Université de Montréal

Modèle épidémiologique compartimental à délai pour le virus de la dengue

par

François Bérubé

Département de mathématiques et de statistique Faculté des arts et des sciences

Mémoire présenté en vue de l'obtention du grade de Maître ès sciences (M.Sc.) en mathématiques

Orientation mathématiques appliquées

11 décembre 2020

© François Bérubé, 2020

Université de Montréal

Faculté des arts et des sciences

Ce mémoire intitulé

Modèle épidémiologique compartimental à délai pour le virus de la dengue

présenté par

François Bérubé

a été évalué par un jury composé des personnes suivantes :

Robert Owens (président-rapporteur)

Jacques Bélair (directeur de recherche)

Guillaume Lajoie

(membre du jury)

Résumé

La dengue est une infection virale qui touche de 100 à 400 millions d'individus chaque année [15]. Selon l'OMS, « la dengue sévère est l'une des principales maladies graves et causes de décès dans certains pays d'Asie et d'Amérique latine » [15]. Il est justifiable de modéliser la propagation de cette maladie dans une population à l'aide de modèles mathématiques compartimentaux. Les travaux de Forshey et al. sur la fièvre dengue semblent indiquer la possibilité qu'une infection à la dengue ne donne pas une immunité à long terme contre les différents sérotypes du virus, et qu'une réinfection homotypique à la dengue serait commune [6]. Nous étudions un modèle SIRS de la dengue qui prend en compte cette perte d'immunité via un système d'équations différentielles à délai. Nous caractérisons les états stationnaires et leur stabilité en termes des différents paramètres considérés, notamment les taux de reproduction de base associés à chacun des sérotypes de la dengue. Nous étudions les bifurcations du système en ses principaux paramètres, notamment les bifurcations de Hopf émergeant de la présence d'un délai dans le système d'équations différentielles. Des simulations numériques du modèle sont présentées afin de représenter les différents régimes du modèle à l'étude.

Mots-clés : modèles compartimentaux, épidémiologie, dengue, équations différentielles à délai, équations différentielles à retard, bifurcation de Hopf

Abstract

Dengue is a viral infection affecting from 100 to 400 million people each year [15]. According to the WHO, "severe dengue is a leading cause of serious illness and death in some Asian and Latin American countries" [15]. This justifies the modelling of this illness's propagation in a population using mathematical compartmental models. Results of Forshey et al. on dengue fever seem to indicate the possibility that a dengue infection does not yield a long term immunity against the different dengue serotypes, and that an homotypical reinfection could be common [6]. We study a SIRS model for the dengue virus that takes into account this loss of immunity via a system of delay differential equations. We characterize the stationary states and their stability in terms of the different parameters considered, in particular the basic reproduction ratios associated to each dengue serotype. We study the system's bifurcations in its main parameters, especially the Hopf bifurcations arising from the presence of a delay in the system of differential equations. Numerical simulations of the model are presented to represent the model's different regimes.

Keywords : compartmental models, epidemiology, dengue, delay differential equations, retarded differential equations, Hopf bifurcation

Table des matières

Résumé	5	
Abstract	7	
Liste des tableaux 1		
Liste des figures 1		
Liste des sigles et des abréviations	15	
Remerciements	17	
Introduction	19	
Chapitre 1. Construction d'un modèle épidémiologique pour la dengue	21	
1.1. Modèle à cinq variables	21	
1.2. Simplification du modèle	24	
Chapitre 2. États stationnaires	29	
2.1. Équilibre sain	30	
2.2. Équilibres mono-endémiques	30	
2.3. Équilibre bi-endémique	31	
Chapitre 3. Stabilité des états stationnaires	37	
3.1. Linéarisation du système	37	
3.2. Stabilité de l'équilibre sain	38	
3.3. Stabilité des équilibres mono-endémiques	38	
3.4. Stabilité mono-endémique sous distribution à noyau faible	39	
3.5. Stabilité mono-endémique sous distribution uniforme	41	
Chapitre 4. Diagrammes de bifurcation et plans de phase	49	

4.1.	Diagramme de bifurcation sous distribution à noyau faible	49
4.2.	Diagramme de bifurcation sous distribution uniforme	51
Chapitre	e 5. Simulations numériques	53
5.1.	Simulation sous distribution à noyau faible	53
5.2.	Simulation sous distribution uniforme	56
Chapitre	e 6. Conclusion	63
Référenc	ces bibliographiques	65
Annexe	A. Calcul de la matrice jacobienne	67
Annexe	B. Injection continue de S^2 dans $\mathbb{R} \times \mathbb{C}$	69

Liste des tableaux

1.1	Compartiments du modèle SIRS	22
1.2	Liste des paramètres du modèles SIRS	23

Liste des figures

1.1	Modèle SIRS de la dengue	23
2.1	Courbe de Jordan Γ découpant le plan en deux régions	33
3.1	Le cylindroïde $C_1 = X_1(D_1)$ est une surface de $\mathbb{R} \times \mathbb{C}$	44
3.2	L'intersection entre C (en vert) et $p_2([\varepsilon, \omega_0])$ (en rouge) se produit sur C_1	45
4.1	Diagramme de bifurcation du système $(1.2.4)$ sous distribution à noyau faible	50
4.2	Portraits de phase associés au diagramme de bifurcation de la figure 4.1	50
4.3	Diagramme de bifurcation du système $(1.2.4)$ sous distribution uniforme pour une	
	valeur $\mu \leq \mu^*$ et un choix de τ approprié	52
5.1	Dans la région 1.1, l'équilibre sain E_0 est stable	54
5.2	Simulations numériques sous distribution à noyau faible	55
5.3	Dans la région 1.1, l'équilibre sain E_0 est stable	57
5.4	Dans la région 2.1, l'équilibre mono-endémique E_1^* est stable	58
5.5	Dans la région 3.1, l'équilibre mono-endémique E_1^* est stable et domine sur E_2^*	58
5.6	L'équilibre E_1^* est atteint lorsque le système est simulé suffisament longtemps	59
5.7	Dans la région 5.1, l'équilibre E_1^* est instable pour certaines valeurs de τ	59
5.8	Dans la région 6.1, les équilibres E_1^* et E_2^* sont instables pour certaines valeurs de	
	au	60
5.9	Dans la région 4.1, l'équilibre bi-endémique $E^{\ast\ast}$ est stable pour de grandes valeurs	
	de β_1 et β_2	60
5.10	Dans la région 4.1, l'équilibre bi-endémique $E^{\ast\ast}$ est instable pour certaines valeurs	
	de β_1, β_2 et τ	61
B.1	Diagramme de D' . Les bords identifiés sur D permettent de construire D'	70

Liste des sigles et des abréviations

OMS	Organisation mondiale de la Santé
WHO	World Health Organization
DF	Fièvre dengue, de l'anglais dengue fever
SIRS	Susceptible-Infectieux-Rétablis-Susceptible
TAF	Théorème des accroissements finis

le docteur Rieux décida alors de rédiger le récit qui s'achève ici [...] pour dire simplement ce qu'on apprend au milieu des fléaux, qu'il y a dans les hommes plus de choses à admirer que de choses à mépriser.

> - Albert Camus, La peste

Remerciements

Je tiens d'abord à remercier mon directeur de mémoire Jacques Bélair, pour son aide précieuse et sa confiance. Je n'imagine pas comment j'aurais pu déjouer les écueils de mon parcours sans son oeil expérimenté. Merci pour votre temps et votre patience.

Je remercie le département de mathématiques et statistiques de l'Université de Montréal, ainsi que l'Institut des sciences mathématiques pour leur soutien financier.

Je remercie également ma famille, mes ami·e·s et ma compagne Rosalie. Vous avez été présent·e·s tout au long de mon parcours, à m'écouter et à me soutenir aux moments où j'en avais besoin.

Enfin, je remercie tous les autres que j'oublie peut-être, qui m'ont aidé, de près ou de loin, à terminer mes études.

Introduction

Le modèle épidémiologique Susceptible-Infecté-Rétabli (SIR) ¹ est bien connu pour décrire la dynamique d'une population sous l'influence d'une infection biologique. Le modèle classifie la population en compartiments sous forme de variables dynamiques et considère la variation de la quantité d'individus de chaque classe dans le temps. Nous allons dès lors référer aux quantités suivantes aux temps t:

- S(t) Les susceptibles. Ils ne sont pas infectés mais pourraient contracter la maladie.
- I(t) Les infectés. Ils sont infectieux et peuvent transmettre la maladie.
- R(t) Les rétablis. Ils sont rétablis de l'infection et ne sont plus infectieux. Ils sont immunisés à la maladie.
- N(t) La population totale.

Les modèles décrits en ces termes sont une généralisation naturelle du modèle SIR suivant décrit dans [1, 8], mais dont l'origine remonte aux travaux de Kermack et McKendrick [9].

$$S'(t) = \mu - \beta S(t)I(t) - \mu S(t)$$
 (0.0.1a)

$$I'(t) = \beta S(t)I(t) - \gamma I(t) - \mu I(t)$$
(0.0.1b)

$$R'(t) = \gamma I(t) - \mu R(t) \tag{0.0.1c}$$

Ici, les paramètres μ , β et γ représentent respectivement le taux de naissance/mortalité, le taux de contact et le taux de rétablissement à la maladie. Historiquement, l'objectif était de modéliser de manière simple mais efficace la propagation de plusieurs infections sous forme de système dynamique [8]. Plusieurs variantes simples de ce système ont alors été analysées pour en faire ressortir les équilibres ainsi que les bifucations associées [8]. La correspondance entre le système théorique et les données reliées à la propagation d'infections dans une population de souris [1] permet de justifier l'approche dynamique du modèle. Le modèle analysé a permis de représenter de manière effective les données reccueillies concernant l'évolution d'infections bactériennes (*Pasteurella muris*) et virale (*ectromelia*, une variole chez les souris)[1]. Dans ces premiers modèles plus simplifiés, il était supposé que la population totale N(t) était constante (normalisée à N(t) = 1) et que les taux de

¹Connu dans la littérature anglaise sous Susceptible-Infected-Removed model.

naissance et de mort étaient les mêmes.

Introduisons maintenant le taux de reproduction de base ² (noté \mathscr{R}_0) que nous définissons comme le nombre de cas qu'un infecté génère en moyenne au cours de sa période infectieuse dans une population autrement non-infectée. Si $\mathscr{R}_0 > 1$, cela signifie que les infectés infectent en moyenne plus de nouveaux cas pendant leur période infectieuse, et donc, la maladie se propage dans la population. Cependant, une valeur $R_0 < 1$ signifierait que la maladie n'est pas suffisament infectieuse pour se propager, et finira par se résorber naturellement. Dans le système (0.0.1), on calcule \mathscr{R}_0 comme

$$\mathscr{R}_0 = \frac{\beta}{\gamma + \mu} \tag{0.0.2}$$

Or, il est démontré en [1] et [8] que la condition $\mathscr{R}_0 > 1$ est le seuil pour qu'une épidémie ait lieu dans leurs systèmes respectifs. Il est donc naturel d'essayer de trouver une telle bifurcation dans un modèle SIR prenant en compte un plus grand nombre de paramètres.

Les modèles SIR qui sont de cette forme peuvent alors servir à modéliser différentes maladies, et ainsi comprendre comments différents facteurs influence la propagation d'une épidémie. En particulier, ces modèles peuvent servir à modéliser les épidémies reliées au virus de la dengue [5, 4, 16]. La dengue est une infection virale des régions tropicales et subtropicales transmise par les moustiques [15]. Il n'existe pas de traitement spécifique de la dengue ou de la dengue sévère [15], et donc, il est nécessaire de développer des outils mathématiques pour comprendre la maladie et élaborer une stratégie de gestion de l'épidémie.

Les modèles SIR s'apparentant à celui décrit en (0.0.1) présupposent que certains déplacements entre les classes suivent une décroisance exponentielle, notamment le terme $-\mu R$ dans l'équation (0.0.1c). Ce n'est cependant pas tous les jeux de données qui peuvent être bien approximés via une distribution exponentielle, et il est possible de vouloir utiliser une autre distribution pour représenter le temps avant la réinfection, notamment une distribution gamma [14]. L'incorporation d'une distribution seyant davantage les données disponibles au problème à modéliser peut avoir de profonde conséquences sur la dynamique asymptotique du modèle, notamment l'apparition de régimes oscillants [14]. Il est donc naturel d'étudier des modèles SIR qui prennent en considération un plus large éventail de distributions pour représenter les données du problème à l'étude.

 $^{^2 {\}rm Connu}$ dans la litté rature anglaise sous basic reproductive ratio.

Chapitre 1

Construction d'un modèle épidémiologique pour la dengue

La construction d'un modèle épidémiologique pour le virus de la dengue qui se distinguerait des précédents est motivée par les recherches de Forshey et al. qui semblent indiquer la possibilité qu'une infection à la dengue ne donne pas une immunité à long terme contre les souches du virus [6]. De plus, ces mêmes travaux semblent indiquer que dans certains scénarios épidémiques, une réinfection homotypique à la dengue serait commune et pourrait avoir de profondes conséquences épidémiques [6].

Afin de modéliser un scénario épidémique avec réinfection homotypique, nous voudrions faire le passage d'un modèle SIR vers un modèle SIRS, où les rétablis peuvent alors redevenir suceptible à un même sérotype de la dengue. Pour ce faire, nous allons introduire une distribution représentant la période d'immunité des individus rétablis d'une infection à la dengue. Cette distribution se présente alors sous la forme d'un délai entre le moment où les individus de la population deviennent rétablis à une souche de la dengue et le moment où ces mêmes individus redeviennent susceptibles à cette même souche. L'utilisation d'un modèle SIRS à délai pour la dengue a déjà été abordé dans les travaux de Wu et Wong qui ont introduit un délai relatif à la période d'incubation de la dengue [**16**].

L'essentiel de ce chapitre est de reprendre le modèle de l'article de Yuan et Bélair [18] qui incorpore un délai entre l'état rétabli (R(t)) et le retour à l'état suseptible (S(t)), et de l'adapter aux données de propagation de la dengue.

1.1. Modèle à cinq variables

Puisque la plupart des régions avec la dengue n'ont que deux des quatres souches virales en circulation [15], nous n'allons modéliser que deux souches parmis les quatres. Ce choix mène alors à classifier la population en cinq compartiments décrits au tableau 1.1.

$\hat{S}(t)$	Les susceptibles. Ils ne sont pas infectés mais pourraient contracter la maladie.
$\hat{I}_1(t)$	Les infectés de la première souche virale. Ils sont infectieux et peuvent trans- mettre la maladie.
$\hat{I}_2(t)$	Les infectés de la seconde souche virale. Ils sont infectieux et peuvent trans- mettre la maladie.
$\hat{R}_1(t)$	Les rétablis de la première souche virale. Ils sont rétablis de l'infection et ne sont plus infectieux. Ils sont temporairement immunisés à la première souche, mais ne le sont pas face à la seconde.
$\hat{R}_2(t)$	Les rétablis de la seconde souche virale. Ils sont rétablis de l'infection et ne sont plus infectieux. Ils sont temporairement immunisés à la seconde souche, mais ne le sont pas face à la première.
N(t)	La population totale.

Tableau 1.1.	Compartiments	$\mathrm{d}\mathbf{u}$	modèle	SIRS
--------------	---------------	------------------------	--------	------

Puisque l'entièreté de la population se retrouve dans l'une de ces trois classes, nous avons la relation $N = \hat{S} + \hat{I}_1 + \hat{I}_2 + \hat{R}_1 + \hat{R}_2$. Le flot des individus d'une classe à l'autre est donné dans le diagramme compartimental de la figure 1.1 sous les hypothèses suivantes:

- (1) Les nouveau-nés sont assumés susceptibles (\hat{S})
- (2) Les naissances et morts naturelles (indépendantes de la DF) occurent avec le même taux μ , et les individus meurent rarement de la DF (mortalité induite par la DF négligeable)
- (3) La force d'infection suit la *loi d'action de masse* standard $\frac{\beta_i \hat{I}_i}{N}$ (introduite par Guldberg et Waage en 1864 [3]), avec taux d'infection β_i . Les taux de transfert deviennent alors $\frac{\beta_i \hat{S} \hat{I}_i}{N}$ et $\frac{\beta_i \hat{R}_j \hat{I}_i}{N}$ avec i, j = 1, 2.
- (4) Le temps d'attente dans le compartiment \hat{I}_i est exponentiellement distribué avec temps moyen $1/\gamma$. Ce paramètre γ représente alors le taux de rétablissement au virus.

L'ensemble des paramètres utilisés dans le modèle sont décrits au tableau 1.2.

Pour modéliser une période d'immunité non-permanente, on permet aux individus rétablis de redevenir susceptibles après une certaine période de temps. Soit P(t) la proportion (ou probabilité) d'individus restant dans la classe \hat{R}_i après t unités de temps après avoir été rétablis.

Fig. 1.1. Modèle SIRS de la dengue

Paramètre	Description	Reformulation
μ	Taux de naissance/mortalité	
β_1	Taux de contact pour la souche 1 du virus	
β_2	Taux de contact pour la souche 2 du virus	
γ	Taux de rétablissement au virus	
\mathscr{R}_{01}	Taux de reproduction de base pour la souche 1	$\beta_1/(\mu + \gamma)$
\mathscr{R}_{02}	Taux de reproduction de base pour la souche 2	$\beta_2/(\mu + \gamma)$
σ_1	Taux de reproduction de base inverse pour la souche 1	$1/\mathscr{R}_{01}$
σ_2	Taux de reproduction de base inverse pour la souche 2	$1/\mathscr{R}_{02}$
	Tableau 1.2. Liste des paramètres du modèles SIRS	

De par la progression naturelle de la maladie, on assume que P(t) est une fonction satisfaisant les conditions suivantes, que nous noterons comme étant l'hypothèse (H).

- (1) P est non-négative
- (2) P est non-croissante
- (3) P est continue par morceaux
- (4) $\lim_{t\to 0^+} P(t) = 1$
- (5) $\lim_{t\to\infty} P(t) = 0$

On peut alors représenter le nombre d'individus rétablis au temps $u \in (0,t)$ qui sont encore dans la classe \hat{R}_i , ce qui donne la formulation suivante

$$\hat{R}_{i}(t) = \int_{0}^{t} \gamma \hat{I}_{i}(u) e^{\int_{u}^{t} -\mu -\beta_{j} \frac{\hat{I}_{j}(s)}{N(s)} ds} P(t-u) du \qquad (i,j) \in \{(1,2),(2,1)\}$$
(1.1.1)

L'équation (1.1.1) peut être transformée en l'équation intégro-différentielle équivalente suivante

$$\frac{d}{dt}\hat{R}_{i}(t) = \gamma \hat{I}_{i} - \mu \hat{R}_{i} - \beta_{j} \frac{\hat{I}_{j}\hat{R}_{i}}{N(s)} + \int_{0}^{t} \gamma \hat{I}_{i}(u) e^{\int_{u}^{t} \left(-\mu - \beta_{j} \frac{\hat{I}_{j}(s)}{N(s)}\right) ds} P'(t-u) du$$
(1.1.2)

Les équations différentielles associées au modèle deviennent alors

$$\frac{d}{dt}\hat{S} = \mu - \beta_1 \frac{\hat{S}\hat{I}_1}{N} - \beta_2 \frac{\hat{S}\hat{I}_2}{N} - \int_0^t \gamma \hat{I}_1(t-v) e^{\int_{t-v}^t \left(-\mu - \beta_2 \frac{\hat{I}_2(s)}{N(s)}\right) ds} dP(v)
- \int_0^t \gamma \hat{I}_2(t-v) e^{\int_{t-v}^t \left(-\mu - \beta_1 \frac{\hat{I}_1(s)}{N(s)}\right) ds} dP(v) - \mu \hat{S}$$
(1.1.3a)

$$\frac{d}{dt}\hat{I}_1 = \beta_1 \frac{I_1}{N}(\hat{S} + \hat{R}_2) - \gamma \hat{I}_1 - \mu \hat{I}_1$$
(1.1.3b)

$$\frac{d}{dt}\hat{I}_2 = \beta_2 \frac{I_2}{N}(\hat{S} + \hat{R}_1) - \gamma \hat{I}_2 - \mu \hat{I}_2$$
(1.1.3c)

$$\frac{d}{dt}\hat{R}_1 = \gamma \hat{I}_1 - \beta_2 \frac{\hat{R}_1 \hat{I}_2}{N} + \int_0^t \gamma \hat{I}_1(t-v) e^{\int_{t-v}^t \left(-\mu - \beta_2 \frac{\hat{I}_2(s)}{N(s)}\right) ds} dP(v) - \mu \hat{R}_1$$
(1.1.3d)

$$\frac{d}{dt}\hat{R}_2 = \gamma \hat{I}_2 - \beta_1 \frac{\hat{R}_2 \hat{I}_1}{N} + \int_0^t \gamma \hat{I}_2(t-v) e^{\int_{t-v}^t \left(-\mu - \beta_1 \frac{\hat{I}_1(s)}{N(s)}\right) ds} dP(v) - \mu \hat{R}_2$$
(1.1.3e)

1.2. Simplification du modèle

Lorsque nous sommons les équations en 1.1.3, nous obtenons l'équation différentielle suivante

$$\frac{d}{dt}N(t) = \mu(1 - N(t))$$
(1.2.1)

Nous en déduisons que la population totale se stabilise à N = 1, et que l'hyperplan donné par $\{(\hat{S}, \hat{I}_1, \hat{I}_2, \hat{R}_1, \hat{R}_2) \in \mathbb{R}^5 \mid \hat{S} + \hat{I}_1 + \hat{I}_2 + \hat{R}_1 + \hat{R}_2 = 1\}$ est un ensemble invariant sous le flot

du système d'équations différentielles à l'étude. Il est donc possible de normaliser N dans les équations du modèle, ce qui donne

$$\frac{d}{dt}\hat{S} = \mu - \beta_1 \hat{S}\hat{I}_1 - \beta_2 \hat{S}\hat{I}_2 - \int_0^t \gamma \hat{I}_1(t-v) e^{\int_{t-v}^t (-\mu - \beta_2 \hat{I}_2(s)) ds} dP(v) - \int_0^t \gamma + \hat{I}_2(t-v) e^{\int_{t-v}^t (-\mu - \beta_1 \hat{I}_1(s)) ds} dP(v) - \mu \hat{S}$$
(1.2.2a)

$$\frac{d}{dt}\hat{I}_1 = \beta_1 \hat{I}_1(\hat{S} + \hat{R}_2) - \gamma \hat{I}_1 - \mu \hat{I}_1$$
(1.2.2b)

$$\frac{d}{dt}\hat{I}_2 = \beta_2 \hat{I}_2(\hat{S} + \hat{R}_1) - \gamma \hat{I}_2 - \mu \hat{I}_2$$
(1.2.2c)

$$\frac{d}{dt}\hat{R}_1 = \gamma \hat{I}_1 - \beta_2 \hat{R}_1 \hat{I}_2 + \int_0^t \gamma \hat{I}_1(t-v) e^{\int_{t-v}^t \left(-\mu - \beta_2 \hat{I}_2(s)\right) ds} dP(v) - \mu \hat{R}_1$$
(1.2.2d)

$$\frac{d}{dt}\hat{R}_2 = \gamma \hat{I}_2 - \beta_1 \hat{R}_2 \hat{I}_1 + \int_0^t \gamma \hat{I}_2(t-v) e^{\int_{t-v}^t (-\mu-\beta_1 \hat{I}_1(s)) ds} dP(v) - \mu \hat{R}_2$$
(1.2.2e)

Nous déterminons maintenant un ensemble invariant dans lequel évoluent les solutions au système. Considérons pour cela l'ensemble

$$A := \{ (\hat{S}, \hat{I}_1, \hat{I}_2, \hat{R}_1, \hat{R}_2) \in \mathbb{R}^5 \mid \hat{S}, \hat{I}_1, \hat{I}_2, \hat{R}_1, \hat{R}_2 \ge 0 \text{ et } \hat{S} + \hat{I}_1 + \hat{I}_2 + \hat{R}_1 + \hat{R}_2 = 1 \}$$
(1.2.3)

C'est bien l'ensemble désiré:

Lemme 1.2.1. Soit $(\hat{S}(0), \hat{I}_1(0), \hat{I}_2(0), \hat{R}_1(0), \hat{R}_2(0)) \in A$. Alors, le système 1.2.2 possède une unique solution avec $(\hat{S}(t), \hat{I}_1(t), \hat{I}_2(t), \hat{R}_1(t), \hat{R}_2(t)) \in A$ pour tout $t \ge 0$.

DÉMONSTRATION. Pour simplifier la notation, notons

$$x(t) = (\hat{S}(t), \hat{I}_1(t), \hat{I}_2(t), \hat{R}_1(t), \hat{R}_2(t)) \in \mathbb{R}^5$$

L'existence, l'unicité et la continuité de la solution de (1.2.2) peuvent être obtenus de Miller [12]. Supposons, par l'absurde, que A n'est pas invariant. Alors, il existe $t^* \ge 0$, le premier temps où la solution quitte A, satisfaisant

$$\begin{aligned} \forall t \in [0,t^*) \quad x(t) \in int(A) \\ x(t^*) \in \partial A \\ \exists u > t^* \quad \forall t \in (t^*,u] \quad x(t) \not\in A \end{aligned}$$

Par la définition de R_1 et R_2 en 1.1.1, nous avons que $R_1(t^*) > 0$ et $R_2(t^*) > 0$. La perte de positivité doit donc se faire par une des variables S, I_1 ou I_2 . Considérons chacun des cas. **Cas 1 :** $\hat{S}(t^*) = 0$ et $\hat{S}(u) < 0$

Alors, en t^* , on obtient

$$\frac{d}{dt}\hat{S}(t^*) = \mu - \int_0^{t^*} \gamma\left(\hat{I}_1 e^{\int_{t^*-v}^{t^*} \left(-\mu - \beta_2 \hat{I}_2(s)\right)ds} + \hat{I}_2 e^{\int_{t^*-v}^{t^*} \left(-\mu - \beta_2 \hat{I}_1(s)\right)ds}\right) dP(v) \ge \mu > 0$$

Ceci est une contradiction.

Cas 2: $\hat{I}_1(t^*) = 0$ et $\hat{I}_1(u) < 0$ (le cas de I_2 se traite par un calcul analogue) On remarque que sur l'intervalle $t \in [0,t^*)$, on a

$$\frac{d}{dt}\hat{I}_1(t) \ge -(\gamma + \mu)\hat{I}_1(t)$$

Conséquemment, la solution associée à \hat{I}_1 est telle que

$$\hat{I}_1(t) \ge \hat{I}_1(0)e^{-(\gamma+\mu)t} > 0$$

Cette dernière inégalité reste vraie en t^* , ce qui est une contradiction.

Le système (1.2.2) est non-autonome, de par la dépendance en t dans le terme intégral. Afin de simplifier ce système, considérons le système limite obtenu en prenant $t \to \infty$, ce qui mène à

$$\dot{S} = \mu - \beta_1 S I_1 - \beta_2 S I_2 - \int_0^\infty \gamma I_1(t-v) e^{\int_{t-v}^t -\mu - \beta_2 I_2(s) ds} dP(v) - \int_0^\infty \gamma I_2(t-v) e^{\int_{t-v}^t -\mu - \beta_1 I_1(s) ds} dP(v) - \mu S$$
(1.2.4a)

$$\dot{I}_1 = \beta_1 I_1 (S + R_2) - \gamma I_1 - \mu I_1$$
(1.2.4b)

$$\dot{I}_2 = \beta_2 I_2 (S + R_1) - \gamma I_2 - \mu I_2$$
(1.2.4c)

$$\dot{R}_1 = \gamma I_1 - \beta_2 R_1 I_2 + \int_0^\infty \gamma I_1(t-v) e^{\int_{t-v}^t -\mu -\beta_2 I_2(s)ds} dP(v) - \mu R_1$$
(1.2.4d)

$$\dot{R}_2 = \gamma I_2 - \beta_1 R_2 I_1 + \int_0^\infty \gamma I_2(t-v) e^{\int_{t-v}^t -\mu -\beta_1 I_1(s)ds} dP(v) - \mu R_2$$
(1.2.4e)

Pour simplifier les calculs à venir, nous allons représenter ces deux systèmes par F(x,t) et G(x). Plus précisément,

$$F(x,t) = \begin{pmatrix} \mu - \beta_1 x_1 x_2 - \beta_2 x_1 x_3 - \int_0^t \gamma x_2(t-v) e^{\int_{t-v}^t -\mu - \beta_2 x_3(s)ds} dP(v) - \int_0^t \gamma x_3(t-v) e^{\int_{t-v}^t -\mu - \beta_1 x_2(s)ds} dP(v) - \mu x_1 \\ \beta_1 x_2(x_1 + x_5) - \gamma x_2 - \mu x_2 \\ \beta_2 x_3(x_1 + x_4) - \gamma x_3 - \mu x_3 \\ \gamma x_2 - \beta_2 x_4 x_3 + \int_0^t \gamma x_2(t-v) e^{\int_{t-v}^t -\mu - \beta_2 x_3(s)ds} dP(v) - \mu x_4 \\ \gamma x_3 - \beta_1 x_5 x_2 + \int_0^t \gamma x_3(t-v) e^{\int_{t-v}^t -\mu - \beta_1 x_2(s)ds} dP(v) - \mu x_5 \end{pmatrix}$$
(1.2.5a)

$$G(x) = \begin{pmatrix} \mu - \beta_1 x_1 x_2 - \beta_2 x_1 x_3 - \int_0^\infty \gamma x_2(t-v) e^{\int_{t-v}^t -\mu - \beta_2 x_3(s)ds} dP(v) - \int_0^\infty \gamma x_3(t-v) e^{\int_{t-v}^t -\mu - \beta_1 x_2(s)ds} dP(v) - \mu x_1 \\ \beta_1 x_2(x_1+x_5) - \gamma x_2 - \mu x_2 \\ \beta_2 x_3(x_1+x_4) - \gamma x_3 - \mu x_3 \\ \gamma x_2 - \beta_2 x_4 x_3 + \int_0^\infty \gamma x_2(t-v) e^{\int_{t-v}^t -\mu - \beta_2 x_3(s)ds} dP(v) - \mu x_4 \\ \gamma x_3 - \beta_1 x_5 x_2 + \int_0^\infty \gamma x_3(t-v) e^{\int_{t-v}^t -\mu - \beta_1 x_2(s)ds} dP(v) - \mu x_5 \end{pmatrix}$$

$$(1.2.5b)$$

La prise de cette limite correspond à connaître toutes les valeurs prises par une solution x jusqu'à un certain temps t. Cette limite est donc raisonnable, dans le sens où il est

possible de poser un problème de condition initiale sur une très grande période de temps précédant la simulation du système, et qu'à toute fin pratique, les données connues sur la solution d'intérêts sont négligeables lorsqu'elles sont suffisament vieilles. Ce nouveau système autonome est alors très semblable au premier, à la différence près que nous avons un délais sur l'ensemble des valeurs passées de la solution, i.e. $(-\infty,t]$ plutôt que de se restreindre aux valeurs prises sur l'intervalle [0,t].

De plus, nous avons que $F(x,t) \to G(x)$ uniformément lorsque $t \to \infty$ sur tout ensemble compact de \mathbb{R}^5 . Nous pouvons alors utiliser le résultat de Mischaikow et al. [13], qui stipule que la solution du système non-autonome (1.2.2) est asymptotique à la solution du système autonome (1.2.4) sur $C_+ := C((-\infty,0],A)$. Le reste du mémoire est consacré à l'étude du système (1.2.4).

Chapitre 2

États stationnaires

L'objectif de ce chapitre est de déterminer les états stationnaires du système (1.2.4) et d'établir pour quels choix de paramètres ces états stationnaires sont dans l'ensemble invariant A décrit en (1.2.3). Pour trouver ces états stationnaires, il faut trouver les valeurs des variables pour lesquelles le membre de droite des équations (1.2.4) sont nuls. On veut donc résoudre

$$0 = \mu - \beta_1 S I_1 - \beta_2 S I_2 - \gamma I_1 \int_0^\infty e^{-(\mu + \beta_2 I_2)v} dP(v)$$

$$-\gamma I_2 \int_0^\infty e^{-(\mu+\beta_1 I_1)v} dP(v) - \mu S$$
(2.0.1a)

$$0 = \beta_1 I_1 (S + R_2) - \gamma I_1 - \mu I_1$$
(2.0.1b)

$$0 = \beta_2 I_2 (S + R_1) - \gamma I_2 - \mu I_2$$
(2.0.1c)

$$0 = \gamma I_1 - \beta_2 R_1 I_2 + \gamma I_1 \int_0^\infty e^{-(\mu + \beta_2 I_2)v} dP(v) - \mu R_1$$
(2.0.1d)

$$0 = \gamma I_2 - \beta_1 R_2 I_1 + \gamma I_2 \int_0^\infty e^{-(\mu + \beta_1 I_1)v} dP(v) - \mu R_2$$
(2.0.1e)

On introduit la notation suivante pour alléger les manipulations

$$P_i^*(I_i) := \int_0^\infty e^{-(\mu + \beta_i I_i)v} P(v) dv \quad i = 1,2$$
(2.0.2)

$$P^* := \int_0^\infty e^{-\mu v} P(v) dv$$
 (2.0.3)

$$P_i^{*d}(I_i) := \int_0^\infty e^{-(\mu + \beta_i I_i)v} dP(v) \quad i = 1,2$$
(2.0.4)

Remarque 2.0.1. Les fonctions $P_1^*, P_2^* : [0,1] \to [0,\infty)$ sont positives, continues et décroissantes. De plus, $P^* = P_1^*(0) = P_2^*(0)$.

Lorsque le contexte sera clair, nous nous permettrons d'abréger encore plus la notation en posant $P_i^* = P_i^*(I_i)$, où i = 1,2.

2.1. Équilibre sain

Notre objectif dans cette section est de simplifier le système (2.0.1).

Lemme 2.1.1. Si $(S, I_1, I_2, R_1, R_2) \in \mathbb{R}^5$ est un état stationnaire du système (2.0.1), alors

$$R_1 = \gamma I_1 \int_0^\infty e^{-(\mu + \beta_2 I_2)v} P(v) dv = \gamma I_1 P_2^*(I_2)$$
(2.1.1a)

$$R_2 = \gamma I_2 \int_0^\infty e^{-(\mu + \beta_1 I_1)v} P(v) dv = \gamma I_2 P_1^*(I_1)$$
(2.1.1b)

DÉMONSTRATION. Ceci découle directement de la définition intégrale de $R_i(t)$ en (1.1.1). De plus, cela implique que les équations (2.0.1d) et (2.0.1e) sont vérifiées.

Lemme 2.1.2. Si $(S,I_1,I_2,R_1,R_2) \in \mathbb{R}^5$ est tel que (2.0.1b), (2.0.1c), (2.0.1d) et (2.0.1e)sont vérifiées, alors (2.0.1a) est vérifiée, et il s'agit donc d'un état stationnaire.

DÉMONSTRATION. Ceci découle de l'invariance du système (2.0.1).

Par les Lemmes 2.1.1 et 2.1.2, trouver les états stationnaires de (2.0.1) revient à résoudre les équations (2.0.1b) et (2.0.1c). On remarque d'emblée que le point $(I_1, I_2) = (0,0)$ est une solution du système (2.0.1). Ceci nous donne le premier état stationnaire du système.

Définition 2.1.3. (Équilibre sain)

L'équilibre sain est l'état stationnaire donné par

$$E_0 := (1,0,0,0,0) \tag{2.1.2}$$

L'existence de l'équilibre sain ne dépend pas du choix de paramètres.

2.2. Équilibres mono-endémiques

Dans cette section, nous considérons les cas où exactement l'une des deux valeurs I_1 et I_2 est nulle. Si $I_2 = 0$, nous avons également $R_2 = 0$ et alors, nous voulons résoudre l'équation

$$\beta_1 S - \gamma - \mu = 0 \tag{2.2.1}$$

qui est équivalente à $S = \sigma_1$. On substitue N = 1 dans (2.0.1) pour obtenir

$$S + I_1 + I_2 + R_1 + R_2 = 1$$

$$\sigma_1 + I_1 + \gamma I_1 P_2^*(0) = 1$$
(2.2.2)

$$I_1 = \frac{1 - \sigma_1}{1 + \gamma P^*} \tag{2.2.3}$$

Puisque $1 + \gamma P^* > 1$ et $\sigma_1 \ge 0$, cette valeur de I_1 correspond à un état stationnaire dans A si et seulement si $\mathscr{R}_{01} \ge 1$. Ceci nous donne le deuxième état stationnaire du système, soit le

premier équilibre mono-endémique. Un second équilibre mono-endémique peut être obtenu mutatis mutandis en reprenant le calcul ci-dessus avec $I_1 = 0$.

Définition 2.2.1. (Équilibres mono-endémiques)

Un équilibre mono-endémique est un état stationnaire donné par l'une des formulations suivantes

$$E_1^* := \left(\sigma_1, \frac{1 - \sigma_1}{1 + \gamma P^*}, 0, \frac{(1 - \sigma_1)\gamma P^*}{1 + \gamma P^*}, 0\right)$$
(2.2.4)

$$E_2^* := \left(\sigma_2, 0, \frac{1 - \sigma_2}{1 + \gamma P^*}, 0, \frac{(1 - \sigma_2)\gamma P^*}{1 + \gamma P^*}\right)$$
(2.2.5)

L'équilibre E_1^* existe (au sens où $E_1^* \in A$) si et seulement si $\mathscr{R}_{01} \ge 1$. De manière analogue, l'équilibre E_2^* existe si et seulement si $\mathscr{R}_{02} \ge 1$.

On remarque que $E_i^* = E_0$ lorsque $\mathscr{R}_{0i} = 1$. Cela porte à croire qu'une bifurcation se produit lorsque $\mathscr{R}_{0i} = 1$.

2.3. Équilibre bi-endémique

Supposons maintenant que I_1 et I_2 soient tous deux non nuls. Alors, résoudre le système (2.0.1) revient à résoudre le système

$$\beta_1(S+R_2) - \gamma - \mu = 0$$

$$\beta_2(S+R_1) - \gamma - \mu = 0$$

On peut exprimer ces équations en termes de I_1 et I_2 via les relations (2.1.1) et puisque $S + I_1 + I_2 + R_1 + R_2 = 1$, on est mené à

$$0 = \beta_1 (1 - I_1 - I_2 - \gamma I_2 P_1^*(I_1)) - \gamma - \mu$$
(2.3.1a)

$$0 = \beta_2 (1 - I_1 - I_2 - \gamma I_1 P_2^*(I_2)) - \gamma - \mu$$
(2.3.1b)

En réarrangeant les termes, nous remarquons que le système (2.3.1) possède les mêmes solutions que le suivant

$$x = \frac{1 - \sigma_1 - y}{1 + \gamma P_2^*(y)} \stackrel{\Delta}{=} h_1(y)$$
(2.3.2a)

$$y = \frac{1 - \sigma_2 - x}{1 + \gamma P_1^*(x)} \stackrel{\Delta}{=} h_2(x)$$
 (2.3.2b)

dans lequel, pour alléger les calculs qui suivront, nous avons remplacé (I_1, I_2) par (x, y). On s'intéresse alors à résoudre le système (2.3.2) pour des valeurs de $(x, y) \in A'$, où

$$A' := \{ (x,y) \in \mathbb{R}^2 \mid x,y \ge 0 \text{ et } x + y \le 1 \}$$
(2.3.3)

Théorème 2.3.1. Le système (2.3.2) possède une solution $(x,y) \in A'$ si et seulement si

$$\frac{1-\sigma_1}{1+\gamma P^*} \le 1-\sigma_2 \le (1-\sigma_1)(1+\gamma P^*)$$
(2.3.4)

DÉMONSTRATION. Puisque $P_1^*(x)$ est une fonction positive et décroissante, on a que

$$\frac{1-\sigma_2}{1+\gamma P^*} - x \le \frac{1-\sigma_2 - x}{1+\gamma P^*} \le h_2(x) \le 1 - \sigma_2 - x \tag{2.3.5}$$

La courbe solution associée à h_2 est donc contenue dans la région positive entre les deux droites d'équations

$$x + y = 1 - \sigma_2 \tag{2.3.6}$$

$$x + y = \frac{1 - \sigma_2}{1 + \gamma P^*} \tag{2.3.7}$$

Par un raisonnement analogue, la courbe solution associée à h_1 se trouve entre les droites

$$x + y = 1 - \sigma_1 \tag{2.3.8}$$

$$x + y = \frac{1 - \sigma_1}{1 + \gamma P^*} \tag{2.3.9}$$

Pour avoir une solution à l'intersection des deux courbes, il est donc nécessaire que ces deux régions aient une intersection non vide, c'est à dire

$$\frac{1-\sigma_1}{1+\gamma P^*} \le 1-\sigma_2 \quad \text{et} \quad \frac{1-\sigma_2}{1+\gamma P^*} \le 1-\sigma_1$$

Supposons que ces dernières inégalités soient respectées, et supposons sans perdre de généralité que $1 - \sigma_1 \leq 1 - \sigma_2$. Considérons alors la courbe de Jordan $\Gamma : [0,5]/(0 \sim 5) \rightarrow \mathbb{R}^2$ définie de la manière suivante:

$$\Gamma(s) = \begin{cases} ((1 - \sigma_2)s, h_2((1 - \sigma_2)s)) & s \in [0, 1) \\ (1 - \sigma_2, 1 - s) & s \in [1, 2) \\ (1 - \sigma_2 - (2 - \sigma_2)(s - 2), -1) & s \in [2, 3) \\ (-1, -1 + \left(\frac{1 - \sigma_2}{1 + \gamma P^*} + 1\right)(s - 3)\right) & s \in [3, 4) \\ (s - 5, \frac{1 - \sigma_2}{1 + \gamma P^*}) & s \in [4, 5) \end{cases}$$

On remarque que le point du plan $(h_1(1 - \sigma_1), 1 - \sigma_1) = (0, 1 - \sigma_1)$ se trouve au dessus du point $(0, h_2(0)) = (0, \frac{1-\sigma_2}{1+\gamma P^*})$. De plus, le point $(h_1(0), 0) = (\frac{1-\sigma_1}{1+\gamma P^*}, 0)$ est sous la courbe h_2 . On se retrouve alors dans la situation illustrée à la figure 2.1. Le point $(0, 1 - \sigma_1)$ se trouve à l'extérieur de la courbe, tandis que le point $(\frac{1-\sigma_1}{1+\gamma P^*}, 0)$ se trouve à l'intérieur.

Par le théorème de Jordan [7, 11], puisque la fonction h_1 est continue, il existe un point d'intersection entre le graphe de la fonction h_1 et la courbe Γ . Or, cette intersection peut

Fig. 2.1. Courbe de Jordan Γ découpant le plan en deux régions.

uniquement se produire sur le graphe de h_2 . Conséquemment, il existe une solution au système (2.3.2).

Définition 2.3.2. (Équilibre bi-endémique)

Un équilibre bi-endémique est un état stationnaire tel que I_1 et I_2 sont non nuls. Il est noté

$$E^{**} = (S, I_1, I_2, R_1, R_2)$$
(2.3.10)

L'équilibre E^{**} existe (au sens où $E^{**} \in A$) si et seulement si les relations (2.3.4) sont satisfaites.

On remarque que $E_1^* = E^{**}$ lorsque $(1 - \sigma_1) = (1 - \sigma_2)(1 + \gamma P^*)$. Cela porte à croire qu'une bifurcation existe sur cette courbe. De manière analogue, on remarque que $E_2^* = E^{**}$ lorsque $(1 - \sigma_2) = (1 - \sigma_1)(1 + \gamma P^*)$.

Il n'est pas aisé de déterminer l'unicité de l'équilibre bi-endémique, entre autres à cause des termes intégrals $P_1^*(x)$ et $P_2^*(y)$. Néanmoins, il est possible de trouver des conditions supplémentaires assurant l'unicité de l'équilibre bi-endémique.

Théorème 2.3.3. L'équilibre bi-endémique E^{**} est unique s'il existe $0 \le k < 1$ tel que

$$\forall (x,y) \in (0,1-\sigma_2) \times (0,1-\sigma_1) \qquad |h_1'(y)h_2'(x)| \le k \tag{2.3.11}$$

DÉMONSTRATION. Soient \overline{h}_1 et \overline{h}_2 les prolongements définis par

$$\overline{h}_1(y) := \begin{cases} h_1(y) & 0 \le y \le 1 - \sigma_1 \\ 0 & 1 - \sigma_1 < y \end{cases}$$
(2.3.12a)

$$\overline{h}_2(x) := \begin{cases} h_2(x) & 0 \le x \le 1 - \sigma_2 \\ 0 & 1 - \sigma_2 < x \end{cases}$$
(2.3.12b)

On s'intéresse à la composition $T: [0,\infty) \to [0,\infty)$ donnée par

$$T(x) := \overline{h}_1 \circ \overline{h}_2(x) \tag{2.3.13}$$

On aimerait démontrer que T est une contraction. Soient $x_1, x_2 \in [0,\infty)$. Sans perdre de généralité, supposons que $\overline{h}_2(x_1) \leq \overline{h}_2(x_2)$. On veut alors caractériser la quantité

$$|T(x_1) - T(x_2)| = |\overline{h}_1 \circ \overline{h}_2(x_1) - \overline{h}_1 \circ \overline{h}_2(x_2)|$$

Puisque \overline{h}_1 est définie par partie, il y a 3 cas de figure à considérer. Traitons chaque cas séparément.

Cas 1 : $\overline{h}_2(x_1) \leq \overline{h}_2(x_2) \leq 1 - \sigma_1$. On obtient ici

$$|T(x_1) - T(x_2)| = |h_1 \circ \overline{h_2}(x_1) - h_1 \circ \overline{h_2}(x_2)|$$
(2.3.14)

Par le théorème des accroissements finis, il existe $c_1 \in (0, 1 - \sigma_1)$ tel que

$$|h_1 \circ \overline{h}_2(x_1) - h_1 \circ \overline{h}_2(x_2)| = |h_1'(c_1) \left(\overline{h}_2(x_1) - \overline{h}_2(x_2)\right)|$$
(2.3.15a)

$$= |h'_1(c_1)| \cdot |\overline{h}_2(x_1) - \overline{h}_2(x_2)|$$
 (2.3.15b)

Cas 2 : $\overline{h}_2(x_1) \leq 1 - \sigma_1 < \overline{h}_2(x_2)$. On obtient ici

$$|T(x_1) - T(x_2)| = |h_1 \circ \overline{h}_2(x_1) - \overline{h}_1 \circ \overline{h}_2(x_2)|$$
(2.3.16a)

$$= |h_1 \circ \overline{h}_2(x_1) - h_1(1 - \sigma_1)|$$
 (2.3.16b)

$$\stackrel{\text{\tiny TAF}}{=} |h_1'(c_1) \left(\overline{h}_2(x_1) - (1 - \sigma_1) \right)|$$
 (2.3.16c)

$$= |h'_1(c_1)| \cdot |\overline{h}_2(x_1) - (1 - \sigma_1)|$$
(2.3.16d)

$$\leq |h'_1(c_1)| \cdot |\overline{h}_2(x_1) - \overline{h}_2(x_2)|$$
 (2.3.16e)

Cas 3 : $1 - \sigma_1 < \overline{h}_2(x_1) \le \overline{h}_2(x_2)$. On obtient ici

$$|T(x_1) - T(x_2)| = 0 (2.3.17)$$

On remarque alors que dans les trois cas, il existe un c_1 tel que

$$|T(x_1) - T(x_2)| \le |h_1'(c_1)| \cdot |\overline{h}_2(x_1) - \overline{h}_2(x_2)|$$
(2.3.18)

Par un calcul analogue, il existe un $c_2 \in (0, 1 - \sigma_2)$ tel que

$$|\overline{h}_2(x_1) - \overline{h}_2(x_2)| \le |h'_2(c_2)| \cdot |x_1 - x_2|$$
(2.3.19)

On obtient alors

$$|T(x_1) - T(x_2)| \le |h_1'(c_1)h_2'(c_2)| \cdot |x_1 - x_2|$$
(2.3.20a)

$$\leq k|x_1 - x_2|$$
 (2.3.20b)

Donc, T est une application contractante. Par le théorème du point fixe de Banach, la contraction T possède un unique point fixe. Or, toutes les paires (x,y) solutions au système (2.3.2) sont telles que

$$T(x) = x$$

On en déduit alors que le système (2.3.2) possède au plus une solution, et donc, que l'équilibre E^{**} est unique.

Chapitre 3

Stabilité des états stationnaires

Dans ce chapitre, nous tentons de décrire la stabilité de chacun des états stationnaires calculés précédemment selon les valeurs des paramètres du modèle.

3.1. Linéarisation du système

Introduisons la notation suivante

$$p_1^1 = p_1^1(I_1, I_2) = \int_0^\infty \gamma e^{-(\mu + \beta_2 I_2 + \lambda)v} dP(v)$$
(3.1.1a)

$$p_2^1 = p_2^1(I_1, I_2) = \int_0^\infty \gamma e^{-(\mu + \beta_1 I_1 + \lambda)v} dP(v)$$
(3.1.1b)

$$p_1^2 = p_1^2(I_1, I_2) = \frac{\beta_2 I_1}{\lambda} \left(\int_0^\infty \gamma e^{-(\mu + \beta_2 I_2 + \lambda)v} dP(v) - \int_0^\infty \gamma e^{-(\mu + \beta_2 I_2)v} dP(v) \right)$$
(3.1.1c)

$$p_2^2 = p_2^2(I_1, I_2) = \frac{\beta_1 I_2}{\lambda} \left(\int_0^\infty \gamma e^{-(\mu + \beta_1 I_1 + \lambda)v} dP(v) - \int_0^\infty \gamma e^{-(\mu + \beta_1 I_1)v} dP(v) \right)$$
(3.1.1d)

La matrice jacobienne du système (1.2.4) est donnée par la matrice suivante

$$J = \begin{pmatrix} -\mu - \beta_1 I_1 - \beta_2 I_2 & -\beta_1 S - p_1^1 - p_2^2 & -\beta_2 S - p_2^1 - p_1^2 & 0 & 0 \\ \beta_1 I_1 & \beta_1 (S + R_2) - \gamma - \mu & 0 & 0 & \beta_1 I_1 \\ \beta_2 I_2 & 0 & \beta_2 (S + R_1) - \gamma - \mu & \beta_2 I_2 & 0 \\ 0 & \gamma + p_1^1 & -\beta_2 R_1 + p_1^2 & -\mu - \beta_2 I_2 & 0 \\ 0 & -\beta_1 R_2 + p_2^2 & \gamma + p_2^1 & 0 & -\mu - \beta_1 I_1 \end{pmatrix}$$
(3.1.2)

Les calculs de dérivées partielles plus complexes sont explicités à l'Annexe A.

3.2. Stabilité de l'équilibre sain

On évalue la matrice jacobienne au point E_0 et obtenons

$$J(E_0) = \begin{pmatrix} -\mu & -\beta_1 - \int_0^\infty \gamma e^{-(\mu+\lambda)v} dP(v) & -\beta_2 - \int_0^\infty \gamma e^{-(\mu+\lambda)v} dP(v) & 0 & 0\\ 0 & \beta_1 - \gamma - \mu & 0 & 0 & 0\\ 0 & 0 & \beta_2 - \gamma - \mu & 0 & 0\\ 0 & \gamma + \int_0^\infty \gamma e^{-(\mu+\lambda)v} dP(v) & 0 & -\mu & 0\\ 0 & 0 & \gamma + \int_0^\infty \gamma e^{-(\mu+\lambda)v} dP(v) & 0 & -\mu \end{pmatrix}$$
(3.2.1)

On remarque alors que le linéarisé a deux valeurs propres simples et une valeur propre triple:

$$\lambda_1 = \beta_1 - \gamma - \mu \tag{3.2.2a}$$

$$\lambda_2 = \beta_2 - \gamma - \mu \tag{3.2.2b}$$

$$\lambda_3 = -\mu \text{ de multiplicité 3} \tag{3.2.2c}$$

Nous avons donc que E_0 est instable si max $\{\mathscr{R}_{01}, \mathscr{R}_{02}\} > 1$, et localement asymptotiquement stable si max $\{\mathscr{R}_{01}, \mathscr{R}_{02}\} < 1$.

3.3. Stabilité des équilibres mono-endémiques

Considérons maintenant la matrice jacobienne évaluée à l'équilibre E_1^* qui existe seulement lorsque $\mathscr{R}_{01} > 1$. Alors, on obtient

$$J(E_{1}^{*}) = \begin{pmatrix} -\mu - \frac{\beta_{1} - \gamma - \mu}{1 + \gamma P^{*}} & -\gamma - \mu - \int_{0}^{\infty} \gamma e^{-(\mu + \lambda)v} dP(v) \\ \frac{\beta_{1} - \gamma - \mu}{1 + \gamma P^{*}} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & \gamma + \int_{0}^{\infty} \gamma e^{-(\mu + \lambda)v} dP(v) \\ 0 & 0 \\ -\frac{\beta_{2}(\gamma + \mu)}{\beta_{1}} - \int_{0}^{\infty} e^{-(\mu + \frac{\beta_{1} - \gamma - \mu}{1 + \gamma P^{*}} + \lambda)v} dP(v) & 0 & 0 \\ 0 & 0 & \frac{\beta_{1} - \gamma - \mu}{1 + \gamma P^{*}} \\ \frac{\beta_{2}(\gamma + \mu)}{\beta_{1}} + \frac{\gamma P^{*}}{1 + \gamma P^{*}} \beta_{2}(1 - \sigma_{1}) - \gamma - \mu & 0 \\ -\frac{\gamma P^{*}}{1 + \gamma P^{*}} \beta_{2}(1 - \sigma_{1}) & -\mu & 0 \\ \gamma + \int_{0}^{\infty} e^{-(\mu + \frac{\beta_{1} - \gamma - \mu}{1 + \gamma P^{*}} + \lambda)v} dP(v) & 0 & -\mu - \frac{\beta_{1} - \gamma - \mu}{1 + \gamma P^{*}} \end{pmatrix}$$
(3.3.1)

On calcule le polynôme caractéristique donné par $\chi(\lambda) = \det(J_{\lambda} - \lambda I)$. On obtient alors

$$\chi(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3)\xi(\lambda)$$
(3.3.2)

Où

$$\lambda_1 = -\mu < 0 \tag{3.3.3a}$$

$$\lambda_2 = -\mu - \frac{\beta_1 - \gamma - \mu}{1 + \gamma P^*} < 0 \tag{3.3.3b}$$

$$\lambda_3 = \beta_2 \left((1 - \sigma_2) - \frac{1 - \sigma_1}{1 + \gamma P^*} \right) \tag{3.3.3c}$$

$$\xi(\lambda) = \lambda^2 + \left(\mu + \frac{\beta_1 - \gamma - \mu}{1 + \gamma P^*}\right)\lambda + \left(\frac{\beta_1 - \gamma - \mu}{1 + \gamma P^*}\right)\left(\gamma + \mu + \int_0^\infty \gamma e^{-(\mu + \lambda)v} dP(v)\right) \quad (3.3.3d)$$

On remarque d'une part que la valeur propre λ_3 est négative si et seulement si

$$(1 - \sigma_2) - \frac{1 - \sigma_1}{1 + \gamma P^*} \le 0 \tag{3.3.4}$$

On isole β_2 dans l'inéquation pour obtenir la relation

$$\beta_2 \le (\gamma + \mu) \frac{1 + \gamma P^*}{\sigma_1 + \gamma P^*} \tag{3.3.5}$$

L'inéquation (3.3.5) est donc une condition nécessaire pour avoir stabilité autour de l'équilibre mono-endémique E_1^* . Si nous nous intéressons au reste du spectre, nous devons résoudre l'équation

$$\xi(\lambda) = 0 \tag{3.3.6}$$

En général, il n'est pas facile de résoudre une telle équation, entre autres à cause du terme intégral. Cependant, il est possible de s'intéresser à certains cas particuliers de fonctions P(v) qui sont plus couramment utilisées dans la modélisation de délais. La résolution dans deux de ces cas particuliers, soit la distribution à noyau faible et la distribution uniforme, seront abordés dans les sections suivantes.

3.4. Stabilité mono-endémique sous distribution à noyau faible

Nous nous intéressons d'abord aux solutions de l'équation (3.3.6) dans le cas particulier où

$$P(v) = e^{-dv}$$

pour un certain paramètre d > 0. Cette fonction respecte l'hypothèses (H). Pour simplifier les calculs à venir, introduisons la notation

$$\alpha := \frac{\beta_1 - \gamma - \mu}{1 + \gamma P^*} \tag{3.4.1}$$

On la substitue dans (3.3.6) pour obtenir

$$\lambda^{2} + (\mu + \alpha)\lambda + \alpha(\gamma + \mu) = \frac{\alpha d\gamma}{\lambda + \mu + d}$$
(3.4.2)

On simplifie cette équation en multipliant le membre de gauche par le dénominateur du membre de droite pour obtenir l'équation cubique

$$\lambda^{3} + (2\mu + d + \alpha)\lambda^{2} + (\alpha\gamma + 2\alpha\mu + \alpha d + \mu^{2} + \mu d)\lambda + \alpha(\gamma\mu + \mu^{2} + \mu d) = 0$$
 (3.4.3)

dont la factorisation du membre de gauche mène à l'équation

$$(\lambda + \mu)\left(\lambda^2 + (\alpha + d + \mu)\lambda + \alpha(\gamma + d + \mu)\right) = 0$$
(3.4.4)

La formule quadratique nous permet donc de trouver les trois racines

$$\lambda_4 = -\mu \tag{3.4.5a}$$

$$\lambda_5 = \frac{-(\alpha + d + \mu) - \sqrt{(\alpha + d + \mu)^2 - 4\alpha(\gamma + d + \mu)}}{2}$$
(3.4.5b)

$$\lambda_6 = \frac{-(\alpha + d + \mu) + \sqrt{(\alpha + d + \mu)^2 - 4\alpha(\gamma + d + \mu)}}{2}$$
(3.4.5c)

On remarque que les parties réelles de ces trois valeurs propres sont strictement négatives, et on en déduit alors que sous une distribution à noyau faible, la stabilité des équilibres mono-endémiques dépend uniquement de λ_3 , telle que décrite en (3.3.3).

Intéressons-nous plus en détails au discriminant des valeurs propres λ_5 et λ_6 . Nous définissons le discriminant de la manière usuelle, soit

$$\mathcal{D} := (\alpha + d + \mu)^2 - 4\alpha(\gamma + d + \mu) \tag{3.4.6}$$

Nous aimerions déterminer s'il existe une valeur de α pour laquelle \mathcal{D} est strictement négatif. Exprimons d'une part \mathcal{D} comme un polynôme en α .

$$\mathcal{D}(\alpha) = \alpha^2 - (4\gamma + 2\mu + 2d) \alpha + (d+\mu)^2$$
(3.4.7)

Il s'agit de l'équation d'une parabole convexe. Elle atteint alors son minimum en

$$\alpha_{min} = \frac{4\gamma + 2\mu + 2d}{2} \tag{3.4.8}$$

On substitue cette valeur dans l'équation (3.4.7) pour obtenir

$$\mathcal{D}(\alpha_{min}) = -\frac{(4\gamma + 2\mu + 2d)^2}{4} + (d+\mu)^2$$
(3.4.9a)

$$= (d+\mu)^2 - (d+\mu+2\gamma)^2$$
(3.4.9b)

Cette dernière valeur est strictement négative. Dès lors, les valeurs propres λ_5 et λ_6 sont complexes conjuguées pour ce choix approprié de α .

3.5. Stabilité mono-endémique sous distribution uniforme

Intéressons-nous maintenant aux solutions de l'équation (3.3.6) dans le cas particulier où

$$P(v) = 1 - \mathcal{H}(v - \tau) = \begin{cases} 1 & \text{si } 0 \le v < \tau \\ 0 & \text{si } \tau \le v < \infty \end{cases}$$

pour un certain délai $\tau > 0$ avec \mathcal{H} la fonction de Heaviside. Pour simplifier les calculs à venir, rappelons la notation introduite à la section 3.4:

$$\alpha := \frac{\beta_1 - \gamma - \mu}{1 + \gamma P^*} \tag{3.5.1}$$

L'équation (3.3.6) devient alors

$$\lambda^{2} + (\mu + \alpha)\lambda + \alpha \left(\gamma + \mu - \gamma e^{-(\mu + \lambda)\tau}\right) = 0$$
(3.5.2)

D'une part, nous remarquons que lorsque $\tau = 0$, l'équation 3.5.2 devient

$$\lambda^2 + (\mu + \alpha)\lambda + \alpha\mu = 0 \tag{3.5.3}$$

Les deux racines de ce polynôme étant négatives, les résultats de la littérature [2] nous indiquent qu'il existe $\tau_{min} > 0$ pour lequel toutes les solutions de l'équation (3.5.2) ont leur partie réelle négative lorsque $0 \le \tau < \tau_{min}$. Supposons alors qu'il existe un certain $\tau \ge \tau_{min}$ pour lequel l'équation (3.5.2) possède une solution avec une partie réelle positive. Puisque les racines de l'équation varient continuement en τ , cela implique qu'il existe un certain τ pour lequel l'équation (3.5.2) possède une solution avec une partie réelle nulle. Substituons alors cette solution de la forme $\lambda = i\omega$ dans l'équation (3.5.2) pour obtenir l'équation

$$\alpha(\mu + \gamma) - \omega^2 + (\alpha + \mu)\omega i = \alpha\gamma e^{-\mu\tau} e^{-\omega\tau i}$$
(3.5.4)

On remarque alors que le membre de gauche est une parabole dans le plan complexe paramétrée par ω , tandis que le membre de droite est un cercle, centré à l'origine, de rayon $\alpha \gamma e^{-\mu \tau}$. Pour simplifier les calculs, intoduisons la notation suivante

$$p(\omega; \alpha, \gamma, \mu) = \alpha(\mu + \gamma) - \omega^2 + (\alpha + \mu)\omega i$$
(3.5.5a)

$$s(\omega,\tau;\alpha,\gamma,\mu) = \alpha\gamma e^{-\mu\tau} e^{-\omega\tau i}$$
(3.5.5b)

On remarque également que p et s sont deux fonctions différentiables en chacune de leurs variables et paramètres.

Théorème 3.5.1. Si l'équation (3.5.4) possède une solution, alors

$$\gamma - \sqrt{\gamma^2 - \mu^2} < \alpha < \gamma + \sqrt{\gamma^2 - \mu^2}$$

Conséquemment, si $\gamma \leq \mu$, l'équation (3.5.4) n'a pas de solution, et les solutions de l'équation (3.3.6) ont toutes une partie réelle strictement négative.

DÉMONSTRATION. Intéressons-nous au point de la parabole $p(\omega)$ le plus près de l'origine: en d'autres termes, on cherche à minimiser la fonction $||p(\omega)||_2$. Puisque 0 n'est pas dans l'image de p, et que la norme euclidienne est différentiable partout sur $\mathbb{C}\setminus\{0\}$, nous pouvons utiliser que $||p(\omega)||_2$ est différentiable sur son domaine de définition. Puisque $\lim_{||\omega||_2\to\infty} ||p(\omega)||_2 = \infty$, nous avons que $||p(\omega)||_2$ atteint son minimum global en un de ses points critiques. Enfin, les points critiques de $||p(\omega)||_2$ sont les mêmes que ceux de $||p(\omega)||_2^2$, et sont de même nature. Or, nous avons

$$\frac{d}{dw}||p(\omega)||_2^2 = \frac{d}{dw}\left(\omega^4 + \left((\mu + \alpha)^2 - 2\alpha(\mu + \gamma)\right)\omega^2 + \alpha^2(\mu + \gamma)^2\right)$$
$$= 4\omega\left(\omega^2 - \left(\alpha\gamma - \frac{\mu^2 + \alpha^2}{2}\right)\right)$$

Si l'équation (3.5.4) possède une solution, il est nécessaire que la parabole $p(\omega)$ possède un point se trouvant à l'intérieur du cercle de rayon $\alpha\gamma$. Or, p(0) se trouve à l'extérieur de ce cercle. Il est donc nécessaire que $||p(\omega)||_2$ posède un point critique autre que $\omega = 0$, et donc, que la quantité suivante soit strictement positive.

$$\alpha\gamma - \frac{\mu^2 + \alpha^2}{2} > 0 \tag{3.5.6}$$

En résolvant l'équation quadratique en α , on obtient que

$$\gamma - \sqrt{\gamma^2 - \mu^2} < \alpha < \gamma + \sqrt{\gamma^2 - \mu^2} \tag{3.5.7}$$

Pour la suite de l'analyse, il sera utile de se référer à la valeur de ω où $||p(\omega)||$ atteint son minimum. On la définit alors comme

$$\omega_0 := \sqrt{\alpha\gamma - \frac{\mu^2 + \alpha^2}{2}} \tag{3.5.8}$$

Théorème 3.5.2. Il existe une valeur μ^* strictement positive telle que l'équation (3.5.4) possède une solution.

DÉMONSTRATION. Intéressons-nous à l'équation 3.5.4 lorsque $\mu = 0$. L'équation devient alors

$$\alpha\gamma - \omega^2 + \alpha\omega i = \alpha\gamma e^{-\omega\tau i} \tag{3.5.9}$$

Le membre de gauche est encore une fois une parabole que nous noterons $p(\omega; \mu = 0)$, tandis que le membre de droite est un cercle de rayon $\alpha\gamma$. Or, on remarque que lorsque que nous posons $\omega = \sqrt{\alpha\gamma}$, la parabole est telle que

$$p\left(\sqrt{\alpha\gamma};\mu=0
ight)=\alpha\sqrt{\alpha\gamma}i$$

Ce point se situe à l'intérieur du cercle de rayon $\alpha\gamma$ sous la condition $\alpha < \gamma$, par exemple lorsque $\alpha = \gamma - \frac{\sqrt{\gamma^2 - \mu^2}}{2}$. À fortiori, nous avons que $p(\omega_0)$ se situe à l'intérieur de ce même cercle. Soit *a* la distance entre $p(\omega_0; \mu = 0)$ et ledit cercle. En d'autres termes,

$$a := \alpha \gamma - ||p(\omega_0)|| > 0 \tag{3.5.10}$$

Soit aussi $f(\mu)$ définie comme

$$f(\mu) = p\left(\omega_0; \mu\right) \tag{3.5.11}$$

Cette fonction f étant continue en $\mu = 0$, il existe une valeur $\delta > 0$ telle que pour tout $\mu < \delta$, nous avons

$$||f(\mu) - f(0)|| < \frac{a}{2}$$

Considérons maintenant la spirale $s(\omega_0,\tau;\mu)$ paramétrée par $\tau \in [0,\infty)$. Si nous nous restreignons au premier retour de la spirale, soit les valeurs de s où $0 \leq \tau \leq \frac{2\pi}{\omega_0}$, nous remarquons que pour un choix approprié de μ , la spirale se trouve à l'extérieur d'un cercle de rayon $\alpha\gamma - \frac{a}{2}$. En effet, en partant de l'inéquation

$$s\left(\omega_0, \frac{2\pi}{\omega_0}; \mu\right) = \alpha \gamma e^{-\mu \frac{2\pi}{\omega_0}} > \alpha \gamma - \frac{a}{2}$$
(3.5.12)

nous obtenons l'inéquation équivalente

$$\mu < \frac{\omega_0}{2\pi} \log\left(\frac{2\alpha\gamma}{2\alpha\gamma - a}\right) \tag{3.5.13}$$

On pose alors μ^* comme

$$\mu^* := \min\left\{\frac{\delta}{2} , \frac{\omega_0}{4\pi} \log\left(\frac{2\alpha\gamma}{2\alpha\gamma - a}\right)\right\}$$
(3.5.14)

Nous souhaitons maintenant démontrer qu'il existe un couple (ω, τ) satisfaisant (3.5.4) pour ce choix de paramètre (α, γ, μ^*) .

Par continuité de p, il existe un $\varepsilon > 0$ tel que $||p(\varepsilon)||_2 > \alpha \gamma$. On considère la surface paramétrée par (ω, τ) donnée par

$$D_1 := \left\{ (\omega, \tau) \in \mathbb{R}^2 \mid \varepsilon \le \omega \le \omega_0, \ 0 \le \tau \le \frac{2\pi}{\omega} \right\}$$
(3.5.15a)

$$X_1: D_1 \to \mathbb{R} \times \mathbb{C} \tag{3.5.15b}$$

$$X_1(\omega,\tau) := (\omega, s(\omega,\tau)) \tag{3.5.15c}$$

Nous nous retrouvons alors avec une surface dont l'allure s'apparente à celle d'un cyclindre. Nous la dénoterons par C_1 , et l'appellerons donc un cylindroïde. On voudrait démontrer qu'il existe une intersection entre C_1 et la coubre paramétrée par

$$p_2(\omega) := (\omega, p(\omega)) \tag{3.5.16}$$

Fig. 3.1. Le cylindroïde $C_1 = X_1(D_1)$ est une surface de $\mathbb{R} \times \mathbb{C}$.

On recouvre alors le centre et les extrémités de C_1 à l'aide la fonction X définie de la manière suivante.

$$X_2(\omega,\tau) := \left(\omega, (\tau+1)\alpha\gamma - \tau\alpha\gamma e^{-\mu\frac{2\pi}{\omega}}\right) \quad (\omega,\tau) \in [\varepsilon,\omega_0] \times [-1,0) \tag{3.5.17a}$$

$$X_3(\omega,\tau) := \begin{cases} X_1(\omega,\tau) & \tau \ge 0\\ X_2(\omega,\tau) & \tau < 0 \end{cases}$$
(3.5.17b)

$$X(\omega,\tau) := \begin{cases} (\omega,(\omega+1-\varepsilon)X_3(\varepsilon,\tau)) & \varepsilon - 1 \le \omega < \varepsilon & -1 \le \tau \le \frac{2\pi}{\varepsilon} \\ X_3(\omega,\tau) & \varepsilon \le \omega \le \omega_0 & -1 \le \tau \le \frac{2\pi}{\omega} \\ (\omega,(\omega_0+1-\omega)X_3(\omega_0,\tau)) & \omega_0 < \omega \le \omega_0 + 1 & -1 \le \tau \le \frac{2\pi}{\omega_0} \end{cases}$$
(3.5.17c)

Nous noterons l'image de X par C. On remarque que C est l'image d'une injection continue de S^2 dans $\mathbb{R} \times \mathbb{C}$. Les détails de cette affirmation sont explicités à l'annexe B. De par notre choix de μ^* , nous avons que $p_2(\omega_0)$ se trouve à l'intérieur de la région bornée délimitée par C. De plus, $p_2(\varepsilon)$ est à l'extérieur de cette région. Par le théorème de séparation de Jordan-Brouwer [7], il existe un point d'intersection entre C et $p_2([\varepsilon, \omega_0])$. Or, puisque la partie imaginaire de $p(\omega)$ est strictement positive pour les valeurs de ω considérées, l'intersection peut uniquement se produite sur C_1 . Cette intersection est donc un point (ω^*, τ^*) satisfaisant

$$p(\omega^*) = s(\omega^*, \tau^*)$$

Fig. 3.2. L'intersection entre C (en vert) et $p_2([\varepsilon, \omega_0])$ (en rouge) se produit sur C_1 .

Remarque 3.5.3. Si nous prolongions $p_2(\omega)$ et C pour des valeurs plus grandes de ω , nous aurions que $p_2(\omega)$ se trouverait éventuellement à l'extérieur du cylindroïde C. Nous pourrions alors déterminer qu'il existe une seconde solution (ω^*, τ^*) satisfaisant l'équation (3.5.4). Cependant, nous allons observer dans le prochain théorème que la solution construite dans le théorème 3.5.2 sera celle permettant d'établir que le système est déstabilisé pour certaines valeurs de délai τ .

Nous savons maintenant qu'il existe, sous certaines conditions, une valeur de délai τ^* pour laquelle l'équation 3.3.6 possède une solution avec une partie réelle nulle. Pour démontrer que le système est instable si nous augmentons le délais, intéressons-nous à la variation de la partie réelle de l'équation caractéristique au point $(i\omega^*, \tau^*)$.

Théorème 3.5.4. Pour un choix de paramètres (μ, γ, α) tel qu'au théorème 3.5.2, il existe une valeur de délai $\tau > 0$ telle que l'équation 3.3.6 possède une solution avec une partie réelle strictement positive. Conséquemment, le système est instable pour cette valeur de τ et ce choix de paramètres.

DÉMONSTRATION. Nous voulons utiliser le théorème des fonctions implicites sur la fonction $\xi(\lambda,\tau)$ pour obtenir une expression pour $\lambda(\tau)$ sur la courbe de niveau $\xi(\lambda,\tau) = 0$. Pour se faire, commençons par définir une fonction $\xi' : \mathbb{R}^3 \to \mathbb{R}^2$ équivalente à ξ de la manière suivante.

$$\xi' (\operatorname{Re}(\lambda), \operatorname{Im}(\lambda), \tau) = (\operatorname{Re}(\xi(\lambda, \tau)), \operatorname{Im}(\xi(\lambda, \tau)))$$

De manière plus explicite, on pose

$$\lambda := a + i\omega \tag{3.5.18}$$

Et on obtient

$$\xi'(a,\omega,\tau) := \begin{pmatrix} a^2 - \omega^2 + (\mu + \alpha)a + \alpha(\gamma + \mu) - \alpha\gamma e^{-(\mu + a)\tau}\cos(\omega\tau) \\ 2a\omega + (\mu + \alpha)\omega + \alpha\gamma e^{-(\mu + a)\tau}\sin(\omega\tau) \end{pmatrix}$$
(3.5.19)

Calculons la matrice Jacobienne.

$$J_{\xi'}(a,\omega,\tau) = \begin{pmatrix} j_1 & -j_2 \\ j_2 & j_1 \\ -\alpha\gamma(\mu+a)e^{-(\mu+a)\tau}\cos(\omega\tau) + \alpha\gamma\omega e^{-(\mu+a)\tau}\sin(\omega\tau) \\ -\alpha\gamma(\mu+a)e^{-(\mu+a)\tau}\sin(\omega\tau) + \alpha\gamma\omega e^{-(\mu+a)\tau}\cos(\omega\tau) \end{pmatrix} (3.5.20)$$

Où

$$j_1 := 2a + (\mu + \alpha) + \tau \alpha \gamma e^{-(\mu + a)\tau} \cos(\omega\tau)$$
(3.5.21a)

$$j_2 := 2\omega - \tau \alpha \gamma e^{-(\mu+a)\tau} \sin(\omega\tau)$$
(3.5.21b)

On calcule le déterminant de la sous matrice $J_{\xi';(a,\omega)}$ évaluée au point d'intéret $(0,\omega^*,\tau^*)$. On obtient

$$\det J_{\xi';(a,\omega)} = j_1^2 + j_2^2 \ge 0 \tag{3.5.22}$$

Réécrivons l'équation (3.5.4) dans le cadre de ξ' . On obtient les égalités suivantes.

$$\alpha(\mu + \gamma) - \omega^{*2} = \alpha \gamma e^{-\mu \tau^*} \cos(\omega^* \tau^*)$$
(3.5.23a)

$$(\alpha + \mu)\omega^* = -\alpha\gamma e^{-\mu\tau^*}\sin(\omega^*\tau^*)$$
(3.5.23b)

On subtitue (3.5.23b) dans j_2 pour obtenir

$$j_2(0,\omega^*,\tau^*) = 2\omega^* + \tau^*(\alpha + \mu)\omega^*$$
 (3.5.24a)

$$= \omega^* (2 + \tau^* (\alpha + \mu)) \neq 0$$
 (3.5.24b)

Dès lors, nous savons que le déterminant det $J_{\xi';(a,\omega)}(0,\omega^*,\tau^*)$ est strictement positif. La sousmatrice est donc inversible en ce point, et nous pouvons appliquer le théorème des fonctions implicites en $(0,\omega^*,\tau^*)$. On obtient alors

$$\frac{d\lambda}{d\tau}(\tau^*) = -J_{\xi';(a,\omega)}(0,\omega^*,\tau^*)^{-1} \cdot J_{\xi';\tau}(0,\omega^*,\tau^*)$$
(3.5.25)

On utilise la méthode des cofacteurs pour obtenir une expression pour notre sous-matrice inverse, ce qui donne.

$$\frac{d\lambda}{d\tau}(\tau^*) = \frac{-1}{\det J_{\xi';(a,\omega)}} \begin{pmatrix} j_1 & j_2 \\ -j_2 & j_1 \end{pmatrix} \begin{pmatrix} \alpha\gamma\mu e^{-\mu\tau^*}\cos(\omega^*\tau^*) + \alpha\gamma\omega e^{-\mu\tau^*}\sin(\omega^*\tau^*) \\ -\alpha\gamma\mu e^{-\mu\tau^*}\sin(\omega^*\tau^*) + \alpha\gamma\omega e^{-\mu\tau^*}\cos(\omega^*\tau^*) \end{pmatrix} \\
= \frac{-\alpha\gamma e^{-\mu\tau^*}}{j_1^2 + j_2^2} \begin{pmatrix} j_1 & j_2 \\ -j_2 & j_1 \end{pmatrix} \begin{pmatrix} \mu\cos(\omega^*\tau^*) + \omega\sin(\omega^*\tau^*) \\ -\mu\sin(\omega^*\tau^*) + \omega\cos(\omega^*\tau^*) \end{pmatrix} (3.5.26a)$$

Puisque nous nous intéressons davantage à la variation de la partie réelle de la valeur propre λ , considérons la première composante de la dérivée en ce point.

$$\frac{d\lambda}{d\tau}(\tau^*)_1 = \frac{-\alpha\gamma e^{-\mu\tau^*}}{j_1^2 + j_2^2} \left(j_1 \left(\mu\cos(\omega^*\tau^*) + \omega\sin(\omega^*\tau^*)\right) + j_2 \left(\omega\cos(\omega^*\tau^*) - \mu\sin(\omega^*\tau^*)\right) \right)$$
(3.5.27a)

$$= \frac{-\alpha \gamma e^{-\mu \tau^*}}{j_1^2 + j_2^2} \left(\tau^* \mu \alpha \gamma e^{-\mu \tau^*} + (2\omega^{*2} + \mu(\mu + \alpha)) \cos(\omega^* \tau^*) + (\omega^* \alpha - \omega^* \mu) \sin(\omega^* \tau^*) \right)$$
(3.5.27b)

On subtitue les fonctions trigonométriques par les expressions en (3.5.23).

$$\frac{d\lambda}{d\tau}(\tau^{*})_{1} = \frac{-\alpha\gamma e^{-\mu\tau^{*}}}{j_{1}^{2} + j_{2}^{2}} \left(\tau^{*}\mu\alpha\gamma e^{-\mu\tau^{*}} + \frac{e^{\mu\tau^{*}}}{\alpha\gamma} \left(-2\omega^{*4} + (\alpha\mu + 2\alpha\gamma - \alpha^{2})\omega^{*2} + \alpha\gamma(\mu + \alpha)(\mu + \gamma)\right)\right) = \frac{2}{j_{1}^{2} + j_{2}^{2}} \left(\omega^{*4} - \frac{\alpha\mu + 2\alpha\gamma - \alpha^{2}}{2}\omega^{*2} - \frac{\tau^{*}\mu\alpha^{2}\gamma^{2}e^{-2\mu\tau^{*}}}{2}\right)$$
(3.5.28)

On simplifie davantage pour obtenir

$$\frac{d\lambda}{d\tau}(\tau^*)_1 = -\frac{\mu\alpha^2\gamma^2 e^{-2\mu\tau^*}}{j_1^2 + j_2^2} \left(\tau^* - \frac{\omega^{*2} e^{2\mu\tau^*}}{\alpha^2\gamma^2} \left(\omega^{*2} - \left(\alpha\gamma - \frac{\alpha^2}{2} + \frac{\alpha\mu}{2}\right)\right)\right)$$
(3.5.29a)

$$= -\frac{\mu\alpha^{2}\gamma^{2}e^{-2\mu\tau^{*}}}{j_{1}^{2} + j_{2}^{2}} \left(\tau^{*} - \frac{\omega^{*2}e^{2\mu\tau^{*}}}{\alpha^{2}\gamma^{2}} \left(\omega^{*2} - \left(\omega_{0}^{2} + \frac{\mu^{2}}{2} + \frac{\alpha\mu}{2}\right)\right)\right)$$
(3.5.29b)

Par construction de ω^* dans le théorème 3.5.2, nous avons l'inégalité suivante

$$\omega^* < \omega_0 \tag{3.5.30}$$

À fortiori, nous avons alors

$$\omega^{*2} < \omega_0^2 + \frac{\mu^2}{2} + \frac{\alpha\mu}{2} \tag{3.5.31}$$

On en déduit alors que $\frac{d\lambda}{d\tau}(\tau^*)_1 < 0$. Il est donc possible de trouver une valeur de τ dans un voisinage de τ^* tel que Re $(\lambda(\tau)) > 0$.

Nous pouvons déterminer qu'un choix approprié de paramètres μ , γ , β_1 et τ permet de déstabiliser l'équilibre mono-endémique E_1^* pour cette distribution uniforme. Par un raisonnement analogue, un choix approprié de paramètres permet également de déstabiliser le second équilibre mono-endémique E_2^*

Chapitre 4

Diagrammes de bifurcation et plans de phase

Dans ce chapitre, nous tentons de résumer la stabilité de chacun des états stationnaires étudiés dans le chapitre 3. Pour se faire, nous allons étudier le diagramme de bifurcation de co-dimension 2 associé à β_1 et β_2 . Nous allons également introduire les plans de phase associés aux régions du diagramme de bifurcation.

4.1. Diagramme de bifurcation sous distribution à noyau faible

Nous avions introduit au chapitre 3 deux fonctions de survie P(v) afin d'étudier la stabilité des points fixes. Rappelons le cas d'une distribution à noyau faible où nous avions

$$P(v) = e^{-dv}$$

pour un certain paramètre de délai d > 0.

Dans le diagramme de bifurcation décrit à la figure 4.1, la région 1.1 correspond au cas où max $\{\beta_1,\beta_2\} < \mu + \gamma$. En d'autre termes, nous avons max $\{\mathscr{R}_{01},\mathscr{R}_{02}\} < 1$. Or nous avons vu à la section 3.2 que l'équilibre sain E_0 est alors unique est localement asymptotiquement stable. Nous pouvons représenter le portrait de phase en I_1 en I_2 via la figure 4.2(a).

Dans le cas où $\mathscr{R}_{02} < 1 < \mathscr{R}_{01}$, nous sous retrouvons dans la région 2.1, où l'équilibre mono-endémique E_1^* apparaît et est localement asymptotiquement stable. L'équilibre E_0 perd sa stabilité au profit de E_1^* . Sur le segment séparant les régions 1.1 de 2.1, les deux équilibres E_0 et E_1^* sont confondus. Ce segment correspond donc à une bifurcation transcritique. Le portrait de phase résultant est représenté à la figure 4.2(b). De manière analogue, lorsque $\mathscr{R}_{01} < 1 < \mathscr{R}_{02}$, nous nous retrouvons dans la région 2.2, et une bifurcation transcritique se produit sur le segment séparant les régions 1.1 et 2.2. Le portrait de phase résultant est représenté à la figure 4.2(c).

Considérons maintenant les cas où min $\{\mathscr{R}_{01}, \mathscr{R}_{02}\} > 1$. Alors, trois cas de figure sont possibles. D'une part, si nous avons $1 - \sigma_2 < \frac{1-\sigma_1}{1+\gamma P^*}$, alors nous sommes dans la région

Fig. 4.1. Diagramme de bifurcation du système (1.2.4) sous distribution à noyau faible.

Fig. 4.2. Portraits de phase associés au diagramme de bifurcation de la figure 4.1.

3.1. D'une part, puisque le critère (3.3.5) est satisfait pour l'équilibre E_1^* , nous avons que cet équilibre est localement asymptotiquement stable. D'autre part, puisque nous avons que

 $1-\sigma_1 > \frac{1-\sigma_2}{1+\gamma P^*}$, nous avons que E_2^* est instable. Nous en déduisons que l'équilibre E_1^* domine sur E_2^* , et que le portrait de phase associé sera celui de la figure 4.2(d). De manière analogue, si nous avons $1-\sigma_1 < \frac{1-\sigma_2}{1+\gamma P^*}$, alors nous sommes dans la région 3.2 et l'équilibre E_2^* domine sur E_1^* , et nous nous retrouvons avec le portrait de phase à la figure 4.2(e).

Le dernier cas correspond à la région 4.1. Dans celle-ci, les deux équilibres monoendémiques sont instables. De plus, un quatrième équilibre bi-endémique E^{**} se crée dans cette région, et se confond avec un équilibre mono-endémique sur la frontière de son domaine d'existence. Puisque l'existence de l'équilibre bi-endémique n'a pas été déterminée de manière constructive dans la section 2.3, les conditions sur la stabilité de E^{**} n'ont pas été déterminées pour la région 4.1, et le portrait de phase préliminaire associé est représenté à la figure 4.2(f).

4.2. Diagramme de bifurcation sous distribution uniforme

Considérons cette fois la diagramme de bifurcation lorsque la fonction de survie P(v) est une distribution uniforme. Rappelons alors que dans ce cas, nous avons

$$P(v) = 1 - \mathcal{H}(v - \tau)$$

pour un certain paramètre de délai $\tau > 0$. Nous avons vu dans la section 3.5 que pour une valeur de paramètre μ suffisament grande, les solutions à l'équation (3.3.6) ont toutes une partie réelle strictement négative. En conséquence, le diagramme de bifurcation du système est le même qu'à la figure 4.1.

Si par contre nous avons une valeur de μ suffisament petite, et que le délai τ est choisi adéquatement, l'équation (3.3.6) possèdera des solutions avec parties réelles strictement positives.

Il se crée alors quatre sous-régions (représentées en gris à la figure 4.3) où le système est déstabilisé. Nous avons vu dans la section 3.5 que pour déstabiliser le système, il est nécessaire d'avoir $\gamma - \sqrt{\gamma^2 - \mu^2} < \alpha < \gamma + \sqrt{\gamma^2 - \mu^2}$. En termes de β_1 et β_2 , les valeurs de β_i déstabilisant l'équilibre mono-endémique E_i^* sont contenues à l'intérieur de l'intervalle $[\mu + \gamma, \mu + \gamma + 2\gamma(1 + \gamma P^*)]$.

Dans la région 5.1, l'équation caratéristique du système autour du point d'équilibre E_1^* acquiert une paire de valeurs propres complexes conjugées avec parties réelles strictement positives. Passer de la région 2.1 à la région 5.1 correspond alors à une bifurcation de Hopf. L'équilibre E_1^* devient alors instable, et des oscillations sont induites. Pour les mêmes raisons, une bifurcation de Hopf se produit lorque les paramètres passent de la région 3.1 à la région 6.1, et l'équilibre E_1^* deviendra instable.

Fig. 4.3. Diagramme de bifurcation du système (1.2.4) sous distribution uniforme pour une valeur $\mu \leq \mu^*$ et un choix de τ approprié.

Par un raisonnement analogue, il est possible de déterminer qu'une bifurcation de Hopf a lieu sur les frontières des régions 5.2 et 6.2, déstabilisant alors l'équilibre E_2^* . L'analyse effectuée ne permet pas de déterminer si ces bifurcations de Hopf sont supercritiques ou souscritiques.

Chapitre 5

Simulations numériques

Pour illustrer les résultats des chapitres précédents, nous simulons numériquement le système (1.2.2) avec les valeurs de paramètres de Liu et al. [10], soit $\mu = 0.00004$ et $\gamma = 0.143$. Ces paramètres impliquent une durée de vie moyenne de 68,5 ans et une période d'infectiosité moyenne de 7 jours. Nous simulons ce système pour différentes valeurs de β_1 , β_2 et P afin de reproduire les différents régimes décrits au chapitre 4.

Nous avons utilisé la méthode de Runge-Kutta classique d'ordre quatre (RK4) avec un pas h fixe (méthode non-adaptative) pour simuler le système. La mise en mémoire des valeurs passées permet de simuler le système d'équations différentielles à délai. Les points médiants nécessaires au calculs des deuxième et troisième itérés de notre méthode numérique sont approximés via une interpolation d'Hermite, ce qui sera particulièment nécessaire pour la simulation sous distribution uniforme. Nous avons utilisé la méthode de Simpson pour approximer numériquement les intégrales.

5.1. Simulation sous distribution à noyau faible

Dans le cas d'une distribution à noyau faible, rappelons que la densité de survie est donnée par

$$P(t) = e^{-d}$$

Étant donné une demi-vie T, on choisira $d = \frac{\log(2)}{T}$. Pour nos simulations, nous avons choisi d'avoir une demi-vie de 10 jours, et donc, un paramètre de délai d = 0.07. Le problème de conditions initiales permettant de simuler numériquement un tel système sera bien posé si nous avons comme condition initiale une fonction $\phi(t)$ telle que

$$x(t) = \phi(t) \quad t \in [0, t_0]$$
 (5.1.1)

pour un certain intervalle de départ avec $t_0 > 0$. Pour les simulations à venir, nous avons décidé d'utiliser $t_0 = 7$ et d'établir la condition initiale suivante:

$$\phi(t) = \begin{pmatrix} 1 - 2I_0 - \int_0^t \gamma I_0 e^{-\mu v} \left(e^{-\beta_1 I_0 v} + e^{-\beta_2 I_0 v} \right) P(v) dv \\ I_0 \\ I_0 \\ \int_0^t \gamma I_0 e^{-(\mu + \beta_2 I_0) v} P(v) dv \\ \int_0^t \gamma I_0 e^{-(\mu + \beta_1 I_0) v} P(v) dv \end{pmatrix} \quad t \in [0, t_0] \quad (5.1.2)$$

Où I_0 est une valeur initiale d'infectés pour les deux souches du virus. Nous avons décidé d'utiliser $I_0 = 0.02$. Enfin, nous dirons qu'un équilibre est atteint lorsque la variation d'un point de simulation à l'autre est inférieur à un certain seuil de tolérance, que nous choisirons comme étant $\varepsilon = 10^{-6}$.

Fig. 5.1. Dans la région 1.1, l'équilibre sain E_0 est stable.

Dans la région 1.1 du diagramme de bifurcation 4.1, l'équilibre sain est stable, tel qu'illustré à la figure 5.1.

(a) Dans la région 2.1, l'équilibre E_1^* est stable avec une paire de valeurs propres complexes.

(c) Dans la région 3.1, l'équilibre E_1^* est stable avec une paire de valeurs propres complexes et domine sur E_2^* .

(e) Dans la région 4.1, l'équilibre E^{**} semble stable pour de petites valeurs de β_1 et β_2 .

(b) Dans la région 2.1, l'équilibre E_1^* est stable avec toutes ses valeurs propres réelles.

(d) Dans la région 3.1, l'équilibre E_1^* est stable avec toutes ses valeurs propres réelles et domine sur E_2^* .

(f) Dans la région 4.1, l'équilibre E^{**} semble stable pour de grandes valeurs de β_1 et β_2 .

Fig. 5.2. Simulations numériques sous distribution à noyau faible.

Dans les régions 2.1 et 3.1 du diagramme 4.1, l'équilibre mono-endémique E_1^* est stable, et dans le second cas, domine sur E_2^* , tel qu'illustré aux figures 5.2(a), 5.2(b), 5.2(c) et 5.2(d). Pour ce qui est de l'équilibre bi-endémique, l'analyse des chapitres précédents ne nous permet pas de prédire le comportement asymptotique du système dans la région 4.1 du diagramme 4.1. Néanmoins, le comportement du système autour de l'équilibre mono-endémique nous donne l'intuition que le système sera localement asymptotiquement stable autour de E^{**} . En simulant le système pour des valeurs de β_1 et β_2 contenues dans la région 4.1, nous observons que l'équilibre E^{**} semble stable, tel qu'illustré aux figures 5.2(e) et 5.2(f).

À la figure 5.2, les sous-figures de gauche correspondent aux valeurs de β_1 et β_2 pour lesquelles l'équilibre mono-endémique E_1^* possède une paire de valeurs propres complexes conjugés. Les sous-figures de droite, quant à elles, correspondent aux valeurs de paramètres où toutes les valeurs propres associées à E_1^* sont réelles. Nous nous attendrions alors à observer des oscillations amorties dans les régimes de gauche, et une absences d'oscillations dans les régimes de droite. Cependant, après une inspection qualitative de ces figures, cette différence dans les paramètres ne semble pas empiriquement affecter de manière significative les graphiques obtenus. Dans toutes les simulations, l'équilibre est atteint à l'intérieur des huit premiers mois simulés, soit moins de 244 jours.

5.2. Simulation sous distribution uniforme

Lorsque nous avons une distribution uniforme, le système dynamique (1.2.2) sera de la forme

$$\dot{x}(t) = F(x(t), x(t-\tau), t)$$
(5.2.1)

Le problème de condition initiale permettant de simuler numériquement un tel système sera bien posé si nous avons comme condition initiale une fonction $\phi(t)$ telle que

$$x(t) = \phi(t) \quad t \in [0,\tau]$$
 (5.2.2)

Rappelons la condition initiale introduite à la section précédente,

$$\phi(t) = \begin{pmatrix} 1 - 2I_0 - \int_0^t \gamma I_0 e^{-\mu v} \left(e^{-\beta_1 I_0 v} + e^{-\beta_2 I_0 v} \right) P(v) dv \\ I_0 \\ I_0 \\ \int_0^t \gamma I_0 e^{-(\mu + \beta_2 I_0) v} P(v) dv \\ \int_0^t \gamma I_0 e^{-(\mu + \beta_1 I_0) v} P(v) dv \end{pmatrix} \quad t \in [0, \tau] \quad (5.2.3)$$

Où I_0 est une valeur initiale d'infectés pour les deux souches du virus. Ici, nous avons utilisé comme à la section précédente $I_0 = 0.02$. La valeur de paramètre de délai sera $\tau = 20$, sauf lorsque nous voudrons expliciter certains régimes liés à la variation dudit délai. Enfin, nous reprenons le seuil de tolérence de la section précédente que nous avions choisi comme étant $\varepsilon = 10^{-6}$.

Fig. 5.3. Dans la région 1.1, l'équilibre sain E_0 est stable.

Dans la région 1.1 du diagramme 4.3, l'équilibre sain est stable, tel qu'illustré à la figure 5.3. Puisque les valeurs du système linéarisé autour de E_0 sont toutes réelles, nous nous attendrions à n'avoir aucune oscillation dans la simulation, tel qu'illustré à dans ladite figure. L'équilibre y est atteint au cours de la première année, soit après 128 jours.

Si nous augmentons la valeur de β_1 , nous nous retrouvons dans la région 2.1 du diagramme 4.3. Pour une valeur de β_1 bien choisie, les valeurs propres complexes du système linéarisé autour de E_1^* induites par le délai τ ont toutes une partie réelle négative. Nous nous attendrions à voir des oscillations amorties qui convergent vers l'équilibre E_1^* , tel qu'illustré à la figure 5.4.

Si nous augmentons également β_2 , de telle sorte que nous nous retrouvons dans la région 3.1 du diagramme 4.3, nous nous attendrions à un régime dans lequel l'équilibre E_1^* domine sur E_2^* , tel qu'illustré à la figure 5.5.

Si le système est simulé suffisament long temps, l'équilibre E_1^* sera atteint après 450 jours, tel qu'illustré à la figure 5.6.

Nous avons vu au chapitre 3 que lorsque μ est suffisament petit, et que β_1 n'est pas beaucoup plus grand que $\mu + \gamma$, il est possible de déstabiliser le système en prenant une valeur de délai τ suffisament grande. Cela correspond aux régions 5.1 et 6.1 du diagramme 4.3. En prenant ici un délai de 108 jours, ce qui correspond à une immunité de 3 mois et demi, nous induisons des oscillations qui ne sont pas amorties. Ces régimes sont illustrés aux figures 5.7 et 5.8. Nous remarquons que le système semble tendre vers des régimes oscillants.

Fig. 5.4. Dans la région 2.1, l'équilibre mono-endémique E_1^* est stable.

Pour ce qui est de l'équilibre bi-endémique, l'analyse des chapitres précédents ne nous permet pas de prédire le comportement asymptotique du système dans la région 4.1 du diagramme 4.3. Néanmoins, le comportement du système autour de l'équilibre mono-endémique

Fig. 5.6. L'équilibre E_1^* est atteint lorsque le système est simulé suffisament longtemps.

Fig. 5.7. Dans la région 5.1, l'équilibre E_1^* est instable pour certaines valeurs de τ .

nous donne l'intuition que le système sera localement asymptotiquement stable autour de E^{**} pour de grandes valeurs de β_1 et β_2 , et instable sinon lorsque le délai τ sera suffisament grand. Or, il est possible de reproduire ces deux régimes, tel qu'illustré aux figures 5.9 et 5.10.

De manière générale, les régimes oscillants représentés dans les figures de ce chapitre peuvent être interprétés comme les vagues successives d'infections de la population dans un

Fig. 5.8. Dans la région 6.1, les équilibres E_1^* et E_2^* sont instables pour certaines valeurs de τ .

Fig. 5.9. Dans la région 4.1, l'équilibre bi-endémique E^{**} est stable pour de grandes valeurs de β_1 et β_2 .

Fig. 5.10. Dans la région 4.1, l'équilibre bi-endémique E^{**} est instable pour certaines valeurs de β_1 , β_2 et τ .

contexte d'épidémie. Les régimes oscillants non-amortis des figures 5.7, 5.8 et 5.10 peuvent alors être interprétés commes des vagues d'infections saisonnières dans une population endémique.

Chapitre 6

Conclusion

Le modèle SIRS présenté dans le chapitre 1 a été construit afin d'introduire une perte de l'immunité contre les souches du virus de la dengue, et d'introduire la possibilité de réinfection homotypique d'un individu après une période de temps suffisament grande. Cette perte d'immunité permet à notre modèle de se distinguer des travaux précédents qui n'incorporent pas la possibilité de quitter les compartiments des rétablis, et donc, de mieux représenter les données de la dengue. Il a été mis en évidence que le choix de distribution de délai P(t) introduite à l'hypothèse (H) aura un impact significatif sur l'évolution du modèle épidémologique considéré. Pour un choix de distribution à noyau faible, les valeurs propres du systèmes linéarisé autour des équilibres mono-endémiques indiquent que les solutions au système dynamique décrit par le modèle seront localement asymptotiquement stables près des équilibres mono-endémiques dans les régions 2.1, 2.2, 3.1 et 3.2 du diagramme de bifurcation 4.1. En revanche, pour un choix de distribution uniforme, le modèle épidémiologique prédira une dynamique instable et oscillatoire dans un voisinage des équilibres mono-endémiques pour certaines valeurs de délais. Parmis les modèles précédents, certains ne semblent pas être en mesure de représenter de tels régimes pour la dengue [4], tandis que d'autres utilisent un système non-autonome pour reproduire des oscillations [5]. Les simulations numériques présentées au chapitre 5 nous permettent de visualiser ces différences de régimes. Nous y apprenons dès lors qu'étant donné un bon choix de paramètres fixe et une distribution appropriée de retour au compartiment des susceptibles, il est possible d'obtenir un régime oscillatoire asymptotiquement autonome pouvant représenter des données réelles de la dengue.

L'éventail de régimes possibles pour notre modèles donne plus de flexibilité quant à la mesure dans laquelle les simulations peuvent épouser les données régionales de la dengue. L'impact principal est donc de décider si les individus d'une population peuvent être suceptibles à nouveau, et d'élaborer une stratégie de gestion si des réinfections sont possibles. Dans un contexte ou nous voudrions développer un vaccin contre la dengue, il sera nécessaire de considérer la possibilité que les individus puissent être réinfectés pour les mêmes sérotypes du virus. L'introduction d'un tel vaccin aura le potentiel de modifier la distribution P(t) et donc, d'induire des oscillations dans l'évolution de l'épidémie. Sanchant que les ressources sanitaires peuvent être limitées, éliminer les oscillations du systèmes dynamique (ou du moins réduire leurs amplitudes) permettrait de diminuer le nombre maximal d'individus infectés à chaque instant, résultant en un meilleur contrôle de l'épidémie.

Un modèle décrit en ces termes peut naturellement être utilisé pour comprendre d'autres maladies ayant des proprités de réinfection homotypique, telles la grippe, la chlamydia et la salmonellose [17]. La prochaine étape d'application serait alors de déterminer pour quelles situations épidémiques il est possible d'avoir une meilleure adéquation entre la fonction P(t) choisie et les données recueillies pour les réinfections homotypiques de ces maladies.

Comme avancements possibles, il serait préférable de déterminer l'unicité de l'équilibre bi-endémique E^{**} inconditionnement, ou sinon, de trouver quelles conditions sont nécessaires et suffisantes à l'unicité de cet équilibre. Il serait également préférable de décrire de manière constructive cet équilibre. Naturellement, il découlerait d'une telle caractérisation de préciser le spectre du système linéarisé dans un voisinage de l'équilibre bi-endémique, et ainsi caractériser la stabilité de cet équilibre. De plus, cela permettrait de comprendre plus en détails la région 4.1 des diagrammes 4.1 et 4.3, et de faire des prédictions plus éclairées sur la dynamique du système dans le voisinage de l'équilibre bi-endémique.

Additionnellement, étudier les termes d'ordres supérieurs de l'expansion de Taylor du sytème dynamique autour des points d'équilibres permettrait de déterminer si les bifurcations de Hopf associées à la variation du délai d'une distribution uniforme sont de nature supercritique ou souscritique. Conséquemment, il serait alors possible de déterminer si un phénomène d'hystérèse se produit lorsque le système transite d'un équibre stable vers un régime oscillant.

Enfin, l'existence de quatre sérotypes de la dengue [15] justifie l'intérêt d'étudier certaines variations du modèle (1.2.2) où nous considérerions davantage de variables, et ce, dans l'objectif de modéliser une population endémique de trois ou quatre des sérotypes de la dengue.

Références bibliographiques

- R. M. ANDERSON et R. M. MAY : Population biology of infectious diseases: Part 1. Nature, 280:361–367, 1979.
- [2] E. BERETTA et Y. KUANG : Geometric stability switch criteria in delay differential systems with delay dependent parameter. SIAM J. Math. Anal., 33:1144–1165, 2001.
- [3] F. BRAUER et C. KRIBS : Dynamical systems for biological modeling: An introduction. CRC Press, 2016.
- [4] P. CHANPRASOPCHAI, I.M. TANG et P. PONGSUMPUN : SIR Model for Dengue Disease with Effect of Dengue Vaccination. *Comput Math Methods Med*, 2018, 2018.
- [5] J. Páez CHÁVEZ, T. GÖTZ, S. SIEGMUND et K.P. WIJAYA : An SIR-Dengue transmission model with seasonal effects and impulsive control. *Math Biosci*, 289:29–39, 2017.
- [6] B. M. FORSHEY, S. T. STODDART et A. C. MORRISON : Dengue viruses and lifelong immunity: Reevaluating the conventional wisdom. *The Journal of Infectious Diseases*, 2016.
- [7] V. GUILLEMIN et A. POLLACK : Differential Topology. Prentice-Hall, Inc., 1974.
- [8] H. W. HETHCOTE : Qualitative analyses of communicable diseases models. Math. Biosci., 7:335–356, 1976.
- [9] W. O. KERMACK et A. G. MCKENDRICK : A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A, 115:700–721, 1927.
- [10] W. LIU, H. W. HETHCOTE et S. A. LEVIN : Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol., 25:359–380, 1987.
- [11] R. MAEHARA: The Jordan Curve Theorem via the Brouwer Fixed Point Theorem. Amer. Math. Month., 91:641–643, 1984.
- [12] R. K. MILLER et A. N. MICHEL : Ordinary Differential Equations, 1^{re} édition, décembre 1981.
- [13] K. MISCHAIKOW, H. L. SMITH et H. R. THIEME : Asymptotically autonomous semiflows: chain recurrence and Liapunov functions. *Trans Am Math Soc*, 347:1669–1685, 1995.
- [14] H.T. NGUYEN et P. ROHANI : Noise, nonlinearity and seasonality: the epidemics of whooping cough revisited. J R Soc Interface, 5(21):403–413, 2008.
- [15] ORGANISATION MONDIALE DE LA SANTÉ : Dengue et dengue sévère. Disponible sur https://www.who. int/fr/news-room/fact-sheets/detail/dengue-and-severe-dengue (2020/09/19).
- [16] C. WU et P. J. Y. WONG : Dengue transmission: mathematical model with discrete time delays and estimation of the reproduction number. J. Biol. Dyn., 13(1):1–25, 2019.
- [17] L. WU et X. YANG: Global stability of a delayed SIRS model with temporary immunity. *Chaos, Solitons & Fractals*, 38:221–226, 2008.
- [18] Y. YUAN et J. BÉLAIR : Threshold dynamics in an SEIRS model with latency and temporary immunity. J. Math. Biol., 69:875–904, 2014.

Annexe A

Calcul de la matrice jacobienne

Pour simplifier les calculs, posons les valeurs suivantes

$$z_t: (-\infty, t) \to \mathbb{R}^2$$

$$z_t(\theta) = (x_t(\theta), y_t(\theta)) = (x(t+\theta), y(t+\theta))$$

$$\Theta(x_t, y_t) = \int_0^\infty \gamma x(t-v) e^{\int_{t-v}^t -\mu -\beta y(s)ds} dP(v)$$
$$= \int_0^\infty \gamma x_t(-v) e^{\int_{-v}^0 -\mu -\beta y_t(s)ds} dP(v)$$

Calculons les dérivés partielles via l'hypothèse $z_t(\theta) = z_t(0)e^{\lambda\theta}$.

$$\frac{\partial \Theta(z^*)}{\partial x_t(0)} = \int_0^\infty \gamma e^{-(\mu + \beta y^*)v} \frac{\partial}{\partial x_t(0)} \left(x_t(0) e^{-\lambda v} \right) dP(v)$$
$$= \int_0^\infty \gamma e^{-(\mu + \beta y^* + \lambda)v} dP(v)$$

$$\begin{aligned} \frac{\partial \Theta(z^*)}{\partial y_t(0)} &= \int_0^\infty \gamma x^* e^{-(\mu+\beta y^*)v} \frac{\partial}{\partial y_t(0)} \left(-\mu v - \beta \int_{-v}^0 y_t(0) e^{\lambda s} ds\right) dP(v) \\ &= \int_0^\infty \gamma x^* e^{-(\mu+\beta y^*)v} \frac{\beta}{\lambda} \left(e^{-\lambda v} - 1\right) dP(v) \\ &= \frac{\beta x^*}{\lambda} \left(\int_0^\infty \gamma e^{-(\mu+\beta y^*+\lambda)v} dP(v) - \int_0^\infty \gamma e^{-(\mu+\beta y^*)v} dP(v)\right) \end{aligned}$$

Annexe B

Injection continue de S^2 dans $\mathbb{R} \times \mathbb{C}$

Nous voulons démontrer qu'il existe une bijection entre C et la 2-sphère. Commençons par considérer le domaine de X, noté par D. Nous avons alors

$$D = [\varepsilon - 1, \varepsilon] \times \left[-1, \frac{2\pi}{\varepsilon} \right] \cup \left\{ (\omega, \tau) \in \mathbb{R}^2 \mid \varepsilon \le \omega \le \omega_0 \text{ et } -1 \le \tau \le \frac{2\pi}{\omega} \right\} \cup [\omega_0, \omega_0 + 1] \times \left[-1, \frac{2\pi}{\omega_0} \right]$$
(B.0.1)

On considère alors la relation d'équivalence suivante.

Définition B.0.1. Pour tout $x, y \in D$. On a $x \sim y$ si X(x) = X(y)

Cette définition décrit bel et bien une relation réflexive, symétrique et transitive, et donc, une relation d'équivalence. On considère alors l'espace quotient donné par

$$D' := D/ \sim \tag{B.0.2}$$

On définit également la fonction X' via

$$X': D' \to C \tag{B.0.3}$$

$$[x] \mapsto X(x) \tag{B.0.4}$$

Par construction, X' est une bijection de D' vers C. De plus, nous pouvons représenter D' via le diagramme B.1.

Par inspection de X, on remarque que les points sur le segment $(\varepsilon - 1, -1) (\varepsilon - 1, \frac{2\pi}{\varepsilon})$ (en pourpre sur la diagramme) sont tous dans la même classe d'équivalence. Il en va de même pour le segment $(\omega_0 + 1, -1) (\omega_0 + 1, \frac{2\pi}{\omega_0})$ (en rouge sur le diagramme). De plus, pour toutes les valeurs de ω considérées, nous avons $(\omega, -1) \sim (\omega, \min\{\frac{2\pi}{\varepsilon}, \max\{\frac{2\pi}{\omega}, \frac{2\pi}{\omega_0}\}\})$ (en bleu sur le diagramme). On en déduit que D' est homéomorphe à S^2 .

Fig. B.1. Diagramme de D'. Les bords identifiés sur D permettent de construire D'.