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Résumé

L’utilisation d’architectures neuronales profondes associée à des innovations spécifiques telles
que les méthodes adversarielles, l’entraînement préalable sur de grands ensembles de données et
l’estimation de l’information mutuelle a permis, ces dernières années, de progresser rapidement
dans de nombreuses tâches de vision par ordinateur complexes telles que la classification
d’images de catégories préalablement inconnues (apprentissage zéro-coups), la génération
de scènes ou la classification multimodale. Malgré ces progrès, il n’est pas certain que les
méthodes actuelles d’apprentissage de représentations suffiront à atteindre une performance
équivalente au niveau humain sur des tâches visuelles arbitraires et, de fait, cela pose des
questions quant à la direction de la recherche future.

Dans cette thèse, nous nous concentrerons sur deux aspects des représentations qui
semblent nécessaires pour atteindre de bonnes performances en aval pour l’apprentissage des
représentations : la localité et la compositionalité. La localité peut être comprise comme la
capacité d’une représentation à retenir des informations locales. Ceci sera pertinent dans
de nombreux cas, et bénéficiera particulièrement à la vision informatique, domaine dans
lequel les images naturelles comportent intrinsèquement des informations locales, par exemple
des parties pertinentes d’une image, des objets multiples présents dans une scène... D’autre
part, une représentation compositionnelle peut être comprise comme une représentation qui
résulte d’une combinaison de parties plus simples. Les réseaux neuronaux convolutionnels
sont intrinsèquement compositionnels, et de nombreuses images complexes peuvent être
considérées comme la composition de sous-composantes pertinentes : les objets et attributs
individuels dans une scène, les attributs sémantiques dans l’apprentissage zéro-coups en sont
deux exemples. Nous pensons que ces deux propriétés détiennent la clé pour concevoir de
meilleures méthodes d’apprentissage de représentations.

Dans cette thèse, nous présentons trois articles traitant de la localité et/ou de la composi-
tionnalité, et de leur application à l’apprentissage de représentations pour des tâches visuelles
complexes.

Dans le premier article, nous introduisons des méthodes de mesure de la localité et
de la compositionnalité pour les représentations d’images, et nous démontrons que les
représentations locales et compositionnelles sont plus performantes dans l’apprentissage
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zéro-coups. Nous utilisons également ces deux notions comme base pour concevoir un nouvel
algorithme d’apprentissage des représentations qui atteint des performances de pointe dans
notre cadre expérimental, une variante de l’apprentissage "zéro-coups" plus difficile où les
informations externes, par exemple un pré-entraînement sur d’autres ensembles de données
d’images, ne sont pas autorisées.

Dans le deuxième article, nous montrons qu’en encourageant un générateur à conserver
des informations locales au niveau de l’objet, à l’aide d’un module dit de similarité de graphes
de scène, nous pouvons améliorer les performances de génération de scènes. Ce modèle
met également en évidence l’importance de la composition, car de nombreux composants
fonctionnent individuellement sur chaque objet présent. Pour démontrer pleinement la portée
de notre approche, nous effectuons une analyse détaillée et proposons un nouveau cadre pour
évaluer les modèles de génération de scènes.

Enfin, dans le troisième article, nous montrons qu’en encourageant une forte information
mutuelle entre les représentations multimodales locales et globales des images médicales
en 2D et 3D, nous pouvons améliorer la classification et la segmentation des images. Ce
cadre général peut être appliqué à une grande variété de contextes et démontre les avantages
non seulement de la localité, mais aussi de la compositionnalité, car les représentations
multimodales sont combinées pour obtenir une représentation plus générale.

Mots clef: apprentissage profond, localité, compositionnalité, apprentissage zéro-coups,
modèles génératifs, données multi-modales.
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Abstract

The use of deep neural architectures coupled with specific innovations such as adversarial
methods, pre-training on large datasets and mutual information estimation has in recent
years allowed rapid progress in many complex vision tasks such as zero-shot learning, scene
generation, or multi-modal classification. Despite such progress, it is still not clear if current
representation learning methods will be enough to attain human-level performance on arbitrary
visual tasks, and if not, what direction should future research take.

In this thesis, we will focus on two aspects of representations that seem necessary to achieve
good downstream performance for representation learning: locality and compositionality.
Locality can be understood as a representation’s ability to retain local information. This
will be relevant in many cases, and will specifically benefit computer vision where natural
images inherently feature local information, i.e. relevant patches of an image, multiple objects
present in a scene... On the other hand, a compositional representation can be understood
as one that arises from a combination of simpler parts. Convolutional neural networks are
inherently compositional, and many complex images can be seen as composition of relevant
sub-components: individual objects and attributes in a scene, semantic attributes in zero-shot
learning are two examples. We believe both properties hold the key to designing better
representation learning methods.

In this thesis, we present 3 articles dealing with locality and/or compositionality, and
their application to representation learning for complex visual tasks.

In the first article, we introduce ways of measuring locality and compositionality for
image representations, and demonstrate that local and compositional representations perform
better at zero-shot learning. We also use these two notions as the basis for designing
class-matching deep info-max, a novel representation learning algorithm that achieves state-
of-the-art performance on our proposed "Zero-shot from scratch" setting, a harder zero-shot
setting where external information, e.g. pre-training on other image datasets is not allowed.

In the second article, we show that by encouraging a generator to retain local object-level
information, using a scene-graph similarity module, we can improve scene generation perfor-
mance. This model also showcases the importance of compositionality as many components
operate individually on each object present. To fully demonstrate the reach of our approach,
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we perform detailed analysis, and propose a new framework to evaluate scene generation
models.

Finally, in the third article, we show that encouraging high mutual information between
local and global multi-modal representations of 2D and 3D medical images can lead to
improvements in image classification and segmentation. This general framework can be
applied to a wide variety of settings, and demonstrates the benefits of not only locality, but
also of compositionality as multi-modal representations are combined to obtain a more general
one.

Keywords: Deep learning, Locality, Compositionality, Zero-shot learning, Generative
Modeling, Multi-modal data.
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Chapter 1

Introduction

Achieving high-level visual understanding of images has been one of the major goals of
computer vision since its inception. Initially, researchers were extremely optimistic about
the deadlines: in 1966 Seymour Papert from the MIT AI lab proposed a plan to identify
objects and other important elements of arbitrary scenes as part of a summer project [Papert,
1966]. With the advent of deep learning, the benefit of hindsight, and decades of progress in
computer vision research, we have now reached some important milestones such as human-level
image classification [He et al., 2015], or photo-realistic image synthesis [Zhang et al., 2016a,
StackGAN]. Despite this, many challenges remain, mostly among higher-level visual reasoning
tasks, such as zero-shot learning [Larochelle et al., 2008] or complex scene generation.

Computer vision pipelines for high-level tasks usually rely on progress made on low-level
perceptual tasks. Commonly, they will borrow visual representations obtained from simpler
perceptive tasks, and use them as the basic building block on which to construct more complex
neural reasoning modules. As an example, zero-shot learning commonly relies on image
representations extracted from convolutional neural networks [LeCun et al., 1989, CNNs]
pre-trained on the Imagenet dataset [Russakovsky et al., 2015, Imagenet]. Similarly, recent
visual question answering models [Chen et al., 2019] rely on pre-trained object detection
models [Redmon et al., 2016, YOLO]. This is in large part possible because simple visual tasks,
such as image classification or segmentation, have seen large performance gains in recent
years, and are now mature enough for large scale deployment in practical applications. It is
also desirable: methods relying on good transferred representations outperform others trained
from scratch, as shown in our first presented work, or in the aforementioned case of visual
question answering [Chen et al., 2019, Meta Module Networks]. As a result, for higher-level
tasks, which make heavy use of these more basic perceptual modules, guaranteeing good
representations i.e. visual representations that will result in good generalization for the
downstream task, is essential.



In this dissertation, we will be focusing exclusively on representations parametrized by
deep neural networks. Deep Learning is a machine learning paradigm that focuses on training
deep neural networks, that is neural networks with multiple, and usually many layers. This
is in contrast to the classical approach to many computer vision problems which used image
transforms as a means of automatically extracting features [Lowe, 1999, SIFT]. In our specific
context, deep learning has two main advantages. First and foremost, it has resulted in
substantial performance gains in most areas of computer vision (among other fields) it has
been applied to. As of the date this thesis is submitted, deep neural networks are essential
components of state-of-the-art approaches to semantic segmentation [Zhang et al., 2020, Yuan
et al., 2019], image classification [Pham et al., 2020, Foret et al., 2020, Yoo et al., 2020],
object detection [Lehner et al., 2019] and image generation [Song et al., 2020, Parmar et al.,
2018], among others. The second, more subtle reason, is adaptability. Deep neural networks
can be generally applied with minor adaptations to multiple different computer vision fields.
Models that perform well on image classification have per instance been applied to semantic
segmentation and object-detection [Bui et al., 2016]. This point is one of the main reasons to
be optimistic about one day creating a universal vision pipeline.

In keeping with the end goal of contributing to solving arbitrary tasks, this dissertation
focuses on the following problem: what fundamental properties of visual representations
lead to good performance, in particular when applying these representations to a complex
downstream task? As discussed in the presented works, we will focus on two properties
in particular that were found to be strongly linked to good downstream performance of
representations: locality and compositionality.

In the context of this dissertation, a local representation is one that retains local informa-
tion, or explicitly depends on relevant local cues. This can be measured in many ways, an
example being to evaluate the performance of a machine learning model trained to take as
input the representation and output the locations of relevant parts of the input (e.g. the beak
and other biologically relevant parts for birds). Importantly, convolutional neural networks
are local themselves, as higher-level neurons usually see a limited part of the input image
each: the actual receptive field being quite small in practice. Locality has also been a common
fixation of recent research, being the underlying motivation behind such advances as visual
co-attention [Lu et al., 2016a], or self-attention [Zhang et al., 2019a]. In each of the proposed
works we show, explicitly or implicitly through improved performance, that encouraging
representations to retain local information leads to performance improvements and other
benefits.

On the other hand, a compositional representation is one that arises from combinations
of simpler parts. The cognitive science literature has focused extensively on compositional
representations [Biederman, 1987, Hoffman and Richards, 1984] when studying the ability
of intelligent agents to generalize to new concepts. In addition, they have been successfully
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applied to computational linguistics [Tian et al., 2016], generative models [Higgins et al.,
2017a], meta learning [Alet et al., 2018, Tokmakov et al., 2018], and now zero-shot learning
with the first presented work [Sylvain et al., 2020a]. As in the case of locality, convolutional
neural networks are also inherently compositional1: the representation that arises from a
CNN can be understood as a combination of representations of image patches extracted
by lower-level neurons. While there is no inherent measure of compositionality, our first
presented work makes a contribution in that direction. Our first work directly shows the
benefits of compositionality, whereas the other two propose approaches that allow models to
better handle the compositional nature of their data.

The research presented in this thesis can be seen as a series of steps towards solving our
proposed problem. Each article has in common a focus on detailing the advantages and
disadvantages of a specific representation learning algorithm, applied to a challenging visual
task, such as zero-shot learning or image synthesis. Our first contribution focuses on showing
that measures of locality and compositionality are strongly connected to zero-shot learning
performance. We additionally propose a novel way of measuring compositionality, and a new
representation learning algorithm, CM-DIM, that takes advantage of the insights previously
gleaned. The second proposed work is more empirical: we improve scene generation from
layouts by introducing a set of improvements and an novel scene-graph retrieval module, both
relying on, and encouraging the locality of the representations involved. Many components of
the architecture function independently on each object, highlighting the fact that a scene
arises as a composition of different objects. Finally, the third proposed work uses advances in
mutual information estimation between local and global features, to improve representation
learning for 2D and 3D medical data.

1.1. Thesis structure
This thesis presents three articles that focus on different aspects of representation learning

for complex visual tasks. Chapter 2 covers the shared background of the 3 articles. Chapters 3
through 8 contain the articles themselves, and a prologue for each of them. Lastly, chapter 9
presents the general conclusion of this dissertation.

1The compositionality is however of a somewhat different nature for CNNs. In computational linguistics or
cognitive science, the compositionality is dynamic: we don’t always compose the same functions. This is not
the case for CNNs which can be understood as compositions of the same underlying convolutional operation.
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Chapter 2

Background

2.1. Mathematical concepts
Later sections rely on a small number of mathematical concepts and notations that we

will introduce here.
With X a random variable, and PX a probability distribution over X, the expectation of

a function f according to p will be written as:

Ex∼PX [f(x)]. (2.1.1)

One of the most important probability distributions in our case is the Normal distribution.
In the following chapters, we will denote the Normal distribution of mean µ and covariance
matrix Σ by N (µ,Σ).

Given two random variables X and Y , the conditional probability of X given Y is denoted:

P(X|Y ). (2.1.2)

It corresponds to the probability of X occurring, knowing that Y has occurred, or its
probability density if X is continuous-valued. Later in the thesis we will use the same notation
as well for probability or probability density, with the interpretation depending on the type
of the random variable.

In later chapters we will consider distributions conditioned on vectors (e.g. of attributes
in the first article). Figure 2.1 gives an example of samples drawn from a distribution
conditioned on specific values of digits. Each row corresponds to a set of samples drawn from
the distribution conditioned on a specific digit value.

2.1.1. Kullbach-Leibler divergence and entropy

We will often need to measure how two probability distributions p and q defined over a
set X differ from one another. The need for an estimation of the proximity of two probability
distributions will be highlighted per instance in the section on generative models. A common



Fig. 2.1. Fake digits from the MNIST dataset, generated by a generative model conditioned
on specific digit values

means of doing so is the Kullbach-Leibler (KL) divergence, defined as:

DKL(P,Q) = Ex∼P
[

log P(x)
Q(x)

]
. (2.1.3)

It is always non-negative. In some of the presented articles, we will make use of another
useful definition of the KL divergence called the Donsker Varadhan formulation [Donsker and
Varadhan, 1975]. For two probability distributions P and Q, we have that:

DKL(P,Q) = sup
T

EP[T ]− logEQ[eT ], (2.1.4)

where the supremum is taken over the set of functions T for which the above two expectations
are finite. A direct consequence of this result is that for a family F of functions (satisfying
the condition that the expectations are finite), we have that:

DKL(p, q) ≥ sup
T∈F

EP[T ]− logEQ[eT ]. (2.1.5)

On a separate note, we can define the entropy of P as:

H(P) = −Ex∼P logP(x), (2.1.6)

and the cross-entropy of P and Q as:

H(P,Q) = −Ex∼P logQ(x). (2.1.7)
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2.1.2. Maximum-likelihood estimation

Log-likelihood estimation is a means of estimating a model’s parameters which is very
commonly used in the machine learning community. As its name indicates, the log-likelihood
is the logarithm of the likelihood. The likelihood is a function of the parameters of the model,
given data. It is defined as the probability of the observed data given the model’s parameters.
Intuitively, a high log-likelihood corresponds to a model that assigns a large probability to
the actually observed outcome.
For a probability distribution ρ over a model output, given θ the parameters of the model,
and the set of observed values (x1, · · · , xn), we can define the log-likelihood as:

log ρ(x1, · · · , xn; θ). (2.1.8)

If the observations are independent and identically distributed, as is common in most cases
in practice, we can further write this:

n∑
i=1

log ρ(xi; θ). (2.1.9)

The log-likelihood estimator θ̂ML can be then expressed as:

θ̂ML = arg max
θ

∑
i

log ρ(xi; θ). (2.1.10)

While other choices are possible, the maximum likelihood estimator is commonly used when
estimating model parameters from training data.

2.1.3. Mutual information

In general terms, mutual information is a measure of the dependence of two random
variables. Given two random variables X and Y , we formally define their mutual information
as:

I(X;Y ) = DKL(P(X,Y ),PX ⊗ PY ), (2.1.11)

where P(X,Y ) is the joint distribution, and PX⊗PY is the product of the marginal distributions.
In the articles we present (specifically the first and third), we rely on estimating the mutual
information between two representations. This multivariate problem is intractable in practice,
therefore we rely on the differentiable mutual information estimator introduced in [MINE
Belghazi et al., 2018a].

MINE (mutual information neural estimator) maximizes a lower bound on the mutual
information between two probability distributions by replacing the right hand side of equa-
tion 2.1.11 by its lower bound in equation 2.1.5. The family of functions F mentioned
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previously is chosen to be the set of functions parametrized by a neural network, making the
estimator fully differentiable.

Given this estimator, we are able, in the presented articles, to perform representation
learning by maximizing mutual information between different representations or views of the
data.

2.2. Specific data types
2.2.1. Uni- and multi-modal data

In general terms, a modality refers to the way in which something is experienced. In
machine learning, a modality can broadly be defined as a specific type of data source (such
as images, text) of a different nature than other potential data sources. Many datasets
are uni-modal: they feature a single modality, such as the Imagenet dataset [Imagenet
Russakovsky et al., 2015] which features images of different entities. Humans however
experience perception as an inherently multi-modal phenomenon: we hear sounds, see images,
taste, often simultaneously. Multi-modal data is therefore also highly relevant to ongoing
research, and is the subject of the third article presented.

2.2.2. Images

Images are a common data type considered in machine learning problems. They commonly
feature 1 or 3 color channels (black and white or RGB), along with two spatial dimensions,
leading to an input with a shape of the form (number of channels, X dimension, Y dimension).
Images will always be pre-processed by a convolutional network in the presented articles.

2.2.3. Layouts

The generative approach introduced in the second article takes scene layouts as inputs.
In our specific case, a layout is a 2D image where a given pixel is annotated with a class
corresponding to either background (no object) or the object at the given position.

2.2.4. Scene graphs

We will be considering scene graphs in the second article. A scene graph is a graph
where the nodes are the objects in the scene, the edges are the relations (e.g. "looking at",
"riding", ...) between two objects. Self-relations correspond to attributes (e.g. "standing",
"smiling"). The objects, relations and attributes are represented by embeddings. Such an
input is processed with a graph convolutional network [GCN, Goller and Kuchler, 1996].

32



2.2.5. Text

Text is a very common modality. In the present dissertation, only the third article refers
to text inputs. In this case, each word is individually mapped to its Glove vector [Pennington
et al., 2014], leading the input to our model to take the form of a sequence of fixed-size float
vectors.

2.2.6. MRI sequences

The model presented in chapter 8 is trained on Magnetic Resonance Imaging (MRI) data.
This imaging technique is used in the medical field to obtain images of different body parts,
tissues... As its name indicates, imaging is done in large part via the application of strong
magnetic fields. Under the effect of such a magnetic field, the electrons of hydrogen atoms
inside the body are displaced. Once the field strength is reduced, the electrons return to their
resting state, releasing energy in the process which is detected by the scanner. Different MR
pulse sequences can be used, leading to different types of images, with varying performance in
different tasks. In the third article, we consider T1 and T2 (and their variants), corresponding
to the spin echo approach, and FLAIR (Fluid-attenuated inversion recovery), which allows
the suppression of certain fluids. More details are outside the scope of this dissertation.
The data is generally of dimension: (number of channels, sequence length, X dimension, Y
dimension). The sequence length is variable. Such inputs are processed in our case with a 3D
convolutional network.

2.3. Machine learning
This thesis presents three articles each describing a series of algorithms that learn to

perform tasks from data. Therefore, it can be broadly said that it belongs to the field of
Machine Learning. In the most general sense, machine learning is the study of algorithms
that learn from data and/or experience. It is a subset of AI that itself includes the study
of deep neural networks, Deep Learning, which will be the main focus of this dissertation.
Machine learning can be divided into different experimental setups that require different
approaches, datasets, annotations and algorithms. In this chapter, we will detail supervised
learning and unsupervised learning (more specifically generative modeling), as they are the
two setups that occur in the articles presented in this dissertation.

2.3.1. Parameters and hyper-parameters

A machine learning algorithm can be generally understood as consisting of three main
components:
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• a mapping from one set of variables to another (e.g. from a set of input features to a
set of possible output values).
• a learning objective, a set of evaluation metrics.
• a learning algorithm.

The mapping is usually parametrized by a set of variables, the parameters, at least some
of which are learnt during a training phase (referred to as trainable parameters). Usually,
the parameters θ are in Rn. We can denote the mapping as a function f , and make the
dependence on parameters explicit, by using the notation fθ.

Many machine learning algorithms also have a set of parameters that are not directly
learned but rather chosen at some point in the training process, called hyper-parameters.
This can be for numerous reasons, one of the most common being that the parameter can not
be varied easily during the training procedure (notably if the parameter has an impact on the
model architecture, e.g number of different clusters in a clustering algorithm), or because it
has a direct impact on the training procedure itself (e.g. the learning rate in a gradient-based
training algorithm). Common examples of hyper-parameters in machine learning include:

• Learning rate
• Number of layers of a deep neural network, width of these layers.
• Interpolation coefficient between different training losses (numerical objectives depen-
dent on the model’s parameters that are minimized during training by modifying the
model’s parameters).

2.3.2. Learning objective, evaluation metric

As seen previously, a machine learning algorithm commonly comprises a learning objective
and an evaluation metric. Both take the form of a function mapping the model’s outputs,
usually to a scalar value. The evaluation metric is a score on which we will make the final
evaluation of the model, e.g. accuracy, the percentage of model outputs that are correct.
Often, the evaluation metric is not a suitable learning objective in itself, usually because it
cannot be differentiated. The learning objective is then a proxy for this metric: the aim is that
by improving the values taken by the learning objective, the values taken by the evaluation
metric will also improve. In what follows, we will consider that we want to minimize the
learning objective, which we will also call loss.

An example of a suitable pair of learning objective and evaluation metric is as follows.
We consider a dataset of images xi of digits. The digits are a discrete set: the numbers from
0 to 9, constituting the classes we want to predict (xi has class yi). We consider a model fθ
that maps an input image x to its probability of belonging to each class.

For a set of outputs fθ(x1), · · · , fθ(xn), the prediction for each output would be the
mode: the class of highest predicted probability, and the accuracy would be the proportion
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correct predictions. This objective is non-differentiable wrt. the set of outputs as the changes
of modes form discontinuities. As a result, we commonly replace it with a differentiable
learning objective called the categorical cross-entropy, which is the cross-entropy between
the distribution parametrized by f and the discrete distribution corresponding to the correct
labels (i.e. all the probability mass for the correct labels).

2.3.3. Dataset splits and training phases

Machine learning generally relies on training data to train a model. Data is often separated
into splits which have distinct uses during training. Commonly, the training process follows
the following steps:

• Training is performed on a training set, with fixed hyper-parameters, resulting in a
set of weights (learned weights) that parametrize the trained function.
• Performance is then evaluated on a validation set with a set of metrics. Validation
performance is used as a signal to select good hyper-parameters. The first step is
often repeated multiple times at this point.
• Final performance (with the best hyper-parameters found) is then reported on a held
out test set. The test set should not have been seen during training.

2.3.4. Hyper-parameter selection

The second step, hyperparameter selection, involves exploring the set of possible hyperpa-
rameter combinations in an efficient fashion (as each trial involves training a model, which
is often costly in terms of computational resources). There are multiple ways to explore
the space of possible hyper-parameter combinations, including manual search, grid search,
and random search (all of which have been used in the articles presented as part of this
dissertation). There exist other methods, such as Bayesian optimization [Snoek et al., 2012],
but those are outside the scope of this document.

Manual search consists in manually setting different parameter values, and observing the
result on the validation set. The best-performing combination is then evaluated on the test
set.

Grid search considers a finite set of possible values for each hyper-parameter. The algorithm
then explores the grid of possible values sequentially, or in parallel (across different compute
nodes). If we want to optimize a learning rate taking values in the set {0.01, 0.001, 0.0001}
and number of layers in the set {2, 3, 4, 5} this would result in a grid of size 12.

Random search [Bergstra and Bengio, 2012], where random hyper-parameter values are
sampled and evaluated until a certain stopping criteria is met, is another hyper-parameter
selection method. Figure 2.2 compares grid and random search when two hyper-parameters
are considered, an important and an unimportant one (in terms of effect on the model’s
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Fig. 2.2. Representation of grid search and random search. The black dots are hyper-
parameter combinations investigated by the search algorithm. The curves in green plot model
validation performance for different values of the important parameter. The plot in yellow
represents the small effect the unimportant parameter has on model performance. Figure
taken from [Bergstra and Bengio, 2012].

performance). It can serve as an illustration of the superiority of random search for that
specific problem.

2.3.5. Supervised learning

Supervised learning aims to learn a mapping from the set of possible inputs to the set of
possible outputs. During training, (input, output) pairs are presented. Commonly, during
evaluation, inputs are given, and the predicted output is compared to the actual output so as
to compute different evaluation metrics that attempt to quantify the model’s performance.
Depending on the set of acceptable output values, the task will be further called classification
(if the output values form a finite discrete set) or e.g. regression (if the output values belong
to a continuous set, often a subset of R). These two divisions are not the only ones, but will be
the two supervised tasks we consider in the presented articles. In the MNIST dataset [LeCun
et al., 1998] per instance, we are given 28 by 28 images of hand-drawn digits. The classification
problem is to determine which of the ten classes these images correspond to. The ten classes
are the digits from 0 to 9. In practice, the input data could be images, videos, text, ...

2.3.6. Unsupervised learning

In unsupervised learning, we are given examples (data points taken from a dataset)
without targets. A single data point can be represented as a singleton X, where X is a set of
features representing an example, such as a raw image (as in the MNIST example above)
or text. In this case, the range of approaches varies strongly, as not all models aim to solve
the same task. Generative modeling, which will be expanded upon in section 2.6, involves
learning the distribution P(X), whereas other methods might introduce a proxy objective
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proxy(X) or auxiliary task and return to the supervised learning framework by training a
model to predict the proxy or more generally solve the auxiliary task given X. This is usually
a means of learning good representations of X which can then be applied to downstream
tasks, and was in particular the basis of the DIM family of models we consider in the first
and third presented articles.

2.4. Zero-shot learning
Zero-shot learning [ZSL Larochelle et al., 2008] is a machine learning problem that involves

generalizing to a task from zero examples of that task, but presumably with data from other,
related, tasks. We will be considering only zero-shot classification in this thesis, which is
a classification problem defined by the fact that at least some of the examples in the test
set belong to classes that are not present in the data available for training. As an example,
the CUB dataset [Wah et al., 2011a] contains approximately 11,000 birds belonging to 200
distinct classes. All the examples corresponding to 150 classes will usually be used to train a
model. At test time, all the examples corresponding to the 50 remaining classes will usually
be used to evaluate the trained model. We are in this case training a model to classify images
of birds into categories it has not seen at train time. Note that zero-shot learning is not
limited to zero-shot classification: zero-shot semantic segmentation [Bucher et al., 2019] and
zero-shot object detection [Bansal et al., 2018] have also been extensively studied, among
other applications.

2.4.1. Representing classes

As a result of the nature of the zero-shot classification problem, most common supervised
learning techniques would not work. To address this, Larochelle et al. [2008] considered
attributes that enable transfer learning from the seen (training) classes to the unseen (test)
classes. This approach is still the by far the most common today and we will focus exclusively
on attribute-based zero-shot learning in this thesis. Actual examples of attributes for the
Animals with Attributes 2 dataset [Xian et al., 2017] for the class zebra are:

• black: 1
• white: 1
• brown: 0
• stripes: 1

This means that a zebra is white and black, not brown, and has stripes. Using our
knowledge of which attributes the class zebra has, and the examples of zebras in the training
data, we hope to be able to recognize other, previously unseen, classes. Other works outside
the scope of the presented articles have alternatively used class representations that are
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derived from text descriptions of the classes [Qiao et al., 2016], or from word vectors [Wang
et al., 2018a].

2.4.2. Datasets

ZSL datasets commonly feature images and semantic information specific to classes. In
the first article, we focus on the three most commonly used, namely Animals with Attributes
2 [AwA2, Xian et al., 2018], Caltech-UCSD-Birds-200-2011 [CUB, Wah et al., 2011b], SUN
Attribute [SUN, Patterson and Hays, 2012]. Zero-shot learning has been applied to a wide
variety of other datasets, such as Imagenet.

2.5. Deep learning
Deep learning is a field of machine learning that focuses on training artificial neural

architectures with multiple layers, often with the use of gradient descent. The multiple layers
apply successive non-linear transformations. Such architectures are able to learn multiple
levels of representation of the input in order to solve a given task. They first were, and still
are, inspired by biological neural networks. Current deep learning models are usually highly
complex, and require specific training algorithms to achieve peak performance.

This section will start by defining a specific type of feedforward neural networks commonly
used in research, and presenting the backpropagation algorithm used to train such networks. It
will then introduce the following important neural network variants: multi-layer perceptrons,
convolutional neural networks, residual networks and auto-encoders.

2.5.1. Neural networks

An artificial neural network is a learning algorithm originally inspired by biological neural
networks present in the brains of animals. Neural networks are a collection of nodes or artificial
neurons which are connected together. There are many different types of neural networks,
making a precise and universal definition quite hard to formulate in general. Therefore we
will focus essentially on neural networks as they occur in the works highlighted in this thesis.

A feed-forward neural network (in the sense that matters in this thesis) can be represented
as a directed acyclic graph. The nodes of the graph are arranged into different layers. These
layers consist in:

• An input layer. The number of neurons in the input layer is referred to as the input
dimensionality of the network.
• An output layer. The number of neurons in the output layer is referred to as the
output dimensionality of the network.
• Usually one or more hidden layers.
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In the feedforward case, the signal can only propagate forward, from the input to the output.
That means there are no feedback connections per instance where a layer would be connected
to itself. A feed-forward network is said to be fully connected if every neuron (node) has a
forward-directed connection to all other nodes in the next forward layer. If this is not the
case the network is partially connected. The value taken by the output layer is the prediction
of the network. Across different tasks the prediction can take different forms, such as a scalar,
vector, image or variable length text per instance.

2.5.2. Mathematical formalism

2.5.2.1. Forward propagation. To compute the output of the feed-forward network, we
apply an algorithm called forward propagation. The name originates from the fact that the
computations are done forward, from the input layer to the output layer. We iterate the
following process, starting with the input layer:

(1) For each neuron k, we compute a weighted sum of the inputs, vk. We can write this as:
vk = bk +∑

iwkixi, where the xi are the values outputted by predecessor neurons, wki
are the corresponding weights, and bk the biases. All updates are done simultaneously
on a given layer.

(2) The value outputted by each neuron k is φ(vk) where φ is a function called the
activation function. This function applies a non-linearity to the operation, which
is essential if we are to be able to model non-linear input-to-output mappings: the
forward propagation would otherwise be simply a sequence of matrix multiplications,
i.e. a linear operation. If the current layer is an intermediate layer in the network,
the output value will then be fed as input to the neurons of the next layer.

Examples of common activation functions include:
• Hyperbolic tangent (tanh(x) = ex−e−x

ex+e−x )
• Sigmoid (σ(x) = 1

1+e−x )
• Rectified linear (ReLU) (x→ max(0, x))

They are shown on Figure 2.3
Figure 2.4 represents a fully-connected neural network. It possesses one hidden layer

consisting of 5 neurons (in blue). The connections between neurons are represented by arrows.
Each connection will have its own associated weight.
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Fig. 2.3. Plots of 3 common activation functions: tanh, sigmoid and ReLU.
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Fig. 2.4. A fully-connected neural network with one hidden layer. The input has 4 features,
there are 5 hidden neurons, and a single output neuron.

2.5.3. Training neural networks using back-propagation

2.5.3.1. Definitions. The previous section mentioned a neural network’s weights. In our
general case, weights are any parameter that modulates the intensity of the connection
between two neurons. We can optionally add a bias neuron to a layer. The bias neuron
always outputs a constant value, independently of the input the layer receives. The values
of the connections from the bias neuron to units of the next layer can be learned, and are
referred to as the biases. Let θ be the parameters (the weights and biases as introduced
in the previous section) of a neural network defining a function f . We suppose we have n
training examples, indexed by i. The optimization problem can be written as:

θ∗ = arg min
θ

1
n

n−1∑
i=0
L(f(xi, θ), yi), (2.5.1)
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with yi the target value for the point xi, and L is the loss function, a measure of the
difference between the desired (yi) and actual (f(xi; θ)) model output. Empirical risk is the
average loss on a data set. We will denote L(f(xi, θ), yi) as Li in what follows for conciseness.

In practice we usually minimize the risk via gradient descent:

θ ← θ − λ

n

n−1∑
i=0

∂Li
∂θ

, (2.5.2)

with λ the learning rate. The learning rate is a measure of the amplitude of gradient descent
steps. A higher learning rate will mean that each gradient descent step has a larger effect on
the parameters. There are different ways to do gradient descent. We could perform descent
on the whole set (gradient descent), on a single example or on a mini-batch (a small subset
of the training set).

The parameters are usually initialized according to a given probability distribution. For
instance, we could initialize all the parameters by drawing from a normal distribution or by
using the so-called Glorot initialization [Glorot and Bengio, 2010]. The choice of initialization
method has an impact on downstream performance.

We usually train on a mini-batch, mainly because this results in faster convergence (as
we can parallelize operations on graphical processor units) and better generalization [Bottou,
2010, Bottou et al., 2016, Keskar et al., 2016].

2.5.3.2. Back-propagation. As seen above, training via gradient descent requires computing
the gradient of the loss function with respect to the model’s parameters. This gradient can
be computed using the chain rule. Let x ∈ Rn,y ∈ Rm be two vectors, and g : Rn → Rm, f :
Rm → R be two differentiable functions. If we can write y = g(x) and z = f(y) then the
chain rule states we have:

∂z

∂xi
=
∑
j

∂z

∂yj

∂yj
∂xi

. (2.5.3)

A neural network can be expressed as a composition of different differentiable operations,
allowing us to apply the chain rule recursively over the computation graph, which defines the
back-propagation algorithm.

We will now illustrate this procedure using an example: a simple neural network example
where the computation graph has a chain structure. This is not always the case, as we will
see for the more complex architectures presented later, such as resnets. The network can be
written as a composition of operations:

fN ◦ fN−1 ◦ · · · ◦ f0 (2.5.4)
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where each fi corresponds to the operation done by a single layer of the network, and is
parametrized by weights θi. We can therefore apply the chain rule to obtain:

∂L
∂θi

= ∂L
∂fN

∂fN
∂fN−1

. . .
∂fi+1

∂fi

∂fi
∂θi

. (2.5.5)

For the case of a feed-forward neural network, to obtain the weight updates at a given
layer, we start from the top-most layer, and back-propagate through the graph using the
following update equations:

∂L
∂θi

=∂L
∂fi

∂fi
∂θi

(2.5.6)

∂L
∂fi−1

=∂L
∂fi

∂fi
∂fi−1

. (2.5.7)

This recursion is initialized by the gradient for the topmost layer, which is simply:
∂L
∂θN

= ∂L
∂fN

∂fN
∂θN

(2.5.8)

and can be directly computed from the loss function.
In practice, other types of computation graphs are possible (e.g. with skip-connections),

the main constraint being that the graph is directed acyclic. The back-propagation algorithm
detailed above varies somewhat when the network is not feed-forward, and when multiple-
loss terms are introduced. In all cases, we apply the back-propagation algorithm on the
computation graph.

2.5.4. Common types of neural networks and layers

2.5.4.1. Multi-Layer Perceptron. The multi-layer perceptron (MLP) is a fully connected
feed-forward network, commonly found in the deep learning literature. Figure 2.4 represents
a small MLP.

2.5.4.2. Convolutional Neural Networks. A Convolutional Neural Network (CNN) [LeCun
et al., 1989] is a neural network used for specific tasks such as image processing or signal
analysis. CNNs take their name from the fact that they use a specific type of mathematical
operation called a convolution. In addition, most CNNs also use pooling (explained below)
and fully connected layers. Some of the explanations that follow draw from Goodfellow et al.
[2016].

The layers of a CNN performing a convolution operation are called convolutional layers.
Given an input x(t) and a weighting function w(a), we can define the convolution operation
∗ as:

(x ∗ w)(t) =
∫
w(a)x(t− a)da. (2.5.9)
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In practice, convolutions used in image processing are discrete convolutions. The weight
matrix is referred to as the kernel. Convolutional layers, as the name indicates, apply
convolutions. These convolutions can be applied to multi-dimensional data (1D signals such
as ECGs, 2D signals such as images, and 3D signals such as MRI volumes per instance). The
convolutions are discrete as opposed to continuous (the weight matrix and input are only
defined for integer coordinates), taking the following form:

(x ∗ w)(t) =
∞∑

a=−∞
w(a)x(t− a) (2.5.10)

or for images:

(X ∗W )(t, u) =
∞∑

a=−∞

∞∑
b=−∞

W (a, b)X(t− a, u− b). (2.5.11)

For practical reasons, the weight matrix is 0 except for a (usually small) set of points.
In addition, the input is of finite size, and therefore the sum does not actually consist in an
infinite number of elements. As mentioned in Goodfellow et al. [2016], the main advantages of
such operations are that they introduce parameter sharing, sparse interactions and equivariant
representations, shown to be beneficial in many problems, notably image processing. We
will consider the example of an image in what follows, but the concepts generalize to other
contexts. Parameter sharing is achieved by applying the same kernel to all positions of the
image. Sparse interactions are the result of the kernel being 0 except for a small set of
positions. The nature of the convolution operation ensures that the output is translation
equivariant. In many real datasets this is an advantage as translating an object should
not affect the class it belongs to: a dog translated in an image is still a dog, for example.
Figure 2.5, taken from Dumoulin and Visin [2016], represents a convolution on an image.

A pooling operation outputs for each location a summary statistic of the inputs. Common
types include max-pooling (where the output for a given location is the max of a small region
surrounding the location), and mean pooling (replaces the max operation by the average).

Figure 2.6, taken from Dumoulin and Visin [2016], represents the max-pooling operation.
Pooling operations are useful for different reasons:

• They force the network to become invariant to permutations inside the pool, e.g.
small translations. By combining this operation with convolution layers, the network
can learn a set of transformations to become invariant to.
• They are in practice essential when dealing with inputs of different dimensions (such
as images of different sizes). Adapting the size of the pooling window to obtain the
same output size for different input sizes makes possible training on datasets where
input images have different sizes.
• When it doesn’t destroy too much information, pooling effectively reduces the size of
feature maps the network has to process, yielding better computational efficiency.

43



Fig. 2.5. Representation of a convolution operation on a image with a kernel of size 3× 3.
The input is in blue, the output for a specific location in green. Padding is applied, represented
in white (1 pixel of padding on all sides in this example). The shaded area in the input (on
the upper left) is convolved with the kernel, yielding 1 output value, the dark green square
represented in the figure. The same operation is applied on all relevant parts of the image,
resulting in weight-sharing.
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Fig. 2.6. Representation of the input (blue) and output (green) of a max-pooling operation.

2.5.4.3. Residual networks. Residual networks [He et al., 2016] are a type of neural network
that incorporate skip connections that create shortcuts between certain layers. Convolutional
residual networks and their variants are often close to state of the art on different image
processing tasks. In future chapters we will refer to convolutional residual networks with k
layers as "ResNet-k". While residual networks have been used extensively in the context of
computer vision, they can benefit other fields as well, such as time-series modeling [Kachuee
et al., 2018] or survival analysis [Luck et al., 2017, 2018]

A skip connection is a connection between two different layers of a neural network that
bypasses at least one intermediate layer. Skip connection are useful in many areas of deep
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Fig. 2.7. Representation of a type of residual block. A weight layer is a convolution, followed
in practice by a batch normalization layer. A transformation F , consisting in a convolution
followed by a ReLU and another convolution, is applied to the input, yielding F(x). The
final output is F(x) + x.

learning by allowing better gradient flow. An example is U-Net [Ronneberger et al., 2015]
which uses multiple skip connections to improve semantic segmentation performance for
medical images.

Figure 2.7, taken from He et al. [2016], represents one of multiple possible residual blocks
used in the construction of convolutional residual networks. Two convolutions with an
intermediate ReLU non-linearity are applied to the input X. The result of this operation
is added to the initial input X (the skip connection). A final ReLU is applied to this value
before outputting the result. In practice, batch normalization [Ioffe and Szegedy, 2015] is
applied after each convolution.

2.5.5. Specific types of CNNs

In the preceding subsection, we have introduced the notion of CNNs and an important
variant, residual convolutional networks. As some of the presented articles refer to specific
architectures that are well known in the computer vision community but not as well outside
of it, we will introduce them here.

2.5.5.1. Alexnet and VGG. One of the first convolutional architectures used in practice
was LeNet [LeCun et al., 1998], which used 5 layers, quite few by modern standards. This
work was the inspiration behind Alexnet [Krizhevsky et al., 2012], which used more layers
and resulted in groundbreaking performance increases on the Imagenet dataset [Russakovsky
et al., 2015]. VGG19 (the acronym stems from the number of layers and the Visual Geometry
Group at the University of Oxford) introduced a yet again deeper architecture while also
reducing the size of the convolutional filters (from e.g. 11× 11 in previous works) to mostly
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3× 3, making the training of deeper networks feasible. Note that Alexnet and VGG19 are
famous and standard architectures, which explains our use of them in the first and second
papers respectively. We use Alexnet-type architectures as a relatively low-footprint feature
extractor, and VGG19 as the basis for computing a perceptual loss.

2.5.5.2. Resnet variants. In the presented articles, we refer in particular to Resnet-101 and
Resnet-50, which as mentioned previously (subsubsection 2.5.4.3) are convolutional residual
networks comprising 101 and 50 layers respectively.

2.5.6. Auto-encoders

An autoencoder is a neural network that aims to learn a representation (code) of an input.
We present auto-encoders primarily for their relation to a class of generative models presented
in the next chapter, variational auto-encoders.

An autoencoder can be seen as consisting of two components, an encoder and a decoder.
Let X be the input space, and Z be the latent space over which the codes are designed.

The encoder is a mapping: fθ : X → Z, and the decoder is a mapping: gφ : Z → X .
Here, θ (resp. φ) are the parameters of the encoder (resp. decoder). We also introduce
a reconstruction loss L(·, ·) that measures how well the autoencoder is able to reconstruct
its input. This reconstruction loss can per instance be the L2 norm between input and
reconstruction. The training objective (for a single example x) is:

arg min
θ,φ

L(x, gφ ◦ fθ(x)) (2.5.12)

that is, the training procedure aims to find the encoder and decoder that minimize what
is referred to as the reconstruction error. These concepts will be useful when variational
autoencoders are defined.

Figure 2.81 represents an autoencoder. 3 layers are shown. The leftmost layer is the input
layer. The rightmost layer is the output layer. As we are reconstructing the input it has the
same number of units as the input layer (with the exception of the added bias represented).
The intermediate layer is the representation of the input.

2.6. Generative Models
2.6.1. Introduction

As outlined previously, a generative model learns to draw samples from a distribution
approaching a target distribution. In the cases considered in this thesis, the data distribution
we want to approach is the empirical data distribution Pdata. The distribution parametrized
by the model is required to be close to the target distribution. The notion of proximity
1Taken from http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/
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Fig. 2.8. Representation of an autoencoder consisting of 3 layers. The middle layer corre-
sponds to the encoding of the input.

is often measured through a distance or divergence. In our use-cases we will use the KL
divergence, but other mesures have been used, such as the Wasserstein distance [Gulrajani
et al., 2017a].
Generative models are useful for many applications, including semi-supervised learning as
in Dumoulin et al. [2016], robotics [Bousmalis et al., 2017] or image inpainting [Pathak et al.,
2016]. In the presented articles, we propose both an improvement on classical generative
models from layouts (second paper), and use generative models as baselines for a set of
experiments (first article). We will be presenting two approaches, variational autoencoders
(VAEs) and Generative Adversarial Networks (GANs). VAEs can be seen as the generative
counterpart of auto-encoders. GANs are a framework involving a generator and a discriminator
network.
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2.6.2. Variational autoencoders

2.6.2.1. Components of a variational autoencoder. Variational autoencoders (VAE)
[Kingma and Welling, 2013, Rezende et al., 2014] are a class of generative models that learn
to perform approximate inference. They are trainable with gradient methods.
A VAE consists in two essential components, an encoder and a decoder, as was the case
for the vanilla autoencoder. The encoder and decoder are usually neural networks in most
practical applications. The encoder learns to map true samples to a latent space, as was the
case for the encoder in an auto-encoder.

The encoder takes as input x sampled from the true distribution, and outputs parameters
for a distribution (e.g. Gaussian) over the latent encoding z. The encoder defines the following
distribution:

Qθ(z|x) (2.6.1)

with θ the parameters of the encoder.
The decoder takes as input z with domain in the latent space, and outputs a distribution

over the same space as the true samples x. We can denote the distribution as:

Pφ(x|z) (2.6.2)

with φ the parameters of the decoder. Finally, we consider a prior distribution over the latent
vector z, Pz(z) which is in practice taken to be N (0, I), I being the identity matrix.

2.6.2.2. Variational inference. Variational inference is a family of techniques that allow the
approximation of intractable integrals. As we mention in what follows, the main motivation
for applying this method is that it will allow us to approximate an intractable integral in a
VAE expression, making the full model learnable end-to-end. We suppose that we have a
dataset consisting of the data points xi, and x is an observable variable. As seen previously,
we can write the log-likelihood as (under the iid. assumption):

∑
i

logP(xi) (2.6.3)

Computing logP(xi) would require marginalizing over z by P(xi) =
∫
P(xi|z)Pz(z)dz,

which is infeasible in practice. Using conditional probabilities we can write:

logP(x) = Ez∼P(z|x) log P(x, z)
P(z|x) . (2.6.4)
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P(z|x) is still intractable, so we replace it with a distribution Q(z|x) that approximates it.
We want to minimize the KL-divergence between the two distributions. It can be written as:

DKL(Q(z|x)|P(z|x)) =
∫

Q(z|x) log Q(z|x)Px(x)
P(z, x) dx (2.6.5)

= EQ(z|x)[logQ(z|x)− logP(z, x)] + log(P(x)). (2.6.6)

As the KL divergence is always non-negative, we have that:

logP(x) ≥ EQ(z|x)[− logQ(z|x) + logP(z, x)]. (2.6.7)

We will maximize this lower bound, which can be re-written as:

EQ(z|x)[logP(z, x)− logQ(z|x)] = EQ(z|x)[logP(x|z) + logP(z)− logQ(z|x)] (2.6.8)

= EQ(z|x) logPφ(x|z)−DKL(Qθ(z|x)||P(z)). (2.6.9)

It is possible to optimize this lower bound using the reparametrization trick [Kingma and
Welling, 2013].

2.6.2.3. Training a VAE. As seen in the previous sub-section, the loss (to be minimized)
for a single datapoint xi is denoted as:

−Ez∼Qθ(z|xi) logPφ(xi|z) +DKL(Qθ(z|xi)||P(z)). (2.6.10)

The first term is a reconstruction loss (in the same sense as seen in the section on
autoencoders), which can be seen as encouraging the VAE to reconstruct the input xi.
The second term is the Kullback-Leibler divergence between the two distributions Qθ(z|xi)
and P(z). It encourages the codes z to be diverse (close to the normal distribution) for a
given input. This helps prevent a collapse whereby the VAE would simply behave as an
autoencoder, able to reconstruct its inputs, but failing to generate realistic samples.

Historically, VAEs had the advantage of learning a useful latent representation (which
resulted in their variants commonly performing well in disentanglement tasks [Higgins et al.,
2017b], but resulted in often lower-quality samples compared to GANs (as evaluated by
humans). This second point has to a large extent been corrected by more recent iterations [VQ-
VAE Razavi et al., 2019].

2.6.3. Generative adversarial networks

Generative adversarial networks [GANs, Goodfellow et al., 2014a] are an unsupervised
learning framework for training a generator. GANs rely on two models: a generator and a
discriminator, the latter of which is optimized to estimate a difference measure between two
distributions, the empirical target distribution and the one induced by the generator.
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The training procedure is to alternatively train the discriminator to distinguish between
real and generated samples, and update the generator to better fool the discriminator.
The main strength of GANs lies in their ability to train the discriminator as a completely
continuous function using only empirical samples from the target dataset and the generator.

2.6.3.1. Mathematical definition and notations. We will denote the generator network as
Gθ, and the discriminator network as Dφ. θ and φ are the parameters of the two networks.
In what follows, z is a variable sampled from the distribution Pz(z) = N (0, I). Pdata will
denote the true distribution of the data.
The generator maps a latent noise vector z to the space of images (in our case), X . We
denote Z the latent space over which z is sampled. The discriminator takes as input a real
or generated image, and outputs the estimated probability that this image is indeed real. We
can write the two networks as:

Gθ : Z → X (2.6.11)

Dφ : X → [0, 1]. (2.6.12)

We define the following value function:

V (Dφ, Gθ) = Ex∼Pdata logDφ(x) + Ex∼Pz(z) log(1−Dφ(Gθ(z)). (2.6.13)

GAN optimization can be formulated as the following minimax problem:

min
G

max
D

V (Dφ, Gθ) (2.6.14)

Theoretically, the generator would be trained to minimize:

Ex∼Pz(z) log(1−Dφ(Gθ(z)). (2.6.15)

However, as it is well-known that this loss often yields vanishing gradients w.r.t. θ [Good-
fellow et al., 2014a, Arjovsky and Bottou, 2017], it is generally recommended to train the
generator on a proxy:

θ̂ = arg max
θ

Ez∼Pz(z)[logDφ(Gθ(z))]. (2.6.16)

2.6.4. Conditional GANs

2.6.4.1. Conditional generation. Let X be a random variable, and P a probability distri-
bution over that variable. It is possible to condition a generative model such as a GAN on a
variable c such that instead of generating:

X ∼ P(X), (2.6.17)
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it learns:

X ∼ P(X|c). (2.6.18)

The most common way to do so is (in the case of a GAN but it also applies to VAEs) to
concatenate c to z during generation, and to also input c to the discriminator. In what
follows we will focus on GANs, but all of the relevant ideas are easily transferable to define
conditional VAEs.
Conditional generation was used in the first article (GAN conditioned on attributes) and the
second (GAN conditioned on local pixel-level class information provided by the input layout).
There is little difference in practice, apart from the fact that the conditioning variable is 1D
in the first case, and 2D in the second, requiring some architecture changes.

We will denote Z the space over which z is sampled, and C the space over which the
conditioning variables are defined.

The generator and discriminator will also take as input the conditioning variables, and
can now be written as:

Gθ : Z × C → X (2.6.19)

Dφ : X × C → [0, 1]. (2.6.20)

In what follows, x is a dataset sample (image, or feature), c is a vector or tensor of
conditioning variables.

We introduce the following distributions:

• P(x, c) is the joint distribution over image and conditioning variables.
• Pz(z) is as before the prior distribution over the noise vector z
• Pc(c) is the true distribution over conditioning variables.
• Gθ, Pz and P(c) define a joint distribution Qs,θ(x, c) over the images and conditioning
variables, as follows: Qs,θ(x, c) = Qs,θ(x|c)Pc(c), where we have marginalized over the
noise z on the right and left.

2.6.4.2. Mathematical formalism. Our goal for the conditional GAN is to find the parame-
ters, θ, such that the joint distribution induced by Gθ, Ps(c) and Pz(z), Qs,θ(x, c) = Qs,θ(x |
c)Ps(c), matches Ps(x, c).

Dφ estimates a difference measure between Ps(x, c) and Qs,θ(x, c). In the original formu-
lation, the discriminator is trained to minimize the mis-classification error by maximizing the
negative cross-entropy:

φ̂ = arg max
φ

EPs(x,c)[logDφ(x, c)] + EQs,θ(x|c)P(c)[log (1−Dφ(x, c))]

= arg max
φ

EPs(x,c)[logDφ(x, c)] + EPz(z)Ps(c)[log (1−Dφ(Gθ(z, c), c))]. (2.6.21)
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As in the case for non-conditional GANs, it is generally recommended to train the
generator on a proxy, which now takes the following form:

θ̂ = arg max
θ

EPz(z)Ps(c)[logDφ(G(z, c), c)]. (2.6.22)
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Chapter 3

Prologue to first article

Locality and compositionality in zero-shot learning. Tristan Sylvain*, Linda Petrini*,
Devon Hjelm (* denotes equal contribution). International Conference in Learning Represen-
tations 2020. Presented is a minimally edited version of this article.
Personal contributions I contributed a majority of the code base, in particular the part on the
TRE score and general training of representations. We used the cortex framework [Devon,
2018, Cortex] as a basis for most of the experiments, and Linda also contributed heavily to the
code. Most of the writing and experiments was done equally by myself and the shared-first
author Linda. The extensive edits and advice given by Devon greatly increased the paper’s
final quality.

3.1. Context
This article was published as the result of long-term work on zero-shot learning with

my co-authors. I had initially focused on improving zero-shot learning performance using
generative models with the help of Devon Hjelm. This preliminary work had not resulted in
a publication, but the large gap I had found between representations taken from generated
and real images had given me the idea to start questioning what we really understood about
image representations for zero-shot learning. Further discussions set us on the path towards
explaining zero-shot learning from first principles.

3.2. Contributions
This paper can be seen as a first attempt to explain zero-shot learning by first principles.

Commonly, zero-shot learning articles tend to focus on empirical performance along with
tweaks to previous approaches. We chose instead to investigate how locality and composi-
tionality of an image representation help explain its downstream performance in zero-shot
learning tasks.



3.3. Aftermath
There is now a growing body of literature on the link between locality and compositionality,

such as [Xu et al., 2020], which has to a certain extent been inspired by this paper.
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Chapter 4

Locality and Compositionality in Zero-Shot
Learning

4.1. Introduction
A crucial property of a useful model is to generalize, that is to perform well on test settings

given learning on a training setting. While what is most commonly meant by generalization
is being robust to having a limited number of training examples in distributionally-matched
settings [Zhang et al., 2016b], many tasks are designed to address variations in the data
between when a model is trained and when it is evaluated. For instance, some classification
tasks address distributional changes in the input: from lacking guarantees of distributional
match between train and test [e.g., covariate shift, Shimodaira, 2000] to having fundamental
domain differences [e.g., domain adaptation, Crammer et al., 2007, Ben-David et al., 2007].
A number of tasks have also been designed specifically to understand models in terms of
their ability to generalize to test situations that are poorly represented during training [e.g.,
Few-Show learning, Li et al., 2006], or even consist of a diverse and entirely novel set
of sub-tasks [Zamir et al., 2018]. For supervised classification, Zero-Shot Learning [ZSL,
Larochelle et al., 2008] is among the most difficult of these tasks, as it requires the model to
make useful inferences about (e.g., correctly label) unseen concepts, given parameters learned
only from seen training concepts and additional high-level semantic information.

The fundamental question we wish to address in this work is: What are the principles
that contribute to learning good representations for ZSL? While the most successful ZSL
models [Atzmon and Chechik, 2019, Wang et al., 2019] use pretrained features from Ima-
genet [Krizhevsky et al., 2012, Russakovsky et al., 2015], we wish to understand how these
features can emerge given only the data provided from the ZSL task. Specifically, we explore
the role of compositionality and locality [Tokmakov et al., 2018, Stone et al., 2017] as two
principles that lead to good generalization. Our study focuses on image representations, so



we explore various means of learning representations that are local and compositional for
convolutional neural networks (CNNs). We also leverage the structure of CNNs and available
annotations from ZSL datasets as a means of interpreting various models in terms of these
factors. Overall, our results support the hypothesis that compositionality and locality are
crucial principles for training models that generalize well.

Finally, in order to provide a cleaner framework for understanding the relationship between
the above principles and generalization, we re-introduce Zero-Shot Learning from scratch
(ZFS). In this setting, the model is not allowed to be pretrained on another dataset, such as
Imagenet, and is evaluated on its ability to perform classification using auxiliary attributes and
labels trained only using the data available from the training split of the target dataset. We
believe that ZFS will provide researchers with a better experimental framework to understand
which principles are important for Zero-Shot generalization.

The contributions of our work are as follows:
• We introduce Zero-Shot Learning from scratch (ZFS), an extension to ZSL, which we
believe will be an important benchmark for understanding which learning principles
lead to better generalization.
• We evaluate several supervised and unsupervised methods on their ability to learn
features that generalize in the ZFS setting by training a prototypical network on
top of those features [in a similar way to what was done in Snell et al., 2017, with
Imagenet features]. We then relate this generalization performance with different
proxies for locality and compositionality of the given representations, and show that
both concepts contribute heavily.
• We introduce a novel version of Deep InfoMax [DIM, Hjelm et al., 2018] which draws
local patch representations from other images with the same label as positive samples.
• We introduce a novel visualization technique based on Mutual Information, that
allows to investigate local properties of the learned representations.

4.2. Principles that lead to good ZSL performance
Zero-Shot Learning [ZSL, Larochelle et al., 2008] is an important learning framework for

understanding a model’s capacity to be used in real world scenarios where many relevant test
cases (e.g., classes) are not known or are infeasible to sample at training time. An important
component of ZSL, particularly in Deep Learning, is learning features directly from raw data
(e.g., pixels), that generalize to these test cases. While there are a number of commonly-used
strategies for learning generalizable features for various tasks in Deep Learning [Neyshabur
et al., 2017], we believe that ZSL in particular requires thinking beyond normal classification
by incorporating principles such as compositionality [Boole, 1854] and locality [Fukushima,
1980].
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How we formulate, exploit, and analyze these principles to learn models that solve image
ZSL tasks will depend on our use of convolutional neural networks (CNNs) as the network
architecture for encoding images as well as properties of the data, such as input statistics
and available annotations. We will broadly define compositionality and locality, then relate
these principles to the tools we have at our disposal from the network architecture and data.

4.2.1. Compositionality

Compositional representations have been a focus in the cognitive science literature [Bie-
derman, 1987, Hoffman and Richards, 1984] with regards to the ability of intelligent agents
to generalize to new concepts. Applications are found in computational linguistics [Tian
et al., 2016], generative models [Higgins et al., 2017a], and Meta Learning [Alet et al., 2018,
Tokmakov et al., 2018], to name a few, with approaches to encourage compositionality varying
from introducing penalties [Tokmakov et al., 2018] to using modular architectures [Alet et al.,
2018, Goyal et al., 2019, Goyal and Bengio, 2020].

In what follows, we will consider a representation to be compositional if it can be expressed
as a combination of simpler parts [Andreas, 2019, Cresswell, 1976]. Let P denote the set
of possible parts, R the representation space and X the input space. For each x ∈ X , we
assume the existence of a function D mapping x to P ′ ⊆ P, the set of its parts. These
parts could be local image features (e.g., wings or beaks), or other generative factors (e.g.,
size, color, etc). Let g : P → R be a function that maps the parts to representations.
Formally, f(x) ∈ R is compositional if it can be expressed as a combination of the elements
of {g(p)|p ∈ D(x)}. The combination operator used is commonly a weighted sum [Brendel
and Bethge, 2019a], although some works learn more complex combinations [Higgins et al.,
2017a]. As we consider representations that are implicitly compositional, the above formalism
might be approximately true which motivates our later use of the TRE metric.

4.2.2. Locality

Local features have been used extensively in representation learning. CNNs exploit local
information by design, and locally-aware architectures have been shown to be useful for non-
image dataset, such as graphs [Kipf and Welling, 2016] and natural language processing [Yu
et al., 2018]. For supervised image classification, a bag of local features processed independently
can do surprisingly well compared to processing the local features together [Brendel and
Bethge, 2019b]. Attention over local features is commonly used in image captioning [Li
et al., 2017], visual question answering [Kim et al., 2018] and fine-grained classification [Sun
et al., 2018]. Self-attention over local features resulted in large improvements in generative
models [Zhang et al., 2018a]. Self-supervised methods often exploit local information to learn
useful representations: Doersch et al. [2015] proposes to learn representations by predicting
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the relative location of image patches, Noroozi and Favaro [2016] solves jigsaw puzzles of
local patches, and Deep InfoMax [DIM, Hjelm et al., 2018] maximizes the mutual information
between local and global features.

For our purposes with image data, we loosely define a local representation as one that
has information that is specific to a patch. This helps motivate choices in architecture and
learning principles that encourage locality. In this work, we take the most straightforward
approach, and use features of CNNs which have receptive fields that are small compared to
the size of the full image. This is similar to the motivations in Bachman et al. [2019], where
the architecture is carefully designed to ensure that the receptive fields do not grow too large.
However, this choice in architecture does not guarantee locality, as CNN representations
might hypothetically contain only “global” information, such as the class or color of the
object, despite having a limited receptive field. Therefore, we will evaluate a number of
different models on their ability to encode only information specific to those locations. We
will discuss relevant evaluation in Sections 4.4.2 and 4.4.3.

Note also that compositionality as discussed above and locality are not necessarily
independent concepts, nor are they necessarily the same. The set of compositional factors
could include local factors, such as parts of an object, but also be more “global" factors, such
as general properties of a class (e.g., size, color, shape, etc).

4.2.3. Compositionality and locality with image data

We focus on three common ZSL datasets that allow us to explore compositionality and
locality, namely Animals with Attributes 2 [AwA2, Xian et al., 2018], Caltech-UCSD-Birds-
200-2011 [CUB, Wah et al., 2011b], SUN Attribute [SUN, Patterson and Hays, 2012].
Typical images from these datasets are shown in Fig. 4.1: CUB is a fine-grained dataset,
where the object of interest is small relative to the total image. This is in contrast to AwA2,
where subjects have variable size in relation to the total image. SUN is a scenes dataset,
meaning that the object of interest is often the whole image.

Fig. 4.1. Typical samples
show how compositionality
and locality are expressed
differently in the datasets
we consider in this study.

In our evaluation of compositionality, we can leverage different annotations provided by
the datasets. All of these datasets provide attributes, which roughly correspond to high-level
semantic information composed of a set of underlying factors. For CUB, these attributes
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describe visual characteristics such as wing colour or shape. For AwA2, these describe both
visual and behavioral characteristics, such as the animal’s ability to swim or its habitat. For
SUN, the attributes are more diverse, ranging from describing the function of the scene, such
as playing, to the spatial envelope, for instance man-made. As in Xian et al. [2017], we used
`2 normalized versions of these attributes as semantic class representations. In addition to
attributes, CUB comes with bounding boxes for the whole subject and parts locations for
15 different parts, e.g. beak, tail, belly. These can also be used to assess both locality and
compositionality, with the compositional factors being the same as the local ones. The details
of each dataset are in the Appendix (Table A.1).

4.3. Zero-Shot Learning from scratch
While the original ZSL setting introduced in Larochelle et al. [2008] was agnostic to

the exact methodology, more recent image ZSL approaches almost uniformly use features
from very large “backbone" neural networks such as InceptionV2 [Szegedy et al., 2016]
and ResNet101 [He et al., 2016] pretrained on the Imagenet dataset. In terms of absolute
performance, this approach appears to be well-justified, as state-of-the-art results on various
ZSL [Yosinski et al., 2014, Sun et al., 2017, Huh et al., 2016, Azizpour et al., 2015] and
non-ZSL benchmarks [Li et al., 2019b, Zhang et al., 2018b, He and Peng, 2017] all learn on
top of similar pretrained backbones.

However, we have many concerns with this approach towards our goal of understanding
the principles that contribute to good generalization. First, relative success in transfer
learning has been shown to be highly dependent on the precise instantiation of the pretrained
backbone encoder [Xian et al., 2018] or the pre-training dataset [Cui et al., 2018]. Next, while
Imagenet features have been shown to work well for ZSL tasks with similar image datasets,
there are no guarantees that a suitable pre-training framework would be available in general
ZSL settings. Conversely, it can be hard in practice to meaningfully evaluate a Zero-Shot
learner, as performance on specific classes is impacted by their presence in the pre-training
dataset [Xian et al., 2017].

Finally, we believe this approach misses the point, in such a way that makes understanding
the learning principles that contribute to good generalization difficult. We believe that ZSL
should first and foremost be used as a framework for training, understanding, and evaluating
models on their ability to reason about new, unseen concepts. Despite the absolute performance
gains of the methods above that use Imagenet features, the use of backbones hyper-optimized
for supervised performance on Imagenet and the Imagenet dataset itself represent nuisance
variables in a larger effort to understand how to learn generalizable concepts from scratch.
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In addition to the ZSL task framework outlined in Larochelle et al. [2008], ZFS simply
adds one additional additional requirement: No model parameters can contain information
about (e.g., can be learned from) data outside that from the training split of the target dataset.

4.4. Methods
Given our hypothesis on the importance of locality and compositionality, we consider a

wide range of representation learning methods trained using the ZFS setting described in
Section 4.3. To showcase the role of these principles, we will introduce a set of proxies for
compositionality and locality below. We will also consider auxiliary losses that emphasize
locality in the learned representation. Finally, we will introduce a visualization tool that can
help identify which local representations are assigned higher importance by each method.

4.4.1. General approach

In this work, we train convolutional image encoders (CNN) using either supervised or
unsupervised learning, then use prototypical networks to perform ZSL transfer on these
fixed representations. Prototypical networks are chosen as they require minimal parameters
or hyper-parameters tuning, are well-studied [Huang et al., 2019, Finn et al., 2017], and
performance is very close to the state of the art for Imagenet-pretrained benchmarks. Our
setup is representative of the current state of ZSL models, most of which [Akata et al., 2015,
Changpinyo et al., 2016, Kodirov et al., 2017, Zhang et al., 2017a, Sung et al., 2018] rely on
metric learning by applying two steps: (1) learning a suitable embedding function that maps
data samples and class attributes to a common subspace, (2) performing nearest neighbor
classification at test-time with respect to the embedded class attributes.

For our study, we compare pre-training the image encoder with a diverse, yet representative
set of models:

• Fully supervised: Fully supervised label classifier (FC)
• Unsupervised / reconstruction based / generative: Variational auto-encoders[VAE,
Kingma and Welling, 2013], β-VAE [Higgins et al., 2017b], Adversarial auto-
encoders [AAE, Makhzani et al., 2015],
• Local self-supervision and variants: Augmented Multiscale Deep InfoMax [AMDIM,
Bachman et al., 2019] and Class Matching DIM (CMDIM).

We pick variants of DIM [Hjelm et al., 2018] as opposed to other self-supervision methods [Do-
ersch and Zisserman, 2017, Noroozi and Favaro, 2016] because extensions have achieved
state-of-the-art on numerous related tasks [Veličković et al., 2018, Bachman et al., 2019].

We introduce Class-Matching DIM (CMDIM), a novel version of DIM that draws positive
samples from other images from the same class. The goal is to learn representations that
focus less on the information content of a single input, while extracting information that
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is discriminative between classes. The hyperparameter p determines the probability of
performing intra-class matching, we experiment with p ∈ {1, 0.5, 0.1}. A more detailed
description is provided in Appendix A.7.
Local classification and attribute auxiliary loss. We encourage the image encoder to extract
semantically relevant features at earlier stages of the network by introducing an auxiliary
local loss to the local feature vectors of a convolutional layer (whose receptive field covers a
small patch of the image). When used, this auxiliary loss is either from an attribute-based
classifier (AC) or a label-based classifier (LC) using the attributes or the labels as supervised
signal, respectively. A schematic explanation can been seen in Fig. A.1 in the appendix.

4.4.2. Parts classification for CUB evaluation

For each of the 15 parts labelled in the CUB dataset, we use the MTurk worker annotations
to construct 15 boolean map for each local feature. We project these boolean maps through
the CNN to generate ground truth variables that indicate whether the given part is present
and visible at a location specific to the CNN encoder features. We then train a linear probe
for each part, without back-propagating through the encoder, and measure the average F1
score across all locations and parts. This gives us a measurement on how well the encoder
represents the parts of the image at the correct locations. For more details, please refer to
Section A.6 in the Appendix.

4.4.3. Measuring mutual information between local features of dif-
ferent images

As a tool for local interpretability, we propose estimating the mutual information (MI)
between global features given from one image and local features from a second image. A
schematic explanation is provided in Fig. A.2 in the Appendix. In order to do this, we rely
on MINE [Belghazi et al., 2018b] which uses a statistics network, Tφ, with parameters φ to
formulate a lower bound to MI, which is effective for high dimensional, continuous random
variables. In our case, the statistics network takes two inputs: a global and local feature
vector either sampled from the joint, where each comes from the same image, or from the
product of marginals, where the global and local features are sampled independently from
each other. The statistics network optimizes a lower bound to the MI:

Î(Gθ(X);Lθ(X)) ≥ Ep(X)[Tφ((Gθ(X), Lθ(X))]− logEp(X)⊗p(X′)[eTφ((Gθ(X),Lθ(X′))]. (4.4.1)

Where p(X) = p(X ′) is the data distribution, and L and G random variables corresponding
to the local and global feature vectors of the encoder. At optimum, the output of the statistics
network, Tφ provides an estimate for the Pointwise Mutual Information (PMI), defined as
log p(G,L)

p(G)p(L) = log p(L|G)
p(L) , which roughly gives us a measure of how similar the global and local
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representations are in terms of information content. Normally, we could try to estimate the
marginal term p(L) to get an estimate for the conditional density, but we will normalize our
score across the local patches of the target image to get a relative score of the relatedness of
each local feature to a given global feature. This analysis is similar to that done in Bachman
et al. [2019], which looks at different augmentations of the same image using the same MI
estimator used to train the encoder.

4.4.4. TRE evaluation

We focus on a metric of compositionality introduced in Andreas [2019], the Tree Recon-
struction Error (TRE), as a proxy for compositionality. We will write TRE(X , a) for the
TRE computed on a dataset X over the set of primitives a. For details on its definition, see
Section A.8 in the Appendix.

As we mostly care about the compositionality with respect to attributes in the context of
zero-shot learning and some representations are inherently more decomposable than others
(such as VAEs due to the gaussian prior), we consider instead the ratio of the TRE computed
with respect to attributes and the TRE computed with respect to uninformative variables
(random assignment). We define the TRE ratio as: TRE(X ,â)

TRE(X ,ã) , where ã is a random binary
matrix (random cluster assignment), and â are the actual visual primitives, attributes in our
case.

4.4.5. Experimental Setup

Image encoders. We considered both an encoder derived from the DCGAN architecture [Rad-
ford et al., 2015] and similar in capacity to those used in early Few Shot Learning models
such as MAML [Finn et al., 2017]. We also consider a larger AlexNet [Krizhevsky et al., 2012]
based architecture to gain insight on the impact of the encoder backbone. It is important to
note that overall the encoders we use are significantly smaller than the “standard" backbones
common in state-of-the-art Imagenet-pretrained ZSL methods (note that similarly to most
recent ZSL methods, the encoder is fixed after pre-training, and used as a feature extractor).
We believe restricting the encoder’s capacity decreases the performance, but does not hinder
our ability to extract understanding of what methods work from our experiments. A detailed
description of the architectures can be found in the Appendix (Tables A.2 and A.3).
Evaluation Protocol. We used the ZSL splits constructed in Xian et al. [2017], as they are
the most commonly used in the literature. All models are evaluated on Top-1 accuracy.
We pretrain the encoder using each of the previously mentioned methods (strictly on the
considered dataset, as per the ZSF requirement). We then train a Prototypical Network on
top of the (fixed) learned representation. All the implementation details are available in the
Appendix, in Section A.2.
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Fig. 4.2. Parts F1 score for all models on
CUB with a DCGAN-based encoder plotted
against ZSL accuracy. There is a clear rela-
tionship between the two: encoders that have
a good understanding of local information (as
measured by the parts F1 score) perform bet-
ter in zero-shot learning. The addition of a
local loss increases parts F1 score for all mod-
els. This improves generalization for all mod-
els except those trained with a reconstruction
objective.

4.5. Results and Discussion
In this section, we describe in more detail our experiments and analyize the results. The

full numerical results and plots for all considered models can be found in the Appendix.

4.5.1. Does locality help ZSL, and can local representations be
learned?

Representations that predict parts at the correct location tend to perform
better at ZSL. We hypothesize that if the encoder represents information that is descriptive
of parts, it should also be able to generalize better. To test this, we compare ZSL performance
to the part classification F1 score described in 4.4.2. In Fig. 4.2, the average F1 scores across
the 15 classifiers is plotted against the ZSL accuracy for each model. The two measures
are clearly correlated (Person’s correlation of 0.73). This relationship doesn’t hold for
reconstruction-based methods such as VAEs, which could be due to these models needing to
represent information related to all pixels, including the background, in order to reconstruct
well.

Fig. 4.3. Relative improvement in terms of ZSL accuracy with respect to models trained
without the auxiliary loss. Attribute information results in a bigger improvement. Surprisingly,
for certain models label information results in a decrease in generalization performance.
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Encouraging local representations to contain similar information improves
ZSL performance For variants of Deep InfoMax [DIM, Hjelm et al., 2018], AMDIM and
CMDIM, the local representations are encouraged to be similar to a global representation
through the mutual information maximization objective. While locally specified, this is
somewhat contrary to our definition of locality in 4.2.2. Among the models we tested, these
variants generally perform very well, with CMDIM performing the best overall.

This indicates that, while important, locality by itself is not sufficient to learn good ZSL
representations. The local representations must also share information, e.g., through a global
representation or the class. We hypothesize that such constraints help the encoder learn
information that is present locally, but relevant to discriminating the class or important
high-level semantic meaning. The above observation also holds for the local losses (AC and
LC introduced in 4.4.1). These losses both encourage the model to rely on local information
(local features must capture important semantic information), and for these representations
to share information (by having high mutual information with either the attributes or labels).

Adding local losses helps supervised and self-supervised models. We investigate
in more detail the effect of encouraging the model to take into account different types of local
information. As can be seen in Fig. 4.2, the addition of a local loss improves both ZSL and
parts score for all models except the generative ones (VAE, AAE). Interestingly, for these
models the parts score also increases, indicating more locality, but this does not translate to
better ZSL performance.

To better investigate why local losses improve generalization for supervised and self-
supervised models, in Fig. 4.3 we show the relative improvement of each type of local classifier
over the performance of the encoder only trained with its global loss. We can see how for
the supervised model, the attribute based auxiliary loss has a much bigger impact, which
indicates that label information is already exploited by the model, while attributes actually
provide more information. For AMDIM, both losses seem to have a consistent positive effect,
possibly because the model is unsupervised and hence any label-related information is useful.
For CMDIM, the LC auxiliary loss actually hurts performance. This is likely due to the fact
that both CMDIM and the LC loss focus on discriminating classes at the local level, and
that the LC objective is inherently less effective than the CMDIM formulation for this task
(in terms of downstream ZSL performance). As a result, forcing the model to account for
both terms lowers downstream performance. DIM and AMDIM discriminate instances and
not classes so adding class and attribute information in the form of the AC and LC losses
helps performance. CMDIM is already exposed to class information, so only gains from being
exposed to the (more informative) attribute information in the form of AC.
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Fig. 4.4. Mutual Information heatmaps allow to understand which local patches contributed
the most to the final representation. For each heatmap we plot the absolute values in the
rightmost plot and the superposition of the heatmap and the original image on the left, to
increase interpretability. Yellow corresponds to higher scores.

4.5.2. How do different models encode information locally?

In Fig. 4.4 we apply the PMI-based visualization technique introduced in Section 4.4.3 to
pairs of images from the CUB dataset. In this case, we are examining the global representation
extracted by each model for the top left image (the Pacific Loon) and comparing it with
local features from images of various classes. By noticing which patches each model pays
attention to (have higher mutual information), we can infer how information is coded locally.
The main take-aways are the following:

• Supervised models. The fully supervised model in the first row seems to be able
to focus on relevant semantic details, such as the tail of the Horned Grebe and the
head of the Back Tern.
• Unsupervised models. In the second and third row we can see how models based
on a reconstruction loss seem to fail at highlighting semantic information: for images
with patterns and colours similar to the Pacific Loon, such as the other Pacific Loon
or the White breasted Kingfisher, PMI is high across all local features, while scores are
very low for the Tree Swallow with the uniform green background. This could possibly
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indicate that these models focus more on pixel statistics necessary for reconstruction,
and are unable to extract as much semantic information.
• Self-Supervised models. AMDIM manages to recover some semantic structure, e.g.
for the other Pacific Loon or for the Rusty Blackbird, but fails in some other cases.
CMDIM on the other hand, especially for high matching probability p, produces
heatmaps that are very similar to those of the supervised models, hence managing to
recover what is discriminative between classes.

Models that encode semantic information well perform well on ZSL generaliza-
tion. Models that reconstruct pixels well perform worse. To confirm our intuitions
on how some families of models focus more on semantic information, while others are more
sensitive to pixel statistics, we rely again on the parts binary maps described in 4.4.2. For
each pair of images, we compute the ratio between the score assigned to patches containing
any part (i.e., a logical OR computed across all binary maps) and the overall score of all
features. We refer to this measure as the Parts ratio. This ratio is sensitive to both how
highly the model scores the relevant parts and to whether the rest of the features are assigned
a lower score. We then compute two different types of similarity between the considered
images: a semantic one, defined as the cosine distance between the attributes associated
to the images’ classes, and an pixel-wise one, by measuring the Structural Similarity index
(SSIM) between the images. We then measure correlation between the Parts ratio and these
measures of similarity. Our interpretation is the following:

• Positive correlation with attribute similarity: If two images are semantically
similar, the part ratio should be higher if the model manages to extract the common
semantically relevant patches (and we know that they are the parts for CUB).
• Negative correlation with SSIM score: If a model is too sensitive to pixel
similarity, the parts score will be higher for images that are very different, where the
only thing in common (pixel-wise) is to depict a bird, while for very similar images
the model will just assign a high score to all local features.

We find that for VAEs, the ratio and the attribute similarity are not correlated, but the
ratio and the SSIM scores correlate negatively. The effect is reversed for Supervised and
Self-Supervised models. This confirms our intuition that VAEs and reconstruction models
are not well suited to learn representations that generalize in our context. More details about
this experiment and the correlation coefficients are reported in the Appendix, in Fig. A.4.
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Fig. 4.5. Relationship between TRE ratio and ZSL accuracy for each dataset (lower TRE
ratio is better).

4.5.3. Do compositional representations perform better for ZSL?

Intuitively, we expect compositionality to be an advantage: if a model has a good
understanding of how parts map to representations, it can learn to combine known concepts
to describe new classes. The experiments show:

• Measures of implicit compositionality correlate strongly with ZSL perfor-
mance. Fig. 4.5 shows the relationship between the TRE ratio introduced in 4.4.4,
and ZSL accuracy. The Pearson correlation coefficients between the TRE Ratio and
ZSL Accuracy are the following: -0.90 for CUB, -0.60 for AwA2 and -0.30 for SUN.
• The relation is strongest when the attributes are strongly relevant to the
image. For the AWA2 and CUB, datasets for which the attributes are semantically
very meaningful, we observe that there is a direct relationship between TRE ratio
and ZSL performance. This relationship degrades for SUN, for which the attributes
are per-image, and averaged over classes, meaning that they are less likely to map to
information actually present in a given image.

We also consider the effect of combining local representations directly (instead of relying
on the global output of the model). Given local representations, there are several ways
to employ them to perform classification: one option is to create a final representation by
averaging the local ones, another option is to classify each patch separately and then average
this predictions.

An explicitely compostional model based on local features helps ZSL. The
results for this comparison are shown in Fig. 4.6. Averaging representations can be seen
as directly enforcing a notion of compositionality: the representation of the whole input is
directly built as a weighted sum of the patch representations (that we can imagine being
more similar across different data points) and where the weights are uniform. For CUB, and
to a lesser extent AwA2, where only few patches encode important information such as beaks,
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tails, the effect is quite pronounced. There is less of a difference for SUN, where the object is
usually the whole scene, meaning all patches are expected to contribute.

Fig. 4.6. Comparison between averaging representations and averaging predictions. We can
see how, for the more local model families, this notion of compositionality is most useful for
CUB, where the object of interest is likely only present in few patches.

4.6. Conclusion and future work
Motivated by the need for more realistic evaluation settings for Zero-Shot Learning

methods, we proposed a new evaluation framework where training is strictly performed only
on the benchmark data, with no pre-training on additional datasets. In the proposed setting,
we hypothesize that locality and compositionality are fundamental ingredients for successful
zero-shot generalization. We perform a series of tests of the relationship between these two
aspects and zero-shot performance of a diverse set of representations. We find that models
that encourage both these aspects, either explicitly (through a penalty per instance) or
implicitly by construction, tend to perform better at zero-shot learning. We also find that
models that focus on reconstruction tasks fail at capturing the semantic information necessary
for good generalization, calling into question their applicability as general representation
learning methods.
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Chapter 5

Prologue to the second paper

5.1. Article details
Object-Centric Image Generation from Layouts [Sylvain et al., 2020b, OC-

GAN]. Tristan Sylvain, Pengchuan Zhang, Yoshua Bengio, R Devon Hjelm, Shikhar Sharma.
Association For The Advancement Of Artificial Intelligence 2021.
Personal contributions As lead author, I wrote most of the paper, ran the large majority of
the experiments, and wrote a large majority of the code. Shikhar helped a lot at all stages of
the project and was truly instrumental in making this paper what it is today. All my other
collaborators were very helpful at all stages.

5.2. Context
The paper is the result of my first internship at Microsoft Research Montreal in 2019. The

whole team had a strong interest in image generation, with in particular Pengchuan having
co-authored a major paper in the field [Xu et al., 2018a]. After many research discussions, we
started to gain a better understanding of common failure modes of layout-to-image models.
The paper grew from our efforts to address those, by introducing new components and
through a proposed new metric.

5.3. Contributions
Our paper addresses the issues commonly found in layout-to-image models: spurious

objects, poor layout-fidelity (i.e. generated images do not correctly match their layout),
and issues with the evaluation setting (for more details, please refer to the paper). As a
result, we introduce the scene graph similarity module (SGSM), which alleviates some of
these issues, and discuss the introduction of SceneFID, our new metric, as a replacement
for the commonly considered FID. Finally, we perform extensive evaluation of our proposed
approach to showcase its value.





Chapter 6

Object-Centric Image Generation from
Layouts

6.1. Introduction
Generative Adversarial Networks (GANs) [Goodfellow et al., 2014b] have been at the

helm of significant recent advances in image generation [Goodfellow et al., 2014b, Radford
et al., 2016, Gulrajani et al., 2017b, Miyato and Koyama, 2018, Brock et al., 2019]. Apart
from unsupervised image generation, GAN-based image generation approaches have done
well at conditional image generation from labels [Radford et al., 2016, Zhang et al., 2019b,
Brock et al., 2019], captions [Reed et al., 2016a, Zhang et al., 2017b, Xu et al., 2018a, Li
et al., 2019c, Yin et al., 2019], conversations [Sharma et al., 2018, El-Nouby et al., 2019, Li
et al., 2019d], scene graphs [Johnson et al., 2018, Mittal et al., 2019, Ashual and Wolf, 2019],
layouts [Zhao et al., 2019a, Sun and Wu, 2019], segmentation masks [Park et al., 2019], etc.
While the success in single-domain or single-object image generation has been remarkable,
generating complex scenes with multiple objects is still challenging.

Generating realistic multi-object scenes is a difficult task because they have many con-
stituent objects [e.g., the Visual Genome dataset, Krishna et al., 2017, can contain as many as
30 different objects in an image]. Past methods focus on different input types, including scene
graphs [Johnson et al., 2018, Ashual and Wolf, 2019], pixel-level semantic segmentation [Li
et al., 2019c], and bounding box-level segmentation [Zhao et al., 2019a, Sun and Wu, 2019].
In addition, some methods also consider multi-modal data, such as instance segmentation
alongside pixel-wise semantic segmentation masks [Park et al., 2019, Wang et al., 2018b].
Orthogonal to input-related considerations, methods tend to rely on additional components
to help with the complexity of scene generation, such as attention mechanisms [Xu et al.,
2018a, Li et al., 2019c] and explicit disentanglement of objects from the background [Singh
et al., 2019].



Layout SPADE SOARISG LostGAN OC-GAN (ours)

Fig. 6.1. Each row depicts a layout and the corresponding images generated by various
models. Along each column, the donuts converge to the centre. In addition to more clearly
defined objects, our method is the only one that maintains distinct objects for the final layout,
for which bounding boxes slightly overlap.

Despite these advances, models still struggle in creating realistic scenes. As shown in
Figs. 6.1 and 6.2, even simple layouts can result in merged objects, spurious objects, and
images that do not match the given layout (low layout-fidelity). To counter this, we propose
Object-Centric GAN (OC-GAN), an architecture to generate realistic images with high
layout-fidelity and sharp objects. Our primary contributions are:

• We introduce a set of novel components that are well-motivated and improve per-
formance for complex scene generation. Our proposed scene-graph-based retrieval
module (SGSM) improves layout-fidelity. We also introduce other improvements,
such as conditioning on instance boundaries, that help generating sharp objects and
realistic scenes.
• Our model improves significantly on the previous state of the art in terms of a set of
classical metrics. In addition to standard metrics, we also perform a detailed ablation
study to highlight the effect of each component, and a human evaluation study to
further validate our findings.
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Fig. 6.2. Existing models introduce spurious objects not specified in the layout, a failure
mode over which our model improves significantly.

• We discuss the validity of the metrics currently used to evaluate layout-to-image
methods, and building on our findings, motivate the use of SceneFID, a new evaluation
setting which is more adapted to multi-object datasets.

6.2. Related Work
6.2.0.1. Conditional scene generation. For some time, the image generation community

has focused on scenes that contain multiple objects in the foreground [Reed et al., 2016a,
Zhang et al., 2017b, Johnson et al., 2018]. Such scenes, which can contain large amount of
objects of very different scales, are very complex relative to single-object images. Several
conditional image generation tasks have been formulated using different subsets of annotations.
Text-based image generation using captions [Reed et al., 2016a, Zhang et al., 2017b, Xu
et al., 2018a, Li et al., 2019c, Yin et al., 2019] or even multi-turn conversations [Sharma
et al., 2018, El-Nouby et al., 2019, Li et al., 2019d] have gained significant interest. However,
with increasing numbers of objects and their relationships in the image, understanding long
textual captions becomes difficult [Johnson et al., 2018, Sharma et al., 2018]. Text-based
image generation approaches are also not immune to small perturbations in text leading to
quite different images [Yin et al., 2019].

6.2.0.2. Layout-based synthesis. Generating images from a given layout makes the analysis
more interpretable by decoupling the language understanding problem from the image
generation task. Another advantage of generating from layouts is more controllable generation:
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it is easy to design interfaces to manipulate layouts. In this work we will focus on coarse
layouts, where the scene to be generated is specified by bounding-box-level annotations.
Layout-based approaches fall into 2 broad categories. Some methods take scene-graphs as
inputs, and learn to generate layouts as intermediate representations [Johnson et al., 2018,
Ashual and Wolf, 2019]. In parallel, other approaches have focused on generating directly
from coarse layouts [Sun and Wu, 2019, Zhao et al., 2019a]. Models that perform well on
fine-grained pixel-level semantic maps also can be easily applied to this setting [Park et al.,
2019, Isola et al., 2017, Wang et al., 2018b]. Almost all recent approaches have in common the
use of patch and object discriminators (to ensure whole image and object quality). In addition
to this, image quality has been improved by the addition of perceptual losses [Park et al., 2019,
Ashual and Wolf, 2019, Wang et al., 2018b], multi-scale patch-discriminators [Park et al.,
2019], which motivate some of our architecture choices. Finally, modulating the parameters
of batch- or instance-normalization layers [Ioffe and Szegedy, 2015, Ulyanov et al., 2016] with
a function of the input condition can provide significant gains, and this is done per-channel
in Odena et al. [2017] or per pixel in Park et al. [2019], Sun and Wu [2019]. As bounding box
layouts are coarse for this task, it is common to introduce unsupervised mask generators [Sun
and Wu, 2019, Ma et al., 2018] to provide estimated shapes for this conditioning.

Finally, there is a growing body of literature involving semi-parametric [Qi et al., 2018,
Li et al., 2019a] models that use ground-truth training images to aid generation. We consider
the case of such models in the Appendix.

6.2.0.3. Scene-graphs and image matching. Scene graphs are an object-centric representa-
tion that can provide an additional useful learning signal when dealing with complex scenes.
Scene-graphs are often used as intermediate representations in image captioning [Yang et al.,
2019, Anderson et al., 2016], reconstruction [Gu et al., 2019] and retrieval [Johnson et al.,
2015], as well as in sentence to scene graph [Schuster et al., 2015] and image to scene graph
prediction [Lu et al., 2016b, Newell and Deng, 2017].

By virtue of being a simpler abstraction of the scene than a layout, they emphasize
instance awareness more than layouts which focus on pixel-level class labels. Secondly, for
scenarios that might require generating multiple diverse images, they provide more variability
in reconstruction and matching tasks as the mapping from a scene graph to an image is
one to many usually. These points explain their use in higher-level visual reasoning tasks
such as visual question answering [Teney et al., 2017] and zero-shot learning [Sylvain et al.,
2020a,c], and also motivate the use of scene graph-based retrieval in our model. In our work,
we generate scene graphs depicting positional relationships (such as “to the left of”, “above”,
“inside”, etc.) from given spatial layouts and leverage them to learn the relationships between
objects, which would be more difficult for a model to distill from pixel-level layouts.
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Fig. 6.3. The SGSM module. The SGSM module computes similarity between the scene-
graph and the generated image, providing fine-grained matching-based supervision between
the positional scene-graph and the generated image.

There has been strong interest in image and caption similarity modules for retrieval [Fang
et al., 2015, Huang et al., 2013] and for text-to-image generation, most recently with the
DAMSM model proposed in Xu et al. [2018a, Attngan]. Despite similar interest in scene
graph to image retrieval [Johnson et al., 2015, Quinn et al., 2018], and the large improvements
in text-to-image synthesis resulting from the DAMSM [Xu et al., 2018a, Li et al., 2019c],
our approach is the first to use a scene graph to image retrieval module when training a
generative model.

6.3. Proposed Method
6.3.1. Scene-Graph Similarity Module

We introduce the Scene Graph Similarity Module (SGSM) as a means of increasing the
layout-fidelity of our generated images. This multi-modal module, described summarily in
Fig. 6.3, takes as input an image and a scene-graph (nodes corresponding to objects, and edges
corresponding to spatial relations). We extract local visual features vi from the mixed_6e
layer in an Inception-V3 network [Szegedy et al., 2016] pre-trained on the ImageNet dataset.
We extract global visual features vG from the final pooling layer. We encode the graph
using a Graph Convolutional Network [GCN, Goller and Kuchler, 1996] to obtain local graph
features gj and apply a set of graph convolutions followed by a graph pooling operation to
obtain global graph features gG. Note that each local and global feature is extracted and
linearly projected to a common semantic space. In what follows, cos is the cosine similarity,
and the γks are normalization constants. We use L/G when the local and global terms are
interchangeable. We use the modified dot-product attention mechanism of Xu et al. [2018a]
to compute the visually attended local graph embeddings g̃j:

sij = γ1
exp

(
gj
Tvi

)
∑
i′ exp

(
gjTvi′

) , g̃j =
∑
i exp(sij)vi∑
i exp(sij)

. (6.3.1)
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Then we can define a local similarity metric between the source graph embedding gj

and the visually aware local embedding g̃j similar to Xu et al. [2018a]. Intuitively, the
similarity will be strong when the source graph embedding is close to the visually aware
embedding. This local similarity will encourage different patches of the image to match the
objects expected from the scene graph. The global similarity metric is classically the cosine
distance between embeddings:

SimL(S, I ′) = log
(∑

j

exp
(
γ2 · cos(g̃j, gj)

)) 1
γ2

SimG(S, I ′) = cos
(
vG, gG

)
(6.3.2)

(6.3.3)

Finally we can define a global and local probability model in a similar way to e.g. Huang
et al. [2013]:

PL/G(S, I ′) ∝ exp
(
γ3 · SimL/G(S, I ′)

)
. (6.3.4)

Normalizing over the images or scenes in the batch B (negative examples are selected
by mis-matching the image and scene-graph pairs in the batch) leads to e.g.: PL/G(S|I) =

PL/G(S,I)∑
I′∈B PL/G(S,I′) . We define the loss terms as the log posterior probability of matching an

image I and the corresponding scene graph (and vice-versa):

 LL/G = − logPL/G(S|I)− logPL/G(I|S)

LSGSM = LL + LG

(6.3.5)

(6.3.6)
Empirically, the SGSM resulted in large gains in performance as shown in Table 6.4. Our

hypothesis is that the scene graph, in a similar way to a caption, provides easier, simpler to
distil relational information contained in the layout, which results in stronger performance
compared to generation using just the layout. Architectural details of the SGSM and related
data processing are described in the Appendix.

6.3.2. Instance-Aware Conditioning

Fig. 6.4. Blue indicates 0 and black indicates 1. (Left) The per-class mask constructed
from the layout by many previous methods makes it impossible to distinguish unique object
instances in several cases. (Right) Our mask consists of instance boundaries making it easier
for the model to distinguish unique object instances using no extra information than already
contained in the layout.
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Fig. 6.5. Overview of our OC-GAN model. The GCN and Image Encoder modules are
trained separately and then frozen. The condition for the Generator’s normalization and
the Scene Graph encoding the spatial relationships between objects are both derived from
the input layout. The SGSM and the instance-aware normalization lead our model to
generate images with higher layout-fidelity and sharper, distinct objects. The ‘Condition’ box
corresponds to the three inputs listed in the subsection on the instance-aware conditioning.

As in Park et al. [2019], Sun and Wu [2019], the parameters γ, β of our batch-normalization
layers are conditional and determined on a per-pixel level [as opposed to classical conditional
batch-normalization, De Vries et al., 2017]. In our case, these parameters are determined by
three concatenated inputs: masked object embeddings, bounding-box layouts and bounding-box
instance boundaries. Masked object embeddings [Ma et al., 2018, Sun and Wu, 2019] and
bounding-box layouts (using 1-hot embeddings) have been previously used in the layout to
image setting. A shortcoming of these conditioning inputs is that they do not provide any
way to distinguish between objects of the same class if their bounding boxes overlap. We
use the layout’s bounding-box boundaries, shown in Figure 6.4, as additional conditioning
information. The addition of the bounding-box instance boundaries helps the model in
mapping overlapping conditioning semantic masks to separate object instances, the absence
of which led previous state-of-the-art methods to generate merged outputs as shown in the
donut example in Fig. 6.1. Importantly, the instance boundaries do not add any additional
information compared to the baselines: (1) they are bounding-box rather than fine-grained
boundaries, and (2) instance information is already available to other models (Layout2Im
and LostGAN have object-specific codes as an example). Rather, adding these boundaries
acts like a prior encouraging our model to focus on generating distinct objects.

6.3.3. Architecture

Our OC-GAN model is based on the GAN framework. The generator module generates
the images conditioned on the ground-truth layout. The discriminator predicts whether the
input image is generated or real. The discriminator has an additional component which has
to discriminate objects present in the input image patches corresponding to the ground-truth
layout object bounding boxes. We present an overview of the model in Fig. 6.5 and describe
the components below. Additional details are in the Appendix.
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6.3.3.1. Generator. As a means of disentangling our model’s performance from a specific
choice of generator architecture, we used a classical residual [He et al., 2016] architecture
consisting of 4 layers for 64× 64 inputs, and 5 layers for 128× 128 inputs, as used recently
in Park et al. [2019], Sun and Wu [2019], Wang et al. [2018b]. The residual decoder G takes
as input image-level noise. As described in the previous section, we further condition the
generation by making the normalization parameters of the batch-norm layers of the decoder
dependent on the layout and instance boundaries.

6.3.3.2. Discriminator. We use two different types of discriminators, an object discrim-
inator, and a set of patch-wise discriminators. The object discriminator Dobj takes as
input crops of the objects (as identified by their input bounding boxes) in real and fake
images resized to size 32× 32 and is trained using the Auxiliary-Classifier [AC, Odena et al.,
2017] framework, resulting in a classification and an adversarial loss. Next, two patch-wise
discriminators Dp

1, D
p
2 output estimates of whether a given patch is consistent with the

input layout. We apply them to the original image and the same image down-sampled
by a factor of 2 (no weight sharing) in a similar fashion to Park et al. [2019], Wang et al. [2018b].

6.3.4. Loss Functions

In the following, x denotes a real image, l a layout, and z noise. We also denote objects
with o and their labels yo.
Perceptual loss. Adding a perceptual loss [Dosovitskiy and Brox, 2016, Gatys et al.,
2016, Johnson et al., 2016] to our model improved results slightly. We extract fea-
tures using a VGG19 network [Simonyan and Zisserman, 2015]. The loss has expression:
LP = Ex,l,z

∑N
i=1

1
Di
||F (i)(x)− F (i)(G(l, z))||1 where F (i) extracts the output at the i-th layer

of the VGG and Di is the dimension of the flattened output at the i-th layer.
Generator and Discriminator losses. We train the generator and patch discriminators using
the adversarial hinge loss [Lim and Ye, 2017]:

LGAN
G = −El,z

[
Dp

1(G(l, z), l) +Dp
2(G(l, z), l)

]
(6.3.7)

LDp =
2∑
i=1

{
− Ex,l

[
min(0,−1 +Dp

i (x, l))
]

− El,z
[

min(0,−1−Dp
i (G(l, z), l)

]}
.

(6.3.8)

The object discriminator follows the AC-GAN framework, leading to LACG and LACDobj . The
final expression is:
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LG = LGAN
G + λPLP + λSGSMLSGSM + λACLACG (6.3.9)

LD = LDp + λoLACDobj . (6.3.10)

We fix λP = 2, λo = 1, λSGSM = 1, λAC = 1 in our experiments.

6.4. Experiments
6.4.1. Datasets

We run experiments on the COCO-Stuff [Caesar et al., 2018] and Visual Genome (VG) [Kr-
ishna et al., 2017] datasets which have been the popular choice for layout- and scene-to-image
tasks as they provide diverse and high-quality annotations. The former is an expansion of
the Microsoft Common Objects in Context (MS-COCO) dataset [Lin et al., 2014]. We apply
the same pre-processing and use the same splits as Johnson et al. [2018], Zhao et al. [2019a].
The summary statistics of the two datasets are presented in the appendix, Table B.1.

Our OC-GAN model takes three different inputs:
• The spatial layout i.e. object bounding boxes and object class annotations.
• Instance boundary maps computed directly from the layout. While they appear
redundant once the bounding boxes are provided, they aid the model in better
differentiating different objects especially different instances of the same object class.
• Scene-graphs. These are constructed from the objects and spatial relations inferred
from the bounding box positions following the setup in Johnson et al. [2018]. While
VG provides more complex scene graphs, we restricted ourselves to spatial relations
only for compatibility between the two datasets.

6.4.2. Implementation and Training Details

Our code is written in PyTorch [Paszke et al., 2019]. We apply Spectral Normaliza-
tion [Miyato et al., 2018] to all the layers in both the generator and discriminator networks.
Each experiment ran on 4 V100 GPUs in parallel. We use synchronized BatchNorm (all
summary statistics are shared across GPUs).

We used the Adam [Kingma and Ba, 2015] solver, with β1 = 0.5, β2 = 0.999. The global
learning rate for both generator and discriminators is 0.0001. 128× 128 models and above
were trained for up to 300 000 iterations, 64 × 64 models were trained for up to 200 000
iterations (early stopping on a validation set). The SGSM module is trained separately for
200 epochs. It is then fixed, and the rest of the model is trained.
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6.4.3. Baselines

We consider all recent methods that allow layout-to-image generation (Layout2Im [Zhao
et al., 2019a], LostGAN [Sun and Wu, 2019], LostGAN-v2 [Sun and Wu, 2020]). We report
results for scene-graph-to-image methods (SG2Im [Johnson et al., 2018], SOARISG [Ashual
and Wolf, 2019]) evaluated with ground-truth layouts for a fair comparison. Finally, methods
originally designed for generation from pixel-level semantic segmentation maps (SPADE [Park
et al., 2019] and Pix2PixHD [Wang et al., 2018b]) are also considered as they can be readily
adapted to this new context.

6.4.4. Evaluation

Evaluation of GANs is a complex issue, and the subject of a vast body of literature. In
this paper, we focus on three existing evaluation metrics: Inception Score (IS) [Salimans et al.,
2016], Fréchet Inception Distance (FID) [Heusel et al., 2017] and Classification Accuracy (CA).
For the CA score, a ResNet-101 [He et al., 2016] network is trained on object crops obtained
from the real images of the train set of the corresponding dataset, as suggested by Ashual
and Wolf [2019]. The FID metric computes the 2-Wasserstein distance between the real and
generated distributions, and therefore serves as an efficient proxy for the diversity and visual
quality of the generated samples. While the FID metric focuses on the whole image, the CA
metric allows us to demonstrate the ability of our model to generate realistic-looking objects
within a scene. Finally, we include the Inception Score as a legacy metric.

6.4.4.1. Our proposed metric: SceneFID. We note that there exist many concerns in
the literature regarding the use of metrics that are not designed or adapted to the task at
hand. The Inception Score has been criticised [Barratt and Sharma, 2018], notably due
to issues caused by the mismatch between the domain it was trained on (the ImageNet
dataset comprising single objects of interest) and the domain of VG and COCO-Stuff images
(comprising multiple objects in complex scenes), making it a potentially poor metric to
evaluate generative ability of models in our setting. While the FID metric was introduced
in response to Inception Score’s criticisms, and was shown empirically to alleviate some of
the concerns with it [Im et al., 2018, Xu et al., 2018b, Lucic et al., 2018], it still suffers from
problems in the layout-to-image setting. In particular, the single manifold assumption behind
FID was found in Liu et al. [2018] to be problematic in a multi-class setting. This is a fortiori
the case in a multi-object setting as in VG and COCO. While Liu et al. [2018] introduce a
class-aware version of FID, this is not applicable to our setting. We introduce the SceneFID
metric, where we compute the FID on the crops of all objects, resized to same size (224 ×
224), instead of on the whole image. Thus, the SceneFID metric measures FID in the single
manifold assumption it was designed for and extends it to the multi-object setting.
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In addition to the above quantitative metrics, we also perform qualitative assessment of
the model, notably by considering the effect of modifying the input layout on the output
image.

Layout SPADE SOARISG LostGAN OC-GAN

(a)

(b)

(c)

(d)

(e)

Fig. 6.6. 128× 128 COCO-Stuff test set images, taken from our method (OC-GAN), and
multiple competitive baselines. Note the overall improved visual quality of our samples. In
addition, for (d, e) many baselines introduce spurious objects, and for (b, d, e) spatially close
objects are poorly defined and sometimes fused for the baselines.

6.4.5. Quantitative Results

We report comparisons of our model’s performance to the set of all recent state-of-the-art
methods. Where applicable and possible, we use metric values reported by the authors of
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Methods Inception Score ↑ FID ↓ CA ↑
COCO VG COCO VG COCO VG

Real Images
64× 64 16.3 ± 0.4 13.9 ± 0.5 0 0 54.48 49.57
128× 128 22.3 ± 0.5 20.5 ± 1.5 0 0 60.71 56.25
256× 256 28.10 ± 0.5 28.6 ± 1.2 0 0 63.04 60.40

64× 64

SG2Im [Johnson et al., 2018]† 7.3 ± 0.1 6.3 ± 0.2 67.96 74.61 30.04 40.29
Pix2PixHD [Wang et al., 2018b] 7.2 ± 0.2 6.6 ± 0.3 59.95 47.71 20.82 16.98
SPADE [Park et al., 2019] 8.5 ± 0.3 7.3 ± 0.1 43.31 35.74 31.61 23.81
Layout2Im [Zhao et al., 2019a]† 9.1 ± 0.1 8.1 ± 0.1 38.14 31.25 50.84 48.09
SOARISG [Ashual and Wolf, 2019]∗ † 10.3 ± 0.1 N/A 48.7 N/A 46.1 N/A
OC-GAN (ours) 10.5± 0.3 8.9± 0.3 33.1 22.61 56.88 57.73

64× 64 LostGAN [Sun and Wu, 2019] (flips) † 9.8 ± 0.2 8.7 ± 0.4 34.31 34.75 37.15 27.1
with flips OC-GAN (ours) 10.8± 0.5 9.3± 0.2 29.57 20.27 60.39 60.79

128× 128

Pix2PixHD [Wang et al., 2018b] 10.4 ± 0.3 9.8 ± 0.3 62 46.55 26.67 25.03
SPADE [Park et al., 2019] 13.1 ± 0.5 11.3 ± 0.4 40.04 33.29 41.74 34.11
Layout2Im [Zhao et al., 2019a] � 12.0 ± 0.4 10.1 ± 0.3 43.21 38.21 49.06 51.13
SOARISG [Ashual and Wolf, 2019] †∗ 12.5 ± 0.3 N/A 59.5 N/A 44.6 N/A
OC-GAN (ours) 14.0± 0.2 11.9± 0.5 36.04 28.91 60.32 58.03

128× 128 LostGAN [Sun and Wu, 2019] † 13.8 ± 0.4 11.1 ± 0.6 29.65 29.36 41.38 28.76
with flips LostGAN-V2 [Sun and Wu, 2020] † 14.2 ± 0.4 10.71 ± 0.27 24.76 29.00 43.27 35.17

OC-GAN (ours) 14.6± 0.4 12.3± 0.4 36.31 28.26 59.44 59.40

256× 256 SOARISG [Ashual and Wolf, 2019] †∗ 15.2± 0.1 N/A 65.95 N/A 45.3 N/A
OC-GAN (ours) 17.0± 0.1 14.4± 0.6 45.96 39.07 53.47 57.89

256× 256 LostGAN-V2 [Sun and Wu, 2020] † 18.0± 0.5 14.1± 0.4 42.55 47.62 54.40 53.02
with flips OC-GAN (ours) 17.8 ± 0.2 14.7± 0.2 41.65 40.85 57.16 53.28
Table 6.1. Performance on 64, 128 and 256 dimension images. All models use ground-truth
layouts. We use † to denote results taken from the original paper. ∗ denotes a model that
uses pixel-level semantic segmentation during training. � denotes models for which the openly
available source code was not adapted to generation at a specific image size. We altered the
code to allow this and ran a hyperparameter search on the new models.

the papers. SOARISG [Ashual and Wolf, 2019] depends on semantic segmentation maps
being available, and therefore it was not feasible to include results on VG for this method.
Some papers introduced additional data-augmentation, such as LostGAN [Sun and Wu, 2019]
which introduced flips of the real images during training. Where applicable, we report results
using the same experimental setup as the authors, and highlight it in the results table. For
all models that do not report CA scores, we evaluate them using images generated with the
pre-trained models provided by their authors.

Table 6.1 shows that our model consistently outperforms the baselines in terms of IS,
FID and CAS, often significantly. We note that for some models, the CAS score is above
that reported for ground-truth images. This is due to the fact that a sufficiently capable
generator will start to generate objects that are both realistic, and of the same distribution
as the training distribution, rather than the test one.

On the proposed SceneFID metric, Table 6.2 shows that our method outperforms the
others significantly. Thus, our model is significantly better at generating realistic objects
compared to the baselines. Note that the LostGAN model obtains better FID compared to our
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SceneFID ↓
Methods COCO VG
Pix2PixHD [Wang et al., 2018b] 42.92 42.98
SPADE [Park et al., 2019] 23.44 16.72
Layout2Im [Zhao et al., 2019a] 22.76 12.56
SOARISG [Ashual and Wolf, 2019]∗ 33.46 N/A
LostGAN [Sun and Wu, 2019] (flips) 20.03 13.17
OC-GAN (ours w/ flips) 16.76 9.63

Table 6.2. SceneFID scores on object crops resized to size 224 × 224, extracted from the 128
× 128 outputs of the different models, for both datasets. All models use ground-truth layouts.
∗ denotes a model that uses pixel-level semantic segmentation during training. SOARISG
cannot be trained on VG due to the absence of pixel-level semantic segmentations.

model exceptionally on 128× 128 COCO-Stuff images but our OC-GAN model outperforms
it on the SceneFID metric which is more appropriate in this multi-class setting.

6.4.6. Qualitative Results

We compare and analyse image samples generated by our method and competitive
baselines in Fig. 6.6. In addition to generating higher quality images, our OC-GAN model
does not introduce spurious objects (objects not specified in the layout but present in the
generated image). This can be attributed to the SGSM module which, by virtue of the
retrieval task and the scene-graph being a higher-level abstraction than pixels, aids the model
in learning a better mapping from the spatial layout to the generated image. Our model also
keeps object instances identifiable even when bounding boxes of objects of the same class
overlap slightly or are in close proximity.

To further validate the previous observations, in Fig. 6.1, we consider the effect of
generating from artificial layouts of gradually converging donuts, to tease out the model’s
ability to correctly generate separable object instances. Our model generates distinct donuts
even when occluded, whereas the other models generate realistic donuts when the bounding
boxes are far apart, but fail to do so when they overlap.

We also conducted a user study to evaluate the model’s layout-fidelity. 10 users were shown
100 layouts from the test sets of both datasets, with the corresponding images generated by
our OC-GAN, LostGAN, and for COCO-Stuff, SOARISG, shuffled in a random order. For
each layout, users were asked to select the model which generates the best corresponding
image. The results from this study are in Table 6.3 and demonstrate that our model has
higher layout-fidelity than previous SOTA methods.

In Table 6.4, we present an ablation study performed by removing certain components of
our model. The effect of adding another patch discriminator is measurable, both in terms of
FID and CA. Removing the patch discriminator significantly lowers FID (the model has no
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Dataset SOARISG LostGAN Ours
COCO-Stuff 16.8% 36.8% 46.4%
VG N/R 31.4% 68.6%

Table 6.3. User study results. 10 computer-science professionals were shown 100 COCO-
Stuff and 100 VG test set layouts and corresponding images generated by various models,
shuffled randomly. Users were asked to select the highest layout-fidelity image for each layout
at 128 × 128 resolution. SOARISG is marked marked non-rated (N/R), as it cannot be
trained on VG.

FID ↓ CA ↑
Full 29.57 60.27
Single patchD 30.54 59.86
No patchD 33.85 62.48
No objectD 31.62 48.03
No bounding-box instance boundaries 30.12 59.54
No SGSM 34.32 52.57
No objectD, no SGSM 33.15 41.50
No perceptual loss 31.14 57.22
No perceptual loss, no SGSM 36.54 47.94

Table 6.4. Quantitative comparison of different ablated versions of our model on the COCO-
Stuff dataset (64× 64 images). These results highlight the importance of the SGSM (and its
positive interaction with the perceptual loss) in the bottom row block, as well as the impact
of removing some of the discriminators (middle row block).

more supervision in terms of matching the distribution of the real full images. This actually
improves the CA, as the generator will use more capacity to focus on generating realistic
objects.

We also find that removing either the object discriminator or the SGSM results in a
significant drop in performance. This does not however prevent the model from generating
realistic objects (the CA score remains above some of the baselines), meaning that the roles
of the two components are to some extent complementary. As soon as both are removed, the
CA score drops sharply.

Removing the perceptual loss has little effect in itself, but it greatly helps the SGSM
when present. Removing the SGSM altogether strongly impairs results, highlighting its
importance. Finally, removing the bounding-box instance boundaries has a modest impact
on both metrics, but a large qualitative impact with more clearly defined objects.

6.5. Conclusion
We observed that current state-of-the-art layout-to-image generation methods exhibit low

layout-fidelity and tend to generate low quality objects especially in cases of occlusion. We
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proposed a novel Scene-Graph Similarity Module that mitigated the layout-fidelity issues
aided by an improved understanding of spatial relationships derived from the layout. We also
proposed to condition the generator’s normalization layers on instance boundaries which led
to sharper, more distinct objects compared to other approaches. The addition of the proposed
components to the image generation pipeline led to our model outperforming previous state-
of-the-art approaches on a variety of quantitative metrics. A comprehensive ablation study
was performed to analyse the contribution of the proposed and existing components of the
model. Human users also rated our approach higher on generating better-suited images for
the layout over existing methods.

Evaluation metrics for GAN popularized in the single-object-class setting have been
criticized as inappropriate in the multi-class setting in literature. Our proposed SceneFID
metric addresses those concerns and presents a useful metric for the image generation
community which will increasingly deal with multi-class settings in the future. Our proposed
OC-GAN model also showed a large improvement over existing approaches on the SceneFID
evaluation criteria which further highlights the impact of our contributions.
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Chapter 7

Prologue to the third paper

7.1. Article details
Cross-Modal Information Maximization for Medical Imaging: CMIM [Sylvain

et al., 2020d]. Tristan Sylvain, Francis Dutil, Tess Berthier, Lisa Di Jorio, Margaux Luck,
Devon Hjelm, Yoshua Bengio. ICASSP 20211.
Personal contributions This paper is the result of my internship at Imagia Cybernetics, a
Montreal-based company focusing on medical imaging. As lead author, I developed most
of the ideas, conducted most of the experiments, and wrote most of the code and papers.
Francis and Tess helped implement some of the baselines. Lisa, Margaux, Devon and Yoshua
contributed valuable advice throughout the life of the project and helped with the writing.

7.2. Context
At the time I started to come up with some of the ideas behind this paper, mutual-

information based representation learning was starting to enter the research mainstream [DIM
Hjelm et al., 2018]. As I had contributed to this body of literature myself (cf. the first
article), I started thinking about whether such techniques could help improve multi-modal
representation learning as well. In the case of multi-modal data, the different views of the
input data are more explicit (compared to DIM and other related works) as they directly
correspond to different data modalities. However, the domain gap between views also increases
significantly. As a result, specific adaptations are necessary, as outlined in the main paper.

7.3. Contributions
The contributions of this paper are two-fold. First, we introduce a means of using recent

advances in mutual-information estimation [Belghazi et al., 2018b] and local representations
of the data to improve multi-modal representation learning. Second, we evaluate these
1© 2021 IEEE. Reprinted, with permission, from [Sylvain et al., 2020d]



components on a diverse set of tasks, and lay the ground for their application in other
settings.

7.4. Aftermath
This paper has been accepted to ICASSP 2021. Work on this paper was also a source

of inspiration for other related papers I contributed to. Recently, Fedorov et al. [2020a]
was accepted to the 2021 IEEE International Symposium on Biomedical Imaging. Another
paper, Fedorov et al. [2020b] is still under submission. I hope that this paper and the other
works will help showcase an interesting research direction.
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Chapter 8

Cross-Modal Information Maximization for
Medical Imaging: CMIM

8.1. Introduction
The practice of keeping hospital patient data inside information silos restricts the range

of possible data analyses that could improve patient care. The richness of hospital databases
that manifests itself in their increasing volumes and modalities/sources could offer unique
opportunities for data analysis improvement through the acquisition and use of multiple
views of the same patient coming from, for example, different medical imaging exams (CT
scans, MRI, PET, Ultrasound) and associated radiology reports.

However, patient data may contain a large variety of modalities, many of which may
be missing for a specific patient due to differing clinical procedures between specialists and
hospitals. This occurs when we are considering a specific modality in medical data sets
that tends to only be present in a few data points (for instance due to cost or rarity of the
medical condition requiring it). In addition, for some modalities such as radiology reports
and imagery, hospital-specific guidelines can lead to non-standardized annotations, image
acquisition artifacts, etc. This leads to medical data sets that are often too sample-poor to
fully take advantage of deep learning techniques. A solution to this problem would be to
build a deep learning model that will take advantage of the multiple modalities available at
training time by learning single-modal representations that minimize the information loss
when compared to multi-modal representations of the same input. This would encourage
robustness to modality dropping (i.e., the model must be able to perform well in the absence
of one or more modalities) at testing time. A way to do that is to apply recent advances in
mutual information maximization [Hjelm et al., 2018, Belghazi et al., 2018a].

In this paper, we idealize this problem setting by considering extreme modality dropping at
testing time (i.e., multiple modalities at train time, one at test time) to improve classification
of chest x-rays using the open-source Open-I data set and the segmentation of different



MRI modalities using the publicly available BRATS-2015 data set. Our contributions are as
follows:

• We reformulate cross-modal training as a mutual information maximization problem,
and propose an innovative framework harnessing recent advances in mutual-information
estimation to address it.
• By design, we are able to exploit learned representations for every modality and
exploit them at test time even when one modality is missing.
• Our proposed approach outperforms state-of-the-art baselines on two challenging
tasks, image classification and semantic segmentation.

8.2. Related Work
8.2.1. Cross-modality training

Multi-modal data has been exploited in numerous medical tasks including: caption
generation [Wang et al., 2018c] (text and images), lesion detection [Hadad et al., 2017]
(mammogram and MRI), image classification [Zhang et al., 2019c] (image and knowledge
graphs) and few-shot semantic segmentation [Zhao et al., 2019b]. While such systems yield
performance improvements, there are few works on creating systems that while benefiting
from additional training modalities are robust to modality dropping at test-time.

Solutions generally fall into three broad categories. In the first case, missing modalities are
inferred at test-time via e.g. retraining a model with the missing modalities [Hofmann et al.,
2008], synthesizing missing-modalities [van Tulder and de Bruijne, 2015], or bootstrapping
from a classifier trained on the full set of features [Hor and Moradi, 2015]. The second
approach maps modalities to a common subspace via e.g. an abstraction layer focusing on
first-order statistics [Havaei et al., 2016] or adversarial methods [Saito et al., 2016]. The
third, to which our method belongs, optimizes some similarity metric between different
views/modalities of the data, by e.g. canonical correlation analysis [Hotelling, 1992, Andrew
et al., 2013] or attention combined with shared tasks such as MDNet [Zhang et al., 2017c]
and TieNet [Wang et al., 2018c].

8.2.2. Mutual information maximization

Mutual information (MI), despite being a useful quality to evaluate, is hard to estimate
in practice for non-discrete representations. Mutual Information Neural Estimation [Belghazi
et al., 2018a] introduces an estimator of mutual information via an auxiliary network. Deep
InfoMax [Hjelm et al., 2018] and more recently AM-DIM [Bachman et al., 2019] apply this
framework to representation tasks by maximizing mutual information between local and
global representations of an input. ST-DIM [Anand et al., 2019] and CM-DIM [Sylvain et al.,
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Fig. 8.1. Graphical representation of our method on multiple modalities. We train on a
set M =

{
MX,M1, · · · ,Mn

}
modalities at train time. At test-time, only MX is provided.

We map the input to both per-modality local features ΛMi , per-modality global features
ΓMi and a multi-modal global embedding Γ shared across modalities. The local-local and
local-global losses correspond to the mutual information terms introduced in the proposed
method section. We omit the global embeddings for the segmentation task. In addition
to the losses shown, we also train with the task specific segmentation loss Lseg (pixel-wise
categorical cross-entropy) and classification loss Lclassif (categorical cross entropy) not shown
in this figure.

2020a,c] apply this in turn to reinforcement learning and zero-shot learning respectively.
Our work is the first to consider maximizing mutual information between representations of
different modalities of a same input.

Previous works on applying mutual information to cross-modal learning usually constrain
the architecture, such as the shared weights approach of Rastegar et al. [2016] or introduce
other constraints whereas our approach is more general.

8.3. Proposed method
Our approach, represented in Figure 8.1, aims to improve supervised downstream per-

formance in the setting where a subset of modalities present at train time are not present
at test time1. We do this by maximizing mutual information between representations of
different modalities of a given input. This will encourage each modality to retain as much
discriminative information as possible.

1In practice we consider only one modality present at test-time
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8.3.1. Mutual information maximization

Our work applies the mutual information neural estimator (MINE) introduced in Belghazi
et al. [2018a]. Formally, the mutual information between two random variables X and Y is
defined as the KL-divergence between the joint distribution and the product of the marginals,
i.e., DKL(PXY ||PX ⊗PY ). MINE maximizes a lower bound on that quantity derived from the
Donsker Varadhan formulation. In our case, we found, similarly to Hjelm et al. [2018], that
performance was improved by considering instead the Jensen-Shanon estimator, leading to:

Îθ(X, Y ) = EPXY [−sp(Tθ(x, y))]− EPX⊗PY [sp(Tθ(x, y)], (8.3.1)

where sp(z) = log(1 + ez) and Tθ is a neural network with parameters θ.

8.3.2. Cross-modality mutual information

In this work, we are concerned with optimizing mutual information between representations
of different modalities of a given input. We train on a set M =

{
MX,M1, · · · ,Mn

}
of

modalities at train time. At test-time, only MX is provided. Each modality Mi can be
mapped to local features ΛMi (2D and 1D pre-pooling convolution maps for images, and text
respectively), and global features (pooled convolution maps) ΓMi . Similarly, we can obtain
representations ΛM and ΓM for all the input modalities. For more details, see the section
on design choices. We can then define cross-modal local-local, local-global and global-global
losses as respectively:

Ll→l = 1
N2

N∑
n,m

Î(ΛMi
n,ΛM

m) (8.3.2)

Ll→g = 1
N

∑
n

Î(ΛMi
n,ΓM) (8.3.3)

Lg→g = Î(ΓMi ,ΓM). (8.3.4)

8.3.3. Design choices

We have presented a global framework that can tackle different cases. In what follows,
we will apply it to semantic segmentation and image classification. We only optimize the
local-local mutual information loss in the first case. For classification, we optimize two losses:
local-local and local-global. This choice is motivated by empirical performance, and the
argument that semantic segmentation tasks benefit less from global information.

Each model is in addition to the mutual information losses optimized with its task-specific
loss, Lseg (pixel-wise categorical cross-entropy) and Lclassif (categorical cross-entropy).
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Method Training
I T

Testing
I T*

AUC

ResNet • ◦ • ◦ 0.785
TieNet • • • • 0.741
CMIM • • • ◦ 0.793

Table 8.1. Results on Open-i. The Train phase and Test phase columns indicates which
modality were used, among the image I, the text T, and the generated text T* obtained
from a captioning model (• denotes presence, ◦ absence). Note that the true text modality
T is never present at test time. As we can see, our model outperforms the baselines, and
contrary to TieNet, is actually able to leverage the second modality during training.

The final training classification and segmentation losses are respectively:

LC = λl→gLl→l + λl→lLl→l + λCLclassif (8.3.5)

LS = λl→lLl→l + λSLseg, (8.3.6)

(8.3.7)

where the λ are hyper-parameters regulating the importance of the different losses during
training.

We use different architectures for the two downstream classification and segmentation
tasks. For the segmentation task, we consider 4 MR modalities (FLAIR, T1W, T1C, T2),
which are encoded using a U-Net [Ronneberger et al., 2015]-type model, due to its use in past
literature, and overall good performance in medical segmentation. It takes as input either
one or multiple MRI sequences as distinct channels to compute the representations.

For the classification setting, two modalities are present: text and image. Text was
encoded using 300-dimension Glove vectors [Pennington et al., 2014] trained on Wikipedia.
We did not perform fine-tuning of the embedding as this negatively impacted performance.
Image representations are obtained using a ResNet50 [He et al., 2016] encoder, and text
representations using a residual CNN variant of [Zhang et al., 2017d]. The global embedding
is a bilinear embedding of the two previous representations.

For Tθ, we used architectures similar to the “concat-and-convolve" architecture found in
Hjelm et al. [2018] (see Figure 5 in Hjelm et al. [2018]).

8.4. Experiments
8.4.1. Experimental setup

For each task, we train using the full set of available modalities, and evaluate using a
single modality. Such as setting occurs frequently in practice as per instance there might
be a small overlap between the MRI modalities a model has been trained on and the set of
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Test-time modalities
F T1 T1c T2

CMIM *HeMIS *Mean (baseline) *MLP (baseline)

• ◦ ◦ ◦ 23.37 5.57 6.25 15.90
◦ • ◦ ◦ 14.15 4.67 6.25 10.78
◦ ◦ • ◦ 49.00 49.93 30.02 32.92
◦ ◦ ◦ • 29.56 20.31 6.25 18.62

Table 8.2. Dice similarity coefficient (DSC) results on the BRATS test sets (%) in the
"enhancing" setting introduced in Havaei et al. [2016]. We consider the case where only one
of the 4 modalities is present at test-time (• denotes presence, ◦ absence). All 4 modalities
are used at train-time. Note that both these conditions create a very challenging setting,
explaining the overall low dice scores reported. * denotes results taken from Havaei et al.
[2016]. Our approach outperforms HEMIS and the other baselines on this setting with the
exception of the T1c modality where our model is a close second. In particular, strong gains
are observed for "weaker" modalities such as F and T1

acceptable test-time modalities (due to the absence of some, or domain shifts due to device
calibration making some modalities unusable)

8.4.2. Classification task

Open-I [Demner-Fushman et al., 2015] is a publicly available radiography dataset collected
by Indiana University. It contains 7470 chest x-rays with 3955 radiology reports. We prepared
the data using the same methodology as Wang et al. [2018c], i.e. keeping 14 categories of
findings as the classes for the classification problem, and only considering frontal images with
associated reports. As the orientations of the X-ray images are not specified, and in order
to keep only the frontal views, we performed manual analysis of all images, also removing
some that were heavily distorted. We re-balanced the dataset as the raw data had heavy
class imbalance. We report Area under the Curve (AUC) for all methods.

8.4.3. Semantic segmentation task

BRATS-2015 [Menze et al., 2015, Bakas et al., 2017] is a brain MRI dataset containing
220 subjects with high grade tumors, and 54 subjects with low grade tumors. There are 4
MR modalities present (FLAIR, T1W, T1C, T2), alongside a voxel-level segmentation ground
truth of 5 labels: health, necrosis, edema, non-enhancing tumor and enhancing tumor. As in
the enhancing setting in Havaei et al. [2016], the target is a binary map corresponding to a
1-versus-rest segmentation on the enhancing tumor class.

8.4.4. Baselines

For the classification task, we compare our results to TieNet [Wang et al., 2018c], a
state of the art method for multi-modal X-ray classification. We also benchmark against
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a ResNet50 [He et al., 2016] supervised on the image modality only. For the segmentation
task, we compare with Hemis [Havaei et al., 2016], a state-of-the art approach on this dataset.
We also considered the same baselines that Hemis suggested: missing modality completion
by mean (Mean) and a multi-layer perceptron (MLP). To ensure conformity with their
experimental setup, we used the same splits and code for data preparation.

8.4.5. Implementation and Training Details

Our code is written in PyTorch. Each experiment ran on V100 GPUs, using the
Adam [Kingma and Ba, 2015] solver with a global learning rate of 0.0001. Models were
trained up to convergence (early stopping on a validation set).

8.4.6. Results

When applying our model to the two experimental tasks, we had to make small adaptations.
As local information tends to be more important in segmentation, we empirically found
that local-global and global-global did not improve performance. This was not the case for
classification, where we also used the local-global loss.

For the classification setting, as we can see in table 8.1, our method outperformed the
other baselines. The discrepancy between TieNet’s result and the other methods can be
explained by the low number of training examples for the captioning model. Indeed, compared
to TieNet’s original paper where 100 000 reports are available, only a few thousands are
present in Open-I. This causes the model to quickly disregard the image modality and to only
focus on a few keywords to make its decision. However, CMIM alleviates this problem by
forcing the representation of both modalities to have high mutual-information. This in turn
encourages discriminative information to be present in both representations at inference time.

The results for the semantic segmentation task can be seen in table 8.2. Our model
outperforms the other methods overall. Interestingly, our approach seems to perform better
for the “weaker” modalities (F and T1 are known to perform poorly for enhanced tumor
detection [Havaei et al., 2016]), where less information is present at test-time. This validates
our hypothesis that CMIM is able to enhance discriminative features, even when the modality
contains a low amount of signal.

8.5. Conclusion
In this paper, we introduced a method based on mutual information for cross-modal

training. These kind of approaches can be particularly useful when some modalities are
missing, as is often the case with real world data, in particular medical data. We validated
our approach in two different tasks, each one implying different type of modality: text and
image for a classification task, and different MRI modalities for a segmentation task. In both
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cases, results are promising. Interestingly, for MRI segmentation, our approach yields the
best results when the modality present at test time conveys less discriminative information.

For future work, we plan on adapting the current model to be able to use multiple
modalities at test time. Furthermore, we hope that our setup will pave the way for zero-shot
learning approaches, where we would present the model with unseen modalities at test time.
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Chapter 9

General conclusion

Despite many advances in computer vision in recent years, including attaining human-level
performance on simple visual perception tasks such as classification and semantic segmentation,
many more complex visual tasks remain elusive. These tasks are of a higher order, and
often involve visual reasoning. Many of the algorithms developed to solve these complex
tasks depend on good representations of images. In the articles presented in this thesis, we
attempted to explain and improve the performance of representation learning algorithms by
returning to first principles, in particular locality and compositionality, two principles with a
proven and important effect on the quality of representation learning.

In chapter 4, we analyzed the extent to which different image representations were
local and compositional, and found a strong relationship between these two quantities and
downstream ZSL generalization performance. We use these results to propose CM-DIM, a
novel representation learning algorithm based on preserving important local information, that
outperforms other methods on our experimental setup. Additionally, the zero-shot learning
setup we introduce, zero-shot learning from scratch [Sylvain et al., 2020c], is shown to be
a good means of disentangling zero-shot concept learning from simpler transfer learning of
previously trained visual representations. This in turn could be very useful for future research
in the field.

In chapter 6, we showed that by introducing a scene-graph similarity module (that
encouraged a model to retain local information, and also to understand a scene as a composition
of different objects and their relations), we could improve layout-to-image performance as
measured by a large set of metrics. This is both a validation of the importance of locality
and compositionality on a different experimental setting, but also a demonstration that these
principles can be used from the bottom up to design new deep learning models.

Finally, in chapter 8, we showed that using a mutual-information-based cross-modal loss
term improved the generalization of learning algorithms in a series of experimental setups.
This work was the basis for two follow up articles that analyze in more detail the benefits of



cross-modal mutual information in a medical setting. Future work will now focus on actually
deploying these innovations in a clinical context.

9.1. Improving our understanding of locality and com-
positionality

In the first presented article, our focus was on zero-shot image classification. However,
the methods presented are much more general. Current work is ongoing on extending these
insights to zero-shot semantic segmentation. In this context, the analysis will be geared
towards incorporating more precise location information (given that we have access to semantic
segmentation maps as opposed to images and their global labels). It would be also interesting
to extend this analysis to a completely different domain of adaptation: natural language
processing (NLP). There is extensive work on zero-shot NLP tasks, but no work currently
exploiting the inherently strong compositional nature of natural text.

We can also consider a different research direction. Recently, there has been impressive
progress on applying transformers [Vaswani et al., 2017] to vision problems, either with
the perspective of joint text and image representations [Li et al., 2020, Oscar], or on image
patches [Dosovitskiy et al., 2021, ViT], in both cases with impressive results. Rather than
stop at the direct conclusion that this is simply yet another proof of the importance of both
locality and compositionality, it would be essential to perform a related analysis to the one
performed in our first presented work. The main question that remains to be answered is
to what extent we can link different measures of both concepts to downstream performance.
Can we encourage such models to be even more local, and does it improve performance?

9.2. Towards better modeling of complex scenes
The second work showcases different learning techniques and architectural components

being applied to improve visual representation and generation of complex scenes. Scene
representation is often also essential for the related problem of visual question answering.
Currently, I am working on a project aiming to measure the effect of improving visual
representations of complex scenes on the downstream performance of a question answering
model. This approach is designed so as to disentangle the reasoning part from the analysis: we
rely on a black-box visual question answering model [Amizadeh et al., 2020] that we adapted
to only take as input predictions of the presence of objects, relations and attributes. As a
result, I am able to measure changes to downstream performance by changing the quality of
the visual representations and resulting predicted probabilities. This analysis should answer
many questions related to generalization in visual question answering, the most notable being:
is a good visual representation all you really need to answer questions? This ties in to one
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of the major points of this thesis first mentioned in the introduction: visual representations
are essential for generalization in many complex tasks. The end goal of this body of work
is therefore to contribute to building a universal model of arbitrarily complex images, that
could then be simply and efficiently applied to many visual tasks with minimal adaptation.

9.3. Final remarks
Overall, we have demonstrated the importance of locality and compositionality in rep-

resentation learning, and in particular its strong impact on downstream performance for a
large number of tasks. Additionally, we have highlighted a series of future directions in which
these insights could be beneficial to the computer vision community in general.
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Appendix A

Appendix for the first paper

A.1. Extracting local and global features from a CNN
encoder

A.1.1. Explaining local and global features

Fig. A.1. The convolutional encoder takes
as input an image and outputs a global rep-
resentation - used to compute the model loss
Lmodel. To encourage locality and composi-
tionality, label or attribute based classifica-
tion is performed on the activations from early
layers(Llocal).

A.1.2. Explaining the role of local and global features for MI com-
putation

Fig. A.2. Local and global features are ex-
tracted from different images (where local
features are activations from an early layer
in the CNN encoder), then scored against
each other. A high score means the two are
considered likely to be extracted from the
same image by the model, giving us insight
in what information is encoded by the global
representation. A heatmap of the scores is
used to make the result interpretable.



A.2. Implementation details
All models used in this paper have been implemented in PyTorch, and code will be made

publically available. All images were resized to size 128× 128, random crops with aspect ratio
0.875 were used during training, and center crops with the same ratio were used during test.
While most ZSL approaches do not use crops (due to the fact that they used pre-computed
features), this experimental setup was shown to be efficient in the field of text to image
synthesis [Reed et al., 2016b]. All models are optimized with Adam with a learning rate of
0.0001 with a batch size of 64. The final output of the encoder was chosen to be 1024 across
all models. Local experiments were performed extracting features from the third layer of the
network. These features have dimension 27× 27× 384 for the AlexNet based encoder and
14× 14× 256 for the DCGAN encoder.

A.3. MI heatmaps comparing CMDIM with different
local losses

In Fig. A.3 we show how local losses affect the type of information CMDIM extracts. We
can see how in some cases, e.g. the Nashville Warbler and Rusty Blackbird, the label-based
local loss (LC) results in the encoder focusing more on the background and missing out on
discriminative features. On the other hand, the label-based (LC) local loss helps the model
focus on more localised distinctive patches, especially for the Rusty Blackbird and the Rufous
Hummingbird.

Fig. A.3. Visualization of locality comparing encoders trained with CMDIM’s loss and
the proposed local losses. The Figure highlights the impact of local losses on the content
extracted by the encoders.
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A.4. Parts ratio and relationship to different measures
of image similarity.

In Fig. A.4, we plot the Parts ratio against the two different measure of image similarity
considered in our experiments and we report the correlation between them across the
considered families of models. The correlation was computed over 20.000 pairs of images for
each family. While not being a strong correlation, our experiments show how it’s a statistically
significant one, with associated p-value (expressing the probability of a not-correlated sample
resulting in the reported correlation coefficients) of less than 10−6.

(a) (b)

Fig. A.4. Relationship between the parts score and different measures of similarity. On
the left, the parts scores is plotted against the two different measures of similarity. We can
see there is a clear trend for all the models: the parts score increases for more semantically
similar images, and decreases as the images become more similar pixel-wise. The figure on
the right shows Pearson’s correlation coefficient between the metrics for different models

Fig. A.5. Comparing pre and post-pooling (respectively Small and Big) features in terms
of ZSL accuracy. The effect of a varying receptive field size strongly depends on the model
type and on the dataset, highlighting how locality is expressed differently in the datasets.
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A.5. How local do the representations need to be?
A somewhat alternative way to test if local information is relevant for generalization

is to explicitly only consider local information. To achieve this, we consider performing
classification directly on features whose receptive field doesn’t cover the entire image. In
our experiments we consider the features extracted from the AlexNet based encoder right
before the flattening and final linear layers. To see the effect of varying the receptive field, we
perform the same experiment and pre and post last pooling layer, going from a receptive field
of 65 pixels (referred to as small in the plots) to 85 pixels (big), out of 128 in the original
input. The way these local prediction are combined is described in the following section.
The results are summarized in Fig. A.5. We can see how the dataset seems to make quite a
difference for class-matching DIM that benefits from pooling for the datasets where usually
the object is in a small part of input, while for SUN, where the whole image tends to be
relevant as the images depict scenes, pooling either does not affect or has a negative effect
on performance. For reconstruction based models on the other side we see a different trend,
where not performing pooling consistently results in better performance across all datasets.

A.6. Bird parts location maps
The parts annotations provided with the CUB dataset give us the ability to explicitly

quantify whether the encoder is learning to extract meaningful local information. To evaluate
this, we train a classifier for each part, that takes as input local features extracted from a
specific layer of the CNN encoder and outputs the probability of that part being present
within the receptive field of the local feature. To construct a ground truth for this evaluation,
we pre-process the parts clicks annotations as follows: the datasets provides, for each input
and part, a list of multiple parts location as perceived by multiple MTurk workers. Each
annotation is provided as (x, y) coordinates of the center of the part and a boolean feature
visible indicating whether the part is hidden in the considered input. The ground truth for the
classifiers is obtained by converting each part annotation into a boolean semantic map, where
a truth value is assigned to a square of side 10 pixels centered in all the locations provided
by different MTurk users for each part when visible. This process is repeated separately for
all the 15 parts. The obtained boolean masks are then processed through a CNN to project
them to the size compatible with the extracted features, so that the classifier’s loss can be
computed. Importantly, this loss is never backpropagated through the encoder, as these
classifiers are meant to only evaluate whether the considered local features are predictive of
the parts.
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A.7. Class Matching DIM
Deep InfoMax [Hjelm et al., 2018] is a self-supervised representation learning algorithm

that is trained by maximizing Mutual Information (MI) between local and global features
extracted from the network. More specifically, DIM’s objective is a lower bound to MI
based on the Donsker-Varadhan representation of the KL divergence that computes two
expectations: one over the joint distribution of local and global features, and one over the
product of the marginals. In the original DIM setting, samples from the joint distribution
(positive samples) are defined as local-global pairs extracted from the same input, while for
the product of marginals (negative samples) local and global features are extracted from
different inputs.

Class Matching DIM performs a similar operation, but samples from the joint distribution
are defined to be pairs of local-global features extracted from different inputs belonging to
the same class, and negative samples are pairs where features are extracted from inputs of
different classes. Moreover, we add a hyper-parameter p that allows to control the interplay
between DIM and CMDIM, so that positive samples are extracted from inputs of the same
class with probability p and from the same input otherwise. Intuitively, this would push the
encoder to extract features relevant to a specific input while identifying what features are
shared across a single class.

A.8. Definition of TRE
We introduce the following notations:
• X is a dataset, split into train Xtr and test Xte sets.
• For x ∈ X belonging to a class with binary attributes ai (for continuous attributes
we threshold them beforehand), we define D(x) to be the set of 1-valued attributes
(present attributes).
• Each attribute ai is assigned a learnable vector representation fη(ai) = ηi.
• δ(·, ·) is a distance function, chosen to be cosine similarity as in Andreas [2019].

As in Andreas [2019] we combine individual attribute representations by summation:

fη(D(x)) =
∑

ai∈D(x)
fη(ai)

We can now define:

TRE(x, a ; η) = δ
(
fη(x), fη(D(x))

)
TRE(X , a; η) = 1

|X |
∑
x∈X

TRE(x, a; η)

We compute η = arg minη′ TRE(Xtr, a; η′) and omit it in what follows by abuse of notations.
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A.9. Architectures and datasets details

Table A.1. Details of the datasets used

Dataset #Images #Attributes #Classes #Train classes #Test classes
CUB 11,788 312 200 150 50
AWA 30,475 85 50 40 10
SUN 14,340 102 717 645 72

Table A.2. Basic 128x128 architecture details.

Layer Layer type Layer params pooling activation
0 conv (64, 4, 2, 1), batch norm - ReLU
1 conv (128, 4, 2, 1), batch norm - ReLU
2 conv (256, 4, 2, 1), batch norm - ReLU
3 conv (512, 4, 2, 1), batch norm - ReLU
4 conv (1024, 4, 2, 1), batch norm - ReLU
5 flatten - - -
6 linear (1024), batch norm - ReLU

Table A.3. AlexNet 128x128 architecture details.

Layer Layer type Layer params pooling activation
0 conv (96, 3, 1, 1), batch norm (MaxPool2d, 3, 2) ReLU
1 conv (192, 3, 1, 1), batch norm (MaxPool2d, 3, 2) ReLU
2 conv (384, 3, 1, 1), batch norm - ReLU
3 conv (384, 3, 1, 1), batch norm - ReLU
4 conv (192, 3, 1, 1), batch norm (MaxPool2d, 3, 2) ReLU
5 conv (192, 3, 1, 1), batch norm (MaxPool2d, 3, 2) ReLU
6 flatten - - -
7 linear (4096,), batch norm - ReLU
8 linear (4096,), batch norm - ReLU
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A.10. TRE Ratio Values

Table A.1. TRE ratio values for the CUB dataset

Normal AC LC Normal_a AC_a LC_a
Model Basic Alex
classifier_full 0.761 0.737 0.807 0.758 0.787 0.758
vae 1.062 1.042 1.066 1.111 1.079 1.11
vae_beta 1.04 1.044 1.044 1.12 1.087 1.1
aae 1.011 0.989 1.036 1.003 0.974 0.999
local_dim 0.771 0.875 0.798 0.755 0.783 0.725
local_twopass 0.881 0.913 0.85 0.762 0.804 0.739
local_twopass_class_matching 0.639 0.633 0.752 0.676 0.649 0.624

Table A.2. TRE ratio values for the AWA2 dataset

Normal AC LC Normal_a AC_a LC_a
Model Basic Alex
classifier_full 0.88 0.873 0.913 0.882 0.878 0.909
vae 1.395 1.292 1.379 1.566 1.499 1.681
vae_beta 1.325 1.33 1.372 1.631 1.485 1.567
aae 0.886 0.941 0.986 1.282 0.945 0.913
local_dim 1.211 1.206 1.174 1.154 1.264 1.062
local_twopass 1.103 1.072 1.093 1.151 0.998 1.105
local_twopass_class_matching 0.996 1.155 0.887 1.054 1.118 1.07

Table A.3. TRE ratio values for the SUN dataset

Normal AC LC Normal_a AC_a LC_a
Model Basic Alex
classifier_full 0.85 0.803 0.82 0.839 0.794 0.848
vae 1.005 1.005 1.002 1.04 1.036 1.035
vae_beta 0.989 0.995 0.989 1.038 1.031 1.031
aae 0.963 0.976 0.975 0.954 0.926 0.958
local_dim 1.132 0.977 1.043 1.156 0.995 1.036
local_twopass 1.047 0.912 0.969 1.123 1.042 1.057
local_twopass_class_matching 0.832 0.755 0.877 0.859 0.82 0.956
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A.11. F1 part average scores

Table A.1. Part average F1 score, CUB dataset, basic encoder.

Loss Normal AC LC
Model
FC 0.198 0.368 0.284
VAE 0.07 0.334 0.265
beta-VAE 0.067 0.353 0.255
AAE 0.086 0.085 0.024
DIM 0.235 0.393 0.304
AMDIM 0.311 0.406 0.319
CMDIM (p=1) 0.313 0.406 0.314
CMDIM (p=0.5) 0.295 0.397 0.321
CMDIM (p=0.1) 0.315 0.382 0.312
PN 0.288
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Table A.2. ZSL accuracy, comparing the different local losses.

Encoder alex128x128 basic128x128
Loss Normal AC LC Normal AC LC
Model Dataset
FC

CUB

30.47 34.92 32.40 27.44 32.17 30.44
VAE 12.08 13.41 12.51 12.13 13.46 10.27
beta-VAE 11.75 11.77 12.33 12.03 12.85 12.52
AAE 15.16 15.00 15.49 9.12 12.36 9.80
DIM 23.93 33.35 31.84 24.42 32.54 29.17
AMDIM 24.34 29.05 31.12 24.42 30.29 28.83
CMDIM (p=1) 35.80 40.11 32.31 29.24 30.08 30.04
CMDIM (p=0.5) 35.12 37.02 35.27 29.67 35.15 31.06
CMDIM (p=0.1) 29.83 33.60 33.02 27.03 32.35 31.14
PN 37.59 - - 26.29 - -
FC

AWA2

46.48 52.81 46.04 45.94 45.98 46.09
VAE 29.17 28.54 28.76 30.02 29.60 29.48
beta-VAE 29.98 30.11 29.22 29.00 29.47 29.94
AAE 32.07 29.46 30.93 31.94 29.31 31.85
DIM 38.73 45.54 43.89 39.63 44.23 44.32
AMDIM 42.84 45.41 46.95 42.04 49.01 43.77
CMDIM (p=1) 45.80 46.56 42.14 46.87 45.00 39.70
CMDIM (p=0.5) 46.87 48.06 48.45 46.87 47.92 45.63
CMDIM (p=0.1) 47.29 51.51 50.17 45.71 49.51 48.01
PN 46.53 - - 45.23 - -
FC

SUN

33.02 36.89 37.57 32.20 38.79 32.74
VAE 14.61 15.08 14.33 15.14 16.58 15.22
beta-VAE 13.80 14.20 13.79 15.08 15.29 16.58
AAE 17.93 16.78 17.86 18.55 18.41 18.13
DIM 31.73 39.06 37.64 33.69 41.44 38.52
AMDIM 38.04 41.44 39.67 37.64 42.26 38.19
CMDIM (p=1) 35.73 37.43 32.81 34.44 37.98 31.18
CMDIM (p=0.5) 37.43 40.15 36.62 35.39 39.74 34.10
CMDIM (p=0.1) 40.01 42.05 38.51 40.56 43.13 38.93
PN 32.00 - - 29.82 - -
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Table A.3. ZSL accuracy, comparing the different local models.

Average before Average after
Model Dataset pool no pool pool no pool
FC

CUB

28.55 21.45 13.02 11.75
VAE 8.37 8.06 8.33 8.15
beta-VAE 8.04 8.77 7.91 8.02
AAE 8.20 7.37 7.28 6.84
DIM 18.48 14.39 15.07 11.81
AMDIM 21.45 17.68 16.67 14.04
CMDIM (p=1) 34.11 22.16 13.51 15.17
CMDIM (p=0.5) 33.48 22.88 19.07 16.35
CMDIM (p=0.1) 26.17 19.23 18.38 15.89
FC

AWA2

48.57 46.95 38.90 41.98
VAE 26.36 30.04 25.47 26.37
beta-VAE 24.78 26.32 27.63 27.11
AAE 26.74 23.59 26.08 25.23
DIM 35.37 34.77 33.54 33.99
AMDIM 41.37 41.34 40.57 37.12
CMDIM (p=1) 49.66 46.26 48.16 42.57
CMDIM (p=0.5) 49.17 45.99 45.90 43.28
CMDIM (p=0.1) 50.95 44.26 44.90 37.79
FC

SUN

33.97 34.31 32.13 32.15
VAE 11.48 12.84 10.73 10.14
beta-VAE 11.96 14.06 11.89 13.06
AAE 9.38 11.07 9.31 11.32
DIM 25.82 26.83 24.80 25.56
AMDIM 34.04 35.19 34.51 34.58
CMDIM (p=1) 37.02 36.75 33.70 36.53
CMDIM (p=0.5) 37.98 38.93 35.53 37.29
CMDIM (p=0.1) 35.73 35.60 34.58 36.39

A.12. Full plots
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Fig. A.6. Comparison between averaging representations VS averaging scores for all models.

127



Fig. A.7. Comparison between small and big receptive field for all models.
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Appendix B

Appendix for the second paper

B.1. Comparison with Semi-Parametric Methods
Recently, semi-parametric methods have been proposed in the field of layout-to-image

generation Li et al. [2019a]. We excluded a comparison with these methods in the main paper
due to the fact that (1) they are structurally different (they incorporate real images when
generating images) leading to difficulties in making a fair comparison and (2) they function
in diverse ways, not all of which can be applied to our setting Qi et al. [2018].

We include a comparison with the state-of-the art semi-parametric model, PasteGAN Li
et al. [2019a] in Table B.1. This method outperforms most of the other baselines, but still
performs worse than our method.

B.2. Dataset statistics
The dataset statistics are presented in Table B.1.

Inception Score ↑
Methods COCO VG
PasteGAN Li et al. [2019a] † 10.2± 0.2 8.2± 0.2
OC-GAN (ours) 10.5± 0.3 8.9± 0.3

FID ↓
Methods COCO VG
PasteGAN Li et al. [2019a] † 38.29 35.25
OC-GAN (ours) 33.10 22.61

Table B.1. Comparison of our method with the semi-parametric method PasteGAN Li et al.
[2019a]. We use † to denote results taken from the original paper. The best results in each
category are in bold. Our method outperforms this baseline across the evaluation metrics
considered.



Dataset COCO-Stuff VG
# Train Images 24 972 62 565
# Valid Images 1 024 5 506
# Test Images 2 048 5 088
# Objects 171 178
# Objects in Image 3 ∼ 8 3 ∼ 30

Table B.1. Statistics of the COCO-Stuff and Visual Genome datasets.

B.3. Spatial Relationships used for Generating the
Scene-Graph

We used 6 spatial relationships to generate the scene-graphs from layouts. All of the
spatial relationships are derived from the bounding box coordinates specified in the layouts.
If an edge in the scene-graph is represented as <subject, relationship, object>, then the
possible relationships we consider are:

• “left of”: subject’s centre is to the left of object’s centre
• “right of”: subject’s centre is to the right of object’s centre
• “above”: subject’s centre is above object’s centre
• “below”: subject’s centre is below object’s centre
• “inside”: subject contained inside object
• “surrounding”: object contained inside subject

B.4. A Note on Evaluation
Inception Score and FID were computed using the official Tensorflow implementations 1,2

(the most commonly available PyTorch implementations give slightly different but close
values), to ensure compliance with the literature. In the past, papers considering layout and
scene graph to image generation have used different values for the number of splits when
computing the Inception score, ranging usually from 3 to 5 (as shown in the different official
implementations and via contacting some of the authors). Empirically, we found that lowering
the split size results in better numerical values for the inception score, for all methods relevant
to this work. Out of fairness considerations, we opted for splits of size 5 and note that in
addition to this issue, the size of the evaluation set for Inception score computation is very
low compared to recommended sizes. This impacts the relevance of this metric.

In addition to the above concerns, some models used different network architectures to
compute the inception score (e.g. Zhao et al. [2019a] uses a VGG net as opposed to the standard

1https://github.com/openai/improved-gan for Inception Score
2https://github.com/bioinf-jku/TTUR for FID
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Inception-V3 network as noted in their paper). We used the official Inception-V3-based
evaluation on all models.

Some models introduce non-standard data-augmentation (e.g. Sun and Wu [2019] uses
image flips during training). Out of fairness considerations, we compared our approach to
the official reported values, and used the same data-augmentation as the compared methods,
when applicable.

B.5. Complexity of scenes
We focus on generating images of complex scenes, which warrants a definition of what

complex scenes are specifically. In this work, we use the following heuristic. Complex scenes
are first and foremost defined with respect to single object datasets: for the most part, images
in MS-COCO and VG contain multiple objects (up to 30 in our case). In addition to this,
images in both datasets come annotated with relations and attributes (which we do not use in
this work, in accordance with the literature). The underlying variability of the scene graphs
is also a source of complexity.

B.6. Implementation and Training Details
Architecture diagrams for all the modules of our model OC-GAN are presented in

Figs. B.1 and B.2. Some additional hyper-parameter details:
• In the SGSM module, images are resized to size 299× 299 before being processed by
the image encoder.
• In the SGSM module, the common semantic space for graph and image embeddings
has a dimension of 256.

B.7. Additional Qualitative Results
We present additional qualitative 128×128 samples on the COCO-Stuff dataset in Fig. B.3

and on the Visual Genome dataset in Fig. B.4.
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Fig. B.1. Architecture diagrams for (a) Generator (b) Generator ResBlocks (c) Image
Discriminator. All generator inputs are derived from the layout. The Masked Object
Embeddings are produced by the Conditioning Module. If input and output dimensions
match for the Generator ResBlock, then the shortcut is a skip connection.
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(a) Scene-Graph Encoder
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Fig. B.2. Architecture diagrams for (a) Scene-Graph Encoder (b) Conditioning Module
(c) Mask Net (d) Object Discriminator. The Scene-Graph Encoder takes as input a scene-
graph derived from the layout and processes it with a Graph Convolutional Network. The
Conditioning Module generates the Masked Object Embeddings, which along with instance
boundaries and 1-hot layout, are the conditioning information for the Generator. The Mask
Net is a submodule of the Conditioning Module. The Object Discriminator operates on
cropped image boxes in an AC-GAN framework, predicting whether the crop is real or
generated as well as classifying the object inside the crop.
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Layout SPADE SOARISG LostGAN OC-GAN

Fig. B.3. 128× 128 COCO-Stuff test set images, taken from our method (OC-GAN) and
multiple competitive baselines.
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Layout LostGAN OC-GAN

Fig. B.4. 128× 128 Visual Genome test set images, taken from our method (OC-GAN) and
the LostGAN baseline.
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