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Résumé

L’imagerie moderne générée par ordinateur cherche constamment à être de plus en plus représenta-
tive de la réalité physique tout autour de nous, et un de ces phénomènes clés est la notion d’effets
de distribution. Les effets de distribution sont une catégorie de comportements du transport de la
lumière caractérisés par leur nature distribuée selon une ou plusieurs dimension(s) donnée(s). Par
exemple, le flou de mouvement est un effet de distribution dans le temps, alors que la profondeur
de champ introduit le diaphragme de la caméra, ajoutant ainsi deux dimensions. Ces effets sont
communs dans les films et la réalité, les rendant donc désirables à reproduire.

Dans cette thèse par articles, nous présentons quatre articles qui utilisent, étendent ou s’inspirent
des effets de distribution. Premièrement, nous proposons une technique novatrice pour faire le
rendu de flou de mouvement non-linéaire pour des applications en temps réel tout en conservant des
caractéristiques clés d’efficacité et de mise à l’échelle. Nous tirons avantage des courbes de Bézier
pour concevoir une approximation de mouvement non-linéaire depuis seulement quelques images
clés et rastérisons une géométrie synthétisée pour reproduire le mouvement. Deuxièmement, nous
présentons un algorithme qui fait le rendu de matériaux scintillants à haute fréquence illuminés par
de grandes cartes environnementales. En utilisant une combinaison d’un système d’histogrammes
de mi-vecteurs compact et des harmoniques sphériques multi échelle, nous pouvons efficacement
représenter des normales de surface denses et rendre leurs interactions avec des sources de lumière
filtrées de grandes dimensions. Troisièmement, nous introduisons une nouvelle méthode pour faire
le rendu de dispersion sous la surface en tirant avantage de l’analyse fréquentielle et du parcours d’un
arbre dual. En calculant le transport de la lumière sous la surface en espace image, nous pouvons
rapidement analyser la fréquence du signal et déterminer des bandes passantes efficaces que nous
pouvons alors utiliser pour limiter notre traversée dans un arbre dual d’ombrage et d’illumination.
Finalement, nous démontrons un algorithme novateur d’illumination globale diffuse en temps réel
qui utilise des sondes d’irradiance dynamiques. Grâce à des mises à jour efficaces de distribution
de radiance, nous pouvons mettre à jour des sondes d’irradiance pendant l’exécution, prenant en
compte les objets dynamiques et une illumination changeante, et nous le combinons avec une
requête d’irradiance filtrée plus robuste, rendant une grille de sondes d’irradiance dense traitable en
temps réel avec des artefacts minimes.

Mots-clés : effets de distribution, transport de la lumière, dispersion sous la surface, rendu temps
réel.
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Abstract

Modern computer generated imagery strives to be ever more faithful to the physical reality around
us, and one such key physical phenomenon is the notion of distribution effects. Distribution effects
are a category of light transport behaviors characterized by their distributed nature across some
given dimension(s). For instance, motion blur is a distribution effect across time, while depth of
field introduces a physical aperture for the camera, thus adding two more dimensions. These effects
are commonplace in film and real life, thus making them desirable to reproduce.

In this manuscript-based thesis (thèse par articles), we present four papers which leverage,
extend or inspire themselves from distribution effects. First, we propose a novel technique to
render non-linear motion blur for real-time applications while conserving important scalability and
efficiency characteristics. We leverage Bézier curves to approximate non-linear motion from just
a few keyframes and rasterize synthesized geometry to replicate motion. Second, we present an
algorithm to render glinty high-frequency materials illuminated by large environment maps. Using
a combination of a compact half-vector histogram scheme and multiscale spherical harmonics, we
can efficiently represent dense surface normals and render their interaction with large, filtered light
sources. Third, we introduce a new method for rendering subsurface scattering by taking advantage
of frequency analysis and dual-tree traversal. Computing screen-space subsurface light transport,
we can quickly analyze signal frequency and determine efficient bandwidths which we then use
to limit our traversal through a shading/illumination dual-tree. Finally, we show a novel real-time
diffuse global illumination scheme using dynamically updated irradiance probes. Thanks to efficient
spherical radiance distribution updates, we can update irradiance probes at runtime, taking into
consideration dynamic objects and changing lighting, and combine it with a more robust filtered
irradiance query, making dense irradiance probe grids tractable in real-time with minimal artifacts.

Keywords: distribution effects, light transport, subsurface scattering, real-time rendering.
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of the outgoing light-field [Bs,Bθ ] as the bandwidth of the BSSRDF along the outgoing
spatial positions and directions (a). The interaction with the material limits the spectrum
of the local light-field by the BSSRDF spatial and angular bandwidth (b). To estimate
the bandwidth at the camera position, we first shear spatially the spectrum to account for
curvature (c). Then, we scale spatially to account for foreshortening (d) and finally shear
angularly the spectrum to account for transport (e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

56 We compare IlluminationCut (Bus et al. [17]) to the method of Jensen and Bulher [54]
on the BUNNY scene with various ε error bound settings. The cost of computing the
upper-bound metric (Eq. 13 of Walter et al. [106, Eq. 13]), which requires multiple
BSSRDF evaluations, precludes the direct applicability of IlluminationCut to adaptive
BSSRDF shading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

57 First row: The sampling rate sp computed from the screen-space bandwidth estimation.
Second row: Pixel areas from which the sampling rate predicts an adequate
approximation of the outgoing radiance variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

58 We compare our approach (red) to Jensen and Bulher [54] (blue) for different settings of
ε . We highlight the ε ∈ [0.01,0.2] values and consistently reach equal-quality (measured
in RMSE; y-axis) in less render time (in seconds; x-axis). The PICNIK scene challenges
the assumptions of our work, and we only obtain equal-quality benefit at lower rendering
times (albeit enough for visual convergence). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

59 The TOAD scene has a bumpy geometry with detailed textures. We compare the
difference images of the multiple scattering term against the ground-truth for an equal
rendering time (196s). The difference images are scaled by 50 for visualization. Our
approach achieves more accurate estimation than the single-tree in the same rendering
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

60 The BUNNY scene. We compare the difference images of the multiple scattering term
against the ground-truth for an equal rendering time (60s). The difference images are
scaled by 200 for visualization. In this example, our approach removes artifacts under
the tail and reduces Moiré patterns present in the single-tree approach. . . . . . . . . . . . . . . . 126

61 Combined with state of the art glossy ray tracing and deferred direct shading, our method
(left) generates full global illumination in dynamic scenes that are visually comparable
to offline path traced results (right) but several orders of magnitude faster: 6 ms/frame,
versus 1 min/frame in this scene (on GeForce RTX 2080 Ti at 1920×1080). Insets
isolate the direct lighting contribution and visualize the probe locations. . . . . . . . . . . . . . 131

22



62 Previous interactive GI methods suffer from artifacts that often necessitate heuristic
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Introduction

For several decades, computer graphics have been playing a growing role in cinema, television
and video games. With computer-generated imagery (CGI), it is possible to create richer stories,
more convincing worlds and more imaginative characters than ever before, all the while making
these new possibilities more accessible to up and coming artists, filmmakers and game developers.
But, computer graphics does have a cost, taking anywhere from seconds to days or even weeks to
produce the spectacular imagery we associate with it today, and so it has become key to be able
to reduce this cost as much as possible through algorithms and frameworks capable of optimizing
or simplifying the tremendous amounts of calculations necessary to produce the aforementioned
results.

However, modern computer graphics research has now reached such a level of maturity that
multiple specializations exist, with each addressing specific issues, be it from a simulation, ap-
pearance modeling, or even user interaction standpoint. This thesis focuses on one of the most
well-established specializations: light transport.

Light transport, at its most fundamental level, models the interaction of light with the real world.
It defines everything from how light propagates from a source such as the sun, to how it interacts
with surfaces or through volumes such as fog. While some interactions are fairly simple, such as
travel through a vacuum (ignoring relativistic effects), others can become incredibly complex, such
as light bouncing off multiple surfaces before hitting a distant object, creating intricate patterns
along the way.

The fundamental behavior of light transport can be summarized elegantly in the rendering
equation [56],

Lo(x,ωo,λ ) = Le(x,ωo,λ )+
∫
Ω

fr(x,ωi,ωo,λ )Li(x,ωi,λ )(ωi ·ωn)dωi, (1)

which explicitly defines the outgoing light Lo at a surface x leaving in direction ωo and with
wavelength λ as a function of the emitted light Le at the surface (with the same outgoing direction
and wavelength) and of the incoming light Li from any direction, modulated by the bidirectional
scattering distribution function (BSDF) fr, which describes the innate properties of the surface and
its behavior for a pair of directions (ωi,ωo) relative to the surface normal ωn (see Figure 1). A



BSDF can model anything from wood to metals to plastic or even skin, with extensions such as
bidirectional scattering-surface reflectance distribution functions (BSSRDF) modeling light as if it
penetrated through the surface to interact within it, exiting at a different location as it bounces out
of the material.

Fig. 1. Typical surface representation for a BSDF fr with an incoming ray ωi, an outgoing ray ωo,
and a surface normal ωn. By convention, all vectors point away from the surface. A BSDF displayed
in this way is specific to the given ωi and indicates the attenuation factor of the surface for each
given outgoing direction ωo. For example, the present one indicates a strong specular lobe (with
reflections akin to a mirror) with an additional retroreflective (that is, which reflects back towards
the incident ray) component.

Fig. 2. A Computer Animated Hand: One of the first entirely computer-generated images leveraged
both wireframe and simple interpolated shading, with no consideration for any potential light source.
CREDITS: EDWIN CATMULL AND FRED PARKE, UNIVERSITY OF UTAH.

During its beginnings, computer graphics research did not really take into consideration light
transport in a strict and physical way. For example, the novel rendering of A Computer Generated
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Hand [81] shown in Figure 2 or even The Adventures of André and Wally B. [4] shown in Figure 3,
one of the first works of world-renowned Pixar Animation Studios, only used very simple techniques
and coarse approximations. With the growth in computing power and interest in the topic, light
transport has become a fundamental component of rendering and computer graphics in general,
allowing the creation of ever more realistic images, but also giving artists and authors more and
more expressive and flexible tools to express themselves, whatever their objectives may be.

Fig. 3. The Adventures of André and Wally B. was one of the first animated short movies entirely
created in 3D and already made use of many light transport effects such as motion blur (here seen
on the wings of the bee). CREDITS: PIXAR ANIMATION STUDIOS.

Nowadays, the quest towards realism translates into innovations such as physically-based
rendering (PBR), which is grounded in universal and meaningful parameters of matter to define
its appearance, or global illumination, which simulates light transport in a scene over very large
distances and along complex paths, hence modelling its real world behaviour.

Of course, many of these algorithms come with an important performance cost. Realism and
precision are unfortunately not free, and therefore the computer graphics community must always
work to refine these algorithms, make them more efficient, less demanding in computing or memory.
To do this, many approaches are popular, from a simple heuristic based on a phenomenological
analysis to create a convincing approximation all the way to using machine learning (ML) to solve
complex optimization or classification problems, among others.

While scene interactions such as light scattering (e.g., when encountering fog or other such
transmissive media) or surface appearance are well understood and heavily researched, realistic
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Fig. 4. Example of a heuristic algorithm in a videogame, here to compute a visually pleasing
approximation of motion blur within mere milliseconds [37].

camera models are often neglected due to their large cost and complexity versus simpler models
such as the pinhole camera (see Section 1.3.2). The characteristics of the sensor and camera lens are
often approximated using post-processing steps and heuristics. This thesis instead directly tackles
a particular category of camera and sensor effects known as distribution effects, which involve
additional dimensions beyond position (usually the Euclidean form (x,y,z)) and direction (usually
the spherical form (ϕ,θ)) as are typically seen in the rendering equation (Equation (1)). These
additional dimensions are used to model new emergent properties of light transport which can be
split in two broad categories: depth of field and motion blur. The former appends the position on
the camera lens to the list of dimensions (usually (u,v) Euclidean coordinates on the circle). The
latter adds time as a dimension, allowing the rendering equation to model camera responses to scene
modifications across time, such as character animations, physical simulations, lighting changes, etc.
In both cases, the final effect is various forms of blurring which are caused by a shifting of which
surfaces affect which pixels on the image through specific light transport interactions in these new
dimensions. These effects are vital to modeling more realistic cameras and various optimizations
can be found by performing a more holistic analysis of light transport that directly includes them.
More information on both depth of field and motion blur may be found in Section 1.3.

Unfortunately, these new dimensions also translate into often exponential performance costs
thanks to the infamous curse of dimensionality problem, which notes that while, for instance, a
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(a) Depth of field (b) Motion blur

Fig. 5. Real-life examples of depth of field (a) and motion blur (b). Note the blurry background
(a) which resembles a typical camera lens’ circular aperture, while (b) showcases the notion
of "sweeping" over time, most markedly on the flapping wingtips. CREDITS: JEAN-PHILIPPE
GUERTIN.

factor of 2× growth in one dimension remains a factor of 2× overall, it becomes a factor of 4× in
two dimensions, 8× in three, and so forth.

As a result, these distribution effects are often added separately, either as a post-process to the
entire rendering pipeline, or as an approximation entirely, as with the example in Figure 4. This
reduces their cost by making it possible to simply lower overall quality or defer computations until
more resources are available. Unfortunately, this is also often a very limited avenue for further
improvements, since much information is lost in this two-step approach. Instead, we posit that
we can integrate these new dimensions very tightly into the entire rendering pipeline and improve
performance and results by evaluating them earlier and in a more organic fashion with the rest of
the pipeline.

Furthermore, this approach has many additional interesting applications. We have found that
there are many other instances where extra dimensions are introduced at some point in the rendering
pipeline which do not necessarily have anything to do with distribution effects from a narrow
perspective, but which can still benefit from a similar holistic approach. We call this concept
extended distribution effects.

In this thesis, we explore the concept of extended distribution effects in multiple algorithms to
take advantage of optimizations, correlations and other such improvements that this may lead to.
In Chapter 1, we briefly cover necessary prerequisites to understand light transport, mathematical
and hardware concepts key to the papers presented in the other chapters. The remaining chapters
comprise four papers published in high impact conferences or journals on computer graphics and
rendering.
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Common Distribution Effects. Our exploration begins with what one might call “traditional”
distribution effects, that being depth of field and motion blur (see Sections 1.3.2 and 1.3.3 respec-
tively). In a real-time context such as games or interactive media, distribution effects are often
approximated to a high degree, producing visually acceptable results which often stray quite far
from what a ground-truth implementation would create. Even in an offline rendering context such as
film, motion blur is often approximated as a post-process using very limited information, discarding
effects such as non-linear movement.

One such approximation found in both scenarios is rendering single frames and approximating
the motion from so-called motion vectors (see Section 1.3.3). We have leveraged this technique in
prior work [37] and noticed substantial weaknesses which we sought to address. The result can be
found in Part 1, where we extend the notion of motion vectors by instead storing actual 3D positions
for the prior and future frame, then leverage Bézier curves (see Section 1.1.3) to produce non-linear
motion between the three interpolated locations (prior, current and future).

Appearance Filtering. Our next investigation concerns appearance filtering. Numerous articles
approach this topic from a higher dimensional perspective. Typically, this is done by focusing on
one of two areas: either integrating over the light source, as in e.g. Heitz et al. [43], or integrating
over the surface, as in Yan et al. [112].

Our immediate intuition was to attempt to perform this integration over both the light source
and the surface. The results of this approach can be found in Part 2, where we successfully
leverage spherical harmonics (see Section 1.1.5) for fast evaluation of large scale area lights such as
environment maps (see Section 1.2.3) combined with summed-area tables (see Section 1.1.2) to
store and rapidly compute the normal distribution function (see Section 1.2.4) of arbitrarily large
footprints.

Subsurface Scattering. There obviously exist topics where additional dimensions are an inevita-
bility in proper analysis and rendering, and one such topic is subsurface scattering (see Section 1.2.4).
In short, whereas most surfaces can be represented with a high degree of fidelity simply by conside-
ring light coming and leaving from the same location on a surface for a given ray, there are other
materials, notably skin, but also milk, marble, etc., for which light can also penetrate beneath the
surface and interact with the volume before exiting elsewhere on the surface. This phenomenon is
called subsurface scattering, since light is scattered under the surface of a material. While this is an
orthogonal topic to our main focus, we have decided to take a holistic approach to improving the
realism, quality and performance of light transport in order to improve sensor and camera models.

We have approached this topic predominantly using principles of frequency analysis (see
Section 1.1.4) to efficiently evaluate the shading of a surface on many points at a time. This is
done by determining a reasonable maximum bandwidth (see Section 1.1.4) for the frequency of the
radiance (see Section 1.2.1) signal on a per-pixel level, and then using this bandwidth to adaptively
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compute the BSSRDF integration (see Section 1.2.4) through the use of a dual-tree (see Section 4)
to traverse a combined sparse hierarchy of pixel and illumination samples. The results of this
algorithm can be found in Part 3.

Dynamic Irradiance Probes. Our final project is focused on the exciting new technologies
available in modern computer hardware (see Section 1.4), chiefly ray tracing acceleration. This new
category of hardware allows, for the first time, real-time ray tracing in modern applications such as
games without compromises as to visual fidelity or accuracy.

Real-time ray tracing currently tends to focus on a few key effects which have been lacking
in games for years: accurate glossy surface reflections and global illumination (see Section 1.2.3).
Our approach remains fairly conservative for glossy surface reflections, but we employ a novel
idea for global illumination: rather than, as most current algorithms do, sparsely sample the scene
each frame to construct a limited, view-dependent global illumination framework, we construct
a dense grid of irradiance probes (see Section 1.2.3) which we update each frame, creating an
efficient, scalable and stable global illumination solution which leverages the current state of the art
in precomputed global illumination and applies it to dynamic GI. Our results can be found in Part 4.

Conclusion and Future Work. Finally, we go over the numerous potential future projects derived
directly from all of our existing body of work, and then conclude with a summary of our findings
and a discussion on the viability of extended distribution effects as a category of algorithms.
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Chapter 1

Background

This chapter covers all prerequisites necessary to understand our core contributions as presented in
the articles which follow. Specifically, Section 1.1 covers integral calculus and its applications to
our research on global and local light transport as well as improved appearance filtering. Section 1.2
reviews fundamental concepts of light transport and appearance modelling as applied in our work.
Then, Section 1.3 dives deeper into the two primary distribution effects we treat: depth of field and
motion blur. Finally, Section 1.4 gives a broad overview of modern graphics rendering hardware
and software frameworks.

1.1. Integral Calculus
Integration is one of the most powerful concepts of calculus and is extensively used in rendering.
Indeed, from the rendering equation [56] to the basics of radiometry (see Section 1.2.1) and including
notions such as distribution effects (see Section 1.3), integral calculus subtends our work. This
section is dedicated to giving a brief overview of its main properties, theorems and some more
advanced concepts which augment it.

First, we briefly cover some concepts of multidimensional integration which are fundamental to
the analysis of light transport through the rendering equation [56] and its various components such as
bidirectional reflectance/scattering distribution functions (see Section 1.2.4), weaving in some basic
concepts of linear algebra such as bases and coordinate systems which are required to understand the
various perspectives used throughout our analysis, especially in the surface appearance modelling
of Part 2.

Second, we make a brief detour on the topic of parametric equations, which are a powerful way
to represent curves and surfaces using independent variables known as parameters. Parametric
equations can describe a large number of curves, but we concentrate here on one of the most famous
– Bézier curves – which have several interesting properties making them commonplace in computer
graphics and especially vector-based graphics software. As part of our light transport research,
we have found that Bézier cuves are an excellent representation for non-linear motion in Part 1,



giving better accuracy than linear approximations while not being brute force like a dense sampling
approach might be.

Third, we dive into Fourier analysis and the notion of the Fourier transform, which can be
key to the integration of particularly complex or periodic functions thanks to the transformation
into a so-called dual space such as frequency space. In these dual spaces, some operations that
were prohibitively costly or outright not solvable analytically can often become straightforward,
simplifying the analysis. We extensively leverage Fourier transforms in both Parts 2 and 3.

Finally, we look at spherical harmonics, which often appear in multidimensional integrals for
certain fields such as particle physics or light transport. Spherical harmonics, as a complete set of
orthogonal functions defined on the surface of the sphere, can be used to represent any function on
said surface, allowing us to decompose them into harmonics, each of which can be associated with
a specific frequency, from which we can use similar tools as we found in Fourier analysis. We use
them for efficient data compression by relating them with the frequency of various signals in Part 2.

1.1.1. Multidimensional Integration

One of the simplest yet most powerful notions in calculus is the idea of changing integration
variables to create a more tractable integrand or simpler boundaries. We have found this especially
invaluable when evaluating appearance models on complex light paths where the representation
of the surface interactions was non-trivial in Euclidean world space, but much more tractable in a
more specialized or local coordinate system which is achieved through a change of variables.

This process is fairly simple in practice: given an integral of the form∫
Ω

f (x)dx

with x ∈Rn a vector of n variables and Ω⊆Rn the integration domain, it is possible to create a new
formulation ∫

Ω̄

f̄ (x̄)
∣∣Jg
∣∣dx̄

which transforms the variables according to an arbitrary function x̄ = g(x) using the Jacobian of
the transformation,

Jg =


∂gx

∂x
∂gx

∂y
· · ·

∂gy

∂x
∂gy

∂y
· · ·

...
... . . .

 (1)

to correctly account for any change in the differentials.
A common type of transformation function can convert a coordinate system from one basis to

another. A basis is a set of N basis vectors which can describe any N-dimensional vector v through a
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linear combination of said basis vectors. We will cover two such basis changes here. First, we define
the traditional Cartesian coordinates (x,y,z) which fully describe 3D space as three orthonormal
basis vectors x̂ = (1,0,0), ŷ = (0,1,0), ẑ = (0,0,1). A Cartesian integral will have the form∫

x

∫
y

∫
z

f (x,y,z)dzdydx. (2)

One of the most useful alternative basis is known as spherical coordinates, which, as the name
implies, maps 3D space on the surface of an infinite number of spheres of varying radii. Spherical
coordinates are defined according to (r,θ ,ϕ), with r the distance (or radius) from the origin, θ

being the polar angle and ϕ the azimuthal angle.

(a) (b)

Fig. 6. (a) Typical spherical coordinate convention. The polar angle θ defines the angle from the
Cartesian ẑ axis, while the azimuthal angle ϕ defines the angle around the ẑ axis starting from the x̂
axis. (b) Common surface shading elements. Given a basis such that the normal n is parallel to ẑ
with the origin at the point of interest x, we define the incoming and outgoing directions ωi and ωo,
both pointing away from the origin by convention. The half-vector ωh is defined as the normalized
sum of the two directions. The most often used integration region in these circumstances is the
hemisphere Ω centered around the normal ωn.

The transformation function which converts from spherical to Cartesian coordinates isx
y
z

= g(r,θ ,ϕ) =

r sinθ cosϕ

r sinθ sinϕ

r cosθ

 ,
giving the Jacobian

Jg =

sinθ cosϕ r cosθ cosϕ −r sinθ sinϕ

sinθ sinϕ r cosθ sinϕ r sinθ cosϕ

cosθ −r sinθ 0


and the determinant ∣∣Jg

∣∣= r2 sinθ
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to finally transform Equation (2) into

∞∫
0

π/2∫
0

2π∫
0

f (r sinθ cosϕ,r sinθ sinϕ,r cosθ) r2 sinθ dϕ dθ dr (3)

A more niche transformation is often used specifically in computer graphics. Given a surface to
shade and incoming and outgoing directions ωi and ωo (e.g., a ray of light bouncing on a surface),
respectively, it is fairly typical to perform an integral over some spherical subdomain (such as the
hemisphere around a surface normal) along either of these directions; an example of one such setup
is given in Figure 6b. This can be expressed as an integral of the form∫

Ω

f (x,ωi,ωo)dωo

with x indicating other potential parameters (e.g., a surface’s roughness, normal direction, light
wavelength, etc.) and ωi and ωo being interchangeable. Depending on the form of f , it can be
valuable to move to what is known as half-vector space, such that the integration domain is computed
along a half-vector

ωh = g(ωo) =
ωi +ωo

‖ωi +ωo‖
. (4)

Without loss of generality, it is possible to transform the arbitrary spherical coordinate basis
used initially into one where ωi is aligned with the ẑ axis. This in turn means that θh = θo/2 due to
being halfway between ωi and ωo, and that ϕh = ϕo so that all three vectors may lie on the same
plane. From there, we can see that our Jacobian is of the form

Jg =


∂θh

∂θo

∂θh

∂ϕo

∂ϕh

∂θo

∂ϕh

∂ϕo

∣∣∣J{xo,yo,zo→ θo,ϕo}
∣∣∣ ∣∣∣J{θh,ϕh→ xh,yh,zh}

∣∣∣
with the additional Jacobians being required to convert from Euclidean space to solid angles and
then back again. These Jacobians are already known, being∣∣∣J{xo,yo,zo→ θo,ϕo}

∣∣∣= sin−1
θo

∣∣∣J{θh,ϕh→ xh,yh,zh}
∣∣∣= sinθh

and thus,

Jg =

[
1⁄2 0
0 1

]
sinθh

sinθo

∣∣Jg
∣∣= sinθh

2sin2θh
=

1
4cosθh

=
1

4ωi ·ωh
. (5)

This relationship is key to many algorithms, and we have used it extensively in Part 2, where
our histogram encoding uses half-vector space to more efficiently represent a distribution function
of the normals over a surface.
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1.1.2. Monte Carlo Integration

In many situations, a function f (x) will need to be integrated over a certain domain Ω, but
the resulting integral is not analytically computable. This is where numerical integration becomes
necessary, allowing us to approximate the integral regardless of its form. One of the most commonly
used methods is known as Monte Carlo integration. Given an integral of the form

I =
∫
Ω

f (x)dx,

the approximate Monte Carlo formulation is

I ≈ QN =
1
N

N

∑
i=1

f (xi)

p(xi)
(6)

where p(x) is the probability density function (PDF) which indicates the likelihood of any given
sample xi of being picked. This approximation is possible thanks to the law of large numbers, which
states that limN→∞ QN = I. More formally, the PDF is defined for a random variable X such that

Pr[a≤ X ≤ b] =
b∫

a

fX(x)dx,

where Pr is the probability of the random variable X falling between domain bounds a and b, and
fX(x) is its PDF.

The selection of the PDF is key in ensuring the effectiveness of Monte Carlo methods: while
using a completely uniform PDF (i.e., p(x) ∝ 1) will eventually converge to the real value of the
integral, it may take a significant amount of samples since the approximate PDF does not conform
to the real (but unknown) form of the integral. By contrast, a hypothetical PDF which perfectly
matches the integrand (i.e., p(x) ∝ f (x) with f (x) representing the full integrand) could provide
the correct value in a single sample. In practice, the only requirement of a PDF is that it is non-zero
wherever the integrand is non-zero in order to represent all potential outputs, but poorly fitting PDFs
can in fact cause poor accuracy even with a substantial amount of samples.

Another convenient construct is the cumulative distribution function (CDF) which expresses the
likelihood of the random variable X falling below a bound b,

Pr[X ≤ b] =
b∫

−∞

fX(x)dx, (7)

and directly follows from the definition of the PDF.
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Fig. 7. Example SAT procedure. Given
an arbitrary 2D array (e.g., a normal
map) as in (a), the SAT shown in (b)
is generated by summing all values less
than or equal to the cell’s index. To
compute the value of all cells the blue
region, we sum the two extremal regions
(in orange and green) and then subtract
the two edge regions (in purple and red).

Summed-area Tables.
A summed-area table (SAT) can be seen as a form

of precomputed integration (indeed, an alternative name
for the principle is integral image) over an N-dimensional
domain. This makes it an especially powerful tool for mul-
tidimensional integration given the phenomenon known
as the curse of dimensionality, which posits that any anal-
ysis handling multidimensional data become less and less
efficient as the number of dimensions increase. This is
due to an exponential relationships between the number of
dimensions and the scale of the data required to produce
results. SATs, among others, are an excellent way of re-
ducing the computational complexity of multidimensional
integration by caching – that is, precomputing and then
storing the results – data along an arbitrary number of
dimensions (but generally limited to two) such that time
complexity is reduced at the cost of increased data storage
usage. The major use of SATs in our work comes from the
aforementioned histogram encoding used in Part 2 which
uses 2D SATs to cache normal distributions distributed in
hemispherical histograms.

Given an arbitrary function f (x,y) dependent on the
discrete position (x,y) of a texel, the SAT is generated by
summing the values of all texels covered by the rectangle
formed from the corners (0,0) and (x,y) (see Figure 7).
Mathematically, this can be expressed as

F(x,y) = ∑
(i, j)≤(x,y)

f (i, j).

Given the definition of a Riemann integral, one can see that this is equivalent, modulo the
discretization error, to

F(x,y) =
x∫

0

y∫
0

f (i, j)d j di,

and thus SATs are often used to store approximate area integrals. Indeed, one can additionally note
that this is analogous to a discrete CDF as per Equation (7), but with the PDF f (i, j) restricted to the
domain [(1,1),(N,M)] for an N×M texture. This exact purpose is leveraged in numerous ways in
Part 2, where we use SATs to efficiently store and evaluate integrals of complex normal distribution
functions (see Section 1.2.4).
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1.1.3. Parametric Equations

The most common way to express a change of variables in a multidimensional integral is as a
set of functions relating the new variables to the initial ones. This is also known as a parametric
equation in a more general context and is often used to describe relationships where a singular
function is inappropriate. For instance, the unit circle, which violates the right-definite property
of functions (that is, given f : X → Y , ∀x ∈ X ∀y,z ∈ Y : if f (x) = y and f (x) = z, then y = z), is
defined by the two equations

x = cos(t) y = sin(t)

as a function of the polar angle t.
Parametric equations are commonplace in computer graphics thanks to their ability to describe a

large variety of curves or surfaces.

Bézier Curves. A Bézier curve is a specific kind of parametric curve with a very simple formula-
tion:

Bn(t) =
n

∑
i=0

(
n
i

)
(1− t)n−iPi where 0≤ t ≤ 1, (8)

where n is the degree of the curve indicating it has n+ 1 control points {P0, . . . ,Pn}. Typically,
quadratic (n = 2) and cubic (n = 3) curves are preferred, since they balance flexibility and simplicity.
Bézier curves also have a few interesting properties:

• The curves always begin at P0 and end at Pn. This makes them easy to connect and chain.
• The segments P0P1 and Pn−1Pn are tangent at the end points. Therefore, one can make two

curves P and Q C1 continuous at Pn = Q0 by placing Pn−1PnQ1 on a line.
• The curves are C∞ continuous within their domain.
• A curve is always contained by the convex hull of its control points. A convex hull of a set

of points Pn is defined as the smallest convex polygon which contains all Pn.
• It is possible to fit a Bézier curve of degree n onto n+1 points uniquely, provided each point

P has an associated location t in the Bézier curve’s domain.
C-continuity, also known as smoothness, is related to a function’s differentiability. Specifically,

a function is said to be Cn continuous if its nth-order derivative dn f (x)
dxn exists throughout its domain.

Given those properties, we exploited Bézier curves extensively in Part 1 to represent non-linear
motion across multiple frames, specifically by using the last point above to fit a quadratic curve
onto three points each step.

1.1.4. Frequency Analysis

Frequency analysis is the study of the decomposition of any function into a linear combination
of simple trigonometric functions, each representing a certain frequency. The fundamental logic
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behind this can be seen as a generalization of a Fourier series,

fN(x) =
A0

2
+

N

∑
n=1

An · cos
(

2πnx
P
−ϕn

)
=

N

∑
n=−N

cn · ei 2πnx
P , (9)

with An and cn constant amplitudes for each frequency, P an integrable interval over the domain
of f (x) and N the number of distinct frequencies which compose the function over that interval
(with N→ ∞ in the general case). A Fourier series allows any function to be expressed as a sum
of sinusoidal factors with a given frequency over a certain period (since sinusoidal functions are
inherently periodic, then the representation only works for a finite interval unless the function is
itself periodic). This can be seen as a variant upon the well-known Taylor series,

f (x) =
∞

∑
n=0

f n(a)
n!

(x−a)n (10)

with f n(a) the nth derivative of f (x) evaluated at a. In both cases, taking a finite sum of factors
restricts accuracy; Fourier series expansions define a domain within which approximations are
expected to be relatively good, while Taylor series use a point a around which the approximation
will be best. However, both series can also generate finite expansions for certain functions without
approximations (any trigonometric function for Fourier series, any polynomial for Taylor series).

Describing a function as a composition of basic frequencies is an extremely powerful tool.
Operations such as integration, which may be intractable on the function itself, can be expressed as
a sum of integrable functions. If the functions are only analyzed in a narrow frequency band, the
approximation can remain very accurate with a reasonable amount of terms. This particular process
is used throughout frequency analysis, for instance in Parts 2 and 3.

Fig. 8. Plot of an example function f (x) = (x− π)4− e
x−π

2 over [−π,π] and its Fourier series
approximations for N ∈ {3,20}. Note how coarse the N = 3 approximation is, whereas higher
values are much more refined. Boundaries also tend to be poorly approximated due to lower
weighting in the interval. Since Fourier series are periodic, the approximation repeats itself just
outside of the bounds of the interval (in the gray region).
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Fourier Transform. A Fourier transform is a general operation on any function f (x) which
produces its equivalent function F [ f (x)] = f̂ (ξ ) in frequency space,

f̂ (ξ ) =
∞∫
−∞

f (x)e−2πixξ dx. (11)

By convention, the “original” domain of the function (here, f (x)) is usually called the time domain,
even if not actually pertaining to time, while its transform f̂ (ξ ) is in the frequency domain.

A Fourier transform has infinite support and is thus not in and of itself an approximation, unlike
Fourier series expansions, as long as the function is integrable. Furthermore, Fourier transforms are
invertible (under certain conditions we will not expand upon for brevity), that is to say,

f (x) = F
[

f̂ (ξ )
]
=

∞∫
−∞

f (ξ )e−2πiξ x dξ . (12)

One of the most interesting aspects of using a Fourier transform on a function is the ability
to study its frequency characteristics, notably its bandwidth. A function’s bandwidth is the range
of frequencies which it covers, which is not necessarily infinite. These frequencies can also be
manipulated, for instance using a bandpass filter which can remove certain frequencies outright (a
typical use of which would be blurring an image to remove high frequency noise). A bandlimit
then is a limit on the bandwidth of a function, effectively imposing that all frequencies beyond a
certain range are zero. This is something we exploit in Part 2 to limit the complexity of the lighting
calculations we perform according to the maximum frequency of the lighting environment, since it
is analogous to the bandlimit seen in spherical harmonics in Section 1.1.5.

Convolution Theorem. A convolution f (t)◦g(t) is the product of two functions, f (t) and g(t),
where one of the two functions is reversed and both are integrated over all possible shifts τ of t,

( f ◦g)(t) =
∞∫
−∞

f (τ)g(t− τ)dτ. (13)

It is akin to “sliding” the function g(−t) (i.e., the reverse of g(t)) over the full domain of f (t) (see
Figure 9) and computing the area under the curve of the product of both functions at each point.

A simple example is the convolution with a Dirac delta,
∞∫
−∞

δ (τ)g(t− τ)dτ = g(t),

since, for any t, the integral is non-zero only when τ = 0. This can be imagined as "sliding" the
function g(t) along the t axis which is windowed by the Dirac delta.

The Fourier transform interacts with convolution in a very elegant way: as per the convolution
theorem, the convolution of two functions in the time domain is proportional to their multiplication
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-4 -2 0 2 4 6 8

(a)
-4 -2 0 2 4 6 8

(b)

-4 -2 0 2 4 6 8

(c)
-4 -2 0 2 4 6 8

(d)

Fig. 9. Example convolution of functions f (x) = 22−x⁄2−1 and g(x) = 1 within x ∈ [0,4] and zero
elsewhere. Function g(−x) “slides” from the left to the right over the entire domain, computing the
multiplied area under the curve of both functions.

in the frequency domain, i.e.

h(x) = ( f ◦g)(x) ↔ ĥ(ξ ) = k f̂ (ξ ) · ĝ(ξ ), (14)

where k is a constant dependent on the selected Fourier transform convention and its normalization
factor.

Discrete Fourier Transform. The Discrete Fourier Transform (DFT) is an adaptation of the
Fourier Transform to discrete (as opposed to continuous) inputs. This is of great value for numerical
analysis, given that any function can be sampled densely and then those samples transformed. It
takes the form

Xk =
N−1

∑
n=0

xn · e−
i2π

N kn (15)

with xn and Xk both sequences of complex numbers of a chosen length N in the time and frequency
domains, respectively. Thanks to an algorithm known as the Fast Fourier Transform (FFT), it is
possible to efficiently compute DFTs on commodity computer hardware, for instance to determine
the convolution of two discrete sequences.
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By representing continuous signals with discrete samples and transforming them with an FFT,
we can cheaply compute the signal bandwidth to determine when to terminate our search through
our acceleration structures in Part 3.

1.1.5. Spherical Harmonics

Combining spherical coordinates with frequency analysis additionally enables us to use a very
powerful mathematical construct: spherical harmonics (SH), which can represent arbitrary functions
on the surface of the sphere. They are a natural extension of Fourier series, but applied in the
spherical domain, with many of the same interesting characteristics. Defined as the eigenfunctions
of the 3D angular Laplacian on the sphere, they are generally represented as

Y m
` (θ ,ϕ) =

√
2`+1

4π

(`− m)!
(`+ m)!

Pm
` (cosθ)eimϕ , (16)

though multiple normalization factors exist depending on applications. The Pm
` (cosθ) in the above

formulation are the associated Legendre polynomials, which take the form

Pm
` (x) =

(−1)m

2` `!
(
1− x2)m/2 d`+m

dx`+m

(
x2−1

)`
. (17)

Of particular note is that, much like Fourier series, given a function f (θ ,ϕ) defined on the
surface of the sphere, it is possible to find constant factors f m

` which allow a representation as a
sum of SH basis functions

f (r,θ ,ϕ) =
∞

∑
`=0

`

∑
m=−`

f m
` Y m

` (θ ,ϕ). (18)

This is possible because individual SH basis functions are orthonormal, that is to say,∫
Ω

Y m
` (ω)Y m′

`′
∗
(ω)dω = δ``′δmm′

∫
Ω

|Y m
` (ω)|2 dω = 1 (19)

with

δi j =

{
0 if i 6= j,
1 if i = j.

the Kronecker delta and the normalization criterion being fulfilled with the specific normalization
factor chosen in Equation (16).

A spherical function f (r,θ ,ϕ) is said to be bandlimited if, in the formulation of Equation (18),
the factors f m

` = 0 ∀`≥ L−1 for some bandlimit L. This can be either a property of the function or
as an approximation by taking all

∣∣ f m
`

∣∣< ε as approximately zero for a small ε and determining
the associated L from the ` coefficient. This notably allows for a similar process as described
in Section 1.1.4, where we bandlimit frequencies rather than SH terms in order to constrain the
complexity of the function we analyze.
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`= 0, m = 0

`= 1, m =−1 `= 1, m = 0 `= 1, m = 1

`= 2, m =−2 `= 2, m =−1 `= 2, m = 0 `= 2, m = 1 `= 2, m = 2

Fig. 10. Plots of the absolute real part of the spherical harmonics basis functions Y m
` (θ ,ϕ) for some

sample ` and m. Orange parts are positive and blue parts are negative, while the value of Y m
` (θ ,ϕ)

is used as the radius for visualization purposes only.

Integrating the product of two spherical functions can be done through their spherical harmonics
basis representation,∫

Ω

f (ω)g(ω)dω =
∫
Ω

(
∞

∑
`=0

`

∑
m=−`

f m
` Y m

` (θ ,ϕ)

)(
∞

∑
`=0

`

∑
m=−`

gm
` Y m

` (θ ,ϕ)

)
dω

=
∞

∑
`=0

`

∑
m=−`

f m
` gm

`

∫∫
Ω

Y m
` (θ ,ϕ)Y m

` (θ ,ϕ)sinθ dθ dϕ by Equation (19) (left)

=
∞

∑
`=0

`

∑
m=−`

f m
` gm

` by Equation (19) (right) (20)

which can be combined with the bandlimited formulation to quickly compute bandlimited products,∫
Ω

f (ω)g(ω)dω =
L−1

∑
`=0

`

∑
m=−`

f m
` gm

` . (21)
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Bandlimiting is an important attribute of spherical harmonics and one of the decisive factors
in our use of them in Part 2, since they allow us to dynamically scale the level of detail (and its
associated memory usage requirements) according to the frequency of the light source in play.

Zonal Harmonics. Zonal harmonics are spherical harmonics which are invariant under rotation
around a specified axis. For the case of the 3-dimensional sphere, the zonal harmonics are a
simplification of the general spherical harmonics,

Z `(θ ,ϕ) = P`(cosθ), (22)

which can be seen as equal to Y 0
` (θ ,ϕ) without the normalization constant. Here, P`(cosθ) are the

Legendre polynomials (as opposed to the associated Legendre polynomials), which again can be
seen as a simplification with m = 0,

P`(x) =
1

2` `!
d`

dx`
(
x2−1

)`
. (23)

Basic zonal harmonics always use the ẑ axis for their invariant, but these can easily be rotated
and are then represented as

Z `
x(y) = Z `(Ry) (24)

where x is the new invariant axis and R is an orthogonal transformation that reorients x as ẑ.
Through the use of the Funk-Hecke convolution theorem in conjunction with zonal harmonics

in Part 2, we leverage an algorithm to efficiently rotate spherical harmonics (Sloan et al. [93]).

1.2. Light Transport
Light transport is the set of fundamental mechanics under which light, emitted by sources like

lightbulbs or the sun, can reach a sensor, such as your eyes or a camera. It is also at the core of all
of rendering and much of computer graphics research. We will now briefly look at core concepts
before digging into specifics related to the articles found in this thesis.

1.2.1. Light Transport Fundamentals and the Rendering Equation

The rendering equation (Equation (1)) is the main building block of light transport: the total
radiance from a surface at point x in direction ωo for wavelength λ is given by the sum of (a) the
surface’s own emitted radiance Le and (b) the reflected incoming radiance Li modulated by the
bidirectional reflectance distribution function (BRDF) fr for all incoming directions ωi around
the normal hemisphere Ω at the surface. This equation is also recursive, since Li(x,ωi,λ ) =

Lo(x′,−ωi,λ ) for some other location x′ in the scene.
Proper understanding of this equation requires defining a few radiometric concepts, the study of

radiant energy transfer.
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Radiant energy is the energy of electromagnetic radiation such as light, usually denoted Q (the
e subscript used to distinguish with photometric quantities will be omitted for simplicity).

Radiant power or radiant flux (Φ) is the radiant energy per unit of time which is emitted,
reflected or transmitted for a given system, usually a surface.

Radiance (L) is the most important and common measure in computer graphics: it is the radiant
power at some point x travelling in a direction ω , per surface unit area dA and per unit solid angle
dΩ along the direction.

Irradiance (E) is the total radiant power per unit area incident to a surface, which can be
computed from incoming radiance Li as

E =
dΦ

dA
=
∫
Ω

Li(x,ωi)cosθ dωi. (25)

Finally, radiosity (B) can be seen as the opposite of irradiance: it is the total radiant power per
unit area exitant to a surface:

B =
dΦ

dA
=
∫
Ω

Lo(x,ωo)cosθ dωo. (26)

Note that all prior concepts can additionally be qualified as spectral, which adds a dependency
on a specific wavelength of light rather than covering all possible wavelengths.

While the rendering equation is, in and of itself, infinitely recursive, we generally desire to solve
it for a specific location such as a camera. In practice, this means solving the integral

Lc(x,λ ) =
∫
Ω

T (x,ωi,λ )Li(x,ωi,λ )(ωi ·ωn)dωi, (27)

where T (x,ωi,λ ) is a transfer function describing details of how a camera processes incoming light
as it hits the sensor and Li(x,ωi,λ ) is the incoming light described by the rendering equation.

Since this integral is impossible to compute analytically, it is usually converted into an approxi-
mate form using Monte Carlo integration (see Section 1.1.2) as per Equation (6). As a result, we get
the approximation

Lc(x,λ )≈
1
N

N

∑
n=1

1
p(ωin)

T (x,ωin,λ )Li(x,ωin,λ )(ωin ·ωn), (28)

where p(ωin) is the PDF and the integrand is summed over for a large number N of samples.

1.2.2. Foundational Rendering Techniques

Broadly speaking, modern graphics rendering can be divided in two categories: rasterization-
based approaches, used mainly in games, and ray tracing-based approaches, used mainly in film
and television.
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(a) Radiant energy (b) Radiant power

(c) Irradiance (d) Radiosity

(e) Radiance

Fig. 11. Visualisation of the primary radiometric quantites. (a) focuses on a single photon p whose
radiant energy is denoted Q. (b) shows the emitted radiant energy per unit time t, also known as
radiant power, of the whole light source. (c) and (d) show related values, that being the incident
(irradiance) and exitant (radiosity) sum total of radiant power per unit area dA. Finally, (e) describes
the radiance at point x of unit area dA exiting the surface in direction ω and covering the solid angle
dΩ.

Rasterization takes vector graphics such as polygons, lines or points, and converts them into an
image made up of discrete pixels. Each pixel can have arbitrary computations applied to it according
to the data inputs available, for example pertaining to the point which was projected onto the pixel.
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(a) (b)

Fig. 12. Rasterization overview for the three-dimensional case. An arbitrary triangle is first
projected (a) onto the screen plane, and then each pixel is tested (b) against the triangle for overlap
to determine if it is covered by it.

Ray tracing takes the opposite approach: given a camera and image plane, rays are sent from the
camera’s origin through the plane and into the scene, where they intersect with objects to provide
information for pixel processing.

Fig. 13. Ray tracing overview for the three-dimensional case. An arbitrary ray is first projected
from the image plane into the scene, and then its corresponding pixel is processed if the ray has hit
some geometry.

In both cases, the processing which happens on a pixel is typically called shading. It is
where the BSDF may be evaluated, for instance, using surface and view information such as the
incoming/outgoing vectors, the surface normal or albedo, etc.

1.2.3. Global Light Transport

Global light transport, often called global illumination, is a concept which derives directly from
the rendering equation. Early computer graphics had a tendency to cut the recursive nature of the
equation beyond its first or second level to reduce the exponentially increasing cost of computing it,
which created something we now call local illumination. Under this model, objects are lit only by
light directly coming from a light source, e.g., sunlight. This creates perfectly black shadow regions
wherever all lights are blocked, since indirect connections (i.e., light rays bouncing on non-emissive
surfaces more than once before reaching the camera or light) are not modelled.
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To better describe these paths, let us introduce path notation [42], which uses a simple regular
expression-like structure to define paths using key letters:

• L indicates the path has reached a light source. Depending on how the path is traced, this is
usually the start or end of the path.
• E indicates the path has reached the eye (or camera). This will be the other endpoint of the

path.
• D indicates a diffuse bounce, e.g., materials like raw wood, concrete, etc. Light has a

tendency to scatter in many directions at random.
• S indicates a specular bounce, e.g., materials like metals, shiny plastics, etc. Light will

bounce in a narrower range of directions.
Direct lighting, as described above, would have a path of the form L(D|S)?E, where the | (pipe)

operator indicates a choice (either D or S) and the ? (question mark) operator indicates that the
group or element before it is optional.

By contrast, a path which is not in any way restricted and can follow the rendering equation
until it hits a natural terminator would have the path L(D|S)*E, where the * (star) operator indicates
zero or more repetitions of the prior group.

Fig. 14. Some simple path examples, here drawn with the light source as the start of the path, and
their respective path notation.

This path formulation is a natural fit for ray tracing, which then becomes path tracing, since it
follows a path made up of multiple consecutive rays. However, rasterization has no such simple
extension, which has given rise to many approximations and hybrid techniques.

Irradiance Probes. One such technique applies strictly for LD*E paths, since diffuse bounces can
effectively be computed ahead of time with no knowledge of the final direction. This allows the
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(a) Location of the probes, drawn as colored spheres, in the scene.

(b) Information stored by each probe, here laid out in a single data structure.

Fig. 15. Example use of irradiance probes, here from Part 4. In this case, the probes are automati-
cally laid out in a grid, but manual placement is possible and often desired. Each probe stores the
irradiance of all visible objects from the probe’s location. Note in this image that, since irradiance
probes can only effectively deal with diffuse materials, the glasses on the tables do not exhibit the
correct lighting, which is a limitation of the technique from Majercik et al. [63].

diffuse information to be stored in probes, 2D tables which collect radiance for a discrete number
of directions at a certain point in space. Using a sufficiently large number of these probes, diffuse
global illumination can be approximated (see Figure 15).

Environment Maps. Another technique is used for distant light sources or complex environments
which are not fully modeled in the scene. In those situations, rather than painstakingly create the full
geometry and render it, a picture of the environment can be taken over the entire hemisphere around
a given central location (e.g., see Figure 16). This picture can then be used to approximate lighting
by projecting it at infinity and sampling it later. Such environment maps can be used for diffuse and
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Fig. 16. Example environment map, here of a pier at sunset. The severe distortions exhibited are
due to the reprojection of a spherical map onto a 2D rectangle. CREDIT: TEXTURIFY.COM

specular paths, and are one of the simplest ways to simulate lights with physical dimensions (rather
than point lights).

1.2.4. Local Light Transport and the Microfacet Model

We have briefly mentioned the notion of BRDF in Section 1.2.1, considering it for the purpose of
introduction as a black box which regulates the behavior of a surface under given lighting conditions.
There exist numerous models for such functions, but one of the most popular is actually a family of
algorithms all deriving from the microfacet model, first introduced by Torrance and Sparrow [100]
and refined by Cook and Torrance [19].

The microfacet model assumes that surfaces are composed of tiny mirrors (facets) arranged in
various directions. The material’s macroscopic properties are dependent on the distribution and
properties of those facets. For instance, a rough surface would be composed of mirrors in a wide
range of directions, distributing reflected light in all directions and thus creating a duller appearance.
In contrast, a perfect mirror’s facets would all be aligned in the same direction, effectively becoming
one large continuous surface.

Under this model, a BRDF is defined as a multiplication of terms, specifically

fr(x,ωi,ωo,λ ) =
F(ωi,ωh)G(ωi,ωo,ωh)D(ωh)

4(ωn ·ωi)(ωn ·ωo)
(29)

where all variables are taken from the definition of the rendering equation (see Equation (1)), and
the additional terms are:

• F(ωi,ωh) is the Fresnel function and handles the material’s behavior from the Fresnel
equations, which define the material’s reflectance (the effectiveness of a material at reflecting
radiant energy, see Section 1.2.1).
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• G(ωi,ωo,ωh) is the shadow-masking term, which models the impact of neighboring facets
in terms of shadowing (i.e., neighboring facets blocking incoming light from reaching
a facet) and masking (i.e., neighboring facets blocking outgoing light from leaving the
surface).
• D(ωh) is the normal distribution function (NDF), which provides a statistical distribution of

the microfacets’ orientation vis-à-vis a given half-vector.

(a) Unobstructed microfacet (b) Shadowed microfacet (c) Masked microfacet

Fig. 17. 2D projection of a microfacet model, showing the various microscopic mirrors, or facets,
reflecting light. In (a), the light rays are completely unobscured. In (b), some rays are blocked from
reaching the facet by a close-by facet. In (c), the reverse happens, and a neighboring facet prevents
the light reflected by the facet from leaving the surface.

Surface Scattering and Transmittance of Light. While we previously described the BRDF as a
fundamental black box which describes the properties of a surface and its interaction with light, it is
actually but a subset of a class of functions known as bidirectional scattering distribution functions
(BSDFs). Specifically, a BRDF makes two assumptions:

• Light exits the surface from the same point it entered.
• Light does not traverse the material.

Removing the first assumption gives us bidirectional scattering surface reflectance distri-
bution functions (BSSRDFs)1, which take into account separate input and output locations,
fssr(xi,xo,ωi,ωo,λ ).

Removing the second assumption gives us bidirectional transmittance distribution functions
(BTDFs), which model thin surfaces through which light can actually pass and exit on the other
side. The thin surface requirement is implied by the fact the light still exits from the same location
it entered, limiting the thickness to an infinitesimal distance.

Removing both gives us bidirectional scattering surface transmittance distribution functions
(BSSTDFs), which can model surfaces of any thickness.

1BSSRDFs can also be called “bidirectional subsurface scattering reflectance distribution functions” or even “bidirec-
tional scattering surface reflectance distribution functions”; we chose this particular formulation because it appears to
have become the dominant terminology in recent years.
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Together, all four of these functions form a BSDF, though obviously certain materials will
only exhibit some properties (e.g., certain materials may not be translucent, thus eliminating any
transmittance component).

(a) BRDF (b) BSSRDF

(c) BTDF (d) BSSTDF

Fig. 18. Illustration of the four main types of BSDFs. (a) exhibits the simple case of the BRDF
(with no restriction on the material’s thickness, d), while (b) extends it to a BSSRDF by allowing
a random walk through the material which must now have a real thickness d > 0. (c) and (d) are
similar, but tackle transmittance through the surface, with (c) also explicitly restricting thickness d
to an infinitesimal layer. A BSDF is a combination of any (or all) of the above.

1.3. Distribution Effects from Realistic Camera Models
Distribution effects, as mentioned in the Introduction, were the starting point of this thesis.

Being an integral part of light transport, often with a significant impact on the frequency distribution
of signals affected by one such effect, they neatly combine all of the topics introduced so far into a
single subject with far-reaching applications for ever-increasing photorealism.

1.3.1. Idealized Camera Light Transport

Most rendering, even today, works off a fairly simple model known as a pinhole camera.
Under this model, objects are all visible and in focus. In addition, we typically make the assump-

tion that all objects are frozen in time, as though each frame was rendered from an instantaneous
snapshot of the scene. These characteristics form the basis of the simplest idealized camera model.
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Fig. 19. Simple diagram of a pinhole camera. Objects reflect light into the pinhole, more generally
known as aperture, which crosses through to the image plane some distance away, while other rays
are blocked. The resulting image is rotated 180 degrees around the normal at the image plane, but
otherwise replicates what an observer would see at the pinhole’s location.

1.3.2. Depth of Field

While the pinhole camera model is practical for some scenarios, it is not realistic, since typical
observers such as cameras or our own eyes have a certain dimension to their aperture, the hole
through which light may hit the image plane. As a result, more complex models attempt to replicate
effects caused by a non-infinitesimal aperture, known as depth of field, the most popular of which is
the thin lens model.

The thin lens model is fundamentally based on the thin lens equation,

1
o
+

1
i
=

1
f

(30)

where o is the distance of an object from the lens, i is the distance of its image from the lens, and
f is the focal length of the lens. Given an image plane some distance ip behind the lens, one can
determine the distance op at which an object must be from the lens to be replicated perfectly on the
image plane, which is typically known as being in focus and the plane at distance op is known as
the focal plane.

It is also fairly straightforward to determine the diameter of this circular blur c, known as circle
of confusion,

c = A

∣∣o−op
∣∣

o
f

op− f
, (31)

where o is the distance between the lens and the object, op is the focal plane distance, f is the focal
length of the lens, and A is its aperture diameter.
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(a) In focus

(b) Out of focus

Fig. 20. Simple diagram of a thin lens camera. Unlike a pinhole camera, rays can come through an
aperture of a given dimension (the lens), at which point they are redirected through a lens in order
to hit the image plane at the correct location. Per the thin lens equation, objects at the focal plane op
will be replicated much as if they were seen in a pinhole camera, as shown in (a), but objects at a
distance o 6= op closer or farther away will create an image which is in front of or behind the actual
image plane, creating blur, as exhibited in (b).

Simulating this thin lens model is extremely expensive, since it involves adding two extra
dimensions to the integration problem. Taking Equation (27), we must transform it into

Lcd(x,λ ) =
∫
A

∫
Ω

T (x,ωi,λ )Li(x,ωi,λ )(ωi ·ωn)dωi da, (32)
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Fig. 21. Circle of confusion diagram. o is the distance between the lens and the object, op is the
focal plane distance, f is the focal length of the lens, and A is its aperture diameter. The dotted blue
lines represent an object "at infinity", which, as per the lens equation, focuses at the focal length f.

where A is the 2D region of the camera’s aperture and da its infinitesimal section. This can be
naively computed as

Lcd(x,λ )≈
1
N

N

∑
n=1

1
p(an,ωin)

T (x+an,ωin,λ )Li(x+an,ωin,λ )(ωin ·ωn), (33)

where an is a 2D location on the lens within the bounds of the aperture. This can alternatively be
computed using sums of sums,

Lcd(x,λ )≈
1

NM

M

∑
m=1

1
p(am)

N

∑
n=1

1
p(ωin)

T (x+am,ωin,λ )Li(x+am,ωin,λ )(ωin ·ωn), (34)

where M is another number of samples am independent from the N ωin samples. As a result of this
interpretation, depth of field is often brute force computed as M pinhole renders with shifted origins.

1.3.3. Motion Blur

In addition to the aforementioned thin lens model, there exists another common effect which
introduces an additional dimension to the rendering equation.

Most computer graphics these days are used for videos rather than still images, making time
a significant factor in rendering. The simplest approach is to simply consider every frame of a
video as an instantaneous snapshot of a scene at some point in time, which allows the rendering to
proceed as though it were a still image. When enough of these frames are stitched together for a
short enough duration, the appearance of motion is achieved.

However, the instantaneous nature of each frame is incorrect. A real camera must open and
close its aperture using a shutter, which takes time. During this time, parts or the totality of the
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(a) Near focus

(b) Far focus

Fig. 22. Example computer-generated images with differing focal distances. In (a), the focus is set
close to the camera, making nearby objects sharp, but both distant and very close objects blurry. In
(b), the focus is set farther, causing the previously sharp objects to become blurry. Also note in this
image that the circular shape of the camera’s aperture is visible as a slightly brighter circle on the
foreground cup. CREDITS: MORGAN MCGUIRE [67] AND BLEND SWAP USER WIG42.

scene are visible. This introduces another dimension to our integration: time. By convention, every
frame is scaled over the range t ∈ [0,1], regardless of the actual duration of the exposure in seconds.
This t variable is combined with a frame index to determine the absolute point in time since the
beginning of the sequence.
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Taking once again Equation (27), we must transform it into

Lct(x,λ ) =
1∫

0

∫
Ω

W (x, t)Li(x, t,ωi,λ )(ωi ·ωn)dωi dt, (35)

where W (x, t,λ ) is the windowing function at time t and location x on the sensor. A "perfect"
windowing function would be simply

W (t) =

1 0≤ t ≤ 1

0 elsewhere
,

which instantly exposes or masks the entire sensor at the start and end of the frame, respectively.
However, cameras have imperfect shutters, such as the common digital rolling shutter, which can
also be represented in various ways.

Much like in Section 1.3.2, this modified rendering equation can be reinterpreted as a Monte
Carlo process in a straightforward fashion,

Lct(x,λ )≈
1

NM

M

∑
m=1

1
p(tm)

N

∑
n=1

1
p(ωin)

W (x, tm)Li(x, tm,ωin,λ )(ωin ·ωn). (36)

Motion Vectors. A compact approach to storing a limited amount of motion information is to
generate motion vectors. Each pixel on the screen is projected to its previous location in view space,
and this apparent 2D movement is stored as a vector (see Figure 24). This method is particularly
popular in games, since it is lightweight to store and fast to generate, and it can additionally be
used for other purposes such as temporal filtering. Unfortunately, it also severely restricts what data
is available about the motion of the scene, most notably by only allowing linear motion and only
storing a single instance of motion per pixel, discarding information about potential background
objects in motion.

1.4. High-performance Hardware Graphics Pipeline
While graphics rendering began on general-purpose hardware, it rapidly became clear that the

specific needs of graphics, such as massively parallel computations for millions of picture elements
(pixels), warranted a more specialized hardware platform. Thus was born the graphics processing
unit, or GPU, which is designed specifically for the purpose of rendering images. Historically, this
was even narrower, using rasterization to render triangle geometry, but the advent of programmable
GPUs has ushered in a new era of flexibility which has flourished since.

Even so, GPUs still have a basic fixed pipeline for most rendering tasks (see Figure 25), which
consists of a series of stages:

(1) The Input Assembler stage is largely fixed in functionality and transforms the basic mesh
input given to the GPU into workable geometry, such as a list of lines or triangles.
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(a)

(b)

Fig. 23. Simple motion blur example. (a) shows a moving circle in three snapshots t ∈
{

0, 1⁄2,1
}

while (b) shows the rendered blur for the same motion.

(2) The Vertex Shader stage is the first programmable stage and operates directly on individual
vertices. This is where steps such as coordinate transforms or projections can take place.

(3) The Hull Shader, Tessellator and Domain Shader stages are collectively known as the
Tessellation stages and specifically have to do with hardware-accelerated tessellation, which
allows the GPU to evaluate lower density meshes as input and create higher density meshes
as output given data on how to break down the larger polygons into smaller ones. This
can be used to add details and improve final appearance in a scalable way. Both the Hull
Shader and Domain Shader stages are programmable and can be used to guide or modify
the behavior of the Tessellator. All three stages are optional.

(4) The Geometry Shader is another programmable stage which works on geometry units such
as lines or triangles. It, too, is optional. In addition to having access to more information
and working on a higher level than the Vertex Shader, the Geometry Shader can also emit
new geometry, or equivalently not pass through all the geometry it was given as input. This
gives it great flexibility for things like text rendering or procedural geometry.

(5) The Stream Output stage is unique in that it can be used to save the results of the pipeline so
far back to memory before it is rasterized. It is optional.
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Fig. 24. Simple motion vectors interpretation. Each pixel contains (x,y) velocity for that pixel’s
motion since the previous frame, here represented as arrows for convenience. This example can be
interpreted as follows: the blue circle is moving towards the bottom right corner of the screen, while
the orange rectangle is spinning counter-clockwise while facing the camera. All motion stored here
is purely linear, a notable approximation of this method.

(6) The Rasterizer stage is fixed-function, but has a lot of configuration options to determine
how the final geometry is rasterized, such as how vertices are transformed, parsed and in
which order they are drawn.

(7) The Pixel Shader is the last programmable stage and the most commonly used. After
rasterization has been performed, the resulting pixels contain a lot of potential information
interpolated from the geometry which can be used by the Pixel Shader to compute all sorts
of final outputs. The most obvious use is to generate a final rendered image from a scene,
using information such as surface color, material properties, etc.

(8) The Output Merger stage takes the pixels processed by the prior stage and outputs them to
the output texture, performing some final steps such as blending if necessary.

Specialized Hardware Modules. In addition, more recent graphics hardware have added spe-
cialized components which accelerate more niche tasks in a drastically more efficient manner than
would be possible using general-purpose hardware, even on GPUs. Examples include:
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• Hardware-accelerated video encoding and decoding, which implements specific video
algorithms directly on chips to allow fast, low-power and cheap processing of compressed
video footage.
• Hardware-accelerated ray tracing, which usually accelerates traversal through a scene

hierarchy and ray-triangle intersections.
• Hardware-accelerated neural network computations, which can accelerate certain common

inference operations.

Input-Assembler Vertex Shader Hull Shader

Tessellator Domain Shader Geometry Shader

Rasterizer Pixel Shader Output-Merger

Stream OutputCompute Shader

Fig. 25. A typical hardware graphics pipeline, here using Microsoft Direct3D terminology. Blue
rectangular stages are fixed-function, which is to say they have only a limited ability to be configured
or modified and cannot be directly programmed. Yellow rounded rectangles indicate programmable
stages, whose behavior can be completely user-defined within some bounds. Dashed borders indicate
optional stages or pathways which will not necessarily be executed unless requested. Compute
shaders are typically not part of the strict graphics pipeline, but are now commonly used to replace
any programmable stage as desired.

A Note on Shaders. Throughout this pipeline, the word "shader" has been misused quite a few
times. As per the definition given in Section 1.2.2, shaders are code which affect how a surface is
shaded. While this was true historically, its use has been broadened to simply mean a piece of code
which acts upon a stage in a graphics pipeline. Some shaders, notably compute shaders, do not even
necessarily process actual graphics data, having appeared with the advent of truly programmable
GPUs capable of doing arbitrary work. In this way, we have almost come full circle, with GPUs
edging ever closer to the general-purpose nature of CPUs.
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RÉSUMÉ. Le flou de mouvement devient de plus en plus commun dans des applications tels les jeux
vidéo ou les outils de prévisualisation. Dans de tels cas, une stratégie commune est d’approximer
le flou de mouvement avec un post-processus en espace image, et plusieurs approches récentes
démontrent des résultats très efficaces et de haute qualité [Sou13,GMN14]. Malheureusement, toutes
ces approches assument un mouvement sous-jacent purement linéaire, et donc ne peuvent approximer
un mouvement non linéaire sans causer des artefacts visuels sévères. Nous présentons un nouveau
post-processus de flou de mouvement qui traite le cas du mouvement non linéaire (en plus du
mouvement linéaire) correctement en utilisant une approche de dispersion basée sur l’échantillonnage
de courbes. Nous simulons un flou de mouvement non linéaire plausible en 4ms à 1920×1080, et
notre approche démontre plusieurs propriétés souhaitables : son coût est indépendant de la complexité
géométrique de la scène, elle estime de manière robuste l’étendue du flou de mouvement pour
éviter les artefacts communs de sous- ou sur-floutage, elle support des déplacements de magnitude
arbitrairement grande, et elle est moins bruitée que les techniques existantes.
Mots clés : flou de mouvement, rendu en temps réel

ABSTRACT. Motion blur is becoming more common in interactive applications such as games
and previsualization tools. Here, a common strategy is to approximate motion blur with an image-
space post-process, and many recent approaches demonstrate very efficient and high-quality re-
sults [Sou13,GMN14]. Unfortunately, all such approaches assume underlying linear motion, and so
they cannot approximate non-linear motion blur effects without significant visual artifacts. We present
a new motion blur post-process that correctly treats the case of non-linear motion (in addition to linear
motion) using an efficient curve-sampling scatter approach. We simulate plausible non-linear motion
blur in 4ms at 1920×1080 and our approach has many desirable properties: its cost is independent of
geometric complexity, it robustly estimates blurring extents to avoid typical over- and under-blurring
artifacts, it supports unlimited motion magnitudes, and it is less noisy than existing techniques.
Keywords: motion blur, real-time rendering
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Fig. 26. Smooth motion blur on a variety of complex, potentially non-linear motions, computed in
3.5 to 6.5ms at 1920×1080.

1. Introduction
Motion blur effects give important visual cues about the dynamics of a scene, and as such they have
played an almost essential role in realistic image synthesis for visual effects. More recently, the
development of high-performance post-processing techniques for approximating motion blur have
led to their almost ubiquitous integration in interactive graphics applications, such as video games.

Despite these recent advances in more efficient and realistic motion blur simulation, almost
every existing motion blur solution (including the majority of offline, high-fidelity solutions) assume
that the underlying motion of an object is strictly linear. This assumption dramatically reduces the
complexity of simulating motion blur effects, and is particularly important for high-performance
approximations that rely on image-space post-processing.

While, in practice, this limitation can sometimes be disguised by either cleverly crafting an
animation sequence, or limiting the virtual exposure to short bursts, it can still lead to very distracting
visual artifacts. Avoiding these visual artifacts becomes even harder with the state of the art in
interactive motion blur approximations that rely primarily on image-space post-processing. Here,
camera and object motion can both very easily combine to cause very jarring visual artifacts, even
in scenes with simple motions (e.g., Figure 26).

We present a high-performance motion blur approximation that gracefully handles linear and
non-linear motion, supports long exposure times, does not introduce temporal artifacts under camera
motion, and maintains the same advantages of existing techniques: it scales independently with the
underlying scene/motion complexity, and it uses a simple post-process that integrates easily into
existing engines.
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Scatter Gather

Fig. 27. Visualizing scatter and gather operations. In scatter-based algorithms, each data point (i.e.,
pixel) deposits data onto neighboring points; for gather-based algorithms, each point queries its
neighbors to compute its final value. Scatter-as-gather emulates the former using the latter.

2. Previous Work
We present recent work most related to our approach below, and we forward readers to the compre-
hensive survey on motion blur (Navarro et al. [74]) for a more complete view of the area.

Offline Sampling. Traditionally, motion blur (and other distribution effects) can be estimated
via numerical integration, as presented by Cook in his seminal 1986 work on the topic [20].
Recent work on these offline solutions design more elaborate sampling and filtering schemes
capable of leveraging the structure of object motion, including multi-dimensional sampling schemes
(Hachisuka et al. [40]), or adaptive sampling schemes based on wavelet-space (Overbeck et al. [80])
or frequency-based (Egan et al. [33]) formulations of the motion blur problem. Adaptive sampling
can also be combined with anisotropic spatial-temporal filtering (Lehtinen et al. [61]).

We are motivated by Reeves 1983’s approach [85], where motion points are advected according
to a (world-space) particle system to form motion segments, and a world-space blur is applied to the
segments in order to approximate motion blur effects. We instead sample points on a screen-aligned
grid and analytically fit motion curves, leveraging the entire programmable rasterization pipeline to
efficiently implement a true motion blurring scatter operation.

We target interactive applications, where object-space sampling is not an option and motion blur
effects must be computed on the order of milliseconds, not seconds/minutes.

Interactive Approximations. Apart from heuristic object- or texture-space extrusion and sorting
approaches (Max and Lerner [65], Tatarchuk et al. [97], Ritchie et al. [87]), many interactive
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solutions aim to approximate motion blur. Our work falls in this category, and we are most related to
image-space post-processing techniques: such approaches sample, manipulate (e.g., dilate), and blur
frame-buffer colors according to screen-space color and velocity information (Sousa [94], Kasyan
and Schulz [58]). Recent tile-based variants segment image-space to more accurately determine
blurring directions and neighborhoods, approximating the motion blur scattering operation as a
localized gather. Blurring along a single, “dominant” velocity direction (Lengyel [62], McGuire et
al. [69], Zioma and Green [115], Sousa [95]) is most efficient; however, we base our comparisons
on the most recent “multi-direction” tile-based post-process approach of Guertin et al. [37], which
is capable of resolving many of the tile- and image-space artifacts of previous “single-direction”
techniques, but still maintains a very high-performance profile.

We will show that even the most robust high-performance post-process motion blur technique
can fail in common scenarios, specifically when non-linear motion exists and/or large motion
magnitudes (and/or large exposure times) are used. We are able to generate more accurate and
more spatially/temporally coherent motion blur in these scenarios, with only a modest performance
overhead: instead of requiring on the order of 1 to 3ms (as in Guertin et al. [37]), our (unoptimized)
approach requires 3.5 to 6.5ms.

Pixel-level Vertex Grid Bézier Curve Discretization and Rasterization
(input) (vertex shader) (geometry/pixel shaders)

Fig. 28. Grid scatter pass: we fit Bézier curves to a grid of pixel-aligned vertices with a vertex
shader, querying an object’s previous and next positions. We discretize the curves into line segments
in a geometry shader and then rasterize the segments. We compute the spatially-varying line color
based on the originating pixel’s color and distance-based weight in a pixel shader.

Alternative Rendering Architectures. Recent work on GPU micropolygon rendering (Akenine-
Möller et al. [2]) and stochastic rasterization techniques (Akenine-Möller et al. [2], McGuire
et al. [68]) provides a middle-ground between accuracy and performance: object visibility and
shading are decoupled, which allows a more accurate motion blur effect compared to interactive
post-processes, if at an increased cost.

3. Method
Modern interactive motion blur approaches rely heavily on the principle of scatter-as-gather,

since algorithms designed in this manner can readily benefit from accelerated processing on
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massively parallel modern GPU architectures. Specifically, a scatter operation (such as motion
blur), where each pixel px,y influences the value at one or more pixels px′,y′ , is implemented as
a gather operation, where each pixel px,y queries pixels in its neighborhood px′,y′ to determine
their potential contributions (see Figure 27). In the general case, the gather solution would require
a neighborhood size equal to the image resolution in order to perfectly simulate the scatter, but
a common acceleration strategy reduces this neighborhood size heuristically in exchange for
introducing some approximation error. In the motion blur setting, this restriction constrains both the
form (i.e., linear vs. non-linear) and the length of motion blur features.

Our method instead directly implements the scatter solution to motion blur, but in a manner
that completely avoids its principal disadvantage: scattering on a GPU is inherently inefficient
since it reduces thread coherence by performing unordered buffer writes. Moreover, unordered
buffer writing operations are typically unoptimized at the driver- and hardware-levels since they
break the SIMD processing model of GPUs, further increasing their cost in practice. In contrast,
primitive rasterization is perhaps the most optimized set of routines on a GPU; we exploit the fact
that primitive rasterization reduces to a series of unordered buffer writes, and build our optimized
GPU solution atop it.

We discuss our rendering approach below. It is divided into three stages: a motion pre-pass, a
grid scatter pass, and a normalization pass.

3.1. Motion Pre-pass

Similarly to most post-processed interactive motion blur algorithms, we first use a set of pre-
passes to output the necessary motion data. Specifically, we store two buffers with the location of
each pixel’s geometry in screen-space at two different time steps. Each pixel has an associated 3D
position and 1D time coordinate, p(t) = [xt ,yt ,zt ,t], with the current frame’s pixel p(0) at t = 0, and
the “previous” and “next” buffers storing p(−1) at t =−1 and p(1) at t = 1. At render-time, given
the current pixel’s screen coordinates (x,y), we can retrieve its full screen-space position at these
three different points in time.

3.2. Grid Scatter

Given the motion data, the first pass of our algorithm requires a set of pixel-aligned vertices, at
the same M×N resolution of the final image, with positions px,y where 1≤ x≤M,1≤ y≤ N. We
generate (and render) this data as a pre-generated point list on the GPU.

Bézier Curve Computation. We first fit a Bézier curve B(s) at each pixel from the three positions
we have at times t = {−1,0,1}. To do so, we perform vertex position texture fetches in the vertex
shader and set the necessary fitting constraints for a Bézier curve B as

B(0) = p(−1) B(1/2) = p(0) B(1) = p(1)
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to solve for the curve control points

B0 = p(−1) B2 = p(1) B1 = p(0)− p(−1)− p(1)
2

.

We then output these three points, as well as the (u,v) coordinates of the vertex, which will be used
later on. We chose s = {0,1/2,1} since we uniformly sampled the time steps, but different sample
location points could also be used.

Discretization and Generation. We leverage a geometry shader during the second step of our
algorithm. Using the three points outputted from the vertex shader above, we generate geometry to
represent the Bézier curve as faithfully as possible. Given our performance targets, we have found
that discretizing the curves into line lists balances accuracy and performance, especially since lines
are efficient to compute and rasterize across a limited number of pixels (scaling with O(N), versus
O(N2) for a polygonal approximation, for N curves). The geometry shader generates a list of fixed
length ∆ lines as follows: {

(1− s2)B0 +2(1− s)sB1 + s2B2

∣∣∣s ∈ S
}

(37)

with S defined as
S =

1
∆−1

{0,1,2, . . . ,∆−2,∆−1}. (38)

We discard motionless pixels prior to segment generation.

Rasterization. The final step in our first pass rasterizes the line segments into an accumulation
buffer. Given many line segments, the potential for significant overdraw is high and so our shading
routine must remain as simple as possible. To do so, we can simply use the (u,v) coordinates stored
in the first step to query the color of the original pixel and output this constant color for the line,
effectively implementing the scattering operation. While this works, we can improve the visual
quality of the blur by additionally weighting the sampled color according the pixel’s interpolated s
coordinate value. We use a simple 1D Gaussian blur kernel with (µ = 1/2,σ), and we also output
this weight to the alpha channel.

We render every pixel with fully additive alpha blending so that the final buffer stores the sum
of all scatter operations. We additionally enable depth tests but disable depth writes: this means that
each line also is rendered using proper z-order tests with the other objects in the scene, correctly
accounting for objects moving behind other objects, even through heavily non-linear motion. This
strategy also has the benefit of reducing the number of processed pixels processed with early depth
testing. Due to the high variability of the values written in the accumulation buffer, we recommend
using a 32-bit floating-point buffer.

73



3.3. Normalization

The second pass of our algorithm is a “traditional” fullscreen post-processing pass, with the
rendered scene and accumulation buffer as input. For each pixel, we wish to compute the weighted
average of every line rasterized onto the pixel. Concretely, we wish to compute the color c′x,y of the
pixel at (x,y) according to the contribution of all of the other pixels on the screen:

c′x,y =
∑

M
i=1 ∑

N
j=1 wi, j,x,y ci, j +wb cx,y

∑
M
i=1 ∑

N
j=1 wi, j,x,y +wb

(39)

where cx,y is the original color of the pixel at (x,y) before any blurring, wi, j,x,y is the weight of the
contribution of pixel (i, j) to pixel (x,y), and wb is the (constant) background weight.

The accumulated values in buffer A, generated during the previous pass, effectively stores the
first term of the numerator in Equation (39) and its alpha channel α stores the first term of the
denominator and so we can trivial compute Equation (39) in a pixel shader as

c′x,y = (Ax,y +wb cx,y)
/
(αx,y +wb) . (40)

We additionally output αx,y in the alpha channel to support transparency. Note that the explicit back-
ground contribution is required, since we discard pixels without motion: without it, all motionless
pixels would render as black.

4. Results
All results were computed on a Core i7-3770K with 16GB of RAM and a GTX780. Unless

noted otherwise, we render at 1920×1080 and with {wb,∆,σ}= {5,11,2}. We compare against an
optimized implementation of Guertin et al.’s efficient tile-based motion blur post-process (Guertin
et al. [37]) using the parameters listed in the paper, as well as comparing against ground-truth
computed using brute-force accumulation (with temporal samples distributed according to a Halton
sequence to minimize banding). We adjusted motion magnitudes in each scene in order to produce
similar blurring effects for each of the three algorithms, and we chose a linear blur sample count N
for each scene that reduces noise or outright eliminates it wherever possible. We do not apply any
antialiasing.

Helicopter Scene. The first scene is the simplest, but highlights an important feature of non-linear
blur: the ability to correctly motion blur spinning objects. While linear algorithms can approximate
very low velocity rotations, they quickly fall apart as soon as faster motions (and/or longer exposures)
are used. The helicopter’s spinning blades are a simple representative example. As illustrated
in Figure 29, linear algorithms are unable to represent the arcing motion of the blades and tail
rotor, and instead approximate it as patches of discrete linear velocity blurs (in wildly different
directions). For thin objects such as the blades, the effect is incorrect but relatively acceptable. For
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a) Linear

Linear Non-linear

b) Non-linear

Linear Non-linear

c) Accumulation

Accumulation Non-linear

Fig. 29. The helicopter scene has significant rotational motion, a common failure case for linear
motion blur: linear algorithms fail to properly convey the scale of motion, they cause over- and
under-blurring, and they either give the impression of pure linear motion (as seen on the blades)
or cause a pinwheel artifact (as seen on the tail rotor). This is due to clamping to dominant linear
velocity directions at different angles, across tiles.

round objects such as rotor, a distracting “pinwheel artifact” is glaringly obvious. Compared to the
reference image, we note that apart from the additional presence of the unblurred image, the shape
and appearance of the blur surrounding the blade is very accurate (see Section 5), closely matching
ground-truth.

Teapot and Cubes Scene. The teapot scene represents a more chaotic animation, with many
objects moving along different (often curved) trajectories. This scene highlights the stability of
our approach, which more accurately follows all motion vectors for every object; approximating
blurs per-tile, on the other hand, can lead to directionless blurs and blur effects that are difficult to
visually parse. Specifically, previous approaches have a tendency to over-blur the top of the teapot,
where chaotic motion is highest and thus where it is extremely likely for a few highly mobile pixels
to cause an entire tile neighborhood’s blur estimate to deviate. These approaches also have difficulty
rendering the motion blur of the movement at the bottom, where motion is largely linear and parallel,
but of a higher magnitude due to gravity. Our non-linear algorithm manages to accurately represent
both scenarios, once again achieving a result that is very close to the reference, aside from the
overlaid presence of the unblurred objects (see once again Section 5).

Jumping Jack Scene. The last scene illustrates the algorithm’s behavior with rigged characters.
Character animations are an excellent example of non-linear motion, since limbs generally perform
rotational movements rather than purely rectilinear ones. As with previous scenes, the blur’s
magnitude is more accurate with our approach, and it varies smoothly depending on the actual
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velocity of the limb at any given point. Details are better preserved and shading is closer to the
reference, ground-truth accumulated image.

4.1. Performance

Due to our algorithm’s design, computation time tends to be higher on average versus linear
techniques, but not significantly so (see Table 1). The pre-pass cost is easy to quantify: it is roughly
double the cost of the linear algorithm’s pre-pass, as it requires two buffers instead of one. The
post-process cost is more complex, since it depends on the scene, including the area of the screen
which is blurred as well as the magnitude of the blur. Even so, it appears that a good experimental
estimate is roughly double the cost of the linear algorithm’s post-process. As such, it is fair to say
that our non-linear approach is roughly twice as expensive as the state of the art linear motion blur
post-process. This may seem significant, but in practice many modifications could be applied to
limit the impact of our post-process (see Section 5.1); even then, it is important to note that we
generate higher quality results in only 4 to 6.5ms of compute time.

5. Discussion and Limitations
While our approach generates good results in only a handful of milliseconds, especially in

scenes where the state of the art fails, it still has some drawbacks which we discuss below and will
address in future work (see Section 5.1).

Performance. Due to our very straightforward blurring approach treatment, we also impose some
additional constraints on our input. These two properties lead to variance in the rendering cost: a
scene with little to no blur can easily be cheaper than existing, linear algorithms, since our shader
code is comparatively simpler; however, a scene with large amounts of blur can cause significant
overdraw and reduce performance. On average our approach has modest performance characteristics
requiring between 4 and 6.5ms of compute time, but this is still 50 to 100% slower than the state of
the art. More complex scenes are penalized more by the requirement of our second motion pre-pass.

Magnitude Constraints. Unlike existing techniques, our algorithm does not impose any con-
straint on the magnitude of the motion (or the exposure time), but extremely large and high-frequency
motions are unlikely to be captured accurately: any lack of motion information between our sampled
time steps, as well as the inherent limitations of simple quadratic Bézier curve fits, allow our
approach to handle motions roughly a few times the magnitude of current algorithms, which is still
a significant improvement but is not completely general.
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a) Linear

Linear Non-linear

b) Non-linear

Linear Non-linear

c) Accumulation

Accumulation Non-linear

Fig. 30. This teapot scene showcases chaotic movement with many superimposed velocities on
each pixel of the screen. We note that most pixel motion is slightly curved, which is more faithfully
represented with our non-linear approach. Moreover, there is a high variability in the motion vectors,
which is only partially captured by linear tile-based algorithms, while our algorithm properly
accounts for all directions and all magnitudes of motion.

Masked Information. The post-processing nature of our approach adopts the same limitations
as existing techniques: due to the limited scene information available per-pixel, moving objects
occluded by other objects (whether stationary or not) will not produce any motion blur, which can
cause vanishing motion trails when objects move in or out of view.

Depth Ordering. Our algorithm processes all pixels simultaneously and without any constraint
as to depth ordering. Since we use purely additive blending, this does not affect the final result, but
a more accurate blending would require proper depth ordering. It is possible that improvements
such as rasterizer ordered views [73] may allow fast and accurate sorting, therefore presenting more
opportunities for accurate blending.

Linear Non-linear
Pre-pass Post-process Samples Pre-pass Post-process

Helicopter 0.45 1.4 35 0.88 3.1
Teapot 0.25 5.2 61 0.51 5.8

Jumping Jack 0.076 2.0 35 0.15 3.8

Table 1. Performance comparisons (in milliseconds) at 1920×1080 for the scenes in Figures 29, 30,
and 32. Sample counts are provided for the linear algorithm. As expected, our pre-pass is almost
exactly twice as costly since it requires two motion vector passes. Our approach is clearly slower,
however the difference is not overwhelming and we have not yet made any optimization attempts.
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a) Single-pass rendering b) Two-pass rendering

Fig. 31. Comparison between non-linear blur using the basic, single-pass algorithm (a) and using
our modified two-pass rendering (b). Segmenting static objects allows us access the background
color behind the blurred objects, resulting in a more accurate relative weighting between the
foreground and background, completely eliminating the most distracting visual artifact of our
current approach.

5.1. Extensions

We will outline the avenues of future work we will pursue in order to address some of the
limitations listed above.

Cubic Bézier Curves and Circular Arcs. We can alleviate some of the limitations caused by
the use of quadratic Bézier curves by moving to higher-order Bézier curves: a cubic curve would
require a third motion pre-pass (i.e., at either t =−2 or t =−1/2; see Section 3), but would produce
a much more accurate blur, especially for larger movements. Neither quadratic nor cubic curves
would support conic motions however, and so a third option would be to instead fit circular arcs
to the motions. Transitioning between these different representations is an interesting idea we are
exploring as well. This is of particular interest in scenes with fast spinning objects.

Multi-pass Rendering. In order to address artifacts that result from a lack of background informa-
tion (which is a limitation inherent to post-process approaches), we require some important changes
to the rendering pipeline. One possible trade-off would be to segment and render the scene twice,
storing two color and depth buffers: one for objects in motion, and one for static objects. In this case,
camera motion would have to be handled separately. Now, we can apply our approach to the moving
objects, whereby they exclusively access information from “moving” color/depth buffers except
when computing the background color contribution, where they use the “static” buffer’s colors.
This significantly improves the appearance of the blur with only moderate additional overhead,
effectively removing the most prevalent visual artifacts of our approach (see Figure 31). An open
problem in this extension is how to correctly handle very low velocities, where the background
weight must tend toward zero.

78



a) Linear b) Non-linear a) Linear b) Non-linear c) Accumulation

Fig. 32. The jumping jack scene illustrates the algorithms’ behavior with animated characters. Our
approach better conserves the blur on the character’s knee, whereas linear algorithms can almost
completely miss this effect.

Optimizations. Our current algorithm is designed with clarity in mind, however several avenues
for optimization are available: firstly, it should be possible to determine the magnitude of the
movement and clamp generated curves’ lengths according to the maximum; secondly, small motions
can be handled using a cheaper approximation, with our approach toggled on a per-pixel basis to
handle complex motion; lastly, rendering our blur at a reduced resolution and using, e.g., a bilateral
upsampling technique (Sloan et al. [92]) is an obvious direction to explore.

6. Conclusion
We propose a new approximate motion blur post-processing approach capable of more accurately

capturing blur effects caused by non-linear motion. Our approach reduces spatial and temporal noise
(see the supplemental videos) and is designed to leverage the shader pipeline in order to implement
a true scatter operation. As such, we are able to handle longer motion trails, our algorithm is simple
to implement atop existing rendering engines, it scales independently of the underlying geometric
complexity, and it generates spatially- and temporally-smooth results in scenes where the state of
the art fails. We discuss the limitations imposed by our approach, and propose several avenues for
future work. We have begun exploring these directions, and a preliminary result (Figure 31) shows
significant promise, eliminating the most significant visual artifact of our approach.
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I am the second author of this article. My main contributions are:
• Creation of multiple test scenes and demonstrations to best distinguish the algorithm with

prior work, e.g., the cutlery scene used throughout, the donut scene of Figure 37 and the
kettle scene of Figure 46.
• Implementation of parts of the algorithm in Mitsuba [49].
• Real-time implementation of the algorithm which unfortunately did not make the cut in the

final publication.
Luis E. Gamboa formulated the theoretical foundation of the algorithm, devised many tests

and implemented the algorithm. Derek Nowrouzezahrai contributed to the algorithm’s design and
supervised the work.

The real-time implementation was to be a significant element of our results, showing that
our algorithm was highly scalable to workload and, given some smart tradeoffs, could perform
interactively. After facing several technical issues with the implementation of the algorithm on the
GPU, we had to publish without this contribution. However, these challenges indicated that the



real-time implementation has merit as a standalone contribution, as we detail in Section 2.1.

RÉSUMÉ. Le rendu réaliste avec des matériaux qui présentent des variations spatiales à haute fré-
quence demeure un défi, puisqu’éliminer le crénelage spatial et temporel requiert un nombre prohibitif
d’échantillons. Des travaux récents ont rendu le problème plus traitable, mais les méthodes présentées
restent extrêmement coûteuses lorsque des lumières environnementales et/ou de l’illumination globale
(correctement filtrée) sont utilisées. Nous présentons un modèle d’apparence avec des variations
explicites à haute fréquence des micronormales, et une approche de filtrage d’intégrales d’ombrage
multidimensionnelles qui reste efficace à plusieurs échelles. En combinant un système novateur et
compact d’histogrammes de mi-vecteurs avec une expansion de bases directionnelle, nous calculons
précisément l’intégrale de la réflectance haute fréquence filtrée sur des lumières étendues avec des
émissions variables angulairement. Notre approche fonctionne à plusieurs échelles, rendant des
images indistinguables de la référence à plus de 10× la vitesse de l’état de l’art et avec seulement
15% d’usage de mémoire. Lorsque nous filtrons l’apparence en considérant l’illumination globale,
nous sommes ∼30× plus rapides que l’état de l’art.
Mots clés : cartes de normales, lueurs, harmoniques sphériques, images intégrales

ABSTRACT. Realistic rendering with materials that exhibit high-frequency spatial variation remains
a challenge, as eliminating spatial and temporal aliasing requires prohibitively high sampling rates.
Recent work has made the problem more tractable, but existing methods remain prohibitively
expensive when using large environmental lights and/or (correctly filtered) global illumination. We
present an appearance model with explicit high-frequency micronormal variation, and a filtering
approach that scales to multi-dimensional shading integrals. By combining a novel and compact
half-vector histogram scheme with a directional basis expansion, we accurately compute the integral
of filtered high-frequency reflectance over large lights with angularly varying emission. Our approach
is scalable, rendering images indistinguishable from ground-truth at over 10× the speed of the
state-of-the-art and with only 15% the memory footprint. When filtering appearance with global
illumination, we outperform the state of the art by ∼30×.
Keywords: normal maps, glints, spherical harmonics, summed area tables
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(a) Direct illumination (b) Global illumination

Fig. 33. We filter direct (a) and global illumination (b) with high-frequency appearance and complex
emitters ∼30× faster than the state-of-the-art and ∼10% the memory footprint. Unless otherwise
stated, our results have converged and residual noise is due to high-frequency appearance.

1. Introduction
Microfacet reflectance models are a powerful tool for expressing the behavior of real-world

appearance. Traditionally, these models relied on aggregate statistical formulations of the normal
distribution function (NDF); however, many real-world objects exhibit features at scales visible to
a viewer. Meso- and macro-scale scratches, flakes and bumps all produce visually rich “sparkle”
effects.

One challenge in simulating these effects lies in resolving aliasing in the effective reflectance
inside a pixel’s projected footprint (or the footprint of a path vertex, for indirect bounces), requiring
prohibitively large sampling rates. Previous approaches (e.g., Jakob et al. [50], Yan et al. [113],
Belcour et al. [15]) resolve this issue by hierarchically culling normals and positions when evaluating
an appropriately filtered effective reflectance towards a fixed lighting direction.

These methods are tailored to sharp directional or point lighting, where sparkle effects can
be quite pronounced; however, scenes with larger area lights or environmental sources can also
exhibit sparkly behavior; here, resolving final antialiased images additionally requires integrating
the evaluation of these previous models over the domain of the extended light source (Figure 34).
Even with their efficient importance sampling schemes this integration over extended lights becomes
prohibitively expensive, and the problem is compounded if we seek to simulate additional bounces
of global illumination.

We present a filtered appearance model that admits an efficient numerical integration of incident
radiance over a shading footprint from, e.g., all-frequency environmental light sources. We allow
an explicit specification of the underlying normal variation and present a simple, efficient double
filtering algorithm that adapts to both the frequency-content of the underlying lighting and the
effective NDF within an arbitrary filter footprint. Our representation has modest memory needs, we
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Smooth MF: 1m:23s Our method: 2m:36s

Fig. 34. While high-frequency sparkle-like appearance is highlighted by strong directional or
point lighting (middle row), environmental lights (top row) still contribute significantly to sparkly
appearance. Our method (right column) generates converged images with these effects in less than
twice the time needed to generate converged results with a smooth microfacet model (left column),
and ∼10× faster than Yan et al. [113] (not shown).

easily incorporate it into standard offline and real-time rendering engines, and we demonstrate its
ability to scale to scenes with complex lighting and global illumination.

Specifically, we present the following technical contributions:

• a novel spherical histogram to query scale-dependent NDFs in time independent of the normal
map or footprint size,
• an efficient basis-space half-vector integrator that adapts to the frequency of both the incident

radiance and multi-scale NDF, and
• applications to direct lighting and correctly filtered secondary bounces in global illumination,

both with complex lighting.

We generate alias-free animations in a fraction of the time (∼2−10%) of the state-of-the-art (Yan et
al. [113], Belcour et al. [15]).

2. Previous Work
We aim to efficiently render alias-free ground-truth-quality images of scenes with microfacet

BRDFs, high-frequency normal variation, all-frequency lighting, both with and without global
illumination. While no current method can efficiently handle these scenarios, we discuss the most
relevant prior work: specifically, we draw upon work in both the interactive and offline rendering
communities.
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2.1. Microfacet Models

A long history of work on appearance models for reflection from rough surfaces, using mi-
crofacet theory (Beckmann and Spizzichino [10], Cook and Torrance [19], Walter et al. [108]),
lies at our foundation. As with most appearance filtering techniques, our model focusses on the
representation and treatment of continuous multi-scale NDFs in the microfacet model, remaining
agnostic to the choice for the remaining Fresnel and shadowing-masking terms in the model . We
will outline the specific instance of these terms we employ in our model (Section 3), acknowledging
the large body of work on both parametric (e.g., Ngan et al. [75], Bagher et al. [7], Dupuy et al. [31])
and non-parametric microfacet models (e.g., Bagher et al. [8]). We use the same framework but
with a discrete set of normals rather than a continuous distribution.

2.2. Procedural Texture Antialiasing

Prior to most work on NDF-based appearance filtering, high-frequency and/or procedural
textures were employed extensively as a means of introducing high-fidelity spatial variation in
simple shading models (see Perlin [82]). Approaches for antialiasing these procedural textures
include directly filtering out high spatial frequency content, or imposing simple geometric models
atop the textures in order to facilitate more flexible filtering schemes (Cook and DeRose [21], Lagae
et al. [59], Heitz et al. [45]). While suitable for albedo filtering, these approaches cannot be applied
to filtering multi-scale NDFs.

2.3. Accurate Appearance Filtering

Brute force numerical integration is a simple and prohibitively costly method to accurately
render sparkle effects that arise from high-frequency normal map variation (Yan et al. [112], Jakob
et al. [50]). This problem is compounded if, in addition to having to resolve spatial aliasing within
a pixel footprint, variation from incident radiance need also be integrated numerically. Neither
efficient (multiple) importance sampling schemes (Yan et al. [112], Jakob et al. [50], Veach and
Guibas [103]) nor more efficient pruning strategies (Yan et al. [113], Atanasov and Koylazov [6])
help, due to the nature of the full integrand, which includes a product of the filtered NDF with the
incident lighting. Our filtered appearance model explicitly treats the fact that both a spatial and
angular integral must be computed (Figure 36), as opposed to an evaluation of a spatial integral
(Figure 35).

Most recently, several methods approach the appearance filtering problem with solutions to
efficiently prune only the normals in an NDF that will contribute non-negligibly to the final shading,
for a given view and lighting direction pair (Yan et al. [112], Jakob et al. [50], Yan et al. [113],
Atanasov and Koylazov [6]). These work provide significant improvements over brute force
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integration in the presence of strong point or directional lights, but they become prohibitively costly
when large lights or global illumination are considered.

Two notable exceptions are the work of Raymond et al. [84] and Belcour et al. [15]. Raymond
and colleagues present a multi-scale appearance model tailored to scratch microstructures, and they
demonstrate its flexibility in the context of complex lighting. We instead treat arbitrary user- and
procedurally-generated high-resolution normal variations, and explicitly compute both the spatial
and angular integrations with a single method. Belcour et al. [15] integrate an existing appearance
filtering model (Yan et al. [112]) atop a covariance tracing-based global illumination framework
in order to correctly filter indirect bounces off of, and on to, sparkly materials. This approach
demonstrated orders of magnitude performance improvements over brute force Monte Carlo (at the
time, this was the state-of-the-art for accurately simulating indirect bounces of sparkly materials).
We similarly integrate our appearance model into a filter-aware global illumination algorithm, and
demonstrate a 30× performance improvement over the approach of Belcour et al.

Recently, appearance models that treat wave optics for fine-scale microstructures have demon-
strated the ability of simulating subtle iridescence effects (Werner et al. [110], Yan et al. [114]). We
rely on geometric optics and instead focus on accelerating lighting integration for multi-scale ap-
pearance in direct and indirect illumination. Incorporating wave optics in our model is an interesting,
complementary direction of future work.

2.4. Fast Appearance Filtering

Initial work on normal antialiasing was led by the interactive graphics community. Here, smooth
and compact normal distributions were used to leverage graphics MIP hardware to perform fast
multi-scale filtering (Toksvig [99], Olano and Baker [79], Dupuy et al. [30]). These single-lobe
approximations of the NDF are suitable for interactive applications, but they cannot capture the
details and anisotropies of NDFs (across scales) with high spatial resolution (Yan et al. [112]).

Han et al. [41] notably use spherical harmonics (SH) and spherical Gaussian mixture models of
the multi-scale NDF, allowing for multimodal NDFs. We too rely on SH, but only when performing
our final shading (i.e., directional integration) and not when computing the form of the multi-scale
NDF (i.e., spatial normal map filtering). Combined with an efficient half vector-space shading
formulation (Section 4.2), this allows us to correctly integrate environmental lighting with both
all-frequency underlying BRDFs and all-frequency environmental lighting, generating spatially-
and temporally-antialiased image sequences.

Finally, real-time approximations of existing accurate appearance filtering approaches for glints
(Zirr and Kaplanyan [116]) and iridescent scratches (Velinov et al. [104]) have shown promise
towards pushing these important visual effects into an interactive context. The approach of Zirr
and Kaplanyan [116] is effective but limited to simple lighting, whereas Velinov et al. [104] derive
analytic approximations for spherical and polygonal area lights. Their model, however, only treats
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scratch-like microstructures, whereas we consider both arbitrary normal maps and arbitrary, i.e.,
environmental incident illumination. While we primarily target offline, fully-accurate simulations,
we also discuss a proof-of-concept interactive renderer implementation in Section 6.

3. Preliminaries & Baseline Appearance Model
As with recent work on filtered appearance we build atop a standard microfacet BRDF model of

reflection from smooth surfaces

fr(x,ω i,ωo) = ρd +ρs

(
D(x,ωh)F(ω i ·ωh)G(ω i,ωo)

4(n ·ω i)(n ·ωo)

)
, (41)

but with a critical deviation that the normal distribution function (NDF) D(x,ωh) is a scale-
dependent, potentially high-frequency and anisotropic spherical distribution in the space of half-
vectors ωh = (ω i+ωo)/|ω i+ωo|. Here, ω i and ωo are the incident and outgoing lighting direction at the
shading point x (with geometric normal n), ρd and ρs are diffuse and specular reflection coefficients,
F(ω i ·ωh) is the Fresnel term and a geometry term G(ω i,ωo) captures micro-scale shadowing,
masking and inter-reflection.

Techniques that target ground-truth-quality renderings of microfacet models with high-frequency
normal variation can be categorized by whether they allow implicit or explicit specification of the
underlying normal variation. Explicit approaches (e.g., the “glints” methods of Yan et al. [112,113])
are flexible in that they allow an arbitrary high-resolution normal map texture as input, but generally
have large memory requirements (see Section 7). Implicit approaches (e.g., the “discrete microfacet”
method of Jakob et al. [50]) instead rely on statistical processes to describe the underlying high-
frequency normal variation (typically using lazy, on-the-fly evaluation), leading to more compact
run-time algorithms but at the cost of reduced control over appearance variations.

We will efficiently compute filtered appearance integrals in the presence of complex incident
lighting, and we propose our solution in Section 4. First, however, we establish a baseline filtered
appearance model with which we can generate ground-truth results and compare to in the context
of prior work. As with our final model (Section 4), our baseline model is an explicit model and,
so, allows for user-controllability through arbitrary normal map inputs. Our baseline (and final)
models will require low memory footprints, in order to facilitate comparisons on complex scenes.
In the context of prior work, our baseline model combines the glint (as in Yan et al. [112, 113]) and
discrete microfacet models (as in Jakob et al. [50]), and so we refer to it as the G×D model.

3.1. Baseline Filtered Microfacet Model (G×D)

The D(x,ωh) term in Equation (41) can be expressed as a hemispherical probability distribution
(over half-vectors) of the angle θh formed by every microfacet normal with the underlying macro-
scale/geometric normal n at a shade point x. Unlike smooth microfacet models, the NDF within
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Fig. 35. Previous methods only integrate over a spatial footprint, before evaluating filtered appear-
ance in the direction of a point/directional source.

a filtering footprint P (e.g., subtended by the projection of a pixel onto a shading surface; see
Figure 35) can be modelled according to the individual normals that lie inside it.

We borrow and combine previous notation from Jakob et al. 2014 and Yan et al. [50, 112] and
define the normalized NDF as the set of normals ωx at shading locations x inside footprint P , each
of which represents the mean direction of a spherical Gaussian Gs that models the roughness of an
equivalently-smooth underlying microsurface (Figure 35),

D̂(P,ωh) =
∫
P

Gs(ωh;ωx,Σs)dx , (42)

where the Gaussian roughness centered about each micronormal is parameterized by its covariance
matrix Σs. In practice, we apply isotropic roughness, and so a diagonal Σs with elements σs.

While Equation (42) assumes an arbitrary underlying spatial distribution of micronormals, in
practice we use discrete micronormal distributions defined in normal map textures. That is, our
normalized NDF is the finite set of explicitly specified normals ωx located at shading locations x
inside footprint P . For this reason, it can be convenient to rewrite Equation (42) in terms of normal
map texels (dropping the dependence on σs, for brevity), as

D̂(P,ωh) =
1

NP
∑

ωx∈P
Gs (ωh;ωx) , (43)

where NP is the number of texels that the footprint P projects onto in texture-space (Figure 35,
right), and we assume equally weighted (i.e., box-filtered) averaging of these micronormals.

Note that as σs → 0 the roughness approaches mirror-like (delta) reflection and Gs → δΩ,
our baseline approaches the model of Jakob et al. [50], but with the important difference that
micronormals are defined explicitly.
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Fig. 36. Our method integrates high-frequency appearance variation over both spatial footprint and
incident lighting directions. To integrate over all light directions ω i, as is needed for environment
lighting, previous work requires many Monte Carlo samples, each of which involves an expensive
integral over P . Our method solves both integrals with a single evaluation.

Incorporating the multi-scale NDF (i.e., for arbitrary pixel footprint size) described in Equa-
tion (42) into Equation (41), involves changing the notion of a point-wise BRDF fr (dependent on
intersection point x) into a “multi-scale” BRDF f̂r that depends on pixel footprint P . Having done
this, we can evaluate for a single view and light direction, arriving at the formal definition of our
baseline G×D filtered appearance model:

f̂r(P,ω i,ωo)=ρs

∫
P

D(x,ωh)F(ω i·ωh)G(ω i,ωo)

4(n ·ω i)(n ·ωo)
dx

=ρs

D̂(P,ωh)︷ ︸︸ ︷∫
P

Gs(ωh;ωx)dx F(ω i·ωh)G(ω i,ωo)

4(n ·ω i)(n ·ωo)
, (44)

where we solve the spatial integral by means of Equation (43) and we employ a factorization of
the G term as a product of rational approximations of the Smith shadowing term, G(ω i,ωo) ≈
G1(θi)G1(θo) with G(θ) (see Walter et al. [108]), and we use the exact Fresnel term for conductors.

Note that shading with Equation (44) for lighting configurations that require anything other
than a simple evaluation of (single) ω i, and hence ωh, directions would have to rely on brute
force numerical integration. This quickly becomes prohibitively expensive (Figures 36 and 37). In
Section 4 we present a mathematical representation, and detail an efficient and scalable algorithm,
for solving integrals of Equation (44) against (non-delta) lighting distributions.
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Our method inherits the following assumptions from Yan et al. [112, 113] and Jakob et al. [50]:
locally flat macro-geometry and no view/light variation within the footprint. Our results are
consistent with prior work, as can be observed even under highly curved surfaces, e.g., the snail
(Figure 33).

3.2. Evaluating G×D

We adapt the pruning algorithm of Jakob et al. [50] to treat explicit normal maps and Gaussian
roughness, when evaluating Equation (44) for ground-truth baseline renderings. Specifically, we
build a min-max MIP-hierarchy in texture space. Spatial footprint pruning is trivial, as we project a
conservative bounding box for pixel (or indirect path vertex) footprints onto the UV space. Normals
are encoded as 2D (s,t)-coordinates on a projected disc parameterization (see Yan et al. [112]) and,
at each MIP-level, a min and max (s,t) are computed and used to cull ωx directions that fall outside
of P and Ωo. The hierarchy is constructed once at start-up at a cost negligible to the total render
time.

Of note, this G×D approach requires less memory and is consistently faster than the earliest
approach of Yan et al. [112], however Yan et al.’s latter approach [113] converges between 5−25×
faster (albeit requiring typically 100× more memory with higher per-evaluation cost) than G×D.
For this reason, we often treat G×D as our “brute force” solution for ground-truth image generation
(even though it is roughly 500× faster than naïve importance sampled Monte Carlo), and we treat
the latest Yan et al. technique [113] as our “high-performance” benchmark. All results generated
with Yan et al.’s [113] techniques rely on implementations provided to us by the authors.

Figure 37 demonstrates the performance gap introduced when even the state-of-the-art (Yan et
al. [113]) has to rely on numerical integration to resolve variation in incident radiance. This gap is
compounded by global illumination (e.g., Figures 33 and 46).

In Section 4, we will incorporate incident lighting variation as a component of a new filtered
appearance model and detail an approach for computing integrals that filter over the spatial, outgoing
view and incident lighting dimensions. Our method relies on a simple multi-scale spherical
histogram (Section 4.1) and basis-space integration scheme (Section 4.2), it is easy to implement
in existing rendering engines (Section 6), and it scales favorably in performance and memory
(outperforming the state-of-the-art by 10−30×).

In Section 5 we will apply our model to filtering direct illumination and multi-bounce global
illumination transport, both in scenes with complex environmental (and point) lighting.

4. Filtering Appearance in Space and Direction
To synthesize spatially- and temporally-antialiased image sequences with sparkly materials,

complex lighting and global illumination, we devise a compact and efficient approach to compute
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integrals of Equation (44) over arbitrary illumination signals Li(ω), namely

Lo(P,ωo) =
∫
Ωi

Li(x,ω i) f̂r(P,ω i,ωo)(n ·ω i)dω i

=
∫
Ωi

∫
P

Li(x,ω i)D(x,ωh)F(ω i ·ωh)G(ω i,ωo)

4(n ·ωo)
dxdω i , (45)

where Ωi are hemispherical directions about the macro-scale normal n and we drop the specular
coefficient ρs for brevity. In this context, D(x,ωh) is the point-wise NDF Gs(ωh;ωx). State-of-
the-art techniques would have to rely on Monte Carlo integration to resolve Equation (45) and,
even with efficient (spatially-filtered) BRDF importance sampling (Yan et al. [112, 113], Jakob et
al. [50]), light importance sampling and MIS (Veach and Guibas [103]), this is prohibitively costly
(Figure 37).

We simplify Equation (45) by factoring and approximating the Fresnel, geometric terms and
microfacet normalization terms from the integral with a transfer function FG(ωo) (see Appendix A
for details), leading to our lighting-aware filtered appearance model,

Lo(P,ωo)≈ FG(ωo)
∫
Ωi

∫
P

Li(x,ω i)D(x,ωh)dxdω i . (46)

Baseline (G×D) Our Method (Eq. 46) Yan et al. [113]

Fig. 37. Middle: Our method generates a converged filtered result in 4.89s (1spp) in a scene with a
high-resolution normal map and environmental lighting. Top halves: equal time for our baseline
(2spp, left) and Yan et al. [113] (1spp, right). Bottom halves: Equal quality rendering requires
16,384spp and 13m:8s with our baseline and 512spp and 2m:25s with Yan et al. [113].
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Fig. 38. We use texture-space accumulated NDF histograms to efficiently query the multi-scale
NDF histogram for an arbitrary filtering footprint P using four lookups into this SAT-like data
structure (histogram radial sizes not to scale, above). Figure 43 illustrates the visual impact of
different histogram resolutions.

An immediate issue arises when addressing solutions to Equation (46): the discrepancy in the
natural spherical parameterizations of Li and D. We choose to perform integration in the space
of half-vectors ωh and reparameterize Equation (46) appropriately by introducing an incident
illumination function L̂i that is dependent on both outgoing and half-vector directions, reducing the
problem to solving equations of the form∫

Ωi

∫
P

Li(x,ω i)D(x,ωh)dxdω i

=
∫

Ωh

Li(x̄,r(ωo,ωh))(4(ωh ·ωo))
∫
P

D(x,ωh)dx

︸ ︷︷ ︸
D̂(P,ωh)

dωh

≈
∫

Ωh

L̂i(x̄,ωo,ωh)(4(ωh ·ωo))
∫
P

Gs(ωh;ωx)dxdωh , (47)

where the 4(ωh ·ωo) factor accounts for the change of parameterization between differential
incident and half-vectors (Torrance and Sparrow [100], Walter [105]), Ωh are the hemispherical
directions about ωo, r(ωo,ωh) = ω i reflects ωo w.r.t. ωh, and we define our filtered multi-scale
NDF, D̂(P,ωh), which depends on the filtering footprint P . Note that above, as with previous work,
we assume the incident illumination L̂i does not vary significantly within the spatial footprint and
use a “central” shading point x̄ to distinguish between its spatial variation at scales larger than a
single filtering footprint. Sections 5 and 6 will detail our representation of the incident illumination
L̂i, which allows us to handle physically-based microfacet models in the presence of environmental
lighting, addressing certain limitations that we discuss regarding previous work (e.g., Han et al. [41];
see Section 6.3). For the purposes of our exposition here, however, it is safe to assume that we have
arrived at an expression L̂i that can be treated as a simple (hemi-)spherical function of ωh.

Now, to efficiently solve integrals of the form in Equation (47) (and, so, Equation (46)), we
combine two ideas that lead to orders of magnitude faster performance than the state-of-the-art with
a modest memory requirement: first, a representation for computing multi-scale spherical NDFs over
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Fig. 39. We adapt the shading to the minimum between the max frequency bandwidth of the
multi-scale NDF in a footprint (top row) and the max bandwidth of the lighting environment. We
visualize environment maps bandlimited to this effective shading bandwidth (bottom).

arbitrary filtering footprints in constant time, using spherical histograms; and, second, a basis-space
representation for computing efficient spherical integrals that can adapt to the frequency-content of
both the incident lighting L̂i and the multi-scale NDF D inside a footprint.

4.1. Multi-scale NDFs Using Histogram Accumulation

For explicit high-frequency normal variation represented in, i.e., a normal map, the multi-scale
NDF D̂(P,ωh) is a normalized spherical distribution of all the normals that lie inside the projected
filtering footprint P , convolved with the isotropic roughness kernel Gs. One can naïvely arrive at a
discretized (e.g., a spherical texture map) approximation of D̂(P,ωh) by convolving and summing
each normal map texel that lies inside the projection of P onto (u,v,)-space. This naïve approach is
not favorable for two key reasons:

(1) the cost of computing D̂ would scale linearly in the size of P , and
(2) the cost of spherical Gaussian convolution would scale with the underlying discretization resolu-

tion for D̂.

Motivated by these scalability issues, we propose a novel representation and an efficient data-
structure, based on spherical histogram accumulation, to compute a discrete representation of
D̂ in constant time for footprints P of arbitrary size (item #1, above). We detail our histogram
formulation below, before discussing how basis-space representation can help us avoid the scalability
cost of spherical Gaussian convolution (item #2, above; see Section 4.2).

We observe that, instead of individually representing every possible discrete micronormal
direction, we can collect histogram statistics of the normals that fall within a footprint. This has two
benefits: first, we show below how histogram statistics for an arbitrary footprint can be computed
using histogram statistics collected for each individual micronormal in the normal map, and this
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all in constant time independent of the footprint size; second, we can control the NDF accuracy by
adjusting the histogram bin resolution.

4.1.1. Histogram initialization. Specifically, we define a new 2D histogram texture with the
same resolution as the normal map. Each texel stores an accumulated spherical histogram of
normals, encoded as a 2D bin of (θ ,ϕ)-space normal buckets. Bins have equal elevation and
azimuthal angle extents. Given the SAT-like structure, a value at position (u′,v′) corresponds to the
histogram of normals in the rectangular area (of the normal map) with corners (0,0),(0,v′),(u′,0)
and (u′,v′)

At initialization, beginning from the top-left histogram texel, we accumulate normals into bins
from left-to-right and top-to-bottom (see Figure 38): each histogram texel accumulates additional
normals from the normal map to cover the same area up to the current (u,v)-coordinate. Normals
only get added (not removed) to histogram bins as we traverse across texels, and so a histogram
at texel (u′,v′) is a strict superset of the histograms at texel, e.g., (u′−1,v′−1). In this case, the
histogram at (u′,v′) is equal to the sum of histogram entries at (u′,v′−1) and (u′−1,v′) (correcting
for overlaps) plus the corresponding frequency increase for the normal at (u′,v′) in the normal map.
This structure allows for a fast sweeping accumulation, which adds a negligible overhead at startup
(see Section 6.1).

4.1.2. Summed Area Table Histogram Queries. At run-time we compute the NDF histogram of
an arbitrary axis-aligned (u,v) footprint by treating the histogram as a summed area table, using
only four constant cost queries (Figure 38). As with Yan et al. [112, 113], we utilize axis-aligned
(u,v) footprints and a Gaussian image reconstruction kernel to approximate Gaussian footprint
weighting.

Given the ability to compute multi-scale NDF histograms (efficiently, in constant time w.r.t.
footprint size), we require an approach to integrate the product of these spherical histograms with
arbitrary incident illumination distributions (i.e., Equations 46 and 47).

4.2. Adaptive Basis-space Integration

A naïve integration solution is to apply a spherical quadrature at central axes of each spherical
histogram bin, effectively a bin as a weighted delta function. Alternatively, a quadrature with pre-
filtered environmental summed area tables can be used, treating each bin as a subtended spherical
rectangle. These integration approaches scale linearly with the histogram resolution, whereas we
propose an adaptive method with several advantages:

• we adapt to the frequency content of the entire integrand in Equation (47), treating the bandlimits
of both the NDF and the incident illumination and shading at the minimum of these bandlimits,
• our shading scales indepedent of the histogram resolution, and
• we do not need any specialized spherical SAT parameterizations, which would incur a resampling

cost at shade-time.
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To apply a basis-space shading method to our problem, we require a basis capable of efficiently:

(1) determining the bandlimit of lighting, NDF and their product,
(2) computing bandlimited integrals of this product (i.e., adaptivity),
(3) capturing all-frequency signal variation (i.e., accuracy), and
(4) having only modest memory requirements (i.e., compactness),

To these ends, we choose to employ spherical harmonics (SH). As with previous work from Han
et al. [41], we detail several properties of SH that we leverage to meet our performance, accuracy
and memory requirements; we contrast our choice and overall representations to that of prior
work below and in Section 6.3. Basis selection involves trade-offs and, while other choices may
have met our requirements (e.g., spherical radial basis functions), our SH method demonstrates
significant performance and memory improvements over the state-of-the-art, and so we leave the
application/exploration of other bases to this problem to future work.

Before detailing the interplay of our SH integration scheme with our spherical histogram
representation, we provide a quick primer to SH and the specific properties we leverage.

4.2.1. Spherical Harmonic Preliminaries. We can represent a spherical function f (ω), with
ω = (x,y,z) = (θ ,ϕ) ∈ S2, with SH projection coefficients obtained by projecting f onto the real
SH basis as f =

∫
S2 f (ω)y(ω)dω , where f is a vector of these coefficients and y(ω) is a vector of

the individual SH basis functions:

ym
l (θ ,ϕ) =

{√
2 Km

l cos(mϕ) Pm
l (cosθ) , m > 0√

2 Km
l sin(|m|ϕ) P|m|l (cosθ), m≤ 0

, (48)

where an “order N” SH representation comprises bands 0≤ l ≤ N−1 m, indexes the (2l +1) basis
functions in each band l, Km

l is a normalization term, Pm
l are the associated Legendre polynomials,

and each band-l basis function is a degree l polynomials in (x,y,z). We often use a single index
i = l(l +1)+m for basis functions and coefficients.

The signal f has bandlimit M if f m
l = 0, ∀l≥M−1. We treat the concept of an effective bandlimit

M when | f m
l |≤ ε, ∀l ≥M−1 for sufficiently small ε (we use ε = 10−6). We can reconstruct f by

weighting the SH basis functions by its SH projection coefficients

f (ω) = f ·y(ω) = ∑
N−1
l=0 ∑

m=l
m=−l f m

l ym
l (ω) (49)

and, unless f has bandlimit M < N, the reconstruction is a bandlimiting approximation of f (to a
bandlimit of N.)

The m = 0 subset of SH functions, called zonal harmonics (ZH), are circularly symmetric
functions of cosθ = z. Sloan et al. [93] introduced a fast rotation to compute the SH coefficients gm

l

of a circularly symmetric function aligned about z (represented by ZH coefficients fl) rotated to an
arbitrary direction ω̄ , by simply scaling the SH basis functions evaluated at ω̄ as

gm
l = n∗l fl ym

l (ω̄) = f ∗l ym
l (ω̄) , (50)
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with n∗l =
√

4π/(2l +1). This amounts to an application of the Funk-Hecke convolution theorem
that allows us to obtain the SH coefficients of the function that results from a convolution of a
circularly-symmetric function (with ZH coefficients fl) and a spherical function (with SH coeffi-
cients hm

l ). Above, this amounts to setting g(ω) = f (θ)~h(ω), where h(ω) = δ (ω− ω̄) is simply
a delta function in the direction of the rotation axis and h has SH projection coefficients hm

l = ym
l (ω̄).

The final SH property of interest is the fast double-product integral formulation: given two
spherical functions a(ω) and b(ω) with (effective) band-limits Ma and Mb, the integral of their
product is ∫

S2 a(ω)b(ω)dω = ∑
M2
?−1

i=0 ai bi , (51)

where M? = min(Ma,Mb) and we arrive at the right hand side by substituting the SH expansions of
a and b (Equation (49)) into the left hand side and then applying the orthonormality property of SH
basis functions:

∫
S2 yi(ω)yk(ω)dω = σi,k, where σi,k is the Kroenecker delta.

Equations 49 and 51 satisfy requirements #1 and #2 for our basis (listed earlier in this subsection),
and we address the final two basis requirements. Regarding all-frequency signal variation (item #3),
while they are not often leveraged for all-frequency shading applications, SH basis functions are
capable of capturing all-frequency signal variation if a sufficiently high bandlimit is chosen. We will
discuss below exactly the manner in which we apply SH to our problem, as it scales independently
to the normal/histogram map resolution and allows us to use extremely high bandlimits (order 300
in some cases), which are more than sufficient to capture the frequency content of NDFs (across
scales) and realistic incident illumination from, e.g., environment maps (see Figure 39). While the
number of SH coefficients we need to store grows quadratically in the max bandlimit order, we
still maintain a memory footprint significantly smaller than the state-of-the-art (Yan et al. [113]),
satisfying item #4, above (see Section 6.1).

4.2.2. Multi-scale SH NDFs and Adaptive Integration. We compute the SH projection of our
filtered multi-scale NDF (Equation (47)) using the multi-scale NDF histogram we query for our
filtering footprint P and, after determining the effective bandlimit of this projection (and of the
incident lighting; see Section 6), we set the shading bandlimit adaptively per-pixel as M? and apply
Equation (51) to solve the integral (Equation (47)) of Equation (46).

Concretely, we arrive at the SH coefficients of the filtered multi-scale NDF Di(P) =∫
S2 D̂(P,ω)yi(ω)dω by summing the SH projection coefficients of its individual Gaussian rough-

ness kernels, each aligned about the NP normals in the filtering footprint P ,

Di(P) =
1

NP
∑

ωx∈P

∫
S2

Gs(ω;ωx)yi(ω) dω . (52)

We query our NDF histogram for P (Figure 38) and iterate over the NP micronormals in the
histogram (outer sum in Equation (52)). SH projection coefficients for each of these individual
Gaussians are precomputed once at initialization, as they align with the histogram bin central axes.
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In fact, the histogram nature of our intermediate NDF representation allows us to further reduce the
number of elements from NP to M (with M� NP as P increases in size), where M is simply the
resolution of the histogram.

Recalling that spatial integration of an individual Gaussian roughness kernel projects that
Gaussian onto the sphere about the shading frame, so we take advantage of the fact that these
spherical Gaussians are circularly symmetric and that their SH coefficients can be computed by
applying the fast ZH rotation formulation (Equation (50)) to the ZH coefficients of a canonically-
oriented spherical Gaussian (which we compute and store once, numerically). Computing the
SH coefficients of D̂(P,ω) amount to a weighted sum of M ZH-rotated (precomputed) spherical
Gaussian SH coefficients.

One could imagine avoiding the histogram abstraction and directly storing SH coefficients for
incrementally accumulated NDFs, in a similar SAT-like structure as our histogram, but this approach
has several limitations that we discuss in more detail in Section 6: of note, the storage costs of such
an SAT would scale (quadratically) with the maximum SH order (e.g., 351 GB for order-300 and
a 1024×1024 normal map). This alternative also bears some similarities to the multi-scale NDF
representation in Han et al.’s 2007 work [41], which we also discuss in Section 6.3.

5. Applications
After computing the SH coefficients of the filtered NDF D̂ we can solve Equation (46) with an

efficient SH double product integral (Equation (51)). We do so in the context of two applications,
detailing their specifics, below: filtered direct illumination (e.g., Yan et al. [112], Yan et al. [113],
Jakob et al. [50]) and filtered global illumination (Belcour et al. [15]). In all cases, our rendering
algorithms use an order-of-magnitude less time and less memory to match converged ground-truth
compared to the state-of-the-art.

5.1. Appearance Filtered Direct illumination

We compute filtered direct illumination Ld(P,ωo) in a scene with complex environment
and area lighting with Equations 46 and 47 and an appropriate substitution of L̂i(x,ωo,ωh) ≡
L̂e(x,ωo,ωh)V̂ (x,ωo,ωh) that accounts for the direct shadowing visibility term V (x,ω i) and the
incident radiance due to emission from light sources Le(x,ω i). Note that Le combines lighting from
area (e.g., polygonal), environmental and point/directional light sources.

Here, we note that we can immediately obtain a converged unshadowed direct
illumination result Lu(P,ωo) with a single shading “sample” (i.e., a single evalu-
ation of our basis-space double-product integral), if we ignore the visibility term
and use L̂i(x,ωo,ωh) ≡ L̂e(x,ωo,ωh). Here, we precompute the SH projection of
L̂e(x,ωo,ωh)(4ωh ·ωo) for many ωo at initialization, and query these coefficients during
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fast double-product integration for the unshadowed term Lu. We discuss technical details in
Section 6.

A common numerical solution in scenarios such as this is to devise a Monte Carlo estimator that
uses the unshadowed direct illumination as a control variate, and then relies on numerical sampling
to resolve the shadowing:

Ld(P,ωo)=Lu(P,ωo)−
Ns

∑
s=0

Le(x,ωs)(1−V (x,ωs)) f̂r(P,ωs,ωo)

Ns pdf(x,ωs)
(53)

where we rely on our baseline G×D technique to resolve the Monte Carlo integral, with a spherical
pdf that applies multiple importance sampling of the light/environment and our filtered BRDF
sampling. Spatial sampling (i.e., to resolve the implicit spatial integral over the footprint of f̂r) is
absorbed into standard sub-pixel anti-aliasing.

One side effect of this control variate estimator is that noise in the shadowed regions can become
objectionable, since individual estimator samples are unbounded. We rely instead on the recent
ratio estimator approach of Heitz et al. [44], that leverages a factored multiplicative decomposition
of the unshadowed and shadowed direct radiance, instead of the difference-based estimator above.
Unlike their approach, we do not employ any spatial denoising to our ratio estimate, to avoid adding
bias; doing so would significantly improve the visual appearance of our results at low sampling
rates, but our goal is to match ground-truth results.

5.2. Filtered Global Illumination

We adapt the method of Belcour et al. [15] to filter high-frequency appearance in the presence
of global illumination effects, but now also in scenes with complex environmental and area light

Unshadowed Lu(P,ωo) Shadowed Ld(P,ωo)

Fig. 40. We can generate converged unshadowed direct illumination with a single shading sample
(left; 0m:42s) and then apply the technique of Heitz et al. [44] to compute shadowing numerically
(with 4spp in 1m:08s).
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sources. Their approach propagates a lightweight covariance-based lightfield representation along
paths (i.e., in a standard uni- or bi-directional path tracing framework). The covariance at any path
vertex can be used to define a local filtering footprint which, in turn can be applied to filter an
underlying high-frequency appearance model.

Even in scenes with strong point and directional sources, their indirect filtered appearance
method provided several orders-of-magnitude improvements over a naïve path traced solution (the
only alternative, at the time). The added complexity of filtering indirect reflections of high-frequency
appearance in the presence of large angularly-varying light sources stresses their method as, just
with filtered appearance in direct illumination, their underlying appearance filtering model does not
take variation due to incident illumination into account.

By applying our solution to Equation (46) in the next-event estimator of secondary path vertices
in a standard uni-directional path tracer, augmented with Belcour et al.’s secondary footprint
computation, we are effectively leveraging our method’s ability to compute a converged value that
integrates over all light directions (instead of just one). This way, we are able to outperform their
approach in scenes with complex lighting by about a factor of 10−50× (see Figures 33 and 46).

6. Implementation and Discussion
We discuss implementation details, as well as discussing design decisions in the context of

previous work, below.
At a high-level, our approach can build atop any rendering engine capable of generating ray

differentials (see Igehy [47]) (for direct illumination) and, for global illumination, secondary path
filtering differentials (we employ Belcour et al.’s [15] approach, here). As with previous work (Yan
et al. [112, 113]), we assume axis-aligned footprints in texture-space, computed with conservative
(u,v) bounding boxes.

Below, we provide technical implementation details of our data-structures and algorithm, and
discuss relationships (and differences) to certain aspects of previous work. Our rendering framework
involves the construction of our histogram SAT (Section 6.1), the precomputation of rotated Gaussian
SH lobe coefficients (Section 6.2) and the precomputation of weighted SH lighting coefficients
(Section 6.4).

6.1. Histogram Resolution

We store a discrete spherical histogram in our SAT-like multi-scale NDF lookup texture (Sec-
tion 4.1). The texture itself has the same resolution as the underlying normal map, and each texel
stores a discretized histogram with (θ ,ϕ)-parameterized bins. We experimented with different
histogram resolutions, and settled on a resolution of 9×32 for every result in the paper: this value
was chosen such that renderings visually match the reference ground-truth, all while maintaining a
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modest memory footprint (e.g., 576MB for 1024×1024 normal maps and 1.1GB for 2048×2048).
Figures 43 and 47 illustrate visual artifacts that arise from reducing the histogram bin resolution.

6.2. Gaussian Roughness Lobe Discretization

We precompute SH coefficients for the rotated ZH Gaussian roughness lobes
(
∫

Gs(ω;ωx)yi(ω)dω in Equation (52)), for a fixed base roughness σs (and each high-frequency
material in the scene), at start-up. We store these rotated lobes at a 4× higher resolution (i.e.,
65×128) than the histogram due to the difference in their spherical parameterizations: the NDF
histograms are expressed in the local-shading frame (with n up), whereas shading with the Gaussian
lobes is conducted in the half-vector frame (with ωo up). This means that we need to rotate the
n-oriented Gaussian lobes to the ωo-frame for shading. At run-time, we rotate each (non-zero)
NDF bin’s central direction into the ωo-frame and bilinearly interpolate between the four nearest
pre-rotated Gaussian lobe coefficient vectors. Alternatively, we could perform a perfect rotation

ω0

ω1

ω i

P0

P1

Ω0
Ω1

Fig. 41. We adapt the technique of Belcour et al. [15] to compute secondary path vertex footprints
for filtered appearance with global illumination.

100



ωo
nn

(a) θo = 30◦

ωo nn

(b) θo = 60◦

Fig. 42. When integrating with respect to ωh our basis-space approach automatically discards
NDF normals outside the shading frame (grayscale) and uses an appropriately warped incident
illumination distribution.

of a canonically-oriented Gaussian ZH lobe to the rotated bin direction (Equation (50)), but the
precomputed solution allows us to avoid evaluating SH basis functions at run-time (whose number
grows quadratically w.r.t. order). We illustrate the effects of different lobe direction sampling rates
(relative to the NDF histogram resolution) on a simple smooth microfacet sphere, rendered in the
half-vector space, in Figure 44. The effect of different rates can be observed in Figure 48.

5×16 bins 9×32 bins

Fig. 43. Lower resolutions for our accumulated NDF histogram result in angular blurring of details
(left), albeit a much faster rendering (2.5×, here).
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Table 2. Memory and performance comparisons for our examples.

Scene Normal
Map

Max SH
Order

Total
Memory

Render Times Speed-up
FactorOur Method Yan et al. [113] or

Belcour et al. [15]
Cutlery 20482 60 2.7GB 50.7s 7.1m 8×
Snails 20482 20 2.3GB 3.53m 121.4m 34×
Torus 5122 15 172MB 4.89s 2.35m 28.8×
Kettle (3×) 20482 60 2.7GB 1.22m - -
Kettle 10242 60 1GB 2.43m - -

The precomputed lobe coefficients still require very little storage: 29MB for order-30 SH,
114MB for order-60 and 714MB for order-150.

6.3. Naïve NDF SAT and Relationship to Han et al. [41]

We combine a SAT-like NDF histogram representation with rotated Gaussian lobes in order to
compute the SH coefficients of a multi-scale NDF, for a certain filtering footprint. An alternative
approach would be to directly store SH coefficients of the accumulated NDF, in an SAT-like data
structure; then, when querying for a specific footprint’s NDF’s SH coefficients, we can similarly
apply an SAT-like 4-query sampling (as in Figure 38). At a high-level, this is similar to the data
structure proposed by Han et al. [41], with the main differences being that they leverage MIP-
hardware to compute a hierarchy of footprints, and then use a single texture sample to query a
specific footprint’s NDF’s coefficients.

We implemented both of these strategies and, in both cases, there are significant performance
and scalability constraints that preclude their use for high, ground-truth-quality renderings with
high-resolution appearance maps. Firstly, memory-wise, storing SH coefficients per texel quickly
becomes prohibitive as the normal map resolution increases, and the maximum SH order Fmax

increases: a 2048×2048 normal map and Fmax = 100 would require more than 160GB of storage
for single-precision floats. And if a MIP-hierarchy is employed, instead of an SAT lookup approach,
then 213GB would be needed.

Apart from storage, another downside is that the NDF coefficients would be expressed in the n
local shading frame (the same as the NDF histogram parameterization) and, in order to shade with
realistic microfacet models in the half-vector ωh frame, these coefficients need to be rotated (for
each pixel sample) at run-time, which is costly in SH (see Nowrouzezahrai et al. [77]).

We instead decouple memory costs due to increasing SH order from the asymptotic memory
costs, as increases in the SH order only affect the size of our pre-rotated Gaussian lobe coefficients;
and, as discussed earlier, we could completely avoid this precomputation by performing the fast
ZH rotation on-the-fly. This decoupling also allows us to avoid costly SH rotations when changing
between the local shading frame and the half-vector rendering frame.
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6.4. Light Source Coefficients

When computing Equation (46) as a double product integral, we require the SH coefficients of
the filtered multi-scale NDF (i.e., the rotated Gaussian NDF lobes) and the incident illumination
(both expressed in half-vector space). Rewriting Equation (47) to explicitly highlight the double
product integral decomposition, we have∫

Ωh

[
L̂i(x̄,ωo,ωh)(4(ωh ·ωo))

][
D̂(P,ωh)

]
dωh

=
∫ [

∑ j
∫

L̂i(x̄,ωo,ω)(4(ω ·ωo))y j(ω)dω︸ ︷︷ ︸
LSH

j (ωo)

][
∑k Dk(P)︸ ︷︷ ︸

Eq. 52

]
dωh ,

where the lighting SH coefficients LSH
j , when expressed in the half-vector space, depend explicitly on

the viewing direction ωo. These coefficients also include the change-of-parameterization Jacobian.
Similarly to our discretization of the Gaussian roughness lobe coefficients, we pre-tabulate

SH coefficients for the lighting, discretized at the same resolution as the Gaussian lobes (and also
bilinearly interpolated at run-time; see Figure 49). This table requires three-times (or as many
spectral components used) the storage as the Gaussian lobe coefficient table, due to separate RGB
coefficients for lighting (so, e.g., just under 342MB for order-60).

0.5× histogram resolution 4× histogram resolution

Fig. 44. When storing rotated Gaussian roughness SH coefficients below the spherical histogram
resolution (left), visible re-sampling artifacts can appear. We use a conservative discretization of
4× the histogram’s resolution.
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7. Results
We report render times from a dual Intel Xeon E5-2683 with 32 cores and 128 GB of RAM,

and normal maps have a resolution of 2048×2048, unless stated otherwise. In all cases, render
times do not include renderer initialization, a process that typically takes roughly 4 seconds for
our scenes. In addition to this initialization cost, our method requires no more than 9 seconds to
construct all of its internal data structures. As discussed in Section 6, the memory consumption of
our approach depends on storing the spherical NDF histograms, the rotated Gaussian roughness
lobe coefficients, and the rotated lighting coefficients. The latter of these two can be shared across
materials, require negligible memory compared to the spherical NDF histogram texture, and require
a short precomputation time dependent on projection quality, roughly 7 minutes for all 65×128
order 60 projections, each computed with half a million numerical integration samples. Figures
47-50 illustrate the effect of our various simplifications and parameter settings. Table 2 summarizes
our memory usage, and we discuss each scene below.

The snails scene uses the flakes normal map (see Yan et al. [112,113]), an environment map and
a single point light, simulating global illumination with a single indirect bounce. Our method obtains
a converged result (see supplemental video) in 2m:15s, and Belcour et al. 2017’s approach [15]
generates 11spp in equal time.

The cutlery scene uses a scratched metal normal map (see Yan et al. [112, 113]) with environ-
mental and point lighting, and our method converges in 0m:51s, whereas the method of Yan et
al. [113] can only generate 9 spp in equal time (far from enough to convergence).

The torus scene uses a 512×512 scales normal map that is tiled repeatedly in the scene, with
lighting from a lower-frequency environment map. This allows us to use significantly lower effective
shading bandwidths (see Section 4.2) and we obtain a converged rendering in less than 5 seconds,
whereas the state-of-the-art (Yan et al. [113]) rendered a single sample in 6 seconds (and our baseline
G×D fired 2spp in equal time). Fully converged renderings for these two alternative baselines took
2m:25s and 13m:8s, respectively.

For the kettle, all lighting in this scene is due to an environmental source and and we use a
metal panel 1024×1024 normal map. We render this scene to convergence in 2m:27s.

8. Conclusion and Future Work
We present a scalable appearance model for filtered reflections from high-frequency microfacet

models under complex illumination. We demonstrate significant speed-ups, up to 10× for direct
illumination and 50× for global illumination, compared to the state-of-the-art in these two scenarios
(Yan et al. [113], Belcour et al. [15]). Our method includes limitations due to our assumptions,
which we discuss shortly.

Axis-aligned footprints are inherent to an SAT-like data structure, and as such, susceptible of
being extended to arbitrary convex footprints (see Piponi [83]).
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Light source coefficients are precomputed once, per environment map. Area lights require on
the fly SH coefficient calculation (see Wang et al. [109] and Belcour et al. [14]). An interesting
direction for future work is to obtain analytical expressions (e.g., for spherical sources) that are
suitable for half-vector space shading.

Yan et al. [113]

Ours

Fig. 45. Cutlery scene using the same environment map and point light, shadowed direct lighting
only. Our method approached the ground-truth in 50.7s while Yan et al. [113] required 7m:6s to
reach the same quality at 2116 samples per pixel.
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(a) Kettle scene (b) Three kettles scene (direct illumination)

OursOurs

Belcour et al. [15]Belcour et al. [15]

(c) Snails scene, direct only

OursOurs

Belcour et al. [15]Belcour et al. [15]

(d) Snails scene, indirect only

Fig. 46. Additional results for both direct and global illumination. Both (a) and (b) showcase
additional models and environment maps with very high fidelity lighting while remaining temporally
stable and fast to compute, 2m:27s and 1m:13s, respectively. Figures (c) and (d) are a breakdown
of a frame from the Snails scene, showcasing the performance of our method across both direct and
first-bounce indirect illumination in a global illumination context. In both cases, our results handily
beat Belcour et al. [15] at equal time (11 spp).

For F and G, an alternative to our decoupling term FG is to compute a triple product integral
using tripling coefficients. This would increase the complexity of our method with negligible benefit,
depending on the scenario.

An interesting avenue of future work is to explore interactive approximations of our method.
Initial experiments show that a naïve port of our direct integrator to a shader-based GPU renderer
yields performances on the order of 1Hz at a resolution of 1600×900 on an NVIDIA GTX 1080
(with 8GB of vRAM) for the cutlery scene from Figure 33. More aggressive data compression,
a better trade-off between data accesses and compute (e.g., rotating the canonical ZH Gaussian
roughness lobes by directly computing fast ZH rotations), and perhaps an alternative spherical basis
(e.g., spherical RBFs) could increase performance into the realm of real-time applications.
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3×8 bins 5×16 bins 9×32 bins 17×64 bins Reference

Fig. 47. We rely on a spherical histogram that discretizes the upper hemisphere into bins (see
Section 4.1). The resolution of this histogram directly impacts the minimally reproducible detail
size: lower resolutions progressively lose detail in the normal map, effectively smoothing it out. Our
selected setting (9×32) is adequate for all scenes we have tested, when compared to the ground
truth.

17×32 bins 33×64 bins 65×128 bins 129×256 bins Reference

Fig. 48. Impact of the resolution of the rotated ZH Gaussian roughness lobes (see Section 6.2). As
is apparent, the resolution does not have a significant effect on image quality for the resolutions we
tested. We use a conservative setting of 65×128.

17×32 bins 33×64 bins 65×128 bins 129×256 bins Reference

Fig. 49. Impact of the resolution of the environment light’s SH coefficients table (see Section 6.4).
As with Figure 48, the effect of a lower resolution is minor. We again conservatively use 65×128.

Order 10 Order 30 Order 45 Order 60 Reference

Fig. 50. Impact of the chosen band limit for the NDF or light spherical harmonics. Band limiting
either is equivalent. Artifacts start to appear when either band limit is chosen below the true band
limit of the respective signal (i.e., the maximum of the band limit of the NDF and the environment
map). For this scene, Order 60 was sufficient.
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Decoupled FG Reference

Fig. 51. Effect of the simplification made in Equation (46) and the proposed alternative in Equa-
tion (54). Both images were generated using our reference G×D implementation with sufficient
sampling to match ground-truth.
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Equation (54) Product-of-integrals Ground-truth

A. Fresnel and Geometric Term Approximation
As is common in existing interactive and offline rendering models, we apply a factorization

of the Fresnel and Geometry terms of our filtered shading model in Equation (46): FG(ωo). One
possible approximation would be to precompute and apply an “ideal” two-factor integral-of-products
equals product-of-integral as FG(ωo) = 1/(4(n·ωo))

∫
Ωi

F(ω i ·ωh)G(ω i,ωo)dω i, but we opt for a
simpler alternative.

We instead evaluate the product of the Fresnel and Geometry terms in the view direction and the
mirror reflection of the view, as

FG(ωo) =
F(ωr ·n)G(ωr,ωo)

4(n ·ωo)
, (54)
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Belcour et al. [15]

Ours
Fig. 52. Equal quality comparison for global illumination in the snails scene. Belcour et al. [15]
took 121m:24s to render at 2048 samples per pixel while our method finished in 3m:32s.

where ωr = 2(n ·ωo)n−ωo is the mirrored view vector. The figure below illustrates the nature of
this approximation, compared to the more costly integrated factorization, above.
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I am the third author of this article. My main contributions are:
• Elaboration and integration of the dual-tree within the algorithm to provide a substantial

speedup versus traditional “single-tree” approaches.
• Implementation of some features related to the dual-tree.
• Final rewrite and validation of the article for its submission at GI.

David Milaenen implemented most of the algorithm and contributed to its elaboration. Laurent
Belcour devised the frequency analysis elements of the algorithm. Toshiya Hachisuka participated
in the dual-tree portions of the algorithm’s conception. Derek Nowrouzezahrai helped bring the
elements together into a cohesive algorithm and supervised the work.



This article was a collection of elements working in unison to provide an overall significant
speedup. I have specifically participated on the dual-tree elements of the algorithm both from
a theoretical and technical level. In addition, David Milaenen, who spearheaded the article,
unfortunately concluded his degree and ended his work before the article was accepted in a venue. I
was the one to pick it back up, perform a cleanup and rewrite pass, and bring it to publication.

RÉSUMÉ. Les BSSRDFs sont communément utilisées pour modéliser le transport de la lumière
sous la surface dans des matériaux tels le marbre ou la peau. Le rendu de BSSRDFs requiert une
intégration spatiale supplémentaire, ce qui peut être significativement plus coûteux qu’un rendu de
surface seulement avec des BRDFs. Nous introduisons une méthode novatrice de rendu hiérarchique
qui peut mitiger ce coût additionnel d’intégration spatiale. Notre méthode a deux composantes
clés: une analyse fréquentielle du transport de la lumière sous la surface, et une hiérarchie duale
sur les échantillons d’ombrage et d’illumination. Notre analyse fréquentielle prédit la variation
spatiale et angulaire de la radiance sortante due au BSSRDF. Nous utilisons cette analyse pour
guider une intégration adaptable spatiale avec des échantillons d’image et d’illumination épars.
Nous proposons l’usage d’une structure d’arbre dual qui nous permet de traverser simultanément un
arbre d’échantillons d’ombrage (c’est-à-dire, de pixels) et un arbre d’échantillons d’illumination en
espace objet. Notre approche d’arbre dual généralise les approches à un seul arbre. Notre analyse
fréquentielle et notre structure d’arbre dual sont toutes deux compatibles avec la plupart des modèles
de BSSRDF, et nous démontrons que notre méthode améliore les temps de rendu comparativement à
la méthode à la fine pointe de Jensen et Buhler [54].
Mots clés : modélisation de réflectivité, tracé de rayon, rendu

ABSTRACT. BSSRDFs are commonly used to model subsurface light transport in highly scattering
media such as skin and marble. Rendering with BSSRDFs requires an additional spatial integration,
which can be significantly more expensive than surface-only rendering with BRDFs. We introduce a
novel hierarchical rendering method that can mitigate this additional spatial integration cost. Our
method has two key components: a novel frequency analysis of subsurface light transport, and a
dual hierarchy over shading and illumination samples. Our frequency analysis predicts the spatial
and angular variation of outgoing radiance due to a BSSRDF. We use this analysis to drive adaptive
spatial BSSRDF integration with sparse image and illumination samples. We propose the use of a
dual-tree structure that allows us to simultaneously traverse a tree of shade points (i.e., pixels) and a
tree of object-space illumination samples. Our dual-tree approach generalizes existing single-tree
accelerations. Both our frequency analysis and the dual-tree structure are compatible with most
existing BSSRDF models, and we show that our method improves rendering times compared to the
state of the art method of Jensen and Buhler [54].
Keywords: reflectance modeling, ray tracing, rendering
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I. Illumination sampling II. Predicted sampling rate

III. Clustered pixels IV. BSSRDF contribution

Fig. 53. We introduce a hierarchical method to accelerate the rendering of multiple scattering with
BSSRDFs (IV). We overview our approach in the PICNIK scene, above: our frequency analysis of
BSSRDFs allows us to predict the screen-space sampling rates (II) which are used to devise bounds
on the variation of outgoing radiance. These bounds allow us to efficiently integrate the BSSRDF
using a dual hierarchy over clustered illumination samples (I) and shading points (i.e., pixels; III).

1. Introduction
Including subsurface scattering effects in virtual scenes can significantly increase the realism of

rendered images. Since many real-world materials exhibit subsurface scattering effects, modeling
and simulating them remains an important problem in realistic image synthesis.

Accurate light transport in highly absorbing media can be modeled mathematically with the Bidi-
rectional Scattering Surface Reflectance Distribution Function (BSSRDF). Many BSSRDF models
exist with varying degrees of accuracy: classical dipole models (Jensen et al. [55], d’Eon [24]) and
quantized diffusion (d’Eon and Irving [26]) do not account for the angular variation of incident
radiance; however, more recent models do (Frisvad et al. [35], Habel et al. [39], d’Eon [25]). Unlike
BRDFs, BSSRDFs describe light transport between two different locations on an object. As such, an
additional spatial integration (over the surface) is required in order to render objects with BSSRDFs.
Jensen and Buhler [54] introduced an adaptive hierarchical integration method to amortize the
cost of this spatial integration using clusters of spatial illumination samples. While this approach
has been successfully used in many applications, it does not take the smoothness of the resulting
outgoing radiance (i.e., in screen-space) into account.

We propose a novel integration method that clusters both pixels and illumination points as
illustrated in Figure 53. We conduct a frequency analysis of subsurface scattering that is agnostic
to the underlying BSSRDF model. Specifically, we study the frequency content of the spatial and
angular variation of radiance after its BSSRDF interaction. This leads us to a theoretically sound
criterion for sparse sampling and adaptive integration. Using this criterion, we leverage a dual
hierarchical data structure to accelerate the final evaluation of the multiple scattering term. Our
hierarchical evaluation is motivated by the existing tree-based approach of Jensen and Buhler [54];
our dual-tree structure, however, amortizes computation cost across both pixels and illumination
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Fig. 54. We sample incident illumination over the object (a) according to its subsurface scattering
properties and construct two spatial acceleration structures: one over these samples (c) and one
over pixels (d). To render, we simultaneously traverse the trees (e), using our outgoing radiance
bandwidth estimate sp (b) to stop the tree traversal and shade super-pixels of area A.

points. We are able to generate higher-quality results in less rendering time compared to the single
tree method of Jensen and Buhler [54]. Concretely, we propose:

• a frequency analysis of shading with BSSRDFs,
• a numerical approach for estimating the BSSRDF spectra, which we use to determine the

variation of outgoing radiance over the surface of a translucent object, capable of supporting
any underlying dipole model, and
• the application of a dual-tree structure to the problem of BSSRDF estimation in joint image-

and object-space, directly leveraging our frequency analysis to adaptively traverse the
structure and accelerate the final rendering.

Fig. 55. Assuming that the incoming light-field has infinite bandwidth, we estimate the bandwidth
of the outgoing light-field [Bs,Bθ ] as the bandwidth of the BSSRDF along the outgoing spatial
positions and directions (a). The interaction with the material limits the spectrum of the local
light-field by the BSSRDF spatial and angular bandwidth (b). To estimate the bandwidth at the
camera position, we first shear spatially the spectrum to account for curvature (c). Then, we scale
spatially to account for foreshortening (d) and finally shear angularly the spectrum to account for
transport (e).
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2. Previous Work
We focus on work that most closely align with our approach: specifically, we review integration

schemes for BSSRDF models, and frequency analyses of light transport.

BSSRDF Integration Techniques. In all cases, the bottleneck of dipole-like techniques remains
the numerical evaluation of the spatial-angular integration in Equation (55). Jensen and Buhler [54]
compute an approximate evaluation of this contribution from sparse irradiance samples distributed
over a translucent object’s surface. Here, the outgoing radiance at any shade point is computed
by traversing a tree over the irradiance samples and terminating traversal according to a quality
criterion. This two-pass approach introduces a controllable bias and remains compatible (often
without modification) with many of the newer dipole models we discussed in Section 1. Notably,
Frisvad et al. [35] need only substitute the (diffuse) irradiance samples with a vector of differential
irradiance samples, and d’Eon and Irving [24] use a supplemental 1D radial directional radiance
bin.

We are motivated by the lack of techniques that fully leverage image-space coherence to reduce
the computation time of rendering translucent materials. Approaches based on LightCuts (Walter
et al. [107]) fail to either efficiently treat BSSRDFs or amortize computation cost across similar
pixels. Arbree et al. [5] propose a scalable approach to rendering large translucent scenes, based
on multidimensional LightCuts (Walter et al. [106]), aggregating the computation of irradiance
samples by simultaneously clustering lights and irradiance samples. Their clustering is designed
to approximate the resulting contribution at a given shade point. While this method also uses two
trees, it treats each pixel independently and does not take the resulting image smoothness into
account (see Figure 4 and Section 4.1 of Arbree et al. [5]). We do not consider the evaluation cost
of (ir)radiance samples, but we do cluster evaluation over pixels. In contrast, multidimensional-
LightCut methods, such as IlluminationCut (Bus et al. [17]), could (in theory) be extended to
BSSRDF shading but, in doing so, would require a prohibitive number of BSSRDF evaluations to
determine their error threshold; indeed, we implemented such an extension of IlluminationCut to
validate this claim (see Figure 56). On the other hand, our technique can also be used to provide a
frequency-based cut threshold specifically designed for BSSRDFs, all while avoiding any explicit
evaluation of the BSSRDF model.

The idea of applying a doubly-adaptive traversal originates from the particle simulation literature
(Greengard and Rokhlin [36]), and the implementation of d’Eon and Irving’s quantized diffusion
model (d’Eon and Irving [26]) in Pixar’s RenderMan implicitly leverages a similar principle (i.e.,
with REYES’ adaptive micropolygon evaluation). One of our contributions is a well-founded oracle
to terminate shading tree traversal based on our BSSRDF frequency analysis. Similarly, Jarabo et
al. [52] leverage trees over virtual point lights and shading points without explicitly using dual trees,
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but their algorithm is specifically restricted to VPLs and diffuse materials, making the transition to
translucent surfaces difficult.

Frequency Analyses of Light Transport. Durand et al. [32] present the first comprehensive
Fourier analysis of light transport in scenes with opaque surfaces, and a proof-of-concept adaptive
image space sampling approach to reconstruct noise-free images at super-pixel sampling rates.
Dubouchet et al. [29] use frequency analysis to construct a sampling cache which improves efficiency
when rendering animations using distant direct lighting. Bagher et al. [9] derive atomic operators
for bandwidth estimation in order to study environmental reflection with acquired BRDFs. Belcour
et al. extend these frameworks to incorporate the study of defocus and motion blur (Belcour et
al. [13]), scattering in arbitrary participating media (Belcour et al. [11]), and for global illumination
(Belcour et al. [15]), but do not directly tackle dense media or BSSRDFs. We bridge this gap with a
frequency analysis of scattering in dense media, similarly leveraging matrix-vector formulations of
frequency-space bandwidth operators.
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Fig. 56. We compare IlluminationCut (Bus et al. [17]) to the method of Jensen and Bulher [54]
on the BUNNY scene with various ε error bound settings. The cost of computing the upper-bound
metric (Eq. 13 of Walter et al. [106, Eq. 13]), which requires multiple BSSRDF evaluations,
precludes the direct applicability of IlluminationCut to adaptive BSSRDF shading.
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2.1. Overview

Figure 54 overviews our approach: after sparsely evaluating incident radiance on the surface of
each translucent object (Figure 54a), we compute a per-pixel bandwidth estimate of the multiply-
scattered outgoing radiance (Figure 54b). We build two spatial acceleration structures, one over
illumination samples (Figure 54c) and another over pixels (Figure 54d). In order to compute
the object’s final shading, we simultaneously traverse both trees, hierarchically accumulating the
contribution of groups of illumination samples to groups of pixels (Figure 54e). We use the
frequency bandwidth of the outgoing radiance predicted by our theory (Section 3) to terminate
traversal along each tree, significantly reducing the number of BSSRDF evaluations necessary to
compute the final image without introducing visible artifacts.

We present our BSSRDF frequency analysis theory, as well as its numerical realization for
computing image-space radiance bandwidths in Section 3. We introduce our variant of the dual tree
construction and how the bandwidth predictions are used during hierarchical traversal in Section 4.
Finally, we discuss our implementation details in Section 5 and compare our method to the state of
the art in Section 6.

3. Fourier Analysis
We will derive conservative, numerical estimates of the frequency bandwidth of the outgoing

radiance in image space, taking into account the effects of curvature, foreshortening, transport and
multiple scattering on the incident light-field’s frequency content. We will show that the BSSRDF
acts as a band-limiting filter on the incident radiance distribution, and we will derive an expression
of the resulting spatio-angular bandwidth of the outgoing radiance spectrum (Section 3). We will
use these bandwidth estimates, combined with the formulation of Bagher et al. [9], to predict the
variation of outgoing radiance in image space (Section 3.2), which will in turn drive our hierarchical
dual tree traversal and integration (Section 4).

3.1. Fourier Transform of a BSSRDF

Given a BSSRDF model S(xi,ω i,xo,ωo), the outgoing radiance at the object surface Lo in
direction ωo and at position xo is expressed as:

Lo(xo,ωo) =
∫∫

A×H

S(xi,ω i,xo,ωo)Li(xi,ω i)dω
⊥
i dxi, (55)

where A is the object’s surface area, H is the set of (hemispherical) incident directions, Li is the
incident radiance, and dω⊥i = cosθi dω i is the projected solid angle.

If we apply a Fourier transform to Equation (55), converting products in the primal domain to
convolutions in the frequency domain and integration in the primal domain to DC evaluation in the
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frequency domain, we obtain:

F
[
Lo
]
(Ωxo,Ωωo) =

[
F
[
Ŝ
]
◦F
[
Li
]]
(0,0,Ωxo,Ωωo), (56)

where F
[

f
]

is the Fourier transform of f , ◦ the convolution operator, and Ωx the frequency variation
of x. Concretely, the outgoing radiance’s spatial-angular frequency spectrum F

[
Lo
]
(Ωxo ,Ωωo)

results from evaluating the convolution of the Fourier transform of the cosine-weighted BSSRDF
F [Ŝ] = F [S(xi,ω i,xo,ωo)cos(θi)] with the Fourier transform of the incident light F [Li] at the
incoming spatial and directional DC frequencies (Ωxi,Ωω i) = (0,0).

Assuming that F
[
Li
]

contains all-frequency content, the resulting outgoing bandwidth (along
Ωxo and Ωωo) after convolution against the spectrum of the cosine-weighted BSSRDF F [Ŝ] will
match the bandlimit of F [Ŝ] (see Figure 55a). We will discuss how to compute the spatial and
angular bandwidths {Bo,Bθ} of the cosine-weighted BSSRDF given its local orientation.

Spatial Bandwidth. We compute the cosine-weighted BSSRDF’s spatial bandwidth numerically
by sampling and projecting S(xi,ω i,xo,ωo)cos(θi) into the frequency domain, across its different
dimensions. Depending on the underlying BSSRDF model, the cosine-weighted BSSRDF may
depend on the viewing direction, the incident lighting direction, and the distance and angle between
xo and xi.

For instance, the dipole model has a separable form:

F [Ŝ] = F [Rd(||xi−xo||) Fi(θi) cos(θi) Fo(θo)] ,

where Rd is the diffuse reflectance, and Fi and Fo are the incident and outgoing Fresnel terms [55,
Equation 5]. Here, we take advantage of the separability of the model (w.r.t. θi and θo) to express
its Fourier transform as

F [Ŝ] = F [Rd(||xi−xo||) ] F [Fi(θi) cosθi]︸ ︷︷ ︸
F [Ŝi](Ωxi ,Ωxo ,Ωωi)

F [Fo(θo)] .

Since we are only concerned with the DC [Ωxi,Ωω i] = [0,0] hyperplane, the spatial bandwidth is
computed with the 1D diffuse reflectance spectrum F [Rd] (Ωxo). We discuss the outgoing term
F [Fo] (Ωωo) below.

In contrast, the directional dipole (Frisvad et al. [35]) additionally takes ω i and the direction
between xi and xo into account:

F [Ŝi] = F

[
e−σtr||xi−xo||

4π2||xi−xo||3
M(xi−xo,ω12) Fi(θi)cosθi

]
,

where M(xi−xo,ω12) models the spatial-directional scattering distribution and ω12 is the refraction
of ω i at xi [35, Equation 17]. We extract the outgoing spatial bandwidth by taking the maximum
1D bandwidth for various angles between xi−xo, the normal at xi and the refracted ray ω12.
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In all instances, we compute a conservative — that is to say, such that our derived frequency
domain bounds are strictly larger than the true underlying bounds — estimate of the outgoing spatial
and directional frequency bandwidths, Bs and Bθ , as the values required to retain 95% of the energy
of the discrete power Fourier spectrum.

Angular Variation. The angular variation of the BSSRDF is modulated by the outgoing Fresnel
term above, and we use a windowed Fourier transform to compute the bandwidth of F [Fo] (Ωωo),
again as the 95th energy percentile spectrum value. We tabulate these bandwidths as a function of
θo, and use them to modulate Bθ ; this is particularly important at grazing angles, where the effects
of the spectrum of the outgoing Fresnel term can significantly impact the angular bandwidth of the
outgoing radiance.

3.2. Outgoing Radiance Bandwidth Computation

(a) BUNNY (b) Close-up BUNNY

(c) TOAD

Fig. 57. First row: The sampling rate sp computed from the screen-space bandwidth estimation.
Second row: Pixel areas from which the sampling rate predicts an adequate approximation of the
outgoing radiance variation.

Given the spatial-angular bandwidth of the outgoing radiance at a shade point, estimated as the
BSSRDF bandwidth, we need to compute the associated pixel frequency bandwidth. To do so, we
are motivated by Bagher et al.’s [9] bandwidth tracking approach, applying bandwidth evolution
operators defined by Durand et al. [32] to the bandwidth vector [Bs,Bθ ]

T . Figure 55 (c – e) illustrates
the transport operators in the following order:
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(1) we transform from local shade point coordinates to global coordinates by projecting the
outgoing spectrum onto the shade point’s tangent plane, which amounts to a shear in the
spatial frequency according to the local curvature k,

(2) we take the foreshortening towards the viewpoint due to cosθo into account, stretching the
spectrum spatially, and

(3) we evaluate the spectrum at the sensor, after transport through free-space with a distance d,
by applying an angular shear to the spectrum.

These operations can be compactly expressed as matrix operators, if we act directly on frequency
bandwidths instead of the full spectra (Bagher et al. [9]), as:

Td =

[
1 0
d 1

]
, Px =

[
1/cosθx 0

0 1

]
, and Ck =

[
1 k
0 1

]
.

We apply these operators, in order, to the outgoing radiance bandwidth (i.e., the BSSRDF bandwidth
[Bs,Bθ ]), to predict the final screen-space bandwidth vector for a pixel as:[

Bp Ba

]T
= Td Px Ck

[
Bs Bθ

]T
. (57)

Isolating the screen-space angular bandwidth Ba above,

Ba = Bθ +d (Bs + kBθ )
/

cosθ , (58)

and applying the Nyquist criterion, we arrive at the pixel sampling rate sp (in units of pixel−1) as
twice the angular screen-space bandwidth,

sp = 2 Ba max
(

fx
/

W, fy
/

H
)
, (59)

for a W ×H image resolution and a horizontal and vertical field of view of fx and fy. Figure 57
visualizes the screen-space sampling rate for the scenes we render.

4. Hierarchical Approach
We now explain how to utilize our bandwidth estimation in order to accelerate rendering

with BSSRDFs. First, we review the single hierarchy approach of Jensen and Buhler [54], then
explain how we can use a dual hierarchy to adaptively cluster both illumination samples and pixels
simultaneously.

4.1. Hierarchical Surface Integration

Jensen and Buhler [54] pointed out that we can cluster illumination samples over the surface
in order to reduce the cost of BSSRDF evaluations. The underlying observation is that we can
aggregate contributions from illumination samples that are distant from a given shading point. We
can thus evaluate the BSSRDF only once for a cluster of such illumination samples, resulting in
fewer BSSRDF evaluations.
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This approach has two passes. In the first pass, pre-integrated illumination samples are inserted
into a tree data structure where each inner node i represents the aggregated information of its
children. For example, each node stores the average illumination, the total surface area Ai, and the
irradiance-weighted average location pi of its children. In the second pass, we traverse this tree until
the current node accurately represents all the contributions of its children to a given shading point.
If the shading point is in the bounding volume of the current node, we keep traversing the tree and
consider contributions from the child nodes. Otherwise, we traverse to the child nodes only if the
estimate of the solid angle subtended by the illumination samples ∆ω = Ai

/
||xo−pi||2, is larger

than the user-defined quality threshold ε (Algorithm 1). While this approach significantly reduces
the cost of integration over the surface, it is repeated for each shading point without considering the
smoothness of resulting pixels values in screen-space.
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Fig. 58. We compare our approach (red) to Jensen and Bulher [54] (blue) for different settings of
ε . We highlight the ε ∈ [0.01,0.2] values and consistently reach equal-quality (measured in RMSE;
y-axis) in less render time (in seconds; x-axis). The PICNIK scene challenges the assumptions of our
work, and we only obtain equal-quality benefit at lower rendering times (albeit enough for visual
convergence).

Algorithm 1: Single-hierarchy tree traversal
Input: xo is the shading point/pixel, with IL and IR as children of the active node.

if I is leaf or (∆ω < ε and xo 6∈ BBox(I)) then
c← contribution of I to xo add c to xo

else
Single(xo,IL) Single(xo,IR)

end

4.2. Dual Hierarchy for Pixel-Surface Integration

We leverage a dual hierarchy to avoid traversing the illumination tree at every pixel. Similar to
the spatial hierarchy of illumination samples in the previous approach, we also cluster pixels in the
screen-space and traverse two trees simultaneously. Each node in our pixel-tree stores the average
world-space position po corresponding to the pixel group, its bounding box, the average normal
direction, the average view direction, and the list of pixels covered by the node. This dual-tree
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approach allows us to evaluate the contribution from a cluster of illumination samples to a cluster of
pixels. Algorithm 3 is a pseudocode of our dual-tree approach.

The key difference from the single tree approach is that, at each traversal step, we have a choice
of refining the pixel and/or illumination point clusters. For refining clusters of illumination samples,
we use a criterion similar to the single tree approach. We always traverse down the tree if bounding
volumes of pixels and illumination samples intersect. Otherwise, we decide if we want to keep
traversing the tree based on the extended solid angle measure, ∆ω = Ai

/
||po−pi||2, which uses

the average position po of clustered pixels.

Criterion to Refine Pixel Clusters. To refine pixel clusters, we use our frequency analysis to
predict the potential variation in pixels. Given a pixel sampling rate sp[i] for the ith pixel in a pixel
tree node, an estimate of a screen-space filter extent, centered about the node, is

P = ρ

/
max

i
(sp[i]), (60)

where ρ is a user-defined parameter that intuitively corresponds to the fraction of captured outgoing
radiance required to avoid discontinuity artifacts. The ρ setting influences pixel cluster refinement
during traversal.

We refine the cluster only if our criterion predicts a high variation of outgoing radiance in the
parent node’s pixels (the SHADE routine in Algorithm 3). During shading (SHADE procedure) we
do not adaptively refine the illumination cluster and conservatively assume that ∆ω < ε is satisfied
for all the children nodes. We could alternatively continue refining along the illumination tree
for sub-nodes of the pixel tree. However, not refining results in higher performance without any
noticeable visual artifacts.

Algorithm 2: Shade
Input: S and I are the root nodes of the shading point and illumination trees, with S{L|R}

and I{L|R} their respective left and right children.

if Length(S) < ρ / Bandwidth(S) then
Shade(SL,I) Shade(SR,I)

else
c← contribution of I to S add c to all pixels x in S

end

5. Implementation
We implemented our approach in the G3D Innovation Engine [72] and our results were measured

on a 3.9 GHz Intel Core i3-7100 with 12 GB of RAM. Both our illumination and pixels hierar-
chies are kd-trees, split along the largest bounding volume dimension. Our single- and dual-tree
implementations use the same underlying kd-tree structure.
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Algorithm 3: Dual-hierarchy traversal
Input: S and I are the root nodes of the shading point and illumination trees, with S{L|R}

and I{L|R} their respective left and right children.

if ∆ω < ε and BBox(S) ∩ BBox(I) = /0 then
Shade(S,I)

else if S is leaf and I is leaf then
Shade(S,I)

else if S is leaf then
Dual(S,IL) Dual(S,IR)

else if I is leaf then
Dual(SL,I) Dual(SR,I)

else
Dual(SL,IL) Dual(SR,IL) Dual(SL,IR) Dual(SR,IR)

end

We uniformly sample points on translucent objects with Bowers et al.’s [16] blue noise approach,
and image-space curvature values are interpolated from object-space values precomputed with
the robust curvature estimator of Kalogerakis et al. [57]. In Section 3.1 we compute BSSRDF
bandwidths as the 95th percentile of the discrete spectrum, since we find this setting balances
numerical stability and accuracy. We use ρ = 0.75 (Equation (60)) in all our scenes and plots, as
we found this value avoids discontinuity artifacts while providing good performance. We discuss
the performance vs. accuracy trade-offs of ρ and ε in Section 6.

6. Results and Discussions
We have tested our approach on objects with a range of scattering parameters, as well as adapting

our frequency analysis to support several BSSRDF models: the standard dipole (Jensen et al. [55]),
the “better dipole” (d’Eon [24]), and the directional dipole (Frisvad et al. [35]). We use three scenes
of increasing radiometric complexity: BUNNY, TOAD, and PICNIK (Figures 60, 59, and 53). TOAD

uses the directional dipole, and the remaining scenes use the better dipole.
We compare root mean square error (RMSE) of our technique to the single hierarchy of Jensen

and Buhler [54], for total render time, on the BUNNY and TOAD scenes (Figure 58). We sampled ε

to generate the plots, and our approach consistently reaches equal quality in less time.
Comparisons in the BUNNY scene (Figure 60) illustrate our scalability with pixel coverage: the

performance discrepancy between the full-view (Figure 58a) and zoom-in (Figure 58b) renderings
is due to the total number of pixels present in the pixel hierarchy. As expected, the benefit of our
approach increases with the number of translucent pixels: one can expect our approach to scale
sub-linearly here, which is particularly favorable given recent trends towards higher resolution
renderings and higher pixel supersampling rates.

We provide computational timing breakdowns when rendering an image with our technique in
Table 3: specifically, we measured the Fourier precomputation, construction of the illumination tree
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as well as the shading tree, and final rendering times (all on the BUNNY scene and for different
values of ε). All timings are reported on a single core. Note that we use the same precomputed
illumination tree across trials. Unsurprisingly, since the Fourier precomputation and the shading
tree construction are independent of ε , we obtain similar timings across trials.

Table 3. Computation times for various parts of the algorithm.

ε
Illumination Fourier Shading Final

Tree Precomputation Tree Shading
0.2

1.74s
0.10s 5.59s 6.77s

0.1 0.11s 5.47s 11.73s
0.05 0.09s 5.12s 21.21s

Our screen-space adaptive sampling rate for distance, local curvature, foreshortening and
BSSRDF properties from first principles. Moreover, it properly explains (and it subsumes) most of
the previously used heuristics in the literature, e.g., depth and normal min/max methods (Nichols
and Wyman [76]). Our sampling rate formulation (Equation (58)) is simple and only requires
the precomputation of two values (Bθ ,Bs) per material. We do not require an additional pass to
aggregate min/max statistics over the G-buffer.

We introduce a new error metric for aggregating pixel rendering cost and reducing shading
cost in scenes with BSSRDFs. In doing so, we opted to follow the solid angle metric methodology
of Jensen and Buhler [54] in order to avoid the cost of evaluating upper-bound metrics that rely
on BSSRDF evaluation, such as in LightCuts methods (Walter et al. [106], Bus et al. [17]). We
observed that such an upper-bound metric cannot scale to more complex BSSRDF shading models
(i.e., the complexity of the material evaluation). We do, however, note that our frequency metric
could be used as a well-found replacement of the upper-bound metrics for the specific case of
BSSRDFs. Indeed, Belcour and Soler [12] have shown that frequency criterion can be used to
provide an approximate relative error measure.

Limitations. The PICNIK scene (Figure 58d) is a “failure” case: specifically, our current imple-
mentation creates a separate dual tree per object in order to prevent illumination from bleeding
between neighboring objects, and since the PICNIK scene includes several (smaller) translucent
objects, we only obtain a benefit for a sub-region of the quality/performance range. Moreover, the
solid angles ∆ω spanned by pixel-tree nodes are more sensitive to errors for small objects and small
BSSRDF scales. Since our technique approximates ∆ω for a group of pixels, it is sensitive to these
scenarios and we plan to address this issue in the future by devising more appropriate ∆ω estimates.
Overall, the fact that the additional tree construction time is amortized over fewer pixels, and the
nature of our non-conservative ∆ω estimate in the presence of smaller objects (in image-space),
contribute to the suboptimal performance profile in this scene. This also explains the reduced error
reduction rate for small ε .
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Dual-tree (Ours) Single-tree [54]

Fig. 59. The TOAD scene has a bumpy geometry with detailed textures. We compare the difference
images of the multiple scattering term against the ground-truth for an equal rendering time (196s).
The difference images are scaled by 50 for visualization. Our approach achieves more accurate
estimation than the single-tree in the same rendering time.

In some difficult scenarios, high frequencies may be missed due to pixel discretization: for
instance, a worst-case scenario would involve a camera facing an object with staggered depth
discontinuities, which may miss small depth changes due to pixel aliasing. Here, we would group
pixels that should not have been grouped.
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Dual-tree (Ours) Single-tree [54]

Fig. 60. The BUNNY scene. We compare the difference images of the multiple scattering term
against the ground-truth for an equal rendering time (60s). The difference images are scaled by 200
for visualization. In this example, our approach removes artifacts under the tail and reduces Moiré
patterns present in the single-tree approach.
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7. Conclusion
We presented a new frequency analysis of BSSRDFs in order to predict the variation of outgoing

radiance for multiple subsurface scattered light. We build and traverse a dual hierarchy over illumi-
nation samples and pixels using a well-founded refinement strategy that leverages our frequency
bandwidth estimates. This yields an adaptive rendering strategy that almost consistently outperforms
the state-of-the-art. Moreover, our frequency analysis and bandwidth estimates apply to a variety of
existing BSSRDF models with negligible precomputation, our rendering technique scales positively
with shading resolution, all without introducing any additional approximation error.

Our approach leads to several interesting open questions:
(1) An interesting avenue would be to combine our work and the one of Arbree et al. [5]. They

cluster both light source positions and illumination points at the surface of object while we
cluster both illumination points and shading points. Based on the same multiple cluster idea,
it should be possible to build a trial-tree that accounts for those three components during
rendering;

(2) Our frequency analysis does not account for surface global illumination transport: we ignore
visibility, and the use of spatial illumination samples ignores incident radiance variation.
Modeling this behavior more accurately could lead to less conservative bandwidth estimates
and traversal criteria;

(3) There are no reasons why our theory and implementation could not support other existing
diffusion models (e.g., quantized diffusion from d’Eon and Irving [26]), and so implementing
these models under our framework is interesting even if only for the sake of completeness;

(4) Investigating how increases in ε should affect our choice of ρ , and vice versa, leads to the
interesting question of whether an “optimal” parameter setting for both these values could
be computed automatically;

(5) The effects on performance and accuracy of replacing our position-based solid angle
approximation with the actual projected solid angle of the underlying surface elements
would also be worth investigating;

(6) Lastly, there is much potential in analyzing our algorithm’s temporal properties, notably in
terms of information reuse across neighboring frames as well as in ensuring that no temporal
artifacts occur due to image-space filtering.
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I am the second author of this article. My main contributions are:
• Implementation of many components of the algorithm, in particular related to scene raytrac-

ing, probe updates and temporal accumulation and filtering.
• Elaboration of roughly half of the presented scenes, ensuring that they accurately represent

the algorithm’s performance and adaptability to challenging lighting situations.
• Formulation of many extensions to the algorithm which were either integrated in later

prototypes or in the official NVIDIA SDK release as RTXGI [78].
Zander Majercik introduced certain key features of the algorithm, implemented them and

elaborated a library to interface between NVIDIA’s raytracing APIs and G3D [70]. Morgan
McGuire contributed to numerous features of the algorithm as well as its implementation. Derek



Nowrouzezahrai played a supervisory role and assisted with the validation of the algorithm’s
accuracy and purpose.

While the algorithm lends itself to a large number of interesting extensions, the most practical
and important ones which I raised were:

• Implementing a hirerachical scheme over the probe grid rather than using a purely regular
grid. This allows for much larger scenes to be efficiently rendered with more modest
hardware and would be one of the key improvements to the algorithm as published.
• Varying probe update patterns according to visibility and importance heuristics. The viability

of specific heuristics would’ve been part of possible future work.
These extensions can prove useful for future implementations but were not of a substantial enough
impact to warrant a separate publication as of this thesis. Instead, the release of the NVIDIA
RTXGI SDK has been the primary focus for future improvements.

RÉSUMÉ. Nous montrons comment calculer l’illumination globale efficacement dans des scènes
comportant des objets et de l’illumination dynamiques. Nous étendons les sondes d’irradiance
classiques avec un encodage compact du champ d’irradiance complet de la scène. Premièrement,
nous calculons le champ d’irradiance dynamique à l’aide d’un agencement mémoire GPU efficace, de
lancer de rayon géométrique, et de taux d’échantillonnage appropriés sans devoir sous-échantillonner
ou filter des textures sphériques prohibitivement larges. Deuxièmement, nous concevons une requête
d’irradiance filtrée robuste en utilisant un nouvel interpolant basé sur les moments et prenant en
compte la visibilité. Nous validons expérimentalement les compromis au niveau de la performance
et de la fidélité et montrons que notre méthode d’illumination globale diffuse dynamique (IGDD)
illumine des scènes de complexité géométrique et radiométrique variables de façon robuste (Figure 61).
Pour être exhaustif, nous démontrons des résultats avec un lanceur de rayons spéculaire de pointe
pour échantillonner le champ de lumière dynamique complet et nous incluons du code GLSL de
référence.
Mots clés : modélisation de réflectivité, tracé de rayons, rendu

ABSTRACT. We show how to compute global illumination efficiently in scenes with dynamic objects
and lighting. We extend classic irradiance probes to a compact encoding of the full irradiance
field in a scene. First, we compute the dynamic irradiance field using an efficient GPU memory
layout, geometric ray tracing, and appropriate sampling rates without down-sampling or filtering
prohibitively-large spherical textures. Second, we devise a robust filtered irradiance query, using
a novel visibility-aware moment-based interpolant. We experimentally validate performance and
accuracy trade-offs and show that our method of dynamic diffuse global illumination (DDGI) robustly
lights scenes of varying geometric and radiometric complexity (Figure 61). For completeness, we
demonstrate results with a state of the art glossy ray tracing term for sampling the full dynamic light
field and include reference GLSL code.
Keywords: reflectance modeling, ray tracing, rendering
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Fig. 61. Combined with state of the art glossy ray tracing and deferred direct shading, our method
(left) generates full global illumination in dynamic scenes that are visually comparable to offline
path traced results (right) but several orders of magnitude faster: 6 ms/frame, versus 1 min/frame in
this scene (on GeForce RTX 2080 Ti at 1920×1080). Insets isolate the direct lighting contribution
and visualize the probe locations.

1. Introduction
Probe-based Global Illumination. Synthesizing images with accurate global illumination (GI)
effects contributes significantly to the believability of computer generated imagery. Accurately
solving physics-based GI formulations is a longstanding area of research, and doing so with offline
numerical solvers remains a time consuming cost. In an interactive rendering context, a significant
amount of work on generating convincing real-time GI effects has lead to many different solutions,
each with specific tradeoffs between accuracy, flexibility and performance.

Recent work on light field probes strikes one such tradeoff. That representation encodes the
static local light field of scene using a specialized encoding of precomputed probes placed statically
in a scene (see Mara et al. [71]). The probe representation has many benefits, including the ability
to perform efficient and accurate world-space (filtered) ray tracing for glossy and near-specular
indirect transport, as well as supporting irradiance probe-like queries that are robust to light-leaking
artifacts for smoother indirect diffuse illumination.

Given the query and sampling operations exposed by the light field probe representation, many
shading algorithms can be implemented using this representation as a basis, often resulting in
high fidelity images generated at high performance rates. The main limitations of standard light
field probes lie in their precomputed nature and the manner in which they sample lighting in the
scene. Precomputing the probe data can be costly, and therefore only treat fixed lighting and
geometric conditions are handled. Moreover, the irradiance spatial interpolation and prefiltered
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glossy sampling schemes can lead to aliasing and light-leaking in the diffuse and specular indirect
illumination.

Real-time GI.. Unlike offline rendering, global illumination solutions for real-time applications
such as video games currently rely fundamentally on lighting data that can be rapidly read from
spatial-angular data structures and is usually precomputed or limited to slow updates from static
geometry for dynamic lighting. Examples include lightmap representations, irradiance and radiance
probes, and voxelized representations of the scene or lighting information. Each of these representa-
tions strikes a particular tradeoff between compactness, runtime flexibility, accuracy, and cost. In
geometrically and/or radiometrically complex scenes, these all have well-documented undesirable
artifacts that manifest as a result of undersampling and reconstruction. The most significant of
these artifacts are light and shadow leaking in areas of complex visibility. Many recent GDC
and SIGGRAPH talks isolate and discuss these issues. We highlight two representative ones in
Figure 62.

Typically, heuristic workarounds are applied. These vary with the art and technical constraints
of a particular production. In cases where only static geometry and/or lighting are treated, a

Light leaks due to undersampling in classic irradiance
probes, see Hooker et al. [46]

Light and shadow leaks along lightmap seams (top),
see Hooker et al. [46] and in voxels (bottom), see
Iwanicki et al. [48]

Fig. 62. Previous interactive GI methods suffer from artifacts that often necessitate heuristic solu-
tions, typically based on art-direction or technical constraints. Visual artifacts in these methods can
manifest themselves in various forms: (in reading order) light leaking, lightmap seams, visibility/oc-
clusion undersampling, and inter-voxel visibility mismatches.
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largely manual post-processing intervention is often performed. Of course, such an approach scales
poorly with scene complexity and still admits significant offline precomputation. This problem
is further exaggerated in the context of dynamic environments, where the scene geometry and
lighting can change at runtime, precluding manual intervention. As such, there is a great practical
need for automatic caching solutions that are robust to dynamic scenes and do not sacrifice the
high-performance nature of pre-cached global illumination solutions.

The core problem underlying prior techniques is not inherent in the representations, which are
often efficient and well-designed for capturing either radiance (light energy along a ray used for
the glossy portion of shading) or irradiance (cosine-weighted integral of radiance necessary for the
diffuse portion of shading). Rather, the problem is that the techniques lack visibility information and
thus cannot encode the full light field or irradiance field (irradiance taking occlusion into account).

This paper describes a method for extending classic irradiance probes to a representation of
the full irradiance field, shows how to efficiently update that representation at runtime, and then
evaluates the performance and quality of that method. The academic term for the quantity computed
is the dynamic indirect irradiance field; we call the new probe technique dynamic diffuse global
illumination (DDGI) in keeping with game industry jargon.

The specific contributions of this work are:
• Extension of irradiance probes with accurate and dynamic occlusion information by an

incremental scheme that leverages a compact, GPU-tailored data layout and compute
schedule for converged “infinite” bounce diffuse global illumination;
• An algorithm for ray tracing irradiance probes independently of the primary visibility

resolution and frame rate, avoiding the cost of denoising or prefiltering prohibitively high
resolution spherical textures;
• A spatial interpolation, occlusion, and filtering scheme more robust to irradiance queries in

scenes with temporally-varying geometry and lighting;
• Evaluation of a system for producing results nearly identical to (offline) path tracing in many

cases, combining dynamically-updated occlusion-aware irradiance with GPU ray-traced
glossy and specular reflections, reducing aliasing artifacts in these indirect contributions;
• Open source reference shaders for implementing DDGI, taken directly from and compatible

with the open source G3D Innovation Engine [70].

2. Related Work
Works on interactive global illumination span several decades. We review the areas most relevant

to our work.

Image-based Lighting. Image-based lighting methods form the basis of most interactive pre-
caching lighting solutions in modern video games (Martin and Einarsson [64], Ritschel et al. [89],
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McAuley [66], Hooker [46]). Here, a common workflow involves placing light probes (of various
types) densely inside the volume of a scene, each of which encodes some form of a spherical
(ir)radiance map. Prefiltered versions of these maps can also be stored to accelerate diffuse and
glossy runtime shading queries.

One interesting variant of traditional light probes allows digital artists to manually place box or
sphere proxies in a scene, and these proxies are used to warp probe queries at runtime in a manner
that better approximates spatially-localized reflection variations (see Lagarde and Zanuttini [60]).
Similarly, manually-placed convex proxy geometry sets are also used to bound blending weights
when querying and interpolating between many light probes at runtime, in order to reduce light
leaking artifacts — one of the predominant artifacts of such probe-based methods.

These probe- and image-based lighting techniques are ubiquitous in modern offline and real-time
rendering, and we refer interested readers to a comprehensive survey (see Reinhard et al. [86]).

While production-quality image-based lighting systems generate convincing illumination effects,
practitioners agree that eliminating manual probe and proxy placement remains an important
open problem in production (see Hooker et al. [46]). Currently, without manual adjustment, it is
impossible to automatically avoid probe placements that lead to light and dark (i.e., shadow) leaks
or displaced reflection artifacts. To avoid these issues, some engines rely instead on screen-space
ray tracing (see Valient [102]) for pixel-accurate reflections. These methods, however, fail when a
reflected object is not visible from the camera’s point of view, leading to inconsistent lighting and
view-dependent (and so temporally unstable) reflection effects.

Light Field probes (see Mara et al. [71]) automatically resolve these issues in scenes with static
geometry and lighting by encoding additional information about the scene geometry into spherical
probes. A solution for dynamic lighting is presented in Silvennoinen et al. [91], but this solution
only supports coarse dynamic occluders and requires complex probe placement based on static
geometry. We inherit the advantages of the representation in Mara et al. [71], which we extend
fundamentally to treat dynamic geometry and lighting variations at runtime (Section 5). No manual
placement is necessary and a naïve uniform grid probe placement results in artifact-free renderings.
Reflections appear (consistently) where they should due, in part, to an accurate world-space ray
tracing algorithm (Section 4.2). Visibility-aware blending weights allow for automatic filtered
radiance sampling (Section 5) without the need for manually placed proxy geometry. As such, light
field probes can be leveraged in both the context of traditional (prefiltered) radiance lookups, as
well as shader-enabled world-space ray tracing.

Interactive Ray Tracing and Shading. Many recent interactive rendering approaches treat the
problem of resolving point-to-point visibility queries, shaping modern solutions applied in practice
today. Ritschel et al.’s [88] imperfect shadow maps encode a sparse, low-resolution representation of
point-to-point visibility in a scene, which they use to compute accurate secondary diffuse and glossy
reflections using virtual point lights (generated, e.g., with a ray-tracer). Our work is motivated by
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another such solution: voxel cone tracing (see Crassin et al. [23]). At a high-level, one can interpret
our ray tracing technique (Section 4.2) as tracing rays against spherical voxelized representation of
the scene (i.e., as opposed to the octree representation constructed for traditional voxel cone tracing).
Two important differences that contribute to many of the practical advantages of our representation
are: first, that we explicitly encode geometric scene information (i.e. radial depth and depth squared)
instead of relying on the implicit octree structure to resolve local and global visibility details; and,
second, that neither our spatial parameterization nor our filtering relies on scene geometry. This
allows us to completely sidestep the light (and dark) leaking artifacts present in traditional voxel
cone tracing. Finally, we are able to resolve centimeter-scale geometry at about the same cost (in
space and time) as a voxel cone tracer that operates at meter-scale.

Representation. We use Cigolle et al.’s [18] octahedral mapping from the sphere to the unit square
to store and query our spherical distributions. This parameterization has slightly less distortion
and provides simpler border management than, for example, cube maps. Since we target true
world-space ray tracing in a pixel shader, and not just screen-space ray tracing, our technique can
be seen as a generalization of many previous real-time environment map Monte Carlo integration
methods (Stachowiak and Uludag [96], Wyman [111], Toth et al. [101], Jendersie et al. [53]).

We are also motivated by the preliminary investigations of Evangelakos [34] and Donow [28]
that validate the accuracy of single-probe ray tracing and the feasibility of multi-probe traversal.
Specifically, a single probe can perfectly sample the geometry of a region with star-shape topology,
and so ray tracing with a single probe in these regions will incur no visibility error (outside of errors
due to probe directional discretization).

3. Dynamic Diffuse Global Illumination Probes: Overview
As in Mara et al. [71], we encode geometric and radiometric scene data into spherical dis-

tributions at discrete probe locations. We combine efficient GPU ray tracing to enable accurate
shader-based world-space ray tracing (using either a probe-based marching approach, or native
GPU ray tracing APIs), with filtered irradiance queries to compute diffuse, glossy and specular
indirect illumination at real-time rates.

Specifically, we encode the spherical diffuse irradiance (in GL_R11G11B10F format at 8×8
octahedral resolution), spherical distance and squared distances to the nearest geometry (both in
GL_RG16F format at 16×16 octahedral resolution). We pack each of these square probe textures
into a single 2D texture atlas with duplicated gutter regions to allow bilinear interpolation without
any boundary artifacts (see Figure 63).

Instead of precomputing the probe data once at scene initialization, we dynamically update
the probes to capture variations due to dynamic geometry and lighting. This allows us to enable
truly dynamic high-fidelity global illumination. Our method retains the high-performance of Mara
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et al. [71] and Figure 64 illustrates our ability to compute fully converged multi-bounce global
illumination.

At each frame we are able to efficiently blend updated ray-traced illumination into our probe
atlas in addition to interpolating probe depth information to adapt to changes in scene geometry. In
a forward or deferred rendering pass, probes can effectively be treated as indirect lighting buffers
analogous to standard precomputed environment maps.

We detail our method for updating dynamic diffuse global illumination probe distributions in
Section 4 before discussing how to use probes at runtime to efficiently compute dynamic global
illuminations in Section 5.

Fig. 63. Spherical irradiance and depth textures. We encode spherical data in an octahedral
parameterization, packing all the probes in an atlas. One-pixel texture gutter/border to ensure correct
bilinear interpolation, and additional padding aligns probes on 4×4 write boundaries.

136



Fig. 64. Left to right: direct illumination only, direct illumination with one bounce of indirect
diffuse illumination (computed with spherical irradiance updated by our dynamic filtered ray casting
approach), and the fully converged multi-bounce global illumination that iteratively incorporates
bounced lighting computed across probes.

4. Updating Dynamic Diffuse Global Illumination Probes
We place our probes as in Mara et al. [71] before incrementally updating the probe content

(Section 4.1). At every frame, we follow a multi-step process to update probe information in order
to incorporate the effects of dynamic geometry and lighting:

(1) generate and trace n primary rays from each of the m active probes in a scene, storing
geometry for (up to) n×m surface hits in a G-buffer like structure of surfels with explicit
position and normals (Section 4.2);

(2) shade the surfel buffer with direct and indirect illumination (Section 4.3), with the same rou-
tine used to shade final image pixels, i.e., those directly visible from the camera (Section 5);
and

(3) update the texels in the octahedral representations of the m active probes by blending in the
updated shading, distance, and square-distance results for each of the n intersected surfels
(Section 4.4).

We discuss several methods to select active probes to update in Section 4.2, however we employ
a conservative selection approach and set all the probes in a scene to active. As such, our rendering
performance metrics are a conservative upper bound on the expected performance of our algorithm.

Shading the probe-intersected surfels (see Section 4.3) relies on lighting and probe data from the
previous frame, which serves two purposes: first, this allows us to amortize the cost of computing
multiple indirect bounces over several frames; second, when combined with our blending approach
(see Section 4.4), this enables a smooth transition between sharp geometric and radiometric discon-
tinuities (over time). A negative side effect, of course, is that indirect illumination can sometimes
appear to “flow” in and out of areas with dramatic visibility changes, due to the latency in the
indirect illumination update. Given the relative smoothness of indirect illumination, compared
to direct illumination (which we update precisely at every frame), we follow the guidelines and
observations of prior work that indicate that these specific artifacts remain an acceptable perceptual
tradeoff for viewers (Crassin et al. [22]).
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4.1. Probe Grid Placement

We place probes in the volume of the scene at the vertices of an axis-uniform 3D grid. We use a
power-of-two resolution per axis, simplifying probe indexing to simple bitwise operations. We can
scale per-axis grid cell spacing independently for scenes that require different spatial discretization
per axis.

We note that visibility-aware probe selection and sampling affords us a certain latitude when
placing probes: probes that fall inside walls or other geometry will be ignored by visibility query
metrics (McGuire et al. [71]). Also, other than simplifying probe indexing, no aspect of the probe
generation or shading requires a uniform grid placement; indeed, probes can be placed according to
schemes used in other probe-based algorithms, including tetrahedral grids.

Every point in space is associated with a cage of vertices corresponding to the eight vertices of
the grid cell that contains the point. We recommend using a grid resolution and scale that results in at
least one full cage of vertices in each room-like space. This is needed to ensure a sufficient sampling
of local illumination variation inside each separated/distinct space in a scene. For human-scale
scenes, we found a spacing of one to two meters sufficient, however we illustrate results with a
variety of grid spacings.

4.2. Generating and Tracing Probe Update Rays

We update texels in probes to account for dynamic geometry and lighting variation, blending in
their results over time in order to smoothly account for the effects of these dynamic changes on the
final rendered result.

At each of the m active probes, we uniformly sample n spherical directions according to a
stochastically-rotated Fibonacci spiral pattern, similar to Mara et al. [71]. We then spawn n rays
with these directions and a (shared) origin of the probe center. We lay out the rays across the m
probes in a thread-coherent fashion, casting all of them in one batch.

Technical Notes. While Vulkan Ray Tracing and DirectX Ray Tracing APIs permit ray dispatch-
ing from primary shaders, we benchmarked our ray batching and observed that it minimizes register
pressure and facilitates debugging through inspection of intermediate shading results.

We experimented with several probe and ray sub-sampling schemes: e.g., updating only a subset
of the probes in a scene, such as those within a certain radius of the camera; or varying the ray count
based on distance to the camera. While these adaptive schemes led to some expected performance
improvements, they introduced many additional scene-dependent user parameters and additional
bookkeeping.

We instead opted for simplicity in our final results: our reference implementation updates every
probe at every frame (i.e., sets every scene probe as active during probe updates) and dispatches
the same number of rays per probe. More complex usage scenarios, such as large open world
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environments, could benefit from a probe streaming scheme as well as probe LODs operating at
several grid scales (see Section 7.1 for more discussion).

4.3. Secondary Surfel Shading

We employ a unified shading model for both probe updates and final rendering. Specifically, we
compute global illumination in two contexts at runtime: first, when updating the shading on the
m×n probe-sampled surfels, and, finally, when shading pixels from the camera for the final output
image. Both of these contexts use the same shading routine, composed of a direct illumination pass
that uses state-of-the-art interactive practices and an indirect lighting pass that leverages our probe
data. We discuss the details of the shading routines in Section 5, focusing on the subtle differences
in its application during probe surfel updates, below.

To abstract over the differences in how shading queries are made during probe update and final
rendering, our shading routines expect a shading position, normal, and viewing direction as input
(Section 5). For probe-traced surfel shading updates, we pass the intersected surfel locations and
normals, as well as the direction from the surfel to the probe center, as input to the shading routine.

4.4. Probe Surfel Updates

After surfel shading, each of the m×n surfel points will have an updated shading value, and the
sampled surfel distances (and squared distance) are also updated relative to their associated probe
centers.

We update the probe texels (associated to each of surfel) by alpha blending in the new shading
results at a rate of 1−α as follows,

Et(τ) = ∑
r∈Ω

max{0,ωτ ·ωr} ·Lr

Irradiance(t)[ωτ ] = lerp
{

Irradiance(t−1)[ωτ ],Et(τ),α
} (61)

where α is a hysteresis parameter that controls the rate at which updated shading overrides shading
results from previous frames, Et(τ) is the irradiance at frame t and texel τ for probe Ω, ωτ and ωr are
the texel and ray directions, respectively, Lr is the incoming radiance of ray r, and Irradiancet [ω]

stores the final probe irradiance at time t for a direction ω . We set α between 0.85−0.98 for all
our results.

We directly compute the filtered irradiance using a moment-based filtered shadow query, allow-
ing us to avoid brute-force prefiltering of a (higher resolution) incident radiance map. This smooth
incident irradiance field will be used to compute diffuse indirect illumination (Section 5.2), and we
can optionally maintain a higher-frequency shading map for glossy and specular indirect shading.

Technical Notes. We purposefully lay out our data and update computation in order to promote
coherence in execution: probe texels operate in (near) lockstep to their neighbors, often operating
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on the same ray, blending in its result. This yields not only coherent memory fetches on the GPU,
but also coherent compute. We update irradiance and depth texels against a cosine lobe distribution,
a necessary step for correct irradiance representation (see Akenine-Möller et al. [1]). In the case
of the depth and depth-squared buffers (as with Mara et al. [71]), we employ an additional depth
sharpening, warping them according to a cosine-power lobe distribution. We do not update texels
weighted below a threshold (we used 0.001) in the cosine-power lobe distribution.

Note that, while the updated spherical irradiance distributions will be used to shade view-
independent diffuse reflectance effects, they are updated to correctly account for any glossy/mirror
view-dependent shading due to dynamic geometry and lighting in the environment. For a in-
depth discussion of irradiance and computing irradiance using light probes, we refer readers to
Akenine-Möller et al. [1] (pg.268, 490).

5. Shading with Dynamic Diffuse Global Illumination Probes
We compute multi-bounce global illumination effects with diffuse, glossy and specular transport.

We will separately discuss the shading procedure for each of these transport components. We
motivate and outline the novel contributions of our technique below. Instead of explicitly detailing
every algorithmic detail and/or parameter setting of our implementation, we provide a full source
reference implementation as a supplemental reference for the exact technical details.

5.1. Direct Illumination

We compute direct illumination from point and directional light sources using a deferred renderer
with variance shadow mapping (see Thaler [98], Donnelly and Lauritzen [27]).

We can also handle direct illumination from extended area light sources using our indirect
illumination pipeline: all one-bounce indirect lighting contributions (Section 5.2 compute one
bounce of lighting seeded by the direct illumination in a scene. Multiple bounces of indirect
illumination are instead seeded by the previous bounce of indirect lighting in the scene (Section 5.3).
With this in mind, we can compute direct illumination from area lighting by seeding our indirect
illumination shading routine with the area lighting emission profile in the scene (i.e., instead of the
direct illumination profile).

The last row of Figure 66 gives a sense of this area lighting setup: apart from the “direct light"
on the window geometry, the remainder of the shading in the bathroom scene is computed as an
“indirect” contribution from the window light.

With this approach, we can avoid approximating direct illumination from area lights, instead
relying on the robustness of our probe-based shading technique to compute smooth area shadows
and reflections. We detail this method, below.
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5.2. Diffuse Indirect Illumination

We compute spherical incident irradiance distributions at each probe, and we extend the original
visibility-aware probe weighting scheme of [71] to query diffuse irradiance from probes at shading
points in the scene. We modulate incident irradiance by spatially-varying diffuse surface albedo in
order to compute one bounce of indirect outgoing diffuse radiance (see Akenine-Möller et al. [1]).

To compensate for the fact that the incident diffuse irradiance at a probe location does not account
for local occlusion around a shading point, we (optionally) modulate outgoing diffuse reflection by
a screen-space ambient occlusion variant (see Shanmugam and Arikan [90]). Note, however, that
we do not include this local occlusion when computing surfel shading updates (Section 4.3): the
impact of omitting this term on secondary lighting (i.e., computed as the diffuse, glossy or specular
reflection of the surfel shading) is significantly less than on the lighting of directly-visible surfaces.

Fig. 66. Shading of a surfel X . We sample each probe in the 8 probe cage using the surface normal
n in world space. We backface weight each probe P using dir, the direction from X to P. The mean
distance stored for P is represented by r. To avoid sampling visibility near the visibility function
boundary (i.e. the surface), we offset from the world space position at X based on the surface normal
and the camera view vector.

Our indirect diffuse interpolation and sampling technique differs from that of Mara et al. [71],
incorporating ideas from the ray-tracing and shadow mapping literature that are designed to increase
robustness to dynamic geometry and lighting. Specifically, after computing the indices of the eight-
probe cage that contains the shading point, we compute interpolation weights for each irradiance
probe from its position and direction (relative to the shading point), as follows (see Figure 66):

• we backface-cull probes that lie below the shading point’s tangent plane, using a soft
threshold that falls off smoothly as the dot product of the shading normal with the direction
towards a probe approaches zero,
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• we apply a perceptually-based weighing to account for the human visual system’s sensitivity
to (relatively) low-intensity lighting in otherwise dark regions (i.e., light leaks): we reduce
the contribution of very low irradiance values (i.e., less than 5% of the representable intensity
range) according to a monotonically-decreasing curve profile,
• we apply mean- and variance-biased Chebyshev interpolants, as detailed in the variance

shadow mapping method, to our visibility queries (see Figure 68) in order to appropriately
filter radiance queries,
• we offset the shading point according to bias proportional to the shading normal and the

direction to the probes: this improves the robustness of the visibility-based interpolation
weights by moving away from potential shadowed-unshadowed discontinuities, and
• we then perform a standard trilinear interpolation based on the distance between the shading

point and the probe centers, using the aforementioned weighting and biasing factors.
Each of these weighting terms are appropriately bound using conservative epsilon tests in order

to avoid numerical issues when normalizing the weights, e.g., when per-probe weights approach
zero. Figure 68 illustrates the visual impact that each of these weighting stages has on the final
rendering, highlighting how each factor contributes to eliminating artifacts, starting from a traditional
irradiance-probe rendering and progressing through each of our factors above.

Note that shading with standard irradiance probes results in significant light-leaking artifacts,
as expected and similar to those highlighted in related work (see Figure 62), whereas our final
renderings agree much more closely with path-traced ground-truth. Any color banding artifacts in
our results are due to conversion from HDR to LDR into the PDF-embedded PNG format; these
artifacts are not present on display.

Render Pass Time (ms)
Ray generation 0.1

Ray cast 0.8
Ray shade 0.4

Probe update 0.7 (0.3 color + 0.4 depth)
Sample irradiance probes for primary ray shading 0.5

Deferred direct shading 0.1
Total 2.6

Add brute-force ray-traced glossy +2.4

Fig. 67. Timings for the indirect light components of a single frame render using 32×8×32 probes
with 64 rays/probe. Probes were at 8×8 resolution using RGB10A2 format for color and RG16F
format for depth. Timings were taken using glTimerQuery. We allocate time for the combined ray
cast according to the proportion of rays for diffuse and glossy. We did not profile the unoptimized
modular passes for parts of the system outside our contributions (shadow maps, AO, G-buffer
generation) though we include unoptimized glossy ray cast and unoptimized glossy indirect shade
in the final row for context.
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Technical Note. Previous work use 128× 128× 6 high-precision cube maps to store depth in-
formation, however our additional weighting criterion allow us to scale down to 16×16 medium-
precision depth values without incurring any numerical issues.

(a) House Exterior (b) Interior cutaway;
direct light only

(c) + classic irradiance probes

(d) + new backface test (e) + new visibility test (f) + normal bias

(g) Path traced reference (h) Absolute error × 2

Fig. 68. Irradiance interpolation and sampling in a closed room scene (a), where light enters only
from a single door opening (b). Images (b) through (i) place the camera at the back corner of the
room, illustrating how light leaking artifacts from traditional irradiance probes (c) are progressively
compensated for using the terms in our novel interpolant (d) – (f). We visualize a 2× error image
(h) between our final result (f) and the path traced reference (g).

5.3. Multiple Bounces of Global Illumination

We compute multiple bounces of indirect illumination recursively, across frames, by seeding
the radiance buffers with the previous bounce of light, similar to McGuire et al. [71]. This leads
to a time-lag artifact for indirect bounces that is most evident in static scenes viewed by a static
camera, which is not the use case in which we are primarily interested: when the view, lighting,
and/or scene geometry is dynamic, the lag in indirect bounces is not noticeable.

Our approach could easily be adapted to collect the per-bounce results (up to a maximum
bounce bias) before display, if fixed view and geometry usage scenarios are a priority. Given the
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performance of our approach (see Section 6), we would still reach interactive shading rates despite
not being able to amortize the cost of multiple bounces across frames.

(a) Classic irradiance probes (b) Low-res raycast visibility (c) New variance visibility

Fig. 69. Comparison of probes with no visibility test, visibility test by a low-res ray cast, and our
new variance visibility.

(a) 4x4 probes, AO (b) 4x4 probes, no AO (c) 8x8 probes

(d) 16x16 probes (e) 64x64 probes (f) Path-traced reference

Fig. 70. Indirect shadows with increasing probe grid resolution. As the resolution of the probe grid
increases, the indirect shadow approaches the pathtraced reference without the overdarkened look
of SSAO.
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6. Results
We benchmark our approach on scenes with a mix of geometric and radiometric complexity.

We explore the impact that probe count, resolution, and pixel format play in final rendering quality.
We also compare the quality of our final rendering to path-traced references (computed offline).

We show results with direct illumination, glossy ray-traced reflection, shadows, tone-mapping,
bloom, and other standard rendering terms to show the diffuse GI in the context of a full
renderer. The code for this pipeline is available as the open source G3D Innovation Engine
(https://casual-effects.com/g3d), where we injected the diffuse and glossy GI terms using
the G3D::DefaultRenderer’s path for reading from two screen-resolution textures. The glossy ray
tracing is simply brute force mirror-ray tracing per pixel followed by a bilateral blur pass based on
glossiness and distance, which is a standard practice (Valient [102]). For a state of the art ray traced
glossy approach, see Schmid et al. [51].

Since the rays will be convolved with a clamped cosine, glossy reflections on second-hit surfaces
will be indistinguishable in most cases. We recommend adding the energy from the glossy portion of
the BRDF to the matte portion in those second-hit surfaces, which we did in all of our result figures.
This handles today’s practical cases well and gives a slight speedup to shading. However, in the
theoretical case of extremely dense and high resolution probes, this step would affect correctness,
so we left a disabled code path in the reference implementation that performs the full BRDF shade
including glossy for the surfaces seen by probes.

For consistency when reporting performance statistics, we conservatively update every probe
every frame, with the understanding that many probes that may not impact the final rendering quality
will still be updated (and, so, will incur a performance cost). This is especially true in large scenes
(e.g., Figures 66, 69 and 77); here, many probes either fall outside the camera frustum and/or do not
contribute to any directly (or indirectly) visible scene geometry. We leave optimized probe selection
and adaptive probe updates to future work.

Number of probes
16×8×16 32×8×32 32×16×32

R
ay

s/
pr

ob
e

32 1.63 GRays/s 1.66 GRays/s 1.6 GRays/s
64 1.63 GRays/s 1.62 GRays/s 1.59 GRays/s

128 1.65 GRays/s 1.6 GRays/s 1.5 GRays/s
256 1.65 GRays/s 1.5 GRays/s 1.48 GRays/s

Fig. 71. Ray throughput in Gigarays per second. Timings were taken on our Greek Temple Scene
(876127 primitives) using an NVIDIA RTX 2080 Ti. For reference, we used 32×8×32 probes
with 64 rays/probe for our largest scenes.
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(a) Probe Count and Resolution comparison

(b) Path-traced Reference (c) Direct Only

Fig. 72. Quality comparison across a selection of probe resolutions and densities. Probe resolution
is given as X×Y ×Z, with Y increasing towards the camera. Note that even at low resolution, an
image rendered with a sufficient number of probes looks identical to the path-traced reference.
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6.1. Probe Count and Resolution

Figures 72 and 73 illustrate the impact that probe count and resolution have on the final rendering.

Number of probes

4×2×4 4×4×4 8×8×8

Direct

Pr
ob

e
re

so
lu

tio
n

8
×

8
64
×

64

(a) Probe count and resolution comparison

(b) Second view, indirect and direct. 8x8x8 probe grid at 64x64 resolution.

Fig. 73. Quality comparison across a selection of probe resolutions and densities for a more
complex scene.

Figure 70 illustrates the impact of probe count in the specific case of indirect shadows. Probes
are initialized in a simple uniform 3D grid, scaled to the bounding volume of the scene. There is
no need for manual probe placement due to the visibility-aware sampling of probe data, one of the
main advantages of the probe representation.

We can conclude that probe count plays a larger role than probe resolution: rendering with low
(angular) resolution probes still leads to results that converge favorably compared to path traced
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reference; however, low probe count/density can lead to subtle light leaking artifacts. These are
resolved with modestly chosen probe density settings.

(a) Path-Traced Reference (b) New Irradiance Field

Fig. 74. Comparing path tracing (left) to our dynamic diffuse global illumination probes (right),
with full diffuse global illumination, in a box with a dynamically translating dragon. See our video
supplement for a real-time animation.

6.2. Ray Tracing Performance

Figure 71 shows throughput for ray casts with varying probe densities and rays/probe. Except in
extreme cases, throughput is above 1.5 GRays/second. Figure 67 shows timings for our algorithmic
contributions within our rendering pipeline, and gives some context to the times in Figure 71. The
total time of our contributions is 7ms. However, note that our implementation updates all probes
every frame, and thus incurs a high probe update cost. Adaptive probe selection (see Section 7.1)
would reduce this time considerably.
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6.3. Probe Texel Format

Figure 75 illustrates the impact of probe texel formats on the quality of our final rendering. Using
8-bit integer pixel formats can lead to artifacts that vanish at 16-bit floating point representations.
Experimentally, we find that 11-bit floating point representations strike a good balance between
precision and storage: at this bit depth, we maintain the visual fidelity of the 16-bit floating point
representation while reducing storage by a factor of 45%.

6.4. Quality Comparisons

Figure 74 compares our method to path traced reference on a dynamic scene using a grid of
4× 2× 4 probes at 8× 8 color resolution and 16× 16 depth resolution. Our results are almost
indistinguishable from the path-traced reference, rendered at several orders of magnitude faster.
Note the variations of subtle diffuse indirect illumination caused by the reflection of the red dragon
onto the white walls of the box as the dragon passes under the light.

Figure 68 also illustrates the impact that the individual components of our robust diffuse indirect
weighting scheme have on rendering.

7. Conclusion and Discussion
We present an approach for updating and interpolating the irradiance field, as represented in

dynamic diffuse global illumination probes, in the presence of dynamic scene geometry and lighting,
robustly treating temporal occlusion and lighting variation. Our method does not suffer from light or
shadow leaking artifacts, suppressing aliasing due to undersampling. We compute accurate diffuse,
glossy and specular global illumination effects in arbitrarily dynamic scenes at high performance.

This is due, in part, to an efficient data packed probe layout that enables ray and shading
computation to be dispatched in a coherent manner across probes. Our occlusion-aware spatial
irradiance interpolation scheme is more robust to variations in smooth diffuse illumination, compared
to the original scheme presented by Mara et al. [71].

We demonstrate how traditional forward and deferred rendering architectures that leverage
precomputed lighting can be combined with modern GPU-enabled ray tracing in order to combine
the advantages of both these enabling technologies.

Indeed, we build atop the idea that an efficient ray tracer should be used not as a substitute for
rasterization, but rather as a means to complement it when incoherent visibility queries are needed.
When combined with design strategies commonly used in the interactive rendering community,
such as temporal amortization and probe-based precomputed lighting, our hybrid rendering solution
generates results that amount to more than the sum of its technological parts.

149



Probe Locations Direct Illumination

GL_RGB5A1 GL_RGB8

GL_RGB10A2 GL_R11G11B10F

GL_RGB16F GL_RGB32F

Fig. 75. Color precision at 128 rays/probe/frame. GL_RGB5A1 requires a low hysteresis α = 0.8
in order to not fall below the blending threshold with many rays and suffers from flicker and
oversaturation. The other formats, using α = 0.95, are nearly indistinguishable from one another
although GL_R11G11B10F has a greenish tint because it cannot represent exact grays. GL_RGB10A2
balances quality and size. Note that GL_RGB8 gives less precision but requires the same 32 bits/texel
storage on modern GPUs due to word alignment. GL_RGB10A2 and GL_RGB8 are too dark because
they lack the dynamic range of floating point.
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Fig. 76. Time-lapse images showing fully dynamic GI with moving geometry. In this example, not
only are a large number of spheres animating and casting complex GI, but they are also moving
through the probes, which would lead to objectionable shadow leaks without correct occlusion. See
our supplemental video for a real-time animation.

(a) Noon

(b) Evening

Fig. 77. Time-lapse showing different times of day simulated with dynamic lighting. See our
supplemental video for a real-time animation.
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Fig. 78. Our pillars test scene initialized with an enclosing 8x4x8 probe grid. The grid is perfectly
aligned with the box in the top left image. All other images have a rotation and translation of the grid.
Some images are chosen to intentionally break the algorithm by leavin part of the scene uncovered
by probes (bottom left). Others are chosen at random. As long as there are probes covering the
area being shaded, our algorithm is robust to rotation and translation of the probe grid. See our
supplemental video for a demonstration of multiple random rotations, including some failure cases
for positions outside the rotated and translated probe grid.
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Our indirect diffuse shading relies on a fundamental assumption about the spatial and angular
relationship of radiance in a scene: here, we assume that the incident light at a shade point is similar
to the incident light at the probes that surround it, if the probes and the point are mutually visible.
The error induced by this assumption increases as probe density decreases (Figure 72).

7.1. Future Work

There are two immediate areas of future work that merit further investigation: the inclusion of
more fall-back/alternative rendering paths, and adaptive selection for probe updates.

Alternative Glossy and Specular Render Paths. All of our glossy and specular transport is com-
puted by sampling rays using our dynamically-updated probes. This brute force sampling solution
errs on the side of accuracy, at the cost of performance. Compared to public demonstrations of the
recent interactive ray tracing advances, such as the PICA PICA (Andersson and Barré-Brisebois [3])
and Battlefield V engines, our glossy and specular shading solution is rather simple. These works
give a sense of the potential performance gains that are possible by heuristically shortening rays,
falling back to environment mapped reflections, combining true ray-traced reflections with screen-
space reflection approximations, using lower-resolution geometry LODs for distant intersections,
and simplifying reflection shaders after the first bounce direct illumination.

These approximations are powerful — incorporating them in a manner that is both robust to
different scene geometries and materials, and that allows direct control over error bounds, are
interesting directions of future work.

Adaptive Probe Selection. In large and complex scenes, even conservatively culling probes can
result in significant performance improvements. The scene depth information we currently sample
and store at each probe is immediately useful (and, likely, sufficient) to inform a more efficient
probe scheduling routine. For example, one can readily cull probes from the active probe list using
a furthest surface heuristic (i.e., from every ray traced at every probe).
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Fig. 65. Direct illumination (left) versus full (diffuse, glossy & specular) global illumination (right)
computed using dynamically-updated irradiance probes and ray-traced reflections.
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Chapter 2

Conclusion and Future Work

This thesis presented four high-impact articles focused on improving the accuracy and performance
of evaluating realistic camera models. We have shown that, by taking these models into account at
various steps in the pipeline, we can create more realistic and more appealing results in less time
than it would to consider the camera model separately.

In Part 1, we leveraged traditional distribution effects in a novel way to construct an extremely
efficient non-linear motion blur algorithm which provides never-before-seen fidelity all while still
being real-time. We believe that this algorithm still shows excellent promise and could be used
successfully to augment motion blur rendering, especially in situations such as virtual reality, where
simulating distribution effects has goals beyond visual fidelity and allows the human eye and brain
to better interpret virtual worlds.

In Part 2, we extended typical appearance filtering approaches to consider area lights such
as environment maps, greatly broadening the utility of such algorithms. We manage to perform
substantially better than the state of the art while remaining scalable and flexible, creating solid
ground work for future forays into the topic.

In Part 3, we devised a smart hierarchy on both surface and camera samples to quickly generate
complex subsurface scattering effects using otherwise traditional and accurate algorithms. This
approach, which effectively takes advantage of extra dimensions by more directly considering pixel
locations holistically, allows us to very precisely scale down the amount of work we have to perform
according to the requirements of the surface, lighting and geometry.

In Part 4, we created a novel algorithm for real-time global illumination which manages to
compactly store irradiance information in a view-independent, stable and scalable way. This
framework has since seen further refinements and was adopted as an official Nvidia RTX software
development kit under the name RTXGI [78], making it accessible to many game developers and
streamlining implementation and performance.

The presented articles each contain numerous avenues for future work, but we would like to
highlight some specific ways forward that may be of particular interest or which have already begun.



2.1. Real-time Appearance Filtering
Our first topic of interest was already alluded to in Part 2: we suspect that the algorithm we

have devised has potential for real-time applications. Currently, various parts of the implementation
are not very amenable to GPU rendering, especially as far as memory usage is concerned, but we
believe that these are resolvable limitations.

We have spent a significant amount of time working on implementing this algorithm in real-time
already, but unfortunately have been unable to produce satisfactory results that would have been
worth including in the final publication. Instead, we decided that these findings would deserve their
own article at a later date.

There are many interesting aspects to this problem that we would like to cover, most notably:
• The current implementation leverages a dense SAT histogram which takes up significant

memory space and requires multiplying and adding large matrices. We believe that, for a
real-time implementation, a less accurate but much faster representation, maybe using a
hybrid approach depending on the pixel footprint, would be viable.
• The rotated zonal harmonic Gaussian roughness lobes are inefficient to process on a GPU

since they are much larger than the accelerated formats such as 4-component vectors and
matrices. We think that a similarly approximate method as for the prior point would be
necessary, combined with reconfiguring the mathematical structure to favor the hardware.
• Some computations, both at runtime and as part of the algorithm’s precomputations, can be

trivially accelerated with a GPU, which should provide immediate gains for little work.
The state of the art for online appearance filtering is currently far behind that of offline rendering,

and therefore we believe that there is still a lot of potential for even fairly large approximations of
our algorithm to outperform, both visually and in wall clock terms, current approaches.

2.2. Surface-distributed Ray Tracing
Another interesting idea is attempting to use what we have learned with Part 2, but applying it

directly to distribution effects rather than area light sources. In this scenario, we reuse and refine
certain parts of our algorithm, such as our SAT histogram, such that we can handle pixel footprints
which vary in time and/or lens space.

This project is currently under way as part of a collaboration with Ubisoft La Forge. The
algorithm generates a histogram of normals over a surface and stores it in a SAT for efficient lookup.
When tracing any ray, we also compute the full cone of projection coming from the lens to the
surface that the ray has hit, and we then sweep this cone alongside the direction of motion, if any.

This allows us to then project one or more shapes on the intersected surface, giving us a very
accurate representation of the footprint. This footprint can then be used to compute the BRDF for
all time and lens locations at once, rather than requiring hundreds or even thousands of rays to be
computed to approximate this through Monte Carlo.
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In addition, since the footprints generated in such a fashion can be complex shapes, we generate
multiple rotated versions of the original normal map and compute a SAT for each, allowing us
to choose one of many orientations to best approximate the shape of the footprint. If necessary,
subdivision of the footprint is done.

Finally, given the histogram recovered for this footprint, we can compute the NDF to a high
degree of precision and thus generate a faithful response. Our algorithm presently makes the
assumption that local flatness holds in spite of very large footprints, which is something we are
looking to confirm or deny. We also decouple geometric discontinuities from surface filtering: to
take into account overlapping geometry, we perform a pre-processing step per frame which sends
highly simplified rays which only determine which surface was hit, allowing us to construct a
“weighting” buffer which can be used to combine every surface we have filtered. We can also reuse
some of those rays for appearance filtering, reducing costs.

We believe that this approach should be fast enough to be used in interactive rendering, with
potential for approximations bringing it into true real-time territory.

2.3. Appearance Filtering in Time, Lens and Light
As a final keystone project, we want to devise a new framework which combines and optimizes

Part 2 with Section 2.2. Thanks to the numerous (and intentional) similitudes between the two algo-
rithms, we believe that we can very efficiently merge the computations and reuse many intermediate
results to minimize overhead.

The main challenges of this framework would be twofold. First, we need to devise a scalable
means of continuing the swept conic projection we use in Section 2.2 to at least one surface bounce,
which would allow us to extend our time and lens volume to direct light sampling. This presents
numerous challenges for both glossy and matte surfaces. Second, we need to unify our computations
such that they can all be shared by all steps of the algorithm, thus giving us an actual advantage
versus simply applying both original algorithms separately.

We think that this project has potential to create a new paradigm for appearance filtering and
distribution effects by more tightly coupling each step of the rendering process, thus giving us
access to more information and letting us exploit to to optimize visual fidelity and performance.
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2.4. Final Thoughts
We believe that a more holistic approach to realistic camera models is key to broadening their

use and ensuring that they remain efficient to process in rendering systems. With just a select few
considerations, we can combine different parts of light transport and evaluate them simultaneously
or reuse information across different steps. The future work we have outlined above make it an
extremely exciting and interesting field which should see substantial growth in the next few years as
rendering engine developers and researchers seek to further improve performance and efficiency
while producing ever more realistic images.

158



References

[1] Tomas Akenine-Möller, Eric Haines, Naty Hoffman, Angelo Pesce, Michał Iwanicki, and Sébastien Hillaire.
Real-Time Rendering 4th Edition, chapter 10.6, pages 425–433. A K Peters/CRC Press, Boca Raton, FL, USA,
2018.

[2] Tomas Akenine-Möller, Jacob Munkberg, and Jon Hasselgren. Stochastic rasterization using time-continuous
triangles. In Graphics Hardware, pages 7–16. Eurographics, 2007.

[3] Johan Andersson and Colin Barré-Brisebois. Shiny pixels and beyond: Real-time raytracing at seed. GDC 2018.
EA SEED, 2018.

[4] Alvy Ray Smith (Director) & John Lasseter (Animator). The Adventures of André and Wally B. Lucasfilm,
1984.

[5] Adam Arbree, Bruce Walter, and Kavita Bala. Single-pass scalable subsurface rendering with lightcuts. In
Computer Graphics Forum, volume 27, pages 507–516. Wiley Online Library, 2008.

[6] Asen Atanasov and Vladimir Koylazov. A practical stochastic algorithm for rendering mirror-like flakes. In ACM
SIGGRAPH 2016 Talks, SIGGRAPH ’16, pages 67:1–67:2, New York, NY, USA, 2016. ACM.

[7] Mahdi Bagher, Cyril Soler, and Nicolas Holzschuch. Accurate fitting of measured reflectances using a Shifted
Gamma micro-facet distribution. Computer Graphics Forum, 31(4), June 2012.

[8] Mahdi M. Bagher, John Snyder, and Derek Nowrouzezahrai. A non-parametric factor microfacet model for
isotropic brdfs. ACM Transactions on Graphics, 36(6), August 2016.

[9] Mahdi M. Bagher, Cyril Soler, Kartic Subr, Laurent Belcour, and Nicolas Holzschuch. Interactive rendering of
acquired materials on dynamic geometry using bandwidth prediction. In ACM I3D, pages 127–134, 2012.

[10] P. Beckmann and A. Spizzichino. The scattering of electromagnetic waves from rough surfaces. New York:
Pergamon, 1963.

[11] Laurent Belcour, Kavita Bala, and Cyril Soler. A local frequency analysis of light scattering and absorption.
ACM Trans. on Graph., 33(5):163:1–163:17, September 2014.

[12] Laurent Belcour and Cyril Soler. Frequency based kernel estimation for progressive photon mapping. In SIG-
GRAPH Asia 2011 Posters, page 47. ACM, 2011.

[13] Laurent Belcour, Cyril Soler, Kartic Subr, Nicolas Holzschuch, and Fredo Durand. 5d covariance tracing for
efficient defocus and motion blur. ACM Trans. Graph., 32(3):31:1–31:18, July 2013.

[14] Laurent Belcour, Guofu Xie, Christophe Hery, Mark Meyer, Wojciech Jarosz, and Derek Nowrouzezahrai.
Integrating clipped spherical harmonics expansions. ACM Trans. Graph., 37(2):19:1–19:12, March 2018.

[15] Laurent Belcour, Ling-Qi Yan, Ravi Ramamoorthi, and Derek Nowrouzezahrai. Antialiasing complex global
illumination effects in path-space. ACM Trans. Graph., 36(1), January 2017.

[16] John Bowers, Rui Wang, Li-Yi Wei, and David Maletz. Parallel poisson disk sampling with spectrum analysis on
surfaces. ACM Trans. on Graph., 29(6):166:1–166:10, December 2010.



[17] Norbert Bus, Nabil H. Mustafa, and Venceslas Biri. IlluminationCut. Computer Graphics Forum (Proceedings of
Eurographics 2015), 34(2):561 – 573, 2015.

[18] Zina H. Cigolle, Sam Donow, Daniel Evangelakos, Michael Mara, Morgan McGuire, and Quirin Meyer. A survey
of efficient representations for independent unit vectors. Journal of Computer Graphics Techniques (JCGT),
3(2):1–30, April 2014.

[19] R. L. Cook and K. E. Torrance. A reflectance model for computer graphics. ACM Trans. Graph., 1(1):7–24,
January 1982.

[20] Robert L. Cook. Stochastic sampling in computer graphics. ACM Trans. Graph., 5(1):51–72, 1986.
[21] Robert L. Cook and Tony DeRose. Wavelet noise. Transactions on Graphics, 24(3):803–811, July 2005.
[22] Cyril Crassin, David Luebke, Michael Mara, Morgan McGuire, Brent Oster, Peter Shirley, Peter-Pike Sloan,

and Chris Wyman. CloudLight: A system for amortizing indirect lighting in real-time rendering. Journal of
Computer Graphics Techniques (JCGT), 4(4):1–27, October 2015.

[23] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann. Interactive indirect illumination
using voxel cone tracing. Computer Graphics Forum, 30(7):1921–1930.

[24] Eugene d’Eon. A better dipole. http://www.eugenedeon.com/project/a-better-dipole/, Nov 2012.
[25] Eugene d’Eon. A dual-beam 3d searchlight bssrdf. In ACM SIGGRAPH 2014 Talks, pages 65:1–65:1, 2014.
[26] Eugene D’Eon and Geoffrey Irving. A quantized-diffusion model for rendering translucent materials. ACM Trans.

Graph., 30(4):56:1–56:14, July 2011.
[27] William Donnelly and Andrew Lauritzen. Variance shadow maps. In Proceedings of the 2006 Symposium on

Interactive 3D Graphics and Games, I3D ’06, pages 161–165, New York, NY, USA, 2006. ACM.
[28] Samuel Donow. Light probe selection algorithms for real-time rendering of light fields. Master’s thesis, Williams

College, 2016.
[29] Renaud Adrien Dubouchet, Laurent Belcour, and Derek Nowrouzezahrai. Frequency Based Radiance Cache for

Rendering Animations. In Matthias Zwicker and Pedro Sander, editors, Eurographics Symposium on Rendering -
Experimental Ideas & Implementations. The Eurographics Association, 2017.

[30] Jonathan Dupuy, Eric Heitz, Jean-Claude Iehl, Pierre Poulin, Fabrice Neyret, and Victor Ostromoukhov. Lin-
ear efficient antialiased displacement and reflectance mapping. ACM Transactions on Graphics, 32(6):1–11,
November 2013.

[31] Jonathan Dupuy, Eric Heitz, Jean-Claude Iehl, Pierre Poulin, and Victor Ostromoukhov. Extracting Microfacet-
based BRDF Parameters from Arbitrary Materials with Power Iterations. Computer Graphics Forum, page 10,
2015.

[32] Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and François X. Sillion. A frequency analysis of
light transport. ACM Trans. Graph., 24(3):1115–1126, July 2005.

[33] Kevin Egan, Yu-Ting Tseng, Nicolas Holzschuch, Frédo Durand, and Ravi Ramamoorthi. Frequency analysis
and sheared reconstruction for rendering motion blur. ACM Trans. Graph., 28(3), 2009.

[34] Daniel Evangelakos. A light field representation for real time global illumination, 2015.
[35] Jeppe Revall Frisvad, Toshiya Hachisuka, and Thomas Kim Kjeldsen. Directional dipole model for subsurface

scattering. ACM Trans. Graph., 34(1):5:1–5:12, December 2014.
[36] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., (2):325–348, December

1987.
[37] Jean-Philippe Guertin, Morgan McGuire, and Derek Nowrouzezahrai. A fast and stable feature-aware motion

blur filter. In High Performance Graphics. ACM/Eurographics, June 2014.
[38] Jean-Philippe Guertin, Morgan McGuire, and Derek Nowrouzezahrai. A fast and stable feature-aware motion

blur filter. In High Performance Graphics. ACM/Eurographics, June 2014.

160

http://www.eugenedeon.com/project/a-better-dipole/


[39] Ralf Habel, Per H. Christensen, and Wojciech Jarosz. Photon beam diffusion: A hybrid monte carlo method for
subsurface scattering. In Eurographics Symposium on Rendering, pages 27–37, 2013.

[40] Toshiya Hachisuka, Wojciech Jarosz, Richard Peter Weistroffer, Kevin Dale, Greg Humphreys, Matthias Zwicker,
and Henrik Wann Jensen. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans.
Graph., 27(3), 2008.

[41] Charles Han, Bo Sun, Ravi Ramamoorthi, and Eitan Grinspun. Frequency domain normal map filtering. ACM
Trans. Graph., 26(3), July 2007.

[42] Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. SIGGRAPH Comput. Graph.,
24(4):145–154, September 1990.

[43] Eric Heitz, Johannes Hanika, Eugene d’Eon, and Carsten Dachsbacher. Multiple-scattering microfacet bsdfs with
the smith model. ACM Trans. Graph., 35(4):58:1–58:14, July 2016.

[44] Eric Heitz, Stephen Hill, and Morgan McGuire. Combining analytic direct illumination and stochastic shadows.
In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’18, pages
2:1–2:11, New York, NY, USA, 2018. ACM.

[45] Eric Heitz, Derek Nowrouzezahrai, Pierre Poulin, and Fabrice Neyret. Filtering color mapped textures and
surfaces. In ACM Siggraph Symposium on Interactive 3D Graphics and Games, New York, NY, USA, 2013.
ACM.

[46] J.T. Hooker. Volumetric global illumination at treyarch. In Advances in Real-Time Rendering 2016, SIGGRAPH
2016. Treyarch, 2016.

[47] Homan Igehy. Tracing ray differentials. In Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’99, pages 179–186, New York, NY, USA, 1999. ACM Press/Addison-
Wesley Publishing Co.

[48] Michal Iwanicki. Lighting technology of the last of us. In ACM SIGGRAPH 2013 Talks, SIGGRAPH ’13, pages
20:1–20:1, New York, NY, USA, 2013. ACM.

[49] Wenzel Jakob. Mitsuba renderer, 2021. http://www.mitsuba-renderer.org.
[50] Wenzel Jakob, Miloš Hašan, Ling-Qi Yan, Jason Lawrence, Ravi Ramamoorthi, and Steve Marschner. Discrete

stochastic microfacet models. ACM Trans. Graph., 33(4):115:1–115:10, July 2014.
[51] Johannes Deligiannis Jan Schmid, Yasin Uludag. It just works: Ray-traced reflections in ”battlefield v”. Presented

at GPU Technology Conference, 2019, 2019.
[52] Adrian Jarabo, Raul Buisan, and Diego Gutierrez. Bidirectional clustering for scalable vpl-based global illumina-

tion. In CEIG, 2015.
[53] Johannes Jendersie, David Kuri, and Thorsten Grosch. Real-Time Global Illumination Using Precomputed

Illuminance Composition with Chrominance Compression. Journal of Computer Graphics Techniques (JCGT),
5(4):8–35, December 2016.

[54] Henrik Wann Jensen and Juan Buhler. A rapid hierarchical rendering technique for translucent materials. ACM
Trans. Graph., 21(3):576–581, July 2002.

[55] Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. A practical model for subsurface
light transport. In ACM SIGGRAPH, pages 511–518, 2001.

[56] James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph., 20(4):143–150, August 1986.
[57] Evangelos Kalogerakis, Patricio Simari, Derek Nowrouzezahrai, and Karan Singh. Robust statistical estimation

of curvature on discretized surfaces. In Eurographics Symposium on Geometry Processing, pages 13–22.
[58] Nickolay Kasyan and Nicolas Schulz. Secrets of cryengine 3 graphics technology. In SIGGRAPH Talks. ACM,

2011.

161



[59] Ares Lagae, Sylvain Lefebvre, George Drettakis, and Philip Dutré. Procedural noise using sparse Gabor convolu-
tion. j-TOG, 28(3), August 2009.

[60] Sébastien Lagarde and Antoine Zanuttini. Local image-based lighting with parallax-corrected cubemap. SIG-
GRAPH 2012. DONTNOD Entertainment, 2012.

[61] Jaakko Lehtinen, Timo Aila, Jiawen Chen, Samuli Laine, and Frédo Durand. Temporal light field reconstruction
for rendering distribution effects. ACM Trans. Graph., 30(4):55, 2011.

[62] Eric Lengyel. Motion blur and the velocity-depth-gradient buffer. In Eric Lengyel, editor, Game Engine Gems.
Jones & Bartlett Publishers, March 2010.

[63] Zander Majercik, Jean-Philippe Guertin, Derek Nowrouzezahrai, and Morgan McGuire. Dynamic diffuse global
illumination with ray-traced irradiance fields. Journal of Computer Graphics Techniques (JCGT), 8(2):1–30,
June 2019.

[64] Sam Martin and Per Einarsson. A real time radiosity architecture for video games. In Advances in Real-Time
Rendering 2010, SIGGRAPH 2010. Geomerics and EA DICE, 2010.

[65] Nelson L. Max and Douglas M. Lerner. A two-and-a-half-d motion-blur algorithm. In Proc. of SIGGRAPH,
pages 85–93, NY, 1985. ACM.

[66] Stephen McAuley. Calibrating lighting and materials in far cry 3. In Practical Physically Based Shading in Film
and Game Production, SIGGRAPH 2012. Ubisoft Montreal, 2012.

[67] Morgan McGuire. Computer graphics archive, July 2017. https://casual-effects.com/data.
[68] Morgan McGuire, Eric Enderton, Peter Shirley, and David P. Luebke. Real-time stochastic rasterization on

conventional GPU architectures. In High Performance Graphics, 2010.
[69] Morgan McGuire, Padraic Hennessy, Michael Bukowski, and Brian Osman. A reconstruction filter for plausible

motion blur. In I3D, pages 135–142, 2012.
[70] Morgan McGuire, Michael Mara, and Zander Majercik. The G3D innovation engine, 01 2017. https://

casual-effects.com/g3d.
[71] Morgan McGuire, Michael Mara, Derek Nowrouzezahrai, and David Luebke. Real-time global illumination

using precomputed light field probes. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games,
page 11, February 2017.

[72] Morgan McGuire, Michael Mara, and Others. G3D Innovation Engine, 2014. http://g3d.sourceforge.net/.
[73] Max McMullen. Direct3D New Rendering Features, September 2014.
[74] Fernando Navarro, Francisco J. Serón, and Diego Gutierrez. Motion blur rendering: State of the art. Computer

Graphics Forum, 30(1):3–26, 2011.
[75] Addy Ngan, Frédo Durand, and Wojciech Matusik. Experimental Analysis of BRDF Models. In Eurographics

Workshop on Rendering, 2005.
[76] Greg Nichols and Chris Wyman. Multiresolution splatting for indirect illumination. In ACM I3D, pages 83–90,

2009.
[77] Derek Nowrouzezahrai, Patricio Simari, and Eugene Fiume. Sparse zonal harmonic factorization for efficient sh

rotation. ACM Transactions on Graphics, 2012.
[78] Nvidia. Rtx global illumination, 2020.
[79] Marc Olano and Dan Baker. Lean mapping. In Proceedings of the 2010 ACM SIGGRAPH Symposium on

Interactive 3D Graphics and Games, I3D ’10, pages 181–188, New York, NY, USA, 2010. ACM.
[80] Ryan S. Overbeck, Craig Donner, and Ravi Ramamoorthi. Adaptive wavelet rendering. ACM Trans. Graph.,

28(5), 2009.
[81] Edwin Catmull & Fred Parke. A Computer Animated Hand, 1972.
[82] Ken Perlin. Improving noise. Transactions on Graphics, 21(3):681–682, July 2002.

162

https://casual-effects.com/data
https://casual-effects.com/g3d
https://casual-effects.com/g3d


[83] Dan Piponi. Polygon kernels for image processing, March 2013. US Patent 8,400,461 B1.
[84] Boris Raymond, Gaël Guennebaud, and Pascal Barla. Multi-scale rendering of scratched materials using a

structured sv-brdf model. ACM Trans. Graph., 35(4):57:1–57:11, July 2016.
[85] W. T. Reeves. Particle systems – a technique for modeling a class of fuzzy objects. ACM Trans. Graph.,

2(2):91–108, April 1983.
[86] Erik Reinhard, Paul Debevec, Greg Ward, Karol Myszkowski, Helge Seetzen, Drew Hess, Gary McTaggart, and

Habib Zargarpour. High dynamic range imaging: Theory and practice. SIGGRAPH 2006, 2006.
[87] Matt Ritchie, Greg Modern, and Kenny Mitchell. Split second motion blur. In SIGGRAPH Talks, NY, 2010.

ACM.
[88] T. Ritschel, T. Grosch, M. H. Kim, H.-P. Seidel, C. Dachsbacher, and J. Kautz. Imperfect shadow maps for

efficient computation of indirect illumination. In ACM SIGGRAPH Asia 2008 Papers, SIGGRAPH Asia ’08,
pages 129:1–129:8, New York, NY, USA, 2008. ACM.

[89] Tobias Ritschel, Thorsten Grosch, and Hans-Peter Seidel. Approximating dynamic global illumination in image
space. In Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, I3D ’09, pages 75–82,
New York, NY, USA, 2009. ACM.

[90] Perumaal Shanmugam and Okan Arikan. Hardware accelerated ambient occlusion techniques on gpus. In
Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games, I3D ’07, pages 73–80, New York,
NY, USA, 2007. ACM.

[91] Ari Silvennoinen and Jaakko Lehtinen. Real-time global illumination by precomputed local reconstruction from
sparse radiance probes. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), 36(6):230:1–230:13,
11 2017.

[92] Peter-Pike Sloan, Naga K. Govindaraju, Derek Nowrouzezahrai, and John Snyder. Image-based proxy accu-
mulation for real-time soft global illumination. In Proceedings of Pacific Graphics, pages 97–105, USA, 2007.
IEEE.

[93] Peter-Pike Sloan, Ben Luna, and John Snyder. Local, deformable precomputed radiance transfer. In SIGGRAPH,
NY, USA, 2005. ACM.

[94] Tiago Sousa. Cryengine 3 rendering techniques. In Microsoft Game Technology Conference. August 2011.
[95] Tiago Sousa. Graphics gems from cryengine 3. In ACM SIGGRAPH Course Notes, 2013.
[96] Tomasz Stachowiak and Yasin Uludag. Stochastic screen-space reflections. In Advances in Real-Time Rendering

2015, SIGGRAPH 2015. EA DICE, 2015.
[97] Natalya Tatarchuk, Chris Brennan, and John R. Isidoro. Motion blur using geometry and shading distortion. In

Wolfgang Engel, editor, ShaderX2: Shader Prog. Tips & Tricks with DirectX 9.0. 2003.
[98] Jonathan Thaler. Deferred rendering. 02 2011.
[99] Michael Toksvig. Mipmapping normal maps. Journal of Graphics Tools 10, (3):65–71, 2005.

[100] K. E. Torrance and E. M. Sparrow. Theory for off-specular reflection from roughened surfaces∗. J. Opt. Soc. Am.,
57(9):1105–1114, Sep 1967.

[101] Robert Toth, Jon Hasselgren, and Tomas Akenine-Möller. Perception of highlight disparity at a distance in
consumer head-mounted displays. In Proceedings of the 7th Conference on High-Performance Graphics, HPG
’15, pages 61–66, New York, NY, USA, 2015. ACM.

[102] Michal Valient. Killzone shadow fall demo postmortem. Sony Devstation 2013. Guerilla Games, 2013.
[103] Eric Veach and Leonidas J. Guibas. Optimally combining sampling techniques for monte carlo rendering. In

Proceedings of the 22Nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’95, pages 419–428, New York, NY, USA, 1995. ACM.

163



[104] Zdravko Velinov, Sebastian Werner, and Matthias B. Hullin. Real-Time Rendering of Wave-Optical Effects on
Scratched Surfaces. Computer Graphics Forum, 2018.

[105] Bruce Walter. Notes on the ward brdf. Technical report, Cornell Program of Computer Graphics, April 2005.
[106] Bruce Walter, Adam Arbree, Kavita Bala, and Donald P Greenberg. Multidimensional lightcuts. ACM Transac-

tions on Graphics (TOG), 25(3):1081–1088, 2006.
[107] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and Donald P. Greenberg.

Lightcuts: A scalable approach to illumination. ACM Trans. Graph., 24(3):1098–1107, July 2005.
[108] Bruce Walter, Stephen Marschner, Hongsong Li, and Keneth Torrance. Microfacet models for refraction through

rough surfaces. Eurographics Symposium on Rendering, 2007.
[109] Jingwen Wang and Ravi Ramamoorthi. Analytic spherical harmonic coefficients for polygonal area lights. ACM

Trans. Graph., 37(4):54:1–54:11, July 2018.
[110] Sebastian Werner, Zdravko Velinov, Wenzel Jakob, and Matthias B. Hullin. Scratch iridescence: Wave-optical

rendering of diffractive surface structure. ACM Trans. Graph., 36(6):207:1–207:14, November 2017.
[111] Chris Wyman. An approximate image-space approach for interactive refraction. ACM Trans. Graph., 24(3):1050–

1053, July 2005.
[112] Ling-Qi Yan, Miloš Hašan, Wenzel Jakob, Jason Lawrence, Steve Marschner, and Ravi Ramamoorthi. Rendering

glints on high-resolution normal-mapped specular surfaces. ACM Trans. Graph., 33(4):116:1–116:9, July 2014.
[113] Ling-Qi Yan, Miloš Hašan, Steve Marschner, and Ravi Ramamoorthi. Position-normal distributions for efficient

rendering of specular microstructure. ACM Trans. Graph., 35(4):56:1–56:9, July 2016.
[114] Ling-Qi Yan, Miloš Hašan, Bruce Walter, Steve Marschner, and Ravi Ramamoorthi. Rendering specular mi-

crogeometry with wave optics. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2018), 37(4),
2018.

[115] Renaldas Zioma and Simon Green. Mastering DirectX 11 with Unity, March 2012. Presentation at GDC 2012.
[116] Tobias Zirr and Anton S. Kaplanyan. Real-time rendering of procedural multiscale materials. In Proceedings of

the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’16, pages 139–148, New
York, NY, USA, 2016. ACM.

164


	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	Acknowledgements
	Introduction
	Chapter 1. Background
	1.1. Integral Calculus
	1.1.1. Multidimensional Integration
	1.1.2. Monte Carlo Integration
	1.1.3. Parametric Equations
	1.1.4. Frequency Analysis
	1.1.5. Spherical Harmonics

	1.2. Light Transport
	1.2.1. Light Transport Fundamentals and the Rendering Equation
	1.2.2. Foundational Rendering Techniques
	1.2.3. Global Light Transport
	1.2.4. Local Light Transport and the Microfacet Model

	1.3. Distribution Effects from Realistic Camera Models
	1.3.1. Idealized Camera Light Transport
	1.3.2. Depth of Field
	1.3.3. Motion Blur

	1.4. High-performance Hardware Graphics Pipeline

	High Performance Non-linear Motion Blur
	1. Introduction
	2. Previous Work
	3. Method
	3.1. Motion Pre-pass
	3.2. Grid Scatter
	3.3. Normalization

	4. Results
	4.1. Performance

	5. Discussion and Limitations
	5.1. Extensions

	6. Conclusion

	Scalable Appearance Filtering for Complex Lighting Effects
	1. Introduction
	2. Previous Work
	2.1. Microfacet Models
	2.2. Procedural Texture Antialiasing
	2.3. Accurate Appearance Filtering
	2.4. Fast Appearance Filtering

	3. Preliminaries & Baseline Appearance Model
	3.1. Baseline Filtered Microfacet Model (GXD)
	3.2. Evaluating GD

	4. Filtering Appearance in Space and Direction
	4.1. Multi-scale NDFs Using Histogram Accumulation
	4.1.1. Histogram initialization
	4.1.2. Summed Area Table Histogram Queries

	4.2. Adaptive Basis-space Integration
	4.2.1. Spherical Harmonic Preliminaries
	4.2.2. Multi-scale SH NDFs and Adaptive Integration


	5. Applications
	5.1. Appearance Filtered Direct illumination
	5.2. Filtered Global Illumination

	6. Implementation and Discussion
	6.1. Histogram Resolution
	6.2. Gaussian Roughness Lobe Discretization
	6.3. Naïve NDF SAT and Relationship to Han et al. Han2007
	6.4. Light Source Coefficients

	7. Results
	8. Conclusion and Future Work
	Acknowledgements
	A. Fresnel and Geometric Term Approximation

	A Frequency Analysis and Dual Hierarchy for Efficient Rendering of Subsurface Scattering
	1. Introduction
	2. Previous Work
	2.1. Overview

	3. Fourier Analysis
	3.1. Fourier Transform of a BSSRDF
	3.2. Outgoing Radiance Bandwidth Computation

	4. Hierarchical Approach
	4.1. Hierarchical Surface Integration
	4.2. Dual Hierarchy for Pixel-Surface Integration

	5. Implementation
	6. Results and Discussions
	7. Conclusion
	Acknowledgements

	Dynamic Diffuse Global Illumination with Ray-Traced Irradiance Field Probes
	1. Introduction
	2. Related Work
	3. Dynamic Diffuse Global Illumination Probes: Overview
	4. Updating Dynamic Diffuse Global Illumination Probes
	4.1. Probe Grid Placement
	4.2. Generating and Tracing Probe Update Rays
	4.3. Secondary Surfel Shading
	4.4. Probe Surfel Updates

	5. Shading with Dynamic Diffuse Global Illumination Probes
	5.1. Direct Illumination
	5.2. Diffuse Indirect Illumination
	5.3. Multiple Bounces of Global Illumination

	6. Results
	6.1. Probe Count and Resolution
	6.2. Ray Tracing Performance
	6.3. Probe Texel Format
	6.4. Quality Comparisons

	7. Conclusion and Discussion
	7.1. Future Work
	Acknowledgements


	Chapter 2. Conclusion and Future Work
	2.1. Real-time Appearance Filtering
	2.2. Surface-distributed Ray Tracing
	2.3. Appearance Filtering in Time, Lens and Light
	2.4. Final Thoughts

	References

