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RÉSUMÉ 

Les antipsychotiques sont administrés chroniquement pour prévenir de nouveaux épisodes 

psychotiques dans la schizophrénie. Ces médicaments diminuent l’activité des récepteurs 

dopaminergiques de type 2. Diminuer chroniquement la transmission dopaminergique induit des 

compensations pouvant mener à une sensibilisation du système dopaminergique. Cette 

sensibilisation pourrait diminuer l’efficacité des antipsychotiques et exacerber la psychose. Chez 

le rat, la sensibilisation dopaminergique induite par les antipsychotiques augmente les effets 

psychomoteurs et motivationnels des agonistes dopaminergiques.  

Le premier objectif de la présente thèse était de caractériser les substrats neuronaux régulant 

l’expression de la sensibilisation dopaminergique évoquée par les antipsychotiques. Ceci est 

important afin d’améliorer le traitement à long terme de la schizophrénie. Pour ce faire, des rats 

ont reçu un traitement cliniquement pertinent à l’antipsychotique halopéridol. Ce traitement 

sensibilise aux effets psychomoteurs de l’agoniste dopaminergique d-amphétamine. Cet indice 

comportemental de sensibilisation dopaminergique a été utilisé pour déterminer les contributions 

spécifiques du système dopaminergique et l’implication des effets centraux de la d-amphétamine. 

Puisqu’il y a une relation étroite entre le stress et l’activité dopaminergique, les réponses liées au 

stress ont également été mesurées. Ceci est important, puisque le stress exacerbe la psychose. La 

présente thèse démontre que les récepteurs dopaminergiques régulent de manière distincte la 

sensibilisation dopaminergique. En effet, la transmission via les récepteurs de type 2 exacerbe cette 

sensibilisation, alors que la transmission via les récepteurs de type 1 la tempère. Également, la 

présente thèse suggère que des processus périphériques sont nécessaires à l’expression de la 

sensibilisation dopaminergique. De plus, la sensibilisation pourrait augmenter les réponses au 

stress. En effet, cette sensibilisation est renversée lorsque la synthèse de l’hormone de stress 

corticostérone est inhibée, en plus d’être associée à certains comportements suggérant un stress 

augmenté. 

Chez le rat, la sensibilisation dopaminergique évoquée par les antipsychotiques potentialise 

également les effets motivationnels des stimuli conditionnés prédisant des récompenses. Lorsque 

ces stimuli acquièrent trop de valeur motivationnelle, ils peuvent motiver des comportements 

pathologiques. Ainsi, une potentialisation de la valeur motivationnelle des stimuli conditionnés 
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provoquée par les antipsychotiques pourrait avoir des implications importantes dans des processus 

motivationnels anormaux dans la schizophrénie, tels que la psychose et la forte prévalence de 

toxicomanie. Ainsi, le deuxième objectif de la présente thèse était d’étudier les mécanismes 

neurobiologiques régulant les effets comportementaux des stimuli conditionnés, particulièrement 

le rôle du noyau basolatéral de l’amygdale. Ici, le rôle de ce noyau a été étudié chez des animaux 

non traités aux antipsychotiques, puisque sa contribution reste incomprise. Ce travail pourrait 

révéler des mécanismes neurobiologiques potentiellement impliqués dans la sensibilisation 

dopaminergique évoquée par les antipsychotiques. La présente thèse démontre que l’activation 

optogénétique de l’amygdale basolatérale potentialise les effets comportementaux des stimuli 

conditionnés, en augmentant leur valeur motivationnelle et leur capacité à guider le comportement 

vers des récompenses imminentes. Ainsi, une activité excessive de l’amygdale basolatérale pourrait 

attribuer trop de pouvoir aux stimuli conditionnés, et ceci pourrait jouer un rôle dans l’état 

motivationnel anormal provoqué par les antipsychotiques. 

La présente thèse identifie de nouveaux mécanismes par lesquels les antipsychotiques et les stimuli 

conditionnés favorisent des réponses pathologiques.  

 

 

 

 

 

 

 

 

 

 

MOTS-CLÉS: Amygdale basolatérale, antipsychotique, motivation, optogénétique, schizophrénie, 

sensibilisation dopaminergique, stimuli conditionnés. 
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ABSTRACT 

Schizophrenia requires long-term antipsychotic treatment to prevent psychosis relapse. 

Antipsychotic drugs temper psychotic symptoms by reducing dopamine D2 receptor-mediated 

signalling. Chronically decreasing dopamine transmission can produce neuronal compensation 

leading to supersensitivity to dopamine stimulation. In patients, this dopamine supersensitivity 

would compromise antipsychotic efficacy and exacerbate psychotic symptoms. In laboratory 

animals, antipsychotic-evoked dopamine supersensitivity enhances the psychomotor and reward-

enhancing effects of dopamine agonists. 

The first objective of the present thesis was to characterize the biological substrates mediating the 

expression of antipsychotic-evoked dopamine supersensitivity, a necessary work for developing 

better long-term treatment strategies. To do so, rats were chronically exposed to a clinically 

relevant antipsychotic treatment regimen, using the drug haloperidol. Haloperidol produces 

dopamine supersensitivity, as indicated by an exaggerated psychomotor response to the dopamine 

agonist d-amphetamine. This behavioural index of supersensitivity was used to examine the 

specific contributions of the dopamine system and the central effects of d-amphetamine. Given that 

there is a close relationship between stress and dopamine activity, it was also determined whether 

antipsychotic-evoked dopamine supersensitivity alters stress-like responses. This is important to 

consider because stress is a contributing factor to psychosis relapse. The present thesis first reveals 

that D1- and D2-mediated transmissions contribute distinctively to the expression of antipsychotic-

evoked dopamine supersensitivity, with D2 transmission promoting this supersensitivity and D1 

transmission tempering it. The present thesis also provides evidence that peripheral processes play 

a necessary role in dopamine supersensitivity. Additionally, antipsychotic-evoked dopamine 

supersensitivity could potentiate stress-like responses. Indeed, the expression of supersensitivity is 

reversed by inhibition of the synthesis of the stress hormone corticosterone and is linked with some 

signs of heightened stress-related behaviours. 

In rats, antipsychotic-evoked dopamine supersensitivity potentiates the incentive motivational 

effects of reward-predictive conditioned stimuli. When these stimuli acquire too much motivational 

value, they motivate maladaptive responses. Hence, the increased motivational value of 

conditioned stimuli elicited by antipsychotic exposure could be involved in impaired motivational 
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processes found in schizophrenia, such as psychosis and the greater vulnerability to drug addiction. 

Thereby, the last goal of the present thesis was to investigate the neurobiological substrates 

mediating the behavioural effects of reward-predictive stimuli, with a special focus on the role of 

the basolateral nucleus of the amygdala. This was investigated in antipsychotic-naïve rats because 

there are important caveats in our current understanding of the functional role of the basolateral 

amygdala. Such investigation could give novel insights on the neurobiological effects of 

antipsychotic-evoked dopamine supersensitivity. Here it is shown that optogenetic stimulation of 

basolateral amygdala neurons potentiates the behavioural effects of conditioned stimuli, by 

increasing their motivational value and their ability to guide behaviour toward impending rewards. 

The implication for this is that excessive activity in the basolateral amygdala could attribute too 

much motivational power to conditioned stimuli, and this could be involved in the abnormal 

motivational state produced by antipsychotic drugs. 

Taken together, the present thesis provides novel mechanisms by which antipsychotic drugs and 

reward-predictive stimuli promote maladaptive responses.  

KEYWORDS: Antipsychotic drugs, basolateral amygdala, conditioned stimuli, dopamine 

supersensitivity, motivation, optogenetics, schizophrenia. 
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Antipsychotic medications are the only effective drugs to temper psychotic symptoms in 

individuals with schizophrenia. Psychosis is linked to an increase in the activity of the 

neurotransmitter dopamine. Antipsychotic drugs produce their therapeutic effects by reducing the 

actions of dopamine in the brain via an interaction with type 2 dopamine receptors. Schizophrenia 

is a life-long illness. It requires chronic antipsychotic treatment to prevent new episodes of 

psychosis. Thereby, it is common practice that schizophrenia patients are exposed to antipsychotic 

drugs for long periods of time. However, this is not without consequences. Over time, chronically 

reducing dopamine transmission can produce compensatory changes that result in supersensitivity 

to dopamine stimulation. This dopamine supersensitivity would reduce the antidopaminergic 

effects of antipsychotic drugs, leading to treatment failure. Antipsychotic-evoked dopamine 

supersensitivity would also exacerbate psychotic symptoms. In rats, this supersensitivity reduces 

the antidopaminergic effects of antipsychotic drugs (resembling treatment tolerance in humans) 

and potentiates the behavioural effects of dopamine agonists. The first objective of the present 

thesis was to characterise biological substrates mediating the expression of antipsychotic-evoked 

dopamine supersensitivity in rats, and to find strategies to reduce the behavioural manifestations 

of this supersensitivity. Hence, in the Introduction, I first describe the dopamine system, the role 

of dopamine in schizophrenia and its treatment, and the behavioural and neurochemical 

manifestations of antipsychotic-evoked dopamine supersensitivity. 

Dopamine agonists can enhance the motivational properties of conditioned rewards—i.e., 

appetitive conditioned stimuli (CS), and this effect is potentiated by antipsychotic-evoked 

dopamine supersensitivity. CS that acquire too much motivational properties can greatly influence 

behaviour. Thereby, the increased motivational effects of CS evoked by chronic antipsychotic 

exposure could be linked to impaired motivation-related processes found in schizophrenia, such as 

psychotic symptoms and comorbid drug addiction. Because of these important implications, the 

second objective of the present thesis was to investigate the neurobiological substrates mediating 

the behavioural effects of CS, with a special focus on the role of the basolateral nucleus of the 

amygdala. In the present thesis, the role of this nucleus was investigated in the normal brain, that 

is, in non-antipsychotic-treated rats. This is because so far, there are important caveats in our 

current understanding of how basolateral amygdala neurons may intensify the motivational 

properties of appetitive CS. Such investigations could give insights on how CS elicit inappropriate 

responses following antipsychotic drug exposure producing dopamine supersensitivity, but it could 
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also give insight on psychiatric illnesses defined by abnormal motivation (e.g., addiction). Hence, 

here I also present a description of how CS guide behaviour, how these effects are studied in 

laboratory animals, and what we know of the role of the basolateral amygdala in these processes. 

Because optogenetic methods were used in the present thesis to manipulate the activity of 

basolateral amygdala neurons, I last describe this methodological approach. 

1. THE DOPAMINE SYSTEM

1.1. The Dopamine Synapse and Dopamine Agents 

1.1.1. Dopamine Synthesis and Release 

FIG. 1.1A illustrates dopamine synthesis and release and shows examples of dopamine agents that 

block dopamine storage in vesicles. Dopamine is a catecholamine that is synthetized from the 

amino acid tyrosine. Tyrosine is converted to l-3,4-dihydroxyphenylalanine (L-dopa) by the 

enzyme tyrosine hydroxylase (Feldman et al., 1997). L-dopa is then converted to dopamine by the 

enzyme aromatic L-amino acid decarboxylase. An acute diet low in tyrosine depletes brain levels 

of dopamine and can be used as a tool to study dopamine functions (Leyton et al., 2004). 

Neurotransmitter vesicles have great internal concentrations of protons, and these are transported 

in vesicles by proton pumps (Johnson, 1987). Dopamine is stored in vesicles via the vesicular 

monoamine transporter 2 (VMAT2), which exchanges cytoplasmic dopamine for vesicular proton 

(Erickson et al., 1992; Liu et al., 1992; Feldman et al., 1997). Dopamine agents that deplete 

vesicular content of dopamine include reserpine and amphetamines (e.g., d-amphetamine and 

methamphetamine). Reserpine and amphetamines both block VMAT2 (Carlsson et al., 1957; 

Fleckenstein et al., 2007), but amphetamines also reduce the concentration of vesicular protons. 

Consequently, this decreases dopamine transport into vesicles (Fleckenstein et al., 2007). 

1.1.2. Dopamine-mediated Signalling 

FIG. 1.1B illustrates dopamine receptors and shows examples of dopamine receptor agonists and 

antagonists. Dopamine signals through G-protein coupled receptors that are classified into two 

groups: D1-like and D2-like receptors.  
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There are two known D1-like receptors that are both highly conserved across species. The first 

cloned was the D1 receptor (Dearry et al., 1990; Zhou et al., 1990), and then the D5 receptor 

(Sunahara et al., 1991; Tiberi et al., 1991). Dopamine has a 10 times greater affinity for D5 

receptors relative to D1 receptors (Sunahara et al., 1991). D1-like receptors have a great affinity 

for Gs and Golf proteins (Dearry et al., 1990; Sunahara et al., 1991; Zhuang et al., 2000). Hence, 

D1-like receptor activation stimulates the activity of the cyclic adenosine monophosphate 

(cAMP)/protein kinase A (PKA)-dependent pathway and this pathway regulates gene expression 

via regulation of the activity of transcription factors such as cAMP response element-binding 

protein (CREB) and Fos (Robertson et al., 1989; Das et al., 1997). D1 receptors are found in 

multiple brain regions including the striatum (nucleus accumbens and caudate-putamen), the 

substantia nigra (SN), the ventral tegmental area (VTA), the prefrontal cortex, the hippocampus, 

the globus pallidus, the amygdala, the thalamus and the olfactory tubercle (Huang et al., 1992; 

Levey et al., 1993). The concentration of D5 receptors in the brain is generally lower than the one 

of D1 receptors (Sunahara et al., 1991; Tiberi et al., 1991). D5 receptors are located in similar 

FIG. 1.1 ─ The dopamine synapse. (A) Dopamine synthesis and release. (B) Dopamine signals via D1-like 
and D2-like receptors. (C) Termination of dopamine signalling. COMT, catechol-O-methyltransferase; DA, 
dopamine; DAT, dopamine transporter; DOPAC, 3,4-dihydroxyphenylacetic acid; VMAT2, vesicular 
monoamine transporter 2; 3-MT, 3-methoxytyramine. 
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regions to D1 receptors, including the striatum, the SN, the thalamus, the prefrontal cortex and the 

hippocampus (Khan et al., 2000). D1-like receptor agonists include apomorphine, SKF38393 and 

SKF83959 (Dearry et al., 1990; Sunahara et al., 1991; Millan et al., 2002; Neumeyer et al., 2003), 

whereas SCH23390 and SCH39166 are examples of D1-like receptor antagonists (Dearry et al., 

1990; McQuade et al., 1991; Sunahara et al., 1991). 

D2-like receptors include three receptors that are also highly conserved across species. The D2 

receptor was the first cloned (Bunzow et al., 1988), followed by the D3 receptor (Sokoloff et al., 

1990) and the D4 receptor (Van Tol et al., 1991). Dopamine has a greater affinity for the D2 

receptor relative to D3 and D4 receptors (Sokoloff et al., 1990; Van Tol et al., 1991). There are 

two isoforms of the D2 receptor, the long isoform (D2L) and the short isoform (D2S) that comprises 

29 amino acids less than the long isoform (Dal Toso et al., 1989; Eidne et al., 1989). These isoforms 

are spatially segregated. D2S receptors are preferentially located on the presynaptic side, whereas 

D2L receptors are preferentially located on the postsynaptic side (Usiello et al., 2000). D2-like 

receptors have a great affinity for Gi/o protein and thereby, they regulate the activity of several 

intracellular signaling pathways including the cAMP/PKA-, glycogen synthase kinase-3β 

(GSK3β)/AKT- and mitogen-activated protein (MAP) kinase-dependant pathways (Bonci and 

Hopf, 2005). Presynaptic D2-like receptors inhibit dopamine release and synthesis, whereas post-

synaptic D2-like receptors reduce neuron excitability (Ford, 2014). D2 receptors are generally more 

expressed than D3 and D4 receptors (Van Tol et al., 1991; Levesque et al., 1992). D2 receptors are 

located in multiple brain regions including the striatum, the SN, the VTA, the globus pallidus, the 

olfactory tubercle, the hypothalamus, the habenula and the amygdala (Brock et al., 1992; Levey et 

al., 1993). In contrast, D3 receptors are located in a limited number of regions, such as the nucleus 

accumbens, the olfactory bulb, the islands of Calleja and the cerebellum (Levesque et al., 1992). 

Like D2 receptors, D4 receptors are located in several regions including the striatum, the SN, the 

VTA, the hippocampus, the amygdala, the olfactory tubercle, the globus pallidus, the hypothalamus 

and the cerebellum (Defagot et al., 1997; Primus et al., 1997). D2-like receptor agonists include 

quinpirole, pergolide and apomorphine (Krueger, 1990; Van Tol et al., 1991; Millan et al., 2002). 

D2-like receptor antagonists include antipsychotic drugs such as haloperidol, sulpiride, raclopride 

and clozapine (Bunzow et al., 1988; Sokoloff et al., 1990; Van Tol et al., 1991) (see also Section 

2.3, page 40). 
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1.1.3. Termination of Dopamine Signalling 

FIG. 1.1C shows how dopamine-mediated signalling is terminated and illustrates examples of how 

dopamine agents interfere with these processes. Extracellular dopamine can be inactivated by the 

enzyme catechol-O-methyltransferase (COMT), which metabolises dopamine in 3-

methoxytyramine (Axelrod and Tomchick, 1958; Wood et al., 1987). Dopamine can also be 

recaptured in the terminals by the dopamine transporter (DAT) (Giros et al., 1991; Giros et al., 

1992). Dopamine is co-transported with sodium and chloride ions (Krueger, 1990; McElvain and 

Schenk, 1992). Recaptured dopamine can be recycled by being stocked in vesicles again (Michael 

et al., 1987) or can be inactivated by the enzyme monoamine oxidase A, which metabolizes 

dopamine in 3,4-dihydroxyphenylacetic acid (DOPAC) (Rosengren, 1960). Indirect dopamine 

agonists disrupt the termination of dopamine-mediated signalling and thereby, they extend 

dopamine actions. For instance, cocaine, GBR12783 and GBR12909 enhance dopamine 

extracellular concentrations by blocking its reuptake by DAT (Bonnet and Costentin, 1986; 

Rothman and Baumann, 2003). Amphetamines reduce dopamine reuptake via distinct mechanisms 

from DAT blockers. Indeed, amphetamines reverse the transport of dopamine so that DAT release 

dopamine instead of recapturing it, and they also promote DAT internalization (Fleckenstein et al., 

2007). Additionally, amphetamines reduce dopamine inactivation in terminals by inhibiting the 

activity of the monoamine oxidase A (Robinson, 1985). It is noteworthy that the psychostimulant 

drugs above can exert dopamine-independent effects as well, such as increasing serotonin and 

noradrenaline transmissions (Rothman and Baumann, 2003). 

1.2. Dopamine Pathways 

1.2.1. Localisation and Projections of Dopamine Neurons 

Dopamine is synthetized in a limited number of neurons, but they send dopaminergic projections 

to a great number of brain regions. Dopamine neurons are found in the mesencephalon, specifically 

in the SN pars compacta (SNc), the VTA and midline nuclei (Fallon and Moore, 1978). SNc 

dopamine neurons project massively to the caudate-putamen, and to a lesser extent to other regions 

such as the nucleus accumbens, the amygdala, the olfactory tubercle and to the prefrontal cortex, 

including cingulate, prelimbic, infralimbic and orbitofrontal cortices (Fallon and Moore, 1978; 

Fuxe et al., 1985; Gerfen et al., 1987). VTA dopamine neurons send projections to these areas as 
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well, but notably to a lesser extent in the caudate-putamen and to a greater extent in the nucleus 

accumbens, and send projections to other areas such as the lateral habenula and the hippocampus 

(Fallon and Moore, 1978; Swanson, 1982; Fuxe et al., 1985; Ikemoto, 2007). Dopamine neurons 

are also located in a region medial to the VTA and SNc: the midline nuclei. Dopamine neurons of 

that region project to the nucleus accumbens, the olfactory tubercle, the medial habenula and the 

septum (Fuxe et al., 1985; Ikemoto, 2007). Lastly, dopamine neurons are also found in the 

hypothalamus, the dorsal and medial raphe nuclei, the retina and the olfactory bulb (Fuxe et al., 

1985; Trulson et al., 1985). Overall, these dopamine pathways are well conserved across species 

(Bjorklund and Dunnett, 2007). The mesostriatal, mesolimbic and mesocortical dopamine 

pathways are particularly relevant to the pathophysiology and treatment of schizophrenia. As 

shown on FIG. 1.2, these dopamine pathways are divided based on their targeted area: i) SNc/VTA 

dopaminergic projections to the caudate-putamen represent the mesostriatal pathway, ii) 

VTA/SNc/midline nuclei dopaminergic projections to the nucleus accumbens, the septum, the 

olfactory tubercle and the amygdala form the mesolimbic pathway and iii) VTA/SNc dopaminergic 

projections to the prefrontal cortex form the mesocortical dopamine pathway (Bjorklund and 

Dunnett, 2007). Dopaminergic projections to the 

nucleus accumbens and caudate-putamen are 

especially important in psychosis, and thereby they are 

critical targets of antipsychotic drugs. These 

dopaminergic projections are found in basal ganglia 

circuits. Hence, next is a neuroanatomical description 

of basal ganglia circuits and of how striatal dopamine 

is integrated in these circuits. 

1.2.2. Striatal Dopamine in Basal Ganglia Circuits 

Under the influence of striatal dopamine transmission, 

basal ganglia circuits regulate a wide variety of 

functions, including motor performance, execution of 

goal directed behaviour and associative learning. In 

summary, multiple basal ganglia circuits exist in 

parallel with the same pattern of looping pathway: 

 

 
 
FIG. 1.2 ─ Mesolimbic, mesostriatal and 
mesocortical dopaminergic pathways. 
These dopaminergic pathways originate 
from dopamine neurons of the midline 
nuclei (MN), ventral tegmental area (VTA) 
and substantia nigra pars compacta (SNc). 
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cortex → basal ganglia → thalamus → cortex (Alexander and Crutcher, 1990). The specific 

connections of each parallel basal ganglia circuit determine their respective function. The basal 

ganglia integrates information coming from the cortex, and ‘shapes’ messages by concurrently 

inhibiting information and relaying other to the thalamus. The thalamus then directly 

communicates these shaped messages back to the cortex. Shaping those messages is important, for 

instance, to execute appropriate actions and to make adequate decisions.  

Interestingly, the striatum is the input region of the basal ganglia, meaning that it receives direct 

projections from the cortex. Striatal neurons are medium spiny neurons that release the 

neurotransmitter ɣ-aminobutyric acid (GABA) and that generally express either D1 or D2 receptors 

(Gerfen et al., 1990). In the caudate-putamen, most D1-expressing neurons constitute the direct 

pathway, because they directly project to the output nuclei of the basal ganglia (i.e., the internal 

segment of the globus pallidus, GPi, and the SN pars reticulata, SNr) (Alexander et al., 1986; 

Alexander and Crutcher, 1990). Activation of the direct pathway ultimately stimulates cortical 

activity (see FIG. 1.3 for a more detailed description of the neuroanatomy and functional 

connectivity of basal ganglia circuits). Most D2-expressing neurons of the caudate-putamen 

constitute the indirect pathway, because they do not project directly to the output nuclei. Instead, 

D2-expressing neurons influence the activity of the output nuclei indirectly via the external 

segment of the globus pallidus (GPe) and the subthalamic nucleus (STN). Activation of the indirect 

pathway ultimately inhibits cortical activity. When dopamine is released within the caudate-

putamen, it favours the activity of the direct pathway. Indeed, stimulation of D1 receptors activates 

the neurons of the direct pathway, whereas stimulation of D2 receptors inhibits the activity of the 

neurons of the indirect pathway.  

In the core subdivision of the nucleus accumbens, D1- and D2-expressing neurons are not 

preferentially found in the direct and indirect pathways, respectively [note that the following 

description on D1/D2 receptors is based on findings by Kupchik et al. (2015); and neuroanatomy 

is based on Sesack and Grace (2010)]. As in the caudate-putamen, there is a direct pathway 

composed of D1-expressing neurons that project directly to the output nuclei (GPi and SNr; see 

FIG. 1.3). Nucleus accumbens neurons also send projections to dorsolateral (DL) ventral pallidum 

neurons, and these neurons either form an output or an intermediate nucleus. Indeed, some DL 

ventral pallidum neurons send direct projections to the mediodorsal (MD) thalamus (these neurons 
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form an output nucleus), whereas some DL ventral pallidum neurons send projections to the STN 

(these neurons form an intermediate nucleus). Hence, there is a second direct pathway originating 

in the nucleus accumbens core. This pathway is composed of D1- but also D2-expressing neurons 

that project to DL ventral pallidum-to-MD thalamus neurons. Regarding the indirect pathway, it is 

composed of D2- but also D1-expressing neurons that project to DL ventral pallidum-to-STN 

neurons. Despite the discrepancies between the nucleus accumbens and the caudate-putamen, 

 
 
FIG. 1.3 ─ Basal ganglia circuits. 

The caudate-putamen (CPu) as the input region — Activation of the direct pathway (D1-expressing 
neurons) has the following consequences: inhibition of the output nuclei (internal segment of the globus 
pallidus, GPi, and the substantia nigra pars reticulata, SNr) → disinhibition of the ventrolateral (VL) 
thalamus → activation of cortical activity. Activation of the indirect pathway (D2-expressing neurons) has 
the following consequences: inhibition of the external segment of the globus pallidus (GPe) → disinhibition 
of the subthalamic nucleus (STN) → activation of the GPi/SNr → inhibition of the VL thalamus → 
inhibition of cortical activity. 

The nucleus accumbens (NAc) core as the input region — There are two direct pathways. For the first direct 
pathway, activation of D1-expressing neurons has the following consequences: inhibition of GPi/SNr → 
disinhibition of the mediodorsal (MD) thalamus → activation of cortical activity. For the second direct 
pathway, activation of D1- and D2-expressing neurons has the following consequences: inhibition of the 
dorsolateral (DL) ventral pallidum → disinhibition of the MD thalamus → activation of cortical activity. 
Activation of the indirect pathway (D1- and D2-expressing neurons) has the following consequences: 
inhibition of DL ventral pallidum → disinhibition of the STN → activation of GPi/SNr → inhibition of MD 
thalamus → inhibition of cortical activity. 

MN, midline nuclei; SNc, substantia nigra pars compacta; VTA, ventral tegmental area. 
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activation of the direct and indirect pathways of the nucleus accumbens has similar outcomes 

because the direct pathway promotes cortical activity, and the indirect pathway inhibits it (see FIG. 

1.3). However, while dopamine transmission in the caudate-putamen favors the activation of the 

direct pathway, dopamine transmission in the nucleus accumbens has mixed effects on the activity 

of basal ganglia circuits because D1- and D2-expressing neurons are found in both pathways. The 

nucleus accumbens also has a shell subdivision. However, I am not aware of studies that dissected 

the composition of D1- and D2-expressing neurons in the direct and indirect pathways of this 

subdivision of the nucleus accumbens. 

1.3. Dopamine Functions 

1.3.1. Motricity 

Dopamine transmission within the striatum regulates the quick and proper execution of planned 

movements in everyday life. Impairment in striatal dopamine transmission causes an imbalance in 

the activity of the direct and indirect pathways, and this leads to motor dysfunctions. The role of 

dopamine transmission in motricity is especially well-characterized for the mesostriatal dopamine 

pathway. For instance, a reduction of mesostriatal dopamine transmission, as in Parkinson’s disease 

(Greenfield and Bosanquet, 1953; Bernheimer et al., 1973) or after exposure to the neurotoxin 1-

methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) (Langston et al., 1983; Javitch and Snyder, 

1984), enhances the activity of the indirect pathway (Albin et al., 1989). In accordance with the 

inhibitory actions of the indirect pathway, Parkinson’s disease and MPTP exposure are linked to a 

reduced capacity to initiate movement, a slower execution of movement and motor blocks during 

movement execution (Langston et al., 1983; Morris, 2000).  

Additionally, psychostimulant drugs stimulate dopamine transmission, which consequently 

potentiates locomotor activity and produces stereotypy at high dosage (Feldman et al., 1997). 

Stereotypy refers to an execution of repeated movement with no apparent goal. Dopamine 

transmission in the striatum regulates psychomotor activity, with the nucleus accumbens 

preferentially regulating hyperlocomotor activity and the caudate-putamen preferentially 

regulating stereotypy (Kelly et al., 1975; Kelly and Iversen, 1976; Pijnenburg et al., 1976; French 

and Vantini, 1984; Kelley et al., 1988; Dalia et al., 1998; Gong et al., 1999). As it will be described 

later (see Section 2.3.3.3, page 49), antipsychotic drug administration tempers the psychomotor 
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response to psychostimulants and this inhibitory effect serves as an index of the antidopaminergic 

effects of these medications. 

1.3.2. Motivation 

Dopamine plays an important role in regulating incentive motivation, a critical property of natural 

or drug rewards. The incentive motivational value of rewards confers to them the ability to elicit 

approach, to be avidly worked for, and to be likely to reinforce subsequent behavioural actions 

directed toward their obtention (Wise and Rompre, 1989; Robinson and Berridge, 1993; Wise, 

2004). Additionally, because rewards have incentive motivational value, they gain incentive 

salience, which refers to ‘the attractiveness of external stimuli, events, places and their mental 

representations; their ability to capture attention’ (Robinson and Berridge, 1993). In addition to 

regulating incentive motivation, dopamine modulates the motivational properties of aversive 

stimuli (i.e., aversive motivation) and thereby, this confers an important role of this 

neurotransmitter in psychiatric disorders characterized by abnormal motivated responses such as 

in addiction, depression (Robinson and Berridge, 1993; Salamone and Correa, 2012; Berridge, 

2018) and schizophrenia (Section 2.2.1, page 34). The role of dopamine in motivational processes 

is especially well characterized for incentive motivation, 

and the following description focuses on this.  

Increasing dopamine transmission alone has reinforcing 

effects. This important effect of dopamine has been 

largely studied using protocols of intra-cranial self-

stimulation [ICSS; originally designed by Olds and Milner 

(1954)]. This protocol determines the extent to which 

brain stimulations reinforce behavioural responses (FIG. 

1.4). Electrical stimulation of VTA or SNc neurons 

supports ICSS, indicating that these stimulations alone are 

sufficient to produce reinforcing effects (Crow, 1972; 

Corbett and Wise, 1980; Wise, 1981). Similarly, 

optogenetic stimulation of VTA or SNc dopamine neuron 

is reinforcing (Witten et al., 2011; Kim et al., 2012; Rossi 

et al., 2013; Ilango et al., 2014; Saunders et al., 2018). 

 

 
 
FIG. 1.4 ─ Intra-cranial self-
stimulation (ICSS). In this behavioural 
paradigm, animals can voluntarily self-
administer electrical or optogenetic 
stimulations into the brain (as 
exemplified here, lever presses lead to 
stimulation delivery).  
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Conversely, inhibition of VTA or SNc dopamine neurons produces avoidance (Ilango et al., 2014). 

Even if VTA (but not SNc) dopamine neurons can co-release glutamate (El Mestikawy et al., 

2011), removal of co-released glutamate by a genetic deletion of the vesicular transporter of 

glutamate 2 in dopamine neurons does not impair the reinforcing properties of optogenetic 

activation of VTA dopamine neurons (Wang et al., 2017). This indicates that dopamine alone is 

sufficient to produce reinforcing effects. 

Dopamine projections to the striatum are sufficient to produce reinforcing effects on their own, 

indicating that mesostriatal and mesolimbic projections are critical in regulating motivational 

processes. Indeed, optogenetic activation of VTA dopamine projections in the nucleus accumbens 

or of SNc dopamine projections in the dorsal caudate-putamen is sufficient to promote self-

stimulation (Steinberg et al., 2014; Saunders et al., 2018). Similarly, animals voluntarily self-

administer dopamine agonists directly into the nucleus accumbens or caudate putamen (Carlezon 

et al., 1995; Ikemoto et al., 1997). Both D1-like and D2-like-mediated signalling in the striatum 

seem to promote reinforcing effects. Indeed, injection of D1-like and/or D2-like receptor antagonist 

into the nucleus accumbens reduces optogenetic self-stimulation of VTA dopamine neurons 

(Steinberg et al., 2014). Hence, by stimulating D1-like-expressing neurons and inhibiting D2-like-

expressing neurons, dopamine promotes motivational processes. This is further confirmed by the 

observation that mice avidly work for optogenetic stimulation of D1- but not D2-expressing 

neurons in the nucleus accumbens (Cole et al., 2018) and the caudate-putamen (Kravitz et al., 

2012; Vicente et al., 2016). Activation of D2-expressing neurons could actually be aversive, as it 

seems to promote freezing and avoidance (Kravitz et al., 2012; Cole et al., 2018).  

As it will be described in Section 3.2 (page 61), appetitive CS can acquire incentive motivational 

effects on their own, like a primary reward would do. Interestingly, mesostriatal and mesolimbic 

dopamine transmissions regulate the incentive motivational effects of CS. For instance, infusion of 

dopamine agonists into the nucleus accumbens or caudate-putamen is sufficient to enhance the 

incentive motivational value of CS (Taylor and Robbins, 1984; Kelley and Delfs, 1991; White et 

al., 1991; Chu and Kelley, 1992) [but see (El Hage et al., 2015)]. Additionally, CS evoke greater 

dopamine release in the nucleus accumbens when animals have attributed incentive motivational 

value to them, and blocking dopamine transmission prevents CS from acquiring incentive 

motivational value (Flagel et al., 2011b). Furthermore, combining the presentation of a neutral cue 
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with optogenetic stimulation of VTA (but not SNc) dopamine neurons is sufficient to imbue 

motivational value to that cue, even if it is not associated with a primary reward (Saunders et al., 

2018). Similarly, pairing optogenetic stimulation of VTA dopamine neurons with a neutral 

contextual cue is sufficient to attribute motivational salience to that context (Tsai et al., 2009).  

1.3.3. Associative Learning 

Dopamine-mediated signalling shapes learning processes, and this is well exemplified in studies 

where animals learn that a cue (CS) predicts an impending reward (Schultz, 1998). When the cue 

is not an effective predictor yet, VTA and SNc dopamine neurons fire in response to reward 

delivery but not to the cue. When the cue has acquired predictive value, dopamine neurons shift 

their response toward the cue. Hence, throughout learning, dopamine neurons fire more and more 

in response to the cue and not to the reward anymore, as long as the expected reward does not 

change. When animals’ expectation of the reward is not met because the prediction is incorrect 

(e.g., no reward delivery following cue presentation), dopamine neurons shift their activity. This 

adaptative response of dopamine neurons is referred to as a reward prediction error (Schultz, 

1998). For instance, if no reward is delivered, dopamine neurons show a decrease in their activity. 

Such adaptative responses from dopamine neurons mediate associative learning and help animals 

to be more efficiently guided by surrounding stimuli. This important role of dopamine in learning 

is further demonstrated by studies using optogenetic methods. Indeed, optogenetic stimulation of 

VTA dopamine neurons evokes conditioned responses indicative that reward was above 

expectancy (Steinberg et al., 2013), whereas optogenetic inhibition of VTA dopamine neurons 

elicits conditioned responses indicative that the reward was below expectancy (Chang et al., 2016).  

1.3.4. Working Memory 

The role of dopamine in working memory exemplifies how this neurotransmitter can—to some 

extent—regulate cognitive deficits in schizophrenia. Working memory is defined by the ability to 

store for a short period of time an information (initially an external cue), and to retrieve this 

information that is not readily available anymore (now an internal cue) in order to perform an action 

or to make a decision (Goldman-Rakic, 1992, 1995). Hence, working memory is guided by internal 

but not external cues, and differs from learning that requires long-term storage of information 

(Goldman-Rakic, 1992, 1995). The role of mesocortical dopamine transmission in working 
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memory has been extensively studied, especially the role of D1-like-mediated signalling in the 

prefrontal cortex. Dopamine but not serotonin nor noradrenaline denervation in the prefrontal 

cortex of non-human primates reduces performance on a working memory task (Brozoski et al., 

1979). Furthermore, administration of a D1-like but not a D2-like receptor antagonist into the 

prefrontal cortex impairs working memory (Sawaguchi and Goldman-Rakic, 1991). The effects of 

mesocortical dopamine transmission on working memory are not linear. Instead, this relationship 

follows an inverted-U shaped form, where too little or too much dopamine transmission is 

detrimental for working memory (Cools and D'Esposito, 2011). For instance, among healthy 

individuals, working memory seems to vary in function of the level of mesocortical dopamine 

transmission, where individuals with estimated ‘balanced’ mesocortical dopamine transmission 

show the best performance in tasks testing working memory (Papenberg et al., 2019). Hence, 

abnormal dopamine transmission in the prefrontal cortex potentially produces cognitive deficits in 

disorders such as schizophrenia (see next section). 

2. DOPAMINE IN SCHIZOPHRENIA

Schizophrenia is a psychiatric disorder with a 1% prevalence worldwide, affecting 280,000 persons 

in Canada (Ernest et al., 2017). Schizophrenia is a lifelong illness where people start to experience 

symptoms usually during late adolescence to early adulthood (Loranger, 1984; Hafner et al., 1993). 

Symptoms would be the result of an abnormal development of the brain starting as early as during 

the prenatal period (Lewis and Levitt, 2002). A complex interaction between genetic and 

environmental factors would contribute to the abnormal development of the brain and the 

emergence of schizophrenia symptoms. Genetic factors are not sufficient but seem to represent an 

important contributing factor to the development of schizophrenia. Indeed, studies on monozygotic 

twins reveal that if a twin has schizophrenia, the other twin has a ~50% risk of having schizophrenia 

as well (Cardno and Gottesman, 2000). Even if twins are exposed to the same environment, genetic 

factors are still determinant in schizophrenia. Indeed, a dizygotic twin that has a twin with 

schizophrenia has a ~15 % risk of having schizophrenia as well, which is a lower risk relative to 

monozygotic twins (Cardno and Gottesman, 2000). Genetic irregularities that could contribute to 

schizophrenia include chromosomal abnormalities, as well as specific polymorphisms or mutations 

of genes including COMT (encodes COMT), DTNBP1 (encodes the protein dysbindin) and NRG1 

(encodes the protein neuregulin 1) (Harrison and Owen, 2003; Owen et al., 2005). These genetic 
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factors could contribute to abnormal neuronal development because the proteins above are involved 

in neuronal migration, cellular differentiation and synaptic plasticity (Harrison and Owen, 2003). 

Environmental factors that are linked to schizophrenia include obstetrical complications (such as 

maternal infection, pre-eclampsia and asphyxia at birth) and stressors early in life such as 

emotional, sexual or physical abuse during childhood (Lewis and Levitt, 2002; Read et al., 2005).  

Dopamine plays an important role in the symptomology of schizophrenia. Next is a description of 

schizophrenia symptoms, the contribution of dopamine in these symptoms and how manipulating 

the dopamine system can improve certain schizophrenia symptoms. 

2.1. Schizophrenia Symptoms 

Schizophrenia symptoms can be classified in three types: the psychotic symptoms, the negative 

symptoms, and the cognitive symptoms. Psychotic symptoms represent a group of symptoms that 

are defined by a loss of contact with reality. Psychotic symptoms include: i) hallucinations, that are 

commonly auditory but can be of any sensory type, ii) delusion, where a person has strong beliefs 

that are unrealistic, such as being tracked down or not having the control over their body, iii) 

disorganised thoughts, where the thought process and the communication of thoughts are illogical 

and confused, and iv) disorganised behaviour, to the point where one’s ability to normally function 

in everyday life is greatly impaired (Liddle, 1987; Mueser and McGurk, 2003). Negative symptoms 

refer to a group of symptoms that are generally defined by a reduced motivation, pleasure and 

social capabilities. More specifically, negative symptoms include : i) one’s interest are diminished 

and have more difficulty to experience pleasure, ii) reduced motivation to initiate and perform 

activities/tasks, iii) social distancing, iv) weak communication, because less words are used to 

communicate and communication is reduced in general, and v) reduced facial expression and 

tonality of verbal communication (Liddle, 1987; Mueser and McGurk, 2003). Lastly, schizophrenia 

patients can show cognitive impairments, including impaired working memory, attention and 

concentration, verbal/visual learning and memory, and reasoning and problem solving 

(Nuechterlein et al., 2004). 

At the beginning stages of schizophrenia, negative symptoms are the first to emerge, followed by 

the cognitive symptoms (Ernest et al., 2017; McCutcheon et al., 2019a). It can then take years 

before schizophrenia patients experience a first episode of psychosis. The prevalence of 
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schizophrenia is similar across men and women, but symptoms commonly emerge earlier in men 

(15-25 years old) than women (20-29 years old) (Loranger, 1984; Hafner et al., 1993). While 

negative and cognitive symptoms are usually continuous throughout the course of schizophrenia 

illness, psychotic symptoms are episodic and come by cycles (Bunzow et al., 1988; Yung and 

McGorry, 1996; McCutcheon et al., 2019a). A cycle is composed of three phases: the prodromal 

phase, the active phase and the residual phase. The prodromal phase is defined by the gradual 

emergence of symptoms including social isolation, depressed mood, sleep disturbance, anxiety and 

great preoccupations (Yung and McGorry, 1996). Commonly, prodromal symptoms evolve to an 

attenuated form of psychotic symptoms, such as starting to be suspicious of others (i.e., a form of 

delusion). The prodromal phase can last weeks to years and does not necessarily lead to an episode 

of psychosis but does in most cases. The active phase represents the psychosis. Then the residual 

phase follows and is characterized by the same symptoms experienced during the prodromal phase 

(Ernest et al., 2017). The severity of each type of schizophrenia symptoms differs from one 

individual to another. Also, within each class of symptoms, some symptoms are more likely to co-

occur and others are less likely to be present in a same individual (McCutcheon et al., 2019a). 

Hence, schizophrenia is a complex and heterogenous psychiatric disorder. 

2.2. Roles of Dopamine in Schizophrenia Symptoms 

Dopamine dysfunctions play an important role in schizophrenia symptoms, especially psychotic 

symptoms (Howes and Kapur, 2009). Initially, it was thought that schizophrenia symptoms result 

from excessive dopamine transmission because antipsychotic drugs produce antidopaminergic 

effects (Carlsson and Lindqvist, 1963; van Rossum, 1966; Creese et al., 1976; Seeman et al., 1976). 

However, it has since been recognized that dopamine contributions are more complex. A dominant 

view is that psychotic symptoms involve excessive subcortical dopamine transmission, whereas 

negative and cognitive symptoms involve low cortical dopamine transmission (Weinberger, 1987; 

Davis et al., 1991). Furthermore, excessive subcortical and low cortical dopamine activities would 

co-exist because they reciprocally interact (Weinberger, 1987; Davis et al., 1991). In other words, 

if mesocortical dopamine transmission is low, this would consequently increase striatal dopamine 

activity, or vice versa. These theories are still relevant to this day, but findings in the last decades 

are more supportive of an important role of dopamine in psychotic symptoms rather than negative 

and cognitive symptoms. This is discussed next in light of more recent findings that benefited of 
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more advanced technologies allowing in vivo measurement in the brain of schizophrenia patients. 

Note that a special focus is placed on dopamine here, because of the importance of this system in 

antipsychotic drug effects. However, dopamine is not the sole contributor to schizophrenia 

symptoms. For instance, serotonin (Kapur and Remington, 1996) and glutamate (Laruelle et al., 

2005) contribute to schizophrenia symptoms as well. 

2.2.1. Psychotic Symptoms 

Multiple studies strongly suggest that excessive dopamine-mediated signalling in the striatum is 

involved in psychosis. Stimulation of dopamine transmission using amphetamines (Lieberman et 

al., 1987) or L-dopa (Seeman, 1987) can produce de novo psychotic symptoms in non-

schizophrenic individuals, and can also be sufficient to exacerbate psychotic symptoms in 

individuals with schizophrenia. Furthermore, blockade of dopamine transmission effectively 

tempers psychotic symptoms (see Section 2.3.2.1, page 43). Hence, dopamine transmission seems 

both necessary and sufficient to psychotic symptoms. Dopamine transmission in the striatum seems 

to critically contribute to psychotic symptoms, at least for a majority of patients (see below). Using 

in vivo neuroimaging technology has been helpful to draw this conclusion, especially positron 

emission tomography, single-photon emission tomography and single photon emission computed 

tomography. Using these neuroimaging techniques, different aspects of dopamine signalling have 

been studied in vivo in individuals with schizophrenia, including dopamine synthesis and storage, 

dopamine release, dopamine receptors availability and DAT availability. Selective radioactive 

dopamine agents serve as radiotracer to estimate these values. Synthesis and storage of dopamine 

is studied in vivo by using radioactive L-dopa, that is converted in radioactive dopamine that 

accumulates in dopamine terminals (Reith et al., 1994; Lindstrom et al., 1999). Dopamine 

receptor/transporter availability is estimated with selective radioactive ligands. Dopamine release 

is determined by measuring the change in D2-like receptor availability following the administration 

of a dopamine agonist that stimulates dopamine release (such as d-amphetamine) (Laruelle and 

Abi-Dargham, 1999). Released dopamine competes with the D2-like receptor radioligand and 

thereby the reduction of D2-like receptor availability serves as an index of dopamine release. 

In vivo neuroimaging studies revealed that schizophrenia patients show excessive dopamine 

transmission in the striatum, and these changes are mostly evident on the presynaptic side. FIG. 1.5 

illustrates these important findings. Recent meta-analyses including hundreds of schizophrenia 
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patients revealed that they have greater striatal levels of dopamine synthesis/storage and dopamine 

release than healthy individuals (Howes et al., 2012; McCutcheon et al., 2018). This enhancement 

is most important in both the caudate and putamen relative to the nucleus accumbens (McCutcheon 

et al., 2018). This effect is independent of medication status, suggesting it is linked to the disorder 

itself (Howes et al., 2012). Also, these changes do not seem to be a consequence of a greater level 

of dopamine terminals and dopamine vesicles, because schizophrenia patients and healthy 

individuals have similar striatal levels of DAT (index of dopamine terminal density) (Howes et al., 

2012; Fusar-Poli and Meyer-Lindenberg, 2013) and VMAT2 (index of dopamine vesicle density) 

(Taylor et al., 2000). 

FIG. 1.5 ─ Excessive striatal dopamine transmission in psychosis: what changes and does not change 
at the dopamine synapse of individuals with schizophrenia. (A) Relative to healthy individuals, (B) 
changes in the dopamine synapse of schizophrenia patients are highlighted in orange. What changes: 
Psychotic symptoms are linked to greater synthesis, storage and release of dopamine. There might be a 
small increase in the density of D2-like receptors, but this is likely a consequence of antipsychotic 
medications and not a consequence of schizophrenia per se. Also, the proportion of D2-like receptors 
occupied by dopamine is increased. What does not change: Schizophrenia patients do not seem to show 
alterations in the numbers of D1-like receptors (not illustrated), dopamine transporters and dopamine 
vesicles.  
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Importantly, the elevation in presynaptic dopaminergic functions has been linked to psychotic 

symptoms. Schizophrenia patients that are hospitalized due to heavy psychotic symptoms have 

greater levels of dopamine release in the striatum relative to stabilized patients (Laruelle et al., 

1999). As mentioned above, amphetamines can exacerbate psychotic symptoms, and they can also 

be used as tools to measure in vivo dopamine release. Schizophrenia patients showing the largest 

enhancement in dopamine release in the striatum following amphetamine administration also show 

the largest amphetamine-induced exacerbation of psychotic symptoms (Laruelle et al., 1999). 

Schizophrenia itself does not seem linked to elevated striatal levels of D1-like receptors, but 

schizophrenia patients show an inconsistent small increase in striatal levels of D2-like receptors 

that is at least partially due to antipsychotic drug exposure (Silvestri et al., 2000; Kestler et al., 

2001; Howes et al., 2012). Because dopamine release is more important, dopamine occupies a 

greater proportion of D2-like receptors in schizophrenia patients relative to healthy individuals, 

independently of whether patients show greater levels of D2-like receptor availability due to 

antipsychotic treatment (Abi-Dargham et al., 2000). In that latter study, dopamine occupancy was 

determined by measuring D2-like receptor availability during two occasions, at baseline and 

following a treatment that depletes dopamine brain levels (α-methyl-para-tyrosine, an inhibitor of 

tyrosine hydroxylase). Abi-Dargham et al. (2000) showed that dopamine depletion ameliorated 

psychotic symptoms, and that patients showing the greatest dopamine occupancy at baseline have 

the best amelioration of psychotic symptoms after dopamine depletion. While changes in 

presynaptic dopaminergic functions have been consistently found across studies, this cannot be 

generalized to all patients. Indeed, there are patients showing no increase, especially the ones that 

do not respond to antipsychotic medications (this is further described in Section 2.3.2.1, page 43) 

(Demjaha et al., 2012). Nonetheless, the findings above strongly suggest that for most patients, 

psychotic symptoms involve an enhancement of presynaptic dopaminergic functions and 

consequently, greater dopamine-mediated signalling. 

A key question is how does excessive dopamine transmission in the striatum contribute to psychotic 

symptoms? As described previously (Section 1.2.2, page 24), the striatum is part of basal ganglia 

circuits. Dopamine signalling within the striatum is important in integrating and processing 

information coming from cortical regions. Hence, an increase in striatal dopamine transmission 

could lead to an impaired gating of information (Maia and Frank, 2017; McCutcheon et al., 2019b). 

Surrounding stimuli would elicit abnormally high dopaminergic responses, and this would 
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contribute to imbalanced perception and thought processes that is characteristic of psychotic 

symptoms. One particular function of striatal dopamine that could importantly contribute to 

psychosis is the attribution of motivational salience to stimuli. Outside of the context of 

schizophrenia, the role of dopamine in incentive motivation and of this dopaminergic function in 

drug addiction [see for instance Robinson and Berridge (1993)] have led to the idea that this 

neurotransmitter could also regulate impaired motivational processes in psychosis. Kapur (2003) 

theorized that impairment in the attribution of incentive salience could especially play an important 

role during the prodromal stage. Indeed, continued high dopamine signalling would attribute 

aberrant motivational value to irrelevant internal and external stimuli. Hence, patients would give 

an exaggerated importance to irrelevant surrounding stimuli, which would contribute to delusional 

thoughts and hallucinations. For example, if an individual with schizophrenia has delusional 

thoughts involving being pursued, a car that is passing by would normally represent a neutral cue, 

but excessive dopamine transmission in the striatum would imbue that car with aberrant 

motivational salience (FIG. 1.6). The motivational salience gained by the car would contribute to 

the thought that, for instance, it is driven by someone pursuing the individual with schizophrenia. 

Because the increase in dopamine transmission is persistent in schizophrenia patients, the aberrant 

salience and motivational effect of these stimuli would persist and escalate. A psychotic episode is 

then reached when the increasing importance of these thoughts and perceptions significantly 

impairs the life of patients. Similarly, internal and external stimuli could be imbued with aberrant 

motivational salience in individuals with clinical high-risk of psychosis as well (Howes et al., 

2020). 

2.2.2. Negative and Cognitive Symptoms 

Cognitive and negative symptoms are hypothesised to be underlined by low mesocortical dopamine 

transmission (Weinberger, 1987; Davis et al., 1991). If this hypothesis is true, then stimulating 

dopamine transmission should improve these deficits, and it seems to do so. Schizophrenia patients 

have been consistently shown to have impaired working memory (Forbes et al., 2009), and this is 

improved by an acute administration of d-amphetamine (Kirrane et al., 2000; Barch and Carter, 

2005). Other cognitive deficits could also be due to low mesocortical dopamine transmission. For 

instance, schizophrenia patients have impaired performance in tasks engaging diverse cognitive 

function such as attention, and acute stimulant exposure improves their performance relative to 
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placebo (Daniel et al., 1991; Siegel et al., 1996). However, note that chronic stimulant 

administration (armodafinil, concomitant with antipsychotic treatment) does not improve cognitive 

functions of schizophrenia patients (Kane et al., 2010; Bobo et al., 2011). This could be due to the 

choice of the stimulant, and/or that a chronic regimen loses the beneficial effects of an acute 

administration. Nonetheless, acute stimulant administration improves cognitive functions in 

schizophrenia, and this could reflect the involvement of low mesocortical dopamine transmission 

in the cognitive deficits of schizophrenia patients. Interestingly, stimulating dopamine transmission 

also improves negative symptoms. Indeed, chronic concomitant administration of a stimulant with 

antipsychotic drugs improves negative symptoms over time, in stabilized patients showing low 

psychotic symptoms (Kane et al., 2010; Bobo et al., 2011; Lasser et al., 2013). 

FIG. 1.6 ─ Sustained, high dopamine transmission would attribute aberrant salience to irrelevant 
stimuli, and this would promote psychotic symptoms. (A) The example illustrated here shows that with 
normal levels of dopamine transmission in the striatum, irrelevant cues (such as a car) are not imbued with 
motivational salience and thereby, they remain neutral relative to their motivational effects. (B) In 
individuals with schizophrenia, irrelevant cues can be imbued with motivational salience due to the 
continuous state of increased dopaminergic transmission in the striatum. Consequently, the aberrant salience 
of irrelevant cues can exacerbate ongoing psychotic symptoms such as, for example, the delusional thought 
of being pursued by a car, as illustrated here. 
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While dopamine agonists could somewhat improve cognitive and negative symptoms, evidence 

that dopamine transmission is low in the prefrontal cortex of individuals with schizophrenia is 

mostly indirect. Neuronal activity in the prefrontal cortex of schizophrenia patients is lower relative 

to healthy controls, and this difference is most evident during cognitive tasks (Davidson and 

Heinrichs, 2003). Interestingly, amphetamine enhances both cognitive functions in schizophrenia 

patients and neuronal activity in the prefrontal cortex (Daniel et al., 1991). Also, schizophrenia 

patients have greater levels of D1-like receptor availability in the prefrontal cortex (Abi-Dargham 

et al., 2002; Abi-Dargham et al., 2012). Abi-Dargham et al. (2002) suggested that this up-

regulation of D1-like receptor availability is a compensatory change due to lower cortical dopamine 

release. A study by Slifstein et al. (2008) is in line with this idea. In their study, they measured D1-

like receptor availability in the prefrontal cortex of healthy individuals. D1-like receptor 

availability was compared between individuals with estimated high or low cortical dopamine 

release, based on the COMT polymorphism they express. Individuals expressing the Val/Val 

polymorphism of COMT are presumed to have lower levels of extracellular dopamine in the 

prefrontal cortex due to increased COMT activity, whereas individuals expressing the Met/Met 

polymorphism have presumed high cortical dopamine release due to decreased COMT activity 

(Chen et al., 2004). Slifstein et al. (2008) showed that individuals with presumed high levels of 

cortical dopamine release have lower D1-like availability in the prefrontal cortex than individuals 

with presumed lower cortical dopamine release. Hence, schizophrenia patients could have greater 

levels of D1-like receptors in the prefrontal cortex due to decreased dopamine release (Abi-

Dargham et al., 2002; Abi-Dargham et al., 2012). Individuals with schizophrenia that express 

Val/Val COMT have worst deficit in working memory than patients expressing Met/Met COMT 

(Goldberg et al., 2003), suggesting that lower levels of dopamine release in the prefrontal cortex 

are linked to working memory deficits in schizophrenia. However, the COMT polymorphism has 

not been consistently associated with negative symptoms, with some reports showing that Val/Val 

COMT is linked to more severe negative symptoms than Met/Met COMT (Wang et al., 2010; Mao 

et al., 2016), whereas other reports found no correlation (Tovilla-Zarate et al., 2013; Clelland et 

al., 2016).  

Other evidence suggesting that mesocortical dopamine transmission is low come from the 

hypothesis that in schizophrenia, excessive dopamine transmission in the striatum—a key feature 

of psychotic symptoms—could consequently reduce mesocortical dopamine transmission, or could 
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be the consequence of low mesocortical dopamine transmission (Weinberger, 1987; Davis et al., 

1991). Recent animal studies support that view. For instance, transgenic mice overexpressing D2 

receptors in the striatum show impaired working memory and impaired coherent activity between 

VTA dopamine and prefrontal cortex neurons during working memory (Duvarci et al., 2018). Also, 

increased neuronal activity in the prefrontal cortex supresses behaviours mediated by enhanced 

dopamine transmission in the striatum (Ferenczi et al., 2016). There are some reports suggesting 

that a negative relationship between subcortical and cortical dopamine transmission exists in 

schizophrenia patients. For instance, Meyer-Lindenberg et al. (2002) showed that schizophrenia 

patients have lower neuronal activity in the prefrontal cortex during a cognitive task relative to 

healthy controls, and this decreased activity in the prefrontal cortex negatively correlates with 

dopamine storage in the striatum (a relationship only found in schizophrenia patients).  

2.3. The Pharmacological Treatment of Schizophrenia Symptoms 

2.3.1. What Are Antipsychotic Drugs? 

Schizophrenia is not curable but pharmacological and psychosocial treatments can be used to 

control the expression of schizophrenia symptoms (Mueser and McGurk, 2003). Antipsychotic 

drugs are the only drugs that have been proven successful to temper psychotic symptoms. They are 

molecules that share the ability to decrease dopamine transmission. The first antipsychotic drug 

ever used in schizophrenia patients was chlorpromazine in 1952 (Laborit et al., 1952; Ban, 2007). 

This drug was initially meant to be used as an adjunctive anesthetic, but instead started to be used 

to treat schizophrenia patients due to its ‘calming’ effects. Chlorpromazine is the first of many 

antipsychotic compounds that decrease dopamine transmission via an interaction with D2-like 

receptors. Shortly after, reserpine was the second antipsychotic drug ever developed and used 

(Hollister et al., 1955). It is the only antipsychotic drug that is not a D2-like ligand. Instead, as 

mentioned previously, reserpine decreases dopamine transmission by emptying out dopamine 

vesicles (Carlsson et al., 1957). However, it was later stopped being prescribed as it has low 

antipsychotic efficacy and produces multiple side effects such as hypotension and depression 

(Feldman et al., 1997).  

Since the 50’s, dozens of D2-like ligands have been developed to treat schizophrenia symptoms. 

They are classified into two types: typical antipsychotics and atypical antipsychotics. Typical 
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antipsychotic drugs include chlorpromazine and related chemical compounds (such as 

fluphenazine, thioridazine and trifluoperazine), as well as haloperidol, sulpiride and pimozide 

(Katzung, 1992). The first atypical antipsychotic drug ever developed was clozapine in 1966 

(Hippius, 1989). The atypical class was termed so because clozapine has antipsychotic effects but 

does not have the ‘typical’ motor side effects that all the other antipsychotic drugs had at the time. 

Indeed, antipsychotic drugs can produce motor dysfunctions including Parkinson-like symptoms 

[i.e., rigidity and shaking; (Simpson and Angus, 1970)] and tardive dyskinesia [i.e., involuntary 

movements, mostly orofacial; (Simpson et al., 1979)]. The profile of clozapine was unexpected, 

because it was thought that the therapeutic effects of antipsychotic drugs are necessarily 

accompanied with motor dysfunctions (Hippius, 1989). Since then, other atypical drugs with a 

considered low risk of inducing motor dysfunctions have been developed, including olanzapine, 

risperidone, quetiapine, aripiprazole, ziprasidone, sertindole and amisulpiride (Shapiro et al., 2003; 

Spiegel and Fatemi, 2003). 

Antipsychotic drugs share the common characteristic to interact with D2-like receptors. They are 

all D2-like receptor antagonist with the notable exception that aripiprazole is a partial D2-like 

receptor agonist (Shapiro et al., 2003). Antipsychotic drugs also interact with other receptors than 

D2-like receptors, such as D1-like receptors, as well as serotoninergic, noradrenergic, cholinergic 

and histaminergic receptors (FIG. 1.7) (Miyamoto et al., 2005; Richtand et al., 2007). While most 

antipsychotic drugs interact with numerous receptors, their actions on D2-like receptors seem 

particularly important in their ability to relieve schizophrenia symptoms, especially psychotic 

symptoms (see next section). For instance, antipsychotic drugs with greater affinity for D2-like 

receptors are clinically effective at lower doses than antipsychotic drugs with a lower D2-like 

receptor affinity. Indeed, there is a positive correlation between the doses at which antipsychotic 

drugs are therapeutically effective and their affinity for D2-like receptors (Creese et al., 1976; 

Seeman et al., 1976). More recent findings using similar analysis revealed that this positive 

correlation is true for D2 receptors, but not for D3 and D4 receptors (Richtand et al., 2007) nor D1-

like receptors (Seeman, 1987). Furthermore, the degree of in vivo occupancy of striatal D2-like 

receptors by antipsychotic drugs predicts clinical outcomes. At clinically efficacious doses, 

antipsychotic drugs typically occupy above ~60-65 % of striatal D2-like receptors (Farde et al., 

1989; Wiesel et al., 1990; Farde et al., 1992; Nordstrom et al., 1993; Kapur et al., 2000b). 

Antipsychotic treatments are less efficient to improve schizophrenia symptoms when antipsychotic 
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drug dosage leads to striatal D2-like occupancy below ~60 % (Kapur et al., 2000b). Similarly, the 

subjective well-being of patients is improved when striatal D2-like occupancy is above ~60 % 

relative to when D2-like occupancy is below this threshold (de Haan et al., 2003).  

Typical and atypical antipsychotic drugs interact distinctively with D2-like receptors. While typical 

and atypical antipsychotic drugs generally produce therapeutic effects with D2-like occupancy 

above ~60 %, some atypical antipsychotic drugs can be clinically efficacious at striatal D2-like 

occupancy well under 60 % (Farde et al., 1989; Wiesel et al., 1990; Farde et al., 1992; Pilowsky 

et al., 1996; Kapur et al., 2000c). Also, atypical antipsychotic drugs dissociate more rapidly from 

D2-like receptors than antipsychotic drugs, while both drug classes bind to a similar rate to these 

receptors (Kapur and Seeman, 2001) [but see (Sahlholm et al., 2016)]. By interacting more 

‘loosely’ with D2-like receptors, atypical antipsychotic drugs are thought to interfere to a lesser 

extent with physiological dopamine transmission than typical antipsychotic drugs (Kapur and 

Seeman, 2001).  

FIG. 1.7 ─ Visual representation of antipsychotic drug affinity (Ki) for dopamine and non-dopamine 
receptors. The Ki values come from the Ki database of the Psychoactive Drug Screening Program (PDSP) 
of the National Institute of Mental Health (NIMH). Values are PDSP certified or the mean Ki values listed 
in the database if PDSD certified value is not available, as in Richtand et al. (2007). The ‘X’ indicates that 
no Ki value was available. Each column is associated to a receptor, and each row is associated to an 
antipsychotic drug. Typical antipsychotic drugs are in black and atypical drugs are in grey. 
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2.3.2. The Relative Efficacy of Antipsychotic Drugs 

2.3.2.1. Psychotic Symptoms 

As described earlier, psychotic symptoms involve high dopamine transmission in the striatum, at 

least for most patients. The antidopaminergic effects of antipsychotic drugs are effective to temper 

psychotic symptoms relative to placebo, as showed across thousands of schizophrenia patients 

treated with different type of antipsychotic drugs, whether typical or atypical (Huhn et al., 2019). 

However, antipsychotic drugs can be ineffective to treat psychotic symptoms in some patients. 

Possible explanations for this include that antipsychotic drugs promote neuroadaptations leading 

to dopamine supersensitivity (this is further described in Section 2.4, page 50). Another possibility 

is that psychotic symptoms involve different mechanisms that vary from patients to patients. 

Hence, non-dopamine mechanisms could importantly contribute, which would reduce the efficacy 

of antipsychotic drugs (even though they act on other receptors than dopamine receptors) 

(Miyamoto et al., 2005; Richtand et al., 2007). Also, for some patients, antipsychotic drugs could 

be targeting the wrong aspects of the dopamine system. As described earlier (Section 2.2.1, page 

34), psychotic symptoms are generally linked to potentiated presynaptic dopaminergic functions, 

leading to greater dopamine release and consequently greater occupation of dopamine receptors. 

However, some patients do not show enhanced presynaptic dopaminergic functions (Demjaha et 

al., 2012). These patients do not respond to antipsychotic drugs, whereas patients that show 

enhanced presynaptic dopaminergic functions are responsive (Demjaha et al., 2012). Hence, by 

acting downstream the problem (i.e., enhanced presynaptic dopaminergic functions), antipsychotic 

efficacy could be limited to a certain population of patients. This raises the question whether 

antipsychotic drugs are effective because they simply block the downstream effects of dopamine? 

If so, does this mean that blocking D1-like or D2-like receptors would similarly reduce psychotic 

symptoms because the downstream effects of dopamine are blocked? The answer is no. Indeed, 

blockade of D1-like receptors does not improve psychotic symptoms (Den Boer et al., 1995; 

Karlsson et al., 1995). Hence, even if a majority of patients show enhanced presynaptic 

dopaminergic functions and that antipsychotic drugs do not directly act on these aspects, the actions 

of antipsychotic drugs on D2-like mediated signalling are important in their ability to produce 

therapeutic effects. 
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Another important question is why do antipsychotic drugs improve psychotic symptoms? As 

described earlier, a continued hyperdopaminergic state would attribute aberrant motivational value 

to surrounding stimuli, contributing to the importance of delusional thoughts and hallucinations, 

and eventually this escalates to a psychotic episode (Kapur, 2003). By reducing dopamine 

transmission, antipsychotic drugs would temper the attribution of aberrant motivational value to 

stimuli, which would consequently help to not exacerbate delusions and hallucinations. For 

instance, antipsychotic drugs would allow to not attribute aberrant salience to a neutral car, 

preventing a worsening of the delusional thought of being pursued (FIG. 1.6, page 38). Hence, 

antipsychotic drugs do not ‘erase’ psychotic symptoms, but they would extinguish aberrantly 

salient stimuli and prevent the attribution of aberrant salience to stimuli (Kapur, 2003; Kapur et al., 

2005). Accordingly, from patients’ perspective, antipsychotic drugs would help them to feel 

detached from their psychotic symptoms (Mizrahi et al., 2005). 

2.3.2.2. Negative and Cognitive Symptoms 

The role of dopamine in negative and cognitive symptoms is unclear but could involve low 

dopamine transmission. Hence, it does not come as a surprise that antipsychotic drugs are not 

effective to temper negative and cognitive symptoms. Meta-analyses revealed that cognitive 

symptoms are generally improved in a moderate manner (if at all) by antipsychotic drugs, to a point 

where it can be questioned if it is significantly beneficial for patients (Mishara and Goldberg, 2004; 

Desamericq et al., 2014). Similar conclusions can be made with negative symptoms. Meta-analyses 

have revealed that antipsychotic treatment can be ineffective, or can moderately improve negative 

symptoms to an extent that is unlikely impactful for patients (Fusar-Poli et al., 2015; Krause et al., 

2018). Furthermore, another meta-analysis revealed that antipsychotic drugs are effective to treat 

psychotic symptoms in patients with early onset schizophrenia (before 18 years old), but they do 

not improve their negative symptoms (Harvey et al., 2016).  

When improvement of negative symptoms are noted, they could be in fact confounded by other 

effects of antipsychotic drugs (Fusar-Poli et al., 2015; Krause et al., 2018). Indeed, antipsychotic 

drugs can improve secondary negative symptoms, meaning that some symptoms experienced by 

patients can be similar to negative symptoms but have another cause such as depression or social 

deprivation (Kirschner et al., 2017). Furthermore, by reducing psychotic symptoms, antipsychotic 

drugs can also indirectly improve negative symptoms because psychotic symptoms can be at the 
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source of negative symptoms (such as social isolation caused by delusions or hallucinations) 

(Kirschner et al., 2017). Krause et al. (2018) showed that only one out of six antipsychotic drugs 

tested in their study (amisulpiride) improved negative symptoms in schizophrenia patients that are 

less likely to have secondary negative symptoms, because they have no to little psychotic 

symptoms. Hence, antipsychotic drugs might not target the neuronal substrates involved in primary 

negative symptoms, explaining their underwhelming effects. While antipsychotic drugs seem more 

appropriate to treat psychotic symptoms in most patients, non-dopamine drugs can serve as 

adjunctive treatment to temper negative and cognitive symptoms, as well as complimentary non-

pharmacological approaches such as psychosocial treatments (Mueser and McGurk, 2003; Erhart 

et al., 2006). 

2.3.3. How to Probe Antipsychotic-like Effects in Laboratory Animals? 

Animals studies allow to identify new compounds with antipsychotic-like properties, as well as to 

identify the neurobiological mechanisms involved in antipsychotic efficacy but also in 

antipsychotic failure. These valuable descriptions are obtained using behavioural paradigms with 

predictive validity to measure antipsychotic-like effects in laboratory animals. Next is a description 

of how to adequately mimic antipsychotic treatment in laboratory animals, followed by a 

description on behavioural paradigms used to estimate antipsychotic-like efficacy. 

2.3.3.1. Clinically Representative Treatment Regimen 

Using an adequate antipsychotic treatment regimen is the first step to appropriately study 

antipsychotic-like effects in laboratory animals. This allows to increase the translational value of 

preclinical studies. Two variables of the treatment regimen have to be carefully considered: the 

antipsychotic dose and the kinetic of treatment. A way to compare animal and human dosing is to 

use the proportion of D2-like receptor occupied by antipsychotics in the striatum. This index is a 

good comparator because, as mentioned previously, all antipsychotic drugs interact with D2-like 

receptors and this interaction is closely linked to antipsychotic efficacy. Therefore, for a given 

antipsychotic drug, the dose used in animals should match D2-like occupancy that is linked to 

therapeutic effects in schizophrenia patients—usually above ~65 %, no more than 80 % to avoid a 

greater risk of motor dysfunctions as a side effect (Kapur et al., 2003). 
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The kinetics of treatment should also match what is recommended for treatment in humans. 

Prescription practices favour that patients are continuously exposed to antipsychotic drugs, leading 

to continuous high levels of D2-like receptor occupancy above the minimal threshold associated 

with therapeutic effects. In schizophrenia patients, this is achieved by daily intake of oral 

antipsychotic drugs or via intra-muscular depot of long-acting injectable antipsychotics every few 

weeks (FIG. 1.8A) (Farde et al., 1989; Remington et al., 2006; Mamo et al., 2008). To achieve 

continuous and high levels of D2-like receptor occupancy in rodents, antipsychotic drugs can be 

administered via an osmotic minipump implanted subcutaneously (that continuously deliver its 

content) or via an intra-muscular depot of long-acting injectable antipsychotics every few weeks 

as in humans (FIG. 1.8B) (Kapur et al., 2003; Turrone et al., 2003b). Of note, it is common in 

preclinical studies to expose rodents chronically to antipsychotic drug via daily injections given 

through the systemic route. However, this method does not mimic the kinetic of antipsychotic 

treatment in humans, because rodents metabolise antipsychotic drugs more quickly than humans. 

Hence, after a single subcutaneous injection, D2-like receptor occupancy is high 1-2 hours after 

the injection (i.e., above the minimal threshold for therapeutic effects), but very low 24 hours later, 

FIG. 1.8 ─ Occupancy of striatal D2-like receptors in schizophrenia patients and laboratory animals. 
Both in humans and laboratory animals, antipsychotic drugs produce antipsychotic effects typically when 
they occupy ~60-80 % of D2-like receptors in the striatum. (A) When schizophrenia patients adhere to their 
treatment, daily oral intake of antipsychotic drugs leads to continuously high D2-like occupancy in the 
striatum. Intra-muscular depot of a long-acting injectable antipsychotic also achieves sustained and high 
D2-like occupancy. (B) In rodents, administration of antipsychotic drugs via subcutaneous minipumps or 
via an intra-muscular depot of long-acting injectable antipsychotic achieves continuously high D2-like 
occupancy. Thus, this mimics the temporal dynamic of antipsychotic treatment in compliant patients. (C) 
Because antipsychotic drugs are quickly metabolised in rodents, daily injections lead to a transiently high 
occupancy of D2-like receptors. Thus, this treatment regimen does not mimic standard antipsychotic 
treatment regimen used in the clinic. 



47 

leading to transient, high exposure to antipsychotic drugs (FIG. 1.8C) (Kapur et al., 2000a; Kapur 

et al., 2003). While this treatment regimen is not modelling standard antipsychotic treatment in 

humans, it could represent an alternative approach to the chronic management of schizophrenia 

symptoms, because regular, transient exposure could reduce the incidence of aversive effects over 

time and still be therapeutically efficacious (this is further described in Section 2.4.3, page 56). 

2.3.3.2. Conditioned Avoidance Responding 

Conditioned avoidance responding is a common behavioural paradigm used to measure 

antipsychotic-like effects in animals. The apparatus used to measure this behaviour typically 

consists of a test chamber with two compartments (FIG. 1.9A). Animals learn that a cue (such as a 

tone) predicts an electrical shock that is delivered through the floor in the compartment where the 

animal is located. No electrical shock is given in the adjacent compartment. With repeated training, 

the cue acquires predictive value and become a CS. Thereby, animals learn to go to the safe side 

during the CS rather than during the delivery of the electrical shock (Cook and Sepinwall, 1975; 

Wadenberg and Hicks, 1999). When animals go to the safe side in response to the CS, this is 

considered a conditioned avoidance response. When animals go to the safe side during the electric 

shock delivery, this is referred to as an unconditioned escape. When animals do not escape during 

the electrical shock, this is referred to as a failure. In well-trained animals, antipsychotic treatment 

reduces conditioned avoidance responding without reducing unconditioned escape from the 

electrical shock or failure to escape (Cook and Sepinwall, 1975; Wadenberg and Hicks, 1999). By 

not decreasing the numbers of unconditioned escape and failure to escape, antipsychotic drugs are 

unlikely to reduce conditioned avoidance responding by generally reducing motor performance 

(Beninger, 1989; Wadenberg and Hicks, 1999).  

Antipsychotic drugs reliably reduce conditioned avoidance responding at clinically representative 

doses (Wadenberg and Hicks, 1999; Wadenberg et al., 2001). Generally, non-antipsychotic 

compounds either reduce avoidance and escape or neither of those, but do not reduce avoidance 

and spare escape like antipsychotic drugs do (Wadenberg and Hicks, 1999). Hence, the selective 

reduction of conditioned avoidance responding is a well validated predictor of antipsychotic-like 

effects. As mentioned previously (Section 2.3.2.1, page 43), antipsychotic drugs are thought to 

reduce the motivational salience of surrounding stimuli, an effect that would contribute to the 

reduction of psychotic symptoms. Hence, antipsychotic drugs could have similar psychological 
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effects in the conditioned avoidance responding paradigm—i.e., attenuating the motivational 

salience of the aversive CS so that it is less powerful to elicit avoidance (Kapur et al., 2005). 

FIG. 1.9 ─ Behavioural measures of antipsychotic-like effects in laboratory animals. (A) In the 
conditioned avoidance responding paradigm, animals learn that a conditioned stimulus (CS, here a tone) 
predicts an electric shock. When animals go to the adjacent compartment during CS presentation, this is 
considered to be an avoidance response, whereas during the electric shock, this is considered to be an escape 
response. Antipsychotic drugs decrease avoidance but not escape responding. (B) Antipsychotic drugs 
reduce the psychomotor response to dopamine agonists. (C) In the pre-pulse inhibition paradigm, a startle 
pulse does not evoke a startle reflex when preceded by a pre-pulse of low intensity. This effect is termed 
pre-pulse inhibition. Dopamine agonists inhibit pre-pulse inhibition, and antipsychotic drugs reverse that 
effect of dopamine agonists. 
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2.3.3.3. Locomotor Activity 

The antidopaminergic effects of antipsychotic drugs can be probed by measuring their influence 

on the behavioural effects of dopamine agonists. A simple test is to measure the inhibitory effects 

of antipsychotic drugs on the locomotor activating effects of dopamine agonists (FIG. 1.9B). This 

suppressive effect of antipsychotics has been demonstrated with psychostimulant drugs including 

d-amphetamine and apomorphine (Niemegeers and Janssen, 1979; Ljungberg and Ungerstedt,

1985). Importantly, this inhibitory effect of antipsychotic drugs relies on their ability to reduce

dopamine transmission in the striatum—a key region in psychosis. Indeed, infusion of

antipsychotic drugs into the nucleus accumbens or caudate-putamen is sufficient to reduce

psychomotor activity induced by dopamine agonists administered either locally or through the

systemic route (Pijnenburg et al., 1975; Ervin et al., 1981; van den Boss et al., 1988; Duvauchelle

et al., 1992; Baker et al., 1996; Dalia et al., 1998).

An important issue to consider is that because antipsychotic drugs alone can reduce spontaneous 

locomotor activity, the ability of these drugs to reduce the stimulating effects of dopamine agonists 

could be non-specific. Such reduction in basal activity can be caused by the sedative effects of 

antipsychotics (Spiegel and Fatemi, 2003). Also, in accordance with the role of dopamine in 

motricity and motivation (Section 1.3, page 27), antipsychotic drugs reduce the ability of animals 

to perform actions but also their motivation to perform actions (Beninger, 1989). Even if 

antipsychotic drugs can reduce spontaneous locomotor activity, this effect does not represent a 

sufficient explanation as to why these medications reduce the locomotor response to dopamine 

agonists, because the effects of antipsychotic drugs on both type of activity (spontaneous and 

stimulated) does not necessarily correlate. Indeed, some antipsychotic drugs are much more potent 

to reduce amphetamine-induced locomotion than spontaneous locomotion, and they can be 

effective to reduce hyperlocomotor activity without influencing basal activity (Schaefer and 

Michael, 1984; Arnt, 1995). 

2.3.3.4. Pre-pulse Inhibition 

Pre-pulse inhibition measures gating of sensory information and recruits basal ganglia circuits 

(Swerdlow et al., 1992). In this paradigm, the startle reflex is measured following an auditory 

startle pulse. The amplitude of the startle reflex is compared with a condition where the startle 
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pulse is shortly preceded by an auditory pulse of a very low intensity that is difficult to detect. This 

pre-pulse reduces the startle reflex evoked by the startle pulse. This effect is termed pre-pulse 

inhibition.  

Dopaminergic activity influences pre-pulse inhibition, especially D2-like transmission. 

Psychostimulant drugs and D2-like agonists but not D1-like agonists disturb pre-pulse inhibition, 

and antipsychotic drugs but not D1-like antagonists restore pre-pulse inhibition (FIG. 1.9C) 

(Mansbach et al., 1988; Swerdlow et al., 1991; Schwarzkopf et al., 1993; Swerdlow and Geyer, 

1993; Wan and Swerdlow, 1993; Caine et al., 1995; Varty and Higgins, 1995). Interestingly, 

antipsychotic drug dosing that are effective to reverse pre-pulse inhibition in laboratory animals 

positively correlate with clinically effective doses in schizophrenia patients and with D2-like 

receptors affinity (Swerdlow et al., 1994). The effects of antipsychotic drugs on pre-pulse 

inhibition rely on their ability to reduce striatal dopamine transmission, a relevant effect in the 

context of psychosis. Indeed, infusion of dopamine in the striatum impairs pre-pulse inhibition, and 

this is reversed by antipsychotic drug administration (Wan and Swerdlow, 1993; Swerdlow et al., 

1994). 

2.4. Antipsychotic-evoked Dopamine Supersensitivity 

It is common practice to favour a continuous exposure to antipsychotic drugs, as it is thought to be 

the best approach to stabilize patients and to prevent psychosis relapse. Patients can take daily oral 

antipsychotics, or they can be treated with extended releasing formulation of antipsychotic drugs, 

ensuring a continuous delivery of antipsychotic drugs for weeks. Additionally, patients can be 

treated with more than one antipsychotic drug at the time. Like chronic exposure to any drug would 

do, chronic antipsychotic exposure produces numerous side effects over time that are deleterious 

for patients (Murray et al., 2016). Indeed, antipsychotic drugs can produce metabolic disorders 

(e.g., weight gain, type 2 diabetes), endocrine disorders (e.g., hyperprolactinemia), cardiovascular 

disorders (e.g., hypertension), as well as motoric disturbances (Katzung, 1992; Muench and Hamer, 

2010; De Hert et al., 2011). Also, chronically interfering with D2-like transmission can promote 

neuronal adaptations leading to supersensitivity to dopamine stimulation. We previously reviewed 

the clinical and preclinical manifestations of antipsychotic-evoked dopamine supersensitivity, as 

well as contributing factors and neurobiological mechanisms potentially implicated in this long-
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term effect of antipsychotic drugs [see Annex, page 249; (Servonnet and Samaha, 2020)]. Below I 

briefly describe important concepts on antipsychotic-evoked dopamine supersensitivity. 

2.4.1. Behavioural Manifestations of Dopamine Supersensitivity 

In schizophrenia patients, dopamine supersensitivity would counteract the therapeutic effects of 

antipsychotic drugs and exacerbate psychotic symptoms (FIG. 1.10A) (Chouinard et al., 1978; 

Chouinard and Jones, 1980; Chouinard et al., 2017). As described earlier, antipsychotic drugs can 

effectively treat psychotic symptoms because they have antidopaminergic effects. Hence, 

dopamine supersensitivity would break through during treatment and counteract the 

antidopaminergic effects of antipsychotic drugs, leading to a tolerance to these effects. 

Consequently, patients would be more likely to experience a relapse to psychosis. Additionally, 

patients could be more prone to relapse because dopamine supersensitivity exacerbates psychotic 

symptoms per se, as they involve high dopamine transmission (Howes and Kapur, 2009). Such 

exacerbation of psychotic symptoms is most pronounced when antipsychotic dosing is decreased, 

or treatment is ceased (Chouinard et al., 1978; Chouinard and Jones, 1980). Schizophrenia patients 

frequently stop their medication because of their aversive effects (Lieberman et al., 2005) and this 

evidently can cause psychosis relapse. However, psychosis relapse commonly occur even in 

compliant patients (Rubio et al., 2020), and this could be due to dopamine supersensitivity. 

It is unlikely feasible to establish in humans whether antipsychotic drugs cause dopamine 

supersensitivity over time. However, there are several lines of evidence supporting that 

antipsychotic drugs can have this effect in humans. This is most evident when relating signs of 

dopamine supersensitivity with the emergence and expression of tardive dyskinesia. This is a side 

effect purely produced by antipsychotic drug exposure and could involve dopamine 

supersensitivity (Casey, 1991; Waln and Jankovic, 2013). Antipsychotic-evoked dopamine 

supersensitivity and tardive dyskinesia seem to commonly co-occur in schizophrenia patients 

(Chouinard et al., 1978; Chouinard and Jones, 1980; Fallon and Dursun, 2011; Fallon et al., 2012). 

In fact, tardive dyskinesia seems to be an important predictor of psychosis relapse in compliant 

patients, as shown in a meta-analysis including 5,130 patients (Rubio et al., 2020). Hence, both 

dopamine supersensitivity and tardive dyskinesia could be parallel consequences of neuronal 

adaptations provoked by chronic antipsychotic drug exposure. Interestingly, dopamine 

supersensitivity and tardive dyskinesia share common characteristics, and their expression in 
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schizophrenia patients follows a similar course. They are both produced by long-term exposure to 

antipsychotic drugs, can persist following antipsychotic treatment cessation, and can be tempered 

by increased antipsychotic drug exposure, or worsen by decreased antipsychotic drug exposure 

(Chouinard et al., 1978). Furthermore, a longitudinal study following a large cohort of 

 

 
 
FIG. 1.10 ─ Antipsychotic-evoked dopamine supersensitivity. (A) Early into treatment, antipsychotic 
drugs have strong antipsychotic-like effects (blue area). Over time, dopamine (see next page ) 
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schizophrenia patients (N = 8,620) over a year showed that the emergence and increased severity 

of tardive dyskinesia is paralleled by a worsening of schizophrenia symptoms, most likely 

psychotic symptoms (Tenback et al., 2007). Another important observation supporting that 

antipsychotic drugs produce dopamine supersensitivity in humans is that treated schizophrenia 

patients are more sensitive to the psychotogenic effects of amphetamines than untreated patients, 

as suggested by a meta-analysis (Lieberman et al., 1987). 

Preclinical studies support the notion that antipsychotic drugs can produce dopamine 

supersensitivity over time. FIGS. 1.10B-D summarise behavioural manifestations of antipsychotic-

evoked dopamine supersensitivity in laboratory animals. Some aspects of antipsychotic-evoked 

dopamine supersensitivity observed in humans are mimicked in laboratory animals, including 

treatment tolerance. As described earlier, antipsychotic-like efficacy is measured in laboratory 

animals by evaluating the suppressive effects of these drugs on conditioned avoidance responding, 

on dopamine agonist-induced psychomotor effects and on dopamine agonist-induced disruption of 

pre-pulse inhibition. Using these indexes, it was shown that antipsychotic drugs are effective to 

produce antipsychotic-like effects early into treatment (FIG. 1.10B), but these effects are reduced 

or lost later during the treatment (FIG. 1.10C), resembling treatment tolerance in humans (Asper et 

al., 1973; MØller Nielsen et al., 1974; Samaha et al., 2007; Samaha et al., 2008; Amato et al., 

2018). Like in humans, increasing antipsychotic exposure overcomes the lost of antipsychotic-like 

effects provoked by dopamine supersensitivity (Samaha et al., 2007). Furthermore, chronic 

antipsychotic treatment can produce orofacial motor disturbances in rodents, termed vacuous 

chewing movement, that is related to tardive dyskinesia in humans (Waddington et al., 1983). 

Antipsychotic treatment regimens that produce dopamine supersensitivity are more prone to 

produce vacuous chewing movement than antipsychotic treatment regimens that do not produce 

dopamine supersensitivity over time (Turrone et al., 2003a, 2005). 

(FIG. 1.10 ) supersensitivity breaks through during ongoing antipsychotic treatment (orange area) and 
reduces antipsychotic efficacy. The expression of dopamine supersensitivity is even higher after treatment 
cessation because it is no longer tempered by antipsychotic drugs. (B) Early into treatment, antipsychotic 
drugs produce antipsychotic-like effects, as indicated by a reduction of conditioned avoidance responding, 
of the locomotor activating effects of dopamine agonists and of the abolition of pre-pulse inhibition induced 
by dopamine agonists. (C) These antipsychotic-like effects are lost over time due to dopamine 
supersensitivity, and this resembles treatment tolerance in humans. (D) After treatment cessation, dopamine 
supersensitivity potentiates the psychomotor and reward-enhancing effects of dopamine agonist. CS, 
conditioned stimuli. 
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Dopamine supersensitivity is most evident following treatment cessation because it is no longer 

tempered by antipsychotic drugs. Notably, rodents with a history of chronic antipsychotic exposure 

are supersensitive to the psychomotor effects of dopamine agonists (FIG. 1.10D) (Gianutsos et al., 

1974; Sayers et al., 1975; Smith and Davis, 1975; Vonvoigtlander et al., 1975; Smith and Davis, 

1976; Clow et al., 1979; Montanaro et al., 1982; Rebec et al., 1982; Ericson et al., 1996; Kosten, 

1997; Pudiak and Bozarth, 1997; Meng et al., 1998; Samaha et al., 2007). Antipsychotic treated-

rodents are supersensitive to other effects of dopamine agonists as well. Indeed, d-amphetamine 

potentiates the incentive motivational value gained by CS (Robbins et al., 1983), and this d-

amphetamine effect is potentiated in rats that received an antipsychotic treatment regimen 

producing dopamine supersensitivity, but not by a regimen that do not produce this supersensitivity 

(FIG. 1.10D) (Bedard et al., 2011, 2013; El Hage et al., 2015). This is an important observation in 

regard to psychotic symptoms, given that it could be favored by an aberrant attribution of 

motivational salience to surrounding stimuli (Kapur, 2003) (Section 2.2.1, page 34). Also, as 

described later (Section 3.4, page 66), when CS gain too much motivational value, they can 

promote inappropriate responses in drug addiction. Thereby, this effect of dopamine 

supersensitivity could play a role in the high prevalence of drug addiction among individuals with 

schizophrenia (Samaha, 2014). Indeed, approximately 40% of schizophrenia patients also have a 

substance use disorder (Kavanagh et al., 2002; Swartz et al., 2006; Hunt et al., 2018), while this 

illness is affecting 10-20 % of the general population (Anthony et al., 1996; Veldhuizen et al., 

2007).  

2.4.2. Mechanisms Underlying Dopamine Supersensitivity 

The neurobiological mechanisms underlying antipsychotic-evoked dopamine supersensitivity are 

largely unknown. Antipsychotic-evoked dopamine supersensitivity could be underlined by 

enhanced D2-like transmission. By chronically occupying D2-like receptors, chronic exposure to 

antipsychotic drugs up-regulates the striatal levels of these receptors both in humans (Silvestri et 

al., 2000; Kestler et al., 2001) and laboratory animals (Burt et al., 1977; Fleminger et al., 1983; 

Severson et al., 1984; MacKenzie and Zigmond, 1985; Wilmot and Szczepanik, 1989; Jiang et al., 

1990; Marin and Chase, 1993; Merchant et al., 1994; Huang et al., 1997; Samaha et al., 2007; 

Samaha et al., 2008; Ginovart and Kapur, 2012; Tadokoro et al., 2012; Oda et al., 2015). In 

laboratory animals, the link between dopamine supersensitivity and their affinity state for 
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dopamine has been directly examined. D2-like receptors are in a high affinity state for dopamine 

when they are bound to Gi/o proteins (D2-likeHIGH), but in a low affinity state when they are not 

bound to these proteins. Studies have shown that dopamine supersensitivity correlates with changes 

in the density of D2-like/D2-likeHIGH receptors. Dopamine-supersensitive rats show elevated D2-

like and D2-likeHIGH receptor levels in the striatum (Samaha et al., 2007). These alterations are 

observed before the emergence of behavioural signs of dopamine supersensitivity and persist after 

treatment cessation only when the antipsychotic treatment regimen produces persistent dopamine 

supersensitivity (FIG. 1.11A) (Samaha et al., 2007). Furthermore, antipsychotic treatment regimens 

that do not induce dopamine supersensitivity can also increase the striatal level of D2-likeHIGH 

receptor late into treatment (FIG. 1.11B) (Seeman et al., 2005; Samaha et al., 2008). However, this 

enhancement is more moderate than the one produced by treatment regimens evoking dopamine 

supersensitivity, and does not persist after treatment cessation (FIGS. 1.11A versus 1.11B) (Samaha 

et al., 2007; Samaha et al., 2008). Other than D2-like receptors, antipsychotic-evoked dopamine 

supersensitivity could involve D1-like-, neurotensin-, serotonin-, noradrenaline- and glutamate-

FIG. 1.11 ─ Antipsychotic-evoked dopamine supersensitivity is paralleled by an increase in the 
number of D2-like receptors and D2-like receptors in a high affinity state for dopamine (D2-likeHIGH) 
in the striatum. The ‘=’ symbol indicates no change relative to antipsychotic-naïve animals. (A) 
Antipsychotic treatment regimens producing dopamine supersensitivity enhance early on the striatal level 
of D2-like and D2-likeHIGH receptors, even before the emergence of dopamine supersensitivity. After 
treatment cessation, the enhanced level of D2-likeHIGH receptors remains stable, while the number of D2-
like receptors is further enhanced. (B) Antipsychotic treatment regimens less likely to produce dopamine 
supersensitivity do not alter the number of D2-like receptors in the striatum but elevate the number of D2-
likeHIGH receptors late into treatment. Their number returns to control levels after discontinuation of 
antipsychotic treatment. 
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mediated signalling, as well as alterations in dopamine reuptake, but no clear mechanisms have 

been identified yet (Servonnet and Samaha, 2020). For instance, repeated injections of dopamine 

agonists sensitise to the behavioural effects of these drugs over time, and this is accompanied by a 

greater release of striatal dopamine in response to the agonist (Robinson et al., 1988; Akimoto et 

al., 1989; Paulson and Robinson, 1995). However, antipsychotic-evoked dopamine 

supersensitivity does not correlate with a potentiation in dopamine release stimulated by dopamine 

agonists (Compton and Johnson, 1988; Ichikawa and Meltzer, 1992; Samaha et al., 2007). 

So far, very little is known on how antipsychotic-evoked dopamine supersensitivity exacerbates 

the ability of dopamine agonists to enhance the incentive motivational properties of appetitive CS. 

Microinfusion of dopamine agonists into the nucleus accumbens enhances the instrumental pursuit 

of appetitive CS in otherwise neurologically intact animals (Taylor and Robbins, 1984; Kelley and 

Delfs, 1991), and this effect is amplified in dopamine-supersensitive rats that received repeated 

cocaine injections (Taylor and Horger, 1999). However, in antipsychotic-treated rats, neuronal 

transmission within the nucleus accumbens is neither sufficient nor necessary for the sensitised 

response to appetitive CS (El Hage et al., 2015). There is also no evidence of the implication of the 

caudate-putamen (El Hage et al., 2015). Hence, extra-striatal regions may regulate the exacerbated 

motivation for appetitive CS produced by antipsychotic-evoked dopamine supersensitivity. 

2.4.3. Can Dopamine Supersensitivity Be Prevented? 

While the neurobiological mechanisms underlying antipsychotic-evoked dopamine 

supersensitivity remain elusive, there have been promising leads on how to decrease the incidence 

of dopamine supersensitivity evoked by chronic antipsychotic drug exposure. According to animal 

studies, atypical antipsychotic drugs are less likely to persistently promote dopamine 

supersensitivity after antipsychotic treatment withdrawal (Samaha et al., 2007; Fukushiro et al., 

2008; Carvalho et al., 2009; Tadokoro et al., 2012; Bedard et al., 2013). However, atypical 

antipsychotic drugs can produce dopamine supersensitivity during ongoing antipsychotic 

treatment, as indicated by a loss of antipsychotic-like effects (Samaha et al., 2007; Amato et al., 

2018). Alternatively, one promising approach that would be less likely to produce dopamine 

supersensitivity either during ongoing treatment or after treatment cessation is by extending the 

period in between antipsychotic intake, so that D2-like occupancy is transiently and regularly above 

65 % rather than continuously above 65 % with more frequent dosing (e.g., taking an oral 
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antipsychotic drug every other day instead of everyday). We reviewed extended dosing strategies 

in humans and laboratory animals [see Annex, page 290; (Servonnet et al., 2020a)]. In stabilised 

patients, extended dosing strategies represent a safe and effective way to manage schizophrenia 

symptoms, even if extended intake generally decreases to 50 % antipsychotic drug exposure 

(McCreadie et al., 1980; Remington et al., 2005; Remington et al., 2011; Takeuchi et al., 2014). 

Similarly, extending the interval between intra-muscular depot of long-acting injectable 

antipsychotics can remain effective to treat patients (Nyberg et al., 1995; Carpenter et al., 1999; 

Uchida and Suzuki, 2014). Extended dosing has also been studied in laboratory animals. As 

described previously, animals that are given daily systemic administration of antipsychotic drugs 

are exposed transiently rather than continuously (Section 2.3.3.1, page 45). By allowing predictable 

and regular periods of physiological dopamine transmission, extended antipsychotic exposure is 

less likely to produce neuronal adaptations leading to dopamine supersensitivity relative to 

continuous exposure in rats. Consequently, while continuous antipsychotic treatment becomes 

ineffective to produce antipsychotic-like effects over time, extended treatment remains effective to 

produce these effects (Samaha et al., 2008). Also, the persistent effects of dopamine 

supersensitivity after treatment cessation are mitigated with extended dosing strategies. Indeed, 

after treatment cessation, animals that were transiently exposed either show a comparable 

behavioural response to dopamine agonists than antipsychotic-naïve animals, or a reduced response 

relative to continuously-treated animals (Ericson et al., 1996; Samaha et al., 2008; Bedard et al., 

2011; Servonnet et al., 2017).  

2.4.4. Could Stress Play a Role in Antipsychotic-evoked Dopamine Supersensitivity? 

One aspect that need further investigation is the role of stress in antipsychotic-evoked dopamine 

supersensitivity. This is important to consider given that stress is a contributing factor to psychosis 

relapse (McCutcheon et al., 2019a) and that the degree of stress positively correlates with the 

severity of psychotic symptoms (Naeem et al., 2006). Furthermore, stressors elicit greater release 

of dopamine in the striatum of schizophrenia patients than of healthy individuals (Mizrahi et al., 

2012). Knowing that antipsychotic-evoked dopamine supersensitivity may exacerbate psychotic 

symptoms in patients, one possible mechanism by which this supersensitivity does so is by 

enhancing the vulnerability to stressors. In other words, antipsychotic-evoked dopamine 
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supersensitivity could produce a cross-sensitisation between the effects of stress and dopamine 

stimulation. 

Outside of the context of antipsychotic drugs, there are several lines of evidence supporting that 

stress and dopamine activity are tightly connected. For instance, stressors are sufficient to enhance 

the behavioural response to dopamine agonists (Antelman et al., 1980; Robinson et al., 1985; 

Leyton and Stewart, 1990; Piazza et al., 1990). Similarly, the vulnerability to stressors predicts the 

vulnerability to the behavioural effects of dopamine agonists. For instance, rats that show a greater 

locomotor response to a novel environment [a behavioural sign found in chronically stressed 

animals (Marin et al., 2007)] are supersensitive to the behavioural effects of d-amphetamine, 

cocaine, apomorphine and GBR12909 (Piazza et al., 1989; Hooks et al., 1991; Hooks et al., 1994). 

Furthermore, the stress hormones glucocorticoids (mainly corticosterone in rodents, cortisol in 

humans) are both sufficient and necessary for the behavioural response to dopamine agonists. For 

instance, administration of corticosterone is sufficient to potentiate the behavioural effects of d-

amphetamine (Piazza et al., 1991; Cador et al., 1993). Similarly, when corticosterone plasmatic 

levels are enhanced by stress, this correlates with a greater psychomotor response to d-

amphetamine (Piazza et al., 1991). Removal of adrenal glands (i.e., adrenalectomy) abolishes the 

plasmatic levels of corticosterone and reduces the psychomotor effects of d-amphetamine, and the 

latter impairment is rescued by corticosterone replacement therapy (Cador et al., 1993).  

In the context of antipsychotic-evoked dopamine supersensitivity, there are some correlational or 

indirect evidence that dopamine supersensitivity could enhance stress-related effects. For instance, 

psychosis relapse seems provoked by more minor stressors in schizophrenia patients showing signs 

of dopamine supersensitivity relative to patients that do not show signs of this supersensitivity 

(Fallon and Dursun, 2011). Also, antipsychotic drugs reduce the behavioural response to stressors, 

and when dopamine supersensitivity breaks through during ongoing treatment, antipsychotic drugs 

lose their ability to reduce that response. Indeed, early into treatment, antipsychotic treatment 

reduces the locomotor response to acute stress, but this effect is lost late into treatment with the 

emergence of dopamine supersensitivity (Amato et al., 2018). Similarly, antipsychotic treatment 

regimen producing dopamine supersensitivity loses over time their ability to reduce conditioned 

avoidance responding elicited by an aversive CS (Samaha et al., 2007). Hence, with the emergence 
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of dopamine supersensitivity, animals become more responsive to dopamine stimulation and 

perhaps to stressors as well, and this should be considered given that stress exacerbates psychosis. 

3. IMPORTANCE OF CONDITIONED STIMULI IN BEHAVIOUR

As described in Section 2.4.1 (page 51), antipsychotic-evoked dopamine supersensitivity enhances 

the motivational properties of reward-predictive cues. This could play a role in abnormal 

motivational processes in schizophrenia, such as psychotic symptoms (Kapur, 2003) and the 

greater vulnerability to drug addiction (Samaha, 2014). The neurobiological mechanisms 

underlying the ability of dopamine supersensitivity to potentiate the incentive effects of 

conditioned rewards are unclear. There is no evidence of the implication of the striatum (El Hage 

et al., 2015), even though this region critically regulates the motivational properties of appetitive 

CS (Taylor and Robbins, 1984; Kelley and Delfs, 1991; White et al., 1991; Chu and Kelley, 1992). 

We were therefore interested in investigating the potential role of extra-striatal structures, 

especially the basolateral nucleus of the amygdala. It has been well characterized that the integrity 

of this nucleus is necessary for CS to evoke motivated responses (this is later characterised in 

Section 4.2, page 69). However, there are important aspects that are unclear on how the basolateral 

amygdala regulates the behavioural effects of CS, especially concerning whether this nucleus is 

sufficient to intensify appetitive conditioning. Thus, one of the goals of the present thesis was to 

better understand the role of the basolateral amygdala in the behavioural effects of appetitive CS 

in a normal state (i.e., no prior antipsychotic drug exposure). Such investigations could give 

important insights on neurobiological mechanisms underlying antipsychotic-evoked dopamine 

supersensitivity. This work could also have important implications in maladaptive motivated 

responses found in psychiatric disorders such as drug addiction and depression. Before describing 

the basolateral amygdala and its role in appetitive conditioning (Section 4), here I first describe the 

importance of CS in behaviour, how the behavioural effects of CS are studied in laboratory animals, 

followed by a brief description on how CS influence psychiatric disorders. 

3.1. What Are Conditioned Stimuli? 

For survival, animals need to avoid life-threatening situations such as predators, and to locate 

essential rewards such as food, water and mating partners. However, as first described by Ivan 

Petrovitch Pavlov (Pavlov, 1927), it is necessary to associate surrounding environmental stimuli 
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(e.g., smell, noise, place) with biologically relevant events to predict their incoming availability 

and consequently, to make an adequate response (escape or approach). Indeed, animals are more 

likely to avoid threatening situations by being able to identify an upcoming danger through 

environmental stimuli (e.g., sensing predator smell and sound), rather than through direct contact 

with a dangerous situation. As indicated by Pavlov, animals would become extinct if they were 

avoiding threatening situations when ‘the teeth of the foe were in their flesh’ (Pavlov, 1927). 

Similarly, rewards themselves are usually not readily available but can be localised through 

environmental stimuli (e.g., smell of food). Such environmental stimuli are initially neutral for 

animals but become biologically relevant when they become effective predictors of rewards or 

threats. This process of stimulus-reward/threat association is termed Pavlovian conditioning, 

named after Pavlov. Hence, through Pavlovian conditioning, environmental stimuli become 

predictors of impending reward or threat and are therefore termed CS—conditioned stimuli. In 

contrast, stimuli that require no conditioning to be biologically relevant (reward, threat) are termed 

unconditioned stimuli (UCS). On their own, CS can evoke some of the responses evoked by the 

associated UCS. For instance, a food-predicting CS can elicit salivation and approach (Bindra, 

1974), whereas a threat-predicting CS can elicit freezing and an increase in blood pressure 

(LeDoux, 2000). CS have the ability to internally represent the associated UCS because of the 

conditioned responses elicited by CS presentation, and/or because the CS allow to internally 

represent UCS emotional value, and/or its sensory properties (Cardinal et al., 2002). 

The study of Pavlovian conditioning has had and still has a broad impact on the neuroscience field. 

Studying CS-UCS conditioning allowed to unveil neurobiological mechanisms involved, for 

instance, in learning [e.g., Kamin (1967)], memory [e.g., Nader and Einarsson (2010), Tonegawa 

et al. (2018)], fear and anxiety [e.g., LeDoux (2000), Maren and Quirk (2004)], and to study the 

therapeutic-like and neurobiological effects of medications such as antipsychotic drugs, as already 

described with the conditioned avoidance responding paradigm (Section 2.3.3.2, page 47). In 

rodents, Pavlovian conditioning takes place in a conditioning chamber (FIG. 1.12A). Animals learn 

to associate an initially neutral stimulus (e.g., tone, light, lever) with an UCS (e.g., food, electric 

shock). With this training, animals learn the contingency, and this is indicated by conditioned 

responses such as approaching a food port during CS presentation (i.e., conditioned approach; FIG. 

1.12A).  
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CS elicit behavioural responses not only 

through their ability to predict incoming UCS 

but also through their motivational effects. 

Thereby, CS act as powerful guides in everyday 

life toward unconditioned rewards and away 

from unconditioned threats. When they acquire 

too much power, CS can significantly impact 

maladaptive motivated behaviours in 

psychiatric disorders. Next is a description of 

behavioural paradigms that are used in 

laboratory animals to study different aspects of 

the motivational effects of appetitive CS. In 

addition to conditioned approach elicited by CS 

(FIG. 1.12A), these behavioural paradigms have 

been particularly useful to understand how the 

basolateral amygdala influences the response to 

appetitive CS. Then, a brief description on how 

to study the motivational effects of aversive CS 

is given, followed by a brief description on how 

CS with inappropriate level of motivational 

value can impact psychiatric disorders.  

3.2. Behavioural Effects of 

Appetitive Conditioned Stimuli 

As described in Section 1.3.2 (page 28), 

rewards are attractive, wanted and reinforce 

goal-directed behaviours because of their 

incentive motivational effects (Wise and 

Rompre, 1989; Robinson and Berridge, 1993; 

Wise, 2004). CS that predict reward availability 

can become rewarding themselves and thereby, 

FIG. 1.12 ─ Pavlovian and operant conditioning 
procedures. (A) Using Pavlovian conditioning 
procedures, animals learn that an initially neutral 
stimulus predicts an impending unconditioned 
stimulus (UCS; reward or threat). Hence, through 
conditioning, the neutral stimulus becomes a 
conditioned stimulus (CS) and evokes conditioned 
responses (here, an animal approaches a receptacle 
where reward delivery is imminent, this is referred 
to as conditioned approach). (B) Using operant 
conditioning procedures, animals learn the 
association between an instrumental response (here, 
lever pressing) and stimulus delivery/presentation. 
The inactive manipulandum (here, an inactive lever) 
serves as a control of the instrumental procedure. 
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they can have the same motivational effects than unconditioned rewards (Bindra, 1974). The 

behavioural paradigms described here study these different aspects of incentive motivation.  

In addition to Pavlovian conditioning, operant conditioning procedures can also be used to study 

the motivational effects of appetitive CS. In operant conditioning procedures, animals learn the 

contingency between an instrumental response (e.g., pressing on a lever, making a nose poke in a 

port hole) and the presentation or delivery of a stimulus (CS or UCS; FIG. 1.12B) (Skinner, 1938). 

This procedure determines the extent to which a stimulus reinforces an instrumental response. 

Hence, Pavlovian conditioning establishes a stimulus-stimulus association, whereas operant 

conditioning establishes a stimulus-response association.  

3.2.1. Conditioned Reinforcement Test: Conditioned Stimuli Can Be Pursued on their 

Own 

The incentive motivational effects of CS make them attractive and therefore, they can be pursued 

on their own even in the absence of the associated UCS. The conditioned reinforcement test 

determines how much animals are willing to pursue appetitive CS alone. In this test, animals (that 

received prior CS-UCS conditioning) have typically access to two levers or two port-holes. 

Responses on one of the two instrument lead to CS presentation, and responses on the other do not 

(FIG. 1.13A) (Robbins, 1978; Taylor and Robbins, 1984). Because instrumental conditioning is 

new for the animals, learning of that task is solely reinforced by CS presentations. When CS gain 

incentive motivational value, their presentation is sufficient to reinforce instrumental responses. 

As a result, animals make more instrumental responses leading to CS presentation than 

instrumental responses without consequences (no CS). 

3.2.2. Auto-shaping: Conditioned Stimuli Are Not Attractive for Everyone 

While CS become strong predictors of incoming UCS, they do not necessarily gain incentive value. 

Indeed, there is a great variability among individuals in the attribution of incentive salience to CS. 

Auto-shaping is a behavioural measure that allows to identify animals that attribute strong incentive 

motivational value to CS and animals that do not. Auto-shaping is based on the conditioned 

response that animals develop throughout CS-UCS conditioning (Hearst and Jenkins, 1974; Lajoie 

and Bindra, 1976; Flagel et al., 2009; Robinson et al., 2014). In this type of test, animals are given 
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Pavlovian conditioning procedures, and auto-shaping is observable when the CS is localisable and 

spatially separated from where the reward is delivered. In studies using rodents, the CS is typically 

FIG. 1.13 ─ Behavioural measures of the motivational effects of appetitive conditioned stimuli (CS). 
(see next page ) 
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a lever that is introduced for a few seconds before reward delivery (FIG. 1.13B). The lever is 

inactive and thereby, it does not influence reward delivery. Nonetheless, some animals interact 

more and more with the lever over time (e.g., biting, nibble), and approach very little the location 

where the reward is soon to be delivered. These animals are referred to as sign-trackers, where 

‘sign’ refers to the CS and ‘tracker’ refers to the orientation of behaviour (here, toward the 

appetitive CS). Some other animals show the opposite behaviour: they interact more and more with 

the reward receptacle during CS presentation (e.g., head entries in a food receptacle) and show very 

little interest for the lever throughout CS-UCS conditioning. These animals are referred to as goal-

trackers, where ‘goal’ refers to the reward. Some animals show a mix of both conditioned approach 

behaviours. Sign-trackers assign a greater incentive motivational value to CS than the other 

animals, as indicated by a gradual increase in the intensity of the interaction with the CS throughout 

appetitive conditioning. In line with this, sign-trackers also show strong incentive motivation for 

CS in the conditioned reinforcement test relative to goal-trackers and animals showing a mix of 

both type of conditioned responses (Robinson and Flagel, 2009). 

3.2.3. Pavlovian-to-instrumental Transfer: Conditioned Stimuli Alone Guide Reward 

Seeking 

Appetitive CS alone are sufficient to internally represent the associated UCS, but also actions 

necessary for acquiring that UCS. In addition to these effects, CS presentation alone is sufficient 

to invigorate UCS seeking. The Pavlovian-to-instrumental transfer paradigm allows to study these 

CS effects. In this behavioural paradigm, animals receive Pavlovian and operant conditioning in 

separate occasions, in any order (FIG. 1.13C) (Cardinal et al., 2002; Balleine and Killcross, 2006; 

(FIG. 1.13 ) (A) Animals that receive prior CS-unconditioned stimuli (UCS) conditioning are free to 
make instrumental responses for CS presentation alone. This serves as a measure of incentive motivation 
for CS. (B) Auto-shaping measures the type of conditioned responses animals acquire during appetitive 
conditioning. Upon CS presentation (here, a lever), goal-trackers approach the port where reward delivery 
is imminent, whereas sign-trackers interact with the CS. (C) During the transfer test in Pavlovian-to-
instrumental procedures, CS allows to internally represent the action-UCS association and to motivate UCS 
seeking, even if instrumental responses and CS have never been associated before. (D) In conditioned place 
preference procedures, animals associate one context with a reward (here, a drug injection) and another 
context with a control procedure (here, a vehicle injection). After conditioning, animals are free to explore 
all compartments and time spent in the reward compartment relative to the no-reward compartment is 
compared. ITI, inter-trial interval. 
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Cartoni et al., 2016). Then, animals receive a transfer test. During this test, instrumental responses 

are not reinforced by the UCS, and CS presentations are typically non-contingent. Instrumental 

responses are compared between periods of CS presentation and in-between periods of CS 

presentation (inter-trial interval, ITI). The instrumental response and the CS have never been 

associated before, but CS presentation is sufficient to internally represent the action-UCS 

association, and to motivate instrumental responses even in the absence of the UCS. This is 

indicated by an increase in instrumental responses made during CS presentation relative to ITI, and 

this is referred to as the transfer effect.  

3.2.4. Conditioned Place Preference: Motivational Salience of Contextual Conditioned 

Stimuli 

Conditioned place preference determines if contextual CS acquire incentive salience. This type of 

procedure is commonly used to study the motivational effects of drug of abuse, but conditioned 

place preference can be elicited by natural rewards like food as well (Bozarth, 1987; Stolerman, 

1992; Bardo and Bevins, 2000). In conditioned place preference procedures, animals receive CS-

UCS conditioning in a two- or three-compartment conditioning chamber (FIG. 1.13D illustrates a 

three-compartment chamber). Each compartment is accessible via a door and has distinct sensory 

features (e.g., floor texture, pattern on the walls, olfactory cues). These features are chosen in order 

for animals to not have any preference for one compartment over another before conditioning. 

During the conditioning phase, the doors are close, and animals can explore only one compartment. 

Every other day, exploration of a compartment is associated with the subjective effects of an UCS 

(e.g., drug injection) or an UCS itself (e.g., food). On the remaining days, animals associate the 

other compartment with a control procedure (e.g., vehicle injection). During the choice test, doors 

are open, and animals are free to explore all compartments. No UCS is presented/received on the 

test day. Hence, animal exploration is under the control of contextual CS only. When the 

compartment previously associated with the reward has acquired incentive salience, animals are 

attracted to this compartment and spend more time in it relative to the no-reward compartment.  

3.3. Behavioural Effects of Aversive Conditioned Stimuli 

Like appetitive CS, aversive CS have motivational properties. Indeed, aversive CS alone are 

sufficient to evoke an aversive motivational state that promotes defensive behaviours such as 
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avoidance (Masterson and Crawford, 1982). The motivational effects of aversive CS can be studied 

in similar behavioural paradigms than the ones used for the study of appetitive CS. For instance, 

animals avoid a contextual CS associated with an aversive UCS, as determined in a conditioned 

place avoidance paradigm (Bozarth, 1987). Similarly, discrete aversive CS elicit avoidance, and 

this can be measured in a conditioned avoidance test paradigm, as described in Section 2.3.3.2 

(page 47). Furthermore, aversive CS alone can also be sufficient to reinforce the learning of a new 

instrumental response, as shown in the escape from fear paradigm (McAllister and McAllister, 

1971). In this task, animals receive CS-UCS conditioning in one compartment of a two-

compartment conditioning chamber. Animals do not have access to the other compartment in the 

Pavlovian conditioning phase. Subsequently, animals learn that making instrumental responses 

during CS presentation allows them to access the other compartment. Animals learn this even if 

the UCS is not delivered. Hence, the aversive motivational effects of CS are sufficient to reinforce 

the learning of a new instrumental task, like appetitive CS can do in the conditioned reinforcement 

test. 

3.4. Conditioned Stimuli in Psychiatric Disorders 

As mentioned earlier, CS can promote maladaptive motivated behaviours, and this is well 

characterized in the context of drug addiction. In addicted individuals, drug-predictive CS are 

sufficient to elicit craving for drugs, and this represents a major challenge to maintain abstinence 

from drug taking (Sinha and Li, 2007). Drug-predictive CS act as powerful motivators in laboratory 

animals as well. For instance, CS motivate drug seeking even if it was extinguished, as shown with 

Pavlovian-to-instrumental transfer procedures (Kruzich et al., 2001). Similarly, discrete or 

contextual CS are sufficient to reinstate drug seeking in animals that chronically self-administered 

drug injections paired with CS presentations, as shown in the behavioural paradigm of cue (or CS)-

induced reinstatement of extinguished drug seeking (FIG. 1.14) (Grimm and See, 2000; Grimm et 

al., 2001; Crombag et al., 2002). This behavioural paradigm has also been extensively used to 

study the influence of the basolateral amygdala in the behavioural effects of appetitive CS (see next 

section). Additionally, drugs of abuse themselves influence the motivational effects of CS. For 

instance, drugs such as d-amphetamine and nicotine enhance incentive motivation for CS, as shown 

with the conditioned reinforcement test paradigm (Robbins et al., 1983; Olausson et al., 2004). The 

aversive motivational effects of CS can gain excessive power in psychiatric disorders including 
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anxiety. For instance, contextual CS can help to discriminate what outcome is predicted by discrete 

CS, and in post-traumatic stress disorder, impaired processing of contextual CS would make 

discrete CS elicit inadequate responses (Maren et al., 2013).  

4. THE BASOLATERAL AMYGDALA IN APPETITIVE CONDITIONING

One of the goals of the present thesis was to better understand the neural substrates mediating the 

behavioural effects of appetitive CS, a work that could give insights on potential mechanisms 

underlying antipsychotic-evoked dopamine supersensitivity. Here a special focus was placed on 

the basolateral nucleus of the amygdala. How this nucleus influences the behavioural response to 

CS has been extensively studied in fear conditioning paradigms [e.g., Fanselow and LeDoux 

(1999), Maren and Quirk (2004)]. Comparatively, the role of this nucleus has been studied to a 

lesser extent in appetitive conditioning. This characterisation has mainly focused on the necessity 

of the basolateral amygdala in the behavioural response to appetitive CS. Next is a description of 

what is the basolateral nucleus of the amygdala, and how this nucleus influences the ability of 

appetitive CS to guide behaviour.  

FIG. 1.14 ─ Paradigm of conditioned stimulus (CS)-induced reinstatement of extinguished drug 
seeking. This behavioural paradigm does not involve Pavlovian conditioning but solely operant 
conditioning. (A) Animals chronically self-administer a drug through instrumental responses (here, example 
of drug delivery via an intravenous catheter). Drug delivery is paired with a cue. (B) Then, animals receive 
extinction training, where instrumental responses are no longer reinforced by the drug and CS. During this 
phase, animals progressively reduce instrumental responses. (C) When drug seeking is extinguished, the 
ability of the CS to reinstate instrumental responses is evaluated. This behavioural paradigm can also be 
used for non-drug rewards such as food. 
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4.1. What Is the Basolateral Amygdala? 

The amygdala is found in the temporal lobe and represents a complex of multiple nuclei, including 

the basolateral nucleus and the central nucleus (Krettek and Price, 1978a). These nuclei are further 

subdivided. The basolateral amygdala is composed of the lateral nucleus, basal nucleus (also called 

the basolateral amygdala, but called basal nucleus here for clarity) and basomedial nucleus, 

whereas the central amygdala is composed of the centromedial and centrolateral nuclei (Krettek 

and Price, 1978a; McDonald, 1998; Sah et al., 2003). The basolateral amygdala is a cortical-like 

structure. It is mainly composed of glutamatergic projection neurons with soma that are typically 

of a pyramidal shape, highly similar to pyramidal neurons of the cortex (McDonald, 1982; 

Washburn and Moises, 1992; McDonald, 1996). The basolateral amygdala contains a low density 

of GABAergic interneurons that make axo-somatic and axo-dendritic contacts with projection 

neurons (McDonald, 1982; Carlsen, 1988; McDonald and Augustine, 1993). Different 

subpopulations of interneurons are found in the basolateral amygdala. These subpopulations have 

specific neurochemical signatures based on peptides they express, such as somatostatin- or 

parvalbumin-expressing interneurons (McDonald and Pearson, 1989; McDonald and Mascagni, 

2002). The central amygdala is a striatal-like structure mainly composed of GABAergic projection 

neurons (Carlsen, 1988; McDonald and Augustine, 1993). The amygdala complex is composed of 

other subdivisions, such as the intercalated nucleus, that is found in between the basolateral and 

central nuclei, as well as the medial nucleus, the periamygdaloid cortex, the amygdala-hippocampal 

area and the anterior amygdaloid area (Pitkanen et al., 1997). 

The basolateral amygdala receives projections from the prelimbic, infralimbic, orbitofrontal, 

anterior cingulate, olfactory, auditory, visual and somatic cortices, as well as from other brain areas 

such as the hippocampus, the insula, the thalamus and the hypothalamus (McDonald, 1998; Sah et 

al., 2003). The basolateral amygdala also receives noradrenergic projections from the locus 

coeruleus, dopaminergic projections from the VTA and SNc, and serotoninergic projections from 

the dorsal and medial raphe nuclei (Fallon et al., 1978; Vertes, 1991; Vertes et al., 1999). Within 

the amygdala complex, the basal and basomedial subdivisions of the basolateral amygdala send 

projections to the lateral subdivision, as well as to the centromedial subdivision of the central 

amygdala (Pare et al., 1995). The lateral nucleus of the basolateral amygdala is reciprocally 

connected with the basal and basomedial nuclei, and also sends projections to the centrolateral 
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subdivision of the central amygdala (Smith and Pare, 1994). The basolateral amygdala sends 

glutamatergic projections to several regions outside of the amygdala complex, including the 

nucleus accumbens, the olfactory tubercle, the ventral portion of the caudate-putamen and the 

hippocampus (Krettek and Price, 1978b; McDonald, 1996). Cortical regions sending projections to 

the basolateral amygdala also receive projections from that nucleus. Thereby, the basolateral 

amygdala is reciprocally connected with several cortical regions including the prefrontal cortex 

(McDonald, 1998; Sah et al., 2003). 

4.2. How Does the Basolateral Amygdala Influence Appetitive 

Conditioning? 

4.2.1. Basolateral Amygdala Neurons Fire in Response to Conditioned Stimuli 

Basolateral amygdala neurons fire in response to appetitive CS that are associated with a wide 

range of rewards, from natural rewards, drug rewards to rewarding intra-cranial stimulations 

(Fuster and Uyeda, 1971; Sanghera et al., 1979; Muramoto et al., 1993; Uwano et al., 1995; Carelli 

et al., 2003; Tye and Janak, 2007; Ambroggi et al., 2008; Tye et al., 2008). Throughout 

conditioning, basolateral amygdala neurons become more and more responsive to CS as they 

become predictors of reward availability (Tye et al., 2008). CS predicting reward availability 

increase basolateral amygdala activity to a greater extent than CS predicting the unavailability of 

rewards (Ambroggi et al., 2008). Basolateral amygdala neurons seem to encode different effects 

of appetitive CS. In response to CS, some basolateral amygdala neurons could be particularly active 

when a conditioned response is emitted, rather than during CS presentations themselves (Lee et al., 

2016; Kyriazi et al., 2018). Basolateral amygdala neurons can also fire during anticipation of 

impending reward delivery (Kyriazi et al., 2018). Even in the absence of rewards, CS have the 

ability to elicit reward seeking, and they can also be sufficient to be pursued themselves, as 

previously described in Section 3.2.1 (page 62). Some basolateral amygdala neurons could encode 

reward seeking elicited by CS presentations, whereas some other neurons could encode the pursuit 

of CS alone (Tye and Janak, 2007).  
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4.2.2. The Basolateral Amygdala Is Necessary for Conditioned Seeking 

Basolateral amygdala neurons are responsive to appetitive CS, but how are these responses 

involved in the behavioural effects of appetitive CS? Intact neuronal activity within the basolateral 

amygdala is necessary for the ability of appetitive CS to guide behaviour toward unconditioned 

rewards (FIG. 1.15A). For instance, infusion of GABAergic agonists (Jones et al., 2010b; Jones et 

al., 2010a; Chaudhri et al., 2013; Millan et al., 2015), glutamate receptor antagonist (Burns et al., 

1994; Sciascia et al., 2015) or D1-like receptor antagonist (Andrzejewski and Ryals, 2016) into the 

basolateral amygdala impairs conditioned approach. Also, glutamatergic mGluR5 receptor-

mediated signalling within the basolateral amygdala is required for tempering the ability of 

contextual CS to potentiate conditioned approach elicited by discrete CS (Khoo et al., 2019). 

FIG. 1.15 ─ Intact neuronal activity within the basolateral amygdala is required for the motivational 
effects of appetitive conditioned stimuli (CS). Inhibition of basolateral amygdala activity impairs the 
ability of CS to (A) elicit seeking of the associated appetitive unconditioned stimulus (UCS) (as shown in 
conditioned approach behaviour, in the Pavlovian-to-instrumental transfer test, and in CS-induced 
reinstatement of extinguished drug seeking) and to (B) be salient and pursued (as assessed with the 
conditioned reinforcement test, auto-shaping procedures and the conditioned place preference test). 
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Instrumental conditioning guided by CS indicating whether or not reward is available requires 

intact neuronal activity within the basolateral amygdala as well, as this capacity is impaired by 

local infusion of GABAergic agonists (Ishikawa et al., 2008; Jones et al., 2010b; Jones et al., 

2010a). CS allows to internally represent action-reward association and to motivate reward seeking 

(as measured in the transfer test with Pavlovian-to-instrumental transfer procedures), and these CS 

effects require basolateral amygdala neurons. Indeed, lesion of the basolateral amygdala (Corbit 

and Balleine, 2005) or pharmacological inactivation of this nucleus by infusing locally GABAergic 

agonists (Gabriele and See, 2010) or tetrodotoxin (Kruzich and See, 2001) disrupts the transfer 

effect, indicating that CS no longer promote reward seeking. By infusing antagonist agents into the 

basolateral amygdala, it was shown that multiple neurotransmitter receptors are required for the 

acquisition and/or expression of this transfer effect, including D1-like and D2-like receptors 

(Berglind et al., 2006), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-

methyl-D-aspartic acid (NMDA) receptors (Feltenstein and See, 2007; Malvaez et al., 2015), 

muscarinic receptors (See et al., 2003) and mu-opioid receptors (Lichtenberg and Wassum, 2017). 

Of particular importance for addiction is the ability of drug-associated CS to reinstate extinguished 

drug seeking, and intact neuronal activity within the basolateral amygdala is required for that CS 

effect. Indeed, pharmacological inhibition of the basolateral amygdala using tetrodotoxin (Fuchs 

and See, 2002; McLaughlin and See, 2003; Fuchs et al., 2005) or lesion of the basolateral amygdala 

(Meil and See, 1997; Yun and Fields, 2003) impairs CS-induced reinstatement of extinguished 

drug seeking. This could involve dopamine- and glucocorticoid-mediated signalling within the 

basolateral amygdala, as local infusion of dopamine receptor antagonist (See et al., 2001; Khaled 

et al., 2014) or glucocorticoid receptor antagonist (Stringfield et al., 2016) impairs this CS effect.  

4.2.3. The Basolateral Amygdala Is Necessary for Conditioned Stimuli to Be 

Motivationally Salient 

The ability of CS to elicit reward seeking requires basolateral amygdala neurons, but do these 

neurons influence the motivational salience of appetitive CS per se? The answer is yes, and FIG. 

1.15B summarises important findings on this role of the basolateral amygdala. Antagonism of 

AMPA-mediated activity (Hitchcott and Phillips, 1997) or lesion of the basolateral amygdala 

(Cador et al., 1989) disrupts incentive motivation for CS, as shown with the conditioned 

reinforcement test. Furthermore, intact neuronal activity within the basolateral amygdala is 
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required for contextual CS to be imbued with incentive salience, as shown with the conditioned 

place preference paradigm. For instance, lesion of the basolateral amygdala (Everitt et al., 1991; 

Hiroi and White, 1991) or local infusion of dopamine receptor antagonist (Gremel and 

Cunningham, 2009; Lintas et al., 2011), β2 or α1 receptor antagonist (Bernardi et al., 2009) or 

muscarinic receptor antagonist (Schroeder and Packard, 2002) alters the acquisition and/or 

expression of a conditioned place preference. Similarly, selectively inducing apoptosis in 

basolateral amygdala neurons that are activated by nicotine abolishes the expression of an 

established conditioned place preference elicited by nicotine (Xue et al., 2017). Furthermore, 

conditioned place preference elicited by d-amphetamine seems to engage neuronal plasticity within 

the basolateral amygdala, as indicated by an increase in the number of varicosities and the level of 

the protein Fos, the latter being positively correlated with the degree of conditioned place 

preference (Rademacher et al., 2006). The role of the basolateral amygdala in the ability of CS to 

acquire motivational salience in auto-shaping procedures is less clear. Lesion of the basolateral 

amygdala does not prevent animals from acquiring sign-tracking behaviour (Chang et al., 2012; 

Naeem and White, 2016), but this behaviour seems to be tempered over time in lesioned animals 

relative to animals with intact basolateral amygdala (Chang et al., 2012). However, animals 

showing strong sign-tracking behaviour do not show increased activity within the basolateral 

amygdala, as suggested by similar levels of c-fos mRNA in the basolateral amygdala of sign-

trackers, goal-trackers and controls (Flagel et al., 2011a). Thereby, the available literature suggests 

that the basolateral amygdala seems to play a limited role in sign-tracking behaviour. 

5. OPTOGENETIC METHODS FOR FINE NEURONAL MANIPULATIONS 

The reports described in the previous section aimed at determining the necessity of intact neuronal 

transmission within the basolateral amygdala in the behavioural effects of appetitive CS. 

Comparatively, little is known on whether neuronal activity within the basolateral amygdala is 

sufficient to promote these motivational effects. This is an important aspect to explore given that, 

as described earlier, basolateral amygdala neurons fire in response to appetitive CS. In the present 

thesis, we took advantage of optogenetic methods to mimic the increased activity of basolateral 

amygdala neurons in response to appetitive CS in order to evaluate the impact on behavioural 

responses. Next is a description of what are optogenetic manipulations and the different 

methodological strategies that this technique offers. 
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5.1. What Is Optogenetics? 

Optogenetics is a powerful technology that allows to reversibly manipulate cell activity with a very 

well-defined spatiotemporal resolution, whether in cell cultures or behaving mammals. Dr. Karl 

Deisseroth and colleagues were pioneers of optogenetic methods that are commonly used now, a 

success story that started in 2005 (Boyden et al., 2005). Briefly, optogenetic methods combine 

optical technology with genetics to precisely modulate cell activity using opsins (i.e., light-

sensitive proteins) that are expressed in specific subset of cells through genetic manipulations. 

Attempts to control neuronal activity using optogenetic technologies were not as successful before, 

due to a lack of spatial resolution, the impossibility to use such techniques in vivo, and/or because 

these techniques required more methodological steps (Miller, 2006).  

The first study on optogenetic methods as it is now commonly used was published by Deisseroth 

and colleagues (Boyden et al., 2005). They established important foundations on the use of this 

new technology to manipulate neuronal activity. In this study, they transfected hippocampal 

neurons in culture with a lentivirus that delivers the gene of the opsin channelrhodopsin (ChR) 2, 

a light-sensitive channel that induce depolarisation (Nagel et al., 2003). Fundamental findings 

made by Boyden et al. (2005) include: i) upon delivery of light, ChR2 induces action potentials 

within 1-3 milliseconds, ii) with adequate laser stimulation parameters, optically-driven action 

potentials have a one-spike resolution because ChR2 is rapidly and reliably activated and 

deactivated, iii) delivery of light pulses lasting a few milliseconds allows to control with high 

fidelity the pattern of neuronal firing, thereby the pattern of light pulses (and action potentials) can 

mimic physiological firing patterns, and iv) post-synaptic currents closely match the firing pattern 

controlled by ChR2, making optogenetics a useful tool to study neuronal pathways. Hence, Boyden 

et al. (2005) show that optogenetic methods allow precise neuronal manipulations, and this largely 

surpassed available tools at the time that have a lower spatiotemporal resolution, such as intra-

cranial lesions and microinfusions of pharmacological agents that activate or inhibit neuronal 

activity. 

These promising results led Deisseroth and colleagues to conclude that ‘it is possible that ChR2 

will be an effective tool for in vivo studies of circuit maps and behavior, even in mammals’ (Boyden 

et al., 2005). This was first confirmed later that year in a study using Caenorhabditis elegans. 
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Indeed, Nagel et al. (2005) studied the effects of optogenetic stimulation of muscle cells and 

mechanosensory neurons using ChR2. They show that optogenetic stimulation of muscle cells 

causes muscle contraction, whereas optogenetic stimulation of mechanosensory neurons causes 

withdrawal (as if a mechanical stimulation is given). No more than two years later, in vivo 

optogenetic methods were successful in mammals as well, as reported in two studies. In a first 

study, Aravanis et al. (2007) showed that optogenetic stimulation of glutamatergic neurons of the 

vibrissal motor cortex increases the incidence of whiskers deflection, both in mice and rats. In a 

second study, Adamantidis et al. (2007) showed that optogenetic stimulation of orexin-expressing 

neurons in the lateral hypothalamus enhances the latency of asleep mice to awaken. Hence, these 

early investigations in rodents and Caenorhabditis elegans showed that in vivo optogenetic 

methods do allow to establish a causal link between increased activity of a given subpopulation of 

neurons and a behavioural effect. The introduction of optogenetic methods had and still has a large 

impact in the neuroscience field. A PubMed research with the word ‘optogenetic’ leads to 6,980 

results (on September 15th 2020), even though this technique is only 14 years old (Deisseroth et 

al., 2006). This illustrates well the revolution that optogenetics brought in research laboratories. 

Next is a description of how optogenetic methods have opened up many new avenues for 

neuroscience research, as scientists can shape the ‘how, where, who and when’ of optogenetic 

manipulations. 

5.2. Optogenetic Manipulation Strategies 

5.2.1. How: Activation and Inhibition of Cell Activity, and More 

Opsins determine how cell activity is altered. Opsins are activated by a specific wavelength of 

light. They are activated by light only when they are bound to the co-factor retinal (or vitamin-A 

aldehyde), forming a complex opsin-retinal termed rhodopsin (Spudich et al., 2000; Zhang et al., 

2011). Opsins are composed of 7 transmembrane helices and are universally found across 

organisms, from microorganisms to vertebrates. Microbial opsins regulate phototaxis (i.e., 

orientation of the behaviour toward or away from light) for photosynthesis. They bind to all-trans 

retinal. In presence of light of the appropriate wavelength, all-trans retinal absorbs a photon and 

isomerises, thereby all-trans retinal is converted to 13-cis retinal. This change of conformation 

activates the opsin. Microbial opsins used for optogenetic methods are ion pumps or channels. 
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Hence, when activated, these microbial opsins directly and quickly regulate ion conductance for a 

short duration. Retinal isomerisation is spontaneously and rapidly reversed and thereby, microbial 

opsins can be quickly re-activated in presence of light. Due to their interesting properties, several 

microbial opsins have been engineered for optogenetic method purposes to induce depolarisation 

or hyperpolarisation (Zhang et al., 2011).  

Ion channel opsins include ChR1 and ChR2. These opsins regulate phototaxis in the alga 

Chlamydomonas, a unicellular eukaryotic organism that is aquatic (Foster et al., 1984). ChR1 is 

activated by green light (~500 nm) and ChR2 is activated by blue light (~470 nm) (Nagel et al., 

2002; Sineshchekov et al., 2002; Nagel et al., 2003). When activated, ChR1 allows a passive 

diffusion of protons, whereas ChR2 allows a passive diffusion of monovalent and divalent cations 

(Na+, H+, Ca2+) (Nagel et al., 2002; Nagel et al., 2003). ChR2 is the prototypical ion channel opsin 

used for depolarisation (Boyden et al., 2005). Chloride pump opsins are also commonly used for 

optogenetic manipulations. The first discovered was the halorhodopsin isolated from the bacteria 

Halobacterium halobium (Matsuno-Yagi and Mukohata, 1977). This chloride pump transports Cl- 

in the cell and is activated by yellow light (~560-580 nm) (Matsuno-Yagi and Mukohata, 1977; 

Schobert and Lanyi, 1982). Halorhodopsins have been found in other microorganisms. The 

halorhodopsin express by the archea Natronomonas pharaonic (an opsin commonly termed NpHR) 

was the first used to block action potentials, as it shows a great affinity for Cl- ions (Zhang et al., 

2007).  

A great number of microbial opsin mutants have been engineered to meet scientist needs for 

optogenetic manipulations. They are fused to a fluorochrome to be easily detectable. Mutations of 

opsins influence their kinetic properties (detailed in Section 5.2.3, page 77). Mutations can also 

improve opsin expression, reliability and conductance. For instance, the H134R ChR2 mutant (used 

in the present thesis) has a greater ion conductance than wild type ChR2 (Nagel et al., 2005), 

increasing its reliability to induce depolarisation. Other mutants have been developed using ChR1. 

For instance, ChR1-ChR2 chimeras, termed ChEF and ChIEF, have been developed to ameliorate 

ChR kinetic and reliability (Lin et al., 2009). The NpHR mutant, eNpHR3.0, shows great 

expression at the membrane surface and thereby, is more reliable to inhibit action potentials than 

other NpHR mutants (Gradinaru et al., 2010).  
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Vertebrate opsins are also used for optogenetic method purposes, but in a different way than 

microbial opsins as they have much different kinetic properties and effects on cell activity. 

Vertebrate opsins have slow kinetic properties, as they are G-protein coupled receptors that 

indirectly regulate ion conductance, and they are not readily re-activable like microbial opsins 

(Spudich et al., 2000; Zhang et al., 2011). Nonetheless, vertebrate opsins are still useful for 

optogenetic manipulations, because they allow to study the functional effects of specific 

intracellular signalling pathways (Zhang et al., 2011). For instance, a chimera of bovine opsin 

expressing subunits of the adrenergic α1A or β2 receptor allows to optically control Gq or Gs protein-

mediated intracellular signalling, respectively (Airan et al., 2009). Such technology can be used 

for any type of cells, including non-excitable cells, making optogenetics a technology that can be 

virtually used for any cell types (Airan et al., 2009). 

5.2.2. Who and Where: From Cell Cultures to Intact Mammals, in Defined Cell 

Subtypes 

As mentioned before, all types of organisms (from microorganisms to complex organisms) can be 

subjected to optogenetic manipulations. While optogenetic methods represent a powerful tool for 

research purposes, it is also considered to be used in humans as a therapeutic approach to treat 

pathologies, such as Parkinson’s disease (Elkouzi et al., 2019) and retinal diseases (Garita-

Hernandez et al., 2018). Such technology would allow to precisely target neurons with abnormal 

activity, while sparing unaffected neurons to avoid undesirable effects. 

Genetic manipulations (viral transduction, transgenic animals) enable to express opsins in specific 

cell subtypes. Common engineered viral vectors used for opsin gene delivery are derived from 

adeno-associated viruses and lentiviruses (Zhang et al., 2010). There are different types of adeno-

associated virus (serotypes) that differ in the variant of capsid proteins they express at their shell, 

and this determines their respective ability to transduce specific type of host cells (Wu et al., 2006). 

A common lentivirus used as a vector for gene delivery is derived from the human 

immunodeficiency virus type 1 (Trono, 2000). Lentiviruses and adeno-associated viruses allow 

long-term and stable transgene expression and can transduce neurons anterogradely or retrogradely 

(Trono, 2000; Zhang et al., 2010). Additionally, rabies virus and herpes simplex virus 1 can also 

be used as viral vectors to retrogradely transduce neurons (Zhang et al., 2010).  
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Viral vectors contain the gene of a promoter upstream to the opsin gene to limit their expression to 

cells where the promoter is active. Using transgenic animals has been proven important in 

optogenetic methods, because viral vectors have their own limitations. Indeed, viral vectors carry 

a limited amount of genetic information, and this is problematic when one wishes to use a large 

promoter. The Cre-lox system has helped to circumvent this problem. Cre is a deoxyribonucleic 

acid (DNA) recombinase enzyme that either excises DNA in between two loxP sites, or changes 

DNA orientation when the loxP sites are inverted (Sauer, 1998). Hence, viral vectors carrying 

inverted promotor and opsin genes in-between two inverted loxP sites allow to limit opsin 

expression to Cre-expressing cells. This approach is widely used in transgenic Cre animals. For 

instance, opsin expression can be limited to dopamine neurons in tyrosine hydroxylase-Cre (TH-

Cre) animals (i.e., Cre is active in cells where the tyrosine hydroxylase promotor is active, 

including dopamine neurons) (Tsai et al., 2009; Witten et al., 2011). Alternatively, the Cre-lox 

system can be used in wild type animals, and this is achieved by administering two viruses. One 

virus contains the Cre gene under the control of a promoter selectively active in the subset of 

neurons that one wishes to target (so that Cre is expressed in these neurons), and the other virus 

contains the inverted opsin gene in-between inverted loxP sites (so that opsin expression is limited 

to Cre-expressing neurons) (Gompf et al., 2015). 

In addition to genetic manipulations, where light is applied to the brain determines the specificity 

of the manipulation. When light is applied on the soma of opsin-expressing neurons, this allows to 

optically manipulate all the projections of these neurons (FIG. 1.16A; pathways 1→2, 1→3 and 

1→4 are manipulated). When light is applied in a region where the opsin-expressing neurons 

project, this allows to optically manipulate only the projections to that region (FIG. 1.16B; only 

pathway 1→4 is manipulated). 

5.2.3. When: Temporal Precision 

Optogenetic manipulations have an excellent temporal resolution, whether used in vitro, ex vivo or 

in vivo, in anesthetised or awake animals. One benefit of this is that optogenetic stimulation can 

mimic physiological neuron activity. Engineering of new ChR2 mutants has allowed to extend the 

ability of ChR2 to mimic a great variety of physiological activities that neurons can have. For 

instance, Gunaydin et al. (2010) engineered new ChR2 mutants termed ChETA, that reliably 

induces action potentials with frequencies up to 200 Hz. Also, Berndt et al. (2009) developed ChR2 
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mutants, termed step-function opsin, that allow to sustainably depolarise neurons. Different 

wavelength of light respectively control the activation and inactivation of step-function opsins. 

Step-function opsins sustainably depolarise membranes for seconds after blue light application. 

These opsins can then be inactivated by green light application, so that the temporal effects of this 

opsin remain precise. 

Another benefit of the precise temporal effects of optogenetic manipulations is that brain activity 

can be optically manipulated at specific times during behavioural tasks—which is of particular 

relevance for the present thesis. For instance, presentation of a CS or UCS (electric shock, food, 

drug) can be temporally coupled with optogenetic manipulations to determine the behavioural 

functions of the studied neuronal population [e.g., Witten et al. (2010), Stuber et al. (2011), Tye et 

al. (2011), Burgos-Robles et al. (2017), Walsh et al. (2018)]. This type of application is especially 

interesting when neuronal activity is manipulated selectively during event when neuronal activity 

would be naturally enhanced or depressed [e.g., Chang et al. (2016)]. Alternatively, one can 

evaluate the effects of an optogenetic manipulation in the absence of CS/UCS, to evaluate if the 

optogenetic manipulation is sufficient to trigger behavioural responses that would be normally 

elicited by CS and/or UCS [e.g., such as with ICSS procedures (Kim et al., 2012; Namburi et al., 

2015)]. Furthermore, optogenetic methods are used to study neuronal plasticity. Indeed, protocols 

of optogenetic stimulation that produce either long-term potentiation or depression allows to study 

the influence of neuronal plasticity in specific subsets of neurons on behaviour [e.g., Lee et al. 

(2013), Nabavi et al. (2014)]. These few examples illustrate how valuable is the temporal precision 

of optogenetic manipulations in the study of behaviour. 

FIG. 1.16 ─ Optogenetic manipulation of neuronal pathways. In this example, the virus transfects the 
neurons of region 1. (A) Delivery of light in region 1 allows to optically manipulate pathways 1→2, 1→3 
and 1→4, whereas (B) delivery of light on terminals in region 4 optically manipulates only pathway 1→4. 
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6. PRESENT OBJECTIVES AND HYPOTHESES

As described in Section 2.4 (page 50), antipsychotic drugs can produce dopamine supersensitivity, 

and this has large consequences on the long-term management of schizophrenia symptoms and the 

quality of life of patients. Our current knowledge on how antipsychotic drugs produce these 

deleterious effects is limited. In Chapters II and III, the biological mechanisms underlying 

antipsychotic-evoked dopamine supersensitivity were investigated in rats using the typical 

antipsychotic drug haloperidol. In Chapter II, rats received continuous haloperidol treatment. In 

Chapter III, rats were either exposed transiently or continuously to haloperidol. We included a 

group treated transiently to increase our current knowledge on the long-term effects of extended 

antipsychotic dosing, as it represents a safe and potentially less harmful way to manage 

schizophrenia symptoms [see Annex, page 290; (Servonnet et al., 2020a)]. In both Chapters II and 

III, the exaggerated psychomotor response to d-amphetamine served as an index to probe and study 

the behavioural and neurobiological effects of antipsychotic-evoked dopamine supersensitivity. 

In Chapter II, we characterized where and how d-amphetamine acts to unveil the expression of 

antipsychotic-evoked dopamine supersensitivity. Injection of d-amphetamine through the systemic 

route reveals the expression of dopamine supersensitivity, but local infusion into the nucleus 

accumbens or caudate-putamen does not (El Hage et al., 2015). Hence, actions of d-amphetamine 

outside of the striatum contribute to its ability to reveal the expression of dopamine 

supersensitivity. Furthermore, d-amphetamine stimulates dopamine but also noradrenaline and 

serotonin transmission (Rothman and Baumann, 2003). Whether stimulation of dopamine 

transmission alone is sufficient to reveal the expression of dopamine supersensitivity is largely 

unknown. Also, our current knowledge on how dopamine receptors are involved in the ability of 

d-amphetamine to reveal the expression of dopamine supersensitivity remains sparse. Within this

context, the hypotheses of Chapter II are as follow:

HYPOTHESES OF CHAPTER II —i) The central effects of d-amphetamine are sufficient to 

reveal the expression of dopamine supersensitivity; ii) Enhancing dopamine transmission 

alone is sufficient to reveal the expression of antipsychotic-evoked dopamine 

supersensitivity; and iii) D1-like and D2-like-mediated signalling are both sufficient and 

necessary for revealing the expression of antipsychotic-evoked dopamine supersensitivity. 
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As described in Section 2.4.4 (page 57), stress modulates dopaminergic functions, and this involves 

the stress hormones glucocorticoids. Hence, in Chapter III, we investigated whether antipsychotic-

evoked dopamine supersensitivity enhances stress-like responses. This is important to explore 

because it could represent a mechanism by which dopamine supersensitivity worsens psychosis, 

given that stress promotes psychotic symptoms (Naeem et al., 2006; McCutcheon et al., 2019a). 

We first determined whether synthesis of the stress hormone corticosterone is required for the 

expression of antipsychotic-evoked dopamine supersensitivity. We then determined if dopamine-

supersensitive rats show an increased behavioural response to stressors, as determined by i) greater 

avoidance in classical paradigms used to measure stress-related behaviours—i.e., elevated plus-

maze (Pellow et al., 1985), open field (Katz et al., 1981) and light-dark box (Crawley and Goodwin, 

1980)—and by ii) a greater locomotor response to novelty (Piazza et al., 1989). The hypothesis of 

Chapter III is as follows:  

HYPOTHESIS OF CHAPTER III — The expression of antipsychotic evoked dopamine 

supersensitivity requires corticosterone synthesis and is accompanied with increased 

stress-related behaviour. 
 

In Chapter IV, we examined the role of the basolateral nucleus of the amygdala in the behavioural 

response to appetitive CS in animals with no prior antipsychotic treatment. This is important work 

because it could give novel insights on how antipsychotic-evoked dopamine supersensitivity 

enhances the motivational properties of appetitive CS. The evidence described in Section 4.2 (page 

69) generally support that intact neuronal activity within the basolateral amygdala is necessary for 

the motivational effects of appetitive CS, including their ability to promote conditioned approach 

and to be attractive and rewarding on their own. Basolateral amygdala neurons show increased 

activity in response to appetitive CS presentation, but it remains largely unknown if this increased 

neuronal activity is sufficient to potentiate the behavioural response to appetitive CS. Hence, we 

determined the effects of in vivo optogenetic activation of basolateral amygdala neurons on i) 

conditioned approach behaviour, on ii) instrumental responses for CS presentation in the 

conditioned reinforcement test, as a measure of the incentive motivational value of CS, and on iii) 

ICSS, to determine whether optogenetic stimulation of basolateral amygdala neurons selectively 
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influence the motivational effects of CS, or does so because it is intrinsically rewarding. The 

hypothesis of Chapter IV is as follows:  

HYPOTHESIS OF CHAPTER IV — Optogenetic activation of basolateral amygdala neurons 

is not rewarding on its own but potentiates conditioned approach and the incentive 

motivational value of CS.  
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ABSTRACT 

Antipsychotic treatment can produce a dopamine supersensitive state. In both schizophrenia 

patients and rodents, this is linked to antipsychotic treatment failure. In rodents, dopamine 

supersensitivity is often confirmed by an exaggerated behavioural response to the indirect 

monoamine agonist, d-amphetamine, after discontinuation of antipsychotic treatment. Here we 

investigated where and how d-amphetamine acts to trigger behavioural expression of dopamine 

supersensitivity, as this could uncover pathophysiological mechanisms underlying this 

supersensitivity. First, we examined the contributions of a central increase in 

dopamine/monoamine activity. Haloperidol-treated rats showed a potentiated psychomotor 

response to systemic d-amphetamine, confirming dopamine supersensitivity. However, they 

showed a normal psychomotor response to an increase in ventral midbrain dopamine impulse flow 

or to intracerebroventricular injection of d-amphetamine. This suggests that d-amphetamine’s 

peripheral effects are required for a supersensitive response. Second, we determined the specific 

contributions of dopamine neurotransmission. The D2 agonist quinpirole, but not the D1 agonist 

SKF38393 or the dopamine reuptake blocker GBR12783 produced a supersensitive psychomotor 

response in haloperidol-treated rats. In these rats, the D1 antagonist SCH39166 decreased d-

amphetamine-induced psychomotor activity, whereas the D2 antagonist sulpiride enhanced it. 

Thus, when d-amphetamine triggers a supersensitive response, this involves both D1- and D2-

mediated transmission. Finally, we measured d-amphetamine-induced changes in D1- and D2-

mediated intracellular signalling pathways in the striatum. In haloperidol-treated rats, a 

supersensitive response to d-amphetamine was linked to enhanced GSK3β activity and suppressed 

ERK1/2 activity in the nucleus accumbens, suggesting increased D2-mediated signalling. These 

findings provide new insights into the neurobiology of antipsychotic-evoked dopamine 

supersensitivity.  



84 

INTRODUCTION 

Antipsychotic drugs attenuate schizophrenia symptoms by blunting dopamine D2 receptor activity. 

However, long-term antipsychotic treatment can produce neuroadaptations that lead to 

supersensitivity to dopamine receptor stimulation. Antipsychotic-induced dopamine 

supersensitivity is linked to antipsychotic treatment failure and to an exacerbation of psychosis 

symptoms (Asper et al., 1973; MØller Nielsen et al., 1974; Chouinard et al., 1978; Margolese et 

al., 2002; Chouinard and Chouinard, 2008; Fallon and Dursun, 2011; Chouinard et al., 2017). In 

animals, a widely-used index of antipsychotic-induced dopamine supersensitivity is an exaggerated 

locomotor response to d-amphetamine (Smith and Davis, 1975; Rebec et al., 1982; Ericson et al., 

1996; Meng et al., 1998; Samaha et al., 2007; Samaha et al., 2008; Carvalho et al., 2009; Bedard 

et al., 2011; El Hage et al., 2015; Servonnet et al., 2017; Amato et al., 2018). In this context, d-

amphetamine serves as a pharmacological tool to probe the functional consequences of an acute 

increase in striatal dopamine release, as seen during psychosis (Howes et al., 2012). D-

amphetamine is an indirect monoamine agonist (Rothman and Baumann, 2003) with multiple sites 

of action and neurochemical effects. The anatomical location and nature of the neurochemical 

effects through which d-amphetamine produces a supersensitive behavioural response in 

antipsychotic-treated rats are largely unknown. We investigated these effects here, as the answers 

could reveal underlying biological mechanisms and eventual therapeutic targets to suppress 

antipsychotic-evoked dopamine supersensitivity.  

A first question concerns where d-amphetamine acts to trigger the expression of antipsychotic-

evoked dopamine supersensitivity. In dopamine-supersensitive rats, infusing d-amphetamine into 

the striatum does not trigger expression of established supersensitivity, suggesting that d-

amphetamine actions in extra-striatal sites are also required (El Hage et al., 2015). Hence, we 

determined if increasing ventral tegmental area (VTA) dopamine impulse flow is sufficient to 

trigger a supersensitive psychomotor response. In other models where rats also show exaggerated 

d-amphetamine-induced psychomotor activity, this requires d-amphetamine actions in the 

periphery (Rivet et al., 1989; Deroche et al., 1992). Thus, we also determined whether limiting d-

amphetamine’s effects to the brain triggers a supersensitive psychomotor response in 

antipsychotic-treated rats. 
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A second question concerns the role of dopamine-mediated neurotransmission. D-amphetamine 

stimulates dopamine, but also noradrenaline and serotonin transmission (Millan et al., 2002; 

Rothman and Baumann, 2003). Noradrenaline and serotonin also modulate the expression of 

antipsychotic-evoked dopamine supersensitivity (Obuchowicz, 1999; Charron et al., 2015). Thus, 

we determined whether selective dopamine reuptake inhibition is sufficient to evoke a 

supersensitive response in antipsychotic-treated rats. Dopamine signals through dopamine D1-type 

and D2-type receptors. Selective D2 receptor stimulation evokes a supersensitive behavioural 

response in antipsychotic-treated rats (Obuchowicz, 1999; Hashimoto et al., 2018), but whether 

D1 stimulation does the same is unknown. Thereby, we also examined whether stimulation of D1 

receptors is sufficient to trigger a sensitised response. Furthermore, we determined whether D1 or 

D2 receptor antagonists suppress the exaggerated response to d-amphetamine in antipsychotic-

treated rats. Lastly, we assessed the effects of d-amphetamine on D1- and D2-mediated signalling 

in the striatum by quantifying protein activity in the AKT/GSK3β- and cAMP/PKA-dependent 

pathways (Valjent et al., 2000; Beaulieu et al., 2004; Valjent et al., 2005; Beaulieu et al., 2007). 

This is because although injecting d-amphetamine into the striatum is not sufficient to produce an 

enhanced psychomotor response in dopamine-supersensitive rats (El Hage et al., 2015), d-

amphetamine-induced signalling in the striatum might still be necessary.  

METHODS 

See Supplement for further information on rats, drugs, intra-cranial manipulations, measurement 

of psychomotor activity and Western Blots. Experimental procedures were approved by the 

Université de Montréal’s ethics committee and followed the guidelines of the Canadian Council 

on Animal Care. 

Antipsychotic Treatment 

Adult male Sprague-Dawley rats received haloperidol via osmotic minipumps (Alzet model 2ML2; 

Durect Corporation, Cupertino, CA) to achieve steady-state brain concentrations of the drug (Kapur 

et al., 2003; Samaha et al., 2007), as produced by standard antipsychotic treatment regimens in the 

clinic (Farde et al., 1989; Remington et al., 2006; Mamo et al., 2008). We used 0.5 mg/kg/day 

haloperidol. This achieves 73% ± 14 SD striatal D2 receptor occupancy [unpublished observations, 
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see (Kapur et al., 2003; Samaha et al., 2007)], and this is within the occupancy range that is 

therapeutically-efficacious in patients (Farde et al., 1992; Kapur et al., 1999; Kapur et al., 2000). 

Under isoflurane anaesthesia, minipumps were implanted subcutaneously (s.c.) for haloperidol-

treated rats, and controls were sham-operated (Samaha et al., 2007). Seventeen days later, 

minipumps were removed, and controls were sham-operated again.  

Psychomotor Activity 

Psychomotor activity was assessed using 2 measures: 1) photocell counts to measure horizontal 

locomotor activity and 2) observer ratings based on a 1-to-9 scale (Mattson et al., 2007). Ratings 

between 1 and 4 indicate near-to-normal locomotor activity, 5 indicates hyperlocomotion without 

stereotypy, and ratings between 6 and 9 indicate stereotypy (Mattson et al., 2007).  

Experiments 

FIG. 2.1A illustrates experimental timelines. Locomotion tests started at least 3 days after 

haloperidol discontinuation and were given every 48 hours, 1 test/day. All doses, routes of 

administration, number of rats per condition (per group) and the allocation of rats between the 

treatment conditions are detailed in Table I. In Exps. 1-5, injections were given in a 

counterbalanced order. In each experiment below, we confirmed antipsychotic-induced dopamine 

supersensitivity by measuring the psychomotor response to s.c. d-amphetamine (1.5 mg/kg). 

Exp. 1: Increasing VTA dopamine impulse flow. We determined if enhancing VTA 

dopamine impulse flow produces a supersensitive psychomotor response in haloperidol-treated 

 
 

 
FIG. 2.1 ─ Experimental timelines. 
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rats. We evaluated the locomotor response to bilateral infusions of vehicle, neurotensin (1 

nmol/hemisphere) or DAMGO (0.3 nmol/hemisphere) into the VTA, at concentrations that 

increase dopamine release in terminal regions (Kalivas and Duffy, 1990; Laitinen et al., 1990). 

Neurotensin increases dopamine impulse flow by producing an inward current on dopamine 

neurons (Mercuri et al., 1993), reducing D2 autoreceptor-mediated inhibition (Werkman et al., 

2000; Jomphe et al., 2006; Thibault et al., 2011), and enhancing glutamatergic inputs to dopamine 

neurons (Kempadoo et al., 2013; Bose et al., 2015). DAMGO, a µ-opioid receptor agonist (Chen 

et al., 1993), inhibits GABA release thereby disinhibiting dopamine neuron activity (Kalivas and 

Duffy, 1990; Bergevin et al., 2002). 

Exp. 2: Intracerebroventricular d-amphetamine. We determined if limiting d-

amphetamine’s effects to the brain still triggers a supersensitive response in haloperidol-treated 

rats. We infused d-amphetamine bilaterally into the lateral ventricles [0, 50 or 150 µg/hemisphere 

(Lin et al., 1983)], and measured psychomotor activity. 

Exp. 3: Stimulation of dopamine transmission. We assessed whether selectively blocking 

dopamine reuptake with GBR12783 (Bonnet and Costentin, 1986) [0, 5 or 10 mg/kg (Le Pen et al., 

1996)] produces a supersensitive psychomotor response in haloperidol-treated rats. For 

comparison, we also assessed effects of the monoamine reuptake blocker cocaine (Rothman et al., 

2001) [0, 2.5 or 10 mg/kg (Kosten, 1997)] and the monoamine receptor agonist apomorphine 

(Millan et al., 2002) [0, 0.25 or 0.5 mg/kg (Geyer et al., 1987; Barros et al., 1989)].  

Exp. 4: Stimulation of D1 or D2 transmission. We determined whether selective D1 or D2 

stimulation produces an enhanced psychomotor response in haloperidol-treated rats. Locomotion 

was recorded for 30 min before administration of a D1 agonist [SKF38393 (Seeman and Van Tol, 

1994; Neumeyer et al., 2003); 0, 1 or 10 mg/kg (Molloy and Waddington, 1987; Meller et al., 

1988)] or of a D2 agonist [quinpirole (Millan et al., 2002); 0, 0.15 or 0.5 mg/kg (Benaliouad et al., 

2009; Hashimoto et al., 2018)] and for 2 hours thereafter. 

Exp. 5: Blockade of D1 or D2 transmission. We assessed whether D1 and/or D2 

transmission is necessary for the expression of dopamine supersensitivity. Rats received the D2 

antagonist sulpiride (Caley and Weber, 1995; Martelle and Nader, 2008) [0, 25 or 80 mg/kg (Fritts 
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Table I. Doses and route of administration of pharmacological agents, number of rats per condition (per 
group) and design of the allocation of rats between conditions 

 Agent(s) or 
vehicle and route Dose n per 

group Design 

1 

Intra-VTA vehicle - - 7 
Within-subjects, 

all rats received neurotensin, 
DAMGO and vehicle injections 

Intra-VTA 
neurotensin 1 nmol/ 

hemisphere 

7 

Intra-VTA 
DAMGO 0.3 7 

2 
I.c.v. vehicle - - 16-21 Between-subjects, 

one d-amphetamine dose per rat, all 
rats received vehicle I.c.v. d-

amphetamine 50, 100 µg/ 
hemisphere 6-10 

3 

S.c. or i.p. vehiclea - - 29-31 

Between-subjects, 
each rat received no more than 3 

agonist doses (i.e., 3 out of 6 doses) 
and 2 vehicle injections 

S.c. GBR12783 5, 10 

mg/kg 

10-14 

I.p. cocaine 2.5, 10 7-10 

S.c. apomorphine 0.25, 0.5 9-10 

4 

S.c. vehiclea - - 16 
Between-subjects, 

each rat received one dose of each 
agonist (i.e., 2 out of 4 doses) and 

one vehicle injection 

S.c. SKF38393 1, 10 
mg/kg 

8 

S.c. quinpirole 0.15, 0.5 8 

5 

S.c. vehicle & 
vehiclea - - 31-32 

Between-subjects, 
each rat received 4 combinations: 

-1 vehicle/vehicle 
-1 antagonist/vehicle -1 vehicle/d-

amphetamine 
-1 antagonist/d-amphetamine 

S.c. sulpiride & 
vehiclea 

25, 80 (sul) & 
vehicle 

mg/kg 

7-8 

S.c. SCH39166 & 
vehiclea 

0.03, 0.1 (SCH) & 
vehicle 8 

S.c. vehiclea & 
d-amphetamine 

Vehicle & 
1.5 (d-amph) 31-32 

S.c sulpiride & 
d-amphetamine 

25, 80 (sul) & 
1.5 (d-amph) 8 

S.c. SCH39166 & 
d-amphetamine 

0.03, 0.1 (SCH) & 
1.5 (d-amph) 7-8 

1 
TO
6 

S.c. saline - - 
5-32 

Within-subjects, 
each rat received saline and then d-

amphetamine 30 or 60 min later S.c. d-amphetamine 1.5 mg/kg 
aVehicle of each agent were pooled together because there was no difference in their locomotor effects. 
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et al., 1997; Wright et al., 2013)] or the D1 antagonist SCH39166 (McQuade et al., 1991) [0, 0.03 

or 0.1 mg/kg (Batsche et al., 1994; Scardochio and Clarke, 2013)], and 30 min later, they received 

d-amphetamine (0 or 1.5 mg/kg).

Exp. 6: D-amphetamine effects on D1- and D2-mediated signalling. We measured d-

amphetamine-induced protein activity in the AKT/GSK3β- and cAMP/PKA-dependent pathways. 

Locomotion was recorded for 30 minutes, then control and haloperidol-treated rats received s.c. 

saline or d-amphetamine. One hour later, brains were extracted, samples were taken from the 

nucleus accumbens and the dorsal, ventrolateral and centromedial caudate-putamen. We quantified 

total and phosphorylated protein levels of DARPP-32, ERK1, ERK2, AKT and GSK3β using 

Western Blot procedures. 

Statistical Analysis 

Locomotor activity and protein levels were expressed as the percent change relative to vehicle-

injected controls. Repeated measures or mixed-model ANOVA were used to analyse the influence 

of Injection (see description of levels in Result section) or Group (controls and haloperidol) on 

locomotion, psychomotor activity ratings or protein level (Group × Injection × Time, ‘Injection’ 

as a within-subjects variable in Exp. 1 and ‘Injection’ as between-subjects variables in Exps. 2-6). 

When interaction and/or main effects were significant (p < 0.05), effects were analysed further 

using Bonferroni’s multiple comparisons’ tests. Values in figures are mean ± SEM. 

RESULTS 

Across experiments, all haloperidol-treated groups developed dopamine supersensitivity, as 

indicated by enhanced d-amphetamine-induced locomotion relative to controls (FIG. 2.2; 

‘Injection’: vehicle and d-amphetamine; Group × Injection interaction; 2.2B, F1,11 = 25.95; 2.2D, 

F1,51 = 19.71; 2.2E, F1,30 = 8.1; 2.2F, F1,61 = 5.66; 2.2G, F1,20 = 18.76; Group effect; 2.2B, F1,11 = 

5.31; 2.2C, F1,8 = 5.51; 2.2D, F1,51 = 9.05; 2.2E, F1,30 = 5.57; 2.2F, F1,61 = 7.88; 2.2G, F1,20 = 12.67; 

Injection effect; 2.2B, F1,11 = 92.63; 2.2C, F1,8 = 31.77; 2.2D, F1,51 = 497.5; 2.2E, F1,30 = 117.0; 

2.2F, F1,61 = 260.4; 2.2G, F1,20 = 129; 2.2-B-D-E-F-G; d-amph > veh in all groups; after d-amph, 

haloperidol > controls; all P’s < 0.05). Haloperidol and control rats generally showed similar D-

amphetamine-induced psychomotor activity ratings that indicate high levels of locomotor activity 
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without notable stereotypy (FIG. 2.S1). Note that the scale used here to analyse psychomotor 

activity have only one score for hyperlocomotion without stereotypy, making unlikely to note 

group differences in d-amphetamine-induced psychomotor ratings here given that stereotypy was 

negligeable. 

Exp. 1: Increasing VTA Dopamine Impulse Flow 

Across groups, intra-VTA neurotensin enhanced locomotion and psychomotor activity ratings 

compared to vehicle, without significant group differences (FIG. 2.3B-C; ‘Injection’: vehicle and 

neurotensin; Injection × Time interaction on minutes 10-120, F11,132 = 4.32; Injection effect, F1,12 

= 14.41; FIG. 2.3E; Injection effect; vehicle versus neurotensin, F1,12 = 6.92; all P’s < 0.05). Intra-

VTA DAMGO also increased locomotor activity and ratings beyond vehicle similarly across 

groups (FIG. 2.3B-D; ‘Injection’: vehicle and DAMGO; Injection × Time interaction on minutes 

10-120, F11,132 = 7.75; Injection effect, F1,12 = 17.04; FIG. 2.3E; Injection effect; vehicle versus 

DAMGO, F1,12 = 13.91; all P’s < 0.05). 

Hence, in rats with established antipsychotic-evoked dopamine supersensitivity, increasing VTA 

dopamine impulse flow does not evoke an exaggerated psychomotor response. 

Exp. 2: Intracerebroventricular D-amphetamine 

 
 

FIG. 2.2 ─ Chronic haloperidol treatment produced dopamine supersensitivity, as indicated by an 
exaggerated psychomotor response to d-amphetamine. (A-F) Locomotor response to subcutaneous (s.c.) 
d-amphetamine (0 or 1.5 mg/kg). Dotted lines indicate locomotion of vehicle-injected controls. n’s = 5-
32/condition. *p < 0.05; in (B), Injection effect. # p < 0.05; in (B), Group effect. 
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Across groups, intracerebroventricular d-amphetamine dose-dependently increased locomotion 

and psychomotor activity ratings compared to vehicle, without group differences (FIGS. 2.3F-H; 

‘Injection’: vehicle, 50 and 100 µg/hemisphere; minutes 10-120; Injection × Time interaction, 

F22,726 = 6.38; Injection effect, F2,66 = 29.49; FIG. 2.3I; Injection effect, F2,66 = 50.43; all P’s < 

0.0001). 

FIG. 2.3 ─ Neither increasing ventral tegmental area (VTA) dopamine impulse flow nor injecting d-
amphetamine into the brain triggers the expression of dopamine supersensitivity. (A) VTA histology. 
(B-E) Psychomotor response to intra-VTA vehicle, neurotensin or DAMGO. (F-I) Psychomotor response 
to intracerebroventricular d-amphetamine. On the right, representative injector placements (arrows indicate 
injectors). Dotted lines indicate response of vehicle-injected controls. n’s = 7-21/condition. *p < 0.05. 
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Hence, circumscribing d-amphetamine’s effects to the brain does not evoke the expression of 

established dopamine supersensitivity.  

Exp. 3: Stimulation of Dopamine Transmission  

 GBR12783 increased locomotion and psychomotor activity ratings above vehicle, without group 

differences (vehicle not shown; FIG. 2.4A-B versus vehicle; minutes 70-180; ‘Injection’: vehicle, 

5 or 10 mg/kg; Injection × Time interaction, F22,1133 = 5.87; Injection effect, F2,103 = 29.72; 3C 

versus vehicle; Injection effect, F2,91 = 41.4; all P’s < 0.0001).  

Cocaine increased locomotion and ratings above vehicle, with a mildly enhanced response in 

haloperidol rats (FIG. 2.4D-E versus vehicle; minutes 70-180; ‘Injection’: vehicle, 2.5 and 10 

mg/kg; Injection × Time interaction, F22,957 = 5.98; Injection effect, F2,87 = 47.45; Group effect, 

F1,87 = 4.35; 3F versus vehicle; Injection effect, F2,75 = 53.45; all P’s < 0.05). 

Similarly, apomorphine increased locomotor activity and ratings beyond vehicle, and these effects 

were enhanced in haloperidol rats (FIG. 2.4G-H versus vehicle; minutes 70-180; ‘Injection’: 

vehicle, 0.25 and 0.5 mg/kg; Injection × Time interaction, F22,1023 = 6.4; Injection effect, F2,93 = 

10.3; Group × Time interaction, F11,1023 = 3.05; Group effect, F1,93 = 8.05; FIG. 2.4I versus vehicle; 

Group × Injection interaction, F2,81 = 5.43; Injection effect, F2,81 = 189.8; Group effect, F1,81 = 

28.48; FIG. 2.4I; haloperidol > controls at both doses; all P’s < 0.05). 

Thus, in dopamine-supersensitive rats, monoamine agonists (cocaine and apomorphine) but not a 

selective dopamine reuptake inhibitor (GBR12783) produce a mildly enhanced psychomotor 

response. 

Exp. 4: Stimulation of D1 or D2 Transmission 

The D1 agonist SKF38393 evokes stereotypy but little hyperlocomotion (Meller et al., 1988; 

Meyer and Shults, 1993; Hooks et al., 1994). Accordingly, SKF38393 increased psychomotor 

activity ratings, and did so similarly across groups (vehicle not shown; FIG. 2.5A versus vehicle; 

‘Injection’: vehicle, 1 and 10 mg/kg; Injection effect, F2,58 = 15.89, p < 0.0001) without increasing 

locomotion (FIG. 2.5B-C versus vehicle). 
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The D2 agonist quinpirole dose-dependently increased locomotion and ratings relative to vehicle, 

and this effect was greatest in haloperidol rats (FIG. 2.5D versus vehicle; ‘Injection’: vehicle, 0.15 

and 0.5 mg/kg; Injection effect, F2,58 = 17.85; Group effect, F1,58 = 3.89; FIG. 2.5E-F versus vehicle; 

FIG. 2.4 ─ Psychomotor effects of GBR12783, cocaine and apomorphine in haloperidol-treated rats 
versus controls. Psychomotor response to (A-C) subcutaneous (s.c.) GBR12783, (D-F) intraperitoneal 
(i.p.) cocaine or (G-I) s.c. apomorphine. Dotted lines indicate response of vehicle-injected controls. n’s = 
7-31/condition. #, *p < 0.05. In (A-B); *Injection × Time interaction and Injection effect. In (C); *Injection
effect. In (D-E); *Injection × Time interaction and Injection effect, # Group effect. In (F); *Injection effect.
In (G-H); *Injection × Time interaction and Injection effect, # Group × Time interaction and Group effect.
In (I); *Injection effect.
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minutes 40-210; Injection × Time interaction, F34, 986 = 16.55; Group × Time interaction, F17,986 = 

4.57; Injection effect, F2,58 = 32.11; Group effect, F1,58 = 6.8; all P’s ≤ 0.05). 

Hence, rats with antipsychotic-induced supersensitivity show an augmented behavioural response 

to D2, but not D1 receptor stimulation.  

Exp. 5: Blockade of D1 or D2 Transmission 

Haloperidol-treated rats showed greater d-amphetamine-induced ratings and locomotion than 

controls did (FIG. 2.6A; Group effect, F1,88 = 14.48; FIGS. 2.6B-C; minutes 40-150; Group × Time 

interaction, F11,968 = 3.48; Group effect, F1,88 = 7.3; all P’s < 0.01), confirming dopamine 

supersensitivity. Across groups, the D1 antagonist SCH39166 decreased both vehicle- (FIGS. 

2.S2A-C) and d-amphetamine-induced locomotion and ratings (FIG. 2.6A; ‘Injection’: vehicle, 

0.03 and 0.1 mg/kg; Injection effect, F2,88 = 39.11; FIGS. 2.6B-C; minutes 40-150; Injection × Time 

 
 
FIG. 2.5 ─ Stimulation of D2 but not D1 transmission is sufficient to reveal the expression of 
antipsychotic-evoked dopamine supersensitivity. (A-F) Psychomotor response subcutaneous (s.c.) 
quinpirole or SKF38393. Dotted lines indicate response of vehicle-injected controls. n’s = 7-32/condition. 
#, *p < 0.05. In (A); *Injection effect. In (D); *Injection effect, # Group effect. In (E-F), *Injection × Time 
interaction and Injection effect, # Group × Time interaction and Group effect.  
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interaction, F22,968 = 6.33; Injection effect, F2,88 = 28.69; all P’s < 0.0001). Notably, in haloperidol-

treated rats, 0.03 mg/kg SCH39166 restored d-amphetamine-induced locomotion to control levels 

(compare light purple curve in FIG. 2.6C to white curve in FIG. 2.6B). 

Across groups, the D2 antagonist sulpiride did not influence vehicle-induced ratings or locomotion 

(FIG. 2.S2D-F). Sulpiride suppressed d-amphetamine-induced psychomotor activity ratings in 

controls but, surprisingly, it enhanced this response in haloperidol-treated rats (FIG. 2.6D; 

‘Injection’: vehicle, 25 and 80 mg/kg; Group × Injection interaction, F2,89 = 8.47; Group effect, 

F1,89 = 38.25; haloperidol > controls at both sulpiride doses; haloperidol rats, 0 < 25 and 80 mg/kg; 

control rats, 0 > 80 mg/kg; all P’s < 0.05). Sulpiride also influenced d-amphetamine-induced 

locomotion (FIGS. 2.6E-F; minutes 40-150; Injection × Time interaction, F22,979 = 2.51; Injection 

effect, F2,89 = 3.09; all P’s ≤ 0.05), with group differences in this effect. Specifically, sulpiride 

FIG. 2.6 ─ D1- but not D2-mediating signalling is necessary for the expression of antipsychotic-evoked 
dopamine supersensitivity. (A-F) Psychomotor response to s.c. SCH39166 or sulpiride and s.c. d-
amphetamine. Dotted lines indicate response of vehicle-injected controls. n’s = 7-32/condition. #, *p < 0.05. 
In (A); *Injection effect, # Group effect. In (B-C, E-F); *Injection × Time interaction and Injection effect, 
# Group × Time interaction and Group effect. 
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decreased d-amphetamine-induced hyperlocomotion in controls but not in haloperidol rats (FIGS. 

2.6E-F; Group × Time interaction, F11,979 = 3.14, Group effect, F1,89 = 14.38; all P’s ≤ 0.05).  

Thus, in dopamine-supersensitive rats, D1- but not D2-mediated activity is required for the 

expression of an enhanced psychomotor response to d-amphetamine. In parallel, D2 receptor 

blockade potentiated d-amphetamine-induced psychomotor activity in dopamine-supersensitive 

rats, suggesting that D2 receptor activity normally tempers the expression of dopamine 

supersensitivity.  

Exp. 6: D-amphetamine Effects on D1- and D2-mediated Signalling 

Caudate-putamen. D-amphetamine produced similar effects in haloperidol-treated and 

control rats. In the dorsal, ventrolateral and centromedial caudate-putamen, d-amphetamine had 

mixed effects on total proteins levels, but it either decreased or had no effect on 

phosphorylated/total protein ratios (FIGS. 2.S3-5). Thus, d-amphetamine did not increase protein 

phosphorylation in AKT/GSK3β- or cAMP/PKA-dependent pathways in the caudate-putamen. 

Some of our results differ from work showing that in otherwise naïve rats, d-amphetamine 

increases DARPP-32, ERK1/ERK2 and GSK3β activity, and decreases AKT activity in the 

striatum (Svenningsson et al., 2003; Beaulieu et al., 2004; Valjent et al., 2005; Beaulieu et al., 

2006). However, these previous studies analysed the caudate-putamen as a whole or with nucleus 

accumbens included (Svenningsson et al., 2003; Beaulieu et al., 2004; Valjent et al., 2005; 

Beaulieu et al., 2006). 

Nucleus accumbens. Relative to saline, d-amphetamine increased total GSK3β levels only 

in haloperidol-treated rats (FIG. 2.7C; ‘Injection’: vehicle and d-amphetamine; Group × Injection 

interaction, F1,20 = 4.23; Injection effect, F1,20 = 14.61; haloperidol rats, d-amph > saline; all P’s ≤ 

0.05). This reflects higher levels of non-phosphorylated (active) versus phosphorylated (inactive) 

GSK3β (Sutherland et al., 1993), because d-amphetamine decreased pGSK3β/total GSK3β ratios 

across groups (FIG. 2.7D; Injection effect, F1,20 = 7.57, p = 0.012). D-amphetamine decreased total 

AKT levels and increased pAKT/total AKT ratios, with no group differences (Injection effect; FIG. 

2.7E; F1,15 = 13.01; FIG. 2.7F; F1,15 = 6.611; all P’s < 0.05). Hence, in the nucleus accumbens, d-

amphetamine influences AKT similarly in dopamine-supersensitive and control rats, but d-

amphetamine enhances GSK3β activity to a greater extent in dopamine-supersensitive rats. 
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In haloperidol-treated rats, total DARPP-32 levels were increased at baseline and decreased after 

d-amphetamine (FIG. 2.7G; Group × Injection interaction, F1,19 = 9.97; Injection effect, F1,19 = 5.47;

after saline, haloperidol rats > controls; Haloperidol rats, saline > d-amph; all P’s < 0.05). At

baseline, total levels of both ERK1 and ERK2 were highest in haloperidol-treated rats (FIG. 2.7I;

Group × Injection interaction, F1,20 = 4.13; Group effect, F1,20 = 6.41; haloperidol rats > controls

after saline injection; FIG. 2.7K; Group effect, F1,20 = 4.56; all P’s ≤ 0.05). D-amphetamine

FIG. 2.7 ─ Dopamine-supersensitive rats have enhanced d-amphetamine-induced GSK3β activity and 
suppressed d-amphetamine-induced ERK1/2 activity in the nucleus accumbens. (A-B) AKT/GSK3β- 
and cAMP/PKA-dependent pathways and Western blots in accumbens tissue. Total protein levels and 
phosphorylated/total protein ratios within the (C-F) AKT/GSK3β- and (G-L) cAMP/PKA-dependent 
pathways. Dotted lines indicate mean protein level of vehicle-injected controls. n’s = 3-6/condition. # p < 
0.05; in (K), Group effect. *p < 0.05; in (D-F, K), Injection effect. 
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decreased total ERK2 levels similarly across groups (FIG. 2.7K; Injection effect, F1,20 = 17.79; all 

P’s < 0.05). Hence, d-amphetamine-induced expression of dopamine supersensitivity potentially 

involves decreased total DARPP-32 levels in the accumbens, without distinct effects on total 

ERK1/ERK2 levels.  

D-amphetamine enhanced the proportion of phosphorylated (active) versus total ERK1 and ERK2 

levels in controls [see also (Svenningsson et al., 2003; Valjent et al., 2005; Beaulieu et al., 2006)], 

but not in haloperidol-treated rats (FIG. 2.7J; Group × Injection interaction, F1,20 = 9.73; Injection 

effect, F1,20 = 15.62; FIG. 2.7L; Group × Injection interaction, F1,20 = 8.41; Injection effect, F1,20 = 

11.82; FIGS. 2.7J-L; controls, d-amph > saline; after d-amph, controls > haloperidol rats; all P’s ≤ 

0.05). D-amphetamine did not change the proportion of phosphorylated DARPP-32 in either group 

(FIG. 2.7H; p > 0.05). Thus, in the accumbens, the expression of dopamine supersensitivity is 

potentially linked to suppressed phosphorylation of ERK1 and ERK2. 

In summary, in dopamine-supersensitive rats, enhanced d-amphetamine-induced psychomotor 

activity is accompanied by enhanced GSK3β activity and decreased ERK activity in the nucleus 

accumbens. 

DISCUSSION 

In rats given a clinically-relevant antipsychotic treatment regimen, we examined where and how 

d-amphetamine acts to reveal the expression of dopamine supersensitivity. We report four main 

findings. First, systemic d-amphetamine reliably triggered the expression of established dopamine 

supersensitivity, whereas intracerebroventricular d-amphetamine infusion or an increase in VTA 

dopamine impulse flow did not. Second, dopamine-supersensitive rats showed an enhanced 

psychomotor response to selective D2, but not to D1 receptor stimulation or selective dopamine 

reuptake inhibition. Third, in dopamine-supersensitive rats, blocking D2 receptors enhanced the 

psychomotor response to d-amphetamine, whereas blocking D1 receptors suppressed d-

amphetamine-induced responding. Fourth, in dopamine-supersensitive rats, d-amphetamine 

increased GSK3β levels in the nucleus accumbens, but d-amphetamine failed to increase ERK1/2 

phosphorylation as it did in controls. These results give new insights into the mechanisms 

underlying the behavioural expression of antipsychotic-evoked dopamine supersensitivity. 
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Central Processes 

Across experiments, rats withdrawn from haloperidol treatment showed an enhanced psychomotor 

response to systemic d-amphetamine, indicating dopamine supersensitivity (Smith and Davis, 

1975; Ericson et al., 1996; Samaha et al., 2007). In these rats, increasing VTA dopamine impulse 

flow (by infusing neurotensin or DAMGO locally) produced control levels of hyperlocomotion and 

therefore, it did not trigger a sensitised response indicative of dopamine supersensitivity. It will be 

important to confirm these observations with more selective technics such as chemogenetics. 

Nonetheless, we extended the finding above by showing that restricting d-amphetamine’s effects 

to the brain was also insufficient to reveal the expression of dopamine supersensitivity, as it 

produced a similar locomotor effect between antipsychotic-treated rats and controls. These 

observations converge with findings that intra-striatal d-amphetamine infusions also fail to trigger 

a sensitised response in antipsychotic-treated rats (El Hage et al., 2015). Still, the above findings 

contrast with studies showing that antipsychotic-treated rats show a sensitized locomotor response 

to intra-striatal dopamine infusions (Halperin et al., 1983, 1989). However, these previous studies 

used high and clinically unrepresentative antipsychotic doses (Kapur et al., 2003). Using a 

clinically representative antipsychotic treatment regimen (Farde et al., 1989; Kapur et al., 2000; 

Kapur et al., 2003; Mamo et al., 2008), the present results and previous ones (El Hage et al., 2015) 

suggest that once antipsychotic-evoked dopamine supersensitivity has developed, its behavioural 

expression is not revealed by increasing central dopamine or monoamine transmission. Thus, this 

suggests that in antipsychotic-treated rats, the psychomotor response to d-amphetamine is still 

centrally mediated, but the exaggerated response requires peripheral activity. This contrasts with 

previous findings showing that the expression of dopamine supersensitivity evoked by repeated d-

amphetamine injections is centrally mediated, because a local infusion of this agonist into the 

striatum (Kolta et al., 1989; Paulson and Robinson, 1991) or into the lateral ventricles (Rebec and 

Segal, 1979) is sufficient to produce a sensitised psychomotor response. The peripheral effects 

mediating antipsychotic-evoked dopamine supersensitivity could involve adrenal glucocorticoids, 

as these are required for the expression of behavioural supersensitivity to d-amphetamine in other 

contexts [e.g., supersensitivity produced by stress (Deroche et al., 1992)]. 

Dopamine Reuptake 



100 

Dopamine-supersensitive rats showed a normal psychomotor response to the dopamine reuptake 

blocker GBR12783, and only a marginally enhanced response to the monoamine reuptake blocker, 

cocaine. In contrast, these same rats showed markedly augmented d-amphetamine-induced 

psychomotor activity. GBR12783, cocaine and d-amphetamine all act at the dopamine transporter 

(DAT). D-amphetamine could trigger a more robust supersensitive response through more potent 

effects at the DAT [e.g., by both blocking dopamine uptake and enhancing dopamine release 

(Rothman et al., 2001)]. However, in another model of dopamine supersensitivity, repeated d-

amphetamine injections potentiate the psychomotor response to cocaine and to the selective 

dopamine reuptake blocker GBR12909 (Bonate et al., 1997; Vanderschuren et al., 1999). Thereby, 

dopamine reuptake blockers can effectively evoke an exaggerated response in animals sensitive to 

the stimulating effects of d-amphetamine. Alternatively, d-amphetamine may be more potent to 

reveal the expression of antipsychotic-evoked dopamine supersensitivity relative to dopamine 

reuptake blocker through DAT-independent effects. For instance, in the caudate-putamen, d-

amphetamine—but not cocaine—depletes dopamine-containing vesicles and enhances tonic 

dopamine release (Covey et al., 2013). The effects of antipsychotic treatment on the processes 

above are not yet known, but antipsychotic-treated rats have potentially enhanced striatal DAT 

function (Amato et al., 2018). 

D2 and D1 Receptors 

Our results suggest that dopamine-supersensitive rats have enhanced D2-mediated activity, 

extending prior observations of increased striatal D2 receptor density and function (Burt et al., 

1977; Clow et al., 1980; Fleminger et al., 1983; Samaha et al., 2007; Samaha et al., 2008). First, 

our dopamine-supersensitive rats showed an enhanced psychomotor response to a D2 receptor 

agonist. Second, acute D2 receptor blockade suppressed the psychomotor response to d-

amphetamine in controls, but it potentiated d-amphetamine responding in dopamine-supersensitive 

rats. This potentiation could involve blockade of D2 autoreceptors, which would disinhibit 

dopamine synthesis/release and thus promote psychomotor activity. Indeed, chronic antipsychotic 

treatment can enhance presynaptic D2 receptor activity in the caudate-putamen (Calabresi et al., 

1992) [but not in the nucleus accumbens (Chesi et al., 1995)]. This idea requires further 

investigations, because it could represent an important neurobiological mechanism by which 

antipsychotic-evoked dopamine supersensitivity produce a tolerance to antidopaminergic effects 
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over time in both rodents (Samaha et al., 2007; Samaha et al., 2008; Gill et al., 2014) and 

schizophrenia patients (Chouinard and Jones, 1980; Chouinard et al., 2017). Third, dopamine-

supersensitive rats showed changes in nucleus accumbens cAMP/PKA- and GSK3β/AKT-

dependent activity consistent with enhanced D2-mediated signalling. D2 receptor stimulation 

disinhibits GSK3β activity and inhibits both cAMP/PKA-dependent activity and ERK1/2 

phosphorylation (Cross et al., 1995; Nishi et al., 1997; Beaulieu et al., 2007). Our dopamine-

supersensitive rats showed enhanced d-amphetamine-induced increases in GSK3β activity, but 

diminished d-amphetamine-induced ERK1/2 phosphorylation. Our biochemical and behavioural 

findings remain correlational. Moreover, we have shown previously that injecting d-amphetamine 

into the accumbens does not trigger the expression of established dopamine supersensitivity (El 

Hage et al., 2015). However, future work can determine whether dopamine-mediated signalling in 

the accumbens is necessary for the expression of dopamine supersensitivity. 

Our findings also suggest that D1 receptor activity could be required for the full expression of 

antipsychotic-induced supersensitivity. Dopamine-supersensitive rats showed a normal 

psychomotor response to a D1 agonist, and d-amphetamine failed to increase ERK1/2 activity in 

the accumbens in these rats, suggesting that D1 transmission is not potentiated. However, blocking 

D1 receptors normalized d-amphetamine-induced locomotion in dopamine-supersensitive rats. 

This extends findings that chronic stimulation of D1 (but not D2) receptors reverses the expression 

of antipsychotic-evoked dopamine supersensitivity (Marin and Chase, 1993; Braun et al., 1997). 

Similarly, chronic injections of a D1 agonist (Shuto et al., 2006) or blockade of D1 transmission 

(Ramos et al., 2004) reverse the expression of dopamine supersensitivity produced by repeated 

dopamine agonist injections. However, a caveat here is that D1 blockade also supressed basal 

locomotion in our rats, raising the possibility of non-specific motor effects. This requires further 

investigation. Nonetheless, our results show that dopamine-supersensitive rats remain responsive 

to the anti-dopaminergic effects of D1, but not D2 receptor blockade. Hence, D1 but not D2 

receptors represent potential targets to temper the behavioural manifestations of antipsychotic-

evoked dopamine supersensitivity. 

CONCLUSIONS 
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Effective treatments to prevent the expression of antipsychotic-evoked dopamine supersensitivity 

depend on a better understanding of the biological mechanisms through which this supersensitivity 

is expressed. In this context, our findings both extend existing knowledge on the role of D2 

receptors in antipsychotic-evoked dopamine supersensitivity and suggest two new underlying 

mechanisms. First, the expression of antipsychotic-evoked dopamine supersensitivity requires D1-

mediated transmission. Second, beyond central processes, the expression of this supersensitivity 

likely involves peripheral mechanisms.  
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SUPPLEMENT 

METHODS 

Animals 

Male Sprague-Dawley rats (200-275 g; Charles River Laboratories, Montreal, QC) were used. In 

Exps. 1-2, rats were housed 1/cage to avoid damage to intracerebral cannulae by conspecific. In 

Exps. 3-6, rats were housed 2/cage. All rats were housed on a reverse dark-light cycle (lights off at 

8:30 am). All testing took place during the dark phase. Water/food were available ad libitum. 

Drugs 

D-amphetamine sulfate (Sigma-Aldrich, Dorset, UK), cocaine hydrochloride (Medisca 

Pharmaceutique, St-Laurent, QC), neurotensin acetate salt, DAMGO acetate salt (Bachem, 

Torrance, CA), (-)-quinpirole hydrochloride, SKF38393 hydrobromide and SCH39166 

hydrobromide (R&D Systems, Minneapolis, MN) were dissolved in 0.9 % saline. Haloperidol 

(Sandoz, Boucherville, QC) was diluted in sterile water containing 0.5 % glacial acetic acid and 

pH was increased to ~5 using NaOH. (-)-Sulpiride (Sigma-Aldrich, Milwaukee, WI) was dissolved 

in 0.9 % saline containing ~1.4 % glacial acid acetic and pH was increased to ~6.5 using NaOH. 

GBR12783 dihydrochloride (R&D Systems) was dissolved in DMSO, diluted in 0.9 % saline (final 

concentration of DMSO is 10 %) and pH was increased to ~4 using NaOH. GBR12783 solubilised 

at higher pH values. Rats showed no visual/auditory signs of discomfort when receiving 

GBR12783 or its pH-matched vehicle. Apomorphine hydrochloride (Sigma, Oakville, ON) was 

dissolved in 0.9 % saline containing 0.1 % sodium L-ascorbate (Sigma, Oakville, ON). DAMGO, 

neurotensin and sulpiride solutions were frozen in aliquots and then thawed on testing days. 

GBR12783, apomorphine and its vehicle were prepared fresh on testing days. Haloperidol was 

administered via an osmotic minipump (Alzet model 2ML2; Durect Corporation, Cupertino, CA). 

Systemic injections were given s.c., except cocaine and its vehicle (i.p.). Systemic injections were 

given in a volume of 1 mL/kg, except for GBR12783 and its vehicle (4 mL/kg) and SKF38393 and 

its vehicle (3 mL/kg). Microinfusions in the lateral ventricles or in the ventral tegmental area (VTA) 

were given in a volume of 2 or 0.5 µL/hemisphere, respectively. 
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Intra-cerebral Procedures 

Cannulae implantation. In Exps. 1-2, intra-cerebral cannulation was performed at the same 

time as minipump implantation or sham surgery. Rats weighing 325-350 g were anesthetized with 

isoflurane (5 % for induction, 2-3 % to maintain anaesthesia) and placed on a stereotaxic apparatus. 

Rats received penicillin (3000 IU, i.m.) and carprofen (1.5 mg, s.c.) at the beginning of surgery. A 

guide cannula (Exp. 1: 26 GA, model C315G; Exp. 2: 22 GA, model C313G; HRS Scientific, 

Montreal, Qc) was implanted in each cerebral hemisphere 2 mm above the VTA (A/P -5.9, M/L 

±1.7, D/V -6.7, all mm relative to Bregma, M/L angle of 8°) or the lateral ventricles (A/P -1.1, M/L 

±2.5, D/V -3.3, all mm relative to Bregma, M/L angle of 10°). Four stainless steel screws were 

anchored to the skull and dental cement secured the cannulae. Guide cannulae were sealed with 

obturators (Exp. 1: model C315CD; Exp. 2: model C313CD; HRS Scientific).  

Intra-cerebral infusion. Microinfusions (0.5 µL/minute) were given via injectors protruding 

2 mm beyond guide cannulae (Exp. 1: 33 GA, model C315I; Exp. 2: 28 GA, model C313I; HRS 

Scientific). The injectors were connected via tubing to 5-µL syringes placed on a microsyringe 

pump (HARVARD PHD, 2000: HARVARD Apparatus, Saint-Laurent, Canada). Following 

infusion, injectors were kept in place for an additional minute. On day 2 following minipump 

removal (before any behavioural testing), rats were brought to the testing room and were given an 

intra-cerebral infusion of 0.9 % saline for habituation. No behaviour was recorded.  

Histology. In Exp. 2, rats received an intracerebroventricular infusion of ink prior to brain 

extraction to facilitate histological verification. In Exps. 1-2, brains were frozen in isopentane and 

stored at -20 °C until processing. Placement of injector tips was determined on 40-µm coronal 

slices using the atlas of Paxinos and Watson (1986). Data from rats with infusion sites outside of 

the targeted area were excluded from analysis. 

Measurement of Psychomotor Activity 

Psychomotor activity was measured using photocell counts and psychomotor activity ratings. 

Photocell counts—a measure of horizontal activity—were recorded in Plexiglas boxes (27 × 48 × 

20 cm) equipped with 6 rows of photocells (3 cm above the box floor). An experimenter blind to 

condition rated behaviour on minutes 5, 10, 20, 40 and 60 in Exp. 1 or every 10 minutes in Exps. 
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2-5 (unless an injection was given on minutes 30 or 60) using the following scale (Mattson et al., 

2007) [modified from Ellinwood and Balster (1974)]: 1: asleep, 2: inactive, 3: normal in place 

activity, 4: alert, rearing, normal level of locomotion, 5: rearing, high level of locomotion, 6: slow 

patterned behaviours, no rearing, high level of locomotion, 7: faster patterned behaviours, no 

rearing, high level of locomotion, 8: highly repetitive patterned behaviours in a restricted area and 

9: backing up, abnormally maintained posture. A psychomotor activity rating ≥ 6 indicates 

stereotypy. 

Western Blot 

Rats were briefly exposed to 5% isoflurane and brains were extracted. Two-mm coronal slices were 

cut, and bilateral tissue punches were taken from the slice at ~ +1.7 mm relative to Bregma in the 

nucleus accumbens, dorsal caudate-putamen, ventrolateral caudate-putamen and centromedial 

caudate-putamen using a 15-gauge sample corer. Striatal tissues were stored at -80°C until 

processing. 

Striatal samples were mechanically homogenized in a lysis buffer (150 mM sodium chloride, 1 % 

triton X-100, 0.5 % sodium deoxycholate, 0.1% sodium dodecyl sulfate, 50 mM tris, pH = 7.4) 

containing protease and phosphatase inhibitors (Sigma-Aldrich, Oakville, ON). Homogenates were 

solubilized for 15 minutes on ice and then centrifuged at 16,000 g for 30 minutes at 4°C. The 

protein content of supernatants was measured using a BiCinchoninic acid Assay (BCA) protein 

assay kit (Thremo Fisher Scientific, Mississauga, ON, Canada). Equal amounts of protein in lysis 

buffer (10 µg) were dissolved in 25 μL of double distilled water (boiled at 95 °C for 5 minutes) 

containing loading buffer (4X; Bio-Rad Laboratories, Mississauga, ON, Canada) and reducing 

agent (20X; Bio-Rad Laboratories). Protein samples were loaded into a Bis-Tris 10 % pre-casted 

gels (Bio-Rad Laboratories). Proteins migrated for 60 minutes at 200 V and were then transferred 

to a polyvinylidene fluoride membrane (Bio-Rad Laboratories) for 2 hours (70 V, 4°C). 

Membranes were blocked in a solution of 5 % bovine serum albumin diluted in 0.1 % Tween 

20/tris-buffered saline for 1 hour. Membranes were incubated overnight at 4 °C with the 

appropriate antibody (see Table SI for a detailed list of antibodies). Membranes were then rinsed 4 

times for 5 minutes with 0.1 % Tween 20/tris-buffered saline at room temperature. Membranes 

were incubated with the appropriate secondary antibody conjugated with horseradish peroxidase 

(see Table 1) for 1 hour at room temperature. Immunoreactive bands were revealed using the 
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enhanced chemiluminescence reaction (Bio-Rad Laboratories) and the bands were placed against 

sensitive film (MidSci Scientific, Valley Parl, MI, USA) for a few seconds.  

Densitometric levels were determined using Image Lab Software (Bio-Rad Laboratories). 

Background was subtracted for each band. The densitometric level of each band was normalized 

relative to the sum of densitometric levels across all tissue samples. Protein levels were then 

normalized relative to the corresponding level of the housekeeping protein α-tubuline. Protein 

levels were then normalized relative to the mean protein level of the control group that received 

saline injection prior to brain extraction. Using these values, we computed the ratio of 

phosphorylated protein levels over total protein levels. 

RESULTS 

FIG. 2.S1 ─ D-amphetamine effects on psychomotor activity ratings. Across studies, d-

amphetamine increased psychomotor activity ratings relative to vehicle (‘Injection’: vehicle and d-

amphetamine; Injection effect; A, F1,8 = 99.86; B, F1,51 = 744.4; C, F1,30 = 502.4; D, F1,61 = 556.3; 

all P’s < 0.0001). There were no group differences except in Exp. 5, where haloperidol rats had 

greater psychomotor activity ratings relative to controls (D; ‘Group’: controls and haloperidol; 

Group effect, F1,61 = 5.03, p = 0.029). Dotted lines indicate mean ratings of control rats receiving 

saline. n’s = 5-32/condition. *p < 0.05, relative to vehicle (‘0 mg/kg’) in the same group; # p < 

0.05, Group effect. 
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FIG. 2.S2 ─ Effects of the D1 antagonist SCH39166 and the D2 antagonist sulpiride on vehicle-

induced locomotion and psychomotor activity ratings. SCH39166 reduced vehicle-induced 

locomotion and ratings similarly in haloperidol rats and controls (minutes 30-150; A-B; ‘Injection’, 

vehicle, 0.03 and 0.1 mg/kg; Injection × Time interaction, F22,979 = 1.87; Injection effect, F2,89 = 

7.96; C; Injection effect, F2,89 = 5.49; all P’s < 0.01). (D-F) In both groups, sulpiride had no 

influence on vehicle-induced locomotion or on ratings (all P’s > 0.05). Dotted lines indicate 

response of control rats receiving vehicle. n’s = 7-32/condition. *p < 0.05. In (A-B), Injection × 

Time interaction and Injection effect. In (C), Injection effect. 
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FIG. 2.S3 ─ cAMP/PKA- and AKT/GSK3β-dependent signalling in the dorsal caudate-

putamen of haloperidol-treated (HAL) rats and control (CTL) rats. (A) Across groups, d-

amphetamine increased GSK3β levels (Injection effect, F1,20 = 15.19, p = 0.0009), with no group 

differences. (B) D-amphetamine decreased pGSK3β/total GSK3β ratios similarly across groups 

(Injection effect, F1,20 = 8.32, p = 0.009). (C) Chronic haloperidol treatment decreased AKT level 

regardless of d-amphetamine injection (Group effect, F1,19 = 11.11, p = 0.004). (D) D-amphetamine 

decreased pAKT/total AKT ratios similarly across groups (Injection effect, F1,19 = 4.65, p = 0.04). 

There was no significant effect of haloperidol treatment or of d-amphetamine injection on (E) 

DARPP-32 or (F) pDARPP-32/total DARPP-32 ratios (all P’s > 0.05). Across groups, d-

amphetamine enhanced (G) ERK1 and (I) ERK2 levels, and decreased (H) pERK1/total ERK1 and 

(J) pERK2/total ERK2 ratios (Injection effect; ERK1, F1,20 = 14.65; ERK2, F1,20 = 9.05;

pERK1/total ERK1 ratio, F1,20 = 24.84; pERK2/total ERK2 ratio, F1,20 = 13.87; all P’s < 0.01).

There were no group differences in these effects. (J) Additionally, chronic haloperidol treatment

increased pERK2/total ERK2 ratios, regardless of d-amphetamine injection (Group effect, F1,20 =

4.94, p = 0.038). n’s = 5-6/condition. In (A-C-E-G-I), dotted lines indicate the protein level of the

control group injected with saline. *p < 0.05, relative to vehicle in the same group; # p < 0.05,

Group effect.
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FIG. 2.S4 ─ cAMP/PKA- and AKT/GSK3β-dependent signalling in the ventrolateral caudate-

putamen of haloperidol-treated (HAL) rats and control (CTL) rats. Across groups, d-

amphetamine increased (A) GSK3β and (C) AKT levels (Injection effect; GSK3β, F1,20 = 27.07; 

AKT, F1,20 = 14.35; all P’s ≤ 0.001), with no group differences. (B) D-amphetamine decreased 

pGSK3β/total GSK3β ratios similarly across groups (Injection effect, F1,19 = 19.3, p = 0.0003). (D) 

Neither haloperidol treatment nor d-amphetamine injection influenced pAKT/total AKT ratios (p 

> 0.05). Across groups, d-amphetamine decreased (E) DARPP-32 levels, (I) ERK2 levels and (H) 

pERK1/total ERK1 ratios (Injection effect; DARPP-32, F1,16 = 8.11; ERK2, F1,20 = 21.63; 

pERK1/total ERK1 ratio, F1,20 = 5.23; all P’s < 0.05), with no group differences. There was no 

effect of haloperidol treatment or of d-amphetamine injection on (F) pDARPP-32/total DARPP-

32 ratios or (J) pERK2/total ERK2 ratios (all P’s > 0.05). (G) D-amphetamine decreased ERK1 

levels in controls relative to both vehicle-injected control rats and haloperidol rats (Group × 

Injection interaction, F1,20 = 8.53; Injection effect, F1,20 = 17.04; controls, saline > d-amph; saline, 

controls > haloperidol rats; all P’s < 0.05). (H) Chronic haloperidol increased pERK1/total ERK1 

ratios regardless of d-amphetamine injection (F1,20 = 5.07, p = 0.039). n’s = 3-6/condition. In (A-

C-E-G-I), dotted lines indicate the protein level of the control group injected with saline. *p < 

0.05, relative to vehicle in the same group, unless indicated otherwise; # p < 0.05, Group effect. 
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FIG. 2.S5 ─ cAMP/PKA- and AKT/GSK3β-dependent signalling in the centromedial caudate-

putamen of haloperidol-treated (HAL) rats and control (CTL) rats. (A) Chronic haloperidol 

decreased GSK3β levels, and this was not influenced by d-amphetamine injection (Group effect, 

F1,20 = 12.49, p = 0.002). There was no effect of haloperidol treatment or of d-amphetamine 

injection on (B) pGSK3β/total GSK3β and (D) pAKT/total AKT ratios (all P’s > 0.05). (C) D-

amphetamine increased AKT levels in control rats only (Group × Injection interaction, F1,20 = 4.75; 

controls, d-amph > saline; d-amph, controls > haloperidol rats; all P’s < 0.05). Across groups, d-

amphetamine increased (E) DARPP-32, (G) ERK1 and (I) ERK2 levels (Injection effect; DARPP-

32, F1,20 = 8.03; ERK1, F1,19 = 53.32; ERK2, F1,19 = 95.27; all P’s ≤ 0.01), with no group 

differences. (F) D-amphetamine decreased pDARPP-32/total DARPP-32 ratios similarly across 

groups (Injection effect, F1,19 = 8.86, p = 0.008). D-amphetamine and haloperidol did not influence 

(H) pERK1/total ERK1 ratios or (J) pERK2/total ERK2 ratios (all P’s > 0.05). n’s = 2-6/condition.

In (A-C-E-G-I), dotted lines indicate the protein level of the control group injected with saline. *p

< 0.05, relative to vehicle in the same group, unless indicated otherwise; # p < 0.05, Group effect.
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TABLE SI. List of antibodies used for Western Blots, and their respective dilution.  

Antibody Dilution Provider* Product no. 

Rabbit monoclonal anti-GSK3β 1:1,000 CST 9315 

Rabbit polyclonal anti-
p[Ser9]GSK3β 1:500 CST 9336 

Rabbit polyclonal anti-ERK1/2 1:50,000 CST 9102 

Rabbit polyclonal anti-
p[Thr202]ERK44/p[Thr204]ERK42 1:10,000 CST 9101 

Mouse monoclonal anti-α-tubulin 1:50,000 Sigma-
Aldrich T5168 

Goat anti-rabbit conjugated to 
horseradish peroxidase 

1: 5,000 for phosphorylated 
kinase and 1:10,000 for non-

phosphorylated kinase 
CST 7074 

Horse anti-mouse conjugated to 
horseradish peroxidase 1:150,000 CST 7076 

*Antibodies were purchased from CST (Cell Signalling Technology, New England BioLabs, 
Whitby, ON) or Sigma-Aldrich (Oakville, ON). 
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OBJECTIVES 

As described in Section 2.4.4 (page 57), antipsychotic-evoked dopamine supersensitivity could 

increase stress-like responses. Here we investigated the contribution of the stress hormone 

corticosterone in the expression of antipsychotic-evoked dopamine supersensitivity, and we 

determined if dopamine-supersensitive rats show signs of increased stress-related behaviours. 

Hence, in Exp. 1, we determined whether corticosterone synthesis is necessary for the expression 

of already established dopamine supersensitivity, after haloperidol treatment cessation. We used 

the corticosterone inhibitor metyrapone to investigate this question. Metyrapone is an inhibitor of 

the enzyme 11β-hydroxylase, that catalyzes the conversion of deoxycorticosterone into 

corticosterone (Igaz et al., 2008). We then determined if the expression of dopamine 

supersensitivity during ongoing chronic haloperidol treatment (Exp. 2) or after chronic haloperidol 

treatment (Exp. 3) is accompanied with change in the behavioural response to stressors, as assessed 

by measuring avoidance in the elevated-plus maze (Pellow et al., 1985), the open field (Katz et al., 

1981) and the light-dark box (Crawley and Goodwin, 1980). Lastly, in Exp. 4, we determined 

whether the expression of already established dopamine supersensitivity (after haloperidol 

treatment cessation) is linked to an increased locomotor response to novelty. This increased 

behavioural response seems linked to cross-sensitisation between the effects of stress and of 

dopamine agonists. Chronically-stressed animals are more likely to show a greater locomotor 

response to novelty relative to non-stressed controls (Marin et al., 2007). Interestingly, animals that 

have a greater locomotor response to novelty also show potentiated dopamine release in the nucleus 

accumbens in response to stress (Rouge-Pont et al., 1993) and an enhanced response to the 

psychomotor and rewarding effects of dopamine agonists (Piazza et al., 1989; Hooks et al., 1991; 

Hooks et al., 1994).  

Exps. 1-3 included rats that were either exposed continuously (CONT-HAL) or transiently 

(TRANS-HAL) to haloperidol. CONT-HAL treatment was administered via s.c. osmotic 

minipump, whereas TRANS-HAL treatment was administered via daily s.c. injections (see FIG. 

1.8B-C, page 46). As described in Chapter I (Section 2.4.3, page 56), transient antipsychotic 

exposure could reduce dose-dependent deleterious effects of antipsychotic drugs without 

compromising therapeutic efficacy. Hence, here we wished to better characterise the long-term 
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effects of transient treatment, as the current knowledge on this promising dosing strategy remains 

sparse. 

METHODS 

Animals 

Male Sprague-Dawley rats (Charles river Laboratories; Montreal, Canada, for Exps. 1, 2 and 4; 

Kingston, New York, United-States, for Exp. 3) were housed 2/cage on a reversed 12-h light/dark 

cycle (lights off at 8:30 a.m.). Testing took place during the dark phase. Animals had ad libitum 

access to water and food. All experimental procedures were approved by the ethics committee of 

the Université de Montréal and followed the guidelines of the Canadian Council on Animal Care. 

Drugs 

Haloperidol (5 mg/mL; Sandoz, Boucherville, Canada) was diluted either in water containing 0.5 

% glacial acetic acid (pH increased to ~5 using NaOH) for delivery via subcutaneous (s.c.) osmotic 

minipump (16 or 18 days of continuous delivery depending on minipump lot; Alzet, model 2ML2; 

Durect Corporation, Cupertino, California) or in 20 mM phosphate buffer saline (PBS) for delivery 

via daily s.c. injections (1 mL/kg). PBS was used to avoid irritation produced by repeated 

injections. Using PBS or water containing glacial acetic acid does not alter the behavioural effects 

of haloperidol (Samaha et al., 2008). Dextro-amphetamine sulfate (1.5 mg/kg; Sigma-Aldrich, 

Dorset, United Kingdom) was dissolved in 0.9 % saline (s.c., 1 mL/kg). Metyrapone (Abcam, 

Cambridge, Massachusetts) was dissolved in saline containing 50 % ethanol, and it was then diluted 

in saline for a final concentration of 10 % ethanol (s.c., 3 mL/kg).  

Haloperidol Treatments 

In patients, haloperidol produces therapeutic effects and has a low incidence to induce 

extrapyramidal effects at doses achieving ~65-80 % occupancy of striatal dopamine D2 receptors 

(Farde et al., 1992; Kapur et al., 2000). Here, CONT-HAL and TRANS-HAL rats received 

clinically representative haloperidol doses achieving similar peak levels of striatal D2 occupancy: 

0.5 mg/kg/day for CONT-HAL treatment [73 % D2 occupancy ± 14 SD; unpublished observations; 
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see also (Kapur et al., 2003; Samaha et al., 2007)] and 0.05 mg/kg/injection for TRANS-HAL 

treatment [74 % D2 occupancy ± 7 SD, 2 hours post-injection; (Kapur et al., 2003)]. Continuous 

administration of haloperidol was achieved via s.c. osmotic minipump. CONT-HAL treatment 

mimics continuous exposure in schizophrenia patients produced by daily oral intake or intra-

muscular depot of long-acting injectable antipsychotic (Farde et al., 1989; Remington et al., 2006; 

Mamo et al., 2008). TRANS-HAL rats received daily haloperidol injections to achieve transient 

plasma/brain levels of the antipsychotic, as D2 occupancy is above 65 % 2 hours following 

injection and then declines below 65 % 24 hours post-injection [19 % ± 31 SD; (Kapur et al., 

2003)]. Hence, TRANS-HAL and CONT-HAL rats received haloperidol using the same route of 

administration (s.c.), treatment duration and peak levels of antipsychotic-evoked D2 occupancy, 

and the groups differed only in the within-day kinetics of haloperidol levels/D2 occupancy. 

In the CONT-HAL group, s.c. osmotic minipumps were implanted under isoflurane anesthesia 

(Samaha et al., 2007). TRANS-HAL and control rats received a sham surgery (incision closed with 

wound clips). Starting the next day, TRANS-HAL rats received daily haloperidol injections, 

whereas CONT-HAL and control rats received daily PBS injections. Injections were given every 

day for 16-18 days. Seventeen or 19 days after minipump implantation/sham surgery, minipumps 

were removed from CONT-HAL rats, and controls and TRANS-HAL rats received a second sham 

surgery. 

Measures of Psychomotor Activity 

Psychomotor activity was measured in Plexiglas cages (27 × 48 × 20 cm) equipped with 6 rows of 

photocells placed 3 cm above the cage floor. We computed two indices of psychomotor activity; i) 

horizontal locomotion, measured as number of individual photocell beam breaks, and ii) 

psychomotor activity ratings given by an experimenter blind to condition. These ratings were given 

on minutes 10 and 20 (before d-amphetamine injection) and on minutes 40, 50, 60, 70 and 80 (after 

d-amphetamine injection), based on a 1-to-9 scale (Ellinwood and Balster, 1974; Mattson et al.,

2007). On this scale, a rating ≥ 6 indicates stereotypy: 1) asleep, 2) inactive, 3) normal in place

activity, 4) normal, alert, rearing, normal level of locomotor activity, 5) rearing, high level of

locomotor activity, 6) slow patterned behaviours, no rearing, high level of locomotor activity, 7)

faster patterned behaviours, no rearing, high level of locomotor activity, 8) highly repetitive

patterned behaviours in a restricted area and 9) backing up, abnormally maintained posture.



124 

Measures of Stress-like Behavioural Responses 

As indices of stress-like behaviour, we measured avoidance of open arms in the elevated-plus maze, 

of the center of the open field and of the light compartment of the light-dark box. Rats were tested 

in each apparatus consecutively (5 min each, counterbalanced). The elevated-plus maze consisted 

of 4 arms: 2 open arms (45 × 10 cm, with a 0.5 cm Plexiglas border to keep rats from falling over 

the open arms) and 2 closed arms (45 × 10 cm, wall height of 30 cm). Arms were 50 cm above the 

floor. At the beginning of the test, rats were placed in the center, facing an open arm. The open 

field was 80 × 80 cm, with 4 × 4 squares drawn on the floor (20 × 20 cm each). The 4 squares in 

the middle represented the center. Wall height was 40 cm. Rats were placed in the periphery at the 

beginning of the test. For the light-dark box, the dark compartment was black and enclosed (20 × 

30 cm floor) and the light compartment was wider, white and not enclosed (40 × 30 cm floor). Wall 

height was 30 cm. Rats were placed in the dark compartment at the beginning of the test, and had 

access to the light compartment through an opening in the wall separating the dark and light 

compartments. Rats were tested during the dark phase of the light-dark cycle, but tests were given 

in a room with lights on. This was to help keep rats from falling from the elevated-plus maze, and 

to also help them distinguish the dark and light compartments in the light-dark box. Thirty minutes 

before the tests, rats were moved to a room (adjacent to the testing room) with lights on for 

habituation. In Exp. 3, rats received their daily PBS or haloperidol injection before being moved 

to the habituation room. Tests were videotaped and an experimenter blind to conditions manually 

quantified time spent and entries made in each section. Entry in a section was counted each time 

rats placed the two front paws in a new section. 

Exp. 1: Is Corticosterone Synthesis Necessary for the Expression of Established 

Antipsychotic-evoked Dopamine Supersensitivity? 

If corticosterone synthesis is required for the expression of dopamine supersensitivity, then 

metyrapone should decrease to a greater extent d-amphetamine-induced psychomotor activity in 

CONT-HAL rats relative to controls and TRANS-HAL rats, because d-amphetamine-induced 

locomotion is highest in CONT-HAL rats.  

On days 3-9 following minipump removal, rats received an s.c. injection of vehicle (saline alone 

or saline with 10 % ethanol) or metyrapone (50 or 100 mg/kg) in their home cage (FIG. 3.1A). 
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Metyrapone is commonly administered in vehicle containing ethanol (Reid et al., 1998; Bratt et 

al., 2001; Johnson and Yamamoto, 2009). In a pilot study, we found that a pre-treatment with 

metyrapone vehicle (saline/10 % ethanol) does not alter d-amphetamine-induced locomotion in 

antipsychotic-naïve animals. Here we included two vehicle conditions (saline alone or saline 

containing 10 % ethanol) to confirm that finding in rats with a history of chronic antipsychotic 

exposure. Because we found no difference between these two vehicles, we pooled the data. Thirty 

minutes after metyrapone administration, rats were moved to the testing room and placed in 

locomotor test cages. Locomotor activity was recorded, and on minute 30, rats received either s.c. 

FIG. 3.1 ─ Experimental timelines. (A) Exp. 1. After cessation of transient (TRANS-HAL) or continuous 
(CONT-HAL) haloperidol treatment, the effects of the corticosterone synthesis inhibitor metyrapone (50 or 
100 mg/kg) on d-amphetamine-induced psychomotor activity was evaluated. (B) In Exp. 2, stress-like 
behaviours were assessed on days 2 and 16 of ongoing, TRANS-HAL or CONT-HAL treatment. Changes 
in the anti-dopaminergic efficacy of ongoing antipsychotic treatment were assessed by measuring the ability 
of haloperidol treatment to suppress the psychomotor response to d-amphetamine on days 3 and 17 of 
haloperidol treatment. On day 6 after treatment cessation, we again measured the psychomotor response to 
d-amphetamine to assess expression of haloperidol-induced dopamine supersensitivity. (C) In Exp. 3, we
measured stress-like behaviours 6 days after cessation of TRANS-HAL or CONT-HAL treatment. The
expression of dopamine supersensitivity was assessed by measuring the psychomotor response to d-
amphetamine on days 7, 14 and 28 after treatment cessation. (D) In Exp. 4, we sought to determine whether
the dopamine supersensitivity evoked by CONT-HAL treatment also enhances the locomotor response to
novelty. To this end, we analysed novelty- and d-amphetamine-induced locomotion in past experimental
cohorts tested in our laboratory. Locomotor response to novelty was measured on day 3 after treatment
cessation, and then d-amphetamine-induced locomotion was measured either on day 5, 7 or 9.
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vehicle or d-amphetamine. Locomotor activity was recorded for an additional hour. Each rat 

received 4 combinations out of 8 possible combinations (1 combination/test): 1) vehicle + vehicle, 

2) metyrapone (50 or 100 mg/kg) + vehicle, 3) d-amphetamine + vehicle and 4) metyrapone (50 or 

100 mg/kg) + d-amphetamine (n = 6-15/condition, per group). 

Exp. 2: Is the Development of Antipsychotic-evoked Dopamine Supersensitivity 

Paralleled with Increased Stress-like Behaviour? 

If dopamine supersensitivity evoked by CONT-HAL treatment is paralleled by increased stress-

like behaviour, then CONT-HAL rats should show control levels of stress-like behaviour early into 

treatment, but increased stress-like behaviour late into treatment when dopamine supersensitivity 

breakthrough. Furthermore, we expect that TRANS-HAL treatment does not increase stress-like 

behaviour at any time point, as there are no signs of breakthrough dopamine supersensitivity during 

transient exposure (Samaha et al., 2008). 

Hence, here we evaluated stress-like behaviour at two time points during haloperidol treatment 

(FIG. 3.1B). First, we tested early into treatment (day 2), when dopamine supersensitivity has not 

yet developed (Samaha et al., 2007; Amato et al., 2018), and both TRANS-HAL and CONT-HAL 

treatments have significant anti-dopaminergic efficacy, as indicated by suppression of d-

amphetamine-induced locomotor activity (Samaha et al., 2008). Second, we also tested late into 

treatment (day 16), when dopamine supersensitivity breaks through ongoing CONT-HAL but not 

TRANS-HAL treatment, as indicated by a loss of anti-dopaminergic efficacy in CONT-HAL rats 

only (Samaha et al., 2008). This treatment failure occurs even though a large proportion of striatal 

D2 receptors are still blocked by antipsychotics (Samaha et al., 2007; Amato et al., 2018). On the 

day following each set of stress tests (i.e., days 3 and 17 of haloperidol treatment), we also assessed 

anti-dopaminergic efficacy. To this end, we evaluated whether TRANS-HAL and CONT-HAL 

treatments suppress the psychomotor response to d-amphetamine. Finally, on day 6 after 

discontinuation of haloperidol, we assessed the expression of antipsychotic-evoked dopamine 

supersensitivity, as indicated by an exaggerated psychomotor response to d-amphetamine (Smith 

and Davis, 1975; Vonvoigtlander et al., 1975; Ericson et al., 1996). 

On days 2 and 16 of haloperidol treatment, TRANS-HAL rats (n = 10) received their daily 

haloperidol injection and CONT-HAL (n = 11) and control (n = 11) rats received their daily PBS 
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injection. Thirty minutes later, rats were tested in the stress tests described above. On days 3 and 

17 of haloperidol treatment, TRANS-HAL rats received their daily haloperidol injection and 

CONT-HAL and control rats received their daily PBS injection. Locomotor activity was recorded 

for 30 minutes and then all rats received d-amphetamine. Locomotor activity was then recorded 

for an additional hour. On day 6 after haloperidol treatment cessation, we again assessed d-

amphetamine-induced psychomotor activity, but all rats received a saline injection at the beginning 

of the test instead of PBS or haloperidol. 

Exp. 3: Is the Expression of Antipsychotic-evoked Dopamine Supersensitivity Linked to 

Increased Stress-like Behaviour? 

If dopamine supersensitivity is paralleled by increased stress-like behaviour, then CONT-HAL but 

not TRANS-HAL rats should show increased stress-like behaviour after treatment cessation 

relative to control rats. Also, because CONT-HAL treatment produces stronger signs of dopamine 

supersensitivity than TRANS-HAL treatment does (Ericson et al., 1996; Samaha et al., 2008), we 

predicted that the enhanced psychomotor response to d-amphetamine persists for a longer time 

after cessation of CONT-HAL treatment than TRANS-HAL treatment. 

FIG. 3.1C illustrates experimental timeline. Here we evaluated stress-like behaviour of control, 

TRANS-HAL and CONT-HAL rats on day 6 after treatment cessation, when the expression of 

antipsychotic-evoked dopamine supersensitivity produced by CONT-HAL treatment is higher 

(Samaha et al., 2008; Bedard et al., 2011; Servonnet et al., 2017). On the day following the stress 

tests (day 7), we measured the psychomotor response to d-amphetamine to confirm the expression 

of antipsychotic-evoked dopamine supersensitivity. Furthermore, we also compared the persistence 

of any potential dopamine supersensitivity after cessation of TRANS-HAL or CONT-HAL 

treatment. Hence, d-amphetamine-induced psychomotor activity was measured again either on day 

28 (rats received 2 d-amphetamine injections in total), or on days 14 and 28 (3 d-amphetamine 

injections in total). Rats that had received either 2 or 3 d-amphetamine injections in total showed a 

similar psychomotor response to d-amphetamine on day 28, indicating that receiving 2 or 3 

injections did not significantly influence behaviour. Thus, we pooled these rats for analysis of 

psychomotor activity on day 28.  



128 

On day 6 following minipump removal, TRANS-HAL (n = 10), CONT-HAL (n = 11) and control 

(n = 11) rats were tested in the stress tests. On days 7, 14 and 28 following minipump removal, rats 

received a saline injection and locomotor activity was recorded for 30 minutes. The rats then 

received d-amphetamine, and locomotor activity was recorded for an additional hour. 

Exp. 4: Do Dopamine-supersensitive Rats Show an Increased Locomotor Response to 

Novelty? 

We determined whether CONT-HAL rats (n = 76) show an enhanced locomotor response to 

novelty relative to antipsychotic-naïve rats (n = 75) (FIG. 3.1D). Hence, we re-analysed data from 

previous cohorts (rats from Exps. 3-5 in Chapter II and rats from Exp. 1 here). We analysed the 

locomotor response to novelty on day 3 following CONT-HAL treatment cessation, which 

corresponds to rats’ first exposure to the locomotion box. Depending on the cohort, some rats 

received a vehicle injection and others did not prior to the test. There was no difference in the 

locomotor response on the first day of test across cohorts, indicating that the different methodology 

(i.e., injection prior to the test, vehicle type, experimenter, etc) did not significantly influence 

locomotor behaviour. Thereby, the cohorts were pooled together. In a subsequent test, we also 

analysed the locomotor response to saline and to d-amphetamine, when the locomotor test cage did 

not represent a novel environment anymore for the rats (n = 54/group). This test took place during 

the 3rd, 4th or 5th test that rats received, that correspond to 5, 7 or 9 days after treatment cessation, 

respectively. 

Statistical Analysis 

In Exp. 1, 4-way, mixed-model ANOVA was used to analyse the influence of Metyrapone (0, 50 

and 50 mg/kg), D-amphetamine (0 and 1.5 mg/kg) or Group (control, TRANS-HAL and CONT-

HAL) on locomotor activity (Group × Dose × Time; ‘Time’ as a within-subjects variable). Three-

way ANOVA was used to analyse effects of Metyrapone, D-amphetamine or Group on 

psychomotor activity ratings or on the area under the curve (AUC) for metyrapone’s effect on 

locomotion (Dose × Group; both as between-subjects variables).  

In Exps. 2-3, mixed-model ANOVA was used to analyse the influence of Group (controls, TRANS-

HAL and CONT-HAL) or Section (open field: center and periphery) or Compartment (light-dark 
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box: light and dark) or Arm (elevated-plus maze: open or closed) on time (Group × Section or 

Compartment or Arm; ‘Compartment’, ‘Arm’ and ‘Section’ as within-subjects variables). Mixed-

model ANOVA was used to analyse the influence of Group or Arm on entries in the arms of the 

elevated-plus maze (Group × Arm; ‘Arm’ as a within-subjects variable). One-way ANOVA was 

used to analyse the influence of Group on entries in the center of the open field or in the light 

compartment of the light-dark box (‘Group’ as a between-subject variable).  

In Exps. 2-4, mixed-model ANOVA was used to analyse the influence of Group (Exps. 2-3: 

controls, TRANS-HAL and CONT-HAL; Exp. 4: controls and CONT-HAL) on locomotor activity 

(Group × Time; ‘Time’ as a within-subjects variable). One-way ANOVA was used to measure the 

influence of Group on psychomotor activity ratings (‘Group’ as a between-subject variable).  

Effects were further analysed using Bonferroni’s multiple comparisons’ tests when interaction and 

main effects were significant (p < 0.05). Values in figures are mean ± SEM. 

RESULTS 

Exp. 1: Is Corticosterone Synthesis Necessary for the Expression of Established 

Antipsychotic-evoked Dopamine Supersensitivity? 

The influence of metyrapone pre-treatment on locomotor activity and ratings depended on whether 

animals received vehicle or d-amphetamine (FIGS. 3.2A-F; minutes 40-90; Metyrapone × D-

amphetamine × Time interaction, F10,730 = 6.91; Metyrapone × D-amphetamine interaction, F2,146 

= 24.53; insets in FIGS. 3.2A-F; Metyrapone × D-amphetamine interaction, F2,146 = 15.98; all P’s 

< 0.0001). Thus, we analysed the influence of metyrapone on vehicle- and d-amphetamine-induced 

locomotion/ratings separately. 

Across groups, metyrapone pre-treatment decreased both vehicle-induced locomotion (FIGS. 3.2A- 

C; minutes 40-90; Metyrapone × Time interaction, F10,365 = 2.88; Metyrapone effect, F2,73 = 5.69; 

all P’s ≤ 0.005) and psychomotor activity ratings (insets in FIGS. 3.2A-C; Metyrapone effect, F2,73 

= 4.69, p = 0.012). Additionally, CONT-HAL rats had generally greater vehicle-induced ratings 

(insets in FIGS. 3.2A-C; Group effect, F2,73 = 8.08, p = 0.0007) independently of metyrapone pre-

treatment (no Metyrapone × Group interaction effect, p > 0.05).  
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Haloperidol increased d-amphetamine-induced locomotion (white curves in FIGS. 3.2D-F; minutes 

40-90; Group × Time interaction, F10,190 = 2.95; Group effect, F2,38 = 4.76, all P’s < 0.05). 

Specifically, CONT-HAL rats showed a greater locomotor response to d-amphetamine relative to 

control rats (white curves in FIGS. 3.2D versus 3.2F; Group × Time interaction, F5,120 = 3.82; Group 

effect, F1,24 = 10.92; all P’s < 0.05). TRANS-HAL rats also showed a greater locomotor response 

 

 
 

FIG. 3.2 ─ The corticosterone synthesis inhibitor metyrapone reduces the expression of established 
haloperidol-evoked dopamine supersensitivity. (A-C) Effects of subcutaneous (s.c.) (see next page ) 
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to d-amphetamine relative to control rats (white curves in FIGS. 3.2D versus 3.2E; Group × Time 

interaction, F10,190 = 2.95, p = 0.002). There was no group difference in psychomotor activity ratings 

(left histograms in insets of FIGS. 3.2D-F; p > 0.05). Hence, both modes of haloperidol treatment 

produced dopamine supersensitivity. Across groups, metyrapone pre-treatment decreased both d-

amphetamine-induced locomotion (FIGS. 3.2D-F; minutes 40-90; Metyrapone × Time interaction, 

F10,365 = 5.56; Metyrapone effect, F2,73 = 38.08; all P’s < 0.0001) and psychomotor activity ratings 

(insets in FIGS. 3.2D-F; Metyrapone effect, F2,73 = 19.81, p < 0.0001), with no group differences.  

Based on visual inspection of the locomotor curves in FIGS. 3.2A-C and FIGS. 3.2D-F, we also 

analysed the effects of metyrapone on AUC for both vehicle- and d-amphetamine-induced 

locomotion. This was determined by subtracting AUC at 50 or 100 mg/kg metyrapone from AUC 

at 0 mg/kg metyrapone. This calculation provides an index of how much metyrapone decreased 

locomotor activity, and this allowed to compare the amplitude of these suppressive effects between 

the groups. FIG. 3.2G shows the amplitude of metyrapone’s effects on vehicle-induced locomotion. 

FIG. 3.2H shows the amplitude of metyrapone’s effects on d-amphetamine-induced locomotion. 

The amplitude of metyrapone effect was dependent on whether rats received vehicle or d-

amphetamine (FIGS. 3.2G-H; Metyrapone × D-amphetamine interaction, F1,70 = 5.98, p = 0.017) 

and thereby, we analysed the data presented on FIG. 3.2G (vehicle) and FIG. 3.2H (d-amphetamine) 

separately. Metyrapone suppressed vehicle-induced locomotion, and the amplitude of this effect 

was similar across metyrapone doses and groups (FIG. 3.2G; no Metyrapone effect nor Group 

effect, all P’s > 0.05). Metyrapone also suppressed d-amphetamine-induced locomotion, and the 

amplitude of this effect was dose-dependent (FIG. 3.2H; Metyrapone effect, F1,35 = 4.46, p = 0.042). 

There were also group differences in this effect (FIG. 3.2H; Group effect, F2,35 = 4.52, p = 0.018), 

with an amplitude that is greater in antipsychotic-treated rats. However, there was no Group × 

(FIG. 3.2 ) metyrapone on the response to s.c. vehicle. (D-F) Effects of s.c. metyrapone on the response 
to s.c. d-amphetamine. (G-H) Amplitude of metyrapone’s effects on the locomotor response to vehicle and 
d-amphetamine, calculated as the area under the curve (AUC) of the locomotor response with 0 mg/kg
metyrapone minus AUC of the locomotor response with 50 or 100 mg/kg metyrapone (metyrapone was co-
administered with vehicle in G, or with d-amphetamine in H). n’s/condition = 6-15. #, *p < 0.05. In (A-F),
overall effect of metyrapone across groups on locomotion induced by vehicle (A-C analysed together) or d-
amphetamine (D-F analysed together): *Metyrapone × Time interaction and Metyrapone effect. Insets in
(A-F), overall effect of metyrapone across groups on ratings induced by vehicle (insets in A-C analysed
together) or d-amphetamine (insets D-F analysed together): *Metyrapone effect. In (H), overall
*Metyrapone effect and # Group effect.
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Metyrapone interaction effect (p > 0.05). This suggests that the effect of Group is similar across 

metyrapone doses and is not specific to a haloperidol treatment regimen. Hence, the results above 

suggest that antipsychotic-treated rats are more responsive to metyrapone’s suppressive effects on 

d-amphetamine-induced locomotion. 

SUMMARY OF EXP. 1 

Both CONT-HAL and TRANS-HAL treatments produced dopamine supersensitivity. Metyrapone 

suppressed d-amphetamine-induced locomotor activity across groups, but that effect seemed 

greater in antipsychotic-treated rats. Hence, corticosterone synthesis could be necessary for 

revealing the expression of established antipsychotic-evoked dopamine supersensitivity. 

 

Exp. 2: Is the Development of Antipsychotic-evoked Dopamine Supersensitivity 

Paralleled with Increased Stress-like Behaviour? 

D-amphetamine-induced psychomotor effects. On day 3 of ongoing haloperidol treatment, 

TRANS-HAL and CONT-HAL rats showed similar levels of baseline locomotion (FIG. 3.3A) and 

psychomotor activity ratings (data not shown). Both groups also had reduced baseline locomotor 

counts relative to control rats (FIG. 3.3A; minutes 10-30; Group × Time interaction, F16,174 = 2.34; 

Group effect, F8,87 = 10.81; control rats > TRANS-HAL rats; Group effect, F1,19 = 11.55; control 

rats > CONT-HAL rats; Group × Time interaction, F2,40 = 3.51; Group effect, F1,20 = 28.87; all P’s 

< 0.05). TRANS-HAL and CONT-HAL rats also showed supressed d-amphetamine-induced 

locomotion compared to control rats (FIG. 3.3A; minutes 40-90; Group × Time interaction, F40,435 

= 4.05; Group effect, F8,87 = 26.35; control rats > TRANS-HAL rats; Group × Time interaction, 

F5,95 = 13.81; Group effect, F1,19 = 90.72; control rats > CONT-HAL rats; Group × Time 

interaction, F5,100 = 6.23; Group effect, F1,20 = 38.82; all P’s < 0.0001. No other comparisons were 

significant). TRANS-HAL and CONT-HAL rats also had lower d-amphetamine-induced ratings 

compared to control rats (data not shown; Group effect, F2,29 = 24.08; controls > TRANS-HAL and 

CONT-HAL rats; all P’s < 0.0005).  

On day 17 of haloperidol treatment, TRANS-HAL but not CONT-HAL rats had reduced baseline 

locomotion compared to control rats (FIG. 3.3B; minutes 10-30; Group effect, F2,29 = 7.58; control 
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rats > TRANS-HAL rats; Group effect, F1,19 = 15.09; all P’s < 0.005). TRANS-HAL and CONT-

HAL rats had unchanged baseline psychomotor activity ratings compared to control rats (data not 

shown). Compared to control and CONT-HAL rats, TRANS-HAL rats also showed suppressed d-

amphetamine-induced locomotion (FIG. 3.3B; minutes 40-90; Group × Time interaction, F10,145 = 

5.72; Group effect, F2,29 = 14.66; control rats > TRANS-HAL rats; Group × Time interaction, F5,95 

= 2.8; Group effect, F1,19 = 35.24; CONT-HAL rats > TRANS-HAL rats; Group × Time interaction, 

F5,95 = 9.01; Group effect, F1,19 = 20.69; all P’s < 0.05), as well as suppressed d-amphetamine-

induced ratings (data not shown; Group effect, F2,29 = 8.82; TRANS-HAL rats < control and 

CONT-HAL rats; all P’s < 0.01). In contrast, CONT-HAL were no different from control rats on 

their response to d-amphetamine.  

Hence, TRANS-HAL treatment maintained its anti-dopaminergic efficacy over time, while CONT-

HAL treatment completely lost efficacy. These findings are consistent with the notion that CONT-

 

FIG. 3.3 ─ Breakthrough dopamine supersensitivity during ongoing continuous (CONT-HAL), but 
not transient (TRANS-HAL) haloperidol exposure. In Exp. 2, we measured haloperidol-induced 
suppression of the psychomotor response to d-amphetamine as an index of anti-dopaminergic efficacy. (A) 
Early into treatment (day 3), both CONT-HAL and TRANS-HAL exposure showed significant anti-
dopaminergic efficacy, as indicated by suppression of d-amphetamine-induced psychomotor activity. (B) 
Late into treatment (day 17), TRANS-HAL treatment maintained this anti-dopaminergic efficacy, while 
CONT-HAL treatment lost efficacy. This indicates that CONT-HAL, but not TRANS-HAL treatment 
promotes breakthrough dopamine supersensitivity that undermines ongoing treatment efficacy. (C) After 
haloperidol treatment cessation, CONT-HAL but not TRANS-HAL rats showed an exaggerated 
psychomotor response to d-amphetamine relative to controls. This indicates persistent dopamine 
supersensitivity after CONT-HAL but not TRANS-HAL treatment. n’s/condition = 10-11. # p < 0.05, Group 
effect. In (A), controls > TRANS-HAL and CONT-HAL rats. In (B), controls and CONT-HAL rats > 
TRANS-HAL rats. In (C), CONT-HAL rats > controls and TRANS-HAL rats. 
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HAL, but not TRANS-HAL exposure promotes breakthrough dopamine supersensitivity during 

ongoing treatment, and that this compromises treatment efficacy (Samaha et al., 2008). 

On day 6 after haloperidol treatment cessation, CONT-HAL but not TRANS-HAL rats showed 

greater vehicle-induced locomotion relative to control rats (FIG. 3.3C; minutes 10-30; Group effect, 

F2,29 = 4.88; CONT-HAL rats > control rats; F1,20 = 8.16; all P’s < 0.05). Vehicle-induced 

psychomotor activity ratings were similar across groups (data not shown; p > 0.05). Importantly, 

relative to control or TRANS-HAL rats, CONT-HAL rats also showed significantly more d-

amphetamine-induced locomotion (FIG. 3.3C; minutes 40-90; Group × Time interaction, F10,145 = 

2; Group effect, F2,29 = 6.06; CONT-HAL rats > control rats; Group effect, F1,20 = 6.51; CONT-

HAL rats > TRANS-HAL rats; Group effect, F1,19 = 11.84; all P’s < 0.05). In contrast, TRANS-

HAL rats were similar to control rats (FIG. 3.3C; minutes 40-90; purple versus white; p > 0.05). 

Psychomotor activity ratings followed a similar pattern of effects (data not shown; Group effect, 

F2,29 = 3.48, p = 0.04). Thus, CONT-HAL, but not TRANS-HAL rats showed an exaggerated 

psychomotor response to d-amphetamine after discontinuation of antipsychotic treatment, 

indicating that CONT-HAL exposure promotes a dopamine supersensitive state that persists even 

after treatment cessation (Samaha et al., 2007; Bedard et al., 2011; Servonnet et al., 2017). 

Open field. On day 2 of ongoing haloperidol treatment, all rats spent more time in the 

periphery relative to the center of the open field (FIG. 3.4A; Section effect, F1,29 = 7657, p 

< 0.0001). There were no group differences in this effect. CONT-HAL rats entered less often in 

the center of the open field than control rats did (FIG. 3.4B; Group effect, F2,29 = 6.05; controls > 

CONT-HAL rats; all P’s < 0.01). On day 16 of haloperidol treatment, all rats spent more time in 

the periphery than they did in the center of the open field (FIG. 3.4C; Section effect, F1,29 = 6040, 

p < 0.0001), with no group differences. There were no group differences in the number of entries 

into the center section of the open field (FIG. 3.4D; p > 0.05).  

Light-dark box. On day 2 of ongoing haloperidol treatment, all rats spent more time in the 

dark compartment of the light-dark box relative to the light compartment (FIG. 3.4E; Compartment 

effect, F1,29 = 386.7, p < 0.0001), with no group differences. Similarly, there were no group 

differences in the number of times rats entered into the light compartment (FIG. 3.4F; p > 0.05). 

On day 16 of haloperidol treatment, all rats spent more time in the dark relative to the light 

compartment (FIG. 3.4G; Compartment effect, F1,29 = 77.01, p < 0.0001), and this effect was similar 
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across groups. TRANS-HAL rats entered less often into the light compartment relative to control 

rats (FIG. 3.4H; Group effect, F2,29 = 4.65; controls > TRANS-HAL rats; all P’s < 0.05). Hence, as 

seen in the open field test, ‘breakthrough’ dopamine supersensitivity late into CONT-HAL 

treatment (i.e., day 16) is not paralleled by changes in stress-like behaviour measured in the light-

dark box.  

FIG. 3.4 ─ Stress-related behaviours measured in the open field, light-dark box and elevated-plus 
maze during transient (TRANS-HAL) or continuous (CONT-HAL) haloperidol treatment. In Exp. 2, 
stress-like behaviours were assessed in control, TRANS-HAL and CONT-HAL rats on days 2 (A, B, E, F, 
I and J) and 16 (C, D, G, H, K and L) of ongoing haloperidol treatment. Stress-like behaviours were 
measured using the (A-D) open field, (E-H) light-dark box and (I-L) elevated-plus maze. n’s/condition = 
10-11. #,*p < 0.05. In (J), overall *Arm effect and # Group effect. In (L), overall # Group effect.
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Elevated-plus maze. On day 2 of ongoing haloperidol treatment, rats spent more time in the 

closed relative to the open arms of an elevated-plus maze (FIG. 3.4I; Arm effect, F1,29 = 179, p < 

0.0001), and there were group differences in this effect (Group × Arm interaction, F2,29 = 5.88, p = 

0.007). Post-hoc analyses revealed that within each group, rats spent more time in the closed 

relative to the open arms (FIG. 3.4I; closed > open in all groups, all P’s < 0.0001), and that CONT-

HAL (but not TRANS-HAL) rats spent less time in the open arms and more time in the closed arms 

relative to control rats (FIG. 3.4I; white versus green; all P’s < 0.05). Rats entered more often into 

the closed relative to the open arms (FIG. 3.4J; Arm effect, F1,29 = 14.98, p = 0.0006), and both 

CONT-HAL and TRANS-HAL rats entered less often into the maze arms (FIG. 3.4J; Group effect, 

F2,29 = 12.35, p = 0.0001), regardless of arm type (no Group × Arm interaction, p > 0.05).  

On day 16 of haloperidol treatment, rats spent more time in the closed arms relative to the open 

arms (FIG. 3.4K; Arm effect, F1,29 = 22.31, p < 0.0001), and this was similar across groups (no 

Group effect, p > 0.05). Unlike on day 2, rats now entered just as often into the open versus closed 

arms (FIG. 3.4L; no Arm effect, p > 0.05). CONT-HAL and TRANS-HAL rats entered less often 

into the maze arms compared to control rats (FIG. 3.4L; Group effect, F2,29 = 11, p = 0.0003), 

regardless of arm type (no Group × Arm interaction, p > 0.05). Hence, CONT-HAL rats with 

confirmed dopamine supersensitivity (see FIG. 3.3B) show reduced exploratory behaviour in the 

elevated-plus maze, without changes in the time spent in open versus closed arms. 

SUMMARY OF EXP. 2 

Expression of dopamine supersensitivity: Both CONT-HAL and TRANS-HAL treatments 

produced antipsychotic-like effects early into treatment (day 3), as shown with suppression of d-

amphetamine-induced locomotion (FIG. 3.3A). Later into treatment, CONT-HAL treatment 

produced dopamine supersensitivity. Thereby, only TRANS-HAL treatment still produced 

antidopaminergic effects on day 17 (FIG. 3.3B). After treatment cessation, only CONT-HAL rats 

had a greater psychomotor response to d-amphetamine relative to controls and TRANS-HAL rats 

(FIG. 3.3C), revealing the expression of dopamine supersensitivity. 

Stress-related behaviours: On day 2, CONT-HAL rats showed reduced exploration in the open 

field (FIG. 3.4B) and in the elevated-plus maze (FIGS. 3.4I-J). These effects did not parallel 

dopamine supersensitivity and could rather reflect the suppressive effects of haloperidol on 
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locomotor activity (see FIG. 3.3A). Similarly, TRANS-HAL treatment likely reduced exploratory 

behaviour in the elevated-plus maze due to the suppressive effects of haloperidol on spontaneous 

locomotor activity (FIG. 3.4J). Late into CONT-HAL treatment, breakthrough dopamine 

supersensitivity was not associated with changes in stress-like behaviours measured in the open 

field and light-dark box (FIGS. 3.4C-D and 4G-H), but with reduced exploratory behaviour in the 

elevated-plus maze (FIG. 3.4L). This effect is not due to a reduction in spontaneous locomotor 

activity, because CONT-HAL treatment did no longer produced that effect (FIG. 3.3B). Rather, it 

could reflect greater avoidance. TRANS-HAL treatment also reduced exploratory behaviour in the 

elevated-plus maze (FIG. 3.4L), but it could be influenced by the suppressive effects of haloperidol 

on spontaneous locomotor activity (FIG. 3.3B). In the following experiment, stress-like behaviour 

was measured after treatment cessation, when the expression of dopamine supersensitivity is 

higher. However, this also allowed to avoid confounding effects produced by the decrease in 

spontaneous locomotion produced by haloperidol treatment. 

Exp. 3: Is the Expression of Antipsychotic-evoked Dopamine Supersensitivity Linked to 

Increased Stress-like Behaviour? 

Psychomotor response to d-amphetamine. We measured the psychomotor response to d-

amphetamine on days 7, 14 and 28 after haloperidol discontinuation. There were no group 

differences in either vehicle- or d-amphetamine-induced psychomotor activity ratings (data not 

shown; Group effects, all P’s > 0.05). There were also no group differences in vehicle-induced 

locomotion (FIGS. 3.5A-C; minutes 10-30; all P’s > 0.05). On day 7 following haloperidol 

treatment discontinuation, a technical issue prevented recording of locomotor activity during the 

first 10 min following d-amphetamine injection for half of the rats in each group, so we analyzed 

minutes 50 to 90 instead of minutes 40 to 90 for that day. On day 7 following cessation of 

haloperidol treatment, both CONT-HAL and TRANS-HAL rats showed greater d-amphetamine-

induced locomotion than control rats did (FIG. 3.5A; minutes 50-90; Group effect, F2,29 = 11.33; 

CONT-HAL rats > control rats, F1,20 = 35.63; TRANS-HAL rats > control rats, F1,19 = 4.86; all P’s 

< 0.05). However, from day 14 onwards, TRANS-HAL rats returned to control levels (minutes 40-

90; FIGS. 3.5B-C; purple versus white; all P’s < 0.05), while CONT-HAL rat still showed an 
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enhanced AMPH-induced response compared to control rats and now also compared to TRANS-

HAL rats (minutes 40-90; FIG. 3.5B; Group effect, F2,14 = 8.79; CONT-HAL rats > control rats, 

F1,10 = 14.26; CONT-HAL rats > TRANS-HAL rats, F1,9 = 8.43; FIG. 3.5C; Group × Time 

interaction, F10,145 = 2.34; Group effect, F2,29 = 9.95; CONT-HAL rats > control rats; Group effect, 

F1,20 = 11.23; CONT-HAL rats > TRANS-HAL rats, Group × Time interaction, F5,95 = 4.28; Group 

effect, F1,19 = 16.66; all P’s < 0.05). Hence, both haloperidol treatments produced dopamine 

supersensitivity, but this effect abated with time after treatment cessation in TRANS-HAL rats, 

while it persisted in CONT-HAL rats. 

Open field. Rats spent more time in the periphery than in the center of the open field (FIG. 

3.6A; Section effect, F1,29 = 15690, p < 0.0001), with no group differences. There were also no 

group differences in the number of times rats entered into the center of the open field (FIG. 3.6B; 

Group effect, p > 0.05). 

Light-dark box. Rats spent more time in the dark compartment than in the light 

compartment (FIG. 3.6C; Compartment effect, F1,29 = 124.8, p < 0.0001), and this was similar 

across groups. Rats also entered a similar number of times into the light compartment across groups 

(FIG. 3.6D; no Group effect; p > 0.05). 

 

FIG. 3.5 ─ Both transient (TRANS-HAL) and continuous (CONT-HAL) haloperidol produced a 
dopamine supersensitive state, but supersensitivity was much more persistent after CONT-HAL 
exposure. In Exp. 3, the psychomotor response to d-amphetamine was measured in control, TRANS-HAL 
and CONT-HAL rats on days (A) 7, (B) 14 and (C) 28 after cessation of haloperidol treatment. CONT-HAL 
rats showed a potentiated psychomotor response to d-amphetamine relative to controls at all time points, 
whereas TRANS-HAL rats differed from control rats only on day 7, returning to control levels from day 14 
on. n’s/condition = 5-11. # p < 0.05, Group effect. 
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Elevated-plus maze. Rats spent more time in the open arms than in the closed arms (FIG. 

3.6E; Arm effect, F1,29 = 96.63, p < 0.001), and this was similar across groups. There were group 

differences in the number of entries into the closed arms. First, only CONT-HAL rats entered more 

often into the closed arms relative to the open arms (FIG. 3.6F; Group × Arm interaction, F2,29 = 

7.17; Arm effect, F1,29 = 12.94; CONT-HAL rats, closed arms > open arms; all P’s ≤ 0.01). Second, 

CONT-HAL rats also entered less often into the open arms relative to TRANS-HAL rats but not 

relative to control rats (FIG. 3.6F; open arms, TRANS-HAL rats > CONT-HAL rats, p = 0.0019). 

FIG. 3.6 ─ Stress-related behaviours measured in the open field, light-dark box and elevated-plus 
maze after cessation of transient (TRANS-HAL) or continuous (CONT-HAL) haloperidol treatment. 
In Exp. 3, stress-like behaviours were assessed in control, TRANS-HAL and CONT-HAL rats on day 6 
after cessation of haloperidol treatment. Stress-like behaviours measured in (A-B) the open field, (C-D) the 
light-dark box and (E-F) the elevated-plus maze. n’s/condition = 10-11. #,*p < 0.05.  
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SUMMARY OF EXP. 3 

Expression of dopamine supersensitivity: CONT-HAL treatment produced more persistent 

dopamine supersensitivity than TRANS-HAL treatment did. Indeed, CONT-HAL rats had a greater 

locomotor response to d-amphetamine relative to controls at all time points tested (days 7, 14 and 

28 after treatment cessation; FIGS. 3.5A-C). In contrast, TRANS-HAL rats showed an exaggerated 

locomotor response to d-amphetamine on day 7 after treatment cessation (FIG. 3.5A), but their 

response returned to control levels after this point (FIGS. 3.5B-C). 

Stress-related behaviours: CONT-HAL and TRANS-HAL groups did not produce different effects 

on stress-like behaviours measured in the open field and light-dark box (FIGS. 3.6A-D). However, 

in the elevated-plus maze, CONT-HAL rats entered significantly less often into the open versus 

closed arms (FIG. 3.6F; similar to Exp. 2; FIG. 3.4L), while TRANS-HAL and control rats entered 

just as often into each set of arms (FIG. 3.6F). 

 

Exp. 4: Do Dopamine-supersensitive Rats Show an Increased Locomotor Response to 

Novelty? 

On day 3 after treatment cessation, CONT-HAL rats showed a greater locomotor activity relative 

to control rats (FIG. 3.7A; minutes 10-30; Group × Time interaction, F2,298 = 3.66; Group effect, 

F1,149 = 8.37; all P’s < 0.05). This indicates that CONT-HAL rats have a potentiated locomotor 

response to novelty. On a subsequent test (either on day 5, 7 or 9 after CONT-HAL treatment 

cessation), the locomotor response to vehicle and d-amphetamine was evaluated when the 

locomotor test cage was not novel anymore. In response to vehicle, there is a significant Group × 

Time interaction (FIG. 3.7B; minutes 10-30; F2,212 = 3.4, p = 0.035), but further analysis revealed 

no difference across groups (no Group effect, p > 0.05). This suggests that on the first test, CONT-

HAL rats showed a greater locomotor response to novelty specifically because they do not show a 

potentiated locomotor response when given repeated tests. However, CONT-HAL rats showed a 

greater locomotor response to d-amphetamine relative to control rats (FIG. 3.7C; minutes 10-60; 

Group × Time interaction, F5,530 = 15.04; Group effect, F1,106 = 36.94; all P’s < 0.0001), indicating 

haloperidol treatment produced a dopamine supersensitive state.  
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SUMMARY OF EXP. 4 

Rats with a history of CONT-HAL treatment had an exaggerated locomotor response to both 

environmental novelty and d-amphetamine, suggesting that antipsychotic-evoked dopamine 

supersensitivity also produces an enhanced response to the mild stress associated with entry into a 

new environment. 

MAIN FINDINGS 

The expression of antipsychotic-evoked dopamine supersensitivity is linked with some enhanced 

stress-like responses. First, metyrapone seemed to supress to a greater extent the psychomotor 

response to d-amphetamine of antipsychotic-treated rats. A possible interpretation for this finding 

is that the expression of antipsychotic-evoked dopamine supersensitivity requires the synthesis of 

the stress hormone corticosterone. Second, CONT-HAL rats show reduced exploratory behaviour 

in the elevated-plus maze when dopamine supersensitivity breaks through during ongoing 

antipsychotic exposure, and also after treatment cessation. Furthermore, CONT-HAL rats have a 

FIG. 3.7 ─ Continuous haloperidol treatment (CONT-HAL) enhances the locomotor response to both 
novelty and d-amphetamine. (A) Compared to antipsychotic-naïve rats, CONT-HAL rats showed a greater 
locomotor response to novelty on day 3 after treatment cessation. (B) In a subsequent test that was given 
either on day 5, 7 or 9 after treatment cessation, CONT-HAL and control rats have a comparable response 
to vehicle, indicating that CONT-HAL rats have specifically an enhanced locomotor response to novelty. 
(C) In the same test, CONT-HAL rats showed a greater locomotor response to d-amphetamine, indicating
that haloperidol treatment produced dopamine supersensitivity. n’s/condition = 54-76. #,*p < 0.05. In (A,
C), # Group effect and Group × Time interaction. In (B), * Group × Time interaction.
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greater locomotor response to novelty than antipsychotic-naïve rats. Dopamine supersensitivity is 

also linked to normal stress-like behaviour, as shown in the open field and the light-dark box.  
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ABSTRACT 

Reward-associated stimuli can both evoke conditioned responses and acquire reinforcing 

properties in their own right, becoming avidly pursued. Such conditioned stimuli (CS) can guide 

reward-seeking behavior in adaptive (e.g., locating food) and maladaptive (e.g., binge eating) ways. 

The basolateral amygdala (BLA) regulates conditioned responses evoked by appetitive CS, but less 

is known about how the BLA contributes to the instrumental pursuit of CS. Here we studied the 

influence of BLA neuron activity on both behavioral effects. Water-restricted male rats learned to 

associate a light-tone cue (CS) with water delivery into a port. During these Pavlovian conditioning 

sessions, we paired CS presentations with photo-stimulation of channelrhodopsin-2 (ChR2)-

expressing BLA neurons. BLA photo-stimulation potentiated CS-evoked port entries during 

conditioning, indicating enhanced conditioned approach and appetitive conditioning. Next, new 

rats received Pavlovian conditioning without photo-stimulation. These rats then received 

instrumental conditioning sessions where they could press an inactive lever or an active lever that 

produced CS presentation, without water delivery. Rats pressed more on the active versus inactive 

lever, and pairing CS presentation with BLA-ChR2 photo-stimulation intensified responding for 

the CS. This suggests that BLA-ChR2 photo-stimulation enhanced CS incentive value. In a 

separate experiment, rats did not reliably self-administer BLA-ChR2 stimulations, suggesting that 

BLA neurons do not carry a primary reward signal. Last, intra-BLA infusions of d-amphetamine 

also intensified lever-pressing for the CS. The findings suggest that BLA-mediated activity 

facilitates CS control over behavior by enhancing both appetitive Pavlovian conditioning and 

instrumental pursuit of CS. 

SIGNIFICANCE STATEMENT 

Cues paired with rewards can guide animals to valuable resources such as food. Cues can also 

promote dysfunctional reward-seeking behavior, as in overeating. Reward-paired cues influence 

reward seeking through two major mechanisms. First, reward-paired cues evoke conditioned 

anticipatory behaviors to prepare for impending rewards. Second, reward-paired cues are powerful 

motivators and they can evoke pursuit in their own right. Here we show that increasing neural 

activity in the basolateral amygdala enhances both conditioned anticipatory behaviors and pursuit 

of reward-paired cues. The basolateral amygdala therefore facilitates cue-induced control over 
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behavior by both increasing anticipation of impending rewards and making reward cues more 

attractive. 

INTRODUCTION 

Initially neutral cues (sights, sounds, or places) that predict rewards such as food and water exert 

powerful control over behavior. For instance, reward-paired cues [conditioned stimuli (CS)] can 

acquire incentive motivational value (Bolles, 1972; Bindra, 1978), thereby “goading an individual 

into action” (Flagel et al., 2009). In this regard, CS can (1) elicit approach and attention, allowing 

animals to prepare for impending rewards (Hearst and Jenkins, 1974), (2) energize ongoing reward-

seeking behaviors (Rescorla and Solomon, 1967), (3) trigger reinstatement of extinguished reward-

seeking behavior (de Wit and Stewart, 1981), and (4) reinforce learning of new instrumental 

behaviors (Mackintosh, 1974; Cardinal et al., 2002). Through these effects, CS guide behavior 

toward rewards necessary for survival. However, changes in the response to CS can contribute to 

excessive reward-seeking behaviors (as in addiction) or conversely, low levels of appetitive 

behavior (as in depression). 

Prior studies have examined the role of the basolateral amygdala (BLA) in the capacity of CS to 

both evoke conditioned approach and influence instrumental behavior. BLA lesions (Burns et al., 

1993) and optogenetic stimulation of BLA→nucleus accumbens shell neurons (Millan et al., 2017) 

both attenuate CS-evoked conditioned responses. Similar effects are seen with optogenetic 

inhibition of either BLA neurons expressing the Ppp1r1b gene (Kim et al., 2016) or BLA→nucleus 

accumbens core neurons (Stuber et al., 2011). The BLA is also thought to be necessary for the 

expression of CS-controlled instrumental behavior. Decreasing BLA function with lesions (Cador 

et al., 1989; Everitt et al., 1991; Brown and Fibiger, 1993; Burns et al., 1993; White and McDonald, 

1993; McDonald and Hong, 2004; McDonald et al., 2010), pharmacological agents (Grimm and 

See, 2000; Kantak et al., 2002; McLaughlin and See, 2003; Rogers et al., 2008; Gabriele and See, 

2010) or optogenetic methods (Stefanik and Kalivas, 2013) suppresses CS-controlled instrumental 

behavior. However, these studies used tasks that potentially confound the motivational effects of 

the CS and those of the unconditioned stimulus (UCS), and/or neuronal manipulation methods that 

do not allow control of neural activity coincident with CS occurrence (e.g., 

lesions/pharmacological agents). 

https://www.jneurosci.org/content/40/8/1732.full#ref-5
https://www.jneurosci.org/content/40/8/1732.full#ref-4
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https://www.jneurosci.org/content/40/8/1732.full#ref-25
https://www.jneurosci.org/content/40/8/1732.full#ref-48
https://www.jneurosci.org/content/40/8/1732.full#ref-12
https://www.jneurosci.org/content/40/8/1732.full#ref-37
https://www.jneurosci.org/content/40/8/1732.full#ref-10
https://www.jneurosci.org/content/40/8/1732.full#ref-8
https://www.jneurosci.org/content/40/8/1732.full#ref-8
https://www.jneurosci.org/content/40/8/1732.full#ref-42
https://www.jneurosci.org/content/40/8/1732.full#ref-31
https://www.jneurosci.org/content/40/8/1732.full#ref-55
https://www.jneurosci.org/content/40/8/1732.full#ref-9
https://www.jneurosci.org/content/40/8/1732.full#ref-9
https://www.jneurosci.org/content/40/8/1732.full#ref-16
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https://www.jneurosci.org/content/40/8/1732.full#ref-24
https://www.jneurosci.org/content/40/8/1732.full#ref-24
https://www.jneurosci.org/content/40/8/1732.full#ref-30
https://www.jneurosci.org/content/40/8/1732.full#ref-40
https://www.jneurosci.org/content/40/8/1732.full#ref-51
https://www.jneurosci.org/content/40/8/1732.full#ref-20
https://www.jneurosci.org/content/40/8/1732.full#ref-20
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In this context, key questions remain. First, how does increased BLA-mediated neuronal activity 

during CS presentation influence respectively, CS-evoked conditioned behaviors and the 

instrumental pursuit of CS? BLA neurons fire in response to CS presentations during appetitive 

conditioning (Tye and Janak, 2007; Ambroggi et al., 2008; Tye et al., 2008). The functional 

significance of this is not fully understood. Second, CS can motivate behavior through many 

dissociable psychological processes (Cardinal et al., 2002), what processes might BLA-dependent 

activity regulate? Increased BLA activity might mediate the specific incentive value attributed to 

the CS. If so, then increased BLA activity should alter CS motivational properties preferentially 

when it is explicitly paired with CS presentations. The BLA might also arouse a general 

motivational state, thereby “setting the occasion” to perform a CS-controlled goal-directed 

behavior (Lajoie and Bindra, 1976; Rescorla, 1988). If so, then increased BLA activity should alter 

CS incentive value, even when increased BLA activity is explicitly unpaired with CS presentations. 

We addressed these questions using in vivo optogenetics combined with Pavlovian and 

instrumental conditioning procedures. First, we determined whether photo-stimulation of BLA 

neurons is intrinsically rewarding, as assessed by self-stimulation behavior. We compared self-

stimulation of BLA neurons with self-stimulation of adjacent central amygdala (CeA) neurons, as 

rodents will self-stimulate into the CeA (Seo et al., 2016; Baumgartner et al., 2017; Kim et al., 

2017). Second, we determined how photo-stimulation of BLA neurons influences appetitive 

conditioned responses, as assessed by CS-evoked approach behavior that indicates expectation of 

the primary reward (Tolman, 1932; Hearst and Jenkins, 1974). Finally, we assessed how photo-

stimulation of BLA neurons influences CS-controlled instrumental behavior, by measuring the 

capacity of a CS to support the spontaneous learning of a new instrumental behavior (Mackintosh, 

1974; Robbins, 1978; Cardinal et al., 2002). 

MATERIAL AND METHODS 

Animals 

Male Sprague-Dawley rats (Charles River Laboratories; 200–275 g on arrival) were housed 

individually on a 12 h light/dark cycle (lights off at 8:30 A.M.). They were tested during the dark 

phase of the circadian cycle. Food and water were available ad libitum, except in Experiments 3–

https://www.jneurosci.org/content/40/8/1732.full#ref-59
https://www.jneurosci.org/content/40/8/1732.full#ref-1
https://www.jneurosci.org/content/40/8/1732.full#ref-60
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https://www.jneurosci.org/content/40/8/1732.full#ref-10
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4, where water access was restricted to 2 h/d. This was to facilitate Pavlovian conditioning using 

water as the UCS (see 'Pavlovian conditioning' section). The Université de Montréal approved all 

procedures involving animals and procedures followed the guidelines of the Canadian Council on 

Animal Care. 

Intracerebral Surgery 

Rats weighing 325–375 g were anesthetized with isoflurane and placed on a stereotaxic apparatus. 

For photo-stimulation of amygdala neurons in Experiments 1–3, rats received bilateral infusions 

of AAV5-hSyn1-hChR2(H134R)-eYFP (provided by Dr. Karl Deisseroth; UNC Vector Core, NC) 

into either the BLA (mm relative to Bregma, AP: −2.8, ML: ±5.0; mm relative to skull surface, 

DV: −8.4) or CeA (mm relative to Bregma, AP: −2.6, ML: ±4.3; mm relative to skull surface, DV: 

−7.9). Control rats received an optically inactive AAV-eYFP virus (AAV5-hSyn1-eYFP, UNC

Vector Core). The hSyn promoter is neuron-specific and allows gene expression in both excitatory

and inhibitory neurons (Dittgen et al., 2004). Using a glass pipette (tip diameter, ∼50 μm) coupled

to a Nanoject II (Drummond Scientific), we administered 27 microinjections of 36.8 nl each (23

nl/s, at 10 s intervals; total volume of ∼1 μl/hemisphere) into each brain region. After the infusions,

the glass pipette was left in place for 10 more min. In Experiment 4, guide cannulae (26 GA, model

C315G, HRS Scientific) were implanted 2 mm dorsal to the BLA (mm relative to Bregma, AP:

−2.4, ML: ±5.5; mm relative to skull surface: DV −6.6) or dorsal to the amygdala, without targeting

the BLA specifically, as a neuroanatomical control (referred to as “Amygdala”; mm relative to

Bregma, AP: −2.3, ML: ±5.1; mm relative to skull surface, DV: −6.2). In Experiment 1, the

craniectomy was sealed with bone wax (Ethicon). In Experiments 2–3, an optic fiber implant (∼300

μm core diameter, numerical aperture = 0.39; Thorlabs; glued with epoxy to a ferrule, model

F10061F340, Fiber Instrument Sales) was implanted in each hemisphere, 0.2 mm dorsal to the

virus injection site. Four to 6 stainless steel screws were then anchored to the skull, and optic fiber

implants or cannulae were fixed with dental cement. Optic fiber implants were protected with a

sleeve and a dummy. Guide cannulae were sealed with obturators (model C315CD, HRS

Scientific). Optogenetic manipulations started at least 4 weeks following virus injection, to allow

sufficient viral expression (Zhang et al., 2010).

In Vivo Electrophysiology 

https://www.jneurosci.org/content/40/8/1732.full#ref-13
https://www.jneurosci.org/content/40/8/1732.full#ref-65
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We used in vivo electrophysiology to confirm laser-induced action potentials in channelrhodopsin-

2 (ChR2)-expressing neurons in the BLA and CeA. Anesthetized rats (urethane, 1.2 g/kg, i.p.) were 

placed inside a Faraday cage on a stereotaxic frame equipped with a body temperature controller. 

Optrodes were implanted above the BLA and CeA. Optrodes were constructed using an 

extracellular Parylene-coated tungsten electrode (1 MΩ, ∼125 μm outer diameter; FHC) glued with 

epoxy to an optical fiber (∼300 μm core diameter, numerical aperture = 0.39) with a ∼0.5 mm 

offset to ensure illumination of recorded neurons. A reference electrode (insulated silver wire, 0.25 

mm diameter) was lowered into the back of the brain close to the cerebellum. The optrode and 

reference electrodes were fixed with stainless steel screws anchored to the skull and bee wax. The 

optrode was lowered by hydraulic microdrive into the BLA or the CeA to record single action 

potentials elicited by laser stimulation (465 nm blue diode laser). Optrodes were linked to the laser 

via patch-cords built as described by Trujillo-Pisanty et al. (2015). 

The signal recorded from each optrode was fed into a high impedance headstage connected to a 

microelectrode amplifier (Model 1800, A-M Systems). During photo-stimulation, the low- and 

high-pass filters were set at 300 Hz and 5 kHz, respectively. To reduce the possibility of 

photoelectric artifacts, we grounded the laser head and patch-cord. Action potentials were 

displayed on an oscilloscope (Tektronix, Model TDS 1002). The signal was digitalized and stored 

using DataWave recording (USB 16 channels) and DataWave SciWorks Experimenter Package 

(DataWave Technologies). 

Pavlovian Conditioning 

Training and testing took place in standard operant chambers (Med Associates) where a fan and a 

house-light were on. Rats had restricted water access for at least 3 d (2 h/d). Starting on the next 

day, they were trained to associate a light-tone cue (FIG. 4.1A; CS) with water delivery (UCS; 100 

μl) into a recessed receptacle, using Pavlovian conditioning procedures. The light-tone cue 

consisted of illumination of two discrete lights for 5 s, combined with the extinction of the house-

light. This was immediately followed by an 1800 Hz, 85-dB tone. The tone lasted 0.18 s and was 

coincident with water delivery. The CS-UCSs were presented on a variable interval of 60 s, 20 or 

30 times/session. To determine the extent to which rats learned the CS-UCS contingency, we 

measured CS-evoked conditioned approach behavior. To this end, we quantified the number of 

https://www.jneurosci.org/content/40/8/1732.full#ref-58
https://www.jneurosci.org/content/40/8/1732.full#F1
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nose-pokes into the recessed water receptacle during each 5 s light cue presentation [conditioned 

stimulus response (CSR)] versus during the 5 s period preceding each CS presentation 

[preconditioned stimulus response (PCSR)]. We computed a CSR/PCSR ratio for each animal, on 

each conditioning session. 

Instrumental Conditioning 

To assess the capacity of the CS to control instrumental behavior, we determined whether after 

Pavlovian CS-UCS conditioning, rats would spontaneously learn a new instrumental response 

(lever-pressing) to earn CS presentations, without the UCS. This procedure dissociates incentive 

motivation for the CS versus that for the UCS, because the instrumental response is new and not 

previously reinforced by the UCS (Mackintosh, 1974; Robbins, 1978; Cardinal et al., 2002). First, 

rats were placed in the operant chambers for a lever habituation session, during which they could 

sample two test levers for the first time. As shown in Figure 4.1B, pressing the active lever 

produced the CS, without water delivery, according to a random-ratio 2 (RR2) schedule. Pressing 

on the active lever during CS presentation or on the inactive lever had no programmed 

consequences but was recorded. The lever habituation session ended after 10 active lever presses 

or 40 min. To measure the incentive motivational value of the CS, rats received additional 

FIG. 4.1 ─ Pavlovian and Instrumental conditioning procedures. A, During Pavlovian conditioning, rats 
with limited access to water (2 h/d) learned that a cue (lights + tone, CS) predicts water (100 μl) delivery 
into a recessed dish. We assessed the acquisition of CS-evoked conditioned approach behaviour by 
analyzing the ratio of the number of nose-pokes into the dish made during each 5 s cue presentation (CSR) 
over that made during the 5 s before each CS presentation (PCSR). B, After Pavlovian conditioning, rats 
were given instrumental conditioning sessions during which they were presented with two levers for the 
first time. Pressing the active lever produced the CS, whereas pressing the inactive lever had no programmed 
outcome. No water was delivered during instrumental conditioning sessions. 

https://www.jneurosci.org/content/40/8/1732.full#ref-37
https://www.jneurosci.org/content/40/8/1732.full#ref-49
https://www.jneurosci.org/content/40/8/1732.full#ref-10
https://www.jneurosci.org/content/40/8/1732.full#F1
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instrumental test sessions. During these sessions, conditions were the same as during the lever 

habituation session, except that lever presses were not limited. Sessions ended after 20 or 40 min. 

We refer to these sessions as “operant responding for the CS”. 

Experiment 1: Effects of Photo-stimulation on Action Potentials in ChR2-expressing 

BLA and CeA Neurons in Vivo 

As shown in Figure 4.2A, rats received either the ChR2-eYFP (n = 4) or eYFP (n = 1) virus into 

the BLA of one hemisphere and into the CeA of the contralateral hemisphere. At least 4 weeks 

later, rats were anesthetized and in vivo neuronal firing was measured following photo-stimulation 

[squared light pulses of 5 ms delivered at 1, 10, 20, or 40 Hz at 10 mW; based on studies by Huff 

et al. (2013) and Robinson et al. (2014)]. These are the photo-stimulation parameters used in the 

behavioral studies below, with frequencies ≤20 Hz, at which we observed excellent ChR2 fidelity. 

Importantly, BLA neurons also fire in vivo at frequencies ≤20 Hz in behavioral tasks involving 

reward cues (Tye and Janak, 2007; Ambroggi et al., 2008; Tye et al., 2008). 

Experiment 2: Effects of Photo-stimulating ChR2-expressing BLA or CeA Neurons on 

Lever-pressing Behavior 

If photo-stimulation of BLA neurons is intrinsically rewarding, it could reinforce lever pressing 

behavior and this would confound interpretation of subsequent results. Thus, here we determined 

whether otherwise naive rats would reliably lever press for photo-stimulation of BLA. We also 

evaluated self-stimulation of CeA neurons, because photo-stimulation of CeA ChR2 has been 

reported to sustain self-stimulation (Seo et al., 2016; Baumgartner et al., 2017; Kim et al., 2017). 

As shown in Figure 4.3A, rats received bilateral injections of the ChR2-eYFP or eYFP virus into 

the BLA or CeA. Experimental rats were ChR2-eYFP rats (n = 5/subregion) allowed to lever press 

for photo-stimulation. Control rats included (1) rats expressing ChR2-eYFP in the BLA (n = 3) or 

CeA (n = 2) that could lever press but this did not produce photo-stimulation, and (2) rats 

expressing eYFP in the BLA (n = 3) or CeA (n = 2) and allowed to lever press for photo-

stimulations. Throughout the study, lever-pressing behavior was similar across control groups. 

Thus, they were pooled together for final analysis (n = 10). Photo-stimulation was bilateral except 

where noted otherwise. 

https://www.jneurosci.org/content/40/8/1732.full#F2
https://www.jneurosci.org/content/40/8/1732.full#ref-27
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https://www.jneurosci.org/content/40/8/1732.full#ref-59
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153 

As shown in Figure 4.3A, the rats were allowed to press a lever to obtain a 5.18 s laser stimulation 

(20 Hz frequency, unless stated otherwise) paired with a 5.18 s presentation of the light-tone 

stimulus described above. Importantly, rats were previously naive to the light-tone stimulus, such 

that this stimulus had not previously been paired with water or any other outcome in these rats. 

During all sessions, active lever presses during photo-stimulation and inactive lever presses had no 

programmed consequences, but both were recorded. Daily sessions ended after self-administration 

of 30 stimulations or 30 min, unless stated otherwise. First, for at least two sessions (1 session/d), 

pressing the active lever produced photo-stimulation under a fixed-ratio of 1 (FR1) schedule of 

reinforcement. The rats were then tested under RR2 and RR4 schedules, with two 

sessions/schedule. Then, rats were given two sessions where photo-stimulation was available under 

a progressive ratio 5 schedule of reinforcement (PR5). During these sessions, the number of active 

lever presses required to earn each successive photo-stimulation increased by a factor of 5, and 

sessions ended after 30 stimulations or 30 min (Rossi et al., 2013). Extinction responding was then 

evaluated during two 40 min sessions, based on the study by Ilango et al. (2014). During minutes 

0–5 and 20–25 of the extinction sessions, lever pressing was reinforced with photo-stimulation 

under RR2. For the remaining min of each session, lever pressing produced the light-tone stimulus, 

without photo-stimulation. At the 20 min mark, a single, noncontingent photo-stimulation 

combined with the tone-light cue indicated that photo-stimulation was available once again. Next, 

we assessed the influence of laser stimulation frequency on lever pressing behavior during three 

sessions (5, 10, and 20 Hz, 1 frequency/session/d, counterbalanced). We then assessed reversal 

learning for two sessions during which the active and inactive levers were switched. If photo-

stimulation of BLA or CeA neurons is reinforcing, then ChR2-BLA rats and ChR2-CeA rats should 

stop responding on the newly non-reinforced lever, and increase responding on the newly 

reinforced lever. Last, the rats were given a final test session to determine whether unilateral photo-

stimulations are sufficient to reinforce lever-pressing behavior. The stimulated hemisphere was 

counterbalanced within each group. After the extinction sessions, one rat in the BLA-ChR2 group 

was excluded from subsequent testing because of increasing aggressive behavior. 

In this and subsequent experiments, the experimenter observed each rat during testing. Some rats 

experienced seizures with repeated photo-stimulation of ChR2-containing BLA neurons (rats in 

the other groups did not show seizure activity). This is consistent with the amygdala kindling model 

of epilepsy and neuronal plasticity (Goddard et al., 1969; McNamara et al., 1980; Fisher, 1989). 

https://www.jneurosci.org/content/40/8/1732.full#F3
https://www.jneurosci.org/content/40/8/1732.full#ref-52
https://www.jneurosci.org/content/40/8/1732.full#ref-28
https://www.jneurosci.org/content/40/8/1732.full#ref-22
https://www.jneurosci.org/content/40/8/1732.full#ref-41
https://www.jneurosci.org/content/40/8/1732.full#ref-17
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Rats that experienced seizures were eliminated from final data analyses (Experiment 2, n = 0; 

Experiment 3a, n = 3; Experiment 3b, n = 1), except for one rat in Experiment 3a (see next section). 

Experiment 3a: Effects of Photo-stimulating ChR2-expressing BLA Neurons During 

Pavlovian CS-UCS Conditioning on CS-evoked Conditioned Approach 

Experiment 2 showed that rats reliably lever pressed for photo-stimulation of CeA but not BLA 

neurons. Thus, we pursued the following experiments with BLA manipulations only, as the 

reinforcing effects of CeA photo-stimulation could confound data interpretation. We first 

determined whether photo-stimulation of BLA neurons during Pavlovian conditioning changes CS-

evoked conditioned approach behavior, as measured by the CSR/PCSR ratio described above. As 

shown in Figure 4.4A, a new cohort of rats was prepared for optogenetic manipulations in the BLA 

as described. The rats then received Pavlovian conditioning under one of the following three 

conditions: (1) “No Laser”, where the CS was presented alone (ChR2, n = 11; eYFP, n = 5), (2) 

“Paired laser”, where photo-stimulation was paired with each CS presentation (ChR2, n = 3; eYFP, 

n = 3), and (3) “Unpaired laser”, where photo-stimulation and CS presentation were explicitly 

unpaired, by administering laser stimulation half-way between each CS-UCS presentation (ChR2, 

n = 3). The Unpaired laser group served to determine whether increased BLA neuronal activity had 

to coincide with CS presentation to influence CS-evoked conditioned approach. If so, then 

CSR/PCSR ratios in the Unpaired laser group should be similar to those in the ChR2-No Laser or 

eYFP rats. One Unpaired-ChR2 rat had a seizure on Session 9. Therefore, the effects of BLA photo-

stimulation on CSR/PCSR ratios were analyzed on Sessions 1–8, with this rat included. There were 

no behavioral differences between ChR2-No laser, eYFP-Paired laser and eYFP-No laser rats 

under any test condition, and they were pooled into one group (controls, n = 19). 

Experiment 3b: Effects of Photo-stimulating ChR2-expressing BLA Neurons During 

Operant Responding for a CS 

Rats naive to laser stimulation (control rats from Experiment 3a, including 7 eYFP rats, and 8 ChR2 

rats) received sessions where they could lever press for presentations of the CS, with or without 

CS-paired BLA photo-stimulation (0, 5, 10, or 20 Hz, one frequency/session, counterbalanced), as 

shown in Figure 4.5A. We then determined whether photo-stimulation of BLA neurons must be 

explicitly paired with CS presentations to alter operant responding for the CS. If so, then explicitly 

https://www.jneurosci.org/content/40/8/1732.full#F4
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unpairing photo-stimulation and CS presentation during operant responding for the CS should have 

no or reduced effects on lever-pressing for that CS, compared with effects seen when photo-

stimulation and CS presentation are paired. To address this, all rats were given an operant 

responding session during which photo-stimulation was explicitly unpaired with CS presentation 

(photo-stimulation applied 3 s after each CS presentation). 

Experiment 4: Effects of Intra-amygdala D-amphetamine Infusions on the Incentive 

Motivational Effects of a CS 

Experiment 3b showed that photo-stimulation of BLA neurons potentiates operant responding for 

a CS, suggesting that changes in BLA neuron activity influences the incentive motivational effects 

of the CS. Here we sought to extend these findings by using a pharmacological approach to 

influence BLA neuron activity. Thus, we determined whether injecting d-amphetamine into the 

BLA (n = 20) also changes operant responding for a CS. We also determined whether, within the 

amygdala, effects of d-amphetamine on CS incentive properties are specific to the BLA. To this 

end, we assessed the effects of infusing d-amphetamine into the amygdala, but without targeting 

the BLA specifically (n = 15). We predicted that d-amphetamine infused specifically into the BLA 

would enhance operant responding for a CS, based on work showing that intra-BLA infusions of 

d-amphetamine increase cue-induced reinstatement of extinguished cocaine seeking (Ledford et

al., 2003). As shown in Figure 4.7A, following Pavlovian CS-UCS conditioning, intra-cerebral

cannulae were implanted bilaterally. The rats were then given at least 2 weeks to recover. Rats then

received a reminder Pavlovian conditioning session. Right after this session, rats received

intracerebral saline infusions to habituate them to the infusion procedure. No behavior was

recorded. On the next day, rats received a lever habituation session. Starting on the next day, rats

received intracerebral saline or d-amphetamine (10 or 30 μg/hemisphere; Sigma-Aldrich; 1

injection/d, given every other day) and they were then allowed to lever press for the CS during a

40 min test session. This session length was chosen based on our previous work with intra-nucleus

accumbens d-amphetamine injections (El Hage et al., 2015). Each rat received a maximum of three

intracerebral injections to minimize tissue damage. This included (1) a saline microinjection for

habituation, (2) a saline microinjection before testing, and (3) a d-amphetamine microinjection (10

or 30 μg/hemisphere) before testing (10 μg/hemisphere: n = 11 in BLA group, n = 7 in Amygdala

group; 30 μg/hemisphere: n = 9 in BLA group, n = 8 in Amygdala group). Therefore, each rat
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received only one d-amphetamine microinjection. For intracerebral injections, injectors (33 GA, 

model C315I, HRS Scientific) were inserted to extend 2 mm beyond the cannulae. Microinjections 

were given in a volume of 0.5 μl/hemisphere and were infused over 1 min using a microsyringe 

pump (HARVARD PHD 200, HARVARD Apparatus). Injectors were left in place for an additional 

min after the infusion. 

Histology 

In Experiments 2–3, rats were anesthetized with urethane (1.2 g/kg, i.p.) and were transcardially 

perfused with PBS and 4% paraformaldehyde. Brains were then extracted and kept at room 

temperature for 1 week in a 30% sucrose/4% paraformaldehyde solution, and then stored at −80°C. 

In Experiment 4, rats were anesthetized with isoflurane (5%), brains were extracted and stored at 

−20°C. Forty μm-thick coronal slices were cut in a cryostat and optic fiber or injector placement 

was estimated using the Paxinos and Watson atlas (Paxinos and Watson, 1986). 

Statistics 

In Experiment 2, mixed-model ANOVA was used to analyze group differences in self-administered 

photo-stimulations and lever pressing behavior (Group × Session: “Session” as a within-subjects 

variable; Group × Time: “Time” as a within-subjects variable; Group × Laser Frequency: 

“Frequency” as a within-subjects variable). One-way ANOVA was used to analyze group 

differences in both active lever presses during the PR5 session and the number of self-administered 

unilateral stimulations. In Experiment 3a, mixed-model ANOVA was used to analyze group 

differences in average CSR/PCSR ratios (Group × Session: Session as a within-subjects variable). 

In Experiment 3b, mixed-model ANOVA was used to analyze group differences in lever pressing 

for the CS (Group × Session or Lever Type: Session and “Lever Type” as within-subjects 

variables). In Experiment 4, one-way ANOVA was used to analyze CSR/PCSR ratios across 

sessions. The effects of d-amphetamine on lever pressing were analyzed using mixed-model 

ANOVA (Dose × Lever Type: Lever Type as a within-subjects variable). When an interaction 

and/or main effects were significant (p < 0.05), effects were analyzed further using Bonferroni's 

multiple-comparisons tests. Values in figures are mean ± SEM. 

RESULTS 
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Experiment 1: Effects of Photo-stimulation on Action Potentials in ChR2-expressing 

BLA and CeA Neurons in Vivo 

Figure 4.2, B and C, shows ChR2-eYFP expression in the BLA and CeA. As seen in Figure 4.2, D 

and E, photo-stimulation of BLA or CeA neurons induced action potentials on average 100% of 

the time at 1, 10, and 20 Hz stimulation frequencies. However, at 40 Hz, spike fidelity decreased, 

and photo-stimulation produced action potentials only ∼45% of the time. In line with these 

observations, Figure 4.2, F and G, shows that the frequencies of neuron firing and photo-

stimulation were closely matched at laser frequencies ≤20 Hz. However, at a stimulation frequency 

of 40 Hz, BLA and CeA neurons fired only at ∼18 Hz. This loss of fidelity is in accordance with 

the kinetic properties of ChR2(H134R), the ChR2 mutant used here. Indeed, when 5 ms pulses are 

given at a 40 Hz stimulation frequency, pulses are spaced by 20 ms, and this is shorter than the 

combined opening (∼3 ms) and closing (∼18 ms) rates of ChR2(H134R) (Lin et al., 2009). 

Importantly, laser application produced action potentials in ChR2-expressing BLA or CeA neurons 

(FIG. 4.2H), but not in eYFP-expressing BLA or CeA neurons (FIG. 4.2I). Thus, photo-stimulation 

reliably induced action potentials only in ChR2-expressing BLA or CeA neurons, and spike fidelity 

was excellent at laser frequencies ≤20 Hz. Thus, we used frequencies ≤20 Hz in the following 

studies. 

Experiment 2: Effects of Photo-stimulating ChR2-expressing BLA or CeA Neurons on 

Lever-pressing Behavior 

Here, we determined whether rats would reliably press on a lever for photo-stimulation of ChR2-

expressing BLA or CeA neurons (FIG. 4.3A). Pressing on the active lever produced photo-

stimulation paired with a light-tone cue, under FR1, RR2, and RR4 schedules of reinforcement (1 

schedule/session). Pressing on the inactive lever had no programmed consequences. 

Laser self-stimulation. Figure 4.3B shows estimated optic fiber placements in the CeA and 

BLA. Figure 4.3C shows that across different reinforcement schedules, CeA-ChR2 rats self-

administered more laser stimulations than control rats (main effect of Group: F(2,17) = 5.5, p = 0.014; 

CeA-ChR2 versus control rats: F(1,13) = 7.5, p = 0.017). Accordingly, as seen in Figure 4.3D, CeA-

ChR2 rats also pressed more on the active lever than control rats (main effect of Group: F(2,17) = 

5.53, p = 0.014; CeA-ChR2 versus control rats: F(1,13) = 7.42, p = 0.017). In contrast, BLA-ChR2 
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and control rats earned a similar number of photo-stimulations and pressed a similar number of 

times on the active lever (FIG. 4.3C,D; all p values > 0.05). Presses on the inactive lever did not 

 

FIG. 4.2 ─ Photo-stimulation reliably induces action potentials only in BLA and CeA neurons 
expressing ChR2. A, In Experiment 1, rats received AAV5-hSyn1-hChR2(H134R)-eYFP (ChR2-eYFP) 
for transduction and activation of BLA or CeA neurons. Control rats received an optically inactive virus 
lacking ChR2 (AAV5-hSyn1-eYFP) in the BLA or CeA. At least 4 weeks later, we measured action 
potentials evoked by photo-stimulation using in vivo electrophysiology. B, C, ChR2-eYFP expression is 
shown in the BLA and CeA, respectively. Scale bars, 50 μm. Arrows indicate cell bodies. When laser-light 
is delivered, ChR2 reliably induced action potentials in (D) BLA and (E) CeA neurons, with stimulation 
frequencies ranging between 1 and 20 Hz. ChR2 fidelity was reduced at 40 Hz. Accordingly, firing 
frequency of (F) BLA and (G) CeA neurons matched laser stimulation frequency only between 1 and 20 
Hz. Recordings in 4 rats/region; 10 observations/rat. Data are means, with each line representing individual 
observations. Examples of in vivo recordings show that laser-light induced action potentials in (H) ChR2-
expressing BLA and CeA neurons but not in (I) eYFP-expressing BLA and CeA neurons. 
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differ between groups (FIG. 4.3E; p > 0.05), suggesting that photo-stimulation of either BLA or 

CeA neurons did not produce nonspecific motor effects. Figure 4.3F shows the number of active 

lever presses for photo-stimulation under a PR5 schedule of reinforcement. Under this schedule, 

CeA-ChR2 rats pressed more on the active lever relative to BLA-ChR2 or control rats (main effect 

of Group: F(2,17) = 3.77, p = 0.007; CeA-ChR2 > controls, p = 0.014; CeA-ChR2 > BLA-ChR2, p 

= 0.013). BLA-ChR2 rats and controls were not different (p > 0.05). Thus, across a range of 

schedules of reinforcement, rats self-administered cued photo-stimulations of CeA neurons, but 

not BLA neurons. The findings suggest that photo-stimulation of CeA, but not BLA neurons is 

reinforcing. 

Extinction responding. We assessed lever-pressing behavior under extinction conditions 

during a 40 min session where photo-stimulation was only available from minutes 0–5 and 20–25, 

under a RR2 schedule. As shown in Figure 4.3G (top), BLA-ChR2 rats did not differ from controls 

during this session (all p values > 0.05). Presses on the inactive lever also did not differ between 

groups (FIG. 4.3G, bottom; p > 0.05). However, Figure 4.3G (top) also shows that when photo-

stimulation was available in the first 5 min of the session, CeA-ChR2 rats pressed more on the 

active lever relative to controls and BLA-ChR2 rats (Group × Time interaction: F(14,119) = 4.14, p 

< 0.0001; main effect of Group: F(2,17) = 7.69, p = 0.004; CeA-ChR2 vs control rats: F(1,13) = 10.3, 

p = 0.007; minutes 0–5, CeA-ChR2 > controls, p < 0.0001; CeA-ChR2 vs BLA-ChR2, F(1,8) = 5.11, 

p = 0.054; post hoc comparisons on minutes 0–5, CeA-ChR2 > BLA-ChR2, p = 0.0001. No other 

comparisons were significant). CeA-ChR2 rats also extinguished their lever-pressing behavior 

during the extinction session (FIG. 4.3G, top; main effect of Time: F(7,119) = 6.12, p < 0.0001; 

minutes 0–5 vs each subsequent 5 min block, all p values < 0.0001). Thus, only CeA-ChR2 rats 

lever-pressed for photo-stimulation when it was available, and decreased responding when it was 

not. In contrast, BLA-ChR2 rats and control rats lever-pressed very little, regardless of photo-

stimulation availability. 

Self-stimulation as a function of laser stimulation frequency. Figure 4.3H shows the 

influence of stimulation frequency (5, 10, and 20 Hz) on self-administration of photo-stimulations. 

Sessions stopped after 30 stimulations or 30 min. As a measure of the rate of responding, we 

analyzed the number of photo-stimulations earned per min. Relative to control rats, CeA-ChR2 rats 

earned more photo-stimulations/min at 10 and 20 Hz (FIG. 4.3H; Frequency × Group interaction: 
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F(4,32) = 4.08; p = 0.009; main effect of Group: F(2,16) = 5.76, p = 0.013; CeA-ChR2 rats vs controls: 

F(1,13) = 10.67, p = 0.006; CeA-ChR2 > controls at 10 Hz, p = 0.046, at 20 Hz, p < 0.0001). CeA-

 
 
FIG. 4.3 ─ Photo-stimulation of neurons in the CeA, but not BLA, is reinforcing. (see next page)  
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ChR2 rats also earned more photo-stimulations/min as stimulation frequency was increased (FIG. 

4.3H; main effect of Frequency: F(2,32) = 9.31, p = 0.0006; CeA-ChR2 rats, 10 > 5 Hz, p = 0.019, 

20 > 5 Hz, p < 0.0001). BLA-ChR2 rats earned more photo-stimulations/min relative to controls 

only at the highest frequency tested (main effect of Group: F(1,12) = 6.18, p = 0.029; BLA-ChR2 > 

controls, at 20 Hz, p = 0.013). No other comparisons were statistically significant. Thus, compared 

with control rats, BLA-ChR2 rats earned more photo-stimulations/min at 20 Hz, whereas CeA-

ChR2 rats earned more photo-stimulations/min at both 10 and 20 Hz. Furthermore, only CeA-

ChR2 rats increased their self-stimulation behavior with increasing laser frequency. 

Reversal learning. Here we determined whether photo-stimulation of CeA or BLA neurons 

supports reversal learning. Figure 4.3I shows pressing on a lever that produced laser stimulation 

on Session −1, but not on subsequent sessions. Figure 4.3J shows pressing on a lever that did not 

produce laser stimulation on Session −1, but did so on subsequent sessions. As seen in Figure 4.3I, 

CeA-ChR2 but not BLA-ChR2 rats pressed more on the reinforced lever relative to control rats 

(Group × Session interaction: F(4,32) = 5.46, p = 0.002; main effect of Group: F(2,16) = 10.05, p = 

0.002; CeA-ChR2 vs controls: F(1,13) = 19.47, p = 0.0007; CeA-ChR2 > controls on Session −1, p 

< 0.0001). CeA-ChR2 rats also pressed significantly less on this lever after reversal versus before 

(main effect of Session: F(2,32) = 11.98, p = 0.0001; CeA-ChR2 rats, Session −1 > Session 1: p = 

0.0002, Session −1 > Session 2: p < 0.0001). As seen in Figure 4.3J, after lever reversal, CeA-

(FIG. 4.3)  A, In Experiment 2, rats received AAV5-hSyn1-hChR2(H134R)-eYFP or an optically inactive 
control virus lacking ChR2 (AAV5-hSyn1-eYFP) in the BLA or CeA of both hemispheres. Optic fibers 
were also implanted bilaterally, above virus injection sites. B, Estimated optic fiber placements in the CeA 
and BLA (anteroposterior position is shown in mm relative to Bregma). At least 4 weeks after surgery, rats 
were allowed to press on two levers. Pressing the active lever produced photo-stimulation of BLA or CeA 
neurons, paired with presentation of a light-tone cue. Pressing the inactive lever had no programmed 
consequence. C–E, Lever pressing was measured under FR1, RR2, and RR4 schedules of laser 
reinforcement. Responding was also assessed under (F) a PR5 schedule of laser reinforcement, and during 
a (G) within-session extinction test. H, Effects of laser stimulation frequency on stimulations earned/min. 
I, J, Lever pressing under reversal learning conditions. K, Effects of unilateral stimulation, under a RR2 
schedule of laser reinforcement. *p < 0.05. G, #p < 0.05 versus control rats and BLA-ChR2 rats; α p < 0.05, 
first 5 min block versus all other 5 min blocks in CeA-ChR2 rats. H, #p < 0.05 versus control rats at the 
same frequency; α p < 0.05 versus 5 Hz in CeA-ChR2 rats. I, #p < 0.05 versus control rats in Session −1; α 
p < 0.05 versus Sessions 1 and 2 in CeA-ChR2 rats. J, #p < 0.05 versus control rats in the same test session; 
α p < 0.05 versus Session −1 in CeA-ChR2 rats. n = 4–10/group. Values are mean ± SEM. Individual data 
are shown on histograms. 
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ChR2 but not BLA-ChR2 rats pressed more on the newly reinforced lever relative to controls 

(Group × Session interaction: F(4,32) = 5.94, p = 0.001; main effect of Group: F(2,16) = 8.59, p = 

0.003; CeA-ChR2 rats > controls, Session 1: p = 0.033, Session 2: p < 0.0001). CeA-ChR2 rats 

also pressed more on this lever after reversal versus before (main effect of Session: F(2,32) = 11.84, 

p = 0.0001; CeA-ChR2 rats, Session −1 > Session 1: p = 0.035, Session −1 > Session 2: p < 0.0001). 

In summary, photo-stimulation of CeA neurons both reliably reinforced lever-pressing behavior 

and supported reversal learning, whereas photo-stimulation of BLA neurons supported neither 

response. 

Unilateral laser stimulation. Last, we determined whether unilateral photo-stimulation of 

CeA or BLA neurons was reinforcing. Figure 4.3K shows that CeA-ChR2 but not BLA-ChR2 rats 

earned more unilateral laser stimulations relative to controls (main effect of Group: F(2,16) = 6.24, 

p = 0.01; CeA-ChR2 > controls, p = 0.009). Therefore, unilateral stimulation of CeA, but not BLA 

neurons sustains self-stimulation. 

In summary, across different schedules of reinforcement, operant testing conditions and photo-

stimulation parameters, rats did not reliably self-administer photo-stimulation of BLA neurons. In 

contrast, rats reliably self-administered photo-stimulation of CeA neurons, indicating that it is 

reinforcing. These findings show that photo-stimulation of BLA versus CeA neurons has 

dissociable effects, and that CeA but not BLA neurons carry a primary reward signal. 

Experiment 3a: Effects of Photo-stimulating ChR2-expressing BLA Neurons During 

Pavlovian CS-UCS Conditioning on CS-evoked Conditioned Approach 

Figure 4.4B shows estimated optic fiber placements in the BLA. We first determined the effects of 

BLA photo-stimulation on CS-evoked conditioned approach behavior (FIG. 4.4A). This was 

assessed by analyzing the ratio of nose-pokes into the water receptacle during each 5 s light cue 

presentation (CSR), versus during the 5 s period preceding each CS presentation (PCSR). Figure 

4.4C shows the effects of photo-stimulation of ChR2-expressing BLA neurons on the CSR/PCSR 

ratio over Pavlovian conditioning sessions. Average CSR/PCSR ratios progressively increased 

over sessions in all groups, indicating that rats learned the CS-UCS contingency (FIG. 4.4C; main 

effect of Session: F(3,66) = 20.12, p < 0.0001). Pairing photo-stimulation of BLA neurons with CS 

presentations (“ChR2-Paired laser” group) potentiated conditioned approach behavior relative to 
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all other conditions (FIG. 4.4C; Group × Session interaction: F(6,66) = 8.31, p < 0.0001; main effect 

of Group: F(2,22) = 21.81, p < 0.0001; ChR2 Paired laser > Controls, Session 2: p = 0.025, Session 

FIG. 4.4 ─ Photo-stimulation of BLA neurons during CS presentation potentiates CS-evoked 
conditioned approach. A, In Experiment 3a, rats received AAV5-hSyn1-hChR2(H134R)-eYFP or an 
optically inactive control virus lacking ChR2 (AAV5-hSyn1-eYFP) in the BLA of both hemispheres. Optic 
fibers were also implanted bilaterally, above virus injection sites. B, Estimated optic fiber placements in the 
BLA (anteroposterior position is shown in mm relative to Bregma). At least 4 weeks after surgery, rats were 
water-restricted (2 h/d) and received Pavlovian conditioning sessions where a light-tone CS predicted water 
(100 μl) delivery (UCS) into a recessed dish. During conditioning sessions, photo-stimulation of BLA 
neurons was either explicitly paired or unpaired with CS presentation, in independent groups of rats. Control 
rats included ChR2 and eYFP rats that did not receive photo-stimulations and eYFP rats that received photo-
stimulations. C, CS-paired but not CS-unpaired BLA photo-stimulation enhanced CSR/PCSR ratios (ratio 
of nose-pokes into the water dish during each 5 s CS presentation versus nose-pokes made during the 5 s 
period preceding each CS presentation). This indicates enhanced Pavlovian learning. n = 3–19/group. *p < 
0.05 versus ChR2-Unpaired laser group and control group; #p < 0.05 versus control group on the same 
session; α p < 0.05 versus ChR2-Unpaired laser group on the same session. Values are mean ± SEM. 
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3: p < 0.0001, Session 4: p < 0.0001; ChR2 Paired laser > ChR2 Unpaired laser, Session 3: p < 

0.0001, Session 4: p = 0.0004). No other comparisons were significant. Thus, photo-stimulation of 

BLA neurons potentiated CS-evoked conditioned approach behavior over time, but only if photo-

stimulation was explicitly paired with CS presentation. 

Experiment 3b: Effects of Photo-stimulating ChR2-expressing BLA Neurons During 

Operant Responding for a CS 

Here, we sought to determine whether BLA photo-stimulation would potentiate instrumental 

pursuit of the CS. To this end, we used rats from Experiment 3a that had undergone Pavlovian CS-

UCS conditioning without laser stimulation. These are rats with ChR2-expressing BLA neurons 

that had not received laser photo-stimulation, and rats with eYFP-expressing BLA neurons. We 

determined in these rats whether BLA photo-stimulation during operant responding for the CS 

enhances responding for that CS (FIG. 4.5A). Figure 4.5B shows presses on an active lever that 

produced CS presentation and on an inactive lever, during a session where rats did not receive laser 

stimulation. Across groups, rats pressed more on the active versus inactive lever (main effect of 

Lever Type: F(1,13) = 13.86, p = 0.003). This indicates that the CS acquired incentive properties. 

There was neither a main effect of Group nor a Group × Lever Type interaction effect (all p values 

> 0.05). Thus, without laser stimulation, ChR2 and eYFP rats show similar incentive motivation 

for the CS. 

Figure 4.5C shows presses on the active and inactive levers when CS presentations were paired 

with BLA photo-stimulation at different laser frequencies (5, 10, or 20 Hz). Figure 4.5C shows that 

both ChR2 and eYFP rats pressed more on the active versus inactive lever (main effect of Lever 

Type: F(1,26) = 18.3, p = 0.001; eYFP rats: F(1,12) = 6.31, p = 0.027; ChR2 rats: F(1,14) = 12.19, p = 

0.004). Thus, both groups showed incentive motivation for the CS under these conditions. In 

addition, ChR2 rats pressed more on the active lever than did eYFP rats (FIG. 4.5C; main effect of 

Group: F(1,13) = 5.39, p = 0.04; no other comparisons were significant). This suggests that photo-

stimulation of BLA neurons potentiates the expression of incentive motivation for the CS. Figure 

4.5D shows lever-pressing behavior when pressing the active lever produced the CS and photo-

stimulation 3 s later, such that the CS and photo-stimulation were unpaired. Only ChR2 rats pressed 

more on the active versus inactive lever (FIG. 4.5D; Group × Lever Type interaction: F(1,13) = 5.79, 

p = 0.032; main effect of Lever Type: F(1,13) = 20.13, p = 0.0006; ChR2 rats: active > inactive lever, 
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p = 0.0004). However, ChR2 rats did not press more on the active lever than eYFP rats (p > 0.05). 

No other comparisons were significant. Last, BLA photo-stimulation, when it was either paired or 

unpaired with CS presentation, did not influence nose pokes into the water receptacle (data not 

shown, all p values > 0.05). This suggests that BLA photo-stimulation did not increase the urge to 

consume the associated water UCS. Together, these results show that photo-stimulation of BLA 

FIG. 4.5 ─ Photo-stimulation of BLA neurons potentiates incentive motivation for a CS. A, In 
Experiment 3b, rats that had not received photo-stimulation of BLA neurons during previous Pavlovian CS-
UCS conditioning (eYFP rats and ChR2-No laser control rats from Experiment 3a) were used to assess the 
effects of photo-stimulation of BLA neurons during instrumental responding for the CS. B, During a session 
without laser stimulation, both groups pressed more on the active versus inactive lever, and there were no 
group differences in lever-pressing behavior. C, During sessions where BLA photo-stimulation was paired 
with each earned CS presentation, ChR2 rats pressed more on the active lever than eYFP rats did. This 
indicates that photo-stimulation of BLA neurons during CS presentation enhances the incentive 
motivational value of the CS. D, During sessions where BLA photo-stimulation was explicitly unpaired 
with each earned CS presentation, ChR2 rats still pressed more on the active versus inactive lever, but lever-
pressing behavior did not differ between ChR2 and eYFP rats. n = 7–8/group. *p < 0.05; α p < 0.05 active 
lever presses versus inactive lever presses in ChR2 rats. Values are mean ± SEM. 
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neurons during operant responding for the CS potentiated incentive motivation for that CS, and 

that this effect was strongest when photo-stimulation was explicitly paired with each CS 

presentation. 

Together, the results of Experiments 2 and 3b indicate that BLA photo-stimulation increases 

instrumental pursuit of a discrete stimulus, if and only if that stimulus reliably predicts a primary 

reward (water). That is, BLA photo-stimulation selectively potentiates the pursuit of environmental 

stimuli that possess conditioned incentive properties. Figure 4.6 highlights this effect. It shows 

reinforcements earned by individual rats lever pressing for presentations of a light-tone stimulus 

not previously associated with a reward (FIG. 4.6A,B; rats from Experiment 2) or a light-tone 

stimulus previously associated with a water reward (FIG. 4.6C,D; rats from Experiment 3b). When 

the light-tone stimulus had no relationship with a primary reward, BLA photo-stimulation did not 

 
 
FIG. 4.6 ─ Photo-stimulation of BLA neurons potentiates motivation for a discrete environmental 
stimulus if and only if this stimulus was previously associated with a primary reward. Each dot 
indicates reinforcements earned by individual rats that were lever pressing for presentations of a light-tone 
stimulus. Data are shown for individual control rats (A, C) and individual rats receiving photo-stimulation 
of ChR2-expressing BLA neurons paired with each stimulus presentation (B, D). A, B, When the light-tone 
stimulus had not previously been associated with a primary reward, BLA photo-stimulation did not change 
the number of stimulus presentations earned. C, D, When the light-tone stimulus had previously been 
associated with a water reward, BLA photo-stimulation enhanced responding. 
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significantly change the number of stimulus presentations earned (FIG. 4.6A,B). After the light-

tone stimulus had been paired with water, control rats pursued this CS more avidly (FIG. 4.6, 

compare A, C), and BLA photo-stimulation potentiated this effect (FIG. 4.6, compare C, D). 

Additionally, photo-stimulation of BLA neurons increased both CS-evoked conditioned approach 

(FIG. 4.4C; Experiment 3a) and operant responding for the CS (FIG. 4.5C; Experiment 3b). These 

two CS effects rely on common but also partially dissociable neurobiological and psychological 

processes (Flagel et al., 2011; Tabbara et al., 2016). In agreement, in the control rats represented 

in Figure 4.4C, there was no significant correlation between average CSR/PCSR ratios over the 

last 4 d of Pavlovian conditioning and active lever presses during a subsequent instrumental 

conditioning session (without laser; data not shown; r2 = 0.002, p = 0.85). 

Experiment 4: Effects of Intra-amygdala D-amphetamine Infusions on the Incentive 

Motivational Effects of a CS 

After CS-UCS Pavlovian conditioning, rats were given instrumental responding tests where they 

could lever-press for the CS (FIG. 4.7A). Immediately before these tests, rats received bilateral 

infusions of d-amphetamine (0, 10, or 30 μg/hemisphere) into the BLA or into the amygdala 

without targeting the BLA specifically. Figure 4.7B shows estimated location of injector tips when 

both cannulae were specifically in the BLA (top) or simply in the amygdala, but without targeting 

the BLA exclusively (bottom). The rats learned the CS-UCS contingency, as indicated by a 

progressive increase in CSR/PCSR ratio (FIG. 4.7C; main effect ofu Session: F(4,76) = 11.12, p < 

0.0001; 7F; main effect of Session: F(4,56) = 5.04, p = 0.002). Figure 4.7D,E–G,H show that rats in 

both experimental groups pressed more on the active versus inactive lever (FIG. 4.7D,E; Dose × 

Lever Type interaction: F(2,37) = 5.31, p = 0.009; main effect of Lever Type: F(1,37) = 142.4; p < 

0.0001; 7G,H; main effect of Lever Type: F(1,27) = 25.61, p < 0.0001). Thus, all rats spontaneously 

learned a new operant response to produce the CS, indicating that the CS acquired incentive value. 

d-Amphetamine influenced active lever pressing only when infused specifically into the BLA, such

that active lever pressing was greatest at 30 μg/hemisphere d-amphetamine (FIG. 4.7D; main effect

of Dose: F(2,37) = 4.5, p = 0.018; 30 vs 0 μg, p = 0.0002; 30 vs 10 μg, p = 0.027). In contrast, d-

amphetamine did not alter lever-pressing behavior in rats that received infusions into the amygdala,

without specifically targeting the BLA (FIG. 4.7G,H; all p values > 0.05). No other comparisons

were statistically significant. Last, neither intra-BLA nor intra-amygdala d-amphetamine altered
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the number of nose pokes into the water receptacle (data not shown, all p values > 0.05). This 

suggests that d-amphetamine infusions into the amygdala did not increase the urge to consume the 

 
 
FIG. 4.7 ─ Bilateral infusions of d-amphetamine into the BLA intensify the incentive value of a CS. A, 
In Experiment 4, rats received Pavlovian conditioning. Bilateral cannulae were then (see next page)   
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associated water UCS. Thus, the findings show that intra-BLA d-amphetamine intensified 

incentive motivation for the CS. 

DISCUSSION 

We evaluated the contributions of the BLA to appetitive Pavlovian conditioning and to the 

instrumental pursuit of a reward-predictive CS. First, photo-stimulation of BLA neurons was not 

intrinsically reinforcing, whereas photo-stimulation of neurons in the adjacent CeA was. Second, 

photo-stimulation of BLA neurons during Pavlovian CS-UCS conditioning enhanced CS-evoked 

conditioned approach, indicating potentiated anticipation of the primary reward. Third, photo-

stimulation of BLA neurons potentiated operant responding for the CS, suggesting enhanced CS 

incentive value. Finally, intra-BLA infusions of d-amphetamine also augmented operant 

responding for the CS, suggesting that a local increase in monoamine neurotransmission is also 

involved in enhanced conditioned incentive motivation. Thus, increased neuronal activity within 

the BLA facilitates cue-controlled behavior by both increasing cue-induced anticipation of 

impending rewards and making reward cues more attractive. 

Photo-stimulation of CeA, but not BLA Neurons, Is Reinforcing 

Rats reliably lever pressed for photo-stimulation of CeA, but not BLA neurons, suggesting that 

CeA neurons carry a primary reward signal. Our findings agree with earlier work showing that 

electrical stimulation of CeA cells is reinforcing (Prado-Alcalá and Wise, 1984; Kane et al., 1991). 

CeA neurons are mostly GABAergic, but they express different neuropeptides and have different 

(FIG. 4.7)  implanted specifically into the BLA (BLA group) or into the amygdala without targeting the 
BLA specifically (Amygdala group). B, Estimated injector tip placements in BLA rats and in Amygdala 
rats (anteroposterior position is shown in mm relative to Bregma). C, F, During Pavlovian conditioning, 
rats reliably learned the CS-unconditioned stimulus contingency, as indicated by increasing CSR/PCSR 
ratios over sessions (ratio of nose-pokes into the water receptacle made during each 5 s CS presentation 
versus during the 5 s period preceding each CS presentation). Next, we assessed the effects of intracerebral 
d-amphetamine infusions (0, 10, or 30 μg/hemisphere) on instrumental responding for the CS. Both (D, E)
BLA and (G, H) Amygdala rats pressed more on the active versus inactive lever, indicating that the CS
acquired incentive motivational value. D, d-Amphetamine influenced responding for the CS only when the
drug was infused into the BLA. n = 7–20/group. *p < 0.05. Values are mean ± SEM. Individual data are
shown on histograms.
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anatomical connections. More recent studies show that stimulation of specific neuronal populations 

in the CeA can also be reinforcing. This includes CeA neurons expressing corticotropin-releasing 

hormone, somatostatin, neurotensin, and/or tachykinin 2 (Baumgartner et al., 2017; Kim et al., 

2017), and CeA→medial prefrontal cortex neurons (Seo et al., 2016). In contrast, using photo-

stimulation of CeA neurons without regards to cell subtype as done here, Berridge and colleagues 

report that CeA photo-stimulation is not reinforcing (Robinson et al., 2014; Warlow et al., 2017). 

This could involve the CeA subregion where photo-stimulation was applied. Robinson et al. (2014) 

and Warlow et al. (2017) implanted optic fibers in the posterior CeA, whereas we implanted in the 

anterior CeA. Our rats did not reliably self-administer photo-stimulation of BLA neurons. Rats will 

electrically self-stimulate some BLA subregions (Prado-Alcalá and Wise, 1984; Kane et al., 1991), 

and studies using optogenetic methods suggest that self-stimulation depends on the BLA circuit 

targeted. For instance, photo-stimulation of BLA→nucleus accumbens terminals is reinforcing 

(Stuber et al., 2011; Britt et al., 2012; Namburi et al., 2015), but photo-stimulation of 

BLA→medial CeA terminals produces avoidance (Namburi et al., 2015). The absence of BLA 

self-stimulation here could involve the hSyn promoter we used. It confers neuron-specific 

transgene expression, but it does not target neuron subtypes. 

Via distinct cell types and connections, amygdala nuclei and subregions exert many functions, 

including both appetitive and defensive behaviors (Gallagher and Chiba, 1996). Future studies will 

be important to examine roles of specific CeA and BLA neuron subtypes and projections in 

appetitive behavior. As this research unfolds, our results support the idea that while the BLA and 

CeA are connected and can play similar roles in motivational processes (Wassum et al., 2011), 

they also have distinct appetitive functions (Corbit and Balleine, 2005; Robinson et al., 2014; 

Warlow et al., 2017). 

Photo-stimulation of BLA Neurons during CS-UCS Conditioning Enhances CS-evoked 

Conditioned Approach 

During Pavlovian conditioning, we paired photo-stimulation of BLA neurons with CS presentation. 

This potentiated CS-evoked conditioned approach, as shown by more CS-triggered visits to the 

water dish. This suggests enhanced anticipation of the CS-associated water reward. Explicitly 

unpairing BLA stimulation and CS presentation did not influence CS-evoked conditioned 

approach. Thus, increasing BLA neuron activity when a CS is presented amplifies associative CS-
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UCS learning. Increased CS-triggered visits to the water dish could suggest that BLA photo-

stimulation enhances the appetitive value of water. This is possible, but unlikely, because BLA 

lesions do not alter water consumption (Cador et al., 1989). Instead, enhanced CS-evoked 

conditioned approach likely involves changes in how BLA neurons represent the CS and/or how 

they encode the CS-UCS association. CS-triggered conditioned approach behaviors can reflect 

both the predictive and incentive effects of CS. BLA stimulation could increase CS-triggered visits 

to the water dish by enhancing either or both effects. For instance, rats might visit the water dish 

during CS presentation because the CS is evoking an incentive urge to drink the associated water 

(Weingarten, 1983). If so, then BLA photo-stimulation during the CS could increase visits to the 

water dish by enhancing this conditioned incentive urge (Holland et al., 2002). Similarly, the water 

dish is also a CS in our experiments, less predictive than the light-tone CS, but more proximal to 

the water UCS. As such, BLA photo-stimulation could have increased water dish visits by 

enhancing the incentive value of the dish. We do not believe this is the case, because BLA photo-

stimulation increased the number of water dish visits only when this stimulation was explicitly 

paired with the light-tone CS. 

Photo-stimulation of BLA Neurons or D-amphetamine Infusion into the BLA 

Enhances CS Incentive Value 

Once the CS had been imbued with incentive value through prior association with an appetitive 

UCS, BLA photo-stimulation amplified the expression of this incentive motivation (as measured 

by lever-pressing reinforced by the CS alone). Infusing d-amphetamine into the BLA had the same 

effect, suggesting that increases in monoamine-mediated neurotransmission in the BLA are 

involved (Ledford et al., 2003; Bernardi et al., 2009; Gremel and Cunningham, 2009; Lintas et al., 

2011). This extends lesion studies showing that the BLA is necessary for operant responding 

reinforced by a CS (Cador et al., 1989; Burns et al., 1993). BLA photostimulation or d-

amphetamine infusions into the BLA could have enhanced instrumental responding for the CS by 

potentiating the appetitive value of the associated water reward. This is unlikely, because neither 

manipulation influenced the number of water dish visits during instrumental tests. In addition, the 

increased lever pressing during tests of instrumental responding for the CS likely does not involve 

any intrinsically reinforcing effects of BLA photo-stimulation. Indeed, our BLA photo-stimulation 

parameters did not reliably support self-stimulation behavior. Instead, the BLA stores information 
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about CS value, which is then used to guide behavior (Cardinal et al., 2002). As such, stimulation 

of BLA neurons could enhance operant responding for a CS by potentiating the incentive value of 

the CS itself or of the CS-associated reward representation (Mogenson, 1987; Everitt and Robbins, 

1992). 

Conclusions 

Increased neuronal activity in BLA-dependent circuits amplifies control over behavior by an 

appetitive cue, and this involves two overlapping, but also dissociable psychological mechanisms. 

A first mechanism involves enhanced CS-UCS associative learning, such that the CS triggers 

increased conditioned approach, and increased anticipation of the primary reward. This prepares 

animals to engage with the forthcoming reward. The second mechanism involves amplified 

incentive motivation to pursue the CS, such that animals show enhanced instrumental responding 

for the CS. Thus, when reward cues are present in the environment, increased recruitment of BLA-

dependent pathways could promote excessive pursuit of associated rewards both by augmenting 

anticipation for these rewards and making reward-paired cues more attractive in their own right. 

REFERENCES OF CHAPTER IV 

Ambroggi F, Ishikawa A, Fields HL, Nicola SM (2008) Basolateral amygdala neurons facilitate 
reward-seeking behavior by exciting nucleus accumbens neurons. Neuron 59:648-661. 

Baumgartner HM, Olney JJ, Warlow SM, Schulkin J, Berridge KC (2017) Investigating 
corticotropin releasing factor in mediating appetitive behavior. Published abstract for the 
Society for Neuroscience Annual Meeting, Washington, DC. 

Bernardi RE, Ryabinin AE, Berger SP, Lattal KM (2009) Post-retrieval disruption of a cocaine 
conditioned place preference by systemic and intrabasolateral amygdala beta2- and alpha1-
adrenergic antagonists. Learn Mem 16:777-789. 

Bindra D (1978) How adaptive behavior is produced: a perceptual-motivation alternative to 
response reinforcement. Behavioral and Brain Sciences 1:41-52. 

Bolles RC (1972) Reinforcement, expectancy, and learning. Psychological Review 79:394-409. 

Britt JP, Benaliouad F, McDevitt RA, Stuber GD, Wise RA, Bonci A (2012) Synaptic and 
behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 
76:790-803. 

https://www.jneurosci.org/content/40/8/1732.full#ref-10
https://www.jneurosci.org/content/40/8/1732.full#ref-43
https://www.jneurosci.org/content/40/8/1732.full#ref-15
https://www.jneurosci.org/content/40/8/1732.full#ref-15


173 

Brown EE, Fibiger HC (1993) Differential effects of excitotoxic lesions of the amygdala on 
cocaine-induced conditioned locomotion and conditioned place preference. 
Psychopharmacology 113:123-130. 

Burns LH, Robbins TW, Everitt BJ (1993) Differential effects of excitotoxic lesions of the 
basolateral amygdala, ventral subiculum and medial prefrontal cortex on responding with 
conditioned reinforcement and locomotor activity potentiated by intra-accumbens infusions 
of D-amphetamine. Behavioural brain research 55:167-183. 

Cador M, Robbins TW, Everitt BJ (1989) Involvement of the amygdala in stimulus-reward 
associations: interaction with the ventral striatum. Neuroscience 30:77-86. 

Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the 
amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321-352. 

Corbit LH, Balleine BW (2005) Double dissociation of basolateral and central amygdala lesions 
on the general and outcome-specific forms of pavlovian-instrumental transfer. The Journal 
of neuroscience : the official journal of the Society for Neuroscience 25:962-970. 

de Wit H, Stewart J (1981) Reinstatement of cocaine-reinforced responding in the rat. 
Psychopharmacology 75:134-143. 

Dittgen T, Nimmerjahn A, Komai S, Licznerski P, Waters J, Margrie TW, Helmchen F, Denk W, 
Brecht M, Osten P (2004) Lentivirus-based genetic manipulations of cortical neurons and 
their optical and electrophysiological monitoring in vivo. Proceedings of the National 
Academy of Sciences of the United States of America 101:18206-18211. 

El Hage C, Bedard AM, Samaha AN (2015) Antipsychotic treatment leading to dopamine 
supersensitivity persistently alters nucleus accumbens function. Neuropharmacology. 

Everitt B, Robbins T (1992) Amygdala-Ventral Striatal Interactions and Reward-related Processes. 
The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction New 
York, NY, US: Wiley-Liss.:401-409. 

Everitt BJ, Morris KA, O'Brien A, Robbins TW (1991) The basolateral amygdala-ventral striatal 
system and conditioned place preference: further evidence of limbic-striatal interactions 
underlying reward-related processes. Neuroscience 42:1-18. 

Fisher RS (1989) Animal models of the epilepsies. Brain Res Brain Res Rev 14:245-278. 

Flagel SB, Akil H, Robinson TE (2009) Individual differences in the attribution of incentive 
salience to reward-related cues: Implications for addiction. Neuropharmacology 56 Suppl 
1:139-148. 

Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, Akers CA, Clinton SM, Phillips 
PE, Akil H (2011) A selective role for dopamine in stimulus-reward learning. Nature 
469:53-57. 



174 

Gabriele A, See RE (2010) Reversible inactivation of the basolateral amygdala, but not the 
dorsolateral caudate putamen, attenuates consolidation of cocaine-cue associative learning 
in a reinstatement model of drug-seeking. The European journal of neuroscience 32:1024-
1029. 

Gallagher M, Chiba AA (1996) The amygdala and emotion. Current opinion in neurobiology 
6:221-227. 

Goddard GV, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from 
daily electrical stimulation. Exp Neurol 25:295-330. 

Gremel CM, Cunningham CL (2009) Involvement of amygdala dopamine and nucleus accumbens 
NMDA receptors in ethanol-seeking behavior in mice. Neuropsychopharmacology : official 
publication of the American College of Neuropsychopharmacology 34:1443-1453. 

Grimm JW, See RE (2000) Dissociation of primary and secondary reward-relevant limbic nuclei 
in an animal model of relapse. Neuropsychopharmacology : official publication of the 
American College of Neuropsychopharmacology 22:473-479. 

Hearst E, Jenkins HM (1974) Sign-tracking: The Stimulus-reinforcer Relation and Directed Action. 
Psychonomic Society, Austin. 

Holland PC, Petrovich GD, Gallagher M (2002) The effects of amygdala lesions on conditioned 
stimulus-potentiated eating in rats. Physiol Behav 76:117-129. 

Huff ML, Miller RL, Deisseroth K, Moorman DE, LaLumiere RT (2013) Posttraining optogenetic 
manipulations of basolateral amygdala activity modulate consolidation of inhibitory 
avoidance memory in rats. Proceedings of the National Academy of Sciences of the United 
States of America 110:3597-3602. 

Ilango A, Kesner AJ, Broker CJ, Wang DV, Ikemoto S (2014) Phasic excitation of ventral 
tegmental dopamine neurons potentiates the initiation of conditioned approach behavior: 
parametric and reinforcement-schedule analyses. Front Behav Neurosci 8:155. 

Kane F, Coulombe D, Miliaressis E (1991) Amygdaloid self-stimulation: a movable electrode 
mapping study. Behav Neurosci 105:926-932. 

Kantak KM, Black Y, Valencia E, Green-Jordan K, Eichenbaum HB (2002) Dissociable effects of 
lidocaine inactivation of the rostral and caudal basolateral amygdala on the maintenance 
and reinstatement of cocaine-seeking behavior in rats. The Journal of neuroscience : the 
official journal of the Society for Neuroscience 22:1126-1136. 

Kim J, Pignatelli M, Xu S, Itohara S, Tonegawa S (2016) Antagonistic negative and positive 
neurons of the basolateral amygdala. Nat Neurosci 19:1636-1646. 

Kim J, Zhang X, Muralidhar S, LeBlanc SA, Tonegawa S (2017) Basolateral to Central Amygdala 
Neural Circuits for Appetitive Behaviors. Neuron 93:1464-1479 e1465. 



175 

Lajoie J, Bindra D (1976) An interpretation of autoshaping and related phenomena in terms of 
stimulus-incentive contingencies alone. Can J Psychol 30:157-173. 

Ledford CC, Fuchs RA, See RE (2003) Potentiated reinstatement of cocaine-seeking behavior 
following D-amphetamine infusion into the basolateral amygdala. 
Neuropsychopharmacology : official publication of the American College of 
Neuropsychopharmacology 28:1721-1729. 

Lin JY, Lin MZ, Steinbach P, Tsien RY (2009) Characterization of engineered channelrhodopsin 
variants with improved properties and kinetics. Biophys J 96:1803-1814. 

Lintas A, Chi N, Lauzon NM, Bishop SF, Gholizadeh S, Sun N, Tan H, Laviolette SR (2011) 
Identification of a dopamine receptor-mediated opiate reward memory switch in the 
basolateral amygdala-nucleus accumbens circuit. The Journal of neuroscience : the official 
journal of the Society for Neuroscience 31:11172-11183. 

Mackintosh NJ (1974) The psychology of animal learning. London ; New York: Academic Press. 

McDonald RJ, Hong NS (2004) A dissociation of dorso-lateral striatum and amygdala function on 
the same stimulus-response habit task. Neuroscience 124:507-513. 

McDonald RJ, Yim TT, Lehmann H, Sparks FT, Zelinski EL, Sutherland RJ, Hong NS (2010) 
Expression of a conditioned place preference or spatial navigation task following muscimol-
induced inactivations of the amygdala or dorsal hippocampus: A double dissociation in the 
retrograde direction. Brain research bulletin 83:29-37. 

McLaughlin J, See RE (2003) Selective inactivation of the dorsomedial prefrontal cortex and the 
basolateral amygdala attenuates conditioned-cued reinstatement of extinguished cocaine-
seeking behavior in rats. Psychopharmacology 168:57-65. 

McNamara JO, Byrne MC, Dasheiff RM, Fitz JG (1980) The kindling model of epilepsy: a review. 
Progress in neurobiology 15:139-159. 

Millan EZ, Kim HA, Janak PH (2017) Optogenetic activation of amygdala projections to nucleus 
accumbens can arrest conditioned and unconditioned alcohol consummatory behavior. 
Neuroscience 360:106-117. 

Mogenson GJ (1987) Limbic-motor integration. Prog Psychobiol Physiol Psvchol 12:117-170. 

Namburi P, Beyeler A, Yorozu S, Calhoon GG, Halbert SA, Wichmann R, Holden SS, Mertens 
KL, Anahtar M, Felix-Ortiz AC, Wickersham IR, Gray JM, Tye KM (2015) A circuit 
mechanism for differentiating positive and negative associations. Nature 520:675-678. 

Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd Edition. Sydney ; 
Orlando: Academic Press. 

Prado-Alcala R, Wise RA (1984) Brain stimulation reward and dopamine terminal fields. I. 
Caudate-putamen, nucleus accumbens and amygdala. Brain research 297:265-273. 



176 

Rescorla RA (1988) Pavlovian conditioning. It's not what you think it is. Am Psychol 43:151-160. 

Rescorla RA, Solomon RL (1967) Two-process learning theory: Relationships between Pavlovian 
conditioning and instrumental learning. Psychol Rev 74:151-182. 

Robbins TW (1978) The acquisition of responding with conditioned reinforcement: effects of 
pipradrol, methylphenidate, d-amphetamine, and nomifensine. Psychopharmacology 58:79-
87. 

Robinson MJ, Warlow SM, Berridge KC (2014) Optogenetic excitation of central amygdala 
amplifies and narrows incentive motivation to pursue one reward above another. The 
Journal of neuroscience : the official journal of the Society for Neuroscience 34:16567-
16580. 

Rogers JL, Ghee S, See RE (2008) The neural circuitry underlying reinstatement of heroin-seeking 
behavior in an animal model of relapse. Neuroscience 151:579-588. 

Rossi MA, Sukharnikova T, Hayrapetyan VY, Yang L, Yin HH (2013) Operant self-stimulation of 
dopamine neurons in the substantia nigra. PLoS One 8:e65799. 

Seo DO, Funderburk SC, Bhatti DL, Motard LE, Newbold D, Girven KS, McCall JG, Krashes M, 
Sparta DR, Bruchas MR (2016) A GABAergic Projection from the Centromedial Nuclei of 
the Amygdala to Ventromedial Prefrontal Cortex Modulates Reward Behavior. The Journal 
of neuroscience : the official journal of the Society for Neuroscience 36:10831-10842. 

Stefanik MT, Kalivas PW (2013) Optogenetic dissection of basolateral amygdala projections 
during cue-induced reinstatement of cocaine seeking. Front Behav Neurosci 7:213. 

Stuber GD, Sparta DR, Stamatakis AM, van Leeuwen WA, Hardjoprajitno JE, Cho S, Tye KM, 
Kempadoo KA, Zhang F, Deisseroth K, Bonci A (2011) Excitatory transmission from the 
amygdala to nucleus accumbens facilitates reward seeking. Nature 475:377-380. 

Tabbara RI, Maddux JM, Beharry PF, Iannuzzi J, Chaudhri N (2016) Effects of sucrose 
concentration and water deprivation on Pavlovian conditioning and responding for 
conditioned reinforcement. Behav Neurosci 130:231-242. 

Tolman EC (1932) Purposive behavior in animals and men. London, England: Century/Random 
House UK. 

Trujillo-Pisanty I, Sanio C, Chaudhri N, Shizgal P (2015) Robust optical fiber patch-cords for in 
vivo optogenetic experiments in rats. MethodsX 2:263-271. 

Tye KM, Janak PH (2007) Amygdala neurons differentially encode motivation and reinforcement. 
The Journal of neuroscience : the official journal of the Society for Neuroscience 27:3937-
3945. 

Tye KM, Stuber GD, de Ridder B, Bonci A, Janak PH (2008) Rapid strengthening of thalamo-
amygdala synapses mediates cue-reward learning. Nature 453:1253-1257. 



177 

Warlow SM, Robinson MJF, Berridge KC (2017) Optogenetic Central Amygdala Stimulation 
Intensifies and Narrows Motivation for Cocaine. The Journal of neuroscience : the official 
journal of the Society for Neuroscience 37:8330-8348. 

Wassum KM, Cely IC, Balleine BW, Maidment NT (2011) Micro-opioid receptor activation in the 
basolateral amygdala mediates the learning of increases but not decreases in the incentive 
value of a food reward. The Journal of neuroscience : the official journal of the Society for 
Neuroscience 31:1591-1599. 

Weingarten HP (1983) Conditioned cues elicit feeding in sated rats: a role for learning in meal 
initiation. Science 220:431-433. 

White NM, McDonald RJ (1993) Acquisition of a spatial conditioned place preference is impaired 
by amygdala lesions and improved by fornix lesions. Behavioural brain research 55:269-
281. 

Zhang F, Gradinaru V, Adamantidis AR, Durand R, Airan RD, de Lecea L, Deisseroth K (2010) 
Optogenetic interrogation of neural circuits: technology for probing mammalian brain 
structures. Nature protocols 5:439-456. 



CHAPTER V. General Discussion 



179 

1. ANTIPSYCHOTIC-EVOKED DOPAMINE SUPERSENSITIVITY: NEW
INSIGHTS AND PERSPECTIVES

Antipsychotic-evoked dopamine supersensitivity could increase the risk of treatment failure and 

psychotic relapse in schizophrenia patients (Chouinard and Jones, 1980). In laboratory animals, 

antipsychotic-evoked dopamine supersensitivity also produces a tolerance to antipsychotic-like 

effects and exacerbates the behavioural response to dopamine stimulation. In Chapters II and III, 

we used the exaggerated psychomotor response to the dopamine/monoamine agonist d-

amphetamine to probe the behavioural and neurochemical effects of dopamine supersensitivity 

produced by a continuous exposure to the antipsychotic drug haloperidol. In a first experiment, we 

tested the hypothesis that the central effects of d-amphetamine are sufficient to reveal the 

expression of antipsychotic-evoked dopamine supersensitivity. Second, given that d-amphetamine 

enhances noradrenaline and serotonin transmissions as well (Rothman and Baumann, 2003), we 

tested the hypothesis that enhancing dopamine transmission using a selective indirect dopamine 

agonist is sufficient to trigger a sensitised response. To extend the characterization on the specific 

contributions of dopamine transmission, we also tested the hypothesis that D1-like and D2-like-

mediated signalling are both sufficient and necessary for unveiling the expression of dopamine 

supersensitivity. Last, we tested the hypothesis that antipsychotic-evoked dopamine 

supersensitivity enhances stress-related responses. 

1.1. Present Findings 

FIGS. 5.1 and 5.2 summarise the main findings of Chapters II and III, respectively. In a set of 

experiments, we examined the contribution of D1-like- and D2-like-mediated signalling (FIG. 

5.1A). As described in Section 2.4 in the Introduction (page 50), antipsychotic-evoked dopamine 

supersensitivity is linked to increased levels of striatal D2-like and D2-likeHIGH receptors. In 

accordance with this and previous reports (Obuchowicz, 1999; Hashimoto et al., 2018), we showed 

that stimulation of D2-like receptors is sufficient to evoke the expression of dopamine 

supersensitivity. Furthermore, we showed that D2-like-mediated signalling is not required, because 

D2-like antagonism exacerbated the exaggerated psychomotor response to d-amphetamine. Hence, 

altering D2-like transmission promotes a sensitised psychomotor response, whether D2-like 

transmission is stimulated or blocked. We examined intracellular signalling pathways mediated by 
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dopamine receptors and found converging evidence that D2-like transmission is increased in 

animals with a history of chronic antipsychotic exposure. In the nucleus accumbens (but not 

caudate-putamen), we found that d-amphetamine enhances GSK3β activity to a greater extent in 

antipsychotic-treated animals, while its ability to activate extracellular signal-regulated kinases 

(ERK) 1 and 2 is suppressed. Because activation of D2-like receptors activates GSK3β and inhibits 

ERK1/2 (Beaulieu et al., 2007), these d-amphetamine effects are likely reflecting an increase in 

D2-like transmission. Regarding D1-like receptors, we showed that their activity is not sufficient 

FIG. 5.1 ─ Main findings of Chapter II. (A) D1-like and D2-like receptors contribute distinctively to 
dopamine supersensitivity. D2-like transmission is sufficient but not necessary to reveal the expression of 
established antipsychotic-evoked dopamine supersensitivity, whereas D1-like transmission is not sufficient 
but necessary. Furthermore, dopamine supersensitivity is accompanied by an increased in D2 transmission 
in the nucleus accumbens (but not caudate-putamen), as suggested by an enhanced activity of GSK3β and 
reduced activity of ERK1/2. (B) Blockade of dopamine reuptake is not sufficient to trigger a sensitised 
psychomotor response in dopamine-supersensitive rats. (C) Neither increasing ventral tegmental area 
(VTA) dopamine impulse flow nor infusing d-amphetamine into the lateral ventricles is sufficient to unveil 
the expression of dopamine supersensitivity.  
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but necessary for unveiling the expression of antipsychotic-evoked dopamine supersensitivity. In 

the dorsal, ventrolateral and centromedial caudate-putamen or nucleus accumbens, we found no 

changes in protein activity of the cAMP/PKA-dependent pathway that would otherwise suggest 

enhanced D1-like transmission in dopamine-supersensitive rats. This is consistent with the 

observation that chronic antipsychotic exposure does not elevate the striatal level of D1-like 

receptors (Fleminger et al., 1983; Jiang et al., 1990; Kestler et al., 2001). The results above are 

similar to previous findings that stimulation of D2-like but not D1-like receptors reveals the 

expression of psychomotor sensitisation produced by repeated d-amphetamine injections (Levy et 

al., 1988; Vanderschuren et al., 1999), and that this supersensitivity is accompanied by an increase 

in the density of D2-like/D2-likeHIGH
 in the striatum (Seeman et al., 2007). We also found that 

selective blockade of dopamine reuptake is insufficient to reveal the expression of dopamine 

supersensitivity (FIG. 5.1B). 

In another set of experiments, we analysed the contribution of the central effects of d-amphetamine 

(FIG. 5.1C). Previous studies showed that while a systemic administration of d-amphetamine 

effectively reveals the expression of antipsychotic-evoked dopamine supersensitivity, a local 

infusion into the nucleus accumbens or caudate-putamen does not, as dopamine-supersensitive rats 

show a similar psychomotor response than antipsychotic-naïve animals (El Hage et al., 2015). One 

possibility is that dopamine transmission must be enhanced at multiple sites. Thus, in the present 

thesis, we determined whether mesocorticolimbic dopamine transmission is sufficient to reveal the 

expression of antipsychotic-evoked dopamine supersensitivity. We found that the psychomotor 

response to an increase in VTA dopamine impulse flow (achieved by a local infusion of neurotensin 

or DAMGO) is similar between dopamine-supersensitive and antipsychotic-naïve rats. This 

indicates that mesocorticolimbic dopamine transmission is not sufficient to reveal the expression 

of antipsychotic-evoked dopamine supersensitivity. Furthermore, we also found that an 

intracerebroventricular infusion of d-amphetamine (to enhance monoamine transmission only in 

the central nervous system) is not sufficient to trigger a sensitised response in dopamine-

supersensitive rats. This indicates that peripheral processes play a necessary role in the expression 

of antipsychotic-evoked dopamine supersensitivity. 

Last, we found that dopamine supersensitivity correlates with some signs of increased stress-like 

responses. Indeed, we found that inhibition of the synthesis of the stress hormone corticosterone 
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supresses the exaggerated psychomotor response to d-amphetamine produced by antipsychotic-

evoked dopamine supersensitivity (FIG. 5.2A). Furthermore, dopamine supersensitivity correlates 

with some alterations in stress-related behaviours. Indeed, avoidance behaviour is unchanged in 

the open field and the light-dark box, but dopamine-supersensitive rats show decreased exploratory 

behaviour in the elevated-plus maze and an increased locomotor response to environmental novelty 

(FIG. 5.2B). 

1.2. Implications and Future Directions 

1.2.1.  Dopamine Receptors 

The present findings increment our understanding of the important role of D2-like transmission in 

antipsychotic-evoked dopamine supersensitivity. However, important mechanistic questions 

remain. For instance, why does D2-like antagonism exacerbate the expression of dopamine 

supersensitivity? This is likely an effect involving blockade of presynaptic D2 receptors. Indeed, 

if D2 autoreceptor number/function is greater in dopamine-supersensitive rats, then these receptors 

would normally temper the behavioural manifestations of dopamine supersensitivity, and their 

blockade would exacerbate this supersensitivity. Such adaptations on the presynaptic side could 

represent an important mechanism involved in treatment tolerance produced by dopamine 

supersensitivity. Given the important implications, future studies should analyse D2 autoreceptor 

in dopamine-supersensitive rats, as little is known so far. For instance, it is unknown whether the 

elevated number of striatal D2-like/D2-likeHIGH receptors associated with dopamine 

supersensitivity (Samaha et al., 2007; Samaha et al., 2008) concerns the presynaptic and/or 

postsynaptic side. Regarding D2 autoreceptor function, there are mixed observations. An ex vivo 

experiment that used fast-scan voltammetry showed no evidence that D2 autoreceptor function is 

altered in the nucleus accumbens of animals chronically exposed to haloperidol (Chesi et al., 1995). 

Indeed, the enhancement of dopamine release produced by sulpiride application or the suppression 

of dopamine release produced by application of the D2 agonist quinpirole did not differ between 

antipsychotic-treated and antipsychotic-naïve animals (Chesi et al., 1995). However, another ex 

vivo experiment showed alterations in D2 autoreceptor function in antipsychotic-treated animals. 

In control animals, quinpirole reduces the amplitude of excitatory post-synaptic currents in the 

caudate-putamen, without altering the electrophysiological properties of neurons on the post-
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synaptic side (Calabresi et al., 1992). Thus, this inhibitory effect is likely mediated by presynaptic 

D2 receptors, and it can be used to probe their function. Interestingly, Calabresi et al. (1992) 

showed that chronic exposure to haloperidol largely potentiates the ability of quinpirole to inhibit 

excitatory post-synaptic currents, suggesting that the function of D2 autoreceptors is potentiated. 

The discrepancy in the results above could be due to the use of different methodological 

procedures, haloperidol treatment regimen and/or that D2 autoreceptor function was studied in 

distinct subregion of the striatum (Calabresi et al., 1992; Chesi et al., 1995). Future studies should 

be designed to compare D2 autoreceptor function in different striatal subregions of dopamine-

supersensitive rats. Such studies should also include animals chronically exposed to an 

antipsychotic treatment regimen that is unlikely to produce dopamine supersensitivity. Indeed, 

FIG. 5.2 ─ Main findings of Chapter III. (A) Corticosterone synthesis is necessary to reveal the expression 
of dopamine supersensitivity. (B) Dopamine-supersensitive rats show signs of heightened stress-like 
behaviour in the elevated-plus maze and in their locomotor response to novelty, but not in the open field or 
in the light-dark box. 
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even without behavioural signs of dopamine supersensitivity, this type of treatment regimen can 

still elevate D2-like receptor function as well, even if it is to a lesser extent (FIG. 1.11, page 55) 

(Samaha et al., 2008). Thus, comparing treatment regimen producing or not dopamine 

supersensitivity would allow to delineate changes related to D2-like receptors that are linked to 

supersensitivity versus other antipsychotic-evoked changes.  

Also, antipsychotic-evoked dopamine supersensitivity is linked to changes in protein activity in the 

cAMP/PKA- and GSK3β/AKT-dependent intracellular signalling pathways suggestive of 

increased D2-like transmission. However, this remains a correlational observation. Future studies 

should assess the functional effects of increased GSK3β activity and decreased ERK1/2 activity in 

the nucleus accumbens of dopamine-supersensitive animals. There are some evidence suggesting 

that modulating GSK3β activity in the nucleus accumbens could temper the behavioural 

manifestations of antipsychotic-evoked dopamine supersensitivity. For instance, inhibition of 

GSK3α/β activity in the nucleus accumbens reduces the behavioural effects of d-amphetamine 

(Wickens et al., 2017). The neurotensin type 1 receptor agonist PD149163 reduces both the 

psychomotor response to d-amphetamine and GSK3β activity in the nucleus accumbens (Vadnie 

et al., 2016). Interestingly, neurotensin function in the nucleus accumbens is enhanced in 

dopamine-supersensitive animals. Indeed, neurotensin infused into the nucleus accumbens reduces 

the psychomotor effects of d-amphetamine (Ervin et al., 1981), and this effect is greatest in animals 

that received an antipsychotic treatment producing dopamine supersensitivity relative to animals 

that received an antipsychotic treatment regimen unlikely to produce this supersensitivity 

(Servonnet et al., 2017). Thereby, neurotensin function in the nucleus accumbens seems greater in 

dopamine-supersensitive rats, and this could rely on the ability of neurotensin to suppress GSK3β 

activity in the nucleus accumbens. This needs further exploration. How a suppression of ERK1/2 

activity contributes to antipsychotic-evoked dopamine supersensitivity is more puzzling, because 

administration of an inhibitor of ERK1/2 activity into the nucleus accumbens reduces the 

behavioural effects of d-amphetamine (Gerdjikov et al., 2004). This requires further investigations. 

A striking observation in the present thesis is that continuous antipsychotic drug exposure alters 

the dopamine system in a way that render animals tolerant to the antidopaminergic effects of D2-

like but not D1-like antagonism. Similarly, following chronic antipsychotic exposure, repeated 

stimulations of D1-like but not D2-like receptors reverse the behavioural expression of dopamine 
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supersensitivity and the increase in D2-like receptor number in the striatum (Marin and Chase, 

1993; Braun et al., 1997). Similarly, repeated D1-like agonist injections (Shuto et al., 2006) or 

blockade of D1-like-mediated signalling (Ramos et al., 2004) also reverse the expression of 

supersensitivity produced by repeated dopamine agonists injections. Hence, D1-like but not D2-

like-mediated signalling represents a potential target to temper the effects of antipsychotic-evoked 

dopamine supersensitivity. An important aspect that has not been studied in the present thesis is 

the combined effects of mediating D1-like and D2-like receptor transmissions. Antipsychotic-

treated animals were sensitive to the psychomotor effects of the D2-like receptor agonist 

quinpirole, the D1-like/D2-like receptor agonist apomorphine but not the D1-like receptor agonist 

SKF38393. Apomorphine is also an agonist of serotonin and noradrenergic receptors (Millan et al., 

2002), and does not allow to measure the interaction between stimulation of D1-like and D2-like 

receptors. Thus, future studies should measure the interaction between stimulation of D1-like and 

D2-like transmission, especially given that simultaneous stimulation of these receptors has a 

synergic effect on behaviour. For instance, administration of both D1-like and D2-like agonists 

produces strong psychomotor effects with doses of agonists that produce mild psychomotor effects 

when given alone (Rouillard and Bedard, 1988). Furthermore, because we found that D1-like 

antagonism blocked the expression of already established dopamine supersensitivity, future studies 

should also determine if co-administering antipsychotic drugs with a D1-like antagonist can 

prevent the development or reverse the expression of breakthrough dopamine supersensitivity 

during antipsychotic exposure. Braun et al. (1997) reported previously that concomitant, repeated 

administration of a D1-like antagonist and a D2-like antagonist exacerbate the expression of 

dopamine supersensitivity. However, using a clinically-relevant regimen of antipsychotic treatment 

and testing different type and dose of D1-like antagonist may yield different outcomes. 

1.2.2. Dopamine Transporters 

Stimulation of D2-like receptors is sufficient to evoke a sensitised response in dopamine-

supersensitive animals. Thus, enhancing dopamine concentration in the synaptic cleft should be 

sufficient to elicit the expression of antipsychotic-induced dopamine supersensitivity. However, 

we found that selective blockade of dopamine reuptake is insufficient to reveal the expression of 

dopamine supersensitivity. We also found a weak sensitised response to cocaine in haloperidol-

treated rats. This contrasts with previous findings showing that animals rendered supersensitive to 
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the behavioural effects of d-amphetamine following repeated administrations are also 

supersensitive to the psychomotor effects of cocaine and of the selective dopamine reuptake 

blocker GBR12909 (Bonate et al., 1997; Vanderschuren et al., 1999). As discussed in Chapter II, 

antipsychotic-evoked dopamine supersensitivity could produce alterations in dopamine reuptake 

functions that could consequently minimise the psychomotor effects of a dopamine reuptake 

blocker. This would explain why dopamine-supersensitive rats show control levels of 

hyperlocomotion in response to GBR12783. In line with this idea, dopamine supersensitivity seems 

linked to an enhancement in DAT function in the striatum. Indeed, tolerance to antipsychotic-like 

effects, that is provoked by breakthrough dopamine supersensitivity, is reversed by blockade of 

DAT (Amato et al., 2018). 

1.2.3. Central Versus Peripheral Processes 

Increasing VTA dopamine impulse flow is not sufficient to reveal the expression of dopamine 

supersensitivity, because antipsychotic-treated animals show control level of hyperlocomotion in 

response to neurotensin or DAMGO infused into the VTA. There are at least a few explanations 

for this observation. First, chronic antipsychotic treatment could alter the functional effects of 

neurotensin and DAMGO in the VTA. However, it is noteworthy that these molecules increase 

dopamine impulse flow via distinct mechanisms. DAMGO inhibits local GABA release by 

activation of µ-opioid receptors located on GABA terminals, and this consequently disinhibits 

dopamine neuron activity (Kalivas and Duffy, 1990; Chen et al., 1993; Bergevin et al., 2002). 

Neurotensin acts on neurotensin type 1 receptor and activates dopamine neuron activity by 

inhibition of D2 autoreceptor activity and activation of local glutamate transmission (Werkman et 

al., 2000; Jomphe et al., 2006; Kempadoo et al., 2013; Bose et al., 2015). The probability that 

chronic antipsychotic exposure produces changes that would decrease the functional effects of both 

neurotensin and DAMGO is low. Nonetheless, future studies should confirm these findings using 

techniques such as chemogenetics or optogenetics to increase dopamine neuron activity in a 

selective manner. Also, these techniques are well suited to determine if mesocorticolimbic 

dopamine transmission is necessary for the ability of d-amphetamine to reveal antipsychotic-

evoked dopamine supersensitivity. This is an important aspect given that, as described in the 

previous section, dopamine transmission is altered in the striatum of dopamine-supersensitive rats, 

and these alterations are unlikely sufficient but could be necessary for the expression of dopamine 
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supersensitivity. Another possible explanation as to why dopamine-supersensitive rats are not 

supersensitive to the psychomotor effects of intra-VTA neurotensin and DAMGO involves 

somatodendritic release of dopamine. Indeed, activation of VTA dopamine neurons enhances local 

dopamine release, and thus this activates D2 autoreceptors located on VTA dopamine neurons. If 

these receptors function/number is enhanced in dopamine-supersensitive rats, then this should 

minimise the activating effects of neurotensin and DAMGO, leading to control levels of 

psychomotor activity. I am not aware of studies that measured D2 autoreceptor number or function 

in the VTA, and future studies should address this given that, as in the striatum, there could be 

compensatory changes due to chronic antagonism of D2-like transmission. Chronic haloperidol 

does not alter dopamine availability, at least in the striatum (Compton and Johnson, 1988; Ichikawa 

and Meltzer, 1992; Samaha et al., 2007). Hence, we do not expect that neurotensin- and DAMGO-

induced dopamine release would differ between antipsychotic-treated animals and controls. 

Another explanation regarding why antipsychotic-treated animals do not show an exaggerated 

locomotor response to intra-VTA neurotensin or DAMGO implicates that peripheral processes are 

necessary for unveiling a sensitised response, making intra-cerebral manipulations insufficient. We 

explored that possibility by evaluating the psychomotor response to d-amphetamine infused into 

the lateral ventricles, to restrict its effect to the central nervous system. We found that an 

intracerebroventricular administration of d-amphetamine produced a similar psychomotor response 

in antipsychotic-treated and antipsychotic-naïve animals, which contrasts with the sensitised 

response evoked by an administration through the systemic route. In line with this finding, it was 

also shown that infusing d-amphetamine into the nucleus accumbens or the caudate-putamen does 

not evoke a sensitised psychomotor response in antipsychotic-treated rats (El Hage et al., 2015). 

Thus, the psychomotor response to d-amphetamine is still centrally mediated in dopamine-

supersensitive rats, but peripheral effects are required for producing a sensitised response. In 

another model of dopamine supersensitivity, repeated injections of d-amphetamine evoke 

psychomotor sensitisation over time, and infusion of d-amphetamine into the lateral ventricles 

(Rebec and Segal, 1979), the nucleus accumbens or the caudate-putamen (Kolta et al., 1989; 

Paulson and Robinson, 1991) is sufficient to evoke a sensitised response. Hence, the expression of 

supersensitivity is centrally mediated when psychomotor sensitisation is produced by repeated 

psychostimulant injections, and seems peripherally mediated when this sensitisation is produced 

by chronic antipsychotic exposure. Future studies should address how antipsychotic drugs 
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influence peripheral processes that promote dopamine supersensitivity over time. The peripheral 

effects of antipsychotic drugs are likely insufficient to promote dopamine supersensitivity. Indeed, 

chronic administration of the D2-like antagonist domperidone, that does not cross the blood-brain-

barrier (Laduron and Leysen, 1979), does not potentiate the psychomotor response to apomorphine 

(Rupniak et al., 1983). However, it remains to be determined whether the peripheral effects of d-

amphetamine are sufficient to evoke a sensitised response in dopamine-supersensitive rats. So far, 

very little is known about the effects of stimulating peripheral dopamine/monoamine transmission 

on locomotor activity. An injection through the systemic route of dopamine [which does not cross 

the blood-brain-barrier (Bertler et al., 1963)] decreases locomotor activity in otherwise naïve rats 

(Butcher and Engel, 1969). Also, the cocaine analog cocaine methiodide does not cross the blood-

brain-barrier as well, and it produces no-to-very little locomotor effects when administered through 

the systemic route in control animals (Hemby et al., 1994; Brown and Kiyatkin, 2006). 

Nonetheless, the manipulations above may lead to different effects in dopamine-supersensitive rats 

and future studies could address this.  

1.2.4. Stress-like Responses 

As presented in Chapter III, there are some evidence that antipsychotic-evoked dopamine 

supersensitivity increased the biological and behavioural effects of stress. This is important to 

consider and to further explore given that worsening of psychosis produced by dopamine 

supersensitivity (Chouinard et al., 1978) could be promoted by an increased vulnerability to stress 

[an already known contributing factor to psychosis relapse (Naeem et al., 2006; McCutcheon et 

al., 2019a)]. First, we found that the corticosterone synthesis inhibitor metyrapone seems to supress 

to a greater extent d-amphetamine-induced psychomotor activity in antipsychotic-treated rats, 

suggesting that corticosterone is necessary for the full expression of dopamine supersensitivity. 

However, these findings should be interpreted cautiously. Because haloperidol-treated animals 

showed a greater psychomotor response to d-amphetamine, this may in itself make metyrapone’s 

effects appear greater because the response is simply greater. This is especially important to 

consider given that the locomotor response to the co-administration of d-amphetamine and 

metyrapone is similar between haloperidol-treated rats and controls—i.e., the response of 

haloperidol-treated animals is not below control level. Still, d-amphetamine-induced locomotion is 

higher in haloperidol-treated rats. Because metyrapone reduced this exaggerated locomotor 
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response in a way that attained control levels, this in itself should require that metyrapone produces 

greater effects in antipsychotic-treated animals. While it remains unclear whether metyrapone’s 

effects were greater in haloperidol-treated rats, the present results still encourage further 

investigations on corticosterone, because metyrapone effectively tempered the expression of 

antipsychotic-evoked dopamine supersensitivity. 

Thus, what do the present findings suggest on the potential involvement of corticosterone in 

antipsychotic-evoked dopamine supersensitivity? D-amphetamine administration enhances the 

plasmatic level of corticosterone (FIG. 5.3A) (Swerdlow et al., 1993). Thereby, one possibility is 

that this enhancement is greater in dopamine-supersensitive rats, and this participates in the 

exacerbated psychomotor response to d-amphetamine. However, the available literature suggests 

that this is unlikely. In fact, d-amphetamine-induced elevation in corticosterone blood levels is not 

necessary for its psychomotor effects. Adrenalectomy supresses the plasmatic level of 

corticosterone and reduces the psychomotor response to d-amphetamine (FIG. 5.3B) (Cador et al., 

1993). Combining adrenalectomy with corticosterone replacement therapy to achieve sustained 

plasmatic concentration of corticosterone (mimicking baseline level) is sufficient to restore the 

psychomotor response to d-amphetamine (FIG. 5.3C) (Cador et al., 1993). Hence, the psychomotor 

FIG. 5.3 ─ Relationship between the plasmatic levels of corticosterone and the psychomotor effects of 
d-amphetamine. (A) D-amphetamine enhances the plasmatic level of corticosterone. (B) Adrenalectomy
supresses both the plasmatic level of corticosterone and the psychomotor response to d-amphetamine. (C)
Adrenalectomy paired with corticosterone replacement therapy—that achieves sustained level of
corticosterone mimicking baseline concentration—is sufficient to restore the psychomotor response to d-
amphetamine. Hence, d-amphetamine-induced elevation in the plasmatic level of corticosterone is not
necessary for its psychomotor effects. Furthermore, (D) high dosage of corticosterone replacement therapy
in adrenalectomized animals exacerbates the psychomotor response to d-amphetamine.
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effects of d-amphetamine are restored even if d-amphetamine does not elevate the plasmatic level 

of corticosterone. Interestingly, when adrenalectomized animals receive a high dose of 

corticosterone replacement therapy, this exacerbates their psychomotor response to d-amphetamine 

(FIG. 5.3D) (Cador et al., 1993). Hence, our antipsychotic-treated rats could have greater 

circulating levels of corticosterone at baseline and not in response to d-amphetamine. However, it 

was previously shown that late into continuous haloperidol treatment [when dopamine 

supersensitivity has already developed (Samaha et al., 2007; Amato et al., 2018)], antipsychotic-

treated animals have comparable plasmatic level of corticosterone relative to controls (Lin et al., 

2006). Nonetheless, it is possible that after treatment cessation, rats with a history of continuous 

haloperidol treatment have elevated plasmatic levels of corticosterone. It is also possible that 

dopamine-supersensitive rats have normal circulating levels of corticosterone, but that the stress 

produced by the test procedures increases these circulating levels beyond control concentrations. 

This is a possibility to consider given that we administered metyrapone in the colony room prior 

to the test [in accordance with previous methods (Marrow et al., 1999)]. Thereby, this approach 

prevented any increase in corticosterone provoked by the stress of the experimental procedure. 

How antipsychotic-evoked dopamine supersensitivity influences the plasmatic levels of 

corticosterone (whether when unstressed, stressed or in response to d-amphetamine) requires 

further investigations.  

Additionally, metyrapone crosses the blood-brain-barrier (Stith et al., 1976), and therefore our 

results do not allow to delineate the specific contribution of central versus adrenal corticosterone 

synthesis (Croft et al., 2008). However, it is likely that adrenal corticosterone is necessary for two 

reasons: i) in Chapter II, we showed that the peripheral effects of d-amphetamine are necessary for 

the expression of antipsychotic-evoked dopamine supersensitivity, and ii) adrenalectomy reduces 

the psychomotor response to d-amphetamine, and this is restored by corticosterone replacement 

therapy (FIG. 5.3B) (Cador et al., 1993). The necessity of adrenal versus neuronal corticosterone 

synthesis in the expression of antipsychotic-evoked dopamine supersensitivity could be determined 

in adrenalectomized rats. Also, metyrapone produces other effects than inhibiting corticosterone 

synthesis. For instance, metyrapone also inhibits aldosterone synthesis (Igaz et al., 2008), and this 

may have influenced the expression of antipsychotic-evoked dopamine supersensitivity. However, 

the available literature suggests that aldosterone does not seem to promote at least some 

behavioural effects of psychostimulant drugs, such as the rewarding effects of cocaine (Mantsch et 
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al., 1998) and methamphetamine-induced psychomotor activity (Kobayashi and Arai, 1976). 

Metyrapone also inhibits the activity of the enzyme debrisoquine 4-hydroxylase (CYP2D6) (Wolff 

and Strecker, 1985), which is involved in the metabolization of amphetamines (de la Torre et al., 

2004). Here, metyrapone reduced d-amphetamine-induced locomotion and in opposition, a 

reduction in amphetamine metabolization would enhance its psychomotor effects. Hence, the 

inhibition of debrisoquine 4-hydroxylase may have mitigated the suppressive effects of metyrapone 

on d-amphetamine-induced locomotion. Another important aspect that should be explored is how 

antipsychotic-evoked dopamine supersensitivity influences corticosterone-mediated signalling in 

the brain, and how this hormone influences dopamine transmission in dopamine-supersensitive 

rats. Corticosterone signals via two receptors, glucocorticoid and mineralocorticoid receptors (de 

Kloet, 2000). In rats, glucocorticoid receptors are found throughout the brain [including on VTA 

dopaminergic neurons (Harfstrand et al., 1986)], whereas mineralocorticoid receptors are found in 

a limited number of regions, including the dopamine-rich region septum (Reul and de Kloet, 1986). 

Activation of corticosterone receptors promote mesocorticolimbic dopamine transmission and the 

behavioural effects of dopamine agonists (Marinelli and Piazza, 2002). It remains undetermined if 

antipsychotic-evoked dopamine supersensitivity alters the number and/or function of 

corticosterone receptors. Interestingly, corticosterone administered alone is sufficient to stimulate 

locomotor activity (Piazza et al., 1996; Sandi et al., 1996), and exaggerated circulating levels of 

corticosterone is also sufficient to enhance the psychomotor response to d-amphetamine (Piazza et 

al., 1991; Cador et al., 1993). Hence, here we showed that corticosterone is necessary for revealing 

the expression of antipsychotic-evoked dopamine supersensitivity, and future studies should 

determine if enhancing corticosterone transmission is sufficient.  

We also found some changes in stress-related behavioural responses in dopamine-supersensitive 

rats, during ongoing haloperidol treatment when dopamine supersensitivity breaks through and 

after treatment cessation when the expression of dopamine supersensitivity persists. Their 

avoidance of the center of the open field was similar to antipsychotic-naïve animals. However, the 

level of avoidance in the control group was very high (they spent a few seconds in the center over 

5 minutes). Thereby, any further decrease could be impossible to observe. In the light-dark box, 

the degree of avoidance of the light compartment was more moderate in control rats, but dopamine-

supersensitive rats still did not differ from that response. However, we found signs of increased 

stress-like behavioural responses in the elevated-plus maze. Indeed, continuously-treated rats show 
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decreased exploratory behaviour in the elevated-plus maze, both late into treatment when dopamine 

supersensitivity breaks through and after treatment cessation. Avoidance behaviour in the tests 

above may involve stress-like but also anxiety-like effects. Thereby, any change in avoidance that 

correlates with antipsychotic-evoked dopamine supersensitivity may be linked to increased stress- 

and/or anxiety-like behaviour. Even if stress and anxiety are often intertwined processes, they have 

distinct features. For instance, stress involves increased arousal, tension and secretion of 

glucocorticoids, whereas anxiety involves apprehension, fear and is GABA-dependant (Bystritsky 

and Kronemyer, 2014). Because we found changes in the elevated-plus maze, future studies could 

clarify the respective contributions of stress and anxiety by evaluating the effects of anxiolytic 

drugs [they are GABAergic agonists that enhance exploration of the open arms (Pellow and File, 

1986)] or measuring stress-related physiological responses [e.g., the open arms elevate 

corticosterone secretion (Pellow et al., 1985)]. Also, an important issue with the stress tests 

conducted during ongoing antipsychotic treatment is that the treatment itself reduced locomotor 

behaviour. Because the tests rely on exploratory behaviour, the reduced locomotor activity 

produced by haloperidol are likely producing confounding effects. Regarding continuous 

haloperidol treatment, the results presented in Chapter III show that this regimen strongly reduces 

spontaneous locomotor activity early into treatment when dopamine supersensitivity has not 

developed yet, but not later into treatment when dopamine supersensitivity breaks through. 

Thereby, the correlation between breakthrough dopamine supersensitivity and the greater 

avoidance of open arms is unlikely influenced by the suppressive effects of haloperidol on 

exploratory behaviour. However, such suppressive effects make it difficult to determine if rats 

show enhanced stress-like responses early into treatment, when dopamine supersensitivity has not 

developed yet. One solution to resolve this issue would be to continuously expose rats to 

haloperidol for a few days (short enough to not produce dopamine supersensitivity), and then give 

the stress tests following cessation of that short treatment to avoid the direct suppressive effects of 

haloperidol on locomotor activity. Regarding the transient haloperidol treatment, this regimen 

reduces spontaneous locomotion throughout the entire treatment. Thereby, exploratory behaviour 

in the stress tests is likely impaired by this. This issue could be avoided by giving the stress tests 

before transiently-treated animals receive their next haloperidol injection (that is, at through), 

instead of after the injection as done in Chapter III. 
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It was previously shown that rats continuously exposed to haloperidol show an increased locomotor 

response to vehicle injection (Tadokoro et al., 2012; Oda et al., 2015), perhaps reflecting an 

increased locomotor response to novelty. Here we showed that continuously-treated rats show 

increased spontaneous locomotor activity in a novel environment, and that this returns to control 

levels with repeated testing. This increased locomotor activity could reflect that continuous 

haloperidol treatment enhances exploratory behaviour of a novel environment, and/or that 

habituation is slower in these animals. This behavioural response could reflect a state of cross-

sensitisation between the effects of stress and of dopamine stimulation. Indeed, increased 

locomotor response to novelty is i) found in animals that have been chronically stressed (Marin et 

al., 2007), ii) linked with enhanced dopamine release in the nucleus accumbens in response to stress 

(Rouge-Pont et al., 1993), and iii) predictive of supersensitivity to the psychomotor and rewarding 

effects of dopamine agonists (Piazza et al., 1989; Hooks et al., 1991; Hooks et al., 1994). 

Because we found inconsistent changes in stress-related behavioural responses, future studies 

should investigate the influence of antipsychotic-evoked dopamine supersensitivity on other 

measures of stress-like behaviour such as conditioned fear (LeDoux, 2000). The effects of 

antipsychotic-evoked dopamine supersensitivity on conditioned stress responses have been studied 

in the conditioned avoidance paradigm. As described in the Introduction (Section 2.4.1, page 51), 

haloperidol decreases avoidance elicited by aversive CS, and this effect is lost over time with the 

emergence of dopamine supersensitivity (Samaha et al., 2007; Samaha et al., 2008). This lost of 

effect over time could be explained by the concomitant emergence of dopamine supersensitivity 

and increased stress-like responses. However, with these findings (Samaha et al., 2007; Samaha et 

al., 2008), it remains unclear if dopamine-supersensitive rats would show conditioned avoidance 

beyond control levels. Indeed, in this type of task, the effect of antipsychotic drug exposure is 

determined in well-trained animals, and this results in controls avoiding approximately 100% of 

CS presentations. It is therefore impossible to measure avoidance beyond this response in 

antipsychotic-treated rats, but other approaches would allow to avoid this issue. For instance, the 

effects of antipsychotic-evoked dopamine supersensitivity could be measured during extinction 

learning, where the CS is not followed by the aversive UCS anymore. Animals chronically stressed 

show decreased extinction behaviour in response to aversive CS (Miracle et al., 2006). Therefore, 

antipsychotic-treated animals that developed dopamine supersensitivity may be more resistant to 

extinction learning as well. 
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2. HOW DO APPETITIVE CONDITIONED STIMULI GUIDE 
BEHAVIOUR? NEW INSIGHTS AND PERSPECTIVES 

Appetitive CS play a critical role in guiding everyday behaviour toward essential rewards, but they 

can also promote maladaptive motivated behaviours, such as following chronic antipsychotic drug 

exposure producing dopamine supersensitivity. Here we were interested in studying the role of the 

basolateral amygdala in the behavioural response to appetitive CS in antipsychotic-naïve rats, as 

this could give novel insights on the neurobiological mechanisms underlying the behavioural 

manifestations of antipsychotic-evoked dopamine supersensitivity. Furthermore, studying the 

behavioural effects of appetitive CS has also important implications for other psychiatric disorders 

such as addiction and depression, where motivational processes are abnormal. As described in the 

Introduction, basolateral amygdala neurons fire in response to appetitive CS, and disruption of 

neuronal transmission in that nucleus reduces the behavioural effects of appetitive CS (Section 4.2, 

page 69). However, it is largely undetermined whether increased activity of basolateral amygdala 

neurons in response to CS is sufficient to intensify their behavioural effects. Hence, here we tested 

the hypothesis that optogenetic stimulation of basolateral amygdala neurons is not reinforcing on 

its own, but it enhances both conditioned approach and the ability of appetitive CS to be salient 

and be pursued (Servonnet et al., 2020b).  

2.1. Present Findings and their Implications 

Water-restricted rats were trained to associate a compound stimulus (lights and tone) with water 

delivery in a receptacle. Over the sessions, rats progressively increased the number of head entries 

into the water receptacle selectively during CS presentation. This indicates that the CS guided 

animals’ behaviour toward the imminent delivery of water. We found that optogenetic stimulation 

of ChR2-expressing basolateral amygdala neurons during CS presentation potentiated conditioned 

approach toward the water receptacle (FIG. 5.4A). In contrast, we found that optogenetic 

stimulation of basolateral amygdala neurons halfway of ITI did not influence CS-UCS 

conditioning, as it led to control level of conditioned approach. Hence, increased activity in the 

basolateral amygdala is sufficient to enhance CS-elicited conditioned approach, and this effect is 

only observed when the stimulation coincides with CS presentation.  



195 

Following CS-UCS conditioning, we 

determined whether CS presentation is 

sufficient to reinforce instrumental 

responses for CS presentation, as 

determined in the conditioned 

reinforcement test paradigm. We found that 

animals made more instrumental responses 

on a lever allowing CS presentation relative 

to an inactive lever. This discrimination 

indicates that the CS acquired incentive 

motivational value. Interestingly, we 

showed that optogenetic stimulation of 

basolateral amygdala neurons during CS 

presentation intensifies incentive 

motivation for CS presentation (FIG. 5.4B), 

as indicated by an increased number of 

active lever presses in animals expressing 

ChR2 relative to control animals. This 

effect is strongest when optogenetic 

stimulation is explicitly combined with CS 

presentation. Indeed, stimulations after CS 

presentations did not increase lever 

pressing behaviour beyond control level. 

This suggests that stimulating basolateral 

amygdala neurons does not elevate the 

motivational state of the animals per se, but 

instead selectively potentiates the incentive 

motivational effect of the CS. It is still 

noteworthy that during the test where 

photostimulations and CS presentations 

were explicitly unpaired, animals 

FIG. 5.4 ─ Main findings of Chapter IV. Optogenetic 
stimulation of basolateral amygdala neurons (A) 
enhances conditioned approach (B) and the incentive 
motivational value of conditioned stimuli (CS), (C) 
without being intrinsically rewarding. Similarly, (D) 
enhancing monoamine transmission in the basolateral 
amygdala is sufficient to promote incentive motivation 
for CS. BLA, basolateral amygdala; UCS, unconditioned 
stimulus. 



196 

expressing ChR2 but not controls pressed more on the active lever relative to the inactive lever. 

This may indicate that i) stimulating basolateral amygdala neurons outside of CS presentations still 

guides lever pressing behaviour (without intensifying that response), ii) the stimulation may be 

temporally too close to CS presentation and therefore it still influences the motivational effects of 

CS, or iii) there is a carry-over effect of the previous sessions during which photostimulations 

produced intense lever pressing. This could be further explored by analysing the effects of longer 

intervals between CS presentation and stimulation in animals prepared for this. In a separate study, 

we showed that photostimulation of basolateral amygdala neurons does not reinforce instrumental 

responses in animals that did not receive prior CS-UCS conditioning (FIG. 5.4C), while 

photostimulation of central amygdala neurons did [in line with previous findings (Seo et al., 2016; 

Baumgartner et al., 2017; Kim et al., 2017)]. This suggests that stimulation of basolateral amygdala 

neurons is not intrinsically reinforcing, and that increasing their activity enhances the behavioural 

effects of appetitive CS selectively, and not because it is rewarding. Lastly, as converging evidence, 

we demonstrated that increasing monoamine transmission in the basolateral amygdala (achieved 

by a local infusion of d-amphetamine) is also sufficient to potentiate instrumental responses for CS 

presentation (FIG. 5.4D). These results show that increased activity of basolateral amygdala 

neurons is sufficient to promote the ability of CS to be attractive and pursued. 

The implication of the findings above is that increased activity of the basolateral amygdala 

potentiates the ability of appetitive CS to be salient and to orient behaviour toward unconditioned 

rewards. Excessive activity of the basolateral amygdala could perhaps represent a mechanism by 

which CS have a greater propensity to promote maladaptive responses in psychiatric disorders, but 

also following antipsychotic drug exposure producing dopamine supersensitivity. That latter 

possibility is especially important given that there is already some evidence that schizophrenia 

patients show abnormal activity in the amygdala, and that this is linked to psychotic symptoms, a 

symptom worsened by dopamine supersensitivity (Chouinard et al., 1978; Chouinard et al., 2017). 

For instance, the amygdala of schizophrenia patients seems more easily activated by surrounding 

stimuli even if they are not emotionally salient (Anticevic et al., 2012). Furthermore, the amygdala 

is more active when patients are at rest, especially patients with prominent psychotic symptoms 

(Pinkham et al., 2015). Our results also show that infusing d-amphetamine into the basolateral 

amygdala is sufficient to enhance the incentive effect of CS. Thus, the reward-enhancing effects of 

d-amphetamine (Robbins et al., 1983)—that are potentiated by antipsychotic-evoked dopamine 
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supersensitivity (Bedard et al., 2011, 2013; El Hage et al., 2015)—are critically regulated by the 

basolateral amygdala. Beside schizophrenia, the present findings are important for other psychiatric 

disorders as well, including drug addiction. For instance, future studies should determine the 

influence of enhanced activity in the basolateral amygdala on the behavioural effects of drug-

predictive CS. Because of the important implications, I next discuss of potential mechanisms that 

could regulate the present observations, and what directions future studies should go to improve 

our understanding of these findings. 

2.2. Future directions 

2.2.1. How Does the Basolateral Amygdala Promote Conditioned Approach? 

Our methods do not allow to determine which basolateral amygdala projections mediate 

conditioned approach. This is an important aspect that future studies should explore. Indeed, 

projection neurons are the most abundant neurons in the basolateral amygdala, and they represent 

a relatively homogeneous population (Namburi et al., 2015), but there are some genetic signatures 

that may allow to distinguish neurons relative to their function. For instance, basolateral amygdala 

neurons expressing the Ppp1r1b gene seem particularly involved in incentive learning, whereas 

neurons expressing the Rspo2 gene preferentially regulate aversive learning (Kim et al., 2016). An 

important determinant in the functional role of basolateral amygdala neurons is their connectivity 

(Janak and Tye, 2015). Potential projections that could be involved in the ability of optogenetic 

stimulation of basolateral amygdala neurons to enhance conditioned approach include projections 

to the nucleus accumbens. For instance, appetitive CS preferentially increase the activity of 

basolateral amygdala neurons that send projections to the nucleus accumbens (Beyeler et al., 2016). 

Additionally, appetitive CS promote neuronal plasticity in the basolateral amygdala-to-nucleus 

accumbens pathway, because throughout appetitive conditioning, synapses onto basolateral 

amygdala-to-nucleus accumbens neurons increase in strength (Namburi et al., 2015). Of great 

interest for the present thesis is that the activity of that pathway is required for proper expression 

of conditioned approach, especially the projections to the core subdivision. Indeed, photoinhibition 

of basolateral amygdala terminals in the nucleus accumbens (mostly the core subdivision) during 

CS presentation (Stuber et al., 2011)—but not after CS-UCS presentation (Namburi et al., 2015)—

reduces conditioned approach (FIG. 5.5A). Similarly, lesion of the basolateral amygdala reduces 
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CS-induced increased activity of nucleus accumbens neurons in the core but not shell subdivision 

(Jones et al., 2010a), as well as CS-induced dopamine release in the nucleus accumbens core (Jones 

et al., 2010b). Hence, basolateral amygdala-to-nucleus accumbens core neurons are necessary for 

conditioned approach, and future studies should determine if activation of these neurons is 

sufficient. 

Basolateral amygdala projections to the cortex represent other interesting candidates, such as the 

projections to the orbitofrontal cortex. Appetitive conditioning enhances the correlated 

electrophysiological activity between the basolateral amygdala and the orbitofrontal cortex 

(Schoenbaum et al., 2000). Furthermore, lesion of the basolateral amygdala impairs i) the ability 

of animals to discriminate distinct CS that predict whether an unconditioned reward is available, 

and ii) the encoding of CS-UCS association in the orbitofrontal cortex (Schoenbaum et al., 2003). 

Projections to the prelimbic cortex could promote conditioned approach as well. Basolateral 

amygdala-to-prelimbic cortex neurons show enhanced protein levels of Fos late into appetitive 

conditioning but not early on (Keefer and Petrovich, 2017), suggesting that an increase in the 

activity of that pathway parallels learning of CS-UCS contingency. The impact on appetitive 

FIG. 5.5 ─ How do basolateral amygdala (BLA) pathways regulate conditioned approach elicited by 
appetitive conditioned stimuli (CS)? The current available literature shows that (A) photoinhibition of 
basolateral amygdala projections to the core subdivision of the nucleus accumbens (NAc) reduces 
conditioned approach, whereas (B) photoactivation of projections to the shell subdivision inhibits this CS 
effect. Furthermore, (C) photoinhibition of basolateral amygdala-to-central amygdala (CeA) neurons 
enhances conditioned approach.  
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conditioning of such increased activity remains to be determined because so far, the available 

literature highlights an important role of that pathway in fear conditioning rather than appetitive 

conditioning. Indeed, coherent electrophysiological activity between the basolateral amygdala and 

prelimbic cortex is greater during aversive conditioning relative to appetitive conditioning (Burgos-

Robles et al., 2017). Furthermore, photostimulation of basolateral amygdala-to-prelimbic cortex 

neurons is sufficient to elicit freezing, a typical conditioned response elicited by aversive CS 

(Burgos-Robles et al., 2017). Besides projection neurons, basolateral amygdala interneurons could 

also influence appetitive conditioning. This has already been explored in fear conditioning 

procedures, where it was demonstrated that parvalbumin- and somatostatin-expressing 

interneurons of the basolateral amygdala regulate conditioned responses elicited by aversive CS 

(Wolff et al., 2014). Their role in appetitive conditioning remains to be determined.  

While the projections to the core subdivision of the nucleus accumbens could be sufficient to 

enhance conditioned approach, projections to the nucleus accumbens shell are not. In fact, 

optogenetic stimulation of basolateral amygdala-to-nucleus accumbens shell neurons reduces 

conditioned approach (FIG. 5.5B) (Millan et al., 2017). Similarly, projections to the central 

amygdala are unlikely sufficient to promote conditioned approach. Indeed, work on the basolateral 

amygdala projections to the central amygdala showed that this pathway adjusts its level of activity 

during Pavlovian conditioning in accordance with UCS nature, and its activation promotes fear 

conditioning rather than appetitive conditioning. For instance, basolateral amygdala-to-central 

amygdala neurons are preferentially activated by aversive CS than appetitive CS (Beyeler et al., 

2016). Similarly, basolateral amygdala neurons projecting to the central amygdala receive weaker 

synaptic input during appetitive conditioning and stronger synaptic input during fear conditioning 

(Namburi et al., 2015). Decreased plasticity in the basolateral-to-central amygdala pathway during 

appetitive conditioning is a necessary adaptation, because optogenetic inhibition of basolateral 

amygdala-to-central amygdala neurons potentiates conditioned approach (FIG. 5.5C) (Namburi et 

al., 2015). Hence, the projections to the nucleus accumbens shell and the central amygdala are not 

(or unlikely) implicated in the ability of optogenetic stimulation of basolateral amygdala neurons 

to promote conditioned approach. Nonetheless, the studies above illustrate the importance to 

dissect basolateral amygdala pathways, because they can promote behavioural responses during 

CS-UCS conditioning through opposing mechanisms (e.g., decreased versus increased neuronal 

plasticity). 
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2.2.2. How Do Basolateral Amygdala Neurons Intensify Incentive Motivation for 

Conditioned Stimuli? 

As with conditioned approach, projections to the nucleus accumbens could play an important role. 

This is supported indirectly by the finding that optogenetic activation of basolateral amygdala-to-

nucleus accumbens (core and/or shell) pathway is sufficient to reinforce ICSS (FIG. 5.6A) (Stuber 

et al., 2011; Britt et al., 2012; Namburi et al., 2015). Hence, activation of this pathway is 

intrinsically rewarding, and could perhaps imbue CS with motivational salience. Furthermore, 

conditioned place preference elicited by cocaine correlates with greater protein levels of Fos in 

basolateral amygdala neurons projecting to the nucleus accumbens, suggesting that when a 

contextual CS is imbued with motivational salience, these neurons are more active (Miller and 

Marshall, 2005). Additionally, basolateral amygdala projections to the nucleus accumbens are 

required for the ability of CS to elicit instrumental responses in the CS-induced reinstatement of 

drug seeking paradigm. Indeed, decreasing the activity of basolateral amygdala projections in the 

nucleus accumbens via selective apoptosis (Keistler et al., 2017), optogenetic inhibition (FIG. 5.6B) 

(Stefanik and Kalivas, 2013) or artificial induction of long-term depression using optogenetic 

methods (Lee et al., 2013) reduces CS-induced reinstatement of drug seeking. 

Activation of basolateral amygdala projections to the prefrontal cortex could also be sufficient to 

increase the motivational value of CS. For instance, basolateral amygdala-to-prelimbic cortex 

neurons show enhance levels of Fos following conditioned place preference elicited by cocaine 

(Miller and Marshall, 2005), suggesting increased activity of these neurons when appetitive CS 

have acquired incentive salience. Additionally, optogenetic inhibition of basolateral amygdala-to-

prelimbic cortex neurons reduces CS-induced reinstatement of extinguished cocaine seeking (FIG. 

5.6C) (Stefanik and Kalivas, 2013). In accordance with this finding, pharmacological inhibition 

(using lidocaine) of the basolateral amygdala of one hemisphere and of the contralateral prelimbic 

cortex reduces CS-induced reinstatement of extinguished cocaine seeking (Mashhoon et al., 2010). 

Regarding the orbitofrontal cortex, photoinhibition of basolateral amygdala projections to that 

cortical area does not impair CS-induced reinstatement of extinguished drug seeking, suggesting 

that this projection is not required for that motivational effect of CS (FIG. 5.6D) (Arguello et al., 

2017). However, these neurons seems important in more complex settings when different CS and 

actions are presented/available. Indeed, chemogenetic inhibition of basolateral amygdala-to-
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orbitofrontal cortex neurons disrupt instrumental responding elicited by CS when different rewards 

are each associated with specific CS and actions, as shown using outcome-specific Pavlovian-to-

instrumental transfer (FIG. 5.6E) (Lichtenberg et al., 2017). Interestingly, this intra-cranial 

manipulation does not influence reward seeking that is elicited by non-contingent delivery of the 

unconditioned reward, suggesting that basolateral amygdala-to-orbitofrontal cortex pathway is 

especially important to promote reward seeking elicited by CS but not by UCS themselves 

(Lichtenberg et al., 2017).  

The findings above are mostly correlational and/or suggestive that basolateral amygdala projection 

to the nucleus accumbens or prefrontal cortex could regulate incentive motivation for CS. 

However, it is important to note that when evaluating CS-induced reinstatement of extinguished 

reward seeking, animals lever press for CS presentation, but that instrumental response was 

previously reinforced by both drug injections/reward delivery and the CS (FIG. 1.14, page 67). 

Similarly, in Pavlovian-to-instrumental transfer procedures, CS elicit lever presses, but this 

FIG. 5.6 ─ How do basolateral amygdala (BLA) pathways regulate motivated behaviours? (A) 
Optogenetic stimulation of basolateral amygdala projections to the nucleus accumbens is intrinsically 
reinforcing because it supports intra-cranial self-stimulation (ICSS). Photoinhibition of basolateral 
amygdala projections to the (B) nucleus accumbens (NAc) core or to the (C) prelimbic cortex (PL) but not 
to the (D) orbitofrontal cortex (OFC) inhibits conditioned stimulus (CS)-induced reinstatement of 
extinguished drug seeking. Additionally, (E) chemogenetic inhibition of basolateral amygdala-to-
orbitofrontal cortex neurons abolishes outcome-specific Pavlovian-to-instrumental transfer.  
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instrumental response was previously reinforced by the unconditioned reward (FIG. 1.13C, page 

63). These procedures adequately evaluate CS-elicited reward seeking. However, to adequately 

evaluate the incentive motivational value of CS themselves, future studies should determine how 

basolateral amygdala projections influence instrumental responses that are solely reinforced by CS 

and never by the associated UCS. Lastly, we found that d-amphetamine infusion into the basolateral 

amygdala is sufficient to enhance the incentive motivational effects of CS. To better understand 

this d-amphetamine effect, future studies should investigate the role of monoamine transmission in 

the basolateral amygdala in motivation for CS. The basolateral amygdala receives dopaminergic, 

noradrenergic and serotonergic projections (Fallon et al., 1978; Vertes, 1991; Vertes et al., 1999). 

Special attention should be given on dopamine projections coming from the VTA, because of their 

well-known role in motivation (Section 1.3.2 in the Introduction, page 28). 

2.2.3. Why Does Increased Basolateral Amygdala Activity Enhance the Behavioural 

Effects of CS? 

In addition to mechanistic questions, the present results bring questions regarding why optogenetic 

stimulation of basolateral amygdala neurons potentiate the behavioural effects of CS. For instance, 

there are various effects that can enhance conditioned approach. As already discussed in Chapter 

IV, increased neuronal activity in the basolateral amygdala could potentiate conditioned approach 

by increasing the motivational value of water [even if it is unlikely (Cador et al., 1989)] or by 

enhancing the ability of CS to act as predictors of incoming reward availability. Another possibility 

is that stimulation of basolateral amygdala neurons is rewarding and thereby, this rewarding effect 

facilitate appetitive conditioning. However, we rule out that possibility by showing that optogenetic 

stimulation of basolateral amygdala neurons does not support ICSS, indicating that it is not 

intrinsically rewarding. Additionally, optogenetic stimulation of basolateral amygdala neurons 

could potentiate the motivational salience that CS acquire during Pavlovian conditioning, which 

would consequently facilitate their ability to elicit conditioned approach. Due to technical 

limitations (low number of rats, seizure), we could not determine whether optogenetic stimulation 

of basolateral amygdala neurons during appetitive conditioning subsequently potentiate incentive 

motivation for CS in the conditioned reinforcement test. Instead, we found that optogenetic 

stimulation of basolateral amygdala neurons potentiate the expression of incentive motivation for 

CS in animals that already show that incentive motivation, as assessed in the conditioned 
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reinforcement test that combined CS presentation with optogenetic stimulation of basolateral 

amygdala neurons. That observation does not allow to determine whether enhancing neuronal 

activity in the basolateral amygdala during appetitive conditioning promotes the ability of the CS 

to acquire incentive motivational value and consequently, to enhance conditioned approach. A 

behavioural paradigm that is well suited to examine this question is auto-shaping. If optogenetic 

stimulation of basolateral amygdala neurons promote the acquisition of incentive motivation for 

CS, then this would be indicated by an increase in sign-tracking behaviour during appetitive 

conditioning (Section 3.2.2 in the Introduction, page 62).  

Finally, it was previously proposed that the basolateral amygdala directs the ability of animals to 

discriminate their response on levers in the conditioned reinforcement test, whereas this nucleus 

has little influence on the degree of motivation for CS (Cador et al., 1989). Indeed, lesion of the 

basolateral amygdala reduces operant responding for CS, but it does not influence the ability of d-

amphetamine infused into the nucleus accumbens core to intensify lever responding for CS (Cador 

et al., 1989). Here, our rats already discriminated their response on the active and inactive levers. 

Therefore, if the intra-cranial manipulations we used here (optogenetics and local infusion of d-

amphetamine) influence the ability of animals to discriminate their lever responding, then it should 

have a limited effect in rats already discriminating. However, the manipulations did further increase 

presses on the active lever, supporting that the basolateral amygdala regulates the intensity of the 

motivation for CS. During the test where photostimulation of basolateral amygdala neurons and 

CS presentations were explicitly unpaired, only ChR2-expressing rats discriminated their response 

on the levers but presses on the active lever were not intensified. This could reflect that 

photostimulation of basolateral amygdala neurons outside of CS presentations may guide lever 

pressing behaviour toward CS (even if it requires further confirmation, as suggested earlier). In any 

case, our findings are not necessarily at odds with Cador et al. (1989), because the basolateral 

amygdala may regulate both the ability of animals to discriminate their response and the intensity 

of this response. 

3. GENERAL LIMITATIONS

So far, the present discussion has point out specific limitations of Chapters II, III and IV, but there 

are also more general limitations that require to be highlighted. First, the present work was 
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exclusively done in male rats but most evidently, the present problematics concern both sexes. In 

the context of antipsychotic-evoked dopamine supersensitivity, there are some findings suggesting 

that the consequences of this supersensitivity could be more important in females. In other models 

of dopamine supersensitivity, it has been shown that behavioural sensitisation produced by 

repeated psychostimulant injections is stronger in females relative to males (Becker, 1999). Also, 

tardive dyskinesia, that is thought to commonly co-occur with antipsychotic-evoked dopamine 

supersensitivity (Chouinard et al., 1978; Chouinard and Jones, 1980; Fallon and Dursun, 2011; 

Fallon et al., 2012), may be more common among women than men, as suggested by a meta-

analysis including 39,187 patients (Yassa and Jeste, 1992). Another important aspect for the present 

thesis is that females and males can perform differently in Pavlovian and instrumental conditioning 

tasks (Dalla and Shors, 2009). Hence, it is urgent to extend the present work to females as well. In 

terms of methodological limitation, different control conditions were tested and were pooled 

together to simplify the analysis and presentation of data. When this was done, analysis were used 

to ensure that the different control conditions were statistically equivalent. However, in some 

experiments, this involved to compare control conditions with a low number of rats (such as in the 

ICSS experiment in Chapter IV), and this in itself may limit to find significant differences between 

controls.  

There are additional limitations regarding the work on antipsychotic drugs (Chapters II and III). 

First, we only studied the antipsychotic haloperidol, and most of the work on antipsychotic-evoked 

dopamine supersensitivity has been done using haloperidol and also less frequently olanzapine 

(Smith and Davis, 1975; Vonvoigtlander et al., 1975; Turrone et al., 2003a; Samaha et al., 2007; 

Bedard et al., 2011; Gill et al., 2014; Amato et al., 2018). This work should be extended to other 

antipsychotic drugs, especially given that drug type is a determinant factor for the development of 

dopamine supersensitivity. Indeed, typical antipsychotic drugs (such as haloperidol) are more 

likely to promote dopamine supersensitivity (Smith and Davis, 1975; Vonvoigtlander et al., 1975; 

Clow et al., 1980; Montanaro et al., 1982; Fleminger et al., 1983; Calza et al., 1990; Marin and 

Chase, 1993; Samaha et al., 2007; Fukushiro et al., 2008; Tadokoro et al., 2012; Bedard et al., 

2013) than atypical antipsychotic drugs (Samaha et al., 2007; Fukushiro et al., 2008; Carvalho et 

al., 2009; Tadokoro et al., 2012; Bedard et al., 2013). Second, we studied antipsychotic-evoked 

dopamine supersensitivity in otherwise neurologically-intact rats. We used d-amphetamine to 

acutely mimic the increase in dopamine transmission that accompanied psychotic symptoms 
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(Howes et al., 2012), but this does not model the chronic condition that is schizophrenia. It was 

previously shown that in an animal model of schizophrenia-like symptoms (prenatal exposure to 

methylazoxymethanol acetate), chronic haloperidol exposure produces dopamine supersensitivity 

as suggested by drug tolerance (Gill et al., 2014). However, important aspects remain to be 

characterized. For instance, future studies should determine the effects of antipsychotic-evoked 

dopamine supersensitivity on animals already supersensitive to the behavioural effects of dopamine 

agonists, as found in several models of schizophrenia-like symptoms (Archer et al., 1988; Lipska 

et al., 1993; Jentsch et al., 1998; Tenn et al., 2003).  

Regarding the use of optogenetic methods, it allows to precisely modulate neuronal activity, but 

results should still be interpreted cautiously. For instance, optogenetic activation of a given 

neuronal population consequently alters the activity of other neuronal populations. This in itself 

could regulate the behavioural effects produced by the optogenetic stimulation, rather than being 

directly modulated by the neuronal population targeted by optogenetic manipulations (Bernard, 

2020). 
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CONCLUSIONS 

Preclinical and clinical studies suggest that antipsychotic-evoked dopamine supersensitivity 

produces antipsychotic failure, worsens psychotic symptoms and promotes maladaptive motivated 

behaviours. Thereby, one of the goals of the present thesis was to investigate the neurobiological 

substrates mediating the expression of antipsychotic-evoked dopamine supersensitivity in rats, a 

necessary work to develop treatment strategies with better long-term outcomes for schizophrenia 

patients. The present thesis reveals important new mechanisms: i) D2-like-mediated transmission 

promotes dopamine supersensitivity—whether transmission via these receptors is stimulated or 

blocked—and this could represent an important mechanism by which dopamine supersensitivity 

produces treatment tolerance and worsen psychosis; ii) D1-like receptors are potential target to 

temper the expression of dopamine supersensitivity, because dopamine-supersensitive animals are 

responsive to the antidopaminergic effects of D1-like blockade (unlike D2-like blockade), and 

stimulation of these receptors does not evoke a sensitised response; iii) we identified an unexpected 

and important role of peripheral processes in the expression of antipsychotic-evoked dopamine 

supersensitivity; and iv) the expression of antipsychotic-evoked dopamine supersensitivity is 

linked to enhanced stress-like responses, and this could have important implications for worsening 

of psychosis produced by dopamine supersensitivity given that stress exacerbates psychotic 

symptoms. Additionally, antipsychotic-evoked dopamine supersensitivity intensifies the 

motivational properties of appetitive CS. Thereby, the present thesis last investigated the 

neurobiological substrates mediating the behavioural effects of appetitive CS in a normal state (i.e., 

no prior antipsychotic treatment), because such work could provide novel insights on the 

neurobiological effects of antipsychotic-evoked dopamine supersensitivity. We found that 

optogenetic stimulation of basolateral amygdala neurons potentiates the behavioural effects of 

appetitive CS, because it intensifies their incentive motivational value and their ability to increase 

the anticipation of impending unconditioned rewards. This suggests that excessive activity of 

basolateral amygdala neurons could attribute too much power to CS, and consequently this would 

confer them an increased ability to promote inadequate responses such as following antipsychotic 

drug exposure. Taken together, the present thesis identifies new neurobiological mechanisms 

underlying maladaptive processes evoked by antipsychotic drugs and conditioned rewards. 
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ABSTRACT 

All antipsychotic medications attenuate the symptoms of psychosis by interacting with dopamine 

D2 receptors and reducing dopamine-mediated neurotransmission. However, long-term 

antipsychotic treatment can produce neuroadaptations that are thought to lead to dopamine 

supersensitivity. In patients with schizophrenia, this dopamine supersensitivity could compromise 

treatment efficacy, promote relapse to psychosis and trigger movement disorders. Such effects have 

been seen in patients treated with either typical or atypical antipsychotics. In non-human animals, 

chronic exposure to antipsychotic medications, using clinically pertinent doses and modes of 

administration, can also evoke dopamine supersensitivity. This is indicated by an augmented 

behavioural response to dopamine agonists and tolerance to the antipsychotic-like effects of 

ongoing treatment. Here, we first describe antipsychotic-evoked dopamine supersensitivity in 

patients with schizophrenia and in laboratory animals. We then review approaches to prevent or 

reverse antipsychotic-evoked dopamine supersensitivity, based on preclinical animal studies. This 

evidence suggests that using atypical antipsychotics and regular but intermittent (versus 

continuous) antipsychotic dosing/D2 receptor occupancy is significantly less likely to produce 

dopamine supersensitivity. Lastly, we discuss potential neurobiological mechanisms. These 

include changes at the D2 receptor, but also other changes within and outside of the dopamine 

system. We conclude that in parallel to the search for new antipsychotic molecules, we need to 

better understand how different dosing regimens with currently used medications influence long-

term outcome. There is also a pressing need to better characterize the development and expression 

of dopamine supersensitivity in humans. This will help determine the treatment strategies least 

likely to evoke dopamine supersensitivity.  

KEY WORDS 
Antipsychotics, dopamine supersensitivity, psychosis, schizophrenia, rat 
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1. Introduction

Antipsychotic medications are used to treat psychosis symptoms in schizophrenia. Psychosis is 

generally thought to involve excessive dopamine signaling in the striatum [(Howes and Kapur, 

2009), and see (Demjaha et al., 2012)]. Antipsychotics have their anti-psychotic effects by 

interacting with dopamine D2 receptors to decrease dopamine transmission in the striatum (Creese 

et al., 1976; Seeman et al., 1976; Farde et al., 1989; Richtand et al., 2007). However, long-term 

exposure to antipsychotic medications can produce compensatory changes in the brain believed to 

lead to supersensitivity to dopamine stimulation. In schizophrenia patients, antipsychotic-induced 

dopamine supersensitivity is thought to impair treatment efficacy, promote relapse to psychosis 

and also worsen psychotic symptoms (Chouinard et al., 1978; Fallon et al., 2012; Suzuki et al., 

2015). In laboratory animals, antipsychotic-induced dopamine supersensitivity produces loss of 

antipsychotic efficacy (Samaha et al., 2007; Samaha et al., 2008; Gill et al., 2014) and an 

exaggerated behavioural response to dopamine agonists (Smith and Davis, 1975; Ericson et al., 

1996; Samaha et al., 2007; Bedard et al., 2011). In the present review, we first describe the clinical 

implications of antipsychotic-evoked dopamine supersensitivity for the patient and the 

manifestations of this dopamine supersensitivity in laboratory animals. We then discuss how 

dopamine supersensitivity might be reversed or prevented, using approaches that preserve the long-

term efficacy of antipsychotic treatment. Finally, we describe the neurobiological changes that have 

been associated with antipsychotic-evoked dopamine supersensitivity, within but also outside of 

the dopamine system.  

2. Antipsychotic-evoked dopamine supersensitivity and its consequences

2.1. In humans 

Antipsychotic medications can be necessary for people suffering from continued psychotic 

symptoms. However, for several decades now, it has become common to keep people with a 

diagnosis of schizophrenia on continuous antipsychotic medication for years (Murray et al., 2016). 

This practice is raising questions in the field (Samaha et al., 2008; Remington et al., 2011; Uchida 

and Suzuki, 2014; Chouinard et al., 2017). While stopping antipsychotic treatment altogether is 

generally linked to relapse to psychosis (Taylor et al., 2012), an important issue is whether chronic 
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and long-term occupancy of dopamine D2 receptors can change the brain in ways that compromise 

outcome. The evidence suggests that it does. In some patients, chronic antipsychotic exposure 

evokes neuroadaptations that are thought to lead to a state of supersensitivity to dopamine receptor 

stimulation. This phenomenon was first described in the late 1970’s by Guy Chouinard and 

colleagues (Chouinard et al., 1978; Chouinard and Chouinard, 2008; Chouinard et al., 2017). They 

proposed that chronic suppression of dopamine-mediated neurotransmission by antipsychotic leads 

to compensatory overactivity and a dopamine supersensitive state. This in turn would promote both 

relapse to psychotic symptoms—via tolerance to previously observed anti-psychotic effects of 

medication but also via enhanced stress-induced psychotic relapse—and tardive dyskinesia (see 

FIG. A1.1A). Chouinard et al. also outlined criteria to identify dopamine supersensitivity evoked 

by antipsychotic medication, after at least 3 months of treatment (Chouinard and Jones, 1980; 

Chouinard et al., 2017). These include i) acute worsening of psychosis symptoms when treatment 

is discontinued/dose is reduced/medication is switched, ii) increased vulnerability to stress while 

on medication, iii) tolerance to the therapeutic effects of antipsychotic treatment, and/or iv) the 

presence of tardive dyskinesia (Chouinard et al., 1986). Of note, at present, clear evidence of 

antipsychotic-evoked dopamine supersensitivity as involving a sensitized response to dopamine 

receptor stimulation is based in great part on data from studies using laboratory animals (see next 

section). Definitive proof that chronic exposure to antipsychotic drugs can sensitize the dopamine 

system of humans is still lacking. Therefore, in humans, the concept of a ‘dopamine supersensitive 

state’ involving antipsychotic-induced sensitization of the dopamine system remains theoretical. 

This being said, here we use the term ‘dopamine supersensitivity’ to remain consistent with a 

literature that has been expanding since the 1970’s (Vonvoigtlander et al., 1975; Chouinard et al., 

1978). As will be discussed in section 4.2, there is also good reason to believe that systems other 

than dopamine could mediate the behavioural symptoms of dopamine supersensitivity. 

Treatment failure and worsening of psychosis can involve many factors (illness progression, not 

taking one’s medication, stressful life changes), but there are reasons to believe that antipsychotic 

treatment itself is also a cause. First, tardive dyskinesia and dopamine supersensitivity are linked. 

Tardive dyskinesia is not a symptom of schizophrenia, rather it involves antipsychotic-induced 

brain changes that could be linked to dopamine supersensitivity (Casey, 1991; Waln and Jankovic, 

2013). Tardive dyskinesia is one of the best behavioural predictors of dopamine supersensitivity 

(Chouinard and Chouinard, 2008). Using tardive dyskinesia to identify dopamine supersensitivity 
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in patients, it has been reported that dopamine supersensitivity could be involved in psychotic 

relapse in 30-40% of patients with schizophrenia (Fallon and Dursun, 2011; Fallon et al., 2012). In 

addition, up to 70% of treatment-resistant patients show evidence of dopamine supersensitivity 

(Suzuki et al., 2015). A study including 8620 patients also found that worsening of psychotic 

symptoms and onset of tardive dyskinesia coincide in time, and that the greater the degree of 

psychotic worsening, the greater the risk of developing tardive dyskinesia (Tenback et al., 2007). 

Just like antipsychotic-evoked dopamine supersensitivity, tardive dyskinesia can also persist 

following treatment withdrawal (Muench and Hamer, 2010). Both relapse to psychosis and tardive 

dyskinesia can also be controlled, at least temporarily, by increasing antipsychotic dosing 

(Chouinard et al., 1978). All of these observations support the idea that common neurobiological 

mechanisms underlie the two phenomena. Second, the idea that antipsychotic treatment can 

increase the response to dopamine receptor stimulation is also supported by evidence that 

antipsychotic-treated schizophrenia patients are more sensitive to the psychotogenic effects of 

amphetamine relative to untreated patients (Lieberman et al., 1987). Finally, chronic treatment with 

D2 receptor antagonists can trigger both tardive dyskinesia and withdrawal psychosis in people 

with no psychiatric diagnoses (Lu et al., 2002; Roy-Desruisseaux et al., 2011; Seeman, 2014). 

These observations suggest that antipsychotic treatment can change the brain in ways that promote 

psychosis and that this potentially involves a state of dopamine supersensitivity. Still, it must be 

considered that some clinical studies report no signs of antipsychotic-evoked dopamine 

supersensitivity in schizophrenia. For instance, schizophrenia patients withdrawn from treatment 

with long-acting injectable paliperidone palmitate do not show more severe positive symptoms or 

tardive dyskinesia relative to patients that are maintained on treatment (Emsley et al., 2018). 

2.2 In non-human animals 

In animals, two behavioural paradigms commonly used to measure antipsychotic/anti-

dopaminergic effects are suppression of conditioned avoidance responding (Wadenberg and Hicks, 

1999) and suppression of the psychomotor response to dopamine receptor agonists (Ljungberg and 

Ungerstedt, 1985). There is no clear relation between the avoidance response to an aversive 

stimulus in laboratory animals and psychosis in humans (Li et al., 2007). However, the conditioned 

avoidance responding model has very high predictive validity for antipsychotic properties 

(Wadenberg and Hicks, 1999). All antipsychotic medications that are effective in the clinic 
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selectively disrupt conditioned avoidance responding at doses that do not change unconditioned 

escape responses, and there is a positive correlation between this effect and antipsychotic potency 

in the clinic (Kuribara and Tadokoro, 1981; Arnt, 1982; Wadenberg et al., 2001). As regards 

suppression of dopamine agonist-induced psychomotor activity, this is not an effect exclusive to 

antipsychotic compounds. However, it is a reliable and often used test to measure the 

antidopaminergic properties of antipsychotic drugs (Ljungberg and Ungerstedt, 1985; Arnt, 1995).  

Studies using laboratory animals show that long-term antipsychotic treatment can produce 

dopamine supersensitivity (see FIG. A1.1B). Many studies show dopamine supersensitivity after 

antipsychotic treatment cessation. Thus, compared to antipsychotic-naïve animals, animals 

previously exposed to antipsychotics (> 2 weeks) are supersensitive to the psychomotor activating 

effects of dopamine agonists, including apomorphine (Smith and Davis, 1975; Montanaro et al., 

 
 
FIG. A1.1 ─ Behavioural features of antipsychotic-evoked dopamine supersensitivity in people with 
schizophrenia and in laboratory animals. (A) Early in treatment, antipsychotic medications effectively 
treat schizophrenia symptoms, especially psychotic symptoms such as psychosis, through a decrease in 
dopamine transmission. However, in the later stages of treatment, antipsychotic medications can induce 
neuroadaptations that are proposed to lead to dopamine supersensitivity. These neuroadaptations are thought 
to produce treatment tolerance, to persist after treatment withdrawal and to promote relapse to and/or 
worsening of psychosis. Antipsychotic-evoked dopamine supersensitivity can also co-occur with tardive 
dyskinesia. (B) In laboratory animals, common indices of antipsychotic-like effects are the suppression of 
the conditioned avoidance response to an aversive cue and the suppression of the locomotor effects of 
dopamine agonists. Initially, antipsychotic medications produce these antipsychotic-like effects. However, 
with longer-term exposure, antipsychotic medications no longer suppress conditioned avoidance responding 
and locomotor activity (i.e., the animals show treatment tolerance), and this is linked to the emergence of 
dopamine supersensitivity. This dopamine supersensitivity can persist after antipsychotic treatment 
cessation, as indicated by sensitization to the behavioural effects of dopamine agonists.  
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1982; Carvalho et al., 2009), amphetamine (Smith and Davis, 1975; Vonvoigtlander et al., 1975; 

Montanaro et al., 1981; Ericson et al., 1996; Samaha et al., 2007; Samaha et al., 2008; Bedard et 

al., 2011, 2013) and cocaine (Kosten, 1997; Pudiak and Bozarth, 1997; Fukushiro et al., 2008). 

Previous work has also shown that the psychomotor response to an intra-accumbens infusion of 

dopamine is potentiated following chronic exposure to either haloperidol, sulpiride or clozapine 

(Halperin et al., 1989). However, excessively high antipsychotic doses were used [see (Kapur et 

al., 2003)]. Using clinically-relevant doses, we have shown that the psychomotor response to an 

intra-accumbens infusion of amphetamine is similar in dopamine supersensitive versus 

antipsychotic-naïve rats (El Hage et al., 2015). This suggests that the expression of dopamine 

supersensitivity also involves stimulation of dopamine receptors outside of the nucleus accumbens. 

Recent work in female rats also highlights that there could be sex differences in the emergence of 

antipsychotic-induced dopamine supersensitivity, and that further investigations are needed, 

including characterization of both low and higher antipsychotic doses (Madularu et al., 2014; 

Madularu et al., 2016). This issue notwithstanding, there is strong evidence that upon 

antipsychotic/anti-dopaminergic treatment cessation, the dopamine supersensitive state is fully 

uncovered, as indicated by an exaggerated behavioural response to dopamine agonists. Of note, an 

exaggerated behavioral response to dopamine agonists is not a diagnostic criterion of antipsychotic-

evoked dopamine supersensitivity in humans. Instead, in preclinical studies, acute administration 

of a dopamine agonist is used as a pharmacological model of the increased dopamine 

neurotransmission that is linked to psychosis in humans. In this way, dopamine agonists are used 

to probe the functional consequences of increased dopamine neurotransmission in dopamine 

supersensitive animals. 

There is also evidence of ‘breakthrough’ dopamine supersensitivity during ongoing antipsychotic 

treatment (FIG. A1.1B). Initially (≤ ~1 week of treatment), antipsychotic drugs suppress both the 

psychomotor response to dopamine agonists and the conditioned avoidance response produced by 

an aversive cue (Asper et al., 1973; MØller Nielsen et al., 1974; Samaha et al., 2007). However, 

with continued exposure (≥ ~1 week), ongoing antipsychotic treatment can lose efficacy in both 

paradigms (Asper et al., 1973; MØller Nielsen et al., 1974; Samaha et al., 2007; Amato et al., 

2018). Compounds with antipsychotic-like effects are also ineffective in rats previously chronically 

treated with antipsychotics, and this is linked to the development of dopamine supersensitivity (Gill 

et al., 2014). Gill et al.’s (2014) findings are also important because they show antipsychotic-
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induced dopamine supersensitivity in a neurodevelopmental animal model of schizophrenia. This 

extends the large number of studies showing antipsychotic-induced dopamine supersensitivity in 

otherwise neurologically intact animals. Furthermore, as observed in humans (Fallon and Dursun, 

2011; Fallon et al., 2012), studies using rodents support a link between antipsychotic-evoked 

dopamine supersensitivity and tardive dyskinesia. Indeed, in rodents, antipsychotic treatments that 

promote dopamine supersensitivity also increase the likelihood of vacuous chewing movements, a 

tardive dyskinesia-like feature (Turrone et al., 2003b, a, 2005). Thus, the studies reviewed above 

highlight two key elements. First, in preclinical studies, dopamine supersensitivity involves 

tolerance to some effects (tolerance to antipsychotic-induced suppression of conditioned avoidance 

responding during ongoing treatment), and sensitization to other effects (an enhanced psychomotor 

response to dopamine agonists after antipsychotic treatment cessation; FIG. A1.1B). In other words, 

tolerance to some effects and sensitization to other effects can be evoked by the exact same 

treatment regimen, in the exact same subject. And both of the effects described are relevant to 

dopamine supersensitivity. A second key conclusion is that while short-term antipsychotic 

treatment produces antipsychotic-like effects in animals, treatment failure can be observed with 

longer-term treatment (≥ ~1 week) and this is potentially linked to dopamine supersensitivity.  

In non-human animals, antipsychotic-induced dopamine supersensitivity also augments the 

reward-enhancing effects of dopamine agonists. This could have implications for co-morbid 

substance use disorders in people with schizophrenia [reviewed in Samaha (2014)]. Over 40% of 

people with schizophrenia also have a substance use disorder, with a 2-3 times greater risk in men 

than women (Hunt et al., 2018). In comparison, the prevalence of substance use disorders in the 

general population in Canada and the United States is ~10-20 % (Anthony et al., 1996; Veldhuizen 

et al., 2007). Some people with schizophrenia might use drugs to alleviate symptoms of their illness 

(Khantzian, 1985) or the side effects of antipsychotic treatment (Schneier and Siris, 1987). The 

high prevalence of drug use might also involve antipsychotic-evoked dopamine supersensitivity, 

as this can enhance the rewarding properties of drug of abuse (Samaha, 2014). For instance, daily 

haloperidol injection increases cocaine intake in rats, while antipsychotic-naïve animals maintain 

constant and lower levels of cocaine intake (Roberts and Vickers, 1987). Withdrawal from chronic 

antipsychotic treatment also enhances cocaine self-administration behaviour in squirrel monkeys 

(Howell and Byrd, 1992). More recent work suggests that antipsychotic treatment regimens might 

potentiate reward function only if they produce dopamine supersensitivity. When rats were given 
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different chronic antipsychotic treatment regimens, only the treatment regimens that produced 

dopamine supersensitivity also produced sensitization to the reward-enhancing properties of 

amphetamine [i.e., amphetamine-induced potentiation of conditioned reward; (Bedard et al., 2011, 

2013)]. Antipsychotic treatment can also influence the response to drug cues in schizophrenia 

patients. For instance, cocaine cues elicit greater drug craving in patients treated with typical 

antipsychotics relative to risperidone or olanzapine-treated patients (Smelson et al., 2002; Smelson 

et al., 2006). More work on this issue is needed. For instance, it is not known how antipsychotic-

induced dopamine supersensitivity might contribute to changes in the response to drug cues in 

humans. However, the data in the animal studies described above (Bedard et al., 2011, 2013) 

suggest that perhaps by inducing dopamine supersensitivity, some antipsychotic treatment 

regimens could contribute to drug seeking and taking behaviours in vulnerable people with 

schizophrenia (Samaha, 2014). 

3. Variables that influence the development and expression of dopamine

supersensitivity

A better understanding of the variables that modulate antipsychotic-evoked dopamine 

supersensitivity could lead to the development of new strategies to prevent or reverse this 

supersensitivity. For any given person with schizophrenia, antipsychotic treatment can be a 

remarkably dynamic process over the course of the illness, with switching between antipsychotics 

and combinations of treatments. This makes it difficult to determine in humans the types of 

treatment regimens that are more or less likely to produce dopamine supersensitivity. Animal 

models are particularly useful in this context because they can help establish causal relationships 

between different treatment regimens and the development of dopamine supersensitivity. In animal 

models, the type of antipsychotic medication (typical versus atypical), the dose and the temporal 

kinetics of treatment (continuous versus regular but intermittent) are all decisive in determining the 

risk of dopamine supersensitivity. We review these findings here. We also discuss implications for 

the clinic.  

3.1. Typical versus atypical antipsychotic drugs 
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It is estimated that 13-39% of people with schizophrenia treated with either typical or atypical 

antipsychotics have dopamine supersensitivity, while virtually no antipsychotic-naïve patients do 

(Woerner et al., 1991; Fallon et al., 2012). Both typical and atypical antipsychotic drugs can 

produce dopamine supersensitivity, but supersensitivity might persist longer after cessation of 

treatment with typical antipsychotics. Animals previously exposed to the typical antipsychotics 

haloperidol (Smith and Davis, 1975; Vonvoigtlander et al., 1975; Montanaro et al., 1982; 

Fleminger et al., 1983; Marin and Chase, 1993; Samaha et al., 2007; Fukushiro et al., 2008; 

Tadokoro et al., 2012; Bedard et al., 2013), sulpiride (Montanaro et al., 1982; Fleminger et al., 

1983), trifluoperazine (Clow et al., 1980) or thioridazine (Vonvoigtlander et al., 1975; Clow et al., 

1980; Calza et al., 1990) are supersensitive to the behavioural effects of dopamine agonists. In 

contrast, animals previously exposed to the atypical antipsychotics olanzapine (Samaha et al., 

2007; Bedard et al., 2013), aripiprazole (Tadokoro et al., 2012), risperidone (Carvalho et al., 2009) 

or ziprasidone (Fukushiro et al., 2008) generally show a normal locomotor response to dopamine 

agonists, suggesting no dopamine supersensitivity. Other studies have examined dopamine 

supersensitivity during ongoing treatment with typical versus atypical antipsychotics. This has 

been achieved by assessing tolerance to ongoing treatment, as tolerance to antipsychotic effects is 

a diagnostic criterion for dopamine supersensitivity in humans (Chouinard et al., 1986; Moncrieff, 

2006; Chouinard and Chouinard, 2008; Iyo et al., 2013; Chouinard et al., 2017). In rats, there is 

evidence that tolerance to antipsychotic effects develops during ongoing treatment with typical 

(haloperidol) or atypical (olanzapine) antipsychotics, as shown by decreased antipsychotic-induced 

suppression of both amphetamine-induced locomotor activity and conditioned avoidance 

responding (Samaha et al., 2007; Amato et al., 2018). Another symptom of antipsychotic-induced 

dopamine supersensitivity in humans is tardive dyskinesia. Tardive dyskinesia is related to 

antipsychotic-induced vacuous chewing movements in rats, and these can also emerge during 

ongoing chronic treatment with either haloperidol or olanzapine (Turrone et al., 2003b, a, 2005). 

Thus, dopamine supersensitivity symptoms can ‘breakthrough’ ongoing treatment with either 

typical or atypical antipsychotics, but dopamine-mediated behaviours might more readily return to 

normal after discontinuation of atypical versus typical antipsychotics. 

Some work also suggests that atypical antipsychotics can both prevent and reverse dopamine 

supersensitivity. Co-administration of the atypical antipsychotic ziprasidone (Fukushiro et al., 

2008) or risperidone (Carvalho et al., 2009) with haloperidol is reported to prevent the development 
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of haloperidol-induced dopamine supersensitivity (i.e. the potentiated psychomotor response to 

amphetamine or cocaine). Chronic treatment with aripiprazole can also reverse the exaggerated 

psychomotor response to methamphetamine evoked by prior chronic treatment with haloperidol 

(Tadokoro et al., 2012). However, these studies did not provide measurements of antipsychotic 

levels/D2 receptor occupancy in the brain. This makes it difficult to determine whether effects are 

due to peripheral, pharmacokinetic interactions versus central pharmacological actions.  

Typical versus atypical antipsychotics might produce different outcomes through several 

mechanisms. First, the two drug classes might produce different degrees of dopaminergic 

disruption. Compared to typical antipsychotics, atypical antipsychotics bind to D2 receptors more 

loosely (Seeman et al., 1997). Endogenous dopamine might therefore more easily displace atypical 

antipsychotics from the receptor, allowing more endogenous dopaminergic signaling (Seeman et 

al., 1997). In turn, this could attenuate compensatory upregulation within the dopamine system 

during chronic antipsychotic treatment, making dopamine supersensitivity less persistent over 

time. Second, atypical antipsychotics also have higher affinities at several serotonin receptors 

(Meltzer et al., 1989) compared to typical antipsychotics, and this might temper dopamine 

supersensitivity. As research on these issues unfolds, the possibility that atypical antipsychotics are 

less likely to produce dopamine supersensitivity should be considered and investigated further in 

the clinic. 

3.2. The pharmacokinetics of antipsychotic treatment 

When considering the response to antipsychotic medications, as for all pharmacologically active 

compounds, the pharmacokinetics determine the pharmacodynamics. In the context of dopamine 

supersensitivity, there are two critical pharmacokinetic variables to consider; the temporal kinetics 

of treatment (how often antipsychotic/D2 occupancy levels rise and fall over the day), and dose 

(how much antipsychotic/D2 occupancy is achieved in the brain). In this section we review how 

manipulations of the within-day kinetics of treatment influences the development of dopamine 

supersensitivity and antipsychotic efficacy over time. We first compare the long-standing clinical 

strategy of maintaining continuously high brain levels of antipsychotic/D2 occupancy to a more 

extended, intermittent dosing strategy. We then discuss the influence of antipsychotic dosing on 

the risk of dopamine supersensitivity. 
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3.2.1. The within-day kinetics of antipsychotic treatment 

From their discovery nearly 70 years ago, antipsychotic treatment regimens have been given to 

produce continuously high concentrations of drug. The assumption is that high and continuous 

levels of antipsychotic/D2 occupancy are necessary to maintain efficacy and reduce the risk of 

relapse. This idea contributed to the early introduction of depot antipsychotic injections, to the 

recommendation that antipsychotic medications be given several times a day if they have shorter 

half-lives, and to the more recent rush to develop and market extended release formulations for 

antipsychotics. Such approaches produce steady state levels of medication/D2 occupancy (Farde 

et al., 1989; Remington et al., 2006; Mamo et al., 2008). As illustrated in FIG. A1.2A, this can be 

modeled in rats by administering antipsychotic drugs via a subcutaneously implanted osmotic 

minipump (Kapur et al., 2003; Samaha et al., 2007) or via a long-acting injectable formulation 

(Turrone et al., 2003a). Using these continuous-treatment approaches, clinically-representative 

doses [i.e., doses producing 65-80% of striatal D2 receptor occupancy (Wadenberg et al., 2000; 

Natesan et al., 2006)] promote dopamine supersensitivity to the behavioural effects of dopamine 

agonists (Ericson et al., 1996; Samaha et al., 2007; Samaha et al., 2008; Bedard et al., 2011, 2013), 

tolerance to the effects of antipsychotics in tests of antipsychotic-like efficacy (Samaha et al., 2007; 

Samaha et al., 2008; Amato et al., 2018), and increased probability of vacuous chewing movements 

(Turrone et al., 2003b, a, 2005) in laboratory rats. A different outcome emerges if clinically-

representative antipsychotic doses are given regularly, but intermittently such that striatal D2 

occupancy is high for a few hours following antipsychotic administration, and then decreases until 

the next injection [see FIG. A1.2B; Kapur et al. (2003)]. When rats are given this within-day 

transient antipsychotic treatment regimen, they are less likely to show vacuous chewing 

movements (Turrone et al., 2003b, 2005) and they also do not show a potentiated behavioral 

response to dopamine agonists after cessation of antipsychotic treatment (Ericson et al., 1996; 

Samaha et al., 2008; Bedard et al., 2011; Servonnet et al., 2017). These observations concord with 

a clinical study showing that schizophrenia patients with tardive dyskinesia have higher D2 

occupancy levels (estimated from antipsychotic blood concentrations) at through compared to 

schizophrenia patients with no sign of tardive dyskinesia, whereas D2 occupancy at peak is similar 

between the two groups (Yoshida et al., 2014). Furthermore, when antipsychotic drugs are given 

intermittently at clinically relevant doses (achieving within-day transient peaks in D2 receptor 

occupancy), antipsychotic-like effects in animal models are potentiated over time (Li et al., 2007; 
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Samaha et al., 2008). This contrasts with treatment tolerance induced by continuous exposure 

(Samaha et al., 2008). Therefore, when using clinically representative doses, continuous 

antipsychotic administration could favor neurobiological changes leading to treatment tolerance, 

whereas regular but intermittent administration could favor neurobiological changes that enhance 

antipsychotic effects over time. These findings suggest that less is more, and that within-day 

transient treatment might not only be more effective over time than continuous treatment, but it 

might also prevent the development of dopamine supersensitivity. 

FIG. A1.2 ─ Both the temporal kinetics and dose of antipsychotic treatment determine the 
development of dopamine supersensitivity. In patients with schizophrenia and in laboratory animals, most 
antipsychotic drugs produce therapeutic effects when they occupy > 65 % of striatal D2 receptors, and 
antipsychotics are also more likely to produce extrapyramidal effects with > 80 % occupancy (65-80 % 
occupancy, indicated with blue shading in the panels). It is standard practice to prescribe daily antipsychotic 
dosing. If there is treatment compliance, this would produce virtually continuous D2 receptor occupancy at 
a 65-80 % level. (A) This can be modelled in laboratory animals by administering long-acting injectable 
antipsychotics or by giving antipsychotics through an osmotic minipump implanted subcutaneously. Such 
continuous dosing/D2 receptor occupancy promotes dopamine supersensitivity. (B) Alternatively, when 
antipsychotic drugs are given via daily systemic injections to rats, this produces peaks and troughs in striatal 
D2 receptor occupancy. If peak striatal levels remain between 65-80% this is less likely to produce 
dopamine supersensitivity, and antipsychotic-like effects are maintained. (C) However, when antipsychotic 
drugs are given via daily systemic injections, but at high doses (producing >80 % of occupancy at peak), 
this also promotes dopamine supersensitivity. See section 3.2 for further discussion of continuous versus 
intermittent dosing strategies. 
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The findings above challenge the assumption that sustained D2 occupancy is required to maintain 

antipsychotic response, and recent work in patients supports this idea. While some patients may 

need continuous dosing to control symptoms, there is evidence that intermittent dosing strategies 

can be effective. Initially when such strategies were investigated, they involved alternating between 

periods of treatment and long drug-free gaps lasting up to months. Such strategies were not 

successful, as they increased rates of relapse (Jolley et al., 1990; Schooler, 1991; Jolley and Hirsch, 

1993; Gaebel, 1994; Peuskens, 1996; Carpenter et al., 1999; Gaebel et al., 2002). However, 

intermittent but more regular dosing strategies have yielded very promising results. In a double-

blind study lasting 9 months, McCreadie et al. (1980) show that long-acting injectable fluphenazine 

or taking oral pimozide on 4 consecutive days/week are equally effective in preventing psychosis 

relapse. In a double-blind study lasting 6 months, Remington et al. (2011) show that taking oral 

antipsychotic every day or every 2 days is equally effective in treating schizophrenia symptoms. A 

PET study on people with schizophrenia that were stabilized on haloperidol decanoate also showed 

that continuous occupancy of ≥ 65% D2 receptors was not necessary to prevent relapse to psychosis 

(Nyberg et al., 1995). This idea is further supported by the work of Uchida and Suzuki (2014), who 

reviewed a total of 14 studies and concluded that long-acting injectable antipsychotics can remain 

effective for several months, such that they can be administered at dosing intervals longer than 

those recommended in product monographs (Uchida and Suzuki, 2014).  

Thus, regular but intermittent dosing decreases antipsychotic exposure, and it can provide clinical 

benefits comparable to daily dosing. Moreover, the results indicate that sustained D2 occupancy, 

24 hours a day is not necessary [see also (Remington et al., 2005)]. Not taking one’s medication 

has a negative impact on outcome and this is why the clinical recommendations are to take 

medication regularly and to not miss doses. However, in the face of findings showing that at least 

some patients might benefit from regular but intermittent dosing, we also agree with Bosches and 

Manschreck (2002) when they ask, “Why do we persist in dosing patients on a daily schedule in 

spite of data that suggest that this may not be necessary or even desirable?” [p. 204, (Boshes and 

Manschreck, 2002)]. This being said, it must be considered that taking medication on a regular but 

intermittent schedule could be more difficult for some patients than daily dosing. Still, prescribing 

practices should be evidence based, and the evidence suggests that intermittent but regular dosing 

can be sufficient to maintain efficacy and to also reduce the risk of dopamine supersensitivity. 
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3.2.2. Antipsychotic dose 

High doses of antipsychotic promote dopamine supersensitivity, both with intermittent and 

continuous administration (see FIG. A1.2). For instance, in people with first-episode schizophrenia, 

movement disorders, which can be linked to dopamine supersensitivity, are seen when 

antipsychotic-induced striatal D2 receptor occupancy ≥ 78% (Kapur et al., 2000). A similar link 

between striatal D2 receptor occupancy and dopamine supersensitivity is seen in non-human 

animals. As shown in FIG. A1.2C, if antipsychotic medication is given intermittently but with high 

doses such that peak levels of D2 occupancy are above 80 %, this produces an exaggerated 

psychomotor response to dopamine agonists following antipsychotic treatment cessation, 

indicating dopamine supersensitivity (Smith and Davis, 1975; Montanaro et al., 1982; Fukushiro 

et al., 2008; Carvalho et al., 2009). Continuous exposure to higher antipsychotic doses also 

increases the risk of developing dopamine supersensitivity, as indicated by a loss of antipsychotic-

like efficacy during ongoing treatment, increased risk of vacuous chewing movements and a greater 

psychomotor response to amphetamine following treatment cessation (Turrone et al., 2003b, a; 

Samaha et al., 2007). When striatal D2 occupancy by antipsychotics is between 60-80%, there is 

no added therapeutic benefit of increasing dose any further (Kapur et al., 2000; Tsuboi et al., 2015). 

Instead, >80% striatal D2 occupancy increases the likelihood of dopamine supersensitivity. Given 

these observations, it is recommended to gradually reduce the dose of antipsychotic given in the 

acute phase, and to treat patients with the minimal therapeutic dose during the maintenance phase 

(Chouinard et al., 2017). Indeed, during the maintenance phase of schizophrenia treatment, using 

an antipsychotic dose equivalent to that used during the acute phase or giving ~ 50% of this initial 

dose is equally effective in preventing relapse (Uchida et al., 2011).The same principle applies to 

chronically treated patients that show signs of dopamine supersensitivity. When dopamine 

supersensitivity develops, previously efficacious doses of antipsychotic can no longer produce 

adequate therapeutic effects, and further increases in dose are needed to produce such effects 

(Chouinard et al., 1978; Chouinard and Jones, 1980; Chouinard, 1991). However, instead of 

increasing the dose, it is also recommended to progressively use the minimal therapeutic dose [for 

discussion see (Chouinard et al., 2017)]. 
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4. Neurobiological mechanisms underlying antipsychotic-evoked dopamine 

supersensitivity 

4.1. Changes within the dopamine system 

4.1.1. Dopamine D2 receptors 

Dopamine supersensitivity has been linked to increases in both the density and function of D2 

receptors, and these changes have been characterized most extensively in the striatum. FIG. A1.3 

illustrates how striatal D2 receptors change during chronic antipsychotic treatment and following 

treatment cessation. The model presented in FIG. A1.3 is based largely on findings in laboratory 

animals showing that chronic antipsychotic treatment increases striatal D2 receptor levels in 

laboratory animals (Burt et al., 1977; Fleminger et al., 1983; Severson et al., 1984; MacKenzie and 

Zigmond, 1985; Wilmot and Szczepanik, 1989; Jiang et al., 1990; Marin and Chase, 1993; 

Merchant et al., 1994; Huang et al., 1997; Samaha et al., 2007; Samaha et al., 2008; Ginovart and 

Kapur, 2012; Tadokoro et al., 2012; Oda et al., 2015b). Similar findings have been reported in 

humans (Silvestri et al., 2000; Kestler et al., 2001). Importantly, patients with a history of chronic 

antipsychotic treatment have more striatal D2 receptors available than antipsychotic-naïve patients 

with schizophrenia, and the latter have normal levels of D2 receptor availability (Silvestri et al., 

2000; Howes et al., 2012). D2 receptor upregulation might not be linked to changes in D2 

internalization, because levels of proteins implicated in receptor internalization (G protein-coupled 

receptor kinase 6 and β-arrestin 2) are unchanged following chronic antipsychotic treatment (Oda 

et al., 2015b). Mutations in the genes that code for these proteins are also no more frequent in 

schizophrenia patients that have symptoms of antipsychotic-induced dopamine supersensitivity 

relative to patients that do not (Oda et al., 2015a). 

The relationship between D2 receptor upregulation and antipsychotic-induced dopamine 

supersensitivity is complex. Work is needed to determine whether in humans, D2 receptor changes 

are causally linked to dopamine supersensitivity. In non-human animals, there is evidence that 

changes in D2 receptor density and dopamine supersensitivity can be dissociable. Intermittent 

antipsychotic treatment regimens that do not produce dopamine supersensitivity (i.e., no loss of 

efficacy during ongoing treatment and no exaggerated behavioral response to amphetamine) do not 

elevate striatal levels of D2 receptors (Samaha et al., 2008). However, treatment failure can be seen 
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without significant changes in striatal D2 receptor levels, and there can also be D2 receptor 

upregulation early during a continuous antipsychotic treatment regimen, at a time when there is no 

behavioural evidence of dopamine supersensitivity (Samaha et al., 2007). Thus, behavioural 

sensitivity to dopamine is not always predicted by striatal D2 receptor upregulation [also see 

(Pierce et al., 1991; Flores et al., 1996)]. Instead, one possibility is that an increase in striatal D2 

receptor density is a consequence of exposure to high antipsychotic doses. For instance, exposure 

to high-dose antipsychotic increases striatal D2 receptor density, while exposure to either doses 

that achieve less than 80% striatal D2 occupancy or to a treatment regimen that produces transient 

(versus continuous) occupancy does not (Ginovart et al., 2009). It is noteworthy that even if there 

is an increase in striatal D2 receptor density, D2 occupancy by antipsychotics remains high during 

chronic treatment, in both humans and non-human animals (Kapur et al., 2003; Turrone et al., 

2003b; Samaha et al., 2007; Amato et al., 2018). Thus, it is unlikely that antipsychotics lose 

efficacy over time because of low levels of D2 occupancy resulting from D2 receptor upregulation. 

Beyond changes in striatal D2 receptor number, antipsychotic-induced dopamine supersensitivity 

is also linked to increased striatal D2 receptor function. D2 receptors are metabotropic and they are 

in a functional, high affinity state for dopamine when they are coupled to Gi/o proteins (referred to 

as D2HIGH). In contrast, D2 receptors are in a functionally inert, low affinity state for dopamine 

FIG. A1.3 ─ Changes in striatal D2/D2HIGH receptor levels and antipsychotic-evoked dopamine 
supersensitivity. (A) Chronic antipsychotic treatment regimens that do not produce dopamine 
supersensitivity elevate striatal levels of D2HIGH receptors late into treatment, but receptor levels are 
unchanged early in treatment. Under these conditions, D2/D2HIGH receptor levels return to normal after 
treatment cessation. (B) When an antipsychotic treatment regimen produces dopamine supersensitivity, 
striatal levels of D2/D2HIGH receptors can be increased early during antipsychotic treatment, when dopamine 
supersensitivity is not yet expressed. This upregulation persists during long-term treatment and after 
treatment cessation. 
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when they are uncoupled to Gi/o proteins (D2LOW). Thus, the proportion of D2HIGH receptors can 

significantly influence D2-mediated signaling. As shown in FIG. A1.3, chronic exposure to 

antipsychotics increases striatal levels of D2HIGH receptors in non-human animals (Seeman et al., 

2005; Samaha et al., 2007; Samaha et al., 2008; Seeman, 2008a, b). The D2HIGH increase is more 

pronounced when the antipsychotic treatment regimen (continuous exposure to haloperidol via 

subcutaneous osmotic minipump) produces behavioural dopamine supersensitivity, as indicated by 

an exaggerated psychomotor response to amphetamine (Samaha et al., 2008). D2HIGH receptor 

elevation and antipsychotic-induced dopamine supersensitivity also follow a similar time course 

(Samaha et al., 2007). However, higher doses of antipsychotic (haloperidol via subcutaneous 

osmotic minipump) can increase D2HIGH sites early during treatment, before any behavioural 

evidence of dopamine supersensitivity (Samaha et al., 2007). In addition, intermittent antipsychotic 

exposure, as achieved via daily subcutaneous injections, can still increase striatal D2HIGH sites, in 

the absence of any behavioural signs of dopamine supersensitivity (Seeman et al., 2005; Samaha 

et al., 2008). There is still no conclusive evidence of elevated D2HIGH receptors in patients with 

schizophrenia. A PET imaging study of medication-free and medication-naïve schizophrenia 

patients did not find increased D2HIGH receptors (Graff-Guerrero et al., 2009). However, it is also 

possible that D2HIGH receptors are difficult to quantify with this method, because they are occupied 

by endogenous dopamine and/or because the tracer used measures D2HIGH, D2LOW and D3 receptors 

(Graff-Guerrero et al., 2009). The link between changes in D2HIGH sites and the behavioural 

manifestations of dopamine supersensitivity also needs further study. This issue notwithstanding, 

it is possible that D2HIGH sites must increase beyond a certain threshold before dopamine 

supersensitivity is observed (Samaha et al., 2008). Future work assessing D2-mediated intra-

cellular signaling could also shed light on this issue.  

Antipsychotic-induced dopamine supersensitivity could involve changes in D2-mediated activity 

on both sides of the synapse. Dopamine supersensitive rats show enhanced amphetamine-induced 

expression of the immediate early genes c-fos and Nur77 in the striatum (Bedard et al., 2011, 2013). 

This suggests increased post-synaptic signaling when dopamine levels are increased. 

Antipsychotic-treated animals also show greater presynaptic D2 receptor-mediated inhibition of 

excitatory postsynaptic potentials (EPSP) in caudate-putamen neurons (Calabresi et al., 1992). 

Changes in presynaptic D2 receptor activity might be specific to the caudate-putamen, as the 

activity of presynaptic D2 receptors seems unaltered in the nucleus accumbens (Chesi et al., 1995). 
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The idea that dopamine supersensitivity is linked to increased presynaptic D2-mediated activity is 

further supported by the observation that initially (2 days into treatment), antipsychotic treatment 

(continuous exposure via subcutaneous minipump) increases basal dopamine overflow, but with 

more extended treatment (6-12 days), dopamine overflow decreases as dopamine supersensitivity 

develops (Samaha et al., 2007; Amato et al., 2018). The effects on dopamine overflow are discussed 

further in section 4.1.3 below.  

4.1.2. D1 receptors 

Chronic antipsychotic treatment generally does not change striatal D1 receptor density in humans 

(Kestler et al., 2001) or laboratory animals (Fleminger et al., 1983; MacKenzie and Zigmond, 1985; 

Jiang et al., 1990; Marin and Chase, 1993). One exception is the work of Huang et al. (1997), 

showing striatal D1 receptor upregulation following chronic clozapine but not haloperidol 

treatment in rats. As this matter is resolved, the available evidence suggests that D1 receptor-

mediated signaling could be involved in dopamine supersensitivity. In rats supersensitive to the 

psychomotor effects of apomorphine following antipsychotic treatment cessation, chronic 

injections of a D1 agonist reverse both the supersensitivity and the upregulated striatal D2 receptors 

(Marin and Chase, 1993). Surprisingly, chronic injections of a D2 agonist do not influence the 

expression of dopamine supersensitivity (Marin and Chase, 1993). However, the findings of Marin 

and Chase (1993) must be interpreted with caution. Their rats were treated with an antipsychotic 

dose that was ~20 times higher than what would be clinically relevant [based on Kapur et al. 

(2003)], and the study did not include antipsychotic-naïve rats for comparison. 

4.1.3. Dopamine release and re-uptake 

Initially, antipsychotics enhance both dopamine overflow and turnover in the nucleus accumbens 

and caudate-putamen [(Ericson et al., 1996; Samaha et al., 2007; Amato et al., 2018) but see Amato 

et al. (2011)]. This likely involves occupancy of presynaptic D2 receptors. It could also involve 

diminished negative feedback onto dopamine neurons, as dopamine transporter density in the 

ventral tegmental area and the substantia nigra is decreased at this stage of treatment (Amato et al., 

2018). However, dopamine release and re-uptake change with more long-term treatment, when 

dopamine supersensitivity and loss of antipsychotic-like efficacy are seen. First, dopamine 

transporter density returns to normal (antipsychotic-naïve) levels (Amato et al., 2018). In the 
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nucleus accumbens and caudate-putamen, baseline or amphetamine-stimulated dopamine overflow 

also return to normal levels or are diminished (Samaha et al., 2007; Amato et al., 2011; Amato et 

al., 2018). Similarly, striatal dopamine turnover, which is initially enhanced, normalizes with long-

term antipsychotic treatment (Ericson et al., 1996). The decrease or normalization of striatal 

dopamine levels could involve upregulation of presynaptic D2 receptors, as discussed above. 

Amato et al. (2018) hypothesized that the increased dopamine release/up-take early in treatment 

underlies the therapeutic effects of antipsychotics, while tolerance to this dopaminergic effect 

underlies treatment failure. In support of this, they found that infusion of a selective dopamine 

transporter inhibitor (GBR12909) into the caudate-putamen rescues antipsychotic-like effects. 

However, the effects of GBR12909 in antipsychotic-naïve animals were not reported. This makes 

it difficult to determine whether the GBR12909 effects are relevant to antipsychotic response. Still, 

the findings concord with others. For instance, See and Murray (1992) show that acute treatment 

with raclopride increases extracellular levels of dopamine in the caudate-putamen, and that rats 

chronically treated with haloperidol are tolerant to this effect. Thus, initially, antipsychotics 

increase striatal dopamine release and uptake. With chronic antipsychotic treatment, there is 

tolerance to this effect and this coincides with the emergence of dopamine supersensitivity and 

treatment failure.  

Antipsychotic-induced changes in dopamine release/re-uptake do not always correlate with 

dopamine supersensitivity. Dopamine supersensitivity persists after haloperidol treatment 

cessation, as indicated by potentiated amphetamine-induced locomotion (Smith and Davis, 1975; 

Rebec et al., 1982; Meng et al., 1998; Samaha et al., 2007; Bedard et al., 2013). However, 

amphetamine-induced dopamine release in the nucleus accumbens or caudate-putamen is 

unchanged after haloperidol treatment cessation (Compton and Johnson, 1988; Ichikawa and 

Meltzer, 1992). Striatal levels of the dopamine transporter are also unchanged (Ase et al., 1999). 

Conversely, after cessation of chronic treatment with atypical antipsychotics, dopamine 

supersensitivity is less likely to persist (Samaha et al., 2007; Bedard et al., 2013), yet amphetamine-

evoked dopamine release in the caudate-putamen (but not the nucleus accumbens) can still be 

potentiated (Compton and Johnson, 1988; Ichikawa and Meltzer, 1992). Thus, dopamine release 

and re-uptake can change over the course of antipsychotic treatment and cessation and more 

research is required to determine how this might be linked to dopamine supersensitivity.  
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4.2. Contributions of non-dopaminergic systems 

There are several reasons to look beyond dopamine. First, antipsychotic drugs interact with 

multiple neurotransmitter systems including dopamine, serotonin, noradrenaline and acetylcholine 

(Arnt and Skarsfeldt, 1998). Second, psychosis could also be mediated by neurotransmitter systems 

other than dopamine, such as glutamate and GABA (Olney and Farber, 1995). Third, in both 

humans and non-human animals, chronic antipsychotic treatment can evoke behavioural 

supersensitivity to non-selective dopamine agonists that enhance monoamine signaling in general, 

this includes amphetamine and cocaine (Smith and Davis, 1975; Vonvoigtlander et al., 1975; 

Kosten, 1997). Fourth, serotonin (Kapur and Remington, 1996), neurotensin (Binder et al., 2001) 

and glutamate (Javitt, 2007) all interact with the dopamine system and influence dopamine-

dependent behaviours. Below we review evidence that serotonin, glutamate, neurotensin and other 

systems could mediate antipsychotic-evoked dopamine supersensitivity. 

4.2.1. Serotonin 

Several observations suggest that serotonin-mediated activity could be involved in antipsychotic-

induced dopamine supersensitivity. First, many antipsychotic medications, especially of the 

atypical class, have high affinities at several serotonin receptor types (Meltzer et al., 1989). Second, 

early work shows that when animals are given an antipsychotic treatment regimen that produces 

dopamine supersensitivity (4-6 months of trifluoperazine given via the drinking water), they are 

also behaviourally sensitized to compounds that increase serotonin activity (Dawbarn et al., 1981). 

Finally, outside of the context of antipsychotics, dopamine supersensitivity is linked to enhanced 

functional interactions between serotonin 5-HT2 receptors and dopamine. For example, in cocaine-

sensitized or dopamine-depleted rats, there is an enhanced influence of 5-HT2A receptor activity 

on dopamine overflow in the nucleus accumbens, striatal gene expression, and psychomotor 

activity (Yan et al., 2000; Bishop et al., 2004; Brown and Gerfen, 2006). In dopamine-denervated 

rats, injecting a 5-HT2A receptor antagonist into the caudate-putamen normalizes the potentiated 

psychomotor response to dopamine receptor stimulation seen in these rats (Bishop et al., 2005). 

Based on this literature, we determined whether 5-HT2A receptor activity influences the expression 

of antipsychotic-evoked dopamine supersensitivity in a previous study (Charron et al., 2015). We 

found that 5-HT2 or 5-HT2A receptor antagonists normalize the potentiated psychomotor response 

to amphetamine in dopamine-supersensitive rats at doses that do not influence amphetamine-
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induced locomotion in control rats (Charron et al., 2015). This could involve the observation that 

5-HT2A receptor activation promotes striatal dopamine release (Porras et al., 2002). Of note, 

chronic antipsychotic treatment does not alter extracellular levels of serotonin or its metabolite 5-

HIAA in the striatum (Ichikawa and Meltzer, 1990; Amato et al., 2011). Striatal serotonin 

metabolism/turnover is also unchanged (Dawbarn et al., 1981; Ase et al., 1999). Finally, animals 

treated with an antipsychotic regimen that produces dopamine supersensitivity (daily s.c. injections 

of high dose haloperidol) do not show changes in striatal levels of the serotonin transporter (Ase et 

al., 1999). 

Chronic antipsychotic treatment changes 5-HT2A receptor density in the brain and effects can be 

different with typical versus atypical antipsychotics. Chronic treatment with atypical antipsychotic 

drugs decreases striatal levels of 5-HT2A receptors (O'Dell et al., 1990; Steward et al., 2004). In 

contrast, chronic treatment with typical antipsychotic drugs increases 5-HT2A receptor density in 

the caudate-putamen (Wilmot and Szczepanik, 1989). Both increases (Wilmot and Szczepanik, 

1989) and decreases (Wilmot and Szczepanik, 1989) have been reported in the nucleus accumbens. 

Still, other studies report that chronic treatment with either typical or atypical antipsychotics does 

not change striatal levels of 5-HT2A receptors (Wilmot and Szczepanik, 1989; O'Dell et al., 1990; 

Steward et al., 2004). The discrepancies could be due to differences in the doses and extent of 

antipsychotic treatment. However, when antipsychotic treatment explicitly leads to dopamine 

supersensitivity, there is altered 5-HT2A receptor density in corticostriatal regions. Dopamine 

supersensitive rats (treated with a typical antipsychotic) have decreased 5-HT2A receptor density 

in the prelimbic cortex (Charron et al., 2015). This is consistent with post-mortem studies in 

antipsychotic-treated schizophrenia patients (Burnet et al., 1996). In contrast, dopamine 

supersensitive rats have increased 5-HT2A receptor density in the caudate-putamen (Charron et 

al., 2015). If these 5-HT2A receptor-related changes in the cortex and striatum mediate dopamine 

supersensitivity, this could involve changes in the functional interactions between 5-HT2A 

receptors and other neurotransmitter systems in corticostriatal-dependent networks. 

4.2.2. Glutamate 

Antipsychotic-induced dopamine supersensitivity could involve glutamate hypoactivity in the 

striatum. Compared to antipsychotic-naïve animals, animals exposed to antipsychotics and that 

also show dopamine supersensitivity (i.e., as indicated by an augmented psychomotor response to 
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apomorphine) are hyposensitive to the locomotor effects of NMDA, AMPA or kainic acid infused 

in the caudate-putamen [(Ossowska, 1995), also see (Freed et al., 1989)]. Chronic antipsychotic 

treatment produces subtle changes in AMPA and NMDA levels in the striatum. There are no 

significant changes in the overall density of striatal NMDA or AMPA receptors, or NMDA receptor 

1 or 2 subunits (Johnson et al., 1994; Meshul et al., 1996; Scarr et al., 2002; Hanaoka et al., 2003; 

Oda et al., 2017). However, there can be cell type-specific effects. In the caudate-putamen, NMDA 

receptor subunit 1 density is increased in dendritic spines but decreased in glia after chronic 

antipsychotic exposure (Rodriguez and Pickel, 1999). Also, while chronic antipsychotic treatment 

does not change the total density of AMPA receptors in the striatum, the density of AMPA 

receptors in a high affinity state is increased (McCoy et al., 1996). It remains to be determined how 

these glutamate-related changes might contribute to antipsychotic-evoked dopamine 

supersensitivity. In the meantime, as mentioned earlier, striatal D2 receptor activation more 

effectively inhibits EPSPs after chronic antipsychotic treatment (Calabresi et al., 1992). This 

suggests that prolonged exposure to antipsychotics, and perhaps the emergence of dopamine 

supersensitivity, involves changes in glutamate-mediated signaling in the striatum. 

4.2.3. Neurotensin 

Neurotensin is a neuropeptide that can oppose dopamine effects through activation of type 1 

neurotensin receptors (NTS1). Activation of NTS1 receptors decreases D2 receptor affinity for 

dopamine (Agnati et al., 1983; von Euler et al., 1990; Li et al., 1995). This could involve 

internalization of D2 receptors, through pathways dependent on both protein kinase C and β-

arrestin 1 (Thibault et al., 2011). NTS1 receptor activation can also evoke D2 internalization via 

formation of D2-NTS1 complexes (Koschatzky et al., 2011; Borroto-Escuela et al., 2013). Given 

these neurotensin-D2 interactions, neurotensin agonists have been investigated as potential 

antipsychotic drugs (Boules et al., 2007). Striatal neurotensin might also regulate the expression of 

dopamine supersensitivity, as it attenuates dopamine-dependent behaviours. Indeed, infusing 

neurotensin into the nucleus accumbens decreases the psychomotor response to both dopamine 

agonists given systemically (Ervin et al., 1981; Robledo et al., 1993; Feifel et al., 1997) and 

dopamine infused into the nucleus accumbens (Kalivas et al., 1984). We also found previously that 

when dopamine supersensitive rats receive a single infusion of neurotensin into the nucleus 

accumbens (10 µg/hemisphere), this normalizes the potentiated amphetamine-induced locomotion 
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seen in these rats (Servonnet et al., 2017). In contrast, the same treatment does not influence 

amphetamine-induced locomotion in antipsychotic-naïve rats or in rats exposed to antipsychotics 

intermittently via daily injection, a regimen that does not produce dopamine supersensitivity 

(Servonnet et al., 2017). Thus, in dopamine supersensitive rats, the anti-dopaminergic effects of 

neurotensin in the nucleus accumbens are potentiated (Servonnet et al., 2017). It is possible then, 

that the increased response to neurotensin can be exploited pharmacologically to attenuate the 

behavioural manifestations of dopamine supersensitivity. 

Antipsychotic-treated rats have increased striatal neurotensin protein (Govoni et al., 1980; Goedert 

et al., 1985; Bissette et al., 1988; Frey et al., 1988; Kilts et al., 1988; Myers et al., 1992; See et al., 

1995; Kinkead et al., 2000) and mRNA levels (Merchant et al., 1992; Merchant et al., 1994; 

Servonnet et al., 2017). In rats showing antipsychotic-induced dopamine supersensitivity 

specifically, neurotensin mRNA expression is increased in both the caudate-putamen and nucleus 

accumbens (Servonnet et al., 2017). In contrast, when rats are given an antipsychotic treatment 

regimen that does not produce dopamine supersensitivity, neurotensin mRNA levels are increased 

only in the nucleus accumbens. As striatal neurotensin has anti-dopaminergic effects, the increased 

neurotensin-mediated activity could be a compensatory neuroadaptation in dopamine 

supersensitive animals. In contrast, dopamine-supersensitive rats have unchanged overall levels of 

NTS1 receptors in the striatum (Kinkead et al., 2000; Servonnet et al., 2017).  

 4.2.4. Other systems 

GABA, acetylcholine, noradrenergic and nitric oxide systems could also be involved in dopamine 

supersensitivity. First, GABA signaling in the striatum might be disrupted in antipsychotic-evoked 

dopamine supersensitivity. For instance, infusing a mixture of GABAA and GABAB agonists into 

the nucleus accumbens suppresses amphetamine-induced locomotion in antipsychotic-naïve rats, 

but the same manipulation does not influence the exaggerated psychomotor response to 

amphetamine in dopamine supersensitive rats (El Hage et al., 2015). One possibility is that the 

accumbens is not necessary for the expression of dopamine supersensitivity. Alternatively, the 

effects of GABA receptor stimulation could be altered in dopamine supersensitive animals. In 

support of this, in dopamine supersensitive rats (but not antipsychotic-exposed rats that did not 

develop dopamine supersensitivity), the GABA/glutamate ratio in the striatum is increased relative 

to controls (Oda et al., 2017). This could involve enhanced activity of the enzymes glutamic acid 
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decarboxylase 1 and 2, which convert glutamate to GABA (Oda et al., 2017). In parallel, co-

administration of a nitric oxide synthesis inhibitor (Pudiak and Bozarth, 1997), a wide-spectrum 

muscarinic receptor antagonist or a selective muscarinic receptor type 1 antagonist (Carvey et al., 

1986; Butkerait and Friedman, 1988) during chronic antipsychotic treatment also prevents the 

development of dopamine supersensitivity (i.e., prevents the exaggerated psychomotor response to 

dopamine agonists induced by the antipsychotic treatment alone). Once dopamine supersensitivity 

is established, administration of an α1 receptor antagonist can also reverse the potentiated 

psychomotor response to a dopamine agonist (Obuchowicz, 1999). Finally, antipsychotic-evoked 

dopamine supersensitivity may also involve structural changes in the brain. For instance, chronic 

antipsychotic treatment potentiates neurogenesis (Kippin et al., 2005). This could contribute to 

antipsychotic-induced increases in striatal volume (Andersson et al., 2002). Interestingly, 

antipsychotic-induced increases in striatal volume are more pronounced in animals that have 

tardive dyskinesia-like features (Chakos et al., 1998). Such features are linked to a dopamine 

supersensitive state. However, the link between such structural changes and the emergence of 

antipsychotic-evoked dopamine supersensitivity remains to be determined. Thus, in addition to the 

dopamine system, several biological systems seem implicated in the development and expression 

of antipsychotic-induced dopamine supersensitivity.  

5. Concluding remarks and perspectives

Antipsychotic drugs can produce neuroadaptations that are believed to lead to a dopamine 

supersensitive state. We reviewed the changes at dopamine D2 receptors and dopamine transporters 

that are linked to dopamine supersensitivity, and we also discussed the involvement of biological 

systems beyond dopamine. However, the neurobiological mechanisms that cause the development 

and expression of dopamine supersensitivity have yet to be identified fully. Animal models will be 

particularly valuable in this context as they allow us to establish causal links between antipsychotic 

treatment and the development of dopamine supersensitivity. Studies using laboratory animals 

should continue to use antipsychotic treatment regimens that most faithfully mimic the regimens 

used in the clinic. Using acute dosing and/or very high doses can give partial or even irrelevant 

information. It will also be critical to better characterize the factors that influence the development 

and expression of antipsychotic-evoked dopamine supersensitivity in patients with schizophrenia. 
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These factors can include the type of antipsychotic treatment regimen, stress and pre-existing 

symptom severity or quality. We also reviewed the evidence from the animal literature that raises 

questions about whether atypical versus typical antipsychotics—when adequately dosed—might 

be less likely to produce dopamine supersensitivity on the long term. Finally, we discussed findings 

from animal studies showing that regular but intermittent dosing avoids the development of 

dopamine supersensitivity. This links to evidence that similar intermittent dosing approaches can 

be used effectively in at least some people with schizophrenia. Together, the evidence convincingly 

suggests that sustained antipsychotic treatment/D2 receptor occupancy is not always necessary to 

maintain clinical response, and that regular but intermittent treatment strategies should be 

investigated further in the clinic. These issues should be considered at the very outset of 

antipsychotic treatment. In conclusion, we believe that the evidence reviewed here highlights two 

things. First, animal models can be exceptionally useful in modeling antipsychotic-induced 

dopamine supersensitivity and in investigating neurobiological mechanisms. Second, in parallel to 

the search for new antipsychotic molecules, we need to better understand the medications currently 

used. Treatment regimens can then be designed in ways that attenuate the symptoms of 

schizophrenia while minimizing the risk of neuroadaptations that promote dopamine 

supersensitivity.  
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ABSTRACT 

Antipsychotic drugs temper psychotic symptoms by interacting with dopamine D2 receptors to 

reduce dopamine neurotransmission. Currently, the standard of care involves antipsychotic 

treatment protocols that achieve steady-state levels of medication. Maintaining patients on 

continuous treatment is thought to be necessary to keep them stabilised. However, continuous 

antipsychotic exposure increases the risk of adverse effects over time. These effects include 

metabolic and cardiovascular disorders, extrapyramidal complications, and dopamine receptor 

supersensitivity, the latter of which could potentially promote both treatment tolerance and 

psychosis relapse. In the present review, we describe evidence showing that continuous exposure 

to antipsychotic drugs can not only worsen long-term outcome, but—past acute phase treatment—

it is also unnecessary to effectively manage schizophrenia symptoms. We also describe evidence 

that regular but extended dosing, allowing predictable periods of lower antipsychotic levels/D2 

occupancy, is both safe and effective in patients, and it greatly reduces drug exposure overall. 

Studies in laboratory animals show that compared to continuous antipsychotic exposure, regular 

but extended dosing actually has superior antipsychotic-like efficacy, and it also substantially 

reduces the likelihood of both motor side effects and dopamine receptor supersensitivity. We 

propose that regular, but extended dosing should be considered in the long-term treatment of people 

with schizophrenia, because the available evidence suggests it can be just as effective as continuous 

treatment, while decreasing overall drug exposure and potentially reducing harmful side effects. 

KEY WORDS 

Antipsychotic drugs; Extended dosing; Continuous dosing; Schizophrenia 

ABBREVIATIONS 

LAI, long-acting injectable; PET, positron emission tomography; CATIE, Clinical Antipsychotic 

Trials in Intervention Effectiveness. 
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1. Introduction 

A dogma in the treatment of schizophrenia is that maintaining steady-state levels of antipsychotic 

drug is necessary to effectively manage symptoms. Here we review literature that challenges this 

dogma. The standard of care for people with schizophrenia involves antipsychotic treatment 

regimens that achieve sustained antipsychotic levels, at doses typically producing greater than 65 

% occupancy of striatal D2 receptors. This is effective in treating acute psychosis and in preventing 

relapse. However, maintaining continuous medication can do more harm than good, because it 

increases the incidence of deleterious effects (Whitaker, 2004). Unwanted effects of antipsychotic 

medication include metabolic and cardiac complications, extrapyramidal disruptions, and 

dopamine receptor supersensitivity, the latter of which can both reduce antipsychotic efficacy and 

worsen psychosis (Chouinard et al., 1978; Muench and Hamer, 2010; Murray et al., 2016). This 

greatly impairs the health and quality of life of schizophrenia patients. We will highlight here recent 

studies in humans and laboratory animals that confront the idea that continuous exposure to 

antipsychotic drugs is necessary to maintain antipsychotic efficacy. These studies have compared 

antipsychotic treatment regimens that achieve sustained brain levels, to regimens achieving regular 

but extended antipsychotic dosing. Regular, extended dosing is achieved by increasing the time 

interval between doses. Importantly, medication is still taken at consistent and predictable intervals, 

achieving regular peaks and troughs in medication levels, but at intervals short enough so that 

schizophrenia symptoms do not worsen (e.g., taking oral antipsychotic drug every other day instead 

of everyday). As reviewed previously by Remington et al. (Remington et al., 2014), the evidence 

shows that regular but extended antipsychotic intake can be a safe and effective approach to treat 

schizophrenia patients. Extended dosing has also been examined in laboratory rats by giving 

antipsychotic medications via daily systemic injection, to produce regular peaks and troughs in 

medication levels/D2 receptor occupancy. As we will highlight in Section 4, preclinical studies in 

rodents show that regular, extended dosing is actually more efficacious behaviourally than 

continuous dosing, while reducing the risk of side effects. Thus, we lay out below that the temporal 

kinetics of treatment (i.e., continuous versus regular but extended antipsychotic exposure) are 

decisive in predicting outcome. The frequency with which drug concentrations reach threshold 

levels throughout the course of treatment determines both treatment efficacy and the risk of 

unwanted side effects. We conclude then, that the temporal kinetics of treatment should be 
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considered in the clinic, and that extended rather than continuous antipsychotic dosing could 

increase efficacy and potentially reduce side effects.  

2. Maintaining continuous antipsychotic drug levels: more harm than good

Antipsychotic drugs exert their antipsychotic effect by reducing D2 receptor-mediated signalling. 

Evidence obtained from brain positron emission tomography (PET) studies demonstrates that 

blockade of greater than 65 % of striatal dopamine D2 receptors with antipsychotic drugs increases 

the likelihood of a therapeutic response in the acute 

phase of schizophrenia treatment (Fig. A2.1) (Farde 

et al., 1992; Kapur et al., 2000b; Uchida et al., 2011). 

This notion has led to the conventional dosing 

strategy, which advocates using orally-administered 

or long-acting injectable (LAI) antipsychotics in 

dosing regimens that produce steady-state delivery of 

antipsychotic drugs to the brain and continuous 

blockade of over 65 % of dopamine D2 receptors 

(Figs. A2.2A-B). Antipsychotic drugs are also 

associated with many dose-dependent side effects, 

including extrapyramidal side effects (Uchida et al., 

2011), sudden cardiac death (Ray et al., 2009; 

Schneeweiss and Avorn, 2009), and cognitive 

impairments (Sakurai et al., 2012). Among these side 

effects, extrapyramidal side effects and cognitive 

impairments occur more likely once dopamine D2 

receptor blockade exceeds approximately 80 % (Fig. 

A2.1) (Uchida et al., 2011; Sakurai et al., 2012). 

Based on these findings, the therapeutic window of 

65-80 % D2 occupancy has been proposed for

younger adults, and it is also used to determine dose

and dosing frequency of new antipsychotic drugs.

 

FIG. A2.1 ─ The relationship between 
dopamine D2 receptor occupancy in the 
striatum by antipsychotic medication and 
clinical outcome. In the acute phase of 
schizophrenia treatment, most antipsychotics 
show therapeutic efficacy without an 
increased risk of extrapyramidal effects and 
cognitive deficits at doses that occupy ~65 to 
80 % of striatal D2 receptors. Clozapine and 
quetiapine are notable exceptions to this (see 
Section 3.1 in text). 
_______________________________________
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However, this therapeutic window of D2 occupancy is based on data from patients who were 

receiving acute phase treatment. Recent work shows that lower levels of antipsychotic-induced D2 

receptor occupancy are effective during the maintenance phase of antipsychotic treatment (Uchida 

et al., 2008; Ikai et al., 2012; Mizuno et al., 2012; Moriguchi et al., 2013). Thus, therapeutic levels 

of D2 occupancy during the different stages of psychosis and schizophrenia must still be refined, 

as continuous antipsychotic treatment might not be necessary or even desirable in the maintenance 

phase of treatment. 

2.1 Continuous antipsychotic treatment and dopamine receptor supersensitivity in 

schizophrenia 

Conventional antipsychotic dosing strategies, which achieve steady-state antipsychotic levels, can 

also produce dopamine receptor supersensitivity in patients (Chouinard et al., 1978). This is 

indicated by a rapid relapse to psychosis upon drug discontinuation or dose reduction, emergence 

of new or more severe symptoms of psychosis, tolerance to previously observed therapeutic effects 

and drug-induced movement disorders (Chouinard et al., 1978; Chouinard, 2004; Fallon and 

Dursun, 2011; Chouinard et al., 2017; Servonnet and Samaha, 2020). Thus, dopamine 

supersensitivity can be detected through the presence of tardive dyskinesia (Miller and Chouinard, 

1993) and supersensitivity psychosis (Chouinard et al., 1978; Chouinard et al., 1982). In line with 

this idea, a recent meta-analysis covering a total cohort of 5130 individuals found tardive 

dyskinesia to be the strongest predictor of psychosis relapse in patients with confirmed adherence 

to antipsychotic treatment (i.e., patients given LAI antipsychotics) (Rubio et al., 2020). The 

prevalence rate of dopamine supersensitivity psychosis is estimated to be 30 % among 

schizophrenia patients, and even higher (70 %) in treatment-resistant patients (Kimura et al., 2014; 

Suzuki et al., 2015; Takase et al., 2015). However, the nature of the relationship between 

antipsychotic-induced dopamine supersensitivity psychosis and treatment resistance is not yet 

clear, because treatment resistance is commonly observed from illness onset, before long-term 

antipsychotic exposure (Demjaha et al., 2017). Using the presence of tardive dyskinesia to detect 

dopamine receptor supersensitivity, it is reported that supersensitivity psychosis could contribute 

to relapse in 30-40% of patients with schizophrenia (Fallon and Dursun, 2011; Fallon et al., 2012). 

Some studies report no evidence of dopamine supersensitivity in schizophrenia patients withdrawn 

from antipsychotic treatment (Emsley et al., 2018). However, as the authors of that study noted 
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‘(…) because patients were treated with a LAI antipsychotic, withdrawal from antipsychotic 

treatment was gradual, potentially protecting patients from developing withdrawal or 

discontinuation symptoms.’ [p. e6; (Emsley et al., 2018)]. Moreover, even people with no 

psychiatric diagnoses can develop both tardive dyskinesia and withdrawal psychosis when given 

chronic treatment with dopamine D2 receptor antagonists (Lu et al., 2002; Roy-Desruisseaux et 

al., 2011; Seeman, 2014). Thus, the available evidence supports the notion that sustained 

antipsychotic treatment can cause dopaminergic dysfunction and that this can manifest as tardive 

dyskinesia and worsening of psychosis. 

FIG. A2.2 ─ The relationship between antipsychotic treatment regimen and the temporal kinetics of 
striatal dopamine D2 receptor occupancy in humans and laboratory rats. The therapeutic range of 65-
80 % is shaded in blue. In the clinic, standard treatment regimens for schizophrenia involve (A) daily oral 
intake of antipsychotic drugs or (B) administration of long-acting injectable antipsychotics. These dosing 
strategies typically achieve continuous levels of striatal D2 occupancy, above 65 %. (C) In rats, 
administration of antipsychotic drugs via a subcutaneously implanted osmotic minipump, or via intra-
muscular administration of a long-acting injectable antipsychotic also produces continuous striatal D2 
receptor occupancy above 65 %. (D) Because of their fast pharmacokinetic profile, regular oral intake of 
clozapine or quetiapine does not achieve continuous levels of D2 occupancy above 65 %, instead producing 
peaks and troughs in D2 occupancy, akin to a regular, but extended dosing protocol. (E) When rats receive 
antipsychotic drugs via regular, daily injection, this achieves transient D2 receptor occupancy > 65 %. In 
both C and E, doses can be used that achieve clinically-relevant levels of D2 occupancy (i.e., 65-80 %). 
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2.2 Continuous antipsychotic exposure promotes treatment failure, motor side effects 

and dopamine receptor supersensitivity in rats 

In rats, continuous antipsychotic treatment produces aversive effects that are similar to those that 

can be seen in antipsychotic-treated schizophrenia patients. As illustrated in Fig. A2.2C, some 

treatment regimens used in preclinical animal studies can mimic the continuous levels of 

antipsychotic exposure typical in schizophrenia patients. These regimens include administration of 

a LAI antipsychotic (Turrone et al., 2003b) or administration of antipsychotic drug via a surgically 

implanted, subcutaneous osmotic minipump (Kapur et al., 2003). Just like in humans, continuous 

antipsychotic treatment produces tolerance to antipsychotic-like effects in rodents. Antipsychotic-

like effects are commonly evaluated in rats using two well validated tests: suppression of 

conditioned avoidance responding (Wadenberg and Hicks, 1999) and of the psychomotor 

activating effects of a dopamine agonist (Ljungberg and Ungerstedt, 1985). Antipsychotic 

medications reliably disrupt conditioned avoidance responding (Wadenberg et al., 2001). While it 

is not clear how conditioned avoidance of an aversive stimulus in rats relates to psychosis in 

humans (Li et al., 2007), the conditioned avoidance responding model shows high predictive 

validity for antipsychotic activity (Wadenberg and Hicks, 1999). As regards disruption of the 

psychomotor response to dopamine agonists, compounds other than antipsychotic drugs can also 

have this effect. Nonetheless, suppression of the psychomotor response to a dopamine agonist is a 

reliable and often used test to probe the antidopaminergic effects of antipsychotic drugs. 

In rats receiving continuous antipsychotic treatment, the antipsychotic initially suppresses both 

conditioned avoidance responding and the psychomotor effects of dopamine agonists, but it loses 

efficacy later in treatment, even though striatal D2 occupancy remains above 65 % (Samaha et al., 

2007; Samaha et al., 2008; Amato et al., 2018). Also, just like in humans, continuous antipsychotic 

treatment in rats produces signs related to tardive dyskinesia (i.e. vacuous chewing movements) 

(Turrone et al., 2003b, a). Rats receiving continuous antipsychotic treatment also develop a 

dopamine supersensitive state, as can occur in some patients with schizophrenia (Chouinard et al., 

1978; Chouinard and Jones, 1980; Fallon and Dursun, 2011; Kimura et al., 2014; Suzuki et al., 

2015; Chouinard et al., 2017). Dopamine supersensitivity in rats manifests among others as an 

exaggerated response to dopamine receptor stimulation. This exaggerated response is the most 

commonly used index of antipsychotic-induced dopamine supersensitivity in laboratory rodents. 
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In rats, antipsychotic-induced dopamine supersensitivity produces robust sensitization to the 

psychomotor-activating effects of dopamine agonists, but also to their reward-enhancing effects 

(Gianutsos et al., 1974; Sayers et al., 1975; Vonvoigtlander et al., 1975; Smith and Davis, 1976; 

Ericson et al., 1996; Samaha et al., 2007; Samaha et al., 2008; Bedard et al., 2011; Gill et al., 

2014). Antipsychotic-evoked dopamine supersensitivity is often studied in otherwise 

neurologically intact animals, but it can also be seen in well-established animal models of 

schizophrenia symptoms (Gill et al., 2014). Antipsychotic-evoked dopamine supersensitivity is 

also reported to render rats unresponsive to novel agents that otherwise restore electrophysiological 

and behavioural abnormalities in a rat model of schizophrenia-like symptoms (Gill et al., 2014). 

The implication is that this could explain at least in part why new compounds fail in clinical trials 

involving antipsychotic-experienced schizophrenia patients (Gill et al., 2014). Studies in rats also 

show that once dopamine supersensitivity has developed, it can ‘break through’ ongoing 

antipsychotic treatment (Samaha et al., 2007; Samaha et al., 2008; Amato et al., 2018), and this is 

potentially linked to both functional tolerance to antipsychotics (Samaha et al., 2007; Samaha et 

al., 2008) and the emergence of vacuous chewing movements (Turrone et al., 2003b, a). 

3. Extended dosing in schizophrenia

Regular antipsychotic dosing remains the standard of care in the clinic, because this produces 

continuous levels of dopamine D2 receptor blockade that are thought to maximize therapeutic 

response in the acute treatment phase. However, different dosing schedules have been tested to 

reduce dose-dependent antipsychotic side effects as well as medication cost in the maintenance 

phase. An initial strategy involved targeted antipsychotic dosing, where antipsychotic treatment is 

resumed at the earliest signs of psychotic relapse following discontinuation. This dosing method 

has not been a success, because it increases the risk of relapse and rehospitalization compared to 

regular, continuous dosing (Jolley et al., 1990; Schooler, 1991; Jolley and Hirsch, 1993; Gaebel, 

1994; Gaebel et al., 2002). Indeed, it is extremely difficult to effectively detect prodromal 

symptoms or the early signs of relapse (Remington and Kapur, 2010; Saito et al., 2020). However, 

recent findings suggest that the long-term outcomes of targeted treatment might warrant further 

exploration. Wunderink et al. (2007) completed an initial study comparing targeted versus 

maintenance treatment for 18 months, followed by a second study assessing outcome 5 years later 
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(Wunderink et al., 2013). In the initial study, targeted treatment was associated with a greater risk 

of relapse than maintenance treatment (Wunderink et al., 2007), in accordance with previous 

reports (Jolley et al., 1990; Schooler, 1991; Jolley and Hirsch, 1993; Gaebel, 1994; Gaebel et al., 

2002). However, in the 5-year follow-up period (during which the initial treatment strategy was 

not necessarily maintained in each individual), patients in the initial targeted treatment group were 

taking lower doses of antipsychotic medications on average, and they also showed better social 

functioning over time relative to patients in the initial maintenance treatment group, while 

symptomatic remission did not differ between groups (Wunderink et al., 2013). Because patients 

were not required to stay in their initial treatment group beyond the first 18 months, the findings 

suggest that perhaps some patients might benefit from targeted treatment on the long term 

(Wunderink et al., 2013). 

Persons with schizophrenia can have a low medication compliance rate, regularly skipping 

medications. However, this is not the same as the extended, but regular dosing strategies discussed 

here. A key difference being that with such strategies, dosing occurs at predictable intervals, and 

these intervals are short (e.g., taking medication every other day, instead of every day). In contrast, 

medication non-adherence can mean that patients remain off medication for periods too long to 

effectively manage symptoms. Another issue concerns the percentage of patients with 

schizophrenia that are receiving continuous antipsychotic medication. A recent meta-analysis 

suggests that ~70 % of schizophrenia patients comply with their treatment (Yaegashi et al., 2020). 

This suggests that many patients are receiving continuous antipsychotic exposure. 

Another approach to reduce overall drug exposure is extended, but regular antipsychotic dosing, in 

which antipsychotic drugs are given regularly but with longer intervals than usual (e.g., every 2 

days for oral antipsychotic drugs instead of everyday). Thereby, unlike the targeted approach, 

extended dosing involves regular, predictable periods of low drug exposure (i.e., < 65 % of D2 

occupancy) but not drug-free periods per se. Below we lay out the evidence that extended dosing 

schedules producing regular but transient D2 occupancy above 65 % are as effective as 

conventional, continuous dosing schedules in preventing relapse.  

3.1 Continuous D2 receptor blockade is not necessary to maintain clinical efficacy 
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Atypical antipsychotic drugs generally dissociate more rapidly from D2 receptors [i.e., have a faster 

koff) than typicals do (Seeman, 2002) [but see (Sahlholm et al., 2016)], but atypicals are still 

efficacious in treating schizophrenia symptoms. This has led to the hypothesis that antipsychotic 

efficacy could be achieved even with extended antipsychotic dosing. Interestingly, the fast koff 

property of atypicals could explain why they are generally less likely than typical antipsychotic 

drugs to produce dopamine-dependent side effects. For instance, compared to typical 

antipsychotics, clozapine is unlikely to produce tardive dyskinesia and can in fact improve tardive 

dyskinesia caused by other antipsychotic agents (Pardis et al., 2019). Other atypical antipsychotic 

drugs—including the D2 antagonists risperidone, olanzapine and quetiapine and the D2 partial 

agonist aripiprazole—are also thought to be less likely to produce tardive dyskinesia when 

compared to typicals (Dolder and Jeste, 2003; Correll et al., 2004; Miller et al., 2007; Carbon et 

al., 2017). Furthermore, preclinical studies demonstrate that dopamine supersensitivity is less 

pronounced and shorter lasting with atypical versus typical antipsychotic drugs (Samaha et al., 

2007; Tadokoro et al., 2012; Bedard et al., 2013; Amato et al., 2018). A faster koff might reduce 

the risk of dopamine-related side effects by allowing a greater degree of endogenous dopamine 

neurotransmission via D2 receptors, despite presence of the antipsychotic. 

Antipsychotic medications with a fast pharmacokinetic profile have also been informative in 

thinking about extended dosing. Indeed, clozapine and quetiapine not only have some of the fastest 

dissociation rates from D2 receptors amongst all antipsychotics (Seeman, 2002), they also show a 

fast pharmacokinetic profile (i.e., rapid absorption and rapid elimination half-life [Jann et al., 1993; 

Goren and Levin, 1998]), leading to peaks in D2 occupancy which then decline within hours after 

antipsychotic administration (Fig. A2.2D). Despite this more transient action, clozapine and 

quetiapine are still clinically efficacious. For instance, quetiapine can be taken 2-3 times per day 

(Goren and Levin, 1998; DeVane and Nemeroff, 2001) and occupies 60-65 % of striatal D2 

receptors 3 h after administration, and 0-20 % after 12 h (Kapur et al., 2000c). Despite this transient 

exposure, the antipsychotic still improves schizophrenia symptoms (Kapur et al., 2000c). 

Similarly, clozapine is generally taken once a day (Meyer and Stahl, 2019) and occupies ≤ 65 % 

of striatal D2 receptors 6-14 h after administration [e.g., 33-65% occupancy (Wiesel et al., 1990; 

Farde et al., 1992; Tauscher et al., 2002a)]. Preclinical studies also show that clozapine-induced 

D2 receptor occupancy declines within hours after administration. In non-human primates, 

clozapine (0.2-5 mg/kg, i.v.) can occupy up to 83 % of striatal D2 receptors immediately after 
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administration, and occupancy declines to ~40-60 % 5 h later (Suhara et al., 2002). Similarly, in 

rats, clozapine (15 mg/kg, s.c.) occupies 60 % of striatal D2 receptors 1 h after administration, and 

occupancy effectively disappears 24 h later (Kapur et al., 2003). In summary, clozapine and 

quetiapine interact more loosely with D2 receptors and also possess a fast pharmacokinetic profile, 

and both characteristics could contribute to the lower incidence of extrapyramidal effects with these 

drugs relative to other antipsychotic drugs (typical or atypical), including haloperidol, 

chlorpromazine, sulpiride, risperidone and olanzapine (Leucht et al., 2009; Rummel-Kluge et al., 

2012; Suttajit et al., 2013; Martino et al., 2018).  

Because continuous occupancy of D2 receptors does not seem required to maintain antipsychotic 

efficacy, some studies have investigated the effects of extending the interval between oral 

antipsychotic doses. In a pilot study including 11 patients, Remington et al. (2005) found that 

antipsychotic efficacy is maintained for at least 1-6 months with regular, but extended dosing (i.e., 

every second or third day). Later, Remington et al. (2011) replicated this finding in a larger study 

(N = 35) comparing the efficacy of alternate-day versus daily dosing with risperidone or olanzapine 

in a double-blind, randomized placebo-controlled trial. They followed the patients for 6 months 

and found no increase in the risk of symptom exacerbation, relapse, or re-hospitalization in the 

extended dosing group (Remington et al., 2011). Similarly, Takeuchi and colleagues (Takeuchi et 

al., 2014) used the dataset from the Clinical Antipsychotic Trials in Intervention Effectiveness 

(CATIE) to compare the therapeutic efficacy of once- versus twice-daily administration of 

perphenazine, which has a plasma half-life of 8-12 h. They found no differences in effectiveness 

or side effects (Takeuchi et al., 2014). Although levels of antipsychotic-induced dopamine D2 

receptor blockade were not measured in these studies, it would be reasonable to assume that the 

individuals receiving extended dosing treatment had lower levels of D2 receptor blockade at trough 

[see also (Tauscher et al., 2002b)].  

Previous studies with LAI antipsychotics also show that transient D2 occupancy above 65 % as 

well as longer intervals between treatment administrations does not compromise antipsychotic 

efficacy. For example, Nyberg et al. (1995) demonstrated in a [11C]raclopride PET study that eight 

stabilized outpatients with schizophrenia maintained a clinical response when administered 

haloperidol decanoate every 4 weeks, despite mean D2 blockade levels decreasing from 73 % 

(range: 60-82 %) at week 1 to 53 % (range: 20-74 %) at week 4. Another PET study led to the same 
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conclusion where seven subjects with schizophrenia received LAI risperidone monthly, rather than 

bi-weekly, for one year (Uchida et al., 2008). Although more than half of subjects showed < 65 % 

D2 receptor blockade measured with [11C]raclopride PET at trough, none relapsed over the follow-

up period. In a randomized, double-blind placebo-controlled trial (N = 50), Carpenter et al. (1999) 

found that fluphenazine decanoate is still effective when administered every 6 weeks instead of 

every 2 weeks, indicating that extended dosing intervals do not compromise the efficacy of LAI 

antipsychotics (Carpenter et al., 1999).  

Consistent with this notion, a series of cross-sectional studies reported dopamine D2 receptor 

blockade estimated from antipsychotic blood concentrations among patients with clinically stable 

schizophrenia and found that sustained blockade of dopamine D2 receptor over 65 % may not be 

necessary for relapse prevention (Ikai et al., 2012; Mizuno et al., 2012; Moriguchi et al., 2013). In 

these studies, estimated levels of dopamine D2 receptor blockade by antipsychotic were < 65 % at 

trough in approximately half of the patients (Ikai et al., 2012; Mizuno et al., 2012; Moriguchi et 

al., 2013). The same group also conducted a single-blind, 52-week randomized controlled trial (N 

= 68), in which clinically stable patients with schizophrenia receiving risperidone or olanzapine 

were randomly assigned to either a continuous D2 blockade group (i.e., D2 receptor blockade of > 

65 % at trough, estimated from antipsychotic blood concentrations) or a non-continuous blockade 

group (i.e., an estimated peak level of > 65 % with an estimated trough level of < 65 %) (Tsuboi et 

al., 2015). Twenty-six (76.5 %) subjects in the continuous blockade group and thirty-one (91.2 %) 

subjects in the non-continuous blockade groups completed the study. There were no significant 

group differences in any of the assessment scales for symptomatology or side effects. The 

association between peak/trough dopamine D2 receptor blockade with antipsychotic drugs, 

estimated from antipsychotic blood concentrations, and tardive dyskinesia was examined, using 

the dataset from the CATIE (Yoshida et al., 2014). As a result, estimated dopamine D2 receptor 

blockade levels at trough were significantly higher in subjects who developed involuntary 

movements during the study period (N = 23) than in subjects who did not (N = 195) (71.7 ± 14.4 

% versus 64.3 ± 19.3 %, p < 0.05), with no significant group differences in the estimated peak 

levels of D2 receptor blockade (75.4 ± 8.7 % versus 72.1 ± 9.9 %, p = 0.07). Thus, greater dopamine 

D2 receptor blockade with antipsychotics at trough can also increase the risk of tardive dyskinesia. 

3.2 The case with long-acting injectable antipsychotics 
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Evidence has consistently shown the effectiveness of LAI antipsychotics in preventing relapse in 

patients with schizophrenia (Lähteenvuo et al., 2018). In parallel, we do not know enough about 

the potential long-term disadvantages of treatment with atypical LAI antipsychotic drugs in 

humans. Indeed, long-term follow-up data with clinical assessments especially for side effects are 

critically lacking (Uchida and Suzuki, 2014). In addition, further investigations are clearly needed 

to determine appropriate dosing intervals of LAI antipsychotic drugs (Uchida and Suzuki, 2014) 

and target drug concentrations (Schoretsanitis et al., 2019). In fact, LAI risperidone that is indicated 

for bi-weekly administration could be given monthly (Gharabawi et al., 2007; Uchida et al., 2008), 

although the data are still preliminary. Because data on appropriate dosing interval is insufficient, 

patients must be carefully selected for treatment with LAI antipsychotics, based on patient 

treatment adherence and preferences (Takahashi et al., 2020), as well as dosing frequency of LAI 

treatment when it is administered. Moreover, potential biological changes such as dopamine 

supersensitivity due to this formulation should also be acknowledged. Indeed, as reviewed below 

in animal models (Section 4), compared to regular but extended dosing, continuous dosing can 

promote robust dopamine receptor supersensitivity. In this context, recent work shows that 

extended dosing of LAI antipsychotics, beyond the intervals indicated in product monographs is 

worth considering (Gharabawi et al., 2007; Uchida et al., 2008). Some studies claim that treatment 

with LAI antipsychotics is beneficial for patients with a history of dopamine supersensitivity 

psychosis (Kimura et al., 2014; Kimura et al., 2016). However, these results should be interpreted 

with much caution. First, the studies did not include a placebo condition and experimenters were 

also not blind to treatment condition (Kimura et al., 2014; Kimura et al., 2016). Second, the 

findings are sharply at odds with controlled animal studies showing that continuous dopamine D2 

receptor blockade at clinically representative levels actually promotes dopamine supersensitivity 

(Ericson et al., 1996; Samaha et al., 2008; Amato et al., 2018).  

Thus, clinical data suggest that continuous D2 occupancy is not required for the maintenance of 

antipsychotic response. New data from methodologically robust clinical trials highlight the many 

benefits of extended, but regular antipsychotic dosing. As discussed more in depth later (Section 

6), this must now be confirmed in larger-scale, randomized controlled trials with longer follow-up 

periods.  
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4. Benefits of extended relative to continuous dosing: lessons from rats

Work in laboratory animals shows that extended dosing actually produces a superior behavioural 

profile relative to continuous dosing. Extended antipsychotic dosing can be modelled in rats by 

injecting them daily with antipsychotic drugs. As illustrated in Fig. A2.2E, this achieves > 65 % of 

striatal D2 occupancy for a few hours, followed by a decline in occupancy until the next day’s 

injection, leading to peaks and troughs in striatal D2 occupancy (Kapur et al., 2003; Turrone et al., 

2003a, 2005). There is a vast literature on the effects of repeated antipsychotic injections in 

laboratory animals. In many of these studies, high and clinically unrepresentative doses of 

antipsychotic drugs were used (Kapur et al., 2003), and this promotes unwanted side effects (Smith 

and Davis, 1975; Montanaro et al., 1982; Turrone et al., 2003a; Fukushiro et al., 2008). Here we 

focus specifically on studies where clinically relevant antipsychotic doses were used, that is doses 

achieving 65-80 % striatal D2 receptor occupancy at peak (Kapur et al., 2003).  

4.1. Continuous antipsychotic treatment loses antipsychotic-like efficacy over time, 

while extended treatment remains effective 

As mentioned in Section 2.2, a common index of antipsychotic-like efficacy in rats is the 

suppression of the conditioned avoidance response to an aversive cue. In rats, both continuous and 

extended dosing regimens initially suppress this conditioned response, but over time continuous 

dosing loses efficacy whereas extended dosing actually becomes more effective (Figs. A2.3A-B) 

(Li et al., 2007; Samaha et al., 2008; Mead and Li, 2010). It appears then that continuous versus 

extended dosing promotes neuroadaptations that lead to opposite outcomes: tolerance versus 

sensitization to antipsychotic-like effects, respectively. Remarkably, this occurs even when a 20-

fold lower dose is administered using extended dosing, such that greater efficacy is produced with 

lesser drug (0.5 mg/kg haloperidol for continuous treatment (Samaha et al., 2008), versus 0.025-

0.05 mg/kg haloperidol for extended treatment [Li et al., 2007; Samaha et al., 2008)]. Interestingly, 

rats previously given extended treatment still show a suppressed conditioned avoidance response 

on days where they do not receive an antipsychotic injection (Fig. A2.3B), and responding returns 

to control levels after repeated testing/additional drug-free days (Li et al., 2007). This suggests that 

extended antipsychotic treatment can produce persistent antipsychotic-like effects, thus reducing 

the need for daily drug administration. 
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Studies using suppression of the locomotor response to dopamine agonists as an index of 

antipsychotic-like efficacy also show that extended antipsychotic dosing is more efficacious than 

continuous dosing. As seen with the conditioned avoidance responding paradigm, both continuous 

and extended antipsychotic dosing initially suppress the locomotor-stimulating effects of dopamine 

agonists (Figs. A2.3C-D) (Samaha et al., 2008). This reflects the anti-dopaminergic effects of 

antipsychotics. However, with continued treatment, continuous dosing failed in maintaining this 

 

 
 
FIG. A2.3 ─ In rats, continuous exposure to antipsychotic drugs promotes treatment tolerance, 
movement disorders and a state of dopamine receptor supersensitivity, while extended exposure 
becomes more efficacious over time, and also reduces the risk of both movement disorders and 
dopamine supersensitivity. (A) Continuous antipsychotic treatment progressively loses (see next page)  
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anti-dopaminergic effect, whereas extended dosing maintained efficacy—even though the latter 

involved a 10-fold lower dose (0.5 mg/kg haloperidol for continuous treatment, versus 0.05 mg/kg 

haloperidol for extended treatment) (Samaha et al., 2008). Thus, using two different behavioural 

paradigms (suppression of conditioned avoidance responding and of the locomotor response to 

dopamine agonists), extended antipsychotic dosing proves more effective than continuous dosing, 

in spite of lesser drug exposure.  

4.2 Extended versus continuous antipsychotic dosing reduces the likelihood of motor 

side effects 

Extended dosing considerably reduces the risk of motor disturbances in rats (see Figs. A2.3E-F). 

For instance, after 2 months of treatment, 33 to 54 % of rats receiving continuous haloperidol or 

olanzapine (at doses achieving between ~65-90 % of D2 occupancy) show high levels of vacuous 

chewing movements (≥ 8 vacuous chewing movements/2 minutes) (Turrone et al., 2003a, 2005). 

In parallel, rats receiving similar doses but using an extended treatment approach do not develop 

vacuous chewing movements after 2 months of treatment, even at doses that achieve ~70-90 % of 

D2 occupancy at peak. The temporal kinetics of treatment also interact with antipsychotic drug-

type to determine outcome. At a dose achieving very high D2 occupancy (~95 %) at peak, extended 

dosing with the atypical antipsychotic olanzapine does not produce significant vacuous chewing 

movements in rats (Turrone et al., 2005), whereas extended dosing with the typical antipsychotic 

(FIG. A2.3)  efficacy in the suppression of conditioned avoidance responding task (i.e., rats develop 
tolerance to this antipsychotic effect). In contrast, (B) extended antipsychotic treatment gains efficacy over 
time (i.e., rats develop sensitization to this antipsychotic effect) and also maintains efficacy even after 
treatment cessation. Similarly, (C) continuous antipsychotic treatment initially suppresses the locomotor 
response to dopamine agonists—indicating anti-dopaminergic efficacy—but fails over time. After 
discontinuation of continuous antipsychotic treatment, rats show an exaggerated psychomotor response to 
dopamine agonists, indicating a dopamine supersensitive state. In contrast, (D) extended antipsychotic 
treatment maintains anti-dopaminergic efficacy. After discontinuation of extended antipsychotic treatment, 
rats generally show a normal psychomotor response to dopamine agonists, indicating no dopamine 
supersensitivity. (E) Over time, continuous antipsychotic treatment promotes high levels of vacuous 
chewing movements, a sign related to tardive dyskinesia. (F) Extended antipsychotic treatment reduces the 
risk of vacuous chewing movements. (G) Continuous antipsychotic exposure promotes a dopamine 
supersensitive state that can breakthrough ongoing antipsychotic treatment, and that is fully unmasked after 
treatment cessation. In contrast, (H) extended antipsychotic exposure reduces the risk of dopamine 
supersensitivity. 
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haloperidol does, at least in some rats (17 %) (Turrone et al., 2003a). This incidence remains lower 

than that seen when animals are treated continuously with haloperidol or olanzapine (33-54 %), at 

doses achieving lower D2 occupancy (~65-90 %) (Turrone et al., 2003a, 2005). While preclinical 

studies using doses achieving > 90 % D2 occupancy are less clinically pertinent, the studies above 

demonstrate that extended antipsychotic administration—even with high doses—is much less 

likely to produce motor side effects in laboratory animals relative to continuous dosing. As 

additional converging evidence for this, with doses achieving 65-80 % D2 occupancy at peak, 

neither acute (Wadenberg et al., 2000; Wadenberg et al., 2001) nor repeated (Samaha et al., 2008) 

injections of antipsychotic produce catalepsy, another manifestation of motor impairment related 

to extrapyramidal effects. Thus, when antipsychotic medication disrupts dopamine 

neurotransmission continuously, this promotes neuroplastic changes that lead to motor side effects, 

but if disruption of dopamine neurotransmission is only transient, this can prevent such 

neuroplasticity. 

4.3. Extended antipsychotic exposure is unlikely to promote dopamine supersensitivity 

A notable added benefit of extended versus continuous antipsychotic dosing is that extended dosing 

reduces the risk of dopamine supersensitivity (see Figs. A2.3G-H). After treatment cessation, rats 

previously treated continuously have a significantly enhanced psychomotor response to dopamine 

agonists, while animals previously treated using an extended approach show either no change or a 

modest increase compared to antipsychotic-naïve control rats (Figs. A2.3C-D) (Ericson et al., 

1996; Samaha et al., 2008; Bedard et al., 2011, 2013; Servonnet et al., 2017).  

In summary, continuous antipsychotic dosing promotes treatment tolerance and dopamine 

supersensitivity, whereas extended dosing can gain efficacy over time and is unlikely to produce 

dopamine supersensitivity—all the while reducing total exposure to medication.  

5. Neurobiological effects of continuous versus extended antipsychotic dosing 

The neurobiological mechanisms underlying the different behavioural profiles produced by 

continuous versus extended antipsychotic dosing remain largely unknown, but there are at least 

some clues. For example, the D2 receptor is a critical target for antipsychotic efficacy (Creese et 

al., 1976; Seeman et al., 1976; Farde et al., 1989; Richtand et al., 2007), and some studies have 
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assessed the effects of continuous versus extended antipsychotic dosing on D2 receptor number 

and function. In rats, continuous but not extended antipsychotic exposure increases the number of 

D2 receptors in the striatum (Samaha et al., 2008; Ginovart et al., 2009). D2 receptors are 

functional and in a high affinity state for dopamine when coupled to Gi/o proteins (referred to as 

‘D2HIGH’). Both continuous and extended antipsychotic dosing can enhance the number of D2HIGH 

receptors, but this effect is greatest with continuous treatment (Samaha et al., 2008). This suggests 

that continuous versus extended antipsychotic treatment might differentially influence D2-

mediated intracellular function. In support, following chronic treatment (17 days), extended but 

not continuous haloperidol dosing increases mRNA levels for the immediate early gene c-fos in 

the caudate-putamen (Samaha et al., 2008). These gene effects were consistent with effects on 

behaviour, as extended but not continuous dosing also increased behavioural antipsychotic efficacy 

over time (Samaha et al., 2008). The positive correlation between c-fos mRNA induction and 

behavioural efficacy suggests that gene regulation could be a step in a cascade of intracellular 

events that contribute to or maintain response to antipsychotics over time (Li et al., 2007; Samaha 

et al., 2008; Mead and Li, 2010). This remains to be investigated further. 

The mode of antipsychotic treatment also influences the neurobiological response to dopamine 

agonists. For instance, rats previously given continuous—but not extended—haloperidol dosing 

show enhanced d-amphetamine-induced gene regulation in the caudate-putamen, as indicated by 

increased mRNA levels for the immediate early genes c-fos and Nur77 (Bedard et al., 2011). The 

nature of the relationship between the ability of continuous antipsychotic dosing to enhance d-

amphetamine-induced gene regulation on the one hand and to potentiate behavioural d-

amphetamine effects on the other, is not known. As further research resolves this issue, the 

available evidence suggests that continuous antipsychotic treatment changes the behavioural and 

neurobiological impact of dopamine stimulation, and that with extended treatment, these changes 

either do not occur or are less pronounced (Figs. A2.3G-H). 

Lastly, continuous versus extended antipsychotic exposure exert distinct influences on 

neurobiological systems that modulate dopamine function indirectly, namely neurotensin. 

Neurotensin is a neuropeptide that can oppose dopamine effects through activation of type 1 

neurotensin receptors (Binder et al., 2001). Activation of these receptors decreases the affinity of 

D2 receptors for dopamine (Agnati et al., 1983; von Euler et al., 1990; Li et al., 1995), and this is 
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thought to involve D2 receptor internalization (Koschatzky et al., 2011; Thibault et al., 2011; 

Borroto-Escuela et al., 2013). The temporal kinetics of treatment determine the effects of 

antipsychotic treatment on neurotensin and neurotensin receptor expression. Continuous but not 

extended antipsychotic treatment enhances neurotensin expression in the caudate-putamen, 

whereas only extended treatment increases neurotensin type 1 receptor level in the same region 

[(Servonnet et al., 2017); see also (Kinkead et al., 2000)]. Most importantly, neurotensin injected 

into the nucleus accumbens attenuates the locomotor response to dopamine agonists (Ervin et al., 

1981), and this effect is potentiated in rats with a history of continuous versus extended haloperidol 

dosing (Servonnet et al., 2017). Because only rats exposed to continuous (versus extended) 

haloperidol develop a dopamine supersensitive state (Samaha et al., 2008; Bedard et al., 2011; 

Servonnet et al., 2017), the findings suggest that antipsychotic-evoked dopamine supersensitivity 

is accompanied by an enhanced ability of nucleus accumbens neurotensin to modulate dopamine-

dependent behaviour. The implication is that in individuals with established antipsychotic-induced 

dopamine supersensitivity, the increased responsiveness to neurotensin can be exploited 

pharmacologically to reverse the expression of this supersensitivity. 

6. Current limitations and future directions 

Further investigations are warranted into the long-term effects of extended dosing strategies. For 

instance, it remains unclear whether extended antipsychotic dosing is less likely to produce side 

effects than continuous exposure in humans, as is the case in laboratory animals (see Section 4). It 

is tempting to predict that by reducing antipsychotic drug exposure, extended dosing strategies will 

reduce the likelihood of adverse side effects, as compared to continuous dosing. However, this still 

needs to be determined conclusively, because some findings suggest that merely reducing overall 

antipsychotic drug exposure does not necessarily reduce side effects. For instance, studies in non-

human primates (Linn et al., 2001) and schizophrenia patients (Achalia et al., 2014) show that 

intermittent antipsychotic exposure involving drug-free periods lasting months can exacerbate 

antipsychotic-induced movement disorders. However, extended dosing is different from this. It 

involves regular intervals of low drug exposure (i.e., < 65 % of D2 occupancy), rather than long 

drug-free periods.  
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Also, evidence regarding the efficacy of extended dosing strategies in humans (as described in 

Section 3) comes from a small number of studies. However, because the available evidence is 

promising, future studies should expand on the existing literature and address specific issues. First, 

future studies should include greater sample sizes. Second, antipsychotic efficacy and risk of 

adverse effects need to be assessed for longer follow-up periods. Third, the feasibility/efficacy of 

extended dosing strategies should be investigated with many different antipsychotic drugs, because 

most studies have only used risperidone or olanzapine. Fourth, extended dosing has been studied 

in a limited number of double-blind, randomized controlled trials so far (Carpenter et al., 1999; 

Remington et al., 2011; Takeuchi et al., 2014). Hence, the promising findings discussed in Section 

3 need to be extended with more methodologically rigorous trials. Furthermore, it will be important 

to determine how extended antipsychotic dosing strategies influence the kinetics of D2 receptor 

occupancy in humans, because so far this has not been addressed or been estimated from plasma 

levels of antipsychotic drugs. Plasma concentrations do not always predict brain concentrations/D2 

receptor occupancy by antipsychotic (Tauscher et al., 2002b; Kurose et al., 2020). Hence, future 

studies should measure dopamine D2 receptor occupancy levels directly, using brain imaging 

techniques. In addition, in theory, dosing intervals in an extended dosing regimen can also be 

irregular, ranging from 2 to 4 days or even longer. However, the feasibility and efficacy of extended 

but irregular dosing is yet to be assessed. Lastly, extended dosing is unlikely a “one-size-fits-all” 

approach. Empirical data are needed to identify patients best suited for extended, but regular 

antipsychotic dosing.  

There are also important limitations to the preclinical studies discussed in Section 4. First, only one 

type of extended dosing approach has been studied in laboratory animals, i.e., within-day transient 

exposure, achieved with daily antipsychotic injection (see Fig. A2.2D). It will be important in 

future work to characterize this more systematically in laboratory animals. For instance, one can 

reasonably predict that if D2 receptor occupancy by antipsychotic is low enough for long enough, 

this will compromise antidopaminergic effects over time. Second, it is not obvious what the 

extended dosing strategy used in the rat studies in Section 4 might correspond to in humans, not 

the least of which because antipsychotic pharmacokinetics can be quite different across the two 

species (Kapur et al., 2000a; Kapur et al., 2003). Third, it is unclear how the neuronal changes 

described in Section 5 contribute to the different behavioural effects of continuous versus extended 

antipsychotic treatment, as the studies above have generally established correlational but not causal 
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links. Because of the clinical implications of antipsychotic-induced dopamine supersensitivity, 

particular effort should be devoted to identify why continuous antipsychotic exposure is more 

likely to produce this supersensitivity compared to extended exposure. Fourth, in parallel to 

dopamine supersensitivity and motor disturbances, antipsychotic treatment can produce many other 

deleterious effects, including cardiovascular and metabolic disorders (Muench and Hamer, 2010; 

De Hert et al., 2011). Future work should determine how extended versus continuous exposure 

influences the incidence of such effects. Fifth, there are important caveats in the preclinical models 

used to compare extended versus continuous antipsychotic treatment. For instance, we are not 

aware of a single study examining this in female laboratory animals, as this work has been done 

exclusively in males so far. This is an urgent knowledge gap to start filling, as schizophrenia and 

antipsychotic treatment are relevant to both women and men. Additionally, to our knowledge, the 

effects of extended antipsychotic exposure have been studied only in otherwise neurologically 

intact rodents. Using neurologically intact animals is useful to establish cause-and-effect 

relationships between the temporal kinetics of antipsychotic treatment and changes in brain and 

behaviour. However, it remains undetermined how extended versus continuous antipsychotic 

exposure fare in animal models of schizophrenia-like symptoms. Sixth, because extended dosing 

strategies have shown great promise in studies carried out on patients with schizophrenia (see 

Section 3), one important avenue for future research is determining the extent to which extended 

antipsychotic exposure can reverse the unwanted effects previously produced by continuous 

antipsychotic treatment. These unwanted effects would include treatment tolerance, extrapyramidal 

motor side-effects and dopamine supersensitivity. Lastly, the behavioural and neurochemical 

effects of continuous versus extended antipsychotic dosing have most often been compared using 

haloperidol [e.g., (Turrone et al., 2003a; Samaha et al., 2008; Bedard et al., 2011)]. Little is known 

about similar effects using atypical antipsychotic drugs, and future research can address this.  

7. Concluding remarks 

For decades now, standard clinical practice in the management of schizophrenia symptoms has 

been to maintain steady-state levels of D2 receptor occupancy, because this is thought to be 

essential to maintain efficacy. However, continuous blockade of more than 65 % of D2 receptors 

promotes neuroadaptations leading to treatment failure, motor disturbances and supersensitivity to 
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dopamine receptor stimulation. In contrast, regular but transient peaks in antipsychotic levels/D2 

receptor occupancy, as can be achieved with extended dosing strategies, are sufficient to maintain 

treatment efficacy and also reduce the risk of motor side effects and dopamine supersensitivity. 

Remarkably, the superior profile of extended versus continuous dosing strategies is seen even when 

extended treatment achieves much lower antipsychotic drug exposure overall. Most research 

comparing outcome with continuous versus extended antipsychotic exposure has been in 

preclinical models. However, we also reviewed findings showing that in patients, extended dosing 

strategies are effective in preventing psychosis relapse. Moreover, extended dosing strategies hold 

great promise as they could reduce dose-dependent antipsychotic side effects. This prediction can 

be evaluated conclusively in future work. Given the literature that we have discussed here, we also 

view with apprehensiveness the current commercial push to market continuous-release 

formulations, including LAI antipsychotics. Since the available clinical evidence, especially 

regarding safety, is still in shortage, large-scale methodologically rigorous randomized controlled 

trials with LAI antipsychotics, involving longer follow-up periods are clearly warranted. As such 

work unfolds, we propose that while continuous antipsychotic treatment might benefit some 

patients, at some treatment stages (and it remains to be determined exactly who these patients might 

be), the available evidence suggests that extended dosing strategies achieving transient peaks in 

antipsychotic levels are at least as efficacious as continuous dosing, while also being less harmful 

and therefore more ethical.  
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conditionnés provoquée par les antipsychotiques pourrait avoir des implications importantes dans 


des processus motivationnels anormaux dans la schizophrénie, tels que la psychose et la forte 


prévalence de toxicomanie. Ainsi, le deuxième objectif de la présente thèse était d’étudier les 


mécanismes neurobiologiques régulant les effets comportementaux des stimuli conditionnés, 


particulièrement le rôle du noyau basolatéral de l’amygdale. Ici, le rôle de ce noyau a été étudié 


chez des animaux non traités aux antipsychotiques, puisque sa contribution reste incomprise. Ce 


travail pourrait révéler des mécanismes neurobiologiques potentiellement impliqués dans la 


sensibilisation dopaminergique évoquée par les antipsychotiques. La présente thèse démontre que 


l’activation optogénétique de l’amygdale basolatérale potentialise les effets comportementaux des 


stimuli conditionnés, en augmentant leur valeur motivationnelle et leur capacité à guider le 


comportement vers des récompenses imminentes. Ainsi, une activité excessive de l’amygdale 


basolatérale pourrait attribuer trop de pouvoir aux stimuli conditionnés, et ceci pourrait jouer un 


rôle dans l’état motivationnel anormal provoqué par les antipsychotiques. 


La présente thèse identifie de nouveaux mécanismes par lesquels les antipsychotiques et les stimuli 


conditionnés favorisent des réponses pathologiques.  
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