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Résumé

Cette thèse est organisée en trois chapitres où sont développées des méthodes de simulation à poste-

riori pour inférence Bayesienne dans des modèles espace-état ainsi que des modèles économétriques

pour l’analyse de données financières.

Au chapitre 1, nous considérons le problème de simulation a posteriori dans les modèles espace-état

univariés et non-Gaussiens. Nous proposons une nouvelle méthode de Monte-Carlo par chaînes

de Markov (MCMC) mettant à jour le vecteur de paramètres de la dynamique d’état ainsi que la

séquence de variables d’état conjointement dans un bloc unique. La proposition MCMC est tirée en

deux étapes: la distribution marginale du vecteur de paramètres de la dynamique d’état est constru-

ite en utilisant une approximation du gradient et du Hessien du logarithme de sa densité a posteriori,

pour laquelle le vecteur de variables d’état a été intégré. La distribution conditionnelle de la séquence

de variables d’état, étant donné la proposition du vecteur de paramètres, est telle que décrite dans

McCausland (2012). Le calcul du gradient et du Hessien approximatif combine des sous-produits

de calcul du tirage d’état avec une quantité modeste de calculs supplémentaires. Nous comparons

l’efficacité numérique de notre simulation a posteriori à celle de la méthode Ancillarity-Sufficiency

Interweaving Strategy (ASIS) décrite dans Kastner & Frühwirth-Schnatter (2014), en utilisant un

modèle de volatilité stochastique Gaussien et le même panel de 23 taux de change quotidiens utilisé

dans ce même article. Pour calculer la moyenne a posteriori du paramètre de persistance de la

volatilité, notre efficacité numérique est de 6 à 27 fois plus élevée; pour la volatilité du paramètre de

volatilité, elle est de 18 à 53 fois plus élevée. Nous analysons dans un second exemple des données

de compte de transaction avec un modèle Poisson et Gamma-Poisson dynamique. Malgré la nature

non Gaussienne des données de compte, nous obtenons une efficacité numérique élevée, guère in-

férieure à celle rapportée dans McCausland (2012) pour une méthode d’échantillonnage impliquant

un calcul préliminaire de la forme de la distribution a posteriori statique des paramètres.
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Au chapitre 2, nous proposons un nouveau modèle de durée conditionnelle stochastique (SCD)

pour l’analyse de données de transactions financières en haute fréquence. Nous identifions certaines

caractéristiques indésirables des densités de durée conditionnelles paramétriques existantes et pro-

posons une nouvelle famille de densités conditionnelles flexibles pouvant correspondre à une grande

variété de distributions avec des fonctions de taux de probabilité modérément variable. Guidés par

des considérations théoriques issues de la théorie des files d’attente, nous introduisons des dévia-

tions non-paramétriques autour d’une distribution exponentielle centrale, qui, selon nous, est un

bon modèle de premier ordre pour les durées financières, en utilisant une densité de Bernstein. La

densité résultante est non seulement flexible, dans le sens qu’elle peut s’approcher de n’importe

quelle densité continue sur [0,∞) de manière arbitraire, à condition qu’elle se compose d’un nombre

suffisamment grand de termes, mais également susceptible de rétrécissement vers la distribution

exponentielle. Grâce aux tirages très efficaces des variables d’état, l’efficacité numérique de notre

simulation a posteriori se compare très favorablement à celles obtenues dans les études précédentes.

Nous illustrons nos méthodes à l’aide des données de cotation d’actions négociées à la Bourse de

Toronto. Nous constatons que les modèles utilisant notre densité conditionnelle avec moins de qua-

tre termes offrent le meilleur ajustement. La variation régulière trouvée dans les fonctions de taux

de probabilité, ainsi que la possibilité qu’elle ne soit pas monotone, aurait été impossible à saisir

avec une spécification paramétrique couramment utilisée.

Au chapitre 3, nous présentons un nouveau modèle de durée stochastique pour les temps de transac-

tion dans les marchés d’actifs. Nous soutenons que les règles largement acceptées pour l’agrégation

de transactions apparemment liées induisent une inférence erronée concernant les durées entre des

transactions non liées: alors que deux transactions exécutées au cours de la même seconde sont

probablement liées, il est extrêmement improbable que toutes paires de transactions le soient, dans

un échantillon typique. En plaçant une incertitude sur les transactions liées dans notre modèle,

nous améliorons l’inférence pour la distribution de la durée entre les transactions non liées, en par-

ticulier près de zéro. Nous proposons un modèle en temps discret pour les temps de transaction

censurés permettant des valeurs nulles excessives résultant des durées entre les transactions liées. La

distribution discrète des durées entre les transactions indépendantes découle d’une densité flexible

susceptible de rétrécissement vers une distribution exponentielle. Dans un exemple empirique, nous

constatons que la fonction de taux de probabilité conditionnelle sous-jacente pour des durées (non

censurées) entre transactions non liées varie beaucoup moins que celles trouvées dans la plupart des

études; une distribution discrète pour les transactions non liées basée sur une distribution expo-
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nentielle fournit le meilleur ajustement pour les trois séries analysées. Nous prétendons que c’est

parce que nous évitons les artefacts statistiques qui résultent de règles déterministes d’agrégation

des échanges et d’une distribution paramétrique inadaptée.

Mots-clés: Modèle espace-état non linéaire non Gaussien; Méthodes Monte-Carlo par chaîne de

Markov; Modèle avec variable latente; Fonction de taux de probabilité; Densité de Bernstein; Don-

nées de transaction; Durée financière; Données de taux de change
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Abstract

This thesis is organized in three chapters which develop posterior simulation methods for Bayesian

inference in state space models and econometrics models for the analysis of financial data.

In Chapter 1, we consider the problem of posterior simulation in state space models with non-linear

non-Gaussian observables and univariate Gaussian states. We propose a new Markov Chain Monte

Carlo (MCMC) method that updates the parameter vector of the state dynamics and the state

sequence together as a single block. The MCMC proposal is drawn in two steps: the marginal

proposal distribution for the parameter vector is constructed using an approximation of the gradi-

ent and Hessian of its log posterior density, with the state vector integrated out. The conditional

proposal distribution for the state sequence given the proposal of the parameter vector is the one

described in McCausland (2012). Computation of the approximate gradient and Hessian combines

computational by-products of the state draw with a modest amount of additional computation. We

compare the numerical efficiency of our posterior simulation with that of the Ancillarity-Sufficiency

Interweaving Strategy (ASIS) described in Kastner & Frühwirth-Schnatter (2014), using the Gaus-

sian stochastic volatility model and the panel of 23 daily exchange rates from that paper. For

computing the posterior mean of the volatility persistence parameter, our numerical efficiency is

6-27 times higher; for the volatility of volatility parameter, 18-53 times higher. We analyse trans-

action counts in a second example using dynamic Poisson and Gamma-Poisson models. Despite

non-Gaussianity of the count data, we obtain high numerical efficiency that is not much lower than

that reported in McCausland (2012) for a sampler that involves pre-computing the shape of a static

posterior distribution of parameters.

In Chapter 2, we propose a new stochastic conditional duration model (SCD) for the analysis of

high-frequency financial transaction data. We identify undesirable features of existing parametric

conditional duration densities and propose a new family of flexible conditional densities capable
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of matching a wide variety of distributions with moderately varying hazard functions. Guided by

theoretical consideration from queuing theory, we introduce nonparametric deviations around a

central exponential distribution, which we argue is a sound first-order model for financial durations,

using a Bernstein density. The resulting density is not only flexible, in the sense that it can

approximate any continuous density on [0,∞) arbitrarily closely, provided it consists of a large

enough number of terms, but also amenable to shrinkage towards the exponential distribution.

Thank to highly efficiency draws of state variables, numerical efficiency of our posterior simulation

compares very favourably with those obtained in previous studies. We illustrate our methods using

quotation data on equities traded on the Toronto Stock Exchange. We find that models with our

proposed conditional density having less than four terms provide the best fit. The smooth variation

found in the hazard functions, together with the possibility of it being non-monotonic, would have

been impossible to capture using commonly used parametric specification.

In Chapter 3, we introduce a new stochastic duration model for transaction times in asset markets.

We argue that widely accepted rules for aggregating seemingly related trades mislead inference

pertaining to durations between unrelated trades: while any two trades executed in the same second

are probably related, it is extremely unlikely that all such pairs of trades are, in a typical sample.

By placing uncertainty about which trades are related within our model, we improve inference for

the distribution of duration between unrelated trades, especially near zero. We propose a discrete

model for censored transaction times allowing for zero-inflation resulting from clusters of related

trades. The discrete distribution of durations between unrelated trades arises from a flexible density

amenable to shrinkage towards an exponential distribution. In an empirical example, we find that

the underlying conditional hazard function for (uncensored) durations between unrelated trades

varies much less than what most studies find; a discrete distribution for unrelated trades based on

an exponential distribution provides a better fit for all three series analyzed. We claim that this

is because we avoid statistical artifacts that arise from deterministic trade-aggregation rules and

unsuitable parametric distribution.

Keywords: Non-linear non-Gaussian state space model; Markov chain Monte Carlo; Latent vari-

able model; Hazard function; Bernstein density; Transaction data; Financial duration; Exchange

rate data
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Chapter 1

Joint sampling of states and parameters

in state space models∗

1.1 Introduction

State space models with non-linear non-Gaussian observations and univariate states, including var-

ious stochastic volatility and time-varying parameter models, have been applied widely. Bayesian

analysis is commonly used, partly because the associated posterior simulation methods do not re-

quire evaluation of the likelihood function, which amounts to very high dimensional integration.

Still, strong posterior dependence, both within the latent state series and between the latent state

series and the parameters that govern its evolution, makes it difficult to simulate the posterior

distribution with high numerical efficiency.

We provide here a new posterior simulation method that achieves high numerical efficiency through

joint draws of the latent state series and its associated parameters, from their conditional posterior

distribution. It is not model specific and it is robust to variation in the conditional posterior distri-

bution as the conditioning information changes during posterior simulation. It extends the method

described in McCausland (2012) for drawing the state series as a single block, taking advantage of

computational by-products of that method so that there is little additional computation. McCaus-

land (2012) proposed a highly efficient method for simulation smoothing in state space models with

univariate Gaussian states and showed how to exploit it for drawing the full sequence of latent states
∗This chapter is co-authored with my advisor William J. McCausland.
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and the model parameters in a single step. The sampler considered in McCausland (2012) requires

precomputing an approximation of the shape of the posterior distribution of the parameters with the

states marginalized out. Even though this approach has been shown to work well for various models

with low-dimensional parametric spaces, it does not scale particularly well to richer models due to

the increasing pre-computation cost. In contrast, our method is based on new approximations of

the gradient and Hessian of the likelihood function that does not rely on any pre-computation and

only involves a modest amount of additional computation; these approximations may be of interest

independently of their application in this paper.

We begin with a basic model, giving the joint distribution of a series x = (x1, . . . , xn) of unobserved

latent state variables and a series y = (y1, . . . , yn) of observed dependent variables. The model may

stand alone or it may be embedded in an encompassing model; we will see examples of both below.

The scalar state variables evolve as a homogenous Gaussian first order Markov process:

(x1 − µ) ∼ N (0, σ2(1− φ2)−1),

(xt − µ) ∼ N (φ(xt−1 − µ), σ2), t = 2, . . . , n.
(1.1)

The dependent variable yt may depend on its own lagged values but only on the contemporaneous

value xt of the latent state sequence. Thus, we can decompose p(y|x) as

p(y|x) =
n∏
t=1

p(yt|xt, y1:t−1), (1.2)

where y1:t−1 = (y1, . . . , yt−1). The conditional distribution of yt given xt and y1:t−1 is in principle

very flexible. The yt may be scalars or vectors, as in factor models, and the dimension of yt may

vary with t, to accommodate mixed-frequency observations or missing data. Each element of yt,

considered separately, may be discrete, continuous or mixed. The p(yt|xt, y1:t−1) may be functions

of parameters other than σ, φ and µ. The only requirement is than the distribution of yt depends

on the contemporaneous value xt and not on any other values of the latent state sequence.

The unknown parameters of the state dynamics are σ, φ and µ, although sometimes, due to

normalization, µ does not appear. We organize these parameters in the parameter vector θ ≡

(lnω, tanh−1 φ, µ), where ω = 1/σ2 and tanh−1(·) is the inverse hyperbolic tangent. We also define

the subvector ϑ ≡ (lnω, tanh−1 φ). The reasons for these transformations will be made clear below.

The most common examples of these models are variations on the stochastic volatility (SV) model
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introduced by Taylor (1982). Some of the variations add flexibility, typically by allowing excess

kurtosis in the measurement equation or jumps. Often, SV models are embedded in more compli-

cated models, such as multivariate stochastic volatility models. Other examples include models with

time-varying counts or durations. Durbin & Koopman (1997) study counts of deaths of van drivers

in Britain; Frühwirth-Schnatter & Wagner (2006), casualties of pedestrians in Linz; and Jung et al.

(2006), admissions for asthma to a hospital in Sydney. Bauwens & Veredas (2004), Strickland et al.

(2006) and Strickland et al. (2008) study durations between transactions in financial markets.

Several methods for Bayesian posterior simulation in such state state models have been proposed.

Direct methods sample latent states from their conditional posterior distribution. Sampling may

be done one-at-a-time as in Jacquier et al. (1994); in blocks, as in Shephard & Pitt (1997), Watan-

abe & Omori (2004), Strickland et al. (2006) or Omori & Watanabe (2008); or all at once, as in

McCausland (2012) or Djegnene & McCausland (2015). Auxiliary mixture methods involve trans-

forming the model into a linear Gaussian model, approximating any non-Gaussian distributions in

the transformed model by finite Gaussian mixtures. Kim et al. (1998), Chib et al. (2002) and Omori

et al. (2007) use auxiliary mixture sampling for various SV models. Stroud et al. (2003) use it for

Gaussian, but non-linear, state space models with state dependent variances; Frühwirth-Schnatter

& Wagner (2006) for state space models with Poisson counts; and Frühwirth-Schnatter & Frühwirth

(2007) for logit and multinomial logit models.

Numerical efficiency varies greatly across posterior simulation methods. Since there is often strong

posterior dependence both within x and between x and θ, it promotes efficiency to update x in a

single Gibbs block and especially to update θ and x together. However, the larger the block, the

more difficult it is to approximate its conditional posterior distribution, which is not a standard

distribution. So, for example, a multivariate normal distribution is adequate for direct sampling of

blocks of 20-50 state values, but not for the complete observed sequence x. McCausland (2012) and

Djegnene & McCausland (2015) provide a non-Gaussian approximation of p(x|θ, y) for generic state

space models that proved highly efficient for drawing x in a single block. Auxiliary mixture models

yield conditionally Gaussian x when one conditions on discrete mixture component indicators, and

x can be drawn as a single block here too.

There have been previous attempts to draw θ and x together in a single block. For the Taylor SV

model, Kim et al. (1998) draw θ and x together, conditional on mixture component indicators, in

what they call an “integration sampler” because x is marginalized out to draw parameters. Chib

et al. (2002) analyse several SV models using such a sampler. McCausland (2012) draws parameters
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and x together directly, as a single block, in many state space models. One application replicates

the analysis in Chib et al. (2002) of a 6-parameter Student’s t SV model, the model from that paper

with the highest marginal likelihood for a sample of size n = 8851 of S&P 500 stock index returns.

For the posterior sample mean of φ, Chib et al. (2002) achieve a numerical efficiency of 0.19 and

McCausland (2012), 0.61. For the posterior sample mean of σ, the efficiencies are 0.10 and 0.87,

respectively.

In all these cases, the SV model is a self-contained model for a single return series, not embedded

in a larger model, and thus the posterior distribution of the parameters, with x marginalized out,

does not change from draw to draw. One can precompute a close approximation of this target

distribution, ensuring that it is thick-tailed relative to the target, and use the approximation as a

proposal distribution.

When the SV model is embedded in a larger model, the shape of this posterior distribution is a

moving target; each time we draw θ and x, the conditioning information, consisting of values of

other unknown quantities in the encompassing model, is different. In part because of this issue,

θ and x—and mixture component indicators, if any—are often updated in separate Gibbs blocks.

Kastner & Frühwirth-Schnatter (2014) do this quite efficiently by interleaving draws of two different

parameterizations of θ. In simulations not reported here, we found that the numerical efficiency

they achieve is (slightly) better than the efficiency obtained using pure Gibbs draws of θ|x, y and

x|θ, y, despite the fact that they augment the state space to include mixture indicators. For this

reason, we use their results as the benchmark against which we compare the efficiency results we

obtain for our joint draws of θ and x.

Our contribution is a method to draw parameters and states together, but in a way that does

not rely on any pre-computation. Instead, it is based on computations of the local shape of the

posterior distribution of parameters, with x marginalized out. The shape of this target distribution

can change from draw to draw. The result is a sampler that is much more numerically efficient than

that of Kastner & Frühwirth-Schnatter (2014) and not much less efficient than that of McCausland

(2012), for simple models where the posterior distribution of parameters is static and for which a

close approximation can be pre-computed.

The simulation methods we provide in this paper can be applied to more general models which

embed the basic model, in the sense that the basic model is a special case obtained by conditioning

on some of the random elements of the larger model. The modular nature of Gibbs sampling for
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posterior simulation exploits this kind of structure, and for the purposes of updating the conditional

distribution of θ and x, we can ignore whether the model stands alone or is embedded in a larger

model.

As an example, we can add to the model a series z = (z1, . . . , zn) of exogenous (specifically, pre-

determined) variables, provided that we make the conditional dependence assumptions implied by

the factorization

p(x, y|z) = p(x1|z1)p(y1|x1, z1)
n∏
t=2

p(xt|xt−1, z1:t)p(yt|xt, y1:t−1, z1:t), (1.3)

with state dynamics generalized to

(x1 − η1(z1))|z1 ∼ N (0, σ2(1− φ2)−1),

(xt − ηt(z1:t))|z1:t, xt−1 ∼ N (φ(xt−1 − ηt−1(z1:t−1)), σ2), t = 2, . . . , n,
(1.4)

where the ηt(z1:t), t = 1, . . . , n, are functions that may depend on other parameters, but not σ

or φ. Let e = (x1 − η1(z1), x2 − η2(z1:2), . . . , xn − ηn(z1:n−1)). When we condition on z, the

joint distribution of (e, y) is the same as the distribution of (x, y) in the basic model with µ = 0.

For instance, in the analysis of high-frequency data, it is well known that trading intensity varies

systematically during the day; including time-of-day information in ηt allows one to capture this

variation. We consider one such example below, where we analyse a time series consisting of counts

of trades of IBM stock in 5 minute intervals. In this case, the variable yt is the transaction count,

the state variable xt is a measure of trading intensity, and ηt linearly aggregates evaluations, at the

time of day of the t’th observation, of a set of basis functions.

We will use local shape information to draw proposals of θ that target the distribution θ|y, with x in-

tegrated out. Many methods that use local shape information to simulate a given target distribution

use Metropolis-Hastings updates where the proposal distributions are, or combine, discretizations

of stochastic differential equations whose stationary distribution is the target distribution. These

include the Metropolis-adjusted Langevin Algorithm (MALA, Roberts & Rosenthal 1998, Roberts

& Stramer 2003) and Hamiltonian Monte Carlo (HMC, Duane et al. 1987). MALA and HMC are

well suited to high dimensional problems where small steps are all one can hope for and the gradient

of the target distribution is cheap to evaluate. A single proposal in HMC, for example, might con-

sist of many tens or hundreds of small steps, followed by an accept/reject of the final value. In our

application, the dimension is much smaller and evaluation of the gradient is inexact and expensive.
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For this reason, we construct a proposal based on a quadratic Taylor series approximation of the log

target density, with some adjustments to accommodate changing curvature and to take advantage

of special features of our target distribution.

We describe our new method in Section 1.2, with lengthly derivations relegated to the appendices.

We demonstrate it in Section 1.3, comparing its numerical efficiency with those of competing meth-

ods. We conclude in Section 1.4.

1.2 A joint update of states and parameters

We describe here a new method for updating the posterior distribution θ, x|y, useful for MCMC

posterior simulation. It takes advantage of close approximations of the gradient gθ|y(θ) and Hessian

Hθ|y(θ) of the log posterior density ln p(θ|y), where x has been marginalized out; gθ|y(θ) and Hθ|y(θ)

give a good idea of the shape of p(θ|y) at any point θ, allowing us to draw proposals that are adapted

to the target distribution.

We will first motivate the parameterization θ = (lnω, tanh−1 φ, µ) of the dynamics of the latent

state process x. We then describe how to compute approximations of gθ|y(θ) and Hθ|y(θ). We

then describe a three-step proposal of a candidate value (θ∗, x∗) given the current state (θ, x), and

provide the Metropolis-Hastings acceptance probability for the joint draw (θ∗, x∗).

We will use the parameterization θ = (lnω, tanh−1(φ), µ) of the latent state process dynamics, where

ω = σ−2, the precision of the state innovation. The precision ω is more convenient to work with than

σ2 because it appears linearly in the term of ln p(x|θ) that is quadratic in x. Taking the logarithm

of ω and the inverse hyperbolic tangent of φ yields a parameter vector with the unrestricted support

R3, and the log posterior density ln p(θ|x) is better approximated by a quadratic function than is

the log posterior density ln p(ω, φ, µ|x), especially when φ has considerable posterior mass near the

boundary of its support. We use the parametrization θ for posterior simulation, transforming θ

back to (ω, φ, µ) = (eθ1 , tanh θ2, θ3) when necessary.

We can write gθ|y(θ) and Hθ|y(θ), the gradient and Hessian of ln p(θ|y), as

gθ|y(θ) = gθ(θ) + gy|θ(θ) and Hθ|y(θ) = Hθ(θ) +Hy|θ(θ),

where gθ(θ) and Hθ(θ) are the gradient and Hessian of the log prior density ln p(θ); and gy|θ(θ) and
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Hy|θ(θ) are the gradient and Hessian of ln p(y|θ) with respect to θ. Typically, gθ(θ) and Hθ(θ) are

easily computed, although it will be necessary to compute derivatives of a log Jacobian term if the

prior is not specified directly in terms of θ. Since gy|θ(θ) and Hy|θ(θ) are not available in closed

form, we compute approximations g̃y|θ(θ) and H̃y|θ(θ), described in Appendix A.1, and define

g̃θ|y(θ) ≡ gθ(θ) + g̃y|θ(θ) and H̃θ|y(θ) ≡ Hθ(θ) + H̃y|θ(θ). (1.5)

Our Metropolis-Hastings update of (θ, x) consists of a proposal of (θ∗, x∗) = (ϑ∗, µ∗, x∗) from a

three-step transition kernel q(θ∗, x∗|θ, x) = q(ϑ∗|ϑ)q(µ∗|ϑ∗, ϑ)q(x∗|θ∗), which is accepted with the

usual Metropolis-Hastings acceptance probability which, here, is

min

[
1,
p(θ∗)p(x∗|θ∗)p(y|θ∗, x∗)
p(θ)p(x|θ)p(y|θ, x)

· q(ϑ|ϑ∗)q(µ|ϑ, ϑ∗)q(x|θ)
q(ϑ∗|ϑ)q(µ∗|ϑ∗, ϑ))q(x∗|θ∗)

]
.

The three steps of the proposal are outlined in the next three sections.

1.2.1 The proposal density q(ϑ∗|ϑ)

The transition kernel q(ϑ∗|ϑ) is based on the approximations g̃θ|y(θ) and H̃θ|y(θ) in (1.5) of the

gradient and Hessian of the log posterior density log p(θ|y), evaluated at the current value of θ. We

use g̃θ|y(θ) and H̃θ|y(θ), together with the gradient gθ(θ) and Hessian Hθ(θ) of the log prior density

to construct a Gaussian distribution N (ϑ̄,Σϑ) with mean ϑ̄ equal to a guess of the conditional

mode of ϑ given y, and variance Σϑ a little larger than what we expect Var[ϑ|y] to be. To determine

ϑ̄ and Σϑ, we first compute an approximation ϑ̃ to the maximum likelihood value of ϑ and an

approximation H̃ to the Hessian of the conditional log likelihood function there, as described in

Appendix A.2. We then set ϑ̄ = ϑ̃ − (Hϑ(ϑ) + H̃)−1gϑ(ϑ̃) to adjust for the prior distribution

and Σϑ = −λ(Hϑ(ϑ) + H̃)−1 where λ > 1 to make sure the variance of our proposal distribution is

larger than the target distribution. Then q(ϑ∗|ϑ) is the Gaussian kernel with stationary distribution

N (ϑ̄,Σϑ) and autocorrelation matrix Ψ chosen by the user to trade off step size against acceptance

probability. That is, the proposal is ϑ∗ ∼ N((I−Φ)ϑ̄+Φϑ,Σϑ−LΨΨ>L>), where the autoregressive

coefficient matrix is Φ = LΨL> and L is the lower Cholesky factor of Σϑ. In our applications we

use λ = 1.2 and Ψ = 0.2I2, based on some experimentation.
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1.2.2 The proposal density q(µ∗|µ, ϑ, ϑ∗)

The second step is a proposal of µ∗, also based on the approximations g̃θ|y(θ) and H̃θ|y(θ), but using

the value of ϑ∗ to obtain a better approximation of Hθ|y((ϑ
∗>, µ)>) than H̃θ|y(θ) is. Consider the

following Gaussian approximation of the conditional distribution µ|ϑ∗, y, based on the trivariate

Gaussian distribution whose log density at θ has gradient g̃θ|y(θ) and Hessian H̃θ|y(θ):

N(µ−H−1
µµ (gµ +Hµϑ(ϑ∗ − ϑ)),−H−1

µµ ), (1.6)

where gµ, Hµµ and Hϑµ are defined by the following partition of g̃θ|y(θ) and H̃θ|y(θ), where gµ and

Hµµ are scalar:

g̃θ|y(θ) =

gϑ
gµ

 H̃θ|y(θ) =

Hϑϑ Hϑµ

Hµϑ Hµµ

 .
We exploit the fact that Hµµ and Hµϑ are approximately proportional to ω(1 − φ)2, based on the

observation (see Appendix A.1) that for these elements of H̃y|θ(θ), the first term of (A.2) dominates

the second, and that E[e|θ, y] is fairly insensitive to the values of ω and φ. We compute better local

approximations H∗µµ and Hmid
µµ of element Hµµ and a better local approximation Hmid

µϑ of Hµϑ as

follows:

H∗µµ ≡
ω∗(1− φ∗)2

ω(1− φ)2
Hµµ

Hmid
µµ ≡

ωmid(1− φmid)2

ω(1− φ)2
Hµµ, Hmid

µϑ ≡
ωmid(1− φmid)2

ω(1− φ)2
Hµϑ,

where

ωmid = exp((ϑ1 + ϑ∗1)/2), φmid = tanh((ϑ2 + ϑ∗2)/2)

Then the proposal density q(µ∗|ϑ, ϑ∗) for µ∗ is the following modification of (1.6), based on the

adjustments to Hµµ and Hµϑ:

µ ∼ N(µ− (Hmid
µµ )−1(gµ +Hmid

µϑ (ϑ∗ − ϑ)),−(H∗µµ)−1).

1.2.3 The proposal density q(x∗|θ∗, y)

Given the proposal θ∗, we use the HESSIAN method to draw x∗ from a close approximation

q(x∗|θ∗, y) to the conditional posterior distribution p(x∗|θ∗, y) and to compute the proposal density
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q(x∗|θ∗, y). Using a modest amount of additional computation, described in the appendices, we also

compute g̃y|θ(θ∗) and H̃y|θ(θ
∗), which we then use to evaluate the reverse proposal density q(θ|θ∗).

If the joint proposal (θ∗, x∗) is accepted, the values of p(θ∗), g̃y|θ(θ∗) and H̃y|θ(θ
∗) can be kept for

the next iteration.

1.3 Results

1.3.1 Exchange rates

We apply our methods to daily exchange rate data for 23 currencies, against the Euro. For each

series, we observe 3140 consecutive trading days, from January 3rd, 2000 to April 4, 2012, and

compute 3139 log returns. The data, from the European Central Bank, are those used by Kastner

& Frühwirth-Schnatter (2014) in their empirical application.

As in Kastner & Frühwirth-Schnatter (2014), we analyse the de-meaned log returns. We use the

Gaussian stochastic volatility model, without leverage, given by

yt|xt ∼ N (0, exp(xt)) (1.7)

xt|xt−1, µ, φ, σ ∼ N
(
µ+ φ (xt−1 − µ) , σ2

)
(1.8)

x1|µ, φ, σ ∼ N
(
µ, σ2/

(
1− φ2

))
, (1.9)

and select the following prior for θ = (lnω, tanh−1(φ), µ):

θ ∼ N




3.6

2.5

−10.5

 ,


1.25 0.5 0

0.5 0.25 0

0 0 0.25


 ,

where ω = σ−2. The prior is based on independent priors for tanh−1(φ) and lnω(1 − φ2). We do

this because in practice, the unconditional precision ω(1− φ2) of xt covaries less with φ than does

the conditional precision ω, across financial return series. Results (including efficiency) are fairly

robust to setting the covariance Cov[θ1, θ2] to zero.

Table 1.1 illustrates the results, based on 45,000 posterior draws recored after a burn-in period

of 5,000 draws. For each currency, and the three parameters σ, φ and µ, we report the posterior
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Figure 1.1: Relative numerical efficiency for the posterior mean of the state variables in a Gaussian stochastic
volatility model without leverage apply to the European Central Bank daily exchange rate data. The box-
plots report the relative numerical efficiency of the 3139 state variables computed for each individual currency
against the Euro.

sample mean and standard deviation, as well as the relative numerical efficiency for the posterior

sample mean. Figure 1.1 shows box-plots of the relative numerical efficiency for the state variables

obtained for each currency. The relative numerical efficiency is the ratio of the numerical variance

of the mean of an iid sample to the numerical variance of the posterior sample mean. It is the

reciprocal of the inefficiency factor used by Kastner & Frühwirth-Schnatter (2014) and others. We

estimate the numerical variance of our posterior sample means using the overlapping batch means

method—see Flegal & Jones (2010). Simulations were performed in Matlab R2019a running on

a MacBook Pro with a 2.9 GHz Quad-Core Intel Core i7 processor running OS X 10.16.7. The

HESSIAN method and the approximations of the gradient and the Hessian of the log posterior

density are coded in C and integrated to the Matlab interface via a MEX function. The average

CPU time to perform 1000 iterations is about 3.25 seconds.

For σ and φ parameters, we also report the number of times more efficient the posterior sample

means are, compared to those reported by Kastner & Frühwirth-Schnatter (2014). For computing

the posterior mean of σ, our numerical efficiency is 18-53 times higher; for φ, 6-27 times higher.

The relation between the numerical efficiency and the average runtime implies that our method is

able to generate an effective sample of 1000 draws from p(σ|y) in between 4.4 and 14.1 seconds and

from p(φ|y) in between 6.6 and 21.7 seconds, depending on the currency.

For the µ parameter, numerical efficiency is comparable to that obtained by Kastner & Frühwirth-

Schnatter (2014). The inefficiency factors reported by Kastner & Frühwirth-Schnatter (2014) for µ
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are rounded to the nearest integer, one of 1, 2, 3 or 4. This makes it difficult to compare efficiencies

for individual currencies. When we take the reciprocal of their average rounded inefficiency factor,

we obtain 0.40, which is almost the same as the average efficiency of 0.43 across currencies that we

estimate for our method. Given that the conditional posterior distribution of µ, (i.e. µ|φ, σ, x, y)

is Gaussian, the numerical efficiency for µ and higher moments could easily be greatly improved

through antithetic sampling or Rao-Blackwellization, for either method.

1.3.2 High-frequency counts with diurnal patterns

The next example illustrates the use of our method for dynamic count data, with an application

to stock-market trading activity measured by the number of trades aggregated over time intervals

with a fixed length. We use a data set of transactions of IBM stock from November 1, 1990 to

January 31, 1991. Details are in Chapter 5 in Tsay (2002), and the raw data are kindly provided

by Ruey Tsay at the website for his book.1 Transactions made on November 23 and December 27

were removed because of market closings (see Engle & Russell 1998), leaving 61 trading days in the

sample. We consider for analysis the number of trades in 5 minutes intervals between 9:30 am and

4:00 pm, giving 78 observations of transaction counts per day and a total of 4758 observations. The

data are considerably non-Gaussian; the mean count is 12.41 and the numbers of intervals with 0,

1 and 2 transactions are 46, 75, and 107, respectively. They also show evidence of overdispersion;

the sample standard deviation is 9.93, which gives a sample coefficient of variation of 1.25.

Dynamic count models have been successfully used in many applications where count intensity

varies over time; examples using high-frequency financial data are Rydberg & Shephard (2003) and

Liesenfeld et al. (2006) that analysed the absolute value of asset price changes as a multiple of

the tick size. In the case of transaction data, it is well known that intra-day trading activity has

a distinctive U-shape pattern (see, e.g., Tsay 2002). To capture this feature, we use time-of-day

indexes as exogenous variables and specify the marginal mean µt of the state variable xt via a

flexible Fourier series approximation (Gallant 1981):

µt = µ+ α0 · τt +
3∑
q=1

αq,1 cos(τt · 2qπ) + αq,2 sin(τt · 2qπ), (1.10)

where τt ∈ [0, 1] is the normalized intra-day index of the t’th observation computed as the number
1https://faculty.chicagobooth.edu/ruey.tsay/teaching/fts/
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of intervals between the opening of the market and the t’th observation, divided by the number of

intervals in a day.

Define zt ≡ (1, τt, cos(τt ·2π), sin(τt ·2π), . . . , cos(τt ·6π), sin(τt ·6π)) and β ≡ (µ, α), so that µt = ztβ.

A simple parameter-driven model for transaction counts is given by

yt|xt ∼ Poisson (exp(xt)) (1.11)

xt|xt−1, β, φ, σ ∼ N
(
ztβ + φ(xt−1 − zt−1β), σ2

)
(1.12)

x1|β, φ, σ ∼ N
(
z1β, σ

2/(1− φ2)
)
. (1.13)

In addition to the Poisson count model, we also consider the Gamma-Poisson count model given by

the above state dynamics and

yt|xt, r ∼ GammaPoisson(r, exp(xt)), (1.14)

where r > 0 is a shape parameter. For both models, exp(xt) gives the conditional mean of yt. The

Gamma-Poisson count model features overdispersion of the conditional count distribution relative to

the Poisson count model. The dynamic models defined by the previous equations are typical exam-

ples of specifications using exogenous variables that satisfy the conditional dependence assumption

implied by (1.3) and with states following the generalized dynamics given by (1.4).

We use a prior distribution analogous to the one used by McCausland (2012) for the same count

data. The prior distribution for the state parameters θ = (lnω, tanh−1(φ)) is more diffuse than for

the exchange rate example:

θ ∼ N

3.0

1.5

 ,
2.0 0.5

0.5 0.625

 ,

where ω = σ−2. The parameters capturing the diurnal pattern are a priori independent and

Gaussian: µ ∼ N (0.0, 25.0), α0 ∼ N (0, 1) and αq,k ∼ N (0, 0.25) for q = 1, 2, 3 and k = 1, 2. For the

Gamma-Poisson model, the shape parameter r is also a priori independent of the other parameters

with ln r ∼ N (2.5, 1).

The upper panel of Table 1.2 illustrates the results. For each parameter, we report the posterior

mean and standard deviation, and the numerical standard error (NSE) and relative numerical

efficiency (RNE) for the posterior mean. The posterior samples consist of 25,000 retained draws

recorded after a burn-in period of 5,000 draws. Posterior simulation is by Metropolis-within-Gibbs,
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Table 1.2: Posterior mean and standard deviation for the dynamic Poisson and Gamma-Poisson count
model with and without diurnal pattern.

Panel A: Models with diurnal pattern

Poisson Gamma-Poisson

Mean Std NSE RNE Mean Std NSE RNE

µ 2.6188 0.0409 0.00036 0.517 2.6715 0.0517 0.00075 0.189
φ 0.7640 0.0129 0.00008 0.968 0.9406 0.0087 0.00010 0.297
σ 0.3632 0.0076 0.00004 1.215 0.1645 0.0113 0.00015 0.236
r 10.5190 0.7059 0.01068 0.175
α0 -0.5656 0.0676 0.00063 0.456 -0.5830 0.0605 0.00139 0.076
α11 0.2709 0.0310 0.00018 1.132 0.2693 0.0352 0.00026 0.707
α12 -0.0743 0.0375 0.00028 0.698 -0.0794 0.0407 0.00050 0.263
α21 0.0680 0.0279 0.00019 0.898 0.0708 0.0223 0.00018 0.621
α22 -0.0861 0.0299 0.00020 0.872 -0.0883 0.0242 0.00028 0.306
α31 0.0670 0.0244 0.00016 0.951 0.0696 0.0167 0.00014 0.536
α32 0.0092 0.0254 0.00018 0.839 0.0060 0.0179 0.00020 0.314

Panel B: Models without diurnal pattern

Poisson Gamma-Poisson

Mean Std NSE RNE Mean Std NSE RNE

µ 2.3323 0.0268 0.00019 0.791 2.3725 0.0423 0.00033 0.664
φ 0.7931 0.0116 0.00008 0.819 0.9297 0.0086 0.00009 0.346
σ 0.3708 0.0076 0.00005 0.830 0.2002 0.0107 0.00013 0.265
r 11.5652 0.8178 0.01190 0.189

Note. The table gives posterior mean and standard deviation, and the numerical standard error (NSE) and relative
numerical efficiency (RNE) for the posterior mean, based on 25,000 posterior draws recorded after a burn-in period
of 5,000 draws.
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Figure 1.2: Bivariate scatter plots of 1000 thinned posterior draw for the dynamic Gamma-Poisson count
model without diurnal pattern.

updating (φ, σ, x) in one block using our proposed method, and β = (µ, α) in a second block, directly

from its conditional posterior distribution. For the Gamma-Poisson model, we update the shape

parameter r using a Metropolis-Hastings step. The proposal is a Student’s t distribution, tν(r̂, ŝ),

where r̂ is the approximate mode of log p(r|x, y) and ŝ is minus the inverse of its second derivative;

the degrees of freedom ν is set to 15. Again, numerical efficiency is quite high for all parameters,

especially for the Poisson model.

We also estimates both dynamic count model without diurnal pattern, i.e. by fixing α = 0 in

equation (1.10), to compare our method with the sampler of McCausland (2012) which involve

pre-computing the shape of p(µ, φ, σ|y) or p(µ, φ, σ, r|y). The results are reported in the lower

panel of Table 1.2. For the Poisson count model, we obtain numerical efficiency for φ and σ that is

very similar to that reported in McCausland (2012); for the Gamma-Poisson model, the numerical

efficiency is about 1.8 times lower for φ and σ and about 2.5 times lower for r. Lower efficiencies

for the Gamma-Poisson model can be explained by the presence of posterior correlations among

φ, σ and r and the fact that our sampler updates r conditionally, given all other parameters and

state variables, rather than jointly, as in McCausland (2012); Figure 1.2 shows two-way scatter plots

for 1000 thinned posterior draws of φ, σ and r. Numerically efficiency is still considerably high,

especially for non-Gaussian data.
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1.4 Concluding remarks

With modest additional computation, we can compute approximations of the gradient and Hessian

of ln p(θ|y) in univariate non-linear non-Gaussian state space models. This allows us to construct

a one-block posterior sampler for (θ, x) that can be used in a stand-alone basic model or in a more

general model which embeds the basic one.

In an empirical application using a Gaussian stochastic volatility model with no additional parame-

ters, we show that the approximation is good enough to achieve high numerical efficiency for the 23

return series we investigate. As a second example, we analyse a data set of transaction counts using

a dynamic Poisson and a dynamic Gamma-Poisson count model with and without a diurnal pattern.

Again, we achieve high numerical efficiency for both the state parameters and the parameters that

describe the diurnal pattern. Despite the posterior correlation observed between θ and the shape

parameter of the Gamma-Poisson distribution, the high numerical efficiency shows that our method

provides a good approximation of the target, even as its shape changes from draw to draw.
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Chapter 2

A flexible stochastic conditional duration

model∗

2.1 Introduction

An important aspect of financial data analysis is the modelling of durations between events. The

ever increasing availability of intra-daily data at the highest possible frequency allows researchers

to analyse the occurrence of almost any event of interest, and thus to shed light on various market

features. For instance, the time between transactions (trade duration) and the length of time it

takes for a cumulative volume of trade to reach a fixed threshold (volume duration) are known to

mirror market liquidity (Gourieroux et al. 1999). The length of time it takes for the price of an asset

to change by at least a fixed threshold (price duration) has been shown to be linked to instantaneous

volatility (Engle & Russell 1998). The ability to correctly model financial duration is thus of crucial

importance for empirical market microstructure analysis.

Financial durations are known to exhibit strong serial correlation. To capture this time dependence,

they are usually modelled using multiplicative error models (Engle 2002) where the scale of the

conditional duration distribution depends on the history of the process, as well as other observables

such as time of day. We will call the conditional distribution divided by its scale the normalized

conditional distribution. Two basic models are the autoregressive conditional duration model (ACD,

Engle & Russell 1998), and the stochastic conditional duration model (SCD, Bauwens & Veredas
∗This chapter is co-authored with my advisor William J. McCausland.
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2004). The ACD model, like (G)ARCH models of market volatility, is data driven, where the scale

depends deterministically on past durations.1 The SCD model, like stochastic volatility models, is

parameter driven, and the scale is a latent stochastic process.2 For recent surveys on the analysis

of high-frequency financial durations using multiplicative error models see Pacurar (2008), Hautsch

(2012) and Bhogal & Variyam (2019).

Our paper makes two main contributions. First, we propose a new SCD model for financial dura-

tions. We identify some undesirable features of existing parametric conditional duration densities

and propose a new family of conditional distributions that is flexible, but also amenable to shrink-

age towards the exponential distribution, which we will argue is a theoretically appealing first-order

model. Our second contribution is computational, and promotes highly numerically efficient pos-

terior simulation. We use the HESSIAN method introduced by McCausland (2012), a numerically

efficient simulation smoothing method, that we combine with the adaptive algorithm proposed by

Vihola (2012) to draw, in a single Gibbs block, the full sequence of state variable describing the

realization intensity of the financial event under analysis, together with various parameters. To

date, the HESSIAN method has only been applied to non-Gaussian state space models with para-

metric distributions for observed variables and homogenous state transitions. Here we use it in a

model with a flexible distribution for observables and heterogenous state transitions. The numerical

efficiency we achieve compares very favourably to that achieved using auxiliary mixture methods,

which rely on special features of parametric distributions.

Two other features of our model are appealing and uncommon, but not original. First, we estimate

the regular diurnal (time of day) pattern of trading intensity jointly with other features of the

model.3 Second, the latent state process is an irregularly sampled Ornstein-Uhlenbeck (OU) process,

rather than a homogenous autoregressive process; autocorrelations depend on the elapsed time,

rather than the number of intervening trades, between two durations.4

We will be introducing a flexible conditional distribution and so we will take some time to motivate
1Bauwens & Giot (2000) propose a logarithmic version of the original ACD model, avoiding parameter restrictions

in the scale process. The SCD model feature a similar logarithmic specification for the time varying scale.
2In the case of ACD models, "conditional" refers to conditioning on the history of observables; in the case of SCD

models, it refers to conditioning on the current value of the latent state variable. Since the states in SCD models
are unobserved, the conditional duration density given only past observations is a mixture distribution, with the
mixing distribution being the filtering distribution of the latent states. This gives SCD models some more flexibility
(Bauwens & Veredas 2004).

3Veredas et al. (2002) and Brownlees & Vannucci (2013) jointly estimated the diurnal patterns and the parameters
for ACD models using, respectively, a semi-parametric approach and MCMC methods within a Bayesian framework.

4For instance, Koopman et al. (2008) proposed a multi-state latent intensity model in which they modelled the
dynamic process of the latent factor as an OU process.
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it. We will not just point out, as others have done, that any parametric distribution is inflexi-

ble, although that is a good point in itself. We will also identify particular weaknesses of these

distributions.

The most commonly used conditional distributions in ACD and SCD models are the exponential,

and two generalizations: the gamma and the Weibull (Engle & Russell 1998, Bauwens & Giot 2000,

Bauwens & Veredas 2004, Feng et al. 2004, Strickland et al. 2006, Men et al. 2015). Engle & Russell

(1998) and others conclude that the exponential is too inflexible and favour the Weibull or gamma.

Except for the knife-edge special case where they reduce to an exponential, both the gamma and

the Weibull distribution have the property that their hazard function is either zero at a duration of

zero and strictly increasing; or infinite at a duration of zero and strictly decreasing.

The generalized gamma and Burr distributions generalize the gamma and the Weibull distribution,

respectively.5 They were proposed as conditional distributions for ACD models by Lunde (1999)

and Grammig & Maurer (2000). These distributions, unlike the gamma and the Weibull, allow for

non-monotonic hazard functions, but they retain the property that their hazard function is bounded

away from zero and infinity only for very special cases.

We argue that extreme variation of the hazard function near zero is implausible. Rather, hazard

functions should be bounded away from zero and infinity, and the ratio of supremum to infimum

of the hazard function should not be too large. Our argument applies most naturally to trade

durations or to any type of durations between events that take a single transaction to occur, like a

change in the best ask or bid price available. Price and volume durations are somewhat different, as

it might take several transactions before the price change or cumulative volume reaches the required

threshold. We first note that this makes unbounded hazards at zero even less plausible for price

and volume durations. However, it does suggest that the hazard function at zero might be quite

small and increasing; empirical evidence in Grammig & Maurer (2000) and elsewhere suggests that

this is indeed the case. Even so, we consider it implausible that the hazard function should equal

zero at a duration of zero: price changes and volumes both have long right tails and the probability

of a single trade crossing the price or volume threshold within the first second should not be only a

tiny fraction of the probability of the threshold being crossed with a trade occurring, say, between

seconds nine and ten.

In queueing theory, a simple model for arrival times (of, say, customers at an ATM) is the Poisson
5The Weibull distribution is also a special case of the generalized gamma distribution.
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process. It is reasonable when there are a large number of potential customers, acting independently

and homogenously in time, and the probability of any given customer arriving in a given time

interval is much smaller than the probability of some customer arriving in that interval. In a

Poisson process, durations between arrivals are exponentially distributed. The constant hazard

function of the exponential makes it memoryless: the probability of an arrival in the next minute

does not depend on how long you have been waiting.

Of course, activity in financial markets varies over time. But after conditioning on relevant predictors

and latent states measuring realization intensity, we would expect the distribution of durations to

be not too far from an exponential—its hazard rate a function of this conditioning information—due

to the large number of unrelated potential traders, most of whom are small and anonymous. We

suggest that a suitable normalized conditional distribution should have these two features: first, it

should be able to approximate, with a small number of terms, a rich variety of distributions whose

hazard function varies only moderately; second, it should have the flexibility to capture distributions

whose hazard function fluctuates more widely, if the data support this strongly enough.

The hazard functions of mixtures of exponentials are bounded away from zero and infinity,6 but

they are decreasing—see Barlow et al. (1963)—which is a restrictive feature. Moreover, not all

decreasing hazard functions can be easily captured by mixtures of exponentials.7 In simulations

we do not report, we find that adding mixture components after the second yields little: only

components with the largest and smallest hazards are important, in the sense that the posterior

distributions of the weights of other components are highly concentrated near zero. This suggests

that if one allowed the density of any linear combination of exponential distributions the posterior

distribution would assign high probability to the region where at least one coefficient is negative.

In this paper, we propose a SCD model that features a flexible normalized conditional density ca-

pable of matching a wide variety of distributions with moderately varying hazard functions. The

normalized conditional distribution takes the form of a perturbed version of an exponential distri-

bution. We use a Bernstein density, a mixture of Beta densities whose parameter values are integers

and depend only on the number of components, to capture deviations from an exponential. This

approach allows us to easily introduce nonparametric deviations, and to center a prior distribution
6DeLuca & Gallo (2004) used a mixture of two exponentials in ACD models and found that this specification

provides a better fit than a Weibull distribution. DeLuca & Gallo (2009) again use a mixture of two exponentials
but allow mixture weights to depend on observable market activity.

7Other mixture distributions have been proposed for the normalized conditional density. Wirjanto et al. (2013) did
a Bayesian analysis of the SCD model, with leverage, using three types of two-component mixtures: two exponentials,
two Weibulls and two gammas.
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around what we argue is a reasonable first order model.8

The rest of the paper is organized as follows. We describe our SCD model in Section 2.2 and

our methods for posterior simulation in Section 2.3. In Section 2.4, we conduct an artificial data

experiment to test for the correctness of our posterior simulator and then illustrate our methods

in an application featuring two equities traded on the Toronto Stock Exchange. We conclude in

Section 2.5.

2.2 A Stochastic Conditional Duration Model

2.2.1 The Data Generating Process

We observe realization times of a financial event of interest over D trading days in the interval

[topen, tclose], where topen and tclose are the opening and closing times. All times of day are measured

in seconds after midnight. For each day d = 1, . . . , D, denote the sequence of realization times by

td,0 < td,1 < · · · < td,nd
and construct the durations between consecutive events yd,i ≡ td,i − td,i−1,

i = 1, . . . , nd. Following Bauwens & Veredas (2004), our model gives durations as

yd,i = exd,iεd,i, (2.1)

where xd,i ∈ R is a latent state process giving the realization intensity of the financial event at

td,i−1, and εd,i is a positive iid process with E[εd,i] = 1. The two processes are independent which

assumes away any leverage-like effect (see Feng et al. 2004, Xu et al. 2011, Men et al. 2015).

At each day d, the latent intensity process xd(t), t ∈ [topen, tclose] is the sum of a daily random effect

component ψd capturing daily heterogeneity in the mean of durations, a common deterministic

function m(t) (constrained to be zero on average) describing a diurnal pattern, and a zero-mean

OU process. Sampling the xd(t) process at all realization times gives xd,i ≡ xd(td,i−1); then the

discrete time process xd,i is first order autoregressive, but not homogeneous due to the irregularly

spaced realization times:

xd,i+1 |xd,i ∼ N
(
(1− e−ρyd,i)ψd +m(td,i) + e−ρyd,i(xd,i −m(td,i−1)), σ2(1− e−2ρyd,i)

)
, (2.2)

xd,1 ∼ N
(
ψd +m(td,0), σ2

)
, (2.3)

8See Chen et al. (2014) for an application of Bernstein densities to accelerated hazards model.
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where ρ > 0 is the mean reversion parameter, and σ is the marginal standard deviation parameter

of the OU process. The daily components follow a stationary Gaussian AR(1) process with mean

µ, first order autocorrelation φ ∈ (−1, 1) and innovation variance ξ2:

ψ1 ∼ N
(
µ, ξ2/(1− φ2)

)
, ψd |ψd−1 ∼ N

(
µ+ φ(γd−1 − µ), ξ2

)
. (2.4)

To model the diurnal pattern, we specify m(t) as a cubic B-spline function, a piecewise polynomial

indexed by a set of predetermined knots and expressed as a linear combination of B-spline basis

functions:

m(t) =
L∑
l=1

δlBl(t), (2.5)

where Bl(·) denotes the l-th B-spline basis function, a local cubic polynomial, and δl its coefficient.

The basis functions depend on the location and the multiplicity of the knots. Following Eilers &

Marx (1996), we consider equally spaced knots over [topen, tclose]. The first and last knots have

multiplicity 4 and the rest have multiplicity 1, which makes m(topen) = δ1 and m(tclose) = δL.

B-spline basis functions have the property that
∑

lBl(t) = 1 for all t ∈ [topen, tclose]. Hence,

identification of the model requires that
∑

l δl = 0. See de Boor (1978) and Dierckx (1993) for more

on B-splines.

We denote the density of εd,i by pε(·) and call it the normalized duration density. Thus, the

conditional density of yd,i given the contemporaneous value xd,i of the latent intensity state is

p(yd,i |xd,i) = e−xd,ipε(e
−xd,iyd,i). (2.6)

The quantity exd,i is the conditional mean of yd,i. It gives only the scale of the distribution, the

shape being determined by pε(·). We argued that some commonly used duration distributions are

unsuitable because of their restrictive or implausible hazard functions. We will now propose a new

flexible family of normalized densities capable of matching a wider variety of hazard functions than

a default parametric distribution.9

9In SCD models, the conditional density given past observations, analogous to the conditional density in ACD
models, is a mixture distribution. Hence, flexibility can be added to SCD models through the normalized density
or the mixing distribution (i.e. the filtering distribution of the latent intensity states). In this paper, we propose a
more flexible normalized density and remain parametric for the mixing distribution. Relaxing the usual Gaussian
assumption for the dynamics of the latent states would introduce additional computational challenges in the estimation
of the model. A potential feasible extension could to replace the Gaussian innovation in the state dynamic by a
parametric skewed and heavy-tailed innovation distribution that can be represented as a Gaussian mixture. We leave
this possibility for future research.
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2.2.2 A Normalized Density for Durations

We adopt an approach similar to the one described in Ferreira & Steel (2006), where the cdf Pε(·)

of a flexible univariate distribution is constructed as Pε(ε) ≡ G(F (ε)), where F (·) is a parametric

continuous cdf with density f(·) having the same support as Pε(·); and G(·) is a flexible continuous

cdf on [0, 1] with density g(·). The cdf Pε(·) can be viewed as a perturbed version, depending on

G(·), of the original parametric cdf F (·). When G(·) is uniform on [0, 1], there is no perturbation

and Pε(·) = F (·). As noted by Ferreira & Steel (2006), distributions defined in this way cover the

entire class of continuous distributions, since any such Pε(·) can be constructed for a suitable choice

of G(·). This construction implies the normalized density

pε(ε) = f(ε)g
(
F (ε)

)
. (2.7)

We argued that an exponential distribution was a theoretically promising first order approxima-

tion of a conditional duration distribution, and so we specify the original distribution F (·) as an

exponential in the hope of capturing realistic hazard functions using a parsimonious distortion dis-

tribution G(·). The hazard rate of F (·), which we denote λ, will be substituted out using the scale

normalization condition E[ε] = 1. At the same time, we want Pε(·) to be flexible, allowing for

large departures from the exponential if the data warrant it. For this reason, we choose a flexible

functional form for the distortion distribution and specify g(·) as a J ’th order Bernstein density.10

This is a J-component mixture of beta densities, each with two integer-valued shape parameter

adding to J + 1; coefficients of the first and last component determine g(0) and g(1), respectively.

Specifically,

g(z) =

J∑
j=1

βj Beta(z | j, J − j + 1), 0 ≤ z ≤ 1, (2.8)

where
∑J

j=1 βj = 1, β ≡ (β1, . . . , βJ) ≥ 0, and Beta(z | a, b) denotes the beta density with shape

parameters a and b, for a, b > 0. The J components of the J ’th order Bernstein density form a

partition of unity, so that if β = (1/J, . . . , 1/J), then g(·) is uniform and we get back the original

exponential density, pe(·) = f(·). This makes it easy to choose a prior distribution for β so as to

centre the induced prior for pε(·) around the exponential distribution and to control the amount of

shrinkage towards it. The order J governs the range of possible deviations from the exponential
10A Bernstein density can approximate any continuous density on [0, 1] arbitrarily closely (in sup norm) for J

sufficiently large (cf. Lorentz 1953).
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distribution. As J gets larger, the Beta densities are more "spiked", which allows more precise detail

in the overall shape of pε(·). We do not treat the order J of the Bernstein density as a parameter

to estimate per se, but rather as a fixed model indicator. Instead of estimating J jointly with all

other parameters using trans-dimensional methods, we will compare results over different values

of J and compute the posterior probability of each specification.11 For a discussion of Bayesian

nonparametric density estimation using Bernstein densities with unknown J , see Petrone (1999a,b)

and Petrone & Wasserman (2002).

Substituting the exponential distribution function F (ε) = 1−e−λε and the above expression for g(·)

into equation (2.7) gives pε(·) as a polynomial in e−λε, which we write explicitly as the following

linear combination of exponential densities:

pε(ε) =
J∑
j=1

βj

[
j∑

k=1

aj,k(J − j + k)λe−(J−j+k)λε

]
, (2.9)

where

aj,k =

(
j − 1

k − 1

)
Γ(J + 1)

Γ(j)Γ(J − j + 1)

(−1)k+1

J − j + k
. (2.10)

Non-negativity of β ensures the non-negativity of pε(·), but as the aj,k are not necessarily all non-

negative, pε(·) is not necessarily a mixture of exponentials. It is easy to check that the hazard

function for pε(·) is bounded away from zero and infinity, and its limiting value as ε goes to infinity

is the hazard parameter λ of the exponential distribution with cdf F (·). The scale normalization

condition E[ε] = 1 gives λ =
∑J

j=1 βj
∑j

k=1 aj,k/(J − j + k), which we use to substitute out λ from

the expression for pε(·), freeing us from having to impose restriction on β.

We now illustrate the flexibility we achieve with just a few terms. Figure 2.1 shows examples of

decreasing, increasing and non-monotonic hazard functions that can be captured with J = 3 com-

ponents. Taking into account the adding-up constraint, there are two degrees of freedom, the same

as a unit-mean mixture of two exponentials. The solid lines are the density and (constant) hazard

functions of an exponential with mean equal to one. The dashed lines show pairs of density and

hazard functions where the hazard is monotonic; dash-dotted lines, pairs where it is not monotonic.

Recall that all mixtures of exponentials have a decreasing hazard function.
11See Quintana et al. (2009) for an example of inference using reversible-jump Markov chain Monte-Carlo methods

in a similar application of Bernstein densities, but in models without state variables.
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Figure 2.1: Density and hazard functions for a unit-mean exponential and five normalized distributions
pε(·) with J = 3 terms.

2.2.3 Prior Distributions

To complete the model, we describe a prior distribution for the parameters of our SCD model

Θ ≡ (σ, ρ, µ, φ, ω, δ, β). All parameters are a priori independent. In the following, the overbar

notation ·̄ is used to denote prior hyperparameters whose values will be specified in Section 2.4.

We specify log-normal prior distributions for the marginal standard deviation σ and the mean re-

version parameter ρ of the OU process: log σ ∼ N (µ̄σ, h̄
−1
σ ) and log ρ ∼ N (µ̄ρ, h̄

−1
ρ ). The transfor-

mation eliminates the need for parameter restrictions. We select commonly used prior distributions

for the parameters of the daily component dynamics: we specify a Normal distribution for the

mean, µ ∼ N (µ̄µ, h̄
−1
µ ), a Normal distribution truncated to the stationarity region for the first order

autocorrelation, φ ∼ N (µ̄φ, h̄
−1
φ )1{φ ∈ (−1, 1)}, and a scaled chi-square for the inverse innovation

variance, s̄ξξ−2 ∼ χ2(ν̄ξ).

Following Lang & Brezger (2004), we specify a first order Gaussian random walk prior for the

adjacent coefficients of the vector δ defining the diurnal pattern:

∇δ ∼ N (0L−1, τ
−1IL−1), (2.11)

where ∇ is the first order backward difference operator with dimension L × (L − 1), 0L−1 is an

(L− 1)× 1 vector of zeros, IL−1 is the (L− 1)× (L− 1) identity matrix and τ is a scaler precision

parameter. Thus, the first order differences δl−δl−1 are iid N (0, τ−1). This prior favour smoothness

and is agnostic with respect to the signs of the derivatives; since the derivative of B-splines are linear

combinations of the first difference δl − δl−1, we can interpret τ as a smoothing parameter for the
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diurnal pattern. Higher values of τ imply more shrinkage towards a flat diurnal pattern. Following

common practices, we will estimate τ , and specify its prior as the following scaled chi-square:

s̄ττ ∼ χ2(ν̄τ ).

Combined with the identification restriction
∑L

l=1 δl = 0, equation (2.11) induces a proper prior

distribution for the vector δ with the symmetry property that (δ1, . . . , δL) and (δL, . . . , δ1) have the

same distribution, and prior uncertainty about the realization intensity of the event of interest is

the same at the opening and at the closing of the market. This implies the conditional prior δ̃ | τ ∼

N (0L−1, (τ∇T )−1), where δ ≡ T δ̃ and T is a linear transformation that enforces identification. We

will refer to this specification in Section 2.3.

For the beta mixture weights indexing the normalized duration density pε(·), we specify a Dirichlet

distribution: β ∼ Dirichlet(M̄β̄), where β̄ = (β̄1, . . . , β̄J) > 0,
∑
β̄j = 1, and M̄ > 0. The

prior mean of β is β̄; M̄ is a concentration parameter. When β̄ = (1/J, . . . , 1/J), the prior mean

of β corresponds to g(·) being uniform on [0, 1] and therefore pε(·) = f(·) being an exponential

distribution. In this sense, β̄ = (1/J, . . . , 1/J) centres the prior distribution for pε(·) around an

exponential density, with M̄ controlling the amount of shrinkage towards it; higher values of M̄

imply more shrinkage.

2.2.4 Joint Density

We conclude the exposition of the model by giving the joint density of all parameters, latent variables

and observations, making explicit all conditional independence relationships. We refer to the model

as the flexible SCD model (FSCD). Let x and y be the flat vectors of all states and durations,

respectively. Then the joint density is

p(σ, ρ, µ, φ, ξ, τ, δ, β, ψ, x, y) = p(σ) p(ρ) p(µ) p(φ) p(ξ) p(τ) p(δ | τ) p(β)

D∏
d=1

[
p(ψd |ψd−1, µ, φ, ξ)

nd∏
i=1

p(xd,i |xd,i−1, td,i−1, td,i−2, σ, ρ, δ, ψd) p(yd,i |xd,i, β)

]
. (2.12)

The densities for the initial daily component ψ1 and values xd,1 on each day d are understood to be

p(ψ1 |ψ0, µ, φ, ξ) ≡ p(ψ1 |µ, φ, ξ) and p(xd,1 |xd,−1, td,0, td,−1, σ, ρ, δ, ψd) ≡ p(xd,1 | td,0, σ, δ, ψd).
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2.3 Bayesian Inference

In this section, we first describe posterior simulation methods for Bayesian inference in our flexible

SCD model followed by how to compute the marginal likelihood for models for a fixed value of J ,

the number of terms in the normalized duration density.

2.3.1 Posterior simulation

We use Markov chain Monte Carlo (MCMC) to sample the joint posterior distribution of parameters

and state variables. We break the posterior distribution into five blocks, updating (σ, ρ, x), ψ,

(µ, φ, ω), (τ, δ) and β. We now describe each of the Gibbs blocks in turn.

Drawing from p(σ, ρ, x | δ, ψ, z, y)

It is widely known that when there is strong posterior dependence between state variables (here,

x) and the parameters of their dynamics (here, σ and ρ), updating both in a single block improves

numerical efficiency. However, in non-linear non-Gaussian state space models, it is difficult to draw

the state sequence as a single block, even when conditioning on the parameters of the state dynamics.

Several methods have been proposed, and many of them have been applied to draw latent volatilities

in stochastic volatility models (see, e.g., Kim et al. 1998, Chib et al. 2002, Richard & Zhang 2007).

Here, an additional difficulty is the nonparametric nature of the measurement distribution, which

appears to rule out methods based on auxiliary mixture models. In this paper, we use the HESSIAN

method of McCausland (2012), a procedure to draw a state sequence as a single block, to construct

a sampler to jointly draw the state sequence and its associated parameters.12

We update (σ, ρ, x) in two steps. We first draw component indicators zd,i ∈ {1, . . . , J} for each

duration. The indicators are conditionally independent, with probability mass function given, up

to a multiplicative factor, by

Pr[zd,i = j |β, x, y] ∝ βj

[
j∑

k=1

aj,k(J − j + k)λe−(J−j+k)λe
−xd,iyd,i

]
,

12McCausland (2012) shows how to adapt the HESSIAN method to draw, in a single block, all latent states and all
parameters in several univariate state space models by pre-computing the shape of the posterior distribution using
Laplace-like approximation of the likelihood. However, a similar strategy would have been difficult to implement in
our case in part due to the dimension of the model parametric space, but also due to the flexible duration density.
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for d = 1, . . . , D and i = 1, . . . , nd, where the coefficients aj,k are given by (2.10). Recall that

β determines the hazard parameter λ of the exponential distribution F (·) through the unit-mean

normalization of the duration density pε(·). We then update (σ, ρ, x) given the component indicators

z = (z1,1, . . . , z1,n1 , . . . , zD,1, . . . , zD,nD
) in a single block. Our joint proposal (σ∗, ρ∗, x∗) consists of

a random walk proposal for (log σ∗, log ρ∗) followed by a conditional proposal x∗ |σ∗, ρ∗ drawn from

a proposal density q(x |σ∗, ρ∗, δ, ψ, z, y). We accept the triple (σ∗, ρ∗, x∗) with probability

min

{
1,
p(x∗, y |σ∗, ρ∗, δ, ψ, z)p(σ∗)p(ρ∗)
p(x, y |σ, ρ∗, δ, ψ, z)p(σ)p(ρ)

× q(x |σ, ρ, δ, ψ, z, y)

q(x∗ |σ∗, ρ∗, δ, ψ, z, y)

}
.

The random walk proposal is Gaussian with covariance Σ. During the burn-in period, we use the

approach described in Vihola (2012) to tune the proposal distribution by adapting Σ to track an

acceptance probability of 0.352, the optimal acceptance rate for 2 dimensional settings—see Gelman

et al. (1996). We use the final value of Σ at the end of the burn-in period for subsequent draws to

ensures that our posterior simulator is Markov.

We draw x |σ∗, ρ∗, δ, ψ, z, y using the HESSIAN method. In general terms, and suppressing notation

for any parameters there may be, this gives a close approximation q(x | y) of the conditional density

p(x | y) of the state sequence x given the observed sequence y, for state space models with univariate

states in which p(y |x) =
∏n
i=1 p(yi |xi) and x ∼ N (Ω̄−1c̄, Ω̄−1), with Ω̄ tridiagonal. Tridiagonality

of Ω̄ corresponds to x being Markov but not necessarily homogenous. The method is generic, as

the only model-specific code required consists of a routine to evaluate log p(yi |xi), and its first five

derivatives with respect to xi, at a given point. For our stochastic duration model, we compute

exact values of these derivatives without deriving analytic expressions for them; instead, we exploit

automatic routines to combine evaluations of derivatives of primitive functions using Faá di Bruno’s

rule, which is much easier. Details are provided in Appendix B.1.

Drawing from p(ψ |σ, ρ, µ, φ, ξ, δ, x)

Notice that equations (2.2) and (2.4) describe a univariate and linear Gaussian state space model.

Hence, conditionally on (µ, φ, ξ, x), the vector of daily components ψ can be drawn in a single

step from its conditional posterior distribution using computationally efficient precision sampling

methods (cf. Chan & Jeliazkov 2009, McCausland et al. 2011). The equation (2.4) can be written

such that ψ |µ, φ, ξ ∼ N (ψ̄, H̄−1
ψ ), where the conditional prior mean is ψ̄ = (µ, . . . , µ) and the
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conditional prior precision is H̄ψ = Φ′ΩΦ with Ω = diag(ξ−2(1− φ2), ξ−2, . . . , ξ−2) and

Φ =


1

−φ 1

. . . . . .

−φ 1

 .

Using this representation, the conditional posterior distribution of ψ is ψ |µ, φ, ξ, x ∼ N ( ¯̄ψ, ¯̄H−1
ψ ),

where the posterior precision is ¯̄Hψ = H̄ψ +K ′K and the posterior mean is ¯̄ψ = ¯̄H−1
ψ (H̄ψψ̄+K ′w).

The vector u and matrix K come from writing the state equation (2.2) as u ∼ N (Kψ, IN ) where

u = (u1, . . . , uD)′ and K = diag(K11, . . . ,KDD) is block diagonal with, for d = 1, . . . , D,

ud =


(xd,1 −m(td,0))/σ

(xd,2 −m(td,1)− exp(−ρyd,1)(xd,1 −m(td,0))/
√
σ2(1− exp(−2ρyd,1))

...

(xd,nd
−m(td,nd−1)− exp(−ρyd,nd−1)(xd,nd−1 −m(td,nd−2))/

√
σ2(1− exp(−2ρyd,nd−1

))


and

Kdd =


1/σ

(1− exp(−ρyd,1))/
√
σ2(1− exp(−2ρyd,1))
...

(1− exp(−ρyd,nd−1
))/
√
σ2(1− exp(−2ρyd,nd−1

))

 .

Drawing from p(µ, φ, ξ |ψ)

We update (µ, φ, ξ) using three sub-blocks. We first draw µ from its conditional posterior distribu-

tion: µ |φ, ξ, ψ ∼ N (¯̄µµ,
¯̄h−1
µ ), where

¯̄hµ = h̄µ+ξ−2((1−φ2)+(D−1)(1−φ)2), ¯̄µ = ¯̄h−1
µ (h̄µµ̄µ+ξ−2((1−φ2)ψ1+(1−φ)

D∑
d=2

(ψd−φψd−1)).

We next update φ using a Metropolis step: we draw a proposal φ∗ ∼ N (¯̄µφ,
¯̄h−1
φ ), where

¯̄hφ = h̄φ + ξ−2
D∑
d=2

(ψd−1 − µ)2, ¯̄µφ = ¯̄h−1
φ

(
h̄φφ̄+ ξ−2

D∑
d=2

(ψd − µ)(ψd−1 − µ)

)
,
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and accept the proposal with probability{
1,

(
1− φ∗2

1− φ2

)1/2

exp
(
−ω

2
(ψ1 − µ)2(φ2 − φ∗2)

)}
.

We then draw ξ−2 from its conditional posterior distribution: ¯̄sξξ
−2 |µ, φ, ψ ∼ χ2(¯̄νξ), where

¯̄νξ = ν̄ξ +D, ¯̄sξ = s̄ξ + (1− φ2)(ψ1 − µ)2 +

D∑
d=2

(ψd − φψd−1 − (1− φ)µ))2 .

Drawing from p(τ, δ |σ, ρ, ψ, x)

We update (τ, δ) using two sub-blocks. We first draw τ from its conditional posterior distribution:

¯̄sττ | δ ∼ χ2(¯̄ντ ), where ¯̄sτ = s̄τ + δ′∇′∇δ and ¯̄ντ = ν̄τ + L − 1. We then draw δ ≡ T δ̃ from

its conditional posterior distribution: δ̃ |σ, ρ, τ, ψ, x ∼ N (¯̄δ, ¯̄H−1
δ ), where the posterior precision is

¯̄Hδ = τ∇T +W ′T ′TW and the posterior mean is ¯̄δ = ¯̄H−1
δ W ′T ′v. The vector v and matrixW come

from writing the state equation (2.2) as v ∼ N (Wδ, IN ) where v and W are organized in blocks


v1

...

vD

 ,

W11 . . . W1L

...
. . .

...

WD1 . . . WDL

 ,

with, for d = 1, . . . , D and l = 1, . . . , L,

vd =


(xd,1 − ψd)/σ

(xd,2 − ψd − exp(−ρyd,1)(xd,1 − ψd))/
√
σ2(1− exp(−2ρyd,1))

...

(xd,nd
− ψd − exp(−ρyd,nd−1

)(xd,nd−1
− ψd))/

√
σ2(1− exp(−2ρyd,nd−1

))


and

Wdl =


Bl(td,1)/σ

(Bl(td,2)− exp(−ρyd,1)Bl(td,1))/
√
σ2(1− exp(−2ρyd,1))

...

(Bl(td,nd
)− exp(−ρyd,nd−1

)Bl(td,nd−1))/
√
σ2(1− exp(−2ρyd,nd−1

))

 .
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Drawing from p(β |x, y)

We update β using a multiple-try algorithm that generalizes the random walk algorithm by consider-

ing multiple candidates values at each iteration (Liu 2004). For the purposes of drawing proposals,

we use the logistic transformation ϑ(β) = log(β1/βJ), . . . , log(βJ−1/βJ)), which maps the J − 1

dimensional simplex to RJ−1. The absence of positivity and adding-up constraints is convenient,

as is the fact that the posterior distribution of ϑ is more nearly Gaussian than that of β, especially

when some elements of β have high posterior density close to zero. The inverse transformation is

β(ϑ) = (1 +
∑J−1

j=1 exp(ϑj))
−1(exp(ϑ1, . . . , exp(ϑJ−1), 1) and the induced prior on ϑ is

p(ϑ) = p(β(ϑ))

J∏
j=1

βj(ϑ).

The multiple-try algorithm goes as follows: we first generate R candidates ϑ∗1, . . . , ϑ∗R ∼ N (ϑ,Ξ)

and draw a proposal ϑ∗r̃ ∈ {ϑ∗1, . . . , ϑ∗R} with probability proportional to p(y |ϑ∗r , x)p(ϑ∗r). We then

generate R−1 reference points ϑ̃1, . . . , ϑ̃R−1 ∼ N (ϑ∗r̃ ,Ξ) and accept the proposal ϑ∗r̃ with probability

min

{
1,

∑R
r=1 p(y |ϑ∗r , x)p(ϑ∗r)

p(y |ϑ, x)p(ϑ) +
∑R−1

r=1 p(y | ϑ̃r, x)p(ϑ̃r)

}
.

The proposal covariance Ξ is a rescaled approximation of the marginal posterior distribution of ϑ,

computed during the burn-in period. During the burn-in period, we update Ξ using the adaptive

method described in Haario et al. (2001). At the end of the burn-in period, we compute Ξ as the

sample covariance of the burn-in period, rescaled by a factor of 2.38(J − 1)−1/2, the optimal scaling

factor for multi-dimensional settings—see Gelman et al. (1996). For posterior simulation, we set

the number of candidates generated per iteration to R = 5.

In computational experiments not reported here, we considered several values of the tuning parame-

ter R and found that the above choice offers a good trade-off between the additional computational

cost and the gain in numerical efficiency for the range of values considered in our empirical illus-

tration for J , the number of term in the normalized density. We also compared the multiple-try

algorithm with the version of the adaptive random walk metropolis algorithm described in Vihola

(2012); both approaches deliver similar performances for lower values of J , but we obtained better

results with the former for higher values of J .13

13Examples of adaptive MCMC algorithms can be found in Roberts & Rosenthal (2009).
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2.3.2 Marginal likelihood

In a Bayesian framework, a standard practice for model comparison is to compute for all possible

models the marginal likelihood and to apply Bayes’ rule to obtain the posterior probabilities of each

competing model. This approach can be used to deal with model specification uncertainty for a

finite mixture model when the number of admissible components is not too large. See Frühwrith-

Schnatter (2006) for a textbook treatment on finite mixture models.

The marginal likelihood is defined as the integral of the likelihood with respect to the prior density

of the parameters. Following Chib (1995), we estimate the marginal likelihood p(y) on the log scale

as

log p(y) = log p(y |Θ) + log p(Θ)− log p(Θ | y), (2.13)

where Θ denotes all parameters in the model, p(y |Θ) is the likelihood, p(Θ) is the prior density, and

p(Θ | y) is the posterior density. This equality holds for any value of Θ, but it is usually evaluated

at a high density point Θ∗ (say) to obtain a stable estimate.

The prior density is available directly although the likelihood and posterior ordinate must be eval-

uated by simulation. We compute the likelihood

p(y |Θ∗) =

∫
p(ψ, x, y |Θ∗) dψdx

using importance sampling and estimate the posterior ordinate through posterior decomposition

and additional reduced MCMC runs. More specifically, we decompose the posterior ordinate as

p(Θ∗ | y) = p(ϑ(β∗) | y) p(µ∗, φ∗, ξ∗ |β∗, y) p(δ∗ |µ∗, φ∗, ξ∗, β∗, y) p(τ∗ | δ∗) p(σ∗, ρ∗ |µ∗, φ∗, ξ∗, δ∗, β∗, y)

where ϑ(β∗) is the logistic transformation of β∗, and estimate each ordinate in turn. We estimate the

first term by kernel smoothing applied to the draws from the full MCMC run. We then fix β and do

a reduced run, sampling all parameters and state variables except β, and estimate the second term

by kernel smoothing applied to the draws from the reduced run. To estimate p(δ∗ |µ∗, φ∗, ξ∗, β∗, y),

we fix the parameters (µ, φ, ξ, β) and perform a second reduced MCMC run. The required ordinate

then follows by averaging the Gaussian density of δ. The ordinate p(τ∗ | δ∗) can be evaluated directly.

We then do a third reduced run where all parameters except (σ, ρ) are fixed and we estimate the

last ordinate by kernel smoothing applied to the resulting draws.
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2.4 Results

Here, we first report results from a pre-data simulation experiment involving only artificial data

meant to test for the correctness of our posterior simulation methods. We then illustrate the use of

our flexible SCD model with an empirical example using quotation data for equities traded on the

Toronto Stock Exchange.

2.4.1 Getting it right (GIR)

The following tests for program correctness are similar to those described in Geweke (2004) and

the title of this subsection comes from the title of that paper. The idea of the exercise is to

simulate a Markov chain whose stationary distribution is the joint distribution of parameters, latent

state variables and data, making use of the same simulation methods that will be used later for

posterior simulation, together with an additional Gibbs block to draw data from their conditional

distribution given parameters and state variables.14 If the posterior simulation methods are correct

in concept and implementation, the marginal distribution of the parameter vector, with respect to

this stationary distribution, is identical to its (known) prior distribution. This is a strong condition

with many easily testable implications.

We will need to simplify part of our model in order to proceed. The problem is that we record values

of the underlying continuous-time OU process x(t) only at the times of realization of the event of

interest. Redrawing duration data changes the realization times, which requires conditioning on

the entire path of continuous-time process, which is impractical. For the GIR simulations only, we

modify the latent state process described in (2.2), replacing the OU process with a homogeneous

autoregressive process where the transition distribution from xd,i to xd,i+1 depends only on xd,i and

not on the duration yd,i. We parameterize the process in a way that resembles the sampled OU

process, giving

xd,i+1 |xd,i ∼ N
(
(1− e−ρ)ψd +m(td,i) + e−ρ(xd,i −m(td,i−1)), σ2(1− e−2ρ)

)
. (2.14)

Sampling from the posterior distribution also requires some minor modifications. Since we draw a

new sample of artificial data at each iteration, the adaptive schemes implemented during the burn-in
14The additional Gibbs block updating the data y from its conditional distribution given parameters and latent

variables for the GIR simulation is described in Appendix B.2.
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Table 2.1: Difference between prior and simulation sample first and second moments in the Getting it right
experiment

θ E[θ]− θ̄ σ̂nse t-stat E[θ2]− θ̄2 σ̂nse t-stat

log σ 0.0000076 0.0000485 0.156 -0.0000152 0.0000970 -0.156
log ρ 0.0000357 0.0000490 0.728 -0.0001633 0.0002255 -0.724
µ 0.0000912 0.0003194 0.285 0.0006175 0.0015960 0.387
φ 0.0002621 0.0002848 0.920 0.0000444 0.0000236 1.883
ξ−2 -0.0402189 0.0205170 -1.960 -8.2016201 4.1217279 -1.990
τ -0.0021692 0.0137267 -0.158 -0.1221362 1.3769431 -0.089
β1 -0.0002561 0.0001820 -1.408 -0.0002527 0.0001822 -1.388
β2 0.0001376 0.0001499 0.918 0.0000891 0.0000902 0.988
β3 0.0001185 0.0001363 0.869 0.0000529 0.0000556 0.951

period to tune the proposal distributions used in the Gibbs block updating (σ, ρ, x) and β do not

work well. Instead, we fix the proposal covariance matrices to the prior covariance of the parameter

vector in question.

We set the number of components of the normalized density to J = 3 and use a B-spline function

defined on two knots, topen and tclose, giving a diurnal pattern that is an expansion with L = 4

cubic polynomials. To avoid realization times in simulations occurring after tclose, where the diurnal

pattern is undefined, we choose the sample size n (the number of durations, not the size of the

simulation sample) and prior distributions such that the probability that the last transaction of

the day occurs after tclose is extremely small. We fix D = 10 and choose sample size of nd = 10

observations by day. For each day, the initial transaction time is td,0 = topen and the length of the

trading session is 1800 seconds. We used the following hyperparameter values:

(µ̄σ, h̄σ) = (−1.0, 1000), (µ̄µ, h̄µ) = (2.5, 250), (s̄τ , ν̄τ ) = (10, 500), M̄ = 200,

(µ̄ρ, h̄ρ) = (−2.3, 1000), (µ̄φ, h̄φ) = (0.0, 250), (s̄ξ, ν̄ξ) = (10, 1000), β̄ = (0.5, 0.3, 0.2).

The tighter prior distribution, and much smaller number of observations, compared with the em-

pirical example, ensure high numerical precision with a moderate amount of computation.

We generate a sample of size 5× 105 and for analysis, we use a subsample of size 50, 000 consisting

of every 10’th draw. Table 2.1 shows the results of the comparison of first (columns 2-5) and

second (6-8) moments between the prior population and the simulation sample. Columns 2 and 6

give, for selected parameters θ, the difference between the prior population moment E[θk] and the

simulation sample moment θ̄k (k = 1, 2); columns 3 and 7, the numerical standard error (i.e. the

34



simulation standard deviation quantifying error in finite simulations) of the sample moment; and

columns 3 and 8, the t-statistic for the test of the hypothesis that the simulation population moment

of the parameter (from the stationary distribution of the Markov chain) equals the (known) prior

population moment. Each hypothesis is a necessary condition for the correctness of the posterior

simulation methods. Numerical standard errors are computed using the overlapping batch means

method (Flegal & Jones 2010). Sample moments are close to the true prior moments, relative to

the numerical standard error. The results fail to cast doubt on the correctness of the posterior

simulator: one hypothesis (out of 18) is rejected at the 10% level and none at the 5% level.

2.4.2 An empirical example

Data

We demonstrate our flexible SCD model and posterior simulation methods using quotation data for

three equities traded on the Toronto Stock Exchange: the Potash Corporation (POT), the Royal

Bank of Canada (RY) and the Toronto-Dominion Bank (TD).15 The data comes from the TickData

database, where it is freely available.16 The sample covers one month of activity for a total of

21 consecutive trading days, from March 3 to 31, 2014. We follow standard practice and remove

observations that are obviously erroneous or with aberrant prices, following the procedure detailed in

Barndorff-Nielsen et al. (2009). Price durations are then computed using the mid-price (bid+ask)/2

of the the most recently posted quote in each second. We construct three duration series for each

equity by selecting observations involving an absolute cumulative mid-price change of at least $0.01,

$0.02 and $0.03, respectively. A change of $0.01 correspond to the smallest possible price change

(or ticksize). We select the observations recorded between 10:00 am and 4:00 pm for the analysis.

Descriptive statistics of the price durations are reported in Table 2.2. For each series, we report the

number of durations, followed by the sample mean, standard deviation, kurtosis and coefficient of

variation. The last four columns report the 10%, 50% and 90% quantiles and the maximum value.

Model specification and prior distributions

For each series, we report results for models with a fixed value of J , the number of terms in the

normalized density, going from J = 1 to J = 10. In all models, the diurnal pattern is specified as a
15The Potash Corporation merged with Agrium on January 1, 2018 to form Nutrien Ltd (NTR).
16https://www.tickdata.com/equity-data/
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Table 2.2: Descriptive statistics of price durations from March 3 to 31, 2014 for various price thresholds.

Symbol ∆Price Obs. Mean Std. Kurt. C.V. Q0.1 Q0.5 Q0.9 Max.

$ 0.01 8964 50.5 76.3 44.8 1.51 3 24 128 1510
POT $ 0.02 3186 141.1 194.2 22.2 1.38 11 78 337 2317

$ 0.03 2061 217.4 290.9 23.6 1.34 21 123 490 3548

$ 0.01 14412 31.5 47.8 45.5 1.52 2 15 78 888
RY $ 0.02 4852 93.3 132.2 25.7 1.42 8 49 224 1686

$ 0.03 2813 160.8 215.2 26.0 1.34 15 90 397 2630

$ 0.01 6153 73.5 120.3 81.0 1.64 3 34 180 2892
TD $ 0.02 2168 207.4 298.6 22.4 1.44 16 106 483 3141

$ 0.03 1292 346.7 466.5 17.5 1.35 33 194 824 3861
The first column gives the number of price durations followed by the mean, standard deviation, kurtosis, and coefficient
of variation. The last four columns give the 10%, 50% and 90% quantiles and the maximum value.

B-spline function defined on knots set at 30 minutes intervals between 10:00 am to 4:00 pm, giving

an expansion with L = 15 piecewise polynomials.

We use the same prior distribution for each specification. For each series, we set the hyperparameters

of the OU process at (µ̄σ, h̄σ) = (−0.7, 4) and (µ̄ρ, h̄ρ) = (ȳ/10, 4), where ȳ is the sample average.

This gives an autocorrelation of approximately 0.9 for durations equal to ȳ at prior mean. The

smoothing hyperparameters for the vector of coefficients describing a diurnal pattern are fixed at

(s̄τ , ν̄τ ) = (1, 200). We fix the hyperparameters for the mean, the first order autocorrelation and the

innovation variance of the daily component dynamics at (µ̄µ, h̄µ) = (â/(1−b̂), 1), (µ̄φ, h̄φ) = (b̂, 200),

and (s̄ξ, ν̄ξ) = (0.04/ŝ, 0.04/ŝ2), respectively, where (â, b̂) and ŝ2 are the OLS and the unbiased

variance estimate for the linear regression log ȳd = a + b log ȳd−1 + ed, where ȳd is the average

duration on day d. The location and the concentration parameter for the mixture weight indexing

the normalized density are set respectively at β̄ = (1/J, . . . , 1/J) and M̄ = 2J , which centres

the prior distribution for pε(·) around the exponential distribution and implies moderate shrinkage

towards it. For the values of J considered, this choice of hyperparameters has been shown to provide

a good balance in terms of number of parameters and flexibility; it allows for approximately 20%

of the mass to be moved around the first-order model (Chen et al. 2014).
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Model comparison

An important property of Bernstein polynomials is that polynomials of lower degree are nested

within polynomials of larger degree; all Bernstein polynomials of degree 1, 2, . . . , J − 1 are included

in the Bernstein polynomial of degree J . This implies that after some J , we expect little change in

the shape of the normalized density.

Figure 2.2 shows the normalized density functions pε(·) obtained using J = 1, 3, 6 and 9 terms at

the posterior mean of the β coefficients for the POT equity. The left figure is for the price durations

constructed using a threshold of $ 0.01; the one in the middle, a threshold of $ 0.02; the one on the

right, a threshold of $ 0.03. We see that the normalized density varies much more with J at smaller

values than it does at larger values and the overall variation remains small between each densities.

For the series with the $ 0.02 and $ 0.03 thresholds, the mean densities obtained using 6 and 9 terms

are very similar; for the series with the $ 0.01 threshold, the same observation applies, but for the

densities obtained using 3 and 6. However, in this last case, the density obtained using 9 terms

has a different shape that the ones obtained with lower values of J , having a small mode close to

zero rather than being monotonically decreasing. This preliminary graphical analysis suggest that

a specification with J ≤ 9 should be able to capture well the conditional duration density for each

series. The same comments apply for the RY and TD equity and for this reason we do not show

similar illustrations for the other series.

Table 2.3 reports the posterior probabilities of each specification computed based on the prior

assumption that the specifications are equally probable. In this case, the posterior probabilities are

proportional to the marginal likelihood. We see that a model with a normalized density with 3 terms

is the preferred specification for most series. A model using a more flexible normalized density with

4 terms is preferred only once. The posterior probabilities for models using a normalized density

with more than 4 terms are all zeros. Hence, specifications with 2, 3 and 4 terms are able to capture

well the shape of the conditional duration density.

Parameter estimates

Table 2.4 shows posterior summaries for the specifications having the highest posterior probability

for each equity and price threshold. The upper panel is for the POT equity; the one in the middle

for the RY equity; the bottom one for the TD equity. The three groups of columns are for the
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Figure 2.2: Normalized density functions at the posterior mean of β obtained for the POT equity. The
figure on the left is for the price durations constructed using a threshold of $ 0.01; the one in the middle, a
threshold $ 0.02; the one on the right, a threshold of $ 0.03.

Table 2.3: Posterior probability for the different values of J , the number of term in the normalized density.

Symbol ∆Price FSCD(1) FSCD(2) FSCD(3) FSCD(4) FSCD(5)

$ 0.01 0.000 0.096 0.904 0.000 0.000
POT $ 0.02 0.115 0.004 0.881 0.000 0.000

$ 0.03 0.000 0.011 0.871 0.118 0.000

$ 0.01 0.000 0.000 1.000 0.000 0.000
RY $ 0.02 0.012 0.234 0.742 0.012 0.000

$ 0.03 0.000 0.000 0.015 0.985 0.000

$ 0.01 0.000 0.509 0.491 0.000 0.000
TD $ 0.02 0.177 0.777 0.044 0.002 0.000

$ 0.03 0.000 0.030 0.612 0.356 0.001

price duration series constructed using thresholds of $ 0.01, $ 0.02 and $ 0.03, respectively. For

each parameter, we report the posterior mean and standard deviation, and the relative numerical

efficiency (RNE) for the posterior mean. Defined in Geweke (1989), the relative numerical efficiency

is a variance ratio that quantifies the numerical precision of the sample mean of a ergodic process,

relative to that of a (hypothetical) iid sample. RNE times sample size gives the size of an iid

sample with the same numerical standard error. Numerical standard errors are computed using the

overlapping batch mean method (Flegal & Jones 2010). The posterior samples consist of 50,000

retained draws recorded after a burn-in period of 15,000 draws.

It is well known that it is difficult to sample efficiently the persistence and variance parameters of

latent states in non-Gaussian state space models. We obtain a numerical efficiency for ρ and σ that

is considerably higher than that reported for the analogous parameters using the block sampling
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Table 2.4: Posterior mean and standard deviation of various parameters for the POT, RY and TD equity
of price durations and the flexible SCD model with the preferred specification.

Panel A: Potash Corporation (POT)

∆Price = $ 0.01 ∆Price = $ 0.02 ∆Price = $ 0.03

Mean Std. RNE Mean Std. RNE Mean Std. RNE

σ 0.5137 0.0237 0.0684 0.5286 0.0337 0.0566 0.5846 0.0326 0.0682
ρ† 0.0827 0.0139 0.0399 0.0553 0.0151 0.0407 0.1051 0.0257 0.0625
µ 4.0163 0.0564 0.2999 5.0563 0.0669 0.2678 5.4795 0.0675 0.2431
φ -0.2325 0.0684 0.8064 -0.2127 0.0692 0.8440 -0.1179 0.0689 0.8146
ξ 0.2512 0.0412 0.4373 0.2757 0.0543 0.2926 0.2699 0.0500 0.3286
β1 0.5834 0.0273 0.0657 0.3413 0.0450 0.0726 0.1413 0.0290 0.1095
β2 0.2056 0.0182 0.0958 0.4581 0.0339 0.0944 0.5983 0.0615 0.1328
β3 0.2111 0.0275 0.0762 0.2006 0.0534 0.1086 0.2604 0.0720 0.1330

Panel B: Royal Bank of Canada (RY)

∆Price = $ 0.01 ∆Price = $ 0.02 ∆Price = $ 0.03

Mean Std. RNE Mean Std. RNE Mean Std. RNE

σ 0.4332 0.0196 0.0569 0.4938 0.0338 0.0504 0.4929 0.0431 0.0478
ρ† 0.0942 0.0183 0.0315 0.0432 0.0113 0.0384 0.0289 0.0096 0.0325
µ 3.4943 0.0745 0.5441 4.6030 0.1074 0.5861 5.1323 0.1111 0.4302
φ 0.3103 0.0692 0.6948 0.3317 0.0696 0.7774 0.3566 0.0697 0.7171
ξ 0.2202 0.0309 0.5143 0.3007 0.0595 0.2547 0.2865 0.0588 0.2716
β1 0.6302 0.0250 0.0786 0.3803 0.0411 0.0912 0.1407 0.0266 0.0896
β2 0.2066 0.0156 0.0654 0.4591 0.0251 0.0993 0.4946 0.0434 0.0922
β3 0.1632 0.0179 0.1156 0.1606 0.0395 0.1323 0.1438 0.0392 0.0911
β4 0.2209 0.0454 0.0823

Panel C: Toronto Dominion Bank (TD)

∆Price = $ 0.01 ∆Price = $ 0.02 ∆Price = $ 0.03

Mean Std. RNE Mean Std. RNE Mean Std. RNE

σ 0.6286 0.0232 0.0848 0.5164 0.0471 0.0780 0.5809 0.0464 0.0569
ρ† 0.1933 0.0394 0.0477 0.0253 0.0085 0.0531 0.0541 0.0204 0.0454
µ 4.3807 0.1150 0.5970 5.3884 0.1496 0.5300 5.9410 0.1496 0.4490
φ 0.6293 0.0690 0.5601 0.6413 0.0701 0.5657 0.5841 0.0700 0.6043
ξ 0.1923 0.0221 0.5592 0.2320 0.0394 0.3790 0.2722 0.0557 0.3183
β1 0.7472 0.0351 0.1329 0.7880 0.1047 0.0682 0.1654 0.0395 0.0713
β2 0.2528 0.0351 0.1329 0.2120 0.1047 0.0682 0.5651 0.0713 0.1174
β3 0.2694 0.0838 0.1061

†: Rescale ×60 (mean reversion in minute).
Note. This table gives the posterior mean and standard deviation, and the relative numerical efficiency (RNE) for
the mean, based on 50,000 posterior draws recorded after a burn-in period of 15,000 draws. The three groups of these
columns are for the price duration series constructed using a threshold of $ 0.01, $ 0.02 and $ 0.03.
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Table 2.5: Posterior quantiles and moments of the half-life t1/2, measured in seconds, of the latent intensity
state OU process xd(t).

Symbol ∆Price Mean Std Q0.01 Q0.25 Q0.50 Q0.75 Q0.99

$ 0.01 517 87 346 455 510 571 756
POT $ 0.02 809 229 421 646 775 936 1503

$ 0.03 419 103 232 347 407 479 716

$ 0.01 459 92 293 393 449 512 723
RY $ 0.02 1029 271 547 838 994 1177 1850

$ 0.03 1601 551 718 1216 1502 1876 3337

$ 0.01 224 46 138 192 219 251 351
TD $ 0.02 1538 545 571 1160 1468 1839 3146

$ 0.03 874 317 334 651 822 1038 1867

method in Strickland et al. (2006).17 The lowest numerical efficiency we obtain for ρ is 2-17 times

higher, and for σ is 4-36 times higher than the numerical efficiencies they obtained for analogous

parameters, using parametric duration distribution. Posterior sample means of the mixture weights

have numerical efficiency ranging from 0.0654 to 0.1330, regardless of the number of terms used in

the normalized duration density. We see that the numerical efficiency appears to be slightly lower

for the first mixture weights, where we observe the most variation in the shape of the normalized

density. Nevertheless, the numerical efficiencies in general are quite good as far as methods for

non-linear non-Gaussian state space models go.

Table 2.5 reports posterior quantiles and moments of the half-life t1/2, measured in seconds, of the

OU process xd(t): the length of time it takes for xd(t) and xd(t + t1/2) to have a correlation of

1/2 between them. This quantity is more easily interpretable than the mean reversion parameter

ρ. The results reported are those obtained with the specifications having the highest posterior

probability (see Table 2.3). Persistence of the latent intensity process is fairly high for the POT

and RY equities, especially for the $ 0.01 threshold, where the half-life is more around 10 and 14

times, respectively, the average duration of each series (see Table 2.2). Still for the POT and RY

equities, the persistence decreases with the increase of the price threshold used to construct the

durations; for POT, the half-life is around 6 and 2 times the average duration, for the $ 0.02 and

$ 0.03 thresholds, respectively. For RY, the variation is less severe; the half-life is around 11 and 10

times the average duration. However, we do not observe this pattern for the TD equity where the
17The latent intensity state in their analysis follows a Gaussian AR(1) process with fixed autocorrelation and fixed

innovation variance rather than an OU process sampled at irregular intervals.
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Figure 2.3: Diurnal patterns and vector of daily components at the posterior mean (dashed line) and for
1000 posterior draws (solid lines) obtained for the price durations series constructed using a price threshold
of $ 0.01.

persistence is higher for the $ 0.02 series than for the $ 0.01 and $ 0.03 series. Overall, there is a fair

degree of posterior uncertainty about t1/2.

Figure 2.3 shows the posterior mean (dashed line) and 1000 posterior draws (solid lines) of the

diurnal pattern m(t) in the upper panel, and of the vector of daily components ψ in the lower panel,

for the duration series constructed using a price threshold of $ 0.01. The figures on the left are for

the POT equity; the ones in the middle, the RY equity; the ones on the left, the TD equity. The

results reported are those obtained with the specification having the highest posterior probability

(see Table 2.3). In each case, we obtain the usual inverted U-shaped diurnal pattern found in most

studies, with more variation in price change near opening and closing times. However, we see that

the intensity is considerably higher near opening than near closing times, and more so for POT. The

diurnal pattern for RY is more pronounced, indicating more predictable variation in price change

intensity. For the POT and TD equities, the daily intensity is more stable and smoothly varying

around the sample mean; for the TD equity, we see a slow decrease of intensity in price change
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between the first and last day of the sample. However, the number of days in the sample doesn’t

allow us to conclude much more about the long-run behaviour of inter-daily variation. The posterior

variation in the diurnal patterns and the daily components is fairly small compared to the variation

in average intensity through the day and between days, respectively. The posterior distribution for

δ is not very sensitive to the price threshold used. Although changing in level, the daily components

ψ are also very similar for each equity between the different duration series. For this reason, we do

not show illustrations similar to Figure 2.3 for the other series.

Hazard functions

Figure 2.4 illustrates the posterior distribution of the unconditional hazard function for the normal-

ized duration density obtained for the POT equity and models with J = 3 terms. The dashed line

shows the hazard function at the posterior mean. Solid lines give 1000 posterior draws. For details

on the calculation of the unconditional hazard function, see Bauwens & Veredas (2004). There is

not much posterior uncertainty in the hazard functions. Most of the uncertainty in the hazard rate

is observed for the $ 0.02 series (in the middle) for values near zero. In this case, the hazard function

is non-monotonic with high posterior probability. Although posterior precision is fairly high, there

is a non-negligible posterior probability that the hazard function is monotonic and decreasing. For

the $ 0.01 series (on the left), the hazard has a smoothly decreasing shape and for the $ 0.03 series

(on the right), it is initially increasing and non-monotonic. The smooth variation in the hazard

function, together with the possibility of it being non-monotonic, would have been impossible to

capture with commonly used parametric conditional duration densities. We observe very similar

hazard shapes for the other equity and for this reason the same figures for the RY and the TD series

are not reported.

2.5 Concluding remarks

Conditional duration distributions in ACD and SCD models should be flexible, in the sense of

being able to approximate any distribution on [0,∞). At the same time, it should be possible to

approximate realistic distributions with a small number of terms.

Appealing to queueing theory, we argued that a good first-order model for durations is an exponential

distribution. We introduced a normalized conditional distribution for financial durations that is
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Figure 2.4: Unconditional hazard functions for the normalized duration density at the posterior mean
(dashed lines) and for 1000 posterior draws (solid lines) obtained for the POT equity and models with J = 3
terms. The figure on the left is for the price durations constructed using a threshold of $ 0.01; the one in the
middle, a threshold $ 0.02; the one on the right, a threshold of $ 0.03.

flexible, and also expressible as a perturbed exponential distribution. This allows us to shrink

towards the exponential distribution.

We introduce posterior simulation methods for Bayesian inference in SCD models featuring our pro-

posed conditional duration density. Due in part to efficient draws of the latent trade intensity state,

and despite the flexible distribution, numerical efficiency of posterior simulation is considerably

better than that of previous studies where duration distributions are parametric.

We illustrated our methods using quotation data for three equities traded on the Toronto Stock

Exchange. For each equity, we analyse the durations built for transactions involving a cumulative

mid-price change of at least $ 0.01, $ 0.02 and $ 0.03. For each series, we found that a model

featuring our proposed conditional duration density with more than four terms has a posterior

probability of nearly zero, and that, out of the nine series analysed, a conditional density with three

terms provides the best fit 6 times. Despite the small number of terms, this conditional normalized

density is capable of matching distribution functions with various hazard shapes. In each case, the

ratio of the maximum of the hazard function to the minimum is less than three. This suggests

that our proposed conditional duration distribution is empirically relevant and avoids problems

associated with other distributions used in the literature.
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Chapter 3

A censored stochastic conditional

duration model for discrete trade

durations with zero inflation∗

3.1 Introduction

Duration models for financial transactions describe the irregular timing of trades, or other events

such as price changes. They are useful because trading intensity is one measure of market liquidity.

And unlike count models, duration models use all the information in trading times. They also shed

light on market microstructure phenomena.

Some stylized facts about trade durations are well known. Trading intensity varies over time. Part

of the variation is predictable given time of day and other observables. The remaining, stochastic,

part is highly persistent. Trades often arrive in clusters, within a very short interval and without

a marked difference in trading intensity before and after the cluster. We will refer to the very

short durations between related trades as cluster durations, and all others as regular durations.

The qualifier "related" allows for the possibility that durations between unrelated trades may be

very short as well, by coincidence. While regular durations are usually outnumbered by cluster

durations, they account for nearly all of the clock time the market is open and the literature

attaches more importance to them. Although our definition of clusters in our model will be precise,
∗This chapter is co-authored with my advisor William J. McCausland.
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the interpretation will be left vague, as there are different, and non-exclusive, reasons for clustering

and we will not attempt here to distinguish between different types of clusters. We know that some

are due to large market orders being matched with more than one limit order on the other side of the

market, the transactions being recorded nearly simultaneously. Others are due to orders triggered

by news, or orders triggering immediate reactions from trading algorithms.

Modelers have to confront this fact that some trades are related to others and that related trades

are nearly simultaneous. We will argue that widely accepted rules for aggregating seemingly related

trades into clusters, together with unsuitable parametric duration distributions, mislead inference in

important ways. The most commonly used rule treats two trades as related if they are executed, to

within recording precision, simultaneously. In this paper, as in many studies, we consider transaction

times truncated to the second, and in this context we will call it the same-second aggregation rule.1

The rule is usually correct, case by case, but in a reasonably sized sample from a liquid market, it

is likely that many pairs of unrelated trades occur within the same clock second by happenstance.

Our paper makes two main contributions. First, we propose a new model for discrete-valued trade

durations, defined as the difference between consecutive trading times, truncated to the second.

Traditional durations models are based on continuous distribution. Financial durations are, however,

inherently discrete, whether they are recorded with lower or finer precision. As discreteness is a

property of the selected truncation precision, and not the underlying process, we treat the data as

a censored continuous-time process. The second contribution is to propose a new way to classify

trades as being part or a cluster or not. Rather than apply a deterministic rule prior to inference, we

put into our model the uncertainty about whether each duration is a cluster duration—one between

related trades—or a regular duration—one between unrelated trades—and develop a mixture model,

featuring a latent indicator variable for every duration. Not surprisingly, the posterior probability

that a discrete 0s duration (zero second) is due to coincidence, and therefore regular, is always low.

But it is never zero, and the posterior mean of the number of these coincidences is much larger than

its posterior standard deviation. We find that the conditional hazard function of the underlying

continuous-time process for regular durations varies smoothly near zero, in contrast to the abrupt

changes found in most studies, which we argue are artifacts arising from neglecting the discrete

nature of data and classifying all discrete 0s durations as cluster durations.

We now illustrate in detail the problem with treating all discrete 0s durations as cluster durations,
1Many datasets, especially more recent ones, feature millisecond or finer recording precision. The issues raised in

this paper apply widely, but since the unfortunate consequences of deterministic aggregation rules are qualitatively
different when recording precision is finer, we leave this case for future research.
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a practice that goes back to the seminal paper of Engle & Russell (1998). To do so, we will refer

to the sample used in the illustrative empirical example presented in Section 3.4.2 that contains

transaction data for one week on trading of March 2014 for three equities traded on the Toronto

Stock Exchange; the Potash Corporation (POT), the Royal Bank of Canada (RY) and the Toronto-

Dominion Bank (TD). Table 3.3 shows descriptive statistics of the constructed duration series. The

important information related to the current discussion is given by the last six columns, which give

the percentage of discrete durations recorded as 0s, 1s, 2s, 3s, 4s, and 5s. As we can see, the values

from 1s to 5s vary smoothly, but far more discrete durations are recorded as 0s than as 1s.

This zero inflation clearly needs to be addressed. As mention earlier, it arises because of nearly

simultaneous related trades. These often occur when a market order is matched against, and filled

with, several limit orders on the opposite side of the market, which is commonly referred to as a

split-transaction. It may also occur if many traders submit limit orders to be executed at a round

price, as suggested by Veredas et al. (2002), or if important news synchronizes a flurry of trading,

or if traders use algorithmic trading strategies that can be triggered by another trade. Again, we

emphasize that we do not try to distinguish different causes of related trades in our model but

generally refer to the resulting durations as cluster durations.

In fact, the amount of zero inflation is greater than it might appear: the duration between two

trades will be recorded as a discrete 0s duration if the second trade occurs during the remainder of

the same clock second as the first, but as a discrete 1s duration if it occurs at any time during the

next clock second. Extrapolating percentages from 1s to 5s back to 0s and dividing by two gives us

a rough idea of the percentage of all durations that are both regular and recorded as 0s: about 7%

for the RY and the TD series and about 5% for the POT series. Of course, these represent a much

larger percentage of regular durations, around 22% and 14%, respectively. While it is likely that a

large majority of discrete 0s durations are cluster durations, it would be very surprising if all were.

The same-second aggregation rule amounts to removing all discrete 0s durations from the sample.

The result is a truncated sample of regular durations. The fact that the truncation is at both

the mode and lower bound of the distribution is particularly unfortunate. Trading intensity is

understated, and the understatement varies with trading intensity: when it is high, there are more

short regular durations and more spurious aggregation of unrelated trades. Moreover, distinguishing

cluster and regular transactions is not always easy, as regular durations will often be 0s durations

at times of intense trading activity. For instance, for the data considered in this paper, we observe

that over 50 transactions were recorded within the same second on many occasions. It would be
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surprising if every time this happens all transactions were linked to a single cluster of transactions,

as implied by the same-second aggregation rule, and especially when that many transactions are

recorded in a one second interval.

Another aggregation rule, proposed by Grammig & Wellner (2002), aggregates any sequence of

transactions within the same clock second where prices are non-decreasing or non-increasing. We

will call this the GW aggregation rule. Figure 3.1 shows histograms of durations that are classified

as regular by this rule. Not enough of the 0s durations are classified as regular for compatibility

with a smooth density near zero. This is not surprising, as many pairs of unrelated trades will

feature price changes of the same sign by coincidence.

While the spurious aggregation of unrelated trades is our main concern with these rules, we also

question whether even error-free aggregation would be desirable. If a market order matches nine

limit orders, five times as many traders are getting their orders filled than if it matches a single

limit order. Treating these cases as equivalent may understate liquidity, as perceived by traders.

Discreteness of duration data is traditionally ignored, and financial durations are usually modelled

using multiplicative error models featuring continuous distribution where the scale of the conditional

duration distribution depends on the history of the process (Engle 2002).2 The two general class

of multiplicative error models are the autoregressive conditional duration model (ACD, Engle &

Russell 1998), where the scale depends deterministically on past durations, and the stochastic

conditional duration model (SCD, Bauwens & Veredas 2004), where the scale is a latent stochastic

process.3 It was only recently that Blasques et al. (2020) proposed an alternative ACD model based

on parametric discrete distributions, with and without zero inflation.4 In this paper, we also adopt

a discrete approach, but based on a censored distribution related to an underlying continuous-time

process agreeing with the usual multiplicative error assumption. Its additional innovative feature is

to distinguish between regular and cluster durations by using a model where only the distribution

of the regular durations depends on a latent trade intensity indicator.

Models for regular durations were initially specified using an exponential distribution, but it was

quickly concluded that models featuring a Weibull or a gamma distribution provide a better fit for
2In high-frequency data analysis, transaction price dynamics are modelled using discrete distributions (see, e.g.

Russell & Engle 2005).
3For surveys on the analysis of high-frequency financial durations, see Pacurar (2008), Hautsch (2012) and Bhogal

& Variyam (2019).
4Yatigammana et al. (2019) used a dynamic mixture of two continuous distributions in an ACD model for modelling

trade durations with high density close to zero. However, their approach cannot indicate whether close to zero
durations are related or not.

47



various dataset (Engle & Russell 1998, Bauwens & Giot 2000, Bauwens & Veredas 2004, Feng et al.

2004, Strickland et al. 2006, Men et al. 2015). However, these conclusions favouring the Weibull

or gamma come largely from studies in which 0s durations are removed from the sample, following

the same-second aggregation rule, and without adjusting for the discreteness of the observed data.5

Moreover, except for the special case where they reduce to an exponential, which has a constant

hazard function, the hazard function is either zero at a duration of zero and increasing; or infinite

at a duration of zero and decreasing. We argued in Chapter 2 that such extreme variation of the

hazard function near zero is implausible for regular, unrelated, durations. A reasonable simple model

for transaction times in financial market, where there is a large number of independent potential

traders, is the Poisson process where durations between events are exponentially distributed. After

conditioning on relevant predictors measuring the variation of trading intensity, the underlying

distribution of regular durations should not be too far from an exponential, due to the fact that a

regular duration is, by our definition, the time interval between unrelated trades. We found that

this is indeed the case for the three duration series analyzed in an illustrative empirical example.

The rest of the paper is organized as follows. We describe our censored SCD model in Section 3.2

and our methods for posterior simulation in Section 3.3. In Section 3.4, we conduct an artificial data

experiment to test for the correctness of our posterior simulator and then illustrate our methods

in an application featuring three equities traded on the Toronto Stock Exchange. We conclude in

Section 3.5.

3.2 A Censored Stochastic Conditional Duration Model

Our model builds on the stochastic conditional duration model of Bauwens & Veredas (2004). It

differs in two important ways. First, it is for discrete-valued data. Transaction data are inherently

discrete, whether they are recorded with low or high precision. Our model takes into account

this discreteness by treating the data as a censored continuous-time process. More precisely, it is

designed for transaction times truncated to the second. Second, it has a second state variable, one

which indicates which discrete durations are cluster durations and which are regular. Since this

replaces the usual practice of aggregating trades into clusters before analysis, our model is intended

for unaggregated data. For the purpose of comparison, we also define a special case of our model
5Examples of continuous-time models incorporating the zero observations are the dynamic zero augmented model

of Hautsch et al. (2014) and the dynamic censored model of Harvey & Ito (2020).
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where cluster durations have probability zero, for samples in which durations have been aggregated

into clusters. We will call this special case regular-duration model and the general model the all-

duration model. Placing classification of trades within the model makes it possible to infer that the

number of regular durations that happen to be a 0s duration, while small, is not zero. We will see

that this overcomes the problems arising from the spurious aggregation of unrelated trades.

3.2.1 The Data Generating Process

We observe transaction times over D trading days in the interval [topen, tclose], where topen and

tclose are the opening and closing times. All times of day are measured in seconds after midnight

and recorded with limited precision. For each day d = 1, . . . , D, denote the sequence of observed

transaction times by t̃d,0, t̃d,1, . . . , t̃d,nd
and construct the censored transaction times td,i ≡ bt̃d,ic and

the corresponding discrete durations yd,i ≡ td,i− td,i−1, i = 1, . . . , nd, where b·c is the floor operator

that truncated the transaction times to second precision.

The conditional distribution of each yd,i depends on the values sd,i ∈ {0, 1} and xd,i ∈ R, at time

td,i−1, of two latent states. The state sd,i is a mixture component indicator: sd,i = 0 indicates that

yd,i is a cluster duration; sd,i = 1, a regular duration. The state xd,i gives the trading intensity at

td,i−1, but only if the duration is regular. The conditional distribution of yd,i, given sd,i and xd,i, is

p(yd,i | sd,i, xd,i) =

p0(yd,i) sd,i = 0,

p1(yd,i | xd,i) sd,i = 1,

(3.1)

where p0(·) and p1(·) are probability mass functions that we will be specified in Section 3.2.2.

At each day d, the indicator process sd,i is first-order Markov and stationary, with

Pr[sd,i+1 = l | sd,i = k] = ξkl and Pr[sd,1 = k] = ξk, (3.2)

where ξ0 ≡ (1 − ξ11)/(2 − ξ00 − ξ11) and ξ1 ≡ (1 − ξ00)/(2 − ξ00 − ξ11) by stationarity. The

marginal probabilities (ξ0, ξ1) give, respectively, the proportion of cluster and regular durations in

the population. The trading intensity process xd(t), t ∈ [topen, tclose] is the sum of a deterministic

function m(t) describing a diurnal pattern and a zero-mean OU process. Sampling the xd(t) process

at all irregularly spaced censored transaction times gives the values xd,i ≡ xd(td,i−1), which follow
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an inhomogeneous first order autoregressive discrete process:

xd,i+1 |xd,i, td,i, td,i−1 ∼ N
(
m(td,i) + e−ρyd,i(xd,i −m(td,i−1)), σ2(1− e−2ρyd,i)

)
, (3.3)

xd,1 | td,0 ∼ N
(
m(td,0), σ2

)
, (3.4)

where ρ > 0 is the mean reversion parameter, and σ is the marginal standard deviation parameter

of the OU process. Remark that yd,i = 0 gives xd,i+1 = xd,i; thus, our censored SCD model implies

a reduced number of latent intensity states equal to the number of nonzero discrete durations. The

deterministic function m(t) describing a diurnal pattern is a cubic B-spline linear basis expansion

with respect to a set of equally spaced knots (Eilers & Marx 1996):

m(t) =
L∑
l=1

δlBl(t), (3.5)

where Bl(·) denotes the l-th B-spline basis function and δl its coefficient. The first and last knots

have multiplicity 4 and the rest have multiplicity 1, which makes m(topen) = δ1 and m(tclose) = δL.

See de Boor (1978) or Dierckx (1993) for more on B-splines.

3.2.2 The Conditional Duration Process

In accordance with the GW-aggregation rule proposed by Grammig & Wellner (2002), we assume

that discrete durations of more than 1s are regular by definition and specify the probability mass

function of cluster durations as a Bernoulli distribution,

p0(yd,i) = π1−yd,i(1− π)yd,i1{yd,i ≤ 1}, (3.6)

where π gives the conditional probability of a cluster duration being equal to zero. Allowing for

cluster durations of 1s takes into account that censoring transaction times to the second implies

that transactions recorded within the same clock second will result in a duration of 1s rather than

0s with positive probability. However, this probability should be small given our definition of cluster

durations and p0(·) should concentrate most of its probability on zero. The prior distribution for π

must be chosen accordingly.

Unlike cluster durations, regular durations depend on market conditions, as captured by the intensity

state xd,i. Our specification of p1(·) follows from censoring a continuous-time process conforms to
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the usual multiplicative error structure of SCD models (Bauwens & Veredas 2004), which gives

durations as yd,i = exp(xd,i)εd,i, where εd,i is the contemporaneous value of a positive iid process

with E[εd,i] = 1 and independent of xd,i. We denote by pε(·) the normalized density function of εd,i.

Thus, the conditional probability mass function of regular duration yd,i is obtained by integrating

over the range of possible uncensored values:

p1(yd,i |xd,i) =
1

2

∫ yd,i+1

yd,i−1
e−xd,ipε(ye

−xd,i) dy. (3.7)

For the probability of yd,i = 0, the integral is from zero to one. Given sd,i = 1, the quantity e−xd,i

is the conditional mean of yd,i, when viewed as a continuous-time process.

For reasons mentioned in the introduction, we select a perturbed exponential density, as specified

in Chapter 2, as normalized density; pε(ε) ≡ f(ε)g (F (ε)), where F (·) the cdf of an exponential

distribution, with density f(·), and g(·) is a J ’th order Bernstein density; a J-component mixture

of beta densities, each with integer-valued shape parameters adding to J + 1. This gives

pε(ε) = λ exp(−λε)
J∑
j=1

βj Beta (1− exp(−λε) | j, J − j + 1) , (3.8)

where λ is a scale parameter,
∑J

j=1 βj = 1, β ≡ (β1, . . . , βJ) ≥ 0, and Beta(z | a, b) denotes the beta

density with shape parameters a and b, for a, b > 0. Notice that if β = (1/J, . . . , 1/J) then the

Bernstein density g(·) is uniform and there is no perturbation. In this paper, we treat the order

J of the Bernstein density as fixed, not as a parameter to estimate, and will compare results over

different values of J . Notice that we can write the above expression as

pε(ε) =

J∑
j=1

βj

[
j∑

k=1

aj,kλj,k exp(−λj,kε)

]
,

where λj,k = (J − j + k)λ and

aj,k =

(
j − 1

k − 1

)
Γ(J + 1)

Γ(j)Γ(J − j + 1)

(−1)k+1

J − j + k
.

This allows to easily evaluate the integral in (3.7) to obtain a convenient closed-form expression as
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a mixture distribution for the probability mass function of regular durations;

p1(yd,i |xd,i) =
1

2

J∑
j=1

βj

j∑
k=1

αj,k

[
exp

(
−λj,ke−xd,i(yd,i − 1)

)
− exp

(
−λj,ke−xd,i(yd,i + 1)

) ]
. (3.9)

We will exploit this expression for posterior inference. Also, remark that the scale normalization

condition E[ε] = 1 gives λ =
∑J

j=1 βj
∑j

k=1 aj,k/(J − j + k), which we use to substitute out λ from

the expression for pε(·), freeing us from having to impose restriction on β.

3.2.3 Prior Distributions

To complete the model, we describe a prior distribution for the parameter vector of our censored

SCD model Θ = (σ, ρ, δ, β, ξ, π). All parameters are a priori independent. In the following, the

overbar notation ·̄ is used to denote prior hyperparameters. The different values used for the

simulation exercise and the empirical example are available in Table 3.1.

We specify log-Normal prior distributions for the marginal standard deviation σ and the mean

reversion parameter ρ of the OU process: log σ ∼ N (µ̄σ, h̄
−1
σ ) and log ρ ∼ N (µ̄ρ, h̄

−1
ρ ). This

eliminates the need for parameter restriction. We induce a Gaussian prior for the vector δ of

coefficients defining the diurnal pattern by specifying the following Gaussian prior on an invertible

linear function of δ: u′
∇

 δ ∼ N
 µ̄δ

0L−1

 ,
 h̄δ 0′L−1

0L−1 τIL−1

−1 , (3.10)

where u and ∇ are the mean and first backward difference operators, 0L−1 is an (L− 1)× 1 vector

of zeros, IL−1 is the (L− 1)× (L− 1) identity matrix, µ̄ is a scalar location parameter and τ and h̄

are scalar precision parameters. Thus, first differences δl−δl−1 are iid N (0, τ−1) and the arithmetic

mean is independent of the first differences, with u′δ ∼ N (µ̄δ, h̄
−1
δ ). This is the same as the random

walk prior proposed by Lang & Brezger (2004), except that they use u = (1, 0, . . . , 0). Both priors

favour smoothness and are agnostic with respect to the signs of derivatives; since the derivatives of

B-splines are linear combinations of the first differences δl− δl−1, we can interpret τ as a smoothing

parameter for the diurnal pattern. Higher values of τ imply more shrinkage towards a flat diurnal

pattern. Unlike the prior proposed by Lang & Brezger (2004), where the prior variances of the δl

increase with l, our prior has the symmetry property that (δ1, . . . , δL) and (δL, . . . , δ1) have the same

distribution. Following common practices, we will estimate τ , and specify its prior as the following
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scaled chi-square: s̄τ ∼ χ2(ν̄). Equation (3.10) induces the conditional prior δ | τ ∼ N(δ̄, H̄−1),

where δ̄ = µ̄δLu and H̄ = h̄δuu
′ + τ∇′∇.

For the mixture weights indexing the normalized density pε(·), we specify a Dirichlet distribution:

β ∼ Dirichlet(M̄β̄), parametrized in term of a mean parameter β̄ = (β̄1, . . . , β̄J) > 0,
∑
β̄j = 1, and

a concentration parameter M̄ > 0. If β̄ = (1/J, . . . , 1/J), the prior mean of β corresponds to g(·)

being uniform on [0, 1] and therefore pε(·) being an exponential density. The diagonal elements of

the Markov transition matrix ξ of the latent indicator process are independent and beta distributed:

ξkk ∼ Beta(āk, b̄k), k = 0, 1. The conditional probability that a cluster duration been 0s duration

is beta, with π ∼ Beta(āπ, b̄π).

3.2.4 Joint Density

We conclude the exposition of the model by giving the joint density of all parameters, latent variables

and observations, making explicit all conditional independence relationships. We refer to the model

as the all-duration censored SCD model (A-CSCD). Let s, x and y be the flat vectors of all indicators,

states and durations, respectively. Then the joint density is

p(σ, ρ, τ, δ, β, ξ, π, s, x, y) = p(σ) p(ρ) p(τ) p(δ | τ) p(β) p(ξ) p(π)

D∏
d=1

nd∏
i=1

p(sd,i | sd,i−1, ξ)p(xd,i |xd,i−1, td,i−1, td,i−2, σ, ρ, δ)p(yd,i | sd,i, xd,i, π, β). (3.11)

The densities for the initial values sd,1 and xd,1 on each day d are p(sd,1 | sd,0, ξ) ≡ p(sd,1 | ξ) and

p(xd,1 |xd,0, td,0, td,−1, σ, ρ, δ) ≡ p(xd,1 | td,0, σ, δ).

We also define the regular-duration model (R-CSCD), the special case of our model where all

durations are regular, which is suitable for use with data where trades are aggregated into clusters.

The joint density of the regular-duration model is obtained by removing factors related to ξ, π, and

s in the above expressions.

3.3 Bayesian Inference

Here we describe posterior simulation methods for Bayesian inference in our censored SCD model.

We do this for the all-duration model; methods for the regular-duration model require only straight-
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forward modifications. We use Markov chain Monte Carlo (MCMC) to sample the joint posterior

distribution of parameters, latent indicators and state variables. For the all-duration model, there

are six Gibbs blocks, updating (σ, ρ, x), (τ, δ), β, s, ξ and π. For the regular-duration model, we

only require the first three blocks. The first three blocks are similar to the posterior simulation

methods proposed in Chapter 2, but adapted for censored durations; the last three implement stan-

dard methods for Bayesian inference in Markov-Switching models (cf. Frühwrith-Schnatter 2006).

We now describe each of the Gibbs blocks in turn.

Drawing from p(σ, ρ, x | δ, s, y)

We update (σ, ρ, x) in two sub-blocks. First, we perform data augmentation and draw component

indicators zd,i ∈ {1, . . . , J} for each (d, i) where yd,i is a regular duration; that is sd,i = 1. The

indicators are conditionally independent, with probability mass function given, up to a multiplicative

factor, by

Pr[zd,i = j |β, s, x, y] ∝ βj
j∑

k=1

αj,k

[
exp

(
−λj,ke−xd,i(yd,i − 1)

)
− exp

(
−λj,ke−xd,i(yd,i + 1)

) ]
,

(3.12)

for j = 1, . . . , J . We then update (σ, ρ, x) given all zd,i as a single block using a Metropolis-Hastings

step that consist of a joint accept-reject for the state variables x and the parameters describing

their dynamics (σ, ρ). Our proposal rely on the HESSIAN method (McCausland 2012), a generic

procedure to draw the complete state sequence as a single block that required, as only model specific

elements, routines to evaluate log p(yd,i | sd,i, xd,i, zd,i), and its first five derivatives with respect to

xd,i, at a given point. We compute exact values of this conditional density function and its derivatives

using automatic routines to combine evaluations of derivatives of primitive functions using Faá di

Bruno’s rule. Details are provided in Appendix C.1.

Our joint proposal (σ∗, ρ∗, x∗) consists of a Gaussian random walk proposal for (log σ∗, log ρ∗) fol-

lowed by a conditional proposal x∗ |σ∗, ρ∗ drawn from the proposal density q(x |σ∗, ρ∗, δ, z, s, y)

constructed using the HESSIAN method. We accept the triple (σ∗, ρ∗, x∗) with probability

min

{
1,
p(x∗, y |σ∗, ρ∗, δ, π, z, s)p(σ∗, ρ∗)
p(x, y |σ, ρ, δ, π, z, s)p(σ, ρ)

× q(x |σ, ρ, δ, z, s, y)

q(x∗ |σ∗, ρ∗, δ, z, s, y)

}
.

Recall that we specified a prior for (log σ, log ρ), thus, the Hastings-ratio does not need to be ad-

justed by the Jacobian of the logarithmic transformation. During the burn-in period, we tune the
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covariance of the random walk proposal to track an acceptance probability of 0.352—the optimal

acceptance rate for 2 dimensional parameter given in Gelman et al. (1996)—by following the ap-

proach described in Vihola (2012). We stop the adaptation after the burn-in period to ensure that

our posterior simulator is Markov.

Drawing from p(τ, δ |σ, ρ, x, y)

We update (τ, δ) using two sub-blocks. We first draw τ from its conditional posterior distribution:

¯̄sτ | δ ∼ χ2(¯̄ν), where ¯̄s = s̄ + δ′∇′∇δ and ¯̄ν = ν̄ + L − 1. We then draw δ from its conditional

posterior distribution: δ | τ, σ, ρ, x, y ∼ N(¯̄δ, ¯̄H−1), where the posterior precision is ¯̄H = H̄ +W ′W ,

the posterior mean is ¯̄δ = ¯̄H−1(H̄δ̄ + W ′v). The vector v and matrix W come from writing the

state equation (3.3) as v ∼ N (Wδ, IN ) where v and W are organized in blocks


v1

...

vD

 ,

W11 . . . W1L

...
. . .

...

WD1 . . . WDL

 ,

with, for d = 1, . . . , D and l = 1, . . . , L,

vd =


xd,1/σ

(xd,2 − exp(−ρyd,1)xd,1)/
√
σ2(1− exp(−2ρyd,1))

...

(xd,nd
− exp(−ρyd,nd−1

)xd,nd−1
)/
√
σ2(1− exp(−2ρyd,nd−1

))


and

Wdl =


Bl(td,1)/σ

(Bl(td,2)− exp(−ρyd,1)Bl(td,1))/
√
σ2(1− exp(−2ρyd,1))

...

(Bl(td,nd
)− exp(−ρyd,nd−1

)Bl(td,nd−1))/
√
σ2(1− exp(−2ρyd,nd−1

))

 .

Drawing from p(β | z, s, x, y)

We update β using a Metropolis-Hastings step. For the purposes of drawing proposals, we use

the logistic transformation ϑ(β) = (log(β1/βJ), . . . , log(βJ−1/βJ)). Our proposal for β∗ consists of
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Gaussian random walk proposal for ϑ∗, which is transformed back to β∗ using the inverse transfor-

mation β(ϑ) = (1 +
∑J−1

j=1 exp(ϑj))
−1(exp(ϑ1), . . . , exp(ϑJ−1), 1). We accept β∗ with probability

min

{
1,
p(y |β∗, π, s, x)p(β∗)

p(y |β, π, s, x)p(β)
×
∏J
j=1 β

∗
j∏J

j=1 βj

}
,

where the second term comes form the Jacobian of the logistic transformation. The covariance of

the random walk proposal is again tuned during the burn-in period following the adaptive scheme

described in Vihola (2012) by targeting the optimal acceptance probability corresponding to the

dimension of ϑ(β) given in Gelman et al. (1996).

Drawing from p(s | ξ, π, β, x, y)

Latent regime indicators are updated via a single-move, or one-at-a-time, sampler, which is consid-

erably faster than drawing states as a block, as no filtering is required (Frühwrith-Schnatter 2006).

Since there is little posterior autocorrelation (most probabilities are close to zero or one, regard-

less of past and future values) there is little loss of numerical precision. The relative conditional

probabilities of drawing sd,i = 0 and sd,i = 1, given s−(d,i), the rest of the indicators, are given by

Pr(sd,i = j | ξ, π, β, s−(d,i), x, y) ∝ ξsd,i−1,jp(yd,i |π, β, sd,i = j, xd,i)ξj,sd,i+1
, (3.13)

for d = 1, . . . , D and i = 1, . . . , nd. The first and the last conditional transition probabilities are

understood to be ξj,sd,0 ≡ ξj and ξj,sd,nd+1
≡ 1.

Drawing from p(ξ | s)

Given the latent regime indicators, we update the transition probabilities using a Metropolis-Hasting

step. The prior for (ξ00, ξ11) (ξ00 and ξ11 are independent betas) is nearly conditionally conjugate,

but since the first indicator of each day comes from the marginal distribution, not exactly so. The

target density can be written as

p(ξ | s) ∝

[
D∏
d=1

1− ξ1−sd,1
11 − ξsd,100

2− ξ00 − ξ11

]
ξN00+ā0−1

00 (1− ξ00)N01+b̄0−1ξN11+ā1−1
11 (1− ξ11)N10+b̄1−1, (3.14)
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Table 3.1: Prior hyper-parameter values used in the Getting it right experiment (GIR) and in the empirical
example using transaction data from the Toronto Stock Exchange (TSX).

Hyper-parameters GIR TSX

(µ̄σ, h̄σ) (−1.0, 103) (−0.9, 4)
(µ̄ρ, h̄ρ) (−2.3, 103) (− log 10ȳ+, 4)
(µ̄δ, h̄δ) (1.5, 250) (log ȳ+, 1)
(s̄, ν̄) (10, 500) (1, 200)
(M̄ ; β̄) (250; 0.4, 0.3, 0.3) (5J ; 1/J, . . . , 1/J)
(ā0, b̄0) (100, 400) (5, 2)
(ā1, b̄1) (400, 100) (2, 5)
(āπ, b̄π) (200, 50) (100, 3)

Note. ȳ+ is the sample average of nonzero durations.

where Nlk =
∑

d,i 1{sd,i = l, sd,i+1 = k} is the number of transitions from l to k over all D days.

We draw a proposal using two independent beta distributions, ξ∗00 | s ∼ Beta(N00 + ā0, N01 + b̄0)

and ξ∗11 | s ∼ Beta(N11 + ā1, N10 + b̄1). This would be an exact draw from the conditional posterior

if we were conditioning on the first indicator in each day. We correct for the approximation by

accepting the proposal with probability

min

{
1,

D∏
d=1

(
1− ξ∗11

1− ξ11

)1−sd,1 (1− ξ∗00

1− ξ00

)sd,1 (2− ξ00 − ξ11

2− ξ∗00 − ξ∗11

)}
.

Drawing from p(π | s, y)

Given the latent regime indicators, a Beta prior for π is conditionally conjugate and the conditional

posterior distribution is π | s, y ∼ Beta(āπ +N0, b̄π +N1), where Nk =
∑

d,i 1{sd,i = 0, yd,i = k}.

3.4 Results

In this section, we first report results of tests of program correctness meant to verify the conceptual

validity and the implementation in code of our posterior simulator. We then provide an illustrative

empirical example for the use of our censored SCD model using transaction data for three equities

traded on the Toronto Stock Exchange.
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3.4.1 Getting it right (GIR)

The correctness tests described here are similar to those described in Geweke (2004). Those tests

take the form of tests for the equality of two stationary distributions and have power against a

wide array of conceptual and programming errors. The idea is to generate an MCMC sample

for {Θ(m), s(m), x(m), y(m)}Mm=1 from the joint distribution of Θ, s, x and y using the simulation

methods that will be used for posterior simulation to update (Θ, s, x) conditional on y and an

additional Gibbs block to update y conditional on (Θ, s, x).6 Under the hypothesis that the posterior

simulation methods are correctly implemented and conceptually valid, the marginal distribution of

the parameter vector {Θ(m)}Mm=1 is identical to its known prior distribution.

As mentioned in Section 2.4.1 of the second chapter, some difficulties with the underlying continuous-

time OU process x(t) make this exercise impractical without minor adjustments. Hence, we make

a similar modification to the latent state process (3.3) and replace it for the GIR simulation by a

homogeneous autoregressive process, parametrized in a way that resembles to the sampled OU:

xd,i+1 |xd,i ∼ N
(
m(ti) + e−ρ(xd,i −m(ti−1)), σ2(1− e−2ρ)

)
. (3.15)

This implies that the number of state variables equals the number of observations, that is, unlike

in the empirical application, we draw one state variable xd,i by observation even if yd,i = 0. This

make sure the number of states does not change from iteration to iteration. We also turn off the

adaptive schemes implemented to tuned the random walk proposals in the Gibbs block updating

(σ, ρ, x) and β and instead fix the proposal covariances to the prior covariance of the parameter

vector in question.

We generate a simulation sample of size M = 106 for analysis from a model with a normalized

distribution with J = 3 components and a diurnal pattern defined by a B-spline function with

two knots, topen and tclose, giving an expansion with L = 4 cubic polynomials. To avoid trades in

simulations occurring after tclose, where the diurnal pattern is undefined, we choose the sample size

n for the durations and prior distributions such that the probability that the last transaction of the

day occurs after tclose is extremely small. For the sample of durations, we fix D = 1 and choose

a sample size of n = 20 observations, and set the length of the trading session at 600 seconds.

Values of the prior hyper-parameters are shown in Table 3.1. The tighter prior distribution, and
6Details of this additional Gibbs block is provided in Appendix C.2.
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Table 3.2: Difference between prior and simulation sample first and second moments in the Getting it right
experiment.

θ E[θ]− θ̄ σ̂nse t-stat E[θ2]− θ̄2 σ̂nse t-stat

log σ -0.000035 0.000099 -0.357 0.000070 0.000197 0.353
log ρ 0.000048 0.000102 0.469 -0.000222 0.000468 -0.474
µ -0.000308 0.000239 -1.290 -0.000870 0.000716 -1.215
τ -0.019117 0.010328 -1.851 -1.936401 1.037820 -1.866
β1 -0.000028 0.000316 -0.090 -0.000012 0.000252 -0.049
β2 -0.000333 0.000290 -1.150 -0.000186 0.000174 -1.065
β3 0.000362 0.000281 1.286 0.000221 0.000170 1.301
ξ00 -0.000052 0.000055 -0.949 -0.000019 0.000022 -0.845
ξ11 -0.000094 0.000065 -1.444 -0.000150 0.000104 -1.445
π 0.000012 0.000078 0.159 0.000022 0.000124 0.175

much smaller number of observations, compared with our empirical examples, ensure high numerical

precision with a moderate amount of computation.

Table 3.2 shows the results for the comparison between the prior and the simulation sample first and

second moment. In each case, the first column gives, for selected parameters θ, the difference between

the prior moment E[θk] and the simulation sample moment θ̄k (k = 1, 2); the second, the numerical

standard error (i.e. the simulation standard deviation quantifying error in finite simulation) of the

sample moment; and the third, the t-statistic for the test of the hypothesis that the moment of

the parameter, with respect to the stationary distribution of the Markov chain, equals the (known)

prior moment. Numerical standard errors are computed using the overlapping batch means method

(see. Flegal & Jones 2010). Rather than reporting results for all elements of δ, we report results for

their mean µ ≡ u′δ and the smoothing parameter τ . Sample moments are close to the true prior

moments, relative to the numerical standard error. Each of the hypotheses is a necessary condition

for the correctness of our simulation methods. The results fail to cast doubt on this correctness: no

hypothesis (out of 20) is rejected at the 10% level.

3.4.2 An empirical example

Data

We demonstrate our censored SCD model and posterior simulation methods using transaction data

from March 17 to March 21, 2014 for three equities traded on the Toronto Stock Exchange (TSX):
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Table 3.3: Descriptive statistics of the cleaned sample from March 17 to 21, 2014.

Trades Mean Std. Max. C.V. 0s% 1s% 2s% 3s% 4s% 5s%

POT 25203 4.28 14.21 434 3.32 75.5 3.5 2.0 1.6 1.3 1.1
RY 31343 3.44 9.81 236 2.85 71.3 4.6 2.6 2.2 1.9 1.6
TD 32359 3.34 10.38 266 3.11 73.5 4.3 2.5 2.1 1.7 1.5

The first column gives the number of transactions. The next four columns give the mean, standard deviation,
maximum value and coefficient of variation of durations. The last six columns give the percentage of trade durations
equal to 0s, 1s, 2s, 3s, 4s and 5s.

Figure 3.1: Histograms of regular durations, as classified by the GW aggregation rule, from 0s to 25s. Bins
are aligned with clock seconds.

the Potash Corporation (POT), the Royal Bank of Canada (RY) and the Toronto-Dominion Bank

(TD).7 The data comes from the TickData database, where it is freely available.8 For each equity,

we remove observations that result from atypical market conditions or have aberrant prices, follow-

ing the procedure detailed in Brownlees & Gallo (2006). We select for analysis the transactions

recorded between 10:00 am and 4:00 pm. Trading times are truncated to the second; in other data

sets, transaction times can be recorded to higher levels of precision. Hence, in this case, the ob-

served transaction times are equivalent to the censored transaction times. Descriptive statistics of

the cleaned data are reported in Table 3.3. For each duration series, we report the number of obser-

vations, followed by the sample mean, standard deviation, maximum, and coefficient of variation.

An exponential has a coefficient of variation of 1, so the empirical distributions are considerably

overdispersed relative to the exponential. The second part of the table reports the percentage of

discrete durations recorded as 0s, 1s, 2s, 3s, 4s, and 5s.
7The Potash Corporation merged with Agrium on January 1, 2018 to form Nutrien Ltd (NTR).
8https://www.tickdata.com/equity-data/
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Model specification and prior distribution

We analyze the full samples directly using the all-duration model (A-CSCD). To compare our

probabilistic approach to classifying durations as regular or cluster durations with deterministic

aggregation rules, we also construct subsamples of the durations classified as regular by the GW

aggregation rule. We will refer to these subsamples as GW-filtered subsamples, and analyze them

using the regular-duration model (R-CSCD). Figure 3.1 shows histograms of durations that are

classified as regular by this rule. We remind the reader that the same-second aggregation rule

of common practice is cruder than the GW aggregation rule; we would expect distortions arising

from the same-second aggregation rule to be even more serious than those reported here. For both

specifications (all-duration and regular-duration) we report results for five models, each with a fixed

value of J , the number of terms in the normalized conditional density; those values are J = 1, 2, 3, 4

and 5. In all models, the diurnal pattern is specified as a B-spline function defined on knots set on

each half-hour, giving an expansion with L = 15 piecewise polynomials.

Values of the prior hyper-parameters are shown in the third column of Table 3.1, where ȳ+ denotes

the sample average of the discrete nonzero durations. Overall, we select fairly diffuse prior distribu-

tions for the parameters of the latent intensity state xd,i, the mean of the coefficient of the B-spline

function m(t) describing diurnal patterns and the transition probabilities of the latent indicator sd,i.

The hyperparameter µ̄ρ for the mean reversion parameter ρ gives for each series an autocorrelation

of approximately 0.9 at the prior mean for ȳ+. The values of (s̄, ν̄) give a more diffuse prior distribu-

tion for the smoothing parameter τ than the one suggested by Lang & Brezger (2004). For reasons

given in the introduction, we center the prior distribution for the normalized conditional duration

density pε(·) around the exponential distribution and set the concentration parameter for moderate

shrinkage toward it: most of posterior variances of the βj coefficients are less than a quarter of the

prior variances. Finally, we select an informative prior distribution for π to strongly favour cluster

durations of 0s over 1s.

Parameter estimates

Tables 3.4 , 3.5 and 3.6 show the results for the POT, RY and TD series, respectively. For each

selected parameter, we report the posterior mean and standard deviation, and the relative numerical

efficiency (RNE) for the posterior mean. Defined in Geweke (1989), the relative numerical efficiency

is a variance ratio that quantifies the numerical precision of the sample mean of a ergodic process,
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Figure 3.2: Diurnal pattern at the posterior mean (dashed line) and for 1000 posteriors draws (solid lines)
obtained for the full samples and the all-duration model with J = 1. The figure on the left is for the POT
series; the one on centre, for the RY series ; the one on the left, the TD series.

relative to that of a (hypothetical) iid sample. RNE times sample size gives the size of an iid

sample with the same numerical standard error. Numerical standard errors are computed using the

overlapping batch mean method (Flegal & Jones 2010). The posterior samples consist of 25,000

retained draws recorded after a burn-in period of 10,000 draws.

Figure 3.2 shows the posterior mean (dashed line) and 1000 posterior draws of the diurnal pattern

m(t), for the full samples and the all-duration model with J = 1 specification. In each case,

we obtain the usual inverted U-shaped diurnal pattern found in most studies, with more trading

intensity near the opening and closing times. Although different in level, the diurnal patterns are

similar in shape. The posterior variation in the diurnal patterns is fairly small compared to the

variation in average intensity through the day. The posterior distribution for δ is not very sensitive

to J or to the choice between deterministic and probabilistic classification. For this reason, we do

not show illustrations similar to Figure 3.2 for other specifications.

Model comparison

In this subsection, we first compare the normalized densities for the all-duration and the regular-

duration models. We then compare parameters of the latent intensity state between models and

specifications. Finally, we propose a criteria to select the most appropriate number of terms in the

normalized density based on in-sample predictive performance.

Figure 3.3 shows normalized density functions pε(·) at the posterior mean of the β coefficients.

Upper panels are for the all-duration models and the full samples; lower panels for the regular-
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Figure 3.3: Normalized density functions at the posterior mean of β. Upper panels are for the all-duration
models and the full samples; lower panels, for the regular-duration models and the GW-filtered subsamples.
Panels on the right are for the POT series; panels in the middle, for the RY series; panels on the left, for
TD series.

duration models and the GW-filtered subsamples; POT on the left, RY in the middle and TD on

the right. We see that the conditional density at the posterior mean of β varies much more with

J at shorter durations than it does at longer durations. With the exception of the POT series,

there is a non-negligible difference between the densities for the all-duration and regular-duration

models obtained with 4 and 5 terms. For the regular-duration models (lower panels), the density

at zero decreases with J beyond three terms for the RY and the TD series. With extra flexibility,

the density increasingly fits the spurious scarcity of 0s durations in the GW-filtered sample. For

the all-duration models (upper panels), the density at zero increases with J , and this, for the three

series. With the latent classification approach, there is more variation of the density near zero,

where the uncertainty about the number of regular 0s and 1s durations comes into play. For each

series, the mean densities obtained using 3, 4 and 5 terms are barely distinguishable. These results

suggest that, for the all-duration models, a specification using J = 3 term is able to capture well

the normalized density.

Table 3.7 reports posterior quantiles and moments of the half-life t1/2, measured in seconds, of the

OU process xd(t): the length of time it takes for xd(t) and xd(t + t1/2) to have a correlation of

1/2 between them. This quantity is more easily interpretable than the mean reversion parameter
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Table 3.7: Posterior quantiles and moments of the half-life t1/2, measured in seconds, of the latent intensity
state OU process xd(t).

All-duration models Regular-duration models
Mean Std. Q0.01 Q0.50 Q0.99 Mean Std. Q0.01 Q0.50 Q0.99

POT J = 1 178 50 93 171 324 136 37 72 131 249
J = 5 416 106 232 401 727 399 100 220 386 695

RY J = 1 234 64 120 224 422 163 48 84 156 307
J = 5 422 108 224 409 732 337 94 171 324 610

TD J = 1 59 11 38 58 89 71 13 46 70 110
J = 5 168 41 96 163 293 156 39 84 152 269

ρ. The left columns are for the full samples and the all-duration models and the right columns for

the GW-filtered subsamples and the regular-duration models. For each series and model, we report

the results for the J = 1 and the J = 5 specifications. Persistence of the latent intensity process is

fairly high, but much less so for the TD series. There is a fair degree of posterior uncertainty about

t1/2, and the posterior distribution is somewhat sensitive to how regular durations are classified and

to the number of terms, J , in the normalized duration density. The marginal standard deviation

σ is estimated more precisely (see Tables 3.4 , 3.5 and 3.6). Its distribution is less affected by how

the regular durations are classified and depends very little on J .

Rather than estimate J , which is difficult in models with two different state variables, we compare

specifications in term of their in-sample predictive performance using log-predictive scores (LPS):

LPS ≡ − 1

n

D∑
d=1

nd∑
i=1

log p(yd,i | y) (3.16)

where p(yd,i | y) is the pointwise predictive density defined as

p(yd,i | y) =

∫
p(yd,i |Θ, s, x)p(Θ, s, x | y)dΘdsdx.

To compute this density, we evaluate the expectation through simulation using draws from the

posterior distribution:

p(yd,i | y) ≈ 1

M

M∑
m=1

p(yd,i | s
(m)
d,i , x

(m)
d,i , π

(m), β(m)), (3.17)

where s(m)
d,i , x

(m)
d,i , π

(m) and β(m) are them’th posterior draws generated from our posterior simulation
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Table 3.8: In sample log-predictive score

A-CSCD(1) A-CSCD(2) A-CSCD(3) A-CSCD(4) A-CSCD(5)

LPS 1.0883 1.0948 1.0965 1.0967 1.0967
POT LPS 0-1 0.1712 0.1691 0.1648 0.1644 0.1642

LPS 2+ 4.5227 4.5611 4.5855 4.5875 4.5884

LPS 1.1807 1.1854 1.1857 1.1856 1.1856
RY LPS 0-1 0.2180 0.2134 0.2080 0.2074 0.2068

LPS 2+ 4.2212 4.2551 4.2737 4.2751 4.2771

LPS 1.0857 1.0956 1.0999 1.0998 1.1001
TD LPS 0-1 0.1940 0.1922 0.1863 0.1856 0.1851

LPS 2+ 4.2161 4.2671 4.3073 4.3093 4.3120

R-CSCD(1) R-CSCD(2) R-CSCD(3) R-CSCD(4) R-CSCD(5)

LPS 4.2965 4.3294 4.3408 4.3405 4.3400
POT LPS 0-1 3.0519 3.0219 2.9615 2.9624 2.9659

LPS 2+ 4.5170 4.5610 4.5852 4.5847 4.5834

LPS 3.9703 3.9955 3.9963 3.9953 3.9941
RY LPS 0-1 2.8355 2.8129 2.8074 2.8302 2.8365

LPS 2+ 4.2149 4.2504 4.2525 4.2463 4.2435

LPS 3.9643 4.0033 4.0076 4.0040 4.0012
TD LPS 0-1 2.7520 2.7472 2.7391 2.7676 2.7771

LPS 2+ 4.2226 4.2709 4.2778 4.2674 4.2620

methods and M is the total number of posterior draws. A lower LPS is an indication of a better

in-sample predictive performance. In addition to LPS, we also compute (in-sample) log-predictive

scores restricted to zero and one second durations (LPS 01), and durations of two seconds and more

(LPS 2+), each obtained by averaging the pointwise densities of the corresponding observations.

Table 3.8 shows the results; the upper panel are for full samples and all-duration models; the lower

panel for GW-filtered subsamples and regular-duration models. For the all-duration models, the

J = 1 specification provides the best in-sample predictive performance for each series; additional

flexibility allows a better fit for the 0s and 1s durations, but at the expense of a worse fit for

longer durations. Notice that we obtain similar results for the regular-duration models. Based on

in-sample LPS, an all-duration model with an exponential distribution as normalized conditional

density is a sensible choice for modelling censored trade durations with zero inflation.
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Figure 3.4: Histogram of posterior probabilities of being regular, for 0s or 1s durations, for the full sample
and the all-duration model with J = 1. The histogram on the left is for the POT series; the one in the middle,
the RY series; the one on the right, the TD series. This histograms illustrate variation over observations,
not posterior uncertainty.

Table 3.9: Posterior quantiles and moments for the number of 0s and 1s discrete durations classified as
regular.

0s 1s Mean Std. q0.01 q0.99 Mean Std. q0.01 q0.99

POT 19017 870 275 19 234 320 540 22 489 591
RY 22359 1443 554 27 493 617 1063 32 989 1136
TD 23782 1399 615 30 548 685 1097 29 1029 1163

Classification

For all-duration models, we record, at each posterior draw, whether each duration recorded as 0s

or 1s is a regular or a cluster duration; classifications vary from draw to draw. We summarize

this in two ways: first, we compute, for each of these durations, the probability that it is regular

and illustrate the variation of this probability over durations; second, we describe the posterior

distribution of the number of these durations that are regular. Figure 3.4 shows histograms of

classification probabilities for durations of 0s and 1s under the all-duration model with J = 1, for

each series. The horizontal axes give the posterior probability that a duration is regular, and the

vertical height of the bar at a given histogram bin gives the proportion of 0s or 1s durations whose

posterior probability of being regular is within that bin. Almost every 0s duration has a posterior

probability less than 0.2 of being a regular duration; for a large majority, it is less than 0.05. In

contrast, most 1s durations have a posterior probability of more than 0.5 of being regular.

While 0s durations are each quite unlikely to be regular, they are very numerous, and so the
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probability that many of them are regular is nonetheless very high. Table 3.9 shows posterior

quantiles and moments of the number of 0s and 1s durations classified as regular. The first two

columns report the total number of 0s and 1s durations. Results for 0s durations are reported in

the next four columns; those for 1s durations, in the last four columns. For comparison, the GW

rule classifies 71 durations of 0s as regular for the POT series, 181 for RY series, and 129 for TD

series. The GW rule does not apply to durations of 1s and so all them are considered regular (third

column). Our probabilistic approach classifies as regular many more 0s durations and slightly fewer

1s durations.

To summarize: for each 0s duration, classifying it as a cluster duration is the right choice, under

symmetric loss. Collectively, these zero/one decisions lead one to severely underestimate the number

of these durations that are regular. With our probabilistic approach, we get a very good idea about

how many of these durations are regular, although of course we do not magically discover which

ones. This approach is exactly how we avoid artifacts arising from the spurious aggregation of

unrelated, but nearly simultaneous, trades.

3.5 Concluding remarks

Models in the literature are designed to capture regular durations, those between unrelated trades.

They are not intended, nor well suited, to capture the observed clustering of related trades. Common

practice is to aggregate seemingly related trades into clusters and model only the “regular” durations

between clusters. Even if trades could be classified as related or not without error, it is not clear that

this would be desirable since it involves discarding information relevant to liquidity measurement

and market microstructure. Furthermore, since it is not easy to tell related trades from unrelated

trades that just happen to occur within the same second, errors of classification are inevitable. The

most common aggregation rule, the same-second rule, amounts to calling all 0s durations cluster

durations, and all others, regular durations. It is clear, however, that many of the 0s durations must

be regular by happenstance—we just don’t know which ones—and they are erroneously classified

as cluster durations by the same-second rule. One consequence is to understate trade intensity and

liquidity, especially at times of high intensity. Another is that the abrupt change in the number of

durations between 0s and 1s makes it difficult to fit a conditional duration distribution. The rule

suggested by Grammig & Wellner (2002) clearly mitigates the problem, but it does not eliminate

it.
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The solution we proposed is (1) to work with truncated transaction times and to model the resulting

discrete durations as a censored continuous-time process and (2) to make our model a mixture model,

with a binary state variable indicating which durations are cluster durations and which are regular.

Identification of the two states comes from the very tight distribution of cluster durations and, more

subtly, the shrinkage of the underlying conditional duration density towards an exponential density,

which varies slowly near zero. This probabilistic, rather than deterministic, classification, allows us

to learn that any given pair of trades recorded in the same second are very probably related, at the

same time as we learn that many such pairs are not in fact pairs of related trades.

In an empirical example, we found that the underlying conditional duration density is well cap-

tured by an exponential distribution, whether or not the cluster durations are classified using our

probabilistic approach or the deterministic rule suggested by Grammig & Wellner (2002). However,

the measurement of trading intensity differs considerably between the classification rules. We claim

that this is an artifact of the misclassification of many unrelated but nearly simultaneous trades as

being related.

Despite not learning which discrete 0s durations are regular, we were able to estimate quite precisely

the underlying conditional duration density. We found that the conditional hazard function for

regular durations varies much less than what is found in many studies. We attribute this to better,

probabilistic, classification of trades as related or not and using flexible duration distributions instead

of parametric distributions whose hazard functions have implausible behaviour near zero.
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Annexes
Appendices

A Appendices for Chapter 1

A.1 Computing the approximate gradient and Hessian of ln p(y|θ)

Here we compute approximations of gy|θ(θ) and Hy|θ(θ), the gradient and Hessian of ln p(y|θ) with

respect to θ. For the special case where θ is the complete parameter vector, gy|θ(θ) and Hy|θ(θ) are

the gradient and Hessian of the log likelihood function.

This appendix is organized as follows. First, we show that gy|θ(θ) = Ex|θ,y[gx|θ(θ)] and Hy|θ(θ) =

Ex|θ,y[Hx|θ(θ)]+Varx|θ,y[gx|θ(θ)], where gx|θ(θ) and Hx|θ(θ) are the gradient and Hessian of ln p(x|θ)

with respect to θ. We then compute exact expressions for gx|θ(θ) and Hx|θ(θ) followed by a descrip-

tion of exact, but infeasible, sequential computation for their moments Ex|θ,y[gx|θ(θ)], Ex|θ,y[Hx|θ(θ)],

and Varx|θ,y[gx|θ(θ)]. Next, we modify these computations so that they are feasible, but approxi-

mate, drawing on the approximate distribution for x|θ, y constructed using the HESSIAN method.

Finally, we provide a step-by-step overview of these computations.

For the rest of this appendix, all expectations, including variances and covariances, are conditional

on θ and y. To simplify the exposition, we suppress the notation for this conditioning, and speak

of functions of θ and y as constants.

Derivatives of ln p(y|θ) as expectations with respect to x|θ, y

We can write the conditional posterior density of x as

p(x|θ, y) =
p(x|θ)
p(y|θ)

p(y|x) = eψ(x,θ)p(y|x),
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where ψ(x, θ) = log p(x|θ)− log p(y|θ). Integrating both sides of this equation yields the identity

∫
Rn

eψ(x,θ)p(y|x) dx = 1.

We now proceed to take partial derivatives with respect to elements of θ, denoting partial derivatives

of ψ(x, θ) using subscripts. The partial derivative with respect to θi is∫
Rn

ψi(x, θ)e
ψ(x,θ)p(y|x) dx = Ex|θ[ψi(x, θ)] = 0,

and organizing the three first order partial derivatives in vectorial form gives

gy|θ(θ) = Ex|θ,y[gx|θ(θ)]. (A.1)

Taking a second partial derivative, with respect to θj , gives∫
Rn

[ψij(x, θ) + ψi(x, θ)ψj(x, θ)] e
ψ(x,θ)p(y|x) dx = Ex|θ,y[ψij(x, θ) + ψi(x, θ)ψj(x, θ)] = 0,

and organizing the second order partial derivatives in matrix notation givesEx|θ,y[Hy|θ(θ)−Hx|θ(θ)]+

Varx|θ,y[gx|θ(θ)] = 0 or, equivalently,

Hy|θ(θ) = Ex|θ,y[Hx|θ(θ)] + Varx|θ,y[gx|θ(θ)]. (A.2)

Computing gx|θ(θ) and Hx|θ(θ)

We now compute exact expressions for gx|θ(θ) and Hx|θ(θ). We first write

ln p(x|θ) =
n

2
(lnω− ln 2π) +

1

2
ln(1−φ2)− ω

2
e>Qe =

n

2
(θ1− ln 2π) +

1

2
ln(1− tanh2 θ2)− e

θ1

2
e>Qe,

where

Q =



1 −φ 0 · · · 0

−φ 1 + φ2 . . . . . .
...

0
. . . . . . . . . 0

...
. . . . . . 1 + φ2 −φ

0 · · · 0 −φ 1


=



1 − tanh θ2 0 · · · 0

− tanh θ2 1 + tanh2 θ2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . 1 + tanh2 θ2 − tanh θ2

0 · · · 0 − tanh θ2 1


.
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The gradient and Hessian of ln p(x|θ) with respect to θ are

gx|θ(θ) =


n
2 −

ω
2 e
>Qe

−φ− ω
2 e
>Q′e

ωqe

 , Hx|θ(θ) =


−ω

2 e
>Qe −ω

2 e
>Q′e ωqe

−ω
2 e
>Q′e −(1− φ2)− ω

2 e
>Q′′e ωq′e

ωqe ωq′e −ωqι

 , (A.3)

where Q′ and Q′′ are the first and second derivatives of the matrix Q with respect to the scalar θ2,

q ≡ ι>Q = (1−φ, (1−φ)2, . . . , (1−φ)2, (1−φ)) and q′ ≡ ι>Q′ = −(1−φ2)(1, 2(1−φ), . . . , 2(1−φ), 1).

We computeQ′ andQ′′ as follows. There are two unique non-constant elements ofQ, −φ = − tanh θ2

and 1 + φ2 = 1 + tanh2 θ2. Using d tanh θ/dθ = 1 − tanh2 θ, we obtain the first two derivatives of

these two expressions:

d

dθ2
[− tanh θ2] = −(1− tanh2 θ),

d2

dθ2
2

[− tanh θ2] = 2 tanh θ2(1− tanh2 θ2),

d

dθ2
[1 + tanh2 θ2] = 2 tanh θ2(1− tanh2 θ2),

d2

dθ2
2

[1 + tanh2 θ2] = (2− 6 tanh2 θ2)(1− tanh2 θ).

Then in terms of φ = tanh θ2,

Q′ = (1− φ2)



0 −1 0 · · · 0

−1 2φ
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . 2φ −1

0 · · · 0 −1 0


, Q′′ = 2(1− φ2)



0 φ 0 · · · 0

φ 1− 3φ2 . . . . . .
...

0
. . . . . . . . . 0

...
. . . . . . 1− 3φ2 φ

0 · · · 0 φ 0


.

In the expressions for gx|θ(θ) andHx|θ(θ) in equation (A.3), we find the quadratic forms e>Qe, e>Q′e

and e>Q′′e and the linear forms qe and q′e. In order to take means, variances and covariances of

these, it is convenient to re-center them around the posterior mode x◦ = (x◦1, . . . , x
◦
n), which is

available as a computational byproduct of the HESSIAN method. For each t, define dt and εt

through the decomposition et = xt − µt = (x◦t − µt) + (xt − x◦t ) ≡ dt + εt. Also let ε = (ε1, . . . , εn)

and d = (d1, . . . , dn). Then e>Qe = d>Qd + 2d>Qε + ε>Qε, and similarly for e>Q′e and e>Q′′e.

Also, qe = qd+ qε and q′e = q′d+ q′ε. Since d is constant,

E[e>Qe] = d>Qd+ E[(2d+ ε)>Qε],
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Var[e>Qe] = Var[(2d+ ε)>Qε]

Cov[e>Qe, e>Q′e] = Cov[(2d+ ε)>Qε, (2d+ ε)>Q′ε],

Cov[e>Qe, qe] = Cov[(2d+ ε)>Qε, qε],

E[qe] = qd+ E[qε], and Var[qe] = Var[qε].

Each of the expressions E[e>Q′e], E[e>Q′′e], E[q′e], Var[e>Q′e] and Cov[e>Qe, q′e] is similar to

one of the above.

Sequential computation of Ex|θ,y[gx|θ,y], Ex|θ,y[Hx|θ,y] and Varx|θ,y[gx|θ,y]

The five quantities (2d+ ε)>Qε, (2d+ ε)>Q′ε, (2d+ ε)>Q′′ε, qε and q′ε, can be expressed as the five

sums

w(i)
n (εn) +

n−1∑
τ=1

w(i)
τ (ετ , ετ+1), i = 1, . . . , 5,

each for an appropriate choice of functions wt. For the first quantity, (2d+ ε)>Qε, we have

w
(1)
1 (ε1, ε2) = 2(d1 − φd2)ε1 + ε21 − 2φε1ε2, w(1)

n (εn) = 2(dn − φdn−1)εn + ε2n,

and for t = 2, 3, . . . , n− 1,

w
(1)
t (εt, εt+1) = 2((1 + φ2)dt − φ(dt−1 + dt+1))εt + (1 + φ2)ε2t − 2φεtεt+1.

The expressions for w(2)
t (εt, εt+1) and w(3)

t (εt, εt+1), giving (2d+ε)>Q′ε and (2d+ε)>Q′′ε are similar.

For the fourth quantity, qε, we have

w
(4)
1 (ε1, ε2) = (1− φ)ε1, w(4)

n (εn) = (1− φ)εn, w
(4)
t (εt, εt+1) = (1− φ)2εt, t = 2, . . . , n− 1.

The expression for w(5)
t (εt, εt+1), giving q′ε, is similar to this. The special structure of the quadratic

forms comes from the fact that Q, Q′ and Q′′ are tridiagonal.

The computation of E[gx|θ(θ)], E[Hx|θ(θ)] and Var[gx|θ(θ)], requires computing the expectations

m(i)
n = E

[
w(i)
n (εn) +

n−1∑
τ=1

w(i)
τ (ετ , ετ+1)

]
, (A.4)
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for i = 1, . . . , 5 and the covariances (including variances)

c(i,j)
n = Cov

[
w(i)
n (εn) +

n−1∑
τ=1

w(i)
τ (ετ , ετ+1), w(j)

n (εn) +
n−1∑
τ=1

w(j)
τ (ετ , ετ+1)

]
, (A.5)

for (i, j) ∈ I ≡ {(1, 1), (2, 2), (4, 4), (1, 2), (1, 4), (2, 4)}. The m(i)
n can be obtained by repeated

application of the law of iterated expectations: define, for t = 0, . . . , n− 1,

m
(i)
t (εt+1) ≡ E

[
t∑

τ=1

w(i)
τ (ετ , ετ+1) | εt+1

]
.

Then m(i)
0 (ε1) = 0 trivially and for t = 1, . . . , n− 1,

m
(i)
t (εt+1) = E

[
E

[
t∑

τ=1

w(i)
τ (ετ , ετ+1) | εt, εt+1

]
| εt+1

]

= E

[
w

(i)
t (εt, εt+1) + E

[
t−1∑
τ=1

w(i)
τ (ετ , ετ+1) | εt

]
| εt+1

]
= E[w

(i)
t (εt, εt+1) +m

(i)
t−1(εt) | εt+1].

(A.6)

It is the posterior Markov property of {εt} that allows us to drop the εt+1 from the inner expectation

in the second line. Using a similar development, we obtain the final value m(i)
n = E[w

(i)
n (εn) +

m
(i)
n−1(εn)].

Likewise, the c(i,j)
n can be obtained by repeated application of the law of total covariance: define,

for t = 0, . . . , n− 1,

c
(i,j)
t (εt+1) ≡ Cov

[
t∑

τ=1

w(i)
τ (ετ , ετ+1),

t∑
τ=1

w(j)
τ (ετ , ετ+1) | εt+1

]
.

Then c(i,j)
0 (ε1) = 0 and for t = 1, . . . , n− 1,

c
(i,j)
t (εt+1) = E

[
Cov

[
t∑

τ=1

w(i)
τ (ετ , ετ+1),

t∑
τ=1

w(j)
τ (ετ , ετ+1) | εt, εt+1

]
| εt+1

]

+ Cov

[
E

[
t∑

τ=1

w(i)
τ (ετ , ετ+1) | εt, εt+1

]
, E

[
t∑

τ=1

w(j)
τ (ετ , ετ+1) | εt, εt+1

]
| εt+1

]
= E[c

(i,j)
t−1 (εt) | εt+1] + Cov[w

(i)
t (εt, εt+1) +m

(i)
t−1(εt), w

(j)
t (εt, εt+1) +m

(j)
t−1(εt) | εt+1].

(A.7)
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Finally, we obtain the desired value

c(i,j)
n = E[c

(i,j)
n−1(εn)] + Cov[w(i)

n (εn) +m
(i)
n−1(εn), w(j)

n (εn) +m
(j)
n−1(εn)].

Now we can write, using (A.3), (A.4) and (A.5),

gy|θ(θ) = E[gx|θ(θ)] =


n
2

−φ

0

+
ω

2


−d>Qd−m(1)

n

−d>Q′d−m(2)
n

2(qd+m
(4)
n )

 (A.8)

and

Hy|θ(θ) = Var[gx|θ(θ)] + E[Hx|θ(θ)] =
ω2

4


c

(1,1)
n c

(1,2)
n −2c

(1,4)
n

c
(1,2)
n c

(2,2)
n −2c

(2,4)
n

−2c
(1,4)
n −2c

(2,4)
n 4c

(4,4)
n



+


0 0 0

0 −(1− φ2) 0

0 0 0

+
ω

2


−d>Qd−m(1)

n −d>Q′d−m(2)
n 2(qd+m

(4)
n )

−d>Q′d−m(2)
n −d>Q′′d−m(3)

n 2(q′d+m
(5)
n )

2(qd+m
(4)
n ) 2(q′d+m

(5)
n ) −2qι

 .
(A.9)

The matrices Q, Q′ and Q′′ are tridiagonal and each has only three unique elements. Thus the

quadratic form d>Qd is efficiently computed with O(n) operations as

d>Qd = Q11d
2
1 +Qnnd

2
n +

n−1∑
t=2

Qttd
2
t +

n−1∑
t=1

Qt,t+1dtdt+1

= Q11(d2
1 + d2

n) +Q22

n−1∑
t=2

d2
t +Q12

n−1∑
t=1

dtdt+1,

and the quadratic forms d>Q′d and d>Q′′d with O(1) additional operations by replacing Q11, Q22

and Q12 in the second line with Q′11, Q′22 and Q′12 and then Q′′11, Q′′22 and Q′′12.

Feasible approximations of Ex|θ,y[gx|θ,y], Ex|θ,y[Hx|θ,y] and Varx|θ,y[gx|θ,y]

Unfortunately, we cannot evaluate the expectations and covariances in (A.6) and (A.7). Here, we

provide feasible but approximate computations, similar to the exact but infeasible computations

in A.1, but using the HESSIAN method proposal distribution q(x|θ, y) to approximate those ex-
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pectations and covariances. Our strategy involves approximating various conditional moments by

cubic polynomials. At each step t = 1, . . . , n− 1, we first compute approximations of E[εt|εt+1] and

several other conditional moments of εt given εt+1, as cubic polynomials in εt+1. We then compute

approximations of the m(i)
t (εt+1) and c

(i,j)
t (εt+1), which are conditional moments of functions of

(ε1, . . . , εt) given εt+1, as cubic polynomials in εt+1. At the last step t = n, we compute approxima-

tions of the final values m(i)
n , i = 1, . . . , 5 and c(i,j)

n , (i, j) ∈ I, which are unconditional expectations

of functions of εn. The following description is at a relatively high level, to avoid unnecessary detail.

For example, we will express the product of two polynomials directly, rather than give expressions

for individual coefficients. Our implementation in code mirrors this modularity; to continue the

example, we use function calls for polynomial multiplication.

The HESSIAN method of McCausland (2012) generates many computational byproducts includ-

ing, for t = 1, . . . , n − 1, a polynomial function bt(εt+1) approximating the conditional mode of εt

given εt+1, and the polynomial functions δt(εt+1) and st(εt+1) approximating E[εt−bt(εt+1)|εt+1] and

lnE[(εt−bt(εt+1))2|εt+1]. It also generates analogous constants bn, approximating the unconditional

mode of εn; δn, approximating E[εn]− bn; and sn, approximating lnE[(εn − bn)2]. We use st(εt+1)

to construct a polynomial Σt(εt+1) approximating E[(εt − bt(εt+1))2|εt+1], based on a first order

Taylor expansion of the exponential function. Reasonable approximations of E[(εt− bt(εt+1))3|εt+1]

and E[(εt − bt(εt+1))4|εt+1] are 5δt(ε)Σt(εt+1) and 3Σ2
t (εt+1), respectively. Although the HESSIAN

method provides fifth order polynomials, we truncate bt(εt+1), δt(εt+1) and Σt(εt+1) to cubic poly-

nomials.

Using these, we define the following approximate conditional moments of εt given εt+1:

E[εt|εt+1] ≈ Ẽt,1(εt+1) ≡ bt(εt+1) + δt(εt+1), (A.10)

Var[εt|εt+1] ≈ Ṽt,1(εt+1) ≡ Σt(εt+1)− δ2
t (εt+1), (A.11)

E[ε2t |εt+1] ≈ Ẽt,2(εt+1) ≡ Ẽ2
t,1(εt+1) + Ṽt,1(εt+1), (A.12)

Cov[εt, ε
2
t |εt+1] ≈ C̃t,12(εt+1) ≡ 2bt(εt+1)Ṽt,1(εt+1) + 4δt(εt+1)Σt(εt+1), (A.13)

E[ε3t |εt+1] ≈ Ẽt,3(εt+1) ≡ Ẽt,1(εt+1)Ẽt,2(εt+1) + C̃t,12(εt+1), (A.14)

Var[ε2t |εt+1] ≈ Ṽt,2(εt+1) ≡ 2b2t (εt+1)C̃t,12(εt+1) + 2Σ2
t (εt+1), (A.15)

where polynomial multiplication is taken to be multiplication followed by truncation of the result
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to a cubic polynomial. The analogous time t = n values are constant and defined as

Ẽn,1 ≡ bn + δn, Ṽn,1 ≡ Σn − δ2
n, Ẽn,2 ≡ Ẽ2

t,1 + Ṽn,1 (A.16)

C̃n,12 ≡ 2bnṼn,1 + 4δnΣn, Ṽn,1 ≡ 2b2nC̃n,12 + 2Σ2
n. (A.17)

We now define two operators that approximate conditional expectations and conditional covariances,

respectively, for polynomials that take the form of a cubic in εt plus a term consisting of a coefficient

times εtεt+1. Let v(1)(εt, εt+1) and v(2)(εt, εt+1) be two polynomials of this form:

v(i)(εt, εt+1) = v
(i)
0 + v

(i)
1 εt + v

(i)
2 ε2t + v

(i)
3 ε3t + v

(i)
11 εtεt+1, i = 1, 2.

We define the following operator approximating the conditional mean operator:

Ēt[v
(1)(εt, εt+1)] ≡ v(1)

0 +
3∑

k=1

v
(1)
k Ẽt,k(εt+1) + v

(1)
11 εt+1Ẽt,1(εt+1).

We define the following operator approximating the conditional covariance operator:

C̄t[v
(1)(εt, εt+1), v(2)(εt, εt+1)] ≡ (v

(1)
1 + v

(1)
11 εt+1)(v

(2)
1 + v

(2)
11 εt+1) · Ṽt,1(εt+1)

+ [(v
(1)
1 + v

(1)
11 εt+1)v

(2)
2 + v

(1)
2 (v

(2)
1 + v

(2)
11 εt+1)] · C̃t,12(εt+1)

+ v
(1)
2 v

(2)
2 · Ṽt,2(εt+1).

Note that this uses only terms up to second order in the polynomials v(1)(εt, εt+1) and v(2)(εt, εt+1).

We approximate the m(i)
t (εt+1), i = 1, . . . , 5, analogously with (A.6), as

m̃
(i)
t (εt+1) ≡ Ēt[w

(i)
t (εt, εt+1) + m̃

(i)
t−1(εt)] (A.18)

and the c(i,j)
t (εt+1), (i, j) ∈ I, analogously with (A.7), as

c̃
(i,j)
t (εt+1) ≡ Ēt[c̃

(i,j)
t−1 (εt)] + C̄t[w

(i)
t (εt, εt+1) + m̃

(i)
t−1(εt), w

(j)
t (εt, εt+1) + m̃

(j)
t−1(εt)]. (A.19)

Summary of computations

We summarize the computational routine as follows:
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1. For t = 1, . . . , n− 1,

(a) compute Ẽt,1(εt+1), Ẽt,2(εt+1), Ṽt,1(εt+1), Ṽt,1(εt+1), and C̃t,12(εt+1) using (A.10) through

(A.15).

(b) for i = 1, . . . , 5, compute m̃(i)
t (εt+1) using (A.18).

(c) for (i, j) ∈ I, compute c̃(i,j)
t (εt+1) using (A.18) and (A.19).

2. Compute Ẽn,1, Ẽn,2, Ṽn,1, Ṽn,1, and C̃n,12 using (A.16) and (A.17).

3. For i = 1, . . . , 5, compute m̃(i)
n ≡ Ēn[w

(i)
n + m̃

(i)
n−1] using (A.18)

4. For (i, j) ∈ I compute c̃n = Ēn[c̃
(i,j)
n−1(εn)] + C̄n[m̃

(i)
n−1(εn), m̃

(j)
n−1(εn)] using (A.18) and (A.19)

5. Compute the approximation g̃y|θ(θ) of gy|θ(θ) defined by replacing m(i)
n with m̃(i)

n , i = 1, 2, 4,

in (A.8).

6. Compute the approximation H̃y|θ(θ) of Hy|θ(θ) defined by replacing m
(i)
n with m̃

(i)
n , i =

1, . . . , 5, and c(i,j)
n with c̃(i,j)

n , (i, j) ∈ I, in (A.9).

A.2 Using local shape information to approximate the maximum likelihood

value

For µ fixed, we consider here the problem of constructing an approximation ϑ̃ of ϑ̂ = arg maxϑ ln p(y|ϑ, µ)

and an approximation H̃ of the Hessian of ln p(y|ϑ, µ) with respect to ϑ at ϑ̂. We are given an ini-

tial value ϑ0, and the values g and H of the gradient and Hessian of ln p(y|ϑ, µ) with respect to ϑ,

evaluated at ϑ = ϑ0.

An obvious choice of ϑ̃ is ϑ̃ = ϑ0 −H−1g, the result of a single Newton-Raphson step, and in fact

that is usually what we do. If the log-likelihood were quadratic and concave, the result would be

the exact maximum likelihood value ϑ̂, H would be the Hessian of the log likelihood there and

−1
2g
>H−1g would measure the increase of the log likelihood between ϑ0 and ϑ̃.

In practice, however, H is not constant and sometimes fails to be negative definite. We will take

positive and very low values of the eigenvalues of H, as well as large values of −g>H−1g, as evidence

of large changes of the Hessian between ϑ0 and ϑ̂.

We have found that there are regions of the parameter space where the Hessian matrix under the

alternative parameterization (ϑ1, φ), where φ ≡ tanhϑ2, tends to be more stable. Let gφ and Hφ
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be the gradient and Hessian of ln p(y|ϑ1, φ) with respect to the vector (θ1, φ). Using the chain rule,

and the fact that the first two derivatives of tanhϑ2 with respect to φ are 1− φ2 and −2φ(1− φ2),

we can write

g = Dgφ, H = DHφD +

0 0

0 −2φg2

 , (A.20)

where

D ≡

1 0

0 1− φ2

 .
Now let

Ω ≡ H +

0 0

0 2φg2

 .
Under the parameterization (θ1, φ), the Newton-Raphson step is

−H−1
φ gφ = −DΩ−1D ·D−1g = −DΩ−1g,

and a quadratic approximation of ln p(y|ϑ1, φ) gives the following approximation for the increase of

the log likelihood ln p(y|ϑ1, φ):

−1
2g
>
φH

−1
φ gφ = −1

2g
>D−1(DΩ−1D)D−1g = −1

2g
>Ω−1g.

When Ω is negative definite and H is not, or if Ω is negative definite and −g>H−1g is much

larger than −g>Ω−1g, we take this as evidence that Ω has a more stable value in the region of the

parameter space where ϑ0 lies.

In some cases, we will perform the stabilized step ϑ̃ = ϑ0 − (H + αgg>)−1g, where α > 0, or an

analogous step using Ω. By the Woodbury matrix identity,

(H − αgg>)−1 = H−1 −H−1g(−α−1 + g>H−1g)−1g>H−1 = H−1 +
1

α−1 − g>H−1g
H−1gg>H−1,

and the stabilized step is

−(H − αgg>)−1g = −H−1g − g>H−1g

α−1 − g>H−1g
H−1g = −

(
1

1− αg>H−1g

)
H−1g,

which is the same direction as the Newton step −H−1g but attenuated by the factor in parentheses.
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Then the increase of the likelihood under a quadratic log likelihood would be

−g>(H + αgg>)−1g = −
(

1

1− αg>H−1g

)
g>H−1g.

We compute ϑ̃ and H̃ according to one of the following cases. Case 1 pertains if Ω is negative definite

and either H is not negative definite or −g>Ω−1g < −g>H−1g + 1. In this case, we computeϑ̃1

φ̃

 =

ϑ1

φ

−D(Ω− αgg>)−1g,

where α = 0 if −g>Ω−1g < 6 and 0.2 otherwise, and set ϑ̃2 = tanh−1 φ̃. We also set H̃ = H.

Case 2 pertains if the condition for Case 1 fails and H is negative definite, in which case we compute

ϑ̃ = −(H − αgg>)−1g, where α = 0 if −g>H−1g < 6 and 0.2 otherwise. We then set φ̃ = tanhϑ2.

We set H according to equation (A.20), holding Hφ constant and re-evaluating with φ = φ̃.

Case 3 covers the case where both Ω and H fail to be negative definite. In this very rare case, we

compute

ϑ̃ = − 1

max(1
2 ,−g>H̄−1g/6)

H̄−1g,

where

H̄ = −

 1 ρ
√
h

ρ
√
h h2

 ,
ρ = 0.75 and

h = (1
2 + 1

2φ) max(6φ2 − 2, 0) + (1
2 −

1
2φ) max(2(1 + φ)(1 + 3φ), 0).
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B Appendices for Chapter 2

B.1 Derivatives

We show here how to evaluate the first five derivatives of ψ(xd,i) ≡ log p(yd,i | zd,i, xd,i) with respect

to xd,i, at an arbitrary value of xd,i. Routines for these derivatives are required by the HESSIAN

method. To avoid tedium and error, we do not provide analytic expressions for the derivatives.

Instead, we give derivatives of primitive functions and show how to combine them using Fáa di

Bruno’s formula, a generalization of the chain rule to higher derivatives, to compute exact derivatives

of ψ(xd,i). It gives derivatives as

dn

dxn
f(g(x)) =

∑ n!

m1!m2! · · ·mn!
f (m1+···+mn)(g(x))

n∏
j=1

(
g(j)(x)

j!

)mj

.

Substituting in equation (2.6) the exponential distribution function F (ε) = 1− e−λε combined with

the expression (2.8), conditional on zd,i, gives

ψ(xd,i) = log

[
λe−xd,ie−λe

−xd,iyd,i Beta
(
1− exp(−λe−xd,iyd,i) | zd,i, J − zd,i + 1

) ]
= Cte− xd,i + (J − zd,i + 1)h(xd,i) + (zd,i − 1)f(xd,i)

where f(xd,i) = log(1 − g(xd,i)), g(xd,i) = exp(h(xd,i)) and h(xd,i) = −λexd,iyd,i. Recall that the

hazard rate λ is a linear function of β through the unit-mean normalization of the density pε(·). We

compute the derivatives of bottom up. The steps are

1. Compute h(xd,i) and its first five derivatives with respect to xd,i, j = 1, . . . , J :

h′(xd,i) = h′′′(xd,i) = h(5)(xd,i) = −h(xd,i)

h′′(xd,i) = h(4)(xd,i) = h(xd,i).

2. Compute g(xd,i) and first five derivatives with respect to xd,i, using Fáa di Bruno’s rule, for

the exponential function composed with h(xd,i).

3. Compute f(xd,i) and first five derivatives with respect to xd,i, using Fáa di Bruno’s rule, for

the logarithmic function composed with 1 − g(xd,i). The first five derivatives of q(z) = log z
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are

q′(z) = z−1, q′′(z) = −z−2, q′′′(z) = 2z−3, q(4)(z) = −6z−4, q(5) = 24z−5(z).

B.2 Drawing artificial observations

Here we show how to draw observations from its conditional distribution p(y |β, x). For latent

state process used for the Getting it right experiment (see equation (2.14)), there is no relationship

between the durations and the dynamic of the latent state. The prior distribution also implies a

fairly flat diurnal pattern, thus, very little time variation in the unconditional mean of the latent

state process. In this case, updating the vector of observations can be done efficiently with the

following Metropolis-Hastings algorithm:

• For d = 1, . . . , D, i = 1, . . . , nd, draw a proposal y∗d,i ∼ p(yd,i |β, xi).

• For d = 1, . . . , D, set y∗d,0 = topen and construct the corresponding transaction times t∗d,i =∑i−1
k=0 y

∗
d,k to evaluate the B-spline function m(t).

• Accept the proposal y∗ with probability

min

{
1,

D∏
d=1

nd−1∏
i=1

p(xd,i+1 |xd,i, td,i, td,i−1, σ, ρ, δ, ψd)

p(xd,i+1 |xd,i, t∗d,i, t∗d,i−1σ, ρ, δ, ψd)

}
.
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C Appendices for Chapter 3

C.1 Derivatives

We show here how to evaluate the first five derivatives of ψ(xd,i) ≡ log p(yd,i | sd,i, xd,i, zd,i) with

respect to xd,i, at an arbitrary value of xd,i. Routines for these derivatives are required by the

HESSIAN method. To avoid tedium and error, we do not provide analytic expressions for the

derivatives. Instead, we give derivatives of primitive functions and show how to combine them

using Fáa di Bruno’s formula, a generalization of the chain rule to higher derivatives, to compute

exact derivatives of ψ(xd,i). It gives derivatives as

dn

dxn
f(g(x)) =

∑ n!

m1!m2! · · ·mn!
f (m1+···+mn)(g(x))

n∏
j=1

(
g(j)(x)

j!

)mj

.

For sd,i = 0, all derivatives of ψ(xd,i) are equal to zero. For sd,i = 1, we use the closed from

representation of p1(yd,i |xd,i) given in equation (3.9) to the compute ψ(xd,i). Conditional on the

component indicator zd,i, this gives

ψ(xd,i) = log

[
1

2

zd,i∑
k=1

αzd,i,k

[
exp

(
−λzd,i,ke

−xd,i(yd,i − 1)
)
− exp

(
−λzd,i,ke

−xd,i(yd,i + 1)
) ]]

= log

[
1

2

zd,i∑
k=1

αzd,i,k

[
g−k (xd,i)− g+

k (xd,i)
]]

where g±k (xd,i) = exp(h±k (xd,i)) with h±k = −λzd,i,ke−xd,i(yd,i ± 1) for k = 1, . . . , zd,i. We compute

derivatives of ψ(xd,i) bottom up. The steps are

1. Compute h±k (xd,i) and its first five derivatives with respect to xd,i, k = 1, . . . , zd,i:

h
±(1)
k (xd,i) = h

±(3)
k (xd,i) = h

±(5)
k (xd,i) = −h±k (xd,i)

h
±(2)
k (xd,i) = h

±(4)
k (xd,i) = h±k (xd,i).

2. Compute g±k (xd,i) and first five derivatives with respect to xd,i, using Fáa di Bruno’s rule, for

the exponential function composed with h±k (xd,i).
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3. Compute p1(yd,i |xd,i, zd,i) and first five derivatives with respect to xd,i, using

∂(r)

∂x
(r)
d,i

p1(yd,i |xd,i, zd,i) =

zd,i∑
k=1

αzd,i,k

[
g
−(r)
k (xd,i)− g

+(r)
k (xd,i)

]
, r = 1, . . . , 5.

4. Compute ψ(xd,i) and first five derivatives with respect to xd,i, using Fáa di Bruno’s rule, for

the logarithmic function composed with p1(yd,i |xd,i, zd,i), treated as a function of xd,i. The

first five derivatives of q(z) = ln z are

q′(z) = z−1, q′′(z) = −z−2, q′′′(z) = 2z−3, q(4)(z) = −6z−4, q(5) = 24z−5(z).

C.2 Drawing artificial observations

Here we show how to draw observations from their conditional distribution p(y | s, x, β, π). For

the latent state process used for the Getting it right experiment (see equation (3.15)), there is no

relationship between the duration and the dynamic of the latent state. The prior distribution also

implies a fairly flat diurnal pattern, thus very little time variation in the unconditional mean of the

latent state process. In this case, updating the vector of observations can be done efficiently with

the following Metropolis-Hastings algorithm:

• For d = 1, . . . , D, i = 1, . . . , nd, draw a proposal y∗d,i ∼ p(yd,i | sd,i, xd,i, β, π).

• For d = 1, . . . , D, set y∗d,0 = 0 and construct the corresponding transaction times t∗d,i =∑i−1
k=0 y

∗
d,k to evaluate the B-spline function m(t).

• Accept the proposal y∗ with probability

min

{
1,

D∏
d=1

nd−1∏
i=1

p(xd,i+1 | xd,i, td,i, td,i−1, σ, ρ, δ)

p(xd,i+1 | xd,i, t∗d,i, t∗d,i−1, σ, ρ, δ)

}
.
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