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Résumé

Ce mémoire étudie le jeu de policiers-voleur et contient trois articles, chacun portant sur

une classe de graphes spécifique.

Dans le premier chapitre, la notation et les définitions de base de la théorie de graphe
qui nous serons utiles sont introduites. Bien que chaque article comporte une introduction
citant les concepts et résultats pertinents, le premier chapitre de ce mémoire contient aussi
une introduction générale au jeu de policiers-voleur et présente certains des résultats majeurs

sur ce jeu.

Le deuxieme chapitre contient l'article écrit avec Seyyed Aliasghar Hosseini et Peter
Bradshaw portant sur le jeu de policiers-voleurs sur les graphes de Cayley abéliens. Nous
améliorons la borne supérieure sur le cop number de ces graphes en raffinant les méthodes

utilisées précédemment par Hamidoune, Frankl et Bradshaw.

Le troisieme chapitre présente 1’article concernant le cop number des graphes 2 K,-libres.
Plus précisément, il est prouvé que 2 policiers peuvent toujours capturer le voleur sur ces

graphes, prouvant ainsi la conjecture de Sivaraman et Testa.

Finalement, le quatrieme chapitre est 'article écrit avec Samuel Yvon et porte sur les
graphes qui ont cop number 4. Nous montrons que tous ces graphes ont au moins 19 sommets.
En d’autres mots, 3 policiers peuvent toujours capturer le voleur sur tout graphe avec au plus
18 sommets, ce qui répond par la négative a une question de Andreae formulée en 1986. Un
pan important de la preuve est faite par ordinateur; ce mémoire contient donc une annexe

comprenant le code utilisé.

Mots clés : Théorie des graphes, Combinatoire, Jeu de policiers-voleur, Cop number,

Graphes de Cayley, Graphes 2K,-libres, Graphes 4-policiers-gagnants minimaux.






Abstract

This thesis studies the game of cops and robbers and consists of three articles, each

considering a specific class of graphs.

In the first chapter, notation and basic definitions of graph theory are introduced. Al-
though each article has an introduction citing the relevant concepts and results, the first
chapter of this thesis also contains a general introduction to the game of cops and robbers

and presents some of its major results.

The second chapter contains the paper written with Seyyed Aliasghar Hosseini and Peter
Bradshaw on the game of cops and robbers on abelian Cayley graphs. We improve the
upper bound on the cop number of these graphs by refining the methods used previously by

Hamidoune, Frankl and Bradshaw.

The third chapter presents the paper concerning the cop number of 2K5-free graphs.
More precisely, it is proved that 2 cops can always catch the robber on these graphs, proving

a conjecture of Sivaraman and Testa.

Finally, the fourth chapter is the paper written with Samuel Yvon which deals with graphs
of cop number 4. We show that such graphs have at least 19 vertices. In other words, 3 cops
can always catch the robber on any graph with at most 18 vertices, which answers in the
negative a question by Andreae from 1986. An important part of the proof is by computer;

this thesis thus has an appendix containing the code used.

Keywords : Graph theory, Combinatorics, Game of cops and robbers, Cop number, Cayley
graphs, 2Ks-free graphs, Minimum 4-cop-win graphs.
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Chapitre 1

Introduction

Dans cette introduction, nous survolons les définitions, concepts et résultats qui sont prére-

quis pour les articles des chapitres suivants.

1.1. Graphes

Nous introduisons tout d’abord les concepts de base de la théorie des graphes. Les
définition présentées ici sont standard dans le domaine et sont basées sur ou peuvent étre
retrouvées dans [19, 27, 34].

Nous commencons par définir ’objet mathématique au centre de cette branche.

Définition 1.1.1. Un graphe G est une paire (V(G),E(G)) d’ensembles tels que E(G) C
{{u,w} : uyw € V(G),u # v}. Les éléments de V(G) sont dits les sommets de G et les
éléments de E(G) sont appelés les arétes de G. En général, pour alléger la notation, on

écrira uv ou vu pour 'aréte {u,v}.

Dans notre cas, on travaillera toujours avec des graphes finis, c’est-a-dire des graphes tels
que |V(G)| < oc.

En général, on peut visualiser un graphe en associant chaque sommet a un point et chaque
aréte a une ligne. Plusieurs exemples communs sont illustrés dans la Figure 1.1. Dans les

prochaines définitions, nous supposerons que G et H sont des graphes.

Comme dans plusieurs autres branches des mathématiques, la théorie des graphes s’in-
téresse notamment a un certain nombres de propriétés locales et globales (et certaines pro-
priétés qui sont un peu des deux) et comment celles-ci interagissent. La propriété locale la

plus simple est celle du voisinage d’un sommet.

Définition 1.1.2. Deux sommets u,v € V(G) sont dits adjacents siuv € E(G). Le voisinage

(ouvert) de u € V(G), noté N(u), est 'ensemble des sommets adjacents a u. En ajoutant



au voisinage ouvert de u le sommet lui-méme, on obtient le voisinage fermé de u, noté N [u].
On peut aussi définir plus généralement le t-iéme voisinage fermé de wu, noté N'[u], par
N'lu] = Nlu] et N'[u] = Uyent-1 N[v].

Malgré qu’il soit souvent pratique de savoir quels sont les voisins d’un sommet donné,
il arrive fréquemment que simplement en connaitre le nombre est suffisant, ou tout ce que

nous savons.

Définition 1.1.3. Le degré de u € V(G), noté d(u), est la taille du voisinage (ouvert) de u.
Le degré maximal d’un graphe G est noté A(G), ou simplement A si le choix de graphe est
clair. Similairement, on écrit 6(G) pour le degré minimal de G. Si tous les sommets de G

ont le méme degré k, on dit que G est k-régqulier.

On recherche souvent plusieurs structures dans les graphes. Certaines des plus simples

sont les suivantes.
Définition 1.1.4.

(1) Une chaine de longueur ¢t > 1 dans un graphe G est une suite de sommets distincts
(u1,ug, ... ugr) € V(G) tels que uu;y € E(G) pour 1 <4 < t. La longueur fait
référence au nombre d’arétes de la chaine.

(2) Un cycle de longueur ¢t > 3 dans un graphe G est une suite de sommets distincts
(u1,ug, ..., ur) € V(G) tels que uu;q € E(G) pour 1 < i <t—1etwu € E(G).

Ces définitions nous permet directement a définir quelques familles communes de graphes.
Définition 1.1.5.

(1) Le graphe P, est le graphe contenant uniquement une chaine de longueur t — 1. On
y réfere informellement comme la chaine de longueur ¢ — 1.

(2) Le graphe C} est le graphe contenant uniquement un cycle de longueur t. On y réfere
informellement comme le cycle de longueur ¢.

(3) Le graphe K; est le graphe a ¢t sommets dans lequel tous les sommets sont deux a
deux adjacents. On I'appelle le graphe complet a t sommets.

(4) Pour créer d’autres graphes simples, on peut définir ’addition G; + G2 comme 'union
disjointe des graphe G et G, en supposant V(G1) N V(G3) = (). On peut étendre

ceci et définir mG comme le graphe formé par m copies distinctes du graphe G.

Certains exemples de ces graphes sont présentés dans la Figure 1.1. Notons que bien qu’on
en parle comme s’ils étaient uniques, on peut formellement définir chacun de ces graphes une
infinité de fagon différentes en changeant le nom des sommets dans V(G). Toutefois, ils sont

évidemment uniques a isomorphisme prét, un concept que nous définirons plus bas.
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e LB

(a) P7 (b) ClO (C) K5 (d) 2K2

Fig. 1.1. Exemples de graphes issus de familles communes

La définition des chaines et des cycles nous permettra de définir plusieurs autres concepts

importants.

Définition 1.1.6. Soit u,v € V(G). Soit C' une chaine de longueur minimale entre u,v (pas
nécessairement unique). On définit alors la distance d(u,v) entre u et v dans G comme la
longueur de C'. Alternativement, la distance peut étre définie comme 0 si u = v et sinon le
plus petit ¢ tel que v € N*[u]. On définit le diamétre de G comme la distance entre les deux

sommets les plus éloignés.

En fait, il est facile de montrer que la paire (V(G),d), ou d est la distance sur le graphe G,
définit un espace métrique discret. Notons que le symbole d est utilisé pour le degré quand

il a un parametre et pour la distance quand il a deux parametres.

Il est fréquent en mathématiques quand on considére un type d’objet (par exemple un
groupe ou un espace topologique) de considérer qu’une restriction pourrait définir un autre
objet du méme type. La formulation la plus fréquente de cette idée pour les graphes est

définie comme suit.
Définition 1.1.7.

(1) On dit que H est un sous-graphe de G si V(H) C V(G) et E(H) C E(G).

(2) On dit que H est un sous-graphe induit de G si H est un sous-graphe de G et si
E(H) ={w € E(G) : uw € V(H)}. Si S C V(G), le sous-graphe de G induit par
S, dénoté (S), est le sous-graphe induit H tel que V(H) = S.

Notons que ces deux définitions sont en général beaucoup moins restrictives que la dé-
finition analogue pour les groupes : tous les sous-ensembles de sommets (et pour la pre-
miere version tous les sous-ensembles d’arétes) définissent un graphe, tandis que pour quun
sous-ensemble d'un groupe soit un sous-groupe il faut aussi que I'ensemble soit fermé sous

I'opération du groupe (voir plus bas).

Quand nous travaillons a la fois sur un graphe et sur un ou plusieurs de ses sous-graphes,
il se peut que nous ajoutions aux symboles définis plus haut un indice pour spécifier a quel

graphe on fait référence, par exemple dg(u), dg(u,v) ou Ng(u).
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Une question naturelle est de demander si sur un graphe donné on peut atteindre tous

les sommets en commengant a un certain sommet.

Définition 1.1.8. Un graphe G est dit connezxe si pour toute paire de sommets u,v € V(G)
il existe une chalne commencant en u et se terminant en v. Si un graphe n’est pas connexe,
on peut néanmoins partitionner V(G) en composantes connezes, ¢’est-a~dire en sous-graphes

maximaux connexes.

Notons que si un graphe n’est pas connexe, on dira que deux sommets dans des compo-

santes connexes distinctes ont une distance infinie, et que le diametre du graphe est infini.

Nous avons aussi une définition similaire a celle du diametre mais pour les cycles au lieu

des chalnes.

Définition 1.1.9. La maille (girth) d'un graphe G est la longueur d’un plus petit cycle de
G.

Quand on dit qu'un graphe a maille au moins m, on exclura aussi le cas des graphes ne
contenant aucun cycle (les cas pour lesquels la maille n’est pas définie). Nous verrons plus

loin que cette définition a une importance particuliere pour I’étude du jeu de policiers-voleur.

Connaissant la définition des cycles, on peut aussi définir la classe de graphes assez

fréquente suivante.

Définition 1.1.10. Un graphe G est dit biparti s’il ne contient aucun cycle de longueur
impaire. De fagon équivalente, un graphe G est dit biparti s’il existe une partition des
sommets dans des ensembles A,B tel que toute aréte doit étre entre un sommet de A et un

sommet de B.

Il est aussi classique en mathématiques de considérer des fonctions entre deux objets du
méme type qui préservent certaines propriétés (par exemples des homomorphismes de groupe

ou des fonctions continues).

Définition 1.1.11. Un homomorphisme de graphe entre G et H est une fonction f : V(G) —
V(H) telle que f(u)f(v) € E(H) pour tout uv € E(G).

Cet outil nous sera utile & plusieurs reprises. Il nous permet aussi de définir ce qu’on

considérera comme des graphes identiques comme discuté brievement plus haut.

Définition 1.1.12. Un isomorphisme de graphe entre G et H est un homomorphisme
f: V(G) — V(H) qui est bijectif et tel que {f(u)f(v) : wv € E} = E(H). S’il existe
un isomorphisme entre G et H, on dit qu’ils sont isomorphes et on note G ~ H. Un

isomorphisme entre GG et lui-méme est appelé un automorphisme.

Notons que cette définition est différente de celle pour les groupes, car on doit ajouter la

condition que I’homomorphisme f est non seulement bijectif sur les sommets, mais qu’il doit
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induire une bijection sur les arétes. Intuitivement, le nombre d’automorphismes possible sur

un graphe peut étre vu comme une mesure du niveau de symétrie du graphe.
Certains sous-graphes ont des noms précis.
Définition 1.1.13.

(1) Un stable est un ensemble non-vide S C V(G) tel que tous les sommets dans S sont
non-adjacents. On pourrait de fagon équivalente demander que (S) ~ tK; pour un
certain t > 1.

(2) Une clique est un ensemble non-vide C' C V(@) tel que tous les sommets de C' sont
adjacents. On pourrait de fagon équivalente demander que (S) ~ K; pour un certain
t>1.

Un autre exemple serait de définir une chaine dans un graphe comme un sous-graphe
(pas nécessairement induit) isomorphe a P, pour un certain ¢ > 1, et similairement pour un

cycle.

Une probleme fréquemment étudié en théorie des graphes est de caractériser la structure

des graphes pour lesquels un certain sous-graphe est interdit.

Définition 1.1.14. On dit que le graphe G est H-libre s’il ne contient aucun sous-graphe

induit isomorphe a H.

Par exemple, si un graphe est K;-libre, on peut s’attendre qu’il n’ait pas trop d’arétes,
car autrement on trouverait nécessairement un groupe de sommets de taille ¢ tous adjacents.
Plus spécifiquement, le Théoreme de Turdn (1941) stipule que tout graphe G qui est K;-libre
a au plus %\V(G)P arétes (voir par exemple [27, Chap. 7.1]).

Dans notre cas, on s’intéressera plus particulierement dans le deuxieme article aux

graphes 2Ks-libres.

Une autre question classique en théorie des graphes est de se demander si on peut dessiner

le graphe sans croisements, et si oui quelles sont les propriétés que cela implique.

Définition 1.1.15. Un graphe est dit planaire s’il peut étre dessiné dans le plan sans croi-
sement des arétes. Plus précisément, on veut que chaque sommet soit un point du plan
(distinct des autres sommets), que chaque aréte soit une courbe entre les deux sommets
qu’elle relie et sans croisements avec elle-méme et qu’il n’y ait pas de croisements entre deux
arétes sauf possiblement a leurs extrémités. Similairement, im graphe est dit toroidal s’il
peut étre dessiné sur un tore sans croisement des arétes. Plus généralement, on dit que le
genre d'un graphe est le plus petit entier g pour lequel le graphe peut étre dessiné sur une

surface orientable de genre g (dans [27, Exercise 12.53], il est défini qu’une telle surface est
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similaire & un tore mais avec g poignées) sans croisement des arétes. Notamment, le genre

d’un graphe planaire est 0, et le genre d’un graphe toroidal mais non planaire est 1.

Jusqu’a maintenant, nous n’avons considéré que des graphes non-orientés. Nous défi-
nissons maintenant la variante orientée, que nous utiliserons brievement dans le premier

article.

Définition 1.1.16. Un graphe orienté G est une paire (V(G),A(G)) d’ensembles tels que
A(G) C {(u,v) : u,w € V(G),u # v}. Les éléments de E(G) sont appelés les arcs de G. On

écrira wv pour larc (u,v).

Chaque arc a une orientation; on dira donc que I'arc uv sort de u et entre dans v. Notons
qu’il est tres possible qu’on ait simultanément que uv,ou € A(G). On peut facilement créer
des définitions analogues a la plupart de celles plus haut pour les graphes orientés. Par
exemple, on peut définir le degré sortant d*(u) et le degré entrant d~(u) comme respective-
ment le nombre d’arcs sortants et entrants de u. Une chaine orientée sera définie de fagon
analogue, on demandera simplement qu’on ait jamais deux arcs de la chaine soient tous deux
entrants ou tous deux sortants du méme sommet. Pour la connectivité, on dira qu'un graphe
orienté est fortement conneze si pour toute paire de sommets wu,v il existe un chaine orientée
de u vers v et une chaine orienté de v vers u, tandis qu’il sera dit connexe si on peut toujours

une chaine mais en ignorant l'orientation des arcs.

Une variante que nous ne considérons pas ici est celle des multigraphes, c’est-a-dire les
graphes dans lesquels on peut avoir plusieurs arétes entre la méme paire de sommets, car

autoriser les arétes multiples n’affecterait pas le jeu de policiers-voleur.

En général, nous ne considérons pas les graphes pouvant avoir des boucles, qui sont
des arétes entre un sommet et lui-méme. Nous mentionnerons tres brievement les graphes
réflexifs, soit les graphes ayant une boucle a chaque sommet, car ils peuvent étre utiles pour

le jeu de policiers-voleur.

1.2. Groupes

Dans le premier article, nous travaillerons sur les graphes de Cayley. Afin de pouvoir
définir ces graphes, nous avons besoins des bases de la théorie des groupes. Toutes les

définitions de cette section peuvent étre retrouvées dans [28].

Définition 1.2.1. Un groupe est une paire (G,-) ou G est un ensemble et - est une opération
- G x G — @G vérifiant

(1) a-(b-c) = (a-b)-cpour tous a,b,c € G (associativité);

(2) il existe un élément 1g tel que 1g-a = a - 1g = a pour tout a € G (identité); et
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(3) pour tout a € G, il existe un élément inverse a™! € G tel que a-a™! = ala = 1g

(inverse).
De plus, si a-b=b-a pour tous a,b € G, on dit que le groupe est commutatif ou abélien.

Notons que 'utilisation du symbole G est usuelle autant pour les groupes que les graphes.
Lorsque nous travaillerons simultanément avec ces deux concepts, on utilisera plutot I’

comme symbole pour le graphe.

Dans notre cas, on ne considérera que les groupes abéliens. Nous utiliserons donc géné-
ralement la notation additive, c’est-a-dire que 'opération sera ’addition +, ’élément neutre

sera noté Oq et 'inverse de a sera noté —a.

Un exemple de groupe abélien est (Z/nZ,+), soit les entiers modulo n avec 'addition
modulo n. On peut aussi définir le groupe abélien (Z/pZ \ {0},-), avec p premier, soit les
entiers modulo p (sans 0, car il n’a pas d’'inverse sous la multiplication) avec la multiplication
modulo p.

A partir de certains groupes, on peut facilement en former d’autres. La facon la plus

simple est le produit de groupes.

Définition 1.2.2. Soit (G,¢) et (H, ) des groupes. On définit le group e produit
(G x H,-gxpu) avec I'opération (aq,b1) ‘gxm (az,b2) = (a1 -g a2,b1 -5 by). On peut aussi définir

le groupe (G, -gt) comme le produit du groupe G avec lui méme ¢ fois.
Nous aurons aussi besoin du concept de sous-groupes.

Définition 1.2.3. Le groupe (H, ) est dit sous-groupe de (G,-¢) si H C G et si -y et ¢

coincident pour les éléments de H. On peut alors utiliser le méme symbole pour l'opération.

Les graphes de Cayley seront construits a partir d'un groupe et d’un ensemble générateur,
que nous avons donc besoin de définir.

Définition 1.2.4. Soit un groupe (G,-) et un ensemble S C G. On dit que le sous-groupe
engendré par S, noté (S), est le plus petit sous-groupe H de G tel que S C H. On dit que

S engendre G, ou que S est un ensemble générateur de G, si (S) = G.

Un autre concept important est celui des quotients de groupes, que nous ne formulerons
ici que pour les groupes abéliens, bien qu’il puisse étre défini pour une classe plus large en

définissant le concept de sous-groupe normal.

Définition 1.2.5. Soit un groupe abélien (G,+) et un sous-groupe H. On définit le groupe
quotient (G/H,+) par G/H ={a+H ={a+h:h € H} : a € G} avec comme opération
(a+H)+(b+H)=(a+b)+ H.
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L’exemple Z/nZ mentionné plus haut peut en effet étre défini comme le quotient du

groupe Z (entiers) par son sous-groupe nZ (entiers multiples de n).

Un résultat élémentaire mais important sur les sous-groupes d’un groupe fini est le sui-

vant, dont nous simplifions légérement 1'énoncé (voir [28, Section 3.2]).

Théoréme 1.2.6 (Lagrange). Si (G,+) un groupe abélien fini et un H un sous-groupe de
G, alors

|G| = |G/H||H].

Comme mentionné plus haut, il existe aussi un concept d’homomorphisme pour les

groupes.

Définition 1.2.7. Un homomorphisme de groupes entre (G,-¢) et (H, y) est une fonction
[ :G — H telle que f(a-gb) = f(a)-u f(b). Si cette fonction est aussi bijective, on dit alors

que c’est un isomorphisme et que les groupes G et H sont isomorphes, qu'on note G ~ H.

L’exemple le plus important d’homomorphisme dans notre cas sera, pour un groupe
abélien (G,+) et un sous-groupe H, la projection p : G — G/H définie par p(a) = a+ H.

Le dernier concept dont nous avons besoin est celui d’un corps.
Définition 1.2.8. Un triplet (K, + ,-) est corps si

(1) (K,+) est un groupe abélien;
(2) (K '\ {0},-) est un groupe abélien; et
(3) (a+b)-c=(a-c)+ (b-c) pour tous a,b,c € K (distributivité).

L’exemple de corps qui nous intéressera sera celui de Z/pZ avec I'addition et la multipli-
cation modulo p comme décrit plus haut. Nous aurons besoin du résultat suivant (voir par

exemple [28, Section 9.5, Proposition 17]).

Proposition 1.2.9. Soit un corps (K,+,-). Un polynéome f(x) de degré t a coefficients dans

K a au plus t solutions dans K (incluant les multiplicités).

1.3. Jeu de policiers-voleur

Dans cette section, nous introduisons les regles du jeu de policiers-voleur et présentons
certains des résultats majeurs sur ce jeu. Vu le grand nombre d’articles portants sur ce
jeu, seule une petite fraction des résultats connus, ceux que je considere sont parmi les plus
importants, seront présentés. Afin d’éviter les répétitions, uniquement les résultats qui ne
sont pas déja présentés dans les introductions des articles des prochains chapitres seront

mentionnés.
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Certaines des preuves, celles qui sont les plus élémentaires, seront présentées afin d’in-
troduire les arguments classiques du domaine. Quand une preuve est présentée, elle est soit

tres similaire ou identique a sa preuve originale.

1.3.1. Regles

Le jeu de policiers-voleur est défini par Quilliot dans [57] et par Nowakowski et Winkler
dans [52]; ces derniers créditent la question a Gabor. Le jeu ne se jouait originalement qu’a
un policier; la version a plusieurs policiers, qui est maintenant la norme, est défini par Aigner

et Fromme dans [2]. Les regles sont les suivantes.

Définition 1.3.1. [2, 52, 57] Le jeu de policiers-voleur est un jeu a tour de réle impliquant
2 joueurs avec des roles asymétriques, c’est-a-dire que les objectifs de chaque joueur sont
différents. Le premier joueur, celui qui débutera la partie, aura k pieces de jeu nommées les
policiers, tandis que le deuxieme joueur aura une seule piece de jeu, le voleur. La grille de
jeu sera un graphe connexe G; les cases du jeu seront les sommets de G tandis que les arétes
correspondront aux coups (mouvements) possibles. A leur premier tour, chaque joueur place
ses pieces de jeu sur des sommets du graphe; le premier joueur peut en placer plusieurs sur
le méme sommet s'il le désire. A chacun des tours suivants, chaque joueur peut déplacer un
certain nombre (peut-étre 0) de ses pieces de jeu vers des sommets adjacents a leurs positions
actuelles. Afin de remporter la partie, I'objectif du premier joueur est d’amener un de ses
policiers sur le méme sommet que le voleur. Si cela n’arrive jamais, le deuxieme joueur gagne

par défaut.

Notons qu’il n’est pas possible d’inverser 'ordre des joueurs, puisque sinon le jeu serait

trivial; il suffirait de placer un des policiers sur le sommet que le voleur a déja choisi.

Bien que notre objectif ne soit pas de modéliser le comportement de poursuites policieres,
on veut s’en inspirer. Il est donc raisonnable que les policiers soient placés en premier : on
peut voir ceci comme choisir les localisations des postes de police, ou des régions qu’ils

patrouillent, puis en sachant cela le voleur décide ou commettre un vol.

Evidemment, notre intérét envers ce jeu n’a pas comme but d’y jouer comme jeu de
société, mais plutot d’analyser ce qui constitue une stratégie optimale. On prendra donc
pour acquis que le voleur ne se mettra jamais dans une situation ou il peut se faire capturer
a moins qu’il n’ait pas d’autre choix (méme s'il sait qu’il va perdre éventuellement, il veut
survivre le plus longtemps possible), et les policiers n’utiliserons jamais intentionnellement
une stratégie perdante s’il en existe une gagnante, c’est-a-dire que les joueurs ne feront jamais

d’erreur.
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Notre intérét sera I'entier £ mentionné dans la définition du jeu; nous voulons savoir pour
quels choix de k le premier joueur gagne, en fonction de la structure du graphe G. Ceci nous

meéne done a la définition suivante.

Définition 1.3.2. [2] Etant donne un graphe connexe G, le cop number est le plus petit

nombre de policiers avec lesquels le premier joueur a une stratégie gagnante. Il sera noté

c(@).
Nous introduisons aussi la terminologie standard suivante.

Définition 1.3.3. Un graphe connexe G est dit k-policier-gagnant si ¢(G) = k. Pour k = 1,

on dira simplement que G est policier-gagnant (voir [52]).

1.3.2. Jeu a 1 policier

Comme mentionné plus haut, les premiers résultats sur ce jeu concernent la version avec

1 policier.
Le concept suivant est fondamental dans le domaine.

Définition 1.3.4. [52] Soit un graphe G. On dit que u € V(G) est un sommet irréductible
s'il existe v € V(G), v # u, tel que N[u] C NJv].

On voit bien que si le policier est sur v et que le voleur est sur u, alors le premier joueur
gagne a son prochain tour, et ce peu importe qu’on soit rendu au tour du premier joueur ou
du deuxieme joueur. Ce concept est souvent nommé un coin, mais nous utiliserons ce terme

dans le troisieme article un peu différemment.
Ce concept nous permet alors de définir la classe de graphes suivante.

Définition 1.3.5. [52] Un graphe G est dit démantelable s'il contient un sommet irréductible
v € V(Q) tel que (V(G) \ {v}) est démantelable, ou si G ~ K.

Cette classe nous permet alors de caractériser formellement les graphes policiers-gagnants.

Théoréme 1.3.6. [52] Si G est un graphe connexe, alors G est policier-gagnant si et seule-

ment st G est démantelable.

DEMONSTRATION. Nous présentons la preuve comme formulée par Aigner et Fromme dans
[2].

On voit bien que K est policier-gagnant. Il suffit donc de montrer que G est policier-
gagnant si et seulement si G' contient un sommet irréductible v et si G—v est policier-gagnant,

a I'aide d’'un argument inductif.
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Supposons tout d’abord que G soit policier-gagnant. Ainsi, il existe une stratégie ga-
gnante pour 1 policier. Ainsi, il existe nécessairement (au moins) une position dans laquelle
le voleur se fera prendre peu importe ou il se déplace. Notons alors u la position du policier
et v la position du voleur, soit un tour avant la victoire du premier joueur. Forcément,

N[v] € NJul, sinon le voleur aurait pu s’enfuir.

On veut montrer qu’il existe une stratégie gagnante sur G — v. Il suffit de remarquer
que policier peut jouer sur G sans jamais utiliser v (sauf au dernier coup si le voleur se fait
capturer sur v), car tout coup qu’on peut faire a partir de u est possible & partir de v. Jouer
sur G — v revient donc a jouer sur GG avec cette stratégie spéciale; le fait que le voleur ne
vais jamais aller sur v ne change pas que le policier peut gagner, puisque le policier a une

stratégie gagnante peu importe les coups choisis par le voleur.

Supposons maintenant que G—uv est policier-gagnant, et que v est un sommet irréductible
(donc qu’il existe un autre sommet u tel que N[v] C N[u]). Pour capturer le policier sur G,
le voleur appliquera la stratégie (gagnante) du policier sur G — v quand le voleur n’est pas
sur v, et quand le voleur est sur v le policier appliqueras cette stratégie en considérant que le
voleur était en fait sur u. Ceci est bien défini et ne brisera pas la stratégie pour G —v car tout
coup possible pour le voleur & partir de u est aussi possible & partir de v. Eventuellement,
soit le voleur aura été attrapé, ou le policier aura attrapé la position imaginaire du voleur,
c’est a dire que le policier est sur u et le voleur est sur v, cas dans lequel le premier joueur

peut donc gagner un coup plus tard. [l

On voit donc que bien que le cop number soit une propriété globale du graphe, le cas

policier-gagnant semble se décomposer a une propriété relativement locale.

Cette équivalence sera notamment utilisée dans le code présenté a I’Annexe A.2 afin de

tester si un graphe est policier-gagnant.

Le méme argument sera utilisé dans le deuxieme article pour prouver le Lemma 3.4.1. La
formulation originale de cet argument dans [52] utilise les rétracts, un type d’homomorphisme
(voir Definition 4.2.3). Un argument de ce type est en fait utilisé dans [10] pour prouver un

résultat bien plus général utilisant les rétracts (voir Theorem 4.2.4 dans le troisieme article).

1.3.3. Bornes supérieures

Nous venons de voir une caractérisation simple des graphes policier-gagnants. Clarke et
MacGillivray donnent dans [26] une caractérisation des graphes k-policiers-gagnants, mais
qui ne nous éclaircit que tres peu sur la structure de ces graphes. Elle est néanmoins utile

pour l'algorithme de calcul du cop number, voir Annexe A.1.
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En I’absence d'une caractérisation simple du cop number, un pan important de la re-
cherche sur le jeu de policiers-voleur porte sur les bornes qu’on peut trouver, autant dans le
contexte général que pour des familles de graphes précises. Nous commencgons avec certaines

des bornes supérieures les plus importantes.

Notons que la structure générale et le choix des résultats présentés dans cette section est

similaire & ceux des articles de survol [8, 17], qui sont bien plus complets.

Le premier résultat majeur sur le jeu avec plusieurs policiers porte sur les graphes pla-

naires.
Théoréme 1.3.7. [2] Si G est un graphe planaire connexe, alors ¢(G) < 3.

Une des parties clés de la preuve est le lemme suivant, qui est maintenant un outil de
base du domaine.

Lemme 1.3.8. [2] Soit G est un graphe conneze, u,v € V(G), et P une chaine de longueur
minimale entre u et v. Il existe une stratégie pour un policier qui, d partir d’un certain

moment, interdit au voleur de se déplacer sur un des sommets de P.

Nous ne prouvons pas ce lemme, mais I'idée de sa preuve est simple. Le policier doit
commencer par se rendre sur P. Ensuite, la tdche du policier sera de suivre la projection du
voleur sur P, c’est-a-dire le policier ira toujours sur le sommet de P dont la distance de u
est la méme que la distance entre u et le voleur (ou sur v si le voleur est plus d(u,v) sommets
plus loin). Puisque P est une plus courte chaine entre u et v, il sera toujours possible pour le
policier de suivre ou copier le coup du voleur; le voleur ne pourra jamais aller plus rapidement

(par rapport a la distance avec u) que le policier, car il n’y a aucun raccourci pour P.

On voit bien comment ce lemme pourrait étre utile dans le cas planaire. En effet, on
peut essentiellement découper en morceaux le graphe et la région du plan qu’il occupe; si on

choisit bien la chaine on peut s’assurer que le voleur ne la traverse jamais.

Une version modifiée de ce lemme apparait aussi dans la preuve du prochain résultat

prouvé récemment, qui étend le dernier théoreme.
Théoréme 1.3.9. [46] Si G est un graphe toroidal connexe, alors ¢(G) < 3.

On peut donc se demander de fagon plus générale si on peut borner le cop number en
fonction du genre. Les trois résultats suivants montrent ’évolution de la meilleure borne

connue en fonction du genre, le dernier résultat étant assez récent.
Théoréme 1.3.10. [58] Si G est un graphe connexe de genre g, alors ¢(G) < 2g + 3.
Théoréme 1.3.11. [61] Si G est un graphe conneze de genre g, alors ¢(G) < [22] + 3.

Théoréme 1.3.12. [20] Si G est un graphe connexe de genre g, alors ¢(G) < 493&.
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Malgré cette progression, le conjecture suivante est toujours ouverte. Celle-ci est sans

doute une des plus importantes du domaine.

Conjecture 1.3.13 (Schroder). [61] Si G est un graphe connexe de genre g, alors ¢(G) <
g+ 3.

Comme noté dans [46], cette conjecture n’est confirmée que pour g < 3.

Une question encore plus naturelle serait de tenter de borner le cop number en fonction
de l'ordre du graphe. Il est naturel de croire qu’en général, en 'absence d’autres contraintes,
il faut généralement plus de policiers quand le graphe est plus grand. Evidemment, en ne
considérant que la taille on risque de perdre beaucoup d’information sur la structure des
graphes et donc en arriver avec une borne bien plus élevée que 'actuel cop number pour bon

nombre de graphes.

La conjecture de Meyniel est considérée comme la conjecture la plus importante portant

sur le jeu de policiers-voleur.

Conjecture 1.3.14 (Meyniel). [29] Si G est un graphe connexe a n sommets, alors ¢(G) €
Théoréme 1.3.15. [29] Si G est un graphe connexe a n sommets, alors ¢(G) € (1 +

o(1)) 2lgeloen,

DEMONSTRATION. Nous présentons la preuve originale de Frankl dans [29], avec quelques

éléments de la preuve de Baird et Bonato dans [8].

Nous commencgons par prouver un résultat préliminaire connu. Soit un graphe G qui a
degré maximum A et diametre D. On regarde le nombre maximal de sommets qui peuvent
étre & chaque distance d’un sommet u. A distance 0, il y a uniquement u. A distance 1, il y
a d(u) sommets, et donc au plus A sommets. A distance 2, on a au plus A(A — 1) sommets
car on regarde chaque voisin de wu, et ils ont chacun au plus A voisins, mais cela inclus u.
Plus généralement, a distance exactement d > 1 on a au plus A(A — 1)? sommets. Au total,

nous avons donc que

V(@) <1+ dz_j AA=1) T =14A (11__(?A__11>) ) _ A(AA—_l)2 —2

tant que A # 2 en utilisant une identité de sommation fréquemment utilisée. Cette borne
(et cet argument) est connue comme la borne de Moore, voir (8, 68].

: . >2 V(&) b
On montre par induction sur |[V(G)| que pour tout b € R=?, ¢(G) < =7 +b°. Si

[V(G)| < b, I'énoncé est trivial car en placant un policier sur chaque sommet on a directe-
ment que ¢(G) < |V(G)]. On suppose donc que |V (G)| > b*. Si A(G) < 2, alors G est soit
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un cycle ou une chaine, et alors on a bien que ¢(G) <2 < Bt < IV(‘%G)I + b°. Supposons donc
que A(G) > 3.

Il est impossible que le diametre et le degré maximum de G soient tous deux au plus
b — 1. En effet, par la borne prouvée plus haut on aurait alors que
AA=1)P =2 b—1)(b—2)"1—-2
e

Ceci serait donc une contradiction.

Ainsi, soit il existe un sommet u de degré au moins b — 1, ou il existe une chaine C'
induite de longueur au moins b — 1. Dans le premier cas, on place un policier sur u, qui ne
bougera que si le voleur s’aventure dans N(u). Dans le deuxiéme cas, un policier protege
C' en utilisant la stratégie du Lemme 1.3.8. Dans les deux cas, on peut donc prendre pour
acquis qu’en utilisant 1 policier on peut se restreindre a regarder le reste du graphe. Il n’est
pas nécessairement connexe, mais les autres voleurs se rendent dans la composante connexe

G’ du graphe restant dans laquelle le voleur se situe, et appliquent la stratégie inductive.
Nous savons que |V(G')| < |V(G)| — b. Ainsi,

V(&)

c(G)<1+¢(G) <1+ — <14+ V(G) V(G|

|_b b b
WG =0 g VG
b b

Ceci complete la preuve par induction.

Afin de prouver le théoreéme, pour un graphe G choisi de taille n, il suffit de prendre
logn

B loglogn

On peut prendre pour acquis que n est suffisant grand afin que b > 2, puisque le o(1)

dans la borne recherchée fait en sorte qu’on peut ignorer les petits cas. Ainsi,

logn
nloglogn logn Toglog m
logn loglogn ’

(@) <

logn
( logn ) loglogn

On vérifie facilement dans Mathematica que lim, ., ~%#%%4—— = 0 et donc
1
logn s
logn loglogn nloglogn : )
(—log logn) € 0(1)710% , ce qui complete la preuve. O

Des arguments plus avancés furent utilisés pour montrer les deux améliorations suivantes.

Théoréme 1.3.16. [24] Si G est un graphe connexe a n sommets, alors ¢(G) € O ( - )

logn

Théoréme 1.3.17. [48, 62, 31] Si G est un graphe connexe da n sommets, alors ¢(G) €
no—(1+o(1)Viogn
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Bien que la véracité de Conjecture de Meyniel ne soit toujours pas connue, on peut
se demander si une telle borne tient pour certaines classes naturelles de graphes. Comme
noté dans l'introduction de l’article du prochain chapitre, elle tient évidemment pour les
classes dont le cop number est borné par une constante, comme les graphes planaires. On
recherche donc des classes naturelles de graphes avec cop number arbitrairement grands,
mais croissant asymptotiquement comme /n; nous n’en connaissons que quelques unes. La
classe des graphes de Cayley dont il s’agira dans le prochain chapitre en est une [21]. La
conjecture est aussi prouvée presque stirement asymptotiquement pour les graphes aléatoires
[55, 56]. Une autre grande classe qui respecte la Conjecture de Meyniel est celle des graphes
de diametre 2 [48, 67].

Théoréme 1.3.18. [67] Si G est un graphe connexe de diamétre au plus 2 a n sommets,

alors ¢(G) < v/2n.
DEMONSTRATION. Nous présentons la preuve de Wagner dans [67], légérement modifiée.

Soit un graphe GG, mais qui n’est pas nécessairement de diametre 2. On considere une
variante du jeu dans laquelle le voleur joue sur GG mais les policiers peuvent bouger sur un
graphe G’ de diameétre au plus 2 dont G est un sous-graphe induit. On définit ¢/(G) comme
le maximum des cop number pour cette variante sur I’ensemble des G’ connexes de diametre
2 dont G est un sous-graphe induit. Il est facile de voir que tout graphe peut étre transformé
en graphe de diametre au plus 2 en ajoutant un sommet adjacent a tous les autres et donc
que ¢(G) existe. On note que ¢/(G) est toujours fini, en fait ¢(G) < ¢(G) car 'ajout de ces

sommets additionnels ne peut qu’aider les policiers.

On montre que ¢(G) < v/2n si G a n sommets. La preuve est par induction sur n.
L’énoncé est trivial pour les petits graphes. Si n < 3, ¢(G) = 1 et donc I’énoncé tient dans
ces cas. Bien qu’on n’en ait pas de besoin, si n < 9, alors ¢(G) = 2 (voir Theorem 4.2.1),

I’énoncé tient aussi directement pour ces graphes.

Soit un G’ quelconque avec les conditions plus haut. On veut montrer qu’avec au plus

v/2n policiers jouant sur G on peut capturer le voleur qui joue sur G.

Si A(G) < v/2n, nous utilisons la stratégie suivante qui utilise au plus A(G) policiers,
que nous noterons P, ...,Pa(,). Les policiers prennent des positions originales quelconques.
Supposons que le voleur est sur un sommet x, et notons son voisinage N () = {a, ... ,aq)}-
Puisque G’ a diametre au plus 2, pour tout 1 < i < d(u) soit P; est déja sur a;, est sur un
sommet voisin de a;, ou est sur un sommet ayant un voisin commun avec a,. Le policier P,
aura alors comme tache de se déplacer vers a;. A la fin de ce tour, chaque voisin de z sera
protégé par un policier, c’est-a dire il y aura soit un policier sur a; ou sur un sommet voisin
de a;. Ainsi, le voleur sur x ne pourra pas bouger. Au tour suivant, les policiers pourront se

déplacer sur les a;, et au tour suivant le voleur sera capturé.
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Supposons maintenant que A(G) > v/2n et soit u un sommet de degré maximal dans G.
On place alors un policier sur u, qui ne bougera que pour capturer le voleur s’il s’aventure
dans N(u). Il suffit alors de trouver une stratégie pour capturer le voleur dans G — NJu],
qui a taille au plus n — v/2n — 1. On voit alors facilement que ¢/(G) < ¢(G — N[u]) + 1. En
effet, on sait que si on plonge G — N[u] dans G’ (c’est aussi un sous-graphe induit dans ce
cas), le nombre de policiers nécessaires est au plus /(G — N[u|) pour capturer le voleur s’il

ne s’aventure jamais a l'extérieur de G — N|[u]. Par induction, on a donc que

¢(G) < \IV(E - Nl +1< /2 (n—vEn—1) + 1

On peut vérifier que \/ 2 (n —V2n — 1) + 1 < V/2n, quand cette la racine est définie
(pour n > 2 ++/3). Ainsi, ¢(G) < v/2n.

Notons que si G est de diametre au plus 2, alors ¢(G) = ¢/(G) en remarquant qu’on peut

prendre G = G. Ceci prouve I’énoncé. O

11 est noté dans [67] quune preuve analogue donne le résultat suivant.

Théoréme 1.3.19. [67] Si G est un graphe biparti connexe de diamétre au plus 3 a n
sommets, alors ¢(G) < v/2n.

1.3.4. Bornes inférieures

Nous discutons maintenant des bornes inférieures sur le cop number. La plupart des
bornes se basent sur la maille des graphes afin de pouvoir déterminer du nombre nécessaire,

mais pas forcément suffisant, de policiers. Le premier de ces résultats est le suivant.
Théoréme 1.3.20. [2] Si G est un graphe connexe de maille au moins 5, alors ¢(G) > 6(G).
DEMONSTRATION. Le résultat est trivial pour 6(G) = 1, alors on supposera que §(G) > 2.

Nous montrons que dans un tel graphe, si on joue avec strictement moins de 6(G) policiers,
il existe toujours une facon pour le voleur de s’enfuir. Nous explicitons donc une stratégie

gagnante pour le deuxiéme joueur.

Supposons que le voleur soit sur un sommet u. S’il n’y a aucun policier sur un sommet
adjacent, alors le voleur ne bougera pas. On peut donc supposer qu’il y a un voleur sur un
sommet adjacent et donc que le voleur doit pouvoir bouger sur un sommet non couvert par
les policiers. On veut donc montrer qu’il existe forcément un sommet de N(u) auquel aucun

policier n’est adjacent.
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Puisque d(u) > 0(G) mais qu’on a moins de §(G) policiers, il faut qu’il existe au moins
un policier couvrant au moins 2 sommets de N(u). Supposons que ce policier soit sur un

sommet x.

Il existe deux cas possible. Si z € N(u), on a évidemment que ce policier couvre au
moins . Notons v un autre voisin de u couvert par ce policier. Ainsi, xv doit étre un aréte.
On remarque donc que u,z,v forme un triangle (cycle de longueur 3) dans G, ce qui est
impossible car la maille est au moins 5.

Supposons que ¢ N(u), et notons v1,05 € N(u) deux sommets couverts par le policier
sur x. Ainsi, les sommets wu,vy,x,09 forme un cycle de longueur 4, ce qui est aussi une
contradiction a la maille de G.

Il nous reste simplement a spécifier quel sommet le voleur doit prendre au début de la
partie, en se basant sur le choix de position de départ des policiers, afin d’avoir une stratégie
gagnante complete pour le deuxieme joueur. Soit u un sommet quelconque. Imaginons
pendant un moment que le voleur est sur u, 'argument plus haut nous dit alors qu’il existe
un voisin ou le voleur pourrait s’enfuir sans se faire capturer par les policiers. On peut donc

placer le voleur sur ce sommet sans risque d’étre soit capturé. 0]

Nous notons queles hypotheses de ce théoreme sont assez fortes. En effet, nous remar-
quons que la stratégie gagnante du voleur se base sur le fait qu’a tous les coups, dans n’im-
porte quelle position possible, il y a une fagon de s’échapper. Il n’y a aucune planification
a l'avance dans cette stratégie. En effet, il est clair qu’en général afin d’avoir une stratégie
optimale le voleur devrait avoir a décider de ses déplacements en fonction de ce qui pourrait
se passer plusieurs coups plus loin. Dans ce cas-ci, nous n’avons qu’une vision locale du
graphe, la structure globale du graphe n’est pas considérée. Les meilleures bornes inférieures
semblent toutes basées sur ce genre d’argument; comprendre les dynamiques globales du jeu

de policiers-voleur semble étre une tache extrémement difficile.

Dans le théoréme précédent, on peut augmenter donc le cop number en augmentant le
degré minimum du graphe. Andreae prouve dans [3] qu’il existe des graphes k-réguliers
(k > 3) avec cop number arbitairement grands, comme noté par Frankl dans [29] avant de

de présenter la généralisation suivante du dernier théoréme.

Théoréme 1.3.21. [29] Si G est un graphe connexe de maille au moins 8t —3 (t > 1), alors
c(G) > (6(G) — 1)

Le résultat plus fin suivant fut prouvé récemment par Bradshaw et al.
Théoréme 1.3.22. [22] Si G est un graphe connexe de maille au moins 4t+1 (t > 1), alors

o(G) > L(3(G) — 1)

et
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On peut aussi se demander si la Conjecture de Meyniel est optimale, c¢’est-a-dire si le
cop number peut étre borné par une fonction d’ordre inférieur & O(y/n). Il est prouvé par
Pratat dans [54] que 'ordre borne dans la Conjecture ne peut pas étre réduit (voir aussi la

discussion dans [8]).

Théoréme 1.3.23. [54] I existe une famille de graphes d’ordres arbitrairement grands pour
laquelle ¢(G) ~ \/g, oun=|V(Q).

Ces graphes sont construits comme des graphes d’incidence de plans projectifs, que nous
ne définissons pas ici. Il est toutefois noté dans [8] que ce sont des graphes bipartis de
diametre 3, montrant que le Théoreme 1.3.19 est presque optimal, et que des familles avec

cop number Q(y/n) de diametre 2 sont présentées dans [15].

De telles familles existent aussi pour les graphes de Cayley, voir [36] et I'article du chapitre
suivant. Une borne inférieure assez élevée sur le cop number des graphes aléatoire est aussi

présentée dans [13].
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RESUME. Nous montrons que le cop number des graphes de Cayley abéliens orientés et
non-orientés ont une borne supérieure dans O(y/n), out n est le nombre de sommets, en
introduisant une méthode inductive raffinée. Avec cette méthode, nous améliorons la borne
supérieure existante sur le cop number des les graphes de Cayley abéliens non-orientés et
nous établissons une borne supérieure sur le cop number des graphes de Cayley abéliens
orientés. Nous utilisons aussi les graphes de Cayley abéliens pour construire de nouvelles

familles de Meyniel extrémales, qui contiennent des graphes d’ordre n avec cop number dans
O(v/n).

Mots clés : Graphes de Cayley, Policiers-voleur, Conjecture de Meyniel, Graphes orienté,

Famille de Meyniel extrémale

ABSTRACT. We show that the cop number of directed and undirected Cayley graphs on
abelian groups has an upper bound in O(y/n), where n is the number of vertices, by in-
troducing a refined inductive method. With our method, we improve the previous upper
bound on cop number for undirected Cayley graphs on abelian groups, and we establish an
upper bound on the cop number of directed Cayley graphs on abelian groups. We also use
Cayley graphs on abelian groups to construct new Meyniel extremal families, which contain

graphs of every order n with cop number in ©(\/n).

Keywords: Cayley graphs, Cops and robbers, Meyniel’s conjecture, Directed graphs,
Meyniel extremal family

2.1. Introduction

We study the game of cops and robbers, a game in which a team of cops attempts to
capture a robber while playing on the vertices of a graph. The game is played on a graph I
which is finite and connected, and can be either undirected or directed. The cops play as a
team against the robber. Before the game starts, each cop chooses a starting vertex on I'.
The robber then does the same. The game alternates between cop turns and robber turns,
with the first turn being a cop turn. On a cop turn, each cop can move to a neighbouring
vertex or may choose to pass. The robber then has the same options on a robber turn. There
is no restriction preventing two or more cops from sharing the same vertex. If one of the
cops ever shares a vertex with the robber, then we will say that the robber is captured, and
capturing the robber is the cops’ objective in order to win the game. On the other hand, if
the cops never manage to capture the robber, then we say that the robber wins. The game is
played with full information. The cop number of the graph I', written ¢(I'), is the minimum

number of cops needed for a strategy that ensures the cops’ victory.

The game of cops and robbers was first introduced for undirected graphs in [57] by
Quilliot, as well as in [52] by Nowakowski and Winkler. The concept of cop number was

introduced shortly afterwards by Aigner and Fromme in [2]. The cop number is well-studied
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on many classes of graphs; bounds are known, for example, for graphs of high girth [29],
Cayley graphs [21, 29, 30, 35|, intersection graphs [32], and graphs excluding certain
forbidden subgraphs [42, 49].

The game of cops and robbers can also be adapted to directed graphs, or digraphs, by
making certain modifications. First, we require the digraphs on which the game is played to
be strongly connected. Second, when a cop or the robber moves along an arc to an adjacent
vertex, we require that the cop or the robber move in the direction of the arc. This is in
contrast to undirected graphs, in which a cop or the robber may move along an edge in any
direction, as edges have no orientation. The game of cops and robbers was first considered on
digraphs by Hamidoune in [35], and this directed version of the game has gained popularity
recently; see, for example, [31, 33, 39, 37, 43].

Perhaps the furthest reaching and most famous question regarding the cop number is
Meyniel’s conjecture, which asks whether the cop number of any connected graph on n
vertices is in O(y/n). Frankl first mentions Meyniel’s conjecture for undirected graphs in
[29], and Baird and Bonato ask whether Meyniel’s conjecture holds for strongly connected
digraphs in [8]. Meyniel’s conjecture is known, for example, to hold for undirected graphs of
diameter 2 [48, 67]. The first author has also shown in [21] that the cop number of Cayley
graphs on abelian groups satisfies Meyniel’s conjecture, with an upper bound of 7y/n. Of
course, the cop number is bounded above by a constant for many graph classes, such as
graphs of bounded genus [2, 58, 61|, graphs of bounded treewidth [42] and graphs without
long induced paths [42]. In this paper, we will generalize the methods of [21] and [30] to
both improve the upper bound for the cop number of Cayley graphs on abelian groups and
show that directed Cayley graphs on abelian groups also satisfy Meyniel’s conjecture, which

will make these graph classes among the few large classes known to satisfy the conjecture.

Our paper is divided into multiple sections. In Section 2.2, we prove a general lemma
about the cop number of Cayley graphs and digraphs on abelian groups. In Section 2.3, we
show that the cop number of an undirected Cayley graph on an abelian group of n elements
can be bounded by about 0.94y/n + % and show that some improvements are possible by
considering the prime decomposition of n. In Section 2.4, we use the same methods to bound
the cop number of a directed Cayley digraph on an abelian group of n elements by about
1.33y/n + 2. In Section 2.5, we construct, for an infinite number of values n, undirected
Cayley graphs on abelian groups of n elements with cop number %\/ﬁ, and directed Cayley
graphs on abelian groups of n elements with cop number y/n. With a simple modification of
these constructions, we obtain families of graphs on n vertices, for any integer n > 1, with
cop number in ©(y/n), which gives new Meyniel extremal families of graphs and digraphs. To

the authors’ knowledge, the family of digraphs that is obtained has the largest cop number
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in terms of n of any known digraph construction. Finally, in Section 2.6, we discuss possible

improvements and further directions.

2.2. Notation and a general strategy

In this section, we will establish some notation and outline our general approach to
capturing a robber on a Cayley digraph on an abelian group. All groups that we consider in

this paper are abelian. A directed Cayley graph on an abelian group is defined as follows:

Definition 2.2.1. Let (G,+) be a finite abelian group, and let S C G be a generating set
of G with 0g ¢ S. The Cayley graph T" generated by G and S is defined as follows.

o V(I') =G,

e For any u,v € G, I' contains the arc (uv) if and only if v —u € S.
We often write Cay(G,S) to refer to the Cayley digraph generated by G and S.

We will often refer to directed Cayley graphs on abelian groups as directed abelian Cayley
graphs or abelian Cayley digraphs. In this definition, the requirement that S generate G
ensures that the digraph Cay(G,S) is strongly connected. We recall that in the game of
cops on robbers on directed graphs, cops and robbers must traverse edges according to their
orientations, so a graph must be strongly connected in order to allow a cop or robber to
reach any vertex from any other vertex. We note that for a Cayley graph on an abelian
group G generated by a set S C G, if S = =5, then all arcs of Cay(G,S) are bidirectional.
In this case, the game of cops and robbers on the directed graph Cay(G,S) is equivalent to
the game on the undirected graph obtained from Cay(G,S) by replacing each arc with an
undirected edge and removing parallel edges. Therefore, when we wish to consider the game
of cops and robbers on an undirected Cayley graph on an abelian group, we will require
that S = —S, and we will regard Cay(G,S) as an undirected graph. We often refer to an
undirected Cayley graph on an abelian group as an abelian Cayley graph.

When playing cops and robbers on a Cayley digraph on an abelian group G generated by
S C @G, we imagine that at each turn, a cop or robber occupies some group element g € G.
In the Cayley digraph Cay(G,S), the vertex g has an out-neighbor g + s for each s € S,
and thus we imagine that our cop or robber has a list of possible moves corresponding to
the elements of S. This cop or robber may choose any element s € S on its turn and move
to the group element g + s € G. We call this playing the move s. When a cop or robber
stays at its current vertex, we say that the cop or robber plays the move Og. To capture
the robber, we will let our cops follow a strategy that makes certain robber moves s € S
unsafe for the robber. As we make certain robber moves unsafe, the robber’s list of possible

moves will become shorter, and the robber’s movement options will become more limited.
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As the robber’s movement becomes more limited, it will become easier for the cops to make
even more robber moves unsafe, and we will be able to limit the robber’s movement further.
Eventually, we will make every move unsafe for the robber, and the robber will have no way

to avoid capture. The precise meaning of an unsafe move is discussed below.

The approach of capturing the robber by reducing the number of safe robber moves is
introduced by Frankl in [30], which is itself inspired by the methods used by Hamidoune in
[35]. Frankl shows that on an undirected abelian Cayley graph, one cop can usually make
two robber moves unsafe, so the number of cops required to capture a robber is about half

the size of the graph’s generating set, as shown in the following theorem.

Theorem 2.2.2. [30] IfT" is a Cayley graph on an abelian group with generating set S such
that S = =S and Og ¢ S, then

o) < PS]; 1} ‘

When considering cops and robbers on a Cayley digraph on an abelian group G generated
by S C G, we will often define another set 7" C S consisting of all of the moves of S that
the robber can still play safely, and we will assume that the robber chooses a move from T’
on each turn in order to avoid unsafe moves. We will call T' the robber’s moveset. In other
words, we will often consider a restricted version of the game in which on every turn, the

robber is forced to play a move from a set 7.

The following definition, which originally appears in [21] in a slightly different form, is
closely related to the concept of limiting the robber’s moves.

Definition 2.2.3. Let G be an abelian group, and let S C G and Og ¢ S. Given an element
a € S, we say that an element k € G\ {Og} accounts for a (with respect to S) if there exists
an element b € SU {0} such that a — b= k.

We give some intuition behind the reason that this concept is useful in limiting the moves
of a robber on an abelian Cayley digraph. Consider an abelian group G generated by a set
S, and suppose that a game of cops and robbers is played on Cay(G,S) in which the robber
has a moveset T' C S. Suppose that some element k£ € G accounts for a robber move a € T.
Then there exists an element b € S U {0g} such that a — b = k. If the robber occupies a
vertex r € (G, then a cop C' at r + k can prevent the robber from playing a; if the robber
plays a, then C' can play b to capture the robber. Furthermore, if the robber plays another
move a' € T, then C can also play ¢’ and maintain a difference of k with the robber. Thus,
on each subsequent turn, the robber must not play a, and we see that a cop C' at r + k has
a strategy to essentially remove a from the robber’s moveset. Similarly, a cop C' at r 4+ vk
for some nonnegative integer v can also essentially remove a from the robber’s moveset by

considering the following observation. If the robber plays the move a ~ times, then C' can
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respond with b each time, and C' will capture the robber. As C' can maintain its “difference"
in GG with the robber by copying each move a’ # a that the robber plays, the robber can only
play a a finite number of times before being captured, and hence the robber must eventually
abandon the move a. We illustrate this concept in Figure 2.1. This strategy of using a cop
to “copy" the robber’s moves and eventually prevent the robber from playing a certain move

previously appears in [30] and [35].

(r+a)+k (r+a)+2k (r+a)+3k (r+a)+4k

r+a (r+a) (r+a)+2k(r+ad)+3k(r+d)+4k (r+d)+ 5k

Fig. 2.1. The figure shows a cop guarding a robber move in an abelian Cayley graph.
The robber’s vertex is labelled r, and each arc is labelled with its corresponding generating
element. The values a and b are generating elements, and a — b = k. Here, a cop occupies
r + 5k, so the difference between the cop and robber’s positions is bk. If the robber plays
a, then the cop will play b, and the difference between the cop and robber will decrease to
4k. If the robber continues to play a, then the cop may continue to play b, decreasing the
difference between the cop and robber’s positions to 3k, then 2k, then k, and finally 0. If
the robber plays a different move a’, then the cop can also play ¢’ and maintain its difference
with the robber.

Thus, when we say that a robber move is unsafe, we will mean that a cop is “guarding"
this robber move as described above, and the robber can only play this move finitely many
times before being captured by the guarding cop. As in [21], we will use the fact that when
T is large, one element k£ can account for many elements of 7. Figure 2.2 shows a local
structure that appears in abelian Cayley digraphs with one group element accounting for
many generating elements. The figure gives some intuition for how a single group element

accounting for many generating elements allows a single cop to guard many robber moves.

To avoid repeating the same conditions, we define the following notation.
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Fig. 2.2. The figure shows a subgraph of an abelian Cayley digraph I'. The generating

set of I' contains six generating elements aq, ..., ag and six generating elements by, ..., bg,
satisfying a; — by = --- = ag — bg. Therefore, the group element k£ = a; — b; accounts for
all six generating elements a4, ..., aq, and thus if the robber occupies the vertex r, a cop at
r 4+ k can guard all moves aq, ..., ag.

Definition 2.2.4. We define
Ga={(G,S,T) : G is a finite abelian group, S is a generating set of G, 0g ¢ S, and T' C S}
and
G.={(G,S;T)eG;:S =-S5}
We also define D = {(n,s,;t) eN*:n>1landn—1>s>t>0}.

The set of triples G, corresponds to directed abelian Cayley graphs with specified robber
movesets, and the set of triples G, corresponds to undirected abelian Cayley graphs with
specified robber movesets. The set D then includes all possible sizes for a triple in G4 or G,

(along with some unattainable triple sizes).
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We also define the following.
Definition 2.2.5. Let (n,st) € D.

e We define c4(n,s,t) as the maximum, over all triples (G,5,T) € G, of respective sizes
(n,s,t), of the number of cops required to capture a robber on Cay(G,S) when the
robber may only play moves in 7.

e We define ¢, (n,s,t) as the maximum, over all triples (G,S,T") € G, of respective sizes
(n,s,t), of the number of cops required to capture a robber on Cay(G,S) when the

robber may only play moves in 7.

Whenever there exists no triple (G,S,T') € G4 of respective sizes (n,s,t) € D, we say that
cq(n,s,t) = 1. Similarly, whenever there exists no triple (G,5,T) € G, of respective sizes
(n,s,t) for some triple (n,s,t) € D, we say that ¢,(n,s,t) = 1. Furthermore, c4(n,s,t) and
cu(n,s,t) have a trivial upper bound of n. Thus, ¢4(n,s,t) and c¢,(n,s,t) are well-defined for
all (n,s,t) € D.

Note that as G, C Gy, it immediately follows that for any triple (n,s,t) € D, c,(n,s,t) <
cq(n,s,t). Furthermore, in a standard game of cops and robbers, the robber may choose any
move in S on each turn, and hence for a finite abelian group G generated by set S, the cop
number of Cay(G,S) is at most ¢4(n,s,s) in general, and the cop number of Cay(G,S) is at

most ¢,(n,s,s) when S = —38S.
For technical reasons which will become clear shortly, we also need to define the following.

Definition 2.2.6. We define B = {(n,s,t) € D :t =0o0r s =n —1}. We say that triples

(n,s,t) € B are boundary values.

In other words, boundary values give the sizes of triples (G,S,T") € G4 for which deter-
mining the number of cops required to capture a robber on Cay(G,S) with moveset T is

trivial, as we see in the following observation.
Lemma 2.2.7. If (n,s,t) € B, then cq(n,s,t) = c,(n,s,t) = 1.

PROOF. For a triple (n,s,t) € B, let (G,S,T) € G, such that (|G|,|S|,|T|) = (n,s,t). (If no
such triple (G,S,T') exists, then cq(n,s,t) = ¢,(n,s,t) = 1 by definition.) Consider a game of
cops and robbers on Cay(G,S) in which the robber’s moveset is 7.
e If T = (), then the robber has no moves, and a single cop may move to the robber’s
position and capture the robber.
e If |S| = |G| — 1, then Cay(G,S) is a complete digraph, and a single cop can capture

the robber after one move.
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Thus, we have shown that cq(n,s,;t) = 1. As 1 < ¢,(n,s,t) < cq(n,s,t), it also follows that
cu(n,s,t) = 1. O

We note that for a triple (G,S,T") € G, of respective sizes (n,s,t), if n < 2, then s =n — 1
must hold, so (n,s,t) € B. Therefore, when we consider values (n,s,;t) € D\ B, we may

assume that n > 3.

We are now ready for our main tool, which will be the following lemma. This lemma
essentially formalizes a general inductive strategy of capturing the robber by guarding robber
moves until no robber move is safe. The lemma generalizes key ideas used by Frankl in [30]
and uses the idea from [21] of having some elements of S which account for many elements
of T.

We first give an informal description of the lemma. We will have functions g and h taking
values in D\ B. The function h will give a lower bound for the number of robber moves that
a single cop can make unsafe on an n-vertex s-regular abelian Cayley graph or digraph, when
the robber’s moveset is of size t. We will show that if g satisfies certain properties that are
necessary for the inductive strategy of guarding robber moves described above, then g(n,s,t)

gives an upper bound for the number of cops needed to capture a robber on such a graph.

Lemma 2.2.8. Let (G,c) be either (Gg,cq) or (Gu,cu), and let g : D\ B — R=? and h :
D\ B — R>? be functions. Suppose that g and h respect the following conditions for all
(n,s,t) € D\ B:

(1) For any (G,S,T) € G with respective sizes (n,s,t) € D\ B, there exists an element
k€ G\ {0c} accounting for at least h(n,s,t) elements of T with respect to S;

(2) Forn' < 3, s < s, t <t, and (n',s',t') € D\ B, either g(n,s;t) > c(n',s',t'), or
g(n,st) = g(n',s't');

(3) If 1 <t <t— h(n,s,t), then g(n,s,t) > g(n,s,t’) + 1.

Then, if (n,s,t) € D\ B, then c(n,s,t) < g(n,s,t).
Proor. We fix functions ¢ and h that satisfy the conditions of the lemma.

Suppose that the lemma does not hold for some (n,s,t) € D\ B. We choose our offending
triple (n,s,t) with n as small as possible and, subject to n being minimum, with ¢ as small as
possible. As the lemma does not hold for (n,s,t), we may choose (G,S,T") € G with respective
sizes (n,s,t) so that g(n,s,t) cops are not enough to capture a robber on Cay(G,S), even when

the robber may only play moves from 7. We will show that this gives us a contradiction.

By condition (1), there exists an element k € G, satisfying k # Og, that accounts for at
least h(n,s,t) elements of T. We would like to show that we can position a cop at a vertex
r—+ vk, where r is the position of the robber, and v is some integer. In other words, we would
like to show that we can capture the robber “modulo k." To this end, we let ¢ : G — G/(k)
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be the natural homomorphism a +— a + (k). By the definition of ¢, placing a cop at such a
vertex r + vk is equivalent to capturing the robber in a game of cops and robbers played on
G/(k) with cop moveset ¢(S) and robber moveset ¢(7T').

We first note that (G/(k),6(S),¢(T)) € G. In particular, if S = —S, then ¢(5) =
¢(=5) = —o(9).

We now show that our g(n,s,t) cops have a strategy to capture the robber in the game on
G/(k). As k # 0g, we see that n’ = |G/(k)| <n/2, s = |p(S)| < |S|=s,and t' = |¢(T)| <
|T| =t. If (n/,s',t') € B, then as shown previously, c(n,s',t') = 1 < g(n,s,t), and our g(n,s,t)
cops may capture the robber on G/(k). Otherwise, suppose that (n’,s',t") € D\ B. Then
c(n',s't") < g(n,s,t) either directly from (2), or from the inequality c(n',s',t') < g(n',s',t') <
g(n,s,t), which follows from the fact that (n,s,t) is a minimal counterexample. Therefore,
our g(n,s,t) cops have a strategy by which a cop C' can reach a vertex r+~k for some integer

v > 0, where r € G is the position of the robber.

Next, we show that at this point, C' has a strategy to restrict the robber to a moveset of
size at most t — h(G,S,T). Let A ={ay,...,a,} C T be the set of robber moves accounted
for by k. If the robber plays a move o’ € A, then C plays o/, and C will stay at a vertex of
the form r+~k, where r is the new position of the robber. If the robber plays a move a; € A,
then C' has a move b; € S U {0g} such that a; — b; = k. After C plays b;, C' now occupies a
vertex r+ (7 — 1)k, where 7 is the new position of the robber. Thus we see that whenever the
robber plays a move from A, which must be accounted for by k, the “difference" between the
robber and C' decreases by exactly k. Thus, if the robber plays a move from A sufficiently
many times (v times), then the robber will be caught by C. Therefore, the robber must
eventually stop playing all moves of A. The number of moves in A is at least h(n,s,t), and

hence C' restricts the robber to a moveset 7'\ A of size at most t — h(n,s,t).

We note that when applying the inductive strategy on the quotient graph
Cay(G/(k),¢(5)), it is still possible for the robber to play moves which are not con-
sidered safe, but only a bounded number of times. For example, in the paragraph above,
we describe the move a; as unsafe, but the robber may play a; up to v — 1 times without
being captured. If the robber plays an “unsafe" move, we pause the inductive strategy; then
all cops playing the quotient strategy copy the robber’s move, while the cops guarding this

unsafe move advance closer to the robber.

Now, we show that it is possible for at most g(n,s,t) — 1 cops to win in the game given
by the triple (G,S, T\ A). This will give us our contradiction, as we may then capture
the robber in the game given by (G,S,T) with g(n,s,t) cops by using one cop to make the
moves in A unsafe for the robber and then using the remaining g(n,s,t) — 1 cops to win in

(G,S,T\ A). If (n,s,t —|A|) is a boundary value, then 1 cop is sufficient for the game given by
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(G,S,T\ A), and then as g(n,s,t) > 2, we have our contradiction. Note that as (n,s,t) € D\ B,
(n,s,t — |A]) € B if and only if t — |A| = 0. Otherwise, t — |A| > 1 and (n,s,t — |A|) € D\ B,
and by the minimality of (n,s,t) and condition (3), g(n,s,t — |A]) — 1 additional cops are
sufficient to capture the robber in the game given by the triple (G,S, T\ A). Therefore, in
total, we need at most g(n,s,t) cops to capture the robber, which contradicts the minimality

of (n,s,t). Thus, our proof is complete. O

2.3. Upper bound for undirected abelian Cayley graphs

In this section, we will show that the approach we have outlined in Lemma 2.2.8 gives us
an upper bound of ﬁﬁ%—g ~ 0.9424\/n+ % on the cop number of undirected abelian
Cayley graphs of n vertices. As we consider undirected graphs in this section, whenever we
have an abelian group G generated by a set S, we will always require that S = —S. This way,
we may consider Cay(G,S) as an undirected abelian Cayley graph. Some of the symbolic
and optimization computations in this section and the next were done with Mathematica

[41], but with care and patience, each computation can be checked by hand.

Using our main tool of Lemma 2.2.8, we will aim to define functions g and h that satisfy
its conditions for (G,,c,) and such that g(n,s,s), which is an upper bound for cop number,
is not too large. Therefore, the main challenge of this section will be choosing suitable
functions g and h, and moreover, showing that these functions satisfy all the conditions of
Lemma 2.2.8.

Before we seek our functions ¢ and h with which to prove an upper bound on the cop
number of abelian Cayley graphs, we first note that there is a simple choice of g and h that
gives a slightly weaker version of Theorem 2.2.2; as shown in the following proposition. This
simple choice of the functions g and h gives an instructive example of how to use Lemma
2.2.8, and this application of Lemma 2.2.8 furthermore shows that our lemma is indeed a

generalization of the method of Frankl from [30].

Proposition 2.3.1. If I is a Cayley graph on an abelian group with generating set S such
that S = =S and Og ¢ S, then

o) < PS|2+ 3} .

PROOF. We wish to define functions g and h taking values in D\ B that satisfy the conditions
of Lemma 2.2.8 for (G,,c,). We choose

Y

o= 557
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1 t=1.2
2 t>3

h(n,s,t) =

We claim that g and h satisfy the conditions of Lemma 2.2.8 for (G,,c,). We immediately
notice that h(n,s,t) > 0 by definition, and for all (n,s,t) € D\ B, we have ¢t > 1, and hence
g(n,st) > 2.

We show that condition (1) of Lemma 2.2.8 is satisfied. Indeed, let (G,S,T) € G, with
respective sizes (n,s,t) € D\ B. If t € {1,2}, then for any a € T, we may let k = a; then, as
a—0¢g = k, k accounts for at least 1 element of T" with respect to S, namely a. If ¢ > 3, then
we may choose any elements a,b € T with a # —b and let k = a + b; then, as a — (—=b) = k
and b — (—a) = k, k accounts for at least two elements of T" with respect to S, namely a and

b. Hence, condition (1) of Lemma 2.2.8 is satisfied.

Next, we show that condition (2) of Lemma 2.2.8 is satisfied. If we have n’ <n/2 s’ <'s,
and ' <t such that (n/,s',t') € D\ B, then

t'+3
;_ -‘:g(n',s',t’).

>

t—i—ﬂ
2

g(n,s,t) = {

Finally, we show that condition (3) of Lemma 2.2.8 is satisfied. Suppose 1 < ¢ <
t — h(n,s,t). As h(n,s,t) > 1, we must have ¢t > 2. If ¢ = 2, then ¢’ = 1, and g(n,s,t) =3 =
2+ 1=g(n,st")+ 1. Otherwise, if ¢t > 3, then h(n,s,t) = 2. Thus, if 1 <t <t — 2, then

g(n,s,t) = [

/
t+3w> '+ 3
2 - 2

-‘ +1=g(n,s,t)+1.

Hence, as g and h satisfy the conditions of Lemma 2.2.8, it follows that ¢, (n,s,t) < g(n,s,t)
for all (n,s,t) € D\ B. Therefore, for an abelian group G of n elements generated by

a set S C G of s elements satisfying S = —S, if I' = Cay(G,S), one of the following
holds: either (n,s,s) € B and ¢(T) < ¢, (n,s,s) = 1 < [23], or (n,s,s) € D\ B and
C(F) S Cu(n7$78) S g(n737$) = (%_‘ U

In fact, by defining boundary values more carefully, it is possible to obtain the exact result
of Theorem 2.2.2 from Lemma 2.2.8. More precisely, if we add the inductive base cases for
Frankl’s proof from from [30] as boundary values in the undirected case, then we may use
Lemma 2.2.8 to give the exact same result as Theorem 2.2.2. However, this modification
requires that boundary values be defined separately for the directed and undirected cases,
and it adds to the already existing technicalities, so we opt for a simpler presentation with
a slightly worse additive constant.

In the proof of Theorem 2.2.2, we let a single element of G account for at most two

elements of T'. As discussed earlier, we will see that in general, a single element can account
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for many more than two elements of 7. This will allow us to use a similar strategy to find

an improved upper bound for the cop number of an abelian Cayley graph.

For the remainder of this section, our goal will be to establish a sharper upper bound on
the cop number of an undirected Cayley graph on an abelian group. The main tool for our
improved upper bound will be Lemma 2.2.8, so as discussed before, we will seek functions g
and h that we can use with Lemma 2.2.8. In the following definition, we define a function A
that we will use for the entire remainder of this section. In the definition of A, we will use a

fixed constant ¢ > 0. We will assign a value to c later.
Definition 2.3.2. We define the function h: D\ B — R>? by
1 te {12} andt <cyn
h(n,s,;t) =<2 3<t<ecyn
Lt > e/

We note that it is important to add that ¢ < ¢y/n in the first condition. We will sometimes

choose ¢ to be as low as about 0.8, so when n is small, it is possible that ¢\/n < 2.

Lemma 2.3.3. The function h satisfies condition (1) of Lemma 2.2.8 for (G, cu).

PrROOF. We must show that if (G,S,T) € C, is a triple with respective sizes (n,s,t) € D\ B,
then there exists an element k € G\ {O¢} accounting for at least h(n,s,t) elements of T with

respect to S.

Suppose that ¢t < ¢y/n. Then h is defined as in the proof of Theorem 2.3.1 given above,

and the statement follows from the same argument.

Suppose, on the other hand, that ¢ > ¢y/n. We compute a multiset M consisting of all
differences a; — a;, for a; # a;, a; € T, and a; € S U {0g}. Let k be a most frequently
appearing element of M. There are t possible choices for a;, and there are s possible choices
for each a;, namely Og and every element of S\ {a;}.

By the pigeonhole principle, as each element of M is one of n — 1 possible values, the

ts
n—1

most commonly occurring element k£ of M must appear at least times. Therefore, k

must account for at least % elements of T" with respect to S. As k # Og, the statement

again holds. 0

The cutoff at ¢y/n in the definition of h is analogous to the cutoff in the Pairing Algorithm
of [21]. The idea behind this cutoff is the fact that when ¢ is small, the quantity -**- becomes

n—1
smaller than 2, and then it is preferable to argue directly that there exists an element of

G\ {0g} accounting for two elements of T'. As discussed in Section 2.6, we could, of course,

take the ceiling of this function when applying the pigeonhole principle, but this makes
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analysis of the function h very difficult. One might also be interested in modifying this
cutoff to be of the form ¢ > ¢®=* (for some constant ¢ > 1) in order for h always to be
at least 1. For some triples (n,s,t), this would allow h(n,s,t) to become larger while still
satisfying condition (1). However, this alternative cutoff of h does not appear to behave

nicely when it comes to verifying condition (2).

Next, we will define our function g. Our goal for the remainder of this section will then
be to show that g and h satisfy the conditions of Lemma 2.2.8 for (G,, ¢,) and that g(n,s,s)

is not too large.

Definition 2.3.4. We define the function g : D\ B — R=% by

[%} 1<t<c/n

log —=
c/n C\/ﬁ Z
o + =5+ t > c\/ﬁ.

n—s—1

g(n,st) =

This choice of g may not seem straightforward, so we present the intuition behind this
definition. We suppose that for a value (n,s,t) € D\ B, we have an abelian group G on n
elements generated by a set S C G (with S = —S5) of s elements, and a subset 7' C S of
t elements. We would like to estimate the number of elements of G needed to form a set
K such that the elements of K altogether account for each element of T', since, as we have
discussed, this will help us count the number of cops needed to make every robber move

unsafe in a game on Cay(G,S).

In order to estimate the number of elements needed in K, we may construct K iteratively.
The iterative construction that we describe here is a refinement of the Pairing Algorithm
from [21]. If ¢ < ¢y/n, then we may pair the elements of T' by the method of Proposition
2.3.1 and obtain a set K of at most [%£2] elements, for which the elements of K altogether

account for all of T with respect to S. On the other hand, if ¢t > cy/n, we may choose

ts
n—1

one element k£ € G to account for at least elements of T, as in the proof of Lemma

2.3.3. More generally, we can use the same idea to define a recursive process that repeatedly
adds elements to K, and we may run this process until at most c¢y/n elements of T" are not
accounted for by K. We execute our recursive process as follows. We define z; to be the
number of elements accounted for by K after i iterations of our process. We immediately see

that zp = 0, and if we choose k as described earlier during the first iteration of our process,

ts
n—1"

for by K, and hence on the ith iteration of our procedure, we may add an element to K that

s(t—zi_l)
n—1

number of elements in T" accounted for by K after i iterations of our procedure:

we may let z; > Additionally, given z;_1, there are t — z;_; elements of T" not accounted

accounts for new elements of 7. Therefore, we obtain a recursive inequality for the

s(t—zi-1) n—s—1 N st
= Zict+ ——,
n—1 n—1 T

2 2> Zi—1 +
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which has a closed form of

n—s—1\°
ziZt—t<7> .
n—1

Hence, after ¢ iterations of our recursive procedure, we calculate that there are at most
t ("n_—f_ll)Z elements of T" not accounted for by K. As soon as the number of elements in
T not accounted for by K is at most ¢y/n, we may pair the remaining elements of 7" as in
the proof of Proposition 2.3.1. Therefore, the recursive method we have described will run

1 times, where ¢ is the smallest integer such that ¢ (”’—’1)1 < ¢y/n. We thus may calculate

n—1
that
. log =
b=, =
IOg n—s—1

and hence after the recursive method runs 7 times, at most c¢\/n elements of 7" will be left

unaccounted for by K. At this point, the remaining ¢y/n unaccounted elements of 7' may be
paired into sums, as in the method of Theorem 2.3.1, and each such sum roughly accounts
for 2 elements of T. We may put these sums into K, at which point the elements of K
altogether account for all of T'. In total, our count shows that our set K needs roughly at

most

log =1 2

n—s—1

log -
{ cn%c\/ﬁ

elements. This counting method gives us an intuition with which we define the function
g. The extra additive constant of ¢ is included for technical reasons that will become clear

later.

We easily see that our function g is defined on all values in D\ B and bounded below
by 2. In the following lemmas, we will bound g¢(n,s,t) above, and we will show that g and h
satisfy conditions (2) and (3) of Lemma 2.2.8.

Lemma 2.3.5. Let d > 0. Ifd > L + £, then g(n,s,t) < dy/n+ 1.
PRrooOF. We consider two cases :
(1) If t < ¢y/n, then

(2) If t > cy/n, then we first note that g(n,s,t) < g(n,s,s). We wish to find « such that

log —5_
102g CVITES ay/n for all real values n > 3 and 1 < s < n — 2. This inequality can be

n—s—1 o

rewritten as

3 5 7
< F\Fn;w gg\/ﬁ+§<d\/ﬁ+§.

Tac(n,s) == > 1. (%)

c\/ﬁ( n—1 )O‘\/ﬁ

S n—s—1

ol



One calculates that the derivative relative to s is

ay/n+1
Oae C\/_<n31) (—ay/ns+n—s—1)
s (n—1)s?
By examining the sign of this derivative, we see that r,.(n,s) achieves a minimum
n—1

when s has a value s* = — NCESE Therefore, it will suffice to choose a value o such
that the inequality (*) holds when s is replaced by s*. We will show that the choice

a = L works.
ce

By substituting s with s* = a\"/%}rl, applying a = C—le, and doing some simplification,
we find that
1+ < n (ce + )
) = ) =

In order to show that the inequality (*) holds with a = C—le, it will be enough to show
that w.(n) > 1.
We will apply the inequality (1+ )% > ewtv (for x,y > 0) [44] [45, Section 5.3] with

T = \/—, Y= - along with the inequality - L > \/— With these two inequalities, we
find
@ —ce
(1+2)" Vilee+ V) ece+ff<ce+f> e= iV (ce + /n)
we(n) = - > - =: zc(n).
e(n—1) e(n—1) Vn
Furthermore, one calculates that
= O
Fellt) = 2 (cen®/? + n?)
which is always negative, and that
lim ze(n) = 1.
Therefore, w,(n) > z.(n) > 1, which confirms that ; - “f < ay/n when o = =, for
all real values ¢ >0, n > 3,1 <s <n— 2. Thus, wehasfe
log —L~
s ()
t) = < d —
O

Lemma 2.3.6. Letd > 0. If § > T and d > = +£, then g respects condition (2) of Lemma
2.2.8 for (Gu, cu)-

ProoOF. Consider a choice of d > 0 such that § > \% and d > = + £. Let (n,s,t) € D\ B

and (n',s',t') € D\ B such that n’ < %, 5" <'s and t' < t. We consider two cases:
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(1) If t < ¢y/n, then

>

t+3"

2

o(ns.t) = [ F’ +3

> v / ,,t,

2 —‘ — C (n 78 )7
using a result from the proof of Proposition 2.3.1.

(2) If t > c4/n, then by the previous lemma and our hypotheses on ¢ and d,

log -7~ 7 7
c/n C\/_ \/— d\/ﬁ > d ] > A

S o> dY o> dVin + - ).

n—1 + 2 +2 2 +2— \/§+2— n+2—g(n78a)

g(n,s,t) =

Lemma 2.3.7. The functions g and h respect condition (3) of Lemma 2.2.8 for (Gu, cy).
PROOF. Let (n,s,t) € D\ Band 1 <t <t— h(n,s,t).
We consider four cases :

(1) If t <2 and t < ¢y/n, then as h(n,s,t) = 1 we can see that the only case to consider is
t =2andt' = 1. In this case, g(n,s,t) = 3 and g(n,s,t’) = 2, so g(n,s,t) = g(n,s,t’)+1.
(2) If 3 <t < cy/n, then h(n,s,;t) = 2, and thus t > ' + 2. Then,

t+ 3 t'+3 t+1
olnsit) = |5 z[ S l:{ S w+1=g(n,s,t’>+1

(3) If t > cy/n and t' < ¢y/n, then

log - 7 3 3 #+3
c\/ﬁ C\/ﬁ C\/ﬁ + C\/ﬁ + + ’
t) = -—> —— 4+ 2> | — 1> 1> t 1
g(n,s,t) Iog n,i;il + 5 + 5 5 + 5 +1> 5 +12>g(n,s,t)+
(4) If t,t' > cy/n, we know from Lemma 2.3.3 that ¢/ <t — L= =1t (”n 1 ) Thus,
log - 7 log (—t' .=l ) 7 log ( )
c/n Cy1n cv/n  n—s—1 Cy/ 1 c/n C\/_ /
t) = - > — 1+ t 1.

g(ns.t) 1T T T g e R R . ey 2 = g(n.s.t)+

In all cases, g(n,s,t) > g(n,s,t’)+1, so condition (3) of Lemma 2.2.8 is satisfied for (G,,c,). O

We have shown that g and h satisfy the conditions of Lemma 2.2.8, so we are ready for

our main result for undirected Cayley graphs on abelian groups.

Theorem 2.3.8. The cop number of any undirected Cayley graph on an abelian group of n

: 1 T 7
elements is at most m\/ﬁ+ 5~ 0.9424\/n + 3.

PROOF. Let G be an abelian group on n vertices generated by set S C G (with S = =8
and Og ¢ S) of s elements. If (n,s,s) € B, then the result follows directly from Lemma 2.2.7.
Otherwise, we assume that (n,s,s) € D\ B.

We first find values ¢ and d satisfying § > \d[ and d> 5» which minimize d. A simple

~ 0.9424.

ce

~ 1.33 and d =

computation of such values ¢ and d yields ¢ =

1
e(\/ifl) e(v2—1)
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With these chosen values of ¢ and d, the lemmas of this section show that our choices for
g and h satisfy all three conditions of Lemma 2.2.8 for the case (G,, c,). Hence, by Lemmas
2.2.8 and 2.3.5, ¢(Cay(G,9)) < cu(n,s,s) < g(n,s,s) < dy/n+ 1. O

Similarly to Proposition 2.3.1, the additive constant of Theorem 2.3.8 can be improved
by 1 to g with a more technical definition of boundary values. However, we do not feel that

this slight improvement justifies the added technicalities.

We note that Theorem 2.3.8 not only proves that Meyniel’s conjecture holds for undi-
rected Cayley graphs on abelian groups (with a smaller multiplicative constant than in [21]),
but it also proves that Meyniel’s conjectured bound holds for these graphs with a coefficient
of v/n smaller than 1. Indeed, Wagner has conjectured in [67] that the coefficient of \/n in
Meyniel’s conjecture should be 1, so Theorem 2.3.8 shows that abelian Cayley graphs satisfy
both the conjectured upper bounds of Meyniel and Wagner.

In the next proposition, we show that we may obtain marginal improvements on the
coefficient of /n by considering the group structure of G. The proposition uses the fact
that for a group G of n elements such that the smallest prime divisor of n is a prime p, no
element of prime order ¢ < p exists in G, and moreover, by Lagrange’s Theorem and prime

factorization, no such element exists in any subgroup or quotient group of G.

Proposition 2.3.9. Let G be an abelian group on n elements, and let S C G be a generating
set of G such that S = —S and Og ¢ S. Let p be the smallest prime factor of n.

(1) If p = 3, then c(Cay(G,S)) < mﬁ + I ~0.8682y/n+ 2.
(2) If p > 5, then ¢(Cay(G.S)) < \/2y/n+ 1 ~ 0.8578y/n + L.

PROOF. (1) In condition (2) of Lemma 2.2.8, we require n’ < T because of the bound
|G/{k)| <n/2 for any element k € G with k # 0. However, if n is odd, then we know
that |G /(k)| < n/3, so we only need to require that n’ < % in this condition. Indeed,
if 2 does not divide |G|, then 2 does not divide |G/(k)|, and induction may be used.

> % from Lemma 2.3.6 to 5> %.

> % and d > é + % yields the solution
c= ﬁ ~ 1.0025 and d =, /525 ~ 0.8682. The result then follows as in

Theorem 2.3.8.

(2) As 2 and 3 do not divide n, in condition (2) of Lemma 2.2.8, we only need to require

Hence, we may relax the requirement

Nl Nlo

Then, minimizing d with respect to

W)

n < % Hence, we may relax the requirement § > % from Lemma 2.3.6 to § > %.
Then, minimizing d with respect to 5 > % and d > C—le + 5 yields the solution

c=d= \/g ~ 0.8578. The result then follows as in Theorems 2.3.8.
O
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We note than no further improvement based on p is possible, as ¢ = d = \/g ~ (0.8578
d
VP
when p > 5, as in those cases ¢ = d and /p > 2.

is the optimal solution when ignoring the constraint § > ~=. This solution always respects

d

the constraint § > 7

2.4. Upper bound for directed Cayley graphs

In this section, we consider the game of cops and robbers on directed abelian Cayley
graphs. As we consider directed graphs in this section, whenever we have an abelian group

G generated by a set S, we no longer require that S = —§.

We will show that the approach we have outlined in Lemma 2.2.8 gives us an upper
bound of /ﬁ\/ﬁ + 2 &~ 1.3328y/n + 2 on the cop number of directed abelian Cayley
graphs of n vertices. In other words, we will show that Meyniel’s conjecture still holds for
abelian Cayley digraphs, albeit with a worse coefficient than that of Theorem 2.3.8. Our
general approach in this section will be very similar to that of Section 2.3. We will define
functions g and h that satisfy Lemma 2.2.8 for (Gy,c4) and such that g(n,s,s) is not too large.
Note that the functions g and h that we will define in this section are not the same as the
functions ¢ and h from the previous section. As this section follows the same approach as

Section 2.3, our presentation will be terser.

In the following proposition, we use Lemma 2.2.8 with (Gy, ¢4) to establish a directed
version of Theorem 2.2.2. The following proposition appears in [35], but just like Proposition
2.3.1, we include the proposition as an instructive example of how to apply Lemma 2.2.8
with (Gy, ¢q). Furthermore, we will need a result from the proof of the following proposition

to prove the main result of this section.

Proposition 2.4.1. [35] If T is a Cayley digraph on an abelian group with generating set S
such that O ¢ S, then
o) < IS+ 1.

PROOF. We wish to define functions g and h taking values in D\ B that satisfy the conditions
of Lemma 2.2.8 for G; and ¢;. We choose

g(n,st) =t+1;

h(n,s,t) = 1.

We claim that g and h satisfy the conditions of Lemma 2.2.8 for G; and c¢;. We immediately
notice that h(n,s,t) > 0 by definition, and for all (n,s,t) € D\ B, we have t > 1, and hence
g(n,s;t) = 2.
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We show that condition (1) of Lemma 2.2.8 is satisfied. Indeed, let (G,S,T) € G; with
respective sizes (n,s,t) € D\ B. For any a € T, a accounts for a with respect to S, because

there exists Og € S U {0g} satisfying a — 0 = a. Therefore, h satisfies condition (1) of
Lemma 2.2.8.

Next, we show that condition (2) of Lemma 2.2.8 is satisfied. If n’ < n/2, s’ <'s, and
t' <t are values such that (n',s',t') € D\ B, then

gnst)=t+1>t+1=g(n'st).

Finally, we show that condition (3) of Lemma 2.2.8 is satisfied. If 1 < ¢ <t — h(n,s,t),
then

gnst)=t+1>t+2=g(n,st’)+ 1.

Hence, as g and h satisfy the conditions of Lemma 2.2.8 for G4 and ¢y, it follows that
ca(n,s,t) < g(n,s,t) for all (n,s,t) € D\ B. Therefore, for an abelian group G of n elements
generated by a set S C G of s elements, if ' = Cay(G,S), then one of the following holds:
either (n,s,s) € Band ¢(I') < ¢,(n,s,s) =1 < s+1, or (n,s,s) € D\Band ¢(I') < ¢,(n,s,s) <
g(n,s,s) = s+ 1. O

We define a function h that satisfies condition (1) of Lemma 2.2.8 for G; and ¢;4, and
we will use this definition of h throughout the entire section. The definition of h contains a

constant ¢ > 0 whose value we will decide later.

Definition 2.4.2. We define the function h: D\ B — R>? by
1 t<cyn
Lt > ey/n.

Lemma 2.4.3. The function h satisfies condition (1) of Lemma 2.2.8 for (G, cq).

h(n,s,t) =

PROOF. We must show that if (G,S,T) € C; is a triple with respective sizes (n,s,t) € D\ B,
then there exists an element k£ € S U {0g} accounting for at least h(n,s,t) elements of T'
with respect to S. When t < ¢4/n, the proof follows the method of Proposition 2.4.1. When
t > cy/n, the proof follows the method of Lemma 2.3.3. O

Next, we define our function g. Again, we will show that g and h satisfy the conditions

of Lemma 2.2.8 and that g(n,s,s) is not too large.

Definition 2.4.4. We define the function g : D\ B — R=2 by

t+1 t <cyn
g<n757t) = logct"
og o+ cv/n+2 t>cyn.
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The following three lemmas are analogues of Lemmas 2.3.5, 2.3.6 ,and 2.3.7.
Lemma 2.4.5. Let d > 0. Ifd > L + ¢, then g(n,s,t) < dy/n+2.
Proor. We consider two cases :
(1) If t < ¢/, then
g(nst) =t+1<cy/n+1<dyn+2.

(2) If t > cy/n, then by the proof of Lemma 2.3.5
n>3and 1 <t <s<n-—2. Thus, we have

7Cf L
e < e\/ﬁ for all real values

g(n,st) =

log * 1
og i o/ +cf+2<<£+c)\/ﬁ+2gd\/ﬁ+2.

nsl

O

Lemma 2.4.6. Letd > 0. Ifc > % and d > = + ¢, then g respects condition (2) of Lemma
2.2.8.

PRrooF. Consider a choice of d > 0 such that ¢ > % and d > + +c. Let (n,st) € D\ B

and (n',s',t') € D\ B such that n’ < %, 5" < s and t' < t. We consider two cases:
(1) If t < ¢/, then
gn,sit) =t+1>t+1>c,(n,st),

using a result from the proof of Proposition 2.4.1.

(2) If t > c4/n, then by the previous lemma and our hypotheses on ¢ and d,

log -
g(n,s,t) = og = C‘/_ +evn+2>cyn+2> d\\;_; +2>dVn' +2>gn' s t).
n—s— 1

Lemma 2.4.7. The functions g and h respect condition (3) of Lemma 2.2.8 for (Ga, cq).
PROOF. Let (n,s,t) e D\ Band 1 <t <t — h(n,s,t).
We consider three cases :
(1) If 1 <t < cy/n, then h(n,s,t) =1, and thus t > ¢’ + 1. Then,
gn,sit) =t+1>t +2=g(n,st')+ 1.
(2) If t > ey/n and ¢ < ¢y/n, then

log

1 Cf feoyn+2>ce/n+2>t¢+2=gnst)+ 1.
0g

nsl

g(n,s,t) =
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(3) If t,t’ > cy/n, we know from Lemma 2.4.3 that ¢/ <t — - =1t (”_—S_l) Thus,

n—1 n—1
log - 75 log (77 " 75 log ( -7z
g(n,s,t) = lin‘g%—c\/ﬁj% > gog = 1> +ey/n+2 = log<nl)+1+c\/ﬁ—l—2 = g(n,s,t')+1.
n—s—1 n—s—1 n—s—1

In all cases, g(n,s,t) > g(n,s,t’)+1, so condition (3) of Lemma 2.2.8 is satisfied for (Gg4, cq). O

Theorem 2.4.8. The cop number of any directed Cayley graph on an abelian group of n
elements is at most ﬁ\/ﬁ + 2~ 1.3328\/n + 2.

PROOF. Let G be an abelian group on n vertices generated by set S C G (satisfying Og ¢ 5)
of s elements. If (n,s,s) € B, then the result follows directly from Lemma 2.2.7. Otherwise,
we assume that (n,s,s) € D\ B.

We first find values ¢ and d satisfying ¢ > % and d > é + ¢, which minimize d. A
0.

computation of such values ¢ and d yields ¢ = , /m ~ 0.9424 and d = , /m ~ 1.3328.

With these chosen values of ¢ and d, the lemmas of this section show that our choices for
g and h satisfy all three conditions of Lemma 2.2.8 for the case (G4, cq). Hence, by Lemmas
2.2.8 and 2.4.5, ¢(Cay(G,S)) < cq(n,s,s) < g(n,s,s) < dy/n+ 2. O

Similarly to Proposition 2.3.9, we may obtain marginal improvements on the coefficient
of \/n by considering the group structure of G.

Proposition 2.4.9. Let G be an abelian group on n elements, and let S C G be a generating
set of G such that Og ¢ S. Let p be the smallest prime factor of n.

(1) If p =3, then ¢(G,S) < ﬁﬁ+ 2~ 1.2278/n + 2.
(2) If p > 5, then ¢(G,S) < Zv/n+2~ 12131y/n + 2.

PROOF. (1) As in the proof of Theorem 2.3.8, we only need to require that n’ < % in
condition (2) of Lemma 2.2.8. Hence, we may relax the requirement ¢ > % from
Lemma 2.4.6 to ¢ > -%.

V3
Then, minimizing d with respect to ¢ > % and d > i + ¢ yields the solution
c= —-— ~0.7089 and d = 5 __ ~ 1.2278. The result then follows as in

\/ (\/g—l)e (\/§—1>e
Theorem 2.4.8.

(2) As 2 and 3 do not divide n, in condition (2) of Lemma 2.2.8, we only need to require

n’ < %. Hence, we may relax the requirement ¢ > % from Lemma 2.3.6 to ¢ > %.

Then, minimizing d with respect to ¢ > % and d > é + ¢ yields the solution
c= ﬁ ~ 0.6065 and d = % ~ 1.2131. The result then follows as in Theorem 2.4.8.

O
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2.5. Constructions with cop number in O(,/n)

In this section, we will give constructions for abelian Cayley graphs and digraphs on n
vertices with cop number in ©(y/n). If Meyniel’s conjecture is true, then for any graph G
on n vertices, the greatest possible cop number of G is in ©(y/n). Therefore, for an infinite
family G of graphs, if for each n > 1, every graph G € G on n vertices has a cop number in
©(y/n), then we say that G is a Meyniel extremal family.

We will construct a Meyniel extremal family using undirected abelian Cayley graphs and
a Meyniel extremal family using directed abelian Cayley graphs. These families will show
that the upper bounds in Theorems 2.3.8 and 2.4.8 are best possible, up to a constant factor.
Our constructions will be based on finite fields. We note that in [36], Hasiri and Shinkar
use similar methods to construct Meyniel extremal families of undirected abelian Cayley
graphs, and the largest cop number of a graph on n vertices by their construction is /%.
Our Meyniel extremal family of undirected abelian Cayley graphs will give a sharper lower

bound and thus improve the results from [36].

In this section, when we consider an abelian group G generated by a set S, we will assume
that Og € S, as this will simplify our notation and our arguments. Then, we consider a “non-
move" of a cop or robber to be equivalent to playing the move Og. Hence, we will assume
that on a given move, each cop or robber chooses a move s € S and plays s, and we will not

give “non-moves"' special treatment.

We will now define the abelian groups and generating sets used to construct our Meyniel
extremal families. Let p > 3 be a prime, and let G be the additive group (Z/pZ)?. Note
that G is in fact a field equipped with a multiplication operation. Let S; and Sy be defined
as follows:

Sy = {(z,2%) : 2 € Z/)pZ},
Sy = {(z,2%) : 2 € Z/)pZ}.

We note that our sets S; and S, appear as examples of Sidon subsets for certain finite
abelian groups in a paper by Babai and Sés [5]. We will see that our proofs that these gen-
erating sets give Cayley graphs of high cop number will be similar to the original arguments

from [5] showing that these sets are Sidon subsets.

It is straightforward to show that S; and S, are both generating sets of GG, seen as a
group. We note that S is also closed under inverses, while S5 is not closed under inverses in
general. Therefore, we consider Cay(G,S) to be an undirected abelian Cayley graph, and
we consider Cay(G,S5) to be a directed abelian Cayley graph. We note that |G| = p*. The
next two theorems show that both Cay(G,S;) and Cay(G,S2) have a cop number in O(p),
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demonstrating that our constructions indeed give graphs and digraphs on n vertices with
cop number in ©(y/n).

We note that the proofs of the following theorems use key ideas from Proposition 2
and the subsequent discussion of [30] and Proposition 2.1 of [35], specifically about the
number of moves that a single cop can guard. In particular, we could shorten our proofs
and refer directly to those results, but we nonetheless present the full proofs for the sake of

completeness.

Theorem 2.5.1. Let G, Sy, and p be as in the construction above. Then the cop number of
Cay(G,51) is ezactly [5p] = [% ]Gﬂ

PROOF. We first give a lower bound for the cop number of Cay(G,S;). Whenever a cop is
able to capture the robber immediately after the robber plays a move (z,2%), we say that
the cop guards the move (z,73). We show that a single cop cannot simultaneously guard
more than two robber moves. Let v € G be a vertex occupied by a cop C, and let r € G be
the vertex occupied by the robber. If the robber is not yet caught, then v — r = (a,b), for
some elements a and b that are not both zero. If C' guards a move (z,2*) € Sj, then there
must exist a move (y,4®) € S; by which C' can capture the robber in reply to (z,23). It then
follows that (z,2) — (y,4®) = (a,b). Thus z and y must satisfy

rT—y=a
23 —y® =b.
By substitution, we obtain the equation
a® — 3a*x + 3az® = b.

We see that if a # 0, then the system of equations has at most two solutions; otherwise,
a = b = 0. Therefore, for fixed elements a and b not both equal to 0, there exist at most two
values x for which a solution to the system of equations exists. Hence C' guards at most two

robber moves (z,23) € 5.

The robber has a total number of moves equal to |S;| = p = /|G|. If the total number
of cops is less than %p, then the robber will always have some move that is not guarded
by any cop. Then by naively moving to an unguarded vertex on each turn, the robber can
evade capture forever. Hence the cop number of Cay(G,S:) is at least 5p = 1,/|G|. As cop
number is an integer, the cop number of Cay(G,S;) therefore is at least [$p]. It follows from

Theorem 2.2.2 that the cop number of Cay(G,S,) is exactly [3p]. O

We now show an analoguous result for directed graphs.

Theorem 2.5.2. Let G, Sy, and p be as in the construction above. Then the cop number of
the directed graph Cay(G,Ss) is equal to |Ss| = p = +/|G|.
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PROOF. We first give a lower bound for the cop number of Cay(G,S;). Whenever a cop is
able to capture the robber immediately after the robber plays a move (z,2%), we say that the
cop guards the move (z,2?). We show that a single cop cannot guard more than one robber
move. Let v € G be a vertex occupied by a cop C, and let r € G be the vertex occupied by
the robber. If the robber is not yet caught, then v —r = (a,b), for some elements a and b that
are not both zero. If C' guards a move (z,2?), then there must exist a move (y,y?) by which
C can capture the robber in reply to (z,2?). It then follows that (z,z%) — (y,4%) = (a,b).
Thus x and y must satisfy
r—y=a

22 —y* =0b.

By substitution, we obtain the equation a? — 2ax = b, from which we see that whenever
a # 0, x is uniquely determined; otherwise a = b = 0. Therefore, for fixed elements a and b
not both equal to 0, there exists exactly one value = for which a solution to the system of

equations exists. Hence the cop occupying C guards at most one robber move (z,2%) € Ss.

The robber has a total number of moves equal to |Sa| = p = 1/|G|. If the total number of
cops is less than p, then the robber will always have some move that is not guarded by any
cop. Then by naively moving to an unguarded vertex on each turn, the robber can evade
capture forever. Hence the cop number of Cay(G,S,) is at least |Sy| = p = 1/|G|. It follows
from Theorem 2.4.1 that the cop number of Cay(G,Ss) is exactly p. O

Our construction in Theorem 2.5.2 implies that if Meyniel’s conjecture holds for strongly
connected directed graphs, written as ¢(I") < ¢y/n, then the coefficient must respect ¢ > 1.
Although our construction in Theorem 2.5.2 uses a digraph whose order is the square of a
prime, by using a common argument based on the density of primes (c.f. [54, Corollary 4.2]),
we may extend our construction to give a digraph with an order of any large integer n and
a cop number in (1 —o0(1))y/n. This will give us a Meyniel extremal family of digraphs. It is
shown in [8, 15, 43, 54] that there exist graph and digraph families on n vertices with cop
number in Q(y/n), but to the authors’ knowledge, our multiplicative coefficient of 1 — o(1)

is the largest of any digraph construction.

Corollary 2.5.3. For n sufficiently large, there exist a strongly connected directed graph on
n vertices with cop number at least v/n — 2n%725 € (1 — o(1))y/n.

Proor. We borrow a lemma from number theory which tells us that for x sufficiently large,
there exists a prime in the interval [x — 2°°% 2] [9]. From this lemma it follows that for

0.7625
Y

sufficiently large x, there exists a square of a prime in the interval [z — 2x ).

For our construction, we let n be sufficiently large, and we choose a prime number p > 3
with p? € [n — 2n%7% n]. We let G = (Z/pZ)?, and we let Sy be as in Theorem 2.5.2.
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We then attach a sufficiently long bidirectional path to one of the vertices of Cay(G,Ss),
which increases the number of vertices without changing the cop number. This gives us a

strongly connected directed graph on n vertices with cop number equal to ¢(G,Ss) = p >

Vi = 20075 € (1 — o(1)) /7. O

By using a similar approach, the construction in Theorem 2.5.1 can be modified to give a
Meyniel extremal family of undirected graphs on n vertices with cop number in (% —o(1))y/n.
However, this lower bound is not best possible, as constructions from [15] and [54] show

that there exist undirected graph families in which a graph on n vertices has cop number in

(2 — o(1))y/m.

2.6. Further directions

We conjecture that the constructions given in Theorems 2.5.1 and 2.5.2 have greatest

possible cop number in terms of n, up to an additive constant.

Conjecture 2.6.1. The cop number of any undirected Cayley graph on an abelian group of
n elements is in $v/n+ O(1).

Conjecture 2.6.2. The cop number of any directed Cayley graph on an abelian group of n
elements is in \/n+ O(1).

There are multiple possible avenues of improvement on the proofs of this article. One
obvious improvement would be to improve our bounds on the number of robber moves that

can be accounted for by one group element. In the explanation behind the choice of g, the

S(tfzifl)
n—i

inequality can be strengthened to be z; > z;_1 + [ ], as z; is always an integer and as
we can apply the pigeonhole argument only to choose elements which have not previously

been chosen. Resolution of this recursion might suggest a better function.

We note that as g and h are defined over integers, the proofs of our upper bounds only
depend on the sizes of GG, S and T. Another possible improvement would be to use other
group properties of G, S, and T to get better bounds on the number of robber moves that
a single element k € GG can account for, or to better characterize the structure of a quotient

G/(k) in our inductive strategy.
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RESUME. Nous prouvons que le cop number de tout graphe 2K-libre graph est au plus 2,

résolvant une conjecture récente de Sivaraman et Testa.
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ABSTRACT. We prove that the cop number of any 2Ks-free graph is at most 2, solving a

recent conjecture by Sivaraman and Testa.

Keywords: Cops and robbers, Cop number, Forbidden induced subgraphs, 2 Ks-free graphs

3.1. Introduction

Cops and robbers [52, 57, 2] is a turn-based game opposing a group of cops and a robber

on some connected graph G. The cops’ objective is to capture the robber, whereas the latter



attempts to escape indefinitely. The possible positions during the game are the vertices of
G, and when a cop or the robber is on some vertex u, its possible moves are staying on
or moving to a vertex adjacent to u, that is moving along an edge. On the first turn of
the game, starting with the cops, each player picks the vertex where it start the game from.
The cop number ¢(G) is the number of cops which is both sufficient and necessary for their
victory [2]. We say that G is k-cop-win if ¢(G) = k and that G is k-cop-lose if ¢(G) > k.

We define the graphs P;, K; and K}, as, respectively, the path on ¢ vertices, the complete
graph on t vertices and the complete bipartite graph with partitions of size ¢ and r. For any

graph G, we define rG as the graph composed of r disjoint copies of G.

It is frequent in graph theory to consider excluding, or forbidding, some substructures in
graphs, most notably induced subgraphs, subgraphs or minors. We will say that say a graph
G is H-free, H-subgraph-free or H-minor free if G does not contain any induced subgraph,
subgraph, or minor, respectively, which is isomorphic to H. One may similarly define graphs

which exclude a collection of graphs as subgraphs or minors.

There has been a fair amount of research on cops and robbers in this direction. The first

major general result of this type is the following.

Theorem 3.1.1. [4] If H is a graph, then there exists My < oo such that for any H-minor-
free graph G we have ¢(G) < My.

We assume that My is as small as possible; we note that this concept is noted as a(H) in
[4]. With the existence of such a bound proved, one might also be interested in optimizing
this value My for specific choices of H. For instance, it is also proved in [4] that My, = 3 and
that Mg, , = 3, hence improving the result from [2] that planar graphs have cop number
at most 3; Wagner’s theorem [66] states that the class of planar graphs and the class of

{K5,K3 3 }-minor-free graphs coincide.
Similar results for H-subgraph-free and H-free graphs were found in [42].
Theorem 3.1.2. [42] If H is a graph and Sy is such that for any H-subgraph-free graph G

we have ¢(G) < Sy, then Sy < oo if and only if every connected component of H is a tree

with at most 3 vertices of degree at most 1.

Theorem 3.1.3. [42] If H is a graph and Iy is such that for any H-free graph G we have
(@) < Iy, then Iy < oo if and only if every connected component of H is a path.

Some families with multiple excluded induced subgraphs are discussed in [50].

We will be consider the problem of excluding one graph from being an induced subgraph,

as in Theorem 3.1.3. Here again, we want to optimise the value I'y from Theorem 3.1.3. The
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simplest and most interesting case is that of a single forbidden path as induced subgraph,

for which the following bound has been proved.
Theorem 3.1.4. [42] If G is a connected Py-free graph (t > 3), then ¢(G) <t — 2.

In other words, we know that Ip, <t — 2. It has been conjectured that this bound can

be improved by using one fewer cops.
Conjecture 3.1.5. [63] If G is a connected P;-free graph (t > 5), then ¢(G) <t — 3.

This conjecture appears to be fairly difficult. An argument for the case of Pj is likely
to generalize to the whole conjecture. It has been suggested by Seamone and Hosseini in
private communication that possibly the best approach to proving this conjecture is first

proving it for the proper subclass of 2K,-free graphs.
Conjecture 3.1.6. [64] Let G be a connected 2K5-free graph. Then ¢(G) < 2.

Our objective is to prove this conjecture. Only a few properties of hypothetical 2 K5-free
2-cop-lose graphs are known. For instance, they have diameter 2 and contain induced cycles
of length 3, 4 and 5, as well as an induced subgraph isomorphic to the house graph (the
complement to Ps); see [47, 64] for previous work on this conjecture. However, we will not

be using these results in our proof.

3.2. Traps

We begin with some basic notation. We denote by N(u) the neighbourhood of a vertex u
and by N[u] = N(u)U{u} the closed neighbourhood of u. If S C V(G), then G — S denotes
the subgraph of G induced by V(G) \ S; if S = {z}, we write G — z for G — S.

We can now introduce an important concept which will be central in our proof.

Definition 3.2.1. Let G be a graph. A vertex u € V(G) is a trap if there exists z1,29 € V(G)
(not necessarily distinct) such that z1,x9 # v and N[u] C N[z1] U Nzs).

In other words, a vertex u is a trap if we can find two vertices which dominate v and all

of its neighbours. We will say u is trapped by x1,z9, or that x;,xs trap u.

The purpose of this definition is that if the robber is on u and the cops are on the vertices
trapping u, then the robber cannot escape and will lose at the next turn. In fact, a trap
is a generalization of the classical definition of a corner (also called an irreducible vertex)
in the game with one cop, see [52]. We note that this concept coincides with the concept
of a 2-trap in [67] from which the terminology is inspired; the term t¢rapped is also used in
(53, 67]

We now define different types of traps.
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Definition 3.2.2. Let G be a graph. Let u € V(G) be a trap and z;,z5 € V(G) be a choice

of vertices trapping u.

We say u is a type-I trap if exactly one of z1,x5 is adjacent to u. We say u is a type-I1I

trap if both x; and x5 are adjacent to w.

We say u is a connected trap if x1,x5 are adjacent vertices (in particular they are distinct).

We will say that u is c-trapped by z; and xs.

Note that a trap can be both of type-I and type-II, and both connected and not connected,
as a vertex may be trapped in multiple ways, but every trap must at least one of type-I or

type-II.

3.3. Finding connected traps

The structural properties of 2Ks-free graphs have been studied in various papers, for

example in [25]. In this section, we prove the existence of connected traps in such graphs.

We start with some well-known remarks about 2K,-free graphs, for which we omit the

obvious proofs.
Lemma 3.3.1. Let G be a 2Ks-free graph.

(a) Only one connected component of G can contain edges.
(b) The diameter of any connected 2Ks-free graph is at most 3.
(c) Any induced subgraph of G is 2K,-free.

The following reformulation of the 2 Ks-free property will be used later to simplify some

arguments.

Lemma 3.3.2. Let G be a 2K;-free graph. Let vw € E(G) and u € V(G) such that u is not

a neighbour of vyw. Then every neighbour of u is adjacent to v or w (or both).

PROOF. Suppose the contrary, that there exists a neighbour x of u, but not of v,w. Then,

the edges ux,vw form a 2K,. O

This lemma also yields a direct proof that 3 cops can catch the robber on connected
2K,-free graphs: choose an edge and place a cop on each end of this edge, as noted in [64].
By the lemma, the robber, who must choose a starting vertex not adjacent to the cops,

cannot move, and a third cop can go catch the robber.
We denote by Cs a cycle of length 5.
Lemma 3.3.3. Let G be a connected 2Ks-free graph and let w € V(G). If G — Nu] ~ Cs,

then G contains a connected trap.
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PROOF. Denote ay, ... a5 the vertices of G — Nlu|, such that a;a;1 € E(G) (working in
modulo 5).

It is easily seen that any vertex v € N(u) must be adjacent to at least 3 vertices of the

5-cycle G — NJul, by applying Lemma 3.3.2 for each edge a;a; .

If v is adjacent to 3 or more consecutive vertices (a;_1,a;,a;+1) of G — N[u], then a; is
c-trapped by u and v (all vertices in G are dominated by u or v, except possibly for a;,2,a;43,

to which a; is not adjacent), and we are done.

Thus, we may now consider that every vertex of N(u) is adjacent to exactly 3 vertices of
the five-cycle, only two of which are adjacent: if v € N(u), then N(v)\ N[u] = {a;,ai12,ai13}
for some 1 <4 < 5.

If v1,09 € N(u) have the same neighbours in G — N[u], then v, is c-trapped by ve and u,

and we are done.

Hence, we may now consider that every vertex of N(u) has a distinct neighbourhood in
G — NJu|. We will denote the possible vertices of N(u) as follows: N(u) C {by,...,bs}, such
that b; is adjacent to a;, a;12 and a; 3. If b;,b;11 € N(u), then b;b; 11 is an edge, as otherwise
biaiy2,bi410(;+1)+3 would form an induced 2K,. This does not exclude that there may be

other edges between the b;’s.
Choose a vertex b; € N(u). Then, u is c-trapped by b; and a;. Indeed, b; is adjacent to

biy1 and b;_y (if they are in the graph), a; is adjacent to b;1o and b, 3 (if they are in the
graph), and a; and b; are adjacent. This concludes the proof. O

We are now ready to prove the desired result.
Proposition 3.3.4. If G is a connected 2K5-free graph, then either

(1) G~ Kl,'

(2) G~ Kg,'

(3) G =~ Cs; or

(4) G contains a connected trap.
PROOF. We proceed by induction. If |V(G)| = 1,2, this is trivially true. Suppose the
statement is true by induction for connected 2K,-free graphs G’ such that |V (G')| < |V(G)|

and that |V (G)| > 3. Let u be any vertex of G. Recall that G — N[u] is 2K»-free, by Lemma
3.3.1(c).

If G — NJu] is empty, then v dominates G. As |V(G)| > 3, the vertex u has at least two

(distinct) neighbours z1,x2. Then, z; is c-trapped by u and xs.

If G— NJu] contains a connected component which is a single vertex y, then y is c-trapped

by u and any neighbour of y (which is necessarily in N(u)). Otherwise, G — N|u| contains
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no isolated vertex and by Lemma 3.3.1(a), G — NJu] is connected. Also, G — N|u] contains

more than one vertex.

If G — NJu| is an edge xix9: If 27 and x5 have a common neighbour ¢ in N(u), then
x1 is c-trapped by t and u. Otherwise, x; and x5 have no common neighbour. Denote by
A the neighbours of x; in N(u) and by B the neighbours of x5 in N(u). By Lemma 3.3.2,
N(u) = AU B. Without loss of generality, |A| > |B|. If |A] = 1 and |B| = 0, then G is
path of length 4, which contains a connected trap. If |A| = |B| = 1, then we either have
that G ~ Cjs (if the vertex in A and the vertex in B are not adjacent) or G contains a
connected trap (if the vertex of A and the vertex of B are adjacent, u is a connected trap).
Now consider that |A| > 1 and let a;,as € A be distinct vertices. As a; and ay are both

adjacent to x; but not x5, we have that a; is c-trapped by ay and wu.

If G — NJu| contains at least 3 vertices (and is connected): By the inductive hypothesis,
G — Nlu] is either a C5 or contains a connected trap. If G — N[u| ~ C5, then Lemma 3.3.3
yields that G contains a connected trap. Otherwise, denote v the vertex of G — N[u] which
is a connected trap, and wy,ws the vertices trapping v. We know that w;,w,; dominate v and
all neighbours of v in G — Nu]. As wywy € E(G), they also dominate all vertices in N (u),

by Lemma 3.3.2. Hence, v is also a connected trap in G. O

3.4. A strategy

In this section, we bound the cop number of 2Ks-free graphs by using traps to restate the
problem in terms of the local structure of our graphs, similarly to the equivalence between

cop-win and dismantable graphs, see [52].

In general, the fact that a graph contains a (or many) traps does not necessarily imply
that the cops can bring the game to that position.

For example, it is shown in [53] that all planar graphs of order at most 19 contains a
trap, but it is still open as to whether 2 cops can win on all planar graphs of order at most
19. Another example is that it is shown in [67] that all diameter 2 graphs of order n contains
a set of vertices of size at most y/n which dominates the neighbourhood of some other vertex
(called a y/n-trap), but it unknown whether the cop number of these graphs is bounded by
v/ (it is proved to be bounded by v/2n). In our case, we will show that containing a trap

will give us meaningful information.

For the remainder of this section, we will denote by G' a minimal (relative to the number

of vertices) connected 2K,-free 2-cop-lose graph. We first need the following lemma.

Lemma 3.4.1. For any u € V(@), the induced subgraph G — u is connected. Furthermore,

the induced subgraph G — N [u] is non-empty, connected and contains no isolated vertex.
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PROOF. Recall that any induced subgraph of G is 2K,-free, by Lemma 3.3.1(c). If G—uis
disconnected, then by Lemma 3.3.1(a), there is a vertex x isolated in G — u. This implies
that in G, the only neighbour of x is u. It is easily seen that removing a vertex of degree 1
does not change the cop number of a graph, which contradicts the minimality of G , as G-z

would be a connected 2K5-free 2-cop-lose graph on fewer vertices.

It is clear G — N [u] is non-empty, otherwise a single cop on u would catch the robber

instantly, contradicting that G — NTu] is 2-cop-lose.

Suppose there exists a vertex  which is isolated in G — N [u]: x is such that all of its
neighbours in G are in N(u). As G — 1z is a connected 2K,-free graph on fewer vertices than

G , there exists a winning strategy for 2 cops on G-z

We define a strategy for 2 cops on G using the strategy on G —z. We say the robber’s
shadow is on u whenever the robber is actually on x, and for all other positions the robber’s
shadow is on the same vertex as the robber. Now, as N(z) C N(u), any move the robber
makes corresponds to a valid move for the robber’s shadow on G — z. The cops apply the
strategy on G — z to catch the robber’s shadow. At the end of this strategy, if the robber is
not caught, then the robber is on x and a cop is on u. This cop stays on u, and the robber
on x cannot move. The other cop may then go capture the robber. This is a well known
argument, see Theorem 1 of [52] and Theorems 3.1 and 3.2 of [10] for more general versions.

This contradicts that G is 2-cop-lose.

Thus, G — N[u] is connected, as it contains no isolated vertex (by Lemma 3.3.1(a)). O

We are now ready for a lemma which shows we have great power in not only placing the

cops, but also the robber.

A A

Lemma 3.4.2. If u € V(G) and vw € E(G) such that u is not a neighbour of v,w, then,
playing with two cops, there exists a strategqy ensuring that the cops are on v,w and the robber

18 on u and cannot move.

Proor. We first wish to force the robber to move to u. By Lemma 3.4.1, G—uis connected,
and by Lemma 3.3.1(c) that it is 2K,-free. Hence, by the minimality of G, G — u is must
have cop number at most 2. As long as the robber is not on u, the cops copy the strategy
for G — u on G. If the robber never moves to u, the robber will eventually be caught: the
robber has no choice but to eventually move to u. Denote x; and x5 the positions of the cops
at that point, we know that x;,zo ¢ N[u], as otherwise the cops could capture the robber

one turn later, a contradiction as G is 2-cop-lose.

We now wish to bring the two cops to the ends of an edge in G — N[u], while keeping the
robber on u. If 1 = x4, one of the cops moves to a neighbour of z; in G — Nlu], which must
exist as G — N[u] is not be a unique vertex (by Lemma 3.4.1). If 125 € E(G), then they

71



are already in such a position. If z; and z, have a common neighbour in G — N{u] (recall
that Lemma 3.4.1 shows that G — N[u] is connected), let us denote it #, we move the cop
on & to x. If not, by Lemma 3.4.1, G — N[u] is connected and, by Lemma 3.3.1(b), #; and
x, are at distance 3 in G — N[u]: there exists /|, such that z,2/ 2}z, is a path contained

in G — N[u]. We move the cop on 21 to # and the cop on z, to .

Now that the cops are on adjacent vertices, both not in N(u), then by Lemma 3.3.2, the

robber cannot move.

We now wish to bring the cops to the edge vw, while keeping the robber on u. We will
do so by never leaving G- N [u] and always keeping the cops on adjacent vertices, which
guarantees that the robber will never be able to move. Suppose the cops are now on the
edge ab. Let P be a path completely contained in G- N [u] starting with the edge ab and
ending with the edge vw, which exists as G-N [u] is connected. The cops move along P
one behind the other. This concludes the proof. 0

In section 3.2, we defined type-I and type-1I traps. Using the strategy we developed in

the last lemma, we will be able to exclude these from G.
Lemma 3.4.3. G does not contain a type-1 trap.

PROOF. Suppose to the contrary that there exists a type-I trap u. We will define a strategy

for 2 cops on G.

Let 21,22 be the vertices trapping u, with 27 adjacent to u and z» in G — Nlu]. Let y be
any neighbour of z5 in G — N[u], which exists as G — N[u] contains no isolated vertex (by

Lemma 3.4.1). Using Lemma 3.4.2, place the cops on xs and y, and the robber on wu.

If yx; is an edge, then move the cop on y to x; and keep the other cop on zo. If yx; is
not an edge, then x5 is an edge by Lemma 3.3.2. Move the cop on x5 to x; and the cop

on y to xs.

In both cases, the robber is now on u with the cops on x1,x5: the robber is caught at the

next move. This is a contradiction as G is 2-cop-lose. U

Before considering the case of type-II traps, we need the following proposition from [25].

We prove it here in order for this paper to be self-contained.

Proposition 3.4.4. [25] If G is a connected bipartite 2Ks-free graph, then each colour class

of G contains a vertex adjacent to all vertices of the other colour class of G.

PRrROOF. Denote A,B the colour classes of G. Choose m € A of maximum degree. Suppose
there exists b € B such that mb is not an edge. As G is connected, there exists a € A such

that ab in an edge. Now, for every neighbour = € N(m) (necessarily, z € B), we compare
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edges ab and ma: the 2K,-free property yields that ax is an edge. Thus, [N (a)| > |N(m)|+1,
as N(m) C N(a) and b € N(a)\ N(m), which contradicts that m has maximum degree. [

Lemma 3.4.5. If G contains a type-11I trap, then G contains a type-1 trap.

PRrROOF. Let x1,29 be the vertices trapping a vertex u such that x; and x5 are both adjacent
to u. We can suppose x; and x5 are distinct, as if N[u] C N[z1], then simply pick x5 to be
any other neighbour of u (which must exist as otherwise G — 1, is disconnected, contradicting
Lemma 3.4.1).

Suppose y is a neighbour of x in G-N [u], we wish to prove y is adjacent to z5. Suppose
y is not adjacent to x, then denote by z any neighbour of 4 in G — N[u], which exists as
G — Nfu] contains no isolated vertex (by Lemma 3.4.1). Then, z must adjacent to x5 by
Lemma 3.3.2. Playing with 2 cops, place the cops on y and z and the robber on u using
Lemma 3.4.2. Then, move the cop on y to z; and the cop on z to x3. The robber will be
caught one turn later, which is a contradiction as G is 2-cop-lose. Thus, y must be adjacent

to xs.

By applying this reasoning for every neighbour of @1 and of 25 in G — N[u], we find

that every vertex of G — N [u] is either adjacent to both z; and x5, or to neither. We can

A A

thus partition V(G) \ N[u] into the sets A = {v € V(G) \ N[u] : vay, vz, € E(G)} and
B={veV(G)\ Nu : vy, vy ¢ E(G)}.

If there is an edge between 2 vertices in B, comparing this edge with ux; yields an induced
2K, and thus B is a stable set. If there is an edge between two vertices in A, then, playing
with 2 cops, place the cops on the ends of this edge and the robber on u, using Lemma 3.4.2,
and then move the cops to x; and x,, yielding a contradiction as G is 2-cop-lose. Thus,
G-N [u] is a (connected, by Lemma 3.4.1) bipartite graph. Note that B is non-empty as A

is a stable set and (' — N[u] contains no isolated vertex.

By Proposition 3.4.4, there exists a vertex b in B adjacent to every vertex of A. Every
neighbour of z; in N[u] is (by definition) either u or adjacent to u, and every neighbour of
z1in G — N[u] is adjacent to b. Furthermore, z1b ¢ E(é) Thus, z; is a type-I trap, trapped
by u and b. O

We are now ready to prove Conjecture 3.1.5.
Theorem 3.4.6. If G is a connected 2Ky-free graph, then ¢(G) < 2.

PROOF. Let GG be a minimal counter-example. Lemmas 3.4.3 and 3.4.5 imply that G does
not contain any trap, hence does not contain any connected trap. Thus, by Proposition

3.3.4, G is isomorphic to either Ky, K5 or (5, all of which have cop number at most 2. [
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The more general question of the cop number of rKy-free graphs (r > 2) is raised in
[64]. One notices that 2r — 1 cops can win, as noted in [64], by a proof similar to proving
3 cops can win on 2K5-free graphs. Having improved by 1 the bound on the cop number of
2Ks-free graphs, we can also improve by 1 the bound on the cop number of r Ks-free graphs

with an analogous argument.
Corollary 3.4.7. If G is a connected rKy-free graph, r > 2, then ¢(G) < 2r — 2.

We also note that the same idea allows us to modify theorem 4 of [47] by removing the

condition that at least one index is at least 3 if at least two of the indices are 2.

3.5. Further directions

It remains to be seen if it is possible to further improve the bound on the cop number
of rKs-free (r > 2) graphs or if this bound is tight. It would also be interesting to see if the
approach used to prove Theorem 3.4.6 can be used to improve the bound on the cop number

of Ps-free graphs, and even possibly to prove Conjecture 3.1.5.
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ABSTRACT. We show that the cop number of any graph on 18 or fewer vertices is at most
3. This answers a question posed by Andreae in 1986, as well as by Baird et al. in 2011.
We also find all 3-cop-win graphs on 11 vertices, narrow down the possible 4-cop-win graphs
on 19 vertices and make some progress on finding the minimum order of 3-cop-win planar

graphs.

Keywords: Cops and robbers, Cop number, Extremal problems, Graph construction,

Computer-assisted proof

4.1. Introduction

The game of cops and robbers was first defined by Quilliot in [57] and Nowakowski and
Winkler in [52]. Playing on a connected, undirected and finite graph, the cops try to catch
a robber. The cops and the robber alternate turns. On the first turn, each cop selects a
starting vertex followed by the robber. At each subsequent turn, each player may either stay
put or move to an adjacent vertex. If at any point the robber and one of the cops share a
vertex, the cops win. The robber wins if it has a strategy ensuring it is never caught by the
cops. At all times, the positions of the cops and of the robber are known by all. Furthermore,

the cops may coordinate their strategies, and are allowed to share vertices.

For a connected graph G, we denote by ¢(G) the minimal number of cops which can
always catch the robber on G. Introduced by Aigner and Fromme in [2], ¢(G) is called the
cop number of G. If ¢(G) = k, we say G is k-cop-win.

The cop number has been the main focus of most articles on cops and robbers, but other
parameters, such as the capture time, are also studied. See [14] for a quick overview of this
field or [18] for a more in-depth introduction. A multitude of variants of this game have

been considered in recent years, but in this paper we only study the classical version.

While there has been a significant amount of research on the cop number of graphs, often
on specific classes of graphs, there are still surprisingly many elementary open questions.
We consider here the problem of finding the minimum order of k-cop-win graphs, more
specifically for k& = 4. This question was first posed by Andreae in [4]. It is also raised,
seemingly independently, by Baird et al. in [7].

The case of k = 3 has already been solved. Andreae claims without proof in [4] that the
Petersen graph (see Figure 4.1) is the unique smallest 3-cop-win graph. This statement is
proved in [7].

We denote by V(G) and E(G), respectively, the set of vertices and of edges of G. We
denote by M the minimum order of k-cop-win graphs; formally, M, = min{|V(G)]
G connected graph, ¢(G) = k}. Interestingly, Hosseini proved in [38] that M, < M4,
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confirming the intuition that if one scans all graphs by increasing order, one cannot find a

(k + 1)-cop-win graph before finding a k-cop-win graph.

The problem of finding the minimum order of 4-cop-win graphs has also received some
interest. Hosseini proved in [39] that M, > 16, and that such a minimal graph is 3-connected,

provided it does not contain a vertex of degree 2. The problem is also referenced in [14].

It is suggested in [4, 7] that the value of My might be 19. Indeed, the smallest known
4-cop-win graph is the Robertson graph (see Figure 4.1). This graph was first discovered
by Robertson in [60] as the smallest 4-regular graph with girth 5. A (d,g)-cage is a regular
graph of degree d and girth ¢ of minimum order. For instance, the Petersen graph is the

unique (3,5)-cage and the Robertson graph is the unique (4,5)-cage.

It has been proved in [2] that graphs with girth at least 5 have a cop number of a least
their minimum degree. This result has since been generalized in [29], and recently in [22].
One easily deduces that the cop number of the Robertson graph is therefore at least 4. It is
easily seen in the figure that placing a cop on each of the three exterior vertices only leaves
4 unprotected vertices, which form independent edges. A last cop may then easily capture
the robber, thus the Robertson graph is 4-cop-win (this argument appears in [11]). It is
suggested in [7] that the smallest d-cop-win graphs might be the (d,5)-cages for d > 3.

(651

(6D) a5

Qs Qy
(a) The Petersen graph (b) The Robertson graph®

Fig. 4.1. Some small (d,5)-cage graphs

The main result of this article is to confirm that M, = 19. Although we are not able
to prove a complete uniqueness result, we narrow down the possible 4-cop-win graphs on 19

vertices.

!Computer-generated drawing [41].
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Although our proof is not directly based on those in [7] and [39], there are certainly some
common elements. In particular, we also break down the problem by maximum degree and

find properties of potential 4-cop-win graphs by constructing explicit strategies.

While we are able to obtain many interesting results formally, this article makes extensive
use of computational methods to verify the remaining cases. All of the code and data
produced in the writing of this article is available online at [65]. This includes not only the
final results, but the graphs we generate in the intermediate algorithms, precise counts of
the number of graphs we generate at every step in these algorithms, and the time required
for almost all computations. All of the computations are split up in small parts to facilitate
verification. At various points in this article, we will also discuss possible improvements and

alternative computational approaches.

4.2. Notation and previous results

In this section, we introduce most of the notation used in the article. We also cite

previously known results that will be useful.

When considering a graph G, we will respectively denote by n(G), dg(u), 6(G) and A(G)
the number of vertices of GG, the degree of a vertex w in G, the minimum degree of G and the
maximum degree of G. If u is a vertex of G, Ng(u) will denote the (open) neighbourhood of
u and Ng[u] = Ng(u) U {u} will denote the closed neighbourhood of w. For these symbols,

we will usually omit the G when the choice of graph is easily deduced.

For S C V(G), S¢ will denote the complement (in V(G)) of S, (S) will denote the
subgraph of G induced by S, and G — S will denote (S¢). When S = {x}, we will use the
notation G — x instead of G — S. Similarly, if H is a subgraph of G, then G — H will denote
G—-V(H).

We will use the symbol ~ to denote graph isomorphism.

Denote by Py the Petersen graph, as seen in Figure 4.1. As Py is 3-regular with girth 5,
we get that ¢(Py) > 3, and as it contains a dominating set of size 3, we know that ¢(G) = 3.
As stated in the introduction, the following theorem was stated by Andreae in [4] and proved

by Baird et al., first by computer verification and then formally.
Theorem 4.2.1. [4, 7| Let G be a connected graph.

(1) If n <9, then ¢(G) < 2.
(2) If n =10, then ¢(G) < 2, unless G is the Petersen graph.

In particular, M3 = 10.
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The proof of the previous theorem makes use of the following lemma, which will also be

useful to us.
Lemma 4.2.2. [7] Let G be a connected graph. If A > n —5, then ¢(G) < 2.

A simple, visual proof of this lemma is available in [11]. We now define a useful concept,

which has been used many times to study the game of cops and robbers. The following is
based on [10].

Definition 4.2.3. Let GG be a graph. If H is an induced subgraph of GG, we say H is a retract
of G if there exists a mapping f : V(G) — V(H) such that:

(1) If 2y € E(G), then f(x)f(y) € E(H) or f(z) = f(y).
(2) flva : V(H) — V(H) is the identity mapping.

Such a mapping f is called a retraction.

This definition formalizes the intuitive idea that G can be "folded" onto H, where each
edge must either be sent onto an edge or onto a vertex. Those familiar with graph homomor-
phisms will notice that condition (1) states that f is a homomorphism from G to H, if we
consider H to be reflexive (that is, if we add a loop at each vertex of H). This reflexivity is a
consequence of allowing the cops and the robber to stay on a vertex at their turn, implying
a loop on each vertex. The concept of retracts has been central in the study of the game of

cops and robbers, appearing also [52].

If G is disconnected, denote Gy, ...,G; the connected components of G. By extension,

we may define the cop number of a disconnected graph by ¢(G) = max;<;<; ¢(G;).

These definitions allow us to state the following result of Berarduci and Intriglia, which

we will use many times to reduce the number of cases we need to consider.

Theorem 4.2.4. [10] If G is a connected graph and H is a retract of G, then
c¢(H) < (@) <max{c(H),c(G— H)+ 1}.

A specific case of this theorem is the following, which is a reformulation of a corollary in

[10], that will often be easier to use.

Corollary 4.2.5. If G is a connected graph, u is a vertex of G and K is a union of some

connected components of G — N|u], then

(G- K) <c¢(G) <max{c(G — K),c(K)+ 1}.

In particular, if ¢(K) < k —1, then ¢(G) < k if and only if ¢(G — K) < k.
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PROOF. It is easy to verify that f : V(G) — V(G — K) defined by

u ifz e V(K)
flx) = .
x otherwise
is a retraction. It is only left to apply Theorem 4.2.4 to H = G — K. O

One trivial consequence of this corollary is that if the cop number of every component of
G — NJu] is at most k — 1, then ¢(G) < k. One can also see this directly by leaving a fixed
cop on u and playing with k£ — 1 cops on the connected component of G — N[u| in which the

robber is located.
We then easily get the following result, which is implicit in [39].
Corollary 4.2.6. If G is a connected graph and A > n — 11, then ¢(G) < 3.

PRrROOF. If A > n — 11 and u is a vertex of maximum degree, then |V(G — Nu])| < 10. By
Theorem 4.2.1, every connected component of G — N|[u] has cop number at most 2. The last

remark yields the result. 0
Finally, we recall a well known concept in the study of the game of cops and robbers.

Definition 4.2.7. Let z,u be distinct vertices of G. If N(x) C NJu|, we say z is cornered

by u or that x is a corner.

We note that this is a slight variation on the classical notion of a corner (or irreducible
vertex), as it normally requires ux to be an edge, see [52]. We may now get the following

well-known result as a further simplification of Corollary 4.2.5.

Corollary 4.2.8. Let G be a connected graph and x be a corner of G. If ¢(G — ) > 2, then
c(G)=¢c(G—2x). If (G —x) =1, then ¢(G) € {1,2}.

PRrROOF. If x is cornered by u, notice that x is isolated in G — N[u]. Applying Corollary 4.2.5
with K = {x} yields the result. O

4.3. Computational results for small 3-cop-win graphs
In this section, we find some 3-cop-win graphs on at most 14 vertices respecting some
degree conditions. These results will be useful in the following sections.

We will do this by computing the cop number of every graph of the desired orders and
degrees. Graph generation in this section and in Section 4.5 is done using the geng function

provided with the nauty/Traces package (version 26r12) [51].

The algorithm to compute the cop number is similar to that proposed, in particular,

in [16, 26, 59|, which we have implemented for cop numbers 1,2,3 in the Julia language
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[12, 23]. For a given k (which will be between 1 and 3 in our case), the algorithm determines
whether ¢(G) < k or ¢(G) > k.

To test the validity of our implementation, we have compared the results for the cop
number of connected graphs up to 10 vertices to those in [7]. Following a small discrepancy
between the counts, our tallies of cop-win graphs were also verified to be correct by imple-
menting a dismantling algorithm [52] and by comparing with the implementation at [1]. To
test our code for higher cop numbers, it was also run on some cage graphs which we know
3 cops lose. Based on the results of these tests, we are confident in the correctness of our

implementation.
We first define a variant of the Petersen graph.

Definition 4.3.1. We say a connected graph G is a cornered Petersen graph if G' contains
a corner x such that G — x ~ Py. There are 6 such graphs up to isomorphism. We denote

them P;, 1 =1,...,6, as seen in Figure 4.2.
m/ m m/ m m/ m
m’ m m/ m m/ m
Fig. 4.2. The cornered Petersen graphs

We now solve a question raised in [7], classifying the 3-cop-win graphs on 11 vertices,
albeit computationally.

Proposition 4.3.2. If G is a connected graph such that n = 11, then ¢(G) = 3 if and only
if G ~P; for some 1 < i < 6. Otherwise, ¢(G) < 2.

PrOOF. Firstly, it is clear by Theorem 4.2.1 and Corollary 4.2.8 that the cornered Petersen
graphs are 3-cop-win.

We would like to show that these graphs are the only graphs on 11 vertices with cop

number 3, and that all other graphs have cop number at most 2.
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By Lemma 4.2.2, we may only consider graphs such that A <n—6 = 5. We generate all
graphs on 11 vertices such that A <5 and classify each graph according to its cop number.
The results are presented in Table 4.1 (the counts are up to isomorphism). The 6 graphs
found are the graphs P; for ¢ = 1,...,6, which concludes the proof. O

This is an interesting phenomenon: the 3-cop-win graphs on 11 vertices are all retracts of
the unique 3-cop-win graph on 10 vertices. This behaviour does not occur for the 2-cop-win
graphs: the minimum 2-cop-win graph is the 4-cycle, on which the 5-cycle does not retract.
Although we will not have any answer for this question in this article, it would be interesting
to know whether in general (even for 4-cop-win graphs only), the k-cop-win graphs on M, +1

vertices can be retracted on k-cop-win graph(s) on M vertices.
In Section 4.6, we will also need the following lemma.

Lemma 4.3.3. There exist

80 connected graphs G on 12 vertices with A < 4,

e 173 connected graphs G on 12 vertices with A <5,

e 1105 connected graphs G on 13 wvertices with A < 4, and
e 16523 connected graphs G on 14 vertices with A < 4

such that ¢(G) = 3. All other connected graphs considered with these orders and maximum
degrees are such that ¢(G) < 2.

Proor. Firstly, all graphs on at most 14 vertices have cop number at most 3. For cases
where A > 4, this is a direct consequence of Corollary 4.2.6. For A = 2, the graph is either
a path or a cycle. For A = 3, see the results of Table 4.4. This is also a direct consequence
of knowing that My > 16, see [39].

We generate, up to isomorphism, all connected graphs on 12 vertices such that A < 5
and on 13 and 14 vertices such that A < 4. We classify these graphs according to their

cop number. Afterwards, we also count which of the graphs on 12 vertices with A < 5 and

¢(G) > 3 are such that A < 4. The results are in Table 4.1. O
Cop number

n | Degree bounds | Number of graphs 1 2 >3

11 A <5 21503340 69310 | 21434024 6

12 A <4 - - - 80

12 A <5 471142472 295377 | 470846922 | 173

13 A <4 68531618 73876 | 68456637 | 1105

14 A <4 748592936 247022 | 748329391 | 16523

Table 4.1. Cop number breakdown for connected graphs on 11-14 vertices with some degree
restrictions
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While the counts are presented to summarize the results, the precise 3-cop-win graphs

are the focus of our attention as we use them in the following sections.

To achieve these results, we exhaustively computed the cop number of every connected
graph that satisfied our maximum degree constraints. Since we proceeded by exhaustion,
the run time of these computations is somewhat long due to the high number of graphs,
especially in the case of A = 14. We note that a more clever approach might yield faster

calculation time.

The first and most obvious improvement would be to only look at graphs with a minimum
degree of at least 2, which can reduce the number of graphs to consider by up to around 50%.
If we already know the 3-cop-win graphs on one fewer vertices, we can then just consider all
possible ways to attach an extra vertex of degree 1 to those graphs. Using this method, we

can get all connected 3-cop-win graphs of a given order.

However, this method is still an exhaustive search. A more clever approach would be to
consider every 2-cop-win graph G’ on n — A — 1 vertices, add a vertex u with A neighbours
and consider each way of adding edges between N(u) and G’ (up to isomorphism), then
checking which of these graphs are 3-cop-win. We would recommend the interested reader

try this approach.

An more refined approach of this would be to use the algorithm of Section 4.6 to build
candidate 3-cop-win graphs, by merging 2-cop-win graphs on fewer vertices. We will see
later that although this method can reduce significantly the computation time, in practice it
requires some effort to make sure all the possible cases are considered. For the size of graphs

we are considering, this may not be necessary.

4.4. Graphs with high maximum degree

In this section, we consider the cop number of graphs G such that A = n — 11 or
A = n — 12. We start by investigating some properties of the game of cops and robbers
on the Petersen graph (Py) and its variants, the cornered Petersen graphs (P;,1 < i < 6).
Many of the arguments in this section are extremely simple once visualized. For this reason,
we have provided many figures representing visualizations of the situation in some of the
proofs. Of course, we cannot provide figures for every case, so we encourage the reader draw

out the graphs while reading the proof, especially regarding player movements.

By considering the Petersen graph as the Kneser graph K G52 [6], one easily gets the fol-
lowing well-known result (although maybe not with this precise formulation), an illustration

of the fact that the Petersen graph is highly transitive.
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Definition 4.4.1. We say a set of 3 vertices {z,y,z} is a strong stable set if it is a stable set
and if N(z) N N(y) N N(z) = 0.

Lemma 4.4.2.

(a) If {x,y,z} and {2',y,2'} are strong stable sets of Py, then there exists an automor-
phism ¢y of Py such that ¢1(x) = ', ¢1(y) =y and ¢1(z) = 2.

(b) If ab and a't’ are two edges of Py, then there exists an automorphism ¢o of Py such
that ¢o(a) = a’, ¢o(b) = b'. This property is known as being arc-transitive.

We use the labels m, m’ on the graphs P; for i = 1,...,6, as shown in Figure 4.2. In
particular, for each of these graphs, P; — m ~ P,. We also see that m’ always corners m,
which will be very useful. We also note that as m,m’ ¢ V(Py), we can say that Py —m =
Po—m' = P,.

As stated in Theorem 4.2.1, we know that ¢(Py) = 3. In the next two lemmas, we show
that although two cops do not have a winning strategy, they have a lot of power as to which
positions can be reached. These lemmas would be very easy to establish computationally,

but we consider that formalizing the strategies is worthwhile.

Lemma 4.4.3. If {xy,2} is a strong stable set of P; — m, then there exists a strategy for 2

cops on P; to reach the following situation.

(1) The robber is on x, except possibly in the case x = m' and i € {5,6}, where the robber
is either on . m’ or m.

(2) The cops are on y and z.

(3) It is the cops’ turn.

PROOF. Let us first consider the case of Py. Consider the labelling of Py with «; and g;
as shown in Figure 4.1. For any j,j’, observe that if two cops are on f;, 5;+1 (working in

modulo 5), they can directly move to any pair 3,8 41.

Without loss of generality, we may consider that x = ay,y = [, 2 = 3, as for all other
strong stable sets we can apply the automorphism of Lemma 4.4.2(a). For some k, we start
the game with two cops on ), and S41 (modulo 5). Notice that if the robber is on a;, moving
the cops to 3; and ;1 forces the robber to move to a;_;. By repeating this strategy, the
cops can essentially make the robber turn in circles on the outer 5-cycle of Py. At the end
of every cops’ turn (except the first), the robber is on «; and the cops are on f; and f;41,
for some j. The cops repeat until the robber is on «; (unless if we are on the first term in
which case we do a full cycle around the graph); it is now the cops’ turn and the game is in
the desired situation. Observe that this strategy works for any initial choice of k. This will
be useful later, as for any vertex w € Py, we may choose an initial position such that one of

the cops is in N[w]. We call this the chasing strategy for the Petersen graph. An example
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is illustrated in Figure 4.3. Even though this might be a very simple idea, this strategy is

critical for the rest of this section as it enables more complicated strategies.

B

(a) Initial position (b) After 1 cop turn  (c) After 1 robber turn

(d) After 2 cop turns  (e) Desired position

Fig. 4.3. Typical application of the chasing strategy on the Petersen graph.

We now consider the cases of Ps and Pg. In both cases, observe that m and m' are
completely indistinguishable: N(m) = N(m’). It is then easily seen that the strategy for 2
cops on P5 or Pg will be the same as the strategy developed above for Py, except that the
robber may choose to go to either m or m’. We apply the strategy for Py by considering the
robber to be on m’ whenever it is actually on m. This is essentially a simplified version of

the well-known argument used to prove, in particular, Theorem 4.2.4.

Finally, we consider the cases P;, i € {1,...,4}. Our goal is to apply the strategy of
Py developed above, with only slight modifications. Using that strategy, we choose initial
positions for the cops in P; —m such that one of the cops is in N[m/] (it is described above
why this is possible). If the robber chooses m as an initial position, this cop may then move
to m’. As m’ corners m, the robber cannot move without being captured. The other cop
may then, within a few turns, capture the robber. Thus, the robber will choose an initial
vertex in P; —m. Now, as long as the robber is not on m, copy the strategy for Py. Suppose
that, at some point, the robber moves to m. In the strategy above, the robber is adjacent
to a cop before every of its turns. Thus, this cop can move to a vertex adjacent to m. One
easily verifies that in all graphs P; for i € {1,... 4}, if one cop is adjacent to m, there is at
most one other escape route t for the robber. As P; —m ~ P, has diameter 2, the other cop

can move to block this escape route by moving to some vertex in N[t]. Thus, while applying
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this strategy, the robber will never move to m. Hence, the strategy copied from Py yields

the desired final position. O

By weakening the condition that it is the cops’ turn at the end of the strategy, we can

get more freedom as to where we can place the cops, enabling more strategies.

Lemma 4.4.4. If x,y,z are any three distinct vertices of P; —m, then there exists a strateqy

for 2 cops on P; to reach the following situation.

(1) The robber is on x, except possibly in the case x = m' and i € {5,6}, where the robber
is either on . m’ or m.

(2) The cops are on y and z.

(3) It is the robber’s turn.

Proor. Without loss of generality, we show the statement for Py. For this lemma, general-

izing to the cornered Petersen graphs is immediate.

We first consider the case where zz € F(Py). We will enumerate the main cases and
conclude by symmetry for the others. We may assume that x = a; and z = ; (using the
labelling from Figure 4.1), all other possibilities can be solved using the automorphisms of
Lemma 4.4.2 (b).

We apply Lemma 4.4.3 to place the robber on vertex «; and the cops on the vertices
specified in Table 4.2 (always forming a strong stable set), and then specify the additional

move required to place the cops in the desired final position.

Final position for cops (z,y) | Position after applying Lemma 4.4.3 Movements
ag,B1 Ba, B3 B2 = g, B3 = [
52,51 B2, B3 B2 = B2, B3 = 51
B3,51 B, Bs By — B1, Bs — B3
az,fB az, B4 az = az, B4 — B

Table 4.2. Strategy on P, to bring the robber to a; with the cops in the desired final
position, where at least one cop will be adjacent to robber.

It is easily seen that all other choices of y are analogous by reflection of the graph relative

to the vertical axis.

We use a similar approach for the case where zz ¢ E. We may suppose without loss of
generality that * = a1 and z = [5: it is easily verified that any two non-adjacent vertices
can be expanded into a strong stable set, then apply Lemma 4.4.2 (a). To further reduce
the number of cases, we can also assume that zy ¢ E (if xy € F, switching the roles of y

and z brings us back to the previous case), as we can see in Table 4.3.

O
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Final position for cops (z,y) | Position after applying Lemma 4.4.3 Movements
sz, 2 az, Ba ag = ag, By = P
ay, 0o az, B4 az = ay, By — P
B3,52 B3,02 B3 = B3, B2 = o
B, 52 Ba, Bs Ba = Ba, Bs = Do
Bs, 52 Ba, Bs Ba = Ba, Bs — Bs

Table 4.3. Strategy on Py to bring the robber to a; with the cops in the desired final
position, where neither cop will be adjacent to robber.

In the next lemmas, we will consider consider graphs with the following properties, with
the goal of eventually showing that these do not exist. We state these properties now to

avoid repetition.

Hypothesis 4.4.5. Let G be a connected graph such that ¢(G) > 3 and u € V(G) such that
G — Nlu| ~ P;, for some 0 < i <6.

In the cases of 1 < i < 6, we may in particular consider that m,m’ € V(G) by fixing
the isomorphism. In the cases of i = 5,6, as the labels m and m’ can be switched, we will
always suppose m’ to be the vertex of the two which has the greatest degree in G (if both
have the same degree, then we choose arbitrarily). To simplify notation, we will denote
B, = V(G — N[u] —m). It is easily seen that in all cases (B,) ~ Py. In other words, B, is

the (a) set of vertices inducing a Petersen graph.

The approach will be to build up a number of structural properties of G by showing that
otherwise there exists a winning strategy for 3 cops, yielding a contradiction. We start by

proving that all vertices in B, have a neighbour in N(u).
Lemma 4.4.6. Consider Hypothesis 4.4.5. For all z € B,, |N(xz) N N(u)| > 1.

PROOF. Let z € B,. Suppose that |[N(z) N N(u)| = 0 and that there exists a neighbour v
of z in B, such that |[N(v) N N(u)| > 1. If z is adjacent to m (in particular, m € V(G),
meaning that 1 <14 < 6) but x # m/, we also suppose v # m’ (this additional hypothesis will
be useful later). We note that in the case with = m/, then by our choice of m’ we know

that m also has no neighbours in N (u).
We show this situation yields a winning strategy for 3 cops.

Let y,z be the other neighbours of x in B, and let w € N(v) N N(u). The situation
is portrayed in Figure 4.4. We start by placing a cop on u, which will only move if the
neighbour enters N[u|. This is commonly referred to as a stationary cop. As long as this
cop stays on u, the robber is stuck in G — N[u] ~ P;. Thus, the two other cops may apply
the strategy from Lemma 4.4.4 on G — N|u] to place the robber on z, a cop on y and a cop

on z. In the special case where i € {5,6} and © = m/, the robber might actually be on m.
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[ B~

v

Fig. 4.4. Example situation during the proof of Lemma 4.4.6. Unused or unknown vertices
and edges are omitted.

During the last turn of this strategy, the cop on v moves to w. It is now the robber’s
turn. In all cases (except one considered below), all of the robber’s neighbours in B, are
protected by cops, there is a cop adjacent to the robber, and the robber has no neighbour
in N(u).

This is not necessarily obvious in the special case with ¢ = 5,6 and x is adjacent to m
and thus the robber can be on m. As noted above, in this case we know that neither m nor
m’ has neighbours in N(u). We have supposed that v # m/, so we must have that m' is one
of x,y,z. If x = m/, then m is indistinguishable from m’ and the statement is trivial. If m/
is y or z, then the cop on that vertex does indeed cover N|m| = N[m/]. The only case in
which the robber does not get immediately caught is when m’ and m are not adjacent (as
when ¢ = 5), the cop on m’ is not adjacent to the robber, but does prevent the robber on m

from moving, and can be caught shortly thereafter.

The robber is caught unless it can move to an unprotected vertex outside B,, (necessarily
m, and necessarily not in the special case we have just discussed), which only happens if the
robber is on x, if z is adjacent to m, and if m is adjacent to neither y or z. We may suppose

this is the case.

If z = m/, the cop on w moves back to u and the cop on y moves to m’: as m’ covers all
neighbours of m in B, and u covers all neighbours in N (u), the robber is trapped and will

be caught one turn later.

Now, suppose that x # m/, but that x is adjacent to m. In particular, x is also adjacent
to m’/. Recall that, in this case, we supposed that v # m/. Thus, m’ is either y or z. The
cop on m’ stays and the cop on w moves back to u, trapping the robber on m. The last cop

may then capture the robber within a few turns.
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In all cases, a contradiction is reached with the hypothesis that ¢(G) > 3.

In other words, as soon as we know that a vertex of B, (other than m') has a neighbour
in N(u), we can say the same for its 3 neighbours in B, (and then their neighbours, etc.).
Thus, in order to prove the lemma, it suffices to show that there exists at least one vertex

of B, \ {m'} that has a neighbour in N(u) (because (B,) —m’ is necessarily connected).

Suppose the contrary: no vertex of B, \ {m’} has a neighbour in N(u). If we are in
the case of G — N[u] ~ Py, then G would be disconnected (as B, \ {m'} = B,), which is
a contradiction. In the remaining cases, we explicit a winning strategy for 3 cops. Place a
stationary cop on a vertex t € N|[m| N N[m'] (one easily verifies that in all cases this set is
non-empty), and place another on u (the third cop can be placed anywhere initially). The
robber must choose an initial position in B,. As any exit from B, will go through m or
m’ (by our hypothesis), the stationary cop guarantees that the robber will never leave B,.
The two other cops then have a winning strategy on B, \ N[t], which contains at most 7

vertices. O

The idea of applying the chasing strategy of G — N[u] while we leave a cop on u is one
we will use frequently. As long as there is a cop on wu, it is as we were playing on G — Nlu].
The idea of moving the cop from u during the last move of this strategy does not affect it,

as it happens after the last robber move which is part of that strategy.
We now characterize the intersection of neighbourhoods of vertices in N(u) with B,,.

Lemma 4.4.7. Consider Hypothesis 4.4.5. If w € N(u), then N(w)N B, does not contain

a subset {a,b,c} of distinct vertices such that :

(1) ab & E(G);

(2) ¢ ¢ N(a) N N(b) (c is not the common neighbour of a and b in (B,));

(3) ¢ ¢ N(z) forx € N(a) N N(b) N B, (c is not adjacent to the common neighbour of a
and b in B,).

PROOF. Suppose that N(w)N B, does contains a subset {a,b,c} respecting these conditions.
We explicit a winning strategy for 3 cops on GG, which will lead to a contradiction. We denote
by x the common neighbour of a and b in B, and by d the neighbour of x in B, that is

neither a or b.

Let z be a vertex of B, such that {x,c,z} is a strong stable set of (B,) (it is easily seen
that any stable set of size 2 in the Petersen graph can be expanded into a strong stable set).

The situation is portrayed in Figure 4.5.

We place a cop on u at the start of the game, and then use Lemma 4.4.3 to place the

other cops on ¢ and z, and the robber on « (or if x = m’ and i € {5,6} possibly on m).
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[ B

Fig. 4.5. Example situation during the proof of Lemma 4.4.7. Unused or unknown vertices
and edges are omitted.

It is now the cops’ turn. The cop on ¢ moves to w, the cop on z moves to either d or
a neighbour of d (this is possible because the Petersen graph has diameter 2), and the cop
on u stays still. All neighbours of z in N(u) are covered by the cop on u, a and b covered
by the cop on w, and d is covered by the 3rd cop, which is either on d or on a neighbour
of d. Hence, after the robber’s move it must either be on x or on m (if m exists, that is
1 <4 < 6). We note that in the special case with = m/ and i € {5,6} the robber might
have already been on m, but that the same argument as above shows that the robber could

not have move outside of either x = m’ or m.

If the robber is still on z, but cannot be immediately captured, the cop which is adjacent
to d moves to d. Now, the robber cannot stay put without being captured. Hence, for the

rest of the proof we can assume the robber moves to m or was already on m.

If m’ is a or b, the cop on w moves to m’. If m’ = d, the cop that is on adjacent to d or
on d moves to (or stays on) d. In both cases, there is now a cop on m’, which, together with
the cop on u, guarantees that the robber is now stuck on m. The third cop may capture the

robber within a few turns.

If m’ = z, then, by definition, N(m)N B, C {a,b,d,x}. As previously, move a cop to d (if
it is not already there). The pair of cops on d and w cover this set, hence the robber cannot
move. At the next cops’ turn, the cop on d moves to m’, and at the following turn capture
the robber.

In all cases, there is a contradiction as ¢(G) > 3. O

Lemma 4.4.8. Consider Hypothesis 4.4.5. If w € N(u), then there exists a vertex of B,
dominating N(w) N B,.
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PrOOF. If |[N(w) N B,| < 2, the result is trivial, as diam((B,)) = 2.

If |[N(w) N B,| > 3, suppose the statement is false. As (B,) does not contain a triangle,
not all vertices of N(w)N B, can be pairwise adjacent: we can choose a,b € N(w)N B, such
that a,b are not adjacent. Denote x the common neighbour of a,b in B,. By our previous
supposition, x does not dominate N (w)N B, thus we can choose ¢ € N(w)N B, not in N|x].
The subset {a,b,c} then contradicts Lemma 4.4.7. O

In particular, every vertex of N(u) can have at most 4 neighbours in B,, because (B,) is
3-regular. We also note that in some of the cases there is a unique choice for this dominating
vertex, in particular when N(w) N B, has 3 or 4 vertices. We are now ready to strengthen
Lemma 4.4.6.

Lemma 4.4.9. Consider Hypothesis 4.4.5. For all x € B, the following holds.

(1) If v ¢ Nm/], then |[N(z) N N(u)| > 3.
(2) If v € N[m/], then |N(z) N N(u)| > 2.

PROOF. (1) Suppose the contrary: there exists x € B, \ N[m/| such that |[N(x)NN(u)| €
{1,2} (by Lemma 4.4.6, |[N(z)NN(u)| > 1). We explicit a winning strategy for 3 cops
on G. Denote by w,ws the neighbours of x in N(u) (if there is only one neighbour,
set w; = wq) and by y1,y2,y3 the neighbours of = in B,.

By Lemma 4.4.8, there exists a vertex of B, dominating the neighbourhood of w; in
B,. As x is in this neighbourhood, we know this dominating vertex (there might be
more than one possible choice) is in {y1,y2, y3,2}. This is also true for wy. Thus, we
can pick at most 2 elements of {y,y2,y3,2} that dominate all neighbours of wy,ws in
B,.

Without loss of generality (by symmetry of y1,y2,y3 in the Petersen graph), we assume
the 2 elements can be picked in {y1,y2,2}. By Lemma 4.4.6, y3 must have a neighbour
t in N(u). The situation is portrayed in Figure 4.6.

We place one cop on u. We use Lemma 4.4.4 to place the robber on x and the two
other cops on y1, .. During the last move of this strategy, the cop on u moves to t.
It is now the robber’s turn.

The robber on x cannot move to a neighbour inside of B, (there are cops on y; and
Y2, and ys is covered by the cop on t) and there are cops adjacent to the robber. As
x ¢ N[m/], we know that m ¢ N(z). Thus, the robber has no choice but to move to
either wy or we. Without loss of generality, let us say the robber moves to w;.
Denote by a the vertex dominating the neighbours of w; in B,. We recall that a is
either y;, yo or . We now move the cop on ¢ back to u. Of the two cops on y; and ys,
one must be able to move to a, and does so. If m' € B, (that is, if we are not in the

case of Py), the third cop moves to either m’ or a neighbour of m’. After this move,
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Fig. 4.6. Example situation during the proof of Lemma 4.4.9 (1). Unused or unknown
vertices and edges are omitted.

all escapes in N (u) are covered by the cop on u, all escapes in B,, are covered by the
cop on a, and the robber cannot stay still as u is adjacent to w;. Thus, the robber is
caught one move later unless the robber can move to m. In this case, the third cop
can now move to m’ and trap the robber. Leaving the cops on u and m’ fixed, the
cop on a can then go capture the robber. This is a contradiction as ¢(G) > 3.

(2) As the proof will be very similar to the previous case, we outline the main differences.
If = m/ and i € {5,6}, suppose that m’ and m each have at most one neighbour
each in N(u). Then, consider w; and wy these vertices and apply the same strategy
as above. Even though the robber will have chosen to go to either m’ or m, both
cases for its subsequent move will be covered using the strategy above. We note that
the robber will not be able to stay on either m’ or m, as both are adjacent to y,ys.
Thus, either m or m’ must have 2 or more neighbours in N(u). As we have selected
m’ to have the greatest degree of the two, the statement follows for this case.
Consider now that = € N[m/] but x # m’ ori ¢ {5,6} (as we covered that case above).
Our goal is to prove that = cannot have a unique neighbour in N(u). Suppose the
contrary, we denote by w; this neighbour. As in the above strategy, one cop’s role
will be to cover the vertex dominating the neighbourhood of w, in B,, or if this is
x, then to be on an adjacent vertex. We will also want a cop to be on m’, or on a
neighbour of m’ if x = m/. In the notation of the original case, this could informally
be seen as considering ws to be m. If the robber moves to w;, we follow a similar
strategy to above. If the robber moves to m, then one of the cops will move to m’.
Recalling that another robber will return to u, the last cop will be able to go capture
the robber.
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We are now ready to prove the desired results.

Proposition 4.4.10. If G is a connected graph such that A € {n —12,n — 11} and n < 18,
then ¢(G) < 3.

PROOF.

(1)

We consider A = n — 11. Let u be a vertex of maximum degree. We know that
V(G — Nlu))| = 10.

If G — NJu| is disconnected, every one of its connected components has cop number
at most 2, as no connected component can contain at least 10 vertices. Applying
Corollary 4.2.5 yields the desired result. Otherwise, G — N|u| must be connected.
Suppose that ¢(G) > 3. Then, ¢(G — Nu|) > 2, and by Theorem 4.2.1, G — N|u]
must be isomorphic to Py.

Then, G and u satisfies the conditions of Hypothesis 4.4.5.

By Lemma 4.4.9, every vertex of B, has at least 3 neighbours in N(u). As B, has
10 vertices, there are at least 30 edges between N(u) and B,,.

As n < 18, we have that A < 7. By Lemma 4.4.8, every vertex of N(u) has at most
4 neighbours in B,. Thus, there are at most 4A < 28 edges between N(u) and B,,.
This is a contradiction, as we have claimed there are at least 30 but at most 28 edges
between N(u) and B,. Thus, ¢(G) < 3.

We consider A = n — 12. Let u be a vertex of maximum degree. We know that
V(G — Nlu))| = 11.

Let us first consider the case where G — NJu] is disconnected. If every connected
component has cop number at most 2, then, as in the previous case, we are done. By
Theorem 4.2.1, the only other case is if one component is isomorphic to Py and the
other is an isolated vertex z. By applying Corollary 4.2.5, ¢(G) < 3 if and only if
c¢(G—x) < 3. As G—x satisfies the conditions of the previous case of this proposition,
we conclude that ¢(G — x) < 3.

We may now consider that G — N[u] is connected. By Proposition 4.3.2, G — Nu| ~
P;, for some 1 < i < 6. Suppose that that ¢(G) > 3. Then, G and u satisfies the
condition of Hypothesis 4.4.5.

By Lemma 4.4.9, every vertex of B, has at least 2 neighbours in N(u), and each
vertex not in N[m/] (of which there are at least 6) has at least 3 neighbours in N (u).
In total, there are at least 26 edges between N(u) and B,.

By Lemma 4.4.8, each vertex of N(u) has at most 4 neighbours in B,. As n < 18,
we have that A < 6. Thus, there are at most 4A < 24 edges between N(u) and B,,.
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This is a contradiction, as we have claimed there are at least 26 but at most 24 edges
between N(u) and B,.

O

These results will be used to prove that M, = 19, but we would also like to reduce the
number of possible 4-cop-win graphs on 19 vertices. This will be possible with more work,

but we first need the following definition.

Definition 4.4.11. Consider Hypothesis 4.4.5. Let w € N(u) such that |B, N N(w)| = 4.
The vertex = of B, dominating B, N N(w) will be called the projection of w. If x is the

projection of k vertices of N(u), we will call p(x) = k the projection multiplicity of x.
By Lemma 4.4.8, this is well defined and the projection of a vertex is unique.

Observation 4.4.12. Ifx € By, [N(x)NN(u)| > X enpnpw P(y). In particular, if y € B,
has projection multiplicity k, then each vertex in N(y) N B, has degree at least k.

PrRoOOF. We recall that when a vertex y has projection multiplicity &, this means that &
vertices of N(u) have for neighbours in B, exactly N[y] N B,, giving each vertex in this set
at least k neighbours in N (u).

Noting that the projection of a vertex is unique, we see that the neighbours x inherits
from each projection on it or on its neighbours in B, are pairwise distinct. The lower bound

follows immediately by summing the projective multiplicity for each vertex in N|x]. O

We now see an interesting property of projections.
Lemma 4.4.13. Consider Hypothesis 4.4.5. Let x € B, \ N[m/].

(1) If IN(x) N N(u)| = 3, then p(z) = 0.
(2) More generally, p(z) < |N(z) N N(u)| — 2.

PROOF.

(1) Suppose the contrary, we explicit a winning strategy for 3 cops.

Suppose that z is the projection of a vertex w of N(u): w is adjacent to x and to
each neighbour of x in B,.

As |[N(z) N N(u)| = 3, = has two other neighbours in N(u), which we will denote
by t; and t,. If ¢; has a neighbour in B, other than z, choose one and denote it ry.
If not, then choose r; to be any neighbour of z in B,. We choose ry similarly. The
situation is portrayed in Figure 4.7.

We start by placing one cop on u. Using Lemma 4.4.4 (recall that = # m/, which
avoids the exceptional case), we place the robber on x and the two other cops on 7
and 79. During the last move of that strategy, move the cop from u to w. It is now

the robber’s turn.
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Fig. 4.7. Example situation during the proof of Lemma 4.4.13 (1). Unused or unknown
vertices and edges are omitted.

As there is a cop on w, the robber cannot stay in B,. As x ¢ N[m/], z is not adjacent
to m. If t; had a neighbour in B, other than x, then the cop on r; blocks the robber
from moving to t;, and similarly for 5.

Thus, the only scenario in which the robber does not get captured immediately after
moving is if (without loss of generality),= ¢; only has one neighbour in B,,, and the
robber moves to t;. In this case, the cop on r; is adjacent to x. The cop on w
moves back to to u, and the cop on r; moves to . The third cop (on r3) moves to
m' or a neighbour of m’. The robber is caught one turn later, as x dominates the
neighbourhood of w in B, and u dominates N(u), unless it can move to m. In this
case, the third cop can move to m’ and trap the robber. The cop on x can capture
the robber within a few turns. This contradicts that ¢(G) > 3.

The strategy is similar to the previous case. Suppose to the contrary that x has
projection multiplicity at least | N(z) NN (u)| — 1. Then, there is at most 1 neighbour
of x in N(u) which does not project onto z. Choose t; to be this vertex (if there is
any) and select the corresponding r; as above. Choose 3 to be any other neighbour of

x in B,: 19 covers all vertices projecting onto x. The rest of the strategy is identical.

O

We are now ready for the desired result.

Proposition 4.4.14. If G is a connected graph such that n = 19 and A € {7,8}, then
c(@) < 3.

PROOF. Suppose ¢(G) > 3. Let u be a vertex of maximal degree in G.
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(1)

We consider A = 8. Recall the arguments of the proof of Proposition 4.4.10. In
particular, we can consider that G — Nu| ~ Py.

There are at most 4A = 32 edges between N (u) and B,, by Lemma 4.4.8. By Lemma
4.4.9, each vertex in B, has at least 3 neighbours in N (u): there are at least 30 edges
between B, and N(u). Thus, there are at most 2 extra edges. By extra edges, we
mean that there are edges which, if removed, would leave each vertex in B, with
exactly the lower bound number of neighbours in B, as specified in Lemma 4.4.9.
Then, there are at least 8 vertices in B, incident to exactly 3 such edges.
Furthermore, if there are fewer than 6 vertices of N(u) that each have exactly 4
neighbours in B, then there cannot be at least 30 edges between N(u) and B,.
Thus, Y ,cp, p(z) > 6.

Recall that Lemma 4.4.13 states that no vertex in N(u) with 3 neighbours in B, =
B, \ N[m/] can be a projection. If all vertices of B, have exactly 3 neighbours in
N (u), this is a direct contradiction.

Otherwise, there are at most 2 vertices which can have non-zero projective multiplic-
ity, that is the vertices with 4 or 5 neighbours. Denote them by ay,ay (if there is only
one vertex, a; = ay). Then, p(a;) + p(az) > 6 (if a3 = ay then simply p(a;) > 6). Let
x € Nlai] N Nlag] N B, (which exists as Py has diameter 2). As z is adjacent to all
projections,  must be adjacent at least 6 vertices of N(u) (Observation 4.4.12). As
x also has 3 neighbours in B,, the degree of z is at least 9, which is a contradiction.
We consider A = 7. Recall the arguments of the proof of Proposition 4.4.10. In
particular, we can say that G — N[u] ~ P;, for some 1 < i < 6.

There are at most 4A = 28 edges between N(u) and B, by Lemma 4.4.8. By Lemma
4.4.9, each vertex in B, \ N[m/| has at least 3 neighbours in N(u) and each vertex
in B, N N[m/] has at least 2 neighbours in N(u): in total, there are at least 26 edges
between B, and N (u).

Using the same argument as above, depending on the number of edges between B,
and N(u), we can find between 5 and 7 vertices in N(u) which have 4 neighbours
each in B,, and thus the total projection multiplicity of B, is as follows.

(a) 26 edges: Y ,ep, P(T) = 5;

(b) 27 edges: Y ,cp, p(x) = 6;

(c) 28 edges: Y cp, p(z) =T.

Recall that Lemma 4.4.13 states that no vertex in B, \ N[m/] with 3 neighbours in
N(u) can be a projection. Also, if x € B, \ N[m/], p(z) < |[N(z) N N(u)| —2: if «
has 4 neighbours in N (u) it can be the projection of at most 2 vertices.

If all vertices in B, \ N[m'] have exactly 3 neighbours in N(u), then this implies
all projections will be vertices in N[m/]: at least 5 vertices project on m’ or on a

neighbour. Thus, m’ will have at least 5 neighbours in N(u). As m' also has at least

96



3 neighbours in B, d(m') > 8, which is impossible as A = 7. This situation includes
the case in which there are exactly 26 edges between B, and N(u).

Suppose there is exactly one vertex x of B, \ N[m’'] with exactly 4 neighbours in
N(u), with all others having exactly 3. This vertex will have projection multiplicity
at most 2, so the total projection multiplicity of vertices of N[m/] is at least 4. Thus,
m’ will have at least 4 neighbours in N(u), which is impossible as this would imply
there are 29 edges between B, and N(u) (x has 4, the other 5 vertices in B, \ N[n/]
have 3, m’ has at least 4, and each of the 3 vertices of B, N N(m') has at least 2).
Suppose now there are 2 vertices 1,z of B, \ N[m'] with 4 neighbours in N (u). These
two additional edges bring the total to 28. Thus, the total projection multiplicity is
at least 7. There are at most 2 vertices projecting onto x; and 2 vertices projecting
on xe. Thus, at least 3 vertices project onto vertices in N[m/]. This a contradiction,
as m’ must have exactly 2 neighbours in N(u), otherwise there would be more than
28 edges between B, and N(u). Considering that with A = 7, no vertex of B, can

have 5 or more neighbours in N(u), there are no cases left.

In all possible cases, a contradiction was found. Thus, ¢(G) < 3. O

4.5. Graphs with maximum degree 3

In this section, we consider the cop number of graphs with maximum degree 3. We start

with the main result of this section.
Proposition 4.5.1. If G is a connected graph such that A < 3 and n < 20, then ¢(G) < 3.

Proor. We first prove the statement for § > 2. For 10 < n < 20, we generate all graphs
such that § > 2 and A < 3. We then classify each graph according to its cop number. We
present the results in Table 4.4, which shows that no such graph with cop number at least

4 exists. We have also extracted the 3-cop-win graphs.

We now considers graphs which contain vertices of degree 1. We know that removing
a vertex of degree 1 from a graph does not change the cop number nor the fact that it is
connected (as the vertex of degree 1 is cornered by its neighbour). We successively remove
vertices of degree 1 from the graph. We eventually either get to a graph such that § > 2 and
n > 10 (in which case the above results can now be applied) or we eventually get to a graph

of order at most 9 (in which case we apply Theorem 4.2.1). O

Notwithstanding the slight improvement of considering 6 > 2, the approach here is
clearly far from optimal. The algorithm described in the following section is an example of
a possibly better strategy. However, as we will see, this algorithm would not be the most

efficient for maximum degree 3 : to compute potential 4-cop-win graphs on 19 vertices,
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Cop number
n|G:6>2,A<3| 1 2 3 [>4
10 458 7 450 1 0
11 1353 12 1341 0 0
12 4566 21 4543 2 0
13 15530 35 15495 0 0
14 56973 63 56901 9 0
15 214763 114 214642 7 0
16 848895 211 848622 62 0
17 3454642 388 | 3454093 161 0
18 14542574 735 | 14540858 | 981 0
19 62871075 1389 | 62865352 | 4334 | 0
20 279175376 2664 | 279147564 | 25148 | 0

Table 4.4. Cop number breakdown for connected subcubic graphs.

one would still need to compute subcubic 3-cop-win graphs on 15 vertices. A potentially
more interesting algorithm for building possible 4-cop-win subcubic graphs would consist in
building graphs around long shortest paths (see [2, Lemma 4], which describes how a cop can
protect a shortest path) by adding the desired number of other vertices and considering all
possible ways to add edges. Nonetheless, our exhaustive testing approach is not without its

advantages, as we can use it to gain further knowledge on the cop number of small graphs.

In fact, Hosseini, Mohar and Gonzalez Hermosillo de la Maza [40] have recently showed
that studying the cop number for graphs with A < 3 is of interest for the study of the cop
number at large. In this regard, we consider that getting a distribution of the cop-number
of small subcubic graphs might be interesting, even if it is somewhat skewed by adding the
condition § > 2. Our computations show that not only there are no 4-cop-win subcubic
graphs on at most 20 vertices, but that subcubic 3-cop-win graphs are overwhelmingly rare

for these orders.

The exhaustive search approach also gives us progress on a related problem. Arguably
the most well-known result on the game of cops and robbers is Aigner and Fromme’s proof
that the cop number of any planar graph is at most 3, see [2]. This yields the analogous
question of finding the minimum order of 3-cop-win planar graphs, and an enumeration of
such graphs. The smallest known planar 3-cop-win graph is the dodecahedral graph, see
Figure 4.8. It is easy to see that this graph requires 3 cops, as it has girth 5 and is 3-regular.
It has been asked whether the dodecahedral graph is the unique smallest 3-cop-win planar

graph, first in [4], as well as in [17].

There are some partial results for this problem. In [39], Hosseini proved that a minimal
3-cop-win planar graph must be 2-connected. Furthermore, Pisantechakool and Tan have

shown in [53] that any planar graph on 19 or fewer vertices must contain a winning position
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Fig. 4.8. The dodecahedral graph?

for 2 cops, although it has not been proved that the cops can bring the game to this winning
state. Using the computations in the proof of Proposition 4.5.1, we are able to get more

evidence supporting the conjecture.

Corollary 4.5.2. If G is a connected planar graph such that A < 3 and n < 20, then
c(G@) <2, unless G is the dodecahedral graph.

ProoF. We simply test the 3-cop-win graphs found in the proof of Proposition 4.5.1 for
planarity [41]. The only graph which was planar was the dodecahedral graph. O

4.6. Remaining cases

In this section, we consider the few remaining cases needed to prove that M, = 19, and
also work towards reducing the possible 4-cop-win graphs on 19 vertices. More precisely, we
consider graphs such that n = 17 with A =4, n = 18 with A = 4,5, and n = 19 with A = 4.

As in Section 4.4, our main tool will be knowing that if a graph G is 4-cop-win, then for
each vertex u, ¢(G — N[u]) > 3. We know there are relatively few such graphs. Since we
will be attempting to construct minimal 4-cop-win graphs, we know that ¢(G — N[u]) < 4
and so ¢(G — Nu]) = 3. In the cases of A = n — 11 or A = n — 12, these graphs were
only the Petersen and cornered Petersen graphs. As these were very few and very similar,
we were able to build structural properties that allowed us to show that the graphs were
not 4-cop-win. As they had somewhat a large maximum degree, a computational approach
would have been difficult due to the fact that there are too many possible edges we need to

consider.

2Computer-generated drawing [41].
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For the cases we will now consider, a computational approach is possible, while a formal
approach would be difficult, although certainly not impossible given a large amount of time.
Most graphs found in Lemma 4.3.3 contain the Petersen graph as an induced subgraph,
so modifying the strategy to take these vertices into account would most likely be possible.
But, just as we saw, adding even a single vertex yields significant complications for the proof.
Furthermore, some of the graphs do not contain the Petersen graph as an induced subgraph,
and would need to be considered separately. As a final blow, this proof method would not
scale very well, as the more vertices we add the further away from Petersen graphs we stray.

For these reasons, we have mostly investigated the computational approach.

Our goal is to build graphs which are possibly 4-cop-win: graphs G for which we cannot
say that ¢(G) < 3 simply by looking at G — Nu] for the vertices u of maximum degree.
Throughout, we will call these graphs candidate 4-cop-win graphs.

The simplest idea, which we have briefly discussed in Section 4.3, would be simply to
consider a 3-cop-win graph G’ on 12 or 13 vertices, add a vertex u of chosen maximum
degree and its neighbourhood, and then look at every possible ways of joining N(u) to G’
by respecting the maximum degree condition. Even by reducing the number of cases by
isomorphism, the number of graphs to consider is massive, especially in the case A = 5. We
must be a tad smarter. We present the Merging Algorithm as a way to generate candidate

4-cop-win graphs, which we then test using a standard cop-number algorithm.

We briefly introduce some notation. In general, when considering a graph GG and a vertex
u, the degree of u will always refer to the degree of G in u. If we want to discuss the degree
of u in some induced subgraph H, we will refer to it as the H-degree of u. In general, if we

say there exists a vertex of H-degree r, we are also implicitly stating that this vertex is in
H.

4.6.1. Presentation of the Merging Algorithm

4.6.1.1. Quick Overview. Our approach to build candidate 4-cop-win graphs will be the
following. Let v; and v, be non-adjacent vertices, which we will in general choose to be a
pair with the highest possible degree.

Then, knowing the computational results of Section 4.3, we are able to determine every
possible option for G; = G — N[vs] and Go = G — N[v;]. We denote by L; and Ly the sets

of 3-cop-win graphs in which G; and G5 are respectively chosen from.

We want to determine every possible graph G, with maximum degree A, which can be
formed with this structure. We will call the process the Merging Algorithm, which we will

now describe.
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4.6.1.2. Input of the Algorithm. Integers n,D;,Ds = A and sets of isomorphism classes
of graphs L; and Lo, such that

(1) the graphs in L; and Ly are 3-cop-win and have maximum degree at most A,
(2) the graphs in L; have n — Dy — 1 vertices and the graphs in Ly have n — Dy — 1

vertices.

4.6.1.3. Output of the Algorithm. The algorithm returns all connected graphs G on n
vertices and maximum degree exactly A which contain a pair of non-adjacent vertices v, and
v, with the following 4 properties. Denote Gy = G — N[vs] and G5 = G — N[vq]. Then,

(1) v; and vy have degree respectively Dy and Do,

(2) G1 € Ly and Gy € Ly, and

(3) for all other vertex u of degree A, G — N[u] € L;, and

(4) if Dy < Dy, then the set of vertices of G of maximum degree forms a clique and v,
and v, have at least 1 common neighbour.

Isomorphic graphs may be omitted from the results, as we are not interested in the precise

labellings of the graphs.

4.6.1.4. Phase 1 of the Algorithm. We first choose some G; and Gy from L; and Lo
respectively, we will repeat the rest of the algorithm for each possible choice of Gy and Gs.
We also choose strictly positive integers d; and do such that Dy — dy = Dy — dy, di < D;

and dy < Dy, we will also consider every possible choice.

We then consider every possible choice of v; € V(G) and vy € V(G3) such that v has G1-
degree d; and vy has Go-degree dy (we can of course choose v; and vy up to automorphism
in G; and in Gs). For each choice of vertices, consider every possible way of identifying
G1— N|vy] and Gy — Nvs], by computing every isomorphism between these graphs. If there
are none, this branch of the algorithm simply doesn’t yield a graph. Using this identification,
we may then merge the graphs by union, keeping the closed neighbourhoods of v; and v,
distinct.

If this process has created vertices of degree greater than A, we throw out the graph, as
the rest of the algorithm can only raise the degree again, yielding graphs we do not want to

consider.

We now add vertices which are not in V(G1)UV(G2). The only vertices which are neither
in V(G1) and V(Gsq) are those which are to be adjacent to both v; and v,. Thus, we add
Dy — dy = Dy — d; common neighbours to vy and ve, which ensures that the degrees D, and

D, are respected. All vertices of G are now in the graph, but there possibly exists some
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missing edges, which we will add in the second phase. The result of the current phase is

called a base graph. Illustrated in Figure 4.9 is such a base graph.

/ / (Nfvi] U Nlua])® \
N(v1) \ N(vz)

G1 U1

U /

N(vy) NN (vy) N(v2) \ N(v1)

S

Fig. 4.9. Example of Phase 1 of the Merging Algorithm. Here, the base graph was generated
using parameters n = 18, Dy = Dy = A =5 and d; = dy = 3.

It is easily seen in Figure 4.9 that the construction implicitly partitions the vertices into
six sets : {v1},N(v1) \ N(v2),V(G) \ (N[vi] U N[vg]),N(v1) N N(vg),N(va) \ N(v1),{ve}. If
two graphs G,G’ are generated with the same properties (same choices of G1,G2,v1,v2 but
by choosing a different identification), we may be able to reduce the number of cases to
consider: if ¢ is an isomorphism between G and G’ such that ¢(S) = S for each S being one
of these 6 sets (we call this a strong isomorphism), we can consider to these graphs to be
duplicates: each base graph, once the algorithm is over, will be transformed into the same

candidate 4-cop-win graphs (again, up to isomorphism).
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4.6.1.5. Phase 2 of the Merging Algorithm. The goal of this phase is to complete the 4-
cop-win candidates graphs. As the base graph contain all required vertices, we now need to
add the missing edges. We know that we do not want to add any edge such that both ends are
in G; or both ends in G5 as these are chosen to be induced subgraphs of G. Furthermore, we
have already created all incident edges to either v, or vy, by giving them the desired number

of neighbours. Thus, we only need to consider adding edges which are either

(1) between N(v1)NN(ve) and {v1,v2}¢, including edges with both ends in N (v1) NN (vs),
or

(2) between N(vy) \ N(v1) and N(vy) \ N(vs).

We proceed by considering every vertex (first those in N(vy) N N(vq), then those in
N(vz) \ N(v1)) and creating a new graph for every possible subset of new edges. Of course,
we only consider subsets such that the degree will be at most A. We repeat this step on the

new graphs for the next vertex.

We are also able to reduce some cases by isomorphism in this case. As above, we consider
two graphs to be equivalent if at any step in the process the two graphs can be related by
some isomorphism which has the property that the final graphs they will generate will be
identical, up to isomorphism. The additional consideration here is that we must distinguish
vertices for which we have already considered adding extra edges and those for which this
remains to be done. This additional piece of information is crucial to ensure we are indeed
considering every possible set of additional edges. Thus, the condition will be that the
isomorphism ¢ not only preserves the six sets as above, but also identifies the vertices in
N(vq) for which we have not yet run the second part of the algorithm with other vertices
with the same property. As this procedure is often lengthy, we only apply this improvement

on lists of graphs of reasonable length.

After considering every possible way of adding edges, we can throw out all graphs G such
that G— N [u] is not a 3-cop-win graph for every vertex u of maximum degree (by construction,
we do not need to verify this for v; and vy). We can also also remove isomorphic graphs.
We note that as we have split up the computations in many pieces, we only compare for

isomorphism graphs which were generated with the same choice of G;.

4.6.1.6. Specific cases. As one can deduce from the parameters and output section, the

algorithm can be divided in two main cases.

In the first case, D; = Ds. In other words, the resulting graphs contain non-adjacent
vertices v; and vy of maximum degree. In general, we apply the merging for every possible

way (up to automorphism) of choosing vertices v; in G; and v, in Go. Applying this naively
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may yield multiple isomorphic graphs, as different choices of v; in GGy can yield isomorphic

graphs. We can tweak the algorithm to partially avoid this problem.

For each graph GGy in Ly, we first define a total ordering on its vertices as follows. We
list the vertices by decreasing degree, where the choice of order on vertices of same degree
is arbitrary except that vertices which are equivalent by automorphism are consecutive in
this order (or we could define the ordering on the classes of vertices up to automorphism).
Then, when considering some choice of vy, we will add for the remaining of the algorithm
the restriction that vertices greater than vy in this order do not have maximum degree in G.
We will do the computations by decreasing v;. In essence, the graphs G where the vertices
which are greater in this order have maximum degree in G will already have been considered

in the algorithm.

A particular case of the above is when G already contains multiple vertices of degree A.
When choosing any vertex v; other than the vertex u which is maximal in the chosen order,
no graph will be generated: u would have degree A in G, which we have excluded. For this
reason, when GG; contains a vertex of degree A we not even try and simply do the merging

algorithm for one choice of v; only, that is we only consider d; = Dy = A.

It is not directly obvious that this simplification is compatible with the one we described
earlier, which was considering strongly isomorphic partially-constructed graphs equivalent.
It suffices to see that automorphically equivalent vertices of G; have the same restriction
on their degree: either both are allowed to have degree A in G or neither is. Indeed, this
property is preserved when considering the strong isomorphism ¢ between two of the partially
constructed graph : as ¢ preserves in particular {v; }, N(v1)\N(ve) and V(G)\ (N [v1]UN [vs]),

we know that ¢ restricted to the vertices of Gy is an isomorphism of G.

In the second case of the algorithm, D; < Ds. We no longer apply the improvements
to the Merging Algorithm we described in the previous case, but we still apply some minor
modifications to the base algorithm to fulfill the condition (4) of Section 4.6.1.3. Observe that
at any point in the algorithm, if the graph contains non-adjacent vertices both of degree A,
we can throw out this graph, since the vertices will also be non-adjacent in the final graphs.
We also only test for choices of dy such that d; < D; (and thus dy < Dj) to only build graphs

where v, and v, have common neighbours.

4.6.1.7. Validity of the Algorithm. Considering the algorithm itself is relatively straight-
forward, we do not present a complete proof of the validity of the algorithm. We however

present a few key points towards a formal proof.

Consider a graph G respecting the conditions described in the Section 4.6.1.3. Choose v,

to be any vertex of degree Dy in G such that G — N[vs] contains at least one vertex respecting
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the conditions for v; in Section 4.6.1.3. Denote S this non-empty set of possible choices for
v1. For some choice of vy, we set G; = G — Nvs], Go = G — N[vq], Dy = d(v1), Dy = d(vg),
d1 = dGl (Ul) and dg = d02 (UQ).

In the case Dy < D, we choose v; to be any vertex of S. If D; = D,, then choose v;
to be maximal in S relative to the order on the vertices of G — N[vs] as described in the

previous section.

It is easy to verify that

dy — dy = dg,(v2) — dg, (v1)
= |Na-npw)(v2)] = [Na-nw) (v1)]
= [N(v2) \ (N[o1] NN (v2))] = [N (v1) \ (N (v1) N N[vo])]
= [N(v2) \ (N(v1) NN (v2))] = [N (v1) \ (N(v1) N N(v2))|
= ([N (v2)| = [N(v1) N N(v2)]) = (IN(v1)] = [N(v1) N N(v2)|)
= [N(v2)| = [N (v1)]
=Dy, — D;.

Thus, the pair of degrees d; and ds is indeed considered in the Merging Algorithm. It is
then easy to see that the first part of the algorithm has considered this case. In particular,
for the case Dy = Dy, choosing v; as maximal in S implies that all vertices of G — N[ug]
which are greater in this order do not have maximal degree in G, which is consistent with

the simplification that we implemented.

Then, in the second part of the algorithm we consider adding every possible edge not
totally contained in G or Go (or at least, up to isomorphism), while still respecting some
degree conditions (which we have just seen to be consistent). We thus see that G has indeed

been constructed by the Merging Algorithm.

4.6.2. Results

We will now use this algorithm to build all possible 4-cop-win graphs. We will use some
additional heuristics in some cases to reduce the number of cases to consider, which we
will explain in detail in the proof of the following proposition. Our implementation of the
algorithm is done in the Wolfram language [41].

Proposition 4.6.1. Let G be a connected graph such that either

(1) n =17 and A =4,
(2) n =18 and A € {4,5}, or
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(83) n=19 and A = 4.

If every proper induced connected subgraph H of G respects ¢(H) < 3, then ¢(G) < 3, unless
G s the Robertson graph.

PROOF. Let u be any vertex of G. We know that G — N[u| has at most n — 2 < 17 vertices.
If G — NJu] is disconnected, it must contain at least one component K which has at most 8
vertices. Then, Theorem 4.2.1 implies that ¢(K) < 2. Furthermore, our hypothesis implies
that ¢(G— K) < 3, as G — K is necessarily a connected induced subgraph of G. By Corollary
4.2.5, we get that ¢(G) < max{c(G — K),c(K) + 1} < 3. Thus, for the remainder of the

proof, we assume that for every vertex u, G — N[u] is connected.

Likewise, we can assume that G' does not contain a corner z. Indeed, G — x is necessarily
connected and has cop number at most 3, therefore Corollary 4.2.8 would then imply that

G also has cop number at most 3.

We may also assume that ¢(G — N[u]) = 3: if ¢(G — N[u]) < 2, placing a stationary cop
on u implies that ¢(G) < 3.

Before going further, we define a property P with the usual definition: a property P is
a function from a set to a Boolean value. For instance, if C5 is the graph property of being

3-cop-win, then C3(Py) is whether the Petersen graph is 3-cop-win (which is true).

With this language, we can bring together the last assumptions. We define property M
as follows : G is a graph respecting the hypotheses of the proposition and such that G — N [u]
is a connected 3-cop-win graph for every vertex u of G and such that G does not contain a

corner. By the previous discussion, it suffices to show the proposition for graphs respecting
M.

We now define property P;. A graph G is said to have property P; if G' contains two
non-adjacent vertices of degree A. We use the Merging Algorithm to generate all graphs
G such that M(G) that respect property P;, and then compute their cop numbers. More
precisely, we choose n and A according to the case we are consider, D; = D, and L = Lo
to be the set of 3-cop-win graphs on n — A — 1 vertices with maximum degree at most A,
as computed in Lemma 4.3.3. We note that the Merging Algorithm computes a somewhat
larger class of graphs than we want. In particular, the Merging Algorithm does not exclude
graphs which contain corners and in its last step only tests G — N|u] for vertices of maximum

degree.

The summary results are presented in Table 4.5. For more detail, we also split up the
graphs relative to the various possible maximum degrees of 1, although we of course always
merge with all of the possible graphs G, not only the G5 with the same maximum degree.

We note that there are no 3-cop-win graphs with maximum degree 3 on 13 vertices (which
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can also be seen in Table 4.4); and that the 3-cop-win graphs with maximum degree 3 on 12

and 14 vertices are 3-regular (and thus the only possible value of d; is 3).

Cop number
Al n|A; | G; |d| Basegraphs | Final graphs | 1 2 3 >4
17 4 78 4 123 0 0 0 0 0
3 2 3 10 0 0 0 0 0
41181 4 | 1105 | 4 1668 0 0 0 0 0
19 4 116514 | 4 33785 3 0 0 0 3
3 9 3 911 0 0 0 0 0
5 93 5 14232 24416 0| 5484 | 18932 | 0
4 10062 39318 0] 7410 | 31908 | 0
3 534 18645 0] 3455 | 15190 | O
51181 4 [ 2 111 24238 0] 1494 | 22744 0
1 88 698809 0] 82882 | 615927 | 0
3 2 3 22 12778 0] 4960 | 7818 0

Table 4.5. Results of the first wave of computations using the Merging Algorithm. It
presents the counts for the graphs built with the property that they contain 2 non-adjacent
vertices of maximum degree. In particular, d; = dy and A = Dy = Ds. Furthermore, G is
chosen with maximum degree A;.

We note that the 4-cop-win graphs found on 19 vertices are actually all copies of the
Robertson graph, which can be see in Figure 4.1. In fact, the 3 copies correspond to 3

different choices of G; which can yield the Robertson graph.

It is also interesting to note that for all cases with A = 4, not only is the Robertson
graph the only 4-cop-win graph, but there are no other candidate 4-cop-win graphs. It
would appear that when merging, too many vertices of high degree are created: either a
vertex of degree 5 or more is created (in which case the graph is immediately thrown out)
or there are "too many" vertices of degree 4, such that there is always some u of maximum

degree for which G — N|u] not 3-cop-win.

With these results, we will then only consider graphs which do not have property P;. In
other words, the graphs left to consider are those such that the set of vertices of maximum

degree of GG forms a clique. This is a very restrictive property, and will be very useful.

Note that graphs G such that M(G) and A = 4 respect property P;: let u be a vertex of
maximum degree in G. Consider G’ = G — N[u]. If G’ contains a vertex of degree 4, P;(G) is
satisfied. Otherwise, we must have A(G) = 3. If G’ is not 3-regular, it is at most 2 cop-win
(by the results mentioned above) and therefore G is not a 4-cop-win candidate. Therefore,
any vertex in G’ that was adjacent to a vertex of N(u) is also of degree 4 in G and not

adjacent to u. Thus, P;(G) is verified. We can therefore suppose A(G) = 5. Furthermore,
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since P;(G) is false, we can assume that if there exists two vertices of maximum degree, they

must be adjacent (as they must form a clique: otherwise, P; is satisfied).

We now define property P»,. We say a graph G has property P, if G contains two non-
adjacent vertices v; and vy such that v; has degree either 3 or 4, vy has degree 5, v; and
ve have a common neighbour, and G — N|[v;] has maximum degree at most 4. Then, we
compute the graphs G such that M(G) and P»(G), but not P;(G). Precisely, we set n = 18,
Dy = A =5, D; to either 3 or 4, L; to be the 3-cop-win graphs on 12 vertices with
maximum degree at most 4 (if we choose G; with maximum degree 5, then the generated
graphs automatically respect property P;), and Ly to be the 3-cop-win graphs on respectively
either 14 or 13 vertices with maximum degree at most 4. We have computed these lists L,

and Ly in Lemma 4.3.3. The results of this computation are presented in Table 4.6.

We note that as the number of possible vertices of maximum degree is generally smaller
than before, there are fewer graphs thrown out because for some v of maximum degree G —
NJu] is not a 3-cop-win graph. Furthermore, we note that as the graphs on 14 vertices with
maximum degree 3 are 3-regular, when choosing any of these graphs as (7 it is impossible

for d; to be anything other than 3.

Cop number

D;| Gy | A |Gy | d; | Base graphs | Final graphs | 1 2 3 >4
3 993 41872 0] 9299 32573 0

4 | 1105 4 |78 | 2 504 70224 0| 4278 65946 0
1 1138 3350712 0|417144 | 2933568 | 0

3123 153 41006 0| 15440 | 25566 0

2 2419 83509 0| 4187 79322 0

3 | 16523 | 4 | 78 1 10582 6293171 0] 786173 | 5506998 | 0

Table 4.6. Results of the second wave of computations with the Merging Algorithm. It
presents the counts for the graphs G built with the property that G — N[v;] has maximum
degree 4, v; and vy always have a common neighbour (in particular d; < D;) and the vertices
of maximum degree form a clique. Here, we always have n = 18 and Dy, = A = 5, and Gy is
chosen with maximum degree A;.

We see that none of the graphs are 4-cop-win. We claim that all graphs M(G) implies
that either P(G) or P»(G).

Let G be as graph such that M (G). If P(G); we are done. Let us then consider that
P (G) is false and show that P»(G) must be true. As discussed earlier, we may only consider

the case where A = 5.

We first suppose that G contains a unique vertex of degree 5 and show that either P(G)
holds or there is a contradiction. Let vy be such a vertex. Then, for any choice of v; in

Nws), if v; and vy have a common neighbour, G — N|[v;| has maximum degree at most 4,
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as the only vertex of degree 5 (which is vy) has lost one of its neighbours. Thus, if such
a vy has degree either 3 or 4 in G, we know that G has property P. In other words, no
vertex of Gi-degree 2 or 3 has a neighbour in N(vz), and no vertex of Gi-degree 1 has more
than 1 neighbour in N(vy). Indeed, any of these cases gives a vertex vy degree 3 or 4 with
a common neighbour with vy. Therefore, only vertices of (Gi-degree 1 can "receive' an edge
from N(wvy), and even then they can only receive 1 each. As G does not contain a corner,

each vertex in N(vy) must have at least 1 neighbour in N[vs]°.

Thus, there are at least 5
edges between N (vy) and the vertices of N[vs]¢. By the previous argument, there must then
be at least 5 vertices of degree 1 in GGy, to be able to receive these edges. This is impossible:
if G contains at least 5 vertices of degree 1, removing them (which does not change the cop
number of G1), yields a graph with 7 vertices, which has cop number at most 2. In fact, G

cannot have more than 2 vertices of degree 1. We reached the desired contradiction.

Thus, we may assume that N(vg) contains at least one other vertex of degree 5. We
recall that these vertices of degree 5 must form a clique as GG does not respect property P;.
Suppose v; is a vertex of N[vy]¢ of degree either 3 or 4 that has a neighbour of degree 5.
Then, as the vertices of degree 5 are all pairwise adjacent, removing N[v;] removes at least 1
neighbour from each vertex of degree 5: G — N|v1]| necessarily has maximum degree at most

4. Thus, graphs with this property have property Ps.

Let us make sure such a choice of v; exists. Using a similar argument as above, the
vertices of degree 5 can only have neighbours in N[vs]® which have G;-degree 1, and when
this happens the receiving vertices can have no other neighbours in N(vs), otherwise G
automatically respects property P,. In particular, we have that N(v;) contains either 1 or 2

vertices of degree 5.

We first consider the case with 2 such vertices, let us denote them x1,z5. Then, z; and
x9 each have exactly one neighbour in N|[vg) (which are different). Thus, having degree 5,
both z; and xo must have 3 neighbours in N(vy) (including each other). In particular, x;
and 5 must have a common neighbour in N(v,), denote it y. We know that y must have a
neighbour in N{vy|¢ (otherwise y is cornered by vs), which will be our choice of v;. As there
are no other unaccounted vertices of GGi-degree 1 (these are adjacent to the degree 5 vertex
and nothing else), v; necessarily has degree either 3 or 4. We can then see that G — Nv,]
has maximum degree at most 4: removing N|v;| removes y, which is a common neighbour

to vy, 1 and x5. Thus, in this case, the graphs have property Ps.

We can similarly consider the case with exactly 1 vertex = of degree 5 in N(vy). Then,
x has at most 2 neighbours in N[v,]¢. Thus, x has at least 2 neighbours y;,y, in N(vg). We
have already seen that they cannot be adjacent to the neighbours of x in N[vy|¢. If one of

them is adjacent to a vertex of GGi-degree 2 or 3, then this will be a valid choice for vq, as
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N{v;] then contains a vertex adjacent to both vertices of degree 5. The only remaining case
is if there is a vertex of GGj-degree 1 in G; to which z is not adjacent, and both y;,y, are
adjacent. In this case, choose v; to be this vertex. It has degree at least 3, and removing it

removes neighbours of all vertices of degree 5. In all cases, the graph has property F;.

Thus, our claim is verified: all graphs G that satisfy M (G) respect either P (G) or P(G).
We have computer the cop number of graphs such that M(G) and P;(G), and graphs such
that M(G), P,(G) but not P;(G): we have computed the cop number of all graphs such that
M (G). This proves the current proposition. O

4.6.3. Possible improvements

This is only one of many possible computational approaches to solving the problem. We
now discuss a few improvements and alternatives that the interested reader may want to
apply.

Our approach was based on merging 3-cop-win graphs by looking at non-adjacent vertices
v1,v9. It is easy to see that one could instead choose v; and vy to be adjacent. Even if the
construction would be somewhat different, the ideas are similar. In particular, after proving
that G does not contain non-adjacent vertices of maximum degree, we could have proved
that G does not contain any adjacent vertices of maximum degree, instead of considering
vy, of smaller degree. This would then leave only the case with a single vertex of maximum
degree to be treated. With some additional heuristics or with a simplification of the methods

we used, this could be dealt with more specifically.

We decided against this approach for few reasons. Although our approach required us to
compute more 3-cop-win graphs than otherwise, it allowed us to implement only one Merging
Algorithm. Furthermore, computing the 3-cop-win graphs on 14 vertices with maximum
degree (at most) 4 allowed us to simultaneously handle on the case on n = 18 with d(v;) = 3,

and build the candidate 4-cop-win graphs on 19 vertices with maximum degree 4.

Another method would be to not only merge graphs relative to pairs of vertices, but
varying sizes of subsets. This approach would certainly reduce the number of intermediate
graphs generated by the algorithm: instead of pruning out graphs after adding edges, we
could build up a larger part of the graph. The difficulty lies in implementing this approach.
In particular, we must keep track of which pairs of vertices do not have an edge because
both vertices are in one of the GG; but this edge is not present in that graph, or whether such

an edge could be considered later.

Although at the expense of some computation time, we have chosen not to implement

these improvements in order to keep the code as simple as possible. Indeed, the simplicity of
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the code reduces the chances of it being erroneous, as well as making it easier to verify. As
the proof is completely dependent on the results of the algorithm, we felt this compromise
was justified.

A last idea essentially combines the processes of generating the graphs and testing their
cop number. Let G be a connected graph and e be some edge of G. In general, it is unclear
whether removing e will help the robber or help the cops, as this depends on many other
factors. If we consider a slightly modified ruleset so that the robber can use the edge e but
not the cops, we might achieve some results. Denote ¢’ the cop number of this modified game.
With these rules, ¢(G) < ¢(G), as the new edge can only benefit the robber. Furthermore,
d(G —e) < d(G) because, removing e can only help the cops, as they were not allowed to
use it anyways. Thus, both ¢(G) and ¢(G — e) are bounded above by ¢/(G). If we modify the
algorithm which calculates the cop number to take into account the robber-only edge e (a
fairly easy modification), we could then determine simultaneously whether both G and G —e
have cop number at most 3. This generalizes to larger subsets of edges. Hence, in theory, we
can reduce by a significant amount the number of cases to consider by not distinguishing the
distinguishing G and G — e; do this for many edges and the number of graphs to consider
could decrease exponentially. It is not clear how many such "special edges" we can take in
G before the cop numbers diverge. We leave implementing and studying this approach as a
problem. Modifying slightly the rules of the game to study the cop number has been done
many times before. For instance, cop-only edges are studied in [30] and allowing the cops
to teleport in [46].

4.7. Main results

We are now ready to prove the desired results.
Theorem 4.7.1. If G is a connected graph such that n < 18, then ¢(G) < 3.

Proor. This is a direct consequence of Corollary 4.2.6 and Propositions 4.4.10, 4.5.1 and
4.6.1. O

Considering there exists a known 4-cop-win graph on 19 vertices, the Robertson graph,

we get the following corollary.
Corollary 4.7.2. M, =19
We also want to narrow down the possible 4-cop-win graphs on 19 vertices.

Theorem 4.7.3. Let G be a connected graph such that n = 19. If A < 3 or A > 7, then
(@) < 3. If A =4, then ¢(G) < 3, unless G is the Robertson graph.
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ProoFr. This is a direct consequence of Corollary 4.2.6 and Propositions 4.4.14, 4.5.1 and
4.6.1. O

We leave filling the missing cases in this theorem as a conjecture.

Conjecture 4.7.4. There does not exist a connected graph G such that n =19, A € {5,6}
and ¢(G) = 4.

This would then show that the Robertson graph is the unique 4-cop-win graph on 19
vertices. With a better implementation of the algorithm, in some low overhead programming
language such as C, and with a few good ideas, this problem seems within reach. On the

other hand, finding M5 with the methods used in this article is clearly unfeasible.

It is asked in [7] whether the minimum d-cop-win graphs are (d,5)-cage graphs for every
d. Although we now have further evidence pointing towards this conjecture, any general

proof of this statement is still beyond our grasp.
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Annexe A

Code utilisé

Dans cette annexe, nous présentons dans leur intégrité les scripts utilisés dans le troisieme

article. Ils sont aussi disponibles au https://github.com/tjeremie/Cops-and-robbers.

Notons que certains de ceux-ci incluent des exemples de code afin d’importer ou d’expor-

ter les données et devraient étre modifiés dépendamment de leur utilisation.

A.1. Algorithme de calcul du cop number

L’algorithme de calcul du cop number (jusqu’a 3) implémenté ici est basé sur celui pré-

senté par Bonato et Chiniforooshan dans [16], ainsi que sur [26] et [59].

#:
Algorithm for testing cop numbers 1,2,3

By Jérémie Turcotte

Algorithm inspired by those suggested, for example, in https://math.ryerson.ca/~abonato/papers/
distcops_bcp030109.pdf, https://www.sciencedirect.com/science/ article / pii /S0012365X12000064
and https://pub.tik.ee.ethz.ch/students/2016—HS/BA—2016—20.pdf.

Also includes an example of how to scan various files of graphs, in the g6 format, for which to

breakdown the number of graphs of each cop number.

As codes for the various cop numbers are very similar, we only comment the code for cop number 2.

=#

using LightGraphs, GraphlO, Base

5 # Returns true if the line i in mat (of size n"2) is all true

function convertToBooll(mat,i)


https://github.com/tjeremie/Cops-and-robbers

return !( false in mat[i ,:])

function convertToBool2(mat,i,j)

return !( false in mat[i,j ,:])

; function convertToBool3(mat,i,j, I)

return !( false in mat[i,j,| ,:])

# Returns true if ¢(G)=1, false if c(G)>1
function oneCopWin(g)

n=nv(g)
configs =falses(n,n)

queued=trues(n)

for i in L:n
for k in 1:n
templist =vcat(neighbors(g k), k)
if i in templist
configs [i,k]=true
end
end
end

for i in 1in
if (convertToBooll(configs,i))
return true
end
end

bigchange=true

while bigchange
bigchange=false

for i in L:in
if queued]i]
queued[i]=false

for ip in vcat(neighbors(g,i),i)

# Returns true if the line ij in mat (of size n”3) is all true

# Returns true if the line ijl in mat (of size n"4) is all true
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61 changed=false

62

63 for kp in 1:n

64 if ! configs [ip,kp]

65 temp=true

66

67 for k in vcat(neighbors(g,kp),kp)
68 if ! configs[i, k]
69 temp=false
70 break

71 end

72 end

74 if temp

75 configs [ip , kp]=true
76 changed=true
78 if (convertToBooll(configs,ip))
79 return true
80 end

81 end

82 end

83 end

84

85 if changed

86 queued[ip]=true

87 bigchange=true

88 end

89 end

90 end

91 end

92 end

93

94 return false

95 end

97 # Returns true if c(G)<=2, false if ¢(G)>2
98 function twoCopWin(g)
99 n=nv(g) # number of vertices in g

configs =falses(n,n,n)

#=

At any given moment in the code, configs[i,j, k] will be true if we know that there is a strategy
to win if there are cops on i and j and a robber on k (and it is cops’ turn).
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104

136
137

139

Will be false if either we do not know yet, or there is no winning strategy in that position (
which is why we start by initializing the array to all false).

The idea of the algorithm is to progressively fill up the matrix by finding new winning
strategies , going backwards starting from the final turn.

=#

queued=trues(n,n) # WIill represent the positions (i,j) that think we should verify soon. We start by

deeming all positions interesting .

# If either i or j is in the neighbourhood of k, then with cops on i and j, a robber on k will
immediately be caught.
for i in 1:n
for j in 1:i
for k in 1:n
templist =vcat(neighbors(g,k), k)
if i in templist || j in templist
configs [i,],k|=true
configs [j,i,k]=true # To not repeat the same calculations, we only chose j between 1
and i : the order of (i,j) does not matter.
end
end
end
end

# If there exists a choice of starting positions (i,j) for the cops such that for any choice of
robber position k there is a winning strategy, then 2 cops can win.
# Checking this now amounts to verifying if there is a dominating set of size 2 in the graph.
for i in L:n
for j in L:i
if (convertToBool2(configs,i,j))
return true
end
end
end

bigchange=true
while bigchange # If the matrix did not see any change in the last iteration , then there will not be
any further change at any time: 2 cops cannot win.

bigchange=false

for i in 1:n

for j in L:i
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140

if queued[i,j] # Suppose we consider (i,j) to be an interesting position : either because

we are in the start of the algorithm or because for some k matfi,j, k] changed value

recently , and we want to see if this impacts neighbouring positions .
queued[i, j]=false

for ip in vcat(neighbors(g,i),i), jp in vcat(neighbors(g,j),j) # We choose (ip,jp)

such that cops can move to (i,j) in 1 turn.
changed=false
for kp in 1:n # We consider every possible position for the robber

if !configs[ip,jp,kp] # We only need to consider those kp such that we don't
already know gives a winning position
temp=true

for k in vcat(neighbors(g,kp).kp) # We consider the vertices k that the
robber can move to from kp
if !configs[i,j,k] # If there is a vertex k where the robber can go
such that the move (ip,jp)—>(ij) does not yield a winning
position, we cannot say anything new.
temp=false
break
end
end

if temp # Otherwise, if the move (ip,jp)—>(i,j) gives a winning position
whatever the robber does (for every choice of k), we know that (ip,
Jjp,kp) is a winning position .
configs [ip, jp, kp]=true
configs [jp, ip , kp]=true

if (convertToBool2(configs,ip,jp)) # We verify if this gives us a
winning starting position (ip,jp), if so we are done.
return true

end

changed=true # Indicates that at least one triple (ip,jp,kp) has
changed value.
end
end
end
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173 if changed # If at least one triple (ip,jp,kp) changed value, then we deem that
(ip,jp) might be interesting : this means we may "be ready" to find winning
strategies for neighbour positions .

174 queued|ip, jp]=true

175 queued[jp, ip]=true

176 bigchange=true

177 end

178 end

179 end

180 end

181 end

182 end

184 return false
185 end

187 # Returns true if ¢(G)<=3, false if ¢(G)>3
188 function threeCopWin(g)

189 n=nv(g)

190 configs =falses(n,n,n,n)

191 queued=trues(n,n,n)

192

193 for i in 1:n

194 for j in 1:i

195 for | in1:j

196 for k in 1:n

197 templist =vcat(neighbors(g, k), k)
198 if i in templist || j in templist || | in templist
199 configs [i,],|,k]=true

200 configs [j,i,,k]=true

201 configs [i,1,],k]=true

202 configs[j,I,i,k]=true

203 configs[I,1i,],k]=true

204 configs[I,],i,k]=true

205 end

206 end

207 end

208 end

209 end

210

211 for i in 1:n

212 for j in 1:i

213 for k in 1:]

214 if (convertToBool3(configs,i,j,k))
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246

return true
end
end
end
end

bigchange=true

while bigchange
bigchange=false

for i in 1:n
for j in 1:i
for | in 1:j
if queued[i,j,I]
queued[i, j, |]=false

for ip in vcat(neighbors(g,i),i), jp in vcat(neighbors(g,j).j),

neighbors(g, 1), 1)
changed=false

for kp in 1:n

if ! configs [ip,jp.Ip,kp]
temp=true

for k in vcat(neighbors(g,kp), kp)
if !configs[i,j,| k]
temp=false
break
end
end

if temp
configs [ip,jp, Ip.kp]=true
configs [jp.,ip, Ip, kp]=true
configs [ip, Ip, jp, kp]=true
configs [jp, Ip, ip, kp]=true
configs [Ip,ip,jp . kp]=true
configs [Ip,jp,ip . kp]=true

changed=true

if (convertToBool3(configs,ip,jp,Ip))

return true
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258 end
259 end

260 end

261 end

263 if changed

264 queued([ip, jp, Ip]=true
265 queued[jp, ip, Ip]=true
266 queued[ip, Ip, jp]=true
267 queued(jp, Ip, ip]=true
268 queued|lp, ip, jp]=true
269 queued|lp, jp,ip]=true
270 bigchange=true

271 end

272 end

273 end

274 end

275 end

276 end

277 end

279 return false
280 end

282 # Example of function to load a file of graphs in the graph6 format
283 function loadList (i)

284 return collect (values (loadgraphs( string ("/n20d2D3/graphs_20_2_3_",i,"_20000.g6"), GraphlO.Graph6
.Graph6Format())));

285 end

286

287 #=

288 Example of function to manage reading each file and breaking down the cop numbers

289

290 Will print the breakdown of the cop numbers of the graphs and will save the graphs needing 3 and 4

cops in files

292 This example supports multithreading, see https:// julialang .org/blog/2019/07/multithreading/ to
change the number of threads.
293 Experimentally, speedup of almost factor 2 between 1 and 2 threads but does not improve much after 4
threads.

294 =#

296 function fctThreaded(part)
297 totalonecopcount=0
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totaltwocopcount=0
totalthreecopcount =0

totalfourcopcount =0

d3=Dict{AbstractString,AbstractGraph}()
d4=Dict{AbstractString,AbstractGraph}()

start =(part—1)=x400
stop=part+x400—1

for i in start :stop

localonecopcount=Threads.Atomic{Int}(0)
localtwocopcount=Threads.Atomic{Int}(0)
localthreecopcount =Threads.Atomic{Int}(0)
localfourcopcount =Threads.Atomic{Int}(0)

liste =loadList(i)

Threads.@threads for g in liste
if oneCopWin(g)
Threads.atomic_add!(localonecopcount,1)
elseif twoCopWin(g)
Threads.atomic_add!(localtwocopcount,1)
elseif threeCopWin(g)
Threads.atomic_add!(localthreecopcount,1)
d3[string (i,"——",part,"——",Threads.threadid(),"——",localthreecopcount[])]=g
else
Threads.atomic_add!(localfourcopcount,1)
d4[string (i,"——",part,"——",Threads.threadid(),"——",localfourcopcount[])]=g
end
end

totalonecopcount=totalonecopcount-+localonecopcount(]
totaltwocopcount=totaltwocopcount+localtwocopcount]]
totalthreecopcount =totalthreecopcount+localthreecopcount|]

totalfourcopcount =totalfourcopcount+localfourcopcount ]

println (string (i," ",localonecopcount [], " ",localtwocopcount [], " ", localthreecopcount [],
localfourcopcount [], " "))
flush (stdout)
end
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savegraph(string ("./n14d1D4_3cops_part",part,".g6"), d3, GraphlO.Graph6.Graph6Format())
savegraph(string ("./n14d1D4_4cops_part",part,".g6"), d4, GraphlO.Graph6.Graph6Format())

println (string ("Total : ", totalonecopcount, ,totaltwocopcount, , totalthreecopcount ,

totalfourcopcount," "))

345 end

348

w [\

# To start the program from the command line
Otime fctThreaded(parse(Int64, ARGS[1]))

A.2. Algorithme de vérification de graphes démante-
lables

Nous présentons ici 'algorithme qui vérifie si un graphe est policier-gagnant en se basant

sur I’équivalence entre les graphes policier-gagnants et démantelables, voir Théoréeme 1.3.6.

(+x ::Package:: %)

(x
Algorithm for determining cop—win graphs
By J\[EAcute]r\[EAcute]mie Turcotte

Uses the equivalence between cop—win and dismantlable graphs, see https://www.sciencedirect.com/science
/ article / pii /0012365X83901607.

*)

(+ Returns the closed neighbourhood of v in g x)

2 closedNeighbourhood[g_,v_]:=Append[AdjacencyList[g,v],v]

(x Attemps to find a corner in the graph g x)
corner [g_]:=Module[{i,j},
Catch|
Do|
If [il=j,
If [SubsetQ]closedNeighbourhood|g,i], closedNeighbourhood|g,j |],
Throw[{True,j}| (* if the neighbourhood of j is a subset of the neighbourhood of i, then j is
a corner/ irreducible vertex x)
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24 {i, VertexList [g]}.{], VertexList [g]}]; (* we test for all pairs of vertices (i,j), the if above
makes sure that these are separate vertices x)
25 Throw[{False,0}] (* if no corner is found x)

30 (x Connected graphs up to order 3 are cop—win x)
31 copWin[g_]:=True/;VertexCount|[g] <=3

34 (x Tests if the graph g (which we suppose is connected) is cop—win *)

35 copWin[g_]:=Module[{val=corner|g],containCorner,corner},

37 containCorner=val [[1]]; corner=val [[2]];

38

39 If[containCorner,

A0 copWin[Subgraph|g,DeleteCases|VertexList[g],corner |]], (* if g contains a corner u, we remove it and
verify if g—u is cop—win (note that if g is connected, so is g—u) x)

11 False

42 ]

13 ]

14

16 (x Example of how to import graph files )

47 importData[i_]:=Flatten[{Import["/n10/graphs_10_1_10_"<>ToString|[i]<>"_1000.g6","graph6"]}] (* the
path is absolute x)

18

19

50 (x Example of code to manage reading each file and counting down the number of cop—win graphs x)

51 counter=0;

52

53 Do[

54 tempList=importDatali];

55  tempNumber=Count[Map[copWin,tempList], True];

56 Print[ToString[i]<>" "<>ToString[tempNumber]|;

57  counter=counter+tempNumber;

58 ,{i,0,999}

61 Print[counter];
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A.3. Implémentation du Merging Algorithm

Nous présentons ici le code implémentant le Merging Algorithm décrit dans la Section

4.6. Celui-ci devrait étre vu comme partie intégrante du troisieme article.

A.3.1. Phase 1

I (% ::Package:: x)
3 (x :lnput: x)

(k)

7 (% :: Subtitle :: x)

8 (xGenerating small 4—cop—win candidate graphs x)

9 (xPart 1/2 — Generating the base graphs)

10 (xFor Finding the minimum order of 4—cop—win graphsx)
11 (xBy J\[EAcute]r\[EAcute]mie Turcotte and Samuel Yvonx)

14 (% : Subtitle :: x)

15 (xUsagex)

16 (*+ Option 1 : Run in Mathematica by going to end of file and choosing which computation to run.x)

17 (* Option 2 : Runin a shell with wolframscript : "wolframscript —script 4copcandidates—partl.wl x x x
x x x", where x are the desired parameters of createGraphs.x)

20 (x Specify here the path to get the lists of 3—cop—win graphs, by default fetches the results online x)
I importPath="https://www.jeremieturcotte.com/research/mindcops/data/smallgraphs/results/3copwingraphs/";

[\~

t (x :: Subtitle :: x)
25 (xCode:x)

28 (* Debugging function to print a graph with labels x)

30 printLabel [g_]:=Graph][g, VertexLabels—>"Name"]

w

33 (* Some functions on neighbourhoods )

35 (x The neighbourhood of v in g. x)
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59
60
61

; openNeighbourhood|[g_,v_]:=AdjacencyList[g,v]
37 (* The closed neighbourhood (includes v) of v in g. x)

closedNeighbourhood[g__,v_]:=Prepend[AdjacencyList[g,v],v]
(*+ The set of vertices of g—N|v]. x)
noNeighbourhood[g_,v_]:=Complement[VertexList[g],closedNeighbourhood[g,v]]

(* Functions to create formal edges x)

(*+ Returns a list of edges between v and the vertices of list . x)

; convertToEdge[v_,list_]:=UndirectedEdge[v,#]&/@list

(+ Returns a list of edges between the vertices in list and vl and with v2. x)
doubleConvertToEdge[vl_,v2_ list_]:=Join[convert ToEdge[v1, list ], convert ToEdge[v2, list ]

(* Functions to reduce vertices to consider by automorphism x)

(x Given a list of automorphisms (encoded as associations) of some graph, returns all

vertices equivalent to v through one of these automorphisms. x)

56 automorphismsimage[automorphismList_,v_]:=Union[Map[#][v]&,automorphismList]]

(+ Given a graph g and a vertex v, returns all vertices equivalent to v through some automorphism of g.

*)

automorphicEquivalentVertices [g_,v_]:=automorphismsimage[FindGraphlsomorphism[g,g,All],v]

(+ Given a graph g and a list of vertices of g, removes from this list vertices which are equivalent
through some automorphism. x)
reduceByAutomorphism[g_ list_]:=DeleteDuplicates]| list , MemberQ[automorphicEquivalentVertices|g

1] #2]&]

(+ Given a graph g, returns a list of vertices of chosen degree, all of which are not equivalent by
automorphism.
This function is currently with memory to save computation time. x)
reducedVertexChoices[g_,degree_|:=(reducedVertexChoices[g,degree]=reduceByAutomorphism|g,
selectDegreeVertices[g,degree |])

(+ Functions relating to the maximum authorized possible degree of vertices )
(x Given maxDeg, which is the maximum authorized degree we consider, and a list of vertices whose degree

must be strictly smaller than maxDeg,
returns the maximum possible degree of v (‘either maxDeg or maxDeg—1). )
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78

79

86

87

88

89

90

91

93

94

95

96

realDegreeBound[v_, lowerDegreeVerticesList_, maxDeg_]:=maxDeg—Boole[MemberQ]

lowerDegreeVerticesList,v]]

(x Verifies if the maximum degree of g is at most maxDeg and all vertices in lowerDegreeVerticesList
have strictly smaller degree.
If true, returns g, otherwise returns Nothing (an element which vanishes in any list ). *)
degreesFilter [g_, lowerDegreeVerticesList_ ,maxDeg_|:=If[AllTrue[VertexList[g], VertexDegree[g, #]<=
realDegreeBound[#,lowerDegreeVerticesList,maxDeg] &],g,Nothing]

(* Functions to reduce graphs to consider by isomorphism )

(x Given an isomorphism iso (encoded as an association ) between two graphs on the same set vertices and
a list of sets of vertices
returns true if the image (through iso) of every such set of vertices is itself . x)
fixedPointslsomorphism [iso_, list_]:=AllTrue][ list ,Sort[#/.iso]==Sort[#]&]

(x Given two graphs and a list of sets of vertices, returns true if there exists an isomorphism between
gl and g2 such that the image
of every set of vertices is itself (which is what we call a "strong isomorphism"). x)
stronglsomGraphs[gl_,g2_list_]:=AnyTrue[FindGraphlsomorphism[gl,g2,All],fixedPointslsomorphism[#, list
1&]

2 (x Functions used in the labelling of new vertices x)

(x+ The list of vertices that will need to be added as common neighbors of vl and v2 when merging the
graphs. x)

verticesToAdd[g2_,v2_,maxDeg_,nblinteriorVertices_]:= nblInteriorVertices + Range[maxDeg—VertexDegree[g2,
v2]]

(x+ The list of labels we will give to the current neighbours of v2 when merging the graphs. x)
alreadyNeighbours[g2_,v2_,maxDeg_,nbTotalVertices_]:=nbTotalVertices— Range[VertexDegree[g2,v2]]

(*+ The six classes of vertices in the merged graph g, as described in the proof. x)

graphSections[gl_,vl_,g2_,v2_,maxDeg_,nbTotalVertices_]:={{v1},openNeighbourhood[gl,v1],
noNeighbourhood[gl,v1],verticesToAdd[g2,v2,maxDeg, VertexCount[g1]],alreadyNeighbours[g2,v2,maxDeg,
nbTotalVertices],{nbTotalVertices}}

5 (x Functions to merge graphs gl and g2 relative to a choice of vl and v2 x)
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107

119

128

129

(+ Deletes in list the graphs not respecting the authorized degrees and removes graphs which are
strongly isomorphic.
It is important to note that it would technically also be necessary to verify that this isomorphism
is compatible with
the list of degrees which must have degree strictly smaller than maxDeg. But as we use our strong
isomorphisms to,
in particular , fix gl, the restriction of the isomorphism will also be an automorphism of g1,
and as equivalent vertices have the same degree bounds, this is valid .
0
removelsoAndClean([list_,gl_,v1_,g2_,v2_ lowerDegreeVerticesList_,maxDeg_,nbTotalVertices_]:=
DeleteDuplicates[degreesFilter [#, lowerDegreeVerticesList ,maxDeg]& /@list,stronglsomGraphs[#1,#2,
graphSections[gl,v1,g2,v2,maxDeg,nbTotal Vertices||&]

5 (x Lists all isomorphisms (encoded as associations ) from g2—N[v2] to gI—N[v1]. x)

subgraphlsomorphisms[gl_,v1_,g2_,v2_]:=FindGraphlsomorphism[Subgraph[g2,noNeighbourhood[g2,v2]],
Subgraph(gl,noNeighbourhood[g1,v1]],All]

(x+ Merge graphs g1 and g2 with the following rules. Keep the numbering of g1, relabel v2 and it's
neighbourhood
respectively with labels nbVertices and nbVertices—1 to nbVertices—d_g2(v2). Relabel g2—N[v2] using
the isomorphism iso
(which is an isomorphism between g2—N[v2] and g1—N|v1]) to be able to merge with g1. If d_g2(v2)<
maxDeg, add common neighbors
to vl and v2 to bring v2 to maximum degree.
*)
mergeGraphsWithSpecificlso[gl_,v1_,g2_Graph,v2_iso_,maxDeg_,nbTotalVertices_]:=EdgeAdd[GraphUnion][
g1,VertexReplace[g2,Join[Normal[iso],
Table[closedNeighbourhood[g2,v2][[ i]]—>nbTotalVertices—i+1,{i,VertexDegree[g2,v2 |+ 1}]]],
doubleConvertToEdge[v1,nbTotalVertices, verticesToAdd [g2,v2, maxDeg, VertexCount[g1]]]]

i (x Merge graphs g1 and g2 as above, by considering every possible way of merging g1—N|v1] and g2—N|[v2

|
Also adds to every graph relevant information for the next part of the algorithm (which is adding
possible missing edges).
©)
mergeGraphs[gl_,vl_,g2_,v2_ lowerDegreeVerticesList_,maxDeg_,nbTotalVertices_]:={+#,graphSections[gl,v1
,g2,v2,maxDeg,nbTotalVertices],
lowerDegreeVerticesList }& /@removelsoAndClean[mergeGraphsWithSpecificlso[gl,v1,g2,v2,#,

maxDeg,nbTotalVertices]& /@subgraphlsomorphisms[gl,vl,g2,v2],gl,v1,g2,v2,
lowerDegreeVerticesList,maxDeg,nbTotalVertices]

(* Functions to choose vertices depending on degree x)
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135 (% Returns all vertices of degree deg in g. *)

136 selectDegreeVertices [g_,deg_]:=Select[VertexList[g], VertexDegree[g,#]==deg&]
137

138 (* Returns all vertices of degree greater than deg in g.x)

139 selectUpperDegreeVertices [g_,deg_|:=Select[VertexList[g], VertexDegree[g, #]>deg&]

142 (* Function to clean and load the list of graphs we are going to merge x)

144 (% Returns a cleaned version of list : sorts the graphs by decreasing maximum degree and all graphs in
canonical form. x)
145 cleanGraphlList [ list_]:=Sort[CanonicalGraph/@list, Max[VertexDegree[#1]] >=Max[VertexDegree[#2]]&]

147 (x Loads the list of 3—cop—win connected graphs on nbVertices vertices such that c(G)=3 with Delta\[
LessEquallmaxDeg. )

148 loadList [nbVertices_,maxDeg_]:=cleanGraphList[Import[importPath<>"n"<>ToString[nbVertices]<>"d1D"
<>ToString[maxDeg]<>"_3cops.gb","graph6"]]

151 (% ::Text:: )

152 (xMain functionx)

153 (x Parametersx)

154 (% nbTotalVertices : The total number of vertices in the graphs we will create.x)

155 (* vldegree: The degree of the vertices vl we will choose in gl.x)

156 (* glMaximumDegree: The maximum degree of the graphs g1 we will choose.x)

157 (% maxDeg: The maximum degree of the graphs we will create.x)

158 (% testAll : If True, graphs will be created for each possible choice of vl in gl, otherwise will be
done for one choice of vI.x)

159 (* v2DegreeGreater: The degree of v2 will be set to vlDegree+v2DegreeGreater. If v2DegreeGreater>0,
we suppose that g—N|[v1] has maximum degree 4. Only works if nbTotalVertices=18 vertices and maxDeg
=5.x)

160 (* Optional parameters (otherwise res=mod=1)x)

161 (% res: The part of the computation to do, between 1 and mod.x)

162 (% mod: The number of parts to split the computation in.x)

163 (%)

164 (*+ Outputx)

165 (% Exports to file a list where each item is itself a list of length 3:x)

166 (* The first item is the created base graph.x)
167 (% The second item is the breakdown into the 6 types of vertices of the graph.x)
168 (* The third item is the list of vertices which must have maximum degree strictly smaller than

maxDeg, this is useful to reduce the number of cases in part 2 of the algorithm .x)

169 (% Also creates a file which summarizes the computation. On each line there is a list of length 3:
the index of gl in the (cleaned—up and reordered) list , the number of graph created from this choice
of gl and the time required for this computation.x)
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188

189

createGraphs[nbTotalVertices_,vldegree_,glMaximumDegree_,maxDeg_,testAll_,v2DegreeGreater_,res_,
mod_]:=
Block[{graphListl,graphList2, start ,end,gl,v1, lowerDegreeVerticesList ,reducedVerticesToConsider, results ,
v2degree, total Time, outputFile ,temp},
(x File that will contain an outline of the results of the computation.x)
outputFile="basegraphs_"<>ToString[nbTotalVertices|<>"_"<>ToString[vldegree|]<>"_"<>ToString|
glMaximumDegree]<>"_"<>ToString[maxDeg]<>"_"<>ToString[testAll|<>"_"<>ToString|
v2DegreeGreater]<>"_results"<>If[mod>1,"_part"<>ToString][res],""]<>".txt";

total Time=Absolute Timing|
(x We load the list of graphs in which we pick gl. x)
graphListl=loadList[ nbTotalVertices —maxDeg—1,maxDeg];

(+ This will be the degree of v2 in g2. x)
v2degree=vldegree+v2DegreeGreater;

(+ We load the list of graphs in which we pick g2. x)
graphList2=If[v2DegreeGreater>0,loadList[124+v2DegreeGreater,4],graphList1 |;

(+ We select the start and the end indices of all graphs with maximum degree exactly
glMaximumDegree in graphList. x)

start = FirstPosition [ graphListl,_?(Max[VertexDegree[#]|==glMaximumDegree& )|[[1]];

end=Length[graphListl]+1—FirstPosition[Reverse[graphListl],_?(Max[VertexDegree[#]]|==
glMaximumDegree& )][[1]];

results =Flatten][
Table|
If [Mod[i—res,mod]==0,
(x For each possible graph gl with maximum degree exactly glMaximumDegree, we will also
reduce by automorphism the possible choices of v1. x)
gl=graphList1[[i ]];
reducedVerticesToConsider=reducedVertexChoices[gl,vldegree];

temp=AbsoluteTiming[Flatten[Table|
(* We choose a vertex v1. x)
vl=reducedVerticesToConsider[[j ]];

(x All vertices which either come before v1 in reducedVerticesToConsider or which have

higher degree than vl are considered to already having been verified , so have degree

strictly smaller than maxDeg. )
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203 lowerDegreeVerticesList =If[v2DegreeGreater>0,Range[12],Union[Flatten|[Table|
automorphicEquivalentVertices[gl,reducedVerticesToConsider[[k ]]].{ k.1, j—1}]],
selectUpperDegreeVertices [gl,v1ldegree |[];

204

205 (¥ For some choice of g2,v2, we compute the merged list. x)

206 mergeGraphs[gl,vl,g2,v2, lowerDegreeVerticesList ,maxDeg,nbTotalVertices]

207

208 (x In the case where vl and v2 have the same degree, w only need to consider the graphs g2

which come after gl in the list . We choose v2 up to automorphism. x)
209 {j .1, If [ testAll , Length[reducedVerticesToConsider]|, Boole[Length[reducedVerticesToConsider
1>011}.{g2,graphList2},{v2,reducedVertexChoices[g2,v2degree] }

210 1,310

211

212 PutAppend[{i,Length[temp[[2]]],temp[[1]]}, outputFile ];
213

214 temp[[2]]

215

216 , Nothing

217 ]

218

219 {1, start ,end} (x The index of gl in the list . *)

220 ]

221 1 (x We flatten 4 layers as there are 4 levels in our table. %)
222 I;

224 Export["basegraphs_"<>ToString[nbTotalVertices]<>"_"<>ToString[vldegree]<>"_"<>ToString|
glMaximumDegree]<>"_"<>ToString[maxDeg]<>"_"<>ToString[testAll]<>"_"<>ToString|
v2DegreeGreater]<>If[mod>1,"_part"<>ToString[res],""]<>".mx" results]

5 L

226

2

[\

29

\V]

7 PutAppend[{Total, Length|results],total Time},outputFile];

228 |

229 createGraphs[nbTotalVertices_,vldegree_,glMaximumDegree_,maxDeg_testAll_,v2DegreeGreater_]:=
createGraphs[nbTotalVertices,vldegree,gl MaximumDegree,maxDeg, testAll, v2DegreeGreater,1,1] (x Version
of the function with only one part. x)

230

231

232 createGraphs@@(ToExpression/@$ScriptCommandLine[[2;;]]) (* For calls from a shell . Otherwise, call

createGraphs with the desired parameters. )

A.3.2. Phase 2

1 (% ::Package:: x)
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(x :: Title :: %)
(x Generating small 4—cop—win candidate graphsx)

(xPart 2/2 — Filling in the graphs with possible edgesx)

i (xFor Finding the minimum order of 4—cop—win graphsx)

(xBy J\[EAcute]r\[EAcute]mie Turcotte and Samuel Yvonx)

(x = Text: x)

(xUsagex)

(+ Option 1 : Run in Mathematica by going to end of file and choosing which computation to run.x)

(* Option 2 : Run in a shell with wolframscript : "wolframscript —script 4copcandidates—partl.wl x x

x x x x x x", where x are the desired parameters of fillGraphs .x)

5 (x Specify here the path to get the required files for the computation, by default fetches the results

online )
(* The path to the 3—cop—win graphs on fewer vertices, same as in the part 1 of the algorithm. . x)
importPathSmallGraphs="https://www.jeremieturcotte.com/research /min4cops/data/smallgraphs/results/3
copwingraphs/";
(+ The path to the results of part 1 of the algorithm. x)

importPathPart1Results="https://www.jeremieturcotte.com /research /min4cops/data/remainingcases/

partlresults/graphs/";

(x :: Subtitle :: x)
(x Code:x)

(+ Debugging function to print a graph with labels x)

printLabel [g_]:=Graph[g,VertexLabels—>"Name"]

(x Some functions on neighbourhoods )

i (* The neighbourhood of v in g. x)

openNeighbourhood[g_,v_]:=AdjacencyList[g,v]

(x The closed neighbourhood (includes v) of v in g. x)
closedNeighbourhood[g_,v_]:=Prepend[AdjacencyList[g,v],v]
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(x+ The set of vertices of g—N|v]. x)
noNeighbourhood[g_,v_]:=Complement[VertexList[g],closedNeighbourhood[g,v]]

i (* Functions to create and add edges *)

. (* Returns a list of edges between v and the vertices of list . x)

convertToEdge[v_, list_]:=UndirectedEdge[v,#]&/@list

(* Returns the graph g with the added edges of list . This is a substitute for EdgeAdd,
as EdgeAdd seems to have some memory leak (as of version 12.1.0.0). *)
edgeadd[g_, list_]:=Graph[Join[EdgeList[g], list ]]

(x Functions on the maximum authorized degrees for vertices x)

(+ Given maxDeg, which is the maximum authorized degree we consider, and a list of vertices whose degree
must be strictly smaller than maxDeg,
returns the maximum possible degree of v (‘either maxDeg or maxDeg—1). x)
realDegreeBound|v__, lowerDegreeVerticesList_, maxDeg_|:=maxDeg—Boole[MemberQ|
lowerDegreeVerticesList,v]]

2 (x Given a graph g and the maximum authorized degree information, returns true if v still has capacity

for new neighbour(s).x)
viableVertices [g_,v_,lowerDegreeVerticesList_ , maxDeg_|:=VertexDegree[g,v]<realDegreeBound|v,

lowerDegreeVerticesList,maxDeg]
(x Functions to prune out graphs for which the vertices of degree maxDeg do not form a clique (only
applied for graphs with v2DegreeGreater>0 )

(+ Selects the valid graphs in list . *)
specialCleanup [ list_ ,v2DegreeGreater_|:=If[v2DegreeGreater>0,Select][list ,graphHublsClique], list ]

(* Returns True if the vertices of maximum degree of g forms a clique. x)
graphHublsClique[g_]:=CompleteGraphQ[Subgraph[g,GraphHub][g]]]

5 (* Functions to add possible missing edges )

7 (x Given a graph g and a start vertex v, returns the list of possible sets of edges between v and the

vertices of possibleEndVertices that can be added while respecting the degree conditions. x)

136



79 newEdgePossibilities [g_,v_,possibleEndVertices_, lowerDegreeVerticesList_ ,maxDeg_]:=Subsets[Select|
possibleEndVertices, viableVertices [g,#, lowerDegreeVerticesList ,maxDeg]&],realDegreeBound]v,
lowerDegreeVerticesList, maxDeg]—VertexDegree[g,v]]

80

81 (* Given a graph g and a start vertex v, generates the graphs for each possible sets of edges to add. *)

82 newGraphPossibilities [g_Graph,v_,possibleEndVertices_, lowerDegreeVerticesList__,maxDeg_,
v2DegreeGreater_]:=specialCleanup[edgeadd|g,convert ToEdge|v,#]]&/@newEdgePossibilities[g,v,

possibleEndVertices, lowerDegreeVerticesList ,maxDeg],v2DegreeGreater]

84 (x Applies the previous function to each graph in list , and brings the resulting list down to one level.
o)
85 newGraphPossibilities [ list_List ,v_,possibleEndVertices_, lowerDegreeVerticesList_ ,maxDeg_,
v2DegreeGreater_]:=Flatten[newGraphPossibilities[#,v,possibleEndVertices, lowerDegreeVerticesList ,
maxDeg,v2DegreeGreater|&/Qlist]

87 (x Applies the j—th iteration of the edge—adding procedure : adds edges incident to the j—th neighbour
of v2.

88 The possible neighbours change depending on if it is a common neighbour of vl and v2 or not. x)

89 iteration [j_,tempList_, lowerDegreeVerticesList_, partition_ ,maxDeg_,v2DegreeGreater_]:=

90  If [j<=Length[partition [[4]]],

91 Flatten[ newGraphPossibilities [#, partition [[4, j ]], Join[ partition [[2]], partition [[3]], partition [[4, ]
+1;;]], partition [[5]]], lowerDegreeVerticesList ,maxDeg,v2DegreeGreater]& /@templList],

92 Flatten[ newGraphPossibilities [#, partition [[5, j—Length[partition [[4]]]]], partition [[2]],
lowerDegreeVerticesList ,maxDeg,v2DegreeGreater|& /@templList]

96 (* Functions to select graphs which have the proper structure x)

98 (* Returns True if g—N|v] is isomorphic to a graph in list . We consider all graphs in list are already
in canonical form. x)

99 validSubgraph[g_,v_, list_]:=MemberQ[list,CanonicalGraph[Subgraph|[g,noNeighbourhood|[g,v]]]]

101 (% Returns true if g has the proper form. Does the previous test for every vertex of maximum degree,
except for the vertices in the list ignoreVertices ,

102 for which we assume this is true (in order not to test what we already know is true). %)

03 validGraph[g_, list_, ignoreVertices_ |:=AllTrue [ Complement[GraphHub|g],ignoreVertices|,validSubgraph|g,#,
list]&]

(* Given an isomorphism iso (encoded as an association ) between two graphs on the same set vertices and

a list of sets of vertices ,

i (x Functions to reduce graphs to consider by isomorphism x)
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109 returns true if the image (through iso) of every such set of vertices is itself . x)

110 fixedPointslsomorphism [ iso_Association, list_List :=AllTrue[ list ,Sort[#/.iso]==Sort[#]&]

111

112 (* Given two graphs and a list of sets of vertices, returns true if there exists an isomorphism between
gl and g2 such that the

113 image of every set of vertices is itself (which is what we call a "strong isomorphism"). x)

114 stronglsomGraphs[gl_Graph,g2_ Graph,list_List]:=AnyTrue[FindGraphlsomorphism[gl,g2,All],
fixedPointslsomorphism[#, list |&]

117 (* Function to clean and load the list of graphs we are going to merge )

119 (* Returns a cleaned version of list : sorts the graphs by decreasing maximum degree and all graphs in
canonical form. x)
0 cleanGraphList[ list_]:=Sort[CanonicalGraph/@list, Max[VertexDegree[#1]]>=Max[VertexDegree[#2]]&]

122 (x Loads the list of 3—cop—win connected graphs on nbVertices vertices such that c¢(G)=3 with Delta\[
LessEquallmaxDeg. )

123 loadList [nbVertices_,maxDeg_]:=cleanGraphList[Import[importPathSmallGraphs<>"n"<>ToString|
nbVertices]<>"d1D"<>ToString[maxDeg]<>"_3cops.g6","graph6"]]

126 (% Text:: *)

127 (xMain functionx)

128 (x Parameters«)

129 (% First 6 parameters : The same as in the first 6 parameters of part 1 of the algorithm, will be
used to load the appropriate list .x)

130 (x Optional parameters (otherwise res,mod=1) x)

131 (% res: The residue class to compute, between 1 and mod.x)
132 (% mod: The number of classes in which we split the computation.x)
133 (% *)

134 (* Outputx)

135 (% Exports to file a list of candidate 4—cop—win graphs. One file will be generated for each graph
produced in part 1 of the algorithm, the graphs are in g6 format.x)

136 (* Also generates a file which summarizes the computation. On each line there is a list with a
variable number of elements: the first element is the index of the base graph, followed by the
number of graphs in each part of the algorithm, the last element is the time required for this
computation.x)

137

138

139 fillGraphs [nbTotalVertices_,vldegree_,glMaximumDegree_,maxDeg_ testAll_,v2DegreeGreater_,res_,mod_

)=

138



140 Block[{graphList,baseGraphs,g, partition , lowerDegreeVerticesList ,tempList,tempList2,tempList3,
outputGraphs, iterationCount , graphCounts,timing, outputFile, counterList ,total Time,
totalGraphsGenerated, parameter ToFileName},

141 (* To convert parameters to string format. x)

142 parameterToFileName=ToString[nbTotalVertices|<>"_"<>ToString[vldegree]<>"_"<>ToString|

glMaximumDegree]<>"_"<>ToString[maxDeg]<>"_"<>ToString[testAll|<>"_"<>ToString|
v2DegreeGreater|;

144 (% If it does not already exist, we create a directory in which we create the results files . x)
145  Quiet[CreateDirectory|"finalgraphs_"<>parameterToFileName], CreateDirectory::filex];

147 (% We load the 3—cop—win graphs, same as in part 1 of the algorithm .x)
148 graphList=loadList[ nbTotalVertices —maxDeg—1,maxDeg];

150 (* We start by loading the results of the first part of the algorithm. x)
151 baseGraphs=Import[importPathPart1Results<>"basegraphs_"<>parameterToFileName<>".mx"

153 totalGraphsGenerated=0; (x Will contain the total number of graphs which we have outputed to file . x)

155  outputFile="./"<>"finalgraphs_"<>parameterToFileName<>"/finalgraphs_"<>parameterToFileName<>
If[mod>1,"_part"<>ToString[res],""]|<>"_results.txt";

156 totalTime=AbsoluteTiming[

157 Dol

158 timing=AbsoluteTiming|

159 (* We load a specific base graph. x)

160 {g, partition , lowerDegreeVerticesList }=baseGraphs][[i ]];

162 (x+ Will collect the number of graphs after each step in the algorithm, for debugging and
verification purposes. x)

163 graphCounts={i};

165 (x+ WIill contain the graphs after each iteration . x)
166 tempList={g};

168 (x+ Will count the number of iterations of the edge adding procedure. x)

169 iterationCount =0;
171 Do|
172 tempList=iteration [j,tempList, lowerDegreeVerticesList , partition ,maxDeg,v2DegreeGreater]; (x

Look at possible edges to add to the j—th neighbour of v2. x)

174 AppendTo[graphCounts,Length[tempList]];

176 (*
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178

181

We remove graphs which are strongly isomorphic, in the sense that they will give the same
graphs later in the algorithm. This can save a significant amount of time and memory.

As this procedure is itself very lengthy when templList is large, we only apply it for the 2
first iterations of the edge adding procedure.

We want to see if there exists an isomorphism such that the "classes " of vertices are
unchanged.

At this point in the algorithm, the types are the same as when generating the base graphs,
except that we must remember which vertices have already been considered.

As this procedure is itself very lengthy, we only apply it if there are fewer than 40000
graphs in the list . We estimate that for anything more than this it is not worth it.
*)
If [Length[tempList]<40000,
tempList=If[j <=Length[partition [[4]]],
DeleteDuplicates [tempList,stronglsomGraphs[#1,#2,{partition [[1]], partition [[2]], partition
[[3]], partition [[4,1;; j]], partition [[4, ] +1;;]], partition [[5]], partition [[6]]}]&]

beleteDupIicates [tempList,stronglsomGraphs[#1,#2,{partition [[1]], partition [[2]], partition
[[3]]. partition [[4]]. partition [[5,1;; j—Length[partition [[4]]]]]. partition [[5, j—Length|
partition [[4]]]+1;]], partition [[6]]}]&]

AppendTo[graphCounts,Length[tempList]];

{512}
|5

counterList =ConstantArray[0,maxDeg—2]; (x Will contain the number of graphs after each of the next

few iterations .x)

(*+ To save memory, we split up the next few iterations . We do it separately for each graph
resulting of the 2 first iterations . x)
outputGraphs=Flatten[Reap|
Do|
tempList2={g2};

Do|
tempList2=iteration [j,tempList2, lowerDegreeVerticesList , partition ,maxDeg,v2DegreeGreater];

counterList [[ j—2]]+=Length[tempList2];

{j,3, maxDeg—1}
l;
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211
212

218

(x For the last iteration, to save memory, we do not need to save the graphs for later
iterations . We only save the graphs which we consider possible candidate 4—cop—win
graphs. x)
Do|
tempList3=newGraphPossibilities[g3, partition [[5,—1]], partition [[2]], lowerDegreeVerticesList ,
maxDeg,v2DegreeGreater|;
counterList [[—1]] +=Length[tempList3];

(* The viable candidate graphs are those such that for each vertex u of maximum degree, g—
Nfu] is in graphList (and further down in the list without loss of generality ). )
Sow|[CanonicalGraph/@Select[tempList3,validGraph[#,graphList,{ partition [[1,1]], partition
(6. 1]]}&]];

templList3={};

{g3,templList2}
I;

tempList2={};
{g2,tempList}
]
12111

(* We merge the counts. %)

graphCounts=Join[graphCounts,counterList];

(+ We append the number of graphs we output. )
AppendTo[graphCounts,Length[outputGraphs]];

(+ We now remove all isomorphic graphs. *)
outputGraphs=DeleteDuplicates[outputGraphs];
AppendTo[graphCounts,Length[outputGraphs]];

totalGraphsGenerated+=Length[outputGraphs];

1%
AppendTo[graphCounts,timing];

(x We export the results . x)
PutAppend|graphCounts,outputFile];

Export["./"<>"finalgraphs_"<>parameterToFileName<>" /finalgraphs_"<>parameterToFileName<>"
_"<>ToString[i]<>".g6",outputGraphs,"Graph6"];
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249 , {i,res,Length[baseGraphs|,mod} (*x We do the computation for each choice of graph (in the proper
modulo class) from part 1 of the algorithm. x)
250 ]

ST 161

253 PutAppend[{Total,totalGraphsGenerated,total Time},outputFile];

254 ]

255 fillGraphs [nbTotalVertices_,vldegree_,glMaximumDegree_,maxDeg_ testAll_,v2DegreeGreater_]:=
fillGraphs[nbTotalVertices,vldegree,g1MaximumDegree,maxDeg, testAll, v2DegreeGreater,1,1] (x Version of

the function with only one part. *)

s fillGraphs@Q@ (ToExpression/@$ScriptCommandLine[[2;;]]) (* For calls from a shell . Otherwise, call
fillGraphs with the desired parameters. )

[\)
Ut
C
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