are provided in terms of α1 and
α2 as

ω1 = 2
3α1 + 1

3α2, ω2 = 1
3α1 + 2

3α2.

Similarly to the simple roots, the fundamental weights ω1 and ω2 are characterized by
their lengths and the relative angle between them as

〈ω1, ω1〉 = 〈ω2, ω2〉 = 2
3 , 〈ω1, ω2〉 = 1

3 . (2.2.6)
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The scalar product of any two vectors a = a1ω1 + a2ω2 and b = b1ω1 + b2ω2 given in the
ω−basis has the form

〈a, b〉 = 1
3(2a1b1 + a1b2 + a2b1 + 2a2b2). (2.2.7)

All integer linear combinations of the simple roots α1 and α2 of A2 form the root lattice
Q ⊂ R2,

Q = Zα1 + Zα2.

Subsequently, the weight lattice P is provided by the set of all integer linear combinations
of fundamental weights ω1 and ω2 as follows,

P = Zω1 + Zω2.

The weight lattice P decomposes into a union of the root lattice Q together with its
shifted copies (Q+ ωi), i ∈ {1, 2} as

P = Q ∪ (Q+ ω1) ∪ (Q+ ω2). (2.2.8)

Hence, the points of the lattice P naturally split into three congruence classes Pk, k ∈
{0,1,2} with respect to each component of the union (2.2.8) as

x = x1ω1 + x2ω2 ∈ Pk, x1 + 2x2 = k mod 3. (2.2.9)

The reflections ri, i ∈ {1, 2} across the hyperplanes orthogonal to the simple root αi and
passing through the origin are linear maps that for any point x ∈ R2 are given as

rix = x− 〈x, αi〉αi. (2.2.10)

The Weyl groupW of A2 is generated by the reflections ri. The action ofW on any point
x = x1ω1 +x2ω2 ∈ P produces the images of x that form the orbit of points equidistant from
the origin,

Wx = {(x1, x2), (−x1, x1 + x2), (x1 + x2,−x2), (x2,−x1 − x2), (−x1 − x2, x1),(−x1,−x2)}.
(2.2.11)

The lattices Q and P are invariant under the action of the Weyl group,

WQ = Q, WP = P. (2.2.12)

The determinant c of the Cartan matrix C coincides with the order of the quotient group
P/Q,

c = detC = |P/Q| = 3. (2.2.13)

The three representative elements zk, k ∈ {0, 1, 2} of the quotient group P/Q are accord-
ing to the decomposition (2.2.8) chosen as

z0 = 0, z1 = ω1, z2 = ω2. (2.2.14)
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2.2.2. Splitting weight sets

The affine Weyl group W aff
Q is an infinite extension of the Weyl group W by shift vectors

of the root lattice Q,
W aff
Q = QoW.

For q ∈ Q and w ∈ W , the action of an element T (q)w on any x ∈ R2 is denoted as

T (q)w · x = wx+ q.

The affine Weyl group is generated by the reflections ri, i ∈ {1, 2} and the affine reflection
r0 provided by

r0x = rξx+ ξ, rξx = x− 〈x, ξ〉ξ, (2.2.15)

where rξ represents the reflection across the hyperplane orthogonal to the highest root ξ =
α1 + α2.

The affine reflections rαi across the hyperplanes orthogonal to the simple roots and pass-
ing through αi/2, i ∈ {1, 2} are given by the formula

rαix = rix+ αi. (2.2.16)

The fundamental region FQ ⊂ R2 of W aff
Q is represented by an equilateral triangle with

the vertices {0, ω1, ω2}. Such a region contains precisely one point of each W aff
Q −orbit,

FQ = {x1ω1 + x2ω2 |x1, x2 ≥ 0, x1 + x2 ≤ 1} . (2.2.17)

For any M ∈ N, the weight sets ΛM and Λ̃M are determined by finite fragments of the
weight lattice P contained within the magnified fundamental region MFQ and its interior
int(MFQ), respectively,

ΛM = P ∩MFQ, (2.2.18)

Λ̃M = P ∩ int(MFQ). (2.2.19)

The explicit forms of the weight sets ΛM and Λ̃M are as follows,

ΛM =
{
λ1ω1 + λ2ω2 |λ0, λ1, λ2 ∈ Z≥0, λ0 + λ1 + λ2 = M

}
, (2.2.20)

Λ̃M = {λ1ω1 + λ2ω2 |λ0, λ1, λ2 ∈ N, λ0 + λ1 + λ2 = M} . (2.2.21)

The weights in the weight sets (2.2.20) and (2.2.21) are determined by their Kac coordi-
nates,

λ = [λ0, λ1, λ2] ∈ ΛM . (2.2.22)

The splitting weight sets Λ(k)
M , k ∈ {0, 1, 2}, that form a disjoint decomposition of the

weight set ΛM ,
ΛM = Λ(0)

M ∪ Λ(1)
M ∪ Λ(2)

M , (2.2.23)
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are defined by finite fragments of the shifted copies (2.2.8) of the root lattice Q comprised
within the region MFQ,

Λ(k)
M = Pk ∩MFQ. (2.2.24)

The interior splitting weight sets Λ̃(k)
M , k ∈ {0, 1, 2}, that form a disjoint decomposition

of the weight set Λ̃M ,
Λ̃M = Λ̃(0)

M ∪ Λ̃(1)
M ∪ Λ̃(2)

M , (2.2.25)

are contained within the interior int(MFQ),

Λ̃(k)
M = Pk ∩ int(MFQ). (2.2.26)

Taking into account the congruence decomposition relation (2.2.9) together with the
forms of the weight sets (2.2.20) and (2.2.21), the weight sets Λ(k)

M and Λ̃(k)
M are explicitly

described as

Λ(k)
M =

{
λ1ω1 + λ2ω2 |λ0, λ1, λ2 ∈ Z≥0, λ0 + λ1 + λ2 = M,λ1 + 2λ2 = k mod 3

}
, (2.2.27)

Λ̃(k)
M = {λ1ω1 + λ2ω2 |λ0, λ1, λ2 ∈ N, λ0 + λ1 + λ2 = M,λ1 + 2λ2 = k mod 3} . (2.2.28)

The numbers of weights in the weight sets ΛM and Λ̃M are calculated in [63] as

|ΛM | = 1
2(M2 + 3M + 2), (2.2.29)∣∣∣Λ̃M

∣∣∣ = 1
2(M2 − 3M + 2). (2.2.30)

The numbers of weights in the splitting weight sets Λ(k)
M , k ∈ {0, 1, 2} together with their

interior versions are determined in the following proposition.
Proposition 1. The numbers of weights contained in the splitting sets Λ(k)

M , k ∈ {0, 1, 2}
are determined as

∣∣∣Λ(0)
M

∣∣∣ =


1
6(M2 + 3M + 6) M = 0 mod 3,
1
6(M2 + 3M + 2) otherwise;

(2.2.31)

∣∣∣Λ(1)
M

∣∣∣ =
∣∣∣Λ(2)

M

∣∣∣ =


1
6(M2 + 3M) M = 0 mod 3,
1
6(M2 + 3M + 2) otherwise.

(2.2.32)

The numbers of weights contained in the interior weight sets Λ̃(k)
M , k ∈ {0, 1, 2} are given by

∣∣∣Λ̃(0)
M

∣∣∣ =


1
6(M2 − 3M + 6) M = 0 mod 3,
1
6(M2 − 3M + 2) otherwise;

(2.2.33)

∣∣∣Λ̃(1)
M

∣∣∣ =
∣∣∣Λ̃(2)

M

∣∣∣ =


1
6(M2 − 3M) M = 0 mod 3,
1
6(M2 − 3M + 2) otherwise.

(2.2.34)
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Proof. Preserving the notation for the point sets F 1
Q∨,M and F σe

Q∨,M of A2 from (Hrivnák
and Motlochová [62]), it holds that

Λ(0)
M = MF 1

Q∨,M , (2.2.35)

Λ̃(0)
M = MF σe

Q∨,M . (2.2.36)

The point sets F 1
Q∨,M(0, ω∨k ) and F σe

Q∨,M(0, ω∨k ), k ∈ {1, 2} from (Czyżycki et al. [34]) are
related to the current weight sets Λ(k)

M and Λ̃(k)
M via the following relations,

Λ(k)
M = MF 1

Q∨,M(0, ω∨k ), (2.2.37)

Λ̃(k)
M = MF σe

Q∨,M(0, ω∨k ). (2.2.38)

Thus, the current counting formulas are calculated from Theorems 5.4 and 5.5 in (Hrivnák
and Motlochová [62]) and from Theorems 2 and 3 in (Czyżycki et al. [34]). �

A discrete function hM : ΛM → N is defined for λ ∈ ΛM by its values on the Kac coordi-
nates (2.2.22) with λ0, λ1, λ2 6= 0 as

hM(λ) =


1, λ = [λ0, λ1, λ2],
2, λ = [0, λ1, λ2], [λ0, 0, λ2], [λ0, λ1, 0],
6, λ = [0, 0, λ2], [λ0, 0, 0], [0, λ1, 0].

(2.2.39)

Since the h−function depends only on the number of zero-valued Kac coordinates of the
weight λ ∈ ΛM , it is invariant under the cyclic permutations of [λ0, λ1, λ2]. The weight sets
Λ6, Λ̃6 and their decompositions Λ(k)

6 , Λ̃(k)
6 , k ∈ {0, 1, 2} are depicted in Figure 2.1.

2.2.3. Splitting point sets

The extension of the Weyl group W by shift vectors of the weight lattice P yields the
extended affine Weyl group W aff

P ,
W aff
P = P oW.

For p ∈ P and w ∈ W , the action of an element T (p)w ∈ W aff
P on any x ∈ R2 is defined

as
T (p)w · x = wx+ p.

The abelian group Γ ⊂ W aff
P is the cyclic group of order 3,

Γ = {γ0, γ1, γ2}, (2.2.40)

and its elements are expressed by means of the generating reflections and weight lattice
translations as follows,

γ0 = T (0)1, γ1 = T (ω1)r1r2, γ2 = T (ω2)(r1r2)2. (2.2.41)
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(a) (b)

Fig. 2.1. (a) The magnified fundamental region 6FQ is depicted as the equilateral triangle
which contains 28 points corresponding to the elements of the weight set Λ6. The weight sets
Λ(0)

6 , Λ(1)
6 and Λ(2)

6 are depicted by 10 light blue, 9 yellow and 9 magenta points, respectively.
Omitting the dotted nodes on the boundary, the weight set Λ̃6 contains 10 points. The weight
sets Λ̃(0)

6 , Λ̃(1)
6 and Λ̃(2)

6 contain 4 light blue, 3 yellow and 3 magenta points. The blue numbers
correspond to the values of the discrete h−function. (b) The fundamental domain FQ of A2,
depicted by the equilateral triangle, contains 10 yellow nodes in the kite-shaped domain FP
that form the point set F (0)

6 . Excluding the point in center of FQ, the sets F (1)
6 and F

(2)
6

are depicted as 9 yellow nodes. The yellow nodes without the dotted ones on the boundary
of FQ correspond to the set F̃ (0)

6 . Omitting the central point of FQ and the points on its
boundary, 3 yellow nodes correspond to the point set F̃ (1)

6 , F̃ (2)
6 . The blue and red numbers

correspond to the values of the discrete ε− and d−functions, respectively.

The elements of the group Γ are equivalently expressed by application of the affine re-
flections rα1 , rα2 and r0 on the shifted points x+ ω1 and x+ ω2,

r0rα1(x+ ω1) = γ1x,

r0rα2(x+ ω2) = γ2x.
(2.2.42)

The points shifted by ω1 and ω2 are brought back to the fundamental region FQ as shown
in Figure 2.2.

The group Γ is isomorphic to the quotient group P/Q,

Γ ∼= P/Q. (2.2.43)

The fundamental domain FP of the action of W aff
P on R2 is the kite-shaped region com-

prised within the triangle FQ that contains exactly one point of each W aff
P −orbit,

FP = {x1ω1 + x2ω2 ∈ FQ | (2x1 + x2 < 1, x1 + 2x2 < 1) ∨ (2x1 + x2 = 1, x1 ≥ x2)} .
(2.2.44)
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Fig. 2.2. The fundamental region FQ is depicted by the blue triangle. The simple roots and
fundamental weights are marked by αi, ωi, i ∈ {1, 2}. The reflections ri orthogonal to αi
pass through the origin. The points x+ω1 and x+ω2 are obtained by shifting of x ∈ FQ by
the vectors ω1 and ω2. The affine reflections rαi are orthogonal to αi, and they pass through
1
2αi; the affine reflection r0 passes through the middle of the highest root ξ. The points
reflected back into FQ coincide with the points obtained by the action of the elements γi of
the cyclic group Γ.

The fundamental domain FP , with the omitted central point of the triangle FQ, forms
the domain F ′P ,

F ′P = {x1ω1 + x2ω2 ∈ FQ | (2x1 + x2 < 1, x1 + 2x2 < 1) ∨ (2x1 + x2 = 1, x1 > x2)} .
(2.2.45)

For anyM ∈ N , the point sets FM and F̃M are described by the refined finite fragments of
the weight lattice contained within the fundamental region FQ and its interior, respectively,

FM = 1
M
P ∩ FQ, (2.2.46)

F̃M = 1
M
P ∩ int(FQ). (2.2.47)

The point sets FM and F̃M can be explicitly written as

FM =
{
s1

M
ω1 + s2

M
ω2

∣∣∣∣∣ s0, s1, s2 ∈ Z≥0,s0 + s1 + s2 = M

}
, (2.2.48)

F̃M =
{
s1

M
ω1 + s2

M
ω2

∣∣∣∣∣ s0, s1, s2 ∈ N,s0 + s1 + s2 = M

}
. (2.2.49)

The points of the point sets (2.2.48) and (2.2.49) are conveniently described by their Kac
coordinates,

s = [s0, s1, s2] ∈ FM . (2.2.50)
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Direct comparison of the expressions for the point and weight sets (2.2.20), (2.2.21),
(2.2.48) and (2.2.49) yield for the corresponding cardinalities that

|FM | = |ΛM | , (2.2.51)∣∣∣F̃M ∣∣∣ =
∣∣∣Λ̃M

∣∣∣ . (2.2.52)

Note that there is at most one point sfix ∈ FM whose coordinates satisfy the relation
s0 = s1 = s2 = M/3. Such a point is fixed by the action of Γ, and it is found in the center
of the triangle FQ, if an integer M is divisible by 3.

The splitting point set F (0)
M is determined by the points from FM contained within the

kite-shaped fundamental domain of the extended affine Weyl group FP ,

F
(0)
M = FM ∩ FP (2.2.53)

and the splitting point sets F (1)
M and F (2)

M are formed by the points from FM included in the
region F ′P ,

F
(1)
M = F

(2)
M = FM ∩ F ′P . (2.2.54)

The interior splitting point sets F̃ (k)
M , k ∈ {0, 1, 2} are defined similarly as

F̃
(0)
M =F̃M ∩ FP , (2.2.55)

F̃
(1)
M = F̃

(2)
M =F̃M ∩ F ′P . (2.2.56)

Using Formulas (2.2.44) and (2.2.45) together with the Kac coordinates (2.2.50), the
point sets F (k)

M are expressed as

F
(0)
M = {[s0, s1, s2] ∈ FM | (s0 > s1, s0 > s2) ∨ (s0 = s1 ≥ s2)} ,

F
(1)
M = F

(2)
M = {[s0, s1, s2] ∈ FM | (s0 > s1, s0 > s2) ∨ (s0 = s1 > s2)} .

(2.2.57)

Similarly, the interior point sets F̃ (k)
M are explicitly written as

F̃
(0)
M =

{
[s0, s1, s2] ∈ F̃M | (s0 > s1, s0 > s2) ∨ (s0 = s1 ≥ s2)

}
,

F̃
(1)
M = F̃

(2)
M =

{
[s0, s1, s2] ∈ F̃M | (s0 > s1, s0 > s2) ∨ (s0 = s1 > s2)

}
.

(2.2.58)

The cardinalities of the splitting point sets are related to the numbers of elements of the
corresponding weight sets in the following proposition.
Proposition 2. The numbers of points contained in the splitting sets F (k)

M and F̃
(k)
M , k ∈

{0, 1, 2} coincide with the numbers of weights in the splitting sets Λ(k)
M and Λ̃(k)

M , respectively,∣∣∣F (k)
M

∣∣∣ =
∣∣∣Λ(k)

M

∣∣∣ , (2.2.59)∣∣∣F̃ (k)
M

∣∣∣ =
∣∣∣Λ̃(k)

M

∣∣∣ . (2.2.60)
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Proof. Preserving the notation for the weight sets from (Hrivnák and Motlochová [62]), it
holds that

F
(0)
M = 1

M
Λ1
P,M , (2.2.61)

F̃
(0)
M = 1

M
Λσe

P,M , (2.2.62)

and the weight sets from (Czyżycki et al. [34]) are related to the current point sets F (k)
M ,

F̃
(k)
M , k ∈ {1, 2} via the relations

F
(k)
M = 1

M
Λ1
P,M(0, ω∨k ), (2.2.63)

F̃
(k)
M = 1

M
Λσe

P,M(0, ω∨k ). (2.2.64)

Thus, the current cardinality equalities are obtained from relations (2.2.61), (2.2.62) and
Theorem 5.4 in (Hrivnák and Motlochová [62]) and from relations (2.2.63), (2.2.64) together
with Theorem 2 in (Czyżycki et al. [34]). �

The elements (2.2.40) of the abelian group Γ preserve the point set FM and act on any
point s ∈ FM as cyclic permutations of the Kac coordinates [s0, s1, s2],

γ0[s0, s1, s2] = [s0, s1, s2],

γ1[s0, s1, s2] = [s2, s0, s1],

γ2[s0, s1, s2] = [s1, s2, s0].

A discrete function ε : FM → N is defined for s ∈ FM by its values on the Kac coordi-
nates (2.2.50) with s0, s1, s2 6= 0 as

ε(s) =


6, s = [s0, s1, s2],
3, s = [0, s1, s2], [s0, 0, s2], [s0, s1, 0],
1, s = [0, 0, s2], [s0, 0, 0], [0, s1, 0].

(2.2.65)

Similarly to the h−function (2.2.39), the ε−function is invariant under the permutation
of the Kac coordinates [s0, s1, s2]. Note also that the h− and ε−functions are related for
λ ∈ ΛM by the formula

hM(λ) = 6 ε−1
(
λ
M

)
. (2.2.66)

A discrete function d : FM → N depends only on the equality of Kac coordinates s0 =
s1 = s2, and it takes one of the following two values,

d(s) =

3, s0 = s1 = s2,

1, otherwise.
(2.2.67)

The point sets F6, F̃6 together with their subsets F (k)
6 and F̃ (k)

6 , k ∈ {0, 1, 2} are depicted
in Figure 2.1.
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2.3. Weight lattice Fourier–Weyl transforms
2.3.1. C− and S−functions

The Weyl orbit functions and their pertinent properties have been extensively studied
in several papers, see for instance (Klimyk and Patera [78, 79, 80]). The orbit functions
of A2 can be written as sums of multivariate exponential functions e2πi〈b, x〉, b ∈ R2 of the
variable x ∈ R2. For any label b ∈ R2 and a point x ∈ R2, consider the two families of
complex-valued smooth functions,

Φb(x) =
∑
w∈W

e2πi〈wb, x〉, (2.3.1)

ϕb(x) =
∑
w∈W

det(w) e2πi〈wb, x〉. (2.3.2)

The functions (2.3.1) and (2.3.2), known as the C− and S−functions, correspond to the
classical univariate cosine and sine functions. For the C−functions, all terms have positive
sign; hence, they are referred to as symmetric orbit functions. The signs of terms composing
S−functions depend on det(w), and they are called anti-symmetric orbit functions.

The duality of the Weyl orbit functions (Klimyk and Patera [78, 79]) is expressed as

Φb(x) = Φx(b), ϕb(x) = ϕx(b), (2.3.3)

and, for any real-valued parameter t ∈ R, the scaling symmetry is determined by

Φb(tx) = Φtb(x), ϕb(tx) = ϕtb(x). (2.3.4)

Considering the scalar product (2.2.7) and expression for the Weyl orbit (2.2.11), the C−
and S−functions can be written for the label b = b1ω1 + b2ω2 and the point x = x1ω1 + x2ω2

in the ω−basis explicitly as

Φb(x) = e
2
3πi((2b1+b2)x1+(b1+2b2)x2) + e

2
3πi((−b1+b2)x1+(b1+2b2)x2) + e

2
3πi((−b1−2b2)x1+(b1−b2)x2)

+ e
2
3πi((−b1−2b2)x1+(−2b1−b2)x2) + e

2
3πi((−b1+b2)x1+(−2b1−b2)x2) + e

2
3πi((2b1+b2)x1+(b1−b2)x2),

(2.3.5)

ϕb(x) = e
2
3πi((2b1+b2)x1+(b1+2b2)x2) − e

2
3πi((−b1+b2)x1+(b1+2b2)x2) + e

2
3πi((−b1−2b2)x1+(b1−b2)x2)

− e
2
3πi((−b1−2b2)x1+(−2b1−b2)x2) + e

2
3πi((−b1+b2)x1+(−2b1−b2)x2) − e

2
3πi((2b1+b2)x1+(b1−b2)x2).

(2.3.6)

The C− and S−functions are (anti)symmetric with respect to the action of any Weyl
group element w ∈ W,

Φb(wx) = Φb(x), ϕb(wx) = det(w)ϕb(x). (2.3.7)
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For the discretized labels from the weight lattice λ ∈ P , the C− and S−functions are
invariant under the translations by any root-lattice vector q ∈ Q,

Φλ(x+ q) = Φλ(x), ϕλ(x+ q) = ϕλ(x). (2.3.8)

Therefore, both families of the orbit functions Φλ and ϕλ, λ ∈ P are (anti)symmetric
with respect to the affine Weyl group W aff

Q . Hence, the C− and S−functions are usually
restricted to the corresponding fundamental domain (2.2.17). The normal derivative of the
C−functions and values of the S−functions vanish on the boundary of FQ. Symmetries of the
orbit functions under the action of the Γ−group are formulated in the following proposition.
Proposition 3. For any λ ∈ Pk, γj ∈ Γ, j, k ∈ {0, 1, 2} and x ∈ R2, it holds that

Φλ(γjx) = e2πi〈zk, zj〉Φλ(x), (2.3.9)

ϕλ(γjx) = e2πi〈zk, zj〉ϕλ(x). (2.3.10)

Proof. Taking into account identity (2.2.5), the representative elements zj, j ∈ {0, 1, 2}
constitute according to (Czyżycki et al. [34]) admissible shifts of the root lattice of A2. Thus,
the invariance property (Czyżycki et al. [34], Equation 48) is specialized for any λ ∈ P and
w ∈ W as

e2πi〈wλ, zj〉 = e2πi〈λ, zj〉. (2.3.11)

Moreover, for any weight λ = zk + q ∈ Pk with q ∈ Q, the Z−duality relation (2.2.2) of the
weight and root lattices guarantees that

e2πi〈λ, zj〉 = e2πi〈zk+q, zj〉 = e2πi〈zk, zj〉. (2.3.12)

The action of the elements of the Γ−group of A2 are for any x ∈ R2 from defining relation
(2.2.41) given as

γjx = wjx+ zj, (2.3.13)

while it holds that
det(wj) = 1. (2.3.14)

The symmetry properties of the C−functions under the action of the Γ−group are cal-
culated for λ ∈ Pk using (2.3.11), (2.3.12) and (2.3.13) as

Φλ(γjx) =
∑
w∈W

e2πi〈wλ,wjx+zj〉 =
∑
w∈W

e2πi〈wλ,wjx〉e2πi〈wλ, zj〉 = e2πi〈zk, zj〉Φλ(x).

In addition, utilizing relation (2.3.14), the resulting symmetry properties of the S−functions
are obtained via the calculation

ϕλ(γjx) =
∑
w∈W

det(w) e2πi〈wλ,wjx+zj〉 =
∑
w∈W

det(w) e2πi〈wλ,wjx〉e2πi〈wλ, zj〉

= det(wj)e2πi〈zk, zj〉ϕλ(x).

�
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2.3.2. Discrete orthogonality

The orthogonality relations of C−and S−functions whenever they are integrated over
the fundamental region are described in (McKay and Patera [97]). Here we recall the dis-
crete orthogonality relations of both families of functions, as well as define the discrete
orthogonality of C− and S−functions summed over finite point sets comprised within the
kite-shaped region FP . Employing the ε−function (2.2.65), the scalar product of two func-
tions f,g : FM → C on a refined fragment of the weight lattice (2.2.46) contained within the
fundamental domain FQ is provided by the formula

〈f, g〉FM =
∑
s∈FM

ε(s)f(s)g(s). (2.3.15)

The Hilbert space HM is the space of complex-valued functions f : FM → C equipped
with the weighted scalar product (2.3.15).

Since the points of the interior point set F̃M retain their Kac coordinates non-zero, the
discrete ε−function takes according to (2.2.65) the constant value,

ε(s) = 6, s ∈ F̃M . (2.3.16)

Thus, the scalar product of two complex-valued functions f,g : F̃M → C on the interior
point set F̃M is given as

〈f, g〉
F̃M

= 6
∑
s∈F̃M

f(s)g(s). (2.3.17)

The Hilbert space H̃M is the space of complex-valued functions f : F̃M → C equipped
with the scalar product (2.3.17).

For any weights λ, λ′ ∈ ΛM , the discrete orthogonality relations of the
C−functions (2.3.1) with respect to the scalar product (2.3.15) are of the form (Hrivnák
and Patera [63]),

〈Φλ,Φλ′〉FM = 18M2hM(λ)δλ,λ′ , (2.3.18)

and for any interior weights λ, λ′ ∈ Λ̃M , the discrete orthogonality relations of the
S−functions (2.3.2) are given as

〈ϕλ, ϕλ′〉F̃M = 18M2δλ,λ′ . (2.3.19)

The scalar product of two functions f,g : F (k)
M → C, k ∈ {0, 1, 2} on the refined fragments

of the weight lattice is defined as

〈f, g〉
F

(k)
M

=
∑

s∈F (k)
M

ε(s)d−1(s)f(s)g(s). (2.3.20)

The Hilbert spacesH(k)
M are the spaces of complex-valued functions f : F (k)

M → C equipped
with the weighted scalar product (2.3.20).
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Taking into account the interior ε−function values (2.3.16), the interior scalar product
of two functions f, g : F̃ (k)

M → C, k ∈ {0, 1, 2} is given by

〈f, g〉
F̃

(k)
M

= 6
∑

s∈F̃ (k)
M

d−1(s)f(s)g(s). (2.3.21)

Discrete orthogonality relations with respect to the scalar products (2.3.20) and (2.3.21)
of the C− and S−functions are formulated in the following proposition.
Proposition 4. The discrete orthogonality relations of C−functions labeled by any weights
λ, λ′ ∈ Λ(k)

M , k ∈ {0, 1, 2} are of the form

〈Φλ,Φλ′〉F (k)
M

= 6M2hM(λ)δλ,λ′ . (2.3.22)

The discrete orthogonality relations of S−functions labeled by any weights λ, λ′ ∈ Λ̃(k)
M , k ∈

{0, 1, 2} are determined as
〈ϕλ, ϕλ′〉F̃ (k)

M

= 6M2δλ,λ′ . (2.3.23)

Proof. The discrete orthogonality relations of the A2 orbit C−functions (Czyżycki et al.
[34], Theorem 4) and the corresponding Plancherel formulas (Czyżycki et al. [34], Equation
172) lead for points a, a′ ∈ F 1

Q∨,M(0, ω∨k ), k ∈ {1, 2} to the following relations,∑
µ∈Λ1

P,M (0,ω∨
k

)
h−1
M (µ)d−1

(
µ
M

)
Φµ(a)Φµ(a′) = 6M2ε−1(a) δa,a′ . (2.3.24)

Denoting Ma = λ, Ma′ = λ′ and µ = Ms, it follows from weight and point set rela-
tions (2.2.37) and (2.2.63) that λ, λ′ ∈ Λ(k)

M and s ∈ F
(k)
M , k ∈ {1, 2}. Thus, discrete

orthogonality relation (2.3.24) is rewritten as∑
s∈F (k)

M

h−1
M (Ms)d−1 (s) ΦMs

(
λ
M

)
ΦMs

(
λ′

M

)
= 6M2ε−1

(
λ
M

)
δλ,λ′ . (2.3.25)

Utilizing the duality and scaling symmetry of orbit functions (2.3.3) and (2.3.4) together
with the relation between h− and ε−functions (2.2.66), the discrete orthogonality (2.3.25)
is reformulated as ∑

s∈F (k)
M

ε(s)d−1(s)Φλ(s)Φλ′(s) = 6M2hM(λ)δλ,λ′ . (2.3.26)

The remaining case for k = 0 and the orthogonality relations of the S−functions over the
interior sets are shown similarly via Theorem 6.4 in (Hrivnák and Motlochová [62]) together
with relations (2.2.35), (2.2.61) and interior set expressions (2.2.36), (2.2.38), (2.2.62) and
(2.2.64). �
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2.3.3. Splitting transforms

Based on the discrete orthogonality relations of the two families of C− and
S−functions (2.3.18) and (2.3.19), the discrete Fourier analysis is applied in the con-
text of the Weyl group symmetry. Taking into account cardinality formulas (2.2.51) and
(2.2.52), the C− and S−functions constitute orthogonal bases of the Hilbert spaces HM

and H̃M , respectively. For a given complex-valued function f : FQ → C, there exist two
interpolating functions I[f ]M : R2 → C and Ĩ[f ]M : R2 → C. The interpolating functions
I[f ]M and Ĩ[f ]M are constructed as linear combinations of the Weyl orbit functions,

I[f ]M(x) =
∑
λ∈ΛM

cλ[f ]MΦλ(x), (2.3.27)

Ĩ[f ]M(x) =
∑
λ∈Λ̃M

c̃λ[f ]Mϕλ(x), (2.3.28)

which coincide with the function f on the interpolation nodes FM and F̃M , respectively,

I[f ]M(s) =f(s), s ∈ FM , (2.3.29)

Ĩ[f ]M(s) =f(s), s ∈ F̃M . (2.3.30)

Due to discrete orthogonality relations (2.3.18) and (2.3.19), the frequency spectrum
coefficients cλ[f ]M , λ ∈ ΛM and c̃λ[f ]M , λ ∈ Λ̃M are uniquely determined via the weight
lattice Fourier–Weyl C− and S−transforms (Hrivnák and Patera [63]) of A2,

cλ[f ]M = 〈f,Φλ〉FM
〈Φλ,Φλ〉FM

=
(
18M2hM(λ)

)−1 ∑
s∈FM

ε(s)f(s)Φλ(s), (2.3.31)

c̃λ[f ]M =
〈f, ϕλ〉F̃M
〈ϕλ, ϕλ〉F̃M

=
(
3M2

)−1 ∑
s∈F̃M

f(s)ϕλ(s). (2.3.32)

Formulation of the weight lattice splitting Fourier–Weyl C− and S−transforms on the
Hilbert spaces H(k)

M and H̃(k)
M is founded on orbit function orthogonal bases constructed in

the following proposition.
Proposition 5. For each k ∈ {0, 1, 2}, the C−functions Φλ, λ ∈ Λ(k)

M form an orthogonal
basis of the Hilbert space H(k)

M , and the S−functions ϕλ, λ ∈ Λ̃(k)
M form an orthogonal basis

of the Hilbert space H̃(k)
M .

Proof. Discrete orthogonality relations of the C− and S−functions in Proposition 4 guar-
antee that the functions Φλ, λ ∈ Λ(k)

M and ϕλ, λ ∈ Λ̃(k)
M are linearly independent in the

spaces H(k)
M and H̃(k)

M , respectively. The dimensions of the functional Hilbert spaces H(k)
M

and H̃(k)
M coincide with the cardinalities of the underlying point sets F (k)

M and F̃
(k)
M , and
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Proposition 2 provides that

dimH(k)
M =

∣∣∣F (k)
M

∣∣∣ =
∣∣∣Λ(k)

M

∣∣∣ ,
dim H̃(k)

M =
∣∣∣F̃ (k)
M

∣∣∣ =
∣∣∣Λ̃(k)

M

∣∣∣ .
�

For a given complex-valued function f : FP → C, utilizing the orthogonal bases of the
discretized Weyl orbit functions, there exist six interpolating functions I[f ](k)

M : R2 → C and
Ĩ[f ](k)

M : R2 → C, k ∈ {0, 1, 2}. The interpolating functions I[f ](k)
M and Ĩ[f ](k)

M are constructed
as linear combinations of the Weyl orbit functions,

I[f ](k)
M (x) =

∑
λ∈Λ(k)

M

cλ[f ](k)
M Φλ(x), (2.3.33)

Ĩ[f ](k)
M (x) =

∑
λ∈Λ̃(k)

M

c̃λ[f ](k)
M ϕλ(x), (2.3.34)

that coincide with the function f on the interpolation nodes F (k)
M and F̃ (k)

M , respectively,

I[f ](k)
M (s) =f(s), s ∈ F (k)

M , (2.3.35)

Ĩ[f ](k)
M (s) =f(s), s ∈ F̃ (k)

M . (2.3.36)

Obtained as the standard Fourier coefficients from Propositions 4 and 5, the frequency
spectrum coefficients cλ[f ](k)

M , λ ∈ Λ(k)
M and c̃λ[f ](k)

M , λ ∈ Λ̃(k)
M are uniquely determined as

cλ[f ](k)
M =

〈f,Φλ〉F (k)
M

〈Φλ,Φλ〉F (k)
M

=
(
6M2hM(λ)

)−1 ∑
s∈F (k)

M

ε(s)d−1(s)f(s)Φλ(s), (2.3.37)

c̃λ[f ](k)
M =

〈f, ϕλ〉F̃ (k)
M

〈ϕλ, ϕλ〉F̃ (k)
M

= M−2 ∑
s∈F̃ (k)

M

d−1(s)f(s)ϕλ(s). (2.3.38)

Frequency spectrum coefficients Formulas (2.3.37) and (2.3.38) constitute the forward
weight lattice splitting Fourier–Weyl C− and S−transforms, respectively. Interpolation
properties of the splitting types of the Fourier–Weyl transforms are tested in the following
example.
Example 6 (Interpolation by splitting transforms). As a model function for the inter-
polation tests of the splitting transforms, the following real-valued function f on the kite-
shaped fundamental domain of the extended affine Weyl group FP is introduced for any point
x = x1ω1 + x2ω2 in the ω−basis,

f(x) = 0.4e−
1
σ2

(
(x1− 1

6)2
+ 1

3(x1+2x2− 1
2)2
)
. (2.3.39)
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The 3D graph and contour plot of the model function f , with σ = 0.065 chosen as a fixed
value, are shown in Figure 2.3.

The function f is interpolated by the anti(symmetric) interpolating functions (2.3.33)
and (2.3.34) with the frequency spectrum coefficients computed from the weight lattice splitting
Fourier–Weyl transforms (2.3.37) and (2.3.38), respectively. The symmetric interpolating
functions I[f ](0)

M and I[f ](1)
M are for M = 10, 14 and 18 plotted in Figures 2.4 and 2.5.

The antisymmetric interpolating functions Ĩ[f ](0)
M and Ĩ[f ](1)

M are for M = 10, 14 and 18
plotted in Figures 2.6 and 2.7.

The integral error estimates of both types of interpolations are presented in Table 2.1.

Fig. 2.3. The model function f plotted over the region FP .

M = 10 M = 14 M = 18

Fig. 2.4. The interpolating functions I[f ](0)
M are forM = 10,14,18 plotted over the region FP .

The sampling point sets F (0)
M of the interpolation are marked by the blue dots.
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M = 10 M = 14 M = 18

Fig. 2.5. The interpolating functions I[f ](1)
M are forM = 10,14,18 plotted over the region FP .

The sampling point sets F (1)
M of the interpolation are marked by the blue dots.

M = 10 M = 14 M = 18

Fig. 2.6. The interpolating functions Ĩ[f ](0)
M are forM = 10,14,18 plotted over the region FP .

The sampling point sets F̃ (0)
M of the interpolation are marked by the blue dots.
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M = 10 M = 14 M = 18

Fig. 2.7. The interpolating functions Ĩ[f ](1)
M are forM = 10,14,18 plotted over the region FP .

The sampling point sets F̃ (1)
M of the interpolation are marked by the blue dots.

Table 2.1. The integral error estimates of the interpolations I[f ](0)
M , I[f ](1)

M , Ĩ[f ](0)
M and Ĩ[f ](1)

M

are tabulated for M = 10, 12, 14, 16 and 18.

M 10 12 14 16 18

∫
FP

∣∣∣f − I[f ](0)
M

∣∣∣2 1377× 10−7 373× 10−7 123× 10−7 39× 10−7 4× 10−7

∫
FP

∣∣∣f − I[f ](1)
M

∣∣∣2 1530× 10−7 649× 10−7 117× 10−7 52× 10−7 9× 10−7

∫
FP

∣∣∣f − Ĩ[f ](0)
M

∣∣∣2 1814× 10−7 763× 10−7 266× 10−7 69× 10−7 9× 10−7

∫
FP

∣∣∣f − Ĩ[f ](1)
M

∣∣∣2 1520× 10−7 753× 10−7 255× 10−7 48× 10−7 9× 10−7

2.4. Central splitting
2.4.1. Central splitting of discrete transforms

The center of the compact simple Lie group SU(3), associated with the root system A2,
is isomorphic to both groups Γ and P/Q. The central splitting of a function f : FQ → C
represents the functional decomposition (Moody and Patera [105]) of the form

f = f0 + f1 + f2, (2.4.1)
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where each component fk : FQ → C, k ∈ {0, 1, 2} is determined by

fk(x) = 1
3

2∑
j=0

e−2πi〈zk, zj〉f(γjx). (2.4.2)

The current defining formula of the central splitting (2.4.2) is a specialization of relation
(Moody and Patera [105], Equation 27) with incorporated action of the Γ−group elements
from relations (2.2.41) and (2.2.42). The exponential coefficients e−2πi〈zk, zj〉, j, k ∈ {0, 1, 2}
are calculated from relation (2.2.6) as elements of the group of the third roots of unity U3,

U3 = {1, e 2πi
3 , e

−2πi
3 }. (2.4.3)

Direct calculations from defining relation (2.4.2) of the central splitting yields the fol-
lowing symmetry property of the component functions under the action of the Γ−group for
j ∈ {0, 1, 2} and x ∈ R2,

fk(γjx) = e2πi〈zk, zj〉fk(x).

Based on the decomposition of the central components into the sum of orbit functions la-
beled by the weights from the corresponding congruence class from (Moody and Patera [105],
Section 7), the central splitting is utilized to decompose the weight lattice Fourier–Weyl
transform into the smaller splitting transforms.
Theorem 7 (Central Splitting of Weight Lattice Transforms). The spectral coefficients
cλ[f ]M , λ ∈ Λ(k)

M , k ∈ {0, 1, 2} of the weight lattice Fourier–Weyl C−transforms (2.3.31),
corresponding to the function f : FM → C, coincide with the spectral coefficients of the
splitting Fourier–Weyl C−transforms (2.3.37) of the central components fk : F (k)

M → C,

cλ[f ]M = cλ[fk](k)
M , λ ∈ Λ(k)

M . (2.4.4)

The spectral coefficients c̃λ[f ]M , λ ∈ Λ̃(k)
M of the weight lattice Fourier–Weyl

S−transforms (2.3.32), corresponding to the function f : F̃M → C, coincide with the
spectral coefficients of the splitting Fourier–Weyl S−transforms (2.3.38) of the central
components fk : F̃ (k)

M → C,

c̃λ[f ]M = c̃λ[fk](k)
M , λ ∈ Λ̃(k)

M . (2.4.5)

Proof. The weight lattice Fourier–Weyl C−transform of the discretized function f : FM →
C provides from relations (2.3.27) and (2.3.29) the following expansion,

f(s) =
∑
λ∈ΛM

cλ[f ]MΦλ(s), s ∈ FM . (2.4.6)
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The splitting Fourier–Weyl C−transform of the discretized central component fk : F (k)
M → C

provides from relations (2.3.33) and (2.3.35) the following expansion,

fk(s) =
∑

λ∈Λ(k)
M

cλ[fk](k)
M Φλ(s), s ∈ F (k)

M . (2.4.7)

Substituting into the defining relation of the central splitting (2.4.2) the expansion
(2.4.6) and taking into account the symmetry property (2.3.9) and the disjoint decompo-
sition (2.2.23) yield for s ∈ F (k)

M that

fk(s) = 1
3

2∑
j=0

e−2πi〈zk, zj〉f(γjs) = 1
3

2∑
j=0

e−2πi〈zk, zj〉
∑
λ∈ΛM

cλ[f ]MΦλ(γjs)

= 1
3

2∑
j,l=0

e2πi〈zl−zk, zj〉
∑
λ∈Λ(l)

M

cλ[f ]MΦλ(s). (2.4.8)

Recall from (Hrivnák and Patera [63], Corollary 5.2) that for the classes of weights
λ = zl +Q, λ′ = zk +Q, k, l ∈ {0, 1, 2} of the root system A2, the orthogonality relations of
the multivariate exponential functions are specialized to the form

2∑
j=0

e2πi〈zl−zk, zj〉 = 3 δkl. (2.4.9)

Using the orthogonality relation of the multivariate exponential functions (2.4.9) in ex-
pression (2.4.8) provides the final form of the expansion of the discretized central component,

fk(s) =
∑

λ∈Λ(k)
M

cλ[f ]MΦλ(s), s ∈ F (k)
M . (2.4.10)

Comparing the resulting expression (2.4.10) to the original expansion of the central com-
ponent (2.4.7) provides the statement (2.4.4). Since, for A2, the crucial symmetry prop-
erty of the S−functions (2.3.10) under the action of the Γ−group is of the same form as
its C−functions counterpart, the version of the statement (2.4.5) is obtained similarly for
S−functions via the comparison of the discrete transforms (2.3.28), (2.3.30) and (2.3.34),
(2.3.36), together with the disjoint decomposition (2.2.25). �

2.4.2. Decompositions of unitary transform matrices

The Fourier–Weyl transforms on a discrete set of points FM are carried out by pre-
determined square matrices that multiply any given column-vector of data (Bodner et al.
[16]). The currently constructed unitary transform matrices correspond to the normalized
versions of the weight lattice Fourier–Weyl transforms. Any arbitrary fixed orderings of the
weight sets Λ(k)

M and Λ̃(k)
M , k ∈ {0, 1, 2} induce uniquely from the decompositions (2.2.23) and

(2.2.25) the orderings of the weight sets ΛM and Λ̃M . The fixed orderings of the splitting
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point sets F (k)
M and F̃

(k)
M , k ∈ {0, 1, 2} can be chosen independently on the ordering of the

point sets FM and F̃M .
Using formulas for the spectrum coefficients (2.3.31) and (2.3.32), the unitary matrices

IM and ĨM of the normalized weight lattice Fourier–Weyl C− and S−transforms are given
by their entries as follows,

(IM)λs =

√√√√ ε(s)
18M2hM(λ) Φλ(s), λ ∈ ΛM , s ∈ FM , (2.4.11)

(
ĨM
)
λs

= 1√
3M2

ϕλ(s), λ ∈ Λ̃M , s ∈ F̃M . (2.4.12)

The unitary matrices I(k)
M and Ĩ(k)

M , k ∈ {0, 1, 2} of the normalized splitting Fourier–Weyl
C− and S−transforms are constructed using the Formulas (2.3.37) and (2.3.38),

(
I(k)
M

)
λs

=

√√√√ ε(s)
6M2d(s)hM(λ) Φλ(s), λ ∈ Λ(k)

M , s ∈ F (k)
M , (2.4.13)

(
Ĩ(k)
M

)
λs

= 1√
M2d(s)

ϕλ(s), λ ∈ Λ̃(k)
M , s ∈ F̃ (k)

M . (2.4.14)

The unitary transform matrices TM and T̃M , that realize the normalized central splitting
(2.4.1), are represented by the following block matrices

TM =


T(0)
M

T(1)
M

T(2)
M

 , T̃M =


T̃(0)
M

T̃(1)
M

T̃(2)
M

 , (2.4.15)

where the block components T(k)
M and T̃(k)

M , k ∈ {0, 1, 2} are determined by their entries as
(
T(k)
M

)
ss′

=1
3

√
3
d(s)

2∑
j=0

e−2πi〈zj , zk〉δγjs,s′ , s ∈ F (k)
M , s′ ∈ FM , (2.4.16)

(
T̃(k)
M

)
ss′

=1
3

√
3
d(s)

2∑
j=0

e−2πi〈zj , zk〉δγjs,s′ , s ∈ F̃ (k)
M , s′ ∈ F̃M . (2.4.17)

The unitary transform matrices of the normalized weight lattice Fourier–Weyl trans-
forms are decomposed into the normalized central splitting matrices and splitting transform
matrices in the following theorem.
Theorem 8 (Decompositions of Transform Matrices). The following matrix equalities hold
for any M ∈ N,

IM =
(
I(0)
M ⊕ I(1)

M ⊕ I(2)
M

)
TM , (2.4.18)

ĨM =
(
Ĩ(0)
M ⊕ Ĩ(1)

M ⊕ Ĩ(2)
M

)
T̃M . (2.4.19)
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Proof. Performing the multiplication of the block matrices in statement (2.4.18) provides
the matrix block form

IM =


I(0)
M T(0)

M

I(1)
M T(1)

M

I(2)
M T(2)

M

 . (2.4.20)

Since the ordering of the weights labeling the rows of IM is induced by the decomposi-
tion (2.2.23), the matrix equality (2.4.20) is reformulated via the corresponding entries for
k ∈ {0, 1, 2} as

(IM)λs′ =
∑

s∈F (k)
M

(
I(k)
M

)
λs

(
T(k)
M

)
ss′
, λ ∈ Λ(k)

M , s′ ∈ FM . (2.4.21)

Direct calculations from defining relation (2.4.16), symmetry property (2.3.9) and
ε−function Γ−invariance lead to the invariance of the following products for γl ∈ Γ,
l ∈ {0, 1, 2},√

ε(γls) Φλ(γls)
2∑
j=0

e−2πi〈zj , zk〉δγjγls,s′ =
√
ε(s) Φλ(s)

2∑
j=0

e−2πi〈zj , zk〉δγjs,s′ . (2.4.22)

Taking into account the Γ−invariance from expression (2.4.22) provides the following sim-
plification of the matrix multiplication (2.4.21) for λ ∈ Λ(k)

M and s′ ∈ FM ,

∑
s∈F (k)

M

(
I(k)
M

)
λs

(
T(k)
M

)
ss′

=
∑

s∈F (k)
M

3d−1(s)

√√√√ ε(s)
162M2hM(λ) Φλ(s)

2∑
j=0

e−2πi〈zj , zk〉δγjs,s′

=
∑
s∈FM

√√√√ ε(s)
162M2hM(λ) Φλ(s)

2∑
j=0

e−2πi〈zj , zk〉δγjs,s′ . (2.4.23)

Employing again the symmetry property (2.3.9) together with Γ−invariance of both
ε−function and point set FM yields from relation (2.4.23) the desired result,

∑
s∈F (k)

M

(
I(k)
M

)
λs

(
T(k)
M

)
ss′

=
(
162M2hM(λ)

)− 1
2

2∑
j=0

√
ε
(
γ−1
j s′

)
Φλ

(
γ−1
j s′

)
e−2πi〈zj , zk〉

=

√√√√ ε(s′)
18M2hM(λ) Φλ(s′) = (IM)λs′ .

The symmetry property of the S−functions (2.3.10) allows to obtain the S−transform matrix
relation (2.4.19) by performing analogous steps. �
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2.4.3. Decompositions of transform matrices I3 and Ĩ6

The weights of the splitting weight sets Λ(k)
3 , k ∈ {0, 1, 2} are calculated from expression

(2.2.27) and ordered as

Λ(0)
3 = {[3, 0, 0], [1, 1, 1], [0, 3, 0], [0, 0, 3]},

Λ(1)
3 = {[2, 1, 0], [1, 0, 2], [0, 2, 1]},

Λ(2)
3 = {[2, 0, 1], [1, 2, 0], [0, 1, 2]}.

(2.4.24)

The ordering of the entire weight set Λ3 is induced by the decomposition (2.2.23),

Λ3 = Λ(0)
3 ∪ Λ(1)

3 ∪ Λ(2)
3 ,

where the weights of each splitting weight set are ordered as in the lists of weights (2.4.24).
The points of the point set F3 are calculated in Kac coordinates from relation (2.2.48), and
ordered as follows,

F3 = {[3, 0, 0], [2, 1, 0], [2, 0, 1], [1, 2, 0], [1, 1, 1], [1, 0, 2], [0, 3, 0], [0, 2, 1], [0, 1, 2], [0, 0, 3]} .

The unitary transform matrix I3 comprises rows indexed by the ordered weight set Λ3

and columns indexed by the point set F3. Utilizing the C−function formula (2.3.5), h−
and ε−function expressions (2.2.39) and (2.2.65), the transform matrix I3 is calculated from
definition (2.4.11) as

I3 =



1
3
√

3
1
3

1
3

1
3

√
2

3
1
3

1
3
√

3
1
3

1
3

1
3
√

3√
2

3 0 0 0 − 1√
3

0
√

2
3 0 0

√
2

3
1

3
√

3
1
3 e

2πi
3 1

3 e
− 2πi

3 1
3 e
− 2iπ

3
√

2
3

1
3 e

2πi
3 1

3
√

3
1
3 e

2πi
3 1

3 e
− 2πi

3 1
3
√

3
1

3
√

3
1
3 e
− 2πi

3 1
3 e

2πi
3 1

3 e
2iπ
3

√
2

3
1
3 e
− 2πi

3 1
3
√

3
1
3 e
− 2iπ

3 1
3 e

2πi
3 1

3
√

3

1
3

e
2πi
9 b

6
√

3
e
− 2πi

9 a

6
√

3
e

4iπ
9 a

6
√

3
0 e

− 4πi
9 b

6
√

3
1
3 e

2πi
3 1

3 ie
2πi
9 − 1

3 ie−
2πi
9 1

3 e
− 2πi

3

1
3

e
− 4πi

9 b

6
√

3
e

4πi
9 a

6
√

3
− 1

3 ie−
2πi
9 0 1

3 ie
2πi
9 1

3 e
2πi
3 e

2iπ
9 b

6
√

3
e
− 2πi

9 a

6
√

3
1
3 e
− 2πi

3

1
3

1
3 ie

2πi
9 − 1

3 ie−
2πi
9 e

− 2πi
9 a

6
√

3
0 e

2πi
9 b

6
√

3
1
3 e

2πi
3 e

− 4iπ
9 b

6
√

3
e

4πi
9 a

6
√

3
1
3 e
− 2πi

3

1
3

e
− 2πi

9 a

6
√

3
e

2πi
9 b

6
√

3
e
− 4iπ

9 b

6
√

3
0 e

4πi
9 a

6
√

3
1
3 e
− 2πi

3 − 1
3 ie−

2πi
9 1

3 ie
2πi
9 1

3 e
2πi
3

1
3

e
4πi
9 a

6
√

3
e
− 4πi

9 b

6
√

3
1
3 ie

2πi
9 0 − 1

3 ie−
2πi
9 1

3 e
− 2πi

3 e
− 2πi

9 a

6
√

3
e

2πi
9 b

6
√

3
1
3 e

2πi
3

1
3 − 1

3 ie−
2πi
9 1

3 ie
2πi
9 e

2πi
9 b

6
√

3
0 e

− 2πi
9 a

6
√

3
1
3 e
− 2πi

3 e
4iπ
9 a

6
√

3
e
− 4πi

9 b

6
√

3
1
3 e

2πi
3



,

where a = 3 +
√

3i and b = 3−
√

3i.
Each unitary splitting matrix I(k)

3 , k ∈ {0, 1, 2} contains rows indexed by the corre-
sponding weight set in (2.4.24) and columns indexed by the point sets F (k)

3 obtained from
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expression (2.2.57) as

F
(0)
3 = {[3, 0, 0], [2, 1, 0], [2, 0, 1], [1, 1, 1]},

F
(1)
3 = F

(2)
3 = {[3, 0, 0], [2, 1, 0], [2, 0, 1]}.

Utilizing the d−function values from (2.2.67), the splitting transform matrices I(0)
3 , I(1)

3

and I(2)
3 are calculated from definition (2.4.13) as

I(0)
3 =


1
3

1√
3

1√
3

√
2

3√
2
3 0 0 − 1√

3

1
3

e
2πi
3√
3

e
− 2πi

3√
3

√
2

3

1
3

e
− 2πi

3√
3

e
2πi
3√
3

√
2

3

 ,

I(1)
3 =


1√
3

ie
2πi
9√
3

− ie−
2πi
9√

3
1√
3

1
6 be
− 4πi

9 1
6ae

4πi
9

1√
3

ie
2πi
9√
3

− ie−
2πi
9√

3

 ,

I(2)
3 =


1√
3

1
6ae
− 2πi

9 1
6 be

2πi
9

1√
3

1
6ae

4πi
9 1

6 be
− 4πi

9

1√
3
− ie−

2πi
9√

3
ie

2πi
9√
3

 .
The rows of the unitary central splitting matrix T3 are labeled by the union of the splitting

point sets F (0)
3 ∪ F (1)

3 ∪ F (2)
3 , and the columns are labeled by the elements of the point set

F3. Thus, the transform matrix T3 is calculated from definitions (2.4.15) and (2.4.16) as

T3 =



√
3

3 0 0 0 0 0
√

3
3 0 0

√
3

3

0
√

3
3 0 0 0

√
3

3 0
√

3
3 0 0

0 0
√

3
3

√
3

3 0 0 0 0
√

3
3 0

0 0 0 0 1 0 0 0 0 0√
3

3 0 0 0 0 0
√

3
3 e

2πi
3 0 0

√
3

3 e−
2πi
3

0
√

3
3 0 0 0

√
3

3 e−
2πi
3 0

√
3

3 e
2πi
3 0 0

0 0
√

3
3

√
3

3 e
2πi
3 0 0 0 0

√
3

3 e−
2πi
3 0

√
3

3 0 0 0 0 0
√

3
3 e−

2πi
3 0 0

√
3

3 e
2πi
3

0
√

3
3 0 0 0

√
3

3 e
2πi
3 0

√
3

3 e−
2πi
3 0 0

0 0
√

3
3

√
3

3 e−
2πi
3 0 0 0 0

√
3

3 e
2πi
3 0


. (2.4.25)

The weights of the splitting weight sets Λ̃(k)
6 , k ∈ {0, 1, 2} are calculated from expression

(2.2.28) and ordered as

Λ̃(0)
6 = {[4, 1, 1], [2, 2, 2], [1, 4, 1], [1, 1, 4]},

Λ̃(1)
6 = {[3, 2, 1], [2, 1, 3], [1, 3, 2]},

Λ̃(2)
6 = {[3, 1, 2], [2, 3, 1], [1, 2, 3]}.

(2.4.26)

The ordering of the entire weight set Λ̃6 is induced by the decomposition (2.2.25),

Λ̃6 = Λ̃(0)
6 ∪ Λ̃(1)

6 ∪ Λ̃(2)
6 ,

78



where the weights of each splitting weight set are ordered as in the sets of weights (2.4.26).
The points of the point set F̃6 are calculated in Kac coordinates from relation (2.2.49)

and ordered as follows,

F̃6 = {[4, 1, 1], [3, 2, 1], [3, 1, 2], [2, 3, 1], [2, 2, 2], [2, 1, 3], [1, 4, 1], [1, 3, 2], [1, 2, 3], [1, 1, 4]}.

Utilizing the S−function formula (2.3.6), the transform matrix Ĩ6 is calculated from
definition (2.4.12) as
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,

where a = 3 +
√

3i and b = 3−
√

3i.
Each unitary splitting matrix Ĩ(k)

6 , k ∈ {0, 1, 2} contains rows indexed by the correspond-
ing interior weight set in (2.4.26) and columns indexed by the interior point sets F̃ (k)

6 obtained
from expression (2.2.58) as
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The splitting transform matrices Ĩ(0)
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Using the Formulas (2.4.15) and (2.4.17) to construct the unitary central splitting matrix
T̃6, the rows are labeled by the union of the point sets F̃ (0)

6 ∪ F̃ (1)
6 ∪ F̃ (2)

6 , and the columns
are labeled by the elements of the interior point set F̃6. Since the ordering of the interior
point sets for M = 6 is chosen to be compatible with the ordering of the C−transform point
sets for M = 3, the transform matrix T̃6 coincides with the splitting matrix T3,

T̃6 = T3.

2.5. Concluding remarks
• The decompositions of the weight lattice Fourier–Weyl transforms into the splitting
transforms are considered as a point of departure in exploring the fast bivariate dis-
crete Fourier transforms involving the (anti)symmetric orbit functions of the Weyl
group A2. The central splitting method offers an advantageous approach to com-
putational efficiency, using the reduction of the initial weight lattice Fourier–Weyl
transform into three smaller-weight lattice splitting transforms. Even though the re-
cursive method to determine the further splitting of currently developed two-variable
cosine and sine transforms has not been determined yet, the demonstrated reduced
weight transform is considered as a stepping stone towards the fast discrete trans-
forms. Moreover, analogously to the interpolation tests conducted for cosine and sine
discrete transforms (Patera and Zaratsyan [117, 118, 119]), the developed discrete
splitting transforms also manifest excellent interpolation properties.
• For the crystallographic reflection group A1, repeatedly using the central splitting of
one-variable discrete cosine and sine transforms produces the standard versions of the
fast split-radix transforms (Britanak [24]). In this case, the possibility of rearranging
the splitting point sets into the original format governed by the affine Weyl group
ensures the central splitting method’s recursive behavior. The decompositions of
the transform matrices, similar to the formulated unitary matrix decompositions in
Theorem 8, have been rigorously proven for the one-dimensional sine and cosine
transforms in (Plonka and Tasche [120]). However, in the case of the A2 group, since
a further splitting of the points in the kite-shaped domain has not been formulated
yet, the recursive central splitting method remains an unsolved problem.
• Given the importance of multi-dimensional digital data processing (Atoyan and Pat-
era [8]; Klimyk and Patera [81]; Nesterenko and Patera [107]; Li and Xu [91]; Li et al.
[90]), a central-splitting mechanism could be potentially developed for other compact
simple Lie groups with non-trivial elements of the center, such as An with its center
provided by a cyclic group of n+ 1 elements, Bn, Cn and E7 with the center given by
a cyclic group of order 2, Dn whose center contains 4 elements, E6 that equivalently
to A2 has 3 elements of the center. Such an approach would be considered as a first
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step to a general multidimensional fast transform. Since a similar behavior of the
central splitting in the case of the finite reflection group An is expected, the exten-
sion of the developed Fourier–Weyl transforms to higher-dimensional cases should be
treated independently.
• Another family of orbit functions, known as E−functions, is obtained by symmetriz-
ing multivariate exponential terms over even subgroups of a considered Weyl group.
Such functions are developed in (Klimyk and Patera [80]), and their corresponding
Fourier–Weyl transforms together with continuous interpolations are examined in de-
tail (Hrivnák and Patera [64]). There is one type of the E−functions for the root
systems with the roots of one length (Moody and Patera [105]). For the root systems
with two lengths of simple roots, the six types of E−functions, together with their
even complex-valued dual weight lattice Fourier–Weyl transforms, are formulated in
(Hrivnák and Juránek [60]). Hence, instead of the discrete transforms based on the
C− and S−functions, the central splitting of the transforms developed by means of
the E−functions represents an open problem. Furthermore, the Fourier–Weyl trans-
forms with their kernel represented by the combinations of different types of Weyl
orbit functions have not been previously explored.
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Résumé. Les invariants des représentations de dimension finie des algèbres de Lie simples,
comme les indices de degré pair et les nombres d’anomalies, sont considérés dans le contexte
des groupes non cristallographiques de réflexion finie H2, H3 et H4. En utilisant une
représentation-orbite comme remplacement, les définitions et les propriétés des indices sont
formulées pour des orbites individuelles des groupes examinés. Les indices des ordres deux
et quatre du produit tensoriel des orbites k sont déterminés. En utilisant les règles de bran-
chement pour les groupes de Coxeter non cristallographiques, l’indice d’incorporation est
défini de la même manière que l’indice de Dynkin d’une représentation. De plus, puisque la
définition des indices peut être appliquée à toute orbite de type non cristallographique, l’al-
gorithme permettant de rechercher les orbites de rayons plus petits contenus dans tout rayon
considéré est présenté pour les groupes de Coxeter H2 et H3. Les structures géométriques
des polytopes imbriqués sont illustrées.
Mots clés : groupe de Coxeter, polytope imbriqué, indice d’orbite, indice d’ordre supérieur,
numéro d’anomalie, multiplicité de poids, algorithme de recherche, diagramme arborescent

Abstract. The invariants of finite-dimensional representations of simple Lie algebras,
such as even-degree indices and anomaly numbers, are considered in the context of the
non-crystallographic finite reflection groups H2, H3 and H4. Using a representation-orbit
replacement, the definitions and properties of the indices are formulated for individual orbits
of the examined groups. The indices of orders two and four of the tensor product of k orbits
are determined. Using the branching rules for the non-crystallographic Coxeter groups, the
embedding index is defined similarly to the Dynkin index of a representation. Moreover,
since the definition of the indices can be applied to any orbit of non-crystallographic type, the
algorithm allowing to search for the orbits of smaller radii contained within any considered
one is presented for the Coxeter groups H2 and H3. The geometrical structures of nested
polytopes are exemplified.
Keywords: Coxeter group, nested polytope, orbit index, higher-order index, anomaly num-
ber, weight multiplicity, search algorithm, tree-diagram

3.1. Introduction
The purpose of this paper is to formulate the definitions of the even- and odd-degree

indices for orbits of the non-crystallographic Coxeter groups H2, H3 and H4 (the symmetry
group of a regular pentagon, a regular icosahedron and the 600-cell, respectively). In this
case, the definition of the indices of irreducible representations of simple Lie algebras provides
a foundation for the indices of orbits. The generalization of properties of the formulated
indices is achieved by examining the individual orbits of the investigated groups.

A significant number of applications of non-crystallographic Coxeter groups in solid-
state physics (Talis et al. [135]), chemistry (Nespolo et al. [106]) and structural genomics
(Terwilliger [138]) motivates the current study. The symmetries of theH2 andH4 groups play
an essential role in the construction and description of quasicrystals (Levitov and Rhyner
[89]). The icosahedral symmetry of the Coxeter group H3 reveals the structure of the
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extensive diversity of spherical molecules (Fowler and Manolopoulos [52]). Moreover, during
the past few years, the H3 group has gained considerable interest in mathematical virology,
since it serves as a blueprint for examining and describing the architecture and assembly of
spherical viruses (Dechant et al. [38]; Indelicato et al. [68]; Salthouse et al. [130]; Twarock
[142]).

The pertinent information about the non-crystallographic reflection groups Hn, n ∈
{2, 3, 4} can be found in (Chen et al. [28]; Shcherbak [131]). Even though any Weyl orbit
is linked to a finite-dimensional representation of a Lie algebra, this relation does not exist
for the non-crystallographic cases. In general, any orbit Oλ(G) of a finite Coxeter group G
arises from the action of the corresponding reflections on the dominant (seed) point λ ∈ Rn.
The coordinates of λ are commonly provided in the ω−basis, and they take values of any
non-negative real numbers. Since any orbit of H3 can be represented geometrically by a
Euclidean (spherical) polytope, the variation of the coordinates of λ ∈ R3 impacts the lower-
dimensional faces represented by edges (arcs) and polygons (tiles on a sphere). As a result,
a deeper understanding of a chosen seed point is achieved. The numbers and types of faces
of a polytope are determined using the decoration procedure applied to a Coxeter–Dynkin
diagram (Champagne et al. [29]).

During the past decades, it has been convenient to characterize representations of simple
Lie algebras by their dimensions (Kirillov [77]; Ramond [126]). Even though the formula
for the dimension is well-known, its difficulty in practical exploitation rapidly increases to-
gether with the rank of a corresponding Lie algebra. To overcome this problem, E.B. Dynkin
introduced the index that can be calculated for any irreducible representation (Braden [19];
Panyushev [114]). Since then, the “Dynkin index” is considered as a powerful tool for the
classification of semisimple subalgebras of simple Lie algebras (Dynkin [48]). The further
development of research led to the discovery of the higher-degree indices of finite irreducible
representations that have been formulated in (Patera et al. [116]). Since the decomposition
of the tensor product of representations of a simple Lie algebra into the direct sum of irre-
ducible components is important and relevant to many branches of physics, the general for-
mulas for indices of such decompositions are determined in (Okubo and Patera [110, 111]).

In this paper, we define the analogs of the higher-degree indices replacing irreducible
representations of simple Lie algebras by orbits of the non-crystallographic finite reflection
groups. This approach yields several advantages, since the orbit size is finite, and the prod-
uct of orbits is always decomposable. Hence, the even- and odd-degree indices of orbits of
non-crystallographic type are formulated in Sections 3.2 and 3.3. The former include the
lower-order indices of the tensor product of orbits. The latter are recognized in physics as
the anomaly numbers, since they determine the symmetry-breaking parameters defined for
particle systems (Okubo [108]; Okubo and Patera [112]; Patera and Sharp [115]). For the
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odd-degree index, it is only necessary to determine whether it is zero or not. In our frame-
work, such indices are considered as a generalization of the anomaly numbers of irreducible
representations (Zhang et al. [151]).

The Dynkin index remains a valid invariant only if a single orbit of non-crystallographic
type is involved in its definition. Therefore, in Section 3.4, we explore the analog of such
an invariant called the embedding index. The calculations of the index proceed whenever
the branching rule for a finite reflection group and its subgroup is known (G′ ⊂ G). For
crystallographic reflection groups, the branching rules are determined for the rank up to
n = 8 (for instance, see (Larouche et al. [88]; Larouche and Patera [87]) and references
therein). Recently, the branching rules have been formulated for the non-crystallographic
reflection groups as well (Grabowiecka et al. [54]).

Furthermore, since we are restricted to the non-crystallographic groups, we introduce a
search algorithm to find the orbits of smaller radii that may appear inside an initial one
(Section 3.5). Here, such orbits are referred to as ‘lower orbits.’ The subtraction of the
simple roots of Hn, n ∈ {2, 3, 4} from a seed point λ with its coordinates in the ω−basis
provides the dominant points of lower orbits. We demonstrate that this method coincides
with the root-subtraction for orbits of crystallographic type. Such a procedure forms a
weight system similar to the one of a representation. In the geometrical interpretation, any
obtained set of lower orbits together with a starting one results in the structure of nested
polyhedra (Janner [70]; Thomas et al. [139]; Zelevinsky [150]). Such a set of polytopes is
quite unusual, as it differs from the sets obtained for crystallographic cases. For the latter,
whenever any two polytopes with dominant points consecutively obtained by the subtraction
method are considered, one can notice that each vertex of a larger polytope is found in the
middle of each edge of a polytope of smaller radius. In contrast, the nested polyhedra of
non-crystallographic types do not have this property.

3.2. Even-degree indices for orbits
The important information about the even-degree indices of representations of simple Lie

algebras can be found in several papers (Okubo and Patera [110]; Ramond [126]; Patera et
al. [116]). In this section, considered analogs possess the same properties as the decompo-
sition of products does. However, this property is limited to the indices of degrees two, four
and, for some groups, six. Replacing an irreducible representation of a simple Lie algebra
with an orbit of a finite reflection group has several advantages:

• the size of an orbit of any Coxeter group is always limited;
• the points of an orbit have only real numbers as their coordinates;
• the product of several orbits can always be decomposed into the sum of orbits of
smaller sizes.
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Definition 1. Let G be a finite reflection group, and Oλ(G) be an orbit of elements with a
dominant point λ. The number defined by

I2p
λ (G) =

∑
µ∈Oλ(G)

〈µ, µ〉p, p ∈ N,

is called the 2p-order index of an orbit Oλ(G). The summation extends over all the elements
of Oλ(G), and 〈·, ·〉 denotes the scalar product in the weight space of G.
Remark 2. For p = 0, the zero-order index of an orbit Oλ(G) is equal to its size:

I0
λ(G) = |Oλ(G)|,

where |Oλ(G)| denotes the size of an orbit generated by the action of G on a seed point λ.
The sizes of orbits of the examined non-crystallographic groups are presented in Table 3.1.

Since the elements of any orbit Oλ(G) are equidistant from the origin, we have the
following remark.
Remark 3. The formula for even-degree indices has the form:

I2p
λ (G) = |Oλ(G)|〈λ, λ〉p, p ∈ N. (3.2.1)

Proposition 4. For the non-crystallographic reflection groups, the general formulas for 2p-
order indices are the following ones:

(3−τ)pI2p
(a1,a2)(H2) =|O(a1,a2)(H2)| · [2(a2

1+τa1a2+a2
2)]p,

(4−2τ)pI2p
(a1,a2,a3)(H3) =|O(a1,a2,a3)(H3)| · [(3−τ)a2

1+4a2
2+3a2

3+4a1a2+2τa1a3+4τa2a3]p,

(5− 3τ)pI2p
(a1,a2,a3,a4)(H4) =|O(a1,a2,a3,a4)(H4)| · [2((2−τ)a2

1+(3−τ)a2
2+3a2

3+2a2
4+(3−τ)a1a2

+2a1a3+τa1a4+4a2a3+2τa2a4+3τa3a4)]p,

where τ = 1+
√

5
2 = 1.618 . . . is the positive solution of the quadratic equation x2 = x + 1

known as the golden ratio.

Proof. The inner product 〈·, ·〉 of the elements of orbits of the non-crystallographic groups
Hn has the following form:

〈(a1, . . . , an), (b1, . . . , bn)〉 =
(
a1 . . . an

)
C−1
Hn


b1
...
bn

 , n ∈ {2, 3, 4}. (3.2.2)

where C−1
Hn is the inverse Cartan matrix (Table 3.2). Applying (3.2.2) to (3.2.1), the desired

formulas can be immediately obtained. �
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λ |Oλ(H2)|
(a, 0) 5
(0, b) 5
(a, b) 10

λ |Oλ(H3)|
(a, 0, 0) 12
(0, b, 0) 30
(0, 0, c) 20
(a, b, 0) 60
(a, 0, c) 60
(0, b, c) 60
(a, b, c) 120

λ |Oλ(H4)|
(a, 0, 0, 0) 120
(0, b, 0, 0) 720
(0, 0, c, 0) 1200
(0, 0, 0, d) 600
(a, b, 0, 0) 1440
(a, 0, c, 0) 3600
(a, 0, 0, d) 2400
(0, b, c, 0) 3600
(0, b, 0, d) 3600
(0, 0, c, d) 2400
(a, b, c, 0) 7200
(a, b, 0, d) 7200
(a, 0, c, d) 7200
(0, b, c, d) 7200
(a, b, c, d) 14400

Table 3.1. The sizes of orbits Oλ(Hn) of the non-crystallographic groups Hn, n ∈ {2, 3, 4}
provided for each type of dominant point λ with the coefficients a, b, c, d ∈ R>0.

CH2 =
(

2 −τ
−τ 2

)
C−1
H2 = 1

3−τ

(
2 τ
τ 2

)

CH3 =

 2 −1 0
−1 2 −τ
0 −τ 2

 C−1
H3 = 1

2

 2 + τ 2 + 2τ 1 + 2τ
2 + 2τ 4 + 4τ 2 + 4τ
1 + 2τ 2 + 4τ 3 + 3τ



CH4 =


2 −1 0 0
−1 2 −1 0
0 −1 2 −τ
0 0 −τ 2

 C−1
H4 =


2 + 2τ 3 + 4τ 4 + 6τ 3 + 5τ
3 + 4τ 6 + 8τ 8 + 12τ 6 + 10τ
4 + 6τ 8 + 12τ 12 + 18τ 9 + 15τ
3 + 5τ 6 + 10τ 9 + 15τ 8 + 12τ



Table 3.2. The Cartan matrices and their inverses for the non-crystallographic groups H2,
H3 and H4.

Definition 5. Let G be a finite reflection group. The direct sum of orbits with dominant
points λ1, . . . , λk, k ≥ 2, is provided by the formula:

Oλ1⊕...⊕λk(G) =
⋃

µi∈Oλi(G)
i∈{1,2,...,k}

µi = Oλ1(G) ∪ . . . ∪Oλk(G). (3.2.3)

The size of the direct sum is equal to

|Oλ1⊕...⊕λk(G)| = |Oλ1(G)|+ . . .+ |Oλk(G)|. (3.2.4)
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Definition 6. Let G be a finite reflection group. The tensor product of orbits of G with
dominant points λ1, . . . , λk, k ≥ 2, is provided by the summation of elements of each orbit
with all elements of other orbits as

Oλ1⊗...⊗λk(G) =
⋃

µi∈Oλi(G)
i∈{1,2,...,k}

(µ1 + . . .+ µk). (3.2.5)

The size of the tensor product is equal to

|Oλ1⊗...⊗λk(G)| = |Oλ1(G)| · . . . · |Oλk(G)|. (3.2.6)

Remark 7. The tensor product of k orbits of G decomposes into a union of several orbits
(Háková et al. [57]). In this case, the highest weight is λ1 + . . . + λk, and the product of
orbits decomposes as follows:

λ1 ⊗ . . .⊗ λk = (λ1 + . . .+ λk) ∪ . . . ∪ other lower-order orbits.

Example 8. Let us consider two orbits, O(1,0)(H2) and O(0,τ)(H2). The direct sum (3.2.3)
and tensor product (3.2.5) of orbits are written explicitly as

O(1,0)⊕(0,τ)(H2) ={(1, 0),(−1, τ), (τ,−τ), (−τ, 1), (0,−1),

(0, τ), (τ + 1,−τ), (−τ−1, τ + 1), (τ,−τ−1), (−τ, 0)};

O(1,0)⊗(0,τ)(H2) ={(1, τ), (τ+2,−τ), (−τ, τ+1), (τ+1,−τ−1), (1−τ, 0), (−1, 2τ),

(τ, 0), (−τ−2, 2τ+1), (τ−1,−1), (−τ−1, τ), (τ, 0), (2τ+1,−2τ),

(−1, 1), (2τ,−2τ−1), (0,−τ), (−τ, τ+1), (1, 1−τ), (−2τ−1, τ+2),

(0,−τ), (−2τ, 1), (0, τ−1), (τ+1,−τ−1), (−τ−1, τ), (τ,−τ−2), (−τ,−1)}.

The tensor product of two orbits decomposes into the union of orbits as

(1, 0)
5
⊗
·

(0, τ)
5

=
=

(1, τ)
10
∪
+

2(τ, 0)
2·5
∪
+

(0, τ−1)
5

.

The numbers attached to the dominant points correspond to the sizes of the orbits of H2

provided by (3.2.4) and (3.2.6) (see Table 3.1). The number of elements of the orbit product
is equal to the number of elements after the decomposition.
Proposition 9. Let G be a finite reflection group. The formulas for lower-order indices of
the tensor product of k orbits of G are given by:

(i) I2
λ1⊗···⊗λk(G) =

k∏
i=1

I0
λi

(G)
k∑
j=1

I2
λj

(G)
|Oλj (G)| =

k∑
j=1

I2
λj

(G)
k∏
i 6=j
i=1

I0
λi

(G)
 ,

(ii) I4
λ1⊗···⊗λk(G) =

k∑
j=1

I4
λj

(G)
k∏
i6=j
i=1

I0
λi

(G)
+ 2(r+2)

r

k∑
j,l=1
j 6=l

I2
λj

(G)I2
λl

(G)
k∏

i 6=j,l
i=1

I0
λi

(G)
 ,

where k ∈ N≥2, and r denotes the rank of G.
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Proof. (i) Using the Equation (3.2.1), we immediately have

I2
λ1⊗···⊗λk(G) = |Oλ1⊗···⊗λk(G)| · 〈λ1⊗· · ·⊗λk, λ1⊗· · ·⊗λk〉

= |Oλ1(G)| · |Oλ2(G)| . . . |Oλk(G)| · (〈λ1, λ1〉+ 〈λ2, λ2〉+ . . .+ 〈λk, λk〉)

=
k∏
i=1

I0
λi

(G) ·
k∑
j=1
〈λj, λj〉 =

k∑
j=1

I2
λj

(G)
k∏
i 6=j
i=1

I0
λi

(G)

 .
(ii) Let us recall the pertinent properties of orbits of finite reflection groups. Considering

any point µ = (µ1, . . . , µr), where r = rank G, we obtain∑
µ∈Oλ(G)

µi = 0,
∑

µ∈Oλ(G)
µiµj = δij

r

∑
µ∈Oλ(G)

µ2.

Hence, the index for p = 2 can be written as

I4
λ1⊗···⊗λk(G) = |Oλ1⊗···⊗λk(G)| · 〈λ1⊗· · ·⊗λk, λ1⊗· · ·⊗λk〉2

= |Oλ1(G)| · |Oλ2(G)| . . . |Oλk(G)| ·
 k∑
i,j=1
〈λi, λi〉〈λj, λj〉+ 4

k∑
i,j=1
〈λi, λj〉2

 .
Using the properties of orbits, we obtain the following expressions:

|Oλ1(G)| · |Oλ2(G)| . . . |Oλk(G)| ·

 k∑
i=1
〈λi, λi〉2 + 2

k∑
i,j=1
i6=j

〈λi, λi〉〈λj, λj〉+ 4δij
r

k∑
i,j=1
〈λi, λj〉2



= |Oλ1(G)| · |Oλ2(G)| . . . |Oλk(G)| ·

 k∑
i=1
〈λi, λi〉2 + 2(r + 2)

r

k∑
i,j=1
i 6=j

〈λi, λi〉〈λj, λj〉



=
k∑
j=1

I4
λj

(G)
k∏
i 6=j
i=1

I0
λi

(G)

+ 2(r + 2)
r

k∑
j,l=1
j 6=l

I2
λj

(G)I2
λl

(G)
k∏

i 6=j,l
i=1

I0
λi

(G)

 .
�

Remark 10. In general, the indices of the k-th tensor product of orbits of a group G are
defined recursively as

I2p
λ1⊗···⊗λk(G) = I2p

λ1⊗(λ2⊗···⊗λk)(G), k ∈ N≥2.

The obvious observation is

I2p
λ1⊕...⊕λk(G) =

k∑
i=1

I2p
λi

(G).

Example 11. Let us calculate the second-order index of the tensor product of the orbits
O(1,0)(H2) and O(0,1)(H2). Such a product decomposes as

(1, 0)⊗ (0, 1) = (1, 1) ∪ (τ − 1, τ − 1) ∪ 5(0, 0).
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Therefore, using the decomposition given above, we can calculate the second-degree index
as follows:

I2
(1,0)⊗(0,1)(H2) = I2

(1,1)(H2) + I2
(τ−1,τ−1)(H2) + 5I2

(0,0)(H2) = 20(τ + 2)
3− τ + 20 + 0 = 100

3− τ .

Taking into consideration Proposition 9, the same result is obtained:

I2
(1,0)⊗(0,1)(H2) = I2

(1,0)(H2)I0
(0,1)(H2) + I0

(1,0)(H2)I2
(0,1)(H2) = 5 · 10

3− τ + 5 · 10
3− τ = 100

3− τ .

Proposition 12. Let G = G1× . . .×Gk be a finite reflection group. The formula for 2p-order
indices of the product of k orbits λi ∈ O(Gi), i ∈ {1, 2, . . . , k} is provided by:

I2p
λ1⊗···⊗λk(G) =

k∑
j=1

I2p
λj

(Gj)
k∏
i 6=j
i=1

I0
λi

(Gi)

 =
k∏
i=1
|Oλi(Gi)| ·

k∑
j=1
〈λj, λj〉p. (3.2.7)

Proof. For any group G = G1× . . .×Gk, the inner product has the following form:

〈λ1⊗· · ·⊗λk, µ1⊗· · ·⊗µk〉G = 〈λ1, µ1〉G1 + . . .+ 〈λk, µk〉Gk .

It is easy to verify that Formula (3.2.7) holds. �

3.3. Odd-degree indices for orbits
The odd-order index of an irreducible representation serves as a parameter limiting the

symmetry of the mathematical model of particle physics and its diverse extensions (Okubo
[108]). The triangular anomaly numbers have been defined for the Lie group SU(n) by the
sum of cubes of the components of the weights corresponding to the U(1) subgroup in the
reduction SU(n) ⊃ U(1)×SU(n− 1) (Patera and Sharp [115]).

In general, the crucial part of obtaining the anomaly number lies in determining the vector
v passing through the origin of the weight space. For any Coxeter group Hn, n ∈ {2, 3, 4},
the orbits of its lower subgroup span Rn−1 orthogonal to v. Projecting the orbit points
onto v and calculating the sum of the distances between the obtained projections, we can
determine whether this sum yields zero or not. Generally, the highest weight of the unitary
group U(1) sets the direction of v. However, other suitable vectors are not excluded, and
they are utilized as long as the resulting sum is not equal to zero.

The non-zero anomaly numbers exist only for those groups that have a correspond-
ing symmetric Coxeter–Dynkin diagram. From such diagrams for the non-crystallographic
groups (Figure 3.1), it follows that the anomaly number of the Coxeter group H2 is not
equal to zero. The non-crystallographic groups H3 and H4 are anomaly-free groups, as their
Coxeter–Dynkin diagrams are non-symmetric.
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Fig. 3.1. The Coxeter–Dynkin diagrams of the non-crystallographic groups Hn, n ∈
{2, 3, 4}. The nodes correspond to the simple roots αk, k ∈ {1, . . . , n}.

The nodes of the Coxeter–Dynkin diagrams of Hn, n ∈ {2, 3, 4} can be also labeled
by the reflections rk across the hyperplanes orthogonal to αk, k ∈ {1, . . . , n}. For a non-
crystallographic group Hn and any point x ∈ Rn, the reflection formula is provided by the
scalar product (3.2.2) as

rkx = x− 〈x, αk〉αk, k ∈ {1, . . . , n}. (3.3.1)

Definition 13. Let G be a Coxeter group Hn, n ∈ {2, 3, 4} of non-crystallographic type.
The number defined by

A2p−1
λ (G) =

∑
µ∈Oλ(G)

〈µ, v〉2p−1, p ∈ N, (3.3.2)

where v is a vector orthogonal to the simple roots α1, . . . , αn−1, is called the anomaly number
or (2p− 1)-th-order index of an orbit Oλ(Hn).
Example 14. Consider an orbit of the non-crystallographic group H2 with a dominant point
λ = (a, b) shown in Figure 3.2. In this case, the weight ω2 can be chosen as the vector v,
since it is orthogonal to the simple root α1. Hence, using Formula (3.3.2), the calculations
of the anomaly numbers yield:

A2p−1
(a,b) (H2) =

∑
µ∈O(a,b)(H2)

〈µ, (0, 1)〉2p−1 = 2
( 1
τ−3

)2p−1 {
(a(τ−1)−b(τ−1))2p−1

−(aτ+2b)2p−1−(aτ+b(τ−1))2p−1 +(2a+bτ)2p−1+(a(τ−1)+bτ)2p−1
}
.

Remark 15. We can generalize Definition 13 by taking into consideration the following
statements:

• The anomaly numbers A1
(a,b)(H2) = A3

(a,b)(H2) = 0, for any a, b ∈ R.
• The odd-order indices A2p−1

(a,b) (H2) 6= 0, for a 6= b and p > 2.
• For the Coxeter groups H3 and H4, as any orbit contains the elements with positive
and negative signs, the anomaly numbers obtained for any orbit are equal to zero:

A2p−1
λ (Hn) =

∑
µ∈Oλ(Hn)

〈µ, v〉2p−1 = 0, n = 3, 4.

Definition 16. Let G be the non-crystallographic finite reflection group H2. The number
defined by

Apλ(H2) =
∑

µ∈Oλ(H2)
〈µ, ω2〉p, p ∈ N ∪ {0}

is called the p-th-order anomaly number of an orbit Oλ(H2).
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Fig. 3.2. The root system of the Coxeter group H2. The dashed lines r1 and r2 correspond
to the reflecting hyperplanes orthogonal to the simple roots α1 and α2, respectively. The root
ξ denotes the highest root of H2. The coordinates of the points of an orbit with a dominant
point λ = (a, b) of H2 are listed. The orbits of the reflection group A1 are depicted by green
segments.

From Definition 16, one can immediately notice the following relation:

A0
λ(H2) = |Oλ(H2)|.

The general formulas for the p-th-order anomaly number of any orbit of the H2 group
are given by:

(3− τ)pAp(a,b)(H2) = 2[((a−b)(1−τ))p+(aτ+2b)p+(−2a−bτ)p (3.3.3)

+(a(1−τ)−bτ)p+(aτ+b(τ−1))p], a, b 6= 0,

(3− τ)pAp(a,0)(H2) = 2[(a(1−τ))p+(aτ)p]+(−2a)p, a 6= 0,

(3− τ)pAp(0,b)(H2) = 2[(b(τ−1))p+(−bτ)p]+(2b)p, b 6= 0.

Comparing the formulas for the lower even-order indices (Proposition 4) and for p-th-
order anomaly numbers (3.3.3), one can observe the following equalities:

93



A0
λ(H2) = I0

λ(H2),

A2
λ(H2) = 1

3− τ I
2
λ(H2),

A4
λ(H2) = 3

2(3− τ)2 I
4
λ(H2),

A6
λ(H2) = 5

2(3− τ)3 I
6
λ(H2),

A8
λ(H2) = 35

8(3− τ)4 I
8
λ(H2).

Similarly to the even-order indices, the formulas for the direct sum and tensor product
can be derived for the anomaly numbers of orbits for the Coxeter group H2.
Proposition 17. The formula for the p-th-order anomaly number of the direct sum of k
orbits λi ∈ Oλi(H2), i ∈ {1, 2, . . . , k} is given by:

Apλ1⊕...⊕λk(H2) =
k∑
i=1

Apλi(H2).

The formulas for the p-th-order anomaly numbers of the tensor product of two and three
orbits λi ∈ Oλi(H2), i ∈ {1, 2, 3} are given by:

Apλ1⊗λ2(H2) =
2∑
i=0

(
p

i

)
Aiλ1(H2)Ap−iλ2 (H2),

Apλ1⊗λ2⊗λ3(H2) =
3∑
i=0

(
p

i

)
Aiλ1(H2)

3−i∑
j=0

(
p−i
j

)
Ajλ2(H2)Ap−i−jλ3 (H2).

Remark 18. In general, the p-th-order anomaly numbers of k-th tensor product of orbits of
the H2 group are defined recursively as follows:

Apλ1⊗···⊗λk(H2) = Apλ1⊗(λ2⊗···⊗λk)(H2), k ∈ N≥2.

3.4. Embedding index
In order to determine the embedding index of an irreducible representation, the branch-

ing rule should be defined for a given Lie algebra and its subalgebra (Okubo [109]). Such
rules have been calculated for numerous irreducible representations of simple Lie algebras
(McKay and Patera [97]). Applying the branching rule to any orbit of a non-crystallographic
reflection group, we can reduce any chosen orbit to a sum of several orbits. Such a decom-
position corresponds to the subgroups of a chosen Coxeter group. Dividing the size of an
orbit of any Coxeter group by the size of its reduced orbit provides a specific ratio called the
embedding index.
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G G′ γ

H2 A1 2
H3 A1×A1×A1 1
H3 A2 3/2
H3 H2 3/2
H4 A2×A2 1
H4 H2×H2 1
H4 A1×A1×A1×A1 1
H4 H3×A1 1
H4 A4 1
H4 D4 1

Table 3.3. The embedding index γ provided for the non-crystallographic groups Hn, n ∈
{2, 3, 4} and their maximal subgroups G′.

The index considered in this section depends only on the rank r of a finite reflection group.
Whenever any branching rule is established, it takes the same value for all orbits. Given that
the embedding index can be obtained for any orbit of a crystallographic reflection group, we
demonstrate that this property holds for the non-crystallographic groups Hn, n ∈ {2, 3, 4}
as well.
Definition 19. Let G be a reflection group of order n, and G1× . . .×Gk, k ≤ n, be a maximal
subgroup of G. The second-order index of the embedding G ←↩ G1× . . .×Gk is given by the
formula:

γ = I2(G)
I2(G1× . . .×Gk)

. (3.4.1)

Remark 20. The formula for the embedding index is generalized for any parameter k. How-
ever, in this paper, we focus only on the non-crystallographic cases with k ∈ {2, 3, 4}.

Using the Formula (3.4.1), we calculate the embedding indices γ for any Coxeter group
of non-crystallographic type and its maximal subgroup (Table 3.3).
Theorem 21. For any Coxeter group G of non-crystallographic type, the embedding index
γ is a fraction of the ranks, i.e., those of a group G and its maximal subgroup G′, namely:

γ = rank G
rank G′ .

Proof. Let us consider the two cases: (i) rank G = rank G′, and (ii) rank G > rank G′.
(i) The elements of any orbit Oλ(G) of a group G are found on the surface of a sphere

with a finite radius. Applying the branching rule method to λ, we obtain several orbits of the
subgroup G′ of a group G. Since rank G′ = rank G, all elements of orbits of G′ are found on
the surface of a sphere of the same radius. Since the second-order index is given by the sum
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of squared distances between the orbit points and the origin, we have that I2(G) = I2(G′).
In such a case, the index γ is equal to 1.

(ii) First, let us recall that for any orbit Oλ(H3), the orbit points have the coordinates
(x, y, z) in the ω−basis. In this case, some particular values occur an equal number of times
for x, y and z. This property arises due to the impact of the tetrahedral symmetry of the
non-crystallographic H3 group on the orbit points.

For instance, the orbits of any maximal subgroup G′ of the Coxeter group H3 are selected
in the following way:

• consider the points of an orbit Oλ(H3);
• remove the first coordinate of each point in the case of H2, and the third one for the
crystallographic group A2;
• among all the points in R2 select those with non-negative coordinates; such points
provide the orbits of G′ in R2.

Considering the values appearing at each coordinate, the index I2 of the subgroup G′ of
H3 is equal to 2

3I
2(H3). Therefore, the embedding index γ = 3

2 . A similar explanation can
be provided for the H2 group. �

3.5. Lower orbits of H2 and H3

For simple Lie algebras, using the highest weight of an irreducible representation, we can
determine its dominant weight multiplicities by subtracting the simple roots (Bremner et al.
[21]). Hence, the computational problem comprises the following components:

• determination of the highest weight;
• subtraction of simple roots from the highest weight;
• an algorithm that describes the subtraction path.

For crystallographic cases, the appearance of dominant weight multiplicities arrises from
the non-commutativity of the certain elements of a Lie algebra (Moody and Patera [100];
Bremner [20]). A similar procedure can be developed and properly applied to individual
orbits of the considered non-crystallographic groups. The multiple occurrences of equal
dominant weights within one system necessarily involve the same number of dominant points
of corresponding lower orbits.

In this section, we only examine the groups Hn, n ∈ {2, 3}; their simple roots αi, i ∈
{1, . . . , n} are provided by the Cartan matrices (Table 3.2). In order to identify all lower
orbits of H2 and H3, the algorithm contains the following steps:

(i): determine a dominant point λ = (l1, . . . , li), li = ai + biτ ∈ Z[τ ]>0, i ∈ {1, . . . , n};

(ii): establish a correspondence between the coordinates of a dominant point λ and the
index i ∈ {1, . . . , n} of a simple root αi: i→ li;

(iii): if at least one of li > 0, i ∈ {1, . . . , n}, then proceed the following subtraction:
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• if bi = 0, then µi = λ− j · αi, j ∈ {1, . . . , ai};
• if bi ≥ 1:

– and ai = 0, then µi = λ− kτ · αi, k ∈ {1, . . . , bi};
– and ai ≥ 1, then µi = λ− k li

gcd(ai,bi) · αi, k ∈ {1, 2, . . . , gcd(ai,bi)};
(iv): replace a point λ in (i) with µi;
(v): repeat the steps (ii)–(iv) until at least one of the coordinates µi is greater than

zero.
This recursive method provides a tree-diagram for any dominant point λ of theH2 andH3

groups (Figures 3.3–3.5). Such a method allows one to determine the coordinates of dominant
points of lower orbits starting from any chosen λ. In order to generalize the formulas for
the coordinates, it is convenient to consider the dominant points with their coordinates
provided by integer coefficients. Furthermore, to obtain such expressions, we only consider
the coordinates of dominant points λ with equal ‘dynamic’ coefficients. For example, in the
case of H3, if λ = (a, b, 0), it is necessary to consider a = b. However, for λ = (a, b, c) and
a, b, c > 0, the number of vertices of a corresponding orbit is |O(a,b,c)(H3)| = 120, and the
generalization of the coordinates of lower orbits becomes less apparent. Therefore, this case
is omitted in this paper.

Let us consider a dominant point λ = (a, 0) of H2. Hence, we can generalize the coordi-
nates of obtained seed points of lower orbits as follows:

(a, 0) a ∈ N; (3.5.1)

(a−2k−2, (k+1)τ) , k ∈
{

0, . . . ,
[
a

2

]
−1
}

a ∈ N≥2;(
a−2k

2 τ−a+2k
2 , 2kτ

)
, k ∈

{
0, . . . ,

[
a

10

]}
a = 2n, n ∈ N;(

a−2k−1
2 τ−a+2k+1

2 , (2k+1)τ
)
, k ∈

{
0, . . . ,

[
a−2
10

]}
a = 2n+1, n ∈ N≥2.

For a dominant point λ = (a, a) of H2, only half of the dominant points of lower orbits
are provided as

(a, a), (0, 0) a ∈ N;

(3.5.2)

(a−2k, a+kτ) , k ∈
{

1, . . . ,
[
a

2

]}
a ∈ N≥2;(

(a−2k)τ−a+2k
2 , 2k(τ+1)

)
, k ∈

{
0, . . . ,

[
a−n

2

]}
a = 2n, n ∈ N;(

(a−2k−1)τ−a+2k+1
2 , (2k+1)τ

)
, k ∈

{
0, . . . ,

[
a−n

2

]
−1
}

a = 2n+1, n ∈ N≥2.
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(a) (b) (c)

Fig. 3.3. The tree-diagram for the orbits of H2. (a) O(1,0)(H2); (b) O(0,1)(H2); (c) O(1,1)(H2).
The dominant points are displayed in boxes. The points that do not belong to O(1,1)(H2)
are depicted by blue color.

The formulas for λ = (0, a) and the formulas for the other half of the points obtained
from λ = (a, a) are derived by interchanging the coordinates as (x, y)→ (y, x) of (3.5.1) and
(3.5.2), respectively.

For the Coxeter group H3, the formulas for the coordinates of dominant points of lower
orbits are listed in Table 3.4. The notation

[
·
]
corresponds to the integer part of a number.

In order to generalize each case depending on the type of a dominant point, we only consider
a, b, c ∈ {1, 2, . . . , 9}. However, such a generalization can be potentially obtained for any
a, b, c ∈ N.

In the case of the H3 group, applying reflections given by the Formula (3.3.1) to dominant
points of lower orbits, we obtain the structures of nested polytopes, with their vertices
provided in the ω−basis. In Examples 24 and 25, to demonstrate the geometric structure
of nested polytopes in R3, the orthonormal α− and ω−bases of H3 defined in (Chen et al.
[28]) are utilized.

The subtraction paths for the non-crystallographic group H4 can be constructed in a
similar way. However, for a, b, c, d > 0, an orbit of such a group contains the large number of
elements: |O(a,b,c,d)(H4)| = 1202. In this case, the computational routine becomes laborious.
Even though for the non-crystallographic cases, the actual method for determining such
multiplicities has not yet been developed, it will likely prove related to determining the
multiplicities for crystallographic reflection groups.

In general, to obtain the dominant points of lower orbits, one can choose λ with any
non-negative real numbers as its coordinates. As shown in Example 22, the values from the
ring Z[τ ] can as well represent the coordinates of a dominant point λ. However, such a choice
does not affect the subtraction path. Moreover, it is worth mentioning that the definitions of
indices introduced in previous sections of this paper also apply to any lower orbits obtained
using the introduced algorithm.
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(a, 0, 0):

(a− 2k, k, 0), k ∈
{

0, . . . ,
[
a
2

]}
any a(

0, a2(τ − 1), 0
)

even a(
0,
[
a
2

]
τ −

[
a+2

2

]
, τ
)

odd a > 3

(0, a, 0):

(k, a− 2k, kτ), k ∈
{

0, . . . ,
[
a
2

]}
any a

(0, 0, 0),
(
a
2(τ−1), 0, a2

)
,
(
a, a2(τ−1), 0

)
even a([

a
2

]
τ−

[
a+2

2

]
, τ+1,

[
a
2

]
−τ
)
,
(
a,
[
a
2

]
τ−

[
a+2

2

]
, τ
)

odd a > 3

(0, 0, a):

(0, kτ, a− 2k), k ∈
{

0, . . . ,
[
a
2

]}
any a,(

0, a2(τ − 1), 0
)
,
(
a
2τ, 0,

a
2(τ − 1)

)
even a([

a
2

]
τ, τ,

[
a
2

]
τ−

[
a+2

2

])
,
(
τ+1,

[
a
2

]
τ−

[
a+2

2

]
, 0
)

odd a > 3

(a, a, 0):
(a,a, 0), (0, 0, aτ), (a, a(τ−1), 0) any a

(a− 2k, a+ k, 0) , (a+ k, a− 2k, kτ), k ∈
{

1, . . . ,
[
a
2

]}
a > 1

a
2 (2τ−1, 0, 2−τ) , a2 (0, τ−1, 0) , a2 (4, τ − 1, 0) , a2 (0, 2− τ, a) even a
(a, (a− 1)τ − (a+ 1), 2τ) a > 4(
2a,

[
a
2

]
τ −

[
a
2 + 1

]
, τ
)
,
(
0,
[
a
2

]
τ −

[
a
2 + 1

]
, τ
)

odd a > 3
(a, (a− 2)τ − (a+ 2), 4τ) a > 8
(a, 0, a):
(a, 0, a), (aτ, 0, 0) any a

(a−2k, k, a), (a, kτ, a−2k), k ∈
{

1, . . . ,
[
a
2

]}
a > 1,(

0, (a−2k−1)τ−
[
a
2+k+1

]
, (2k+1)(τ+1)

)
, k ∈

{
0, . . . ,

[
a−2

4

]}
a > 1

a
2(0, 1, 0), a2(τ+2, 0, τ−1), a2(1, 0, 2−τ), a2(τ−1, 0, 2τ−1) even a(
0, (a−2k)τ−a

2−k, 2k(τ+1)
)
, k ∈

{
0, . . . ,

[
a
4

]}(
τ+2,

[
a
2

]
τ−1, 0

)
odd a > 1([

a
2

]
τ+a, τ,

[
a
2

]
τ−

[
a
2+1

])
,
([

a
2

]
τ−

[
a
2+1

]
, τ+1, (a−1)τ−

[
a
2+1

])
odd a > 3(

2τ+4,
(
a
2−1

)
τ−2, 0

)
even a > 4(

3τ+6,
[
a
2−1

]
τ−3, 0

)
odd a > 5

(0, a, a):
(0, a, a), (a(τ+1), 0, 0) any a

(k, a−2k, kτ+a) , (0, kτ+a, a−2k) , k ∈
{

1, . . . ,
[
a
2

]}
a > 1

(0, 0, a) , a2 (2τ−1, 0, τ) ,
(
0, a2(τ−1), 0

)
even a((

a
2−k

)
(τ+1), 2k(τ+1), (a−2k)τ −

[
a
2 + k

])
even a(

a, (a−2k)τ−a
2−k, 2k(τ + 1)

)
, k ∈

{
0, . . . ,

[
a
4

]}([
a
2−k

]
(τ+1), (2k + 1)(τ+1), (a−2k−1)τ −

[
a
2+k+1

])
odd a > 1(

a,(a−2k−1)τ −
[
a
2+k+1

]
, (2k + 1)(τ+1)

)
, k ∈

{
0, . . . ,

[
a−3

4

]}(
(a−1)τ−

[
a
2+1

]
, 2τ+1,

[
a
2−1

]
τ−1

)
odd a > 3

Table 3.4. Dominant points for lower orbits obtained by subtraction of the simple roots
α1, α2, α3 of H3 are listed for any type of a dominant point of the initial orbit: (a, 0, 0),
(0, a, 0), (0, 0, a), (a, a, 0), (0, a, a), (a, 0, a). The coefficients are provided by the values
a ∈ {1, 2, . . . , 9}.
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Example 22. Let us consider the orbit of the non-crystallographic group H2 arising from
the dominant point with at least one irrational coordinate, namely (τ, 1). The subtraction of
the simple roots α1 and α2 of H2 yields the tree-diagram shown in Figure 3.4.

Fig. 3.4. The tree-diagram for the orbit O(τ,1)(H2). The dominant points are displayed in
boxes. The points that do not belong to O(τ,1)(H2) are depicted by blue color.

Example 23. Consider the orbits of H3 with the dominant points (1, 0, 0) and (0, 0, 1). The
coordinates of the orbit-points are obtained from the tree-diagrams provided in Figure 3.5.

(a) (b)

Fig. 3.5. The tree-diagrams constructed for the orbits of H3. (a) O(1,0,0)(H3);
(b) O(0,0,1)(H3). The subtraction paths that yield already existing points are marked
by blue color.
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Example 24. Consider the orbit of H3 with the seed point (2, 0, 0). As shown in the tree-
diagram below, such an orbit has two lower orbits with the dominant points (0, 1, 0) and
(0,−τ ′, 0), where τ ′ = 1− τ . The nested polytopes are generated as presented in Figure 3.6.

(a) (b)

Fig. 3.6. (a) The tree-diagram for the orbit O(2,0,0)(H3); (b) the corresponding nested poly-
topes. The orbits O(2,0,0)(H3), O(0,1,0)(H3) and O(0,−τ ′,0)(H3) are presented in green, black
and bold colors, respectively.

Example 25. Consider the orbits O(3,1,0)(H3) and O(0,1,3)(H3). Applying the subtraction of
the simple roots, we find the following dominant points of lower orbits:

(3, 1, 0) : (3, 1, 0), (1, 2, 0), (2, 0, τ), (0, 1, τ);

(0, 1, 3) : (0, 1, 3), (0, τ + 1, 1), (τ + 1, 0, 2), (τ + 1, τ − 1, 2τ − 2).

Both of the nested polytopes consist of four orbits of different radii, as shown in Figure 3.7.
Depending on the radius of each orbit that is descending from left to right, they are distin-
guished by cyan, blue, green and black colors.

(a) (b)

Fig. 3.7. The nested polytopes provided by the algorithm of root-subtraction.
(a) O(3,1,0)(H3); (b) O(0,1,3)(H3).

101



3.6. Concluding remarks
• The decomposition of a tensor product of representations of a simple Lie algebra into
a direct sum of irreducible components given by Young tableaux symmetries plays
an essential role in physics. As the indices of the representations help to determine
such a decomposition (Háková et al. [57]), we demonstrate that their definitions can
be extended to orbits of the non-crystallographic Coxeter groups. As a result, the
notation of the even- and odd-order indices of representations are reformulated for
the orbits of Hn, n ∈ {2, 3, 4}.
• It would be useful to generalize the properties of higher-order indices and anomaly
numbers of orbits, similarly to (Patera et al. [115]; Patera and Sharp [115]). Along
with these properties, one could potentially obtain the formulas for the explicit forms
of higher even-order indices of a tensor product of orbits. Moreover, the expressions
for the even-order indices, anomaly numbers and embedding indices could be re-
formulated and adapted to orbits of any finite reflection group of crystallographic
type.
• Even though the Coxeter groups of non-crystallographic types do not have underlying
Lie algebras, the recursive algorithm introduced in Section 3.5 is shown to be similar
to the algorithm developed for the weight multiplicities of simple Lie groups (Bremner
et al. [21]). It is important to mention that our algorithm also provides the seed
points of orbits that are smaller in radius than an initial orbit (referred to as ‘lower
orbits’). The geometrical construction of sets of lower orbits results in the structures
of nested polytopes. Since the recursive rules are only applied to a dominant point λ
of the non-crystallographic groups H2 and H3, one could consider applying them to
any seed point of the H4 group as well. As the size of an orbit |O(a,b,c,d)(H4)| = 1202,
for a, b, c, d > 0, the generalization of the formulas for the coordinates of the seed
points of lower orbits is considered as future research. Moreover, it would be an
interesting task to generalize the formulas given in Table 3.4 for any a ∈ N, as it was
done for the H2 case.
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Résumé. L’étude des polyèdres décrits dans cet article est pertinente pour la symétrie
icosaédrique dans l’assemblage de diverses molécules sphériques, biomolécules et virus. Un
mécanisme de brisure de symétrie est appliqué à la famille des VH3(λ)−polytopes construits
pour chaque type de point dominant λ. Dans cette étude, un polytope VH3(λ) est considéré
comme un dual d’un DH3(λ)−polytope obtenu à partir de l’action du groupe de Coxeter H3

sur un seul point λ ∈ R3. La symétrie de H3 est réduite à la symétrie de ses sous-groupes
bidimensionnels H2, A1 × A1 et A2 qui servent à examiner la structure géométrique de
VH3(λ)−polytopes. Ce dernier est présenté comme un empilement d’orbites paralléles circu-
laires/polygonales connues sous le nom de ‘pancake’-structure d’un polytope. L’insertion de
plus d’orbites dans une décomposition orbitale aboutit à l’extension de la VH3(λ)−structure
dans divers nanotubes. De plus, puisqu’un VH3(λ)−polytope peut contenir les orbites obte-
nues par l’action de H3 sur les points de départ (a, 0, 0), (0, b, 0) et (0, 0, c) dans sa structure,
les stellations des VH3(λ)−polytopes à face plane sont construites chaque fois que les rayons
de ces orbites sont correctement mis à l’échelle. Enfin, puisque le fullerène C20 a la structure
dodécaédrique de VH3(a, 0, 0), la construction des plus petits fullerènes C24, C26, C28, C30

avec les nanotubes C20+6N , C20+10N sont présentés.
Mots clés : groupe de Coxeter, double polytope, décomposition en orbite, fullerène, nano-
tube, polytope étoilé

Abstract. The study of the polyhedra described in this paper is relevant to the icosa-
hedral symmetry in the assembly of various spherical molecules, biomolecules and viruses.
A symmetry-breaking mechanism is applied to the family of polytopes VH3(λ) constructed
for each type of dominant point λ. Here a polytope VH3(λ) is considered as a dual of a
DH3(λ)−polytope obtained from the action of the Coxeter groupH3 on a single point λ ∈ R3.
TheH3−symmetry is reduced to the symmetry of its two-dimensional subgroupsH2, A1×A1

and A2 that are used to examine the geometric structure of VH3(λ)−polytopes. The latter
is presented as a stack of parallel circular/polygonal orbits known as the ‘pancake’-structure
of a polytope. Inserting more orbits into an orbit decomposition results in the extension
of the VH3(λ)−structure into various nanotubes. Moreover, since a VH3(λ)−polytope may
contain the orbits obtained by the action of H3 on the seed points (a, 0, 0), (0, b, 0) and
(0, 0, c) within its structure, the stellations of flat-faced VH3(λ)−polytopes are constructed
whenever the radii of such orbits are appropriately scaled. Finally, since the fullerene C20

has the dodecahedral structure of VH3(a, 0, 0), the construction of the smallest fullerenes
C24, C26, C28, C30 together with the nanotubes C20+6N , C20+10N is presented.
Keywords: Coxeter group, dual polytope, orbit decomposition, fullerene, nanotube, stel-
lated polytope
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4.1. Introduction
Finite reflection groups (known as Coxeter groups) underlie many structural phenom-

ena found in nature. There are two types of finite reflection groups: crystallographic
groups (or Weyl groups) and non-crystallographic ones. Unlike the Weyl groups, the non-
crystallographic ones are not related to a corresponding Lie algebra. There are three non-
crystallographic Coxeter groups with 5-fold symmetry: H2 (dihedral group), H3 (icosahedral
group) and H4 of order 10, 120 and 14400, correspondingly (Chen et al. [28]). The Coxeter
group H4 does not have an official name in physics, even though it contains all the other
non-crystallographic groups within it (H2 ⊂ H3 ⊂ H4). In general, such groups are used to
describe aperiodic sets of points (or quasi-crystals) and various spherical molecules (Moody
and Patera [104]; Moody et al. [98]; Dechant et al. [36]; Dechant et al. [37]; Baake and
Grimm [10]; Zappa [149]; Salthouse et al. [130]).

The icosahedral symmetry of the non-crystallographic group H3 is versatile in its ap-
plications in physics and chemistry; it provides the description of molecular structures and
density maps of macromolecules, such as proteins and nucleic acids [for instance, see (Atiyah
and Sutcliffe [7]; Terwilliger [138])]. As well, the H3−symmetry is relevant in the descrip-
tion of various spherical molecules and viruses. The theory established in (Caspar and Klug
[27]) proposed an elegant conceptualization of the structural organization of simple viruses
in terms of triangulations. It had a significant impact on further research in biophysics and
mathematical virology (Twarock and Luque [143]). In the work of (Twarock [142]; Keef
and Twarock [74]), the icosahedral group H3 is considered as an indispensable tool for rep-
resentation of the architecture and structural assembly of spherical viruses. The dynamic
virus structure (a nucleocapsid that further adapts to a specific host) has the form of a
viral genome enclosed inside of a viral capsid (Aznar et al. [9]). The latter most commonly
possess helical or icosahedral symmetry (Kerner [76]). Moreover, cone- and rod-shaped cap-
sid structures have also been observed, and the latter has been recognized to have helical
symmetry. (Carter & Saunders, 2007; Prasad & Schmid, 2012).

There are interesting connections between icosahedral viruses and fullerene molecules,
which are presented in (Dechant et al. [38]). In general, the Coxeter group H3 plays an
important role in describing the structures of icosahedral fullerenes (Dresselhaus et al. [46]).
Ever since the discovery of the fullerene C60 (Kroto et al. [84]) (also referred to as Buckmin-
sterfullerene, or “buckyball”), it remains the most famous representative of its large family.
Another important category of fullerenes are carbon nanotubes. The latter are particularly
interesting due to their astonishing physical and mechanical properties (Eletskii and Smirnov
[49]; Balandin [11]) and wide range of specialized applications (Pandolfo and Hollenkamp
[113]; Zhang et al. [152]). For example, single- and multi-wall carbon nanotubes are used
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for more efficient drug delivery, i.e., for transporting and translocating therapeutic molecules
(Bianco et al. [12]).

Recognizing the importance of the H3 group in the assembly of icosahedral molecules,
such as viruses and fullerenes, in this paper, we examine in detail the dual polyhedra of non-
crystallographic type VH3(λ). The main goal is to extend the structures of VH3(λ) to tube-
like structures, such as carbon nanotubes, considering a well-known mechanism described
in (Bodner et al. [13], [14], [15]). A connection between the family of VH3(λ)−polyhedra
and the structures of spherical viruses, biomolecules and fullerenes warrants the study of
chosen polytopes in mathematical generality. However, it is important to note that fullerene
structures are subject to several physical constraints, such as valency, bond length, and the
angles between the bonds (e.g., the molecule C20 might be less stable because of the extreme
conditions (Wang et al. [145]), which might also give a physical criterion for inserting
orbits at certain distances from the mathematical point of view). Therefore, some of the
resulting tube-like structures coming out of the approach later in this paper might violate
these physical constraints at face value. Nonetheless, for simplicity, we will refer to all
such structures as “fullerenes”, but this should be understood in a broader sense. We defer
discussion of the concrete physical constraints and focus on the extensive interest that the
description of such structures provides in the context of understanding virus structures,
nanocages, fulleroids and multi-shell nanostructures.

Adapting the notations of (Champagne et al. [29]), the polytopes generated by the
action of the Coxeter group H3 on a single point λ ∈ R3 are denoted as DH3(λ)−polytopes,
and those that are generated from the face of highest dimension (in this case, polygons)
are referred to as VH3(λ)−polytopes. The polytopes considered in this study are uniform
convex polytopes. The notations D and V stand for Delaunay and Voronoi domains. The
duality between D(λ)− and V(λ)−polytopes is well-established, as the proximity cells of the
vertices of one form a dual tiling of the sphere of another one (Moody and Patera [103]).
Both of them are invariant under the action of H3. Such structures are commonly known in
solid-state physics as Brillouin zones and Wigner-Seitz cells.

As the vertices of any DH3(λ)−polytope belong to one orbit OH3(λ), it is convenient to
characterize both by a dominant point (or a seed point) λ = (a, b, c), i.e., the point that
has non-negative coordinates in the ω−basis (Section 4.2). Such a point is unique for each
orbit, and it lies within the fundamental region F (Section 4.3). The size of an orbit depends
only on a choice of λ, and it is always finite. Depending on the coordinates of λ (whether
some of them are zero or not), eight types of dominant points are possible to consider (up to
topology). Since the orbit with the coordinates a,b,c = 0 contains only one point (the origin),
this case is omitted. For the other seven types of seed points, the coordinates of λ with equal
values of a, b and/or c are usually examined, as such cases yield regular D(λ)−polytopes.
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Employing the Wythoff construction (Chen et al. [28]), we can build a Euclidean (a
polytope with the flat faces) or a spherical polytope. The latter is usually obtained from
a central projection of a flat-faced polytope onto the surface of a sphere (Figure 4.4). In
the case of a flat-faced polytope, although several types of regular polygons can represent
the two-dimensional faces of D(λ), those of V(λ) are only of one type, and they are not
necessarily regular. Depending on the type of seed point λ, the dual pairs of flat-faced
polytopes, DH3(λ) and VH3(λ), are shown in Figure 4.1.

Owing to the fact that any finite reflection group has a corresponding Coxeter–Dynkin
diagram, the recursive decoration technique applied to the nodes of a diagram was developed
in (Moody and Patera [103]) and later adapted in (Champagne et al. [29]). The recursive
decoration rules are recalled in Section 4. It follows from the decoration of a Coxeter–Dynkin
diagram that VH3(λ)−polytopes (except the self-dual pair dodecahedron-icosahedron) may
contain three types of appropriately scaled orbits arising from the action of H3 on the dom-
inant points (a, 0, 0), (0, b, 0) and (0, 0, c) (Table 4.3). Here these orbits are called generic.
Even though the decoration method is not extensively used, it thoroughly provides all the
pertinent information about the types and multiplicities of faces of any n-dimensional poly-
tope and its dual (Section 5). Scaling the radii of such orbits (Section 4.6), we obtain the
stellations of VH3(λ)−polytopes (Coxeter [33]; Shephard [132]) presented in Section 4.7.

During the past decades, there were several attempts to generate a complete list of
fullerene isomers: the spiral algorithm (Manolopoulos et al. [95]), the algorithm using
folding nets (Yoshida and Osawa [148]), the algorithm based on the stitching of patches
bounded by a zigzag (Brinkmann and Dress [22]; Brinkmann et al. [23]). However, as
here only the polytopes with H3−symmetry are considered, a remarkable approach to a
structural extension of the fullerene C60 (the truncated icosahedron) explicitly described in
(Bodner et al. [13], [14], [15]) serves as a powerful tool to our research. In these papers,
the vertices of C60 are split between the parallel circular/polygonal orbits depending on
the symmetry of a two-dimensional subgroup G′ ⊂ H3. The reduction of the icosahedral
symmetry H3 → H2 × A1, H3 → A2 × A1, H3 → A1 × A1 × A1 determines the ‘pancake’-
decomposition of C60 (Bodner et al. [13]). Depending on the order of G′, there is a specific
number of points that belong to each two-dimensional orbit. Knowing the ‘pancake’-structure
of a polytope, its symmetry can be broken, and more circular/polygonal orbits can be inserted
in the middle of a decomposition. Therefore, the extension of the structure of C60 results
in the larger fullerene molecules and closed nanotubes. In this case, preserving a distance
between inserted orbits allows to retain the edge lengths and the angles essential for fullerene
structures. Recently this approach have been applied to the rhombicosidodecahedron and
the truncated dodecahedron, since both contain 60 vertices within their structures (Bourret
and Grabowiecka [18]).
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Inspired by the work done for the molecule C60, here a symmetry-breaking mechanism is
applied to the family of dual polyhedra VH3(λ). Even though these polytopes are well-known,
the possible ways to extend their structures were not previously explored. The pertinent in-
formation about the ‘pancake’-structure of an icosahedral polytope is recalled in Section 4.8.
The results of the orbit decompositions for VH3(λ) are presented for every type of dominant
point λ in Appendix A. The points determining each ‘pancake’ of VH3(λ)−polytopes, the
numbers of points of two-dimensional orbits and the corresponding numerical values of the
squared radii are presented in Appendix B.

In this study, there are two ways to consider in order to extend the structure of a polytope
VH3(λ) by using its ‘pancake’-structure: (i) duplicating the middle ‘pancakes’ and inserting
them back into a polytope while preserving the spacing between them; (ii) constructing
a two-dimensional tiling, rolling it onto a cylinder and seamlessly closing both ends with
half-polytopes. In Section 4.9, taking into account both approaches, we construct the closed
tubes. Naturally, there are many possibilities to tile a two-dimensional plane with regular,
non-regular and star polygons (Grünbaum and Shephard [55]). However, as we are restricted
by the symmetries of the H3 group and its two-dimensional subgroups, the scope significantly
decreases to a few choices. To preserve the number of points of each ‘pancake,’ only the
certain types of tilings in R2 are considered, for instance, see Figure 4.24.

Finally, since the fullerene C20 has the dodecahedral structure of VH3(a, 0, 0), its sym-
metry breaking is considered independently in Section 4.10. The molecule C20 is the only
fullerene smaller than C60 that has the icosahedral symmetry. Although breaking the sym-
metry of a fullerene can be achieved by breaking the symmetry of its dual polytope, here
the structure of C20 is broken directly by considering the two-dimensional subgroups of the
Coxeter group H3. Including more orbits in the ‘pancake’-structure, the fullerene C20 is ex-
tended into the hollow cage nanotubes C20+6N and C20+10N , where N indicates the number of
inserted circular/polygonal orbits. Moreover, unfolding C20 in R2 yields the net of pentagons
that is further modified by inserting up to five hexagons (Figure 4.32). In this case, folding
the constructed nets to achieve a spheroidal molecular structure, the fullerenes C24, C26, C28

and C30 are obtained.

4.2. Bases of the icosahedral group H3

4.2.1. The α− and ω−bases

Any finite reflection group G of rank n has a corresponding root system (Deodhar [41]).
The pertinent information about a root system can be extracted from a corresponding
Coxeter–Dynkin diagram. The nodes of a diagram are usually labeled by the generators
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λ = (a, 0, 0) λ = (0, b, 0) λ = (0, 0, c)

Icosahedron – Icosidodecahedron – Dodecahedron –
Dodecahedron Rhombic triacontahedron Icosahedron

λ = (a, b, 0) λ = (a, 0, c) λ = (0, b, c)

Truncated icosahedron – Rhombicosidodecahedron – Truncated dodecahedron –
Pentakis dodecahedron Deltoidal hexecontahedron Triakis icosahedron

λ = (a, b, c)

Truncated icosidodecahedron –
Disdyakis triacontahedron

Fig. 4.1. The dual pairs of polytopes of the Coxeter group H3 are constructed for each type
of dominant point λ.
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α1 α2 α3

5

Fig. 4.2. The Coxeter–Dynkin diagram of the non-crystallographic group H3. The nodes
of the diagram are labeled by the simple roots αk, k ∈ {1, 2, 3}. The links between the
nodes provide the relative angles between the simple roots: ∠(α1, α2) = 2π

3 , ∠(α2, α3) =
4π
5 , ∠(α1, α3) = π

2 .

of the finite reflection group, i.e., the reflections rk passing across the corresponding reflect-
ing hyperplanes (mirrors) mk, k ∈ {1, 2, . . . , n}. The simple roots αk are the normal vectors
to mk, and we use them to label the nodes of a Coxeter–Dynkin diagram. The links of
a diagram correspond to the relative angles between the vectors αk. The Coxeter–Dynkin
diagram of the non-crystallographic group H3 is presented in Figure 4.2.

For the Coxeter group H3, the lengths of the simple roots αk, k ∈ {1, 2, 3} and the
relative angles between them are provided by the Cartan matrix:

CH3 = (〈αj, αk〉) =


2 −1 0
−1 2 −τ
0 −τ 2

 , (4.2.1)

where 〈·, ·〉 is the standard scalar product, and τ denotes the positive solution of the quadratic
equation x2 − x− 1 = 0 known as the golden ratio,

τ = 1
2(1 +

√
5) ≈ 1.618, τ ′ = 1

2(1−
√

5) = −1
τ
≈ −0.618. (4.2.2)

The basis of the fundamental weights is known as the ω−basis. The lengths of
ωk−vectors, as well as the relative angles between them, are provided by the inverse of
the Cartan matrix (4.2.1):

C−1
H3 = (〈ωj, ωk〉) = 1

2


2 + τ 2 + 2τ 1 + 2τ
2 + 2τ 4 + 4τ 2 + 4τ
1 + 2τ 2 + 4τ 3 + 3τ

 . (4.2.3)

The duality relation between the α− and ω−bases is given by the scalar product 〈·, ·〉 as

〈αj, ωk〉 = δjk, j, k ∈ {1, 2, 3}, (4.2.4)

where δjk is the Kronecker delta.
Hence, using the Cartan matrix and its inverse, we can relate the two bases as follows:

αj =
3∑

k=1
CH3ωk, ωk =

3∑
j=1

C−1
H3αj.
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Fig. 4.3. The 15 positive roots of the non-crystallographic group H3 are presented. The
simple roots αk, k ∈ {1, 2, 3} are depicted by green color. The root ξ = τα1 + 2τα2 + τ 2α3
stands for the highest root. The values of the angles between the simple roots αk are provided.

Using the matrices (4.2.1) and (4.2.3), the simple roots αk and the fundamental weights
ωk can be written explicitly as

α1 = 2ω1 − ω2, ω1 =
(
1 + 1

2τ
)
α1 + (1 + τ)α2 +

(
1
2 + τ

)
α3,

α2 = −ω1 + 2ω2 − τω3, ω2 =(1 + τ)α1 + (2 + 2τ)α2 + (1 + 2τ)α3,

α3 = −τω2 + 2ω3; ω3 =
(

1
2 + τ

)
α1 + (1 + 2τ)α2 + 3

2 (1 + τ)α3.

4.2.2. The orthonormal bases

The root system of the icosahedral group H3 contains 30 roots. The 15 positive roots are
listed in (Eq. 6.13) of (Champagne et al. [29]). In Figure 4.3, the positive roots of H3 are
illustrated using the orthonormal bases relative to the α− and ω−bases of H3 (Chen et al.
[28]):

α1 = (0, 0, 1), ω1 = 1
2(τ, 0, 1),

α2 = 1
2(τ − 1,−τ,−1), ω2 = (τ, 0, 0),

α3 = (0, 1, 0); ω3 = 1
2(τ 2, 1, 0).

(4.2.5)

4.2.3. The mixed bases

The icosahedral group H3 contains the following two-dimensional subgroups G′:
(i) H2, a dihedral group of order 10;

(ii) A2, a dihedral group of order 6;
(iii) A1 × A1, a dihedral group of order 4;

It is worth mentioning that the crystallographic groups (ii) and (iii) are the Weyl groups of
the Lie algebras A2 and A1 × A1, respectively.
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G′ Diagram Reflections Mixed basis

H2
5

r2, r3 {α1, ω2, ω3}

A2 r1, r2 {ω1, ω2, α3}

A1 × A1 r1, r3 {ω1, α2, ω3}
Table 4.1. The two-dimensional subgroups of the Coxeter group H3.

The reflections generating a subgroupG′ ⊂ H3 can be extracted from the Coxeter–Dynkin
diagram (Figure 4.2). We label the nodes of the diagram corresponding to the generators of
G′ by the vectors ωk, k ∈ {1, 2, 3}. From the duality relation (4.2.4), we have that the vectors
ωi and ωj, i, j ∈ {1, 2, 3}, i 6= j span the plane orthogonal to the vector αk, k ∈ {1, 2, 3},
k 6= i 6= j. Hence, for each subgroup G′, the mixed basis is formed as presented in Table 4.1.

4.2.4. The ω′−basis

Since it is essential to consider the ω−basis for the construction of flat-faced or spherical
D(λ)−polytopes, the corresponding ω′−basis that comprises appropriately scaled vectors of
the ω−basis can be conveniently utilized in the case of V(λ)−polytopes (Champagne et al.
[29]). For the Coxeter group H3, any dominant (seed) point λ in the ω−basis is provided by
the linear combination of the fundamental weights as

λ = (a, b, c) ≡ aω1 + bω2 + cω3, a, b, c ∈ Z≥0. (4.2.6)

For simplicity, we consider the values of coefficients a, b, c to be equal to zero or one, as they
yield the regular DH3(λ)−polytopes.

Using formula (4.2.6), the scaling coefficients ak are determined by the scalar product
〈·, ·〉 as

ak = 〈λ, λ〉
〈ωk, λ〉

, (4.2.7)

where ak have the form a+bτ , for a,b ∈ Q≥0. Therefore, there is a one-to-one correspondence
between the vectors of the ω− and ω′−bases:

ω′k = ckωk, ck = ak/a1,

where ck, k ∈ {1, 2, 3} are the normalized scaling coefficients. Depending on the type of
dominant point λ, the values of the coefficients ck are listed in Table 4.2. Therefore, the
dominant points of orbits that are found within the structures of VH3(λ)−polytopes are
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λ c1 c2 c3

(1, 0, 0) 1 1
2(3− τ) 3τ − 4

(0, 1, 0) 1 1
2 τ − 1

(0, 0, 1) 1 1
2

1
3τ

(1, 1, 0) 1 1
6(5− τ) 1

3(5τ − 6)
(1, 0, 1) 1 −3

2(τ − 2) − 3
11(τ − 4)

(0, 1, 1) 1 1
2

1
11(8− τ)

(1, 1, 1) 1 5
22(τ − 4) −5

3(τ − 2)
Table 4.2. Scaling coefficients ck, k ∈ {1, 2, 3} for the vectors of the ω−basis.

denoted as λ′ ≡ ω′k, k ∈ {1, 2, 3}, and they are provided in terms of the ω′−basis as

(a′, 0, 0) ≡ ω′1 = c1ω1,

(0, b′, 0) ≡ ω′2 = c2ω2,

(0, 0, c′) ≡ ω′3 = c3ω3.

(4.2.8)

4.3. Reflections and reflection graphs
4.3.1. Reflections of the Coxeter group H3

The action of the reflections rk on any point x ∈ R3 is given by the formula (Humphreys
[67]; Chen et al. [28]):

rkx = x− 2 〈x, αk〉
〈αk, αk〉

αk, k ∈ {1, 2, 3}. (4.3.1)

However, since the simple roots αk have the same lengths, we have that 〈αk, αk〉 = 2,
and formula (4.3.1) takes the simplified form

rkx = x− 〈x, αk〉αk, k ∈ {1, 2, 3}. (4.3.2)

Taking into account the duality between the α− and ω−bases provided by (4.2.4), formula
(4.3.2) can be written as

rkωj = ωj − δjkαk, k, j ∈ {1, 2, 3}. (4.3.3)

The three reflections, r1, r2 and r3, satisfy the following identities:

r2
1 = r2

2 = r2
3 = 1, (r1r2)3 = 1, (r2r3)5 = 1, (r1r3)2 = 1.
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Fig. 4.4. The spherical and Euclidean polytopes are provided by the structure of the icosa-
hedron DH3(1, 0, 0). The vectors ωk, k = {1, 2, 3} label the fundamental weights. The
fundamental region F is provided by the vertices {0, ω1, ω2, ω3}.

Acting on any point λ ∈ R3 with the reflections (4.3.3), the points of an orbit OH3(λ) of
the icosahedral group H3 are obtained. The coordinates of λ are commonly chosen in such
a way that it does not lie at the intersection of the hyperplanes, i.e., it does not lie at the
origin.

4.3.2. The fundamental region of H3

In the three-dimensional real Euclidean space R3, the fundamental region F is a tetra-
hedron that is bounded by the mirrors mk, k = {1, 2, 3} of H3, and it is restricted by the
tile with the vertices provided by the vectors ωk, k ∈ {1, 2, 3} (see Figure 4.4). Any point
λ is found within the region bounded by the mirrors or on the boundaries created by them;
therefore, it has only non-negative coefficients as its coordinates. In general, scaling the co-
ordinates of λ continuously through the space affects the sizes of one- and two-dimensional
faces of a dual pair of polytopes, D(λ) and V(λ); however, it will not change the number of
dual faces, their multiplicities and their intersections (Champagne et al. [29]).

4.3.3. Reflection graphs

The reflection graph is an amazing feature naturally arising from the actions of the
reflections of any finite reflection group G on a single point in space. Such a graph is
embedded in the construction of a polytope of any dimension. The reflection graph starts
at the dominant point λ and ends at −λ. It has the form of a directed acyclic graph formed
by the vertices of a polytope and the edges that are oriented from one vertex to another.
For such a graph, the edges do not necessarily coincide with the one-dimensional faces of a
considered polytope (for instance, see Figure 4.5(a)). The number of directed edges arising
from any vertex of the reflection graph depends only on the number of positive entries in
each vertex’s coordinates. Therefore, since we are restricted by three dimensions, we may
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(a) (b)

Fig. 4.5. (a) The icosahedron DH3(1, 0, 0) is presented. The directed edges corresponding
to the reflections r1, r2 and r3 are depicted by blue, orange and green colors, respectively.
The orange and blue points indicate the vertices providing branching and rejoining of the
reflection graph. (b) The planar reflection graph.

have up to three directed edges pointed from one vertex, which, in this context, we will call
branches. For example, the reflection graph constructed using a dominant point (a, 0, 0),
where a > 0, has only one starting branch (see Figure 4.5(b)), and the one obtained using
the point (a, b, c), where a, b, c > 0, has three branches at the very beginning (Figure 4.6(b)).
Note that, for any reflection graph, new branches will develop as soon as a vertex with two
or three positive entries in its coordinates appears within an orbit of a polytope. Since the
reflections determine the considered graphs, the branches arising from one vertex may rejoin
at another one. Let us consider the following example.
Example 1. Consider the icosahedron obtained by the action of the Coxeter group H3 on the
dominant point λ = (1, 0, 0). The reflection graph obtained for the icosahedron DH3(1, 0, 0) is
shown in Figure 4.5(a). For simplicity, we present in Figure 4.5(b) the corresponding planar
graph, together with the coordinates of each point of the icosahedron. The reflection graph
begins at the point (1, 0, 0). However, at the point (τ,−τ, 1) (depicted by orange color) two
branches develop, as this point can be reflected using r1 and r3. After, the branches rejoin at
the point (−τ, τ,−1) (depicted by blue color), and the graph ends at the point (−1, 0, 0).

In Example 2, the initial reflection graph has three starting branches (see Figure 4.6(b)).
In this case, we demonstrate the action of the reflections r1, r2 and r3 on the dominant
point λ = (1, 1, 1), providing three two-dimensional faces of the polytope meeting at one
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vertex. Constructing the reflection graph beyond the illustrated vertex, we determine all
the vertices of the DH3(1, 1, 1)−polytope (Figure 4.6(a)). Similarly to Example 2, for each
DH3(λ)−polytope, the two-dimensional faces meeting at the vertex provided by λ, as well as
the corresponding facets of VH3(λ), are presented in Figure 4.7.
Example 2. Consider the truncated icosidodecahedron DH3(1, 1, 1) shown in Fig. 6(a).
There are three types of facets meeting at each vertex of this polytope: hexagon, square
and decagon. They are generated by the reflections r1 and r2 of A2, r1 and r3 of A1×A1, r2

and r3 of H2, respectively. Applying the reflections rk, k ∈ {1, 2, 3} to the point λ = (1, 1, 1),
the coordinates of the vertices of the faces are calculated explicitly in the ω−basis as

Hexagon:
(1, 1, 1)

r1(1, 1, 1) = (−1, 2, 1)
r2(1, 1, 1) = (2,−1, 1 + τ)
r1r2(1, 1, 1) = (−2, 1, 1 + τ)
r2r1(1, 1, 1) = (1,−2, 1 + 2τ)

r1r2r1(1, 1, 1) = r2r1r2(1, 1, 1) = (−1,−1, 1 + 2τ)

Square:
(1, 1, 1)

r1(1, 1, 1) = (−1, 2, 1)
r3(1, 1, 1) = (1, 1 + τ,−1)

r1r3(1, 1, 1) = r3r1(1, 1, 1) = (−1, 2 + τ,−1)

Decagon:
(1, 1, 1)

r2(1, 1, 1) = (2,−1, 1 + τ)
r3(1, 1, 1) = (1, 1 + τ,−1)
r2r3(1, 1, 1) = (τ + 2,−τ − 1, 2τ)
r3r2(1, 1, 1) = (2, 2τ,−τ − 1)
r3r2r3(1, 1, 1) = (τ + 2, τ + 1,−2τ)
r2r3r2(1, 1, 1) = (2τ + 2,−2τ, τ + 1)
r2r3r2r3(1, 1, 1) = (2τ + 3,−τ − 1, 1)
r3r2r3r2(1, 1, 1) = (2τ + 2, 1,−τ − 1)

r3r2r3r2r3(1, 1, 1) = r2r3r2r3r2(1, 1, 1) = (2τ + 3,−1,−1)
The beginning of the reflection graph is demonstrated in Figure 4.6(b).
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(a) (b)

Fig. 4.6. (a) The polytope DH3(1, 1, 1). (b) The vertex of DH3(1, 1, 1). The dominant point
λ = (1, 1, 1) is depicted by an empty node. The actions of reflections r1, r2 and r3 are
illustrated by blue, orange and green arrows, respectively.

4.4. Decoration of the Coxeter–Dynkin diagram
Any finite reflection group G is conveniently characterized by its Coxeter–Dynkin dia-

gram. The decoration method developed in (Moody and Patera [103]; Champagne et al.
[29]) plays a significant role in the description of faces of D(λ)− and V(λ)−polytopes, gen-
erated by the action of G on any point λ ∈ Rn.

In general, the recursive decoration rules can be applied to a Coxeter–Dynkin diagram
regardless of the geometry of space (whether it is Euclidean or not), its metric (whether it is
defined or not) and G (whether it is finite or infinite) acting in this space. The uniformity of
the decoration technique equips us with the geometry of faces of D(λ)− and V(λ)−polytopes
arising from each step of the decoration procedure. Such rules depend neither on the angle
between the simple roots of G nor on their lengths (as the links of a diagram do not change
during the decoration, and the nodes correspond to the generators of G).

The decoration of a Coxeter–Dynkin diagram of G starts from choosing a seed point
λ ∈ Rn. There are three types of nodes that we use for the decoration of a diagram: �, �, ♦.
The first node indicates the active mirrors (i.e., the reflections rk, k ∈ {1, 2, . . . , n} that
act non-trivially on λ), the second and third nodes represent the reflections that generate
the stabilizers of the faces of D(λ) and V(λ), correspondingly. Note that during past years,
the symbols for the decoration procedure have been changed several times. The decoration
symbols that are used in this study are inherited from (Szajewska [133]), and they are in
one-to-one correspondence with the notations: �, • , � (Moody and Patera [103]); �, , �
(Champagne et al. [29]); 3, , (Szajewska [134]).
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Let us recall the recursive decoration rules:
(i) replace the original nodes of a diagram corresponding to the non-zero coordinates of

λ by �, and the nodes corresponding to zeros (if there are any) by ♦;
(ii) replace only one � of a diagram by � at a time;

(iii) replace every ♦ adjacent to � by �;
(iv) repeat the steps (ii) and (iii) as long as possible, until only one � remains in the

final diagram(s).
Hence, at the step (i), replacing the nodes of the initial diagram by � equips us with the

set of active mirrors. After that, the replacement in (ii) and (iii) activates the corresponding
mirrors to generate the edges, as well as to further obtain the two-dimensional faces of
D(λ)−polytopes. In the case of V(λ)−polytopes, the decorated diagrams of each step are
interpreted in the reversed order. The decoration rules are applied to a Coxeter–Dynkin
digram with n nodes that contains no � among them. Afterwards, a diagram is decorated
to have k of � nodes and n−k of � or ♦ nodes, where n is the rank of G and 1 ≤ k ≤ n−1.

Let us consider the diagrams obtained at the last step of the decoration procedure. De-
pending on the type of a dominant point λ ∈ R3, a V(λ)−polytope generated by the action of
G may contain up to three orbits O(λ′) within its structure, where λ′ are provided by expres-
sion (4.2.8). In this paper, these three types of orbits are called generic orbits. The presence
of generic orbits within the structure of a polytope V(λ) is provided in Table 4.3. Moreover,
unlike for spherical polyhedra, the points of the orbits of flat-faced VH3(λ)−polytopes may
not be found on the surface of the same sphere.

In Example 3, the decoration rules are applied to the Coxeter–Dynkin diagram of the H3

group corresponding to the seed point λ = (0, 1, 0). The steps of the decoration are shown
in Figure 4.8. For any type of a dominant point λ, the decoration of the Coxeter–Dynkin
diagram of H3 is considered in Tables 4.6, 4.7.

4.5. Faces of dual polytopes
The information about the faces of dual polytopes D(λ) and V(λ) can be conveniently

extracted from the corresponding decorated Coxeter–Dynkin diagram (Champagne et al.
[29]). There is a one-to-one correspondence between the faces dk of D(λ) and the faces
vn−k−1 of V(λ), where 0 ≤ k ≤ n − 1. In the three-dimensional real Euclidean space R3,
there are three different types of faces: d0(v0), d1(v1) and d2(v2). The faces are represented
by the vertices, edges and two-dimensional faces or facets (regular polygons) of D(λ) and
V(λ), respectively. Even though D(λ)−polytopes have up to three different types of facets,
V(λ)−polytopes have only one type of v2. If there are several decorated diagrams appearing
at the steps (ii) and (iii) of the decoration procedure, it is convenient to distinguish the
faces of the same dimension labeling them by j ∈ {1, 2, . . . , n}. In this case, we can use
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Orbits of V(λ)−polytope

λ
5 5 5

(a, 0, 0) X

(0, b, 0) X X

(0, 0, c) X

(a, b, 0) X X

(a, 0, c) X X X

(0, b, c) X X

(a, b, c) X X X

Table 4.3. The orbits of a polytope VH3(λ) are presented for each type of dominant
point λ. The scaled orbits (a′, 0, 0), (0, b′, 0) and (0, 0, c′) are presented by means of the
corresponding decorated Coxeter–Dynkin diagrams. The generic orbits within the structure
of a VH3(λ)−polytope are marked by X.

the notation djk(v
j
n−k−1). For example, following the rules of the decoration procedure, the

polytope DH3(0, b, 0) has 30 vertices (type d0), 60 edges (type d1), 12 pentagonal (type d1
2)

and 20 triangular (type d2
2) faces (Table 4.7).

Example 3. To obtain the orbits OH3(λ′) of VH3(0, 1, 0) (rhombic triacontahedron), let us
consider the decoration of the Coxeter–Dynkin diagram (Figure 4.8).

Considering the two diagrams obtained at the last step of the decoration procedure, we can
extract the seed points of each generic orbit of the polytope VH3(0, 1, 0) (see Table 4.4). The
orbits of the icosahedron and the dodecahedron should be suitably scaled. Using the scaling
factors listed in Table 4.2, the dominant points of two orbits of VH3(0, 1, 0) are

5
: ω′1 = c1ω1 ≡ (1, 0, 0) = A;

5
: ω′3 = c3ω3 ≡ (0, 0, τ − 1) = B.

The non-active reflections of the initial diagram, r1 and r3, become active for the decorated
diagrams obtained in the last step of the decoration procedure. Therefore, we have to apply
these reflections to both points A and B in the ω′−basis:

r1A = r3r1A = (−1, 1, 0) = C,

r3B = r1r3B = (0,−1, 1− τ) = D.

Hence, the vertices of the two-dimensional face v2 of VH3(0, 1, 0), are obtained. The points
A, B, C and D are in one-to-one correspondence with the points in Table 4.5. Further
application of the reflections of H3 to the seed points A and B yields the vertices v1

0 and v2
0

of VH3(0, 1, 0).
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λ = (1, 0, 0) λ = (0, 1, 0) λ = (0, 0, 1)

A = (0, 0, 3τ − 4)
B = (0, 3− τ, 4− 3τ)
C = (3− τ, 3τ − 4, τ − 3)
D = (2τ − 1, 4− 3τ, 0)
E = (3− τ, τ − 3, 3− τ)

A = (1, 0, 0)
B = (0, 0, τ − 1)
C = (−1, 1, 0)
D = (0, 1, 1− τ)

A = (1, 0, 0)
B = (−1, 1, 0)
C = (0,−1, τ)

λ = (1, 1, 0) λ = (1, 0, 1)

A = 1
3(0, 0, 5τ − 6)

B = 1
3(5τ − 6, 6− 5τ, 5− τ)

C = (1, 0, 0)

A = (1, 0, 0)
B = 3

2(6− τ, τ − 6, 1)
C = 3

11(0, 0, 4− τ)
D = 3

2(0, 2− τ, 0)

λ = (0, 1, 1) λ = (1, 1, 1)

A = (1, 0, 0)
B = (−1, 1, 0)
C = 1

11(0, 0, 8− τ)

A = (1, 0, 0)
B = 5

3(0, 0, 2− τ)
C = 5

22(0, τ − 4, 0)

Fig. 4.7. The vertices of polytopes DH3(λ) and the corresponding two-dimensional faces
of VH3(λ) (indicated by green color) are presented for each type of λ (marked by black
rhombus node). The coordinates are provided in the ω− and ω′−basis for DH3(λ) and
VH3(λ), respectively.

120



5

5

5 5

Fig. 4.8. The decoration method applied to the diagram of DH3(0, 1, 0). The orbits of
VH3(0, 1, 0) are presented at the last step of the decoration procedure.

It is well-known that the number of faces of a polytope is determined by Euler’s formula,

V + F − E = 2, (4.5.1)

where V , F and E stand for the number of vertices, facets and edges of a considered polytope.
In order to count the number of faces of a polytope, firstly, one has to know their

stabilizers in G. For any given face of a polytope or its dual, the stabilizer has the form:

StabGdk = StabGvn−k−1 = G(D)×G(V),

where G(D) and G(V) are mutually commuting subgroups of G; more precisely, G(D) and
G(V) are the groups of reflections indicated by � and ♦ node(s) accordingly in the corre-
sponding decorated diagram.

The number of faces of a dual pair of polytopes can be obtained from the formula:

N(dk) = N(vn−k−1) = |G|
|G(D)||G(V)| . (4.5.2)

In the case of a D(λ)−polytope, while G(D) transforms the face dk into itself (as it is a
symmetry group of the face), G(V) fixes that face point-wise. However, if we consider a dual
polytope V(λ), the roles of the subgroups G(D) and G(V) interchange for the face vn−k−1.

The polytopes considered in this paper are vertex-transitive, hence, each vertex is sur-
rounded by the same types of polygons. The decoration technique allows us to determine
the number of faces of maximal dimension meeting at each vertex. To find out how many
faces of dimension p are meeting at the face of lower dimension q (p > q), one has to consider
the reflections generating the stabilizers of these faces. The stabilizer of fq in the stabilizer
of fp is provided by the formula:

StabStabGfqfp = StabGfp ∩ StabGfq.

Hence, the number of faces fp having in common the face fq is

N(fp) = |StabGfq|
|StabGfp ∩ StabGfq|

. (4.5.3)
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λ Seed point of DH3(λ) Seed point of VH3(λ)

(1, 0, 0) ω1 ω′3

(0, 1, 0) ω2 ω′1, ω′3
(0, 0, 1) ω3 ω′1

(1, 1, 0) ω1 + ω2 ω′1, ω′3
(1, 0, 1) ω1 + ω3 ω′1, ω′3
(0, 1, 1) ω2 + ω3 ω′1, ω′3
(1, 1, 1) ω1 + ω2 + ω3 ω′1, ω′2, ω′3

Table 4.4. The seed points λ of DH3(λ) and λ′ of its dual VH3(λ). The first column indi-
cates a dominant point λ in the coordinate form, the second column provides λ as a linear
combination of the fundamental weights ωk, and the third column provides λ′ as the vectors
ω′k, k ∈ {1, 2, 3}.

To construct the faces of a VH3(λ)−polytope, one has to switch to ω′−basis. For
VH3(λ)−polytopes, the seed points λ′ of the orbits comprised within their structures are
listed in Table 4.4.

Considering each type of seed point λ′ in the ω′−basis, the lengths of the edges of VH3(λ)
are determined as a Euclidean distance by using formula (4.3.3):

|ω′1 − r1ω
′
1| = |2ω′1 + ω′2| = |2c1ω1 + c2ω2|,

|ω′2 − r2ω
′
2| = | − ω′1 + 2ω′2 − τω′3| = | − c1ω1 + 2c2ω2 − τc3ω3|,

|ω′3 − r3ω
′
3| = | − τω′2 + 2ω′3| = | − τc2ω2 + 2c3ω3|,

where the vectors ωk, k ∈ {1, 2, 3} are considered in the orthonormal basis (4.2.5), and the
scaling factors are provided in Table 4.2. Thus, the approximate lengths of the edges of
VH3(λ) together with the relative angles are presented in Table 4.5.
Example 4. Consider the dual pair of polytopes generated by the action of the Coxeter group
H3 on a single point λ = (a, 0, 0). To demonstrate the geometric transformations hidden
behind the decoration technique, the vertices of the polytopes DH3(a, 0, 0) and VH3(a, 0, 0) are
projected onto a sphere centered at the origin of R3 (see Figure 4.9).

Let us consider each step of the decoration of the Coxeter–Dynkin diagram of H3. In
case of the DH3(a, 0, 0)−polytope, the G(D) group stands for the symmetry group of the face
d2 and G(V) fixes that face point-by-point. Thus, acting on the point (a, 0, 0) (depicted by
orange color) with the reflection r1 of (ii) yields the edge a. Furthermore, acting on such a
point with the reflections r1 and r2 of (iii) provides the triangular face of the icosahedron.

The faces of VH3(a, 0, 0) are constructed in a similar way, however, the roles of G(D) and
G(V) are interchanged. Starting from the diagram of (iii) corresponding to the seed point
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λ v2 v0 |v1| Angles

(1, 0, 0)

A = ω′3 a = 0.854 α = 108◦
B = r3ω

′
3

C = r3r2r3ω
′
3

D = r2r3r2r3ω
′
3

E = r2r3ω
′
3

(0, 1, 0)

A = ω′1 a = 0.588 α = 63.43◦
B = ω′3 β = 116.57◦
C = r1ω

′
1

D = r3ω
′
3

(0, 0, 1)

A = ω′1 a = 1 α = 60◦
B = r1ω

′
1

C = r2r1ω
′
1

(1, 1, 0)

A = ω′3 a = 0.697 α = 55.69◦
B = r3ω

′
3 b = 0.593 β = 68.62◦

C = ω′1

(1, 0, 1)

A = ω′1 a = 0.514 α = 67.79◦
B = ω′2 b = 0.334 β = 86.97◦
C = ω′3 γ = 118.27◦
D = r2ω

′
2

(0, 1, 1)

A = ω′1 a = 1 α = 30.48◦
B = r1ω

′
1 b = 0.580 β = 119.04◦

C = ω′3

(1, 1, 1)

A = ω′1 a = 0.593 α = 32.77◦
B = ω′3 b = 0.321 β = 58.24◦
C = ω′2 c = 0.504 γ = 88.99◦

Table 4.5. The faces v2 of VH3(λ) are presented for each type of dominant point λ (see Fig-
ure 4.7). The faces v0 are generated by the corresponding reflections applied to λ′ indicated
in Table 4.4. The approximate lengths of the edges v1 are denoted by a, b, c, and the relative
angles are denoted by α, β, γ.

123



(i)

(ii)

(iii)

5

5

5

5

Fig. 4.9. On the left, the vertices ofDH3(a, 0, 0) and VH3(a, 0, 0) are found on the surface of a
sphere S. The green tile corresponds to the fundamental region F ofH3. The points provided
by the vectors ω1, ω2 and ω3 are depicted by orange, green and black colors, respectively. On
the right, the recursive decoration rules are applied to the Coxeter–Dynkin diagram of H3.

Decoration dk v2−k N Type of dk Type of v2−k

5
d0 v2 12 vertices pentagon

5
d1 v1 30 triangle-triangle pentagon-pentagon

5
d2 v0 20 triangle vertices

Table 4.6. The types and the numbers of faces dk and v2−k of DH3(a, 0, 0) and VH3(a, 0, 0),
respectively, are provided for each decorated Coxeter–Dynkin diagram of H3. The polygon-
polygon notation corresponds to the types of edges shared by the two-dimensional faces of
a polytope. The number of faces N(dk) and N(v2−k) is denoted by N .

(0, 0, c′) (marked by green color), and acting on such a point with the reflection r3 of (ii)
yields the edge b. Finally, acting on the point (0, 0, c′) with the reflections r1 and r3 yields
the pentagonal face of the dodecahedron.

It is obvious that DH3(a, 0, 0) and VH3(a, 0, 0) are self-dual polytopes. The numbers and
the types of faces of both polytopes are listed in Table 4.6.

4.6. Orbits of VH3(λ)−polytopes
Applying the recursive decoration rules to the Coxeter–Dynkin diagram of H3 yields up

to three different decorated diagrams appearing at the last step of the procedure. Such
diagrams provide the symmetry of two-dimensional faces of a DH3(λ)− polytope, as well as
the vertices of its dual VH3(λ). The orbits of the latter can be extracted from Table 4.3, and
they are determined by the dominant points λ′ of expression (4.2.8).
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λ Decoration dk v2−k N Type of dk Type of v2−k

(0, b, 0)

5
d0 v2 30 vertices rhombus

5
d1 v1 60 triangle-pentagon rhombus-rhombus

5
d1

2 v2
0 20 triangle vertices

5
d2

2 v1
0 12 pentagon vertices

(a, b, 0)

5
d0 v2 60 vertices triangle

5
d1

1 v2
1 30 hexagon-hexagon triangle-triangle

5
d2

1 v1
1 60 hexagon-pentagon triangle-triangle

5
d1

2 v2
0 20 hexagon vertices

5
d2

2 v1
0 12 pentagon vertices

(a, 0, c)

5
d0 v2 60 vertices kite

5
d1

1 v2
1 60 triangle-rectangle kite-kite

5
d2

1 v1
1 60 rectangle-pentagon kite-kite

5
d1

2 v3
0 20 triangle vertices

5
d2

2 v2
0 30 rectangle vertices

5
d3

2 v1
0 12 pentagon vertices

(0, b, c)

5
d0 v2 60 vertices triangle

5
d1

1 v1 60 triangle-decagon triangle-triangle
5

d2
1 v1 30 decagon-decagon triangle-triangle

5
d1

2 v2
0 20 triangle vertices

5
d2

2 v1
0 12 decagon vertices

(a, b, c)

5
d0 v2 120 vertices triangle

5
d1

1 v3
1 60 hexagon-rectangle triangle-triangle

5
d2

1 v2
1 60 hexagon-decagon triangle-triangle

5
d3

1 v1
1 60 rectangle-decagon triangle-triangle

5
d1

2 v3
0 20 hexagon vertices

5
d2

2 v2
0 30 rectangle vertices

5
d3

2 v1
0 12 decagon vertices

Table 4.7. Decorations of the Coxeter–Dynkin diagram of H3 are presented for domi-
nant points λ, namely (0, b, 0), (a, b, 0), (a, 0, c), (0, b, c) and (a, b, c). The faces dk and
v2−k, k ∈ {0, 1, 2} correspond to the faces of D(λ) and V(λ). The polygon-polygon notation
corresponds to the types of edges shared by the two-dimensional faces of a polytope. The
number of faces N(dk) and N(v2−k) is denoted by N .
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The orbits of the non-crystallographic group H3 with the dominant points (a, 0, 0),
(0, b, 0), (0, 0, c) are explicitly provided by the sets of points as

OH3(a, 0, 0) = {±(a, 0, 0),±(−a, a, 0),±(0,−a, aτ),±(0, aτ,−aτ),±(aτ,−aτ, a),

± (−aτ, 0, a)};

OH3(0, b, 0) = {±(0, b, 0),± (b,−b, bτ),±(−b, 0, bτ),±(b, bτ,−bτ),±(−b, b(1 + τ),−bτ),

± (b(1 + τ),−bτ, b),±(bτ,−b(1 + τ), b(1 + τ)),±(−b(1 + τ), b, b),

± (b(1 + τ), 0,−b),±(−bτ,−b, b(1 + τ)),±(bτ, bτ,−b(1 + τ)),

± (−b(1 + τ), b(1 + τ),−b),±(−bτ, 2bτ,−b(1 + τ)),±(2bτ,−bτ, 0),

± (0,−b(1 + τ), 2bτ)};

OH3(0, 0, c) = {±(0, 0, c),± (0, cτ,−c),±(cτ,−cτ, cτ),±(−cτ, 0, cτ),±(cτ, c,−cτ),

± (−cτ, c(1 + τ),−cτ),±(c(1 + τ),−c, 0),±(c,− c(1 + τ), c(1 + τ)),

± (−c(1 + τ), cτ, 0),±(−c,−cτ, c(1 + τ))}.

Hence, the polytopes VH3(λ) are composed from the unions of orbits OH3(λ′) as

VH3(a, 0, 0) : OH3(0, 0, c′),

VH3(0, 0, c) : OH3(a′, 0, 0),

VH3(0, b, 0) : OH3(a′, 0, 0) ∪OH3(0, 0, c′),

VH3(a, b, 0) : OH3(a′, 0, 0) ∪OH3(0, 0, c′),

VH3(0, b, c) : OH3(a′, 0, 0) ∪OH3(0, 0, c′),

VH3(a, 0, c) : OH3(a′, 0, 0) ∪OH3(0, b′, 0) ∪OH3(0, 0, c′),

VH3(a, b, c) : OH3(a′, 0, 0) ∪OH3(0, b′, 0) ∪OH3(0, 0, c′).

The squared radius of an orbit OH3(λ) with a dominant point λ = (a, b, c) is calculated
via the formula,

R2
H3(λ) =

(
a b c

)
C−1
H3


a

b

c

 = 1
(2−τ)

[
1
2(aτ + c)2 + (bτ + c)2 + (a+ b)2 − τ(a2 + b2)

]
.

(4.6.1)
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VH3(λ)

R2
H3(λ′) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1) (1, 1, 1)

(a′, 0, 0) 1.809 1.809 1.809 1.809 1.809 1.809
(0, b′, 0) 1.719 1.535
(0, 0, c′) 2.865 1.5 1.906 1.657 1.322 1.592

Table 4.8. The numerical values of the squared radii R2
H3(λ′) of the orbits OH3(λ′) of

VH3(λ)−polytopes.

Using formula (4.6.1), the squared radius for each orbit OH3(λ′) of a polytope VH3(λ) has
the following form

R2
H3(a′, 0, 0) =

(
a′ 0 0

)
C−1
H3


a′

0
0

 = (a′)2R2
H3(1, 0, 0), (4.6.2)

R2
H3(0, b′, 0) =

(
0 b′ 0

)
C−1
H3


0
b′

0

 = (b′)2R2
H3(0, 1, 0), (4.6.3)

R2
H3(0, 0, c′) =

(
0 0 c′

)
C−1
H3


0
0
c′

 = (c′)2R2
H3(0, 0, 1). (4.6.4)

The numerical values of the squared radii (4.6.2)–(4.6.4) are calculated in Table 4.8 for
each orbit OH3(λ′) of VH3(λ)−polytopes.

4.7. Stellations of dual polyhedra of H3

As demonstrated in Section 4.6, the family of dual polytopes VH3(λ), except the dual pair
icosahedron-dodecahedron, have two or three orbits OH3(λ′) contained within their structure.
Therefore, each of the polytopes VH3(0, a, 0), VH3(a, b, 0) and VH3(0, b, c) has two orbits of
the dominant points (a′, 0, 0) and (0, 0, c′); the polytopes VH3(a, 0, c) and VH3(a, b, c) contain
the orbits generated by the reflections rk, k ∈ {1, 2, 3} applied to the seed points (a′, 0, 0),
(0, b′, 0), (0, 0, c′). The VH3(λ)−polytopes are shown together with the fundamental region
F represented by one of the faces of the simplex (triangular tile with its edges highlighted
by orange color) relative to the ω′−basis in Figures 4.10, 4.11, 4.12.
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In order to construct the stellations of the VH3(λ)−polytopes, it is convenient to introduce
the scaling factors x, y, z for each generic orbit as

x ·OH3(a′, 0, 0) = OH3(xa′, 0, 0);

y ·OH3(0, b′, 0) = OH3(0, yb′, 0);

z ·OH3(0, 0, c′) = OH3(0, 0, zc′).

Multiplying the coordinates a′, b′ and/or c′ by any coefficients x, y, z ∈ R≥0 provides the
scaling of the corresponding radii of orbits OH3(λ′) given by formulas (4.6.2)–(4.6.4). As a
result, we obtain different types of stellations of VH3(λ).
Example 5. The polytope VH3(0, b, 0) is considered (see Figure 4.10). The structure of such
a polytope is given by the union of two orbits OH3(a′, 0, 0)∪OH3(0, 0, c′). Hence, the vertices
of OH3(a′, 0, 0) and OH3(0, 0, c′) are found on the surfaces of spheres of the radii R1 and R2,
respectively.

Let one consider the two cases: (i) x > z, (ii) x < z. Thus, fixing the radius of one
orbit, and scaling up or down the radius of the second one, provides the following two types
of stellations of VH3(0, b, 0):

(i) the small stellated dodecahedron (or first stellation of the dodecahedron) (Fig-
ure 4.10(c)),

(ii) the excavated dodecahedron (or third stellation of the icosahedron) (Figure 4.10(d)).
In a similar way, the same types of stellations are obtained for VH3(a, b, 0).

Application of the stellation procedure to the orbits of the polytope VH3(0, b, c) results
in the structure of the great dodecahedron and the great stellated dodecahedron shown in
Figure 4.11. The polytopes VH3(a, 0, c) and VH3(a, b, c) are shown in Figure 4.12, and their
stellations have a similar structure. Thus, the stellations of the VH3(a, b, c)−polytope are
illustrated in Figure 4.13.

4.8. Orbit decompositions of VH3(λ)−polytopes
The non-crystallographic group H3 can be decomposed into a product of the subgroups

H2 × A1, A2 × A1, and A1 × A1 × A1. As was shown in (Bodner et al. [13], [14], [15]), the
decomposition of vertices of D(λ)−polytopes into orbits of the two-dimensional subgroups
of H3 can be presented geometrically.

To extract the symmetry of a two-dimensional subgroup G′ ⊂ H3, one should consider its
Coxeter–Dynkin diagram (Table 4.1). Examining the geometric structure of the G′ orbits in
R3, we observe the set of circular/polygonal orbits of crystallographic or non-crystallographic
type. The set of orbits obtained by isolating a two-dimensional subgroup G′, that is orthog-
onal to an element of the α−basis, represents the ‘pancake’-structure of a polytope. The
spacing between the ‘pancakes’ is provided by the one-dimensional subgroup A1 of H3. In
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VH3(0, b, 0) VH3(a, b, 0)
(a) (b)

x > z x < z
(c) (d)

Fig. 4.10. The polytopes VH3(0, b, 0) and VH3(a, b, 0) are shown in (a) and (b). The fun-
damental region F is depicted by the orange triangle. The stellations of VH3(0, b, 0) and
VH3(a, b, 0) are provided with respect to the scaling factors x and z by (c) the small stellated
dodecahedron and (d) the excavated dodecahedron.

VH3(0, b, c)
(a)

x > z x < z
(b) (c)

Fig. 4.11. (a) The polytope VH3(0, b, c) is shown. The fundamental region F is depicted by
the orange triangle. The stellations of VH3(0, b, c) are provided with respect to the scaling
factors x and z by (b) the great dodecahedron, (c) the great stellated dodecahedron.
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VH3(a, 0, c) VH3(a, b, c)

Fig. 4.12. The polytopes VH3(a, 0, c) and VH3(a, b, c) are shown. The fundamental region
F is depicted by the orange triangle.

this case, the simple root of A1 sets the direction, say l, that is orthogonal to the ‘pancakes’
provided by G′. Projecting any point of each ‘pancake’ onto l yields a set of points with their
coordinates corresponding to the α−component of the related mixed basis (Table 4.1). In
this case, the distances between the projected points can be calculated as a one-dimensional
Euclidean distance.

To obtain an orbit-decomposition of VH3(λ), we should consider only one two-dimensional
subgroup at a time. Using a mix of the α− and ω−bases together with the inverse of
the Cartan matrix (4.2.3), we can construct the transformation matrices depending on the
reduction of the H3−symmetry. The matrices take the form of the identity matrices, for
which one column is replaced by a column of C−1

H3 corresponding to a chosen αk−direction,
k ∈ {1, 2, 3}. Hence, multiplying the points of OH3(λ) by such matrices yields an orbit
provided in terms of the mixed basis. More precisely,

H2 : (a, b, c)


1 + 1

2τ 0 0
1 + τ 1 0
1
2 + τ 0 1

 =
((

1 + 1
2τ
)
a+ (1 + τ) b+

(
1
2 + τ

)
c, b, c

)
;

A1 × A1 : (a, b, c)


1 1 + τ 0
0 2 + 2τ 0
0 1 + 2τ 1

 = (a, (1 + τ)a+ (2 + 2τ)b+ (1 + 2τ)c, c);

A2 : (a, b, c)


1 0 1

2 + τ

0 1 1 + 2τ
0 0 3

2(1 + τ)

 =
(
a, b,

(
1
2 + τ

)
a+ (1 + 2τ) b+ 3

2 (1 + τ) c
)
.

Once the transformation is completed, the points are sorted depending on a chosen two-
dimensional subgroup of H3:

(i) for H2, the second and third coordinates should be of the same sign;
(ii) for A1 × A1, the first and third coordinates should be the same sign;

(iii) for A2, the first and second coordinates should be of the same sign.
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x > y, y = z x < y, x = z x = y, y < z

x > y, x = z x < y, y = z x = y, y > z

x > y > z y > x > z z > x > y

x > z > y y > z > x z > y > x

Fig. 4.13. Depending on the scaling factors x, y, z, the twelve different types of stellations
of VH3(a, b, c) are presented.
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Among the sorted points, those with non-negative indicated coordinates stand for the
points µ ∈ R3 that determine each ‘pancake’ in terms of a mixed basis. The coordinates
of µ relative to the subgroups G′ ⊂ H3 form the dominant points µ′ ∈ R2 of G′. The
number of points of OG′(µ′) is provided by formula (4.5.2). Whenever the group A1 × A1 is
considered in the reduction of the H3−symmetry, several orbits can be determined by the
same αk−coordinate, k ∈ {1,2,3}. Therefore, such orbits belong to one ‘pancake’. For that
reason, the number of two-dimensional orbits does not necessarily coincide with the number
of ‘pancakes’ of a considered polytope (for example, see Figures A.3−A.7 for the polytopes
viewed from the direction perpendicular to the simple root α2). The numbers of circular
orbits and ‘pancakes’ obtained for VH3(λ)−polytopes are listed in Table 4.9. The ‘pancake’-
structures of VH3(λ) for each type of dominant point λ are presented in Figures A.1−A.7 of
Appendix A.

The Cartan matrices CG′ and the inverse Cartan matrices C−1
G′ are

CH2 =
 2 −τ
−τ 2

 , CA1×A1 = 1
3

2 0
0 2

 , CA2 =
 2 −1
−1 2

 ;

C−1
H2 = 1

3− τ

2 τ

τ 2

 , C−1
A1×A1 = 1

2

1 0
0 1

 , C−1
A2 = 1

3

2 1
1 2

 .
For each subgroup G′ of H3, the squared radii of orbits with a dominant point µ′ = (a,b)

can be written explicitly as

R2
H2(µ′) =

(
a b

)
C−1
H2

a
b

 = 2
3−τ (a2 + abτ + b2), (4.8.1)

R2
A2(µ′) =

(
a b

)
C−1
A2

a
b

 = 2
3(a2 + ab+ b2), (4.8.2)

R2
A1×A1(µ′) =

(
a b

)
C−1
A1×A1

a
b

 = 1
2(a2 + b2). (4.8.3)

The points µ that determine each circular/polygonal orbit in the mixed basis, the squared
radii of OG′(µ′) calculated via the formulas (4.8.1)–(4.8.3), and the numbers of points that
belong to each OG′(µ′) are listed in Tables B.1−B.7 of Appendix B.

4.9. Symmetry breaking of VH3(λ) and related tubes
Since we would like to preserve the two-dimensional faces v2 of VH3(λ)−polytopes, the

symmetry breaking of a polytope proceeds in the following way:
(i) choose a two-dimensional subgroup G′ ⊂ H3, and consider the coordinates of vertices

of VH3(λ) in the corresponding mixed basis;
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H2 A1 × A1 A2

λ Orbits ‘Pancakes’ Orbits ‘Pancakes’ Orbits ‘Pancakes’

(a, 0, 0) 4 4 7 7 6 6
(0, b, 0) 8 8 12 7 10 10
(0, 0, c) 4 4 5 5 4 4
(a, b, 0) 8 8 12 11 10 10
(a, 0, c) 13 13 21 19 17 17
(0, b, c) 8 8 12 11 10 10
(a, b, c) 13 13 21 19 17 17

Table 4.9. The numbers of orbits and ‘pancakes’ are provided for each two-dimensional
subgroup G′ ⊂ H3 by the orbit decompositions of VH3(λ)−polytopes. The dominant points
λ with a = b = c are considered.

(ii) after the orbit decomposition is completed, choose only those ‘pancakes’ that are
involved in the structure of the two-dimensional faces located at the ‘equator’ of a
considered polytope, i.e., the faces that intersect a plane passing through the center
of an isogonal polyhedron;

(iii) construct the symmetry-breaking path that proceeds along the edges of the facets
determined by the ‘pancakes’ from (ii); note that the edges are selected in such a
way that the same number of the two-dimensional faces belongs to each half of a
polytope.

(iv) break the structure of a considered polytope in half to obtain the top and bottom
caps.

For clarity, the edges of a polytope that belong to the symmetry-breaking path are
depicted by bold segments (for instance, see Figure 4.14). After a polytope VH3(λ) is broken
in half, the two-dimensional faces determined by (ii), that belong to the top and bottom caps
of a polytope, are presented in gray and green colors, respectively. Therefore, unfolding the
colored ring of polygons results in the two-dimensional nets shown in Figures 4.14, 4.18, 4.21.
The rings of polygons can be extended by duplicating the ‘pancakes’ and stacking them on top
of each other while preserving the distances between them. Extending the structures of such
nets, rolling them onto a cylinder and seamlessly closing the ends with the corresponding caps
result in the structures of closed tubes. Here the difference from the approach in (Bodner et
al. [13], [14], [15]) lies in the additional rotation of ‘pancakes’ (rings of polygons) determined
in (ii) to satisfy the two-dimensional tilings shown in Figures 4.16(b), 4.20(b).

In this section, we construct the closed tubes arising from the broken-in-half polytopes
VH3(a, 0, 0), VH3(0, b, 0) and VH3(0, 0, c). The VH3(λ)−polytopes, that are constructed for
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the other four types of λ, contain two or three generic orbits within their structures. Hence,
the closed tubes obtained from broken-in-half polytopes VH3(a, b, 0), VH3(a, 0, c), VH3(0, b, c)
and VH3(a, b, c) will contain more points, because more pancakes are involved in (ii). The
possible inserts for such cases are presented in Figure 4.24, and they resemble the inserts for
the polytopes in Subsections 4.9.1–4.9.3. For each insert, the small black arrows indicate the
joining of the symmetry-breaking path once the net is folded onto a cylinder.

Note that some of the obtained tubes might violate the physical constraints pertinent
to the fullerene structure. Due to the valency (for instance, see Figure 4.15(a)) or extreme
angles (Figure 4.15(b)), the exemplified structures are not likely to represent models of
fullerenes. However, such nanotubes could potentially model yet to be discovered, or de
novo designed structures that can be of potential use in nanoscience. Nevertheless, we
would like to demonstrate the construction of the closed tubes in mathematical generality.
Therefore, the tube-like structures illustrated in Figures 4.16, 4.17(b), 4.20(b), 4.21, 4.22, 4.23
are possible to consider, as the orbit decompositions of the corresponding polytopes permit
their existence. In Figures 4.16, 4.17(b), the pentagonal faces are planar, as they are preserved
while breaking the symmetry of the corresponding polytopes.

4.9.1. The VH3(1, 0, 0)−polytope

In Fig 4.14, a symmetry-breaking mechanism applied to the dodecahedron VH3(1, 0, 0).

(a)

(b)

(c)

Fig. 4.14. On the left, the polytope VH3(1, 0, 0) is viewed from the direction orthogonal to
the simple root (a) α1, (b) α2, (c) α3. The values of the squared radii are listed on the right
for each ‘pancake’.
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(a) (b)

Fig. 4.15. For VH3(a, 0, 0) viewed from the direction orthogonal to the simple root α1, the
inserts and the corresponding tubes are presented in the columns (a) and (b).

(a) (b)

Fig. 4.16. For VH3(a, 0, 0) viewed from the direction orthogonal to the simple root α2, the
inserts and the corresponding tubes are presented in the columns (a) and (b).
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(a) (b)

Fig. 4.17. For VH3(a, 0, 0) viewed from the direction orthogonal to the simple root α3, the
inserts and the corresponding tubes are presented in the columns (a) and (b).

4.9.2. The VH3(0, 0, 1)−polytope

In Figure 4.18, a symmetry-breaking mechanism is applied to the icosahedron VH3(0, 0, 1).

(a)

(b)

(c)

Fig. 4.18. On the left, the polytope VH3(0, 0, 1) is viewed from the direction orthogonal to
the simple root (a) α1, (b) α2, (c) α3. The values of the squared radii are listed on the right
for each ‘pancake’.
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(a) (b)

Fig. 4.19. For VH3(0, 0, c) viewed from the direction orthogonal to the simple roots α1
and α3, the inserts and the corresponding tubes are presented in the columns (a) and (b),
respectively.

(a) (b)

Fig. 4.20. For VH3(0, 0, c) viewed from the directions orthogonal to the simple root α2, the
inserts and the corresponding tubes are presented in the columns (a) and (b).

137



4.9.3. The VH3(0, 1, 0)−polytope

In Figure 4.21, a symmetry-breaking mechanism is applied to the rhombic triacontahe-
dron VH3(0, 1, 0).

(a)

(b)

(c)

Fig. 4.21. On the left, the polytope VH3(0, 1, 0) is viewed from the direction orthogonal to
the simple root (a) α1, (b) α2, (c) α3. The values of squared radii are listed on the right for
each ‘pancake’.

(a) (b)

Fig. 4.22. For VH3(0, b, 0) viewed from the direction orthogonal to the simple root α1, the
inserts and the corresponding tubes are presented in the columns (a) and (b).
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(a) (b)

Fig. 4.23. For VH3(0, b, 0) viewed from the directions orthogonal to the simple root α2
and α3, the inserts and the corresponding tubes are presented in the columns (a) and (b),
respectively. In (a) the same tube is viewed from a different angle.

4.10. Symmetry breaking of the fullerene C20

The fullerene C20 is the smallest member of the fullerene family. It has the structure
of the dodecahedron with carbon atoms placed at its vertices (Figure 4.25). Breaking the
symmetry of C20 plays a significant role in the construction of larger fullerene molecules and
nanotubes.

It is convenient to define the notations for the faces of the considered fullerenes. Hence,
the vertices are denoted by f0, the edges by f1, and the two types of two-dimensional faces by
f 1

2 (pentagons) and f 2
2 (hexagons). The numbers of faces of a fullerene are restricted by the

Euler’s formula (4.5.1), and they are provided by the expressions (Fowler and Manolopoulos
[52]):

N(f0) = n, N(f1) = 3n
2 , N(f2) = n

2 + 2, N(f 1
2 ) = 12, N(f 2

2 ) = n

2 − 10.

where n indicates the number of carbon atoms of a fullerene.
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(a) (b)

(c) (d)

Fig. 4.24. The possible inserts are presented in columns for the polytopes (a) VH3(a, b, 0),
(b) VH3(a, 0, c), (c) VH3(0, b, c), (d) VH3(a, b, c), and they are ordered for the directions of the
simple roots α1, α2, α3 from top to bottom.
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(a) (b)

Fig. 4.25. (a) The fullerene C20 is oriented in the direction of the simple root α1. The edges
depicted by bold segments correspond to the symmetry-breaking path. (b) The net of C20.

The dual to the structure of the fullerene C20 is the icosahedron. The faces of an icosa-
hedral fullerene can be reconstructed from its dual polytope, using the method described in
(Caspar & Klug, 1962) or the Coxeter construction (Coxeter, 1971; Fowler & Manolopoulos,
2006). Both methods are based on subtriangulations of the two-dimensional faces of the
icosahedron into 20T smaller triangles. The number T = h2 + hk + k2 is the triangulation
number, where h > 0, k ≥ 0. Hence, depending on the value of T , we can construct the struc-
tures of icosadeltahedra. The two-dimensional net of the latter has a dual hexagon-pentagon
tilling, which is trivalent by construction, and, therefore, relevant to model fullerene struc-
tures. Interchanging the integers h and k yields two icosadeltahedron-fullerene pairs that
are enantiomers of each other.

To directly extend the structure of C20 without referring to its dual, one can utilize the
technique described in Section 4.9. In this section, we focus on the construction of four
smallest fullerenes (C24, C26, C28 and C30) and two types of carbon nanotubes (C20+10N and
C20+6N). The considered fullerenes are obtained by adding up to five hexagonal faces into
the structure of C20. n this case, the different symmetries are observed for each constructed
fullerene (Figure 4.32). The nanotubes are obtained by duplicating and inserting more
‘pancakes’ into the orbit decomposition of the fullerene C20.

Similarly to the construction of tubes for the dodecahedron VH3(a, 0, 0) presented in Sub-
section 4.9.1, the vertices of C20 are considered in the mixed bases: {α1, ω2, ω3}, {ω1, α2, ω3},
{ω1, ω2, α3}. The net of C20, shown in Figure 4.25(b), is deformed by adding more hexagons
(Figure 4.32). The numbers of faces together with the symmetries of the examined fullerenes
are listed in Table 4.10. The notation is partially adapted from (Fowler & Manolopoulos,
2006), where n is the number of carbon atoms, and m labels each differently assembled
fullerene with the same number of vertices, i.e., each fullerene isomer.
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Table 4.10. The symmetries and number of faces of the fullerenes C20, C24, C26, C28:m,
C30:m are presented.

Fullerene Point group N(f0) N(f1) N(f 1
2 ) N(f 2

2 )

C20 Ih 20 30 12 0
C24 D6d 24 36 12 2
C26 D3h 26 39 12 3
C28:1 D2 28 42 12 4
C28:2 Td 28 42 12 4
C30:1 D5h 30 45 12 5
C30:2 C2v 30 45 12 5
C30:3 C2v 30 45 12 5

Let us consider the dodecahedron, whose ‘pancakes’ provided by the subgroup H2 ⊂ H3

are oriented in the direction of the simple root α1. As the two-dimensional faces should be
preserved, the symmetry breaking proceeds along the bold edges shown in Figure 4.26(a).
After breaking C20 in half, we keep the faces of the top cap depicted by gray color. To
obtain the bottom cap, we reflect the top one across the plane spanned by the vectors
ω2 and ω3. Adding a ring of hexagons into the broken structure, yields the fullerene C30:1

(Figure 4.26(c)). Furthermore, inserting more rings of hexagons into C30:1 yields the structure
of the carbon nanotube C20+10N , where N denotes the number of inserted ‘pancakes’. For
example, for N = 3, the nanotube C50 is shown in Figure 4.26(d). For the fullerene C24

shown in Figure 4.26(b), the initial net of C20 (Figure 4.25) is extended by adding two
pentagons. Such a procedure results in the replacement of the top and bottom pentagons
by hexagons, see Figure 4.32. As a result, each two-dimensional orbit of C20, that has the
H2−symmetry, gains one extra point. In a similar way, the structure of the fullerene C30:2

is obtained (Figure 4.27).
Breaking the symmetry of C20, whose ‘pancake’-structure is provided by the symmetry

group A1 × A1 ⊂ H3, yields the fullerenes C28:2 (Figure 4.28(b)) and C30:3 (Figure 4.29(b)).
In the case of C28:2, the top cap with its faces depicted by gray color is reflected across the
plane spanned by the vectors ω1 and ω3 to obtain the bottom cap. The latter is rotated by
π/2 to form the fullerene. For the fullerene C30:3, only the top cap of C20 contributes to the
structure of C30:3.

Finally, let us consider the molecule C20, whose ‘pancakes’ provided by the subgroup
A2 ⊂ H3 are oriented in the α3−direction. In this case, applying the symmetry breaking
yields two fullerenes, namely C26 and C28:1, shown in Figure 4.31(b) and Figure 4.30(b),
respectively. The structure of the molecule C26 can be extended into the carbon nanotube
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C20+6N . For example, for N = 5, the carbon nanotube C50 is presented in Figure 4.31(c). In
this case, to close the nanotube on both ends, the bottom cap is obtained by reflecting the
top one across the plane spanned by the vectors ω1 and ω2.

(a) (b) (c) (d)

Fig. 4.26. (a) The fullerene C20 is viewed from the direction orthogonal to the simple
root α1. The faces depicted by gray color are kept after the symmetry of C20 is broken.
(b) The fullerene C24. (c) The fullerene C30:1. (d) The structure of C30:1 is extended into the
nanotube C50.

(a) (b)

Fig. 4.27. (a) The fullerene C20 is viewed from the direction orthogonal to the simple
root α1. The faces depicted by gray color are kept after the symmetry of C20 is broken.
(b) The fullerene C30:2.
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(a) (b)

Fig. 4.28. (a) The fullerene C20 is viewed from the direction orthogonal to the simple
root α2. The faces depicted by gray color are kept after the symmetry of C20 is broken. (b)
The fullerene C28:2.

(a) (b)

Fig. 4.29. (a) The fullerene C20 is viewed from the direction orthogonal to the simple
root α2. The faces depicted by gray color are kept after the symmetry of C20 is broken.
(b) The fullerene C30:3.

(a) (b)

Fig. 4.30. (a) The fullerene C20 is viewed from the direction orthogonal to the simple
root α3. The faces depicted by gray color are kept after the symmetry of C20 is broken.
(b) The fullerene C28:1.
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(a) (b) (c)

Fig. 4.31. (a) The fullerene C20 is viewed from the direction orthogonal to the simple
root α3. The faces depicted by gray color are kept after the symmetry of C20 is broken.
(b) The fullerene C26. (c) The structure of C26 is extended into the nanotube C50.

4.11. Concluding remarks
• In this paper, we consider the family of polytopes VH3(λ) constructed for seven types
of dominant point λ. The decoration rules, that are applied to a Coxeter–Dynkin
diagram, play a significant role in the description of faces of polytopes and their duals
(Champagne et al. [29]). Applying these rules to the Coxeter–Dinkin diagram of H3,
we determine the types and the numbers of faces of considered VH3(λ)−polytopes.
The reflection graph arises from the action of the reflections of H3 on a dominant
point λ. Using the reflection graph, we illustrate the facets that belong to the vertex
of a DH3(λ)−polytope provided by λ and, therefore, determine a two-dimensional
face of its dual VH3(λ). Moreover, since we can obtain several decorated Coxeter–
Dynkin diagrams at the last step of the decoration procedure, it might be useful to
develop the rules that unite such diagrams into one. Thus, a V(λ)−polytope will
have only one corresponding decorated Coxeter–Dynkin diagram.
• The reductions of the H3−symmetry, namely H3 → H2 × A1, H3 → A2 × A1

and H3 → A1 × A1 × A1, are employed in order to obtain the orbit decomposi-
tions of VH3(λ)−polytopes. The corresponding mixed bases {α1, ω2, ω3}, {ω1, α2, ω3},
{ω1, ω2, α3} are utilized to determine the orbit decomposition for each considered
polytope. Applying a symmetry-breaking mechanism (Bodner et al. [13]) to the
family of VH3(λ)−polyhedra results in the structure of broken-in-half polytopes. Du-
plicating the ‘pancakes’ and inserting them into the structures of VH3(λ) yield the
exemplified tube-like structures. The structures of obtained tubes may serve as a
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C24 (α1) C28 (α3)

C28:1 (α3) C28:2 (α2)

C30:1 (α1) C30:2 (α1)

C30:3 (α2)

Fig. 4.32. The two-dimensional nets of the fullerenes C24, C26, C28:m, C30:m are presented.
The bold edges are in one-to-one correspondence with the edges chosen at the start of the
symmetry breaking procedure. The faces depicted by green color are inserted whenever the
symmetry of C20 is broken. The empty and filled nodes indicate an overlap as the net is
folded onto a cylinder.
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starting point in describing their physical and chemical properties. Breaking the
symmetry of V(λ)−polytopes of the crystallographic reflection groups A3, B3 and C3

is considered as a continuation of this paper.
• Since the structures of VH3(λ)−polytopes may contain up to three generic orbits, we
demonstrate the construction of stellations for considered polytopes. In this study,
the stellations are obtained by scaling the radii of generic orbits. As a result, the
lengths of one-dimensional faces of a polytope change depending on a chosen scaling
factor. Using the same approach, the construction of stellated dual polyhedra of the
crystallographic type should be treated independently.
• For the fullerene molecule C20, that has the structure of VH3(a, 0, 0), using the reduc-
tion of the H3−symmetry to the two-dimensional subgroups H2 and A2 yields the two
families of nanotubes, C20+10N and C20+6N , respectively. The symmetry reduction
H3 → A1 × A1 × A1 is the most complicated among the three considered cases, as
it yields a chiral nanotube (Bodner et al. [15]). In this case, the way to extend the
structure of C20 with its ‘pancakes’ oriented in the α2−direction merits further inves-
tigation. The relevance of the icosahedral group to the modelling of chiral polyhedra
can be found, for example, in (Koca and Koca [83]).
• For any finite reflection group G, the branching rules providing the symmetry reduc-
tion were determined in several papers [for instance, see (Grabowiecka et al. [54])
and the references therein]. Applying a symmetry-breaking mechanism to D(λ)−
and V(λ)−polytopes, their structures can be extended into tube-like structures. In
particular, an extension of the structures of D(λ)−polyhedra of crystallographic type
remains an open problem. The crystallographic and non-crystallographic tube-like
structures may potentially be employed as the building blocks in the construction of
multi-shell nanostructures (Kuo and Deng [85]; Diudea et al. [45]) and zeolite-like
structures [for example, see (Taylor et al. [136]) and the references therein]. More-
over, such tube structures can be interesting to the field of mathematical virology
(Keef and Twarock [74]).
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Chapter 5

Symmetry breaking of dual polyhedra of
crystallographic type

In this chapter, we extend the research presented in Chapter 4 to the families of dual poly-
topes obtained using the crystallographic reflection groups A3, B3 and C3. Using the nota-
tions introduced in Chapter 4, the pairs of dual polytopes are referred to as DW (λ)− and
VW (λ)−polytopes, where W corresponds to the crystallographic groups A3, B3 and C3 (see
Figures 5.1 and 5.2). The family of DW (λ)−polytopes is obtained applying the reflections
of W to each type of dominant point λ ∈ R3. The structures of VW (λ)−polytopes may
contain up to three orbits obtained by the action of W on the seed points (a′, 0, 0), (0, b′, 0)
and (0, 0, c′). Since we are interested in breaking the symmetry of VW (λ)−polytopes, as well
as their structural extension into nanotubes, we present the orbit decompositions for three
families of dual polytopes of the crystallographic type.

5.1. Bases associated with the crystallographic reflec-
tion groups in R3

5.1.1. The α− and ω−bases

In the three-dimensional real Euclidean space R3, it is useful to introduce a pair of dual
bases, i.e. α− and ω−bases, that are associated with the symmetry of a finite crystallographic
reflection group W . The α− and ω−bases are related via a Cartan matrix and its inverse,

αj =
3∑

k=1
CWωk, ωk =

3∑
j=1

C−1
W αj, (5.1.1)

where a Cartan matrix is provided by

CW =
(

2〈αj, αk〉
〈αk, αk〉

)
, j, k ∈ {1, 2, 3}. (5.1.2)



λ = (a, 0, 0) λ = (0, b, 0) λ = (a, b, 0)
λ = (0, 0, c) λ = (0, b, c)

Tetrahedron – Octahedron – Truncated tetrahedron –
Tetrahedron Cube Triakis tetrahedron

λ = (a, 0, c) λ = (a, b, c)

Cuboctahedron – Truncated octahedron –
Rhombic dodecahedron Tetrakis hexahedron

Fig. 5.1. The dual pairs of polytopes of the crystallographic group A3 are constructed for
each type of dominant point λ.

For the considered groups, the Cartan matrices and their inverses are listed in Table 5.1.
Since the simple roots of the crystallographic groups B3 and C3 have two different lengths,
the length of the long simple root is determined as 〈αlong, αlong〉 = 2.

The dual bases α∨ and ω∨ are determined by the relations:

α∨ = 2αi
〈αi, αi〉

, ω∨ = 2ωi
〈αi, αi〉

. (5.1.3)

The duality relations between α−, ω−, α∨− and ω∨−bases are

〈αi, ω∨j 〉 = 〈α∨i , ωj〉 = δij, (5.1.4)

where δij is the Kronecker delta.
Since the simple roots αk are orthogonal to the reflecting hyperplanes mk, k ∈ {1, 2, 3},

we use them to label the nodes of the corresponding Coxeter–Dynkin diagrams (Figure 5.3).
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λ = (a, 0, 0) λ = (0, b, 0) λ = (0, 0, c)

Octahedron – Cuboctahedron – Cube –
Cube Rhombic dodecahedron Octahedron

λ = (a, b, 0) λ = (a, 0, c) λ = (0, b, c)

Truncated octahedron – Rhombicuboctahedron – Truncated cube –
Tetrakis hexahedron Deltoidal icositetrahedron Triakis octahedron

λ = (a, b, c)

Truncated cuboctahedron –
Disdyakis dodecahedron

Fig. 5.2. The dual pairs of polytopes of the crystallographic group B3 and C3 are con-
structed for each type of dominant point λ.
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A3
α1 α2 α3

B3
α1 α2 α3

C3
α1 α2 α3

Fig. 5.3. The Dynkin diagrams associated with the crystallographic groups A3, B3 and C3.
The nodes of the diagrams correspond either to the vectors of the α−basis, or to the basis
vectors of the ω−basis, or to the reflections rk in the reflecting hyperplanes mk, k ∈ {1, 2, 3}.

CA3 =

 2 −1 0
−1 2 −1
0 −1 2

 C−1
A3 = 1

4

 3 2 1
2 4 2
1 2 3



CB3 =

 2 −1 0
−1 2 −2
0 −1 2

 C−1
B3 = 1

2

 2 2 2
2 4 4
1 2 3



CC3 =

 2 −1 0
−1 2 −1
0 −2 2

 C−1
C3 = 1

2

 2 2 1
2 4 2
2 4 3


Table 5.1. The Cartan matrices and their inverses are listed for the crystallographic reflec-
tion groups A3, B3 and C3.

For the crystallographic reflection group A3, all the simple roots have the same length,
〈αi, αi〉 = 2, i ∈ {1, 2, 3}. Therefore, the vectors of the α− and ω−bases, together with their
duals, are explicitly written as

α1 = 2ω1 − ω2, ω1 = 3
4α1 + 1

2α2 + 1
4α3,

α2 = −ω1 + 2ω2 − ω3, ω2 = 1
2α1 + α2 + 1

2α3,
α3 = −ω2 + 2ω3; ω3 = 1

4α1 + 1
2α2 + 3

4α3.

α∨i = αi, ω∨i = ωi, i ∈ {1, 2, 3}.

(5.1.5)

For the crystallographic reflection group B3, there are two long and one short simple
roots, 〈α1, α1〉 = 〈α2, α2〉 = 2, 〈α3, α3〉 = 1. Therefore, the vectors of the α− and ω−bases,
together with their duals, are explicitly written as

α1 = 2ω1 − ω2, ω1 = α1 + α2 + α3,
α2 = −ω1 + 2ω2 − 2ω3, ω2 = α1 + 2α2 + 2α3,
α3 = −ω2 + 2ω3; ω3 = 1

2α1 + α2 + 3
2α3.

α∨1 = α1, ω∨1 = ω1,
α∨2 = α2, ω∨2 = ω2,
α∨3 = 2α3, ω∨3 = 2ω3,

(5.1.6)
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For the crystallographic reflection group C3, there are two short and one long simple
roots 〈α1, α1〉 = 〈α2, α2〉 = 1, 〈α3, α3〉 = 2. Therefore, the vectors of the α− and ω−bases,
together with their duals, are explicitly written as

α1 = 2ω1 − ω2, ω1 = α1 + α2 + 1
2α3,

α2 = −ω1 + 2ω2 − ω3, ω2 = α1 + 2α2 + 2α3,
α3 = −2ω2 + 2ω3; ω3 = 1

2α1 + 2α2 + 3
2α3.

α∨1 = 2α1, ω∨1 = 2ω1,
α∨2 = 2α2, ω∨2 = 2ω2,
α∨3 = α3, ω∨3 = ω3,

(5.1.7)

5.1.2. The orthonormal bases

For each α− and ω−basis, there is an associated orthonormal basis that allows visualizing
the geometry of considered polytopes. The orthonormal bases for the crystallographic groups
A3, B3 and C3, that are recalled in this subsection, have been determined in (Moody et al.
[98]). However, the choice of such bases is not unique. Other orthonormal bases are possible
to consider, as long as the basis vectors satisfy the lengths and relative angles between them.

For the crystallographic reflection group A3, the orthonormal bases are

α1 = (1,−1, 0), ω1 =
(

5
6 ,−

1
6 ,−

1
6

)
,

α2 = (0, 1,−1), ω2 =
(

2
3 ,

2
3 ,−

1
3

)
,

α3 =
(

1
3 ,

1
3 ,

4
3

)
; ω3 =

(
1
2 ,

1
2 ,

1
2

)
.

(5.1.8)

For the crystallographic reflection group B3, the orthonormal bases are

α1 = (1,−1, 0), ω1 = (1, 0, 0),
α2 = (0, 1,−1), ω2 = (1, 1, 0),
α3 = (0, 0, 1); ω3 =

(
1
2 ,

1
2 ,

1
2

)
.

(5.1.9)

For the crystallographic reflection group C3, the orthonormal bases are

α1 =
(

1√
2 ,−

1√
2 , 0

)
, ω1 = ( 1√

2 , 0, 0),
α2 =

(
0, 1√

2 ,−
1√
2

)
, ω2 = ( 1√

2 ,
1√
2 , 0),

α3 = (0, 0,
√

2); ω3 =
(

1√
2 ,

1√
2 ,

1√
2

)
.

(5.1.10)

5.1.3. The mixed bases

Let us denote by W ′ a two-dimensional subgroup of a crystallographic group W . The
reflections generating a subgroup W ′ are provided by the nodes of a corresponding Dynkin
diagram (Figure 5.3). The mixed basis, that has been introduced is (Bodner et al. [13]),
is determined by using the duality relation of the α− and ω−bases (5.1.4). In this case,
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W W ′ Diagram Reflections Mixed basis

A3

A2 r2, r3 {α1, ω2, ω3}

A1 × A1 r1, r3 {ω1, α2, ω3}

A2 r1, r2 {ω1, ω2, α3}

B3

B2 r2, r3 {α1, ω2, ω3}

A1 × A1 r1, r3 {ω1, α2, ω3}

A2 r1, r2 {ω1, ω2, α3}

C3

C2 r2, r3 {α1, ω2, ω3}

A1 × A1 r1, r3 {ω1, α2, ω3}

A2 r1, r2 {ω1, ω2, α3}
Table 5.2. The two-dimensional subgroups of the crystallographic groups A3, B3 and C3
and the corresponding mixed bases.

any two vectors of the ω−basis, ωi and ωj, span a plane orthogonal to one of the simple
roots αk, for i, j, k ∈ {1, 2, 3} and i 6= j 6= k. Therefore, for each considered crystallographic
group, A3, B3 and C3, labeling the nodes of a Coxeter–Dynkin diagram corresponding to the
generators of W ′ by the vectors of the ω−basis, we obtain three mixed bases,

{α1, ω2, ω3}, {ω1, α2, ω3}, {ω1, ω2, α3}.

For the crystallographic groups A3, B3 and C3, the two-dimensional subgroups W ′ to-
gether with the corresponding mixed bases are provided in Table 5.2.

5.1.4. The ω′−basis

In order to construct a dual Euclidean or spherical polytope of the crystallographic type,
we consider the ω′−basis that comprises appropriately scaled vectors of the ω−basis. For
any crystallographic group W in R3, the dominant (seed) point λ is provided by the linear
combination of the fundamental weights as

λ = (a, b, c) ≡ aω1 + bω2 + cω3, a, b, c ∈ Z≥0. (5.1.11)

For the crystallographic groups A3, B3 and C3, the fundamental region F is the simplex
that has the shape of a pyramid with the vertices {0, ω∨1 , ω∨2 , ω∨3 }, {0, ω∨1 , 1

2ω
∨
2 ,

1
2ω
∨
3 } and

{0, 1
2ω
∨
1 ,

1
2ω
∨
2 , ω

∨
3 }, respectively. Since the coordinates of a dominant point λ are non-negative,

we have that λ lies within the interior of the finite region F or on its boundary. Depending
on the non-zero coordinates of (5.1.11), there are eight types of dominant points that are
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A3 B3 C3

λ c1 c2 c3 c1 c2 c3 c1 c2 c3

(1, 0, 0) 1 3
2 3 1 1 2 1 1 1

(0, 1, 0) 1 1
2 1 1 1

2 1 1 1
2

1
2

(0, 0, 1) 1 1
2

1
3 1 1

2
2
3 1 1

2
1
3

(1, 1, 0) 1 5
6

5
3 1 2

3
4
3 1 2

3
2
3

(1, 0, 1) 1 1 1 1 2
3 1 1 3

4
3
5

(0, 1, 1) 1 1
2

3
5 1 1

2
4
5 1 1

2
3
7

(1, 1, 1) 1 3
4 1 1 3

5 1 1 5
8

5
9

Table 5.3. Scaling coefficients ck, k ∈ {1, 2, 3} for the vectors of the ω−basis of the A3, B3
and C3 groups.

possible to consider. Since the point λ = (0, 0, 0) lies at the intersection of the reflecting
hyperplanes mk, k = {1, 2, 3}, this case is omitted here. Therefore, we focus on the following
seed points:

(a, 0, 0), (0, b, 0), (0, 0, c), (a, b, 0), (a, 0, b), (0, b, c), (a, b, c). (5.1.12)

For simplicity, we often choose the coordinates a, b and c of (5.1.11) to be equal to 0 or 1.
Using expression (5.1.11), we can determine the scaling coefficients for the vectors of the

ω−basis as
ak = 〈λ, λ〉

〈ωk, λ〉
, ak ∈ Q>0, k ∈ {1, 2, 3}.

There is one-to-one correspondence between the ω− and ω′−bases,

ω′k = ckωk, k ∈ {1, 2, 3},

where ck = ak/a1 are the normalized scaling coefficients listed in Table 5.3.
The dominant points of the orbits found within the structure of VW (λ)−polytopes are

denoted by λ′. The coordinates of such points can be determined as

λ′ ≡ ω′k, k ∈ {1, 2, 3}. (5.1.13)

The seed points λ′ can be written explicitly as

(a′, 0, 0) ≡ ω′1 = c1ω1,

(0, b′, 0) ≡ ω′2 = c2ω2,

(0, 0, c′) ≡ ω′3 = c3ω3.
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5.2. The reflections of a crystallographic group W

A crystallographic finite reflection group W in R3 is generated by three reflection opera-
tions rk, k ∈ {1, 2, 3}. For any point x ∈ R3, the reflection is defined by the formula:

rkx = x− 2 〈x, αk〉
〈αk, αk〉

αk, k ∈ {1, 2, 3}. (5.2.1)

For the crystallographic groups A3, B3 and C3, the reflection operations, r1, r2 and r3,
satisfy the following identities:

A3 : r2
1 = r2

2 = r2
3 = 1, (r1r2)3 = 1, (r2r3)3 = 1, (r1r3)2 = 1;

B3 : r2
1 = r2

2 = r2
3 = 1, (r1r2)3 = 1, (r2r3)4 = 1, (r1r3)2 = 1;

C3 : r2
1 = r2

2 = r2
3 = 1, (r1r2)3 = 1, (r2r3)4 = 1, (r1r3)2 = 1.

An orbit of points OW (λ) is generated by the action of W on a seed point λ given by
formula (5.1.11). An orbit of points OW (λ′) is obtained by the action of W on a point λ′

given by expression (5.1.13).

5.3. Dual polytopes of the crystallographic groups A3,
B3 and C3.

Since the root system of any finite Coxeter group G has a uniquely associated Coxeter–
Dynkin diagram, the faces of any polytope can be described using the decoration technique
proposed in (Champagne et al. [29]). For any finite reflection group G, the decoration rules
for a Coxeter–Dynkin diagram are recalled in Section 4.4. In order to describe the faces
of DW (λ)− and VW (λ)−polytopes of the crystallographic type, we apply the decoration
rules to the Coxeter–Dynkin diagrams of the crystallographic groups A3 (Table 5.4), B3 and
C3 (Table 5.5). We denote the faces of DW (λ)− and VW (λ)−polytopes as dk and vn−k−1,
respectively, where n is the rank of W . The number of faces of a polytope generated by W ,
as well as the number of p-dimensional faces meeting at the q-dimensional face (p < q), are
provided by the counting formulas (4.5.2) and (4.5.3) in Section 4.5.

For any crystallographic reflection group W , considering each type of dominant point λ′

from formula (5.1.13), the lengths of the one-dimensional faces of VW (λ) are determined in
the ω−basis as a Euclidean distance by using the reflection formula (5.2.1).

• the lengths of the edges of VA3(λ)−polytope are determined as

|ω′1 − r1ω
′
1| = |2ω′1 − ω′2| = |2c1ω1 − c2ω2|,

|ω′2 − r2ω
′
2| = | − ω′1 + 2ω′2 − ω′3| = | − c1ω1 + 2c2ω2 − c3ω3|,

|ω′2 − r3ω
′
3| = | − ω′2 + 2ω′3| = | − c2ω2 − 2c3ω3|;
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λ Decoration dk v2−k N Type of dk Type of v2−k

(a, 0, 0)
d1

2 v3
0 4 vertices triangle

d2
2 v2

0 6 triangle-triangle triangle-triangle

d3
2 v1

0 4 triangle vertices

(0, b, 0)
d0 v2 6 vertices rectangle

d1 v1 12 triangle-triangle rectangle-rectangle

d1
2 v2

0 4 triangle vertices

d2
2 v1

0 4 triangle vertices

(0, 0, c)
d1

2 v3
0 4 vertices triangle

d2
2 v2

0 6 triangle-triangle triangle-triangle

d3
2 v1

0 4 triangle vertices

(a, b, 0)

d0 v2 12 vertices triangle

d2
1 v1

1 12 triangle-hexagon triangle-triangle

d1
1 v2

1 6 hexagon-hexagon triangle-triangle

d1
2 v2

0 4 hexagon vertices

d2
2 v1

0 4 triangle vertices

(a, 0, c)

d0 v2 12 vertices rhombus

d1
1 v2

1 12 triangle-rectangle rhombus-rhombus

d2
1 v1

1 12 triangle-rectangle rhombus-rhombus

d1
2 v3

0 4 triangle vertices

d2
2 v2

0 6 rectangle vertices

d3
2 v1

0 4 triangle vertices

(0, b, c)

d0 v2 12 vertices triangle

d1
1 v1 12 triangle-hexagon triangle-triangle

d2
1 v1 6 hexagon-hexagon triangle-triangle

d1
2 v2

0 4 triangle vertices

d2
2 v1

0 4 hexagon vertices

(a, b, c)

d0 v2 24 vertices triangle

d1
1 v3

1 12 hexagon-rectangle triangle-triangle

d2
1 v2

1 12 hexagon-hexagon triangle-triangle

d3
1 v1

1 12 hexagon-rectangle triangle-triangle

d1
2 v3

0 4 hexagon vertices

d2
2 v2

0 6 rectangle vertices

d3
2 v1

0 4 hexagon vertices

Table 5.4. Decorations of the Coxeter–Dynkin diagram of A3 are presented for domi-
nant points λ, namely (0, b, 0), (a, b, 0), (a, 0, c), (0, b, c) and (a, b, c). The faces dk and
v2−k, k ∈ {0, 1, 2} correspond to the faces of D(λ) and V(λ). The polygon-polygon notation
corresponds to the types of edges shared by the two-dimensional faces of a polytope. The
number of faces N(dk) and N(v2−k) is denoted by N .
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λ Decoration dk v2−k N Type of dk Type of v2−k

(a, 0, 0)

4
d1

2 v3
0 6 vertices rectangle

4
d2

2 v2
0 12 triangle-triangle rectangle-rectangle

4
d3

2 v1
0 8 triangle vertices

(0, b, 0)

4
d0 v2 12 vertices rhombus

4
d1 v1 24 triangle-rectangle rhombus-rhombus

4
d1

2 v2
0 8 triangle vertices

4
d2

2 v1
0 6 rectangle vertices

(0, 0, c)

4
d1

2 v3
0 8 vertices triangle

4
d2

2 v2
0 12 rectangle-rectangle triangle-triangle

4
d3

2 v1
0 6 rectangle vertices

(a, b, 0)

4
d0 v2 24 vertices triangle

4
d2

1 v1
1 24 hexagon-rectangle triangle-triangle

4
d1

1 v2
1 12 hexagon-hexagon triangle-triangle

4
d1

2 v2
0 8 hexagon vertices

4
d2

2 v1
0 6 rectangle vertices

(a, 0, c)

4
d0 v2 24 vertices kite

4
d1

1 v2
1 24 triangle-rectangle kite-kite

4
d2

1 v1
1 24 rectangle-rectangle kite-kite

4
d1

2 v3
0 8 triangle vertices

4
d2

2 v2
0 12 rectangle vertices

4
d3

2 v1
0 6 rectangle vertices

(0, b, c)

4
d0 v2 24 vertices triangle

4
d1

1 v1 24 triangle-octagon triangle-triangle
4

d2
1 v1 12 octagon-octagon triangle-triangle

4
d1

2 v2
0 8 triangle vertices

4
d2

2 v1
0 6 octagon vertices

(a, b, c)

4
d0 v2 48 vertices triangle

4
d1

1 v3
1 24 hexagon-rectangle triangle-triangle

4
d2

1 v2
1 24 hexagon-octagon triangle-triangle

4
d3

1 v1
1 24 octagon-rectangle triangle-triangle

4
d1

2 v3
0 8 hexagon vertices

4
d2

2 v2
0 12 rectangle vertices

4
d3

2 v1
0 6 octagon vertices

Table 5.5. Decorations of the Coxeter–Dynkin diagrams of B3 and C3 are presented for
dominant points λ, namely (0, b, 0), (a, b, 0), (a, 0, c), (0, b, c) and (a, b, c). The faces dk and
v2−k, k ∈ {0, 1, 2} correspond to the faces of D(λ) and V(λ), respectively. The polygon-
polygon notation corresponds to the types of edges shared by the two-dimensional faces of
a polytope. The number of faces N(dk) and N(v2−k) is denoted by N .
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• the lengths of the edges of VB3(λ)−polytope are determined as

|ω′1 − r1ω
′
1| = |2ω′1 − ω′2| = |2c1ω1 − c2ω2|,

|ω′2 − r2ω
′
2| = | − ω′1 + 2ω′2 − 2ω′3| = | − c1ω1 + 2c2ω2 − 2c3ω3|,

|ω′2 − r3ω
′
3| = | − ω′2 + 2ω′3| = | − c2ω2 − 2c3ω3|;

• the lengths of the edges of VC3(λ)−polytope are determined as

|ω′1 − r1ω
′
1| = |2ω′1 − ω′2| = |2c1ω1 − c2ω2|,

|ω′2 − r2ω
′
2| = | − ω′1 + 2ω′2 − ω′3| = | − c1ω1 + 2c2ω2 − c3ω3|,

|ω′2 − r3ω
′
3| = | − 2ω′2 + 2ω′3| = | − 2c2ω2 − 2c3ω3|.

5.4. The orbits of VW (λ)−polytopes
For the Coxeter–Dynkin diagrams (Figure 5.3), the decoration rules yield up three dif-

ferently decorated diagrams at the last step of the recursive procedure. Such diagrams
correspond to the orbits providing the vertices of VW (λ)−polytopes. Therefore, depending
on a seed point λ, a dual polytope of the crystallographic group W may contain up to three
generic orbits within its structure, i.e. the orbits obtained by the action of W on the points
(a′, 0, 0), (0, b′, 0) and (0, 0, c′) (see Table 4.3).

The generic orbits of the crystallographic group A3 are explicitly provided by the sets of
points as

OA3(a, 0, 0) = {(a, 0, 0), (−a, a, 0), (0,−a, a), (0, 0,−a)};

OA3(0, b, 0) = {±(0, b, 0),±(b,−b, b),±(−b, 0, b)};

OA3(0, 0, c) = {(0, 0, c), (0, c,−c), (c,−c, 0), (−c, 0, 0)}.
The generic orbits of the crystallographic group B3 are explicitly provided by the sets of

points as

OB3(a, 0, 0) = {(a, 0, 0),±(−a, a, 0),±(0,−a, 2a), (0, 0,−a)};

OB3(0, b, 0) = {±(0, b, 0),±(b,−b, 2b),±(−b, 0, 2b),±(b, b,−2b),±(−b, 2b,−2b),±(2b,−b, 0)};

OB3(0, 0, c) = {±(0, 0, c),±(0, c,−c),±(c,−c, c),±(−c, 0, c)}.

The generic orbits of the crystallographic group C3 are explicitly provided by the sets of
points as

OC3(a, 0, 0) = {(a, 0, 0),±(−a, a, 0),±(0,−a, a), (−a, 0, 0)};

OC3(0, b, 0) = {±(0, b, 0),±(b,−b, b),±(−b, 0, b),±(b, b,−b),±(−b, 2b,−b),±(2b,−b, 0)};

OC3(0, 0, c) = {±(0, 0, c),±(0, 2c,−c),±(2c,−2c, c),±(−2c, 0, c)}.
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5.5. Orbit decompositions
The symmetry breaking of VW (λ)−polytopes can be achieved by using a technique in-

troduced in (Bodner et al. [13]). Employing the branching rules defined in (Larouche
and Patera [87]; Larouche et al. [88]), the symmetry of the crystallographic group W can
be reduced to the symmetry of its two-dimensional subgroups W ′, i.e., W → W ′ × A1.
The symmetry reduction allows us to decompose the vertices of a polytope of W into cir-
cular/polygonal orbits with W ′−symmetry. Such set of two-dimensional orbits yields the
‘pancake’-structure of a polytope.

In order to achieve an orbit decomposition of a polytope, we consider the coordinates of
its vertices in the mixed basis. The orbit points governed by theW ′−symmetry are found on
the plane spanned by two vectors of the ω−basis that, from the duality relation (5.1.4), are
orthogonal to one of the simple roots of α−basis. The spacing between the two-dimensional
orbits of a polytope is obtained by projecting any point of each such orbit onto the direction,
say l, provided by the corresponding simple root.

Applying the approach developed in (Bodner et al. [13]) to the VA3(λ)−, VB3(λ)− and
VC3(λ)−polytopes, we can obtain orbit decompositions for each considered polytope. For the
crystallographic groups A3, B3 and C3, the subgroups W ′ are listed in Table 5.2. Using the
mixed bases and the quadratic form matrices (Table 5.1), we construct the transformation
matrices. Any transformation matrix takes the form of the identity matrix, for which one of
the columns is replaced by the corresponding column of C−1

W .
For the crystallographic group A3, the transformation matrices are

A2 : (a, b, c)


3
4 0 0
1
2 1 0
1
4 0 1

 =
(

3
4a+ 1

2b+ 1
4c, b, c

)
;

A1 × A1 : (a, b, c)


1 1

2 0
0 1 0
0 1

2 1

 =
(
a, 1

2a+ b+ 1
2c, c

)
;

A2 : (a, b, c)


1 0 1

4
0 1 1

2
0 0 3

4

 =
(
a, b, 1

4a+ 1
2b+ 3

4c
)
.
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For the crystallographic group B3, the transformation matrices are

B2 : (a, b, c)


1 0 0
1 1 0
1
2 0 1

 = 1
2 (2a+ 2b+ c, b, c);

A1 × A1 : (a, b, c)


1 1 0
0 2 0
0 1 1

 = (a, a+ 2b+ c, c);

A2 : (a, b, c)


1 0 1
0 1 2
0 0 3

2

 = 1
2 (a, b, 2a+ 4b+ 3c) .

For the crystallographic group C3, the transformation matrices are

C2 : (a, b, c)


1 0 0
1 1 0
1 0 1

 = (a+ b+ c, b, c);

A1 × A1 : (a, b, c)


1 1 0
0 2 0
0 2 1

 = (a, a+ 2b+ 2c, c);

A2 : (a, b, c)


1 0 1

2
0 1 1
0 0 3

2

 = 1
2 (a, b, a+ 2b+ 3c) .

Acting with such matrices on the orbit points provided in the ω−basis, we obtain the
points with their coordinates in the mixed basis. After the transformation has been com-
pleted, the points are sorted depending on the signs of their coordinates corresponding to
the ω−vectors in the mixed bases as

(i) for the subgroups A2 of A3, B2 of B3 and C2 of C3, the second and third coordinates
have to be non-negative;

(ii) for the subgroup A1 of A3, B3 and C3, the first and third coordinates have to be
non-negative;

(iii) for the subgroup A2 of A3, B3 and C3, the first and second coordinates have to be
non-negative.

Therefore, points with the indicated non-negative coordinates provide the dominant
points µ of the two-dimensional orbits found within the structure of a polytope. In Subsec-
tions 5.5.1–5.5.3, we consider the orbit decompositions of the vertices of VA3(λ)−, VB3(λ)−
and VC3(λ)−polytopes for each type of seed point λ, respectively. For simplicity, we choose
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λ |Oλ(A2)| |Oλ(B2)| |Oλ(C2)| |Oλ(A1 × A1)|

(0, 0) 1 1 1 1
(a, 0) 3 4 4 2
(0, b) 3 4 4 2
(a, b) 6 8 8 4

Table 5.6. The sizes of two-dimensional orbits of the crystallographic reflection groups A2,
B2, C2 and A1 × A1 are provided for each type of dominant point λ with a, b ∈ R>0.

the coordinates of λ to be equal 0 or 1. The numbers of points that belong to the two-
dimensional orbits of each considered polytope (see Table 5.6) are indicated under each point
determining such orbits in R3. The illustrations of the ‘pancake’-structures for the families
of VA3(λ)− and VB3(λ)−polytopes are provided in Appendices C and D, respectively. For
the families of VW (λ)−polytopes, the numbers of orbits and ‘pancakes’ are provided in Ta-
bles 5.7–5.9.

5.5.1. Orbit decompositions of the VA3(λ)−polytopes

The polytope VA3(1, 0, 0). The structure of the VA3(1, 0, 0)−polytope contains 4 vertices
that can be decomposed into

• two orbits with the A2−symmetry:

{α1, ω2, ω3} :
(
−9

4 , 0, 0
)

1

,
(3

4 , 0, 3
)

3

;

• two orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} :
(

3,−3
2 , 0

)
2

,
(

0, 3
2 , 3

)
2

;

• two orbits with the A2−symmetry:

{ω1, ω2, α3} :
(

0, 3,−3
4

)
3

,
(

0, 0, 9
4

)
1

.

The polytope VA3(0, 1, 0). The structure of the VA3(0, 1, 0)−polytope contains 8 vertices
that can be decomposed into

• four orbits with the A2−symmetry:

{α1, ω2, ω3} :
(
−3

4 , 0, 0
)

1

,
(
−1

4 , 1, 0
)

3

,
(1

4 , 0, 1
)

3

,
(3

4 , 0, 0
)

1

;
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• four orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} :
(

1,−1
2 , 0

)
2

,
(

0,−1
2 , 1

)
2

,
(

0, 1
2 , 1

)
2

,
(

1, 1
2 , 0

)
2

;

• four orbits with the A2−symmetry:

{ω1, ω2, α3} :
(

0, 0,−3
4

)
1

,
(

0, 1,−1
4

)
3

,
(

1, 0, 1
4

)
3

,
(

0, 0, 3
4

)
1

.

The polytope VA3(0, 0, 1). The structure of the VA3(0, 0, 1)−polytope contains 4 vertices
that can be decomposed into

• two orbits with the A2−symmetry:

{α1, ω2, ω3} :
(
−1

4 , 1, 0
)

3

,
(3

4 , 0, 0
)

1

;

• two orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} :
(

0,−1
2 , 1

)
2

,
(

1, 1
2 , 0

)
2

;

• two orbits with the A2−symmetry:

{ω1, ω2, α3} :
(

0, 0,−3
4

)
1

,
(

1, 0, 1
4

)
3

.

The polytope VA3(1, 1, 0). The structure of the VA3(1, 1, 0)−polytope contains 8 vertices
that can be decomposed into

• four orbits with the A2−symmetry:

{α1, ω2, ω3} :
(
−5

4 , 0, 0
)

1

,
(
−1

4 , 1, 0
)

3

,
( 5

12 , 0,
5
3

)
3

,
(3

4 , 0, 0
)

1

;

• four orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} :
(5

3 ,−
5
6 , 0

)
2

,
(

0,−1
2 , 1

)
2

,
(

1, 1
2 , 0

)
2

,
(

0, 5
6 ,

5
3

)
2

;

• four orbits with the A2−symmetry:

{ω1, ω2, α3} :
(

0, 0,−3
4

)
1

,
(

0, 5
3 ,−

5
12

)
3

,
(

1, 0, 1
4

)
3

,
(

0, 0, 5
4

)
1

.

The polytope VA3(1, 0, 1). The structure of the VA3(1, 0, 1)−polytope contains 14 vertices
that can be decomposed into

• six orbits with the A2−symmetry:

{α1, ω2, ω3} :
(
−3

4 , 0, 0
)

1

,
(
−1

2 , 0, 1
)

3

,
(
−1

4 , 1, 0
)

3

,
(1

4 , 0, 1
)

3

,
(1

2 , 1, 0
)

3

,
(3

4 , 0, 0
)

1

;
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• seven orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} : (0,−1, 0)
1

,
(

1,−1
2 , 0

)
2

,
(

0,−1
2 , 1

)
2

, (1, 0, 1)
4

,
(

0, 1
2 , 1

)
2

,
(

1, 1
2 , 0

)
2

, (0, 1, 0)
1

;

• six orbits with the A2−symmetry:

{ω1, ω2, α3} :
(

0, 0,−3
4

)
1

,
(

1, 0,−1
2

)
3

,
(

0, 1,−1
4

)
3

,
(

1, 0, 1
4

)
3

,
(

0, 1, 1
2

)
3

,
(

0, 0, 3
4

)
1

.

The polytope VA3(0, 1, 1). The structure of the VA3(0, 1, 1)−polytope contains 8 vertices
that can be decomposed into

• four orbits with the A2−symmetry:

{α1, ω2, ω3} :
(
− 9

20 , 0, 0
)

1

,
(
−1

4 , 1, 0
)

3

,
( 3

20 , 0,
3
5

)
3

,
(3

4 , 0, 0
)

1

;

• four orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} :
(

0,−1
2 , 1

)
2

,
(3

5 ,−
3
10 , 0

)
2

,
(

0, 3
10 ,

3
5

)
2

,
(

1, 1
2 , 0

)
2

;

• four orbits with the A2−symmetry:

{ω1, ω2, α3} :
(

0, 0,−3
4

)
1

,
(

0, 3
5 ,−

3
20

)
3

,
(

1, 0, 1
4

)
3

,
(

0, 0, 9
20

)
1

.

The polytope VA3(1, 1, 1). The structure of the VA3(1, 1, 1)−polytope contains 14 vertices
that can be decomposed into

• six orbits with the A2−symmetry:

{α1, ω2, ω3} :
(
−3

4 , 0, 0
)

1

,
(
−3

8 , 0,
3
4

)
3

,
(
−1

4 , 1, 0
)

3

,
(1

4 , 0, 1
)

3

,
(3

8 ,
3
4 , 0

)
3

,
(3

4 , 0, 0
)

1

;

• seven orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} :
(

0,−3
4 , 0

)
2

,
(

1,−1
2 , 0

)
2

,
(

0,−1
2 , 1

)
2

,
(3

4 , 0,
3
4

)
2

,
(

0, 1
2 , 1

)
2

,
(

1, 1
2 , 0

)
2

,
(

0, 3
4 , 0

)
2

;

• six orbits with the A2−symmetry:

{ω1, ω2, α3} :
(

0, 0,−3
4

)
1

,
(3

4 , 0,−
3
8

)
3

,
(

0, 1,−1
4

)
3

,
(

1, 0, 1
4

)
3

,
(

0, 3
4 ,

3
8

)
3

,
(

0, 0, 3
4

)
1

.
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A2 A1 × A1 A2

λ Orbits ‘Pancakes’ Orbits ‘Pancakes’ Orbits ‘Pancakes’

(a, 0, 0) 2 2 2 2 2 2
(0, b, 0) 4 4 4 2 4 4
(0, 0, c) 2 2 2 2 2 2
(a, b, 0) 4 4 4 4 4 4
(a, 0, c) 6 6 7 5 6 6
(0, b, c) 4 4 4 4 4 4
(a, b, c) 6 6 7 5 6 6

Table 5.7. The numbers of orbits and ‘pancakes’ are provided for VA3(λ)−polytopes. The
dominant points λ with the coordinates a = b = c are considered.

5.5.2. Orbit decompositions of the VB3(λ)−polytopes

The polytope VB3(1, 0, 0). The structure of the VB3(1, 0, 0)−polytope contains 8 vertices
that can be decomposed into

• two orbits with the B2−symmetry:

{α1, ω2, ω3} : (−1, 0, 2)
4

, (1, 0, 2)
4

;

• three orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} : (0,−2, 2)
2

, (2, 0, 2)
4

, (0, 2, 2)
2

;

• four orbits with the A2−symmetry:

{ω1, ω2, α3} : (0, 0,−3)
1

, (2, 0,−1)
3

, (0, 2, 1)
3

, (0, 0, 3)
1

.

The polytope VB3(0, 1, 0). The structure of the VB3(0, 1, 0)−polytope contains 14 vertices
that can be decomposed into

• five orbits with the B2−symmetry:

{α1, ω2, ω3} : (−1, 0, 0)
1

,
(
−1

2 , 0, 1
)

4

, (0, 1, 0)
4

,
(1

2 , 0, 1
)

4

, (1, 0, 0)
1

;

• six orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} : (0,−1, 1)
2

, (1,−1, 0)
2

, (1, 0, 1)
4

, (0, 0, 2)
2

, (0, 1, 1)
2

, (1, 1, 0)
2

;
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• six orbits with the A2−symmetry:

{ω1, ω2, α3} :
(

0, 0,−3
2

)
1

, (0, 1,−1)
3

,
(

1, 0,−1
2

)
3

,
(

0, 1, 1
2

)
3

, (1, 0, 1)
3

,
(

0, 0, 3
2

)
1

.

The polytope VB3(0, 0, 1). The structure of the VB3(0, 0, 1)−polytope contains 6 vertices
that can be decomposed into

• three orbits with the B2−symmetry:

{α1, ω2, ω3} : (−1, 0, 0)
1

, (0, 1, 0)
4

, (1, 0, 0)
1

;

• three orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} : (1,−1, 0)
2

, (0, 0, 2)
2

, (1, 1, 0)
2

;

• two orbits with the A2−symmetry:

{ω1, ω2, α3} : (0, 1,−1)
3

, (1, 0, 1)
3

.

The polytope VB3(1, 1, 0). The structure of the VB3(1, 1, 0)−polytope contains 14 vertices
that can be decomposed into

• five orbits with the B2−symmetry:

{α1, ω2, ω3} : (−1, 0, 0)
1

,
(
−2

3 , 0,
4
3

)
4

, (0, 1, 0)
4

,
(2

3 , 0,
4
3

)
4

, (1, 0, 0)
1

;

• six orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} :
(

0,−4
3 ,

4
3

)
2

, (1,−1, 0)
2

,
(4

3 , 0,
4
3

)
4

, (0, 0, 2)
2

, (1, 1, 0)
2

,
(

0, 4
3 ,

4
3

)
2

;

• six orbits with the A2−symmetry:

{ω1, ω2, α3} : (0, 0,−2)
1

, (0, 1,−1)
3

,
(4

3 , 0,−
2
3

)
3

,
(

0, 4
3 ,

2
3

)
3

, (1, 0, 1)
3

, (0, 0, 2)
1

;

The polytope VB3(1, 0, 1). The structure of the VB3(1, 0, 1)−polytope contains 26 vertices
that can be decomposed into

• eight orbits with the B2−symmetry:

{α1, ω2, ω3} : (−1, 0, 0)
1

,
(
−2

3 ,
2
3 , 0

)
4

,
(
−1

2 , 0, 1
)

4

,
(

0, 0, 4
3

)
4

, (0, 1, 0)
4

,
(1

2 , 0, 1
)

4

,

(2
3 ,

2
3 , 0

)
4

, (1, 0, 0)
1

;
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• eleven orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} :
(

0,−4
3 , 0

)
1

, (0,−1, 1)
2

, (1,−1, 0)
2

,
(2

3 ,−
2
3 ,

4
3

)
4

,
(4

3 , 0, 0
)

2

, (1, 0, 1)
4

,

(0, 0, 2)
2

,
(2

3 ,
2
3 ,

4
3

)
4

, (0, 1, 1)
2

, (1, 1, 0)
2

,
(

0, 4
3 , 0

)
1

;

• nine orbits with the A2−symmetry:

{ω1, ω2, α3} :
(

0, 0,−3
2

)
1

,
(2

3 , 0,−
4
3

)
3

, (0, 1,−1)
3

,
(

1, 0,−1
2

)
3

,
(2

3 ,
2
3 , 0

)
6

,
(

0, 1, 1
2

)
3

,

(1, 0, 1)
3

,
(

0, 2
3 ,

4
3

)
3

,
(

0, 0, 3
2

)
1

;

The polytope VB3(0, 1, 1). The structure of the VB3(0, 1, 1)−polytope contains 14 vertices
that can be decomposed into

• five orbits with the B2−symmetry:

{α1, ω2, ω3} : (−1, 0, 0)
1

,
(
−2

5 , 0,
4
5

)
4

, (0, 1, 0)
4

,
(2

5 , 0,
4
5

)
4

, (1, 0, 0)
1

;

• six orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} : (1,−1, 0)
2

,
(

0,−4
5 ,

4
5

)
2

,
(4

5 , 0,
4
5

)
4

, (0, 0, 2)
2

,
(

0, 4
5 ,

4
5

)
2

, (1, 1, 0)
2

;

• six orbits with the A2−symmetry:

{ω1, ω2, α3} :
(

0, 0,−6
5

)
1

, (0, 1,−1)
3

,
(4

5 , 0,−
2
5

)
3

,
(

0, 4
5 ,

2
5

)
3

, (1, 0, 1)
3

,
(

0, 0, 6
5

)
1

.

The polytope VB3(1, 1, 1). The structure of the VB3(1, 1, 1)−polytope contains 26 vertices
that can be decomposed into

• eight orbits with the B2−symmetry:

{α1, ω2, ω3} : (−1, 0, 0)
1

,
(
−3

5 ,
3
5 , 0

)
4

,
(
−1

2 , 0, 1
)

4

,
(

0, 0, 6
5

)
4

, (0, 1, 0)
4

,
(1

2 , 0, 1
)

4

,

(3
5 ,

3
5 , 0

)
4

, (1, 0, 0)
1

;

• eleven orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} :
(

0,−6
5 , 0

)
1

, (0,−1, 1)
2

, (1,−1, 0)
2

,
(3

5 ,−
3
5 ,

6
5

)
4

,
(6

5 , 0, 0
)

2

, (1, 0, 1)
4

,

(0, 0, 2)
2

,
(3

5 ,
3
5 ,

6
5

)
4

, (0, 1, 1)
2

, (1, 1, 0)
2

,
(

0, 6
5 , 0

)
1

;
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B2 A1 × A1 A2

λ Orbits ‘Pancakes’ Orbits ‘Pancakes’ Orbits ‘Pancakes’

(a, 0, 0) 2 2 3 3 4 4
(0, b, 0) 5 5 6 3 6 6
(0, 0, c) 3 3 3 3 2 2
(a, b, 0) 5 5 6 5 6 6
(a, 0, c) 8 7 11 7 9 9
(0, b, c) 5 5 6 5 6 6
(a, b, c) 8 7 11 7 9 9

Table 5.8. The numbers of orbits and ‘pancakes’ are provided for VB3(λ)−polytopes. The
dominant points λ with the coordinates a = b = c are considered.

• nine orbits with the A2−symmetry:

{ω1, ω2, α3} :
(

0, 0,−3
2

)
1

,
(3

5 , 0,−
6
5

)
3

, (0, 1,−1)
3

,
(

1, 0,−1
2

)
3

,
(3

5 ,
3
5 , 0

)
6

,
(

0, 1, 1
2

)
3

,

(1, 0, 1)
3

,
(

0, 3
5 ,

6
5

)
3

,
(

0, 0, 3
2

)
1

.

5.5.3. Orbit decompositions of the VC3(λ)−polytopes

The polytope VC3(1, 0, 0). The structure of the VC3(1, 0, 0)−polytope contains 8 vertices
that can be decomposed into

• two orbits with the C2−symmetry:

{α1, ω2, ω3} : (−2, 0, 2)
4

, (2, 0, 2)
4

;

• three orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} : (0,−4, 2)
2

, (4, 0, 2)
4

, (0, 4, 2)
2

;

• four orbits with the A2−symmetry:

{ω1, ω2, α3} : (0, 0,−3)
1

, (4, 0,−1)
3

, (0, 4, 1)
3

, (0, 0, 3)
1

.

The polytope VC3(0, 1, 0). The structure of the VC3(0, 1, 0)−polytope contains 14 vertices
that can be decomposed into

• five orbits with the C2−symmetry:

{α1, ω2, ω3} : (−1, 0, 0)
1

,
(
−1

2 , 0,
1
2

)
4

, (0, 1, 0)
4

,
(1

2 , 0,
1
2

)
4

, (1, 0, 0)
1

;
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• six orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} :
(

0,−1, 1
2

)
2

, (1,−1, 0)
2

,
(

1, 0, 1
2

)
4

, (0, 0, 1)
2

,
(

0, 1, 1
2

)
2

, (1, 1, 0)
2

;

• six orbits with the A2−symmetry:

{ω1, ω2, α3} :
(

0, 0,−3
4

)
1

,
(

0, 1,−1
2

)
3

,
(

1, 0,−1
4

)
3

,
(

0, 1, 1
4

)
3

,
(

1, 0, 1
2

)
3

,
(

0, 0, 3
4

)
1

.

The polytope VC3(0, 0, 1). The structure of the VC3(0, 0, 1)−polytope contains 6 vertices
that can be decomposed into

• three orbits with the C2−symmetry:

{α1, ω2, ω3} : (−1, 0, 0)
1

, (0, 1, 0)
4

, (1, 0, 0)
1

;

• three orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} : (1,−1, 0)
2

, (0, 0, 1)
2

, (1, 1, 0)
2

;

• two orbits with the A2−symmetry:

{ω1, ω2, α3} :
(

0, 1,−1
2

)
3

,
(

1, 0, 1
2

)
3

.

The polytope VC3(1, 1, 0). The structure of the VC3(1, 1, 0)−polytope contains 14 vertices
that can be decomposed into

• five orbits with the C2−symmetry:

{α1, ω2, ω3} : (−1, 0, 0)
1

,
(
−4

5 , 0,
4
5

)
4

, (0, 1, 0)
4

,
(4

5 , 0,
4
5

)
4

, (1, 0, 0)
1

;

• six orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} :
(

0,−8
5 ,

4
5

)
2

, (1,−1, 0)
2

,
(8

5 , 0,
4
5

)
4

, (0, 0, 1)
2

, (1, 1, 0)
2

,
(

0, 8
5 ,

4
5

)
2

;

• six orbits with the A2−symmetry:

{ω1, ω2, α3} :
(

0, 0,−6
5

)
1

,
(

0, 1,−1
2

)
3

,
(8

5 , 0,−
2
5

)
3

,
(

0, 8
5 ,

2
5

)
3

,
(

1, 0, 1
2

)
3

,
(

0, 0, 6
5

)
1

.

The polytope VC3(1, 0, 1). The structure of the VC3(1, 0, 1)−polytope contains 26 vertices
that can be decomposed into
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• eight orbits with the C2−symmetry:

{α1, ω2, ω3} : (−1, 0, 0)
1

,
(
−3

4 , 0,
3
4

)
4

,
(
−3

5 , 0,
3
5

)
4

,
(

0, 0, 3
4

)
4

, (0, 1, 0)
4

,
(3

5 , 0,
3
5

)
4

,

(3
4 ,

3
4 , 0

)
4

, (1, 0, 0)
1

;

• eleven orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} :
(

0,−3
2 , 0

)
1

,
(

0,−6
5 ,

3
5

)
2

, (1,−1, 0)
2

,
(3

4 ,−
3
4 ,

3
4

)
4

,
(3

2 , 0, 0
)

2

,
(6

5 , 0,
3
5

)
4

,

(0, 0, 1)
2

,
(3

4 ,
3
4 ,

3
4

)
4

, (1, 1, 0)
2

,
(

0, 6
5 ,

3
5

)
2

,
(

0, 3
2 , 0

)
1

;

• nine orbits with the A2−symmetry:

{ω1, ω2, α3} :
(

0, 0,− 9
10

)
1

,
(3

4 , 0,−
3
4

)
3

,
(

0, 1,−1
2

)
3

,
(6

5 , 0,−
3
10

)
3

,
(3

4 ,
3
4 , 0

)
6

,
(

0, 6
5 ,

3
10

)
3

,

(
1, 0, 1

2

)
3

,
(

0, 3
4 ,

3
4

)
3

,
(

0, 0, 9
10

)
1

.

The polytope VC3(0, 1, 1). The structure of the VC3(0, 1, 1)−polytope contains 14 vertices
that can be decomposed into

• five orbits with the C2−symmetry:

{α1, ω2, ω3} : (−1, 0, 0)
1

,
(
−3

7 , 0,
3
7

)
4

, (0, 1, 0)
4

,
(3

7 , 0,
3
7

)
4

, (1, 0, 0)
1

;

• six orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} : (1,−1, 0)
2

,
(

0,−6
7 ,

3
7

)
2

,
(6

7 , 0,
3
7

)
4

, (0, 0, 1)
2

,
(

0, 6
7 ,

3
7

)
2

, (1, 1, 0)
2

;

• six orbits with the A2−symmetry:

{ω1, ω2, α3} :
(

0, 0,− 9
14

)
1

,
(

0, 1,−1
2

)
3

,
(6

7 , 0,−
3
14

)
3

,
(

0, 6
7 ,

3
14

)
3

,
(

1, 0, 1
2

)
3

,
(

0, 0, 9
14

)
1

;

The polytope VC3(1, 1, 1). The structure of the VC3(1, 1, 1)−polytope contains 26 vertices
that can be decomposed into

• eight orbits with the C2−symmetry:

{α1, ω2, ω3} : (−1, 0, 0)
1

,
(
−5

8 ,
5
8 , 0

)
4

,
(
−5

9 , 0,
5
9

)
4

,
(

0, 0, 5
8

)
4

, (0, 1, 0)
4

,
(5

9 , 0,
5
9

)
4

,

(5
8 ,

5
8 , 0

)
4

, (1, 0, 0)
1

;
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C2 A1 × A1 A2

λ Orbits ‘Pancakes’ Orbits ‘Pancakes’ Orbits ‘Pancakes’

(a, 0, 0) 2 2 3 3 4 4
(0, b, 0) 5 5 6 3 6 6
(0, 0, c) 3 3 3 3 2 2
(a, b, 0) 5 5 6 5 6 6
(a, 0, c) 8 5 11 7 9 9
(0, b, c) 5 5 6 5 6 6
(a, b, c) 8 5 11 7 9 9

Table 5.9. The numbers of orbits and ‘pancakes’ are provided for VC3(λ)−polytopes. The
dominant points λ with the coordinates a = b = c are considered.

• eleven orbits with the A1 × A1−symmetry:

{ω1, α2, ω3} :
(

0,−5
4 , 0

)
1

,
(

0,−10
9 ,

5
9

)
2

, (1,−1, 0)
2

,
(5

8 ,−
5
8 ,

5
8

)
4

,
(5

4 , 0, 0
)

2

,
(10

9 , 0,
5
9

)
4

,

(0, 0, 1)
2

,
(5

8 ,
5
8 ,

5
8

)
4

, (1, 1, 0)
2

(
0, 10

9 ,
5
9

)
2

,
(

0, 5
4 , 0

)
1

;

• nine orbits with the A2−symmetry:

{ω1, ω2, α3} :
(

0, 0,−5
6

)
1

,
(5

8 , 0,−
5
8

)
3

,
(

0, 1,−1
2

)
3

,
(10

9 , 0,−
5
18

)
3

,
(5

8 ,
5
8 , 0

)
6

,
(

0, 10
9 ,

5
18

)
3

,

(
1, 0, 1

2

)
3

,
(

0, 5
8 ,

5
8

)
3

,
(

0, 0, 5
6

)
1

.

5.6. Symmetry breaking of VW (λ) and related tubes
In this section, we follow a symmetry-breaking procedure described in Section 4.9. How-

ever, for simplicity, the two-dimensional faces involved in a symmetry-breaking mechanism
are not colored. Several examples of the nanotubes constructed from broken-in-half poly-
topes of the VA3(λ)− and VB3(λ)−families are considered in Figures 5.4–5.9, where the
ordering depends on the number of orbits contained within a corresponding polytope. Since
this manuscript is currently in preparation, the nanotubes from the other polytopes of the
crystallographic groups A3 and B3 are planned to be presented later.
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(a) (b) (c)

Fig. 5.4. (a) The polytope VB3(0, 0, 1) is oriented in the α1−direction. The symmetry-
breaking path is indicated by bold black edges. (b) The insert for VB3(0, 0, 1). (c) The
nanotube obtained by inserting four extra orbits into the structure of VB3(0, 0, 1).

(a) (b) (c)

Fig. 5.5. (a) The polytope VB3(1, 0, 0) is oriented in the α3−direction. The symmetry-
breaking path is indicated by bold black edges. (b) The insert for VB3(1, 0, 0). (c) The
nanotube obtained by inserting four extra orbits into the structure of VB3(1, 0, 0).

(a) (b) (c)

Fig. 5.6. (a) The polytope VA3(1, 0, 1) is oriented in the α1−direction. The symmetry-
breaking path is indicated by bold black edges. (b) The insert for VA3(1, 0, 1). (c) The
nanotube obtained by inserting four extra orbits into the structure of VA3(1, 0, 1).
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(a) (b) (c)

Fig. 5.7. (a) The polytope VB3(0, 1, 1) is oriented in the α3−direction. The symmetry-
breaking path is indicated by bold black edges. (b) The insert for VB3(0, 1, 1). (c) The
nanotube obtained by inserting six extra orbits into the structure of VB3(0, 1, 1).

(a) (b) (c)

Fig. 5.8. (a) The polytope VA3(1, 0, 1) is oriented in the α2−direction. The symmetry-
breaking path is indicated by bold black edges. (b) The insert for VA3(1, 0, 1). (c) The
nanotube obtained by inserting six extra orbits into the structure of VA3(1, 0, 1).

(a) (b) (c)

Fig. 5.9. (a) The polytope VA3(1, 1, 1) is oriented in the α2−direction. The symmetry-
breaking path is indicated by bold black edges. (b) The insert for VA3(1, 1, 1). (c) The
nanotube obtained by inserting six extra orbit into the structure of VA3(1, 1, 1).
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Conclusion

The goal of this work was to explore the applications of finite Coxeter groups to Fourier-like
analysis provided on the weight lattice of the crystallographic reflection group A2 (Hrivnák
et al. [1]), as well as to the construction of nanotube-like structures (Myronova [3]). The
latter are obtained using a well-known symmetry-breaking technique applied to the family
of dual polyhedra of the non-crystallographic group H3. Since such polytopes may contain
up to three orbits within their structures, we have demonstrated the construction of the
corresponding stellated polytopes. Since the structure of the fullerene C20 is provided by the
dodecahedron, we have extended this fullerene into carbon nanotubes of armchair C20+6N

and zig-zag C20+10N types. In addition, we have considered the orbit-decompositions of
dual polytopes constructed using the crystallographic groups A3, B3 and C3. We have
also investigated the relevance of the non-crystallographic groups with 5-fold symmetry to
determining the indices of orbits (Myronova et al. [2]). In the geometric interpretation, the
algorithm that yields the lower orbits of polytopes, i.e., the orbits of smaller radii comparing
to an initial one, provides the structures of nested polytopes.

Despite the fact that finite reflection groups are relevant to numerous scientific areas, their
possible applications have not been explored fully yet. In this section, we list the unsolved
problems that are considered as future research but have not appeared in the concluding
remarks of Chapters 2–4. More precisely,

• A symmetry-breaking mechanism applied to the polytopes generated by the finite
reflection groups in the four-dimensional Euclidean space is an open problem. It
is an interesting task to determine the orbit-decompositions of polytopes obtained
by the action of the crystallographic groups A4, B4, C4, F4, D4 and the non-
crystallographic group H4. For example, using the Coxeter–Dynkin diagram of
the non-crystallographic group H4 (Figure 1.3), its symmetry can be reduced as
H4 → A1 × H3, H4 → A1 × H2 × A1, H4 → A2 × A1 × A1 and H4 → A3 × A1.
In this case, instead of circular/polygonal orbits in the decomposition, we expect to
have spherical/polyhedral ones. The geometric visualization of polytopes provided
by the there-dimensional subgroups of H4 remains an open problem. Moreover, in
recent studies (Dechant [35]), the construction of the four-dimensional root system



(a) (b)

Fig. 5.10. (a) The structure of Zeolite A is constituted by the polytopes DA3(1, 1, 1) (trun-
cated octahedron) and DB3(1, 0, 0) (cube). (b) The structure of faujasite-type zeolites X and
Y is constituted by the polytopes DA3(1, 1, 1) (truncated octahedron) and DA2×A1(1, 1, 1)
(hexagonal prism).

from the corresponding three-dimensional one has been described in detail for the
icosahedral case H3 → H4.
• In Chapter 5, we demonstrate the orbit-decompositions of dual polytopes obtained by
the actions of the Weyl groups A3, B3 and C3 on each type of dominant point λ. How-
ever, the construction of related nanotube-like structures for the considered polytopes
has not been determined for each case yet. As well, it would be useful to establish
a connection between such nanotubes and the chemical compounds that impose the
physical constraints permitting the existence of such tube-like structures.
• Another interesting task is the construction of hierarchical non-crystalline structures,
biocrystals and modular structures described in detail in (Bulienkov [25]) by using
group-theoretical methods.
• The construction of multi-shell nanostructures (Diudea et al. [45]) and porous nano-
materials (Lutz [94]) (for example, see Figure 5.10) is considered as future work.
For such structures, three-dimensional polytopes of the crystallographic and non-
crystallographic types constitute building blocks. Since the polytopes obtained by
the actions of the groups A1 × A1 × A1, A2 × A1, B2 × A1, C2 × A1, G2 × A1 and
H2×A1, together with their duals, play an important role in the construction of such
nanomaterials (as they provide the structures of prisms and bipyramids), their orbit
decompositions should be considered independently.

Moreover, the generic realizations of conformal and de Sitter algebras have been formu-
lated in (Myronova and Nesterenko [4]), and the orthogonal systems of functions on lattices
of SU(n + 1), n < ∞ have been investigated in (Myronova and Szajewska [5]). Therefore,
we plan to continue our research in these areas as well.
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Appendix A

The ‘pancake’-structures of VH3(λ)−polytopes

In Figures A.1−A.7, the polytopes VH3(λ) are viewed from the direction orthogonal to the
simple roots αk, k ∈ {1, 2, 3}. The polytopes of VH3(λ) are presented in the top row. The
corresponding ‘pancake’-structures with respect to each G′ ⊂ H3 are shown in the bottom
row. The numbers on the left of each ‘pancake’ stand for the numbers of points of the two-
dimensional orbits. The values on the right correspond to the αk−coordinates that provide
the spacing between the ‘pancakes’. For clarity, the points of generic orbits are depicted by
black, green and orange colors. The bold segments indicate the symmetry-breaking path for
a considered VH3(λ)−polytope.

Fig. A.1. The polytope VH3(1, 0, 0) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbits OH3(0, 0, c′) are depicted by black color.



Fig. A.2. The polytope VH3(0, 0, 1) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbits OH3(a′, 0, 0) are depicted by black color.

Fig. A.3. The polytope VH3(0, 1, 0) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbits OH3(a′, 0, 0) and OH3(0, 0, c′) are depicted by green and
black colors, respectively.
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Fig. A.4. The polytope VH3(1, 1, 0) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbits OH3(a′, 0, 0) and OH3(0, 0, c′) are depicted by green and
black colors, respectively.

Fig. A.5. The polytope VH3(0, 1, 1) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbits OH3(a′, 0, 0) and OH3(0, 0, c′) are depicted by green and
black colors, respectively.
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Fig. A.6. The polytope VH3(1, 0, 1) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbits OH3(a′, 0, 0), OH3(0, b′, 0) and OH3(0, 0, c′) are depicted by
orange, black and green colors, respectively.

Fig. A.7. The polytope VH3(1, 1, 1) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbits OH3(a′, 0, 0), OH3(0, b′, 0) and OH3(0, 0, c′) are depicted by
orange, black and green colors, respectively.
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Appendix B

Tables of orbit decompositions of
VH3(λ)−polytopes

The orbit decompositions of VH3(λ) with respect to the two-dimensional subgroups H2,
A1 × A1 and A2 of the Coxeter group H3 are presented in Tables B.1−B.7. A point µ ∈ R3

determines each two-dimensional orbit within the structure of VH3(λ), and its coordinates
are provided in the mixed basis (Subsection 4.2.4). The squared radius of each orbit OG′(µ′)
is denoted by R2(µ′), and it is provided in terms of τ (see expression (4.2.2)); the numerical
value of the squared radius is denoted by N [R2(µ′)]. The number of points of each orbit
OG′(µ′) is denoted by Np. Since the orbit with the dominant point c1(1, 0, 0), where c1 = 1,
is the same for each polytope containing it within its structure, we do not repeat it.

VH3(1, 0, 0)

Orbit c3(0, 0, 1)

G′ µ R2(µ′) N [R2(µ′)] Np

H2

( τ2 + 1, 0, 3τ − 4) 36.2− 21.7τ 1.056 5
(3τ

2 − 2, 0, 3− τ) 14.5− 7.2τ 2.764 5
(2− 3τ

2 , 3− τ, 0) 14.5− 7.2τ 2.764 5
(− τ

2 − 1, 3τ − 4, 0) 36.2− 21.7τ 1.056 5

A1 × A1

(0, 2 + τ, 3τ − 4) 12.5− 7.5τ 0.365 2
(3− τ, 2τ − 1, 3− τ) 10− 5τ 1.910 4
(2τ − 1, 3− τ, 0) 2.5 2.5 2
(3τ − 4, 0, 2τ − 1) 15− 7.5τ 2.865 4
(2τ − 1, τ − 3, 0) 2.5 2.5 2
(3− τ, 1− 2τ, 3− τ) 10− 5τ 1.910 4
(0,−2− τ, 3τ − 4) 12.5− 7.5τ 0.365 2

A2

(0, 0, 3τ − 3
2) 0 0 1

(0, 3− τ, 5
2) 6.7− 3.3τ 1.273 3

(3− τ, 3τ − 4, τ − 1
2) 13.3− 6.7τ 2.546 6

(3τ − 4, 3− τ, 1
2 − τ) 13.3− 6.7τ 2.546 6

(3− τ, 0,−5
2) 6.7− 3.3τ 2.764 3

(0, 0, 3
2 − 3τ) 0 0 1

Table B.1. The orbit decomposition of the polytope VH3(1, 0, 0).



VH3(0, 0, 1)

Orbit c1(1, 0, 0)

G′ µ R2(µ′) N [R2(µ′)] Np

H2

(1 + τ
2 , 0, 0) 0 0 1

( τ2 , 1, 0) 1.45 1.45 5
(− τ

2 , 0, 1) 1.45 1.45 5
(−1− τ

2 , 0, 0) 0 0 1

A1 × A1

(1, τ + 1, 0) 0.5 0.5 2
(0, τ, τ) 0.5 + 0.5τ 1.309 2
(τ, 0, 1) 1 + 0.5τ 1.809 4
(0,−τ, τ) 0.5 + 0.5τ 1.309 2
(1,−τ − 1, 0) 0.5 0.5 2

A2

(1, 0, τ + 1
2) 0.667 0.667 3

(0, τ, 1
2) 0.7 + 0.7τ 1.735 3

(τ, 0,−1
2) 0.7 + 0.7τ 1.735 3

(0, 1,−τ − 1
2) 0.667 0.667 3

Table B.2. The orbit decomposition of the polytope VH3(0, 0, 1).

VH3(0, 1, 0)

Orbit c3(0, 0, 1)

G′ µ R2(µ′) N [R2(µ′)] Np

H2

( τ2 + 1
2 , 0, τ − 1) 2.9− 1.5τ 0.553 5

( τ2 −
1
2 , 0, 1) 1.45 1.45 5

( τ2 −
1
2 , 1, 0) 1.45 1.45 5

(− τ
2 −

1
2 , τ − 1, 0) 2.9− 1.5τ 0.553 5

A1 × A1

(0, 1 + τ, τ − 1) 1− 0.5τ 0.191 2
(1, τ, 1) 1 1 4
(τ, 1, 0) 0.5 + 0.5τ 1.309 2
(τ − 1, 0, τ) 1.5 1.5 4
(τ,−1, 0) 0.5 + 0.5τ 1.309 2
(1,−τ, 1) 1 1 4
(0,−1− τ, τ − 1) 1− 0.5τ 1.309 2

A2

(0, 0, 3
2τ) 0 0 3

(0, 1, τ + 1
2) 0.667 0.667 3

(1, τ − 1, τ2 ) 1.333 1.333 6
(τ − 1, 1,− τ

2 ) 1.333 1.333 6
(1, 0,− τ

2 − 1) 0.667 0.667 3
(0, 0,−3

2τ) 0 0 3

Table B.3. The orbit decomposition of the polytope VH3(0, 1, 0).
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VH3(1, 1, 0)

Orbit c3(0, 0, 1)

G′ µ R2(µ′) N [R2(µ′)] Np

H2

1
6(3τ + 4, 0, 10τ − 12) 9.8− 5.6τ 0.702 5
1
6(5τ − 6, 0, 10− 6τ) 4.2− 1.45τ 1.839 5
1
6(6− 5τ, 10− 6τ, 0) 4.2− 1.45τ 1.839 5
1
6(−3τ − 4, 10τ − 12, 0) 9.8− 5.6τ 0.702 5

A1 × A1

1
3(0, 3τ + 4, 5τ − 6) 3.4− 1.9τ 0.243 2
1
3(5− τ, 4τ − 3, 5− τ) 2.9− τ 1.271 4
1
3(4τ − 1, 5− τ, 0) 0.9 + 0.4τ 1.664 2
1
3(5τ − 6, 0, 4τ − 1) 4.3− 1.5τ 1.906 4
1
3(4τ − 1, τ − 5, 0) 0.9 + 0.4τ 1.664 2
1
3(5− τ, 3− 4τ, 5− τ) 2.9− τ 1.271 4
1
3(0,−3τ − 4, 5τ − 6) 3.4− 1.9τ 0.243 2

A2

1
6(0, 0, 12τ − 3) 0 0 3
1
6(0, 10− 2τ, 2τ + 9) 1.9− 0.7τ 0.847 3
1
6(10− 2τ, 10τ − 12, 4τ − 1) 3.9− 1.3τ 1.695 6
1
6(10τ − 12, 10− 2τ, 1− 4τ) 3.9− 1.3τ 1.695 6
1
6(10− 2τ, 0,−2τ − 9) 1.9− 0.7τ 0.847 3
1
6(0, 0, 3− 12τ) 0 0 3

Table B.4. The orbit decomposition of the polytope VH3(1, 1, 0).

VH3(0, 1, 1)

Orbit c3(0, 0, 1)

G′ µ R2(µ′) N [R2(µ′)] Np

H2

1
11(13τ

2 + 3,0,8− τ) 0.8− 0.2τ 0.487 5
1
11(4− τ

2 ,0,7τ − 1) 0.6 + 0.4τ 1.275 5
1
11( τ2 − 4,0,7τ − 1) 0.6 + 0.4τ 1.275 5
1
11(−13τ

2 − 3,0,8− τ) 0.8− 0.2τ 0.487 5

A1 × A1

1
11(13τ + 6,0,8− τ) 0.3− 0.1τ 0.168 4
1
11(6τ + 7,7τ − 1,7τ − 1) 0.4 + 0.3τ 0.881 4
1
11(7τ + 1,6τ + 7,0) 0.4 + 0.5τ 1.154 2
1
11(0,8− τ,7 + 6τ) 0.6 + 0.4τ 1.322 2
1
11(−7τ − 1,6τ + 7,0) 0.4 + 0.5τ 1.154 2
1
11(−6τ − 7,7τ − 1,7τ − 1) 0.4 + 0.3τ 0.881 4
( 1

11(−13τ − 6,0,8− τ)) 0.3− 0.1τ 0.168 4

A2

9
22(0,0,18τ + 21) 0 0 1
1
11(0,7τ − 1,10 + 8τ) 0.3 + 0.2τ 0.588 3
1
11(7τ − 1,8− τ,12τ + 14) 0.6 + 0.4τ 1.175 6
1
11(7τ − 1,8− τ,− 12τ − 14) 0.6 + 0.4τ 1.175 6
1
11(0,7τ − 1,− 10− 8τ) 0.3 + 0.2τ 0.588 3
9
22(0,0,− 18τ − 21) 0 0 1

Table B.5. The orbit decomposition of the polytope VH3(0, 1, 1).

191



VH3(1, 0, 1)

Orbit c2(0, 1, 0)

G′ µ R2(µ′) N [R2(µ′)] Np

H2

3
2(1, 2− τ, 0) 16.3− 9.8τ 0.475 5
3
2(τ − 1, 0, τ − 1) 6.5− 3.3τ 1.244 5
3
2(0, 2− τ, 2− τ) 29− 16.8τ 1.719 10
3
2(1− τ, τ − 1, 0) 6.5− 3.3τ 1.244 5
3
2(−1, 0, 2− τ) 16.3− 9.8τ 0.475 5

A1 × A1

3
2(0, 2, 0) 0 0 1
3
2(2− τ, τ, τ − 1) 7.9− 4.5τ 0.594 4
3
2(1, 1, 2− τ) 6.8− 3.4τ 1.289 4
3
2(τ − 1, τ − 1, 1) 3.4− 1.1τ 1.555 4
3
2(2τ − 2, 0, 0) 9− 4.5τ 1.719 2
3
2(0, 0, 2τ − 2) 9− 4.5τ 1.719 2
3
2(τ − 1, 1− τ, 1) 3.4− 1.1τ 1.555 4
3
2(1,−1, 2− τ) 6.8− 3.4τ 1.289 4
3
2(2− τ,−τ,−2) 7.9− 4.5τ 0.594 4
3
2(0,−2, 0) 0 0 2

A2

3
2(0, 2− τ, τ) 7.5− 4.5τ 0.219 3
3
2(2− τ, τ − 1, 1) 6− 3τ 1.459 6
3
2(1, 0, τ − 1) 1.5 1.5 3
3
2(τ − 1, τ − 1, 0) 9− 4.5τ 1.719 6
3
2(0, 1, 1− τ) 1.5 1.5 3
3
2(τ − 1, 2− τ,−1) 6− 3τ 1.459 6
3
2(2− τ, 0,−τ) 7.5− 4.5τ 0.219 3

Orbit c3(0, 0, 1)

H2

3
22(2 + 5τ, 0, 8− 2τ) 1.8− 0.8τ 0.612 5
3
22(4− τ, 0, 6τ − 2) 1.1− 0.3τ 1.599 5
3
22(τ − 4, 6τ − 2, 0) 1.1− 0.3τ 1.599 5
3
22(−2− 5τ, 8− 2τ, 0) 1.8− 0.8τ 0.612 5

A1 × A1

3
11(0, 2 + 5τ, 4− τ) 0.6− 0.3τ 0.211 2
3
11(3τ − 1, 3 + 2τ, 3τ − 1) 0.7 + 0.2τ 1.105 4
3
11(3 + 2τ, 3τ − 1, 0) 0.5 + 0.6τ 1.446 2
3
11(4− τ, 0, 3 + 2τ) 1.1 + 0.3τ 1.657 4
3
11(3 + 2τ, 1− 3τ, 0) 0.5 + 0.6τ 1.446 2
3
11(3τ − 1,−3− 2τ, 3τ − 1) 0.7 + 0.2τ 1.105 4
3
11(0,−2− 5τ, 4− τ) 0.6− 0.3τ 0.211 2

A2

3
22(0, 0, 9 + 6τ) 0 0 1
3
22(0, 6τ − 2, 1 + 8τ) 0.5 + 0.1τ 0.737 3
3
22(6τ − 2, 8− 2τ, 3 + 2τ) 1 + 0.3τ 1.473 6
3
22(8− 2τ,−2 + 6τ,−3− 2τ) 1 + 0.3τ 1.473 6
3
22(6τ − 2, 0,−1− 8τ) 0.5 + 0.1τ 0.737 3
3
22(0, 0,−9− 6τ) 0 0 1

Table B.6. The orbit decomposition of the polytope VH3(1, 0, 1).
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VH3(1, 1, 1)

Orbit c2(0, 1, 0)

G′ µ R2(µ′) N [R2(µ′)] Np

H2

1
22(10τ + 15, 20− 5τ, 0) 1.3− 0.5τ 0.424 5
1
22(15τ − 5, 0, 15τ − 5) 0.8 + 0.2τ 1.110 5
1
22(0, 20τ − 5, 20τ − 5) 2.5− 0.6τ 1.535 10
1
22(5− 15τ, 15τ − 5, 0) 0.8 + 0.2τ 1.110 5
1
22(−10τ − 15, 0, 20− 5τ) 1.3− 0.5τ 0.424 5

A1 × A1

1
22(0, 30 + 20τ, 0) 0 0 1
1
22(20− 5τ, 25τ + 10, 15τ − 5) 0.7 + 0.1τ 0.530 4
1
22(10τ + 15, 10τ + 15, 20− 5τ) 0.8 + 0.2τ 1.151 4
1
22(15τ − 5, 15τ − 5, 10τ + 15) 0.6 + 0.5τ 1.388 4
1
22(30τ − 10, 0, 0) 1 + 0.3τ 1.535 2
1
22(0, 0, 30τ − 10) 1 + 0.3τ 1.535 2
1
22(15τ − 5, 5− 15τ, 10τ + 15) 0.6 + 0.5τ 1.388 4
1
22(10τ + 15, 10τ − 15, 20− 5τ) 0.8 + 0.2τ 1.151 4
1
22(20− 5τ,−10− 25τ, 15τ − 5) 0.7 + 0.1τ 0.530 4
1
22(0,−30− 20τ, 0) 0 0 1

A2

1
22(0, 20− 5τ, 25τ + 10) 0.6− 0.2τ 0.195 3
1
22(20− 5τ, 15τ − 5, 10τ + 15) 0.7 + 0.2τ 1.023 6
1
22(10τ + 15, 0, 15τ − 5) 0.4 + 0.6τ 1.339 3
1
22(15τ − 5, 15τ − 5, 0) 1 + 0.3τ 1.535 6
1
22(0, 10τ + 15, 5− 15τ) 0.4 + 0.6τ 1.339 3
1
22(15τ − 5, 20− 5τ,−10τ − 15) 0.7 + 0.2τ 1.023 6
1
22(20− 5τ, 0,−25τ − 10) 0.6− 0.2τ 0.195 3

Orbit c3(0, 0, 1)

H2

1
6(10− τ, 0, 10τ − 10) 8− 4τ 1.536 5
1
6(5τ, 0, 20− 10τ) 20.1− 12.1τ 0.587 5
1
6(5τ − 10, 10τ − 10, 0) 8− 4τ 1.536 5
1
6(−5τ, 20− 10τ, 0) 20.1− 12.1τ 0.587 5

A1 × A1

1
3(0, 5τ, 10− 5τ) 6.9− 4.2τ 0.203 2
1
3(5τ − 5, 5, 5τ − 5) 5.6− 2.8τ 1.061 4
1
3(5, 5τ − 5, 0) 1.389 1.389 2
1
3(10− 5τ, 0, 5) 8.3− 4.2τ 1.592 4
1
3(5, 5− 5τ, 0) 1.389 1.389 2
1
3(5τ − 5,−5, 5τ − 5) 5.6− 2.8τ 1.061 4
1
3(0,−5τ, 10− 5τ) 6.9− 4.2τ 0.203 2

A2

1
6(0, 0, 15) 0 0 1
1
6(0, 10τ − 10, 10τ − 5) 3.7− 1.9τ 0.707 3
1
6(10τ − 10, 20τ − 10, 5) 7.4− 3.7τ 1.415 6
1
6(20− 10τ, 10τ − 10,−5) 7.4− 3.7τ 1.415 6
1
6(10τ − 10, 0, 5− 10τ) 3.7− 1.9τ 0.707 3
1
6(0, 0,−15) 0 0 1

Table B.7. The orbit decomposition of the polytope VH3(1, 1, 1).
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Appendix C

The ‘pancake’-structures of VA3(λ)−polytopes

In Figures C.1−C.7, the polytopes VA3(λ) are viewed from the direction orthogonal to the
simple roots αk, k ∈ {1, 2, 3}. The polytopes of VA3(λ) are presented in the top row. The
corresponding ‘pancake’-structures with respect to each W ′ ⊂ A3 are shown in the bottom
row. The numbers on the left of each ‘pancake’ stand for the numbers of points of the two-
dimensional orbits. The values on the right correspond to the αk−coordinates that provide
the spacing between the ‘pancakes’. For clarity, the points of generic orbits are depicted by
black, green and orange colors. The bold segments indicate the symmetry-breaking path for
a considered VA3(λ)−polytope.

Fig. C.1. The polytope VA3(1, 0, 0) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbit OA3(0, 0, c′) are depicted by black color.



Fig. C.2. The polytope VA3(0, 0, 1) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbit OA3(a′, 0, 0) are depicted by black color.

Fig. C.3. The polytope VA3(0, 1, 0) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbits OA3(a′, 0, 0) and OA3(0, 0, c′) are depicted by green and
black colors, respectively.
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Fig. C.4. The polytope VA3(1, 1, 0) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbits OA3(a′, 0, 0) and OA3(0, 0, c′) are depicted by green and
black colors, respectively.

Fig. C.5. The polytope VA3(0, 1, 1) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbits OA3(a′, 0, 0) and OA3(0, 0, c′) are depicted by green and
black colors, respectively.

197



Fig. C.6. The polytope VA3(1, 0, 1) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbits OA3(a′, 0, 0), OA3(0, b′, 0) and OA3(0, 0, c′) are depicted by
green, orange and black colors, respectively.

Fig. C.7. The polytope VA3(1, 1, 1) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbits OA3(a′, 0, 0), OA3(0, b′, 0) and OA3(0, 0, c′) are depicted by
green, orange and black colors, respectively.
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Appendix D

The ‘pancake’-structures of VB3(λ)−polytopes

In Figures D.1−D.7, the polytopes VB3(λ) are viewed from the direction orthogonal to the
simple roots αk, k ∈ {1, 2, 3}. The polytopes of VB3(λ) are presented in the top row. The
corresponding ‘pancake’-structures with respect to each W ′ ⊂ B3 are shown in the bottom
row. The numbers on the left of each ‘pancake’ stand for the numbers of points of the two-
dimensional orbits. The values on the right correspond to the αk−coordinates that provide
the spacing between the ‘pancakes’. For clarity, the points of generic orbits are depicted by
black, green and orange colors. The bold segments indicate the symmetry-breaking path for
a considered VB3(λ)−polytope.

Fig. D.1. The polytope VB3(1, 0, 0) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbit OB3(c′, 0, 0) are depicted by black color.



Fig. D.2. The polytope VB3(0, 0, 1) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbit OB3(0, 0, a′) are depicted by black color.

Fig. D.3. The polytope VB3(0, 1, 0) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbits OB3(a′, 0, 0) and OB3(0,0,c′) are depicted by black and green
colors, respectively.

200



Fig. D.4. The polytope VB3(1, 1, 0) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbits OB3(a′, 0, 0) and OB3(0, 0, c′) are depicted by black and
green colors, respectively.

Fig. D.5. The polytope VB3(0, 1, 1) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbits OB3(a′, 0, 0) and OB3(0, 0, c′) are depicted by black and
green colors, respectively.
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Fig. D.6. The polytope VB3(1, 0, 1) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbits OB3(a′, 0, 0), OB3(0, b′, 0) and OB3(0, 0, c′) are depicted by
green, orange and black colors, respectively.

Fig. D.7. The polytope VB3(1, 1, 1) is oriented in the direction of the simple roots α1, α2
and α3. The points of the orbits OB3(a′, 0, 0), OB3(0, b′, 0) and OB3(0, 0, c′) are depicted by
green, orange and black colors, respectively.
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Appendix E

Interpolation by splitting transforms
(Mathematica code)

In Chapter 2, the figures for Example 6 (Interpolation by splitting transforms) have been
produced using Wolfram Mathematica software (Version Number: 12.0.0.0). We present the
code used to produce the graphics (see Figures 2.4–2.7). For simplicity, we only consider the
interpolating function I[f ](0)

M (2.3.33). This code can be used for any M ∈ N, and it can be
copied and pasted directly in the Mathematica notebook.

For example, let us choose M = 7,

In[1]:= M = 7;

Then, we input the vectors of the ω−basis of A2 as

In[2]:= om1 = {1, 0};
om2 = {0, 1};

For producing graphics, we use the orthonormal basis of A2. The fundamental weights
expressed using the orthonormal basis correspond to the input

In[3]:= om11 = {1/Sqrt[2], 1/Sqrt[6]};
om22 = {0, Sqrt[2/3]};

For any label λ = (λ1, λ2) and any point x = (x1, x2), the scalar product (2.2.7) corre-
sponds to the input

In[4]:= ScalProd[{la1_, la2_}, {x1_, x2_}] :=
2/3la1*x1 + 1/3la2*x1 + 1/3la1*x2 + 2/3la2*x2;



Next, we input the C−function (2.3.5) as follows

In[5]:= Cfunc[{la1_, la2_, x1_, x2_}] :=
Exp[2*Pi*I*ScalProd[{la1, la2}, {x1, x2}]] +
Exp[2*Pi*I*ScalProd[{-la1, la1 + la2}, {x1, x2}]] +
Exp[2*Pi*I*ScalProd[{la1 + la2, -la2}, {x1, x2}]] +
Exp[2*Pi*I*ScalProd[{la2, -la1 - la2}, {x1, x2}]] +
Exp[2*Pi*I*ScalProd[{-la1 - la2, la1}, {x1, x2}]] +
Exp[2*Pi*I*ScalProd[{-la2, -la1}, {x1, x2}]];

We input the values of the discrete functions hM(λ) (2.2.39), ε(s) (2.2.65) and d(s)
(2.2.67). For hM(λ), we have the following input

In[6]:= hM[{la0_, la1_, la2_}] := 1 /; la0 != 0 && la1 != 0 && la2 != 0;
hM[{la0_, la1_, la2_}] := 2 /; la0 != 0 && la1 == 0 && la2 != 0;
hM[{la0_, la1_, la2_}] := 2 /; la0 != 0 && la1 != 0 && la2 == 0;
hM[{la0_, la1_, la2_}] := 2 /; la0 == 0 && la1 != 0 && la2 != 0;
hM[{la0_, la1_, la2_}] := 6 /; la0 != 0 && la1 == 0 && la2 == 0;
hM[{la0_, la1_, la2_}] := 6 /; la0 == 0 && la1 != 0 && la2 == 0;
hM[{la0_, la1_, la2_}] := 6 /; la0 == 0 && la1 == 0 && la2 != 0;

For the discrete function ε(s), we have the following input

In[7]:= eps[{s0_, s1_, s2_}] := 6 /; s0 != 0 && s1 != 0 && s2 != 0;
eps[{s0_, s1_, s2_}] := 3 /; s0 != 0 && s1 == 0 && s2 != 0;
eps[{s0_, s1_, s2_}] := 3 /; s0 != 0 && s1 != 0 && s2 == 0;
eps[{s0_, s1_, s2_}] := 3 /; s0 == 0 && s1 != 0 && s2 != 0;
eps[{s0_, s1_, s2_}] := 1 /; s0 != 0 && s1 == 0 && s2 == 0;
eps[{s0_, s1_, s2_}] := 1 /; s0 == 0 && s1 != 0 && s2 == 0;
eps[{s0_, s1_, s2_}] := 1 /; s0 == 0 && s1 == 0 && s2 != 0;

For the discrete function d(s), we have the following input

In[8]:= ds[{s0_, s1_, s2_}] := 3 /; s0 != 0 && s1 != 0 && s2 != 0 &&
s0 == s1 == s2;
ds[{s0_, s1_, s2_}] := 1 /; s0 != 0 && s1 != 0 && s2 != 0;
ds[{s0_, s1_, s2_}] := 1 /; s0 == 0 && s1 != 0 && s2 != 0;
ds[{s0_, s1_, s2_}] := 1 /; s0 != 0 && s1 == 0 && s2 != 0;
ds[{s0_, s1_, s2_}] := 1 /; s0 != 0 && s1 != 0 && s2 == 0;
ds[{s0_, s1_, s2_}] := 1 /; s0 == 0 && s1 == 0 && s2 != 0;
ds[{s0_, s1_, s2_}] := 1 /; s0 == 0 && s1 != 0 && s2 == 0;
ds[{s0_, s1_, s2_}] := 1 /; s0 != 0 && s1 == 0 && s2 == 0;
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In order to construct the splitting weight set Λ(0)
M (2.2.27) and splitting point set F (0)

M

(2.2.53), the following functions are employed

In[9]:= v[{x_, y_, z_}] := {x, y, z};
w[{x_, y_, z_}] := {y, z};
i[{x_, y_, z_}] := {y/M, z/M};

The elements λ = [λ0, λ1, λ2] (2.2.22) of the splitting weight set Λ(0)
M are provided as

In[10]:= La0v = Map[v,Cases[Flatten[Table[{x, y, z}, {x, 0, M, 1},
{y, 0, M, 1}, {z, 0, M, 1}],2], {a_, b_, c_} /;
a + b + c == M && Mod[b + 2c, 3] == 0]];

Therefore, the elements of the splitting weight set Λ(0)
7 are provided in Kac coordinates as

Out[10]= {{0, 2, 5}, {0, 5, 2}, {1, 0, 6}, {1, 3, 3}, {1, 6, 0}, {2, 1, 4},
{2, 4, 1}, {3, 2, 2}, {4, 0, 3}, {4, 3, 0}, {5, 1, 1}, {7, 0, 0}}

The labels λ = (λ1, λ2) provided by the splitting weight set Λ(0)
M are given by

In[11]:= La0w = Map[w,Cases[Flatten[Table[{x, y, z}, {x, 0, M, 1},
{y, 0, M, 1}, {z, 0, M, 1}], 2], {a_, b_,c_} /;
a + b + c == M && Mod[b + 2c, 3] == 0]];

Therefore, the labels of the splitting weight set Λ(0)
7 are listed as

Out[11]= {{2, 5}, {5, 2}, {0, 6}, {3, 3}, {6, 0}, {1, 4}, {4, 1}, {2, 2},
{0, 3}, {3, 0}, {1, 1}, {0, 0}}

The elements s = [s0, s1, s2] (2.2.50) of the splitting point set F (0)
M are provided as

In[12]:= FM0h = Map[v,Cases[Flatten[Table[{x, y, z}, {x, 0, M, 1},
{y, 0, M, 1}, {z, 0, M, 1}], 2], {a_, b_, c_} /;
(a + b + c == M && a > b && a > c) || (a + b + c == M &&
a == b && b >= c)]];

Therefore, the elements of the splitting point set F (0)
7 are provided in Kac coordinates as

Out[12]= {{3, 2, 2}, {3, 3, 1}, {4, 0, 3}, {4, 1, 2}, {4, 2, 1}, {4, 3, 0},
{5, 0, 2}, {5, 1, 1}, {5, 2, 0}, {6, 0, 1}, {6, 1, 0}, {7, 0, 0}}

To illustrate the points at the final step, we consider the points s = ( s1
M
, s2
M

) provided by
the splitting point set F (0)

M

In[13]:= FM0i = Map[i,Cases[Flatten[Table[{x, y, z}, {x, 0, M, 1},
{y, 0, M, 1}, {z, 0, M, 1}], 2], {a_, b_, c_} /;
(a + b + c == M && a > b && a > c) || (a + b + c == M &&
a == b && b >= c)]];
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For M = 7, we have the following output

Out[13]= {{2/7, 2/7}, {3/7, 1/7}, {0, 3/7}, {1/7, 2/7}, {2/7, 1/7}, {3/7, 0},
{0, 2/7}, {1/7, 1/7}, {2/7, 0}, {0, 1/7}, {1/7, 0}, {0, 0}}

For the C−functions, we use the cartesian product to generate a list of input containing
the elements of the form {λ1, λ2, x1, x2}. More precisely,

In[14]:= CartProd[A_, B_] := Module[{l, i, j}, l = {};
For[i = 1, i <= Length[A], i++,

For[j = 1, j <= Length[B], j++,
AppendTo[l, {A[[i]], B[[j]]}]]]; l];

Therefore, a list of input for C−functions is provided by

In[15]:= InpC = Simplify[Partition[Partition[Flatten[
CartProd[La0w, FM0i]], 4], Length[La0w]]];

For M = 7, as an example, we present a list of input containing only one sublist. The
total number of sublists is equal to M .

Out[15]= {{{2, 5, 2/7, 2/7}, {2, 5, 3/7, 1/7}, {2, 5, 0, 3/7},
{2, 5, 1/7, 2/7}, {2, 5, 2/7, 1/7}, {2, 5, 3/7, 0},
{2, 5, 0, 2/7}, {2, 5, 1/7, 1/7}, {2, 5, 2/7, 0},
{2, 5, 0, 1/7}, {2, 5, 1/7, 0}, {2, 5, 0, 0}},
{...}, {...},..., {...}}

For the interpolation test, we chose the function that has a pick in the middle of the
kite-shaped region FP (2.3.39) and depends on the value of the parameter σ (see Figure 2.3).
More precisely,

In[16]:= sigma = 0.065;

F[x_, y_] := 0.4 Exp[-((x - 1/6)^2 + 1/3(x + 2y - 1/2)^2)/sigma^2];

The spectrum coefficients cλ[f ]M (2.3.37) are calculated using the following input

In[17]:= SpecCoef = FullSimplify[
Table[Sum[(eps[FM0h[[u]]]/ds[FM0h[[u]]])*Apply[F,FM0i[[u]]]*
Conjugate[Cfunc[InpC[[r, u]]]]/(6*M^2*hM[La0v[[r]]]),
{u, 1, Length[La0v]}], {r, 1, Length[La0v]}]];

The real part of the interpolating function I[f ](0)
M (2.3.33) is given by

In[18]:= IntFM0Re[{x_, y_}] := Re[Sum[SpecCoef[[u]]*Cfunc[Join[La0w[[u]],
{x, y}]], {u, 1, Length[La0w]}]];
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For the color options that differ from those already defined in Mathematica, we chose to
work with the palette of the hexadecimal colors. The function that converts a color format
from the hexadecimal to decimal one is given by

In[19]:= HexToRGB :=
RGBColor@@(IntegerDigits[

ToExpression@StringReplace[#, "#" -> "16^^"], 256, 3]/255.) &;

We can visualize the interpolating function I(0)[f ]M by generating its 3D plot over a
kite-shaped region using the ω−basis,

In[20]:= InterpPlot = Plot3D[IntFM0Re[{x, y}], Element[{x, y},
Polygon[{{0, 0}, om1/2, (om1 + om2)/3, om2/2, {0, 0}}]],
Background -> None, Mesh -> None, Axes -> False, Boxed -> False,
PlotRange -> Full, BoundaryStyle -> None,
PlotPoints -> 100, ImageSize -> 2000,
ColorFunction -> (Blend[{HexToRGB["#6581d0"], HexToRGB["#a1b8e6"],
HexToRGB["#b8d4ef"]}, #3] &), Lighting -> "Neutral"]

Out[20]=

To switch from the ω−basis to the orthonormal basis, we use the following code,
In[21]:= DiscGraph = DiscretizeGraphics@First@Normal@InterpPlot;

(* generates the discretized 3D plot of InterPlot *)
ListPt = MeshCoordinates@DiscGraph; (* generates a list of the
coordinates of InterPlot with the elements of the form (x, y, z) *)
Step1 = Dot[Drop[ListPt, None, {3}], {om11, om22}];
(* generates a list with the elements of the form (x', y') given in
the orthonormal basis *)
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Step2 = Drop[ListPt, None, {1, 2}]; (* generates a list containing
the z-coordinate of each element of ListPt *)
ListPtPlot = Table[Flatten[Join[Step1[[n]], Step2[[n]]]],
{n, 1, Length[ListPt]}]; (* generates a new list containing the
elements of the form (x', y', z)*)

Therefore, the interpolating function I(0)[f ]M can be plotted in 3D as

In[22]:= InterpPlotOrt = ListPlot3D[ListPtPlot, Background -> None,
Mesh -> None, Axes -> False, Boxed -> False, PlotRange -> Full,
BoundaryStyle -> None, MaxPlotPoints -> 100,
InterpolationOrder -> 3, ImageSize -> 2000,
ColorFunction -> (Blend[{HexToRGB["#6581d0"], HexToRGB["#a1b8e6"],
HexToRGB["#b8d4ef"]}, #3] &), Lighting -> "Neutral"]

Out[22]=

To produce a contour plot of the constructed 3D function, we use the following code,

In[23]:= InterpContourPlot = ListContourPlot[ListPtPlot, Background -> None,
Mesh -> None, Axes -> False, Frame -> False,
PlotRange -> {{-0.03, 0.5}, {-0.03, 0.5}, Full},
PlotRangePadding -> 0, Contours -> 10,
MaxPlotPoints -> 300, InterpolationOrder -> 3, ImageSize -> 2000,
ColorFunction -> (Blend[{HexToRGB["#6581d0"], HexToRGB["#a1b8e6"],
HexToRGB["#cbe2f6"], HexToRGB["#ceeffa"], HexToRGB["#d1fffe"],
HexToRGB["#d4ffea"], HexToRGB["#efffee"]}, #1] &),
ContourStyle -> Directive[AbsoluteThickness[10],
HexToRGB["#3e528b"], Opacity[0.8]]];
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Finally, to graphically represent the points of the splitting point set F (0)
M together with

the contour plot of I(0)[f ]M , we use the following lines of code,

In[24]:= Points = ListPlot[Dot[FM0i, {om11, om22}],
PlotStyle -> HexToRGB["#044583"] (*dark blue*),
PlotMarkers -> {"•••", 150}, Axes -> False];

FinalContourPlot = Show[InterpContourPlot, Points]

For M = 7, the contour plot of I(0)[f ]7 together with the points of F (0)
7 are presented as

Out[24]=
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