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Résumé 

Le motif biaryl contenant la pyridine représente une structure omniprésente dans la chimie 

organique et médicinale. Ainsi, le développement de méthodes fiables de synthèse est 

continuellement désiré. Traditionnellement, les cycles azotés biarylés sont efficacement 

synthétisés par des réactions de couplage croisé catalytique. Cependant, la pyridine peut être 

difficilement fonctionnalisée en position C-2 compte tenu de sa déficience en électrons. Cette 

propriété limite son utilisation en tant que partenaire nucléophile dans les réactions de couplage 

croisé. Par exemple, dans le couplage de Suzuki-Miyaura, l’acide 2-pyridyle boronique est 

connu pour son instabilité. À l’inverse, les organométalliques du 2-pyridyle sont peu réactifs 

pour faire des réactions de substitution aromatique électrophile. La synthèse des pyridines 2-

substituées est par conséquent un défi qui reste difficile à relever.  

La première partie de ce mémoire est consacrée au développement récent des méthodes pour 

résoudre les problèmes de couplage avec des nucléophiles 2-pyridyles. En particulier, les 

approches classiques comme le couplage modifié de Suzuki-Miyaura, l’activation de liaison C-

H des composés pyridinium N-activés, et l’arylation directe du cycle pyridine sont présentées. 

De plus, les approches alternatives qui utilisent la partie pyridine comme partenaire électrophile 

dans la réaction couplage avec les réactifs organométalliques sont également discutées.  

Dans la deuxième partie de ce mémoire, une méthode de couplage croisée entre des esters de 

sulfonate de 2-pyridyles et des organolithiens est rapportée. Une variété de pyridines 2-

substituées a été synthétisées avec succès en faisant réagir des sulfonates de pyridine avec des 

organolithiens (aryl, alkane, heteroaryle lithium) à basse température. La méthode permet 

également de s’affranchir de l’utilisation d’un quelconque métal de transition. Des études 
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mécanistiques montrent que le processus impliquant les composés lithiés s’apparente à une 

réaction de substitution nucléophile aromatique. Cependant, le mécanisme diffère lorsque la 

réaction met en jeu des réactifs de Grignard, où un processus de couplage entre deux ligands 

d’un intermédiaire σ-sulfurane peut être impliqué. 

Mots-clés : Arylation direct, ester de 2-pyridine sulfonate, synthèse du motif biarylé, pyridine 

2-substitué, lithiation, sans métaux de transition.  
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Abstract 

Biaryl compounds containing the pyridine moiety represent a ubiquitous structure in both 

organic and medicinal chemistry. Therefore, finding new and reliable approaches for their 

synthesis is still of interest. Traditionally, azine containing biaryls are efficiently synthesized 

via transition-metal catalyzed cross-coupling reactions. However, due to its π-deficient nature, 

pyridine cannot be easily functionalized at the C-2 position to serve as nucleophile partner. For 

examples, in the Suzuki-Miyaura cross-coupling reaction, 2-pyridyl boronates are well known 

for their instability. 2-Pyridyl organometallics undergo electrophilic aromatic substitution 

poorly. Thus, the synthesis of 2-substituted pyridines remains a challenging task. 

The first part of the thesis focuses on the recent methods to address the coupling issues of 2-

pyridyl nucleophiles in cross-coupling reactions. Of note, the classical methods including 

Suzuki-Miyaura cross-coupling reactions, C-H activation of N-activated pyridinium species, 

and direct coupling reaction of pyridine are presented. Alternative approaches using the pyridine 

moiety as an electrophilic entity in the coupling with organometallic reagents are also discussed. 

In the second part of the thesis, a transition metal-free desulfinative cross-coupling reaction of 

2-pyridyl sulfonates with organolithium reagents is reported. A variety of 2-substituted 

pyridines were successfully synthesized in good yields, by treatment of neopentyl 2-pyridyl 

sulfonates and phenyl 2-pyridyl sulfonate with aryl, alkyl, and heteroaryl-lithium reagents at 

low temperature. Mechanistic studies showed that the coupling reaction with lithium reagents 

undergoes an SNAr pathway. However, a ligand coupling process of a σ-sulfurane intermediate 

may be involved in the reaction with Grignard reagents to form the biaryl. 
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Keywords: Direct arylation, 2-pyridyl sulfonate esters, biaryl synthesis, 2-substituted 

pyridine, lithiation, transition metal-free reactions.   
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Chapter 1. Introduction 

1.1 Overview of 2-substituted pyridines 

Pyridines belong to the most prominent and most important class of nitrogen-containing 

heterocycles. Due to their ubiquity, pyridine derivatives have found numerous applications in 

diverse fields (Figure 1). For example, derivatives such as nicotinamide adenine dinucleotide 

phosphate (NADP) (1.1) plays a key role in both biological and chemical systems involved in 

various oxidation-reduction process in living organisms.1 Niacin (1.2) and pyridoxine (1.3) are 

important vitamins in the human body.2 Other than prominent roles in biologically relevant 

processes, the pyridine core is also well known in the pharmaceutical field. In fact, according to 

the MDL Drug Data Registry, pyridine is a component of over 7000 existing drugs,3 such as 

Etoricoxib (1.4) and topoisomerase inhibitor 1.5. The pyridine core ranks second among the 

most used heterocycles in medicinal compounds.4 In addition, countless pyridines have been 

also found in agrochemicals such as pyridinenitrile (1.6) and chlorantraniliprole (1.7) exhibiting 

fungicidal and pesticidal respectively.4,5 Finally, pyridine derivatives like bipyridines (1.8) and 

terpyridines (1.9) are extensively used in coordination chemistry to complex various metal ions.6 
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Figure 1. Diverse utilisations of pyridine derivatives. 
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Despite the great importance of pyridine derivatives, the electron-deficiency of pyridines makes 

their functionalization a challenging task, especially at the 2-position.7 In fact, over the past 

three decades, a large number of articles have been published for the development of 2-pyridyl 

organometallic reagents that can be used in cross-coupling reactions.8–15 However, all of the 

methods show one or more important drawbacks, including poor stability of the 2-pyridyl 

building block,9,11–15 use of toxic metals8 and low reaction efficiency with halide coupling 

partners.10,11,13–16 Even in the prominent Suzuki-Miyaura cross-coupling reaction (SMC), 2-

pyridyl boronates may be unstable and can undergo a facile protodeboronation process after the 

formation of the boron-ate-complex (Figure 2).17 An electron withdrawing substituent, such as 

chloro or trifluoromethyl group, on the 6 position of the pyridine ring may minimize the 

protodeboronation of 2-pyridyl boronates but require more steps to install.18 

 

Figure 2. Possible protodeboronation mechanism for 2-pyridyl boronic acid.17 

For example, according to the survey of the Pfizer internal electronic laboratory notebook for 

SMC couplings, only 28 reactions out of a total of 358 led to a product yield of at least 20% 

when 2-pyridyl boronates were employed as nucleophilic partners (Figure 3).18  
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Figure 3. Problem of the Suzuki-Miyaura cross-coupling reaction with pyridine 

boronates. 

Aside from traditional cross-coupling reactions, oxidative cross-coupling of two 2-pyridyl 

nucleophiles via double C-H activation have encountered the same problem, as electron-

deficient (hetero)arenes are unreactive in electrophilic aromatic substitution (SEAr) chemistry 

with metalated partners (Figure 4).19 

 

Figure 4. a) Oxidative cross-coupling of two 2-pyridyl nucleophiles. b) Electrophilic 

aromatic substitution process. 

The problem may be avoided by using a reverse coupling approach in which 2 bromo- and 2-

chloropyridines are reacted with aryl nucleophiles (Figure 5).20 Such an approach is feasible for 
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only a smaller number of substrates and fails with many commercially available halogen-

substituted arenes. 

 

Figure 5. Suzuki-Miyaura reaction of 2-bromopyridine with aryl boronic acid.20 

Furthermore, coupling between two pyridines is not possible by the method. Currently, the 

problem can be circumvented by a reductive cross-coupling strategy which can combine two 

electrophiles using Ullmann-type coupling reactions (Figure 6).21,22 Although low yields are 

often observed with electron deficient pyridines, the reactivity can be mitigated by using 

catalysts possessing metals such as palladium or copper.23,24  

 

Figure 6. Ullmann-type reductive cross-coupling reaction of 2-bromopyridines.22 

The cross-coupling between two non-symmetrical aryls containing halogens is underdeveloped 

in classical Ullmann reactions as it often requires the use of a significant excess of the activated 

aryl (Figure 7).25,26 Moreover, the reaction temperature is crucial: above or below optimal 

temperature, homocoupling can prevail.27  



 

6 

 

Figure 7. Unsymmetrical Ullmann cross-coupling with excess of iodo naphthalene.26 

An attractive synthetic route to access 2-substituted pyridines is direct arylation of pyridine 

through metal catalyzed C-H activation by a vicinal heteroatom (Figure 8).28,29 The method 

avoids pre-installation of halogens on the pyridine ring in contrast to the classical cross-coupling 

methods. However, as the reaction proceeds through an electrophilic aromatic substitution 

(SEAr), improvements may be needed with electron deficient arenes.  

 

Figure 8. Metal-catalyzed C-H activation of electron-deficient heteroarenes.29 

Given the challenges, there is a need for an efficient and reliable method for the synthesis of 2-

substituted pyridines bearing carbon appendages. In the next section, we will discuss some 

important improvements that have been made for the methodologies cited above and some new 

approaches to prepare 2-substituted pyridines.  
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1.2 Electronic properties of pyridine 

 

Pyridine is the simplest heterocyclic compound of the azine type with chemical formula C5H5N. 

Pyridine is analogous to benzene except a methine group is replaced by a nitrogen. Three 

fundamental differences exist between the two structures: 1) the diminution of the length of the 

C=N bond; 2) the presence of an unshared electron pair in the plane of the ring (in the sp2 

hybridized orbital of nitrogen) in place of the hydrogen, and not involved in the aromaticity of 

the molecule (Figure 9); 3) the presence of a strong permanent dipole, caused by the greater 

electronegativity of the nitrogen compared to the carbon ( N → 3.0 , C → 2.5 ). 30 

 

Figure 9. Structure of pyridine. 

Nitrogen is more electronegative than carbon. Nitrogen can inductively drain electron density 

from the ring carbons and onto itself. In the mesomeric structures of pyridines (Figure 10), the 

electron density of the ortho and para carbons are diminished via resonance effects to exhibit 

fractional positive charges. As a result, the reactivity of pyridine towards nucleophilic 

substitution is usually favoured at the 2, 4 and 6 positions. Electrophilic substitution reaction 

rates on pyridine are significantly lower than on benzene. 
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Figure 10. Mesomeric structures, electron density and permanent dipole of pyridine.30 

Finally, due to the electron deficiency at ring carbons resulting from the polarization effect, 

pyridine and similar heterocycles are usually referred to as electron-poor or π-deficient arenes.31 

The HOMO of their π molecular orbitals is lower in energy compared to those of benzene 

(Figure 11). Consequently, the carbon atoms in pyridine are not nucleophilic. 

 

Figure 11. Energy level of π molecular orbitals of pyridine and benzene.31 
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1.3 Synthesis of pyridines with carbon substituents at position 2- 

Functionalization of pyridine at the 2-position with carbon-based substituents has been known 

for many decades. For example, treatment of pyridine with Grignard and organolithium reagents 

led to the corresponding 2-substituted pyridines as cited by Hanessian and Kagotani in efforts 

to develop optimized conditions.32 Alternative methods were also cited some of which will be 

updated in the sections below.33–36 

In recent years, the introduction of carbon-based substituents at the 2-position of pyridine has 

gained importance because 2-pyridine derivatives are privileged scaffolds in many biological 

and pharmaceutical compounds.4,37–41 Consequently, many methods have been developed for 

the synthesis of 2-subtituted pyridines, including the transition metal-catalyzed cross-coupling 

chemistry such as the venerable Suzuki-Miyaura reaction. In spite of the instability of 2-pyridyl 

boronic acid due to protodeboronation (Figure 12),17,42 the Suzuki-Miyaura coupling reaction is 

still favored sometimes to the rapidly access 2-substituted pyridines.43  

 

Figure 12. Unstable boronic acids due to protodeboronation. 

To understand the instability of 2-pyridyl boronic acid, Lloyd-Jones studied the 

protodeboronation rate of 18 boronic acids by varying the pH of the solution.17 They found that 

the instability is accelerated in the pH range of pH 4-8 causing the boronate zwitterionic 
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intermediate to decompose via fragmentation (Figure 13).17 More specifically, the zwitterionic 

fragmentation is facilitated by the presence of a basic nitrogen adjacent to the boron which can 

stabilize the B(OH)3 during C-B bond cleavage. The stronger ylidic character and the closer 

charge placement in the 2-pyridyl zwitterionic intermediate, both make 2-pyridyl boronates 

more prone to protodeboronation than 3- and 4-pyridyl boronates. However, at higher pH (pH 

>10), the protodeboronation rate becomes slower as the stabilizing interaction is attenuated.  

 

Figure 13. Mechanism of protodeboronation process for 2-pyridyl boronic acid.  

After understanding the mechanism of protodeboronation process, several strategies were 

investigated in order to circumvent the problem. In 2006, Fu and co-workers reported an 

efficient Pd/PCy3/K3PO4/dioxane/H2O catalyst system for Suzuki-Miyaura cross-coupling of 

aryl halides (Figure 14).44 By using the highly active and bulky electron-rich monophosphine 

ligand (PCy3), the rate of product formation is believed to outcompete the protodeboronation 

process to afford the coupling product in excellent yield. However, the use of the ligand alone 

cannot resolve the 2-pyridyl problem efficiently, and yields can vary from 2% to 92% contingent 

on base and solvent. 
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Figure 14. Efficient catalyst system for 2-pyridyl boronic acid cross-coupling reaction.  

In efforts to develop active catalyst systems, Lewis acidic metal additives containing copper, 

silver or zinc have been used to enhance traditional cross-coupling reactions.45–47 In 2009, Deng 

and co-workers reported that the coupling between 2-pyridyl boronates with diverse aryl halides 

was more efficient in the presence of stoichiometric copper salt additives (Figure 15a).48 In the 

presence of copper salts, the 2-pyridyl boronate may undergo metal exchange to form a 2-

pyridyl copper species (Figure 15b),48 which may react more rapidly with the active Pd species 

than the pyridyl boronate to increase the yields of 2-aryl pyridines. Considering that boronate 

esters and CuI sources are commercially available and inexpensive, the method provides a 

practical solution to improve the low reactivity of 2-pyridyl boronates. 
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Figure 15. Reaction and mechanism of Suzuki-Miyaura cross-coupling reaction with 

copper salt additives. 

The stability of the pyridyl boronates is also a key element in the cross-coupling reactions. In 

2008, Buchwald and Billingsley proposed a general solution for Suzuki-Miyaura cross-coupling 

reaction of problematic 2-pyridyl nucleophiles, by using 2-pyridyl tri-isopropyl borate as 

substrate (Figure 16).49 Various 2-pyridyl boron reagents were tested, but only the triol borate, 

lithium tri-isopropyl 2-pyridyl borate, proved to be stable and afforded a high yield. The special 

stability is attributed to the bulkiness of isopropyl groups that mask the boron center and render 

it less reactive to hydrolysis, thereby promoting “slow release” of the unstable active boron 
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species. However, the tolerance of functional groups can be an issue in the method, as it involves 

lithiation to prepare the borate species.  

 

Figure 16.  Cross-coupling reactions with stable lithium tri-isopropyl 2-pyridyl borate. 

Although the Suzuki-Miyaura cross coupling reaction has been successfully applied to pyridyl 

borates and aryl/heteroaryl halides under the modified conditions, direct functionalization at the 

ortho position would constitute an even more efficient approach which eliminates the need for 

the pre-functionalization of the pyridine core and may widen substrate scope. A highly 

functionalized pyridine may be synthesized in fewer steps by using direct functionalization 

pathways.50 

Recently, transition metal-catalyzed C-H bond functionalization methods for direct C-C bond 

formation toward 2-substituted pyridines have emerged.50–52 However, due to the electron 

deficient character of pyridine, such functionalization remains a challenging goal due to the 

difficulties of electrophilic aromatic substitution pathways. The problem has been circumvented 

in 2005 by the group of Fagnou.53 In their approach, the C-H activation of the pyridine nucleus 

was successfully achieved by conversion to the corresponding pyridine N-oxide (Figure 17). 

The enhanced reactivity of such a substrate is attributed to the electronic character of nitrogen 

when bonded to oxygen. Positions 2, 4, and 6 of pyridine N-oxides exhibit fractional negative 
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charges (Figure 18). The arylated pyridine N-oxide can be easily reduced to the pyridine 

counterpart using Pd/C and ammonium formate.  

 

Figure 17.  Palladium-catalyzed direct ortho-arylation of pyridine N-oxides. 

 

Figure 18.  Mesomeric structure of pyridine N-oxide. 

In 2008, Charette and co-workers developed a similar palladium-catalyzed arylation by using 

N-imino pyridinium ylides (Figure 19).54 The amide functionality is a stronger Lewis base and 

a better directing group than the N-oxide and may favor addition to the pyridine core by 

complexing the palladium center and directing the C-H bond insertion. The utilisation of fewer 

equivalents of ylide compared to that employed with the N-oxide reactions constitutes an 

advantage of the approach.  

 

Figure 19.  Palladium-catalyzed direct ortho-arylation of N-imino pyridinium ylides. 
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The 2, 4, 6 positions of pyridine N-oxide can also have electrophile character in the presence of 

strong organometallics such as Grignard reagents. The nucleophilic addition of a Grignard 

reagent to pyridine N-oxide has been known for many years.55–57 However, the method is prone 

to chemo-selectivity problems56, and the formation of intermediate ring-opened product 2,4-

dienal oxime, which requires a further treatment with acetic anhydride at high temperature (120 

°C) to regenerate the substituted pyridine ring (Figure 20).58  

 

Figure 20.  Nucleophile addition of Grignard reagent to pyridine N-oxide. 

In 2010, Almqvist and Olsson revised the field and reported a mild chemoselective method 

towards 2-substituted pyridines by using Grignard reagents (Figure 21).59 In the work, the 2-

substituted pyridine is formed in a single-step through Grignard addition at low temperature, 

which prevents the formation of the ring-opened products. A work-up with methanol and an 

acylating agent such as trifuoroacetic anhydride (TFAA) reduced the dihydropyridine N-oxide 

to afford the corresponding 2-aryl pyridine in good yields. 
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Figure 21.  Nucleophile addition of Grignard reagent to pyridine N-oxide. 

An efficient alkylation of N-oxides with benzyltrimethylsilane was also reported by Vorbrüggen 

(Figure 22).34 The oxygen anion can attack on the silyl center and liberate the alkyl nucleophile, 

which can undergo a nucleophile addition on the electrophilic C-2 position of the pyridine ring. 

Then the trimethylsilanol is eliminated by a rearomatization process affording 2-benzylpyridine 

in 70% yield.34  

 

Figure 22.  Alkylation of N-oxides with benzyltrimetylsilane. 

Finally, 2-alkyl pyridines can be also obtained by a regioselective addition of Grignard reagents 

to other N-activated pyridinium intermediates such as N-acyl pyridinium and N-

methoxycarbonyl pyridinium salts ( Figure 23).60,61 
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Figure 23.  Alkylation of N-activated pyridiniums with Grignard reagents. 

Although pyridine N-oxides seem to be versatile substrates for pyridine functionalization, the 

necessity of two additional steps for the activation of the pyridine core and unmasking of the 

arylated product, narrows the substrate scope. Thus, the use of pyridines directly would clearly 

represent the ideal situation in terms of both cost and simplicity. 

Except for the now historically noteworthy examples limited to pyridine and free radical 

mediated substitutions reactions,62–64 methods for the direct arylation of pyridine have not been 

adequately explored. In 2008, Ellman reported a Rh(I)-catalyzed arylation of pyridines and 

quinolines with aryl bromides at 175 °C in dioxane leading to 2,6-disubstitution in good yields 

(Figure 24).65 In the method, a bulky alkyl substituent is necessary in the 2-position of the 

pyridine for efficient coupling. The steric interactions provided by the 2-position substituent 

may limit binding of rhodium to the nitrogen. However, the necessities of a large excess of 

pyridine substrate and high temperature remain limitations of the approach. It is noteworthy that 

with a Pd catalyst, the 3-arylation product was observed instead of the desired 2-substituted 

pyridine.  
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Figure 24.  Rh-catalysed direct arylation of pyridines. 

Itami has achieved direct coupling of pyridine with aryl iodides in the presence of KOtBu under 

microwave conditions (Figure 25).66 In the work, a series of alkoxide reagents such as NaOtBu, 

LiOtBu, KOMe, and KOH were tested, but none afforded the coupling product under the same 

conditions. The special reactivity of KOtBu to promote coupling reactions is of significance 

because it avoids the addition of any exogenous transition metal species. However, the poor 

regioselectivity is the main limitation of the approach.  

 

Figure 25.  Potassium t-butoxide promoted direct arylation of pyridine. 

In 2013, You and coworkers developed a palladium-catalyzed double C-H activation method 

for 2-pyridine cross-coupling reactions (Figure 26a).67 In the reaction, a stoichiometric quantity 

of an oxidant such as a silver salt is required to oxidize the Pd0 and close the catalytic cycle. 

Neither coupling partner needs to be functionalized and both can coordinate on the palladium 

through C-H activation (Figure 26b). The resulting complex can then undergo reductive 

elimination to form the desired product in a good yield. However, the use of a large excess of 

pyridine remains the main limitation.  
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Figure 26.  Palladium-catalysed oxidative cross-coupling reactions and mechanism. 

Aside from the improvements of the classical methods, transition metal-catalyzed desulfinative 

cross-coupling has recently been considered as a potential approach to cross-coupling 

chemistry.68 In 2017, Willis and co-workers reported the palladium-catalyzed cross-coupling 

reactions of 2-pyridyl sulfinates with (hetero)aryl halides to afford 2-aryl pyridines in good 

yields (Figure 27).69 Compared with the corresponding boron-derived reagents, the sulfinates 

are shown to be easier to prepare and more stable under coupling reaction conditions. Moreover, 

the ability to couple efficiently with cheaper and less active aryl chlorides enables the 

preparation of a broad range of 2-linked pyridines. The synthesis of heteroaryl pyridines by the 

method constitutes an advantage over the classical methods.  
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Figure 27.  Pd-catalyzed cross-coupling of 2-pyridyl sulfinates. 

Detailed mechanistic studies by the Willis group in 2020, indicate that the use of potassium 

carbonates was a key to achieve good yields of products (Figure 28).70 They demonstrated that 

the potassium can undergo a cation exchange with the sodium sulfinate salt which accelerates 

the transmetalation step, while the carbonate moiety can trap the SO2 byproduct which can 

disrupt the catalysis by coordinating to the palladium center. They also showed that the rate-

determining step of the reaction is the rate of SO2 extrusion because of the formation of a five-

membered ring palladacycle with the 2-pyridyl sulfinate, which is thermodynamically stable. 

Thus, the need of an electron-withdrawing group on the pyridine ring to weaken the Pd-N bond 

or using high temperature is necessary for the Pd-N bond cleavage and the extrusion of SO2. 

Although 2-pyridyl sulfinates are potential coupling partners in cross-coupling reactions, they 

still have some issues such as difficult purification for more complex sulfinate salts due to their 

anionic character. 
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Figure 28.  General mechanism of desulfinative cross-couplings.70 

To circumvent the problems, Willis studied allylsulfones as latent sulfinate coupling partners in 

palladium-catalyzed cross-coupling reactions (Figure 29).71 Because of the neutral nature of the 

molecule, the purification problem was resolved. The Pd catalyst can generate the π-allyl-Pd 

intermediate and the active sulfinate, which will engage in the cross-coupling process. The 

resulting Pd (0) can be regenerated by interception of the π-allyl-Pd intermediate with a 

nucleophile thereby allowing the cross-coupling to proceed. 

 



 

22 

 

Figure 29.  Palladium-catalyzed desulfinative cross-coupling of 2-pyridyl allylsulfone.71 

Sulfinates can also be employed as the electrophilic coupling partners in Mizoroki− Heck72, 

Suzuki−Miyaura73, and Hiyama74 cross-coupling processes. Furthermore, sulfinates can also 

undergo efficiently nucleophilic aromatic substitution with organometallic reagents. In 2019, 

the Hu group reported a transition metal-free desulfinative cross-coupling of heteroaryl 

sulfinates with Grignard reagents in an SNAr process, to afford 2-substituted pyridine in good 

yields (Figure 30a).75 A patent (No. U.S. 7,560,563) disclosed the same reactivity between 2-

pyridyl sulfones and organolithium reagents at -78 °C (Figure 30b).76  

 

Figure 30.  Nucleophilic aromatic substitution of organometallics with 2-pyridyl 

sulfinates and 2-pyridiyl sulfones. 
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A similar cross-coupling reaction between 2-pyridyl sulfonate esters and organometallic 

reagents was reported by Hanessian and Kagotani in 1987, giving access to 2-alkyl and 2-

arylpyridines within short reaction times in good yields (Figure 31).32  

 

Figure 31.  Nucleophilic aromatic substitution of organometallics with sulfonate.32 

Finally, sulfur-containing organic molecules not only have great utilisations in organic 

synthesis, which can serve as useful building blocks and versatile functional group for further 

manipulations77. Sulfonyl chlorides78 and sulfonyl hydrazides79, are efficiently used in transition 

metal catalyzed for desulfinative cross-coupling reactions to synthesize heterobiaryl products.  

The objective of the project is to revise the reactivity of 2-pyridyl sulfonate esters with 

organometallic reagents and to expand their utilisation in cross-coupling reactions, in order to 

develop a mild, scalable, and transition metal-free desulfinative cross-coupling approach to 

access 2-substituted pyridines.  
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Chapter 2. Direct arylation of 2-pyridyl sulfonates with 

organolithium reagents 

2.1 2-Pyridyl sulfonate esters 

The inception of the project dates back to over 30 years ago, when Hanessian and Kagotani 

reported the reaction of neopentyl 2-pyridyl sulfonate with organometallic reagents to produce 

the corresponding 2-substituted pyridines (Table 1).32 In an independent study, primary and 

secondary 2-pyridyl sulfonate esters of aliphatic alcohols reacted with MgBr2 at 0 °C to afford 

the corresponding bromides.80 

Table 1.Direct arylation of neopentyl 2-pyridyl sulfonate with organolithium reagents.32 

 

Product 

No. 
R 

Reaction conditions 
Yield 

(%) 
Reagent 

(equiv.) 

Temp.(°C)/ 

Time (h) 

2a n-C4H9 RLi (2) -78/0.5 68% 

2c C6H5 RLi (1.2) -78/0.5 80% 
 

 

Intrigued by the effective reactivity of the 2-pyridyl sulfonate ester 1a, we deemed it worthy to 

expand on the prior results as an alternative cross-coupling method to prepare carbon-substituted 

pyridines at the 2-position. 

2-Pyridyl sulfonate esters can be prepared in high yield by treatment of an alcohol with 2-pyridyl 

sulfonyl chloride. The latter reagent has been known for some time32,80 but only sporadically 
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used. Obtained as a white powder, pyridyl sulfonyl chloride has good shelf life especially if 

stored at 0 °C. Originally it was prepared by bubbling chlorine gas into a solution of pyridine 2-

thiol in concentrated hydrochloric acid.32 However, in the study, we adopted a more practical 

method by using sodium hypochlorite solution as chlorine source (Figure 32).81 

 

Figure 32.  Synthesis of neopentyl 2-pyridyl sulfonates. 

To explore SNAr-type reactions at the 2-position, we began our investigation with the crystalline 

neopentyl 2-pyridyl sulfonate (1a). Treatment with 3 equivalents of phenyl lithium in THF at -

78 °C led to the desired 2-phenyl pyridine (5a) in 84% yield within 30 min. Relative to ether, 

THF was found to be the better solvent with regard to reactivity and solubility (Table 2). 

 

Table 2.  Optimization of the conditions for phenyl lithium reaction. 

 

Entry Ph-Li Solvent yield 

1 1.2 equiv. Ether 26%+ 62% SM 

2 

3 

1.2 equiv. 

2 equiv. 

THF 

Ether 

29% + 60% SM 

70% +18% SM 

4 

5 

6 

2 equiv. 

3 equiv. 

3 equiv. 

THF 

Ether 

THF 

72% + 16% SM 

80% 

84% 
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We then studied the coupling reaction of neopentyl 2-pyridyl sulfonate (1a) with various alkyl, 

aryl and heteroaryl organolithium compounds in order to gain information about the potential 

and scope of the reaction. Various organolithium reagents were screened using the optimized 

conditions as shown in Table 3. Thus, the Li/Br exchange of bromo aryl compounds was firstly 

performed at -78 °C to obtain the aryl lithium species (4a-4i). Inverse addition of 3 equivalents 

of organolithium reagent (1 M) into the solution of the neopentyl 2-pyridyl sulfonate (1a) at -

78 °C afforded the desired products (5a-13). The procedure worked smoothly only for the 

reactions with phenyl lithium (4a) (Table 3, entry 1) and 2-pyridyl lithium (4c) (Table 3, entry 

3), leading to the desired products (5a, 7) in excellent yields.   
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Table 3.    Preliminary cross-coupling studies of neopentyl 2-pyridyl sulfonate with 

organolithium reagents. 

 

Results showed that the reactions with other heteroaryl lithiums were unsatisfactory as most of 

the reactions did not achieve a full conversion, and in some cases no reaction occurred (Table 
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3, entry 2a-9a) using the inverse addition strategy (addition of a concentrated organolithium 

solution 1 M into a diluted 2-pyridyl sulfonate solution ). Low conversion with certain 

organolithium solutions (4b, 4d-4f) may be due to precipitation at high concentration (1 M), 

which complicated precision in handling the reagent. Therefore, we decided to use a direct 

addition mode whereby the 2-pyridyl sulfonate was added into a diluted and clear organolithium 

solution for the problematic cases. 

Addition of neopentyl 2-pyridyl sulfonate (1a) into a dilute and clear solution of 3 equivalents 

of 2-quinolyl lithium (4d), led to 52% of the desired product (8) together with a dimerized 2,2'-

biquinoline (Table 3, entry 4b). In the reaction with 2-pyridyl lithium (4c), the yield of product 

7 decreased from 92% to 72% (Table 3, entry 3b). For lithium solutions (4d, 4g-4h) which were 

not stable at room temperature and could be potentially quenched during syringe transfer, direct 

addition was preferred over the inverse addition mode (Table 3, entry 4, 7-8). In our hands, use 

of a cannula for lithium solution addition was not applicable on a 0.174 mmol scale. In the cases 

of N-methyl indole lithium (4f), 3-furyl lithium (4g), 2-thiazolyl lithium (4h) and 2-thienyl 

lithium (4i), neither addition mode afforded a detectable coupling product, and the neopentyl 2-

pyridyl sulfonate (1a) was recovered unchanged after reaction at -78 °C even with excess 

reagents (Table 3, entry 6-9). The same result was obtained with mesityl lithium (4b) and may 

be due to steric effects (Table 3, 2b). All the organolithium reagents reacted with benzaldehyde 

under similar conditions. 

In order to solve the coupling issues with the oxygen and sulfur containing heteroaryl lithiums, 

2-thiazolyl lithium (4h) was selected as the testing substrate because of its ease of preparation. 

Different conditions have been screened to understand the influence of parameters such as 

temperature, mode of addition and number of equivalents of reagent (Table 4).  
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Table 4.Optimization of the conditions for coupling reaction with 2-thiazolyl lithium. 

 

A solution of neopentyl 2-pyridyl sulfonate (1a) was added dropwise into a 2-thiazolyl lithium 

(4h) solution. Different equivalents of organolithium, and other parameters were evaluated. The 

temperature seemed to be the primary factor that governed the reaction. The product 12 was not 

formed at low temperature (-78 °C), even at high concentration and more equivalents of 

organolithium reagents (Table 4, entry 1-2), but was obtained at 0 °C with 2 equivalents of 2-

thiazolyl lithium (4h), affording 2-thiazolyl 2-pyridine (12) in 45% yield accompanied by the 

dimeric 2,2’-bithiazole (Table 4, entry 3). Unfortunately, due to the stability of the thiazolyl 
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lithium, the reaction was not repeatable at 0 °C and the starting material (1a) remained unreacted 

most times (Table 4, entry 4-5). The problem was circumvented by lowering the temperature to 

-40 °C (Table 4, entry 6). Four equivalents of 2-thiazolyl lithium (4h) were needed to have a 

full conversion (Table 4, entry 7). The concentration effect of organolithium was also evaluated 

by doubling the concentration to 0.32 M. Although no improvement was observed and same 

results were obtained (Table 4, entry 8-9), the conditions in entry 9 were selected to study other 

heteroaryl lithiums. 

The organolithium reagents (4a-4i) were reacted with neopentyl 2-pyridyl sulfonate (1a) using 

the optimized conditions (Table 5).  

 

 



 

31 

Table 5.(Hetero)aryl-Li addition reactions to neopentyl 2-pyridyl sulfonate. 

 

All examined aryl organolithiums showed good nucleophilicity toward the C-2 position of the 

neopentyl 2-pyridyl sulfonate (1a) and delivered the expected biaryl products (5a, 5c) in 
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excellent yields at -78 °C. In the case of p-tolyl lithium, one more equivalent of lithium reagent 

was required to have a full conversion. Treatment of 1a with 2-pyridyl lithium (4c) afforded the 

coupled product 2,2'-bipyridine (7) in an excellent yield (92%). Other pyridine derivatives were 

less effective at -78 °C. For example, 2-quinolyl lithium (4d) required 4 equivalents to furnish 

pyridine 8 in moderate yield (67%) accompanied by 2,2'-biquinoline dimer. N-Methyl pyrrole 

lithium (4e) reacted sluggishly at -78 °C even with 6 equivalents of the lithium reagent, affording 

pyridine 9 in a low yield (30%), accompanied by 40% of recovered sulfonate (1a) and 15% of 

pyridyl N-methyl pyrrole sulfone (17). The reaction with the benzylic nucleophile picolinyl 

lithium proceeded smoothly to afford pyridine 14 in excellent yield (85%). 

For other heterocyclic nucleophiles such as 3-furyl lithium (4g), N-methyl indole lithium (4f) 

and 2-thienyl lithium (4i), cross-coupled products 10-11, 13 were isolated in good to modest 

yield by applying the condition used for 2-thiazolyl lithium (at -40 °C). Interestingly, in the 

reaction with 2-thienyl lithium (4i), sulfone species 18 was again detected and isolated in 12% 

yield.  

2-Pyridyl sulfonates (e.g., 1b-1d) bearing a variety of substituents such as chloride and methyl 

group at meta positions were also prepared and reacted with phenyl lithium (4a) to give 

substituted pyridines 6a-6c. Pyridines 6a-6c were not synthesized efficiently in a recent article 

which reported a similar cross-coupling process involving 2-pyridyl sulfinate and Grignard 

reagents as coupling partners, in the absence of transition-metal catalysts.75 5-Chloro-2-phenyl 

pyridine (6c) was formed in 74% yield under our condition by treatment with the corresponding 

2-pyridyl sulfonate (1d) at -78 °C. Phenyl lithium (4a) added successfully into the more crowded 

C-2 position of 2-pyridyl sulfonate 1b, affording 3-methyl-2-phenyl pyridine (6b) in excellent 

yield (90%). However, the reaction with neopentyl 5-methylpyridine-2-sulfonate (1c) was quite 
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sluggish under the condition even with 5 equivalents of organolithium reagents, affording 5-

methyl-2-phenylpyridine (6c) in a moderate yield (51%). One possible reason is that the methyl 

is an electron donating group which can enrich the electron density of the pyridine core, and 

thus make it less electrophilic to the nucleophilic addition. It is of interest that no regioisomers 

were observed, and attack of nucleophiles occurred exclusively at the C-2 position of the 2-

pyridyl sulfonates.  

To explore some mechanistic aspects of the reaction, dansyl chloride was added before workup 

of the reaction between neopentyl 2-pyridyl sulfonate (1a) and phenyl lithium (4a) in order to 

trap the alkoxide (Figure 33). However, the expected neopentyl dansyl sulfonate was not 

observed by the TLC under UV light in comparison with a reference sample. 

 

Figure 33.  Test with dansyl chloride. 

2.2 Phenyl 2-pyridyl sulfonate 

To increase the reactivity of heteroaryl lithium reagents toward 2-pyridyl sulfonates, we 

changed the neopentyl alcohol part of the sulfonate to a more electron withdrawing group such 

as phenol, in order to render the sulfonate a better leaving group.   
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A series of aryl and heteroaryl lithiums were reacted with phenyl 2-pyridyl sulfonate (2) under 

optimized conditions (Table 6). The nucleofugality of the sulfonate moiety does not seem to 

have an important effect on the reactivity of the coupling reactions. The yields of 2-phenyl 

pyridine (5a), 2-tolyl pyridine (5c), and bipyridine (7) were comparable to those obtained with 

the neopentyl 2-pyridyl sulfonate (1a) (Table 6). An equivalent of phenol was isolated from the 

reactions. 2-Thiazolyl lithium (4h) reacted smoothly this time at -78 °C, but instead of affording 

the desired pyridine 12, 2-thiazolyl 2-pyridyl sulfone (15) was isolated in 84% yield. Similar 

sulfone products (e.g., 16-18) were also obtained in good to modest yields from reactions with 

3-furyl lithium (4g), 2-thienyl lithium (4i) and N-methyl pyrrole lithium (4e) under similar 

conditions. However, at higher temperature (-40 °C), the cross-coupled products 10-12 were 

obtained in modest yields.  
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Table 6.   (Hetero)aryl-Li addition reactions to phenyl 2-pyridyl sulfonate. 

 

In order to test if a sulfone was a reactive intermediate, 2-thiazolyl 2-pyridyl sulfone (15) was 

treated with 3 equivalents of 2-thiazolyl lithium (4h) under the same conditions (Figure 34b). 

Interestingly, the yield of 2-thiazolyl pyridine (12) was comparable to that obtained with 2-

pyridyl sulfonates 1a and 2, accompanied by 2,2’dithiazole dimer (Figure 34b).  
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Figure 34.  Reactivity between 2-thiazolyl lithium with phenyl 2-pyridyl sulfonate and 

2-thiazolyl 2-pyridyl sulfone. 

The result led us to wonder whether the coupling reaction between 2-pyridyl sulfonates and 

organolithium reagents could proceed through a sulfone intermediate, as the softer heteroaryl 

lithiums may have a preference to attack on the sulfur atom of the pyridyl sulfonate ester. Thus, 

the reaction may initially proceed to give the heteroaryl 2-pyridyl sulfone. At higher 

temperature, the excess of the organolithium reagent could react further to afford the coupled 

product. The detection of N-methyl pyrrole sulfone 17 and thienyl sulfone 18 from the previous 

reactions with neopentyl 2-pyridyl sulfonate (1a) support the assumption. However, no sulfone 

19 was observed at -40 °C employing N-methyl indole lithium (4f), but cross-coupled product 

10 was isolated from reaction higher temperature in 37% yield. 

2.3 Phenyl 2-pyridyl sulfone  

In order to exclude the possibility that 2-pyridyl sulfone was an intermediate of the coupling 

reaction, several experiments were conducted. Firstly, 1.2 equivalents of phenyl lithium (4a) 

were added to a solution of 2 at -78 °C, and afforded 2-phenyl pyridine (5a) in 31% yield 
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together with 58% yield of recovered starting material 2. No sulfone product was detected. It 

can be concluded that the reaction of 2-pyridyl sulfonates with phenyl lithium (4a) involves an 

SNAr process (Figure 35). 

 

Figure 35.  Test with 1.2 equiv. of PhLi. 

We also reacted neopentyl and phenyl 2-pyridyl sulfonates (1a and 2) as well as phenyl 2-

pyridyl sulfone (3) with phenyl lithium (4a) under the same conditions (3 equiv. PhLi, THF, -

78 °C, 30 min) (Table 7, entry 1). All three reactions afforded 2-phenyl pyridine (5a) in a similar 

yield of 80-84% without trace of phenyl sulfone (3) (Table 7, entry 1). 
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Table 7.    Comparing reactivity of sulfonates and sulfone with Ar(Het) Li. 

 

To further evaluate the difference of reactivity between sulfonate 1a and sulfone 3 in such 

coupling chemistry, we reacted a 1:1 mixture of both starting materials in THF with 2.5 

equivalents of phenyl lithium (4a) at -78 °C (Figure 36). We noted that the reactivity with phenyl 

lithium (4a) was quite similar and a nearly equal quantity of both starting materials was 

recovered indicating an SNAr process in both cases. 
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Figure 36.  Reactivity of neopentyl 2-pyridyl sulfonate and phenyl sulfone with PhLi. 

The reactivity of sulfonates 1a, 2 and sulfone 3 with 2-pyridyl lithium (4c) were similar and 

afforded the coupled bipyridine 7 in 86-92% yields (Table 7, entry 3). Less equivalents of p-

tolyl lithium (4j) were needed for sulfone 3 to react to full conversion (Table 7, entry 2). 

To further compare their reactivity, a 1:1 mixture of neopentyl 2-pyridyl sulfonate (1a) and 

phenyl 2-pyridyl sulfone (3) in THF was treated again with 2.5 equivalents of p-tolyl lithium 

(4j) at -78 °C (Figure 37). 

 

Figure 37.  p-Tolyl Li addition to sulfonates and sulfone. 

The spot of sulfone 3 disappeared more rapidly than that of sulfonate 1a on the TLC plate. We 

recovered 4% yield of the phenyl 2-pyridyl sulfone (3) and 20% yield of the neopentyl 2-pyridyl 

sulfonate (1a). The lower reactivity of p-tolyl lithium toward pyridyl sulfonate 1a compared to 

pyridyl sulfone 3 raises doubts whether the reaction is proceeding through the sulfone 

intermediate. No sulfone was observed when phenyl 2-pyridyl sulfonate (2) reacted with 2.5 
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equivalents of p-tolyl lithium, affording 61% yield of aryl pyridine 5c and 14% yield of 

recovered starting material (2). 

We then proceeded to compare the reactivity of 2-pyridyl sulfonates 1a, 2 and 2-pyridyl sulfone 

3 with heteroaryl lithium reagents to examine if the sulfone is the reactive intermediate since 

sulfone intermediate was detected in the reactions of phenyl 2-pyridyl sulfonate (2) with most 

of the heteroaryl lithium reagents at -78 °C (Table 6). A small quantity of 3-furyl 2-pyridyl 

sulfone (16) was observed when 2-pyridyl sulfonates 1a, 2 were reacted with 3 equivalents of 

3-furyl lithium (4g) at -40 °C (Table 7, Entry 4). More equivalents of 3-furyl lithium were 

needed for the reaction of the sulfonates to go to full conversion, compared to the phenyl 2-

pyridyl sulfone (3) reaction indicating that the formation of sulfone may be a secondary reaction 

in the chemistry between 2-pyridyl sulfonates 1a and 2 and heteroaryl lithium reagents. 

Especially in the reaction of phenyl 2-pyridyl sulfonate (2), sulfones may be formed more easily 

than in the reaction with neopentyl 2-pyridyl sulfonate (1a) at -40 °C (Table 7, Entry 4). 

Curiously, in the reaction of phenyl 2-pyridyl sulfone (3) with 3 equivalents of 2-thiazolyl 

lithium (4h) at -40 °C, the dimeric 2,2’ dithiazole product was not observed and the pyridine 

thiazole 12 was isolated in 65% yield (Table 7, entry 5). To explore some mechanistic details 

for the formation of the dimerized product, a solution of 2-thiazolyl lithium (4h) was treated 

alone at -40 °C to see if the dimer would form. However, no trace of the dimer product was 

observed.  

 

 



 

41 

2.4 Plausible mechanism 

There are three plausible pathways for bond cleavage of neopentyl and phenyl 2-pyridyl 

sulfonates, and 2-pyridyl sulfones with organolithium reagents (Figure 38). In pathway (a), the 

organolithium reagent can effect a nucleophilic substitution on the neopentyl carbon bearing a 

sulfonyl group, which is a good leaving group. However, the C-O cleavage appears not to be 

operative in our cases since the attack on the neopentyl and phenyl groups is intrinsically not 

favored. Pathway (b) corresponds to an SNAr type reaction, in which the organolithium adds to 

the activated electrophilic C-2 position of pyridine and displaces the leaving group leading to 

the coupled products in the Table 5. The same mechanism has been also proposed by Hu et al. 

in their transition metal-free coupling reaction between a 2-pyridyl sulfinate and Grignard 

reagents.75 Pathway (c) leading to the substituted 2-pyridyl sulfones seems to be in vigor only 

in the reaction of phenyl 2-pyridyl sulfonate (2) with softer heteroaryl lithium such as N-methyl 

pyrrole, furyl, thiazolyl and thienyl lithiums (4e and 4g-i) at low temperature (-78°C) (Table 6). 

One possible explanation is that the lithium reagents are less reactive at -78 °C and do not 

undergo an SNAr process. They can, however, displace the phenolate part of the phenyl 2-

pyridyl sulfonate (2) at -78 °C, to afford the pyridyl sulfones (15-18) in good to modest yield. 

Aryl and heteroaryl lithium reagents can also attack the 2-pyridine carbon of phenyl 2-pyridyl 

sulfone (3) with release of lithium phenyl sulfinate.  
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Figure 38.  Possible bond cleavage pathways of 2-pyridyl sulfonates. 

To form a heterobiaryl sulfone such as thiazolyl pyridyl sulfone (15), the SNAr process can occur 

by the organolithium reacting either at the pyridine carbon or at the thiazole carbon because 

2,2’-bithiazole was isolated from the reaction using thiazolyl lithium (4h). To demonstrate the 

possibility, the thiazolyl 2-pyridyl sulfone (15) was treated with 4 equivalents of PhLi (4a) at -

78 °C to furnish the phenyl 2-pyridine (5a) as the only detectable product in 78% yield (Figure 

39a). With 2 equivalents of PhLi (4a) at -40 °C , a mixture of three adducts consisting of the 2-

phenyl pyridine (5a) (65%), 2-thiazolyl pyridine (12) (13%) and 2-phenyl thiazole (20) (11%) 

was obtained (Figure 39b).  
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Figure 39.  Reactivity between thiazolyl pyridyl sulfone and PhLi. 

The formation of 2-thiazolyl pyridine (12) was surprising since this meant extrusion of SO2 in 

the process of combining two heteroaryls. This type of desulfinative coupling reaction of pyridyl 

sulfone was only known in a nickel-catalyzed reaction at high temperature (150 °C) to furnish 

biaryls (Figure 40).82  

 

Figure 40.  Transformation of phenyl 2-pyridyl sulfone into 2-phenyl pyridine via 

extrusion of SO2. 

Another possibility is through a ligand coupling reaction of a pentacoordinate hypervalent σ-

sulfurane intermediates (Figure 41).83 These species are usually unstable due to the expanded 

valence-shell and tend to resume their normal valency by extruding a pair of ligands from the 

hypervalent atom in order to form a stable octet sulfur compound. Normally, the two extruded 

ligands are one from an axial position and the other from an equatorial position as their orbitals 

can overlap easily in the trigonal bipyramid structure of σ-sulfurane intermediates. 
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Figure 41. Structure of σ-sulfurane and bond angles. 

 In fact, ligand coupling reactions which proceed within a σ-sulfurane intermediate have been 

known for many decades, especially in the reaction between a sulfoxide and Grignard reagents.83 

The general mechanism of such transformation consist of 3 steps.84 Firstly, the Grignard reagent 

attacks a sulfoxide opposite to the sulfinyl oxygen to occupy the axial position of the sulfurane 

intermediate. Then, a reversible pseudorotation process will allow the sulfurane to adopt the 

most stable conformation depending on the electronic and steric effects of its ligands (Figure 

42).84 Normally electron rich and sterically large ligands will occupy an equatorial position to 

minimize the destabilisation. Finally, the axial ligand will couple preferentially with one 

equatorial ligand due to overlapping of orbitals to form the coupling product.  
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Figure 42.  Electronic and steric bias of sulfurane. 

Interestingly, in some cases the ligand coupling reaction can proceed faster than the 

pseudorotation within the sulfurane intermediate.85 In a reaction between a deuterated benzyl 2-

pyridyl sulfoxide and a benzyl magnesium chloride at room temperature, the significant 

difference of yield of benzyl pyridine (88%) and dideuterobenzyl pyridine (12%) shows that the 

ligand coupling reaction is faster (Figure 43).   

 

Figure 43.  Ligand coupling reaction of sulfoxide with benzyl Grignard.85 
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However, there are also cases in which pseudorotation proceeds faster than ligand coupling.86 

For example, in the reaction of phenyl 2-pyridyl sulfoxide with benzyl magnesium bromide 

(Figure 44a), or in the reaction of benzyl 2-pyridyl sulfoxide with phenyl magnesium bromide 

(Figure 44b), the ligand coupling always takes place between 2-pyridyl and benzyl groups. This 

means that regardless of the nature of the nucleophile which attacks the sulfur atom from an 

axial orientation, pseudorotation prefers to place the benzyl group on an axial position for easier 

ligand coupling with the 2-pyridyl group. 

 

Figure 44.  Reaction of sulfoxides with Grignard reagents.86 

Ligand exchange chemistry could also occur in the reaction between sulfoxides and Grignard 

reagents, by way of a σ-sulfurane intermediate.35 In the reaction between a methyl 2-pyridyl 

sulfoxide and phenyl magnesium bromide at room temperature (Figure 45), the initial ligand 

exchange forms 2-pyridylmagnesium bromide, which in the subsequent step can further react 

with the original sulfoxide to afford 2,2'-dipyridyl, the ligand coupling product, in 41% yield. 

However, no general conclusion can be drawn on the relationship between these three processes 
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(ligand coupling, pseudorotation and ligand exchange) in such reactions, until additional kinetic 

measurements are made for coupling reaction with various ligands .83   

 

Figure 45.  Ligand exchange reaction between sulfoxides and Grignard reagent.35 

Although the ligand coupling reactions for sulfone substrates are not well known, it is still 

observed in a reaction of an acetylenic sulfone with n-butyllithium (Figure 46). 87  

 

Figure 46.  Ligand coupling reaction of a sulfone. 

In the reaction of thiazolyl 2-pyridyl sulfone (15) with PhLi (4a) at -40 °C (Figure 47), the 

lithium reagent may initially attack from the axial position of the sulfone to form a sulfurane A, 

then a reversible pseudorotation will place the electron rich phenyl on the equatorial position 

and thiazole on the aixal position, to have the stable conformation as in sulfurane B. Then the 

interaction between the axial thiazole with equatorial pyridine would afford the thiazolyl 

pyridine ligand coupling product (12).  
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Figure 47.  Addition of PhLi to thiazolyl sulfone via ligand coupling process. 

To further test the ligand coupling reaction, phenyl 2-pyridyl sulfonate (2) was treated with 1.5 

equivalents of PhMgBr (Figure 48, Eq. 1). Although no reaction took place at -78 °C, the phenyl 

sulfone (3) was obtained in 68% yield within 1 h at 0 °C, indicating that the Grignard reagents 

attack preferentially at the sulfur atom and with elimination of the phenolate. The same reaction 

was repeated with 3 equivalents of PhMgBr (Figure 48, Eq.2), and led to a mixture of three 

adducts consisting of the 2-phenyl pyridine (5a) (42%), 4-phenylpyridyl 2-phenyl sulfone (21) 

(10%) and the bis-phenyl sulfone 22 (7%). The formation of 2-phenyl pyridine (5a) could either 

proceed via an SNAr type reaction or a ligand coupling reaction. The formation of 4-

phenylpyridyl 2-phenyl sulfone (21) was not too surprising as Grignard reagents are known to 

add to the 2-, and 4-position of the pyridine. There are approaches using bulky pyridinium salts 

to block intentionally the C-2 position of the pyridine, to synthesize the 4-substituted pyridine 

using Grignard reagents.88,89 The formation of the bis-phenyl sulfone (22) could result from a 

ligand exchange process by replacing the electronegative ligand with PhMgBr to form a pyridyl 

MgBr which can further react with the original sulfonate (2) to form a 2,2'-sulfonyldipyridine 

or a bipyridine product. However, they were not detected. Finally, the treatment of phenyl 2-

pyridyl sulfone (3) directly under the same conditions led to 5a (62%), 21 (15%) and 22 (11%) 

(Figure 48, eq. 3), leading to the conclusion that the reaction of the phenyl 2-pyridyl sulfonate 
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(2) initially proceeds to give the phenyl 2-pyridyl sulfone (3), which in the presence of excess 

Grignard reagent reacts further.  

 

Figure 48.  Reaction of phenyl sulfonate with Grignard reagents 

2.5 Conclusion 

In summary, we were successful in the synthesis of 2-substituted pyridines by treatment of 

neopentyl 2-pyridyl sulfonates (1a-1d) and phenyl 2-pyridyl sulfonate (2) with aryl and 

(hetero)aryl lithium reagents in THF at -78 °C (or -40 °C). The nucleofugality of the sulfonate 

moiety did not have an important effect on the reactivity of the coupling chemistry and both 

reactions with sulfonates and sulfone were completed within 30 minutes using 3-6 equivalents 

of the lithium reagent in good yields (Table 5, Table 7). The results suggest an SNAr reaction 

pathway for organolithium reactions. Formation of sulfone could be seen especially in the 

reactions between phenyl 2-pyridyl sulfonate (2) and heteroayl lithium reagents at low 

temperature (-78 °C), presumably by attack of the softer hetero lithium reagents to the sulfur 
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atom with phenolate elimination. Experiments indicates that sulfones result from secondary 

reactions at high temperature (-40 °C). In contrast, Grignard reagents attack preferentially on 

the sulfur atom of the pyridyl sulfonate and sulfone, and both the SNAr pathway and ligand 

coupling process may be involved. More detailed mechanistic studies are currently being carried 

out in our laboratory to shed light on these possibilities. 

 

Figure 49. General trends for the reaction of 2-pyridyl sulfonates and sulfone with 

organometallic reagents.  
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2.6 Experimental procedures 

General information. Unless otherwise noted, all the reactions were carried out using 

standard Schlenk techniques. Glassware was oven (135 °C) or flame-dried prior to use. 

Anhydrous dichloromethane, diethyl ether and THF were obtained using solvent purification 

systems. All other solvents and reagents were used as received. Reactions were monitored by 

thin-layer chromatography carried out on 0.25 mm silica plates (SIL 60, G-25, UV254) and 

were visualized using a UV lamp (254 nm) or revealed with proper stains. NMR spectra were 

recorded on Bruker AV-300, ARX-400, AV-400 or AV-500 spectrometers with complete 

proton decoupling for nuclei other than 1H. 1H and 13C chemical shifts are reported in parts per 

million with the solvent resonance as the internal standard (CDCl3, 
1H: δ 7.26 ppm, 13C: δ 77.16 

ppm). Coupling constants are reported in Hertz (Hz). Abbreviations are used as follows: s = 

singlet, d = doublet, t = triplet, q = quadruplet, quint = quintuplet, sept = septuplet, dd = double 

doublet, dt = double triplet, ddd = double double doublet, dtt = double triple triplet, m = 

multiplet, br = broad. Spectra were analyzed and processed using MestReNova. High Resolution 

Mass Spectrometry (HRMS) analyses were performed at the Centre Régional de Spectrométrie 

de Masse de l’Université de Montréal. Phenyl 2-pyridyl sulfonate (2) was synthesized according 

to literature procedure.90 

General procedure to prepare thiol compounds 

 

To a solution of 5-chloropyridin-2(1H)-one (600mg, 4.6 mmol) in anhydrous toluene (55 mL), 

Lawesson reagent (1g, 2.3 mmol) was added and the mixture was stirred for 4 h at 124 °C (oil 

bath temperature). The mixture was cooled to rt and was left standing without stirring overnight. 
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Precipitated product 5-chloropyridine-2-thiol was then filtered off to give pale yellow crystals 

in 68% yield. Product was used without further purification. 3-Methylpyridine-2-thiol (62% 

yeild) and 5-methylpyridine-2-thiol (69% yield) were also made by this way from their starting 

material 3-methylpyridin-2(1H)-one and 5-methylpyridin-2(1H)-one respectively.  

General procedure to prepare sulfonyl chloride compounds  

 

To a 500 mL three-neck flask equipped with a thermometer and a sodium hydroxide trap, 9 

mmol (1 g) of pyridine 2-thiol and 25 mL of concd H2SO4 were added. The mixture was cooled 

to 0 °C using an ice bath and treated dropwise with 35.4 mL of sodium hypochlorite. The 

temperature should be kept under 15 °C during the addition. The mixture was kept at 0 °C for 

1h, and extracted with DCM (3 times). The organic layered was combined, dried with Na2SO4, 

filtered and evaporated in vacuum to a residue which was used without further purification. 3-

Methylpyridine-2-sulfonyl chloride, 5-methylpyridine-2-sulfonyl chloride, and 5-

chloropyridine-2-sulfonyl chloride were also made by this way with their thiol counterparts. 

General procedure for sulfonate synthesis  

Neopentyl 2-pyridyl sulfonate (1a) 

 

A solution of pyridine-2-sulfonyl chloride (470.7 mg, 2.65 mmol, 1.4 equiv.) in 4 mL of 

dichloromethane was treated at 0 °C with trimethylamine hydrochloride (180.6 mg, 1.89 mmol, 

1 equiv.) and triethylamine (0.53 mL, 3.78 mmol, 2 equiv.). A solution of neopentyl alcohol 
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(166.6 mg, 1.89 mmol, 1 equiv.) in 2.5 mL of dichloromethane was added to the reaction 

mixture. After stirring overnight at 0 °C, water was added to the reaction mixture, which was 

extracted with dichloromethane (3x). The organic layer was combined washed with water and 

brine, dried with MgSO4, filtered and evaporated. The residue was purified on silica gel using 

hexane/EtOAc = 80/20 as eluent affording 1a as a white solid (368 mg, 85%). 1H NMR (400 

MHz, CDCl3) δ 8.84 – 8.67 (m, 1H), 8.05 (d, J = 7.8 Hz, 1H), 7.96 (td, J = 7.7, 1.7 Hz, 1H), 

7.57 (ddd, J = 7.7, 4.7, 1.1 Hz, 1H), 4.03 (s, 2H), 0.93 (s, 9H) ppm. 13C NMR (75 MHz, CDCl3) 

δ = 155.0, 150.4, 138.3, 127.6, 123.3, 82.1, 32.0, 26.1 ppm. HRMS (ESI) calcd. for C10H16NO3S 

(M+H)+ 230.0845, found 230.0844. 

Neopentyl 3-methylpyridine-2-sulfonate (1b) 

 

Following the general procedure, 1b was isolated as a colorless oil (290 mg, 78%). 1H NMR 

(300 MHz, CDCl3) δ 8.54 (ddd, J = 4.6, 1.7, 0.7 Hz, 1H), 7.73 (ddd, J = 7.8, 1.6, 0.7 Hz, 1H), 

7.45 (dd, J = 7.8, 4.6 Hz, 1H), 3.97 (s, 2H), 2.69 (s, 3H), 0.96 (s, 9H) ppm. 13C NMR (75 MHz, 

CDCl3) δ 152.9, 146.6, 141.4, 134.1, 127.4, 81.7, 32.0, 26.2, 19.1 ppm. HRMS (ESI) calcd. for 

C11H18NO3S (M+H)+ 244.1002, found 244.0993. 

Neopentyl 5-methylpyridine-2-sulfonate (1c) 

 

Following the general procedure, 1c was isolated as a white solid (373 mg, 73%). 1H NMR (300 

MHz, CDCl3) δ 8.56 (dt, J = 2.3, 0.8 Hz, 1H), 8.00 – 7.86 (m, 1H), 7.80 – 7.64 (m, 1H), 3.98 (s, 
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2H), 2.45 (s, 3H), 0.92 (s, 9H) ppm. 13C NMR (75 MHz, CDCl3) δ = 152.1, 150.8, 138.4, 138.3, 

123.0, 81.7, 32.0, 26.1, 18.7 ppm. HRMS (ESI) calcd. for C11H18NO3S (M+H)+ 244.1002, found 

244.0992. 

Neopentyl 5-chloropyridine-2-sulfonate (1d) 

 

Following the general procedure, 1d was isolated as a white solid (420 mg, 74%). 1H NMR (300 

MHz, CDCl3) δ 8.69 (dd, J = 2.4, 0.8 Hz, 1H), 8.00 (dd, J = 8.4, 0.8 Hz, 1H), 7.92 (dd, J = 8.4, 

2.3 Hz, 1H), 4.03 (s, 2H), 0.94 (s, 9H) ppm. 13C NMR (75 MHz, CDCl3) 152.9, 149.4, 137.9, 

136.6, 124.2, 82.4, 32.0, 26.1 ppm. HRMS (ESI) calcd. for C10H15ClNO3S (M+H)+ 286.0275, 

found 286.0270. 

Phenyl 2-pyridyl sulfone (3) 

 

A round-bottom flask was charged with 2-chloropyridine (0.83 mL, 8.807 mmol, 1 equiv.), 

thiophenol (0.98 mL, 9.504 mmol, 1.1 equiv.) and DMF (6.8 mL), followed by K2CO3 (1.46 g, 

10.6 mmol, 1.2 equiv.), heated to 110 °C and stirred for 20 h. The heterogeneous mixture was 

filtered. The filter cake was washed with DMF. The filtrate containing the crude sulfide was 

concentrated and transferred to a new flask. The oxidation to sulfone was carried out by adding 

2.3 equiv. of mCPBA in DCM (0.1 M) and stirring for 5 hours. The conversion of the sulfide to 

the sulfoxide and sulfone was monitored by low-res MS. Saturated aqueous solution of Na2SO3 

was added and the organic phase was separated and washed with saturated aqueous solution of 
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NaHCO3. The combined organic phase was dried with Na2SO4, filtered and concentrated under 

reduced pressure. The residue was purified on silica gel using hexane/EtOAc = 80/20 as eluent 

affording 3 (1.5 g, 80%) as a white solid. 1H NMR (300 MHz, CDCl3) δ 8.67 (ddd, J = 4.7, 1.8, 

0.9 Hz, 1H), 8.20 (dt, J = 7.9, 1.0 Hz, 1H), 8.12 – 8.02 (m, 2H), 7.92 (td, J = 7.8, 1.7 Hz, 1H), 

7.65 – 7.57 (m, 1H), 7.57 – 7.49 (m, 2H), 7.45 (ddd, J = 7.7, 4.7, 1.2 Hz, 1H) ppm. 13C NMR 

(75 MHz, CDCl3) δ 158.9, 150.6, 139.0, 138.3, 133.9, 129.3, 129.1, 127.1, 122.3 ppm. HRMS 

(ESI) calcd. for C11H10NO2S (M+H)+ 220.0427, found 220.0426.  

2-Phenylpyridine (5a) 

 

A -78°C solution of 1a (40 mg, 0.174 mmol, 1 equiv.) in THF (1.16 mL) was treated dropwise 

with a 1.8 M solution of PhLi (0.29 mL, 0.522 mmol, 3 equiv), stirred for 30 min. The reaction 

was quenched with water and extracted with dichloromethane (3x). The combined organic 

layers were dried over Na2SO4, filtered and concentrated under reduced pressure. The residue 

was purified on silica gel using hexane/EtOAc = 9/1 as eluent affording 5a (23 mg, 84%) as a 

yellow oil. From 2 and 3, 5a was isolated in 81% and 80% yield respectively following the same 

conditions. 1H NMR (300 MHz, CDCl3) δ 8.72 (dt, J = 4.8, 1.6 Hz, 1H), 8.12 – 7.92 (m, 2H), 

7.82 – 7.67 (m, 2H), 7.59 – 7.34 (m, 3H), 7.32 – 7.14 (m, 1H) ppm. 13C NMR (75 MHz, CDCl3) 

δ = 157.6, 149.8, 139.5, 136.9, 129.1, 128.9, 127.1, 122.2, 120.7 ppm. HRMS (ESI) calcd. for 

C11H10N (M+H)+ 156.0808, found 156.0812. 
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2-(p-Tolyl)pyridine (5c) 

 

A 1 M solution of p-tolyl lithium was prepared by stirring an equimolar mixture of nBuLi and 

1-bromo-4-methylbenzene in THF at -78 °C for 1 h. A -78 °C solution of 1a (40 mg, 0.174 

mmol, 1 equiv.) in THF (1.1 mL) was treated dropwise with the 1 M solution of tolyl lithium 

(0.35 mL, 0.349 mmol, 2 equiv.), stirred for 20 min, treated with another 2 equivalents of the 

tolyl lithium solution and stirred for 10 min. The reaction was then quenched with water and 

extracted with dichloromethane (3x). The combined organic layers were dried over Na2SO4, 

filtered and concentrated in vacuo. The residue was purified on silica gel using hexane/EtOAc 

= 9:1 as eluent affording 5c (25 mg, 84%) as a yellow oil. From 2 and 3, 5c was isolated in 86% 

and 93% yield respectively following the same conditions. 1H NMR (400 MHz, CDCl3) δ 8.68 

(dt, J = 5.0, 1.4 Hz, 1H), 7.98 – 7.84 (m, 2H), 7.76 – 7.65 (m, 2H), 7.29 (d, J = 8.0 Hz, 2H), 

7.19 (ddd, J = 6.1, 4.9, 2.4 Hz, 1H), 2.41 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 157.5, 

149.6, 139.1, 136.8, 136.7, 129.6, 126.9, 121.9, 120.4, 21.4 ppm. HRMS (ESI) calcd. for 

C12H12N (M+H)+ 170.0964, found 170.0956.  

5-Methyl-2-phenylpyridine (6a) 

 

A -78 °C solution of 1c (42.3 mg, 0.174 mmol, 1 equiv.) in THF (1.16 mL) was treated dropwise 

with a 1.8 M solution of PhLi (0.29 mL, 0.522 mmol, 3 equiv.), stirred for 20 min, treated with 

another 2 equivalents of the PhLi solution, stirred for 10 min, quenched with water and extracted 
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with dichloromethane (3x). The combined organic layers were dried over Na2SO4, filtered and 

concentrated under reduced pressure. The residue was purified on silica gel using hexane/EtOAc 

= 9/1 as eluent affording 6a (15 mg, 51%) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ 8.60 

– 8.46 (m, 1H), 8.02 – 7.93 (m, 2H), 7.63 (d, J = 8.1 Hz, 1H), 7.55 (dd, J = 8.1, 2.3 Hz, 1H), 

7.46 (dd, J = 8.3, 6.6 Hz, 2H), 7.44 – 7.36 (m, 1H), 2.37 (s, 3H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 154.9, 150.0, 139.3, 137.6, 131.8, 128.9, 128.8, 126.9, 120.3, 18.3 ppm. HRMS (ESI) 

calcd. for C12H12N (M+H)+ 170.0964, found 170.0958. 

3-Methyl-2-phenylpyridine (6b) 

 

A -78 °C solution of 1b (42.3 mg, 0.174 mmol, 1 equiv.) in THF (1.16 mL) was treated dropwise 

with a 1.8 M solution of PhLi (0.29 mL, 0.522 mmol, 3 equiv.), stirred for 30 min, quenched 

with water and extracted with dichloromethane (3x). The combined organic layers were dried 

over Na2SO4, filtered and concentrated under reduced pressure. The residue was purified on 

silica gel using hexane/EtOAc = 8/2 as eluent affording 6b (26 mg, 90%) as a yellow oil. 1H 

NMR (400 MHz, CDCl3) δ 8.62 – 8.43 (m, 1H), 7.60 – 7.56 (m, 1H), 7.55 – 7.50 (m, 2H), 7.48 

– 7.42 (m, 2H), 7.42 – 7.36 (m, 1H), 7.18 (dd, J = 7.7, 4.7 Hz, 1H), 2.36 (s, 3H) ppm. 13C NMR 

(101 MHz, CDCl3) δ 158.7, 147.0, 140.6, 138.7, 131.0, 129.0, 128.3, 128.0, 122.2, 20.2 ppm. 

HRMS (ESI) calcd. for C12H12N (M+H)+ 170.0964, found 170.0957. 
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5-Chloro-2-phenylpyridine (6c) 

 

A -78 °C solution of 1d (45.9 mg, 0.174 mmol, 1 equiv.) in THF (1.16 mL) was treated dropwise 

with a 1.8 M solution of PhLi (0.29 mL, 0.522 mmol, 3 equiv.), stirred for 30 min, quenched 

with water and extracted with dichloromethane (3x). The combined organic layers were dried 

over Na2SO4, filtered and concentrated under reduced pressure. The residue was purified on 

silica gel using hexane/EtOAc = 9/1 as eluent affording 6c (24.5 mg, 74%) as a white solid. 1H 

NMR (400 MHz, CDCl3) δ 8.64 (dd, J = 2.5, 0.8 Hz, 1H), 8.01 – 7.89 (m, 2H), 7.79 – 7.62 (m, 

2H), 7.54 – 7.38 (m, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 155.7, 148.6, 138.3, 136.6, 130.8, 

129.4, 129.0, 127.0, 121.3 ppm. HRMS (ESI) calcd. For C11H9ClN (M+H)+ 190.0418, found 

190.0413. 

2,2'-Bipyridine (7) 

 

A 1 M solution of pyridine-2-yllithium was prepared by stirring an equimolar mixture of nBuLi 

and 2-bromopyridine in THF at -78 °C for 30 minutes. A -78 °C solution of 1a (40 mg, 0.174 

mmol, 1 equiv.) in THF (1.1 mL) was treated dropwise with the 1 M solution of pyridine-2-

yllithium (0.35 mL, 0.35 mmol, 2 equiv.), stirred for 20 min, treated with another equivalent of 

1 M pyridine-2-yllithium solution and stirred until complete disappearance of 1a (10 min). The 

reaction was quenched with water and extracted with dichloromethane (3x). The combined 

organic layers were dried over Na2SO4, filtered and concentrated in vacuo. The residue was 
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purified on silica gel using hexane/EtOAc = 85/15 as eluent affording 7 (25 mg, 92%) as white 

solid. From 2 and 3, 7 was isolated in 89% and 86% yield respectively following the same 

conditions. 1H NMR (300 MHz, CDCl3) δ 8.68 (ddd, J = 4.8, 1.8, 0.9 Hz, 2H), 8.39 (dt, J = 8.0, 

1.1 Hz, 2H), 7.81 (ddd, J = 8.0, 7.5, 1.8 Hz, 2H), 7.36 – 7.23 (m, 2H) ppm. 13C NMR (75 MHz, 

CDCl3) δ 156.3, 149.3, 137.1, 123.9, 121.2 ppm. HRMS (ESI) calcd. for C10H9N2 (M+H)+ 

157.0760, found 157.0754. 

2-(Pyridin-2-yl)quinoline (8) 

 

A -78 °C solution of 2-bromoquinoline (145 mg, 0.696 mmol, 4 equiv.) in THF (6.7 mL) was 

treated dropwise with a 2.5 M solution of nBuLi (0.28 mL, 0.696 mmol, 4 equiv.), stirred for 30 

min. A solution of 1a (40 mg, 0.174 mmol, 1 equiv.) in THF (0.7 mL) was added dropwise to 

the mixture and stirred at -78 °C for 30 min. The reaction was quenched with water and extracted 

with dichloromethane (3x). The combined organic layers were dried over Na2SO4, filtered and 

concentrated in vacuo. The residue was purified on silica gel using hexane/EtOAc = 85/15 as 

eluent affording 8 (24 mg, 67%, Rf: 0.3 (hexane/EtOAc, 8:2)) as a pale-yellow solid. 1H NMR 

(400 MHz, CDCl3) δ 8.80 – 8.72 (m, 1H), 8.70 (d, J = 8.0 Hz, 1H), 8.59 (d, J = 8.6 Hz, 1H), 

8.31 (d, J = 8.6 Hz, 1H), 8.23 (d, J = 8.5 Hz, 1H), 7.95 – 7.83 (m, 2H), 7.75 (ddd, J = 8.4, 6.7, 

1.5 Hz, 1H), 7.57 (td, J = 7.4, 6.8, 1.1 Hz, 1H), 7.38 (dd, J = 7.5, 5.0 Hz, 1H) ppm. 13C NMR 

(101 MHz, CDCl3) δ 156.4, 156.2, 149.3, 148.0, 137.1, 137.0, 129.9, 129.7, 128.4, 127.8, 126.9, 

124.2, 122.0, 119.1 ppm. HRMS (ESI) calcd. for C14H11N2 (M+H)+ 207.0917, found 207.0916.  
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2,2'-biquinoline (51 mg, Rf: 0.5 (hexane/EtOAc, 8:2) were also isolated as yellow solid, mp 192 

°C; 1H NMR (300 MHz, CDCl3) δ 8.87 (d, J = 8.6 Hz, 2H), 8.35 (dd, J = 8.7, 0.8 Hz, 2H), 8.25 

(dd, J = 8.5, 1.0 Hz, 2H), 7.90 (dd, J = 8.1, 1.5 Hz, 2H), 7.78 (ddd, J = 8.4, 6.9, 1.5 Hz, 2H), 

7.60 (ddd, J = 8.1, 6.9, 1.2 Hz, 2H) ppm; 13C NMR (101 MHz, CDCl3) δ 156.3, 148.0, 136.9, 

130.1, 129.7, 128.6, 127.8, 127.1, 119.6 ppm; HRMS (ESI) calcd. for C18H13N2 (M+H)+ 

257.1073, found 257.1066. 

Literature data for 2,2'-biquinoline: yellow solid, mp 193-195 °C; 1H-NMR (400 MHz, CDCl3) 

δ 8.86 (d, 2H, J = 8.8 Hz), 8.33 (d, 2H, J = 8.4 Hz), 8.24 (d, 2H, J= 8.4 Hz),. 7.89 (d, 2H, J = 8.0 

Hz), 7.72 (m, 2H), 7.57 (m, 2H) ppm.91 

2-(1-Methyl-1H-pyrrol-2-yl) pyridine (9) 

 

A 0.6 M solution of (1-methyl-1H-pyrrol-2-yl)lithium was prepared by stirring an equimolar 

mixture of nBuLi and 2-bromopyridine in THF at -78 °C for 30 min, then at 0 °C for 1 h. A -78 

°C solution of 1a (40 mg, 0.174mmol, 1 equiv.) in THF (1.1 mL) was treated dropwise with the 

0.6 M solution of (1-methyl-1H-pyrrol-2-yl)lithium (0.87 mL, 0.52 mmol, 3 equiv.), stirred for 

30 min, treated with another 3 equivalents of (1-methyl-1H-pyrrol-2-yl)lithium solution and 

stirred for another 30 min at -78 °C. The reaction was quenched with water and extracted with 

dichloromethane (3x). The combined organic layer was dried over Na2SO4, filtered and 

concentrated in vacuo. The residue was purified by column chromatography on silica gel (9:1 

hexane/ EtOAc) affording 9 (5.8 mg, 30 %, Rf: 0.45 (hexane/EtOAc, 8:2)) as yellow liquid, and 

the starting material (16 mg, 40%, Rf: 0.3 (hexane/EtOAc, 8:2)). The side product 2-((1-methyl-
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1H-pyrrol-2-yl) sulfonyl) pyridine (17) (5.8 mg, 15%, Rf: 0.1 (hexane/EtOAc, 8:2)) was also 

isolated as yellow solid with eluent hexane/ EtOAc= 7/3. Data for 9: 1H NMR (300 MHz, 

Chloroform-d) δ 8.80 – 8.58 (m, 1H), 8.12 (d, J = 7.9 Hz, 1H), 7.91 (td, J = 7.8, 1.7 Hz, 1H), 

7.45 (ddd, J = 7.7, 4.7, 1.1 Hz, 1H), 7.03 (dd, J = 4.1, 1.9 Hz, 1H), 6.85 (t, J = 2.2 Hz, 1H), 6.18 

(dd, J = 4.1, 2.5 Hz, 1H), 4.01 (s, 3H) ppm; 13C NMR (101 MHz, Chloroform-d) δ 152.5, 148.4, 

136.4, 132.1, 126.5, 121.6, 120.3, 110.9, 107.7, 36.9 ppm; HRMS (ESI) calcd. for C10H11N2 

(M+H)+ 159.0917, found 159.0912. Data for 2-((1-methyl-1H-pyrrol-2-yl) sulfonyl) pyridine 

(17): 1H NMR (400 MHz, Chloroform-d) δ 8.85 – 8.44 (m, 1H), 8.11 (d, J = 7.9 Hz, 1H), 7.90 

(td, J = 7.8, 1.7 Hz, 1H), 7.45 (ddd, J = 7.6, 4.7, 1.1 Hz, 1H), 7.02 (dd, J = 4.1, 1.9 Hz, 1H), 6.85 

(d, J = 2.3 Hz, 1H), 6.17 (dd, J = 4.1, 2.5 Hz, 1H), 4.00 (s, 3H) ppm; 13C NMR (101 MHz, 

Chloroform-d) δ 160.0, 150.1, 138.2, 130.7, 126.7, 126.2, 121.3, 120.2, 108.6, 36.5 ppm; HRMS 

(ESI) calcd. for C10H11N2O2S (M+H)+ 223.0536, found 223.0529. 

1-Methyl-2-(pyridin-2-yl)-1H-indole (10) 

 

A -78 °C solution of 1-methyl-1H-indole (93.1 mg, 0.696 mmol, 4 equiv.) in anhydrous THF 

(0.8 mL) was treated dropwise with a 1.7 M solution of tBuLi (0.41 mL, 0.696 mmol, 4 equiv.), 

stirred for 5 min and the resulting solution was allowed to warm up to room temperature for 1 

h. The mixture was cooled to -40 °C and a solution of 1a (40 mg, 0.174 mmol, 1 equiv.) in THF 

(0.7 mL) was added dropwise over 20 min. The mixture was allowed to warm up to 0 °C 

gradually. After 10 minutes, the reaction was quenched with water and extracted with 

dichloromethane (3x). The combined organic layers were dried over Na2SO4, filtered and 
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concentrated in vacuo. The residue was purified on silica gel using hexane/EtOAc = 9/1 

affording 10 (15.2 mg, 42%) as a pale-yellow solid. 1H NMR (400 MHz, CDCl3) δ 8.71 (ddd, J 

= 4.9, 1.8, 1.0 Hz, 1H), 7.79 – 7.70 (m, 2H), 7.67 (dt, J = 7.9, 1.0 Hz, 1H), 7.45 – 7.38 (m, 1H), 

7.29 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.26 – 7.21 (m, 1H), 7.15 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 

6.88 (d, J = 0.8 Hz, 1H), 4.09 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 152.5, 149.0, 139.5, 

138.9, 136.9, 127.6, 123.8, 122.8, 121.9, 121.1, 120.1, 110.0, 103.8, 32.1 ppm. HRMS (ESI) 

calcd. for C14H13N2 (M+H)+ 209.1073, found 209.1064. 

2-(Furan-3-yl)pyridine (11) 

 

A -78 °C solution of 3-bromofuran (102.3 mg, 0.696 mmol, 4 equiv.) in THF (1.9 mL) was 

treated dropwise with a 2.5 M solution of nBuLi (0.28 mL, 0.696 mmol, 4 equiv.), stirred for 2 

h. A solution of 1a (40 mg, 0.174 mmol, 1 equiv.) in THF (0.7 mL) was added dropwise to the 

mixture and stirred at -40 °C for 30 min. The reaction was quenched with water and extracted 

with dichloromethane (3x). The combined organic layers were dried over Na2SO4, filtered and 

concentrated in vacuo. The residue was purified on silica gel using hexane/EtOAc = 9/1 

affording 11 (16.4 mg, 65 %) as a pale-yellow volatile oil. From 2 and 3, 11 was obtained with 

52% and 66% yield respectively following the same conditions. 1H NMR (300 MHz, CDCl3) δ 

8.57 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 8.02 (dd, J = 1.6, 0.8 Hz, 1H), 7.65 (td, J = 7.7, 1.9 Hz, 

1H), 7.52 – 7.38 (m, 2H), 7.12 (ddd, J = 7.6, 4.9, 1.2 Hz, 1H), 6.89 (dd, J = 1.9, 0.8 Hz, 1H) 

ppm. 13C NMR (75 MHz, CDCl3) δ 151.9, 149.8, 144.0, 141.3, 136.7, 127.2, 121.8, 120.2, 108.7 

ppm. HRMS (ESI) calcd. for C9H8NO (M+H)+ 146.0600, found 146.0598. 
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2-(Pyridin-2-yl)thiazole (12) 

 

A -78 °C solution of 2-bromothiazole (114.2 mg, 0.696 mmol, 4 equiv.) in THF (1.9 mL) was 

treated dropwise with a 2.5 M solution of nBuLi (0.28 mL, 0.696 mmol, 4 equiv.), stirred for 30 

min. A solution of 11a (40 mg, 0.174 mmol, 1 equiv.) in THF (0.7 mL) was added dropwise to 

the mixture and stirred at -40 °C for 30 min. The reaction was quenched with water and extracted 

with dichloromethane (3x). The combined organic layers were dried over Na2SO4, filtered and 

concentrated in vacuo. The residue was purified on silica gel using DCM/acetone = 99/1 

affording 12 (13.8 mg, 49%, Rf: 0.28 hexane/EtOAc, 8:2)) as a white solid and 2,2’-bithiazole 

(14 mg, Rf: 0.3 hexane/EtOAc, 8:2)). From 2 and 3, 12 was obtained with 46% and 65% yield 

respectively following the same conditions. Data for 12: 1H NMR (400 MHz, CDCl3) δ 8.62 (d, 

J = 4.9 Hz, 1H), 8.20 (dt, J = 7.9, 1.1 Hz, 1H), 7.92 (d, J = 3.2 Hz, 1H), 7.80 (td, J = 7.7, 1.7 

Hz, 1H), 7.44 (d, J = 3.2 Hz, 1H), 7.32 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H) ppm; 13C NMR (101 

MHz, CDCl3) δ 169.5, 151.5, 149.6, 144.2, 137.3, 124.6, 121.6, 119.8 ppm; HRMS (ESI) calcd. 

for C8H7N2S (M+H)+ 163.0325, found 163.0324. Data for 2,2'-bithiazole: 1H NMR (300 MHz, 

CDCl3) δ 7.90 (d, J = 3.2 Hz, 2H), 7.44 (d, J = 3.1 Hz, 2H) ppm; 13C NMR (101 MHz, CDCl3) 

δ 161.8, 144.0, 121.1 ppm. HRMS (ESI) calcd. for C6H5N2S2 (M+H)+ 168.9889, found 

168.9881. 
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2-(Thiophen-2-yl)pyridine (13) 

 

A 1 M solution of thiophen-2-yllithium was prepared by stirring an equimolar mixture of nBuLi 

and 2-bromothiophene in THF at -78 °C for 5 minutes and then at rt for 3 h. A -40 °C solution 

of 1a (40 mg, 0.174mmol, 1 equiv.) in THF (1.1 mL) was treated dropwise with the 1 M solution 

of thiophen-2-yllithium (0.52 mL, 0.52 mmol, 3 equiv.), stirred 30 min, treated with another 3 

equivalents of thiophen-2-yllithium, stirred for 30 min at -40 °C and 10 min at rt. The reaction 

was quenched with water and extracted with dichloromethane (3x). The combined organic 

layers were dried over Na2SO4, filtered and concentrated in vacuo. The residue was purified on 

silica gel using hexane/EtOAc = 9/1 as eluent affording 13 (10.4 mg, 37%, Rf: 0.4 

hexane/EtOAc, 8:2)) as a white solid. 2-(Thiophen-2-ylsulfonyl) pyridine (18) (4.7mg, 12%, Rf: 

0.1 hexane/EtOAc, 8:2) was also isolated. Data for 13: 1H NMR (400 MHz, CDCl3) δ 8.60 – 

8.54 (m, 1H), 7.75 – 7.64 (m, 2H), 7.63 – 7.58 (m, 1H), 7.40 (dd, J = 5.1, 1.1 Hz, 1H), 7.15 

(ddd, J = 6.7, 4.9, 1.7 Hz, 1H), 7.12 (dd, J = 5.1, 3.7 Hz, 1H) ppm; 13C NMR (101 MHz, CDCl3) 

δ = 152.4, 149.3, 144.2, 137.3, 128.3, 128.0, 125.2, 122.1, 119.2 ppm; HRMS (ESI) calcd. for 

C9H8NS (M+H)+ 162.0372, found 162. 0367. Data for 2-(thiophen-2-ylsulfonyl) pyridine (18): 

1H NMR (400 MHz, CDCl3) δ 8.72 (dt, J = 4.7, 1.2 Hz, 1H), 8.19 (dt, J = 7.8, 1.0 Hz, 1H), 7.94 

(td, J = 7.8, 1.7 Hz, 1H), 7.86 (dd, J = 3.8, 1.4 Hz, 1H), 7.73 (dd, J = 5.0, 1.3 Hz, 1H), 7.48 (ddd, 

J = 7.7, 4.7, 1.1 Hz, 1H), 7.14 (dd, J = 5.0, 3.8 Hz, 1H) ppm; 13C NMR (101 MHz, CDCl3) δ 

159.0, 150.6, 139.7, 138.3, 135.5, 135.3, 128.0, 127.2, 121.9 ppm; HRMS (ESI) calcd. for 

C9H8NO2S2 (M+H)+ 225.9991, found 225.9983. 
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Di(pyridin-2-yl)methane (14) 

 

A 1 M solution of pyridin-2-ylmethyl lithium was prepared by stirring an equimolar mixture of 

nBuLi and 2-methylpyridine in THF at -78 °C for 1 h and then at 0 °C for 30 min. A -78 °C 

solution of 1a (40 mg, 0.174 mmol, 1 equiv.) in THF (1.1 mL) was treated dropwise with  the 1 

M solution of pyridin-2-ylmethyl lithium dropwise (0.35 mL, 0.35 mmol, 2 equiv.), stirred for 

20 min, treated with another 2 equivalents of pyridin-2-ylmethyl lithium solution and stirred 

until complete disappearance of 1a (10 min). The reaction was quenched with water and 

extracted with dichloromethane (3x). The combined organic layers were dried over Na2SO4, 

filtered and concentrated in vacuo. The residue was purified on silica gel using DCM/MeOH = 

95/5 as eluent affording 14 (25 mg, 85%) as a pale-yellow oil. 1H NMR (400 MHz, CDCl3) δ 

8.56 (dd, J = 5.1, 1.8 Hz, 2H), 7.62 (td, J = 7.7, 1.9 Hz, 2H), 7.28 (d, J = 7.9 Hz, 2H), 7.14 (dd, 

J = 7.6, 4.9 Hz, 2H), 4.36 (s, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 159.5, 149.5, 136.7, 

123.7, 121.6, 47.4 ppm. HRMS (ESI) calcd. for C11H11N2 (M+H)+ 171.0917, found 171.0922. 

2-(Pyridin-2-ylsulfonyl)thiazole (15) 

 

A -78 °C solution of 2-bromothiazole (209.1 mg, 1.275 mmol, 3 equiv.) in THF (3.5 mL) was 

treated dropwise with a 2.5 M solution of nBuLi (0.51 mL, 1.275 mmol, 3 equiv.), stirred for 30 

min. A solution of 2 (100 mg, 0.425 mmol, 1 equiv.) in THF (0.7 mL) was added dropwise to 

the mixture and stirred at -78 °C for 30 min. The reaction was quenched with water and extracted 

with dichloromethane (3x). The combined organic layers were dried over Na2SO4, filtered and 
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concentrated in vacuo. The residue was purified on silica gel using hexane/EtOAc = 85/15 

affording 15 (80.6 mg, 84%) as a pale-yellow solid. 1H NMR (400 MHz, CDCl3) δ 8.75 – 8.70 

(m, 1H), 8.35 (d, J = 7.9 Hz, 1H), 8.05 – 7.97 (m, 2H), 7.77 (d, J = 3.0 Hz, 1H), 7.55 (ddd, J = 

7.7, 4.7, 1.1 Hz, 1H) ppm. 13C NMR (75 MHz, CDCl3) δ 164.9, 156.7, 150.8, 145.5, 138.5, 

128.0, 127.2, 123.7 ppm. HRMS (ESI) calcd. for C8H7N2O2S2 (M+H)+ 226.9944, found 

226.9937. 

2-(Furan-3-ylsulfonyl)pyridine (16) 

 

A -78 °C solution of 3-bromofuran (73.7 mg, 0.522 mmol, 3 equiv.) in THF (1.4 mL) was treated 

dropwise with a 2.5 M solution of nBuLi (0.21 mL, 0.522 mmol, 3 equiv.), stirred for 2 h. A 

solution of 2 (41 mg, 0.174 mmol, 1 equiv.) in THF (0.7 mL) was added dropwise to the mixture 

and stirred for 30 min. The reaction was quenched with water and extracted with 

dichloromethane (3x). The combined organic layers were dried over Na2SO4, filtered and 

concentrated in vacuo. The residue was purified on silica gel using hexane/EtOAc = 7/3 

affording affording 27.7 mg (76 %) of 16 as a white solid.1H NMR (400 MHz, Chloroform-d) 

δ 8.73 – 8.65 (m, 1H), 8.19 – 8.08 (m, 2H), 7.94 (td, J = 7.8, 1.7 Hz, 1H), 7.53 – 7.48 (m, 1H), 

7.48 (s, 1H), 6.78 (d, J = 1.8 Hz, 1H) ppm.13C NMR (101 MHz, Chloroform-d) δ 158.6, 150.4, 

147.9, 144.8, 138.2, 127.2, 126.7, 121.7, 109.5 ppm. HRMS (ESI) calcd. for C9H8NO3S (M+H)+ 

210.0219, found 210.0209. 
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2-((1-Methyl-1H-pyrrol-2-yl)sulfonyl)pyridine (17) 

 

A 0.6 M solution of (1-methyl-1H-pyrrol-2-yl)lithium was prepared by stirring an equimolar 

mixture of nBuLi and 2-bromopyridine in THF at -78 °C for 30 min, then at 0 °C for 1h. A -78 

°C solution of 2 (41 mg, 0.174mmol, 1 equiv.) in THF (1.1 mL) was treated dropwise with the 

0.6 M solution of (1-methyl-1H-pyrrol-2-yl)lithium (0.58 mL, 0.348 mmol, 2 equiv.), stirred for 

20 min, treated with another 2 equivalents of (1-methyl-1H-pyrrol-2-yl)lithium solution and 

stirred until complete disappearance of 2. Then the reaction was quenched with water and 

extracted with dichloromethane (3x). The combined organic layer was dried over Na2SO4, 

filtered nd concentrated in vacuo. The residue was purified by column chromatography on silica 

gel (7:3 hexane/EtOAc) affording 28.3 mg (73 %) of 17 as yellow solid. 1H NMR (400 MHz, 

Chloroform-d) δ 8.85 – 8.44 (m, 1H), 8.11 (d, J = 7.9 Hz, 1H), 7.90 (td, J = 7.8, 1.7 Hz, 1H), 

7.45 (ddd, J = 7.6, 4.7, 1.1 Hz, 1H), 7.02 (dd, J = 4.1, 1.9 Hz, 1H), 6.85 (d, J = 2.3 Hz, 1H), 6.17 

(dd, J = 4.1, 2.5 Hz, 1H), 4.00 (s, 3H) ppm. 13C NMR (101 MHz, Chloroform-d) δ 160.0, 150.1, 

138.2, 130.7, 126.7, 126.2, 121.3, 120.2, 108.6, 36.5 ppm. HRMS (ESI) calcd. for C10H11N2O2S 

(M+H)+ 223.0536, found 223.0529.  

2-(Thiophen-2-ylsulfonyl)pyridine (18) 

 

A 1M solution of thiophen-2-yllithium was prepared by stirring an equimolar mixture of nBuLi 

and 2-bromothiophene in THF at -78 °C for 5 min and then at rt for 3 h. A -78 °C solution of 2 
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(41 mg, 0.174mmol, 1 equiv.) in THF (1.1 mL) was treated dropwise with the 1 M solution of 

thiophen-2-yllithium (0.52 mL, 0.52 mmol, 3 equiv.), stirred for 30 min, treated with another 3 

equivalents of thiophen-2-yllithium solution and stirred for 30 min at -78 °C. The reaction was 

quenched with water and extracted with dichloromethane (3x). The combined organic layer was 

dried over Na2SO4, filtered and concentrated in vacuo. The residue was purified by column 

chromatography on silica gel (9:1 hexane/ EtOAc) affording 20mg (52%) of 18 as white solid. 

1H NMR (400 MHz, Chloroform-d) δ 8.72 (dt, J = 4.7, 1.2 Hz, 1H), 8.19 (dt, J = 7.8, 1.0 Hz, 

1H), 7.94 (td, J = 7.8, 1.7 Hz, 1H), 7.86 (dd, J = 3.8, 1.4 Hz, 1H), 7.73 (dd, J = 5.0, 1.3 Hz, 1H), 

7.48 (ddd, J = 7.7, 4.7, 1.1 Hz, 1H), 7.14 (dd, J = 5.0, 3.8 Hz, 1H) ppm.13C NMR (101 MHz, 

Chloroform-d) δ 158.9, 150.5, 139.6, 138.2, 135.3, 135.2, 127.9, 127.0, 121.8 ppm. HRMS 

(ESI) calcd. for C9H8NO2S2 (M+H)+ 225.9991, found 225.9983. 

2.7 Supplementary reactions 

Reaction of 15 with thiazol-2-yllithium 

 

A -78 °C solution of 2-bromothiazole (57.1 mg, 0.348 mmol, 2 equiv.) in THF (1 mL) was 

added dropwise with a 2.5 M solution of nBuLi (0.14 mL, 0.348 mmol, 2 equiv.), stirred for 30 

min. A solution of 15 (39.4 mg, 0.174 mmol, 1 equiv.) in THF (0.7 mL) was added dropwise to 

the mixture and stirred for 30 min at -40 °C. The reaction was quenched with water and extracted 

with dichloromethane (3x). The combined organic layers were dried over Na2SO4, filtered and 
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concentrated in vacuo. The residue was purified on silica gel using DCM/Acetone = 99/1 

affording 12 (12.7 mg, 45%) and 13.8 mg of 2,2'-bithiazole. 

Reaction of 15 with phenyl lithium 

 

A -78 °C solution of 15 (39.4 mg, 0.174 mmol, 1 equiv.) in THF (1.16 mL) was treated dropwise 

with a 1.8 M solution of PhLi (0.19 mL, 0.348 mmol, 2 equiv.), stirred for 20 min, treated with 

another 2 equivalents of PhLi solution and stirred until complete disappearance of 15. The 

reaction was quenched with water and extracted with dichloromethane (3x). The combined 

organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure. The 

residue was purified on silica gel using hexane/EtOAc = 9/1 as eluent affording 5a (23 mg, 84%) 

as a yellow oil.  

 

A -78 °C solution of 15 (39.4 mg, 0.174 mmol, 1 equiv.) in THF (1.26 mL) was treated dropwise 

with a 1.8 M solution of PhLi (0.19 mL, 0.348 mmol, 2 equiv.). The mixture was warmed to -

40 °C and stirred for 30 min. The reaction was quenched with water and extracted with 

dichloromethane (3x). The combined organic layers were dried over Na2SO4, filtered and 

concentrated under reduced pressure. The residue was purified on silica gel using hexane/EtOAc 

= 9/1 as eluent affording 23 mg (65%) of 5a, 3.1 mg (11%) of 12, and 3.6 mg (13%) of 20.  
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Reaction of 2 with PhMgBr 

 

A 0 °C solution of 2 (41 mg, 0.174 mmol, 1 equiv.) in THF (0.6 mL) was treated dropwise with 

a 1 M solution of PhMgBr (0.26 mL, 0.26 mL, 1.5 equiv.), stirred for 1 h. The reaction was 

quenched with water and extracted with dichloromethane (3x). The combined organic layers 

were dried over Na2SO4, filtered and concentrated in vacuo. The residue was purified on silica 

gel using hexane/EtOAc = 9/1 as eluent affording 3 (26 mg, 68%). 

 

A 0 °C solution of 2 (41 mg, 0.174 mmol, 1 equiv.) in THF (0.6 mL) was treated dropwise with 

a 1 M solution of PhMgBr (0.52 mL, 0.52 mmol, 3 equiv.), stirred for 1h and warmed up to 

room temperature for 18h. The reaction was quenched with water and extracted with 

dichloromethane (3x). The combined organic layers were dried over Na2SO4, filtered and 

concentrated in vacuo. The residue was purified on silica gel using hexane/EtOAc = 9/1 as eluent 

affording 5a (42%), 21 (10%) and 22 (7%). 

Data for 4-phenyl-2-(phenylsulfonyl)pyridine (21): 1H NMR (400 MHz, CDCl3) δ 8.70 (d, J = 

5.0 Hz, 1H), 8.44 (d, J = 1.8 Hz, 1H), 8.14 – 8.04 (m, 2H), 7.71 – 7.59 (m, 4H), 7.59 – 7.48 (m, 

5H) ppm; 13C NMR (101 MHz, CDCl3) δ 159.6, 151.1, 151.1, 139.1, 136.6, 133.9, 130.3, 129.6, 
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129.3, 129.1, 127.3, 124.6, 120.2 ppm; HRMS (ESI) calcd. for C17H14NO2S (M+H)+ 296.0740, 

found 296.0729.  

Data for sulfonyldibenzene (22): 1H NMR (400 MHz, CDCl3) δ 7.69 – 7.59 (m, 4H), 7.51 – 7.42 

(m, 6H) ppm; 13C NMR (101 MHz, CDCl3) δ 145.8, 131.2, 129.5, 125.0 ppm; HRMS (ESI) 

calcd. for C12H11O2S (M+H)+ 219.0474, found 219.0480. 

 

Following the same conditions as above with 3, the following product distribution was obtained: 

5a (62%), 21 (15%) and 22 (11%). 
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