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Introduction 

Mendelian randomization (MR) is an epidemiological technique for estimating causal 
relationships using observational data, which has become very popular in recent years following 
publication of a seminal article by George Davey Smith and Shah Ebrahim in 2003 [1]. MR is a 
specific form of “instrumental variables” (IV) analysis (the latter being first invented by Phillip 
and Sewall Wright in the 1920s [2]) that uses genetic variants to proxy a modifiable variable 
(which we term the “exposure” variable here) in order to estimate the causal relationship between 
the exposure and an outcome of interest. To understand how this causal inference technique 
works, it is useful to think of MR as similar to a “natural” randomized controlled trial [3] where 
individuals are randomly assigned to groups based on the alleles that they inherit from their 
parents (Fig 1). MR takes advantage of Mendel’s Laws of Segregation and Independent 
Assortment, which state that offspring inherit alleles randomly from their parents, and randomly 
with respect to other genes in the genome (with certain exceptions [1]). Therefore, genetic 
variants that are related to an exposure of interest can be used to proxy the part of the exposure 
variable that is independent of possible confounding influences from the environment and other 
traits. Providing several assumptions are satisfied (see below), and the principle of gene-
environment equivalence (i.e. perturbing the exposure genetically has the same effect as 
perturbing the exposure by other means), statistical association between the genetic variant and 
the outcome is indicative of a causal relationship between the exposure and the outcome, and can 
be used to estimate the magnitude of the causal relationship using IV methods. Although 
originally developed as a way to estimate causal relationships between modifiable environmental 
exposures and medically relevant outcomes, in recent years, MR has been utilized in many other 
situations including studies of molecular biomarkers, in pharmacogenetics, in the social sciences, 
and in other discplines that use observational frameworks [4,5]. 

Given the growing number of MR studies in the literature and the increasing amount of publicly 
available GWAS datasets and variant-trait association summary statistics, which make such 



   
 

   
 

studies feasible, we describe Ten Simple Rules for conducting a MR study. Our aim is not to 
provide a comprehensive and detailed overview of MR (which can be found elsewhere [4,5,6]), 
but rather to present a starting place for researchers to prepare to conduct, and to begin to 
critically evaluate existing MR studies. 

Rule 1: Have a clear research question.  
Specify your relationship of interest; that is to say, does having trait A (exposure) or having a 
particular level/dose of trait A cause trait B (outcome)? “Trait” should be interpreted broadly and 
could refer to, for example, a disease, an environmental exposure, a molecular biomarker and/or a 
quantitative trait. Often the exposure is modifiable (alcohol consumption or vitamin levels are 
two examples), so that there is a potential opportunity to intervene on the variable if the MR 
analyses provide evidence supporting a causal relationship between the exposure and the 
outcome. Nevertheless, investigating factors which are not easily modifiable (such as adult height 
or birth weight) in an MR framework can also be informative from a mechanistic perspective. 
The interrogation of causality by MR does not necessarily involve a single exposure and outcome 
pair. You could, for instance, conduct a MR-phenome-wide association study [7] looking at 
potential causal relationships between a single exposure and multiple outcomes, or alternatively 
between multiple exposures and a single outcome. Regardless of the choice of exposure(s) and 
outcome(s), your underlying research question must be clear. 
 
Rule 2: Keep in mind the core IV assumptions. 
There are three core assumptions genetic variants must satisfy in order to be considered 
instrumental variables for testing hypotheses about whether an exposure is causally related to an 
outcome of interest. The first is that the genetic variants used to proxy for the exposure are 
robustly associated with the exposure. The second assumption is that there is no confounding 
(measured or unmeasured) of the genetic variants with the outcome. The third assumption is that 
the variants potentially influence the outcome only through the exposure. Only the first of these 
assumptions can be proven definitively. That is to say, you can obtain statistical evidence that 
your genetic variants are related to the exposure and compute a measure (typically the F-statistic 
from a regression of the exposure on the variant is used) of the strength of this association [8]). 
The more variance the genetic variant explains in the exposure and the larger your sample size, 
the more powerful your analysis and the more accurate your estimate of the causal effect of 
exposure on outcome. For the remaining assumptions, sensitivity analyses should be performed, 
if possible, to assess whether the assumptions are likely to have been violated. For example, 
different genetic variants exhibiting differences in the magnitude of the estimated causal effect 
suggests (i) the presence of horizontal pleiotropy (where a variant affects multiple phenotypes) 
and (ii) violation of the third IV assumption. In the case of the second IV assumption, Mendel’s 
Laws of Segregation and Independent Assortment strongly suggest that genetic variants should 
be unrelated to environmental and genetic confounding variables, respectively. Empirical tests of 
the relationship between genetic variants and known confounders of the exposure-outcome 
relationship can increase confidence in the validity of this assumption, but are not definitive in 
that other unmeasured confounders of the exposure-outcome relationship could still be associated 
with the genetic variant. Additionally, other processes can generate spurious associations between 
the genetic variant and the outcome including population stratification, selection bias and 



   
 

   
 

dynastic effects [9]. Investigators should be particularly cognizant of the potential for population 
stratification to reintroduce confounding into the MR analysis and take actionable steps to control 
for this possibility, such as including ancestry informative principal components in the statistical 
model. 

Whilst the above three core assumptions are sufficient for testing whether an exposure causes the 
outcome, in order to obtain accurate point estimates of the causal effect, further (strong) 
assumptions regarding the form of the relationship between the genetic variant, exposure and 
outcome also need to be made (e.g. linearity) [10]. 
 
Rule 3: Be attentive when selecting genetic variants to be used as instruments.  
Decreasing genotyping costs, the emergence of large-scale biobanks and GWAS meta-analytic 
consortia, and the wide-spread availability of variant-trait association summary statistics and 
databases in the public domain, such as MR-Base [11], have facilitated the identification and 
utilization of genetic instruments for MR studies. There are no set rules for selecting the “best” 
set of genetic instruments for an MR study. For example, a well-powered MR analysis using a 
single variant with a well understood mechanism of action (and unlikely to involve horizontal 
pleiotropy) may be a superior strategy to performing a MR study as opposed to using as many 
genome-wide significant variants as possible to proxy the exposure [12]. Decisions related to 
genetic instrument selection are made on a case-by-case basis, but guidelines have been 
developed to assist in this process [13]. Important considerations include strength of the variant-
exposure association (the more robust the better), variant independence (genetic variants should 
not be in linkage disequilibrium unless this correlation is explicitly modelled in the analysis), and 
the likelihood of pleiotropy (which may be a rationale for variant exclusion). Selecting genetic 
variants that are appropriate for your sample is also key; in particular, it is important to be aware 
of any variants that exert ancestry-, sex-, or age-dependent effects. 

Rule 4: Consider the possibility of reverse causality.  
Do the genetic variants exhibit their primary association with the exposure variable as opposed to 
the outcome variable? For example if variable A has a large causal effect on variable B, then 
genetic variants primarily associated with variable A will reach genome-wide significance in a 
GWAS of variable B given a large enough sample. These variants could be erroneously used as 
instruments for estimating the causal effect of variable B on variable A when in fact their primary 
association is with variable A. The use of such variants would bias the results of MR analyses of 
the causal effect of variable B on variable A and potentially provide spurious evidence of reverse 
causality due to mis-specification of the primary trait. Steiger filtering [14] can be used to 
identify a set of genetic variants that have their primary association with the exposure of interest. 
If bidirectional causal relationships are a possibility (i.e. variable A causes variable B, and 
variable B causes variable A) then consider using “reciprocal MR” in which exposure and 
outcome are instrumented and MR performed in both directions [15].  

Rule 5: Understand the pros and cons of using one versus two sample MR.  
Perform one or two sample MR using one of the many well-documented software packages that 
are freely available (e.g. the “two sample MR package” in the R statistics software), or the MR-
Base web utility that uses the MRC IEU OpenGWAS data infrastructure of harmonized GWAS 



   
 

   
 

summary datasets and metadata [11,16]. One sample MR has the advantage that it is possible to 
confirm that genetic markers used in the analysis are independent of known confounding 
variables, and also permits many specialized types of MR analysis (e.g. gene by environment MR 
[17]; factorial MR [18]; non-linear MR [19] etc.). Potential disadvantages are that large samples 
may be difficult to obtain, which lowers power, and that any bias from weak instruments (that is, 
genetic markers that are not robustly related to the exposure in the sample under study) will be in 
the direction of the observational association [8]. Two sample MR (i.e. obtaining variant-
exposure and variant-outcome effect sizes from two different datasets) is often advantageous in 
terms of statistical power, in that publicly available summary results data from large genome-
wide association consortia can be used inexpensively, easily and efficiently. This approach can 
boost sample size and facilitate the analysis of expensive/hard to measure exposures or outcomes. 
However, it assumes that the different exposure and outcome datasets are ancestrally 
homogeneous and that the same causal process operates in both datasets. Any bias from weak 
instruments tends to be towards the null [4,20]. If performing two sample MR, ensure that the 
effect of the variant on the exposure variable and the effect of the variant on the outcome variable 
correspond to the same allele. Be careful if using pallindromic varants (i.e. A/T or C/G variants), 
so that variant-exposure and variant-outcome effect estimates correspond to the same strand. If 
using several independent variants, causal effect estimates can be combined by weighting them 
by the inverse of their variance (i.e. termed the “inverse-variance weighted (IVW) MR” method).  

Rule 6: Visualize results.  
Graphical visualization can be useful for checking the validity of MR assumptions. Forest plots, 
which display causal effect estimates across the different genetic variants, can be useful in terms 
of identifying outliers and potential pleiotropic variants. Funnel plots, which graph variant 
instrument strength (y-axis) against causal effect estimate, can be useful in identifying the 
presence of directional pleiotropy in the data. 

Rule 7: Run sensitivity analyses to increase confidence in the validity of the results.  
Whilst IVW MR is the most statistically powerful approach to combine/meta-analyze causal 
effect estimates [21], it assumes the complete absence of horizontal pleiotropy. Therefore, 
perform tests of heterogeniety to investigate whether estimates of the causal effect differ across 
the various genetic variants [22]. Different causal effect estimates suggest the presence of 
horizontal pleiotropy and can flag outlying variants for further investigation. Perform sensitivity 
analyses that relax the strict assumption of no horizontal pleiotropy. These different methods 
include, but are not limited to, random effects MR, the MR modal-based estimator [23], weighted 
median MR [24], MR-Egger regression [25], MR-RAPS [26], and simulation-based 
heterogeneity and outlier tests (e.g MR-PRESSO) [27]. Also consider assessing potential biases 
due to measurement error in the variant-exposure associations [28], sample overlap [29] and 
selection bias [30]. Consistent causal effect estimates across the different methods improves 
confidence in the validity of the MR results. In certain cases, it may be possible to utilize an 
informative gene by environment interaction to inform on the presence or absence of horizontal 
genetic pleiotropy. For example, in MR studies of the relationship between alcohol consumption 
and disease outcomes, an association between genetic variants proxying number of units of 
alcohol consumed per day and disease status should not be present in the subpopulation of 



   
 

   
 

individuals who do not consume alcohol. Indeed, the existence of such associations may indicate 
the presence of horizontal pleiotropy. 

Rule 8: Document code and ensure reproducibility.  
Replication is essential for advancing science, and code transparency in computational research is 
a key step in facilitating reproducibility. There are papers to help with fostering reproducible 
computational research, including from the Ten Simple Rules series of PLOS Computational 
Biology [31]. With this premise in mind, code should be clear, concise, and well-documented in a 
manner that allows others to replicate your results. Using an online open-source code 
collaboration tool, such as GitHub (https://github.com), and getting your code independently 
tested are useful ways to share code and verify reproducibility.   

Guidelines for reporting MR studies have been proposed [32]. As well as sharing code, it is 
helpful to document how the datasets have been constructed, such as the characteristics of the 
participants in the GWAS studies (especially in cases where sharing of individual level datasets is 
not possible), and to present detailed summary results data (effect alleles, strand, effect sizes, 
allele frequencies, p values etc.) for the individual genetic variants used to proxy for the 
exposure.  

Rule 9: Carefully interpret results and acknowledge limitations. 
The critical appraisal checklist available in a review paper on interpreting Mendelian 
randomization studies offers concrete guidance for the interpretation of results [33]. Of note, an 
essential point to consider when interpreting such studies is whether gene-environment 
equivalence is reasonable; that is, do changes caused by genotypes have the same downstream 
effects as if they were caused by modifiable exposures? Additionally, results from MR cannot 
necessarily be generalized to individuals who differ from those from which the effect sizes were 
derived, such as individuals from different ancestries, environments, sexes, and ages. The non-
transferability of results is one reason why it is crucial to provide detailed information on the 
characteristics of the datasets used in the analysis, as noted in the previous rule. 

Rule 10: Disseminate findings to the research community. 
Now it is time to formally share the results from your efforts with colleagues and the broader 
research community through a scientific publication and/or a conference presentation. There is 
helpful advice provided in earlier articles of this Ten Simple Rules series of PLOS Computational 
Biology for disseminating research through written and oral communication [34,35]. 

Conclusion  
MR uses genetic variant-trait associations to estimate the causal effect of an exposure variable on 
an outcome. Originally developed to estimate causal relationships between modifiable 
environmental exposures and medically relevant outcomes, the scope of the MR paradigm has 
widened to include applications in fields as diverse as molecular biology, pharmacology and the 
social sciences. When conducted appropriately and its results triangulated with substantive 
knowledge and results using other research methodologies, MR can be a powerful tool for 
informing causality. 



   
 

   
 

Acknowledgements 
The authors thank George Davey Smith for comments and discussion. George Davey Smith 
works in the Medical Research Council Integrative Epidemiology Unit at the University of 
Bristol MC_UU_00011/1. 

 
Figure legends 
Fig 1. Similarities between the Mendelian randomization (MR) study design and a randomized 
controlled trial. 
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