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Résumé 

La néphropathie diabétique (DN) est l’une des premières causes de maladie rénale en 

phase terminale (ESKD). L’ESKD est un important facteur de risque d'insuffisance cardiaque et 

d'accidents vasculaires cérébraux. La dysfonction du système rénine-angiotensine intrarénal 

(iRAS) est considérée comme étant l'une des principales causes du développement de la DN. Tous 

les composants du iRAS sont identifiés dans les cellules épithéliales des tubules rénaux proximaux 

(RPTCs), y compris l'angiotensinogène (Agt), le seul précurseur de toutes les angiotensines. Notre 

laboratoire a rapporté précédemment que la surexpression spécifique de l’Agt dans les RPTCs 

provoque l’hypertension, la protéinurie, la fibrose rénale, l’apoptose et des lésions rénales. 

Nrf2 (Nuclear factor erythroid 2-related factor 2) est un facteur de transcription qui est 

exprimé de façon abondante dans les RPTCs et a été considéré comme étant un régulateur central 

de l'équilibre redox dans les réponses cytoprotectrices cellulaires. Le rôle de l’activation du Nrf2 

dans la DN, toutefois, est controversé. L’objectif général de cette thèse est de comprendre le rôle 

physiologique du Nrf2 dans la DN et d’étudier le(s) mécanisme(s) moléculaire(s) de l’action de 

Nrf2. 

Premièrement, nous avons démontré que la délétion génétique de Nrf2 ou l’inhibition 

pharmacologique de Nrf2 avec de la trigonelline chez les souris Akita diabétiques de type 1 régule 

à la hausse la voie Ace2/MasR et supprime l’expression de Agt/ACE dans les RPTCs, ce qui a pour 

effet d'atténuer l’hypertension systémique et les lésions rénales. Conformément, dans les cellules 

immoratalisées de tubule proximal de rat (IRPTC) en culture, la transfection de ARNsi ou le 

traitement à la trigonelline empêche la régulation positive de Agt/ACE induite par le HG, avec une 

baisse subséquente de l’expression des gènes Ace2/MasR. Ces données identifient un nouveau 

mécanisme dans lequel l’activation de Nrf2 stimule l’expression et l’activation des gènes du iRAS, 

menant au développement de l’hypertension et de la néphropathie dans le diabète. 

  Deuxièmement, nous avons généré des souris Nrf2 transgéniques qui surexprime 

spécifiquement Nrf2 dans les RPTCs (souris Nrf2RPTC Tg), sous le contôle du promoteur KAP (kidney 

specific androgen-regulated protein). Nous avons ensuite croisé les souris Nrf2RPTC Tg avec les 



6 

souris Akita Nrf2-/- pour générer des souris Akita Nrf2-/-/Nrf2RPTC Tg. Nous avons trouvé que la 

surexpression de Nrf2 dans les RPTCs des souris Akita Nrf2-/- augmentait significativement 

l’expression du gène SGLT2, entraînant une élévation du glucose sanguin, du taux de filtration 

glomérulaire, du rapport albumine/créatinine urinaire et de la fibrose tubulo-interstitielle. Dans 

les cellules tubulaires proximales humaines immortalisées (HK2), le traitement à l’oltipraz ou la 

transfection de l’ADNc du NRF2 stimule l’expression de l’ARNm du SGLT2 et l’activité de son 

promoteur. De plus, des tests de retard sur gel et d’immunoprécipitation de chromatine ont 

montrés que NRF2 se lie au NRF2-RE du promoteur du SGLT2. En outre, une expression plus 

élevée de NRF2 et SGLT2 est observée dans les RPTCs de reins de patients diabétiques que dans 

les reins de patients non diabétiques. Ces données ont établi un nouveau mécanisme de la 

régulation du NRF2 sur l’expression et l’activation du gène SGLT2, menant à une exacerbation du 

glucose sanguin, de l’hyperfiltration et des lésions rénales dans le diabète. 

  En somme, cette thèse a démontré que le stress oxidatif (hyperglycémie) induisait 

l’activation du Nrf2 qui stimulait le iRAS et l’expression de SGLT2, contribuant ainsi à la 

progression de la DN. Ces études suggèrent que le Nrf2 pourrait être une cible thérapeutique 

potentielle dans le traitement de la DN et pourront fournir de valabless données pré-cliniques 

pour les essais cliniques en cours avec le bardoxolone méthyle (un activateur de Nrf2). 

 

Mots-clés : Nrf2, stress oxidatif, néphropathie diabétique, système rénine-angiotensine 

intrarénal, SGLT2 

 

 



 

Abstract 

Diabetic nephropathy (DN) is one of the leading causes of end-stage kidney disease 

(ESKD). ESKD is a major risk factor for heart failure and stroke. Dysfunction of intrarenal renin-

angiotensin system (iRAS) is considered as one of the main reasons that caused the DN. All 

components of the iRAS are identified in the renal proximal tubule cells (RPTCs), including 

angiotensinogen (Agt), the sole precursor of all angiotensins. Our lab has previously reported that 

specific overexpression of Agt in RPTCs induces hypertension, proteinuria, kidney fibrosis, 

apoptosis and kidney injury.  

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that abundantly 

expresses in RPTCs and has been considered as a master regulator of redox balance in cellular 

cytoprotective responses. The role of Nrf2 activation in DN, however, is not clear. The overall aim 

of this study is to understand the physiological role of Nrf2 in DN and investigate the molecular 

mechanism(s) of Nrf2 action.  

First, we have demonstrated that genetic deletion of Nrf2 or pharmacological blockade of 

Nrf2 with trigonelline in type 1 diabetic Akita mice effectively upregulates Ace2/MasR and 

suppresses Agt/ACE expression in isolated RPTCs, resulting in attenuation of systemic 

hypertension and kidney injury. Consistently, in cultured IRPTCs, Nrf2 siRNA transfection or 

trigonelline treatment prevents high glucose-induced upregulation of Agt/ACE with 

downregulation of Ace2/MasR gene expression. These data identified a novel mechanism in 

which Nrf2 activation stimulates iRAS gene expression and activation, leading to the development 

of hypertension and nephropathy in diabetes.  

  Second, we have generated Nrf2 transgenic mice under the kidney specific androgen-

regulated protein (KAP) promoter which specifically overexpress Nrf2 in RPTCs (Nrf2RPTC Tg mice). 

We further crossbred the Nrf2RPTC Tg mice with Akita Nrf2-/- mice to generate Akita Nrf2-/-/Nrf2RPTC 

Tg mice. We have found that overexpression of Nrf2 in RPTCs of Akita Nrf2-/- mice significantly 

unregulated sodium-glucose transporter-2 (SGLT2) expression, resulting in elevation of blood 

glucose, glomerular filtration rate, albumin-creatinine ratio and tubulointerstitial fibrosis. In 
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immortalized human proximal tubular cells (HK2), oltipraz treatment or NRF2 cDNA transfection 

stimulated SGLT2 mRNA expression and its promoter activity. Furthermore, NRF2 bound to NRF2-

RE of SGLT2 promoter were identified by gel mobility shift assay and chromatin 

immunoprecipitation assay. Moreover, human diabetic kidneys exhibited higher expression of 

NRF2 and SGLT2 in RPTCs than non-diabetic kidneys. These data established a novel mechanism 

of NRF2’s regulation on SGLT2, leading to exacerbation of blood glucose, hyperfiltration and 

kidney injury in diabetes. In summary, this study documented that activation of Nrf2 in 

hyperglycemia contributed to the progression of DN via regulation of iRAS and SGLT2, suggesting 

that Nrf2 might be a potential therapeutic target in the treatment of DN. 

  Keywords: Nrf2, oxidative stress, diabetic nephropathy, intrarenal renin-angiotensin 

system, SGLT2 
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Chapter 1 – Introduction 

1.1 Diabetes Mellitus 

1.1.1 Prevalence of diabetes mellitus 

Diabetes mellitus (DM) is a group of metabolic diseases characterized by chronic 

hyperglycemia due to impairment of insulin secretion, insulin resistance, or both. Uncontrolled 

diabetes will lead to kidney failure, heart disease, blindness, nerve damage and more. This 

serious, long-term disease has a major impact on the lives and well-being of individuals, families 

and societies worldwide, and has become the leading cause of global deaths [1]. The number of 

people with diabetes has risen from 285 million in 2009 to 425 million in 2017 and has been 

estimated to reach up to 578 million (10.2%) by 2030 and 700 million (10.9%) by 2045. Compared 

to the low-income countries (4.0%), high-income countries were predicted a higher prevalence 

(10.4%) in 2045. For age and sex differences, people between 65–79 years account for 19.9% 

(111.2 million) and 9.0%, 9.6% in women and men, respectively [2].  

1.1.2 Type 1 diabetes mellitus (T1DM) 

Insulin is a hormone secreted by pancreatic β-cells and targets on reducing blood glucose 

level. T1DM, accounting for nearly 10% of all diabetes, is associated with insulin deficiency caused 

by pancreatic β-cell loss and resulting in hyperglycemia. It can occur at any age, though most of 

the cases start between 5-7 years of age and at or near puberty [3]. The incidence of T1DM is 

slightly more common in boys and men, and highly variable among different ethnic populations. 

For example, the overall incidence of T1DM is 0,1/100 000 per year in the Zunyi region in China, 

while more than 40/100 000 per year was reported in Finland [4].  

1.1.2.1 The progression of T1DM 

Patients with T1DM are very sensitive and responsive to insulin, especially in the early 

stages. One study on anatomy of the pancreas has suggested that patients with T1DM only have 
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∼10% of normal pancreatic β-cell mass left [5]. Without sufficient insulin, the body cannot take 

up glucose and ends up in polyphagia, polydipsia, and polyuria, the classic symptoms of diabetes. 

In addition, the body turns to break down fat as fuel, resulting in an increased level of ketones 

and eventually ketoacidosis, a common complication of T1DM [6]. The underlying mechanism of 

T1DM is not completely understood. It is currently believed that the cause of T1DM is a combined 

effect of both genetic and environmental factors. Genome-wide association studies and meta-

analyses showed identified more than 50 genetic risk loci T1DM [7]. Among them, the human 

leucocyte antigen complex on chromosome 6 is responsible for 40–50% of the genetic risk of 

T1DM development. The insulin gene polymorphisms on chromosome 11, the cytotoxic T 

lymphocyte-associated antigen-4 gene (CTLA-4) on chromosome 2 and other genetic loci also 

contribute to genetic susceptibility for T1DM [8]. For the environmental factors, viruses (rubella, 

coxsackievirus B or enteroviruses), diet and gut microbiota have been reported to be involved in 

the pathogenesis of T1DM. Furthermore, other factors related to the immune system also have 

an impact on the β cells function [8, 9].  

1.1.2.2 Treatment of T1DM 

For the care of T1DM, maintaining the insulin level by preserving endogenous insulin 

secretion or insulin therapy is the main therapeutic goal [10]. Pancreatic islets transplantation 

and β-cell replacement therapy can partially restore the insulin secretion and  improve glycemic 

control [11]. Improvement of lifestyle with low-carbohydrate diet and less psychological stress 

may also have positive effect on T1DM [12].  

An earlier clinical trial from seven centres in Europe reported that Vitamin D 

supplementation was associated with a decreased risk of Type I diabetes without indication of 

heterogeneity in 820 patients and 2335 subjects [13]. This is also supported by another clinical 

trial that children who regularly took the recommended dose of vitamin D had a reduced risk of 

type 1 diabetes, compared to children whose vitamin D intake was less [14]. More therapeutic 

strategies for the management of T1DM are still ongoing. 
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1.1.3 Type 2 diabetes mellitus (T2DM) 

T2DM is the most common type of diabetes (90%) and associated with 

hyperglycemia, insulin resistance, and insulin insufficiency [15]. It is often considered as a disease 

of middle-aged and older people, but recent data showed that T2DM has become more prevalent 

among adolescents and young adults due to the increasing obesity at younger age [16]. There 

seems to be no overall difference of the T2DM prevalence between men and women, though 

some statistics have reported small changes between two sexes in different regions. For instance, 

females are more prone to youth T2DM while males are more vulnerable to midlife T2DM [15]. 

Furthermore, compared to non-diabetic subjects, women trend to have greater increases of 

cardiovascular risk, myocardial infarction and stroke mortality than men [17]. 

1.1.3.1 The progression of T2DM 

T2DM affects many organs. In the post absorptive condition, most of the glucose 

production is derived from the liver by glycogenolysis and gluconeogenesis, and a small part (15%) 

is produced from the kidney by gluconeogenesis. Half of the produced glucose (50%) is taken up 

by the brain and nervous system via glucose transporter 1 (GLUT-1), regardless of the presence 

or absence of insulin. While about 25% of glucose is utilized by the liver plus gastrointestinal 

tissues independent of insulin level, the remaining 25% of glucose is taken up by muscle and fat 

in an insulin-dependent pathway. Both the muscle and adipose tissue could use either glucose or 

ketone free fatty acids as fuel, according to the insulin level. With low insulin level, ketone and 

free fatty acid are used for energy, whereas the cells prefer to use glucose when exposed to high 

insulin level. As a result, blood glucose is lowered either by metabolism or storage as glycogen in 

the muscle and fat in the adipose tissue [18]. 

Patients with diabetes can be assessed by the measurement of glycated hemoglobin 

(HbA1c), fasting plasma glucose, and postprandial plasma glucose [19]. In the progression of 

T2DM, both fasting and postprandial hyperglycemia are directly correlated to the risk of diabetes 

and contribute to the HbA1c level [20].  

In fasting state, glucose is produced by gluconeogenesis (formation of glucose from 

pyruvate or other 3-4 carbon compounds) and glycogenolysis (breakdown of glycogen to glucose). 
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As discussed, liver is the major source of gluconeogenesis in human and plays critical role 

maintaining constant blood glucose concentration. During starvation, glucagon is secreted by 

pancreatic alpha cells to increase hepatic gluconeogenesis and glycogenolysis, thereby increase 

circulating blood glucose to maintain glucose homeostasis. In T2DM patients, enhanced glucagon 

and reduced insulin action leads to increased hepatic gluconeogenesis, glycogenolysis and 

reduced glucose uptake by peripheral tissue, resulting in the development of hyperglycemia [21, 

22]. Indeed, a significant number of patients present with fasting hyperglycemia first due to 

increased hepatic glucose production. One of most commonly used T2DM drugs, metformin, has 

been shown to decreased hepatic glucose production, probably by increased AMP mediated 

inhibition of fructose-1-6-bisphosphatase [23].  

In the postprandial state, insulin is secreted from pancreatic islet β-cells and targets on 

reducing the high blood glucose level (via stimulating glucose uptake by peripheral tissues) and 

suppressing glucose production (by inhibiting hepatic gluconeogenesis and glycogenolysis) [21]. 

However, in certain conditions such as accumulation of oxidative stress, glycation, and advanced 

glycation end products (AGEs), early insulin release is decreased at the postprandial state, 

resulting in an inefficient glucose uptake by peripheral tissues, abnormal glucose production 

including glycogenolysis and gluconeogenesis [24-26]. The sustained hyperglycemia results in 

persistent secretion of insulin, impairment of islet β-cell cells and insulin insufficiency as well as 

insulin resistance. 

As both insulin insufficiency and insulin resistance are present in the T2DM, it is difficult 

to determine which of these abnormalities is the primary defect [27]. The insulin resistance is a 

condition where insulin-targeting-cells no longer respond to insulin effectively, which happens in 

many organs including muscle, adipose tissue and liver [28]. Although insulin resistance has been 

considered one of the major characters of T2DM, it also occurs in T1DM [29]. The underlying 

mechanism of insulin resistance is thought to be due to genetic defects in a few individuals, and 

in most cases, due to being overweight, particularly central or visceral obesity [30, 31]. 

Risk factors for the progression of T2DM include genetics and family history, pre and post-

natal environmental factors, such as low birth weight, obesity, inactivity, gestational diabetes, 
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and advancing age [32]. Many genes and pathways dependent or independent of the insulin 

action, have been studied to understand the molecular mechanisms of T2DM. For example, 

hyperglycemia-induced mitochondrial oxidative dysfunction might be one of the initial causes of 

the T2DM progression [33]. Moreover, NF-κB (nuclear factor κB)-mediated inflammation and its 

downstream cytokines, such as TNF-α and IL-6, are also involved in the progression of T2DM [34]. 

Also, tumor necrosis factor-alpha (TNF-α) mediated inflammation have also been reported as one 

of the major reasons for insulin resistance and adipose tissue inflammation [35]. Genome-wide 

screening yielded more candidate genes that may be responsible for the T2DM progression such 

as the transcription factor TCF7L2a in the Wnt pathway and the zinc transporter 8 (ZNT8) in the 

solute carrier family [32]. 

1.1.3.2 Treatment of T2DM 

People with T2DM may develop symptoms gradually for several years without notice. 

Long-term diabetes without proper control would cause serve complications including heart and 

kidney failure, blindness, stroke and more. For the care for T2DM, lifestyle changes to lose weight 

and blood glucose by insulin, metformin, sulfonylureas or in combination are the widely used 

approaches. Depending on the patient’s background, other medications can be used to lower the 

risks of complications.  For example, people who have both T2DM and high blood pressure might 

receive anti-hypertensive therapy, such as renin-angiotensin-system blockers [36]. Furthermore, 

the new class drug, SGLT2 inhibitors, have yielded promising results for the treatment of T2DM 

[37]. 

1.1.4 Gestational diabetes mellitus (GDM) 

GDM is the third type of diabetes in which pregnant women without diabetes history 

develop hyperglycemia during pregnancy. Approximately 7% of all pregnancies in different 

population are affected [38]. Along with the epidemics of obesity, prevalence of GDM is expected 

to increase [39]. GDM is associated with T2DM. Women with GDM develop hyperglycemia, insulin 

insufficiency and insulin resistance. Although most of the GDM resolve after delivery, untreated 

GDM can impact the health of the fetus or mother. Moreover, women with a history of GDM and 

their children, are at a higher risk of developing T2DM later on [40].  
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The underlying mechanisms of GDM remain unknown. Similar to T2DM, obesity, genetics, 

β cell dysfunction and insulin resistance are considered the reasons of GDM [41]. Other pathways 

including placental transport, gut microbiome and oxidative stress have been suggested to 

participate in the progression of GDM [42]. Treatment of GDM includes dietary education, blood 

glucose monitoring and control. Recently, Vitamin D has been reported to be associated with 

glucose metabolism in GDM [43].  

Vitamin D is a group of fat-soluble steroids that could be synthesized in the body or 

supplied by the food. It is responsible for multiple physiological processes such as calcium and 

phosphate absorption in intestine and maintaining balance of bone skeletal calcium level. As 

discussed in 1.1.2.2, Vitamin D has been considered beneficial in the therapy of T1DM. Vitamin D 

deficiency is associated with a higher risk of GDM [44]. However, whether vitamin D deficiency 

contributes to the development of GDM is still not clear. Although administration of Vitamin D 

has shown to improve the insulin sensitivity and glucose tolerance in rats, no large clinical trial 

with various Vitamin D supplementation on human patients with GDM has been reported [45, 

46]. A relevant report by Soheily khah S, et al. showed that supplementation of Vitamin D on 

pregnant but non-diabetic women increased the insulin level at a lower dose, whereas fasting 

blood glucose and calcium levels were not changed [47]. Hence, more clinical studies are needed 

to determine whether supplementation of vitamin D can prevent GDM. 

1.1.5 Complications of DM 

Diabetes is often accompanied by serious complications, which have been early termed 

by microvascular complications (refer to long-term complications that mainly affect small blood  

vessels, such as nephropathy, retinopathy and neuropathy) and macrovascular complications 

(cardiovascular disease and stroke) (Figure 1). In addition, other complications such as diabetic 

foot syndrome, dental disease, infection and inflammation are also common in diabetes [48]. 

Complications of DM are often responsible for significant morbidity and mortality. Along with the 
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prevalence of DM, number of people with diabetic complications also increase and has become 

a heavy burden for quality life and health services [49]. 

 

Figure 1. –  Prevalence of diabetic complications among people with diabetes (1999-2004) 
from National Health and Nutrition Examination Survey [48]. 

1.1.5.1 Diabetic microvascular complications 

Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease (ESKD), 

defined by proteinuria > 500 mg in 24 hours with a subsequent decline in glomerular filtration 

rate on the base of diabetes. Chronic proteinuria is preceded by micro-albuminuria, which is 

defined as urinary albumin excretion of 30-299 mg/24 hours [50]. DN occurs at a relatively late 

stage of diabetes. It is associated with increased blood pressure, kidney hypertrophy and kidney 

injury. The etiology of DN is still poorly understood. Many underlying mechanisms have been 

suggested to contribute to the progression of DN. For the treatment of DN, in addition to the 

glycemic control, patients benefit from the treatment with ACE inhibitors or angiotensin II 

receptor type 1 blockers. Moreover, in the recent years, the new class drugs such as dipeptidyl 

peptidase-4 inhibitors (DPP-4), glucagon-like peptide-1 receptor agonists (GLP-1RAs) and SGLT2 

inhibitors have exhibited multiple protective effects in the treatment of DN [48, 51, 52]. 

Diabetic retinopathy (DR) is referred to eye problems, resulting in vision loss and blindness 

in people with diabetes. It is one of the most common microvascular diabetic complications and 

the leading cause of blindness globally [53]. The prevalence of DR varies depending on the 

duration of the patients with diabetes. One analysis showed that approximately 25% of patients 

with T1DM develop DR after 5 years, almost 60% by 10 years and 80% at 15 years [54]. Hence, 
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early eye examination and proper glycemic control at an early stage are indispensable in 

prevention of the DR progression [55].  

A few underlying mechanisms including the polyol pathway, advanced glycation end 

products (AGEs) accumulation, the protein kinase C (PKC) pathway and the hexosamine pathway, 

have been suggested to be involved in the progression of DR [56, 57]. Hyperglycemia-induced 

inflammation is also a major factor for DR. For example, chemokines such as monocyte 

chemotactic protein-1 (MCP-1) is involved in the pathogenesis of DR and mutation of MCP-1 

protects diabetic mice from retinal vascular damage [58]. Lastly, although still in debate, the 

retinal neuro degeneration in diabetes, an early event during the progression of DR, might be a 

factor that responsible for DR development [59].  

Diabetic neuropathy refers to various types of nerve damage induced by hyperglycemia. 

More than half of the individuals with diabetes eventually develop neuropathy [60]. Risk factors 

of diabetic neuropathy includes age, duration of disease, hypertension and higher BMI as well as 

alcohol consumption [48]. Patients with diabetic neuropathy may suffer from motor changes like 

weakness or sensory symptoms including numbness, tingling, or pain. Similar to DR, the 

mechanisms of diabetic neuropathy are related to persistent hyperglycemia and its downstream 

metabolic disorders such as increased flux of the polyol pathway, AGEs production, activation of 

PKC and oxidative stress [61].  

1.1.5.2 Diabetic macro-vascular complications 

Cardiovascular disease (CVD) is the primary cause of death among all people with 

diabetes. The mortality rates due to heart disease are 2 to 4 times higher in patients with diabetes 

compared with those without diabetes [48]. Multiple factors are thought to contribute to the 

progression of heart failure, including abnormal glucose metabolism in the heart, hypertension, 

hyperlipidemia and premature atherosclerosis as well as insulin resistance. For instance, cross-

linking of AGEs with proteins such as collagens contribute to ventricular stiffness and subsequent 

diabetic cardiomyopathy. In addition, the β-linked N-acetylglucosamine (O-GlcNAc), a key 

Ca2+ handling protein and an important mediator of cardiac function, is modified by high glucose 

and impairs the cardiac contractility. These factors lead to the structural and functional 
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abnormalities of the heart and increase the risk of stroke as well as stroke-related mortality [50, 

62, 63]. 

To date, diabetic patients with risk of CVD are treated with strict glycemic control, 

administration of blood pressure-lowering agents, lipid-lowering therapy with statins and/or 

antiplatelet agents [62]. Particularly, a recent clinical trial has shown that the new class of agent, 

SGLT2 inhibitors, have achieved a promising effect in the care of patients with heart failure [64].  

Apart from the diabetic complications mentioned above, there are some acute 

complications of diabetes, such as diabetic ketoacidosis, the hyperglycemic hyperosmolar state, 

and hypoglycemia. Although preventable, they still account for a part of the high morbidity and 

mortality in diabetes. Therefore, understanding the mechanisms of diabetes and diabetic 

complications are crucial and indispensable.  
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1.2 Diabetic Nephropathy (DN) 

1.2.1 Renal physiology 

The kidneys play a fundamental role in maintaining homeostasis of body fluid. Firstly, the 

kidneys filter large quantities of blood, reabsorb substances that the body needs, and form urine 

with the metabolic waste. Secondly, the kidneys maintain fluid and electrolyte balance including 

pH and osmolality. Thirdly, the kidneys secrete a variety of hormones, including renin, 

erythropoietin and calcitriol, which relate to the regulation of blood pressure, production of red 

blood cells and bone health, respectively [65].   

 

 

Figure 2. –  The structure of nephron [66]. 

The functional unit of kidney is nephron (Figure 2). A healthy human kidney contains 

around 1.8 million nephrons which lies up both in the renal cortex and medulla. Each nephron 

contains a renal corpuscle, proximal tubule, loop of Henle, distal tubule and collecting duct. Blood 

is filtered by the glomerulus, and necessary substances such as glucose, amino acids, and sodium, 

are reabsorbed by the renal tubular cells, especially at the proximal tubular cells. The remaining 

fluid which consists of water, metabolic waste and toxins is excreted as urine [67, 68].  
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1.2.2 The renal corpuscle 

The renal corpuscle is composed of the glomerulus and Bowman’s capsule. As shown in 

Figure 3, blood from the afferent arteriole is filtered by the glomerulus. The filtration contains 

three layers: fenestrated endothelium, glomerular basement membrane (GBM) and the 

podocytes. Small molecules such as water, glucose, sodium ion, amino acids and urea can pass 

freely into Bowman's space, but not large protein. The filtrate in the Bowman's capsule is similar 

to blood plasma except large proteins, which enter into proximal convoluted tubule for 

reabsorption [69]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. –   Diagram of the renal corpuscle structure [69]. 

1.2.2.1 The glomerulus 

Located within Bowman's capsule, the glomerulus is a tuft of capillaries and responsible 

for the blood filtration. In this filtration, small molecules with a radius smaller than 20 Å such as 

water, glucose, sodium ion, amino acids and urea can pass freely into Bowman's space, but not 

molecules larger than 42 Å. Larger protein like serum albumin, with molecular radius of 35.5 Å, is 
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usually poorly filtered. In addition to a size-selection, the less negative or more positive charge of 

the protein have more permeability to the filtration barrier [70].   

 

 

Figure 4. –  Normal rat glomerulus by light micrograph from rat (4a) and human (4b). Mesangial cell (M), 
endothelial cell (E), visceral epithelial cell (V), and parietal epithelial cel l/podocyte (P). MD, macula densa, capillary 
loops (CL), Bowman’s space (BS) [68]. 

 

The first filtration layer is the fenestrated endothelium, which consists of endothelial cells 

and lies adjacent to the mesangium, away from the urinary space (Fig. 4). The endothelial cells 

contribute to the charge-selective properties of the glomerular filtration due to their negatively 

charged glycocalyx. The endothelial cells also synthesize nitric oxide (NO) and endothelin1, which 

are important for the regulation of vasoconstriction [68].  

The second layer of the filtration, GBM, is a fibrous and stratified lattice with 

heterogeneous pores, formed by the membrane fusion of endothelial cells and podocytes. Type 

IV collagens and laminins are the most important components in the constitution of the GBM 

[71]. Approximately 30-40% of the cells inside glomerulus are mesangial cells, as shown in Figure 

4. Mesangial cells are surrounded by matrix material called mesangial matrix, which contains 

sulfated glycosaminoglycans, large amount of fibronectin, laminin and various collagens. The 

mesangial cells possess multiple functions including structural support, regulation of glomerular 

filtration, generation and metabolism of the mesangial matrix as well as response to glomerular 

injury [72]. Besides mesangial cells, epithelial cells are also present in the renal corpuscle. The 

a. b. 
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parietal epithelial cells line up inside of the Bowman’s capsule, whereas the visceral epithelial 

cells reside outside of the GBM, namely podocyte.  

1.2.2.2 The podocytes 

Podocytes are the largest, octopus-like cells in the glomerulus. Their cell bodies develop 

foot processes, wrapping around the glomerular capillaries. As shown in Figure 5 [73], 

neighboring podocytes are physically adjoined through their foot processes by unique 

intercellular junctions, slit diaphragm (SD). The function of SD has been recognized as essential in 

the retention of large protein in the plasma. In the SD, Nephrin and podocin are expressed and 

indispensable in maintaining the glomerular filtration and overall kidney function [70]. Structural 

changes of the SD and foot processes effacement are associated with proteinuria and contribute 

to many kidney diseases. 

 

 

 

 

 

 

 

 

Figure 5. –  Diagrams structure of podocytes. FP: foot processes; SD: slit diaphragms. 
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1.2.2 The renal tubules  

1.2.3.1 The renal proximal tubules 

The renal proximal tubule begins from the renal pole of the Bowman's capsule till the 

beginning of loop of Henle. The length of the proximal tubule is approximately 14 mm in  humans 

and 8 mm in  rats [74]. Three morphologically distinct segments, S1, S2, and S3, have been 

identified. The initial portion of the proximal tubule, S1 segment, lies in the cortex and consists of 

most of the convolute part, while the S2 and S3 segments represent the rest of the convolute 

tubule and the straight portion, respectively. As shown in the right panel of Figure 6, the renal 

proximal tubule cells (RPTCs) in S1 segment are characterised by tall brush border, long 

mitochondria and well-developed Golgis. Cells in the S2 segment are similar to that the S1 

segment but with shorter and smaller mitochondria. Cells in the S3 segment, in contrast, possess 

small mitochondria but with longest brush border microvilli and prominent peroxisomes [68, 75]. 

The RPTCs possess a fundamental role in the kidney reabsorption. As shown in Table 1, 

many factors are reabsorbed by the RPTCs including glucose, amino acids, water and electrolytes 

such as Na+, HCO3
-, Cl-, K+ and Ca2+ [76]. Each of them has crucial functions in the body. For 

instance, change of sodium transport in RPTCs can directly affect extracellular fluid volume and 

subsequently blood pressure. Multiple sodium transporters including the Na+/K+ ATPase, Na+/H+ 

antiporter 3 and Na+/HCO3
− exchanger, participate in the regulation of fluid balance and blood 

pressure [77]. Importantly, the RPTCs also secrete more waste substances such as 

ammonium and creatinine [78]. Taken together, the proximal tubule plays a key role in kidney 

function. 
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Figure 6. –  Renal proximal tubule. Left panel: the locations of S1, S2 and S3 segment of proximal 
tubule [75]. Right panel: the electron micrographs of S1, S2, and S3 segments in rat (a to c, magnification, 
X10,600). Tall brush border, big mitochondria and numerous vesicles (V) are observed in the S1 and S2 
segment, whereas brush border microvilli are longest in S3. Lysosomes (L) and microbodies (M) are most 
numerous in S2 and S3 cells, respectively [68]. 

1.2.3.2 The other renal tubules  

As shown in Table 1, the loop of Henle, distal tubule and connecting tubule are also 

important parts in the kidneys and participate the reabsorption [79]. The loop of Henle is a 

segment that starts from the end of proximal tubule and consists of the descending limb and the 

ascending limb. The primary function of the loop of Henle is to create a concentrated urine for 

excretion. The distal tubule is the portion between the loop of Henle and collecting tubule. Unlike 

proximal tubules, distal tubules do not have brush border. The main function of distal tubules is 

their regulation on potassium, sodium, calcium and pH. The last part of the nephron is the 

collecting duct system. This section mediates the electrolyte and fluid balance, which is regulated 

by antidiuretic hormone. In the presence of antidiuretic hormone, water is reabsorbed into the 

body, whereas without the antidiuretic hormone, water ends up passing through the duct and 

excreted as urine [68]. 
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Substance PCT Loop of Henle DCT Collecting ducts 

Glucose 100% reabsorbed; 
secondary active 
transport with Na+ 

   

Proteins, 
amino acids 

100% reabsorbed; 
symport with Na+ 

   

Vitamines Reabsorbed 
   

Urea 50% reabsorbed by 
diffusion; also secreted 

Secretion, diffusion 
in descending limb 

 
Reabsorption in 
medullary collecting 
ducts; diffusion 

Sodium 65% actively reabsorbed 25% reabsorbed  5% reabsorbed; 
active 

5% reabsorbed, 
stimulated by 
aldosterone; active 

Chloride Reabsorbed, symport 
with Na+, diffusion 

Reabsorbed Reabsorbed; 
diffusion 

Reabsorbed; symport 

Water 67% reabsorbed 
osmotically with solutes 

15% reabsorbed; 
osmosis 

8% reabsorbed if 
ADH; osmosis 

Variable amounts 
reabsorbed, controlled 
by ADH, osmosis 

Bicarbonate 80–90% symport 
reabsorption with Na+ 

Reabsorbed, 
symport with Na+  

 
Reabsorbed antiport 
with Cl– 

H+ Secreted; diffusion 
 

Secreted; active Secreted; active 

NH4+ Secreted; diffusion  Secreted; 
diffusion 

Secreted; diffusion 

HCO3
– Reabsorbed; diffusion Reabsorbed; 

diffusion in 
ascending limb 

Reabsorbed; 
diffusion 

Reabsorbed; antiport 
with Na+ 

Potassium 65% reabsorbed; 
diffusion 

20% reabsorbed  Secreted; active Secretion controlled by 
aldosterone; active 

Calcium Reabsorbed; diffusion Reabsorbed  
 

Reabsorbed if 
parathyroid hormone 
present; active 

Phosphate 85% reabsorbed, 
inhibited by parathyroid 
hormone, diffusion 

 
Reabsorbed; 
diffusion 

 

 

 Substances secreted or reabsorbed in the renal tubules and their locations. ADH: antidiuretic hormone 

[79]. 
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1.2.4 Diabetic nephropathy (DN) 

DN is one of the most common diabetic complications and the leading cause of ESKD. It is 

classically characterized by the appearance of albuminuria, the reduction of renal function 

(decreased glomerular filtration rate and creatinine clearance) and development of hypertension. 

Morphologically, DN is accompanied by excessive deposition of extracellular matrix proteins, 

thickening of GBM, glomerular hypertrophy, tubule dilation and tubulointerstitial fibrosis. The 

progression of DN is classified in five stages based on the albuminuria and glomerular filtration 

rate (GFR). Stage 1 develops in the early diabetes with a hyperfiltration and an above-normal GFR. 

Normal GFR is maintained in the Stage 2, which can be accompanied by small amounts of 

microalbuminuria up to 30 mg/24hrs. The microalbuminuria increases to 30-300 mg/24hrs in 

stage 3 with a drop of GFR down to 60 ml/min/1.73 m2. GFR falls to a level less than 30 

ml/min/1.73 m2 in stage 4 with higher albuminuria. In the end stage of the DN, the kidney losses 

most of its function with a GFR level less than 15 ml/min/1.73 m2 [80, 81].  

1.2.5 The pathogenesis of DN 

1.2.5.1 Intrarenal renin-angiotensin system (iRAS) and DN 

IRAS is a hormone system that regulates blood pressure, fluid and electrolyte balance. 

Activation of RAS is considered one of the most important pathological processes in the 

progression of DN. Beyond traditional systemic RAS, existence of local RAS in different organs 

such as heart and kidney have been identified [82]. Compared to systemic RAS, all components 

of the intrarenal RAS (iRAS) has been recognized in the RPTs [83]. For example, the concentration 

of angiotensin II (Ang II), one important component of RAS, has been reported 1000-time higher 

in proximal tubular and interstitial fluid than in systemic blood [84]. Hence, understanding iRAS 

and its function is necessary for the study of DN.  

It is not fully understood that whether systemic RAS and intrarenal RAS could regulate 

each other. Our previous data showed that overexpression of Agt in RPTCs caused hypertension 

and renal injury without affecting the expression of liver Agt or circulating Agt, indicating that 

intrarenal RAS does not regulate systemic RAS and functions locally [85]. However, one study by 
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Matsusaka’s group showed that liver specific KO of Agt markedly reduced the plasma 

angiotensinogen level, renal Agt and Ang II expression, implying that systemic RAS affects the 

intrarenal RAS. Moreover, this study also found that RPTC-specific KO of Agt had no detectable 

change in intrarenal Agt [86]. Concerns about the RPTC-specific KO in this study was addressed as 

only 50% of urinary Agt was reduced. Hence, a further study that knockout of Agt in mice nephron 

(Pax8-rtTA-Cre) and found that Nephron-KO-Agt significantly reduced BP and renal Agt 

expression. Unexpectedly, Agt mRNA expression in liver and plasma Agt were also decreased, 

suggesting that the iRAS participated the regulation of systemic RAS [87, 88].  

For the iRNA, as shown in Figure 7, angiotensinogen (Agt), the solo precursor of RAS, is 

cleaved into angiotensin I (Ang I) by renin. Ang I is further cleaved into angiotensin II by 

angiotensin-converting enzyme (ACE), or angiotensin 1-7 (Ang 1-7) by the angiotensin-converting 

enzyme 2 (Ace 2). Although derived from the same precursor, Ang II and Ang 1-7 exert very 

different, rather opposite and counter-balancing effect. It is considered that the iRAS is equipped 

with two arms, the principle pressor arm Agt/Ang II/ ACE/AT1R and the depressor arm of 

Ace2/MasR/Ang 1-7, in a counter-balanced way [89, 90]. 

 

Figure 7. –  The intrarenal RAS system. Renin hydrolyzes Agt to Ang I which is converted to Ang II by 
ACE or Ang1-7 by Ace2. Ang I could be also cleaved into Ang 1-7 and Ang 1-5 via ACE. Ang II exerts its action 
by binding to AT1R and AT2R.  Ace2 also catalyzes the conversion of Ang II to Ang 1–7. Agt: angiotensinogen; 
Ang I: angiotensin I, Ang II: angiotensin II; ACE: angiotensin converting enzyme, PTC: proximal tubule cells, 
AT1R: angiotensin II Types I receptors, AT2R: angiotensin II Types 2 receptors [91]. 
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a) The pressor arm Agt/ACE/Ang II/AT1R  

The Agt is a peptide of 485 amino acids and expresses in renal proximal tubule cells at a 

high level. Our group has demonstrated that high glucose can dramatically stimulate Agt 

expression via p38 mitogen-activated protein kinase (p38 MAPK) pathway in rat RPTCs [92]. 

Specifically, overexpression of Agt in RPTCs causes hypertension, proteinuria, kidney fibrosis, 

apoptosis and kidney injury [85, 93]. In diabetic condition, high glucose-induced Agt and ACE 

result in significant elevation of Ang II level [94]. Ang II plays a key role the progression of DN via 

binding to its receptor type I and II (AT1R and AT2R) [91]. These two receptors share a sequence 

identity about 30%, possessing similar affinity for the Ang II but exerting different functions. 

Through binding to AT1R, Ang II induces a variety of harmful effects such as vasoconstriction, 

hypertension, fibrosis, cardiac and renal damage. Multiple pathways are responsible for this 

effect, mainly including: i) coupling with G protein in vascular smooth muscle cells, and activating 

IP3-mediated rise in intracellular calcium levels and ultimately causing vasocontraction [95]; ii) 

increasing the sodium reabsorption via Na+/H+ exchanger (NHE3) and resulting in water retention, 

vasoconstriction and augment of arterial blood pressure [96]; iii) stimulating of transforming 

growth factor (TGF-β1), a powerful fibrotic gene that results in expansion of mesangial matrix, 

glomerulosclerosis and interstitial fibrosis [97]; iv) activating the MCP-1 and NF-Kb mediated 

inflammation; v) triggering the oxidative stress which contributes to the mitochondrial and 

cellular damage [98]. Infusion of Ang II in mice caused glomerulosclerosis, tubulointerstitial 

fibrosis, albuminuria, increased systolic blood pressure, cardiac hypertrophy and kidney damage 

[99, 100]. Blockade of AT1R (ARBs) and ACE inhibitors have been major therapeutic approaches in 

the treatment of DN and hypertension. In contrast, activation of AT2R has been protective via 

preventing sodium (Na+) retention and lowering BP in the Ang II infusion model [101]. Beneficial 

effects of AT2R activation have been also reported in diabetic mice model and diabetes-induced 

cardiovascular and renal disease [102, 103].  As shown in the Table 2, AT2R activation counteracts 

most effects of AT1R by inhibiting cell proliferation and differentiation, promoting vasodilation, 

and reducing inflammation and oxidative stress [104]. In diabetic Akita mice, activation of AT2R 

with C21 (an agonist of AT2R) significantly attenuated diabetes–induced mesangial expansion, 
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glomerulosclerosis, albuminuria. It also inhibited expression of various proteins implicated in 

oxidative stress, inflammation and fibrosis [105]. Furthermore, knockout of AT2R in diabetic mice 

accelerates development of hypertension, renal hypertrophy, tubular apoptosis and extracellular 

matrix (ECM) protein accumulation as well as increased GFR. This effect is partially mediated via 

heightened oxidative stress and ACE/ACE2 ratio in RPTCs [106]. 

b) The depressor arm Ace2/Ang 1-7/MasR 

As shown in Figure 8, Ace2/Ang 1-7/MasR axis exerts a counter-balanced effect against 

Ang II. Multiple studies have shown the protective effect of Ang 1-7 in DN. For example, our group 

found that Akita mice treated with Ang 1-7 agonist significantly attenuated systolic blood 

pressure, hypertension, fibrosis and kidney damage via reducing renal oxidative stress [107]. Ang 

1-7 can also blunt the Ang II-induced activation of inflammation and Ang II–stimulated 

phosphorylation of MAP kinases [108]. Ace2, homologue of ACE, exerts 60% sequence similarity 

of ACE but resists the ACE inhibitors. Multiple studies suggested that Ace2 rather protects mice 

from diabetes and maybe considered as an attractive new target in the treatment of DN and other 

diabetic complications [109]. For instance, Ace2 knockout mice yield proteinuria and 

overexpression of Ace2 did not develop cardiac hypertrophy with Ang II infusion [110].  

The MasR receptor (MasR) belongs to the G protein-coupled receptor family and 

considered as the receptor of the Ace2/Ang 1-7 axis of iRAS. Studies have shown that MasR 

participates in several physiological processes including reno- and cardio- protection as well as 

regulation of the central nervous system [111]. In human mesangial cells, Ang 1–7 increased 

phosphorylation of p38 and ERK1/ERK2 through MasR and antagonist of MasR (but neither the 

antagonists of AT1R nor the AT2R) could block this effect [13]. One of our earlier studies showed 

that in diabetic Akita mice, Ang 1–7 administration normalized systemic hypertension, attenuated 

glomerular injury, tubulointerstitial fibrosis and decreased oxidative stress, whereas co-

administration of A779 (an antagonist of MasR) effectively reversed most of the effects of Ang 1–

7, indicating the effect of Ang 1-7 in kidney is MasR dependent [107]. 
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Figure 8. –  The counter-balanced effect between Ang II/ ACE/ AT1R and Ace2/Ang 1–7/MasR in iRAS 
system [89]. 
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AT1 Receptor AT2 Receptor MAS Receptor 

Vasoconstriction Vasodilation Vasodilation 

Proliferative Anti-proliferative Antiproliferative 

Profibrotic Anti-oxidative stress Antifibrotic 

Sodium and fluid retention Anti-apoptotic Anti-hypertrophy 

Increase intracellular calcium eNOS phosphorylation and 
NO generation 

Anti-inflammative 

Aldosteron production NO/cGMP activation Improve insulin action 
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glomerular damage 

Prostaglandins and ceramides 
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Improve lipid metabolism 
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Decrease insulin sensitivity Protection from vascular 
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Activation of transcription factor (AP-1, 
STAT, CERB, NF-kB) 

  

Activation of protein kinase (PKC, PTC, 
MAPK, JAK, JUN)  

  

 

 Role of angiotensin receptors in the kidneys and vasculature   
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1.2.5.2 Oxidative stress and DN 

A large body of evidence indicates that oxidative stress is one of the major pathways that 

responsible for the progression of DN [112]. Oxidative stress refers to an imbalance between 

excessive reactive oxygen species (ROS) and the capability of effective antioxidant response. The 

ROS are a family of free radicals including superoxide anion (O2
−), hydroxyl racial (HO·), hydrogen 

peroxide (H2O2), nitric oxide (NO) and other oxygen species (RO2 •, RO•, O2, and O3) [113]. It has 

been well established that the ROS in diabetes derives from several overlapped pathways, 

including the polyol pathway, AGE-RAGE ligand binding, PKC activation and hexosamine pathway 

flux [114, 115].  

In polyol pathway, the aldose reductase can reduce toxic aldehydes to inactive alcohols, 

whereas in diabetes, excess glucose was reduced to sorbitol. The co-factor of aldose reductase, 

nicotinamide adenine dinucleotide phosphate (NADPH), is consumed. The NADPH provides 

reducing equivalents for a variety of bioreaction and allows the regeneration of glutathione (GSH, 

reduced state) from glutathione disulfide (oxidative state), a process that increases the 

intracellular oxidative stress [114].  

Advanced glycation end products (AGEs) are composed of glycated proteins or lipids when 

exposed to glucose. In diabetes, the number of AGEs is markedly increased in both extracellular 

matrix and cells. Through binding to its receptor (RAGE), AGE causes a series of damage, including 

causing the production of inflammatory cytokines, oxidative stress and growth factors [116].  

The protein kinase C (PKC) has 11 isoforms and 9 of them can be induced by diacylglycerol 

(DAG), a molecule formed by excess glyceraldehyde-3-phosphate in the environment of 

hyperglycemia. Activation of PKC pathway leads to a variety of damage effects including increase 

of the vasoconstriction in renal vessels, mesangial expansion, albuminuria, GFR, TGF-β1, 

inflammation, decrease of NO production and vascular permeability [117]. For example, an earlier 

study has shown that in rat glomeruli, the PKC activator can stimulate production of reactive 

oxygen stress via cyclic AMP pathway [118]. 
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In diabetic condition, hyperglycemia drives excess glucose into the hexosamine metabolic 

pathway, which converts the fructose-6 phosphate to glucosamine-6 phosphate. Increased 

glucosamine-6 phosphate results in modification of many genes including Sp1, which in turn 

increases the expression of transforming growth factor-β (TGF-β1) and causes extracellular matrix 

accumulation [114].  

To understand the major pathways that contribute to the DN, a review by M. Brownlee 

proposed that the overproduction of superoxide by the mitochondrial electron transport chain 

(ETC) acts in the upstream of all these mechanisms and stimulates these aberrant glucose 

metabolisms. From the Brownlee theory, in diabetic condition, excess glucose uptake by 

susceptible cells would lead to an increase of pyruvate production, which is then oxidized by the 

citric acid cycle in mitochondria. This process subsequently leads to accumulation of electron 

donors (NADH and FADH2) into the ETC and causes electron leakage and overproduction of 

superoxide. Furthermore, chronic hyperglycemia would impair the activity of mitochondrial ETC 

and cause the mitochondrial dysfunction, cellular damage and apoptosis [114]. Indeed, 

mitochondrial dysfunction is associated with a variety of metabolic diseases including diabetic 

nephropathy [119].  

In Mitochondria, glucose is oxidized to CO2 and water, yielding energy mostly in the form 

of ATP. As shown in Figure 9a, the mitochondrial respiratory chain complex contains four 

mitochondrial inner membrane-associated enzyme Complexes (I, II, III and IV), ATP synthase (also 

named Complexes V), the cytochrome c and the mobile electron carrier ubiquinone. The electrons 

transfer through Complexes I, III and IV pumping protons outwards into the intermembrane 

space, generating a proton gradient that drives ATP synthase. However, in diabetes, high glucose 

concentration provides TCA cycle with overwhelmed pyruvate, which is accompanied by marked 

increase in electron donors (NADH and FADH2) and leads to subsequent increase of voltage 

gradient. Eventually, electron transfer inside complex III is inhibited and lead to increase of the 

lifetime of ubiquinone which reduces O2 to O2
-. The increased ROS is responsible for the damages 

of mitochondrial DNA, mitochondrial morphological change and reduction of the ATP synthesis 

[115, 120, 121]. Studies by Brownlee et al have shown that in endothelial cells, removal of the 

mitochondrial electron transport chain (ETC) completely blocked the effect of hyperglycemia on 
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ROS production. Moreover, removal of ETC completely abolished the hyperglycemia-induced 

activation of the polyol pathway, AGE formation, PKC and the hexosamine pathway. Similarly, 

these four pathways were also not activated when overexpression of UCP-1 or MnSOD, indicating 

the importance of mitochondria in generation of ROS in diabetic condition [114, 115].  

Other pathways that involved in the mitochondria-derived ROS have been reported. As 

shown in Figure 9b, glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

participates in several pathways that contribute to the development of DN. Studies have shown 

that GAPDH is decreased in all kinds of diabetic animals and patients and this decrease was 

diminished when mitochondrial-derived ROS is supressed by either UCP-1 or MnSOD [115].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. –  a) Production of superoxide by the mitochondrial electron-transport chain. Increased 
hyperglycaemia-derived electron donors from the TCA cycle (NADH and FADH2) generate a high 
mitochondrial membrane potential by pumping protons across the mitochondrial inner membrane. This 
inhibits electron transport at complex III, increasing the half-life of free-radical intermediates of coenzyme 
Q (ubiquinone), which reduce O2 to O2

-; Cyt c: cytochrome c; Q: the mobile electron carrier ubiquinone. 

a. 

b. 
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b), schemes of the unifying mechanism of hyperglycemia-induced cellular damage; GAPDH: glycolytic 
enzyme glyceraldehyde 3-phosphate dehydrogenase [115, 120]. 

 

In the development of DN, ROS can be also produced by other pathways, such as NADPH 

oxidases (Nox). The Nox are multi-subunit enzymes that transfers one electron to oxygen from 

NADPH and reduce O2 to O2
− (Figure 10).  

 

 

Figure 10. –  Relations between O2 and NADPH with NADPH oxidase. Molecular oxygen is     
reduced by NADPH oxidase to produce superoxide anion. 

 

As shown in Table 3 [122], seven members of the Nox family have been identified, namely, 

Nox1, Nox2, Nox3, Nox4, Nox5, Duox1, and Duox2. These members are different from subunits, 

tissue expression and pathophysiological functions. Among them, Nox2 (gp91phox) was the first 

identified and most well-studied isoform. It contains a few core subunits and widely expresses in 

the immune defense system, heart and brain as well as renal tubular cells [122]. A study by You’s 

group has shown that knockout of Nox2 did not significantly change the body weight, mesangial 

matrix, tubulointerstitial disease, and transforming growth factor-β, suggesting that lack of Nox2 

does not protect against diabetic kidney disease in type 1 diabetes [123]. The Nox1 has similar 

structures with Nox2 and primarily expresses in colon epithelium, vascular smooth muscle cells, 

endothelial cells, heart and lung as well as renal proximal tubule cells. In early diabetic kidney 

induced by STZ, Nox1 knockout did not significantly change the proteinuria, inflammation or 

fibrosis markers, rather attenuated the glomerular volume and mesangial matrix area compared 

to WT-STZ, probably via reducing the phosphorylation of p38 mitogen-activated protein kinase 

pathway [124]. The Nox3 shares ∼56% amino acid identity with Nox2 and mainly expresses in the 

inner ear. Low levels of Nox3 have been reported in other tissues fetal spleen, fetal kidney, skull 

bone, and brain. But function of Nox3 is not clear and still needs further study to determine [125]. 
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The augment ROS causes multiple damage to the kidney including: i) affecting all the layers 

of the glomerular filtration barrier; ii) increase of extracellular matrix deposition; iii) increase of 

hypoxia; iv) inflammatory responses; v) tubulointerstitial fibrosis. Therefore, studies of 

antioxidants such as vitamin E, SOD, Nrf2 and catalase, have been ongoing for the therapy of DN 

[112, 126].  

 

 Seven members of the Nox family of proteins [122]. 
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1.2.5.3 Autophagy and DN 

Autophagy is a fundamental cellular process that removes unnecessary or dysfunctional 

components. It has been earlier described as a stress adaptive response for nutrient starvation to 

provide nutrients and maintain cellular homeostasis. Later studies have demonstrated that 

autophagy plays an important role in the development of several diseases including diabetes and 

diabetic complications [127, 128]. Autophagy is commonly described as three major types, 

namely macroautophagy, microautophagy and chaperone-mediated autophagy. Among them, 

the macroautophagy, referred to autophagy, is the most well-studied type of autophagy. It begins 

with an isolation membrane, namely phagophore, which is likely derived from lipid bilayer in the 

endoplasmic reticulum (ER) and/or the trans-Golgi and endosomes. The phagophore engulfs 

cellular components that need to be degraded, forming a double membrane known as 

autophagosome, which then travels to the lysosome for degradation [128, 129].  

Dysregulated autophagy has been reported to participate in the progression of DN. For 

example, in STZ-induced diabetic model, autophagy was inhibited in the proximal tubule cells and 

insulin treatment could reverse inhibition of autophagy [130]. In high fat diet-induced obese mice 

and patients with type 2 diabetes or obesity, autophagy was also suppressed via hyperactivation 

of mTORC1 pathway [131]. Furthermore, dietary restriction (a daily food restriction by 40%) in 

diabetic rats attenuated progression of DN via suppression of inflammation and regulation of 

autophagy [132]. 

Overexpression of TGF-β1 promotes autophagy has been reported in a few studies. In 

cultured mouse mesangial cells, treatment with TGF-β1 resulted in induction of autophagy 

protein LC3 while suppressing caspase 3 activation [133]. In human renal proximal tubular cells, 

presence of TGF-β1 induced accumulation of autophagosomes and LC3 in a time and dose 

dependent manner via generation of ROS [134]. Furthermore, in Koester’s study, overexpression 

of TGF-β1 in mice renal tubular cells induced nephrons degeneration and tubular cells 

decomposition by autophagy, which eventually caused interstitial proliferation, tubular 

autophagy, and fibrosis [135]. Thus, whether TGF-β1 driven autophagy has protective or 

deleterious effects on kidney is still unknown [136]. Although DN is usually accompanied with 

impaired autophagy and enhanced TGF-β1 level, whether TGF-β1 can drive autophagy in diabetic 
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kidney still needs further clarification. However, implied by Koester’s study, it might be possible 

that TGF- β1 can also increase of autophagy in DN but not persistent, which subsequently leads 

to widely spread of kidney fibrosis. 

 The p62 is a key receptor of autophagy. Disrupted autophagy leads to accumulation of 

p62 in RPTCs in diabetic condition. Importantly, the accumulated p62 could activate Nrf2, a 

transcriptional factor that plays an important role in the development of DN. Through interaction 

with the Nrf2 suppressor (Keap 1), accumulated p62 expression in diabetes allows Nrf2 to 

translocate into nuclear and leads to a series of important gene expression [137, 138]. Taken 

together, restoration of autophagy might be a potential therapeutic target for DN. 

1.2.5.4 Other pathways with DN 

TGF-β1 is the central mediator of renal fibrosis. As shown in Figure 11, beyond PKC and 

hexosamine pathway, TGF-β1 signaling can be activated by many other pathways including ROS, 

Ang II and AGEs. Activated TGF-β1 can bind its receptor and cause multiple damages including: a) 

overexpression of fibrotic genes such as collagen I and fibronectin, resulting in mesangial matrix 

expansion, tubular cells atrophy, podocytes deformation and eventually renal fibrosis [139]; b) 

accumulation of inflammatory cells and fibroblasts and leading to inflammation; c) promoting 

autophagy and subsequently kidney fibrosis in both mesangial and tubular cells via 

overexpression of autophagy related genes [136, 140].  
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Figure 11. –  Schematic diagram of pathological role of TGF-β1 signaling in diabetic kidney disease. 
Hyperglycemia, AngII, ROS, mechanical stretch, AGEs and thrombospondin-1 are able to active 
TGF-β1 signaling. TGF-β1 signaling plays an important role in mediating renal fibrosis, 
inflammation, and autophagy in proximal tubular epithelial cells in diabetic kidney disease. TGF-
β, transforming growth factor-beta; ROS, reactive oxygen species; PTECs, proximal tubular 
epithelial cells; AGE, advanced glycation end products; TSP-1, thrombospondin-1; ECM, 
extracellular matrix [136]. 

In additional to the pathways that mentioned above, several other factors have also been 

reported to be significant in the progression of diabetic nephropathy. For example, Sirtuin-1 is a 

member of the Sirtuin family (Sirtuin 1-7) and contributes to cellular regulation via protein 

deacetylation. Sirtuin-1 is down regulated in diabetes [141] and overexpression of Sirtuin-1 in 

RPTCs ameliorated the glomerular injury, whereas deletion of Sirtuin-1 in RPTCs aggravated 

glomerular damage in diabetic mice [142]. FoxO3a is a member of FoxO subfamily of Forkhead 

transcription factors, a factor that is known to regulate longevity. It has been shown that FoxO3a 

protects cells from oxidative stress damage [143]. Catalase is a powerful enzyme and antioxidant 

factor that convert hydrogen peroxide into water and oxygen. Diabetes is associated with 

decreased level of catalase and overexpression of catalase in type 1 diabetic Akita mice 

significantly attenuated the hypertension and renal injury [144]. 
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1.2.6 Treatment of DN  

DN treatment varies depending on the patient’s DN stage. Overall, therapeutic 

approaches of DN include glycaemic and blood pressure control, lipid lowering and low-carb low-

fat diet as well as exercise [145].  ACE inhibitors and angiotensin II receptor blockers (ARBs) are 

used to treat high blood pressure. Insulin and other drugs can be used for the glycemia control. 

Furthermore, addition of PPAR-γ inhibitors such as rosiglitazone to metformin reduce albuminuria 

and blood pressure independent of glycemic control. Recently, a new class agent for DN 

treatment, the sodium-glucose cotransporter-2 (SGLT2) inhibitors, has yielded considerable 

protective effect against type 2 diabetic kidney and cardiovascular disease [64, 146]. Currently, 

monotherapy of SGLT2 inhibitors or combination with current DN agents such as ARBs or 

dipeptidyl peptidase-4 inhibitors are being tested [147].  
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1.3 Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) 

1.3.1. Pilot study of Nrf2 

Nrf2 was firstly reported in the study of beta-globin locus control region in 1994 [148]. In 

this study, a hypersensitive site 2, located in the beta-globin locus control region, was addressed 

that confers high levels of expression in the beta-globin gene cluster. Within the hypersensitive 

site 2, a tandem repeat of the consensus sequence for the transcription factors, activating protein 

1 (AP1) and nuclear factor erythroid 2 (NF-E2), are absolutely required for strong enhancer 

activity. Using this tandem repeat as a recognition site probe to screen a lambda gt11 cDNA 

expression library from K562 cell line, several DNA binding proteins were isolated. Among these 

clones, two of them had remarkable similarities with NF-E2. One was named NF-E2-related factor 

1 (Nrf1), and the other was referred to NF-E2 related factor 2 (Nrf2) [149].  

1.3.1.2 Nrf2 and ARE 

Human antioxidant response element (hARE) is a unique cis-element that contains AP1 

elements and a ‘GC’ box. HARE has been reported to be bound by multiple transcription factors 

including Jun, Fos and Fra [150]. This sequence is present in the promoter of human 

NAD(P)H:quinone oxidoreductase1 (NQO1), an enzyme that is responsible for detoxifying 

quinones and protecting cells against redox cycling and oxidative stress. Similar cis-element has 

also been identified in the promoters of rat NQO1, mouse and rat glutathione S-transferase (GST) 

[151].  

The binding sequences of Nrf1 and Nrf2, interestingly, are very similar to the hARE. Nrf1 

and Nrf2 were shortly proved to be stronger regulator of NQO1 by binding to the hARE sequence. 

As expected, Nrf2 also induces GST via binding with hARE sequence in the GST promoter [152]. 

Further study has showed that in Nrf2 deficient mice, several defense proteins responsible for 

electrophilic agents and oxidative stresses, including oxygenase-1 (HO-1), GSH level and stress 

protein A170, were profoundly impaired, indicating the importance of Nrf2 against oxidative 

stress [153]. 
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1.3.2 The Nrf2/Keap 1 system  

1.3.2.1 The molecular structure of Nrf2/Keap 1 system 

Numerous studies have been performed to understand the role of Nrf2 against oxidative 

stress [154]. Itoh, K. et al. showed that the human and chicken Nrf2 peptide sequences are highly 

conserved and six highly conserved homology regions in Nrf2 were named Neh1 to Neh6 (Nrf2-

ECH homology; ECH: erythroid cell-derived protein with CNC homology) [154, 155]. Importantly, 

domain Neh2 was found to negatively regulate Nrf2 activity by a cysteine-rich protein, namely 

Kelch-like ECH-associated protein1 (Keap 1) [154]. Hence, regulation of Nrf2 by Keap 1 under 

normal and oxidative stress condition was revealed.  

As shown in Figure 12, the Neh1 contains the CNC (cap'n'collar) homology region and 

basic-leucine zipper (bZIP) domain, which are responsible for hetero-dimerization with small Maf, 

a protein that contributes to bZIP transcription factor binding. The Neh2 located in N-terminal, 

containing DLG and ETGE motifs which can specifically bind to Keap 1. The Neh6 is targeted for 

degradation of Nrf2 by the E3 ubiquitin ligase complex, whereas the Neh3–5 domains has been 

proved to function in transactivation by binding to various components of the transcriptional 

apparatus [156]. Wang, H. et al. group identified that retinoic X receptor alpha (RXRα), one 

member of nuclear receptor family, is an unrecognized repressor of Nrf2 and designated it as Neh 

7 [157]. 

 

 

Figure 12. –  Schematic representation of the regions of Nrf2 protein [156] 
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Keap 1 is a highly redox-sensitive member of the BTB-Kelch family for a Cul3-dependent 

ubiquitin ligase complex. The Kelch domain in the C-terminal of Keap 1 binds to the DLG and ETGE 

motifs in the Neh2 of Nrf2, followed by Cullin3-based E3-ligase complex induced degradation. 

Further studies have shown that cysteine residues Cys151, Cys273 and Cys288 in BTB domain of 

Keap 1 are responsible for stress sensing of Keap 1 and Nrf2 activation [158, 159]. 

Keap 1/Nrf2 system has been considered the major cytoprotective responses to oxidative 

and electrophilic stress. As shown in Figure 13, Nrf2 is kept in the cytoplasm by Keap 1 and 

degraded by E3-mediated ubiquitin-proteasome system in normal condition. However, in 

oxidative stress condition such as diabetes, cysteine residues of Keap 1 undergoes covalent 

modifications and results in releasing of Nrf2 and its translocation into the nucleus, where Nrf2 

initiates transcription of downstream genes expression via binding to the ARE [156]. 

 

 

 

 

 

 

 

 

 

 

Figure 13. –  Nrf2 signaling pathway. Cysteine residues critical for Keap 1 dimerization (C151)     
and redox sensing (C273, C288, C297) are indicated [160].  
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1.3.3. Activators of Nrf2/Keap 1 system 

As Nrf2 is normally kept in the cytoplasm by Keap 1 for degradation, Keap 1 is the primary 

target for Nrf2 activation. Many chemicals which are electrophilic or reactive to thiol groups can 

induce covalent modifications of Keap 1 and result in Nrf2 activation.  

One of the most well-known Nrf2 activators is Bardoxolone Methyl (BM), a compound 

that belongs to the synthetic oleanane triterpenoids class [161]. These compounds can react with 

nucleophiles containing –SH groups including cysteine and induce covalent change of Keap I. 

Treatment with BM significantly elevated Nrf2 and its downstream protein expression, whereas 

this effect is absent in Nrf2 deficient cells [162].  

Oltipraz is a synthetic organosulfur compound that belongs to the dithiolethione family. It 

stimulates a battery of phase II detoxification enzymes and antioxidant genes including NQO1 and 

GSTs in vitro and in vivo [163, 164]. It has been demonstrated that the oltipraz can react with 

thiols and modify the cysteine residues inside the Keap 1 (Figure 14). One oltipraz analogue, 3H-

1,2-dithiole-3-thione, induces intermolecular disulfide bonds at Cys273 and Cys288 between two 

Keap 1 molecules and results in Nrf2 activation [165]. Furthermore, oltipraz can generate radical 

superoxide and further leads to activation of Nrf2 [166]. Our previous data have shown that 

oltipraz can significantly stimulate Nrf2 expression both in mice and cell lines [144].  

Several other bioactive nutrients can activate Nrf2. For example, tBHQ, a compound 

oxidized from butylated hydroxyanisole (BHA), is commonly used as an antioxidant food 

preservative. A study has shown that Cys151 of Keap 1 is a specific sensor for tBHQ. Mutants of 

C151 in Keap 1 diminished Nrf2 induction in cell culture and zebrafish. Sulforaphane, an 

isothiocyanate that is rich in broccoli, also activates Nrf2 by direct modifications of Keap 1 

cysteines at Cys151 [167]. As shown in Figure 13 and 14, Cystein (Cys151) in the BTB domain of 

Keap 1 is the most critical and redox-sensitive cysteine residue. When exposed to oxidative stress, 

two molecules of Keap 1 form an intermolecular disulfide ‘Cys151–Cys151’, which allows Nrf2 to 

evade from Keap 1-mediated ubiquitination [160]. Cys273 and Cys288 have also been considered 

crucial for the Keap 1 and Nrf2 interaction. Mutation of either Cys273 or Cys288 to Ala inhibits 

Keap 1’s ability to direct constitutive ubiquitination of Nrf2. But mutation of these two cysteine 
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to Ser does not affect the stability of Keap 1 to Nrf2. Hence, the underlying mechanisms by which 

C273 and C288 mutations impact Keap 1 function are not fully understood [168]. 

 

 

 

 

 

 

 

 

Figure 14. –  Structure of the Keap 1 with the position of cysteine residues. The N-terminal BTB domain 
participates in homodimerization and binding to CUL3/RBX1. The C-terminal region, DGR (double glycine 
repeat) domain, contains a double glycine repeat called Kelch repeat that binds NRF2-Neh2 domain. The 
intervening region (IVR) contains redox-sensitive cysteine residues. Red and blue cysteine residues in 
Keap 1 are the most relevant for electrophile reactivity [169].  

1.3.4 Role of Keap 1/Nrf2 in oxidative stress and toxicity 

In normal condition, oxidants are constantly formed in responding to several physiological 

actions such as cell division, inflammation, autophagy, and stress response in a controlled 

manner. However, when exposed to stress, toxicities or disease, uncontrolled production of 

oxidants result in oxidative stress and impair multiple cellular functions [170]. Hence, a variety of 

antioxidants has been considered crucial in the therapy of several diseases. Among these 

antioxidants, the role of Nrf2 as an antioxidant factor has been widely supported and well 

established.  

Targeted genes of Nrf2 have been summarised in three major groups by Q. Ma et al. [155]. 

First, Nrf2 induces drug metabolism and disposition genes such as cytochrome p450, NQO-1, 

aldehyde dehydrogenase and GST [171]. Second, Nrf2 induces catabolism of superoxide and 

peroxides through SOD, peroxiredoxin, glutathione antioxidant protein thioredoxin (Trx) [172, 

173], synthesis of reducing factors glutamate-cysteine ligase (GCLC)and heme-oxygenase (HO-
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1)[174]. Third, Nrf2 also mediates oxidant signaling such as p62 (related to autophagy) and 

Parkinson disease 7 (related to mitochondrial apoptosis) [155, 175].  

1.3.5 Role of Nrf2 in diabetes and diabetic complications  

1.3.5.1 Nrf2 expresses in different organs 

From the study of Moi et al. group, Nrf2 is ubiquitously expressed in different tissues at 

different levels. As shown in Figure 15, Nrf2 highly expresses in muscle, kidney and lung in the 

adults [148]. Hence, Nrf2 has been proposed as a multi-organ protector due to its central role in 

protecting cells from ROS and electrophiles [176]. Moreover, studies support that Nrf2 

participates in the regulation of several diseases including diabetes and diabetic complications 

[23].  

 

 

 

 

 

 

Figure 15. –  Nrf2 mRNA expression by northern blot analysis in human cell lines and different organs 
[148]. 
 

1.3.5.2 Role of Nrf2 in diabetes  

Oxidative damage has long been considered as one of major reasons in the progression of 

diabetes. Several studies have shown that activation of Nrf2 ameliorated diabetic damage in the 

pancreas, heart, kidney and skin [177, 178]. One of the significant studies by Uruno, et al., showed 

that genetic activation of Nrf2 by Keap 1 knockdown (Keap 1flox/-) markedly prevented onset of 

diabetes (Figure. 15) [179]. In this study, activation of Nrf2 significantly ameliorated blood glucose 

level and oral glucose tolerance test (OGTT) while improved insulin secretion and insulin 
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sensitivity in type 2 diabetic db/db mice (Figure.15). Oral administration of Nrf2 activator CDDO-

Im (BM) attenuated diabetes in db/db mice. In gastrocnemius and soleus muscle (SkM), 

overexpression of Nrf2 ameliorated HFD-induced impairment of locomotor activity and protected 

mice from diet-induced obesity. Enhanced Nrf2 in brown adipose tissue increased the oxygen 

consumption, whereas overexpression of Nrf2 in liver suppressed gluconeogenesis via 

transcriptional repression of a variety of enzymes, including gluconeogenic enzyme glucose-6-

phosphatase (G-6-P). Other studies have reported that activation of Nrf2 preserved β-cell mass, 

function and apoptosis. Furthermore, Nrf2 has also been shown to protect insulin sensitivity via 

reducing hypothalamic oxidative damage [180]. In addition, activation of Nrf2 is required in 

human β-cell proliferation in diabetic condition [181].  

 

 

 

 

 

 

 

 

Figure 16. –  Overexpression of Nrf2 prevents diabetes in db/db mice. (A) Blood glucose levels, (B) body 
weight (C) Oral glucose tolerance test (OGTT), (D) plasma insulin [179] 

 

However, studies also yielded paradoxical but inspiring data. For example, despite 

improved glucose metabolism with Nrf2 induction in different organs such as pancreas, overall 

mutation of Nrf2 significantly improved glucose metabolism in both db/db and HFD-induced 

diabetic mice [182, 183]. Insulin sensitivity, insulin secretion and insulin release-related genes 

were all improved in Nrf2 knockout mice. Moreover, activation of Nrf2 by Keap 1 knockdown 

increased the markers of metabolic syndromes such as diet-induced obesity, hepatic steatosis, 
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and glucose intolerance in HFD induced diabetes [184]. Clearly, the role of Nrf2 in diabetes 

remains controversial and needs further studies to determine.  

1.3.5.3 Role of Nrf2 in diabetic complications 

The role of Nrf2 in diabetic complications has been investigated. For example, in mice with 

HFD-induced obesity, Nrf2 knockout developed a less insulin-resistant phenotype via 

participating in the regulation of FGF21 in liver and white adipose tissue [183]. Xue et al. group 

reported that incubation with Sulforaphane (an Nrf2 activator) with human microvascular 

endothelial cells prevented hyperglycemia-induced activation of the hexosamine and PKC 

pathways [185]. Multiple evidence have shown that in addition to adipose tissue and 

microvascular endothelial cells, activation of Nrf2 is beneficial for a variety of diabetic 

complications, including diabetic nephropathy, heart failure, cardiovascular disease and wound 

healing [178]. 

1.3.6 Role of Nrf2 in DN  

As mentioned in 1.1.4, DN is one of the main complications of diabetes mellitus and 

oxidative stress contributes to the development of DN, Nrf2, an antioxidant factor, has been 

widely studied [137, 186]. In general, these studies can be classified by either Nrf2 deficiency or 

activation.  

1.3.6.1 Deficiency of Nrf2 in DN  

Nrf2 knockout mice has been successfully generated by Chan et al. in which part of exon 

4 and all of exon 5 (the function regions of Nrf2) were replaced with bacterial gene LacZ [187]. An 

earlier study by Yoh, K. group have reported that in STZ-induced diabetes [188], WT-STZ mice 

developed high serum glucose, creatinine clearance, urinary protein and urinary nitrite/nitrate 

(NOx) while there was a trend of lower serum glucose in STZ-Nrf2KO mice (Figure 17A). 

Furthermore, Nrf2KO-STZ mice did not develop renal hyper-filtration and early renal injury (at 2-

6 weeks, Figure 17B) but rather had significantly lower urinary protein level compared to WT-STZ 

mice (Figure 17C). However, Nrf2KO-STZ mice developed significant NO overproduction and 

oxygen radical formation compared to STZ-WT mice (Figure 16D).  
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Figure 17. –  Serum glucose (A), creatine clearance (B), urinary protein level (C), and urinary NOx 
production in WT, Nrf2KO, STZ-WT and STZ-KO mice [188]. 

 

Another study by Jiang, T. group has reported that Nrf2KO-STZ mice had higher ROS 

production, suffered from greater oxidative DNA damage and renal injury compared to WT-STZ 

mice. The underlying mechanisms were at least partially through inhibition of TGF-β1 and 

reduction of extracellular matrix production. This study also reported a higher ROS level, elevated 

Nrf2 expression and its downstream genes in human renal mesangial cells with diabetes [189].  

Of note, one comprehensive microarray identified 2561 transcripts and 240 proteins in 

Nrf2 knockout mice that differed from WT counterparts [190]. In addition to genes related to 

detoxification and redox balance, Nrf2 also regulates a variety of genes that are involved in 

multiple physiological functions. For example, the transporter SNAT3 (slc38a3), a sodium-coupled 

neutral amino acid transporter, is responsible for the glutamine transportation and plays a 

significant role in the kidneys during metabolic acidosis [191]. The level of SNAT3 expression was 

dramatically decreased in Nrf2 knockout mice [192]. Our previous work has found that 

overexpression of catalase in the RPTCs significantly normalized systolic BP, attenuated renal 

injury, and inhibited RPTC Nrf2 and Agt expression. In both iRPTC (immortalized RPTCs) and mice, 



69 

overexpression of Nrf2 further stimulated Agt expression via binding to the Agt promoter. This 

study highlighted a novel link between Nrf2 and Agt, indicating that Nrf2 might participate in the 

regulation of iRAS [144]. Our further study has shown that in Akita mice, a type 1 diabetic model, 

knockout of Nrf2 significantly attenuated systolic BP, kidney hypertrophy and renal injury via 

lowering the expression of Agt, Ace but elevating the Ace2 and Ang 1-7 level [193]. Moreover, 

Nrf2/Agt pathway has been demonstrated to be affected by the insulin action in RPTCs. In this 

study, renal Nrf2 and Agt expression was down regulated in hyperinsulinemic-euglycemic mice, 

whereas heterogeneous nuclear ribonucleoprotein F and K expression was upregulated. This 

study documented that beneficial actions of insulin in DN appear to be mediated partially by 

suppressing Nrf2/Agt pathway and stimulating hnRNP F/K [194].  

1.3.6.2 The genetic activation of Nrf2 in DN  

As an antioxidant factor, activation of Nrf2 has been studied both genetically and 

pharmacologically. For instance, fully activation of Nrf2 by Keap 1-null mice died post-natally, 

probably from malnutrition resulting from hyperkeratosis in the esophagus and forestomach.  

Double knockout of Keap 1 and Nrf2 rescued this lethality [195]. Deletion of oesophageal Nrf2 in 

Keap 1-null mice allowed survival until adulthood, but these animals developed polyuria with low 

osmolality and bilateral hydronephrosis [196].  Furthermore, knockout of Keap 1 in renal tubular 

epithelial cells resulted in specific overexpression of Nrf2 and marked increase of renal pelvic 

expansion with hydronephrosis in both males and females at 3 months. Till 6 months, mice 

showed progressive hydronephrosis with significantly higher red blood cell count and 

hemoglobin, hematocrit, mean cell volume and mean cell hemoglobin concentration [197]. These 

data suggested a complicate role of Nrf2 in the kidneys, rather than an antioxidant factor. 

1.3.6.3 The pharmacological activation of Nrf2 in DN  

A number of Nrf2 activators such as sulforaphane and oltipraz have been applied to DN 

study [198]. In both type 1 and type 2 diabetic mice, sulforaphane can suppress renal 

inflammation, oxidative stress, and dysfunction via activation of Nrf2 [199, 200]. Dietary 

supplementation with sulforaphane down-regulated TGF-β1 expression and subsequent fibrosis 

in WT-STZ mice [201]. Our group has reported that oltipraz stimulated Nrf2 expression in 
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immortalized RPTCs and mouse kidney, which further led to enhanced expression of renal Agt 

level and caused kidney damage [144].  

It needs to mention that as Nrf2 activators, Sulforaphane and Oltipraz appear to have 

opposite effects. This is probably due to their different structures (Figure 18). As introduced in 

1.3.3, Oltipraz is a synthetic compound that belongs to the dithiolethione family. It can stimulate 

Nrf2 and its downstream genes including NQO1 and GSTs via inducing intermolecular disulfide 

bonds at Cys273 and Cys288 of two Keap 1 molecules. Sulforaphane is a natural compound that 

contains the isothiocyanate group. One study has shown that mutation of C151 to a serine in Keap 

1 was able to repress Nrf2 on sulforaphane treatment, indicating that C151 might be one of the 

cysteines that responsive to sulforaphane [167]. 

 

 

 

                       a). Structure of Oltipraz                                  b). Structure of Sulforaphane 

Figure 18. –  Structures of Oltipraz (a) and Sulforaphane (b).  

 

One of the most well-studied Nrf2 activators is bardoxolone methyl (BM, CDDO-Me), a 

semi-synthetic triterpenoid. The BM was initially tested for cancer treatment in which yielded a 

raise of estimated GRF (eGFR) and Nrf2 downstream genes [202]. Although BM was reported toxic 

for rodents, a few analogues of BM have been studied on kidney diseases [203]. For example, in 

STZ-induced diabetic apolipoprotein E−/− mice, treatment with low dose of dh404 (3 and 10 

mg/kg, an analog of BM), significantly attenuated urinary ACR, glomerular injury and improved 

renal tubular injury with upregulation of Nrf2-responsive genes; however, higher doses of dh404 

(20 mg/kg) were found to be associated with increased expression of proinflammatory mediators 

MCP-1 and NF-κB. Further analysis found that oxidative stress such as 8-OhdG and urinary 8-

isoprostane were significantly attenuated in all concentrations and particularly at the highest 

dose of 20 mg/kg of BD, indicating that a lack of protection by the highest dose of dh404 was no 
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correlation to oxidative stress [204]. Furthermore, administration of RTA dh404 (a synthetic 

triterpenoid) restored mean arterial pressure, decreased glomerulosclerosis and interstitial 

fibrosis via increasing Nrf2 expression and its target genes in 5/6 nephrectomy induced CKD rats 

[205]. Another study has shown that treatment of analogs of BM (RTA 405) in CKD rats worsened 

proteinuria, glomerulosclerosis, tubular damage followed by liver injury. It also caused severe 

changes in food intake and diuresis, accompanied by body weight loss and blood pressure 

elevation. These studies indicated that use of BM analogs in diabetic nephropathy are 

controversial and still needs further study to investigate [206].  

1.3.7 Clinical trial of Nrf2 

Despite controversial data of BM on kidney diseases, BM was further tested in clinical 

trials. A primary phase 2a clinical trial has found that 8-week treatment with BM on type 2 

diabetes patients with moderate to severe CKD (baseline serum creatinine level ranged from 1.3 

to 3.0 mg/dl), increased eGFR and creatinine clearance [207]. This clinical trial was followed by 

the BEAM, another clinical trial with a larger sample size. 227 patients with diabetes mellitus and 

CKD were administrated with either placebo or BM for 52 weeks. Data have shown that BM 

persistently ameliorated eGFR reduction during the treatment period without server adverse 

events [208].  

However, a comprehensive clinical trial with BM (phase 3), involving 2185 patients with 

type 2 diabetes mellitus and stage 4 CKD was early terminated due to considerable adverse events 

of high mortality rates[209]. Compared to placebo group, patients in BM group had increased 

ACR and blood pressure, more cases of heart failure and death. Multiple reasons have been 

suggested to be responsible for this failed trial, for example, inappropriate experimental 

arrangements, largely depending on animal and cell data, ignoring negative reports of Nrf2 and 

the side effects of BM. More detailed reasons were also discussed, such as the augmentation of 

sodium retention and dysregulation of iRAS with BM treatment. To date, BM is currently being 

tested in several clinical trials (Table 2) [210, 211]. Thus, it is urgent and crucial to understand the 

role of Nrf2 in DN.   
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 Summary of clinical trials of CDDO-methyl ester in kidney diseases [211]. 

1.3.8 Nrf2 and Cancer 

Besides the role of Nrf2 in oxidative stress and diabetes, Nrf2 has been also found that 

highly expresses in different cancers. However, the role of Nrf2 in cancer is still contradictory. 

For the good side of Nrf2, it has been shown that Nrf2 protects against chemical 

carcinogen-induced tumor formation in the stomach, bladder, and skin [212]. For instance, when 

exposed to different chemicals, mice without Nrf2 were more susceptible to develop gastric 

neoplasia [213], bladder and skin tumors [214, 215], mainly due to Nrf2’s role in reducing ROS 

and DNA damage. Treatment of sulforaphane, an Nrf2 activator, promoted cancer cell apoptosis 

via p53 mechanisms while induced phase II detoxification enzymes [216]. These studies suggested 

that Nrf2 plays an essential role in tumorigenesis inhibition and may be a potential therapeutic 

target.  

However, the ‘dark side’ of Nrf2 in cancer has been also reported. It was suggested that 

constitutive expression of Nrf2 in lung, breast, head and neck, ovarian, and endometrial 

carcinomas partially promoted cancer cells proliferation and chemoresistance. Specially, 

activation of Nrf2 responded to drug resistance, resulting in both intrinsic and acquired 

chemoresistance [217]. The cancer cells respond to three chemotherapeutic drugs, namely 

cisplatin, doxorubicin, and etoposide, whereas increase of Nrf2 by tBHQ (an Nrf2 activator) 
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caused resistance of cancer cells to these drugs [218]. Hence, a number of Nrf2 inhibitors were 

currently suggested as potential targets for cancer treatment [217]. 

Taken together, the role of Nrf2 activation in cancer is paradoxical and clearly requires 

further studies to determinate.  

 

1.4 Sodium-glucose co-transporter-2 (SGLT2) 

1.4.1 Understanding the kidneys’ role in blood glucose regulation 

The kidney has often been overlooked as a significant player in glucose metabolism until 

the development of new types of glucose-lowering drugs, namely sodium–glucose co-transporter 

2 inhibitors (SGLT2i). The kidneys participate in glucose control via three pathways [219]. First, it 

releases glucose into the circulation via gluconeogenesis. Second, it takes up the glucose from 

circulation to meet its energy needs, namely, glucose utilizations. Last, the kidneys reabsorb most 

of the glucose filtered by the glomeruli in renal tubules [220].   

1.4.1.1 Gluconeogenesis and glucose utilizations in the kidneys 

Gluconeogenesis is the formation of glucose-6-phosphate from a variety of precursors 

including lactate, glycerol, and amino acids, and its subsequent hydrolysis by glucose-6-

phosphatase for generation of glucose [221]. The kidneys have been considered two different 

parts. Cells in the renal medulla can only use glucose for their needs. They are able to 

phosphorylate the glucose and accumulate glycogen but unable to release glucose into the 

bloodstream due to lack of the glucose-6-phosphatase. Cells in the renal cortex, however, contain 

gluconeogenic enzymes which allow cells to produce and release glucose into the blood, though 

these cells can barely synthesize glycogen due to very limited phosphorylating capacity [219].  

In post absorptive period, human kidneys and liver provide approximately the same 

amounts of glucose through gluconeogenesis [221]. In fasting period, up to 20–25% glucose is 

derived from the kidneys while the remaining 75–80% is from liver [222]. When fasting continues, 

along with the depletion of glycogen stores, gluconeogenesis produces all the glucose for energy 
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needs with a subsequent increase of renal gluconeogenesis [221]. Specially, it has been reported 

that in both type 1 and type 2 diabetes, renal gluconeogenesis was enhanced about the same 

extent as hepatic glucose release [223, 224]. These findings established the importance of renal 

gluconeogenesis in glucose metabolism.  

1.4.1.2 Glucose reabsorption 

On a daily basis, the kidneys produce 15–55 g of glucose by gluconeogenesis, metabolize 

25–35 g of glucose but filter up to 180 grams of glucose via glomerulus and reabsorb them in 

RPTCs [220].  

  

 

Figure 19. –  Renal glucose handling. (a) Glucose reabsorption. (b) Glucose reabsorption via SGLT2 
and SGLT1 in the proximal renal tubular cell [225].  
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As shown in Figure 19, glucose in plasma is freely filtered by the glomerulus and almost all 

of the filtered glucose is reabsorbed by RPTCs via glucose transporters SGLT2 and SGLT1. In 

normal condition, the amount of glucose reabsorption increases linearly with amount of filtered 

glucose by the glomerulus, till it reaches maximal absorptive capacity, namely the renal threshold 

(Tm) (Figure 20). In human, the Tm equates a filtration rate at 250–350 mg/min per 1.73 m2 [21], 

which occurs at plasma glucose concentrations of 11.0 mmol/l in healthy adults. Above this 

plasma glucose concentration, the percentage of glucose reabsorption decreases and excessive 

glucose is excreted into urine, namely, glucosuria [221]. 

Of note, it has been well recognized that glucosuria in diabetic condition does not occur 

at plasma glucose levels that would normally produce glucosuria in non-diabetic condition. This 

is the result of enhanced expression of SGLT2 transporters and augmented glucose reabsorption 

capability from glomerular filtrate in people with diabetes [221, 226].  

 

 

 

 

 

 

 

 

 

 

 

Figure 20. –  Threshold of renal reabsorption of glucose [219]  
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1.4.2 Glucose transporters  

During the process of reabsorption, glucose is first transported from proximal tubule 

lumen to proximal tubule cells by crossing the apical brush border and then the basolateral side 

(Figure 19). Two transporter families, the sodium-glucose co-transporters (SGLTs) in the apical 

brush border and the facilitative glucose transporters (GLUTs) family in the basolateral side, 

participate in this reabsorption. 

1.4.2.1 SGLTs  

The SGLTs family is composed by six members. Among them, SGLT2 and SGLT1 are the 

best-characterized members, while SGLT3-6 have not yet been fully understood. As shown in 

Figure 19, SGLT2 lies in S1 and S2 segments of RPTCs, which is a low-affinity but high-capacity 

transporter with a coupling ratio of Na+ at 1:1. SGLT2 has been established as one of the main 

glucose transporters as it is responsible for about 90% of glucose reabsorption. The remaining 

∼10% of glucose reabsorption is transported by SGLT1, another transporter that mainly locates 

in the S3 of RPTCs. In contrast, SGLT1 is a high-affinity and low-capacity transporter with a 

coupling ratio of Na+ at 2:1 [225]. Although some studies have suggested that only ∼3% of glucose 

is reabsorbed by SGLT1 under normo-glycemic conditions, capacity of glucose reabsorption of 

SGLT1 can be dramatically enhanced as a compensatory effect when SGLT2 was inhibited.  

The significance of SGLT2 and SGLT1 in glucose reabsorption has been well established. 

For instance, glucose reabsorption was absent during pharmacologic SGLT2 inhibition in SGLT1 

KO mice and in SGLT1/SGLT2 double knockout mice [227-229]. In diabetic condition, knockout of 

SGLT2 significantly attenuated hyperglycemia and glomerular hyperfiltration [230]. In human, 

individuals with SGLT1 mutations exhibited malabsorption, severe osmotic diarrhea and 

dehydration, while people who lack SGLT2 genetically had familial renal glucosuria [231, 232]. 

Furthermore, a number of clinical trials have proved SGLT2i as one of the most novel and 

promising approach in the treatment of diabetes [233].  
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1.4.2.2 GLUTs 

The GLUT family is a group of membrane proteins that facilitates glucose transportation 

across the plasma membrane [234]. The most well-studied GLUTs are GLUT1–5 [235]. Among 

them, the GLUT3 is mainly responsible for glucose uptake in the brain, whereas the GLUT4 

functions dominantly in muscle and fat. The GLUT2, together with the GLUT1, is considered 

important in the glucose handling of kidney. GLUT2 is low-affinity transporter that expresses in 

different cell types including hepatocytes, intestines and pancreatic β-cells as well as early RPTCs. 

In contrast, GLUT1 is a high-affinity transporter that mainly expresses in erythrocytes and late 

RPTCs [234]. Studies have shown that loss of GLUT2 resulted in massive glucosuria in both mice 

and humans [236]. In STZ-induced diabetic rats, GLUT2 but not GLUT1 was increased to adapt for 

hyperglycemia condition [237]. However, detailed mechanisms of GLUT1 and GLUT2 in glucose 

transportation still need further studies to clarify [238].  

1.4.3 The regulation of SGLT2  

Although SGLT2 plays a key role in glucose reabsorption, the molecular regulation 

of SGLT2 remains poorly understood. A few pathways including sodium level, hyperglycemia or 

insulin have been proposed that involve in the modulation of SGLT2. 

1.4.3.1 Hyperglycemia and insulin  

S. Vestri et al. hypothesized that different rate of Na+ filtration may regulate glucose 

transporters. Their data, however, showed that the intracellular glucose concentration rather 

than sodium level was the main player [239]. Indeed, hyperglycemia induces both SGLT1 and 

SGLT2 mRNAs in diabetic condition [240]. In Vallon’s study, administration of SGLT2 inhibitor 

(empagliflozin) in type 1 diabetic Akita mice upregulated renal SGLT2 expression [240]. Ghezzi’s 

group found that in HEK 293T cells, both expression of hSGLT2 and glucose transportation were 

upregulated by high glucose-induced activation of PKA and PKC. However, this study also reported 

that phosphorylation of SGLT2 on Ser624 by insulin is necessary for activation of SGLT2 [241]. This 

finding is supported by Nakamura, et al. group, which addressed that it was not high glucose, but 

insulin participated in the regulation of SGLT2. In their study, insulin stimulated SGLT2 in a dose-

dependent manner and this effect could be blocked by an antioxidant factor (N-acetylcysteine) 
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[242]. Although insulin/SGLT2 pathway supports the augment of SGLT2 expression in type 2 

diabetic db/db mice, it cannot explain the upregulated SGLT2 level in hypo-insulinemic type 1 

diabetic Akita mice [230, 240]. 

In addition to hyperglycemia and insulin, the hepatocyte nuclear factor (HNF)-1α, a 

transcription factor, has been reported to participate in the regulation of SGLT2. In this study, 

HNF-1 alpha expression and activity was positively correlated with SGLT2 mRNA expression via 

binding to SGLT2 promoter in diabetic rats [243].  

1.4.3.2 SGLT2 and iRAS 

Activation of iRAS plays a key role in the progression of DN [244]. Our group has 

demonstrated that overexpression of Agt in RPTCs significantly increased hypertension, fibrosis 

and kidney injury [85]. Interestingly, Woods’ group has reported that administration of 

canagliflozin on HFD-induced diabetic mice significantly ameliorated hyperglycemia, 

hypertension and augmented renal Agt level [245]. However, one of our studies recently found 

that in type 1 diabetic Akita mice, insulin, rather than canagliflozin, lowered iRAS activity [246]. 

Similarly, incubation of canagliflozin with HK2 cells or treatment of WT mice with canagliflozin 

had no effect on Agt expression [247]. Hence, whether SGLT2 reacts with Agt or iRAS remains not 

clear [248, 249].  

1.4.3.3 SGLT2 and oxidative stress 

Oxidative stress is a well-recognized biological process leading to the progression of DN. 

Recent studies have identified that SGLT2 inhibitors, beyond glucose-lowering effects, possess 

potent antioxidant effect. Catalase is one of the key enzymes that protects cell from oxidative 

stress by catalyzing hydrogen peroxide to water and oxygen. Overexpression of catalase in 

diabetic Akita mice normalized systolic blood pressure and attenuated renal injury [144]. 

Administration of phlorizin (a SGLT2i) in STZ-induced diabetic mice decreased catalase, 

glutathione peroxidase, superoxide dismutase activities and oxidative stress [250]. Long-term 

treatment with dapagliflozin ameliorated hyperglycemia, β-cell damage, albuminuria, glomerular 

mesangial expansion and interstitial fibrosis as well as oxidative stress markers in db/db mice, 

suggesting that the effect of dapagliflozin on improving hyperglycemia involves inhibition of 
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oxidative stress [251]. However, it is unknown whether the effect SGLT2 inhibition on oxidative 

stress is direct or glucose lowering-effect dependent. For example, the ameliorated oxidative 

stress may result from less AGE production due to decreased hyperglycemia by SGLT2i 

administration [252]. 

Despite effect of SGLT2i treatment on oxidative stress, whether oxidative stress 

participates in the activation of SGLT2 in diabetes has never been studied. For example, Nrf2, a 

transcription factor that abundantly expresses in RPTCs, is activated by oxidative stress in 

hyperglycemia and subsequently initiates transcription of downstream genes. Our preliminary 

data have shown that Nrf2 also participates in glucose regulation and its binding sequences 

present in SGLT2 promoter. Apparently, understanding their relation will provide a novel 

perspective of activation of SGLT2 in diabetic condition. 

1.4.4 Effects of SGLT2 inhibition 

Phlorizin, a pilot of SGLT2i, was early confirmed of its effect on lowering blood glucose 

[253]. Structure of phlorizin was modified and selected to reduce the side effect. Finally, 

dapagliflozin, shortly followed by canagliflozin and empagliflozin, has been approved as SGLT2i 

agent on T2DM patients in United States and European Union in 2012. Other three agents of 

SGLT2i, ipragliflozin, tofogliflozin, and luseogliflozin were approved in Japan [254]. Although there 

are differences among SGLT2i, most of them share similar or common effects, not limited to 

glycemic control, GFR reduction, weight loss and amelioration of hypertension, but also 

protecting other organs such as heart and pancreases.  

1.4.4.1 The effect of SLGT2i in glycemic control 

It has been well established that SGLT2i can reduce hyperglycemia and glycated 

hemoglobin (HbA1c) in a dose-dependent manner in diabetic patients [255-257]. For example, in 

one randomized, double-blind study with 1,450 patients, treatment with canagliflozin 100 and 

300 mg daily decreased HbA1c −0.65% and −0.74%, respectively [257]. Particularly, combined 

with other anti-hyperglycemic medications, SGLT2 inhibitors yielded additional improvement in 

glucose control [258].  Unlike insulin, SGLT2i monotherapy was not associated with an increased 

hypoglycemic risk [259]. The underlying mechanisms of SGLT2i’s effect on glucose lowering have 
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been investigated in patients with T2DM and healthy subjects. Except reducing glucose 

reabsorption capacity, SGLT2i can also decrease Tm. In human, a normal threshold for 

reabsorption of glucose corresponds to a serum glucose concentration of 180 mg/dL. In patients 

with diabetes, the threshold can increase up to 220 to 240 mg/dL in T2DM, whereas selective 

inhibition of SGLT2 can reduce it to as low as 40 to 120 mg/dL [37]. Even in healthy subjects, SGLT2 

inhibitor (Empagliflozin) induces glucosuria in a dose-dependent manner [260].  

1.4.4.2 The effect of SLGT2i on GFR 

In diabetic condition, increased amount of glucose filtered by the glomerulus leads to 

enhanced tubular glucose load and reabsorption, resulting in decrease of Na+ and Cl– level in 

tubular fluid. This is sensed by macula densa, which further increases GFR. This response is called 

tubule-glomerular feedback (TGF). Treatment of SGLT2i leads to excessive Na+ level in tubular 

fluid with a decrease of GFR. The decreased GFR further reduces filtered glucose and decrease 

anti-diabetic efficacy of SGLT2i. Hence, the glucose-lowering effects of SGLT2 inhibition relies on 

both serum glucose concentration and GFR, two parameters that determine glucose amount by 

SGLT2 inhibition. Therefore, current recommendations suggest that dapagliflozin and 

canagliflozin should be used only in patients with an eGFR >60 ml/min/1.73 m2 and ≥45 

ml/min/1.73 m2, respectively [254, 261]. However, one study has recently reported that 

treatment of SGLT2i in type 2 diabetic patients with stage 3 chronic kidney disease (eGFR between 

30–60 ml/min) still reduced Hb A1C [259]. The most recent clinical trial, DAPA-CKD, enrolled 4304 

CKD patients with an eGFR of 25-75 mL/min/1.73 m2 was stopped early for overwhelming 

efficacy, suggesting a wider range of SGLT2i application in patients [262]. 

1.4.4.3 The effect of SLGT2i on body weight 

Weight loss is another beneficial effect of SGLT2i treatment. In various studies including 

randomized controlled trials, patients who received SGLT2 inhibitors lost weight approximately 1 

to 3 kg in a dose-dependent manner [263] [36]. Clinical data showed that body weight reduction 

by SGLT2i is maintained over 2 years [264]. Many factors contribute to the effect of SGLT2i on 

body weight reduction. For example, urinary glucose excretion directly causes body weight loss 

through energy loss. Data have shown that inhibition of SGLT2 results in elimination of about 60–
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100g of glucose per day. However, the body weight loss via glycosuria is substantially less than 

expected due to self-regulation of glucose homeostasis [265]. Overall, it has been now considered 

that approximately 50% to 75% of total weight loss was from body fat loss, while 15% to 35% was 

due to extracellular water reduction caused by glucosuria [263].  

1.4.4.4 The effect of SLGT2i on hypertension  

DN is often accompanied with hypertension, and management of hypertension is critical 

in the therapy of DN. All FDA-approved agents of SGLT2i, namely canagliflozin, empagliflozin, 

dapagliflozin and ertugliflozin, can reduce both systolic and diastolic blood pressure [266]. It has 

been suggested that at least six molecular pathways were involved in blood pressure reductions 

by SGLT2i [267]. Briefly, SGLT2i decrease hypertension: i) via increasing the natriuretic/diuretic 

effects and subsequently increase blood viscosity [268]; ii) via modulating autonomous nervous 

system activity [269]; iii) partially via body weight reduction [270]; iv) by directly affecting 

NO synthase activity [271]; v) by directly improving renal function [272]; vi) via down-regulation 

of the oxidative stress. In addition, one study has provided that inhibition of SGLT2 may directly 

downregulate NHE3 and lead to blood pressure reduction [273]. In summary, although not yet 

approved as antihypertensive agents, the role of SGLT2i on lowering blood pressure has been 

well-established.  

1.4.4.5 Other renal effects of SGLT2 inhibition 

A number of studies have proved that SGLT2i provide multiple beneficial functions in the 

kidneys. For example, treatment with empagliflozin in patients with type 2 diabetes reduced the 

macro-albuminuria [274]. Similar results have been reported in trials with dapagliflozin in patients 

with diabetes and hypertension [275]. Another study has reported that decrease of urinary ACR 

may result from decreased intra-glomerular pressure and reduced tubular cell injury [276, 277]. 

Furthermore, studies have shown that SGLT2i can decrease renal inflammation and fibrosis [276]. 

Empagliflozin treatment showed significant reductions in glomerular hypertrophy and mesangial 

matrix expansion as well as markers of inflammation in ob/ob mice [278]. Another study has 

reported that 12-week treatment with SGLT2i in db/db mice dose-dependently decreased 

mesangial expansion, interstitial fibrosis and inflammation as well as oxidative stress markers 
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including MCP-1, intracellular adhesion molecule-1, and TGF-β1 [251]. From stored plasma 

samples in a 2-year clinical trial of DN, treatment of canagliflozin decreased TNFR1, IL-6, MMP7 

and FN1 level [279]. 

1.4.4.6 The effect of SGLT2i in the heart 

Approximately 50% of diabetic patients suffer from heart failure [280]. Currently, the first-

line agent of hyperglycemia control in T2DM patients is metformin. According to 

recommendations by the American Diabetes Association and European Association, the second 

choice of drug on top of metformin is SGLT2i, glucagon-like peptide-1 receptor agonists, 

dipeptidyl peptidase 4 inhibitors, sulfonylureas and thiazolidinediones, as well as basal insulin 

[281]. Treatment with SLGT2i has yielded beneficial effects on diabetic heart failure. In EMPA-

REG OUTCOME trial, 7020 participants with type 2 diabetes with high cardiovascular risk and a 

baseline eGFR≥30 ml/min per 1.73 m2 were randomly assigned to empagliflozin or placebo and 

followed up for 3.1 years. Results have shown that treatment with empagliflozin slowed 

progression of albuminuria, reduced eGFR and risk of renal outcome by 39% (incident of 

worsening nephropathy or cardiovascular death). Moreover, there was a 14% reduction of 

primary outcome (a composite of cardiovascular death, nonfatal myocardial infarction or nonfatal 

stroke). In addition, hospitalization for heart failure and all-cause mortality were both greatly 

reduced [274]. The most recent clinical trial (DAPA-HF), targeting at effect of SGLT2i on heart 

failure, was published in 2019 [64]. 4744 patients with heart failure and reduced ejection fraction 

were randomly assigned to receive either dapagliflozin or placebo on top of other recommended 

therapy. Over a median of 18.2 months, worsening heart failure and death from cardiovascular 

causes were significantly lower in the dapagliflozin group without common serious side effects. 

Particularly, there was a cardioprotective effect regardless of presence or absence of diabetes. 

These findings established benefits of SGLT2 inhibition on cardiovascular diseases. The underlying 

mechanisms of SGLT2i’s protection of heart failure is not yet totally understood. Proposed 

pathway includes that SGLT2i offers an attractive fuel (β-hydroxybutyrate) for oxidation, inhibit 

the NHE3 and reduces blood pressure [282, 283]. Additionally, diuretic effects of SGLT2i have also 

been proposed that involves in the benefit on SGLT2i on heart diseases. However, it was 



83 

questioned by DAPA-HF trial, since intensification of diuretics therapy did not reduce 

cardiovascular death [284].  

1.4.4.7 The effects of SGLT2i on other organs 

Type 2 diabetes is associated with insulin resistance in peripheral tissues and pancreatic 

beta cell failure. Several studies with canagliflozin and empagliflozin have demonstrated that 

SGLT2i improve insulin response in patients with type 2 diabetes [285]. For instance, treatment 

of T2DM patients with empagliflozin increased β-cell glucose sensitivity and improved pancreatic 

beta cell function, probably via amelioration of glucose toxicity [286]. Additionally, SGLT2i has 

also been reported protective for adipose tissue, liver, endothelial function and circulating 

progenitor cells in diabetic condition [287, 288]. 

1.4.5 The side effect of SGLT2i 

Although well tolerated in general, SGLT2i still possesses a few well-recognized adverse 

effects [289]. One most common side effect of SGLT2i is increased risk of balanitis and 

vulvovaginitis, which were caused by consistent excretion of glucose in urine. Urinary tract 

infections also appear in patients on SGLT2i. Another common side effect of SGLT2i is the volume 

depletion induced by the osmotic diuresis, which could cause dehydration, postural dizziness and 

orthostatic hypotension. Moreover, use of the SGLT2i may cause acute kidney injury and diabetic 

ketoacidosis.  

Taken together, the kidneys participate in the regulation of glucose homeostasis. SGLT2i, 

the most recent glucose-lowering agent, achieved multiple reno-protective and cardiovascular 

effects. Despite these well-established beneficial effects, mechanisms of SGLT2i’s action and 

upstream regulation of SGLT2 are still not fully understood. Investigation of the underlying 

mechanisms might provide us new therapeutic approaches in the therapy of DN.  
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1.5 Mice models of DN study 

1.5.1. T1DM mice model 

1.5.1.2 STZ-induced diabetes 

T1DM is an autoimmune destruction of the pancreatic beta cells that characterized by lack 

of insulin. Streptozotocin (STZ)-induced diabetes is one of the most commonly used T1DM mice 

models. STZ has been discovered from a microbe Streptomycetes achromogenes and is selectively 

toxic to the beta cells. Injection of STZ can rapidly disrupt pancreas islet and induce hyperglycemia 

[290]. Two experimental protocols of STZ injection are being used. The first one is a single high-

dose STZ intraperitoneal injection that results in pancreatic beta cells necrosis within 48-72h. It is 

one of the most efficient strategies to induce hyperglycemia. However, the single high-dose STZ 

model is often accompanied by high toxicity in liver, kidney and other organs. Studies have shown 

that single injection of high-dose STZ caused acute tubular necrosis and impaired renal function, 

limiting its application in the study of DN [291, 292]. Compared to high-dose STZ, low-dose STZ 

injection on 5 consecutive days are highly recommended due to its less toxicities and high 

efficiency [293].  

1.5.1.2 Akita mice  

Akita mice carry a single nucleotide mutation in insulin 2 gene (ins2+/c96y), resulting in 

insulin and β cells depletion. Akita mice develop severe insulin-dependent diabetes (characterized 

by hyperglycaemia, hypo-insulinaemia, polyuria and polydipsia) at the age of 3 to 4 weeks [290, 

294]. Akita mice are one of the unique mice models in study of DN and exist in a few strains. On 

a C57BL/6J background, Akita mice develop severe hyperglycemia, hypertension, hyperfiltration, 

kidney hypertrophy, fibrosis and modest albuminuria at week 3-4. But the hyperglycemia is worse 

in male mice than in female mice [294]. Studies have showed that male Akita mice at 20 weeks 

develop hyperglycemia, hypertension, enhanced GFR, albuminuria, kidney hypertrophy and 

fibrosis as well as ROS generation. Morphologically, the kidneys of Akita mice at 20 weeks show 

mesangial matrix expansion, basement membrane thickening, depletion of podocytes, tubular 

dilation and tubule cells detachment as well as fibrotic markers such as TGF-β1, collagen IV and 
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FN1 [107, 193]. These characteristics represent human diabetic kidney disease. Hence, Akita mice 

are a suitable mouse model for the study of DN [295]. 

1.5.2 Type 2 diabetic mice model 

Type 2 diabetes is associated with insulin resistance and insufficiency. Currently, most of 

type 2 diabetic mice models have obesity, reflecting that obesity is closely linked to type 2 

diabetes development in human [296]. Genetic modification or high fat diet (HFD) induction are 

the most commonly used methods to induce the obesity. Leptin is a hormone that cause 

hyperphagia and obesity. Disruption of leptin or leptin receptor generate widely-used obesity 

mice model, Lep-ob/ob or Lepr-db/db, respectively [290]. Db/db mice exhibit obesity and 

progress to hyperinsulinemia and hyperglycemia at week 3–4. Previous work has documented 

that db/db mice on a BKS background develop T2DM phenotypes including increased body 

weight, hyperglycemia and kidney injury at week 20. Moreover, activation of oxidative stress and 

iRAS in the kidneys have also been documented [141]. Other types of type 2 diabetic mice models 

including Lep-ob/ob and HFD are also well-described mice models in the study of DN [290]. 

1.5.3 Transgenic (Tg) mice with androgen-regulated protein (KAP) promoter 

KAP is abundantly expressed in the RPTCs of male mice or testosterone-induced female 

mice [297]. The expression of KAP is largely controlled by testosterone. KAP gene is one of the 

most abundant and specific genes that express in mouse RPTCs and possesses a robust and 

efficient promoter [298]. The KAP promoter has been used for generation of transgenic mice. For 

instance, human angiotensinogen (hAgt) gene including exons II, III, IV and V was successfully 

fused with KAP promoter for the generation of hAgt-Tg mice [297]. The KAP2 construct is a 

modified form of the KAP-hAgt at exon II. With this promoter, our lab has successfully generated 

rAgt-Tg mice, rCat-Tg, rat hnRNP F-Tg mice and rNrf2-Tg (Figure 1, chapter 3), which specifically 

overexpress target genes in mouse RPTCs. 

 



86 

1.5.4 Mouse models used for current studies. 

1.5.4.1 Generate of Akita Nrf2 KO 

Fertile heterozygous Akita mice with spontaneous mutation of insulin 2 (Ins2) gene 

(C57BL/6-Ins2Akita/J) and homozygous Nrf2 knockout (KO) (B6.129X1-Nef2/2tm1Ywk/J) mice were 

purchased from Jackson Laboratories. We generated Akita Nrf2 KO mice by crossbreeding female 

homozygous Nrf2 KO mice with male Akita mice. Akita Nrf2 KO mice are homozygous for Nrf2 KO 

but heterozygous for Ins2 gene mutation.  The detailed breeding map is shown as below. 

 

 

Figure 21. –  Generation of Akita Nrf2 KO mice. 

 

1.5.4.2 Generation of Nrf2RPTCTg mice and Akita Nrf2-/- /Nrf2RPTCTg mice.  

Specific overexpression of rat Nrf2 in mice RPTCs were generated for this study. In brief, 

as shown in Figure 22a, rat Nrf2 cDNA was cloned from rat kidney total RNA by RT-PCR, fused 

with Flag tag at 3’ end and inserted into a plasmid containing the kidney androgen regulated 

promoter (KAP2) at Not1 site. Isolated KAP2-Nrf2-Flag transgene was then microinjected into 

one-cell fertilization mouse embryos by a standard procedure (performed by Cyagen Biosciences 
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Inc (www.cyagen.com)). Positive founders were then crossed with WT C56BL/6 mice for F1 and 

further generation.  

As shown in Figure 22b & c, Akita Nrf2-/-/Nrf2RPTC Tg mice were generated by crossbreeding 

female Nrf2RPTC Tg mice (C57BL6) with male Akita Nrf2-/- mice (C57BL6).  

                           b) Nrf2-/-/Nrf2RPTC Tg        C) Akita Nrf2-/-/Nrf2RPTC Tg  

 

Figure 22. –  Generation of Nrf2-/-/Nrf2RPTC Tg mice and Akita Nrf2-/-/Nrf2RPTC Tg mice 
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1.6 Objectives and hypothesis of this study  

Nrf2 is a transcription factor that regulates expression of antioxidant genes through 

binding to the ARE. Nrf2 has been accepted as an antioxidant factor and abundantly expresses in 

RPTCs [299]. However, BEACON trial with bardoxolone methyl (Nrf2 activator) in patients with 

type 2 diabetes and chronic kidney disease (CKD) was early terminated due to increased 

albumin/creatinine ratio (ACR), blood pressure, heart failure and cardiovascular deaths in 

patients who received bardoxolone methyl [209]. Despite these unexpected clinical results, more 

clinical trials are still ongoing [211]. Thus, understanding the role of Nrf2 in DN is urgent and 

crucial.  

  Our lab recently reported that overexpression of catalase in RPTCs ameliorated systemic 

hypertension, RPTC apoptosis decreased oxidative stress and Nrf2-stimulation of 

angiotensinogen (Agt) gene expression in diabetic Akita catalase -Tg mice [144]. Nrf2-stimulation 

of intrarenal Agt gene expression contributes to the development of systemic hypertension and 

nephropathy in diabetes via binding to the Agt promoter. However, whether Nrf2 affects iRAS 

have ever been studied. 

  Nrf2 has been reported that related to glucose homeostasis in diabetes [178, 179, 182]. 

Our preliminary data found lower glycemia in both Akita Nrf2 KO and db/db Nrf2 KO compared 

to Akita and db/db, respectively. In the kidneys, 90% of glucose filtered by the glomerulus is 

reabsorbed by SGLT2 in RPTCs. Selective inhibition of SGLT2 has become the most novel and 

promising therapeutic option in the treatment of diabetes. We further found that Nrf2 putative 

binding site exists in the SGLT2 gene promoter and transfection of Nrf2 cDNA stimulates SGLT2 

gene expression in HK2 cells. Whether the effect of Nrf2 on glucose homeostasis is involved SGLT2 

has not been studied.   

  Taken together, we hypothesised that Nrf2 contributes to the progression of DN via up-

regulation of iRAS and SGLT2 gene.  

Aims 

(1) To study the effect of Nrf2-/- on DN  
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(2) To investigate the role of Nrf2 with iRAS  

(3) To study the effect of overexpression of Nrf2 in RPTCs on DN in Akita Nrf2-/-/Nrf2RPTC 

Tg mice 

(4) To investigate molecular mechanism(s) of Nrf2 regulation of SGLT2 gene expression in 

human immortalized RPTCs (HK2) in vitro. 

(5) To study the effect of Nrf2-/- on DN in male and female db/db mice 
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Abstract 

We investigated the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in renin-

angiotensin system (RAS) gene expression in renal proximal tubule cells (RPTCs) and in the 

development of systemic hypertension and kidney injury in diabetic Akita mice. We used adult 

male Akita Nrf2 knockout (KO) mice and Akita mice treated with trigonelline (an Nrf2 inhibitor) 

or oltipraz (an Nrf2 activator). We also examined immortalized rat RPTCs (IRPTCs) stably 

transfected with control plasmids or plasmids containing rat angiotensinogen (Agt), angiotensin-

converting enzyme (ACE), angiotensin-converting enzyme-2 (Ace2) or angiotensin 1-7 receptor 

(MasR) gene promoters. Genetic deletion of Nrf2 or pharmacological inhibition of Nrf2 

attenuated hypertension, renal injury, and tubulointerstitial fibrosis, and lowered the urinary 

albumin/creatinine ratio as well as upregulated RPTC Ace2 and MasR expression, increased 

urinary angiotensin 1-7 levels parallel with down-regulation of Agt, ACE and pro-fibrotic gene 

expression compared to non-treated Akita mice. In cultured IRPTCs, Nrf2 small interfering RNA 

transfection or trigonelline treatment prevented high glucose-stimulation of Nrf2 nuclear 

translocation, Agt and ACE transcription with augmentation of Ace2 and MasR transcription, 

which was reversed by oltipraz. These data identify a novel mechanism, Nrf2-mediated 

stimulation of intrarenal RAS gene expression, by which chronic hyperglycemia induces 

hypertension and renal injury in diabetes.  
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Introduction 

Nuclear factor erythroid 2-related factor 2 (Nrf2) functions as a master regulator of redox 

balance in cellular cytoprotective responses (1). Under baseline conditions, Nrf2 is sequestered in 

the cytoplasm, stabilized by Kelch-like ECH-associated protein 1 (Keap 1) and rapidly degraded by 

proteasomes. In the presence of oxidative stress, Nrf2 is released from Keap 1, translocates to 

the nucleus and forms heterodimers with small musculoaponeurotic fibrosarcoma proteins 

(sMafs), which bind to the anti-oxidant response element in the promoters of various genes, 

including anti-oxidant and detoxifying genes, and enhances their expression (1-3). Although Nrf2 

is abundantly expressed in non-diabetic and diabetic kidneys (4-6), its physiological role in the 

kidneys is undefined.  

Studies in rodents with the Nrf2 activators bardoxolone methyl (BM) analogs RTA 405 and 

dh404 have yielded conflicting results. BM analogs were reported to exert potent anti-diabetic 

effects in mice with diet-induced diabetes and in rodent models of T2D and obesity (7,8). Others 

found that BM analogs increase albuminuria and blood pressure along with weight loss in Zucker 

diabetic fatty rats (9) and at high doses, worsen diabetes-associated atherosclerosis and kidney 

disease in diabetic apoE-/- mice (10). A phase 2 clinical trial with BM in human T2D with stage 3b 

or 4 chronic kidney disease reported reductions of serum creatinine levels and slight increases of 

estimated GFR (11), suggesting a renoprotective action. However, phase 3 clinical trials with BM 

involving T2D patients with stage 4 (advanced) diabetic kidney disease were discontinued after 9 

months of follow-up because of increased mortality and heart failure rates, as well as 

development of hypertension and albuminuria without  favorable effects on GFR (12). Thus, 

whether Nrf2 activation is beneficial in diabetic patients with kidney disease remains to be 

investigated. Currently, three Phase 2/3 clinical trials are underway to test the safety and efficacy 

of BM. 

We reported previously that catalase (Cat) overexpression, specifically in renal proximal 

tubule cells (RPTCs), curbs systemic hypertension and RPTC apoptosis (13-15), and prevents 

oxidative stress and Nrf2-stimulation of angiotensinogen (Agt) gene transcription in diabetic Akita 

Cat-Tg (transgenic) mice (5) indicating that Nrf2-stimulation of intrarenal Agt gene expression 
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contributes to the development of systemic hypertension and nephropathy in diabetes. However, 

little information is available as to whether Nrf2 affects the expression of other renin-angiotensin 

system (RAS) components, including angiotensin-converting enzyme (ACE), angiotensin-

converting enzyme-2 (Ace2) and angiotensin 1-7 receptor (MasR) in diabetic RPTCs, which may 

be crucial in the development of hypertension and nephropathy in diabetes. 

In the present study, we investigated the relationship between Nrf2 and intrarenal RAS 

gene expression, systemic hypertension and renal injury in Akita mice, a murine model of type 1 

diabetes mellitus and in RPTCs cultured in high-glucose (HG) milieu.  

Materials and methods 

Chemicals and constructs 

D-glucose, D-mannitol, the alkaloid trigonelline (C7H7NO2, an Nrf2 inhibitor) and oltipraz 

(an Nrf2 activator) were purchased from Sigma-Aldrich Canada Ltd. (Oakville, ON, Canada). 

Normal glucose (NG, 5 mmol/l D-glucose)-Dulbecco’s Modified Eagle’s Medium (DMEM, 

Catalogue No. 12320), penicillin/streptomycin and fetal bovine serum (FBS) were procured from 

Invitrogen, Inc. (Burlington, ON, Canada). The antibodies used in the present study are listed in 

Table 1. pGL4.20 vector containing luciferase reporter was obtained from Promega (Sunnyvale, 

CA, USA). pGL4.20 containing rat Agt gene promoter (N-1495/N+18) and rat Ace2 gene promoter 

(N-1091/+83) has been described previously (16,17). The rat ACE gene promoter (N-1675/+95) 

and the rat MasR gene promoter (N-1811/+100) were cloned from rat genomic DNA with specific 

primers (Table 2) and then inserted into pGL4.20 plasmid at Bgl II/Xho I restriction sites. 

Scrambled (Scr) Silencer Negative Control #1 and Nrf2 siRNAs were obtained from Ambion, Inc. 

(Austin, TX, USA). Oligonucleotides were synthesized by Integrated DNA Technologies, Inc. 

(Coralville, IA, USA). Restriction and modifying enzymes were procured from commercial sources.  

Generation of Akita Nrf2 KO mice 

Fertile heterozygous Akita mice with spontaneous mutation of insulin 2 (Ins2) gene 

(C57BL/6-Ins2Akita/J) and homozygous Nrf2-/- knockout (KO) (B6.129X1-Nef2/2tm1Ywk/J) mice were 

purchased from Jackson Laboratories, Bar Harbor, ME, USA (http://jaxmice.jax.org). We 



95 

generated Akita Nrf2 KO mice by cross-breeding female homozygous Nrf2 KO mice with male 

heterozygous Akita mice (N.B.: Homozygous Nrf2 KO mice are viable and fertile (4) whereas 

homozygous Akita mice are infertile). Akita Nrf2 KO mice are homozygous for Nrf2 KO but 

heterozygous for Ins2 gene mutation.  

Pathophysiology 

Male adult (12-week-old) non-Akita wild type (WT), Nrf2 KO, Akita and Akita Nrf2 KO mice 

(10 per group) were studied. All animals received standard mouse chow and water ad libitum. 

Animal care and experimental procedures were approved by the CRCHUM Animal Care 

Committee. 

Systolic blood pressure (SBP) was tracked with a BP-2000 tail-cuff pressure monitor 

(Visitech Systems, Apex, NC, USA) every morning, at least 2-3 times per week, for 8 weeks (5,6,14-

22). Each animal was habituated to the procedure for at least 15-20 min per day for 5 days before 

the first SBP measurement. SBP values are presented as means ± SEM of 2 to 3 determinations 

per week per mouse per group.  

Glomerular filtration rate (GFR) was estimated with fluorescein isothiocyanate inulin, as 

recommended by the Animal Models of Diabetic Complications Consortium 

(http://www.diacomp.org/) with slight modifications (5,6,16,17). 

Blood glucose (BG) levels, after 4-5 h of fasting, were measured with the Accu-Check 

Performa System (Roche Diagnostics, Laval, QC, Canada). The mice were housed individually in 

metabolic cages for 8 h during the daytime prior to euthanasia at the age of 20 weeks. Body 

weight (BW) was recorded. Urine samples were collected and assayed for albumin and creatinine 

by albumin enzyme-linked immunosorbent assay (ELISA, Albuwell and Creatinine Companion, 

Exocell, Inc., Philadelphia, PA, USA) (5,6,16,17).  

After the animals were euthanized, the kidneys were removed, decapsulated and 

weighed. Left kidneys were processed for histology and immunostaining. Right kidneys were 

harvested for isolation of RPTs by Percoll gradient (5,6,16,17). Aliquots of freshly isolated RPTs 

from individual mice were immediately processed for total RNA and protein analysis.  
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In separate experiments, adult male Akita mice (age 11 weeks) were divided into 3 groups 

(9 mice per group) and treated with 0.9% NaCl, i.p. or trigonelline (0.02 mg.kg-1.day-1, i.p. in 0.9% 

NaCl) from week 12 and then with or without oltipraz (150 mg.kg-1day-1, by gavage in corn oil) 

starting at week 14 every other day until week 17, according to published protocols including ours 

(5,23,24).  

Histology  

4-5 sections per kidney and 3 mouse kidneys per group were immunostained using the 

standard avidin-biotin-peroxidase complex method (ABC Staining, Santa Cruz Biotechnology, 

Santa Cruz, CA, USA) (5,6,16,17). Tissue sections were counterstained with hematoxylin and 

analyzed by light microscopy by 2 investigators blinded to the treatments.  

Oxidative stress in RPTs was assessed by dihydroethidium (DHE, Sigma) and 5-(6)-carboxy-

2',7'-dichlorodihydrofluorescein diacetate (DCFDA, Life Technologies, Burlington, ON, Canada) 

staining of frozen kidney sections and confirmed by standard assays of reactive oxygen species 

(ROS) generation (5,6,15,16,25) in isolated RPTs. Tubular luminal area, mean glomerular and RPTC 

volumes were assessed, as described elsewhere (5,6,16,17,25). 

Western blotting (WB) 

WB was performed as described previously (5,6,16,17,25). The relative densities of Nrf2, 

Keap 1, NAD(P)H quinone oxidoreductase 1 (NQO-1), Agt, ACE, Ace2, MasR and β-actin bands 

were quantified by densitometry, with ImageQuant software (version 5.1, Molecular Dynamics, 

Sunnyvale, CA, USA). 

Real time-quantitative polymerase chain reaction (RT-qPCR) 

 RPT Nrf2, Keap 1, NQO-1, Agt, ACE, Ace2, MasR and β-actin mRNA levels were 

quantified by RT-qPCR with forward and reverse primers (Table 2) (5,6,16,17,25). 

Urinary angiotensin II (Ang II) and Ang 1-7 measurement 
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Urinary Ang II and Ang 1-7 levels were quantified by ELISA (Immuno-Biological 

Laboratories, Inc., Minneapolis, MN, USA) and normalized by urinary creatinine levels, as 

described previously (6,15-17,20,22,25).  

Cell culture 

Rat IRPTCs (passages 13 through 18) (26) were studied. The plasmids pGL4.20-Agt (N-

1495/+18), pGL4.20-ACE (N-1675/+95), pGL4.20-Ace2 (N-1091/+83) and pGL4.20-MasR (N-

1811/+100) were stably transfected into IRPTCs (16,17). 

To study the effects of HG, trigonelline and oltipraz, IRPTCs at 75-85% confluency and 

stable transformants were synchronized overnight in serum-free DMEM containing NG (5 mmol/l 

D-glucose), then incubated in 5 mmol/l D-glucose plus 20 mmol/l D-mannitol or 25 mM D-glucose 

DMEM containing 1% depleted FBS (charcoal stripped FBS) for 24 h in the presence or absence of 

trigonelline ± oltipraz (5,6). Agt, ACE, Ace2 and MasR mRNA levels were quantified by RT-qPCR, 

and corresponding Agt, ACE, Ace2 and MasR promoter activities were measured by luciferase 

activity assay (5,6,16,17). IRPTCs stably transfected with the plasmid pGL4.20 served as controls.  

In additional experiments, stable transformants were transiently transfected with Nrf2 or 

scrambled (Scr) siRNA (5,6), and the effects of HG on Agt, ACE, Ace2 and MasR gene promoter 

activities were analyzed after 24 h of incubation. 

Statistical analysis  

    The data are expressed as means ± SEM. Statistical comparisons were made by Student’s 

t-test or 1-way analysis of variance and the Bonferroni test as appropriate. p<0.05 values were 

considered to be statistically significant. 

Results 

Nrf2 expression in Akita and Akita Nrf2-KO mouse kidneys  

We confirmed the presence of mutated Ins2 gene in RPTs isolated from Akita and Akita 

Nrf2 KO mice but not in WT and Nrf2 KO mice (Fig. 1A (panel i)). The Nrf2 gene was detected in 

RPTs of WT and Akita mice but not in Nrf2 KO and Akita Nrf2 KO animals (Fig. 1A (panel ii)). 
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Average SBP was ~20 mm Hg higher in Akita mice at age 12 weeks than in WT mice (p < 0.005) 

and remained significantly elevated for the study’s duration (Fig. 1B; Table 3). Genetic deletion 

of Nrf2 significantly decreased SBP as compared to Akita mice. Nrf2 immunostaining was more 

pronounced in nuclei of RPTCs from Akita mice than in WT mice and was barely detectable in Nrf2 

KO and Akita Nrf2 KO mice (Fig. 1C). NQO-1 expression was also higher in RPTCs from Akita mice 

than in WT mice and was markedly reduced in Nrf2 KO and Akita Nrf2 KO mice (Fig. 1D).  Note: 

NQO-1 is a member of phase II detoxifying enzymes (27) and Nrf2 binds to the antioxidant 

response element (ARE) in the promoter of NQO-1 gene and stimulates NQO-1 gene transcription 

(28). Thus, NQO-1 has been implied as a downstream mediator of the Nrf2 pathway (29). In 

contrast, no differences in Keap 1 immunostaining were detected among the groups studied (Fig. 

1E). Nrf2, NQO-1 and Keap 1 protein expression in RPTs assessed by WB (Fig. 1F, 1G and 1H, 

respectively) and their respective mRNA expression assayed with real time (RT)-qPCR (Fig. 1I, 1J 

and 1K, respectively) were consistent with these changes.  

Pathophysiological measurements in mice 

Table 3 reports the results of physiological measurements in WT, Nrf2 KO, Akita and Akita 

Nrf2 KO mice at the age of 20 weeks. As anticipated, blood glucose levels were significantly higher 

in Akita and Akita Nrf2 KO mice than in WT or Nrf2 KO mice. BG levels were similar in Akita Nrf2 

KO and Akita mice.  Due to the limitation of the range of detection of the Accu-Check Performa 

glucose meter (up to 33.3 mmol/L), we cannot exclude the possibility that undetected differences 

in blood glucose might have existed between the diabetic groups, but these were not sufficient 

to affect body weight, whereas Akita Nrf2 KO mice exhibited significantly lower SBP than Akita 

mice. While Nrf2 KO had no detectable effects on BW, it decreased, though never completely 

normalized, kidney weight (KW)/BW and KW/tibial length (TL) ratios, urinary albumin-creatinine 

ratio (ACR), glomerular tuft volume, tubule lumen area, proximal tubular cell volume and urinary 

Ang II levels in Akita Nrf2 KO compared to Akita mice. Urinary Ang 1-7 levels were normalized in 

Akita Nrf2 KO compared to Akita, whereas Nrf2-deficiency did not affect GFR/BW.  

Histology  

Confirming earlier observations (5,6,15,16,25), the kidneys of Akita mice exhibited 
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structural damage. The histological changes included proximal tubule cell atrophy, tubular 

luminal dilatation with accumulation of cell debris, and increased extracellular matrix proteins in 

glomeruli and tubules (Fig. 2A and Table 3). Nrf2 KO markedly reversed, albeit never completely 

resolved, these abnormalities.   

We detected significantly stronger staining for DHE (Fig. 2B) and DCFDA (Supplementary 

Fig. 1A) in RPTs from Akita mice than in WT and Nrf2 KO mice, but the staining did not differ from 

that in Akita Nrf2 KO mice. These findings were confirmed by semi-quantification of DHE (Fig. 2E) 

and assessment of ROS levels in RPTs by the lucigenin assay (Fig. 2F). 

             Immunostaining for Cat (Fig. 2C) and NADPH oxidase 4 (Nox4) (Fig. 2D) were lower and 

higher, respectively, in RPTCs from Akita mice than in WT or Nrf2 KO mice. Nrf2 deficiency did not 

affect Cat and Nox4 expression compared to Akita mice. These findings were confirmed by 

quantification of Cat and NADPH oxidase activity in RPTs (Fig. 2G and 2H, respectively) and by RT-

qPCR of mRNAs (Fig. 2I and 2J, respectively) from isolated RPTs. No changes of Nox1 and Nox2 

mRNA levels were detected in the different groups (Supplementary Fig. 2A and 2B, respectively).  

Effects of Nrf2 deletion on Agt, ACE, Ace2 and MasR expression in Akita mice 

Immunostaining revealed higher Agt (Fig. 3A) and ACE (Fig. 3B) expression in RPTCs from 

Akita mice compared to WT or Nrf2 KO mice. In contrast, Ace2 (Fig. 3C) and MasR (Fig. 3D) 

expression were lower in RPTCs from Akita mice compared to WT or Nrf2 KO mice. Akita Nrf2-

deficient mice exhibited enhanced Ace2 and MasR expression (Fig. 3C and 3D, respectively). 

Moreover, Ace2 and MasR expression was higher in RPTCs from Nrf2 KO than in WT mice (Fig. 3C 

and 3D, respectively). These findings were confirmed by WB for Agt, ACE, Ace2 and MasR (Fig. 

3E-3H, respectively) and by RT-qPCR of their respective mRNAs (Fig. 3I-3L) from isolated RPTs.  

Effects of Nrf2 deficiency on tubulointerstitial fibrosis in Akita mice 

Masson’s trichrome staining revealed higher collagenous matrix protein expression 

(Supplementary Fig. 1B) in the tubulointerstitium of Akita mice compared to WT or Nrf2 KO mice 

with more pronounced attenuation in Akita Nrf2 KO mice. Increased immunostaining of TGF-β1, 

FN1 and Col 1 (Supplementary Fig. 1C, 1D and 1E, respectively) was also detected in the 
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tubulointerstitium of Akita mice compared to WT or Nrf2 KO mice. Genetic deletion of Nrf2 in 

Akita mice markedly attenuated TGF-β1, FN1 and Col 1 expression (Supplementary Fig. 1C, 1D 

and 1E, respectively). Semi-quantification of Masson staining (Supplementary Fig. 1F) and RT-

qPCR of TGF-β1, FN1 and Col I mRNA from isolated RPTs (Supplementary Fig. 1G, 1H and 1I, 

respectively) confirmed these findings.  

Effects of Nrf2 siRNA on Agt, ACE, Ace2 and MasR gene expression in isolated IRPTCs  

Consistent with our previous observations (5,6), HG enhanced Nrf2 expression in both 

cytoplasmic (Fig. 4A) and nuclear fractions (Fig. 4B) of IRPTCs compared to NG. Nrf2 siRNA 

transfection reduced cytoplasmic Nrf2 in IRPTCs cultured in NG and HG. It had no effect on nuclear 

Nrf2 in NG but lowered Nrf2 expression in HG in IRPTCs. Transient Nrf2 siRNA transfection also 

significantly inhibited Nrf2 but not NQO-1 mRNA expression in IRPTCs in NG and prevented HG-

stimulation of Nrf2 and NQO-1 mRNA expression compared to Scr siRNA (Fig. 4C and 4D, 

respectively). Furthermore, Nrf2 siRNA transfection prevented increases of Agt and ACE and 

decreases of Ace2 and MasR in response to HG at the mRNA level (Fig. 4E, 4F, 4G and 4H, 

respectively), as well as their respective promoter activities (Fig. 5A, 5B, 5C and 5D, respectively).  

To confirm the impact of Nrf2 on Agt, ACE, Ace2 and MasR expression in IRPTCs, we 

studied the effects of the Nrf2 inhibitor alkaloid trigonelline + the Nrf2 activator oltipraz. 

Trigonelline treatment prevented HG stimulation of Agt and ACE and suppression of Ace2 and 

MasR mRNA expression in IRPTCs, and these actions were abrogated by oltipraz (Fig. 5E, 5F, 5G 

and 5H, respectively).  

Effect of trigonelline and oltipraz on expression of intrarenal RAS in Akita mice  

Trigonelline administration did not affect BG (Fig. 6A) whereas it significantly lowered SBP 

in Akita mice (Fig. 6B and Table 4). This was reversed by oltipraz treatment. Trigonelline 

significantly decreased the KW/BW and KW/TL ratios but not urinary ACR and Ang II/creatinine 

levels (Table 4). These actions were also reversed by oltipraz. Interestingly, trigonelline treatment 

completely normalized urinary Ang 1-7/creatinine levels in Akita mice compared to non-Akita 

mice, without affecting GFR/BW.  
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To test the antioxidant capacity of trigonelline, we examined the effect of trigonelline on 

oxidative stress in kidneys of Akita mice. Treatment of Akita mice with trigonelline markedly 

attenuated DHE staining (Fig. 6C, semi-quantification of DHE staining is shown on Fig. 7A) and 

reduced ROS levels in RPTs assessed by the lucigenin assay (Fig. 7B). Furthermore, trigonelline 

prevented HG-induced ROS generation in IRPTCs in a concentration-dependent manner 

(Supplementary Figure 3A). Thus, trigonelline possesses an intrinsic anti-oxidant property to 

lower ROS generation in diabetic RPTCs.  

Trigonelline also markedly attenuated renal damage, including glomerulosclerosis, tubule 

lumen dilatation and accumulation of cell debris as assessed with PAS staining (Fig. 6D) and these 

changes were reversed by oltipraz. Consistently, RPTCs of Akita mice exhibited higher 

immunostaining for Nrf2 (Fig. 6E), Agt (Fig. 6F) and ACE (Fig. 6G) than RPTCs of WT mice. In 

contrast, lower immunostaining of Ace2 (Fig. 6H) and MasR (Fig. 6I) was observed in Akita mice. 

Trigonelline reduced Nrf2, Agt and ACE expression (Fig. 6E, 6F and 6G, respectively) and increased 

Ace2 and MasR expression (Fig. 6H and 6I, respectively) to levels comparable to those detected 

in WT mice, and these effects were reversed by oltipraz. Trigonelline did not affect Keap 1 

expression in Akita mice (Fig. 6J). WB of Nrf2, Agt, Keap 1 (Fig. 7C (panel i), 7D, 7E and 7F), 

respectively), ACE, Ace2 and MasR (Fig. 7C (panel ii), 7G, 7H and 7I), respectively) and RT-qPCR of 

Nrf2, Agt, Keap 1, ACE, Ace2 and MasR mRNA expression (Supplementary Fig. 2C to 2H, 

respectively) confirmed these findings. Furthermore, trigonelline treatment prevented Nrf2 

nuclear translocation and decreased cytosolic Nrf2 expression in RPTs of Akita mice (Fig. 7J-7L) 

and in IRPTCs cultured in HG (Fig. 7M-7O). These effects were reversed by oltipraz.  

 

Discussion 

Our results document that selective genetic deletion of Nrf2 or pharmacological blockade 

of Nrf2 with trigonelline in Akita mice effectively upregulates RPTC Ace2/MasR, and suppresses 

Agt/ACE expression, resulting in attenuation of systemic hypertension and kidney injury. 

Consistently, in cultured IRPTCs, Nrf2 siRNA transfection or trigonelline treatment prevents HG-

induced upregulation of Agt/ACE and downregulation of Ace2/MasR gene expression. The effects 
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of trigonelline were reversed by oltipraz both in vitro and in vivo. These data identify a novel 

mechanism underlying Nrf2 activation by oxidative stress (secondary to hyperglycemia) that 

stimulates intrarenal RAS gene expression and activation, leading to the development of 

hypertension and nephropathy in diabetes.  

Akita mice, an autosomal dominant model of spontaneous type 1 diabetes (T1D) with a 

mutated Ins2 gene, have decreased numbers of pancreatic islet β-cells and develop  

hyperglycemia as early as 3-4 weeks of age (30). By age 13 to 30 weeks, male Akita mice manifest 

impaired renal function and increased oxidative stress markers in their RPTs (31,32). Akita mice 

represent a useful model to study the early to moderately advanced renal morphological changes 

in T1D patients.  

In the present study, we found that Nrf2 and NQO-1 expression is increased in RPTs of 20-

week-old Akita mice compared to WT mice. This was associated with marked increases in ROS 

generation, NADPH oxidase activity and Nox4 mRNA expression, whereas Cat activity and Cat 

mRNA expression was lower in RPTCs of Akita mice than in WT mice. These changes were similar 

to those detected in Akita Nrf2 KO mice, indicating that hyperglycemia-induced oxidative stress 

and higher Nox4 activity with suppressed Cat activity may contribute to renal injury in Akita mice.  

We do not presently understand why increased Nrf2 expression and activity (reflected by 

heightened NQO-1 expression) cannot attenuate oxidative stress (as evidenced by augmented 

DHE and DCFDA staining and ROS generation) in Akita mice. Our data, including our previous 

reports (5,6) and studies in diabetic rats by other groups (33,34), document reduced Cat activity 

in diabetic mice. Thus, one possibility is that hyperglycemia would result in decreased sirtuin-1 

and Foxo3α expression and consequently lower Cat expression, thereby enhancing ROS 

generation in diabetic kidneys (35,36). Another possible explanation is that hyperglycemia 

enhances NF-κB activation to compete for Nrf2 stimulation of transcription of antioxidant genes 

including Cat. This latter possibility is supported by the findings that the phosphorylated NF-κB 

p65 subunit and Nrf2 both bind to the same domain of CREB-binding protein (CBP), a coactivator 

of Nrf2 (37). The phospho-NF-κB p65 subunit could then attenuate the transcription of 

antioxidant response element (ARE)-dependent genes by depriving CBP from Nrf2 through a 
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competitive mechanism (37).  

The mechanisms leading to SBP elevation in Akita mice are incompletely understood. The 

possibility that downregulation of Ace2 and MasR gene expression and upregulation of Agt and 

ACE gene expression, yielding higher Ang II/Ang 1-7 ratios that facilitate the development of 

hypertension has received considerable attention (38-40). Indeed, our data disclose significantly 

higher RPTC Agt and ACE expression and urinary Ang II levels with lower RPTC Ace2 and MasR 

expression and urinary Ang 1-7 levels in Akita than in WT mice. These observations are consistent 

with our earlier findings of elevated ACE and depressed Ace2 expression in the kidneys of Akita 

Agt-Tg mice (20), suggesting that upregulation of Ace2/MasR expression to increase Ang 1-7 level 

is important to down-regulate Agt/ACE expression and prevent systemic hypertension in Akita 

mice (25). These findings are consistent with clinical reports of heightened intrarenal RAS and 

urinary Ang II expression with lower Ace2 expression in hypertensive diabetic patients (41-45).  

The exact mechanism(s) by which Nrf2 deficiency leads to downregulation of renal 

Agt/ACE and upregulation of Ace2/MasR gene expression in diabetes remain(s) unclear. One 

possibility is that hyperglycemia/ROS augment Nrf2 activation by promoting its dissociation from 

Keap 1 and translocation into the nucleus. Nrf2 will then bind to Nrf2-binding sites in the Agt/ACE 

gene promoter regions and promote Agt/ACE gene expression. Previously, we showed that Nrf2 

binds to Nrf2-binding sites in the Agt gene promoter (5). Thus, Nrf2 deletion in Akita mice should 

diminish Agt gene expression. Consistently, Nrf2 siRNA transfection diminished HG-stimulation of 

Agt/ACE gene promoter activity and upregulation of Ace2/MasR gene promoter in IRPTCs. These 

observations could be explained by the presence of Nrf2-REs (response elements) in Agt gene 

promoter (5) and of potential putative Nrf2-REs in ACE, Ace2 and MasR gene promoters. Indeed, 

studies are ongoing in our laboratory to identify these putative Nrf2-REs. 

How might oxidative stress lead to interstitial fibrosis in Akita mice? One possibility is that 

augmented Agt/ACE expression with Ang II elevation via ROS generation stimulates TGF-β1 and 

subsequently enhances the expression of extracellular matrix proteins and profibrotic genes in 

RPTCs, resulting in interstitial fibrosis (46). Indeed, neutralizing TGF-β1 with antibody was 

reported to alleviate fibrosis and tubule cell apoptosis in animal models of diabetes (47). We also 
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detected higher TGF-β1, FN1 and Col I protein and mRNA expression in RPTs of Akita mice than 

in WT controls. These increases were mitigated in Akita Nrf2 KO mice, linking Nrf2 with intrarenal 

RAS activation and upregulation of TGF-β1 expression in RPTs and consequently to interstitial 

fibrosis in Akita mice. Thus, our findings support the notion that Nrf2 activation aggravates 

tubulointerstitial fibrosis with nephropathy progression in diabetes.  

At present, our data do not allow delineating whether kidney damage in Akita mice is due 

to hyperglycemia or hypertension per se. We have previously reported that dual RAS blockade 

normalizes Ace2 expression and prevents hypertension and tubular apoptosis in Akita 

angiotensinogen-transgenic mice without affecting hyperglycemia (20), suggesting the 

hypertension induced by intrarenal RAS activation plays a predominant role in DN progression.  

Furthermore, our recent observation that insulin treatment normalizes hyperglycemia and 

hypertension, inhibits Nrf2 gene expression and prevents Nrf2-stimulation of Agt gene expression 

in RPTs of Akita mice (6), would indicate that hyperglycemia can evoke intrarenal RAS genes 

expression and subsequently hypertension development in diabetes. Thus, these studies point to 

the importance of hyperglycemia–induced intrarenal RAS activation via Nrf2 expression in the 

development of hypertension in Akita mice. Clearly, more studies are needed to define the 

contribution of hypertension and hyperglycemia to kidney damage in diabetes. 

The exact mode of the mechanism by which trigonelline decreases Nrf2 protein levels in 

RPTs of Akita mice is not known. However, we have found that trigonelline decreases oxidative 

stress (DHE staining) in kidneys of Akita mice and inhibits Nrf2 promoter activity, Nrf2 mRNA 

expression and Nrf2 nuclear translocation in IRPTCs in HG. These data would indicate that 

trigonelline inhibits Nrf2 protein expression via inhibition of Nrf2 gene transcription by lowering 

oxidative stress in diabetic RPTCs. These data are consistent with our previous report that 

overexpression of catalase in RPTCs inhibits Nrf2 expression in Akita mice (5). Furthermore, 

lowering Nrf2 nuclear translocation by trigonelline may prevent positive auto-feedback of Nrf2 

on Nrf2 gene transcription (48). Clearly, more studies are needed to elucidate the underlying 

mechanism of trigonelline action on Nrf2 expression. 
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In summary, our findings document that selective Nrf2 KO upregulates renal Ace2/MasR 

gene expression with downregulation of Agt/ACE gene expression and prevents systemic 

hypertension and renal injury in diabetes. Our results imply an important role of oxidative stress 

induced Nrf2 expression and activation in the development of hypertension and renal injury in 

diabetes by altering local intrarenal RAS expression. 
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Figure legends 

Figure 1. Generation of Akita Nrf2 KO mice. (A) Genotyping of (panel i) mutated and normal Ins2 

gene and (panel ii) of Nrf2-LacZ (Nrf2 KO) and normal Nrf2 gene in wild type (WT), Nrf2 KO, Akita 

and Akita Nrf2 KO mice by specific PCR analysis. (B) Longitudinal changes in mean SBP in male WT 

(●), Nrf2 KO (■), Akita (▲) and Akita Nrf2 KO (▼) mice. Values are means ± SEM, n = 10 for each 

group. **p<0.01 and ***p<0.005 Akita compared to WT mice; +p<0.05 and ++p<0.01 Akita 

compared to Akita Nrf2 KO mice. Immunohistochemical staining for Nrf2 (C), NQO-1 (D), and Keap 

1 (E) expression in kidney sections (magnification x600), WB analysis of Nrf2 (F), NQO-1 (G) and 

Keap 1 (H) protein expression and RT-qPCR analysis of Nrf2 (I), NQO-1 (J) and Keap 1 (K) mRNA 

levels in RPTs of WT, Nrf2 KO, Akita and Akita Nrf2 KO mice. Values are means + SEM, n=6. 

*p<0.05; ***p<0.005; ns, not significant. WT (empty bars), Nrf2 KO mice (light grey bars), Akita 

(solid black bars) and Akita Nrf2 KO mice (dark grey bars). 

Figure 2. Characterization of Akita Nrf2 KO mice. (A) Periodic acid Schiff (PAS) staining 

(magnification x600), (B) DHE (red) and DAPI staining (blue) (magnification x200), (C) Cat and (D) 

Nox4 immunostaining in kidney sections (magnification x600) from male WT, Nrf2 KO, Akita and 

Akita Nrf2 KO mouse kidneys at age 20 weeks. Semi-quantification of DHE fluorescence (E), ROS 

production (F), Cat activity (G), NADPH oxidase activity (H), Cat mRNA (I), and Nox4 mRNA (J) 

expression in RPTs of WT controls, Nrf2 KO, Akita and Akita Nrf2 KO mice. Values are expressed 

as means ± SEM, n=8 per group. *p<0.05; **p<0.01; ***p<0.005; ns, not significant. WT (empty 

bars), Nrf2 KO mice (light grey bars), Akita (solid black bars) and Akita Nrf2 KO mice (dark grey 

bars).  

Figure 3. Agt, ACE, Ace2 and MasR expression in mouse kidneys at week 20. 

Immunohistochemical staining of Agt (A), ACE (B), Ace2 (C) and MasR (D) in mouse kidneys. 

Magnification X600. WB of Agt (E), ACE (F), Ace2 (G) and MasR (H) expression and RT-qPCR 

analysis of Agt (I), ACE (J), Ace2 (K) and MasR (L) mRNA levels in RPTs of WT, Nrf2 KO, Akita and 

Akita Nrf2 KO mice. Values are expressed as means ± SEM (n=8). *p<0.05; **p<0.01; ***p<0.005; 

ns, not significant. WT (empty bars), Nrf2 KO mice (light grey bars), Akita (solid black bars) and 

Akita Nrf2 KO mice (dark grey bars). 
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Figure 4. Effect of Nrf2 siRNA on Nrf2, NQO-1, Agt, ACE, Ace2 and MasR gene expression in 

immortalized rat RPTCs (IRPTCs) in NG and HG medium. (A) Effect of Nrf2 siRNA or scrambled 

(Scr) siRNA on Nrf2 protein expression in cytoplasmic fraction and (B) nuclear fraction of IRPTCs 

incubated in NG (normal glucose) and HG (high glucose) medium and quantified by WB. NE-PER 

Nuclear and Cytoplasmic Extraction Reagents were used for the isolation of cytoplasmic and 

nuclear fractions from IRPTCs according to the manufacturer's protocol (Catalogue No. 78833, 

ThermoScientific, Pierce Biotechnology, Rockford, IL, USA).  Effect of Nrf2 siRNA or Scr siRNA on 

Nrf2 (C), NQO-1 (D), Agt (E), ACE (F), Ace2 (G) and MasR (H) mRNA expression in IRPTCs incubated 

in NG and HG medium and quantified by RT-qPCR. Cells were harvested after 24 h of incubation. 

mRNA levels in cells incubated in NG medium with Scr RNA are expressed as arbitrary unit 1. The 

results are reported as percentages of control values (means ± SEM, n=3 for three separate 

experiments done in triplicates.  *p<0.05; **p<0.01; ***p≤0.005; ns, not significant. NG + Scr 

siRNA (empty bars), NG + Nrf2 siRNA (light grey bars), HG + Scr siRNA (solid black bars) and HG + 

Nrf2 siRNA (dark grey bars). 

Figure 5. Effect of Nrf2 siRNA and trigonelline on Agt, ACE, Ace2 and MasR promoter activity 

and mRNA in IRPTCs in HG medium. Dose-dependent effect of Nrf2 siRNA and scrambled (Scr) 

siRNA on Agt (A), ACE (B), Ace2 (C) and MasR (D) promoter activity in stably transfected IRPTCs 

incubated in HG medium and quantified by luciferase activity assay. Effect of trigonelline (Trig) + 

oltipraz (Olz) on Agt (E), ACE (F), Ace2 (G) and MasR (H) mRNA expression in IRPTCs incubated in 

HG medium and quantified by RT-qPCR. Cells were harvested after 24 h of incubation. Promoter 

activity and mRNA levels in cells incubated in NG medium are expressed as 100% control or 

arbitrary unit 1, respectively. The results are reported as percentages or fold of change of control 

values (means ± SEM, n=3 for three separate experiments done in triplicates. *p<0.05; **p<0.01; 

***p<0.005; ns, not significant. NG + Scr siRNA (empty bars), NG + Nrf2 siRNA (light grey bars), 

HG + Scr siRNA (solid black bars) and HG + Nrf2 siRNA (dark grey bars). 

Figure 6. Effect of trigonelline on Nrf2, Agt, ACE, Ace2 and MasR expression in Akita mice in 

vivo. Longitudinal changes in mean BG (A) and SBP (B) in male WT (●), Akita (■), Akita + 

trigonelline (Trig) (▲) and Akita + Trig + Oltipraz (Olz) (▼) mice. Values are means ± SEM, n = 9 

for each group. ***p<0.005 Akita compared to WT mice; +p<0.05 Akita compared to Akita + Trig 
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mice; #p<0.05 Akita + Trig compared to Akita + Trig + Olz mice. (C) DHE (red) and DAPI staining 

(blue) (magnification x200), (D) PAS staining and immunohistochemical staining for Nrf2 (E), Agt 

(F), ACE (G), Ace2 (H), MasR (I) and Keap 1 (J) in the kidneys of WT and Akita ± trigonelline and 

oltipraz. Magnification X600.  

Figure 7. Effect of trigonelline on oxidative stress and RPT Nrf2, Agt, ACE, Ace2 and MasR 

expression in mice in vivo. (A) Semi-quantification of DHE fluorescence, (B) ROS production, (C) 

WB of (panel i) Nrf2, Agt and Keap 1 expression and (panel ii) ACE, Ace2 and MasR expression in 

RPTs of WT and Akita mice ± trigonelline and oltipraz. WB quantification of Nrf2 (D), Agt (E), Keap 

1 (F), ACE (G), Ace2 (H) and MasR (I) expression in RPTs of WT and Akita mice ± trigonelline and 

oltipraz. (J) WB of Nrf2 protein expression and quantitation in nuclear fraction (K) and cytosolic 

fraction (L) in RPTs of WT and Akita mice ± trigonelline and oltipraz, respectively. (M) WB of Nrf2 

protein expression and quantitation in nuclear fraction (N) and cytosolic fraction (O) of IRPTCs 

incubated in NG, HG and HG ± trigonelline and oltipraz, respectively. Values are expressed as 

means ± SEM (n=6 per group). *p<0.05; **p<0.01; ***p<0.005; ns, not significant. WT (empty 

bars), Akita mice (light grey bars), Akita mice treated with trigonelline (Trig, solid black bars) and 

Akita mice treated with Trig and oltipraz (Olz, dark grey bars). 
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Table 1. Antibodies 

Name of 
Antibody 

Source of 
Antibody 

Species Raised in 
Mono/Polyclonal 

RRID Dilution for 
WB and/or IHC 

Nrf2 Abcam Rabbit; polyclonal AB_881705 WB (1:2000); 
IHC (1:400) 

NQO-1 Santa-Cruz 
Biotechnology 

Goat; polyclonal AB_2154339 WB (1:2000) 

NQO-1 Abcam Mouse; 
monoclonal 

AB_881738 IHC (1:400) 

Keap 1 Abcam Rabbit; polyclonal AB_1141055 WB (1:2000); 
IHC (1:400) 

Agt Generated in our 
lab (1) 

Rabbit; polyclonal AB_2631321 WB (1:2000); 
IHC (1:200) 

ACE Santa Cruz 
Biotechnology 

Goat; polyclonal AB_2273625 WB (1:2000); 
IHC (1:250) 

Ace2 R&D Systems Goat; polyclonal AB_355722 WB (1:2000); 
IHC (1:250) 

MasR Novus Biologicals Rabbit; polyclonal AB_11039164 WB (1:2000); 
IHC (1:200) 

β-Actin Sigma-Aldrich Mouse; 
Monoclonal 

AB_476744 WB (1:20000) 

 

 

 

 

 

 

 

 

 

 

(1)  Wang L, Lei C, Zhang et al. Synergistic effect of dexamethasone and isoproterenol on the expression of 
angiotensinogen in immortalized rat proximal tubular cells. Kidney International 53:287-295, 1998. 
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Table 2. Primer sequences for genotyping and RT-qPCR 

Gene (Species) Sense and Anti-Sense Primers 
Reference 
Sequences 

Primers for Genotyping   

Ins2 (mouse) 
S: TGCTGATGCCCTGGCCTGCT 
AS: TGGTCCCACATATGCACATG NT_039437.7 

Nrf2 (mouse genotyping) Common-S: GCCTGAGAGCTGTAGGCCC 

 WT-AS: GGAATGGAAAATAGCTCCTGCC  

 Mutant-AS: GACAGTATCGGCCTCAGGAA  

Primers for RT-qPCR   
Nrf2 (mouse/rat) S: CGCCGCCTCACCTCTGCTGCCAGTAG NM_010902.3 

 AS: AGCTCATAATCCTTCTGTCG  

Keap 1 (mouse/rat) S: CATCCACCCTAAGGTCATGGA NM_016679.4 

 AS: GACAGGTTGAAGAACTCCTCC  

NQO-1 (mouse/Rat) S: TATCCTTCCGAGTCATCTCTAGCA NM_008706.5 

 AS: TCTGCAGCTTCCAGCTTCTTG  

Nox4 (mouse) S: TGGCCAACGAAGGGGTTAAA NM_015760.4 

 AS: GATGAGGCTGCAGTTGAGGT  

Catalase (mouse) S: CGACCAGATGAAGCAGTGGA NM_009804.2 

 AS: CCACTCTCTCAGGAATCCGC  

Agt (mouse/rat) S: CCACGCTCTCTGGATTTATC NM_031144.3 

 AS: ACAGACACCGAGATGCTGTT  

ACE (mouse) S: AGGAGTTTGCAGAGGTCTGG NM_207624 

 AS: GGAAGCAGACCTTGCCAGTG  
ACE (rat) S: GAGCCATCCTTCCCTTTTTC NM_012544.1 

 As: GGCTGCAGCTCCTGGTATAG  
Ace2 (mouse) S: AGGAGGAAGTTGATGGATACCTA NM_027286 

 AS: GGCTCAGTCAGCATAGAGTTT  

Ace2 (rat) S: ACAGTTCCTTTTGGGGAGGC NM_001012006.1 

 AS: GTGACAGGAGGCTCGTAAGG  

MasR (mouse) S: GCATTCGTCTGTGCCCTTCT NM_008552.4 
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Table 3. Physiological and histological measurements 

 WT Nrf2 KO Akita Akita Nrf2 KO 

Blood glucose (BG, mM) 
(n=10) 

9.55±0.53 11.79±0.46 32.11±0.51*** 32.32±0.68*** 

Systolic blood pressure (SBP, 
mmHg) (n=10) 

111.3±0.71 115.9±2.39 132.4±2.34*** 121.4±1.57**++ 

Body weight (BW, g) (n=10) 33.08±0.45 33.64±0.81 23.92±0.58*** 24.13±0.42*** 

Kidney weight (KW, mg) 
(n=10) 

339.5±6.99 328.2±9.12 540.0±11.55*** 454.2±10.76***+++ 

KW/BW (mg/g) (n=10) 10.11±0.26 10.02±0.35 22.45±0.89*** 17.73±0.70***+++ 

Tibia length (TL, mm) (n=10) 23.52±0.65 23.3±0.17 21.4±0.27** 21.91±0.30* 

KW/TL (mg/mm) (n=10) 13.46±0.62 13.69±0.29 25.91±0.84*** 20.17±0.60***+++ 

GFR/BW (ml/min/g) (n=10) 7.8±0.37 9.03±0.47 19.2±1.56*** 18.64±1.29*** 

Glomerular tuft volume 
(*103µm3) (n=6) 

180.4±4.0 179.0±4.9 291.2±10.28*** 237.9±7.43***+++ 

Tubular luminal area (µm2) (n=6) 52.59±2.27 51.5±1.86 108.59±3.13*** 87.39±2.31***+++ 

RPTC volume (*103µm3) (n=6) 7.44±0.57 7.78±0.29 11.64±0.43*** 9.99±0.34***+ 

ACR (µg/mg) (n=10) 22.36±1.71 25.29±6.09 134.1±19.04*** 56.98±15.88++ 

Urinary AngII/Creatinine ratio 
(ng/mg) (n=10) 

2.57±0.37 1.83±0.27 23.88±2.88*** 20.08±3.74*** 

Urinary Ang (1-7)/Creatinine ratio 
(ng/mg) (n=10) 

3.45±0.62 3.22±0.58 0.91±0.11** 2.58±0.39+ 
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Table 4. Physiological and histological measurements 

 
WT Akita Akita+Trig Akita+Trig+Olz 

Blood glucose (BG, mM) 
(n=9) 

8.87±0.44 32.86±0.19*** 31.72±1.11*** 32.69±0.39*** 

Systolic blood pressure (SBP, 
mmHg) (n=9) 

111.0±0.50 136.0±1.43*** 124.1±0.84***+++ 133.4±0.52***### 

Body weight (BW, g) (n=9) 32,75±0.60 22.65±0.84*** 22.88±0.54*** 21.14±0.40*** 

Kidney weight (KW, mg) (n=9) 364.3±9.83 549.8±9.15*** 514.7±9.43*** 528.3±4.77*** 

Tibia length (TL, mm) (n=9) 22.56±0.46 21.87±0.41 21.32±0.52 20.95±0.28 

KW/BW (mg/g) (n=9) 11.12±0.40 24.24±0.89*** 21,51±0.42***+ 24.92±0.64***## 

KW/TL (mg/mm) (n=9) 16.19±0.34 26.04±0.68*** 23.01±0.82***++ 25.95±0.51***## 

GFR/BW (µl/min/g) (n=9) 9.92±0.80 22±1.96*** 21.15±1.12*** 20.25±0.58*** 

ACR (µg/mg) (n=9) 22.22±1.64 105.10±19.87** 82.19±20.79 123.0±32.91* 

Urinary AngII/Creatinine ratio 
(ng/mg) (n=9) 

1.27± 0.15 25.92±1.93*** 16.79±1.87** 23.84±3.03*** 

Urinary Ang (1-7) /Creatinine 
ratio (ng/mg) (n=9) 

2.61± 0.55 0.83±0.15* 2.65±0.39++ 2.4±0.33+ 

 

 

 

 

*p < 0.05, **p < 0.01, ***p < 0.001 vs WT; 
+
p < 0.05, 

++
p < 0.01, 

+++
p < 0.001 vs Akita; 

#
p < 0.05, 

# # 
p < 0.01, 

# # # 
p < 0.001 vs 

Akita+Trig  
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Figure 1  
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Figure 2  
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Figure 3  
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Figure 4  
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Figure 5  
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Figure 6  
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Figure 7 
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Caption for supplementary figures  

Supplementary Figure 1. Oxidative Stress, tubulointerstitial fibrosis and pro-fibrotic gene 

expression in mouse kidneys at age 20 weeks. (A) DCFDA (green) (magnification x200), (B) 

Masson’s trichrome staining (magnification x200), (C) Transforming growth factor-beta 1 (TGF-

β1), (D) Fibronectin 1 (FN1) (E) Collagen I (Col I) immunostaining in kidney sections (Magnification 

x600) from WT, Nrf2 KO, Akita and Akita Nrf2 KO mice. (F) Quantification of extracellular matrix 

component accumulation (Masson’s trichrome staining) and RT-qPCR of TGF-β1 (G), FN1 (H) and 

Col I (I) mRNA in freshly isolated RPTs of WT, Nrf2 KO, Akita, and Akita Nrf2 KO mouse kidneys. 

Values are means ± SEM, n=8. *p<0.05; **p<0.01; ***p<0.005; ns, not significant. WT (empty 

bars), Nrf2 KO mice (light grey bars), Akita (solid black bars) and Akita Nrf2 KO mice (dark grey 

bars).  

Supplementary Figure 2. Nox1 and Nox2 mRNA expression and the effect of trigonelline on Nrf2, 

Agt, ACE, Ace2 and MasR expression in Akita mice. RT-qPCR of Nox1 mRNA (A) and Nox2 mRNA 

(B) expression in RPTs of WT controls, Nrf2 KO, Akita and Akita Nrf2 KO mice. RT-qPCR of Nrf2 (C), 

Agt (D), Keap 1 (E), ACE (F), Ace2 (G) and MasR (H) mRNA expression in RPTs of WT and Akita mice 

± trigonelline and oltipraz. Values are expressed as means ± SEM (n=6 per group). *p<0.05; 

**p<0.01; ***p<0.005; ns, not significant. WT (empty bars), Akita mice (light grey bars), Akita 

mice treated with trigonelline (Trig, solid black bars) and Akita mice treated with Trig and oltipraz 

(Olz, dark grey bars). 

Supplementary Figure 3. Effect of trigonelline and oltipraz on ROS generation and Nrf2 promoter 

activity in IRPTCs and the effect of trigonelline on systolic blood pressure (SBP) in Akita mice. (A) 

Dose-dependent inhibitory effect of trigonelline on ROS generation in IRPTCs incubated in HG 

medium. Dose-dependent effect of trigonelline (B) and oltipraz (C) on Nrf2 promoter activity in 

stably transfected IPTCs incubated in respective HG and normal glucose medium and quantified 

by luciferase activity assay. Longitudinal changes in mean SBP (D) in male WT (●), Akita (■), Akita 

+ trigonelline (Trig) (▲) and Akita + Trig + Oltipraz (Olz) (▼) mice. Values are means ± SEM, n = 9 

for each group with trigonelline at 0.02 mg/kg except n=6 for group with trigonelline at 0.4 mg/kg. 

***p<0.005 Akita compared to WT mice; +P<0.05 Akita compared to Akita + Trig mice; # P<0.05 

Akita + Trig compared to Akita + Trig + Olz mice. 
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Abstract 

We investigated the impact of nuclear factor erythroid 2-related factor 2 (Nrf2) 

overexpression in renal proximal tubular cells (RPTCs) on blood glucose, kidney injury and sodium-

glucose co-transporter 2 (Sglt2) expression in diabetic Akita Nrf2-/-/Nrf2RPTC transgenic (Tg) mice. 

Immortalized human RPTCs (HK2) stably transfected with plasmid containing the SGLT2 

promoter, human kidneys from patients with diabetes were also studied. Nrf2 overexpression 

increased blood glucose, glomerular filtration rate, urinary albumin-creatinine ratio, 

tubulointerstitial fibrosis and Sglt2 expression in Akita Nrf2-/-/Nrf2RPTC Tg mice compared to their 

Akita Nrf2-/- littermates. In vitro, oltipraz or transfection of NRF2 cDNA stimulated SGLT2 

expression and SGLT2 promoter activity in HK2, and these effects were inhibited by trigonelline 

or small interfering RNA of NRF2. The deletion of the NRF2-responsive element (NRF2-RE) in the 

SGLT2 promoter abolished the stimulatory effect of oltipraz on SGLT2 promoter activity. NRF2 

binding to the NRF2-RE of the SGLT2 promoter was confirmed by gel mobility shift assay and 

chromatin immunoprecipitation assay. Kidneys from patients with diabetes exhibited higher 

levels of NRF2 and SGLT2 in the RPTCs than kidneys from patients without diabetes. These results 

identify a novel mechanism by which NRF2 mediates hyperglycemia-stimulation of SGLT2 

expression and exacerbates blood glucose and kidney injury in diabetes. 
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Introduction 

Under physiological conditions, sodium-glucose co-transporter 2 (SGLT2) in the S1/S2 

segments of renal proximal tubules (RPT) mediates resorption of more than 90% of the glucose 

filtered by the glomerulus; SGLT1 in the late RPT (S2/S3 segments) resorbs the remaining glucose 

(1,2). In diabetes, excessive glucose uptake via SGLT2 may contribute to glucose toxicity, 

hyperfiltration and glomerular injury via a tubulo-glomerular feedback (TGF) mechanism (3). 

Thus, SGLT2 inhibition has the potential to reduce glucose toxicity, hyperfiltration and renal injury 

in diabetes. Indeed, the cardio- and reno-protective effects of SGLT2 inhibition have now been 

documented in large clinical trials in patients with diabetes, irrespective of whether they have 

chronic kidney disease (CKD) (4-7).  

In addition to lowering sodium and glucose resorption, SGLT2 inhibition attenuates 

oxidative stress, inflammatory and fibrotic pathways and improves renal oxygenation and 

glomerular hyperfiltration in the diabetic kidney (8-12). Elevated SGLT2 expression and activity in 

RPTs were found in preclinical models of diabetes (13,14) and in patients with diabetes (15,16). 

However, the mechanisms underlying SGLT2 up-regulation have not been fully elucidated.   

Nuclear factor erythroid 2-related factor 2 (NRF2) functions as a master regulator of redox 

balance and is important in cellular cytoprotective responses (17). The effect of NRF2 activation, 

however, is controversial in animals and humans with diabetes (18-23). We reported that global 

knockout of Nrf2 (Nrf2-/- ) lowered systolic blood pressure (SBP), urinary albumin creatinine ratio 

(ACR) and inhibited angiotensinogen (Agt) expression in RPTs of Akita Nrf2-/- mice (24). We have 

identified a putative NRF2-responsive element (NRF2-RE) in the mouse and human SGLT2 

promoter.  

In the present study, we investigated whether Nrf2 overexpression in renal proximal 

tubular cells (RPTCs) would stimulate Sglt2 expression and exacerbate blood glucose, SBP and 

kidney injury in Akita Nrf2-/- /Nrf2RPTC Tg mice and validated the presence of a putative NRF2-RE 

in the mouse and human SGLT2 promoter.  
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Methods 
Chemicals and Constructs  

D-glucose, D-mannitol, oltipraz and trigonelline were purchased from Sigma-Aldrich 

Canada Ltd. (Oakville, ON, Canada). Normal glucose (NG, 5 mM D-glucose) Dulbecco’s Modified 

Eagle’s Medium (DMEM, catalogue No. 12320), fetal bovine serum (FBS) and the expression 

vector pcDNA 3.1 were procured from Invitrogen, Inc. (Burlington, ON, Canada). HK-2 (an 

immortalized human RPTC line) (Cat. No. CRL-2190) was purchased from American Tissue Cell 

Collection (ATCC) (Manassas, VA, USA) (http://www.atcc.org). pGL4.20 vector containing a 

Luciferase reporter was obtained from Promega (Sunnyvale, CA, USA). The plasmid, pCI-HA NRF2 

containing human NRF2 cDNA was obtained from Dr. Donna D Zhang (University of Arizona, 

Tucson, Arizona, USA). The NRF2 cDNA was subcloned into pcDNA 3.1 plasmid via Kpn1 and Not1 

enzyme restriction sites. Mouse Sglt2 promoter (N-1,952/N+684) was amplified by PCR with 

specific primers (Supplemental Table 1) from pGEM-Sglt2–5pr-mut plasmid (25) (obtained from 

Dr. Isabelle Rubera, University of Nice-Sophia Antipolis, Nice, France), confirmed by DNA 

sequencing, and then inserted into pGL4.20 plasmid at KpnI and Xho1 restriction sites. Human 

SGLT2 promoter (N-1,986/N+17) was amplified from HK-2 genomic DNA by PCR with specific 

primers as previously described (26). QuickChange II Site-Directed Mutagenesis kits and LightShift 

Chemiluminescent Electrophoretic Mobility Shift Assay (EMSA) kits were procured from Agilent 

Technologies (Santa Clara, CA, USA) and Thermo Scientific (Life Technologies Inc., Burlington, ON, 

Canada), respectively. Primer biotin-labeling kits were supplied by Integrated DNA Technologies, 

Inc. (Coralville, IA, USA). Oligonucleotides were synthesized by Integrated DNA Technologies. 

Scrambled Silencer Negative Control siRNA (sc-37007) and NRF2 siRNAs (309757) were obtained 

from Santa Cruz Biotechnology (Santa Cruz, CA, USA) and Dharmacon (Ottawa, ON, Canada), 

respectively. Restriction and modifying enzymes were purchased from Invitrogen, Roche 

Biochemicals, Inc. (Dorval, QC, Canada) and GE Healthcare Life Sciences (Baie d'Urfé, QC, Canada). 

The antibodies used are listed in Supplemental Table 2. 

Chromatin immunoprecipitation (ChIP) assay was performed using a kit from 

SIMPLECHIP® PLUS SONICATION CHROMATIN IP KIT (Cell Signaling #56383) with slight 
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modification as previously described (27). Briefly, 70%-80% confluent HK2 cells were transfected 

with or without pcDNA 3.1/NRF2 cDNA plasmid for 24h and then cross-linked with formaldehyde. 

Chromatin was fragmented by sonication and incubated with ChIP grade anti-Nrf2 or anti-Histone 

H3 antibody or rabbit IgG (Supplemental Table 2). DNA was purified by spin column and used to 

amplify the SGLT2 promoter region containing the putative NRF2-RE or the RPL30 exon3 (internal 

control) by PCR with specific primers (Supplemental Table 1).  

 

Generation of Akita Nrf2-/- /NRF2RPTC Tg Mice  

Tg mice specifically overexpressing rat Nrf2-Flag in their RPTCs were generated using a 

strategy similar to the method that we described previously for the generation of Agt RPTC, Cat 

RPTC, hnRNP F RPTC and Bmf RPTC Tg mice using the kidney-specific androgen regulated (KAP) 

promoter (28-31). Then, Akita Nrf2-/-/Nrf2RPTC Tg mice were generated by cross-breeding female 

Nrf2RPTC Tg mice (C57BL6) with male Akita Nrf2-/- mice (C57BL6) (24).  

 

Physiological Studies 

Male (12-week-old) non-Akita wild type (WT), Akita, Akita Nrf2-/-, Akita Nrf2-/-/Nrf2RPTC Tg 

mice (9 mice per group) were studied. All animals received standard mouse chow and water ad 

libitum. Animal care and procedures were approved by the CRCHUM Animal Care Committee and 

followed the Principles of Laboratory Animal Care (NIH Publication No. 85-23, revised 1985: 

http://grants1.nih.gov/grants/olaw/references/phspol.htm).  

SBP (systolic blood pressure) was monitored with a BP-2000 tail-cuff pressure monitor 

(Visitech Systems, Apex, NC, USA) in the morning, at least 2-3 times per week, for 8 weeks (24,28-

31). Each animal was accustomed to the procedure for at least 15-20 min per day for 5 days before 

the first SBP measurement at week 10. SBP values are presented as means ± SEM of 2 to 3 

determinations per mouse per group.  
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Glomerular filtration rate (GFR) was estimated with fluorescein isothiocyanate inulin, as 

recommended by the Animal Models of Diabetic Complications Consortium 

(http://www.diacomp.org/) with slight modifications (24,30,31). 

Blood glucose levels were measured in mice with the Accu-Chek Performa System (Roche 

Diagnostics, Laval, QC, Canada) throughout the study period and with a glucose colorimetric 

detection kit (Cayman Chemical) at age 20 weeks. The mice were housed individually in metabolic 

cages for 6 h for urine collection. Urine samples were assayed for albumin and creatinine by 

albumin enzyme-linked immunosorbent assay (ELISA, Albuwell and Creatinine Companion, 

Exocell, Inc., Philadelphia, PA, USA) (24,30,31).  

Following euthanasia, the kidneys were removed, decapsulated and weighed. Left kidneys 

were processed for histology and immunostaining. Right kidneys were harvested for isolation of 

RPTs by Percoll gradient (24,30,31). Aliquots of freshly isolated RPTs from individual mice were 

immediately processed for total RNA and protein analysis.  

 

Histology  

Immunohistochemical staining was performed using the standard avidin-biotin-

peroxidase complex method in 4-5 sections (4 μm thick) per kidney and 4-6 mouse kidneys per 

group (ABC Staining System; Santa Cruz Biotechnology). Periodic acid Schiff (PAS) staining and 

sirius red staining were performed to assess tubulointerstitial fibrosis as previously described 

(24,30,31). Oxidative stress in RPTs was assessed by dihydroethidium (DHE, Sigma-Aldrich Canada 

Ltd) staining of frozen kidney sections (24,32). Semi-quantitation of the relative staining was done 

by NIH Image J software (http://rsb.info.nih.gov/ij/).  

Immunofluorescence (IF) staining for Sglt2 was performed on 4-μm tissue sections from 

mouse kidney fixed in formalin and embedded in paraffin followed by staining with ALEXA FLUOR-

594-labeled secondary antibody (Invitrogen). Proximal tubules were identified by fluorescein-

labeled lotus tetragonolobus lectin (LTL, a marker of renal proximal tubule (33) (Vector Labs, 

Burlingame, CA). Image quantification and merge were assessed by ImageJ software 
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(http://rsb.info.nih.gov/ij/). To quantify the amount of Sglt2 expression, the pixel intensity of 

Sglt2 was divided by LTL intensity. To calculate the average ratio, 6 sections per mouse, 4-6 mice 

per group were analyzed.  

 

Cell Culture  

Immortalized human RPTCs (HK2) were cultured as described (26,34). Plasmids pGL4.20 

or pGL4.20 containing mouse Sglt2 (N-1952/N+684) or human SGLT2 promoter (N-1,986/N+17) 

were transiently or stably transfected into HK2 as described (24,35,36).  HK2 or stable 

transformants at 75-85% confluence were synchronized overnight in DMEM containing 5 mmol/l 

D-glucose and 1% depleted FBS, and then cultured with various concentrations of oltipraz ± 

trigonelline for the indicated time periods for up to 24 h.  SGLT2 expression was assessed with IF 

in DAPI-stained HK2. In separate experiments, HK2 stable transformants were transiently 

transfected with pcDNA 3.1/NRF2 cDNA.  

 

Real Time-Quantitative Polymerase Chain Reaction (RT-qPCR)  

The mRNA levels of selected genes in RPTs were quantified by RT-qPCR with forward and 

reverse primers as previously reported (Supplemental Table 1) (24,26,30-32) 

 

Western Blotting (WB)  

WB was performed, as previously reported (24,26,30-32). Relative densities of Agt, Nrf2, 

Sglt2 and β-actin bands were quantified by computerized laser densitometry (ImageQuant 

software, version 5.1; Molecular Dynamics, Sunnyvale, CA, USA). 

 

Immunostaining of Kidney Specimens from Patients with or without Diabetes  
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Nephrectomy specimens (paraffin sections) for immunostaining were obtained from the 

Department of Pathology, CHUM. The study was approved by the CHUM Clinical Research Ethics 

Committee. All patients provided written informed consent for this research use of their kidney 

tissue. The clinical characteristics of 6 patients (3 non-diabetic and 3 with T2D) had been 

published previously (37) and are shown in Supplementary Table 3. All patients had undergone 

nephrectomy for kidney cancer. 

 

Statistical Analysis  

Data are expressed as mean±SEM. Statistical analysis was performed with Student`s t-test 

or one-way analysis of variance with the Bonferroni correction as appropriate, using Graphpad 

Software, Prism 5.0 (http://www.graphpad.com/prism/Prism.htm). p<0.05 values were taken as 

statistically significant. 

 

Data and Resource Availability 

All data generated or analyzed during this study are included in the published article (and 

its online supplementary files). No datasets were generated or analyzed during the current study. 

 

Results 

RPTC-specific Expression of Nrf2 Transgene in Akita Nrf2-/-/Nrf2RPTC Tg Mice  

A schema for generating the Nrf2 transgenic mice is depicted in Figure 1A.  RT-qPCR 

analysis confirmed selective expression of the Nrf2-Flag transgene in the kidney and RPTs of male 

Nrf2RPTC Tg mouse but was undetectable in non-Tg mouse (Figure 1B). The Nrf2-Flag transgene 

was detected in isolated RPTs of Akita Nrf2-/-/Nrf2RPTC Tg mice but not in wild-type (WT), Akita or 

Akita Nrf2-/- mice (Figure 1C). A mutated ins2 gene was detected in Akita, Akita Nrf2-/-/ Nrf2-/- 

and Akita Nrf2-/-/Nrf2RPTC Tg mice but not in WT mice (Figure 1D). Nrf2-Flag mRNA expression was 

detected in RPTs from Akita Nrf2-/-/Nrf2RPTC Tg mice but not in WT, Akita and Akita Nrf2-/- mice 



139 

by RT-qPCR (Figure 1E). These results confirm that the KAP gene promoter directs Nrf2-Flag 

transgene expression in RPTs of Akita Nrf2-/-/Nrf2RPTC Tg mice. 

Nrf2 expression was higher in Akita and Akita Nrf2-/-/Nrf2RPTC Tg mice than in WT and Akita 

Nrf2-/- mice, respectively, by WB (Figure 1F) and immunostaining (Figure 1G). NAD(P)H:quinone 

oxidoreductase 1 (NQO-1) immunostaining was also higher in RPTCs from Akita and Akita Nrf2-/-

/Nrf2RPTC Tg mice than in WT mice and Akita Nrf2-/- mice, respectively (Figure 1H), indicating that 

Nrf2 overexpression stimulates the expression of its downstream target gene, NQO-1 (17). In 

contrast, no differences in Keap 1 (Kelch-like ECH-associated protein 1) immunostaining were 

detected in these groups (Figure 1).  

 

Physiological Parameters in WT, Akita, Akita Nrf2-/- and Akita Nrf2-/-/Nrf2RPTC Tg Mice  

We detected significantly lower serum glucose levels in Akita Nrf2-/- mice as compared to 

Akita mice, and elevated glucose levels in Akita Nrf2-/-/Nrf2RPTC Tg mice as compared to Akita Nrf2-

/- mice at age 20 weeks using a colorimetric kit (Table 1) but not by a glucometer (Supplemental 

Figure 1a). Longitudinal (Supplemental Figure 1b) and cross-sectional SBP measurements (Table 

1) documented significantly higher SBP in Akita than in WT mice, whereas SBP was significantly 

lower in Akita Nrf2-/- mice than in Akita mice. Although SBP were higher in Akita Nrf2-/-/Nrf2RPTC 

Tg mice than in Akita Nrf2-/- mice, these differences were not statistically significant. BW of WT 

mice was significantly higher than those of Akita, Akita Nrf2-/- and Akita Nrf2-/-/Nrf2RPTC Tg mice 

at the age of 20 weeks, with no statistically significant differences between these latter three 

groups (Table 1, Supplemental Figure 1c). Kidney weight and the KW/TL and GFR/BW ratios were 

also significantly increased in Akita mice as compared to WT, whereas these parameters were 

lower in Akita Nrf2-/- mice. GFR/BW was significantly higher in Akita Nrf2-/-/Nrf2RPTC Tg than in 

Akita Nrf2-/- mice (Table 1). Akita mice had significantly elevated urinary ACR levels as compared 

to WT mice, whereas ACR levels were lower in Akita Nrf2-/- than in Akita mice. Nrf2 overexpression 

significantly increased ACR in Akita Nrf2-/-/Nrf2RPTC Tg as compared to Akita Nrf2-/- mice (Table 1).  
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Nrf2 Overexpression Increased Sglt2 and Agt Expression in Tg Mice 

Double immunofluorescence (IF) of kidney sections with an anti-Sglt2 antibody and LTL-

FITC antibody, confirmed significantly higher Sglt2 expression in isolated RPTs from Akita mice 

than from WT mice (Figure 2A). Akita mice showed higher expression of Agt in isolated RPTs than 

WT mice (Figure 2B). In contrast, Sglt2 and Agt expression were significantly lower in isolated 

RPTs from Akita Nrf2-/- mice than Akita mice, and this was reversed in Akita Nrf2-/-/Nrf2RPTC Tg 

mice. WB for Sglt2 and Agt (Figures 2C and 2D, respectively) and RT-qPCR of their respective 

mRNAs from isolated RPTs (Figures 2E and 2F) confirmed these changes.  

 

Oxidative Stress and Tubulointerstitial Fibrosis in Akita Nrf2-/-/Nrf2RPTC Tg Mouse Kidneys 

PAS staining revealed more pronounced proximal tubular cell atrophy, tubular luminal 

dilatation with accumulation of cell debris in Akita mice than in WT mice (Figure 3A). These 

abnormalities were attenuated in Akita Nrf2-/- mice and partially reversed in Akita Nrf2-/-/Nrf2RPTC 

Tg mice.  

          Staining for DHE (Figure 3B) was significantly increased in RPTs from Akita mice as compared 

to WT, but it did not differ from that in Akita Nrf2-/- and Akita Nrf2-/-/Nrf2RPTC Tg mice. Increased 

sirius red (Figure 3C) staining and transforming growth factor-beta 1 (TGF-β1) immunostaining 

(Figure 3D) were noted in glomeruli and tubules in Akita mice. Interstitial fibrosis and TGF-β1 

immunostaining were less pronounced in Akita Nrf2-/- mice than in Akita mice and further 

increased in Akita Nrf2-/-/Nrf2RPTC Tg mice as compared to Akita Nrf2-/- mice. These changes were 

confirmed by semi-quantification of staining of DHE (Figure 3E) and sirius red (Figure 3F) and of 

TGF-β1 mRNA expression by RT-qPCR (Figure 3G). These changes were also associated with 

significant increases in fibronectin 1 (Fn1) mRNA expression (Figure 3H) by RT-qPCR in Akita Nrf2-

/-/Nrf2RPTC Tg mice as compared to Akita Nrf2-/- mice. Cat mRNA expression was significantly lower 

in Akita mice than in WT mice, whereas Nrf2 overexpression failed to affect Cat expression in 

Akita Nrf2-/-/Nrf2RPTC Tg mice as compared to Akita Nrf2-/- mice (Figure 3I). In contrast, Nox4 mRNA 

expression was higher in Akita and Akita Nrf2-/- mice than in WT mice but was similar between 

Akita Nrf2-/-/Nrf2RPTC Tg mice and Akita Nrf2-/- mice (Figure 3J). . 
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Oltipraz and NRF2 Overexpression Increased SGLT2 Expression and SGLT2 Promoter Activity in 

HK2  

Oltipraz increased SGLT2 expression in HK2 and this was inhibited by trigonelline (Figure 

4A and 4B). Oltipraz treatment also increased expression of both NRF2 and SGLT2 mRNA in a 

concentration-dependent manner (Supplementary Figure 2A and 2B, respectively). Transfection 

with NRF2 siRNA inhibited the stimulatory effect of oltipraz on NRF2 and SGLT2 mRNA expression 

(Figures 4C and 4D, respectively), whereas scrambled siRNA had no effect. Furthermore, oltipraz 

stimulated mouse and human SGLT2 promoter activity and its stimulatory effect were inhibited 

by trigonelline (Figures 4E and 4F, respectively). Transiently transfection of the plasmid pcDNA-

NRF2 cDNA significantly stimulated NRF2 and SGLT2 mRNA expression (Figures 4G and 4H, 

respectively) as well as mouse and human SGLT2 promoter activity in HK2 (Figures 4I and 4J, 

respectively).  

 

Localization of Nrf2-RE in Mouse and Human SGLT2 Promoter 

To validate effects of the putative Nrf2-RE on the mouse Sglt2 promoter (N-1527/N-1516, 

5’-CTGACACTGCT-3’) and human SGLT2 promoter (N-1316/N-1305, 5’-GTGACACAGCA-3’), 

different lengths of Sglt2 promoters or SGLT2 promoters were transiently transfected into HK2 

and then cultured ± oltipraz in NG medium. Sglt2 promoter (N-1,952/N+684) (Figure 5A) and 

SGLT2 promoter (N-1,986/N+17) (Figure 5B) exhibited 29-fold and 28-fold increases compared to 

control plasmid pGL4.20 in HK2, respectively. Deletion of nucleotides N-1952 to N-1248 in Sglt2 

promoter and N-1986 to N-1285 in SGLT2 promoter, respectively, reduced the promoter activity 

to 24-fold and 14-fold increase as compared to pGL4.20 empty vector. Further deletion of 

nucleotides N-1952 to N-235 in Sglt2 promoter and N-1986 to N-194 in SGLT2 promoter, 

respectively, reduced the promoter activity to 16-fold and 4-fold increase as compared to pGL4.20 

empty vector. Interestingly, the activity of Sglt2 promoter and SGLT2 promoter was further 

increased by 1.7-fold and 1.4-fold in HK2 in the presence of oltipraz (Figure 5C and 5D, 

respectively). Oltipraz did not increase the promoter activity of other fusion genes. Furthermore, 
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deletion of the putative NRF2-RE, N-1527 to N-1516 in Sglt2 promoter (Figure 5E) and N-1316 to 

N-1305 in SGLT2 promoter (Figure 5F), abolished the stimulatory effect of oltipraz. 

EMSA revealed that the double-strand DNA fragment nucleotides N-1535 to N-1505 

containing the core Nrf2-RE (N-1527 to N-1516) of Sglt2 promoter (Figure 6A) and N-1323 to N-

1296 containing the core NRF2-RE (N-1316 to N-1305) of SGLT2 promoter (Figure 6B) bind to 

nuclear proteins from HK2 cells, which can be displaced by respective WT DNA but not by mutated 

DNA fragments.  

ChIP assays were used to test whether endogenous NRF2 interacts with the NRF2-RE of 

the SGLT2 promoter in vitro. Figure 6C displays the PCR product of pulled-down DNA by anti-NRF2 

antibody with primers specific to the SGLT2 promoter in HK2 cells. A ~224-bp DNA fragment was 

generated in naïve HK2 (lane 2) but no similar DNA fragment was generated with pull-down by 

anti-Histone3 (lane 3) and rabbit IgG (lane 4). The ~224-bp DNA fragment was further enhanced 

in HK2 when transiently transfected with pcDNA 3.1/NRF2 cDNA (lane 6). Again, no similar DNA 

fragment was generated with pull-down by anti-Histone3 (lane 7) and rabbit IgG (lane 8). On the 

other hand, a ~ 161 bp of hRPL was generated with DNA pull-down by anti-Histone3 (lanes 3 and 

7) but not by rabbit IgG (lanes 4 and 8).  

 

NRF2 and SGLT2 Expression in Kidney Sections from Patients with or without Diabetes 

 We detected more pronounced immunostaining for NRF2 and immunofluorescence for 

SGLT2 in normal areas from nephrectomy specimens from patients with kidney cancer with 

diabetes as compared to patients without diabetes (Figures 7). Keap 1 expression appeared to be 

similar in kidney specimens from patients with and without diabetes (Supplemental Figure 3). 

These observations are consistent with the changes observed in RPTCs of Akita mice.  
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Discussion 

Our results demonstrate that selective overexpression of Nrf2 in RPTCs of Akita Nrf2-/- 

mice effectively upregulates Sglt2 expression, resulting in elevation of blood glucose levels, GFR, 

ACR and tubulointerstitial fibrosis. Consistently, in cultured HK2, pharmacological stimulation of 

NRF2 with oltipraz or transfection with NRF2 cDNA stimulated SGLT2 expression and its promoter 

activity, and their effects were reversed by trigonelline and NRF2 siRNA. NRF2 binds to NRF2-RE 

in the SGLT2 promoter as revealed by EMSA and ChIP assay. Furthermore, specimens from 

kidneys of patients with diabetes exhibited higher expression of NRF2 and SGLT2 in RPTs than 

from kidneys of patients without diabetes. Our findings identify a novel mechanism by which 

NRF2 activation by oxidative stress (secondary to hyperglycemia) stimulates SGLT2 expression 

and activation, leading to further elevations in blood glucose, hyperfiltration and progression of 

kidney injury in diabetes.  

Akita mice, an autosomal dominant model of spontaneous type 1 diabetes (T1D) with a 

mutated Ins2 gene develop hyperglycemia as early as 3-4 weeks of age and closely mimic human 

T1D with renal and cardiac morphological changes characteristic of early to moderately advanced 

human T1D (38,39). 

Global Nrf2 KO mice have increased susceptibility to various kidney diseases (40,41). Some 

studies in diabetic rodents with bardoxolone methyl (BM) analogs reported anti-diabetic effects 

(18,19). Other studies, however, found that BM analogs increased albuminuria and blood 

pressure and weight loss in Zucker obese rats with diabetes (20). At high doses, BM analogs 

increased atherosclerosis and kidney injury in diabetic apoE-/- mice (21). 

We found significantly lower blood glucose levels in Akita Nrf2-/- mice compared with Akita 

mice. However, there were no differences between Akita mice and Akita Nrf2-/-/Nrf2RPTC Tg mice 

at 20 weeks of age, suggesting that the presence of Nrf2 in the proximal tubules prevented this 

amelioration.  

We previously reported that Nrf2 stimulates RPTC Agt transcription through binding to an 

Nrf2-RE in the Agt promoter (42). While the higher RPTC Agt expression in Akita Nrf2-/-/Nrf2RPTC 

Tg compared to Akita Nrf2-/- mice was associated with a modest increase in SBP (3.5 mm Hg), it 
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did not reach statistical significance. Similar urinary Ang II levels in Akita Nrf2-/-/Nrf2RPTC Tg and 

Akita Nrf2-/- mice (Table 1) were also detected, which is compatible with no significant SBP effect. 

In the present study, we detected increased Nrf2 and NQO-1 expression in RPTs of 20-

week-old Akita mice as compared to WT mice. These were associated with marked increases in 

DHE staining (a marker of ROS generation). DHE staining, however, was not different in Akita Nrf2-

/- mice compared to Akita Nrf2-/-/Nrf2RPTC Tg mice. We do not presently understand why Nrf2 

overexpression did not lead to attenuation of oxidative stress in Akita Nrf2-/-/Nrf2RPTC Tg mice as 

compared to Akita Nrf2-/- mice. Previous studies from our group (42,43) and others (44,45) 

consistently showed enhanced NADPH oxidase activity and Nox4 expression with reduced Cat 

expression and activity in diabetic rodents, indicating that hyperglycemia would alter relative 

expression and activity of Nox4 and Cat, thereby enhancing ROS generation in the kidney (46,47). 

This possibility is supported by our findings of up-regulation and down-regulation of Nox4 and 

Cat expression, respectively, in Akita mice.  However, Nox4 and Cat expression was similar in Akita 

Nrf2-/- and Akita Nrf2-/-/Nrf2RPTC Tg mice. 

Akita mice exhibited increased tubulointerstitial fibrosis as compared to WT mice, which 

was less apparent in Akita Nrf2-/- mice. Increased tubulointerstitial fibrosis was also observed in 

Akita Nrf2-/-/Nrf2RPTC Tg mice as compared Akita Nrf2-/- mice. The functional relation between 

Nrf2 and tubulointerstitial fibrosis is incompletely understood. One possibility is that Nrf2 

stimulates Agt expression and Ang II production, which, in turn, would stimulate TGF-β1 and 

subsequently enhance the expression of extracellular matrix proteins and profibrotic genes in 

RPTCs, resulting in tubulointerstitial fibrosis. Indeed, we detected higher Agt, TGF-β1 and Fn1 

expression in RPTs of Akita mice than in WT. These increases were mitigated in Akita Nrf2-/- mice 

and then augmented in Akita Nrf2-/-/Nrf2RPTC Tg mice, linking Nrf2 with intrarenal RAS activation 

and upregulation of TGF-β1 expression in RPTs and consequently to tubulointerstitial fibrosis in 

Akita and Akita Nrf2-/-/Nrf2RPTC Tg mice. Most recently, Rush et al (48) reported that genetic or 

pharmacologic Nrf2 activation increases proteinuria and kidney injury in several mouse models 

of CKD, consistent with our observation that Nrf2 overexpression or activation may exacerbate 

kidney injury in diabetic mice. 
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The mechanism by which NRF2 overexpression leads to upregulation of renal SGLT2 gene 

expression in diabetes remains unclear. One possibility is that hyperglycemia/ROS can augment 

NRF2 activation by promoting its dissociation from Keap 1 and translocation into the nucleus. 

NRF2 will then bind to NRF2-RE in the SGLT2 promoter region and promote gene transcription. 

This possibility is supported by our findings that oltipraz and NRF2 cDNA transfection increased 

SGLT2 promoter activity. Deletion of the putative NRF2-RE markedly reduces oltipraz up-

regulation of mouse and human SGLT2 promoter activity in HK2. Moreover, biotin-labeled mouse 

and human NRF2-RE specifically binds to nuclear proteins. Importantly, our ChIP assays confirmed 

NRF2 interaction with SGLT2 promoter loci. Taken together, these data demonstrate that NRF2 

binds to NRF2-RE to stimulate SGLT2 transcription in vivo. 

Our results may have clinical implications that also may help explain the harmful effects 

of NRF2 activation observed with BM in T2D patients with CKD in the BEACON trial (23). We 

speculate that this adverse action may be attributed to SGLT2 and AGT upregulation by NRF2 in 

RPTs, leading to hyperfiltration, hypertension and exacerbation of nephropathy and to adverse 

cardiac effects. Thus, the critical question of whether NRF2 activation may be harmful in T2D 

patients with CKD warrants further investigations. Of note, the safety and efficacy of BM are 

currently being tested in ongoing phase 2/3 clinical trials on T1D/T2D (49).  

In summary, our findings document that selective Nrf2 overexpression in RPTCs leads to 

upregulation of renal Sglt2 and Agt expression with subsequent increases in blood glucose and 

fibrotic gene expression, leading to kidney injury in mice with diabetes. Our results imply an 

important role of oxidative stress (hyperglycemia)-induced NRF2 expression and SGLT2 activation 

in the exacerbation of hyperglycemia and renal injury in diabetes. Our observations raise the 

possibility that selective targeting of NRF2 might provide a potentially novel approach for the 

prevention and reversal of diabetes-associated nephropathy. 
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Figure Legends 

Figure 1. Generation of Akita Nrf2-/-/Nrf2RPTC Tg Mice. (A) Schematic map of the kidney androgen-

regulated promoter (KAP2)-rat Nrf2-Flag construct. Nrf2 transgenic mice were generated by 

inserting rat Nrf2 cDNA fused with Flag-tag including the stop codon into a construct containing 

the KAP promoter and exons 2 to 5 of human Agt gene, including non-coding DNA at the 3’ 

terminal. The isolated 17-kb KAP2-rNrf2 transgene (digested with SpeI and NdeI) was 

microinjected into 1-cell fertilized mouse embryos obtained from C57Bl6 mice (Cyagen 

Biosciences Inc. (www.cyagen.com). (B) PCR product showing tissue expression of rNrf2-Flag 

mRNA in male Tg and non-Tg mice. rNrf2-Flag (404 bp) and β-actin (350 bp) fragments are 

indicated. Br, brain; H, heart; Ki, kidney; Li, liver; Lu, lung; Pan, pancreas; Spl, spleen; T, testis; PT, 

isolated proximal tubule; Pos, positive Nrf2 plasmid control. Specific PCR analysis of rNrf2-Flag 

transgene (C) and mouse ins 2 and mutated ins2 (D) gene in genomic DNA of offspring of WT, 

Akita, Akita Nrf2-/- and Akita Nrf2-/-/Nrf2RPTC Tg mice. Ins2, insulin 2. (E) RT-qPCR of Nrf2-Flag 

mRNA levels in WT, Akita, Akita Nrf2-/- and Akita Nrf2-/-/Nrf2RPTCTg mice. (F) WB of Nrf2 and β-

actin protein expression in WT, Akita, Akita Nrf2-/- and Akita Nrf2-/-/Nrf2RPTCTg mice. 

Representative IHC for Nrf2 (G), NQO-1 (H) and Keap 1 (I) expression in kidneys of WT, Akita, Akita 

Nrf2-/- and Akita Nrf2-/-/Nrf2RPTC Tg mice (x600). P: proximal tubule, G: glomerulus. n=9 per group 

for mRNA expression; n=4 per group for WB and IHC.  

 

Figure 2. Effect of Nrf2 Overexpression on Sglt2 and Agt Gene Expression in Tg Mouse Kidneys 

at 20 weeks of age. (A) Representative colocalization of immunofluorescence staining for Sglt2 

and LTL (marker of renal proximal tubule) (x100) and (B) immunostaining of Agt (x600) in kidney 

sections from WT, Akita, Akita Nrf2-/- and Akita Nrf2-/-/Nrf2RPTC Tg mice. Representative WB of 

Sglt2 (C) and Agt (D) protein and RT-qPCR of Sglt2 mRNA (E) and Agt mRNA (F) in freshly isolated 

RPTs from WT, Akita, Akita Nrf2-/- and Akita Nrf2-/-/Nrf2RPTC Tg mice. Values are means + SEM, n=9 

per group for mRNA expression; Statistics were done by one-way Anova; n=3-4 per group for IF 

and WB. *p<0.05; **p<0.01; ***p<0.005; ns, not significant.  
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Figure 3. Oxidative Stress and Tubulointerstitial Fibrosis in Mouse Kidneys at Age 20 Weeks. (A) 

PAS staining (x600), (B) DHE staining (x100), (C) Sirius red staining (x200) and (D) TGF-β1 

immunostaining in kidney sections (x600) from WT, Akita, Akita Nrf2-/- and Akita Nrf2-/-/Nrf2RPTC 

Tg mouse kidneys at the age of 20 weeks. Semi-quantification of DHE fluorescence (E), Sirius red 

staining (F), TGF-β1 mRNA (G), Fn1 mRNA (H), Cat mRNA (I) and Nox4 mRNA (J) expression in RPTs 

of WT controls, Akita, Akita Nrf2-/- and Akita Nrf2-/-/Nrf2RPTC Tg mice. Values are expressed as 

means ± SEM, n=9 per group for mRNA expression; Comparison were done by one-way Anova. 

n=4-6 per group for staining. *p<0.05; **p<0.01; ***p<0.005; ns, not significant.  

 

Figure 4. Effect of Oltipraz and NRF2 cDNA Transfection on NRF2 and SGLT2 Gene Expression 

in HK2 with or without NRF2 siRNA. Immunofluorescence staining (IF) of SGLT2 expression in 

HK2 incubated in NG medium in the absence or presence of oltipraz ± trigonelline (x600) (A) and 

semi-quantitation of positive SGLT2 stained cells/total cells ratio (B). n=3 per group. Each dot 

indicates 20 cells, total 120 cells were randomly counted. Effect of NRF2 siRNA or scrambled (Scr) 

siRNA on NRF2 (C) and SGLT2 (D) mRNA expression in HK2 incubated in NG medium ± oltipraz and 

quantified by RT-qPCR (n=4). Effect of oltipraz on mouse (E) and human (F) SGLT2 promoter 

activity in HK2 in the absence or presence of trigonelline and quantified by luciferase activity assay 

(n=4). Effect of NRF2 cDNA transfection on NRF2 mRNA (G), SGLT2 mRNA (H) (n=6), mSglt2 

promoter activity (I) and hSGLT2 promoter activity (J) in HK2 in NG medium (n=6). Promoter 

activity and mRNA levels in cells incubated in NG medium are expressed as arbitrary unit 1. The 

results are reported as fold changes of control values (means ± SEM), one-way Anova for figure 

B-F, unpaired t-test for figure G-I. *p<0.05; **p<0.01; ***p<0.005; ns, not significant. 

 

Figure 5. Identification of putative NRF2-RE in mouse and human SGLT2 Promoter. Luciferase 

activity of plasmids containing various lengths of the mouse Sglt2 (A) and human SGLT2 (B) gene 

promoter in HK2 after 24-hr culture in NG medium. Luciferase activities were normalized by co-

transfecting pRC/RSV vector containing beta-galactosidase cDNA. Luciferase activity of plasmids 

containing various lengths of the Sglt2 (C) and SGLT2 (D) gene promoter in HK2 after 24-hr culture 
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in NG medium with or without oltipraz stimulation. (E) pGL4.20-Sglt2 promoter (N-1,952/+684) 

activity with or without deletion of putative Nrf2-RE (N-1,527 to N-1,516; 5’-CTGACACTGCT-3’) in 

HK2 after 24-hr culture in NG medium with or without oltipraz stimulation. (F) pGL4.20-SGLT2 

promoter (N-1,986/+17) activity with or without deletion of putative NRF2-RE (N-1,316 to N-

1,305; 5’-GTGACACAGCA-3’) in HK2 after 24-hr culture in NG medium with or without oltipraz 

stimulation. Values are means + SEM, n=4 per group. Statistics were done by unpaired t-test 

between control and oltipraz group for each promoter. *p<0.05; **p<0.01; ***p<0.005; ns, not 

significant.  

 

Figure 6. Identification of putative NRF2-RE in mouse and human SGLT2 Gene Promoter by 

Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay. (A) 

EMSA of putative biotinylated mouse double strand oligo (N-1535 to N-1505) containing Nrf2-RE 

(N-1,527 to N-1,516) with HK2 nuclear proteins with or without excess unlabeled WT Nrf2-RE or 

mutated Nrf2-REs. (B) EMSA of putative biotinylated human double strand oligo (N-1323 to N-

1296) containing NRF2-RE (N-1,316 to N-1,305) with HK2 nuclear proteins with or without excess 

unlabeled WT NRF2-RE or mutated NRF2-REs. Arrow indicates the putative binding. The results 

are representative of 3 independent experiments. ChIP analysis with anti-SGLT2 antibody in HK2 

(C). The HK2 with or without transient transfection with pcDNA3.1/NRF2 cDNA were lysed, and 

nuclei were isolated and then sonicated. NRF2 was immunoprecipitated without (-, lanes 1 and 

5) or with (+, lanes 2 and 6) anti-NRF2 antibody or with anti-Histone3 (lanes 3 and 7) or rabbit IgG 

(lanes 4 and 8). Complexes were eluted, cross-linking was reversed, and purified DNA was used 

as a template in PCR with primers specific to the SGLT2 gene promoter and hRPL30 gene. DNA 

was separated by agarose gel electrophoresis and visualized.  

 

Figure 7. Oxidative Stress, NRF2 and SGLT2 Expression in Nephrectomy Specimens from Patients 

with or without Diabetes. Samples were obtained from areas without tumor from patients who 

underwent nephrectomy for carcinoma of the kidney. This figure shows immunostaining for NRF2 

and SGLT2 from 4 patients without diabetes (a, patient with papillary variant carcinoma; b, 
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patient with clear cell carcinoma; c, patient with renal carcinoma; d, patient with clear cell 

carcinoma) and from 4 patients with diabetes (e, diabetic patient with papillary variant 

carcinoma; f, diabetic patient with clear cell carcinoma; g, diabetic patient with clear cell 

carcinoma; h, diabetic patient with clear cell carcinoma). NRF2 magnification x200; SGLT2 

magnification x100. G, glomerulus; and P, proximal tubule. 

 

Table 1 

  WT Akita Akita Nrf2-/- Akita Nrf2-/-/Nrf2RPTC Tg 

Body weight (BW, g) 31.02±0.66 24.50±0.90*** 23.30±1.27*** 23.19±0.47*** 

Serum glucose level (mg/dL)1 248.2±33.2 976.1±49.81*** 676.1±40.43***### 916.8±64.57***†† 

Systolic blood pressure  

(SBP, mmHg) 

113.3±2.10 133.6±3.23*** 121.2±0.97# 124.7±3.2* 

Kidney weight (KW, mg) 

 

346.2±7.43 

 

548.9±11.11*** 

 

425.6±16.68*## 

 

443.0±28.9** 

KW/tibial length (KW/TL, mg/mm) 13.92±0.41 26.99±0.76*** 19.04±0.59***### 21.64±1.19*** 

GFR/BW (ml/min/g) 7.76±0.68 19.69±1.46*** 18.06±1.07*** 24.00±1.88***† 

ACR (µg/mg) 23.45±0.86 102.50±9.94*** 53.29±6.49***### 92.08±10.75***†† 

Urinary Ang II/Creatinine (ng/mg)  2.60±0.31 26.59±2.16*** 20.47±3.01*** 21.62±2.59*** 

 

 

 

All data are expressed as means ± SEM. ***P < 0.005, **P < 0.01, *P < 0.05 vs. WT; 
# # # 

P < 0.005, 
# # 

P < 0.01, 
#   

P < 0.05 vs. Akita; 
†† 

P < 0.01, 
† 

P < 0.05 
vs. Akita Nrf2

-/- 
(n=9). 

1
Measured with a glucose colorimetric detection kit (Cayman Chemical)  

 (Physiological parameters of WT, Akita, Akita Nrf2-/- and Akita Nrf2-/-/Nrf2RPTC Tg mice) 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

a) GMSA of mSglt2 b) GMSA of hSGLT2
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Figure 7 
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Supplemental method 1: ChIP assay 

Briefly, 70%-80% confluent HEK293 cells were transfected with or without pcDNA 

3.1/NRF2 plasmid for 24h. Samples were cross-linked in 1% formaldehyde for 15min. Cells were 

lysed and nuclei were pelleted by centrifugation. Chromatin fragmentation was sonicated. 

Chromatin was immunoprecipitated with 10μl of anti-Nrf2 (ChIP grade, Abcam AB62352), 10μl 

positive control Histone H3 (D2B12) (ChIP grade, Cell signaling, CST4620S) and 10μl negative 

control rabbit IgG (Cell signaling, CST2729P) antibody. The reversal cross-links by 5M NaCl and 

proteinase K were incubated at 65°C for 2h. DNA was purified by spin columns. Human SGLT2 

promoter region containing putative antioxidant responsive element (ARE) bound to Nrf2 was 

amplified from DNA by PCR with specific primers (Supplemental Table 1). Human RPL30 PCR was 

performed as an internal control. Primers used for human RPL30 exon3 (Cell signaling, CST7014) 

were provided by the kit. PCR products were analyzed in 2% agarose gel. The expected size of the 

PCR product is 224 bp for SGLT2 promoter and 161 bp for human RPL30. 

 

Supplemental method 2: Generation of Nrf2-Tg mice 

In brief, rat Nrf2 cDNA was cloned from rat kidney total RNA by RT-PCR, fused with Flag 

tag at 3’ end and inserted into a plasmid containing the kidney androgen regulated promoter 

(KAP2) at Not1 site. Isolated KAP2-Nrf2-Flag transgene was then microinjected into one cell 

fertilization mouse embryos by a standard procedure (performed by Cyagen Biosciences Inc. 

(www.cyagen.com)). Positive founders were then crossed with WT C56BL/6 mice for F1 and 

further generation. Plasmid pKAP2 was a gift from Dr. Curt D. Sigmund (University of Iowa, Iowa 

City, IA). 
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Gene (Species; Accession number) Forward and Reverse Primers
Primers for mice genotyping

Ins2 (mouse; NT_039437.7)
F: TGCTGATGCCCTGGCCTGCT

R: TGGTCCCACATATGCACATG

Nrf2-/- (genotyping)

Common-F: GCCTGAGAGCTGTAGGCCC

WT-R: GGAATGGAAAATAGCTCCTGCC

Mutant-R: GACAGTATCGGCCTCAGGAA 

Nrf2RPTC Tg (genotyping)
F: GCTGGAAAACATTGTAGAGCTG

R: CTGATCTCAGCTACACATTGGA

Primers for RT-qPCR

Nrf2 (mouse/rat; NM_010902.3 )
F: CGCCGCCTCACCTCTGCTGCCAGTAG

R: AGCTCATAATCCTTCTGTCG

Nrf2 (human; NM_006164.5)
F: ACACGGTCCACAGCTCATC

R: TGTCAATCAAATCCATGTCCTG

Sglt2 (mouse; NM_133254.4) F: TTGGTGTTGGCTTGTGGTCTAT

R: ATGTTGCTGGCGAACAGAGA

SGLT2 (human; NM_003041.4) F: GACACGGTACAGACCTTCGTCAT

R: CTCCCAGGTATTTGTCGAAGAGA

Agt (mouse/rat; NM_031144.3 )
F: CCACGCTCTCTGGATTTATC

R: ACAGACACCGAGATGCTGTT

Tgf-β1  (mouse; NM_011577) F: CCAAACTAAGGCTCGCCAGTC
R: GGCACTGCTTCCCGAATGTC

FN1 (mouse; NM_001276413.1) F: TAGCAGGCTACCGACTGACCG
R: CACCCAGCTTGAAGCCAATCC

Catalase (mouse; NM_009804.2)
F: CGACCAGATGAAGCAGTGGA

R: CCACTCTCTCAGGAATCCGC

Nox4 (mouse; NM_015760.4)
F: TGGCCAACGAAGGGGTTAAA

R: GATGAGGCTGCAGTTGAGGT

β-actin (human/mouse/rat; NM_031144.3) F: ACGATTTCCCTCTCAGCTT

R: TACAATGAGCTGCGTGTGGC

Supplemental Table 1. Primers
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Gene (Species; Accession number) Forward and Reverse Primers
Primers for Sglt2 promoter site-directed mutation

del hSGLT2 (-1316)-ARE F: ACTGTACTCCAGCTTTGGAAGACCCTGTCTCAAAAC
R: GTTTTGAGACAGGGTCTTCCAAAGCTGGAGTACAGT

del mSglt2 (-1527)-ARE F: AGGTTCTCAGGCATTTTGGGATGGGTCCCATTTC
R: GAAATGGGACCCATCCCAAAATGCCTGAGAACCT

Primers for truncated Sglt2 promoters
mSglt2 (-1952)-F GGACATCACATGGTACCAAAC
mSglt2 (-1248)-F AAATTGGTACCGATGCAGGTTCTATACAGGAG
mSglt2 (-235)-F AAATTGGTACCGCTTGGAACACTGGGTATAG 
mSglt2 (-684)-(xhol)-R TTTTCTCGAGCACCAACTGTGCCTCTATT

hSGLT2 (-1285)-F GAAACACATGCTTTGTTGG
hSGLT2 (-194)-F TAAGGCCCAGGAAAGAGTGC

hSGLT2 (-1986)-(XhoI)-F ttaaCTCGAGGTCTGTAACACACACGTGTC

hSGLT2 (+17)-(BglII)-R aattAGATCTCATTCTCCCCAGGATCTGC

Primers for EMSA
hSGLT2 promoter

BIO-GS-hSGLT2 (-1316)
F: AGCTTTGGTGACACAGCAAGACCCTGT
R: ACAGGGTCTTGCTGTGTCACCAAAGCT

hSGLT2 (-1316) WT
F: AGCTTTGGTGACACAGCAAGACCCTGT
R: ACAGGGTCTTGCTGTGTCACCAAAGCT

hSGLT2 (-1316) MUT1
F: AGCTTTGGaatCACAGCAAGACCCTGT
R: ACAGGGTCTTGCTGTGATTCCAAAGCT

hSGLT2 (-1316) MUT2
F: AGCTTTGGaatCACAaaAAGACCCTGT
R: ACAGGGTCTTTTTGTGATTCCAAAGCT

hSGLT2 (-1316) MUT3
F: AGCTTTGGaataaaaaaAAGACCCTGT
R: ACAGGGTCTTTTTTTTATTCCAAAGCT

mSglt2 promoter

BIO-GS-mSglt2 (-1527) F: GACCCATCCCTGACACTGCTAAAATGCCTGA
R: TCAGGCATTTTAGCAGTGTCAGGGATGGGTC

mSglt2 (-1527) WT F: GACCCATCCCTGACACTGCTAAAATGCCTGA
R: TCAGGCATTTTAGCAGTGTCAGGGATGGGTC

mSglt2 (-1527) MUT1 F: GACCCATCCCaataaaaaaTAAAATGCCTGA
R: TCAGGCATTTTAttttttattGGGATGGGTC

mSglt2 (-1527) MUT2 F: GACCCATCCCaatCACTaaTAAAATGCCTGA
R: TCAGGCATTTTAttAGTGattGGGATGGGTC

mSglt2 (-1527) MUT3 F: GACCCATCCCaatCACTGCTAAAATGCCTGA
R: TCAGGCATTTTAGCAGTGattGGGATGGGTC

Primers for ChIP assay
ChIP-SGLT2 (177) F: CCAGCTATTTGGGAAGCTGA
ChIP-SGLT2 (400) R: TGTGCAACGACTTTCCTGAG

Supplemental Table 1. Primers (continued)
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Antibody (Host) WB/IHC (Dilution) Suppliers

Nrf2  (mouse monoclonal, ab89443)

(rabbit polyclonal, ab31163)

(rabbit monoclonal, ab62352)

WB (1:2000); 

IHC (1:400)

Chip grade (1)

Abcam

NQO-1 (mouse monoclonal, ab28947) IHC (1:400) Abcam

Keap 1 (rabbit polyclonal, ab66620) IHC (1:400) Abcam

Sglt2 (D-6, mouse monoclonal, sc-393350 ) 

(rabbit polyclonal, ab85626)

WB (1:2000)

IF (1:400)

Santa Cruz Biotechnology

Abcam

Agt (rabbit polyclonal, 2) WB (1:2000); IHC (1:200) Generated in our lab 

Tgf-β1 (rabbit polyclonal, sc-146) IHC (1:200) Santa Cruz Biotechnology

Histone H3 (rabbit monoclonal, CST4620s) Chip grade Cell signaling

IgG (rabbit polyclonal, CST2729P) Chip grade Cell signaling

β-actin (mouse monoclonal, a5441) WB (1:10000) Sigma

Supplemental Table 2. Antibodies for Western Blotting

(1) Use of this antibody is as descripted in the supplemental methods. 
(2) Wang L, Lei C, Zhang et al. Synergistic effect of dexamethasone and isoproterenol on the expression of 

angiotensinogen in immortalized rat proximal tubular cells. Kidney International 53:287-295, 1998.
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Patient ID a b c d e f g h

Diabetes (Non/Yes) Non None None None Yes (Type 2) Yes (Type 2) Yes (Type 2) Yes (Type 2)

Age (y) 38 50 63 64 67 53 80 65

Sex (M or F) F F F M M M M M
Serum creatinine 
(mg/dL) 0,54 0,76 0,74 0,80 1,71 1,02 1,73 1,74

Serum glucose (mg/dL) 97,3 100,9 102,7 97,0 232,4 195,6 228,8 200,0

Urine glucose 0 0 0 0 6 mmol/L 3 mmol/L 17 mmol/L 56 mmol/L

Urine protein* 0 0 0 0 2,65 g/L (2) 0 1,5 g/L 0,73 g/L

GFR (mL/min)** 140 86 85 92 40 81 38 73

Known drugs used ARB None None ARB/HCT2 *** **** ***** *****

Hypertension (Yes or 
No) Yes No No Yes Yes Yes Yes Yes

Diagnosis 
Papillary 
variant 

carcinoma

Clear cell 
carcinoma

Renal 
carcinoma (1)

Clear cell 
carcinoma

Papillary 
variant 

carcinoma

Clear cell 
carcinoma

Clear cell 
carcinoma

Clear cell 
carcinoma

*Urine protein is determinated on dipstick.

**GFR is calculated with MDRD equation.

(1) with changes suggestive of renal carcinoma, thyroid-like

(2) obtained with urinary collect

***Diuretic, ARB, insulin, Beta-blocker, Calcium Channel Blocker
****Diuretic, Angiotensin Receptor Blocker, antineoplasic agent, oral hypoglycemic agent, Beta-blockers, Calcium Channel Blockers

***** ACEI, Oral hypoglycemic agent, Beta-blocker

Supplemental Table 3. Patient Characteristics
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Figure 1. Longitudinal blood glucose (BG, A), systolic blood pressure (SBP, B) and body weight (BW, C) of WT, Akita, Akita Nrf2-/-

and Akita Nrf2-/-/Nrf2RPTC Tg mice. BG level, SBP and BW were recorded every two weeks starting week 12 to week 20. BG and 
SBP were measured by glucometer (Accu-Chek Performa System) and BP-2000 Tail-cuff Pressure Monitor, respectively. All data 
are expressed as means ± SEM. *P < 0.05 ***P < 0.005  vs. WT at 20 weeks, #P < 0.05 vs. Akita Nrf2-/- (n=9); #P < 0.05 vs. Akita at 
20 weeks. 
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4.1 Nrf2 in hyperglycemia-induced oxidative stress  

4.1.1 Activation of Nrf2 in DN 

DN is one of leading causes of ESRD and characterized by albuminuria, hypertension, 

decreased GFR and renal function. Hyperglycemia-induced oxidative stress is one of the major 

pathogenesis in the progression of DN. Nrf2 is an antioxidant factor that abundantly expresses in 

the kidneys especially in the cortical tubules [148, 190]. In diabetic condition, oxidative stress 

causes the conformation change of Keap 1, which results in translocation of Nrf2 into nucleus. 

Nrf2 then binds to AREs sequences in the promoter of various genes such as NQO-1 and HO-1 and 

initiates their transcription [300]. Consistent with these findings [189, 301], our studies found that 

Nrf2 pathway and its downstream gene, NQO-1, were significantly activated in both type 1 (Akita) 

and type 2 (db/db) diabetic mice model at week 20 and 16, respectively.  

However, several studies reported a decrease of Nrf2 expression in long-term diseases 

condition. For example, in chronic kidney diseases induced by 5/6 nephrectomy in Sprague-

Dawley rats, Nrf2 with its downstream genes were mildly decreased at 6 weeks and significantly 

diminished at 12 weeks [302]. In diabetic condition, it has been suggested that Nrf2 was 

adaptively activated to overcome hyperglycemia-induced oxidative stress at the early stage, 

whereas expression of Nrf2 and its downstream antioxidants were decreased at the late stage of 

diabetes [301, 303]. Other studies have reported that Nrf2 protein level and its downstream 

genes, NQO1 and HO-1, were increased at 3 months but decreased at 6 months in the heart of 

STZ-induced diabetic mice [304, 305]. Jiang’s group found that high glucose can induce ROS 

production, activate Nrf2 and its downstream genes in human renal mesangial cells [189],  

whereas Sireesh et al. reported a decreased level of Nrf2 in peripheral blood mononuclear cells 

in diabetic patients with poor glycemic control, compared to diabetic patients with good glycemic 

control [306].  In our studies, we found that Nrf2 and its downstream genes were increased in 

type 1 diabetic Akita mice model at the age of 20 weeks. In db/db mice model, Nrf2 and its 

downstream gene, NQO-1, were increased at week 12 and 16 and then mildly decreased at week 
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20 in isolated RPTCs, indicating that the expression of Nrf2 may vary at at different stage of 

diabetes.  

4.1.2 Nrf2 deficiency in diabetic condition 

Several studies have shown that activation of Nrf2 protected diabetic kidney from 

oxidative stress. However, our studies yielded different results. First, Nrf2 deficiency in 20-week 

Akita mice did not exert significantly increased oxidative stress markers (though there is a trend 

of increase). Second, overexpression of Nrf2 in RPTCs by transgene in Akita Nrf2-/- showed only 

slight decrease of oxidative stress compared to Akita Nrf2-/-.  

We cannot presently understand why loss of Nrf2 did not dramatically increase the level 

of ROS and overexpression of Nrf2 in RPTCs failed to attenuate oxidative stress. One possible 

explanation might be that hyperglycemia enhances nuclear factor-κB (NF-κB) activation which 

competes for Nrf2 stimulation via competitively binding to the same domain of CREB-binding 

protein (CBP), resulting in a primarily increased oxidative stress and inflammation in diabetic 

condition. To be specific, NF-κB is a family of transcription factor that respond to inflammation, 

cell proliferation and infections as well as redox sensitive factors. Persistent hyperglycemia 

significantly activated NF-κB and its downstream genes such as monocyte chemo-attractant 

protein-1 (MCP-1) in RPTCs, leading to macrophage infiltration, renal injury and increased 

microalbuminuria in DN [307, 308]. One of the most common subunits of NF-κB, p65, was 

demonstrated that competed with Nrf2 for a transcriptional co-activator CBP-p300 complex and 

subsequently inhibits the expression of Nrf2, resulting in activation of inflammation and kidney 

damage [309, 310].  

Interestingly, a ‘glycemic memory’ has been reported regarding of the oxidative stress in 

diabetic condition. In diabetes, the term ‘glycemic memory’, also named ‘hyperglycemia 

memory’, refers to the profound transcriptional changes by the epigenetics regulation even in 

transient hyperglycemia [311]. Hyperglycemia seems to be remembered in many organs such as 

the kidneys, eyes and heart. Even after correction of hyperglycemia, tissue damages are 

progressively exacerbated due to persistent epigenetic changes. This theory has been used to 

explain the persistent mitochondrial superoxide production induced by hyperglycemia [312]. In 
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human aortic endothelial cells, transient hyperglycemia is sufficient to induce long-lasting 

activation NF-κB subunit p65 and increase mitochondrial ROS production. The function of Nrf2 

might be partially suppressed by the NF-κB pathway, and not sufficient to lower down the 

mitochondria-generated ROS production, especially in long term diabetes. However, these 

hypotheses have not been tested [115]. 

Another possible explanation for the un-changed oxidative stress in Akita Nrf2 KO might 

be that oxidative stress is strongly associated with catalase and NADPH oxidase activity in diabetic 

condition. Consistent to other reports [313, 314], we observed a significantly reduced catalase 

activity and enhanced Nox4 expression in diabetic mice. Knockout of Nrf2 did not significantly 

change these parameters, indicating that Nrf2 might not be a strong mediator of these genes 

[144, 194]. Indeed, studies have shown that knockout of Nox4 in significantly decreased Nrf2 

expression. Moreover, Nox4-related H2O2 production controlled Keap 1 oxidation and mediated 

activation of Nrf2 in renal tubular cells [315]. These data suggested that Nox4 may mainly act in 

the upstream of Nrf2, a possible reason that we did not observe change of Nox4 expression in 

Nrf2 knockout and transgenic mice.  

Furthermore, we cannot exclude that in the progression of diabetic nephropathy, 

oxidative stress is rather overall consequence of metabolic disorders than the primary 

mechanism. Knockout or overexpression of Nrf2 may have a major impact on ROS. However, this 

impact was masked by other effects of Nrf2. For example, hyperglycemia and SBP were 

significantly decreased in Akita Nrf2 KO mice, which may release metabolic pressure, decreased 

AGEs and attenuated overall ROS. Similarly, overexpression of Nrf2 in Akita Nrf2-/- /Nrf2RPTC Tg 

mice was associated with higher serum glucose level, which may enhance overall ROS level.  

Hence, we propose that the level of oxidative stress in mice is an overall result of complex 

effect. Nrf2 possesses multiple functions rather than just an antioxidant factor and the role of 

Nrf2 in diseases is more complicated [316]. A microarray analysis identified 2561 transcripts and 

240 proteins that were differentially expressed in the kidneys of Nrf2 knockout mice, compared 

to WT controls [190]. Furthermore, in addition to the kidneys, Nrf2 also participates in the 

regulation of other organs such as the fat and liver, via FGF21 and peroxisome proliferator-
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activated receptor γ (PPARγ) pathways, respectively [183, 317]. Taken together, the role of Nrf2 

on ROS may vary from different disease models at different stages and further studies are clearly 

needed to elucidate.  

4.2 The activators and inhibitors of Nrf2 

As discussed in 1.3.2.1, chemicals that are electrophilic or reactive to thiol groups can 

induce covalent modifications of Keap 1 and disassociate it from Nrf2. As one of the most well-

known Nrf2 activators, BM and its analogs were used in clinical trials including BEAM and BEACON 

[211]. However, BM could not be used in animal studies because long-term administration of BM 

undergoes toxic metabolites in rodent animals [203, 318]. An activator of Nrf2, oltipraz, was 

reported that it could release Nrf2’s translocation into nucleus via interacting with the Keap 1 

[165]. Indeed, our previous and current studies have shown that oltipraz serves as an activator of 

Nrf2 both in vivo and in vitro [144, 193]. 

In contrast to Nrf2 activators, most Nrf2 inhibitors are not specific. For example, a class of 

nuclear receptors such as retinoic X receptor alpha (RXRa) were reported to repress Nrf2 

activation by binding to the Neh7 domain of Nrf2 and preventing its binding to ARE. Knockdown 

of RXRα increased ARE-driven genes by the Nrf2 activator tert-butylhydroquinone (tBHQ), while 

overexpression of RXRα decreased ARE-driven gene expression in HEK293 cells [157]. However, 

the nuclear receptors regulate multiple factors, which limit their specification as Nrf2 inhibitors. 

The second class of Nrf2 inhibitors are a variety of natural compounds, such as the quassinoid 

brusatol (extracted from Brucea javanica, a shrub was found in Sri Lanka, India and other 

countries), ascorbic acid and the coffee alkaloid trigonelline. One of the main concerns about 

these natural compounds is that the specific mechanisms of their inhibition on Nrf2 have not been 

conclusively demonstrated [319]. Some other chemical compounds have also been reported that 

can inhibit Nrf2 activation. For example, a first-in-class compound, ML385, was recently found by 

screening of a chemical library. It can block Nrf2 transcriptional activity via interacting with the 

DNA-binding domain of Nrf2 and preventing its binding to ARE. However, given the similarity of 

ARE and other DNA-binding site of bZip transcription factors such as the activator protein 1 (AP-
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1, binding consensus sequence: 5’-TGAG(C)TCA-3’), additional studies are needed to determine 

whether ML385 could be a selective Nrf2 inhibitor [319, 320].  

Our studies demonstrated that the coffee alkaloid trigonelline could significantly decrease 

expression of Nrf2. The underlying mechanisms by which trigonelline decreases Nrf2 protein 

levels in RPTCs of Akita mice were still not known. Van Raaij’s group found that incubation of 

trigonelline significantly decreased Nrf2 and NQO-1 protein expression in human proximal tubule 

cells [321]. Nazir’s s group has reported that in Human Dermal Fibroblasts (Hs68 cells) and Balb/C 

mice, treatment of Trigonelline significantly attenuated oxidative stress, restored cellular calcium 

homeostasis and prevented endoplasmic reticulum stress [322].  

Similarly, our group have found that trigonelline decreased oxidative stress and Nrf2 

expression in the kidneys of Akita mice. In IPRTCs, it prevented Nrf2 nuclear translocation and 

decreased Nrf2 promoter activity. These data suggest that trigonelline inhibited Nrf2 expression 

probably by lowering oxidative stress in diabetic RPTCs. These data are consistent with our 

previous report that trigonelline inhibited Nrf2 expression in WT mice [144, 193]. In human, 

inhibition of Nrf2 by trigonelline yielded positive results in overweight men with low toxicity. 

Administration of trigonelline to overweight men at least for 6 days, in a double-blind way, 

significantly reduced glucose and insulin concentrations at 15 min after the start of OGTT 

compared with placebo. This findings indicate that trigonelline might be one of the putative 

targets in the therapy of type 2 diabetes [323].  

4.3 The paradox of Nrf2 study in DN  

Bardoxolone methyl (BM) is one of most robust Nrf2 activators. The effect of BM on 

animals were not consistent. For example, administration of RTA 405, an analog of the BM, led to 

an increase of GFR, higher blood pressures, higher serum cholesterol levels, deteriorative 

proteinuria and glomerulosclerosis in a type II diabetic nephropathy animal model [206], But a 

variant of RTA 405, dh404, did not display beneficial effects on proteinuria, glomerulosclerosis, 

and interstitial inflammation in ZDF rats. Rather, kidneys from rats on dh404 showed the presence 

of a granulomatous and inflammatory process reminiscent of a pseudo-tumor. Followed Zoja’s 

study with RTA 405and dh404, Tan’s group treated the STZ-induced ApoE(−/−) diabetic mice with 
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dh404 at three dose: 3, 10, or 20 mg/kg in sesame oil by gavage. Results showed that dh404, at 

lower but not higher doses, significantly lessens oxidative stress, renal injury, diabetes-associated 

atherosclerosis with and proinflammatory markers. Higher dose of dh404 were associated with 

increased expression of proinflammatory mediators MCP-1 and NF-κB [204]. This finding was 

consistent with the BEAM clinical trial that administration CKD patients with type 2 diabetes with 

BM increased the GFR dose-dependently at the 25 mg and 75 mg group but not in 150 mg group 

[208]. Implied by Tan’s study, the mechanisms may be related to the increased expression of 

proinflammatory genes and production at higher drug doses. These works have been summarized 

in Hall’s review, which concluded that there may be a narrow therapeutic window associated with 

the use of BM in DN [206, 318]. 

As discussed in 1.3.7, multiple underlying mechanisms have been suggested to explain the 

failed BEACON clinical trial.  

First, an analysis indicated that BM treated patients have a clinically meaningful reduction 

in urine volume and sodium excretion at week 4 relative to baseline, which was similar to that 

observed with endothelin receptor antagonists in advanced CKD patients. This analysis suggested 

that BM may pharmacologically promote acute sodium and volume retention and increase blood 

pressure in patients with more advanced CKD via modifying endothelin signaling [210]. Further 

analysis showed that patients with BM treatment had an increase of the risk factor of blood brain 

natriuretic peptide (BNP), a cardiac hormone that serves as a chronic heart failure monitor [324]. 

Second, it has been suggested that the BM may upregulate the iRAS via stimulating renal Agt 

expression, which further increased hypertension and renal injury [144]. Last, it was reported that 

BM can downregulate megalin, a protein that involves in albumin reabsorption and subsequently 

result in enhanced ACR in BM treated patients [203]. However, it has been argued that the 

baseline characteristics of the population in BEACON clinical trial represent a somewhat 

‘healthier’ type 2 diabetes population with stage 4 CKD than seen in clinical practice. Therefore, 

the frequently observed laboratory abnormalities and co-morbidities in BEACON clinical trial may 

underestimate the function of BM in tested population [325].  
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Of note, there seems a lack of reports on Nrf2/NQO-1 expression related to these BEAM 

and BEACON clinical trial. It might be because that BM has been widely accepted and applied as 

a robust Nrf2 activator in a variety of studies. However, since BM is likely to yield off-target effect 

besides an Nrf2 activator, Nrf2 and other genes that relate to BM should be considered in further 

clinical trials. 

Overall, BEACON clinical trial has become a landmark in the study of Nrf2 in diabetes and 

diabetic complications. Criticisms have been risen from different aspects including rush to move 

forward with the Phase III trial, largely depending on animal data, ignoring negative reports of 

Nrf2 and the side effects of BM [326]. As clinical trials of BM and its analogs are still going, the 

role of Nrf2 and BM in diabetes need further studies urgently. 

4.4 The Nrf2/iRAS pathway  

Activation of iRAS is one of the most important pathways that contribute to the 

development of DN. Our previous study showed that overexpression of catalase in RPTCs curbed 

systemic hypertension, RPTC apoptosis, decreased oxidative stress and Nrf2-stimulation of 

angiotensinogen (Agt) gene expression in diabetic Akita Cat-Tg mice [144]. Furthermore, our 

recent work demonstrated that genetic deletion of Nrf2 or pharmacological inhibition of Nrf2 

attenuated hypertension, tubulointerstitial fibrosis, ACR and upregulated Ace2/MasR/Ang 1-7 

while downregulated of Agt/ACE/Ang II [193]. Our work has been highlighted by Shoemaker 

Ashley H in journal of ‘Science Translational Medicine’, which emphased that action of Nrf2 on 

iRAS could be important for the prevention of diabetes complications [327]. In chapter 3, we 

showed that overexpression of Nrf2 in renal proximal tubular cells on a Nrf2-null background 

(Akita Nrf2-/- /Nrf2RPTC Tg mice) significantly increased the Agt level, confirming the Nrf2’s role in 

upregulation of iRAS. However, the blood pressure was only slightly increased (3-5 mmHg) and 

not significant. This might be because Nrf2 deficiency is a global KO model and increase of Agt by 

Nrf2 in the proximal tubule is not sufficiently high enough to increase intrarenal Ang II and 

subsequent blood pressure [193].  

In addition, although we found decreased expression of SGLT2 in Akita Nrf2-/- mice and 

this decrease was restored in Akita Nrf2-/- /Nrf2RPTC Tg mice, we do not know whether SGLT2 could 
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directly cause augmentation of blood pressure and iRAS. We anticipated that sodium 

reabsorption might be promoted by the increased SGLT2, which could exert enhancing effect on 

blood pressure, but it will need further experiments to investigate.  

4.5 The Nrf2/SGLT2 pathway 

4.5.1 The paradox of Nrf2’s regulation in hyperglycemia 

As an antioxidant regulator, most of the studies about Nrf2 targeted on its function against 

oxidative stress. One point that seems to be often neglected is that in diabetic condition, global 

knockout of Nrf2 is associated with decreased blood glucose, enhanced insulin signaling, and 

decreased fat and body weight in Nrf2 knockout mouse models [178, 182, 183, 328]. Consistent 

with these reports, we also found that Nrf2 deficiency significantly downregulated blood glucose 

level in both type 1 (Akita Nrf2-/-) and type 2 diabetic model (db/db Nrf2-/-, chapter 5, unpublished 

data) compared to their controls, Akita and db/db mice, respectively [193].  

However, specific depletion of Nrf2 in pancreatic beta cell supressed the expression of 

cytoprotective antioxidant genes and exacerbated oxidative stress damage in pancreatic beta cell 

[329]. Moreover, upregulation of Nrf2 by Keap 1 knockout preserved beta cell function and 

decreased blood glucose in db/db mice at ICR background. Further studies showed that specific 

overexpression of Nrf2 by Keap 1 knockout in skeletal muscle seems to be responsible for 

amelioration of insulin sensitivity, while increase of Nrf2 specifically in liver can decrease the 

blood glucose level in an HFD-induced diabetic model on a C57BL/KsJ background. This study 

particularly mentioned the decreased blood glucose in global Nrf2 knockout mice, but the reasons 

were not known [179].  

4.5.2 The regulation of nrf2 on SGLT2 

The kidneys are responsible to filter and reabsorb glucose mainly by SGLT2. However, 

whether Nrf2 can interact with SGLT2 in the kidneys have never been studied. We first found that 

Nrf2 binding site presents in both human and mouse SGLT2 gene promoters and that Nrf2 

activator can increase SGLT2 expression in HK-2 cells. To understand whether overexpression of 

Nrf2 in RPTCs has a direct effect on SGLT2 expression, specifically in diabetic condition, we 
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crossbred RPTC-specific Nrf2 transgenic mice with Akita Nrf2 KO mice. Indeed, increase of Nrf2 

led to augment of SGLT2, accompanied by increased blood glucose level, tubulointerstitial fibrosis 

and renal injury in type 1 diabetic mouse model. Similarly, downregulated SGLT2 expression was 

observed in RPTCs of db/db Nrf2 KO mice, a type 2 diabetic mouse model. In BEACON clinical 

trials, however, although administration of BM significantly increased the blood pressure, ACR, 

heart failure and death, the blood glucose was not increased but rather slightly decreased 

(glucose baseline/change from baseline during the trial (mg/dL): Placebo: 156.4 ± 1.7/ 6.2 ± 1.4; 

BM: 155.5±1.7/ 4.1 ± 1.5; Hemoglobin A1c (%): Placebo: 7.1 ± 0.04/ -0.02 ± 0.03; BM: 7.15 ± 0.04/ 

-0.19 ± 0.04). We do not know how to explain this observation. One point that needs to address 

is that population in this trial received background conventional therapy including RAS inhibitors, 

insulin or other hypoglycemic agents [209]. In our study, administering Akita mice with Nrf2 

inhibitor, trigonelline, significantly decreased hyperglycemia and SGLT2 expression, indicating 

that trigonelline might affect hyperglycemia via Nrf2/SGLT2 pathway (unpublished data) [193]. 

Lastly, we did not observe significant decrease of SFLT2 expression and glucosuria in Nrf2-

/- (C57BL/6 background) or db/m Nrf2-/- (BKS background) in non-diabetic condition compared to 

WT and db/m, respectively. A few explanations might help us to understand this observation. 

First, most of the Nrf2 was degraded in non-diabetic condition. Therefore, its regulation on Sglt2 

is limited. Second, a slight decrease of SGLT2 would not cause glucosuria since the SGLT1 can 

compensate the effect of Sglt2. Lastly, Nrf2 may serve as an ‘enhancer’ of SGLT2 expression but 

not indispensable as SLGT2 is also regulated by other genes such as HIF-1α, HNF-1a and TGF-b1, 

as discussed in 1.4.3.  

4.5.3 The fluid regulation by Nrf2 and SGLT2 

It has been reported that Nrf2 participates in the fluid regulation. Hyperactivation of Nrf2 

in mice by knockout of Keap 1-null is juvenile lethal due to starvation, which is caused by the 

hyperkeratosis in the upper digestive tract and obstruction of oesophagus. Double knockout of 

Nrf2 and Keap 1-null rescued Keap 1-induced lethality [195]. Another study showed that deletion 

of oesophageal Nrf2 in Keap 1-null mice allowed survival until adulthood, whereas animals 

developed severe polyuria with low osmolality and bilateral hydronephrosis via reduced 
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aquaporin 2. Moreover, deletion of Keap 1 in renal tubules promoted nephrogenic diabetes 

insipidus features, confirming that Nrf2 activation in tubular cells causes a water reabsorption 

defect [196]. In the BEACON clinical trial, activation of Nrf2 on patients with BM treatment leads 

to a clinically meaningful reduction in urine volume and sodium excretion at week 4 relative to 

baseline, indicating that BM may pharmacologically promote acute sodium and volume retention 

and contribute to the increased blood pressure, heart failure and death [210].  

A recent clinical trial revealed that administration of SGLT2 inhibitor, dapagliflozin, on 

patients with T2DM who had or were at risk for atherosclerotic cardiovascular disease, 

significantly lower the rate of cardiovascular death or hospitalization for heart failure. These 

promising results are believed to be associated with the well-documented downstream effects of 

SGLT2i, such as natriuresis and blood-pressure reduction [330]. Indeed, increase of urinary 

sodium excretion and urine volume with SGLT2i treatment have been reported both in animal 

and human with diabetes [331]. The diuretic actions of SGLT2i presumably play an important role 

in the protection of patients from cardiovascular disease.  

 Since both increase of Nrf2 by BM and inhibition of SGLT2 appear to be associated with 

regulation of sodium and urine volume, we anticipated that Nrf2 might also interreact with SGLT2 

in fluid regulation at a post-translational level, or in an indirect way.  

4.6 The relation of RAS and SGLT2 

To date, although SGLT2 inhibitors were approved in the therapy of T2DM patients, their 

use for T1DM patients is not approved except in Japan and Europe due to the safety concerns 

such as the diabetic ketoacidosis (DKA) [332]. Combined use of SGLT2i with other therapies for 

T1D still lacks data. It has been already known that adding SGLT2 inhibitor on insulin therapy in 

T1DM patients achieved better glucose control without severe hypoglycemia or DKA [333]. 

However, use of SGLT2i as an add-on of RAS inhibitors in T1DM remains unclear. In chapter 3, our 

data showed that overexpression of Nrf2 in RPTCs both increased the SGLT2 and Agt level in T1DM 

mice model. In Dahl salt-sensitive (Dahl S) rats treated with streptozotocin (Dahl-STZ), 

combination therapy of SGLT2 inhibitor (luseogliflozin) and ACE inhibitor afforded greater 

renoprotection including reduction of blood pressure, blood glucose and renal injury, than 
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administration of either drug alone [334]. In T1DM patients, administration of empagliflozin 

increased both systemic and intrarenal RAS who were not on renin-angiotensin-aldosterone 

system (RAAS) blockers [246, 248, 249]. In contrast, our recent work found that despite reduction 

of blood glucose, GFR, oxidative stress and tubulointerstitial fibrosis, canagliflozin treatment did 

not lower SBP or renal Agt expression, as compared with insulin in Akita mice [246]. In surgery 

induced hypertensive Wistar rats, angiotensin II directly induced SGLT2 expression and activity 

via the AT1 receptor [335]. We are currently trying to understand whether Ang II could induce 

SGLT2 in diabetic condition. As shown in chapter 5.4, our unpublished data demonstrated that 

incubation of Ang II with HK2 cells can stimulate both Nrf2 and SGLT2 mRNA. In Ang II infused WT 

mice, together with our Agt-Tg mice, showed significant increase of SGLT2 expression and SBP. 

Furthermore, it is well established that Ang II is associated with increase of ROS level, which may 

further lead to the increase of Nrf2 and enhance SGLT2 expression. However, whether there is a 

positive feedback cycle between Nrf2 and Ang II with both increasing SGLT2 still needs further 

study to prove.  

Overall, our work suggested that activation of Nrf2 and iRAS in diabetic condition might 

further lead to augment of SGLT2 expression and contribute to DN progression.  

4.7 Nrf2 and non-diabetic kidney diseases 

Despite controversial data on DN, the role of Nrf2 in other types of kidney diseases has 

been well-established. For instance, acute kidney injury (AKI) induced by ischemic–reperfusion 

(IR) is often companied with increased oxidative stress, inflammation, followed by tubular 

atrophy and apoptosis [336]. Studies have reported that Nrf2 activators ameliorated the renal IR. 

Administration Nrf2 activator (sulforaphane) on rats with experimental IR significantly induced 

phase 2 enzymes expression, ameliorated histological abnormalities and decreased renal injury 

[337]. In mice, several downstream genes of Nrf2 were significantly upregulated in the kidneys of 

WT but not Nrf2 knockout mice with renal ischemia. Renal function, histology, inflammation and 

survival were also significantly exacerbated in Nrf2 knockout mice in IR model. Furthermore, Nrf2 

knockout mice were susceptible to cisplatin-induced nephrotoxicity and pre-treatment of 

antioxidant could blunt this toxicity [338]. Similarly, overexpression of Nrf2 by curcumin and BM, 
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reduced nephrotoxicity in AKI mice model induced by heavy metal [339, 340]. These data 

suggested the importance of Nrf2 as a potential therapeutic target in AKI [341]. 

In addition to AKI, Nrf2 have also been found to protect renal injury against non-diabetic 

induced CKD. Treatment of BM analog significantly ameliorated renal functions such as reduction 

of urinary protein, glomerular and tubulo-interstitial injury and reduced fibrosis in rats with 5/6 

nephrectomy surgery [205]. In rat UUO model, treatment of Nrf2 activator (sulforaphane) 

suppressed oxidative stress, inflammation, fibrosis and apoptosis via preserving mitochondrial 

function [342]. In lupus nephritis, oxidative stress and inflammation were considered as the core 

pathologies. Knockout of Nrf2 was associated with lupus-like autoimmune nephritis, possibly 

involving NF-κB pathway [343, 344]. Furthermore, treatment of BM reduced proteinuria, blood 

urea nitrogen, glomerulonephritis and lupus nephritis in an induced lupus mice model via 

Akt/Mek-1/2/NF-κB pathway [345]. Hence, it has been suggested that despite failure of the 

BEACON clinical trial in T2DM and stage 4 CKD, there still remains a possibility that Nrf2 might be 

one of therapeutic targets in managing CKD [346].   

4.8 Limitations of our studies 

4.8.1 Mouse models  

We studied the role of Nrf2 in DN mainly in the Akita mouse model. Although Akita mice 

is a widely used diabetic model, a primary limitation of this mouse model is that Akita female do 

not develop severe hyperglycemia [294]. Therefore, we do not know whether the Akita Nrf2-/- 

female mice would exhibit lower hypertension, hyperglycemia and decrease renal injury 

compared to female Akita mice. Another limitation of the Akita mouse model is the difficulties to 

mimic the exact human DN stage. For example, adult Akita mice exhibited higher blood pressure, 

GFR, modest levels of albuminuria and modest structural changes of increased mesangial matrix 

and basement membrane thickening [347]. In contrast, human patients with diabetic 

nephropathy develop slightly micro-albuminuria with hyperfiltration at stage 2, and this micro-

albuminuria further progresses to a modest level at stage 3 with a drop of GFR [80, 348]. Zhou’s 

group monitored the hearts form 12 weeks old Akita mice and found that type 1 diabetic Akita 
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mouse model is characterized by abnormal cardiac deformation during early stages of diabetic 

cardiomyopathy [349]. Similarly, Kitada’s group concluded that the Akita mice is a useful model 

of early to moderately advanced renal morphological changes in DN [350]. Hence, it indicates that 

the Akita mice at 20 weeks may be only mimicking stage 2 to 3 of DN in human patients.  

Db/db mice is a commonly used mouse model in the study of type 2 diabetes. Db/db mice 

on BKS background develop uncontrolled blood glucose level, severe depletion of insulin-

producing beta-cells of the pancreatic islets and peripheral diabetic complications. The stage of 

diabetes in db/db mice was previously categorized ‘pre-diabetic, early diabetic, late stage diabetic 

mice’ at ‘5 weeks, 10 weeks and 24 weeks old’, respectively, according to the proliferation and 

apoptosis of beta cells [351]. Our study showed that db/db mice exhibited increased blood 

glucose level, GFR, albuminuria and kidney hypertrophy but without significant blood pressure 

elevation, suggesting an early to moderately developed stage of DN. Furthermore, we studied 

that both male and female db/db Nrf2-/- mice. We found that deletion of Nrf2 attenuated 

hypertension, hyperglycemia and kidney morphology in both male and female mice without 

noticeable sex difference. 

  Another limitation of our study is that we have used Nrf2 general knockout model both 

in Akita and db/db mice. Although we provide in vitro data on Nrf2 silencer in iRPTC and HK-2 

cells, we cannot exclude that Nrf2 deficiency in other organs might affect kidney function in vivo. 

However, we have successfully generated Nrf2-Tg mice for our second study and crossbred Nrf2-

Tg mice with Akita Nrf2-/- mice, which allowed us to study the effect of overexpression of Nrf2 in 

RPTCs in diabetic condition. Furthermore, we are generating Akita-PaxNrf2KO mice, which 

specifically deleted Nrf2 in the renal tubules. Our pilot study revealed that expression of Nrf2 and 

SGLT2 were significantly decreased in Akita-PaxNrf2KO mice. Further studies are ongoing.  

4.8.2 Lack of studies at post-translational level  

Another limitation of our work is that we focused on the function of Nrf2 in DN at the 

transcriptional level. Nrf2 is regulated by a variety of pathways at the post-translational level. For 

instance, phosphorylation of Nrf2 at Ser-40 by activated PKC pathway in diabetes leads to the 

dislocation of Nrf2 from Keap 1 and contributes to the Nrf2 activation [352]. In addition to PKC, 
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multiple factors can lead to Nrf2 phosphorylation such as the mitogen-activated protein kinases 

(MAPKs), PKR-like endoplasmic reticulum kinase (PERK), phosphatidylinositol 3-kinase (PI3K), and 

glycogen synthase kinase-3 (GSK-3) [316, 353]. Furthermore, acetylation of Nrf2 in nucleus was 

crucial for the Nrf2’s binding to ARE, whereas deacetylation disassociated it from ARE and 

resulted in Nrf2 nuclear export [354]. Hence, understanding the regulation of Nrf2 at the post-

translational level is indispensable.  

4.9 Conclusions 

The main purpose of our study was to elucidate the Nrf2’s role inDN. Our findings 

documented genetic deletion of Nrf2 or pharmacological inhibition of Nrf2 in type 1 diabetic mice 

attenuated hypertension, tubulointerstitial fibrosis, urinary ACR and upregulated 

Ace2/MasR/Ang1-7 while downregulated Agt/ACE/Ang II. Our study identified a novel 

mechanism, Nrf2-mediated stimulation of intrarenal RAS gene expression in hyperglycemia 

contributes to the hypertension and renal injury in diabetes.  

Moreover, we found that Nrf2 overexpression in RPTCs increased blood glucose, 

glomerular filtration rate, urinary ACR, tubulointerstitial fibrosis, stimulated Agt and SGLT2 

expression but without the significant ROS change in Akita Nrf2-/-/Nrf2RPTC Tg mice. In human, 

diabetic kidneys exhibited enhanced oxidative stress with higher expression of NRF2 and SGLT2 

expression in RPTCs. Furthermore, the glucose-lowering effect of Nrf2 deletion also exhibited 

both in male and female db/db mice with SGLT2 downregulation. These results suggested that 

Nrf2 mediates hyperglycemia-stimulation SGLT2 expression and exacerbates blood glucose and 

kidney injury in diabetic kidney.  

Overall, our work documented that hyperglycemia induced Nrf2 activation stimulated 

iRAS and SGLT2 expression, further contributing to the DN progression (Figure 23), suggesting 

that Nrf2 might be a potential therapeutic target in the treatment of diabetic nephropathy.  
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Figure 23. –  Diagram of the role of Nrf2 in diabetic nephropathy.   
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5.1 Studies in db/db Nrf2-/- mice 

5.1.1 Establishment of db/db Nrf2-/- mice. 

T2DM accounts for 90% of the diabetes that associated with hyperglycemia, insulin 

resistance, and insulin insufficiency. To better understand the role of Nrf2 in diabetic 

nephropathy, we crossbred and studied db/db Nrf2-/- on BKS background. Due to the background 

of Nrf2-/- mice (C57BL/6 background), db/m mice in BKS background were back crossed with Nrf2-

/- to obtain the db/db Nrf2-/- mice on BKS background for several generation. Both male and 

female mice were monitored from week 12 to 16 and sacrificed at week 16. As shown in Figure 

24, Nrf2, NQO-1 and SGLT2 mRNA were much elevated at week 16 in db/db mice compared to 

db/m.  

 

 

Figure 24. –  Nrf2 (a.), NQO-1 (b.) and Sglt2 (c.) mRNA expression in male db/m and db/m at week 12, 
16, and 20 in male mice. Statistics were done by unpaired t-test between each two groups.   

  

a. b. c. 

db/m db/db db/m db/db db/m db/db 
0

1

2

3

4

 12Week  20 16

ns * ns

Nr
f2

/ b
-a

ct
in

 m
R

N
A 

ra
tio

(F
ol

d 
of

 c
ha

ng
e)

db/m db/db db/m db/db db/m db/db
0

2

4

6

 12Week  20 16

* * ns

Sg
lt2

/ b
-a

ct
in

 m
R

N
A 

ra
tio

(F
ol

d 
of

 c
ha

ng
e)

db/m db/db db/m db/db db/m db/db
0

1

2

3

4

 12Week  20 16

ns ns*

N
Q

O
-1

/ b
-a

ct
in

 m
R

N
A

 r
at

io
(F

ol
d 

of
 c

ha
ng

e)



189 

5.1.2 Physiological measurements  

 Physiological measurements of db/m, db/m Nrf2-/-, db/db and db/db Nrf2-/- at 
16 weeks (male) 

 
db/m db/m Nrf2-/- db/db db/db Nrf2-/- 

Fasting blood glucose  
(FBG, mM) 8,78±0,36 9,31±0,64 27,96±0,38*** 19,81±1,42***### 

Systolic blood pressure  
(SBP, mmHg) 120,7.0±2,20 109,1±1.49** 122,6±3,26 110,4±2,67*## 

Body weight (BW, g) 29,95±1,12 32,41±1,05 54,76±1,57*** 55,04±2,39*** 

Kidney weight (KW, mg) 358,5±18,81 357,7±9,37 498,8±19,24*** 393,9±17,13***### 

KW/TL (mg/mm) 16,14±0.59 15,86±0,37 23,66±0,66*** 17,93±0.86***### 

HW/TL (mg/mm) 5,85±0.12 5,51±0.15 6,22±0.18 5,65±0.15 

Fat/BW (mg/mg) 0,23±0.02 0,21±0.01 0,58±0.01*** 0,55±0.02*** 

Muscle/BW (mg/mg) 0,65±0.02 0,67±0.01 0,34±0,02*** 0,35±0.01*** 

Total water/BW (mg/mg) 0,53±0.0 0,52±0.02 0,26±0,02*** 0,29±0,01*** 

GFR/BW (ml/min/g) 9,61±0,59 9,11±0,56 16,24±2,37* 10,19±1,09# 

ACR (µg/mg) 89.97±0.59 64,93±12,41 418,3±54,64*** 261,3±38,67*# 

 

 
 
 

 

 

  

SBP was measured by BP-2000 tail-cuff; Fat/BW, muscle/BW and total water/BW were measured by EchoMRI. FBG, SBP, 
BW, KW, KW/TL, HW/TL n=9-12; Fat/BW, Muscle/BW, Total water/BW, GFR/BW and ACR n=6-9. Statistical analysis was 

done by one-way ANOVA. *p < 0.05, **p <0.01, ***p < 0.001 vs db/m; 
#
p < 0.05, 

# # 
p < 0.01, 

# # # 
p < 0.001 vs db/db.  
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Table 3 and table 4 showed the results of physiological measurements in db/m, db/m 

Nrf2-/-, db/db and db/db Nrf2-/- mice at the age of 16 weeks in male and female, respectively. As 

expected, fasting blood glucose (FBG), kidney weight/body weight (KW/BW), kidney weight/tibia 

length (KW/TL) and albumin/creatinine ratio (ACR) were significantly higher in db/db and db/db 

Nrf2-/- mice than in db/m or db/m Nrf2-/- mice, respectively. Deletion of Nrf2 in diabetic condition 

(but not in non-diabetic condition) significantly lowered the FBG, KW/BW and KW/TL while 

increased the insulin sensitivities (Figure 25) both in male and female mice. Although there were 

not obvious changes of SBP between db/m and db/db, mutation of Nrf2 significantly decreased 

 Physiological measurements of db/m, db/m Nrf2-/-, db/db and db/db 
Nrf2-/- at 16 weeks (female) 

 db/m  db/m Nrf2-/-  db/db db/db Nrf2-/- 

Fasting blood glucose (BG, 
mM) 7,97±0,46 7,80±0,36 29,95±1,11*** 19,97±1,33***###  

Systolic blood pressure 
(SBP, mmHg) 119.0±1,28 110,3±1.94

**
 125,9±1,74 112,4±1,84###  

Body weight (BW, g) 24,01±0,39 25,24±0,72
***

 54,92±2,14*** 54,58±1,70***  

Kidney weight (KW, mg)  236,2±9.31 231,2±17,41 426,0±26,1*** 345,1±8,28**# 

KW/TL (mg/mm) 11,17±0.44 10,33±0.54 20,71±1,14*** 16,83±0.44***# 

HW/TL (mg/mm) 4,62±0.20 4,41±0.20 6,11±0.16*** 5,56±0.14** 

Fat/BW (mg/mg)  0,27±0.01 0,27±0.03 0,60±0.01*** 0,60±0.02***  

Muscle/BW (mg/mg) 0,62±0.01 0,61±0.02 0,31±0,01*** 0,32±0.01*** 

Total water /BW (mg/mg) 0,49±0.03 0,49±0.02 0,26±0,01*** 0,25±0,01*** 

GFR/BW (ml/min/g) 7,59±1,37 7,67±0,44 13,94±0,91* 9,12±1,22# 

ACR (µg/mg) 44,56±4,41 61,86±9,10 360,9±55,51*** 237,4±35,9*# 

SBP was measured by BP-2000 tail-cuff; Fat/BW, muscle/BW and total water/BW were measured by EchoMRI. FBG, SBP, 
BW, KW, KW/TL, HW/TL n=9-12; Fat/BW, Muscle/BW, Total water/BW, GFR/BW and ACR n=6-9. FBG: Fasting blood 
glucose; KW/BW: kidney weight/tibia length; KW/BW: kidney weight/body weight; ACR: Albumin/creatinine ratio. 

Statistical analysis was done by one-way ANOVA. *p < 0.05, **p <0.01, ***p < 0.001 vs db/m; 
#
p < 0.05, 

# # 
p < 0.01, 

# # # 
p 

< 0.001 vs db/db.  
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SBP level in both male and female mice. Moreover, deletion of Nrf2 in diabetic condition also 

attenuated the GFR compared to db/db control in both male and female mice.  

In addition, BW and Fat/BW were significantly increased in db/db and db/db Nrf2-/- mice 

compared to respective db/m or db/m Nrf2-/- mice, whereas the Muscle/BW and Total water/BW 

were significantly decreased. Although previous report showed that Nrf2 was associated with BW 

and fat accumulation in obesity model [183], loss of Nrf2 in db/db mice did not change these 

parameters in both male and female mice. Lastly, the HW/TL exhibited a trend of increase in 

db/db mice compared to db/m and deletion of Nrf2 in diabetic condition slightly attenuated the 

HW/TL level without statistically differences. Taken together, these results indicated that 

knockout of Nrf2 in db/db mice, a type 2 diabetic model, ameliorated hyperglycemia and 

hyperglycemia-induced kidney dysfunction both in male and female mice. 

 
 

 
 
 
 
 
 
 
 

Figure 25. –   Insulin tolerance test (ITT) in db/m, db/m Nrf2-/-, db/db and db/db Nrf2-/- mice in male 
(a) and female (b) mice. Briefly, ITT were performed at fasting status (6 hours). Insulin was given 
according to mice body weight by intraperitoneal injection. Blood glucose levels were measured at 0, 
15, 30, 60 and 120 min after insulin injection. Statistical analysis was done by one-way ANOVA (***p < 
0.001 vs db/m; 

# # # 
p < 0.001 vs db/db). 
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5.1.3 Histology of db/m, db/m Nrf2-/-, db/db and db/db Nrf2-/- 

The kidneys of db/db mice exhibited structural damage. As shown in Figure 26, tubular 

luminal dilatation with cell debris, proximal tubule cell atrophy and increased extracellular matrix 

proteins in glomeruli appeared both in male and female db/db mice compared to db/m mice. 

There were no noticeable changes between db/m and db/m Nrf2-/-, whereas deletion of Nrf2 in 

diabetic condition ameliorated these abnormalities and protected kidney structures. 

 

Figure 26. –  PAS staining of db/m, db/m Nrf2-/-, db/db and db/db Nrf2-/- mice in male (upper panel) and 
female (lower panel) mice (100x). Arrows indicate the structural changes in glomerulus or proximal 
tubules in db/db and db/db Nrf2-/- mice both in male and female mice.  

5.1.4 Effect of Nrf2 deletion on SGLT2 expression 

As shown in Figure 27a, immunostaining revealed significantly higher SGLT2 expression in 

RPTCs from db/db mice, whereas knockout of Nrf2 exhibited significantly lower expression of 

SGLT2 in both male and female mice. These changes were consistent with SGLT2 mRNA 

expressions in isolated RPTCs (Figure 27b & c) that deletion of Nrf2 in diabetic condition (but not 

in non-diabetic condition) decreased the expression of SGLT2.   

 
 
 
 
 

Female  

db/m  db/m Nrf2-/- db/db Male  db/db Nrf2-/- 
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Figure 27. –  SGLT2 expression in db/m, db/m Nrf2-/-, db/db and db/db Nrf2-/- mice in male and female 
mice. (a) SGLT2 IF staining in male (upper panel) and female (lower panel) (100X); b) SGLT2 mRNA 
expression in male (b) and female mice (c). Statistical analysis was done by one-way ANOVA (*p < 0.05, 

**p <0.01).   

 

Taken together, our data demonstrated that in db/db mice, a type 2 diabetic model, Nrf2 

deficiency attenuated hyperglycemia, systolic blood pressure and kidney injury, at least in part, 

via down-regulation of SGLT2 expression. These results further confirmed that beyond type 1 

diabetic mice model, the novel relation of Nrf2 and SGLT2 also exists in type 2 diabetic condition. 

Furthermore, to mimic the failed clinical trial, we plan to administrate dh404 (analog of 

BM) with db/db mice and db/db Nrf2-/- mice. We expected to observe that dh404 could increase 

systolic blood pressure, blood glucose as well as Agt and SGLT22 expression in db/db mice and 

knockout of Nrf2 would reverse this effect.  
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5.2 SGLT2 promoter analysis 

Nrf2 binding site has been previously reported [355]. As shown in Figure 28, the sequence 

TGACnnnGC exhibits high frequencies of Nrf2 binding.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28. –  The nucleotide profile of Nrf2-responsive element. The position Frequency Matrix (PFM) is 
created by counting the occurrences of each nucleotides at each position and indicates the frequency and 
importance of each nucleotide in specific position. The sequence TGACnnnGC exhibits high frequencies of 
Nrf2 binding [355]. 

 

 As shown in a) & b), we have previously found the presence Nrf2 putative binding sites 

in both human (N-1316 to N-1305) and mouse SGLT2 promoter (N-1527 to N-1516). Additionally, 

putative binding sites of various transcription factors such as HNF1α, HNF4α, Smad2/3, SP1 and 

hnRNP F were identified both in hSGLT2 and mSGLT2 promoter. Although relation of SGLT2 with 

HNF1α, HNF4α, Smad2/3 and SP1 have been previously reported, Nrf2-RE and hnRNP F-RE have 

never been studied [356-359]. 
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a) hSGLT2 promoter (NG_012892.1) 
-1986 GTCTGTAACACACACGTGTCCTCTGACACTTGGCACTGGATTTCTCTCAGGCACTTTAAACTCATCACCCTCTGAAGCAGACACTGTGGGTGCCCCACCC 
            SMAD2/3       
sp1/hnRNP F 
-1886 ATATACCTGCATGGCCCACCTTGGAAGTCATATACTGTGACAGTTTCCAGATACCCTGACTTGCAGCTCCTTCTGGAGTTTCTTGTCTGAGGCTGTTCTT 
   SP1                           SMAD2/3 
-1786 GGGAGGAGGGAGTGTGCTCCGTGTTCTCAGCAGGCCTGAAGTGTGTGGACATTTCTGCAGCTTTTAGCCAGTGACAGACACAAATCAGGGAATAGATACC 
              SMAD2/3 
-1686 CCAACCACCTGGCCCCTCAAGGAACATTGCTATGGGGTGTTCTTCACAGTGTCTCAGAGTGTCCTTTTTGGGATGAGGCTCCAACTGCTCTTTGTGGTAA                         
      SP1/hnRNP F.                hnRNP F          HNF4α 
-1586 CCTGACAAATGACACACCCTTACGCCAGGCGTGGTGGCTCACACCTGTAATCCCAGCACTTCGGGAGGCTGAGGCAGTTTGGCTCAGGATTTTGAGACCA 
       SP1       SP1 
-1486 GCCTGGGCAACACAGTGAAACCCCATCTGTATAAAAAATACAAAAATTAGCCAAGTGTTGTGGCGTGCCCGTAGTTCCAGCTATTTGGGAAGCTGAGGTG 

-1386 GGAGGATCCCTTGAGCCCAGGAGGTCGAGGCTGCAGTGAGCTGTGATCACACCACTGTACTCCAGCTTTGGTGACACAGCAAGACCCTGTCTCAAAACAA 
          Nrf2-RE(N-1316 to N-1305)       
SMAD2/3 
-1286 AGAAACACATGCTTTGTTGGTTTTTCTCCTTGTTTCATTTCTCTTCCCTACACCATCACAGTCCATACTGGAATCACCTCCTCAGGAAAGTCGTTGCACA 
             SP1   HNF4α 
-1186 CAAATTCTCATCTCAGGGTCTCCTTTTAGAGGAATACAAGCTAAGGAACTCCTTCATCCAAACTCTGTCATATTACACTCAAAGCATTTTTCTCTGTTCC 

-1086 CCATCTCCGGGATGACCATCGCTGCCATAATCAGGCAGGACTTTCCTTCGACTGTCTCCTGACATCCAAGTCTGGTCAATTCTTCTAGAAAGGTAGACAT 
         SMAD2/3         SMAD2/3 
-986 ACAGATATTAACCAGCCTCTCCCTTCTTGAATCCAGTCCTGTGCTGAGAAATGAGACTCCAGGGATGAATCAGATCAGTCCTGCTCTTTTTAATTTTTAT 
  HNF1α       SMAD2/3 
-886 TTATTTATTTTTTAAGAGATGAGGTCTCACTCCGCTGCCCAGGCTGGTTTCAAACTCCTGAGCTCAAGTGAGCCTCCTGCTGCAGCCTCCCAAAGTGCTA 
              SP1 
-786 GGATTACAGGCATGAGCCCCCACACCCAGCCAGTCCTACTCTTGAGGAGACACTAGTTTGTTGGGAAGACAGACCTGGACCCAGGCAAGGGCCACACAGT 
                  SP1/hnRNP F                  SMAD2/3            SMAD2/3 
-686 GTGCTCAGAACTACATCAGAAATGTCAGAGAAGTCTTTCTTGAAGAGGCGACACAGGCTGGGTACTGAAAGCTGAGTAGGAGTTGGCCATTTGGGAGACA 

-586 GGGAAGTGCTCTAAACAGAAGACACAGTTTGTGCAAGGATTTGGTGGGGATAAAATATCTGGTCAAAAAAAGCAAAAAGCAAAAATCTGGGCTGGGTAGG 
       SMAD2/3       SP1 
-486 TTAAAGGAGTGGGAAAGGATTTCTGATTTCCTCTAGATTTGGTTTGGAGAAGCAGGGGGAAGGATGAGCGGGAATTGGGGCATGACCAGGATTGGAAATC 
                                                          SP1/hnRNP F 
-386 AGGCTGAAGAGCTTGTACTAAGAGCTATGGAGGGTTCCTGAGGAGGGCGAGTGACCCTGTCAGACTTGGATTTGAAAATGATTCCTCTGGATTAGTTAAA
          SP1    SP1            SMAD2/3 
-286 TCCAGGGGTGCTAGCTTAGCTAAGGAAGCGATGCATTTTTAGGGAGTAAAAGAGTGATTTTGAGCCTGGAGCACAGGGGAGAGGGCGGATGCTAAGGCCC 
                                                                                 hnRNP F 
-186 AGGAAAGAGTGCTCTTGAACTTGGAAGGGCCCAGCTCCCCAAGACCAGCCTTCAGCCTTGATATGACCTGATTCAGCTAAACAAAGCTGGGGAGCGGGAA 

-86 TGAGACCTGGGGGACTTGTCGGCTCAGTGCCCCTGAGGTAACCATTAATCCTTCCCCTGGGGGAATCCAGGGGCTGGTTCCTGGATGGGGCAGATCCTGG 
  SP1    HNF1α 
+15 GGAGAATGAGATCT  
             Bgl11 
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b) mSGLT2 promoter (AJ292928.1) 
-1952 GGACATCACATGGTACCAAACAAAAGACCCAGTACCAGGAATGAGTTACCATCTTATGAAGTCATTAACCATAGAGAGCTAATGGTAGCCTCAATCATAC 
       KPN1      HNF1α 
-1854 AAAAGCTGTTGCCAAGGTTACTGGGTGCTCTCATACCCTGATGGTAAGACCCTATGGCTGAAGATGGAACTTATTGATATCCTTGAACATTGAGAAATTG 
 
-1754 AGCTGTGTGACTAGAAGCTTCACCCCATCGACGATGGTCACAGTGCTGCAAAGTGCTATGTTCAGGAGGAAGGTATCCAGCCGCCTCCCTCAGCCACACT 
                
-1654 CTGAGACTCACACCAGAGACCTGCTCAAAGGGCATGCCCACTGGCCCACAAATATTATGGGAGCAACTGACCACTTTTTGGGGGTGTATTTAAGGTCCAC 
     HNF4α 
-1554 TTCATGAAATGGGACCCATCCCTGACACTGCTAAAATGCCTGAGAACCTGAAACTAGATAGAGCAAGGGCTCTAGGGGAAAGCTCACTCCAGTTATTCTA 
     Nrf2-RE (N-1527 to N-1516)               HNF4α 
-1454 AGGGCACAGGGTTATGACGCCTAATGACATATCGCTGGCTACATCCCTTGGCCAGCACATCACTGAAACCTCACCAGAGGAGCTTCTTGGAGTAGAAGGT 
 
-1354 GATTAACAGAACTGTCCGTGACTGGATGACTTGCAGAGAGTGAGAGACTTGGGAGCACTCAGACTTCAATGGGATGCTTGTATCTCACCCCTCTGCTAAA 
            Smad2/3 
-1254 GATGCAGGTTCTATACAGGAGGTGCAAAGATTGTAAGAGTCAGAGTTGGAGGTTGTCTTCAGGAAAGCAGAGTTTTGCAGACACAACAAAGCTGATGAAA 
         HNF4α          Smad2/3 
-1154 ATCTGAACTCACAGACAGTGATAGCATGCACAAGACAGATATCTGAACTCACAGACCGTGATAACATGGCACAAAGACCTGCACAAAGTTCGAACCAAAT 
       Smad2/3           Smad2/3  Smad2/3 
-1054 AAAATCTGAGCATGGAAAATGAGGTGTGGGCACAAAGTCCCACTCCTAAGTAAGAAACTACTTGCAGTTGACAGCTACTAGGAGAGAGAAATGGGTTTTC 
  
-954  TTCAATGGAGAGACACTGGGTGTATCAACTGCACCCCAAGGCAGGCCACACGCTCAGGAAGAGTTGGCCAACACAAAACACACTCCGTGTTTGGTTTTCT 
 Smad2/3           
-854  GTTTGCTTGGGTTTGTTTTTGTGCTTTTATTCTTCCTTCCTTTCTTTCTTTGTTTCTTTGTTTCTCTCTCTCTTTCTCTCTTTTTCTCTCTCCCTCCTCC 
 
-754  TCTTCTTCTTTCTTCTTTTTCTTCTTCTTCTTCTTCTTCTTCTTTTTCTTCTTCTTCTTCTTCTTTTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCT 
 
-654  TCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTGATCAGAGAGGGGAGGGGATCTGGGAAAAGTTTGGGGAGAGGAAAGAATTTGCCC 
 
-554  AAAATATATTGCATAAAAACTTTTTAAAAATAAATTTAAAACAATTTTTAGGATAGAGCAAAGAGAAAGTAGAAAATATTTGGGTTGGGAAGGGCAGGAG 
 
-454  AATGAGGGAAATGTGATTTTTTTCTCCCTAGGTTTTGTATGGCAGAAGTCAGGGCATGGCATGCGTGACAGTCAGGCTGAGGAACATGTATGTCCTGCTG 
        SP1 
-354  ACTGTCAGGGGGTGCTATGGAGGACTTGTGCGGAGGACACTGTCAGAGTTGGATTCGGACCTTCCTAATCAAAGTTAGAGGGTGTATTTTCAGAGAACGC  
      SP1 
-254  AGGAAGGAACTTTGCTTGGAACACTGGGTATAGGATGGATCCTAAACCCAGGAAGGAGTGCTCTTGAATTCCAAATGGTCCAGCGCCCCAGGACCAGCCT  
 
-154  TCGGCCTTGATAGATCCTGATTCAGATAAATAAAGCTGGAGAAGGAGGCTGAGACCTGGGGGACTTGTCGGGTCAGTGCTCCTGAGGTAACCATTAATCC  
           SP1            HNF1α 
-54   TTCCCCCAGGGGAATCCAGGGACTAGCCCCTTGAGGGACAGATGGTGGAGAGAATGGAGCAACACGTAGAGGCAGGCTCTGAACTTGGGGAGCAGAAGGT  
           +1TSS  
+54   CCTGATTGATAATCCTGCTGACATTCTGGTTATCGCTGCCTATTTCCTGCTGGTCATTGGTGTTGGCTTGTGGGTGAGACATTGAGGGGGGTTGGATAGG  
 
+154  GAAATGCTTCTGGGGCTTGAGGGTAAAGATTTAGGGAGACCTCAGAGAGGAGTGGGAGAAAAGGGTGCTTGGATATAATGAGGGAGAAACCTAGATTTAG  
 
+254  TAGGCAAGCCAATTTTAATTCTTTGTCTTCGTACCTTCTGGATTGTGCAAAAGAGACTGGGGGTATCAATAGGTTTTTTTTTAATTCAAGTGTTCTAACA  
           
+354  AGTGCTCTAAGAGATGTATCAGTTCCCACGTCTGTATTATGGCTGAGCAGCAGCCTATATTTAAGGTCACCAGGCAAGTTAGGCTGAATCTAGGCATATC  
 
+454  TAGGTTCCAGTAGTTGCGCTAGGATTAGGGCCTGGGTTGTTCTGAGTGTCGGGGAAGGTTGGGGGTAAGGAGGTGCAGTCTGGGGAGTCCAGGGCTGGTT 
 
+544  AATCTTCAGCCTGAAACAAGGCTGAGGAATGTGTTGAGGAAGCTAAGGAAGTCCAAAGATGTGCCCCAATCCCAGTTTCCCCCCACTTCTGTTTCCCAGT  
 
+684  CTATGTTCAGAACCAATAGAGGCACAGTTGGTG  
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5.3 Effect of Ang II on Sglt2 expression in vivo and in vitro 

As discussed in 4.5, SGLT2 inhibitors have been considered as combination therapy with 

RAAS inhibitors. Currently, we are investigating the interaction of iRAS and SGLT2 in diabetic 

condition. It has been well-acknowledged that Ang II contributes to the development of DN and 

administration of angiotensin II receptor blocker (ARBs) is one of the major approaches in the 

treatment of DN. Losartan is one of ARBs that used to treat high blood pressure, cardiovascular 

disease and diabetic nephropathy [360]. In HK2 cell, losartan could attenuate the Ang II-induced 

necroptosis, inflammation and oxidative stress [361, 362]. As shown in Figure 29, our preliminary 

data showed that Ang II can stimulate SGLT2 expression from the concentration of 10-13 to 10-7 M 

dose-dependently and then markedly decrease at 10-5 M. The stimulatory effect of Ang II at 10-7 

M was attenuated by 10-6 M of losartan, indicating the effect of upregulation of SGLT2 gene in 

HK2 cells is Ang II-dependent. 

 

 

 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29. –  Ang II stimulates SGLT2 expression. a) SGLT2 mRNA expression when exposed to 
Ang II 24 hrs in HK2 cells; b & c) SGLT2 protein expression and quantification by IF staining in 
Wt, Agt-Tg and Agt-Tg + L/P (L/P: losartan 30 mg· kg−1·day−1 plus perindopril mg·kg−1·day−1). 
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Red: SGLT2; green: LTL; yellow: combined SGLT2 and LTL; Arrows indicate merged staining in 
each group. Statistical analysis was done by one-way ANOVA (***p < 0.001).   

 

Furthermore, we previously demonstrated that in Agt transgenic (Agt-Tg) mice, 

specifically overexpression of rAgt in RPTC leads to hypertension, albuminuria and renal injury, 

which was accompanied with increased level of Ang II [363, 364]. As shown in Figure 29b, we 

observed elevated SGLT2 expression in Agt-Tg mice and treatment of RAS blockers attenuated 

the enhancement of SGLT2. We are currently administrating Ang II in mice investigate the effect 

of Ang II on SGLT2 in vivo.   

  



199 

 

5.4 Generation of Pax8-Nrf2 KO mice 

To further study the role of tubular Nrf2 in DN, we are generating Pax8 Nrf2 KO mice line. 

Pax8 is a transcriptional factor that expresses in brain, thyroid gland and kidney [365]. Pax8-Cre 

mice were crossbred with Nrf2 lox/lox to generate the Pax8 Nrf2 KO mice based on the Cre-loxP 

recombination system (Figure 30a). As shown in Figure 30b, Nrf2 expression was much decreased 

in renal tubule cells but not in glomeruli. Compared to Ctrl, Nrf2 mRNA level was dramatically 

decreased in the isolated proximal tubule cells of Pax8 Nrf2 KO mice but not in brain and thyroid 

gland, indicating Nrf2 is successfully and mainly disrupted in renal tubule cells in this mice model.    

 

Figure 30. –  Establishment of Pax8-Nrf2 KO mice line. a) Genotyping of the Ctrl (control: 
lox/lox) and KO (Pax-Nrf2 KO: lox/lox-cre); b) Nrf2 IHC staining of Ctrl and KO, 600X; Yellow arrows 
show the Nrf2 positively/negative-stained cells in control and KO mice. c) Nrf2 mRNA expression in 
brain, thyroid gland and PTC (proximal tubule cell). Statistical analysis was done by unpaired t-test. 
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5.5 Future experiments 

5.5.1 Generation of Akita Pax8 Nrf2 KO mice 

We are currently crossbreeding Pax8 Nrf2 KO mice with Akita to generate Akita Pax8-Nrf2 

KO mice. We will follow the mice from 12 to 20 weeks of age.  General appearance, body weight, 

glycaemia and blood pressure would be measured every two weeks. Before euthanizing, GFR 

would be measured. 24 hours urine, food and water consumption, the kidneys and heart would 

be collected for following studies such as urinary ACR measurement, mRNA and western blotting. 

We anticipated that compared to Akita lox/lox, Akita Pax8-Nrf2 KO would exhibit decreased 

hyperglycemia, hypertension and kidney injury. Moreover, we will measure urine parameters, 

such as urine volume, sodium and potassium level. Furthermore, gene expression related to 

phenotypes would be studied. We believe that his study would provide more detailed 

perspectives of Nrf2 in renal tubules in diabetic condition.  

5.5.2 Generation of db/db Nrf2-/-/Nrf2RPTC Tg Mice 

  To study the impact of overexpression of Nrf2 in type 2 diabetes (db/db model), we will 

generate the db/db Nrf2-/-/Nrf2RPTC Tg mice on BKS background. Nrf2-/-/RPTC Tg mice (on C57BLK/6 

background) would be back crossed for 8-9 generations with db/m Nrf2-/- (on BKS strain 

background) to obtain db/db Nrf2-/-/Nrf2RPTC Tg mice on BKS background. Both male and female 

mice would be followed from week 12 to week 16. Body weight, blood glucose and blood pressure 

would be measured every two weeks. Similar to previous studies, GFR would be measured at 

week 16 and urine, kidneys and heart would be collected for following studies. We anticipated 

that increase of Nrf2 in RPTCs would increase SGLT2 and Agt expression and lead to higher blood 

pressure, hyperglycemia and kidney injury. This work would provide further evidence for Nrf2’s 

role in type 2 diabetes induced DN.  
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5.6 Other publications 
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